EJB & JSP: Java On The Edge, Unlimited Edition

Your Guide to Cutting-Edge J2EE Programming Techniques.

[1 Back Cover

Table of Contents

Part 1 EJB & JSP—Java On the Edge
Chapter 1 - Enterprise Computing Concepts
Chapter 2 - J2EE Component APIs

Part 11 JavaServer Pages

Chapter 3 - A First Look at JavaServer Pages
Chapter 4 - The Elements of a JSP Page

Chapter 5 - JSP Web Sessions

Chapter 6 - JSP and JavaBeans

Chapter 7 - JSP Tag Extensions

Chapter 8 - JSPs and Servlets Revisited

Chapter 9 - JSP Errors and Debugging

Chapter 10 - The “Make Money” Brokerage Application

Part 111 Enterprise JavaBeans

Chapter 11 - A First Look at EJB

Chapter 12 - The Elements of an EJB

Chapter 13 - EJB Contexts and Containers
Chapter 14 - EJB Session Beans

Chapter 15 - EJB Entity Beans

Chapter 16 - EJB Security

Chapter 17 - EJB and Transaction Management
Chapter 18 - Creating EJB Clients

Chapter 19 - The Proposed EJB 2.0 Specification
Chapter 20 - Integrating JSPs and EJBs
Appendix A - The JSP API

Appendix B - The EJB API

Appendix C - Configuring the Tomcat Web Server

by Lou Marco ISBN: 0764548026

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=623160142

Appendix D - XML Overview

Top 5

http://www.unltded.com/toc.asp?bkid=2878#TOP

PROFESSIONAL MINDWARE é

UNLIMITED EDITION

.
N
O
LL]
L
o =
—
c
O
(C
=
Q
.

o
L*]
T
o
=
3
Q
!

0
v
—
)
o0
£
LL]

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge]

Your Guide to Cutting-Edge J2EE Programming Techniques.

Back Cover

Enterprise Java Beans and JavaServer Pages deliver the tools you need to
develop state-of-the-art multi-tier applications for the Internet or an intranet. But
how do you create robust components for these two APIs--and get them to work
together with each other and the rest of the containers in Java 2 Enterprise
Edition? This unique guide delivers the answers. With lucid explanations and
lots of sample code illustrating the development of a hotel reservation system,
Lou Marco shows you step by step how to harness the power of JSP and EJB--
and create cutting-edge J2EE applications.

Make JSP, EJB, and J2EE Work Together

. Get the lowdown on J2EE N-tier application development

. Work with JSP objects, standard actions, and Web sessions

. Use JavaBeans or JSP tags to access a database with JDBC

. Understand how JSP works with Java servlets

. Take control of JSP errors, exceptions, and debugging

. Master EJB basics, from clesses to session and entity Beans

. Harness EJB tools to secure your application

. Manage transactions using EJB with JDBC, JTS, and JTA

. Build Bean- or container-managed persistence in EJB components

. Learn the ins and outs of JSP and EJB as you create a fully functional
hotel reservation system

About the Authors

Lou Marco is a consultant, writer, and the owner of Lou Marco and Associates,
a firm that designs Web sites and writes custom software. An IT professional
with more than two decades of experience, he contributes frequently to
Enterprise Systems Journal and is the author of ISPF/REXX Development for

Experienced Programmers.

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part I: EJB & JSP—Java On the Edge

Chapter List

Chapter 1: Enterprise Computing Concepts

Chapter 2: J2EE Component APIs

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=514334394

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 1. Enterprise Computing Concepts

JavaServer Pages (JSPs) and Enterprise JavaBeans (EJBs) are part of a server-side application development
specification called the Java 2 Platform, Enterprise Edition (J2EE). Before you jump into the specifics of JSPs or
EJBs, some background on enterprise application development, J2EE, and how JSP and EJB fit into J2EE is in order.

This chapter sets the stage with information on the characteristics of a typical computing environment found in a
modern corporation. Next, you read about two significant advancements in computer science that provide application
developers with the means to satisfy their customers’ demands for computing services. You get a high-level look at
J2EE and see how J2EE addresses the needs of application developers. You read about the components of J2EE,
which include JSP and EJB. The chapter closes with a short discussion on the roles that JSPs and EJBs play in
developing enterprise applications with the J2EE specification.

The Enterprise Computing Environment

Today'’s corporate computing environment is a different animal from its ancestors. Typically, enterprise computing
environments are:

. Data-Obsessed: These days, the modern company is addicted to its data. With storage costs low, companies are
less likely to purge data stores today than in years past. Some industries, such as brokerage and insurance, keep
decades’ worth of data and subject their data to intense analysis. The astute corporate mavens realize that
corporate data is an asset worth exploiting. Those in charge look to their computing professionals to provide tools
that exploit this valuable asset.

. Distributed: Today’s enterprise computing environment has grown beyond the scenario of a single machine in an
air-conditioned room, with rows and rows of storage devices, serving hundreds or thousands of dumb green
screens. The more likely scenario for today’s environment is one of networked servers in diverse geographical
locations that serve data to hundreds or thousands of comparatively smart GUI clients.

. Secure: A good deal of corporate data must be kept from the prying eyes of the pesky, prying employee itching to
know who got the biggest raise in the department, the dementedly disgruntled employee looking to vend
proprietary information, and the capriciously curious employee trying to learn about various systems and
applications.

. Scalable: The environment that serves the needs of one hundred may be inadequate to serve the needs of one
thousand. As the number of users increases, resources, such as bandwidth or database connections, have a bad
habit of thinning out to unacceptable levels or simply running out.

. Fault tolerant: With the computing environment distributed among many parts, the possibility of any single part
failing increases with the number of parts. The company cannot afford to have its systems crash and burn every
time a server winks out or a data store goes offline.

. Heterogeneous: The days of a company using products from a single vendor are gone. More likely, a company
uses a mix of hardware and software from several competing vendors. Today, everything from the physical disk

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=894021235

packs to the video card on the desktop may be purchased from different vendors.

The modern computing environment clearly shares the characteristics of today’s diverse corporation doing business in
today’s diverse world.

The challenges facing systems professionals tasked with developing enterprise applications are legion. How have
today’s systems folk risen to the challenge? Two powerful technologies developed over the past few decades have
proven instrumental in developing applications that allow the modern corporation to conduct its business. These
technologies are client-server architectures and object technologies.

Client-server architectures describe how to partition the major functions of an application in layers. Object
technologies deal with constructing software systems as groups of communicating objects; each object has a set of
well-defined behaviors (called methods) and comes with its own data (called properties).

Developing Applications in Layers

In the days of bell-bottoms and disco music, companies used networks primarily to connect mainframes using
dedicated hardware and proprietary software and protocols. In the 1980s, companies started to use UNIX servers and
the TCP/IP protocol, which quickly became an industry standard. In response to servers’ not adequately scaling to
meet the needs of ever-increasing numbers of users, those in charge of the shop began to shift processing power
from centralized servers to the network. The era of client-server computing had begun.

Developing client-server applications is different from developing applications that run on green-screen, glass house
systems. The distributing of processing power between client and server demands that client-server software be
developed to reflect this division.

One strategy devised to develop client-server applications is to write the software in layers. A layer is a logical level
that deals with related application tasks. The basic idea is to develop the software to implement the layer’s functions
independently of features in other layers.

By partitioning software into layers, application developers could concentrate on the features and problems peculiar to
a particular layer. Division of application features among layers meant division of development responsibility. In
addition, the marketplace started to offer tools to support this software development strategy.

The layers commonly used to abstract a software system these days are a presentation layer, an application logic
layer, and a data layer. Each layer is responsible for functions not found in the other layers:

. The presentation layer is responsible for user interface tasks. These tasks include accepting user input, performing
various edit checks on input, and displaying relevant application output.

. The application logic layer is responsible for tasks that execute the algorithms that solve business problems. These
tasks include performing calculations, handling security, and accessing data. The application logic layer contains
most of the code for the application.

. The data layer is responsible for tasks that maintain permanent data stores in the form of one or more databases.
These tasks include data locking, data integrity support, and transaction support.

Code that implements tasks within a layer communicates with code in adjacent layers only. For example, code within
the presentation layer communicates with code within the application logic layer but does not communicate with code
within the data layer.

To implement a layered application, you need an architecture that describes the physical boundaries between the
above layers. The components that reside within the physical boundaries of the layers are called tiers. A summary of
two common client-server architectures, called two-tier and three-tier (or n-tier) architectures, follows.

Note The term architecture as used throughout this chapter refers to a partitioning strategy and a coordination
strategy. The partitioning strategy leads to dividing the entire system in discrete, non-overlapping parts or
components. The coordination strategy leads to explicitly defined interfaces between those parts.

Two-Tier Architectures in Brief

Some two-tier architectures combine most of the application logic layer tasks with the presentation layer, while others
combine most of the application logic layer with the data layer.

A two-tier architecture could have one tier consisting of client PCs containing application logic code and database
access routines and the other tier consisting of one or more databases. This arrangement is often referred to as a fat
client.

Another way to implement the two-tier architecture is placing the application logic layer with the data layer to form a
tier and having the presentation layer in the other tier. Here, the database would rely on stored procedures and
triggers to implement most of the application logic. This arrangement is often referred to as a thin client.

Figure 1-1 shows the differences between fat and thin client arrangements.

Presentation, Presentation
App Logic Layer Layer

FAT Client With THIM Client
Application Logic With Mo App
Cade Logic Code

Data Stores,
Data Stores, Stared Procediures,
Mo Stored Procedures Triggers
Data Layer Application Logic,
Data Layer

Figure 1-1: Fat and thin clients compared and contrasted

As you can see in Figure 1-1, the fat client architecture containing application logic code is a combination of the
functionality of the presentation and application logic layers. The thin client architecture has the application logic code
buried within the DBMS in the form of stored procedures (code stored within the database that performs some
application-specific task) and triggers (a feature of a DBMS that executes stored procedures based on one or more
conditions). Most two-tier architectures fall somewhere in between these extremes. The dashed line represents the
tier boundary.

Conventional wisdom these days is that two-tier architectures can satisfactorily handle a hundred or so users. For
larger numbers of users, performance may start to degrade because of the client’s need to maintain a connection to
the server. These constant connections drain network bandwidth and use scarce database connections. This problem
is more severe in the fat client than in the thin client scenario. For the fat client implementation, every request for data
requires reaching across the network, dipping into the database, and returning data to the client. For the thin client
implementation, one request for data can trigger a DBMS stored procedure that executes on the server. This stored
procedure could return the same data that a fat client would need multiple requests for. Although using stored
procedures helps alleviate the bandwidth problem, the thin client still requires the database connection.

More bad news for adopters of a two-tier architecture follows. In the fat client scenario, any change to the application
logic (and you know that there will be changes) involves compiling and installing the changed code on all the clients —
an expensive proposition. In the thin client scenario, the enterprise usually relies on vendor-specific databases and the
vendor’s implementation of triggers and stored procedures. Typically, proprietary implementations of DBMS features
are not portable to different platforms and usually will not work with different vendor products.

Every strain of technology solves some old problems while introducing new ones. Two-tier architectures are certainly
no exception; although applications developed with a two-tier architecture achieve some benefits by isolating tasks
into separate tiers, the disadvantages of the architecture remain. A sensible question is: Are there ways of exploiting
the advantages of these architectures while taking the sting out of their problems?

N-tier Architectures in Brief

Perhaps | can shed some light on a possible answer to the $64,000 question posed in the previous section by posing
another question: What are the root causes of the deficiencies of the two-tier architectures? One cause is the
architecture’s failure to give the application logic layer its own tier. By trying to divvy up the functionality of the
application logic layer, the resulting architecture ties applications to high-maintenance clients, proprietary and
nonportable databases, and clogged networks. Why not give the application logic layer its very own tier?

You don't have to be a rocket scientist to guess what the architecture is called when the presentation, application
logic, and data layers have their own tier. The “n” in n-tier means that a particular layer (the application logic layer,
really) may have more than one physical tier. Whether you're talking about three-tier (a specific case of the more
general n-tier) or n-tier, the basic concepts are the same — to encapsulate the application logic from the presentation
and data layers.

What does this buy you? With the computations, business logic code, and other application logic layer tasks isolated
in one or more separate tiers, these tasks do not reside in the client, nor do they reside in the database. Put another
way, n-tier architectures typically deploy thin clients and DBMSs devoid of application code.

There are several paths to the road of three-tier architecture implementation. A popular implementation places the
application logic layer on one or more application servers. These servers provide many essential services to a three-
tier application, such as transaction management, resource pooling, and security.

Rather than allow a fat client or stored procedure—laden database to handle transactions (when to commit one or
more transactions or when to rollback, for example), a three-tier architecture implementation delegates this vitally
important function to the application server. Because business logic dictates what constitutes a transaction, support
services dealing with transaction management belong on the application server because the business logic is
implemented there.

As previously mentioned, a shortcoming of two-tier architectures is the consumption of resources, such as database
connections, even when such resources are not needed. A characteristic of two-tier architectures is that each client
needs a connection to the databases. Three- or n-tier architecture implementations allow a client to request data from
one or more databases by communicating with code in the application logic layer tier. This code can dynamically
connect to a database to fetch and return the requested data to the client. Also, this code can queue the data request
until a database connection becomes available, and then fetch and return the requested data to the client.

Application servers — both hardware and software — are more secure than desktop client PCs. The hardware that
houses the application server usually resides in a physically protected space. Rarely would you worry about stumbling
over a power cord for the hardware that houses an application server! On the software side, most server software is
built with security in mind unlike client desktop operating systems, such as Windows or Mac OS.

Do three-tier architectures solve the problems of two-tier architectures cited above? For the most part, they do. The
problems caused by fat clients simply do not apply to n-tier architectures. Thin clients are relatively inexpensive to
install and maintain. Application changes will not have much of an impact on thin clients; the application servers take
the brunt of the changes.

Pulling application logic out of the DBMS by not using stored procedures places less reliance on proprietary stored
procedure implementations. Three-tier implementations have a wider choice of DBMS products for use in the data

layer than two-tier, thin-client implementations.

In general, the isolation of functions in discrete layers, implemented in discrete tiers, means that each tier can be
tweaked by using best-of-breed products without much impact on the remaining tiers.

As previously mentioned, any technology worth its salt solves old problems while introducing new ones. Some
problems caused by implementing applications that follow the n-tier architecture are described below.

N-tier architectures are flexible. One result of this flexibility is that the three- or n-tier implementer has to cope with
more hardware and software components than its two-tier counterpart. The addition of the application server opens up
new system configuration possibilities. While selecting best-of-breed products to implement the system’s layers is a
good thing, the problems with having a multiple vendor environment, replete with finger pointing, persist. As you might
imagine, maintenance costs for a large n-tier system are high.

Imagine a large n-tier application, such as a banking/ATM system, with thousands of clients dispersed all over the
world securely reading and writing terabytes of data to multiple data stores. The activity between tiers necessary to
get the job done must be staggering! The overhead produced by transmitting and receiving all this data across
networks that connect hardware and software components that implement the multiple tiers can slow down things, to
be sure.

The problems I've mentioned can be solved for the most part by spending more money for additional hardware — not
exactly the favorite solution!

We've talked about the benefits of developing software in layers, or tiers. As we’'ll see here and throughout
subsequent chapters, J2EE provides an architecture for constructing n-tier applications. Before we move on to discuss
J2EE particulars, we need to take a look at another essential technology instrumental to J2EE application
development that has proved its worth in theory and practice: object technology.

Top <

| <= Prov_ | Noxt =

Presentation, Presentation

App Logic Layer Layer

FAT Client With THIN Client

Application Logic With No App

Code Logic Code
)

Y Data Stores,
Data Stores Stored Procedures,
No Stored Procedures Triggers

Data Layer Application Logic,
Data Layer

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 2: J2EE Component APIs

This chapter provides an overview of the J2EE component APIs. As mentioned in Chapter 1, J2EE is a collection of
approximately 12 application programming interfaces (APIs) for developing enterprise applications. These APIs define
a complete set of services that software engineers use to develop software components. J2EE simplifies the work of
an application development team by providing a rich set of services that manage many application details without
programming.

J2EE API Classifications

The J2EE APIs provide numerous services to n-tier application developers. We may group the J2EE APIs into three
classifications corresponding to the category of service, or function, the APIs provide to the application development
team. The classifications are as follows:

. Application components: These include applets, which are Java programs that execute in the client browser;
servlets, which execute on the server; and JSP pages, which provide dynamic content to Web pages. J2EE also
enables clients to run applications that can access data (by using a database API) without going to a Web server.

. Resource managers: These enable customer components to connect to an external component. These external
components can be another piece of J2EE, such as JavaMail (for mail messaging) or an IBM mainframe
transaction processor (such as IMS or CICS).

. Database access: J2EE database access relies on the Java Database Connectivity APl or JDBC, which enables
a customer container to issue industry-standard SQL. Relational database access in Java also relies heavily on
Java Transaction Services, or JTS, and the Java Transaction API.

The J2EE APIs work in concert to provide the services mentioned in the aforementioned classifications. For example,
a developer would use an application component API, such as JSP, to create a Web interface for an application that
accesses data from a relational database using JDBC. In the following section, we'll take a look at J2EE APIs that fall
within the preceding classifications.

Top <

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=112436264

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

J2EE APIs

Sun Microsystems provides a list of technologies that developers use in creating J2EE applications. Most of these
technologies have an associated API. A few, notably XML, are used in several J2EE APIs. Here is a list of the J2EE
APIs with a brief description:

. JavaServer Pages (JSP): Enables developers to dynamically generate Web pages with HTML, XML, and Java
code. JSP pages execute on the Web server.

. Java Servlets: Enables developers to dynamically create Web content as well as provide additional functionality to
a Web server. Java servlets execute on the Web server.

. Enterprise JavaBeans (EJB): Defines an architecture that enables developers to create reusable, server-side
components called enterprise beans.

. Java Messaging Services (JMS): A set of APIs that invoke asynchronous messaging services such as broadcast
and point-to-point (client-to-client) messages.

. Java Transaction API (JTA): Provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

. Java Transaction Services (JTS): Provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources.

. JavaMail: Enables a J2EE application to send and receive e-mail.

. Java Naming and Directory Interface (JNDI): Provides an interface for accessing name and directory services,
such as LDAP directory services and Domain Name Service (DNS).

. Java Database Connectivity (JDBC): Provides the J2EE application with a standard interface to databases
(usually relational databases).

. Remote Method Invocation (RMI/IIOP): Enables a Java application to invoke methods on different Java Virtual
Machines.

. Interface Definition Language (IDL): Enables J2EE-based applications to use CORBA objects.

In the following sections of this chapter, we explore the APIs in the preceding list in greater detail.

CORBA at a Glance

CORBA, the Common Object Request Broker Architecture, defines a standard for creating distributed object request
systems. The CORBA standard is the result of the collaboration of well over a hundred companies. The end result is a
standard that is language, platform, and vendor neutral.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=529979399

CORBA enables the enterprise to use existing software by providing features that developers can use to wrap existing
software as CORBA objects. With CORBA, applications written in several languages can happily coexist and
communicate with each other.

A great deal of Enterprise JavaBeans was derived from CORBA. Indeed, a cursory look at EJB could lead one to think
that EJB is a slimmed-down, Java-centric version of CORBA. EJB and CORBA can be used together, specifically
when an enterprise bean needs access to code written in another language, or code written in another language
needs access to an enterprise bean.

Because CORBA is the brainchild of numerous companies, no single company controls CORBA. A committee (the
Object Management Group, or OMG) must agree upon changes made to the CORBA specification, which has both
positive and negative consequences. On the plus side, you are fairly assured that you are not tied to a single vendor,
product, or architecture when using a CORBA implementation. On the minus side, you may have to wait years for the
OMG to make decisions on CORBA-related issues.

The OMG Interface Definition Language (IDL) defines the interface to objects in the CORBA universe. Although IDL is
a language, you, the application programmer, do not necessarily execute IDL code. Rather, you write IDL code and
use a code generator to transform IDL into a specific programming language. Java programmers use an IDL-to-Java
translator to generate a representation of their IDL as Java. If you're curious, you can take a look at how IDL
translates to Java by examining f t p: / / www. ong. or g/ pub/ docs/ f or mat . 98- 02- 29. pdf .

JavaServer Pages

You've already read some of the skinny on JavaServer Pages (JSP). Some call JSP the front door to enterprise
applications, and with good reason. JSPs enable the enterprise application developer to separate presentation code
from business logic code on the server, thereby providing the application with a robust presentation layer.

Java Servlets

As with JSP, servlets enable developers to dynamically create Web content as well as provide additional functionality
to a Web server.

If a JSP gets translated into a servlet, why are JSPs important in the J2EE arena? JSP pages are easier to code and
maintain than servlets because servlets require the Java programmer to explicitly write out HTML statements to a
response object, whereas the Web page developer using JSP merely codes HTML.

cross-reference Please refer to Chapter 3, “A First Look at JavaServer Pages” and Chapter 8, “JSP

Pages and Servlets Revisited,” for more detailed discussions of servlets and their
relationship to JSP pages.

For example, assuming you is the current Web page viewer below, the following code is a JSP that generates an
HTML page that displays the string Yes, it’ s concatenated with the current user.

Listing 2-1: Your first JSP page

<htm >

<body>

<%@ page | anguage="java" %

<p> Yes, it'’s,

<% String you = (String) session.getAttribute(‘you);
out.println(you); %

</ p>

</ body>

</htm >

The code in Listing 2-1 is the functional equivalent to the servlet code shown in Listing 2-2.
Note Recall that JSP pages get translated into servlets. However, the servlet code shown in Listing 2-2 is not the
result of translating the JSP in Listing 2-1 into a servlet. The JSP translator generates a servlet that performs

the same function as the servlet shown in Listing 2-2 but with different Java code .

Listing 2-2: A servlet functionally equivalent to the JSP page in listing 2-1

i mport java.io.*;

i mport javax.servlet.*;
public class HeyltsYou extends HttpServlet {
public void doGet(HttpServl et Request req,
Ht t pServl et Response res) throws Servl et Exception, | CException {
res.set Content Type("text/htm");

Ht t pSessi on session = req. get Session(false) ;
PrintWiter out = res.getWiter();
out.println("<htm >");
out. println("<body>");
out.println ("<p> Hey, it’'sey, it’'s,");
out.print("String you = ");
out.println((String) session.getAttribute(‘you’));
out.println(user);
out.println("</p>");
out.println("</body>");
out.println("</htm>");

The JSP page is smaller than the servlet, and most users agree that the JSP is easier to understand and maintain.
Many others also agree that writing out HTML (or XML, of course) by way of out . pri ntl n() statements is a major

drag because a large page can have hundreds of out . pri ntl n() statements.

Hence, the bottom line is that, while JSPs and servlets often accomplish the same task, you'll still need servlets from
time to time to do what JSPs cannot.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) define an architecture that enables developers to create reusable, server-side
components called enterprise beans. Enterprise beans typically reside on the application server or may have their own
dedicated server. Of course, you can read much more about EJB in the following chapters.

Please note that enterprise beans are not JavaBeans! One difference is that calling a JavaBean (from a servlet or JSP
page) involves intra-process communication, whereas calling an EJB (from a servlet or JSP page) involves inter-
process communication. You can read about other differences in the following chapters.

Java Messaging Services

Java Messaging Services (JMS) is an API that invokes asynchronous messaging services such as broadcast and
point-to-point (client-to-client) messages.

JMS is an API for using networked messaging services. A messaging system accepts messages from "producer”
clients and delivers them to "consumer"” clients. Data sent in a message is often intended as a sort of event notification
(for example, an e-mail-handling process may need to be notified when a request is queued). Another common use
for messaging (thus, JMS) is for interfacing with remote legacy applications. It can be complex and sometimes risky to
use Remote Procedure Call (RPC) or a Java variant such as Remote Method Invocation (RMI) to directly invoke
remote applications while a messaging solution can provide an easier and more reliable interconnection. In short, why
write remote procedure calls when you have access to an API specifically designed for sending messages across a
network from one object to another?

JMS calls frequently rely on the Java Naming and Directory Interface (JNDI) to locate message recipients. JNDI is
discussed later in this chapter.

Java Transaction API

Java Transaction API (JTA) provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

JTA is used for managing distributed transactions (e.g., updates to multiple databases that must be handled in a
single transaction). JTA is a low-level APl and associated coding is complex and error-prone — not in the spirit of
J2EE!

Fortunately, EJB containers or application servers generally provide support for distributed transactions using JTA.
For this reason, the EJB developer is able to gain the benefit of distributed transactions, leaving the complex
implementation details to the provider of the EJB container. Now, that's more in the J2EE spirit!

Java Transaction Services

The Java Transaction Service (JTS) provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources. Of course, JTS provides high-level support for JTA as well as other
transaction services.

The Java Transaction Service plays the role of an intermediary for all the constituent components of the EJB
architecture. In JTS terminology, the director is called the transaction manager. The participants in the transaction that
implement transaction-protected resources such as relational databases are called resource managers. When an
application begins a transaction, it creates a transaction object that represents the transaction. You would use JNDI
(Java Naming and Directory Interface) to access this transaction object. The application invokes the resource
managers to perform the work of the transaction. As the transaction progresses, the transaction manager keeps track
of each of the resource managers enlisted in the transaction. Often, JTS assists in managing the activities involved in
a two-phase commit.

JavaMail

The JavaMail API offers a standard Java extension API to talk to all your favorite standard Internet mail protocols. The
API provides a platform-independent and protocol-independent framework to build Java technology—based mail and
messaging applications. Put differently, JavaMail represents a standardized, extensible platform for communicating,
presenting, and manipulating all current and future Multipurpose Internet Mail Extension (MIME) types. The JavaMalil
APl is implemented as a Java platform standard extension.

Say goodbye to writing your own classes for talking to mail protocols! Say goodbye to learning yet another unique
third-party or in-house class library for dealing with e-mail or newsgroups! JavaMail was designed to communicate
with popular protocols and MIME types.

Java Naming and Directory Interface

Java Naming and Directory Interface (JNDI) provides an interface for accessing name and directory services, such as
LDAP directory services and Domain Name Service (DNS). JNDI enables Java programs to use hame servers and
directory servers to look up objects or data by name. This important feature enables a client object to locate a remote
server object or data.

JNDI is a generic API that can work with any name or directory server. As such, JNDI was not designed to replace
existing technology, but instead it provides a common interface to existing naming services. For example, JNDI
provides methods to bind a name to an object, enabling that object to be located, regardless of its location on the
network.

Server providers have been implemented for many common protocols (e.g., NIS, LDAP, and NDS) and for CORBA
object registries. Of particular interest to users of J2EE, JNDI is used to locate Enterprise JavaBean (EJB)
components on the network.

Again, the thrust of J2EE technology is to provide enterprise application developers with much-needed services in the
distributed realm. It's hard to think of a more valuable service than a naming service. JNDI provides the Java
application developer with this much-needed service.

Java Database Connectivity

Java Database Connectivity (JDBC) provides the J2EE application a standard interface to databases (usually
relational databases). In principle, JDBC serves the same purpose as Open Database Connectivity (ODBC). JDBC
provides a database-independent protocol for accessing relational databases from Java. JDBC supports Data
Manipulation Language (DML) statements such as i nsert, updat e, del et e, and sel ect . It also includes Data

Definition Language (DDL) statements such as Cr eat e Tabl e, Al ter Tabl e, and so on.

Database vendors usually provide a JDBC driver that enables a Java program to access the vendor's RDBMS
product. As of this writing, Sun has 154 JDBC drivers listed in its driver database

Note Seehttp://industry.java.sun. conm products/jdbc/drivers for a listing of available drivers for
use with JDBC.

JDBC was included in core Java starting with version 1.1. With JDBC, the SQL is always dynamically generated at
runtime and sent to the database. Many have griped about the inefficiencies of applying dynamically created SQL
against databases. In response, another standard for Java database access has emerged and is called SQLJ. SQLJ
enables static SQL to be used and it requires less cumbersome syntax than JDBC. One SQLJ advantage over JDBC
is better code quality because SQL is checked at compile-time. Also, SQLJ usually shows better performance than
JDBC because access paths to the database are generated once and reused for subsequent executions of the static
SQL.

We speak of levels for JDBC drivers; the slowest are level 1 drivers and the quickest are level 4 drivers. In addition,
some drivers serve as a bridge between JDBC and ODBC, mostly as an easy way to access ODBC databases (MS-
something or other databases, usually).

A type 1 driver provides JDBC access using a JDBC-ODBC bridge. This bridge provides JDBC access to most ODBC
drivers. Disadvantages of this type of JDBC driver include additional performance overhead of the ODBC layer, and
the requirement to load client code on each client machine.

A type 2 driver is a partial Java driver that converts JDBC calls into the native client database API. As with the type 1
driver, this driver requires some client code to be loaded on each client machine.

A type 3 driver is a pure Java driver that translates JDBC calls into a database-independent network protocol. The
database-independent protocol is implemented using a middleware server. The middleware server translates the
database-independent protocol into the native database server protocol. Middleware vendors typically offer a type 3

http://industry.java.sun.com/products/jdbc/drivers

driver. Because the driver is written purely in Java, it requires no configuration on the client machine other than telling
the application the location of the driver.

A type 4 driver is a pure Java driver that uses a native protocol to convert JDBC calls into the database server network
protocol. Using this type of driver, the application can make direct calls from a Java client to the database. A type 4
driver, such as Informix JDBC Driver, is typically offered by the database vendor. Because the driver is written purely
in Java, it requires no configuration on the client machine other than telling the application where to find the driver.

As you might imagine, JDBC relies on a host of other J2EE API sets, such as JTA and JTS, to get the job done.

Remote Method Invocation and IIOP

Remote Method Invocation (RMI) enables a Java application to invoke methods on different Java Virtual Machines.
RMI is an important API used for supporting distributed computing and has been supported in core Java since version
1.1. RMI enables a Java client application to communicate with a Java server application by invoking methods on that
remote object. With RMI, the client gets a reference to a server object, and then it can invoke methods on that object
as if it were a local object within the same virtual machine.

For server objects developed in other languages, you must employ other technigues such as using Java IDL with
CORBA or RMI/IIOP (the Internet Inter-ORB Protocol) to access the server object.

Java Interface Definition Language

By using the Java Interface Definition Language (IDL), the Java programmer has access to CORBA objects. As
previously mentioned, the Java programmer uses the “IDL to Java” compiler, called idlj, to generate Java code to
interact with CORBA objects.

Listing 2-3 is an example of CORBA IDL taken from the CORBA Document Object Model specification.

Note The Document Object Model (DOM) is the recommendation of the Worldwide Web Consortium (W3C) for
expressing a document as a set of related nodes. A common use of DOM is to model XML documents. See
Appendix D for an overview on XML. Refer to ht t p: / / ww. w3c. or g/ DOMfor the definitive specification of

the Document Object Model.

Listing 2-3: Example IDL code from the W3C DOM

interface El ement : Node {

readonly attribute DOVString t agNane;
DOVBt ri ng getAttribute(in DOVString nane);
voi d setAttribute(in DOVString nane,

in DOVBtring val ue)
rai ses(DOVExcepti on);

voi d renoveAttribute(in DOVString nane)
rai ses(DOVExcepti on);

Attr get Attri but eNode(in DOVString nane);
Attr set AttributeNode(in Attr newAttr)

rai ses(DOVExcepti on);
Attr renoveAttri but eNode(in Attr ol dAttr)

rai ses(DOVExcepti on);
NodelLi st get El enent sByTagNane(in DOVt ri ng nane);
voi d normal i ze();

1

The idlj compiler produces Listing 2-4, the Java language binding for the IDL shown above.

http://www.w3c.org/DOM

Listing 2-4: Java code from the W3C DOM

public interface El enent extends Node {

public String get TagNane() ;
public String getAttribute(String nane);
public void setAttribute(String nane,

String val ue)
t hrows DOVExcepti on;

public void renoveAttribute(String nane)
t hrows DOVExcepti on;
public Attr get Attri but eNode(String nane);
public Attr set Attri buteNode(Attr newAttr)
t hrows DOVExcepti on;
public Attr renoveAttri but eNode(Attr ol dAttr)
t hrows DOVExcepti on;
publ i ¢ Nodeli st get El enent sByTagNane(String nane);
public void normal i ze();
}

J2EE Connector

The J2EE Connector provides a Java solution to the problem of connectivity among the many application servers and
Enterprise Information Systems (EIS) already in existence. By using the J2EE Connector architecture, EIS vendors no
longer need to customize their product for each application server. Application server vendors who conform to the
J2EE Connector architecture do not need to add custom code whenever they want to add connectivity to a new EIS.

Before the J2EE Connector architecture was defined, no specification for the Java platform addressed the problem of
providing a standard architecture for integrating heterogeneous EISs. Most EIS vendors and application server
vendors use nonstandard vendor-specific architectures to provide connectivity between application servers and
enterprise information systems.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 3: A First Look at JavaServer Pages

This chapter provides you with a bird's eye view of JavaServer Pages (JSP). You can read how to execute JSP and
how JSP is intimately related to Java servlets. You can also see a couple of simple JSPs and read about what
happens during the execution of these JSPs. This chapter continues with a brief discussion on the advantages and
disadvantages of using JSP over several competing technologies and is followed by a recap of the material presented.

JavaServer Pages

JavaServer Pages (JSP) is one solution to providing dynamic Web content. The days of displaying the same old
HTML page to all customers, or to the same customer, who has visited the site several times, is rapidly becoming a
thing of the past. Today, Web pages need to display different content customized according to user input or relevant
events.

Customers want and expect some sort of personalization from sites. A return customer does not want to be forced to
reenter the same information when revisiting the site. Also, a Web page displaying data relevant to your inputs may
need to differ from pages displayed for other users. Imagine an online banking site where you enter your password
and see not only information on your accounts, but information for other bank customers as well!

Sites that change based on relevant events also provide a good example of dynamic content. Sites with stock market
quotes or weather information need to be refreshed at regular intervals to be useful. News sites must also refresh
content to stay on top of what's happening in the world. Stores that have online catalogs that often change inventory
and prices should not contain static content. Today’s Internet-related technologies, such as JavaServer Pages, give
the Web application developer the means to create pages with dynamic content.

JSP combines static text with special JSP tags. The static text represents invariant parts of the Web page, typically
but not necessarily HTML.

Note JSP pages mostly use HTML and XML for the static, template portion. Rather than constantly writing “HTML
or XML,” I've taken the liberty of writing “HTML” in this chapter and trusting you to know if “HTML or XML” or
“HTML” applies.

The JSP tags represent parts of the page that can change depending on the factors the page designer deems
appropriate. The basic mechanics are that the static text and the JSP tags are eventually sent to a Java-enabled
server that generates HTML from both the static part and the JSP tag. Once done, the server sends the generated
HTML back to the browser for display and continued user interaction.

This approach of mixing static text with tags is not unique to JSP. Indeed, several competing technologies employ this
approach. However, JSP enables you to leverage the full power of the Java programming language to make your
pages very flexible. The pros and cons of JSP are discussed later in this chapter, in the section “JSP Versus the

Competition.”

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=867331246

Creating and Using JSP Pages

A special IDE is not required to create JSP pages. You don't develop JSP pages as you would a Java application or
servlet. You don't have to wrap JSP pages in packages or deal with system settings (such as CLASSPATH). You don't
even have to (but you could) compile JSP pages! All you need is a good Web page editor that enables you to easily
enter the various JSP tags.

A site development team using JSP pages can have part of the team develop the static HTML portion, while others
develop the dynamic portion. The HTML developers need not know how to code JSP pages, or know anything about
programming in Java. But, as you might imagine, the JSP developer needs to be adept in coding HTML. When you
recall that the end result of a JSP is a Web page containing generated HTML, how could any self-respecting JSP
developer not be HTML-fluent?

It's simple to use a JSP page. The JSP page user must have access to a server that understands JSP tags, or a JSP-
enabled server. To use a JSP page with such a server, you enter the name of the page as you would any Web page
in the location area of your browser. A file representing a JSP page has a . j sp extension, which a JSP-enabled

server recognizes as a JSP page and, in turn, processes the special tags as JSP tags.

Note The term “JSP page,” although redundant, enjoys widespread use among the JSP development community.
Hence, the term is used throughout this book.

For Web pages that submit a JSP page to the server with a GET or POST service, the customer may never realize that
JSP pages are in play on the site. The ACTI ON attribute of an HTML form may specify that the action upon submitting

the form is to send the name of a JSP page with one or more parameters to the server. Again, the JSP-enabled server
recognizes the . j sp extension and takes appropriate action.

The Relationship Between JSP Pages and Java Servlets

The simple mechanics of creating and using JSP pages masks the complexity of the under-the-covers activity. JSP
pages actually are compiled into Java servlets. All those environment issues dealing with compiling and executing
servlets come into play. Whereas you don't compile JSPs, your Java-enabled server performs the compilation from
JSP page into a Java servlet for you. Although you, the JSP developer, need not care about CLASSPATH and other
settings, your server needs to know these settings. Your server needs access to the Java compiler and various
classes required for servlet and JSP compilation.

The first time you request a JSP page, the server translates the page into a Java class. Recall from Chapter 1 the

concept of J2EE containers. The JSP-enabled server has a JSP container that provides the environment necessary
for this translation. Sometimes, the JSP container is called the JSP engine; both terms are used interchangeably in
this book.

The server compiles the class generated by the JSP engine into a servlet. This servlet contains Java pri ntl n
statements that write the static text to the output stream, and Java code that implements the functionality of your JSP
tags. Depending on the amount of Java code generated by the JSP and the speed of the server, you may notice a
slight delay during the JSP-to-servlet compilation. However, subsequent requests of the JSP page do not cause a
page retranslation and recompilation. The JSP request accesses the already compiled servlet in memory.

As an aside, some servers enable you to establish file aliases. You can avoid the delay caused by the first-time JSP
translation and compilation by requesting your JSP page (causing translation and servlet generation), followed by
creating an alias of your JSP page to the generated servlet. Now, when your customer requests your JSP page, the
server references the previously generated servlet, which is already compiled and in memory.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Versus the Competition

As previously mentioned, JSP is not the only technology available to the Web application developer that generates
dynamic Web output. As with any technology, JSP has its advantages and disadvantages. This section describes
what JSPs can offer that competing technologies cannot.

Separating Logic from Presentation

As you read previously, coding business logic apart from presentation is a good design feature. Do you recall reading
about multitier architectures from Chapter 1? When properly separated, the code that implements the business logic

can be changed without affecting the code that implements the presentation, and vice-versa. JavaServer Pages give
the Web developer the ability to cleanly separate the logic from look-and-feel.

JSP enables Web developers to encapsulate the business logic in custom JSP tags (discussed in Chapter 7, “JSP

Tag Extensions”) and Java software components, such as JavaBeans and Enterprise JavaBeans. The code,
implementing the logic, is tied together with JSP scriptlets, expressions, and other JSP tags, which haven’'t been
discussed yet, and is sent to the Web server for execution.

This separation enables developers to practice their particular specialty; the skilled HTML author has no need to learn
JSP and the JSP author doesn’t need to be an HTML maven. The HTML author can concentrate on coding HTML
(presentation) tags and the JSP developer can concentrate on coding JSP (logic) tags.

The Strength of Java

Because JSP pages eventually are translated and compiled into Java servlets, you can use JSP pages on any server
that supports Java. You are not tied to any particular vendor or platform when you go the JSP route.

Of course, you have full command and control of the Java programming language when you use JSP. JSP make
extensive use of Java Beans and can communicate with other J2EE technologies, such as JDBC and, of course,
Enterprise JavaBeans.

JSP Versus Java Servlets

Before the advent of JSP, the most-used Java technology that could generate dynamic Web page content was Java
servlets. Because JSPs eventually are compiled into Java servlets, you can do as much with JSPs as you can do with
Java servlets. However, coding JSPs is easier than coding Java servlets. With JSPs, you place static text by coding
HTML tags as opposed to Java servlets, in which you place static text by coding a plentitude of pri nt | n statements.
With JSPs, you change static text by changing HTML; and with Java servlets, you change static text by modifying a
Java servlet (don't forget the compile/debug cycle!).

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=776999381

JSP Versus Active Server Pages

Active Server Pages (ASP) is the Microsoft solution for providing dynamic Web content. Actually, ASP looks very
similar to JSP; both use custom tags to implement business logic and text (HTML) for invariant Web page parts.
However, the devil is in the details, as described in the following:

. ASP uses VBScript or JScript, a Microsoft flavor of JavaScript, as its scripting language, whereas JSP uses Java,
a more powerful language than VBScript or JScript.

. The ASP developer typically uses a Microsoft Web server platform or requires a third-party product that permits
ASP execution on non-Microsoft platforms. The JSP developer has a wide variety of Web server platforms
available for use.

Note These third parties must port Microsoft software components, such as ActiveX, to different platforms in order
for ASP to be used on these platforms.

. An ASP is interpreted every time the page is invoked, whereas a JSP is interpreted only the first time the page is
invoked (or when the page is changed).

However, Microsoft has overcome the previously mentioned limitations of ASP with its release of ASP.NET. ASP.NET,
formerly ASP+, promises to be a serious contender against JSP. As of this writing, you may download the ASP.NET
Beta-2 release from htt p: / / wwv. asp. net /.

JSPs Versus Client-Side Scripting

Client-side scripting with JavaScript or VBScript is certainly handy and useful, but it does present several problems,
including the following:

. You must count on the customer’s browser to have scripting enabled, which, of course, you can't.

. Different customers may use different browsers. And coding client-side scripts that work on different browsers can
be a headache.

. Scripting languages used on the client side cannot match the strength and versatility of Java.

. Client-side scripting languages have very limited access to server-side resources, such as databases. JavaServer
pages have access to all server-side resources within the well-defined architecture of J2EE.

. You have the usual problems of maintaining software on the client that caused your organization to thin the client
in the first place.

In short, the advantages of using JSP over competing technologies are as follows:

. JSP enables a clean separation of business logic from presentation.
. JSP, by using Java as the scripting language, is not limited to a specific vendor’s platform.

. JSP, as an integral part of the J2EE architecture, has full access to server-side resources. Because JSP pages
execute on the server, you need not require the client to use a particular browser or have a fixed configuration

Disadvantages of Using JSP

What technology doesn’t have problems? Certainly, JSP technology has room for improvement. That said, what one
Web application developer views as a weakness, another may view as a strength (remember “bug” versus
“features”?). Here is a (short) list of real or perceived shortcomings of JavaServer Pages:

http://www.asp.net/

. JSP implementations typically issue poor diagnostics. Because JSP pages are translated, and then compiled into
Java servlets, errors that creep in your pages are rarely seen as errors arising from the coding of JSP pages.
Instead, such errors are seen as either Java servlet errors or HTML errors. You could look at this as an example of
a perceived strength of JSP — that of not needing to compile them — as opposed to a weakness. For example, a
JSP developer coding a scriptlet where a JSP declaration is called for would have to interpret a Java compile error.
The JSP developer would need access to the generated source to properly diagnose the error. Of course,
generated code is rarely a thing of beauty, and often, not easily understood.

. The JSP developer needs to know Java. Again, one developer’s asset is another’s liability. Whereas Java is
certainly more full-featured and flexible than other page scripting languages, no one can argue that the learning
curve for Java is far steeper than other scripting languages. If you already know Java (you do, right?), this is not an
issue. However, if a corporation is short on Java mavens but wants to use a dynamic Web technology, JSP may
not be the route to go. (Another way to look at the need to know Java is that if you had to train a rookie in using
either JSP or, say, ASP, and you had two days to produce half a dozen pages, which technology would you opt
for?)

. JSP pages require about double the disk space to hold the page. Because JSP pages are translated into class
files, the server has to store the resultant class files with the JSP pages.

. JSP pages must be compiled on the server when first accessed. This initial compilation produces a noticeable
delay when accessing the JSP page for the first time. The developer may compile JSP pages and place them on
the server in compiled form (as one or more class files) to speed up the initial page access. The JSP developer
may need to bring down the server to make the changed classes corresponding to the changed JSP page.

All'in all, it's a pretty short list.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 7. JSP Tag Extensions

Overview

At this point, you've been introduced to JSPs containing Java code in the form of scriptlets and expressions, custom
JSP constructs such as directives, and JSP action tags, which include other JSP pages or which enable your JSPs to
access JavaBeans. It certainly looks as if JSPs have covered all the bases for enabling JSP authors to generate
dynamic Web content.

You may recall that one goal of using JSPs is to clearly delineate presentation details from business logic. As you
write more scriptlet code in your JSPs, the delineation begins to blur. If you're not careful, your JSPs may contain
more business logic code than presentation details. This needs to be avoided for two reasons. First, JSP authors may
not be Java experts and hence won't be able to maintain the Java code contained in these constructs. Second, the
coupling of business code and presentation code makes it harder to change either independently.

JSP tag extensions allow you to add functionality to JSP pages without having to add many Java scriptlets to your
pages. In this chapter you will learn what JSP tag extensions are, what you can do with them, and how to create them.

[tad

Previous Next

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=354237149

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you examined the code for a simple JavaBean and saw how this bean is used in some JSP pages. In
addition, you also explored several JSP statements that you can use to transfer data between beans and JSP pages,
and you learned that you can create and share beans among several JSPs.

By now, you have a good understanding of a powerful feature of JavaServer Pages — the feature of using software
components within your pages.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=919848418

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Bean Usage Odds and Ends

A few points about using beans in JSP pages haven't been discussed yet. You probably surmised that you can use
more than one bean instance from the same or different bean classes in your JSPs. All you need to do is code an
appropriate jsp:useBean action for each bean instance.

When the JSP engine encounters a j sp: useBean action, the JSP engine searches for a bean with the same i d and
scope as the bean cited in the j sp: useBean action. If such a bean is not found, the JSP engine generates code to
create the bean. If such a bean is found, the JSP engine makes that bean available to the page containing the

j sp: useBean action. Beans may have the same i d but be instantiated from different classes. If so, the JSP engine
generates code to do a cast. If the cast is illegal, the generated servlet throws a O assCast Except i on.

As a result of this bean usage, multiple visits to the same page containing a j sp: useBean action during the same
session will not create multiple beans. Another consequence of this use involves conditionally executing JSP
commands, as explained in the following.

The examples of j sp: useBean you've seen use the empty tag XML syntax form. However, you can code the
j sp: useBean construct by using separate opening and closing tags as follows:

<j sp: useBean i d=soneBeanNane...>
Static HTM., JSP commands, whatever ...
</ sp: useBean>

The virtue of using separate opening and closing tags is that the code sandwiched between the tags is executed only
if the bean instance does not exist. If you want to share a bean among several pages, you can place the same code in
every page, knowing that the code gets executed once, depending on where the bean gets created. Remember, JSP
knows the bean by the values of the j sp: useBean attributes i d and cl ass. Different beans (objects) may be the
"same" bean to JSP.

Top

[<= Prov_ | Next —_

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=643007470

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JavaBeans in Multiple JSPs

The syntax of the j sp: useBean action has a couple of additional parameters, as follows, which have not been
mentioned:

<j sp: useBean i d="beanl nst anceNane"
cl ass="cl assNane"
scope="beanScope"
type="cl assType" />

The scope attribute is the focus of our discussion. The value of the scope attribute governs the bean’s visibility.
Different values for the scope attribute place instantiated beans within different contexts. Refer to Table 4-3 in
Chapter 4 for a list of scope attribute values and the relevant contexts.

The default scope attribute value is page. Page scope means that bean instances are accessible on the existing JSP,
or the JSP containing the j sp: useBean action. Stated differently, other JSPs within your application cannot use
instantiated bean objects without containing a j sp: useBean action.

Trying with page Scope

To bring the point home, here’s the JSP page cal cul at e.] sp with a few changes. The following lines of code are
the substantial change:

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" scope="page"/>

Because scope="page" is the default, this code really doesn’t change the JSP’s behavior. The next line invokes
another JSP, coded remarkably similar to cal cul ate. j sp.

Click Here for Next JSP Page

Figure 6-3 shows cal cpage. ht nl , the page that calls cal cul at e. j sp, and the revised cal cul at e. j sp:

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=810933965

B S5P Sampls Page - Cabiulatei Bean |uull _I:!_F_.?_ W Shm Lkt Aty o - i ot it rorl H.EI-E_-:

P g ™ AgewifE oy e 7] ctie LR | P D8 Ve Tpwte fen v L]
ﬁ o FI; A i wled ML v Irr.j i
. X = : : =
A Simple AP s 2 A
Calculator e S o 3
s el
Ervter Dparandl ard Operand? (Tribegsrs)
i o ceseraiion Freem i Pull i"'."'-."-i _I_."'I'-'-_: "' _"., -I-- .
Arncrt

[atere
u, Uy Chck: Calowlabe: bo Conbinos
Updrandl HEdHEny

Crperaned? F2F323

Jparaticn f

Fasul®t B
= £
Figure 6-3: The calcpage.html and the revised calculate.jsp that contain a link to calculate2.jsp

Keep in mind that cal cul at e. j sp has the j sp: useBean action coded such that bean instances are known only
within the page. Listing 6-4 contains the code for cal cul at e2. j sp.

Listing 6-4: Accessing CalcBean in a second JSP page

<% - Tell JSP that this page renders HTM. --%

<%@ page content Type="text/htm" %

<% - Tell JSP to nap Cal cBean properties to |ike-naned variables --%

<j sp: set Property nane="Cal cBean" property="*" />

<htm >

<head>

<title>Calculate 2 Page</title>

</ head>

<body bgcol or ="#dddddd" >

Here's what was entered from <i >cal cpage. html </i > <p>

<P>The next 4 |lines show using the jsp:getProperty action to fetch bean properties
<% - jsp:getProperty wites the value of the bean property where coded --%
<p>QCper andl <jsp: get Property nane="Cal cBean" property="operandl" />
<p>QCper and2 <j sp: get Property nane="Cal cBean" property="operand2" />
<p>QCperati on <j sp: get Property nane="Cal cBean" property="operation" />
<p>Resul t <jsp: get Property nanme="Cal cBean" property="result" />

</ body>

</htm >

The cal cul at e2. j sp file refers to the bean instance Cal cBean. However, cal cul at e2. j sp does not contain a
j sp: useBean action. Because the instance of bean Cal cBean created in cal cul at e. j sp has page scope, you
would expect problems to occur when cal cul at e2. j sp attempts to access properties of the bean. Figure 6-4
illustrates what Tomcat indicates when you click the link and tell the JSP translator to process cal cul at e2. j sp.

ol SEEEL 0 armpi o hras cabimieled rop . B i Brteeant | aplmieg

Fla D& Yew Fpeied Jook [Hep [k

H"I'lllv!_'llm--’n—cdl-ﬂ-ﬂm-m Rars e dodesl on ﬂ o
Sy S A Ry e | e
Baci Lz Flpip i, iy Gamoh gy Lz, g

Error: 500
Location: fexamples/jsp/cbean/calculated.jsp

Intesmal Serddet Erroe:

G o i B ok T - SR g T DRl O
BE B0 MpACES . JRERAr. ruse s Jeplan asslbrsry. ten respact ke i par | Arplunn sl ibrary. S
»E prg.spache jerper cusd s JepTa asel ibcwr y, inf roepact | Jrpliued sewl ibrea s Sevar 152
a4 Jap. plaas. OS0LE pep G500 folbens. G050 Fealoulane 03500 GbEdeiepaeliulanel_dew_14._ 40
B 0. MpECES | JRERT . CULE LSS el epBase parvacs |Bocpdepbaes . pevacd LF
ot jeesr prrvlst hitpoFitplervirt eecyece| Bt pRerviet . favm 1 8351
B . e Rl B DG JEEER Y AL S SR PR SR W T B R SRR LR, e b T
[
L3

SO MERCEE , RN . By LEG , Jopdarviet . secvicel sl o Le | AepSe oy et e 5 18]

£y mpacha ; Jarpar . pervlet Jeplerviet secvice ddepliery lat Jevna FI1D u_‘l
=

Figure 6-4: Tomcat tells you off.

You do not need the entire stack trace; the essential message is (as usual) on the first line of the trace.

Trying with application Scope

We saw in the previous section, "Trying with page Scope", that if we set the value of scope to page in
cal cul at e. j sp, CalcBean is no longer accessible when we attempt to access it in cal cul at e2. j sp. Let's change
the value of scope from page to appl i cati on as follows:

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" scope="application"/>

Using the appl i cat i on scope places the instantiated beans in the Servlet Context, which makes the bean
accessible to any servlet running on the server. Figure 6-5 shows what you see after shutting down Tomcat, restarting
Tomcat, displaying cal cpage. ht il , entering some numbers, and clicking "Calculate."”

(357 Sampi Page_Catcuiaie ean i MBS
[l [8 Yow gl Jook Hep [|
Hﬂll-llll_: ser DML g o i T i 'IHj ol ’*"lﬁh"c--'h'-lh\-ﬂ T e 'r-r\-'i-n'_"'l -
SISOy BT | | R s ey
Bmi Firmamit i Firtrds Bk ke L
- = Hong's what wes entered fom A
A Simple cakpage.himi
Calculator T et < lines Shiow Using the
|sp:gebProperty acthon to fetch bean
gt i

Enter Opsrand] ard Operand?
(Integars)
and Select an operation From thae Pull
Dermis iy
hare, then Click Caloulaie to Contings Opsranadl 11

Opseranufll XTI

Opsaaration +

g
:

Enkgr O ared] | Faersult F22X33.0
Solect Operation: [- = | |

o | o o

Figure 6-5: Running the calculator again with application scope

No news here. You may recall that the JSP page cal cul at e. j sp has its j sp: useBean action coded to enable
application access to bean instances in general and the bean instance named in the useBean action in particular.
When you click the link for the next (cal cul at e2. j sp) JSP page, Figure 6-6 is what you see.

1 Calciilate 2 Page - Miciosoll Intéimel Exploia:

| B E® Vew Fagoder ok Heb ([|
| | Address [@] rip ocabast B ke cheancakculate? o x| G
' - w

- T
=

Here's what was entered from calcpage. himi:

The next 4 lines show using the jspogetProperty
action to fetch bean properties

Dperanal 22222
Operand? 11
Cperation +

Result 22233.0

=

Figure 6-6: Accessing a bean instance from a page that didn’t create the instance

Refresh your memory by glancing at Listing 6-4 to note that cal cul at e2. j sp does not contain aj sp: useBean
action.

Other scope Attribute Values

The scope attribute of the j sp: useBean action may also have a value of session or request. When you code
scope="sessi on", you are telling the JSP engine to store your bean instance in the sessi on object. You can turn
off sessions with a JSP page directive containing a sessi on attribute with the value of "false." A useBean scope
value of sessi on is incompatible with a page directive sessi on value of false.

The remaining scope value is r equest . You've seen input data access with the r equest implicit object. Coding a
bean with scope of r equest stores the bean instance within this implicit object.

Coding a bean scope of r equest accomplishes little. You get the same access to the r equest object with the
default scope of page.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP : by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming

Techniques.
i | ‘.E';‘ .‘:

Coding JSP Standard Actions

Actions cause something to happen. In JSP, you have two categories of actions at your disposal: custom actions and standard actions.
You implement custom actions with tag libraries. You'll have to wait until you get to Chapter 7 for the nitty-gritty on tag libraries. You don’t
implement standard actions; these actions are instead provided to you, the JSP developer, free of charge. Please note that a server
provider may provide vendor-specific actions above and beyond the standard set.

Table 4-2 shows the JSP standard actions, an example of the syntax, and a brief description of each action.

Table 4-2: Short Descriptions of JSP Standard Actions

Short

Action Name Syntax Example Description

j sp: param <j sp: par am name=@lppar anmNanme @2lp This action
val ue=@@ppar anval ue@p /> works with
other standard
j sp: par ans action tags

(i ncl ude,
forward, and
pl ugi n tags)
to provide a
value to a
named
parameter.

and

jsp:forward <j sp: forward page=@apsonmeURL@alp> This action
provides a
convenient
</jsp: forward> mechanism to
forward a
request to
another JSP or
servlet.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=755332646

j sp: get Property

<j sp: get Property

name=@@pbeanl| nst anceNane@@p

property=@@ppr opert yNane@ip />

The JSP
author uses
the

get Property
action to
access the
properties of a
bean coded in
auseBean
action. The
get Property
action is the
compliment to
the

set Property
action.

j sp:include

<j sp:include page=@@lppageName@lp fl|ush=@@ptrue@p />

The JSP
author codes
the i ncl ude
action to direct
the engine to
include a
resource at
request time.
Do not confuse
this action with
the JSP

i ncl ude
directive.

jsp:plugin

<j sp: pl ugi n type=@@ipappl et @ip

code=@Ripj avaCode @Rip

codebase=@@pj avad asses@p

al i gn=@alpal i gnnent @p

ar chi ve=@apj ar Fi | es@lp

hei ght =@@Ippi xel sH gh@@ip

wi dt h=@@ppi xel sW de@ap

jreversi on=@@pl. 2@@lp
nane=@@pconponent Nane @@ p

titl e=@pconponent Tit | e@@p
vspace=@@ppaddi ngAr ound@lp

nspl ugi nurl =@ pwher eNSPI ugi nsAr e@lp
i epl ugi nurl =@ pwher el EPI ugi nsAr e@p

Show Thi s When Applet or Bean Fails to Load

<j sp: fal | back>
</jsp:fall back>
</jsp: plugi n>

The JSP
author codes
the pl ugi n
action when he
or she needs
to generate
client-specific
HTML OBJECT
or EMBED tags
that ensure
that a
particular
object is
available and
to invoke that
bean or object.
Most of the
attributes are
identical in
function and
coding to the
HTML
attributes for
the OBJECT

tag.

j sp: set Property

j sp: useBean

<j sp: set Property nane=@pbeanNane@p
property=@@ppr opertyNane@@p
par anF@@ppar anNane@ip / >

<j sp: set Property nane=@@pbeanNane@ip
property=@@ppropertyName@dlp

val ue=@@lpscriptl et O Stri ngVal ue@lp
/>

<j sp: useBean i d=@@lpbeanl nst anceNane@lp
scope=@Rlppage@@p
cl ass=@lpcl assName@lp
t ype=@lpcl assType@@p />

The JSP
author uses
the

set Property
action with the
useBean
action to set
the values of
properties in
the beans
named in the
nane attribute.
The bean
properties are
coded in the
property
attribute; the
value can be a
string or
scriptlet coded
in the val ue
attribute.

This action
allows the JSP
author to use
objects
instantiated
from a
JavaBean. The
scope
attribute may
be page,
request,
sessi on, or
appl ication.
The useBean
action works
with other
actions
described
earlier.

The standard action commands are coded as tags following XML syntax rules. (See Appendix D for information on XML syntax.) In the
sections that follow, you learn more about the set of standard actions available to the JSP developer on any JSP Web server.

The param and params Action

The par amaction provides other tags with parameter data. Use par amto get data to the f or war d, pl ugi n, and i ncl ude actions. The

syntax for the par amaction is as follows:

<j sp: param

If you have a need to create more than one parameter name-value pair for use in another action, you need to enclose the multiple par am

name="par anet er Nane" val ue="par anet er Val ue" />

actions inside a par ans action, as follows:

<j sp: par ans>
<j sp: param

<j sp: param

<j sp: param
</j sp: parans>

name="par anet er Nanel" val ue="par anet er Val uel" />
nanme="par anet er Nane2" val ue="par anet er Val ue2" />
nanme="par anet er Nane3" val ue="par anet er Val ue3" />

The forward Action

The f or war d action causes processing to immediately redirect to the indicated page. For example, when processing hits the following
statement:

<j sp: forward page="t henext page. htm " />
t henext page. ht m is immediately displayed.

Before displaying the forwarded page, the output stream buffer (if one exists) will be cleared. If you want to make a name-value parameter
known to the forwarded page, you use the par amaction as follows:

<j sp: forward page="t henext page. ht i " >
<j sp: param nane="par anNang" val ue="par anval ue" />
</jsp: forward>

Using the f or war d action enables you to direct categories of activities to specific pages.

The getProperty and setProperty Actions

The get Property action accesses one or more properties of a JavaBean used by the JSP page. The get Pr oper t y action accesses
the value of pr oper ty from a JavaBean, converts the value to a string, and writes the string representation to output.

The get Pr operty action has the following syntax:

<j sp: get Property nane="beanl nst anceNane"
property="propertyName />

As you might imagine, set Pr oper ty is how the bean gets the property value set in the first place. The syntax for the set Property
action has several forms, as shown here:

<j sp: set Property nane="beanl nst anceNanme" property="*" />

<j sp: set Property name=" beanl nst anceNang"
property="propertyNane" />

<j sp: set Property nane=" beanl nst anceNane"
property="propertyNanme"
par ane" par anet er Nane" />

<j sp: set Property nane=" beanl nst anceNane"

property="propertyNanme"
val ue="propertyVval ue" />

The attribute pr oper t yNane is the name of the bean property you want to set.
The attribute pr opert yVal ue is a string or JSP expression that, of course, represents the value of the property you wish to set.
The attribute par amNane is the value of a parameter that replaces the existing value of the property coded in the set Pr oper ty action.

You cannot code both par amand val ue in the same set Pr operty action.

The include Action

The i ncl ude action enables you to include content in your JSP page. Before you think that the i ncl ude action is the same thing as the
<%@ i ncl ude % directive, recall that the i ncl ude directive brings in the external content at translation time whereas the i ncl ude
action is processed at runtime (or page request time).

The syntax of the i ncl ude action is straightforward, as shown here:

<j sp:include page="rel ativeURL" flush="true" />

When considering the i ncl ude action, it's important to note that the value of the page attribute can be a JSP expression or some other
dynamically generated expression.

The f | ush attribute must be coded as true.

You can code par amtags with the i ncl ude action, as shown here:

<j sp:include page="incl uded. ht " flush="true" >
<j sp: param nane="par anNane" val ue="par anval ue" />
</jsp:include>

The plugin and fallback Actions

You use the pl ugi n action to generate HTML tags for embedding Java applets in the generated output page to ensure that the browser
contains an appropriate Java runtime, and that it executes the applet properly.

All but 4 of the 13 attributes of the pl ugi n action have the same meaning as the HTML counterparts. The parameters that have different
meaning are:

. type: Identifies the type of the component; a bean or an applet

. jreversion: Java runtime required to execute the component

. nspl ugi nurl : Location of the Netscape JRE download, as a URL

. i epluginurl: Location of the Internet Explorer JRE download, as a URL
The pl ugi n action takes an optional par amaction as well.

You may code af al | back action to provide information when the pl ugi n fails to load. Basically, the f al | back action provides
alternate text that performs the same function as the ALT attribute.

The useBean Action

The useBean action is used to make a JavaBean known to your JSP. You read more about bean use with your JSPs in Chapter 6, "JSP,
JavaBeans, and JDBC." In this section, you get exposure to the syntax for the useBean action.

There are several forms for coding the useBean action, as shown here:

<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
cl ass="cl assNane" />

<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
cl ass="cl assNane" type="typeNane" />
<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"

beanNane="beanNane" type="typeNane" />
<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
type="t ypeNanme" />
The attributes coded for useBean have the following meaning:
. i d: The name of the bean object instance.
. scope: A context in which the bean reference is known. The different scope contexts are represented by implicit objects, covered

more fully in the next section. Think of the bean object as having a different life cycle for different scope values. Table 4-3 lists the
values and meaning of the scope attribute of the useBean action.

. cl ass: The fully qualified class name of the bean being associated with the JSP.

. beanNane: The same name you would use to instantiate the bean, or the name you would supply to the i nst ant i at e method of
j ava. beans. Beans.

. type: Defaults to the value of the cl ass attribute but can be a valid superclass or interface implemented by the bean class.

Table 4-3: Values of the Scope Attribute Used in the JSP useBean Action

| Scope | Description
| page | The bean object dies after the servlet completes its ser vi ce() invocation.
request The bean lives for as long as the HTTP request lives, even if the HTTP request object is passed
among different JSP pages.
| sessi on | The bean object lives as long as the session exists.
| application | The bean object lives for the duration of the application’s execution.

As you might imagine, the useBean action enables you to load JavaBeans for use in your JSP pages, thereby opening your JSP pages to
the full power of the Java programming language. Also, you can take advantage of using software components, something that you
cannot easily do with other products.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix D: XML Overview

Throughout this book, you've read about JSP elements and EJB files coded in XML syntax. Although the examples of
such elements and files presented in the book convey the essential flavor of XML syntax, a more thorough
presentation is called for. Thus, the purpose of this appendix is to present the essentials of XML syntax.

This appendix provides an overview of XML, or Extensible Markup Language, a universal document format for
structuring data for presentation on the Web. The appendix starts with an overview of XML features that overcome
existing problems with HTML. Next, an extremely simple XML document is provided along with a discussion of XML
document components. The important XML terms, well-formed documents and valid documents, are covered, as are
XML Document Type Definitions (DTDs). Finally, a brief description of related technologies wraps up this appendix.

XML Features

XML does not have a fixed set of markup tags, overcoming HTML'’s greatest deficiency, according to some experts.
XML is not a markup language per se; XML is a meta-markup language that enables document authors to define their
own tags. As a result, authors can create markup languages peculiar to their particular industries, and XML document
authors can use this markup language to encode data in industry-specific terminology.

XML requires document authors to follow certain rules in creating what is known as well-formed XML documents. If
these rules are not followed, the XML document is useless. This XML specification prohibits XML tools from trying to
fix problems with the document. The intent is to stop the browser madness prevalent in HTML, in which different
browsers attempt to “fix” broken HTML and, of course, parse and display this HTML differently. For example, an HTML
document author can write HTML with missing end tags, which the major browsers parse and display. Such
foolishness cannot fly with XML; if an XML document is broken, the document cannot be rendered. Therefore, an XML
author can confidently create XML documents, knowing that these documents are parsed identically with different
pieces of compliant software.

XML stresses the separation of data content from data presentation. Over time, HTML has blurred the distinction
between organizing document content and displaying the content. A typical HTML document has tags that describe
relationships among document content (such as tags) and tags that govern the display of this content (<U>,
, and so on). XML describes document content structure and semantic relationships, not the content formatting.
The XML author uses a related style sheet technology, such as CSS (Cascading Style Sheets) or XSL (Extensible
Style Language), to govern the display of the document. One upshot of this clean separation of structure and display
is that the same XML document can be displayed in various ways by using different style sheets, or the same style
sheet can govern the display of similarly structured XML documents.

The nonproprietary nature of XML, combined with its ease of writing, makes XML an ideal format for data exchange
among applications.

Top

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=608650343

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

There are many JSP engines on the market today, and you may or may not use Tomcat in your JSP projects. Since
Tomcat is the reference JSP implementation endorsed by Sun Microsystems, it will support new JSP specifications
more quickly than most other JSP engines. For this reason you will want to become familiar with Tomcat whether you
use it regularly or not because it will be a valuable tool for both regular use and for examining new JSP releases now
and in the future.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=149257240

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix C: Configuring the Tomcat Web Server

This appendix discusses Tomcat and provides advice on how to get the Tomcat release 3.2 Web server. Tomcat is
the Reference Implementation for the Java Servlet 2.2 and JavaServer Pages 1.1 Technologies. In other words,
Tomcat is a Web server that implements the most current release of JSP and Java Servlets.

The Tomcat Web Server

Tomcat is a Web server that contains a JSP container. Tomcat is quick and easy to install and to use, and offers the
following advantages:

. Tomcat is free.

. You can download the source code for Tomcat as well as the binaries. If you really want to learn about server
internals, the Tomcat source is a great resource.

. Mailing lists about Tomcat are available to one and all. These lists are devoted to disseminating information,
including posted questions and answers.

Tomcat is designed to work as both a standalone Web server or in conjunction with application servers, such as
Apache or JBoss. For your purposes here, it is more interesting to run Tomcat as a standalone Web server because it
offers a straightforward way to learn about JSPs. However, in the real world, if you opt to use Tomcat, you may want
to integrate Tomcat with another Web application server.

Tomcat was, and currently is, developed by a community of dedicated individuals under the umbrella of the Jakarta
Project. You are encouraged to learn about the Jakarta Project by taking a look at
http://jakarta.apache. org/i ndex. ht m . From this site, you can get to the page where you can download the

Tomcat Web server.

As of this writing, the latest release of Tomcat is release 3.2.

Note By the time you read this book, it is very likely that the Jakarta folk will have a more recent version of Tomcat
available, probably release 4.0. Be advised that the description of Tomcat given here applies to release 3.2.
Several details and particulars may change between successive releases.

Downloading Tomcat Release 3.2

You can get to the download page for Tomcat from the Jakarta URL or go to
http://jakarta.apache. org/site/binindex. htn . (If you prefer, you can get to the source code download

from here as well.)

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=817439471
http://jakarta.apache.org/index.html
http://jakarta.apache.org/site/binindex.html

The Tomcat download site classifies downloads into release builds, milestone builds, and nightly builds. The release
builds are the stable versions of the Tomcat product. Once you get to the download site, scroll to the release builds
section and select “Tomcat 3.2.1” (or whatever is the most current release being offered). Figure C-1 shows the

screen containing the download files.

T Feip fubarin. mpan ke peey baday | b sty dmrs o e be ase)P 1 Bin - Blcioga brirese B aplaie
[l [8 e Fpeie [k ek |
“ o, = : : § - -
Bk n'?p n.“-'.;l.-. IEI.. l.Em r...—._' H:njnq. i
L T T L T r———————— T] e
=

Index of /builds/jakarta-
tomcat/release/v3.2.1/bin

T Lat el L Ji0E EERRi L L

- S REARLALY -dns-5o01 4153
|:' Jmicwrre: pepyinsap; Rar §2-Bec-BB00 K148 ATk Emr sechive
Ll RN R PR G [0S g 15-See-P080 pEian SEIW GEEF suspaessdd T1iE
l:' AmiaTL s pRpy Lata M o] i A3
4
]| SR a- et =1, . 1, B *-dar 5501 1] a
) canrinvmmcns-3 2 1oaen . SF-dan-beEl S35 42N
.
£ S w- et =10, 1, s 15 -Paa-D000 J4idd B0 naw ssekive
LN snrsrcscoipmosr-) Bl tar.gn l-Sec-bEOO GiiES BT GEIF compresssd fils
L] quiaptm-f opeat LuiiiE JicPer-3900 B4l B.0m .
™M
= s FLEET]
|
I 1= Pee=3000 11140
=
i [- SITT § =}
el L BT

Figure C-1: Tomcat release 3.2 download page

From this page you can select a Tomcat version for Windows 9x, Windows NT, or Windows 2000, or for various UNIX
flavors.

Assuming you are using some version of Windows, select j akart a-t ontat - 3. 2. 1. zi p to commence the

download. After a successful download, you should have a zip file called j akart a-t ontat - 3. 2. 1. zi p on your
hard drive.

Installing Tomcat

Installing Tomcat is a straightforward process. Just open the zip file and extract all contained files in the archive.

Note You need a copy of PKZIP to extract the contained files. You can get a copy at
http: //ww. pkwar e. com . This site has compression/extraction tools for several operating systems.

You may want to create a directory at your disk root; for example, use d: \ t ontat 32 to hold all the Tomcat files. After
extracting the files, your directory structure should resemble that shown in Figure C-2.

http://www.pkware.com/

B8 Exploving - My Computer M= E

e
i
B

Figure C-2: Tomcat directory structure

As you can see, several directories shown in the figure have subdirectories. Not all the subdirectories within Tomcat
can be shown here because of space limitations. Throughout this appendix we will examine different directories in the
Tomcat installation that are relevant to the Tomcat configuration and JSP processing.

Assuming you see something similar to Figure C-2 on your screen, you are almost ready to check whether your

Tomcat installation was successful. However, first you need to set up a few environment variables, as described in the
following section.

Setting Your Tomcat Environment Variables
Tomcat uses a script located in the bi n directory called, appropriately enough, st ar t up. bat , which requires several

environment variables to be set on your system for proper execution. Table C-1 lists these variables and their
purpose.

Table C-1: Tomcat Environment Variables

| Variable Name | Purpose
| JAVA HOVE ’ Points to the root directory of your Java installation.
Points to the root directory of your Tomcat

TOMCAT _HOVE
installation.

If you are running Windows 9x, you can assign these environment variables in your aut oexec. bat file as follows:

set JAVA HOVE=d:\j dkl. 3
set TOMCAT HOMVE=d: \tontat 32

After you code the assignments, you need to restart your machine or execute your aut oexec. bat file to make the
variable assignments.

If you are running Windows 2000 or Windows NT, you can use the System Properties control panel to set these
environment variables. From your Start button, select Settings @ @> Control Panel @ @> System @ @> Environment.
Figure C-3 shows the Environment control panel.

Ganeisl | Metwork [dentiication | Hadware | Use Profles Advanced |
Ermvironmant Varlables K E

Wl i Syetem Variahle

Varisbla Mama: | tomest_homa

Yariabls valse: | d:\pomea 3z

[] o |

ot warishled
Warabaly T |-
ComSpec TN sy stem X] e
HUMEER _OF PR... |
o ‘Wiradows_ T
D2 bPath oI sy sten 2 sl
Ptk AT i 2 s 'I_'k‘."i'-l'ﬁT CTWIN. .. _I

mewo, | B | D |

e | |
L]

Figure C-3: The Windows NT Environment control panel

If you find existing entries for environment variables in the control panel, you may click the entry to view and edit its
value as necessary. Click OK or Apply to set the variables.

Caution Be careful when setting environment variables in command windows. Windows starts a separate process
for each command window opened. Therefore, if you issue a SET command to assign environment

variables values in one window, the variables have these values when executing programs from within
this command window only. Placing your SET commands in your aut oexec. bat file or setting variable

values in the control panel makes the values known to all processes.

Okay, you're almost home. With the Tomcat environment variables set, you are ready to test your Tomcat installation.

Testing Your Tomcat Installation

The directory TOMCAT _HOVE\ bi n contains several startup and shutdown files. The files you are interested in are
called st art up. bat and shut down. bat . First, run the startup file by double-clicking its icon or running the file from
a command window. Once you execute the startup file, you should see two windows that resemble those shown in
Figure C-4.

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc03_0.jpg&image_id=33&previd=IMG_33&titlelabel=Figure+C-3%3A&title=The+Windows+NT+Environment+control+panel

Figure C-4: What you should see when executing startup.bat

The windows in Figure C-4 are stacked for display purposes, so your display will differ. If you see two command
windows such as the ones shown, you can be pretty sure that your Tomcat installation was successful.

You want to display Web pages in your Web server, right? Although the command windows shown in Figure C-4 show

Tomcat executing, you need to call up a Web page and check out some servlets and JSPs. This process is covered in
the following sections.

Displaying Web Pages in Tomcat

Open a browser and enter the following URL:
http://1 ocal host: 8080/

Figure C-5 shows what you should see on your screen.

e [& Yo P Jas B

Tomcat

: README, 1l FAG) .
BT
« JEPEsenies
« Serdet Eamples
« AP docs lor Serdet snd 15 Packages

#l L enaw

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc04_0.jpg&image_id=34&previd=IMG_34&titlelabel=Figure+C-4%3A&title=What+you+should+see+when+executing+startup.bat
http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc05_0.jpg&image_id=35&previd=IMG_35&titlelabel=Figure+C-5%3A&title=The+Tomcat+greeting+screen

Figure C-5: The Tomcat greeting screen

If you see this screen, congratulations! You have a working version of the Tomcat Web server installed on your
system.

Try out the JSP and servlet examples next. Figure C-6 shows the page of JSP examples.

B [# e P Qe B ﬁ

e, SN - K F | a @ 9 | @

Bk T Famapr. . gt Pge e Ty bl
w'm"ﬁ'hdvimﬂ" i made L _'.'] &
JSP Samples

This is a collection of samples demonsirates the uvsage of different parts of the lava Serear
Pages (5P specificakion

Tharse gxamides will only work when hess pages ane being served by tha ServietRunres. T

Friry
il Pl el (T Wil B0 vidwingg Thaas DbgeE vib & il LR
Ty Pl ol oo wilry Theough tFe axarmndles, the Mollowineg iKord will Fedp
h Endcli sl ax il
¥ Look of the source code for the sxample
ohy Rt o Hhis soreen
Tigp Foor gdeition doopsid Dhaarsd 0o wirk, P cook g rea il Beb dsnuahl sl This cam bed dorsd ol
bevrerser opdkors
Pk gumsss Q:L ead L
Dk *-‘_ L &
=

T

Figure C-6: The Tomcat JSP example page
The page in Figure C-6 contains 15 JSP examples, of which two are shown.

You have not seen a JSP execute yet. Click on the link labeled "Execute" next to the Date example. If you see a
screen such as Figure C-7, you have a working, JSP-enabled Web server!

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc06_0.jpg&image_id=36&previd=IMG_36&titlelabel=Figure+C-6%3A&title=The+Tomcat+JSP+example+page

'illlr.p'. Mocalbost:BIH0 e x ampletjep'd sles dale.jsp Micia... M=l E1
B G Yww Fovostes Dok el ' |

e o A | B A
Eack CRop Fedresh Mo
e

Address F-l'_] it locatho: BV examplesipfdster/dabe p

[
=

« Day of month: is 16
Year: is 2001
Month: is May
Time: is 9:15:19

« Date: is 5/16/2001
« Day: is Wednasday
Day Of Year: is 136
Weelk Of Year: is 20
era: is 1

« DST Offset: Is 1

« Zona Offsak: s -6

L]

L]

L]

L]

- - -
£] Dore Iy Local infraret 5
Figure C-7: The Date JSP executing in Tomcat

Tomcat Directories and JSP Processing

The documentation contained in TOMCAT_HOVE\ doc covers nearly everything you need to know about using Tomcat.
In this section, you can see a quick rundown on placement of JSP files in Tomcat.

You have two options for running JSPs in Tomcat: You can create your own Web application or use the example
directory to run your JSP pages. This section describes how to use the example directory. Consult the documentation
for configuring Tomcat for your own Web application.

You have to place your JSP and HTML files in one directory and your class files from JavaBeans in another directory.
First, let's look at the directories and read about where you'll place JSP and HTML files.

To run a set of related JSPs, you need to create a directory in the TOMCAT _HOVE\ Webapps directory. For example,
let's create the directory TOMCAT _HOVE\ Webapps\ exanpl es\ | sp.

Caution Do not be misled by looking at the URLs in the browser. Notice that the URL shown in Figure C-7,
http://1 ocal host: 8080/ exanpl es/j sp/ dat esdat e. j sp, does not include the Webapps
directory. When placing your JSPs, remember that the directory shown in the URL is really found in
TOMCAT_HOVE\ Webapps.

Put your JSP files and static HTML files in your directory. For example, the series of JSPs for the Hotel Reservation
System are stored in the directory TOMCAT _HOVE\ Webapps\ exanpl es\ j sp\ hot el res.

Caution Do not invoke your JSPs or static HTML files by clicking their icons. You must invoke JSPs or HTML
pages from the browser from the ht t p: / /| ocal host : 8080 address. If you click HTML page icons,

you see the pages in the browser (of course), but you cannot invoke any JSPs from the pages.

As for your class files representing your JavaBeans, Tomcat understands that the directory
TOMCAT_HOVE\ Webapps\ exanpl es\ cl asses holds class files. Because you are a sharp Java programmer, you've

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc07_0.jpg&image_id=37&previd=IMG_37&titlelabel=Figure+C-7%3A&title=The+Date+JSP+executing+in+Tomcat

already coded your bean classes within a package, which corresponds to a directory within the classes directory cited
above. For example, beans created for the Hotel Reservation System are stored in
TOMCAT _HOVE\ Webapps\ exanpl es\ cl asses\ hot el res.

Once again, store your JSPs and HTML pages together in a directory located in the JSP subdirectory and your bean
classes in a directory (package) located in the cl asses subdirectory.

More Information on Tomcat

As previously mentioned, mailing lists are dedicated to disseminating information about Tomcat. If you have a
question, you can post it to the Web site for this book, of course, or join one of the Tomcat mailing lists.

Tip To join the Tomcat mailing list, visitht t p: / /| akart a. apache. or g/ t ontat and follow the directions

found there.

Top <

| <= Prov_ | Noxt =

http://jakarta.apache.org/tomcat

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix B: The EJB API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ Enterprise JavaBeans API for quick
reference.

The EJB API

Here, you can read about the EJB 1.1 API and Sun’s proposed changes for the upcoming EJB 2.0 release.

The entire EJB APl is contained within the following two packages:

. javax.ejb
. javax. ej b.spi (2.0 only)

Before examining the contents of these two packages, let’s take a quick look at the class and interface hierarchies for
the j avax. ej b package.

Class and Inheritance Hierarchies for Package javax.ejb

The proposed classes and interfaces introduced with release 2.0 are noted in the following list. Notice that EJB works
with interfaces; the classes in the javax.ejb package are representations of exceptions.

cl ass java.l ang. Obj ect
class java.l ang. Throwabl e (inplenments java.io. Serializable)
cl ass java.l ang. Excepti on
cl ass javax. ejb. Creat eException
cl ass javax. ejb. Duplicat eKeyException
cl ass javax. ejb. Fi nder Excepti on
cl ass javax. ej b. Obj ect Not FoundExcepti on
cl ass javax. ej b. RenoveExcepti on
cl ass java.l ang. Runti neException
cl ass javax. ej b. EJBException
cl ass javax. ejb. AccessLocal Excepti on
cl ass javax.ejb. NoSuchEntityException
cl ass javax. ej b. NoSuchObj ect Local Excepti on (2.0)
cl ass javax.ejb. Transacti onRequi r edLocal Exception (2. 0)
cl ass javax.ejb. Transacti onRol | edbackLocal Excepti on (2.0)

Interface Hierarchy

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=635730244

Here is the interface hierarchy:

i nterface javax. ej b. EJBCont ext
interface javax.ejb. EntityContext
i nterface javax.ejb. MessageDrivenContext (2.0)
i nterface javax. ejb. Sessi onCont ext
i nterface javax.ejb. EJBLocal Hone (2.0)
i nterface javax.ejb. EJBLocal Object (2.0)
i nterface javax.ejb. EJBMet abDat a
interface java.rm . Renote
i nterface javax. ejb. EJBHone
i nterface javax. ejb. EJIBObj ect
interface java.io. Serializable
interface javax.ejb. EnterpriseBean
interface javax.ejb. EntityBean
interface javax.ejb. MessageDri venBean (2.0)
i nterface javax. ejb. Sessi onBean
i nterface javax.ejb. Handl e
i nterface javax. ejb. HoneHandl e
i nterface javax. ejb. Sessi onSynchroni zati on

Because the javax.ejb.spi package (new with release 2.0, remember?) contains a single interface, let's go ahead and
discuss it.

The javax.ejb.spi Package and Its Interface

The j avax. ej b. spi package contains a single interface called Handl eDel egat e, which is implemented by the
EJB container. This interface is used by portable implementations of j avax. ej b. Handl e and

j avax. ej b. HoneHandl e. Handl eDel egat e is not used by EJB components or by client components. It provides
methods to serialize and deserialize EJBObj ect and EJBHone references to streams. Table B-1 lists the methods
available in the Handl eDel egat e interface.

Table B-1: Methods of the HandleDelegate Interface

Method Signature Description
EJBHone readEJBHome(Cbj ect I nput Stream Invoked by the EJB container to deserialize the
i stream EJBHone reference corresponding to a
HoneHandl e.
EJBOhj ect readEIJBObj ect (Invoked by the EJB container to deserialize the
oj ect I nput Stream i stream EJBObj ect reference corresponding to a Handl e.
void witeEJBHome(EJBHome hone, Serializes the EJBHone reference corresponding to
bj ect Qut put Stream ostream) a HomeHandl e.
void witeEIJBObj ect(EJBObj ect object, Serializes the EJBObj ect corresponding to a
bj ect Qut put St ream ostream) Handl e.

The vast bulk of the EJB API is contained in the j avax. ej b package. Let's take a look at j avax. ej b now.

The javax.ejb Package

Enterprise JavaBeans work with remote interfaces. Hence, the majority of the methods defined in the EJB spec are

contained within interfaces. EJB classes are limited to exception classes. Later in this appendix, you can examine a
list of all available methods from the interfaces contained in j avax. ej b. For now, let’s look at the exception classes,

which are listed in Table B-2. These exception classes inherit the "usual" methods, such as pri nt St ackTrace, and
use the "usual” constructors.

Table B-2: Exception Classes of the javax.ejb Package

Class Name Description

AccesslLocal Exception An AccesslLocal Excepti on is thrown to indicate

that the caller does not have permission to call the
method.

Cr eat eExcepti on The Cr eat eExcept i on exception must be included

in the throws clauses of all create methods defined
in an enterprise bean's hone interface.

Dupl i cat eKeyExcepti on The Dupl i cat eKeyExcept i on exception is

thrown if an entity EJB object cannot be created
because an object with the same key already exists.

EJBExcepti on The EJBExcept i on exception is thrown by an
enterprise bean instance to its container to report
that the invoked business method or callback
method could not be completed because of an
unexpected error (for example, the instance failed to
open a database connection).

Fi nder Excepti on The Fi nder Except i on exception must be included
in the throws clause of every f i ndMETHOD()
method of an entity bean's homne interface.

NoSuchEnt i t yExcepti on The NoSuchEnt i t yExcept i on exception is
thrown by an entity bean instance to its container to
report that the invoked business method or callback
method could not be completed because the
underlying entity was removed from the database.

NoSuchChj ect Local Excepti on A NoSuchnj ect Local Except i on is thrown if an

attempt is made to invoke a method on an object
that no longer exists (new with release 2.0).

hj ect Not FoundExcept i on The Obj ect Not FoundExcept i on exception is
thrown by a f i nder method to indicate that the
specified EJB object does not exist.

RenoveExcepti on The RenoveExcept i on exception is thrown at an
attempt to remove an EJB object when the
enterprise bean or the container does not enable the
EJB object to be removed.

Transacti onRequi r edLocal Excepti on This exception indicates that a request carried a null
transaction context, but the target object requires an
activate transaction (new with release 2.0).

Transacti onRol | backLocal Excepti on This exception indicates that the transaction
associated with processing of the request has been
rolled back, or marked to roll back (new with release
2.0).

As you see, the new exception classes in release 2.0 deal with exceptions thrown by local objects.

The j avax. ej b package defines no other classes than the exception classes listed in Table B-2; the remainder of
the package consists of interfaces. Table B-3 lists the interfaces available in the j avax. ej b package. The interfaces
newly available with the release 2.0 are noted.

Table B-3: Interfaces of the javax.ejb Package

Interface Name | Description

EJBCont ext The EJBCont ext interface provides an instance
with access to the container-provided runtime
context of an enterprise bean instance.

EJBHone The EJBHone interface must be extended by all

enterprise bean’s remote home interfaces.

EJBLocal Hone

The EJBLocal Hone interface must be extended by

all enterprise bean’s local home interfaces (new with
release 2.0).

EJBLocal Obj ect

The EJBLocal Obj ect interface must be extended
by all enterprise bean'’s local interfaces.

EJBMet aDat a The EJBMet aDat a interface enables a client to
obtain the enterprise bean’s metadata information.
EJBhj ect The EJBObj ect interface is extended by all

enterprise bean’s remote interfaces.

Ent er pri seBean

The Ent er pri seBean interface must be
implemented by every enterprise bean class.

Entit yBean

The Ent i t yBean interface is implemented by every
entity enterprise bean class.

Enti t yCont ext

The Ent i t yCont ext interface provides an instance

with access to the container-provided runtime
context of an entity enterprise bean instance.

Handl e The Handl e interface is implemented by all EJB
object handles.
HomeHandl e The HoneHandl e interface is implemented by all

home object handles.

MessageDri venBean

The MessageDr i venBean interface is implemented
by every message-driven enterprise bean class (new
with release 2.0).

MessageDri venCont ext

The MessageDri venCont ext interface provides
access to the runtime message-driven context that
the container provides for a message-driven
enterprise bean instance (new with release 2.0).

Sessi onBean

The Sessi onBean interface is implemented by
every session enterprise bean class.

Sessi onCont ext

The Sessi onCont ext interface provides access to
the runtime session context that the container
provides for a session enterprise bean instance.

Sessi onSynchroni zati on

The Sessi onSynchr oni zat i on interface enables

a session bean instance to be notified by its
container of transaction boundaries.

Note that all of the new interfaces available with release 2.0 deal with the MessageDr i venBean and local objects.
The rest of the interfaces in the j avax. ej b package existed in the previous EJB specification release. All of these
interfaces are discussed in this appendix.

The EJBContext Interface
The EJBCont ext interface provides a bean with the context of the EJB container. As such, the methods available

through EJBCont ext enable a bean to glean information about the container and the beans contained within. Table B-
4 lists the methods from the EJBCont ext interface.

Table B-4;: Methods of the EJBContext Interface

| Method Signature | Description

Princi pal getCallerPrincipal() Returns the security Principal that identifies the
method caller.

| EJBHone get EJBHome() Returns the bean’s (remote) home interface.

EJBLocal Hone get EJBLocal Home() Returns the bean’s local home interface (new with
release 2.0).

| bool ean get Rol | backOnl y() Determines if the transaction is marked for rollback.

User Transacti on get User Tr ansacti on() Returns a reference to the current transaction
demarcation interface.

bool ean i sCall erl nRol e() Determines if the method caller has a given security
role.

voi d set Rol | backOnl y() ’ Sets the current transaction for rollback.

The EJBCont ext interface is extended by the Sessi onCont ext and Ent i t yCont ext interfaces, which contain
methods peculiar to the two bean types.

The EJBHome Interface

The EJBHone interface must be extended by all remote home interfaces. With release 2.0, EJB draws a distinction

between a remote home interface and a local home interface. Later in this appendix you'll read about the methods in
the EJBLocal Honre interface. All methods contained in the EJBHone interface throw (minimally) a

Renot eExcept i on. The proposed 2.0 release does not add new methods, or deprecate existing ones. Table B-5
lists the methods in the EJBHone interface.

Table B-5: Methods of the EJBHome Interface

| Method Signature | Description

’ EJBMet aDat a get EJBMet aDat a() ’ Returns th_e metadata for the be'an..The bean’s
metadata is rarely used by application developers.

| HormeHandl e get HoneHandl e() ’ Returns a handle for the (remote) home object.

| voi d renmove(Handl e handle) ’ Removes an EJB object referenced by its handle.

voi d renmove(Object primaryKey) ’ Removes an EJB object referenced by its primary
key.

get EJBHome() Returns the bean’s (remote) home interface.

The EJBLocalHome Interface

The EJBLocal Hone interface is conceptually similar to the EJBHone interface except that the EJBLocal Home
interface should be extended for all local clients of enterprise beans. This interface, new with release 2.0, contains one
method, r enove, which has the following signature:
voi d renove(Object prinmaryKey)

t hrows RenpbveException, EJBException ;

The r enove method can be called only by local clients of an entity bean. Recall that session beans do not have

methods that rely on the existence of a primary key (such as finder methods). The implementation of this interface is
the responsibility of the EJB container.

The EJBLocalObject Interface

The EJBLocal Obj ect interface, new with release 2.0, serves the same function as the EJBObj ect interface, but for

local clients. An enterprise bean's local interface provides the local client view of an EJB object. An enterprise bean's
local interface defines the business methods callable by local clients. The implementation of this interface is the
responsibility of the EJB container. Table B-6 lists the methods available from a class that implements the

EJBLocal Obj ect interface.

Table B-6: Methods of the EJBLocalHome Interface

| Method Signature | Description

| EJBLocal Hone get EJBLocal Home() ’ Returns the bean’s local home interface.

| hj ect get Pri mar yKey() ’ Returns the primary key for the EJB local object.
bool ean isldentical (EJBLocal Obj ect Determines if the given EJB local object is identical
[obj) to the invoking EJB local object.

| voi d remove() ’ Removes the EJB local object.

The EJBMetaData Interface

The EJBMet aDat a interface enables a client to obtain the enterprise bean's metadata information. The metadata is

intended for development tools used for building applications that use deployed enterprise beans, and for clients using
a scripting language to access the enterprise bean. Table B-7 shows the methods available by a class that
implements the EJBMet aDat a interface.

Table B-7: Methods of the EJBMetaData Interface

| Method Signature | Description
| EJBHone get EJBHome() ’ Returns the bean’s remote home interface.
Cl ass get Horel nt erfaced ass() Returns the class for the enterprise bean’s remote

home interface.

Cl ass getRenotel nterfaced ass() Returns the class for the enterprise bean’s remote
interface.

bool ean i sSessi on() Determines if the bean’s type is session as opposed

to entity, or (with release 2.0 only) message driven.

| bool ean i sSt at el essSessi on() ’ Determines if the bean’s type is “stateless session.”

| obj ect getPri maryKey() ’ Returns the primary key for the EJB local object.

The EJBObject Interface

The EJBObj ect interface is extended by all enterprise bean’s remote interfaces. An enterprise bean's remote

interface provides the remote client view of an EJB object. An enterprise bean's remote interface defines the business
methods callable by a remote client. Table B-8 shows the methods available by a class that implements the

EJBObj ect interface.

Table B-8: Methods of the EJBObject Interface

| Method Signature | Description

| EJBHone get EJBHone () ’ Returns the bean’s remote home interface.

| Handl e get Handl e() ’ Returns a handle for the invoking EJB object.
| hj ect get Pri mar yKey() ’ Returns the primary key of the EJB object.

bool ean isldentical (EJBOhject eobj) Determines if a given EJB object is identical to the

invoking EJB object.

| voi d remove() ’ Removes the EJB object.

The EnterpriseBean Interface

The Ent er pri seBean interface contains no method signatures or constants. Interface Ent er pri seBean serves as
the superinterface for the Ent i t yBean, Sessi onBean, and MessageDr i venBean interfaces.

The EntityBean Interface
The Ent i t yBean interface must be extended by any class that implements an entity EJB. The container uses the

methods defined in the entity bean class to notify the bean instances of various events in the bean’s life cycle. Table B-
9 lists the methods available in an entity bean class that implements the Ent i t yBean interface.

Table B-9: Methods of the EntityBean Interface

Method Signature | Description

voi d ej bActivate() The container invokes ej bAct i vat e when the

bean instance is loaded from the bean pool to
become associated with a particular EJB object.

voi d ej bLoad() The container invokes ej bLoad to synchronize the

entity bean’s state by refreshing the bean with data
from the underlying database.

voi d ej bPassi vat e() The container invokes ej bPassi vat e before the
bean instance becomes disassociated with a specific
EJB object, possibly by placing the bean instance
into the instance pool.

voi d ej bRenmove() The container invokes ej bRenove before it
removes the EJB object associated with the bean
instance.

void ej bStore() The container invokes ej bSt or e to synchronize the

bean’s state by storing the bean data to the
underlying database.

voi d setEntityContext() Sets the entity context for the newly created entity
bean.
voi d unset EntityContext () Unsets the entity context immediately before

removing the bean instance.

The EntityContext Interface

The Ent i t yCont ext interface, a subinterface of EJBCont ext , provides an instance with access to the container-
provided runtime context of an entity enterprise bean instance. The container passes the Ent i t yCont ext interface
to an entity enterprise bean instance after the instance has been created. The Ent i t yCont ext of an entity bean
stays associated with the bean for the bean’s entire life. Table B-10 lists the methods available from the Ent i t yBean
interface.

Table B-10: Methods of the EntityContext Interface

Method Signature | Description

EJBLocal Obj ect get EJBLocal Obj ect () Returns a reference to the EJB local object currently
associated with the bean’s instance (new with
release 2.0).

EJBObj ect get EJBObj ect () Returns a reference to the EJB object currently

associated with the bean instance.

hj ect get Pri mar yKey() Returns the primary key of the EJB object currently
associated with this bean instance.

voi d ej bLoad() The container invokes ej bLoad to synchronize the

entity bean’s state by refreshing the bean with data
from the underlying database.

The Handle Interface

The Handl e interface is implemented by all EJB object handles. A handle is an abstraction of a network reference to
an EJB object. A handle is used as a "robust" persistent reference to an EJB object.

The Handl e interface defines one method, get EJBCbj ect , with the following signature:

EJBObj ect get EJBObj ect () throws RenpteException ;

The HomeHandle Interface

The HoneHandl e interface is implemented by all home object handles. A handle is an abstraction of a network

reference to a home object. A handle is used as a "robust" persistent reference to a honeobj ect .

The HoneHandl e interface defines one method, get EJBHone, with the following signature:

EJBHonme(Obj ect get EJBHone () throws RenoteException ;

The MessageDrivenBean Interface

The MessageDr i venBean interface is implemented by every message-driven enterprise bean class. The container
uses the MessageDr i venBean methods to notify the enterprise bean instances of the instance's life cycle events.

The MessageDr i venBean interface, as well as any interface dealing with message-driven beans, is new with release
2.0. Table B-11 lists the methods available from the MessageDr i venBean interface.

Table B-11: Methods of the MessageDrivenBean Interface

Method Signature Description

voi d ej bRenmove() The container invokes r enpove immediately prior to
ending the life of the message bean (new with
release 2.0).

voi d set MessageDri venCont ext (Sets the message-driven context immediately after

MessageDri venCont ext nttx) creating the instance of the message bean.

The MessageDrivenContext Interface

The MessageDr i venCont ext interface, new with release 2.0, is a subinterface of EJBCont ext that provides an

instance with access to the container-provided runtime context of a message bean instance. The container passes the
MessageDri venCont ext interface to a message enterprise bean instance after the instance has been created. The

MessageDr i venCont ext of a message bean stays associated with the bean for the bean’s entire life.

The MessageDr i venCont ext interface requires no methods other than those from the superinterface,
EJBCont ext , be implemented.

The SessionBean Interface

The Sessi onBean interface is implemented by every session enterprise bean class. The container uses the
Sessi onBean methods to notify the enterprise bean instances of the instance's life cycle events. Table B-12 lists the
methods available from the Sessi onBean interface.

Table B-12: Methods of the SessionBean Interface

Method Signature Description

voi d ej bActivate() The container invokes ej bAct i vat e when the

session bean instance becomes associated with an
EJB object by fetching from a bean pool or
deserializing from storage (enters the active state).

voi d ej bPassi vat e() The container invokes ej bPassi vat e when the
session bean is about to go into a bean pool or be
persisted (enters the passive state).

voi d ej bRenove()

The container invokes r enove immediately prior to
ending the life of the session bean.

voi d set MessageDri venCont ext (
MessageDri venCont ext nctx)

Sets the associated session context after the
container creates an instance of the session bean.

The SessionContext Interface

The Sessi onCont ext interface, a subinterface of EJBCont ext , provides an instance with access to the container-
provided runtime context of a session enterprise bean instance. The container passes the Sessi onCont ext
interface to a session enterprise bean instance after the instance has been created. The Sessi onCont ext of a
session bean stays associated with the bean for the bean’s entire life. Table B-13 lists the methods available from the

Sessi onBean interface.

Table B-13: Methods of the SessionContext Interface

Method Signature

Description

EJBLocal Obj ect get EJBLocal Obj ect ()

Returns a reference to the EJB local object currently
associated with the bean’s instance (new with
release 2.0).

EJBOhj ect get EJBOhj ect ()

Returns a reference to the EJB object currently
associated with the bean instance.

The SessionSynchronization Interface

The Sessi onSynchr oni zat i on interface enables a session bean instance to be notified by its container of

transaction boundaries. A session bean class is not required to implement this interface unless it wishes to
synchronize its state with the transactions. Table B-14 lists the methods available from the

Sessi onSynchr oni zat i on interface.

Table B-14: Methods of the SessionSynchronization Interface

| Method Signature

Description

voi d afterBegin()

The container invokes af t er Begi n to notify a
session bean that a new transaction has started.

voi d afterConpletion (bool ean
comritted)

The container invokes af t er Conpl et i on to notify
a session bean that a commit or a rollback occurred.

voi d bef oreConpl etion()

The container invokes bef or eConpl eti on to

notify a session bean that a transaction is about to
be committed.

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Interfaces and Classes Added to JSP Release 1.2

The up-and-coming JSP release 1.2 includes some additional interfaces and classes to the
j avax. servl et.] sp.tagext package. Table A-25 provides a quick look at what's new with JSP 1.2

Table A-25: New Components of the javax.servlet.jsp.tagext Package
(JSP 1.2)

| Component | Type Description

IterationTag Interface Extends the Tag interface by
providing one additional method
that controls the reevaluation of
its body.

TryCat chFinal |y Interface Another interface of a tag-
handler class that wants more
hooks for managing resources.

PageDat a Abstract Class Objects of class PageDat a are
generated by the JSP translator
and passed to a Tag library
validator.

TagLi braryVal i dat or Abstract Class Translation-time validator class
for a JSP page.

TagVari abl el nfo Class Contains information about tag
variables coded in the tid.

The IterationTag Interface

The | t er at i onTag interface extends Tag by defining one additional method that controls the reevaluation of its
body.

A tag handler that implements | t er at i onTag is treated as one that implements Tag regarding the doSt art Tag and
doEndTag methods. | t er at i onTag provides a new method: doAf t er Body with the following signature:

i nt doAfterBody()

The | t er at i onTag interface defines an additional constant that requests the evaluation of the tag body, as follows:

public static final int EVAL BODY_AGAI N

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=104963757

Note that EVAL_BODY_AGAI Nreplaces the deprecated tag BodyTag. EVAL_BODY_TAG

The TryCatchFinally Interface

The Tr yCat chFi nal | y interface is the auxiliary interface of a Tag, | t er at i onTag, or Body Tag tag handler that
wants additional hooks for managing resources.

This interface provides two new methods: doCat ch(Thr owabl €) and doFi nal | y, with the following signatures:

voi d doCatch(Throwable t)
voi d doFinal ly()

The doCat ch method is invoked whenever an exception is thrown within the body of a tag. The doFi nal | y method
is invoked in all cases after the doEndTag method for classes implementing the Tag, BodyTag, or the
It erati onTag interfaces.

The PageData Abstract Class

The PageDat a class contains one method (Table A-26), get | nput St r eam that returns an input stream of an XML
document representing the translated JSP page. You, the JSP author, do not code the get | nput St r eammethod.

Table A-26: Methods in the PageData Class

Method Signature Description

abstract |nputStream getl nput Streamn() Returns an input stream of an XML document
representing the translated JSP page.

The TagLibraryValidator Abstract Class

This class is the translation-time validator class for a JSP page. A validator operates on the XML document associated
with the JSP page. The tld file associates a TagLi br ar yVal i dat or class and some i ni t arguments with a tag

library. Table A-27 lists the methods available from the TagLi br ar yVal i dat or class.

Table A-27: Methods in the TagLibraryValidator Class

Method Signature Description

Map getl nitParaneters() Returns the i ni t parameters data from the tld as an

immutable map. Parameter names are keys, and
parameter values are the values.

void rel ease() Releases any data kept by this instance of the tag-
handler class.

voi d setlnitParaneters(Map parmnmvap) Sets the i ni t parameters as key/value pairs for this
instance of the validator.

String validate(String tagPrefix, Validates a JSP page. Returns a null string if

String tagURI, PageData page) validation is successful or a diagnostic if not.

The TagVariableIlnfo Abstract Class

This class contains variable information for a tag in a tag library. It is instantiated from the Tag Library Descriptor file
(tid) and is available only at translation time. The methods contained in the TagVar i abl el nf o class are similar to

those contained in the Var i abl el nf o class. Table A-28 lists the methods available from the TagVari abl el nf o

class.

Table A-28: Methods in the TagVariablelnfo Class

Method Signature

Description

String getC assNane ()

Returns the value (body) of the vari abl e- cl ass
element coded in the tld.

bool ean get Decl are()

Returns the value (body) of the decl ar e element
coded in the tld.

String get NaneFromAttri bute()

Returns the value (body) of the nane- from
attri but e element coded in the tld.

i nt get Scope()

Returns the value (body) of the scope element
coded in the tld.

end

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP : by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix A: The JSP API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ JavaServer Pages API for quick reference.

The JSP API

Here, you can read about the JSP 1.1 APl and Sun Microsystems’ proposed changes for the upcoming JSP 1.2 release. Only a few
differences exist between the two.

Because JSPs eventually get translated into Java servlets, you can read references to Sun’s Java Servlet API here. Also, the JSP
classes and interfaces inherit from the servlet classes, making a discussion of the JSP API tightly interwoven with mentioning the
Servlet API.

One more point worth mentioning is that you, the JSP programmer, often will not invoke the JSP APl methods directly. When you
create a JSP page, the JSP translator generates references to the JSP API within the generated servlet. However, when you create
custom tags, you must code references to the JSP API for your classes that implement your tag’s functionality.

All of the JSP APl is contained within the following two packages:

. javax.servlet.jsp
. javax.servlet.jsp.tagext

Before examining the contents of these two packages, take a quick look at the class and interface hierarchies for the JSP API for JSP,
releases 1.1 and 1.2.

The Class and Interface Hierarchies for the javax.servlet.jsp Package
The following are the proposed classes and interfaces for the JSP 1.2 release.

cl ass java.l ang. Obj ect

cl ass javax.servlet.jsp.JspEnginelnfo
class javax.servlet.jsp.JspFactory
cl ass javax. servl et. | sp. PageCont ext
class java.lang. Throwabl e (inplenents java.io.Serializable)
cl ass java.l ang. Exception
cl ass javax.servlet.jsp.JspException
class javax.servlet.jsp.JspTagException (JSP 1.2)
class java.io. Witer
cl ass javax.servlet.jsp.JspWiter
interface javax.servlet. Servlet
interface javax.servlet.jsp.JspPage
interface javax.servlet.jsp. HtpJspPage

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=605291620

The Class and Inheritance Hierarchies for the javax.servlet.jsp.tagext Package

The following are the proposed classes and interfaces for the JSP 1.2 release.

cl ass java.l ang. Ovj ect
class javax.servlet.jsp.tagext.PageData (1.2)
class javax.servlet.jsp.tagext. TagAttri butelnfo
class javax.servlet.jsp.tagext. TagData (inplenents java.l ang. C oneabl e)
class javax.servlet.jsp.tagext. TagExtral nfo
cl ass javax.servlet.jsp.tagext. Taglnfo
class javax.servlet.jsp.tagext. TagLi brarylnfo
class javax.servlet.jsp.tagext. TagLi braryValidator (1.2)
class javax.servlet.]sp.tagext. TagSupport (inplenents javax.servlet.jsp.tagext.IterationTag,
java.io. Serializable)
class javax.servlet.]sp.tagext.BodyTagSupport (inplenents javax.servlet.jsp.tagext.BodyTag)
class javax.servlet.jsp.tagext. TagVariablelnfo (1.2)
class javax.servlet.jsp.tagext. Variabl el nfo
class java.io. Witer
class javax.servlet.jsp.JspWiter
cl ass javax.servlet.jsp.tagext.BodyContent interface javax.servlet.jsp.tagext. Tag
interface javax.servlet.jsp.tagext.lterationTag (1.2)
interface javax.servlet.jsp.tagext.BodyTag
interface javax.servlet.jsp.tagext. TryCatchFinally (1.2)

The javax.servlet.jsp Package
The j avax. servl et . j sp package contains the classes and interfaces that describe and define the contracts between a JSP page

implementation class and the runtime environment provided for an instance of such a class by a JSP container. Table A-1 lists the
interfaces, classes, and exceptions of the j avax. ser vl et . j sp package.

Table A-1: Components of the javax.servlet.jsp Package

Component | Type Description

JspPage Interface Describes requirements for a JSP-
generated servlet class.

Ht t pJspPage Interface Describes requirements for a JSP —
uses the HTTP protocol.

JspEngi nel nfo Abstract Class Provides information about the JSP
engine in use.

JspFactory Abstract Class Defines factory methods that the JSP
page may use to create needed
runtime objects.

JspWiter Abstract Class Enables the creation of a buffered
version of java.io. PrintWiter

that throws 10 exceptions.

PageCont ext Abstract Class PageCont ext objects enable the JSP
page to access page-specific
attributes, including a JspWi t er and
er r or page exception processing.

JspError Exception When thrown, output generation stops
and processing is directed to error
pages.

JspException Exception Generic exception known to the JSP
engine.

Note that the JSP author does not invoke the code that invokes most of the methods in the interfaces and classes listed in Table A-1.

The JspPage Interface

JspPage defines methods that create and destroy a generated instance of the JSP page. The JSP container automatically invokes
the methods when appropriate. However, the JSP specification enables the JSP author to invoke the methods as well. Table A-2
shows the methods defined in JspPage.

Table A-2: Methods of the JspPage Interface

Method Signature | Description

void jsp_init() Invoked by the JSP container when the JSP page is
initialized.

voi d jsp_destroy() Invoked by the JSP container just before the container
destroys the JSP page.

The JSP spec enables the JSP author to invoke these methods but the runtime invokes them when needed.

The HttpJspPage Interface

The Ht t pJspPage interface extends JspPage and provides an additional method, shown in Table A-3.

Table A-3: The Method of the HttpJspPage Interface

Method Signature | Description

voi d _jspservice() j spSer vi ce corresponds to the body of the JSP page. This
method is defined automatically by the JSP processor and
should never be invoked by the JSP author.

The Abstract Class JspEnginelnfo

JspEngi nel nf o contains a single method that returns the version number of the JSP engine in use, shown in Table A-4.

Table A-4: The Method of the JspEnginelnfo Class

| Method Signature | Description

| abstract String get SpecificationVersion() | Returns a version number for the JSP engine in use.

The Abstract Class JspFactory
The JspFact ory is an abstract class that defines a number of factory methods available to a JSP page at runtime for the purposes of

creating instances of various interfaces and classes used to support the JSP implementation. The JSP author does not invoke the
methods in this class, which are shown in Table A-5.

Table A-5: Methods of the JspFactory Class

Method Signature | Description

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP51
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP65
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP69

static JspFactory getDefaul t Factory()

Returns the default factory used in this JSP container.

abstract JspEngi nel nfo get Engi nel nfo()

Gets implementation-specific data on the current JSP
engine.

abstract PageCont ext getPageContext(Servlet
serv, ServletRequest request,

Servl et Response response, String
errorPageURL, bool ean needsSession, int

buf fer, bool ean aut oFl ush)

Gets an instance of the PageCont ext abstract class for the
servlet generated by the JSP engine.

abstract void rel easePageCont ext (
PageCont ext t hi sPage)

Releases a previously allocated PageCont ext object.

static void setDefault Factory(JspFactory
def Factory)

Sets the default JSP factory used by this engine.

The Abstract Class JspWriter

Instances of JspW i t er represent the output stream to the client. Many of the methods available in JspW i t er mimic those in
java.io.PrintWiter.The methods of JspWi t er are listed in Table A-6.

Table A-6: Methods of the JspWriter Class

Method Signature

| Description

abstract void clear()

Clears the output stream’s buffer. Throws an | OExcepti on
if buffer is already clear.

abstract void clearBuffer()

Clears the output stream’s buffer. Does not throw an
| OExcept i on if buffer is already clear.

| abstract void close()

| Closes and flushes the output stream.

| abstract void flush()

| Flushes the output stream.

| int getBufferSize()

| Returns the size of the output buffer.

| abstract int getRemai ni ng()

Returns the number of unused bytes in the output buffer.

bool ean i sAut oFl ush()

Returns true if buffer automatically flushes; false if 10
exceptions are thrown on buffer overflows.

abstract void newLi ne()

Writes a line separator (I i ne. separ at or in system
properties) which does not need to be a newl i ne character.

abstract void print(argType printlt)

Prints a variety of primitive and reference types. Parameters
to pri nt are the same as thosetoj ava.i o. print.

abstract void println(argType printlt)

Prints a variety of primitive and reference types followed by
anew i ne character. Parameters to pri nt | n are the same

asthosetojava.io.print.

The fields available from class JspW i t er are listed in Table A-7.

Table A-7: Fields Declared in Class JspWriter

| Declaration

| Description

prot ected bool ean aut oFl ush

Whether or not the output buffer flushes automatically when
full (true) or throws an | OExcept i on when full (false).

| protected int bufferSize | Buffer size in use.

static int DEFAULT_BUFFER Variable indicating that the output stream is buffered and

using the default buffer size.

| static int NO _BUFFER | Variable indicating that the output stream is not buffered.

| static i nt UNBOUNDED BUFFER | Variable indicating output stream is unbounded.

The Abstract Class PageContext

The PageCont ext class provides methods to the JSP author that enable the following functions:

. Managing the various scoped namespaces (page scope, sessi on scope, and so on)
. Accessing the various public objects (out , r equest, r esponse, and so on)

. Fetching the JspW i t er for output

. Managing session usage by the page

. Exposing page directive attributes to the scripting environment

. Forwarding or including the current request to other active components in the application
. Handling er r or page exception processing

Table A-8 lists the methods available in class PageCont ext .

Table A-8: Methods in Class PageContext

Method Signature | Description

abstract Object findAttribute(String Searches for the attribute named at t r Narre in the order of

attrNanme) page, r equest, sessi on, and appl i cat i on scopes, and
returns if found or returns null if no attribute with at t r Nane
exists.

abstract void forward(String resourceURL) Redirects the current response or request to another
component (usually a servlet or another JSP page).

abstract Object getAttribute(String Returns the attribute named at t r Name in page scope only

attrNanme) or returns null if no such attribute exists.

abstract Object getAttribute(String Returns the attribute named at t r Narre in the specified

attrNanme, int scope) scope or returns null if no such attribute exists.

abstract Enuneration Returns the names of the attributes in the specified scope.

get Attri but eNanesl nScope(int scope)

abstract int getAttributeScope(String Returns the scope by which the attribute at t r Name is

attrName) known, or O if no attribute exists.

abstract Exception getException() Returns the last exception thrown.

abstract JspWiter getQut() Returns the current instance of JspW i t er used to hold

servlet-generated output to the client.

abstract noject getPage() Returns the servlet instance associated with the current
PageCont ext .

abstract Servl et Request get Request () Returns the request object associated with the current
PageCont ext .

abstract Servl et Response get Response() Returns the response object associated with the current
PageCont ext .

abstract ServletConfig getServletConfig() Returns the Ser vl et Conf i g object associated with the
current PageCont ext .

abstract Servl et Context get Servl et Context() Returns the Ser vl et Cont ext object associated with the
current PageCont ext .

abstract H tpSession getSession () Returns the session object associated with the current
PageCont ext .

abstract void handl ePageException(Exception Processes an unhandled page level exception, perhaps by

pExc) redirecting to a JSP error page or taking application-specific
action.

abstract void include(String resourceURL) Causes r esour ceURL to be processed as part of the

current request or response.

abstract void initialize(Servlet aServlet,
Servl et Request request, ServletResponse
response, String errorPageURL, bool ean
requiresSession, int bufSize, bool ean

aut oFl ush)

Initializes a PageCont ext , usually in response to a
JspFact ory. get PageCont ext method.

BodyCont ent pushBody()

Returns an instance of BodyCont ent and saves the current
instance of JspW i t er (the implicit "out" object).

JspWiter popBody()

Returns the saved version of JspW i t er by a previous call
to pushBody.

abstract void renpveAttribute(String
attrNanme)

Removes the attribute named at t r Nane within the page
scope.

abstract void renmoveAttribute(String
attrName, int scope)

Removes the attribute named at t r Nane within the specified
scope.

abstract void setAttribute(String attrNane,
bj ect attrVal ue)

Sets a page scope attribute named at t r Nanme with the
value at t r Val ue.

abstract void setAttribute(String attrNane,
bj ect attrValue, int scope)

Sets an attribute named at t r Nane with the value
at t r Val ue within the specified scope.

Table A-9 lists the class variables (all declared static) available in class PageCont ext .

Table A-9: Class Variables Declared in Class PageContext

| Declaration

Description

String APPLI CATI ON

The name of the Ser vl et Cont ext in the PageCont ext
name table.

| i nt APPL| CATI ON_SCOPE

Value representing appl i cat i on scope.

String CONFI G

Name used to store Ser vl et Conf i g in PageCont ext
name table.

String EXCEPTI ON

Name used to store uncaught exception in PageCont ext
name table.

String OUT Name used to store current JspW i t er in PageCont ext
name table.
String PAGE Name used to store the generated servlet in the

PageCont ext name table.

i nt PAGE_SCOPE

Value representing page scope. PAGE_SCOPE is the default
scope.

String PAGECONTEXT

Name used to store the current PageCont ext in its own
name table.

String REQUEST

Name used to store Ser vl et Request in the
PageCont ext name table.

i nt REQUEST_SCOPE

Value representing r equest scope.

String RESPONSE

Name used to store Ser vl et Request in the
PageCont ext table.

String SESSI ON

Name used to store Ht t pSessi on in PageCont ext name
table.

i nt SESSI ON_SCOPE

Sessi on scope (assuming JSP participates in a session).

The JspError and JspException Classes

The JspError and JspExcept i on classes behave as expected, with constructors that accept a string argument as a default

message.

The javax.servlet.jsp.tagext Package

The j avax. servl et.j sp. t agext package contains the classes and interfaces needed to support the use of custom JSP tags.
Table A-10 lists the interfaces and classes that constitute the j avax. servl et . j sp. t agext package.

Table A-10: Components of the javax.servlet.jsp.tagext Package

Component | Type | Description

BodyTag Interface Extends the Tag interface by defining
additional methods for the tag-handler
class to access and to manipulate the
tag body.

Tag Interface Describes the basic protocol between

a tag-handler class and the class that
implements the JSP page.

BodyCont ent

Abstract Class

A subclass of JspWi t er used to
hold the results of evaluating a tag
body to a tag-handler class that
implements the Body Tag interface.

BodyTagSupport

Class

Class that contains methods to assist
in writing tag-handler classes that
implement the Body Tag interface.

TagAttributelnfo

Class

Instances of TagAttri but el nfo
contain information on Tag attributes

derived from the Tag Library
Descriptor file.

TagDat a

Class

Tag instance attribute and value pairs.

TagExtral nfo

Abstract Class

Extra tag information. This class is
coded in the Tag Library Descriptor
file.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP99

Tagl nfo Class Tag information for a custom tag.
Instances of this class have values
derived from the Tag Library
Descriptor file.

TagLi brarylnfo Abstract Class Information on the tag library.
Instances of this class have values
derived from the Tag Library
Descriptor file.

TagSupport Class A base class used to define new tag
handlers.

Vari abl el nfo Class Information on scripting variables
used by a tag-handler class at
runtime.

Let’s take a closer look at these interfaces and classes.
The BodyTag Interface
The BodyTag interface extends Tag by defining additional methods to enable a Tag handler to access its body.

The interface provides two new methods. The first method is invoked with the Body Cont ent for the evaluation of the body. The
second method reevaluates after every body evaluation. Table A-11 lists the methods defined in the Body Tag interface.

Table A-11: Methods in the BodyTag Interface

| Method Signature | Description
’ i nt doAfterBody()

Performs processing after the body of a custom tag has
been evaluated.

| i nt dol nitBody() | Performs processing before processing of the tag body.

| voi d set BodyCont ent () | Setter method for the BodyCont ent property.

The BodyTag interface also provides a class variable with the following declaration:
static int EVAL_BODY_TAG

This declaration requests the creation of new Body Cont ent to evaluate the body of this tag.

The Tag Interface

The Tag interface defines the basic protocol between a Tag handler and JSP page implementation class, describing the life cycle and
the methods to be invoked at start and end tag. Table A-12 shows the methods of the Tag interface.

Table A-12: Methods in the Tag Interface

| Method Signature | Description

| int doStartTag() | Processes the st ar t tag.

| int doEndTag() | Processes the end tag.

| Tag get Parent () | Returns the par ent tag or null if no parent exists.

| voi d rel ease() | Calls on a tag-handler class to release the state of the tag.

voi d set PageCont ext (PageCont ext thisPC) Sets the current page context. This method is called before

calls to doSt art Tag.

| voi d setParent (Tag pTag) | Establishes pTag as the par ent tag of the current tag.

The Tag interface also defines a few class variables, which are listed in Table A-13.

Table A-13: Class Variables Declared in the Tag Interface

Declaration | Description

static int EVAL_BODY_| NCLUDE Returned by the doSt ar t Tag method to include the
evaluation of the tag body into the output stream (current
instance of JspWi ter).

static int EVAL_PAGE Returned by the doEndTag method to direct the JSP to
continue to evaluate the JSP page.

static int SKIP_BODY Returned by the doSt art Tag and doAf t er Body methods
to omit evaluation of the tag body.

static int SKIP_PAGE Returned by the doEndTag method to omit evaluation of the
remainder of the JSP page.

The BodyContent Abstract Class

The BodyCont ent class is a subclass of JspW i t er that can be used to process body evaluations so they can be re-extracted at a

later time. Table A-14 lists the methods available in class BodyCont ent .

Table A-14: Methods in the BodyContent Class

| Method Signature | Description
| voi d cl earBody() | Clears the contents of a BodyCont ent object.
int flush() Redefines f | ush to make a call to f | ush illegal for objects
of BodyCont ent .
JspWiter getEnclosingWiter() Returns a reference to the JspW i t er object from which
the current Body Cont ent is derived from.
| abstract Reader get Reader () | Returns the instance of BodyCont ent as a Reader .
| abstract String getString() | Returns the instance of BodyCont ent asa Stri ng.
| abstract void witeCut() | Writes the instance of BodyCont ent toaWiter.

The BodyTagSupport Class

The BodyTagSupport class is a base class for defining tag handlers that implement the Body Tag interface. The Body TagSuppor t
class implements the Body Tag interface and adds additional convenience methods including get t er methods for the Body Cont ent

property and methods to get at the previous JspW i t er "out" object. Table A-15 lists the methods available with the
BodyTagSupport class.

Table A-15: Methods in the BodyTagSupport Class

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP119

| Method Signature | Description

| int doStartTag() | This method is invoked first when a tag is encountered.
| i nt doEndTag() | Invoke this method when processing the end tag.

| i nt dol nitBody() | Invoke this method before evaluating the tag body.

| BodyCont ent get BodyCont ent () | Returns the current Body Cont ent object.

| JspWiter getPreviousQut() | Returns the enclosing JspW i t er.

| voi d rel ease() | Resets the state of the tag.

| voi d set BodyCont ent () | Prepares for tag body evaluation.

The TagAttributelnfo Class
This class contains information on Tag attributes found in the Tag Library Descriptor file (tld). Only the information needed to generate
code is included in this reference. Additional information such as SCHEMA can be found in the complete JSP Specification

(java.sun.com/products/jsp).

Table A-16 lists the methods for the TagAt t ri but el nf o class.

Table A-16: Methods in the TagAttributelnfo Class

Method Signature | Description
bool ean canBeRequest Ti nme() Indicates whether this attribute can hold a request-time
value
static TagAttributelnfo getlDAttribute(Returns the | D attribute (if one exists) in the attribute list
tagAttributelnfo[] tai) argument.
| String get Nane() | Returns the name of the attribute.
| String getTypeName() | Returns the type of the attribute as a string.
| boolean isRequired() | Indicates whether this attribute is required or not.
| String toString () | Overrides Object.toString.

The TagAt t ri but el nf o class also contains a class variable declared as follows:

static final String ID="ID"

TheTagData Class
The TagDat a class contains translation-time information for the attributes and values of a tag instance. TagDat a is only used as an

argument to the i sVal i d and get Vari abl el nf o methods of TagExt r al nf o, which are invoked at translation time. Table A-17
lists the methods for the TagDat a class.

Table A-17: Methods in the TagData Class

Method Signature | Description

hject getAttribute(String attNane) Returns the value of the attribute named at t Nare or null if
no attribute exists.

String getAttributeString(String attName) Returns the value of the attribute named at t Nane as a
string or null if no attribute exists.

String getlX) Returns the value of the | D type attribute or nullif no | D
attribute exists.

void setAttribute(String attNane, Object Sets the value of the attribute named at t Nane to the value
attVal ue) att Val ue.

The TagDat a class contains a variable coded as follows:
static Object REQUEST_TI ME_VALUE

This variable tells the JSP container that the value of an attribute is available as a run-time expression, but will not be available at
translation time.

TheTagExtralnfo Class
This class provides extra information about a custom tag. To associate a TagExt r al nf o class with a tag handler class, this class

must be mentioned in the Tag Library Descriptor file (tld). This class must be used if the tag defines any scripting variables or if the tag
wants to provide translation-time validation of the tag attributes. Table A-18 lists the methods for the TagExt r al nf o class.

Table A-18: Methods in the TagExtralnfo Class

| Method Signature | Description

| Tagl nf o get Tagl nfo() | Returns the instance of Tagl nf o for the tag class.

’ Vari abl el nfo[] getVariablelnfo(TagData td) ’ R(_aturns information on scripting variables defined by
this tag.

| bool ean isValid() | Translation-time validation of tag attributes.

| voi d set Tagl nfo(Taglnfo ti) | Sets the Tagl nf o object for this class.

The class contains an instance variable coded as follows:
protected Taglnfo taglnfo ;

This instance variable represents the instance of Tagl nf o associated with instances of TagExt r al nf o.

TheTaglnfo Class

Tag information for a tag in a Tag Library; this class is instantiated from the Tag Library Descriptor file (tld). Table A-19 lists the
methods for the Tagl nf o class.

Table A-19: Methods in the Taginfo Class

| Method Signature | Description

TagAttributelnfo getAttributes() Returns a TagAt t ri but el nf o object describing the

attributes of the tag or null if tag has no attributes.

| String getBodyContent () | Returns the BodyCont ent object as a string.
| String getlnfoString() | Returns an information string coded in the tld.
String get TagCl assNane() Returns the name of the class that provides the run-time

handler for the tag.

TagExtral nfo get TagExtral nfo() Returns the instance of the TagExt r al nf o class, if any
exist.

| TagLi braryl nfo get TagLi brary() | Returns the tag library owning this tag.

| String get TagNane() | Returns the tag name.

Vari abl el nfo[] getVariablelnfo(TagData td) Returns information on the object created by this tag at
runtime. Null means no such object created. Default is
null if the tag has no "id" attribute, otherwise the array,
{"id", Object},isreturned.

String toString() | Overridden version of Gbj ect.t oSt ri ng.

The TagDat a class also includes several class variables, used as arguments to the get BodyCont ent method, which are listed in
Table A-20.

Table A-20: Class Variables Declared in the TagInfo Class

| Declaration | Description
| static String BODY_CONTENT _EMPTY | The current instance of BodyCont ent is empty.
| static String BODY_CONTENT_JSP | The current instance of BodyCont ent contains JSP code.

static String BODY_CONTENT_TAG DEPENDENT The current instance of BodyCont ent depends on the

evaluation of another tag.

TheTagLibraryinfo Class

This class contains information found in the Tag Library Descriptor file about the tag library. Table A-21 lists the methods for the
Tagl nf o class.

Table A-21: Methods in the TagLibrarylnfo Class

| Method Signature | Description
| String getlnfoString() | Returns the info string coded in the tid.
String getPrefixString() Returns the prefix string used to reference tags within the
JSP page.
| String getReliabl eURN() | Returns the URN to the tld.
| String getRequiredVersion() | Returns the version of the JSP container.
| String get Short Nane() | Returns the preferred short name of the library.
Tagl nfo get Tag(String shortNane) Returns the Tagl nf o object (t agl nf o) for the library with

the short name argument.

Tagl nfo[] get Tags() Returns an array of Tagl nf o objects — one for each tag
described in the tld.

| String get URI () Returns the URI from the t agl i b directive for this library.

Instances of class TagLi br ar yI nf o have instance variables that hold values returned from the get methods listed in Table A-21.

The TagSupport Class

The TagSupport class is a base class for defining new tag handlers implementing the Tag interface. The TagSupport classis a
utility class to be used as the base class for new tag handlers. The TagSupport class implements the Tag and I t er ati onTag

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP151
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP155

interfaces and adds additional convenience methods including get t er methods for the properties in Tag.

TagSupport has one static method that is included to facilitate coordination among cooperating tags. Many tag handlers extend
TagSupport and only redefine a few methods. Table A-22 lists the methods available in the TagSupport class.

Table A-22: Methods in the TagSupport Class

| Method Signature | Description

| i nt doEndTag() | Invokes this method when processing the end tag.

| int doStartTag() | Invokes this method when processing the st art tag.
static tag findAncestorWthC ass(Tag from Finds the instance of the class named t agdl ass that is the
Class tagd ass) closest ancestor to the tag named f r om

| Tag get Parent () | Returns the tag instance enclosing this tag instance.
String getTagld() Returns the value of the | D attribute for this tag (if it exists),

or null.

| bj ect getValue(String key) Returns a value associated with the argument key.

Enunerati on get Val ues() Returns an enumeration representing all the values
associated with this tag.

voi d rel ease() Invoked after a call to doEndTag to reset the state of the
tag.

| voi d renoveVal ue(String key) Removes a key/value pair associated with this tag.

| voi d set PageCont ext (PageContext pc) | Sets the PageCont ext for this tag.

| voi d setParent(Tag ptag) | Sets the parent (pt ag) for this tag.

| void setTagl D(String i dAttr) | Sets the | D attribute of the tag.

| voi d setValue(String key, Object value) | Sets a value for a key/value pair in this tag.

The TagSupport class also has two instance variables that are coded as shown in the following:

protected String id ;
prot ect ed PageCont ext pageContext ;

The Variablelnfo Class
This class contains information on the scripting variables that are created/modified by a tag at run-time. This information is provided by

TagExt r al nf o classes and it is used in the translation phase of JSP. Table A-23 lists the methods available in the Vari abl el nf o
class.

Table A-23: Methods in the Variablelnfo Class

Method Signature | Description

String getd assNane() Returns the class name of the scripting variables coded in
the tld as the <vari abl e- cl ass> element.

bool ean get Decl ar e() Returns the value of the <decl ar e> element coded in the
tld.

i nt get Scope() Returns the value of the <scope> element coded in the tld.

String getVar Name() Returns the name of the scripting variable coded in the tld as

the <vari abl e> element coded in the tld.

The Var i abl el nf o class contains three class variables, listed in Table A-24.

Table A-24: Class Variables Declared in the Variablelnfo Class

| Declaration | Description

| static int AT_BEG N | Variable is visible after the st art tag.

| static int AT_END | Variable is visible after the end tag.

| static int NESTED | Variable is visible within the st art and end tags.

Top £}

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you've seen how you can leverage the features of JavaServer Pages to create clients for enterprise
beans. By using JSP pages, you can hide functions within JavaBeans or custom tags, thereby separating your
presentation from your logic.

You've seen how a JSP page can use a custom tag to locate an instance of a bean's home object. The single, empty
tag containing needed data as values of attributes allows a JSP page to work with the EJB architecture. Once the
page has a reference to a home object, the page can request the execution of bean methods like any EJB client.

Tag libraries are a powerful feature of JSP. By using tag libraries, your JSP pages contain less Java scriptlet code and
more tags. Since scriptlet code implies business logic, by keeping scriptlet code to a minimum, you'll have less
mingling of presentation and logic.

You've seen the enterprise bean code that performs the same functions as the code shown in Chapter 10. Aside from
including dummy method implementations as required by EJB, the code that accesses the database is mostly the
same as that shown in Chapter 10. However, by adhering to the EJB specification, your code now creates objects that
are distributed objects with location transparency and have access to transaction and security resources by way of the
EJB container.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=468550666

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 10: The “Make Money” Brokerage Application

In previous chapters I've covered the capabilities of JavaServer Pages and shown you some sample JSP code. In this
chapter, you can see how JSP can be used in the construction of a brokerage application.

First, you can read about the functions available in our “Make Money” brokerage application. Next, you will read a
description of the underlying data store and client scenario. Last, you will see the JSP and Java code that implements
a typical client request.

The “Make Money” Application

The “Make Money” application is a small JSP program modeling an online stock trading system. This application will
be used to model several aspects of JSP development that we have covered thus far in this book. We will see the use
of JavaBeans in JSP pages. We will also see demonstrated the use of JSP error-handling tools discussed in the
previous chapter. If this is one of your first JSP applications, you should finish this chapter with a better understanding

of how you can use JSP successfully in developing Web applications.

The “Make Money” application provides clients with several functions. Once clients are successfully logged on, they
can:

. View their account history

. View their portfolio

. Place a buy or sell order

. Change personal information

The application is hardly full-featured. My intent is to present the code required to implement some of the operations of
the application. The next section describes the implemented features in more detail.

Implemented Application Features

Later in the chapter we will see the JSP and Java code that enables the following functions:

. Handling user logons
. Displaying a screen of selections
. Displaying the user’s account history

The JSP and Java code for other options is similar to what is presented here. In other words, it is not necessary to

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=609269569

understand new concepts or capabilities of JavaServer Pages to implement the remaining features.

Before you delve into the code, let’s take a look at the structure of the database that contains the customer, portfolio,
and security information used by the application.

The Application Data Defined
The database for our application consists of four tables. Even though you don’t need all four tables to implement the

three features mentioned in the previous section, you can describe the tables to provide a more complete view of the
application.

The four tables containing the data are described below.

. Customerinfo: Contains the usual customer information (name, address, credit card info, and so on), an account
ID (primary key), and a password. The customer must supply the correct password to gain access to the
application.

. CustomerPortfolio: Contains an account ID (primary key), a stock ticker symbol, and a number representing how
much of this security the customer holds.

. SecurityInfo: Contains a stock ticker symbol, a trade date, and the selling price of the security on the trade date.
This table uses a compound key consisting of the stock ticker symbol and the trade date.

. TransactionHistory: Contains an account ID, a transaction date and type, a stock ticker symbol, and the number
of shares traded on the transaction date. This table uses a compound key of the account ID, transaction date,
stock ticker symbol, and the transaction type (buy or sell).

The preceding four tables have primary and foreign key relationships to ensure referential and data integrity. For sake

of simplicity, the JSP and Java code in this sample application does not have code to capture errors arising from
referential integrity constraint violations.

The Client Scenario

With the application data described, we can now look at a common client scenario. The application will allow a client
to proceed through the following steps:

1. The client requests access to the application by entering an account ID and a password.

2. Once the application receives a matching account ID and password combination, the application displays a list of
choices.

3. The client requests a listing of his or her transaction history; the application displays the list.

Without further delay, let's look at the implementation of this scenario in the “Make Money” application.

Logging on to the “Make Money” Application

The customer enters a URL that identifies the JSP that handles the interactions necessary to grant access to the
client. Figure 10-1 shows the client logon screen.

Wi vans Brnhergme Faswnd [ty Soimes . Bsopsa® babe el |oplone

Erder Your Account Humber and Password in the Flelds Balow
Thesry Cliche Logon 10 Continues
Ertier ¥our docount Murmber: [
Erder Yioor Passeond [
oy | P |

) Beea L L et
Figure 10-1: Logging on to the application

Listing 10-1 shows the JSP code, | ogon. j sp, that displays the screen shown in Figure 10-1.

Listing 10-1: JSP for logon form (logon.jsp)

<htm >
<head>
<title>Lou's Brokerage....Password Entry Screen</title>

<script |anguage="Javascript">

function giveFocus() {
docunent . passwor df orm acct Nunber . f ocus()

}

function submt() {
docunent . passwor df orm submi t ()

}

function reset() {
docunent . passwor df orm reset ()
docunent . passwor df orm acct Nunber . f ocus()

}
</script>
</ head>
<j sp:include page="inagetable. htm "™ flush="true" />
</ center>

<center>
<f or m nanme="passwor df orm' acti on="checkLogi n.jsp" nethod="POST" >

<p>Ent er Your Account Nunber and Password in the Fields Bel ow

Then dick Logon to Conti nue

<hr w dt h="50% >
<t abl e>
<tr>
<t d><P>Ent er Your Account Nunber:</td>
<td><i nput type="text" nane="acct Nunber" val ue="" wi dt h="25"></td>

</[tr>

<tr>

<t d><P>Enter Your Password:</td>

<t d><i nput type="password” nanme="enteredPassword” val ue="" w dt h="25"></td>
</tr>
<tr>

<t d><i nput type="button"” name="Logon" val ue="Logon" ond ick="submt()"></td>
<t d><i nput type="button" name="Reset" val ue="Reset"” onCick="reset()"></td>
</tr>
</tabl e>
<hr wi dt h="50% >
</ center>
</ fornp
<% - Here is the diagnostic when the user enters an invalid account nunber --%
<% String nessage = (String)session.getAttribute("nmessage") ;
if (nmessage '= null) {
%
<center>
<% nmessage %
</ font ></center>
<%} %

</ body>
</htm >

Many of the code features presented in Listing 10-1 are discussed in the following sections.

Using jsp:include

The following line includes an HTML table that shows the pictures of the stock exchange floor and the piggy banks:
<j sp:include page="inagetable. htm " flush="true" />

Because you're probably curious, Listing 10-2 shows the listing for the included HTML table, i maget abl e. ht nl .

Listing 10-2: HTML to create the page banner (Imagetable.html)

<body bgcol or =" #dddddd" t opmar gi n=0>
<center>

<h1l>

<ing src="inmages\piggie.gif">

Make Mbney Brokerage

<ing src="inmages\piggie.qgif">

</ hl>

<t abl e>
<tr>
<td><ing src="inages\ nysefl oor.jpg"></td>
<t d> &bsp; </t d>
<td><i ng src="inages\nyseauction.jpg"></td>
</tr>
</tabl e>
</center>

No surprises here, right? The use of the j sp: i ncl ude tag enables you to use this HTML page header for any or all
pages in the application.

Using a Form to Reference a JSP Page

The following line of code from Listing 10-1 directs the server to invoke the JSP page checkLogi n. j sp when the
client clicks the submit button located at the bottom of the HTML form:

<f or m name="passwor df orn{' acti on="checkLogi n.jsp" met hod="POST" >

Using a Form to Associate Client Inputs with Program Variables

The following lines of code from Listing 10-1 create the form elements acct Nunber and ent er edPasswor d that will
be associated with program variables used in subsequent JSPs and JavaBean code.

<i nput type="text" nanme="acct Nunber" val ue="" w dt h="25"></td>
<i nput type="password" nane="enteredPassword" val ue="" w dt h="25">

Using Scriptlet Code to Display a Diagnostic

The following scriptlet code from Listing 10-1 causes | ogi n. j sp to display a message stating that the account
number is not on file or the password entered for the account ID is invalid.
<% String nmessage = (String)session.getAttribute("nessage") ;
if (message !'= null) {
%>
<center>
<% nessage %
</ font ></center>
<%} %

The attribute message is set in the JSP page that checks the user login (checkLogi n. j sp). If the account ID is not

on file or the password does not match the entered ID, checkLogi n. j sp sets a sessi on variable named nessage

to the diagnostic. The preceding scriptlet code checks the value of the message variable and, if not null, displays the
message in red.

Checking the Account ID/Password Combination
Once the client enters an account ID/password combination and clicks “Logon,” the application invokes the JSP page

checkLogi n. j sp. This JSP page does not contain any static code for display. The purpose of checkLogi n. j spis
to access the Cust omer | nf o table to determine the following:

. Is the account ID entered on file?
. Is the password entered for an existing account ID the same as the password stored in the Cust oner | nf o table?

Listing 10-3 shows the code for checkLogi n. j sp.

Listing 10-3: JSP to verify login (checkLogin.jsp)

<% page content Type="text/htm"
error Page="error pageexl.jsp"”
i nport="chapter10.*" %

<% - Deternine if password matches account ID --%
<%
String ent er edPasswor d =

request. get Par anet er (" ent er edPassword") ;
String acct Nunber =
request. get Par anet er ("acct Nunber") ;

Cust omer Bean cust oner
String password

new Cust oner Bean(acct Nunber) ;
cust omer . get Password() ;

bool ean redi rect ToLogi n = fal se ;

if (password.length() == 0) {
session.setAttri bute("nessage",
"Account Nunmber " + acctNunber +
" Not on File. Enter Another Account Nunber") ;
redi rect ToLogin = true ;

}

el se
if (!password. equal s(enteredPassword)) {
session. setAttri bute("nessage",
"Password Entered Does Not Match Password For Account " +
acct Nunber) ;
redi rect ToLogin = true ;

}

if (redirectToLogin) {
%
<jsp:forward page="login.jsp" />
<%} else {

session.setAttri bute("custoner”, custoner) ;

%
<j sp: forward page="showcust opti ons.jsp" />
<%} %W

The first statement worthy of note in checkLogi n. j sp is the page directive, shown here:

<%@ page content Type="text/htm "
error Page="err or pageexl.jsp"
i mport ="chapter10.*" %

The page directive serves several uses in checkLogi n. j sp, as explained in the following sections.

Using the JSP Page Directive

Note the use of a JSP error page, er r or pageex1. j sp, in the preceding code example. Any errors in JSP page
processing cause the JSP engine to invoke er r or pageex1. j sp. For more information on error page
error pageexl. j sp, see the sidebar "Explaining er r or pageex1. j sp."

Explaining errorpageex1.jsp

The code in Listing 10-3 indicates er r or pageex1. j sp as the page which should be used if any errors occur while
processing the login page. Let's look at how this error page works.

<% - Tell JSP that this is an error page --%
<%@ page i sErrorPage="true" %

<htnml >
<head>
<title>An Error Has Cccurred!!!</title>
</ head>

<body bgcol or="#dddddd" >

<P>

The Following Error Occurred on <% new java.util.Date() %

<hr >

<%excepti on %

<%
exception. printStackTrace();

%

<hr >

<p>Cal | 4-4444 and report the above line in red

</ body>
</ htm >

First, we see the use of the i SErr or Page directive, indicating that this page is an error page. Since this page is an
error page, we have access to the implicit except i on object. The use of the statement <%=except i on % outputs

the error to the browser, giving the client a message as to what occurred. Here we also print the program stack trace
of the exception to the browser. Normally the stack trace and exception messages would be saved for logging or
debugging output (see Chapter 9), and what would be output here is a user-friendly message indicating what the user

should do because of the error.

The next attribute set in the page directive is the i npor t attribute. The i nport attribute of the page directive serves
the same purpose as the import statement in a Java program. In this i nport attribute, you want the code in a
package called chapt er 10 to be known without qualification to our JSP.

Using the Implicit Request Object to Reference Entered Data

How does the checkLogi n. j sp page know what values were entered by the client in the previously displayed JSP
page, | ogi n. j sp? The following code in checkLogi n. j sp references the r equest implicit object.

String ent er edPasswor d =

request. get Par anet er (" ent er edPassword") ;
String acct Nunber =

request. get Par anet er ("acct Nunber") ;

The strings passed to the get Par anet er method must match the names coded for the form text elements in
I ogin.jsp.

Now that the St ri ng objects ent er edPasswor d and acct Nunber contain what the client entered, you need to see
how checkLogi n. j sp verifies that the account ID is on file and the password entered matches the password on file.

Matching Entered Data to Stored Data

The JSP uses Java code stored in a class called Cust oner Bean to verify the account ID and to check the entered
password. Before looking at the code in Cust onmer Bean. j ava, which does the actual checking, here’s the JSP code
that accesses the code in Cust oner Bean. j ava:

Cust oner Bean cust oner
String password

new Cust oner Bean(acct Nunber) ;
cust oner . get Password() ;

The passwor d string is the password stored on the Cust oner | nf o table for the entered account ID.

The checkLogi n. j sp page checks if the get Passwor d method returns a password. If the returned password is
blank, the account ID entered is not on file and checkLogi n. j sp sets a message stating that fact. The following
code reflects the above logic:
if (password.length() ==0) {

session.setAttri bute("nessage",

"Account Nunmber " + acctNunber +
" Not on File. Enter Another Account Nunber") ;
redi rect ToLogin = true ;

The Boolean r edi r ect ToLogi n causes checkLogi n. j sp to display the login page.

If the get Passwor d method returns a password, checkLogi n. j sp compares the returned password with the
entered password. If the two passwords do not match, checkLogi n. j sp sets a message to that effect. The following
code reflects this logic:
el se
if (!password. equal s(enteredPassword)) {
session.setAttri bute("nessage",
"Password Entered Does Not Match Password For Account " +
acct Nunber) ;
redi rect ToLogin = true ;

Notice that checkLogi n. j sp checks for a valid account ID first, followed by checking for a valid password. Both
code blocks use the set At t ri but e method of class Sessi on. By using the sessi on object, the attributes set in
one JSP are known to other JSPs sharing the session.

Finally, if either mismatch condition arises, the Boolean r edi r ect ToLogi n is examined and, if true,

checkLogi n. j sp forwards processing back to the | ogi n. j sp page. If no mismatches are found,

checkLogi n. j sp saves the customer information in the session object and forwards the client to the "Show Options'
screen. The following code reflects this logic:

if (redirectToLogin) {
%
<jsp:forward page="login.jsp" />
<%} else {

session.setAttri bute("custoner", custoner) ;

%
<j sp: forward page="showcust opti ons.jsp" />
<%} %

Figures 10-2 and 10-3 show a mismatch of password and account ID, respectively.

N0 vary Binhavane. . Fawvaaid [nby Soren . Blicspsal inteonet £ apood

e TR € T [N IR . TR -~ L R

Bk o b, Homr b # iy Hatory:
H&H-lftllﬁ.."u..-h.lk'k’.n.—..-.w_\n.qh-l";-lnn.q:nw d s | = =
&
Erter Your Account Mumber and Password in e Fielos Balom
Theri Click Logon Bo Conkinus
Enter Your Account Mumber: |
Erder Your Password: |
Logn | P |
Fasgw E Do | L L] ey . LA IR
} L |
B Dawa T Livis el

T

-

L e Pk Hamn framke
dsddrain FI‘.I [R R S T S A S p——

Erder Your Account Mumber and Password in e Fialos Balom
Theri Click Logon Bo Conkirue

Enter Your Account Murmber: |
Erder Voo Pasgword: |
Logem | e |

] D i Lt it
Figure 10-3: Account ID does not exist

Before we look at the showcust oner opti ons. j sp page, let's explore the code in Cust oner Bean. j ava.

Creating the “Make Money” JavaBeans

So far we have looked at several of the JSPs in the “Make Money” application. Let's now get our first look at one of the
JavaBeans in this application (Listing 10-4). In the “Make Money” application, the customer is the central figure. The
CustomerBean models the necessary attributes that a customer would have.

Listing 10-4: JavaBean implementing the Customer (CustomerBean.java)

package chapter10 ;
i mport java.sql.* ;
public class CustonerBean {

private String acctNunber
private String password
private String customer Nanme
private String mailingAddress
private String billingAddress
private String creditCardType
private String creditCardNum
private String expirationbDate = "" ;

/ /' Use the account nunber to access the custoner table...
public CustonerBean(String accountlD) throws Exception {
String persinfoQuery = "select custonernane," +
" mailingaddress, billingaddress, " +
creditcardtype, creditcardnunber,” +

"expirationdate, password " +
"from custonerinfo where accountid =" ;

St at ement Bean sql Stnt = new St at enent Bean() ;
String query = perslnfoQuery +
"'" + account|I D +

Connection aConn = sql Stnt.connect ToDB() ;
St at enment stm = aConn. creat eSt at enent () ;
Resul t Set myResul t Set = stnt.executeQuery(query

if (nmyResultSet.next()) {

acct Nunber = account|D ;
cust omer Nane =

myResul t Set . get String("custonername") ;
mai | i ngAddr ess =

myResul t Set . get String("nailingaddress")
bi | i ngAddress =

myResul t Set . get String("billingAddress")
creditCardType =

myResul t Set . get String("creditcardtype")
credi t CardNum =

myResul t Set . get String("creditcardnunber”
expirationDate =

myResul t Set . get String("expirationdate")
password = nyResult Set.getString("password")

}

aConn. cl ose() ;

}
/] Get/ Set net hods foll ow

public String getAcctNunber() {
return acct Nunber ;
}

public void setAcctNunber(String acctnum) {
acct Nunber = acctnum ;
}

public String getPassword() {
return password ;
}

public void setPassword(String pswd) {
password = pswd ;
}

public String getCustonerNane() {
return customer Nane;
}

public void setCustonerNane(String cName) {

cust oner Nane = cNane ;

public String getMilingAddress() {
return nailingAddress;

public void setMilingAddress(String mAddr) {
mai | i ngAddr ess = mAddr ;

}

public String getBillingAddress() {
return billingAddress;

}

public void setBillingAddress(String mAddr) {
billingAddress = mAddr ;

public String getCreditCardType() {
return creditCardType ;

public void setCreditCardType(String cType) {
creditCardType = cType ;

public String getCreditCardNum() {
return creditCardNum

public void setCreditCardNum(String mAddr) {
credi t CardNum = mAddr ;

public String getExpirationDate() {
return expirationbDate ;

public void setExpirationDate(String eDate) {
expirationDate = eDate ;

The code in Cust oner Bean. j ava is straightforward: get and set methods enable you to set instance properties

from any JSP. The constructor is responsible for extracting information for a customer based on the value of the
table’s primary key, acct Nurrber .

The constructor for Cust omer Bean. j ava uses another class called St at ement Bean. j ava, which, in turn, uses

code from another class called SQLBean. j ava. Listing 10-5 shows the code for St at enent Bean. j ava, while
Listing 10-6 shows the code for SQLBean. j ava.

Listing 10-5: JavaBean implementation of a SQL statement (StatementBean.java)

package chapter 10;
i mport java.sql.*;
i mport java.io.*;

public class StatenentBean extends SQ.Bean

{

String passwordQuery = "select password fromcustonmerinfo " +
" where accountid = ";

String accountlnfoQuery = "select transactiondate, " +

transacti ontype, security, nunbershares " +
"fromtransactionhi story where accountid =" ;

"del ete ;
"insert into " ;

String nyDel eteQuery
String nylnsertQery

Resul t Set nyResultSet = null;
public StatenmentBean() {super();}

public String getPassword(String accountlD) throws Exception {

String passwordOnDB = nul |l ;
String query = passwordQuery + accountlD ;
Statenment stnt = nyConn. createStatenent();
nmyResul t Set = stnt.executeQuery(query);
if (nyResultSet !'=null) {
myResul t Set . next () ;
passwor dOnDB = nyResul t Set. getString("password")
nmyConn. t akeDown() ;

}

return passwor dOnDB ;

}

publ i c bool ean get Account | nfoQuery(String accountlD) throws Exception {
String query = account|nfoQuery + accountlD ;
Statenent stnt = nyConn. createStatenent();
myResul t Set = stnt.executeQery(query);

return (myResultSet != null);

}

public bool ean get() throws Exception
{
return nyResult Set. next();
}

public String getColum(String inCol) throws Exception
{
return nyResultSet.getString(inCol);
}

}

The St at enent Bean class contains code to perform the actual database connect through a superclass called
SQLBean. The code for SQLBean is shown in Listing 10-6.

Listing 10-6: Code for SQLBean.java

package chapter10 ;
i mport java.sql.*;
i mport java.io.*;

public class SQ.Bean

{
private String nmyDriver = "sun.jdbc. odbc.JdbcCGdbcDriver™;
private String myURL = "j dbc: odbc: st ock”;

prot ected Connection myConn;
public SQBean() {}

public void makeConnection() throws Exception

{
C ass. forNanme(myDriver);

myConn = Driver Manager. get Connecti on(nmyURL) ;
}

publ i c Connection connect ToDB() throws Exception
{
Cl ass. forName(nyDriver);
return Driver Manager. get Connection(nmyURL) ;

}
public void takeDown() throws Exception
{
myConn. cl ose();
}

}

SQLBean contains code that handles the actual connection and disconnection from the database containing tables for
the application.

There’s nothing specific or peculiar to using these Java classes with JSPs. The JSPs that require instances from
these classes reference the instances through scriptlet code or bean references.

The St at enent Bean class also extracts the account history information. You can see references to the
St at enent Bean class later in this chapter.

Next, let's examine the JSP that presents the user with a list of options — the JSP page named
showcust opti ons. j sp.

Examining the showcustoptions.jsp Page

Once the user has successfully logged into the “Make Money” application, the customer is able to access any of the
account options. The showcust opt i ons. j sp page presents the customer with a list of all of the implemented

options, as shown in Figure 10-4.

i Hii e imtm e Fooplos g

AR R - 2 3 e | i~ 3 "h
B W irririd g Papr s LS irtey Ephire -
Addrwun [rn v s BH v rg s haim S s =] ~Gs | [m ™
=

Lo Marcd, sedect 8 Cholos Below and Click Proosed o Conbbnss

£ View Your Acoound History
T igw Your Portfolio
T Place an Ordar

 Change Personal Infommation

_Pescend |

&) Daew T Lt wiait
Figure 10-4: The list of user choices

Notice the inclusion of the client’s name in the HTML page. Listing 10-7 shows the JSP code for
showcust opti ons. j sp.

Listing 10-7: JSP to display customer options (showcustoptions.jsp)

<%@ page content Type="text/htm "
i mport="chapter10. *"
error Page="error pageexl.jsp" %

<%- If we've gotten this far, we have a valid account nunber and password. --%
<% - Why not show the options list? --%
<%
String custoptions = request. get Paranet er (" custopti ons")
Cust oner Bean cust oner = (CustonerBean) session. getAttribute("custoner")
String cust oner Nane = cust oner. get Cust oner Nane()
if (custoptions !=null) {
%>
<j sp:forward page="<% custoptions %" />
<%} %
<htm >
<head>
<title>Options for <% custonerNane % </title>
</ head>

<j sp:include page="inagetable. htm " flush="true" />
<cent er>
<f orm name="opti onsform' acti on="showcustoptions.jsp" nethod="PCOST">

<p><% cust oner Nanme %, select a Choice Below and dick Proceed to Conti nue

<hr w dt h="50% >
<t abl e>
<tr>
<t d><i nput type="radi 0" nanme="custoptions" val ue="vi ewhi story.jsp" checked>
Vi ew Your Account History
</td>
</tr>
<tr>
<t d><i nput type="radi 0" name="custoptions" val ue="vi ewportfolio.jsp">
Vi ew Your Portfolio
</td>
</tr>
<tr>
<t d><i nput type="radi 0" name="custoptions" val ue="dotransaction.jsp">
Pl ace an O der
</td>
</tr>
<tr>
<t d><i nput type="radi 0" name="custoptions" val ue="changepersonal.jsp">
Change Personal | nformation
</td>
</tr>
<tr>
<t d><p><i nput type="subnit" name="proceed" val ue="Proceed"></td>
<td></td>
</tr>

</tabl e>

<hr wi dt h="50% >
</center>
</fornp

</ body>

</htm >

The workings of the preceding page are based on associating a JSP corresponding to a user option with each value of
the radio button on the form. In our case, when the client clicks the “View Your Account History” option, the form sets
the value to the name of a JSP page corresponding to that option (vi ewhi st ory. j sp).

In particular, the attribute cust opt i ons used in the form holds the value of the JSP page corresponding to the client
selection. The following code in showcust opt i ons. j sp forwards JSP processing to the selected page.

<%
String custoptions = request. get Paraneter("custoptions”) ;
if (custoptions !=null) {

%>

<jsp:forward page="<% custoptions %" />

<%} %

Other pieces of code in showcust opt i ons. j sp fetch the customer name, as shown here:

Cust oner Bean cust omer = (Customer Bean) sessi on.getAttri bute("custoner") ;
String cust omer Name = cust oner. get Cust oner Nanme() ;

Assume the client clicks “View Account History.” The showcust opt i ons. j sp forwards JSP processing to
vi ewhi story. j sp. Let's take a look at the workings of vi ewhi st ory. j sp next.

Examining viewhistory.jsp

One of the implemented customer options is the ability to view a history of all transactions. This feature, displayed to
the customer as "View Account History,” is implemented in vi ewhi st ory. j sp with the help of one new class,

Account Hi st ory. Figure 10-5 shows an HTML page generated by vi ewhi story. j sp.

A Tiarrian lhae Hesdarg For | aw Baioe 87 SFFT . B inteoael § o ploerei

AT S X TR a @ 3
Bt T [Pl [Feey Saich [Jram=tt iy :
_’#""h:l'r:l"b-l\.-ll'lu--'itl'-nrr-"mh:l-l-'-W--wv-rlfn- _:'I i-"l!ll [l ™
> i =
Make Money Brokerage =

Lo Marca, hing (9 8 ligh of your irardaciions

O 11000, you traded 1500 shares of ARG o & BUY ondér

O 12700, vou traded 500 shares of ABC on 8 SELL crder.

O 152, you braded 500 shares of BOC on o BUY order

O 1700, you traded 1000 sheres of LOU o & SELL ordisr

Pt mp Cypiooress Opages |

]

] fen I
Figure 10-5: The client’'s account history

Listing 10-8 shows the code for vi ewhi st ory. j sp.

Listing 10-8: Code for viewhistory.jsp

<%@ page content Type="text/htm"
i mport="chapter10. *"
error Page="error pageexl.jsp" %

<% - Display the account activity for this customer --%

<%
Cust oner Bean cust oner = (CustonerBean) session.getAttribute("custoner") ;
String cust oner Nane = cust oner. get Cust oner Nane() ;
String acct Num = cust oner. get Acct Nunber () ;

%

<htm >

<title>Transaction History for <%custonerNane % <% acctNum % </title>
<body bgcol or ="#dddddd" >
<center>

<% - Put in the pictures for the page top --%
<j sp:include page="imgetable.htm " flush="true" />

<%
Acct Hi story anAcctHi story = new Acct Hi story() ;

if (anAcctHi story.getHi storyThi sAccount(acctNum)) {

%

<p><% custonerName %, here is a list of your transactions

<hr wi dt h="50% >

<f orm nanme="hi st oryfornf acti on="showcustoptions.jsp" nethod="POST">

<t abl e>

<%
whil e (anAcct Hi story. get Next H st Record()) {
%

<tr><td>
On <% anAcct Hi story. get Colum("transacti ondate") %, you traded
<% anAcct Hi st ory. get Col um(" nunber shares") % shares of
<% anAcct Hi story. get Col um("security") % on a
<% anAcct Hi story. get Col uim("transactiontype") % order
</td>
</[tr>
<tr bgcol or="red"><t d> </td> </tr>

<%

}
%
<tr>
<t d><p><i nput type="subnmit" nane="Return" val ue="Return to Custoner Options"></td>

</[tr>

</tabl e>

</fornp

<hr w dt h="50% >
</center>

</ body>
</htm >

The vi ewhi st ory. j sp page uses much of the same code as we've seen in the other JSP pages in this application,

so we won't cover them again. What's new in this JSP page is the use of an instance of an account history object from
class Account Hi st ory. Before exploring the vi ewhi st ory. j sp page further, let’s first take a look at the

Account Hi st ory class.

Examining the AccountHistory Class

The Account Hi st ory class contains code to access the Tr ansact i onHi st or y table given a valid account ID.
Listing 10-9 shows the code for the Account Hi st ory class.

Listing 10-9: AccountHistory.java

package chapter10 ;
i mport java.sql.* ;
public class AcctHistory extends SQ.Bean {

private String acctNunber = :
private String transactionDate = "" ;

private String transactionType = ;

private String security = "" ;

private String nunber Shares = ;

public ResultSet nyResultSet ;
public AcctHistory() { super(); } ;

/ /' Use the account nunber to access the history table....
public bool ean getHi storyThi sAccount(String accountlD)
throws Exception {
String histQuery = "select accountid, transactiondate," +
" transactiontype, security, nunmbershares " +

"fromtransactionhi story where accountid =" ;

AcctHi story sql Stnt = new AcctHistory() ;
String query = histQuery + """

+ account| D + ;

myConn = sql St . connect ToDB() ;
Statenment stnt = nyConn. createStatenent();
myResul t Set = stnt.executeQuery(query);

return nyResultSet != null ;
/1 aConn.cl ose() ;

}
public AcctHi story getHi storyRecord() throws Exception {

Acct Hi story aHi stRec = new AcctHistory() ;
aH st Rec. acct Nunber =

myResul t Set . get String("accountid") ;
aH st Rec.transactionDate =

myResul t Set . get String("transactiondate") ;
aH st Rec. transacti onType =

myResul t Set . get String("transactiontype") ;
aHi st Rec. security =

myResul t Set . get String("security") ;
aH st Rec. nunber Shares =

myResul t Set . get String("nunbershares") ;

return aH stRec ;

publ i c bool ean get Next Hi st Record() throws Exception

return nyResultSet. next();

public String getColum(String inCol) throws Exception

return nyResult Set.getString(inCol);

}
public void takeDown() throws Exception
{
myConn. cl ose();
}

/] Get/ Set met hods foll ow
public String getAcctNunber() {
return acct Nunber ;

public void setAcctNunmber(String acctnum) {
acct Nunmber = acctnum ;

}

public String getTransacti onDate() ({
return transactionbDate ;

public void setTransactionDate(String tdat) {
transacti onDate = tdat;

}
public String getTransactionType() {

return transactionType;

public void setTransactionType(String ttyp) {

transacti onType = ttyp;

}
public String getSecurity() {

return security;
}

public void setSecurity(String sec) {
security = sec;
}

public String getNunber Shares() {
return nunber Shar es;
}

public void set Nunber Shares(String nShrs) {
nunmber Shares = nShrs ;
}

Revisiting viewhistory.jsp

Now that we've looked at the implementation of the Account Hi st ory class, let's return to vi ewhi story. j sp. The

JSP generates an HTML table inside a form. The form includes a button that enables the user to return to the
customer options screen.

The HTML table writes a line of account history between two red lines. The following code accesses the instances of
Account Hi st ory that contain history information:

<%
Acct Hi story anAcctHi story = new Acct Hi story() ;

if (anAcctHi story.getHi storyThi sAccount(acctNum)) {

%
<%
whil e (anAcctHistory. get Next H st Record()) {
%
<tr><td>

On <% anAcct Hi story. get Colum("transacti ondate") %, you traded
<% anAcct Hi st ory. get Col um(" nunber shares") % shares of
<% anAcct Hi story. get Col um("security") % on a
<% anAcct Hi story. get Col uim("transacti ontype") % order.
</td>

</[tr>

<tr bgcol or="red" ><t d> </td> </tr>

<%

}

%

Note Some HTML table code has been omitted from this code sample to enable you to view the JSP code that
accesses and lists the account history.

The JSP creates an instance of the Account Hi st ory class and then uses methods in the Account Hi st ory class
(get Hi st or yThi sAccount and get Next Hi st Recor d) and a method in the superclass SQLBean (get Col um) to
access history information.

The remaining code in vi ewhi st ory. j sp formats the fetched information into an HTML table and provides a client
with a way of returning to the options screen.

Top <3

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 9: JSP Errors and Debugging

Overview

Few processes execute as smoothly as originally planned. Nowhere is this more true than in the world of
programming. Even unseasoned programming novices know that programming errors and the debugging needed to
locate and repair such errors are part of the job.

This chapter covers how to deal with programming errors related to JSP development. You'll read about the JSP
features that can route errors to specific JSP pages, and then spend some time examining JSP translation and
runtime errors. You'll also explore JSP-specific exception classes.

After encountering and handling JSP errors, you must track down the root cause of the error. This chapter discusses
some effective techniques for debugging your JSP pages. You'll read about the straightforward methods, such as
writing to a log, and the not-so-straightforward, such as creating a custom debugging class.

Before you get into the details of JSP error handling, you may be wondering why the topic of JSP errors and
debugging deserves special treatment. The next section provides some answers.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=360668835

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You've now seen many of the similarities and differences between JSP pages and servlets. It is necessary to
understand these two technologies and how they work so that you can decide whether to use a JSP page or a servlet
in a specific situation. Remember, above all, that neither JSP nor servlets are the final solution. As we return our focus
to JSP in the following chapters, remember that the power of JSPs and servlets may best be found in using them
together.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=294856613

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

EJE & ISP

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JSPs with Servlets

You've learned about JSP pages containing Java code that gets passed to servlets. You've witnessed JSPs using
JavaBeans. You've seen examples of JSP custom-tag libraries. By now, you've discovered quite a lot about
JavaServer Pages. But is there anything in the realm of generating dynamic Web content that JSPs cannot do? More
specifically, does a situation exist in which using only JSPs to generate dynamic Web content is not the best solution?

JSP development assumes that your pages have a common presentation style and theme. JSPs may be inadequate
at providing dramatically different looks based on different user inputs or different data. A JSP page that effectively
displays data as an HTML table may do a poor job displaying data as an animated chart.

Then what is one to do? Although opinions may differ, you can leverage servlets to help your JSP page development
in some situations. A servlet may start the dynamic content preparation process and then forward the request to one
or more JSPs to complete the presentation. In the Model 2 approach, the Model-View-Controller pattern is applied to
this situation by having a servlet act as the controller, the beans as the model, and the JSPs as the view. A more
recent point of view embraces the idea of a server acting as a dispatcher of requests to JSPs and other Java
container objects, such as Enterprise JavaBeans. Appropriately, the term used to describe the above-cited point of
view is called the Dispatcher approach, which is illustrated in Figure 8-2.

[[T 1]
Breawser

Argurst

Fiesporie

Secrwlct 1Rat gartially

Jaraa

PrOCEsET request Component #1
- T
-
o~ HH\"\-\.__\\
A”’fﬂl 'Y
F55 fipa Sendet e 158 for
ible 1 byl 83 yle 13

Fava
Component #2

Figure 8-2: A servlet acting as a dispatcher

As Figure 8-2 shows, the servlet captures the request and manages the application flow. The dispatching servilet may
not be responsible for generating any dynamic presentation content. Figure 8-2 shows the dispatching servlet

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=923451463

accessing a Java component in addition to dispatching requests and fetched data (from other components) to some
JSP pages or other servlets.

Forwarding Requests from Servlets

In the recent past, the Java servlet programmer did not have a convenient way of implementing the preceding
approach. But with the release of the Servlet API 2.1, the Java programmer can implement the Request Di spat cher

interface. Implementations of Request Di spat cher are available at Ser vi ceCont ext and can be used to send a
request to a static resource (an HTML page, for example) or a dynamic resource (a JSP or servlet, for example).

The servlet programmer has two methods to implement: f or war d, to transfer control to another resource; or
i ncl ude, to handle the overall management of the request from, and the response to, the client.

The code, shown in the following, forwards a request from a servlet to a JSP:

/I Assune request and response have their ‘usual’ meaning
Request Di spatcher rDisp =

get Ser vl et Cont ext () . get Request Di spat cher (" nmyJSPPage. j sp");
rDi sp. forward(request, response) ;

The URL argument in get Request Di spat cher is a relative path URL.

| <= Prov_ | Noxt =

Client
Browser

Reguest | Response

Servlet that partially
processes request

J5P for
style #1

Serviet for
style #2

Java
Component #2

Java
Component #1

ISP for
style #3

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using the JSP/Servlet Environment

Now that we have reviewed the methods related to the JSP and servlet life cycles, let's take a close look at the environment in which they exist. Understanding the JSP/servlet environment will help
us to better leverage the features of this environment that are useful for writing robust Web applications. Figure 8-1 depicts the relevant environmental components and the request/response flow

between clients, JSPs, and servlets.

HIML, XML o+
Clent oher MIME bype

L Bresaier ;I'i—| Feigminue
e}

i 3
Rogeest | F5P Engine and Web Sener
WTTP GET {Creates a Servlet from 3 JSP e o= Respomas |

POST, ete and emsrubes tet serilet)

A

FTF, wendor-
specific P file
protooel

B =4 Reponse

larvaiBean, Other
Component

Requess

Figure 8-1: A high-level view of JSP and servlet processing
HTTP, FTP, or any other supported protocol request type originates from a browser (client) and is sent to the Web server. The JSP-enabled server recognizes the . j sp extension and realizes that
the request is packaged with a JavaServer Page. The server translates the JSP page into a servlet. Along the way, the original request gets passed to the _j spSer vi ce method in the generated

servlet. After the servlet executes, perhaps by communicating with other Java components such as JavaBeans, the servlet returns a response in the form of an HTML, XML, plain text, or other MIME-
type resource.

Useful Servlet Environment Features
The servlet environment provides important features to JSP pages. This section describes some of these features.

Session Management

One advantage of using servlets and, as a result, JSPs, is that servlets provide session management services. Recall that a session is a connection between a client and a server that enables the
two to share data. The server identifies sessions by using a session key, which the server stores in a dictionary-type object.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=119497300

Servlets and JSP pages use cookies by default to manage sessions. A cookie is a set of values, a name-value pair, which is sent to a client. Cookie implementations usually involve files stored on
the client machine, and the location of such files is browser dependent.

It is important to remember that cookies can't be trusted to maintain sessions. For example, the client machine may have cookies disabled. In this situation, the servlet can use a technique called
URL rewriting, which involves encoding the session key in the request URL. The servlet can decode the URL to extract the session key, thereby identifying the appropriate client belonging to that
particular session.

Encoding and Parsing Form Data

Data sent with a get or post request may be encoded in a scheme known as URL encoding. The encoding replaces special characters, such as spaces and unprintable characters, with symbols

and hex values. Names and values are encoded separately. You've seen this encoding on search engines before. For example, an advanced search in the Google search engine
(htt p://ww. googl e. conl) encodes search parameters as follows:

http: //ww. googl e. conf sear ch?as_g=quant umtconput i ng&unr10&bt nG=Googl e+Sear ch&as_og=&as_epg=&as_eq=&as_occt =ti tl e& r=&as_dt =i &si t esear ch=&saf e=of f
Notice the name-value pairs (g=quantum+computing) with the + symbol replacing the blank, the & symbol connecting multiple search criteria, and the setting of hidden parameters (saf e=of f).

Servers are capable of automatically decoding this data. Whether the data is sent by a get request or post request, your JSP page can decode and retrieve the data by using the get Par anet er
method of the r equest object. For example, the JSP expression shown below retrieves the value of the q parameter:

<% request.getParaneter("q") %

Using the above method eliminates the necessity of writing code to parse the data or having to use the j ava. net . URLEncoder andj ava. net. URLDecoder classes.

Accessing Shared Data

JSPs and servlets may exchange data by using a set of methods available to objects of class Ser vl et Cont ext . In JSP lingo, the application scope represents objects derived from class
Ser vl et Cont ext . Some of these methods are get Attri bute, get Attri buteNanes, set Attribute,andrenoveAttribute.

Servlets and JSPs also can share initialization parameters and configuration settings by using methods available to objects of class Ser vl et Confi g, such as get | ni t Par anet er and
get I ni t Par anet er Nanes.

Your Web server may have additional methods to expose various properties and attributes of your server environment to your JSP pages.

Servlets provide the JSP programmer with powerful features that are accessed with standard JSP expressions. You may think that you'll never have to code a servlet because all your dynamic Web
page content needs are addressed by JSP. Although JSP brings unparalleled abilities to the Web application developer, you shouldn’t throw out that servlet API documentation just yet. The following
section touches on some cases in which you may want to use Java servlets with your JSPs.

Top £

[<= Prov [Noxt —

http://www.google.com/

HTML, XML or

Client other MIME type

Browser

Response

¥

Request

HTTF GET,
POSI, ete.
FTP, vendor-
specific
protocol

'S

ISP Engine and Web Server

(Creates a Serviet from a JSP file
and executes the servlet)

k)

Reguest

Response

3

Y

JSP file

'

Regquest

Response

L]

lavaBean, Other
Component

EJB & JSP: Java On The Edge, Unlimited Edition
EJE & ISP ; by Lou Marco ISBN: 0764548026
ac

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 8: JSPs and Servlets Revisited

In previous chapters, you've read much about the relationship between JavaServer Pages and Java servlets. In this chapter, you can take a closer look at this
relationship. You can delve into the servlet life cycle and discover the differences between a “raw” servlet and a JSP-generated servlet. You can also read about
important servlet and JSP methods, along with learning about the servlet environment. In addition, you can gain insight into why you need to use servlets, which
is discussed in this chapter’s section on using Java servlets and JSPs together.

Examining the Servlet Life Cycle

Because JSPs get translated into Java servlets, the JSP life cycle closely parallels that of servlets. In brief, when you request a JSP page, the translator
generates a servlet and the Java compiler on the server compiles the generated servlet. Then the server invokes the class loader to load the servlet and start
execution.

If the servlet contains an i ni t method, the container calls it. The i ni t method runs only once. You can see that, for JSP-generated servlets, the analogue for
the servleti ni t method is called j spl nit. Bothinit andj spl ni t are optional methods.

After execution of i ni t orj spl ni t, the servlet executes its ser vi ce method. The JSP equivalent for the ser vi ce method is _j spSer vi ce. The server can
run multiple threads accessing the service or the _j spSer vi ce method simultaneously, or you can force the server to single thread the method's access by
using a single-threaded model using the i sThr eadSaf e attribute of the page directive.

Next, in servlets the ser vi ce method invokes either the doGet or doPost method. The doGet and doPost methods of the servlet implement the get and
post requests made from the client browser to the servlet, respectively. JSP-generated servlets do not have implementations for doPost and doGet . JSP-
generated servlets perform both post and get requests in the _j spSer vi ce method. Actually, a servlet can implement various do methods depending on the
particulars of the HTTP request, such as doPut and doDel et e methods.

When the server unloads a servlet, the server invokes the dest r oy method. The JSP-generated equivalent to the dest r oy method is j spDest r oy. As with
init andjsplnit,destroy andj spDestroy are optional.

Writing the Minimal Servlet

Given that most of the servlet methods discussed above are optional, you may wonder what is the “smallest” or minimal servlet? Listing 8-1 provides an example
of a minimal servlet.

Listing 8-1: A contender for the minimal servlet

inmport java.io.* ;

inmport java.text.* ;

inmport java.util.* ;

import javax.servlet.* ;
import javax.servlet.http.* ;

public class mninal Servlet extends HttpServlet {

public void doGet(HttpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException

response. set Content Type("text/htm ") ;

Print Witer out = response.getWiter() ;

out. println("<HTM.> <BODY> Hello World </ BODY>
</ HTM>")

out.close() ;

public void doPost(HttpServletRequest request,
Ht t pSer vl et Response response)
throws | CException, ServletException

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=422435410
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=760538467#wbpch08fP12

doGet (request, response) ;

1}

The above servlet is as bare bones as it gets. It is important to note that you do not have to override the doGet or doPost methods if you instead override the
servi ce method and handle all requests there. This would not be considered good form in servlet design, but it is an option. In the next section we will see that
a minimal JSP-generated servlet is a bit different since the doGet and doPost methods do not exist.

Writing a Minimal JSP-Generated Servlet
The nuts and bolts of a JSP-generated servlet are dependent on the JSP-to-servlet translator used with a particular Web server. Listing 8-2 shows a rather
simple JSP page in which Tomcat 3.2 generated the servlet. However, this page is not the simplest because it has actual JSP scripting elements — a simple

page would have nothing but static text.

Listing 8-2: A simple JSP page with a couple of scripting elements

<%@ page content Type="text/htm" %
<htm >

<head>

<title>Mni mal JSP Page</title>

</ head>

<body>

<0 String hello = "Hello Wrld"; %
<% hello %

</ body>

</htm >

Listing 8-3 shows the servlet that Tomcat generates from the JSP page in Listing 8-2.

Listing 8-3: JSP-generated servlet for minimal JSP page in Listing 8-2

package jsp.|loutest;

i mport javax.servlet.*;

inmport javax.servlet.http.*;
import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

inmport java.io.PrintWiter;
import java.io.|CException;
import java.io.FilelnputStream
import java.io.ObjectlnputStream

inmport java.util.Vector;

i mport org.apache.jasper.runtine.*;

i mport java. beans. *;

i mport org. apache. jasper. Jasper Excepti on;

public class _0002fjsp_0002f| out est _0002f | out est _0002ej spl out est _j sp_7
extends Htt pJspBase {

/* begin [file="D:\\toncat32\\ Webapps\\ exanpl es\\jsp\\loutest\\loutest.jsp";from
=(7,3);to=(7,34)] */
String hello = "Hello Wrld";
/'l end

static {

}
public _0002fjsp_0002f| out est _0002f | out est _0002ej spl outest _jsp_7() {
}

private static boolean _jspx_inited = fal se;

public final void _jspx_init() throws Jasper Exception {
}

public void _jspService(HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

JspFactory _jspxFactory
PageCont ext pageCont ext

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=760538467#wbpch08fP40
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=760538467#wbpch08fP42

Ht t pSessi on session = null;

Servl et Context application = null;
Servl et Config config = null;
JspWiter out = null;

bj ect page = this;

String _value = null;

try {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;
}
_j spxFactory = JspFactory. get Def aul t Factory();
response. set Cont ent Type("text/htm");
pageCont ext =

_j spxFactory. get PageCont ext (thi s, request, response,
", true, 8192, true);

application = pageCont ext. get Servl et Cont ext () ;
confi g = pageCont ext. get Servl et Config();

sessi on = pageCont ext. get Sessi on();

out = pageContext.getCQut();

/* HTML begin [file="D:\\tontat 32\\ Wbapps\\exanpl es\\jsp\\loutest\\loutest.jsp";from=(0,35);to=(7,0)] */
out.wite("\r\n<htm >\r\n<head>\r\n<title>M ni mal JSP
Page</title>\r\n</head>\r\n\r\n<body>\r\n");
/1 end
/* HTML begin
[file="D:\\toncat 32\ \ Webapps\\ exanpl es\\jsp\\l outest\\loutest.jsp";from=(7,36);to0=(8,0)] */
out.write("\r\n");
/1 end
/* HTML begin [file="D:\\tontat32\\Wbapps\\exanpl es\\jsp\\loutest\\loutest.jsp";from=(8,3);to=(8,10)] */
out.print(hello);
/1 end
/* HTML begin [file="D:\\tontat32\\Wbapps\\exanpl es\\jsp\\loutest\\loutest.jsp";from(8,12);to0=(12,0)] */
out.write("\r\n</body>\r\n\r\n</htm >\r\n")
/1 end

} catch (Exception ex) {
if (out.getBufferSize() != 0)
out.clearBuffer();
pageCont ext . handl ePageExcepti on(ex);
} finally {
out. flush();
_j spxFactory. rel easePageCont ext (pageCont ext) ;

Whew! What is the reason for showing the generated code? The first reason is to demonstrate the labor and toil expended in generating a servlet from a very
small JSP page. Second, examining generated code is best left to computers, not humans — don’t you agree?

Note the absence of j spl ni t, j spDestroy, doCGet, and doPost methods in the generated servlet (or take my word for it!). Also, take note that the bolded
lines are generated in response to the JSP code in the page.

Because an implementation of the i ni t method is not required for servlet execution and an implementation for the j spl ni t method is not required for JSP
execution, why would you implement these two methods? You can discover why in the next section.

Examining the init and jsplnit Methods

As previously mentioned, the i ni t method is called when the servlet first loads. The i ni t method is not called for each user request. Hence, i ni t is used to
perform one-time initializations. Actually, Java applets have an i ni t method, which is not required, that serves the same function as i ni t for servlets.

You may code the i ni t method sans arguments as follows:

public void init() throws Servl et Exception {

Also, you may pass an object of Ser vl et Confi gtoi nit as follows:

public void init(ServletConfig sConfig)
throws Servl et Exception {
super.init(sConfig) ;

You would use the second signature for i ni t when your servlet requires server settings. Creating server settings is dependent on the server being used. Some

servers use a configuration file, whereas others use a GUI to set values for server settings.

Note the bolded invocation of the superclass constructor in the second example. Do yourself a favor and code the call to super . i ni t as the first line in your
i ni t implementation when you require an object of Ser ver Confi g.

As with i ni t,j splnit is notrequired for JSP execution. However, you can code aj spl ni t method in your JSP page, which is passed to the generated
servlet. The servlet engine executes the j spl ni t method only once upon loading the generated servlet. Listing 8-4 shows how to code a j spl ni t method in

your JSP pages.

Listing 8-4: Example of jspInit method in a JSP

<% page content Type="text/htm" %
<htm >

<head>

<title>splnit</title>

</ head>

<body>
<% String hello = "Dumy Val ue";
public void jsplnit() {

hello = "Initial value 'Hello Wrld changed in
jspinit()” |
1%
Java variable hello is now <% hell o %
</ body>
</htm >

When this page runs, the initial value of Durmy Val ue is changed by the assignment inside the j spl ni t method. In a real-world application, you would not see
one simple String value overriding another, as is seen in this listing. You might override the Durmy Val ue with information retrieved from a bean or a database,
depending on your application needs.

Rather than show you the vast amount of code generated by the JSP translator here, please take my word that this generated servlet contains a j spl ni t
method.

Examining the destroy and jspDestroy Methods

It is unnecessary for you to code an implementation of the dest r oy method for your servlets. However, if you do, the server invokes your dest r oy method
before unloading your servlet. The dest r oy method is a good place to perform various cleanup activities, such as closing database connections and writing any
remaining persistent data to disk.

The JSP equivalent to dest r oy is j spDest r oy. As with dest r oy, j spDest r oy is not required for JSP execution. The j spDest r oy method serves the same
purpose as the dest r oy method for "raw" servlets. As with j spl ni t , you may code an implementation of j spDest r oy in your page, or use a page directive to

include an implementation.

A good rule of thumb is that if you code a j spl ni t method that grabs resources, such as pooled database connections, you should code a j spDest r oy
method to release the grabbed resources.

Note Other thanj spl nit andj spDest r oy, you cannot code methods that start with j sp, j spx, _j sp, or _j spx. These method prefixes are reserved for
future use by Sun.

Examining the service and _jspService Methods

You do not need to code an implementation of the ser vi ce method. In fact, it is best if you do not override ser vi ce. Instead, it is more effective to override the
doGet and doPost methods. Your main advantages of overriding doGet and doPost as opposed to overriding ser vi ce are as follows:

. You can add other do methods more easily when you override doGet and doPost . Overriding ser vi ce removes your ability to add these other methods
easily, especially if your servlet is then subclassed.

. You have automatic support for various requests, such as TRACE and OPTI ONS requests, even if your servlet is subclassed.

The accepted way of overriding the same action for a POST or GET is to override doGet and doPost in a servlet and have doPost invoke doCet , or vice
versa. (Refer to Listing 8-1 for an example of doPost calling doGet .)

The _j spSer vi ce method is required for JSP execution. However, you must never code a _j spSer vi ce method. The _j spSer vi ce method is automatically
generated by the JSP translator. _j spSer vi ce is the "meat and potatoes" of the JSP; most of your JSP code finds its way into the _j spSer vi ce method.

Table 8-1 summarizes the servlet and JSP methods discussed in the preceding sections.

Table 8-1: Summary of Important Servlet and JSP Methods

’ Method ’ ?glravlet or ’ Required ’ Description/Notes

| init ’ Servlet ’ No | Performs one-time initializations.

| jspinit ’ JSP ’ No | Same as i ni t. JSP author may provide code in JSP.

| servi ce ’ Servlet ’ No | Handles the request. Not a good idea to code an implementation

_j spService JSP Yes Handles the HTTP request from the JSP page. The JSP author does not have to
implement it. It is implemented by the JSP translator.

doCet Servlet No Handles an HTTP GET request. Required only if the servlet must handle GET
requests.

doPost Servlet No Handles an HTTP POST request. Required only if the servlet must handle POST
requests.

| dest r oy ’ Servlet ’ No | Performs cleanup immediately prior to servlet purge by server.

| j spDest r oy ’ JSP ’ No | Performs cleanup immediately prior to JSP purge by server.

Topsy

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

The topic of JSP tag extensions is relatively recent, being introduced in JSP release 1.1. The draft specification for
JSP release 1.2 discusses additional features of the JSP tag extensions. Searching for “JSP tag extensions” at
ht t p: // wwv. googl e. coml returns over 1,300 sites. Those who are "in the know" realize that JSP tag libraries are

an essential component of JSP technology.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=792429751
http://www.google.com/

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Writing an Example Nested Tag

Although the f or mat Li ne and r epeat Li ne tags in the previous section were shown to execute when nested, the tags

can execute independently of each other. In other words, the presence or absence of one tag has no effect on the
execution of the other. At times, one tag requires a specific parent to execute, or a parent requires specific children. In JSP
terms, parent/child tags that depend on one another for proper execution are called nested tags.

Writing nested tags is very similar to writing the sort of tags you've already learned. The difference is that the objects
(beans) in the nested tags need to communicate. The tag library interfaces have methods that enable a child tag to
determine its parent. Once done, you can invoke parent tag methods from the child tag.

The following sections describe how to construct a case construct as a series of nested tags. The general format is as
follows:
<aTaglLi b: case val ue="sone_val ue">
<aTagLi b: when val ue="case_val uel">
JSP to eval uate when sone_val ue = case_val uel
</ aTagLi b: when >
<aTagLi b: when val ue="case_val ue2">
JSP to eval uate when sone_val ue = case_val ue2
</ aTagLi b: when >
<% - Other casevalue tags may follow --%
<aTagLi b: ot her wi se>
JSP to eval uate when sonme_val ue not equal s case_val ues
</ aTagLi b: ot herw se>
</ aTagLi b: case>

The relationships you need to enforce are as follows:

. A when tag must be enclosed within a case tag. The code has to know about the existence of a case tag (parent)
when processing the when tag (child).

. An ot herw se tag must be enclosed within a case tag. The code has to know about the existence of a case tag
(parent) when processing the ot her wi se tag (child).

. The existence of an ot her wi se tag requires the existence of at least one when tag. The code has to know about the
existence of a past-processed when tag when processing the ot her wi se tag.

Of course, you may want to implement the common understanding of a case construct.

The case Statement Tag

The case statement tag is the first tag that we'll examine in looking at the implementation of these nested tags. This tag is

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=354601693

the parent tag of the when and ot her wi se tags.

The code uses indicators (flags, if you will) as properties in the parent tag handler class, which you can access from the
child classes. You must have two indicators: whenst at enent f ound indicates the presence of a when statement within

the case tag and whenst at enent val uef ound indicates the presence of a when statement with a value that matches
that of the case statement. Listing 7-10 shows the tag handler for the case statement.

Listing 7-10: Tag handler class for the case tag

package chapter?7;

i mport javax.servlet.jsp.*;
i mport javax.servlet.jsp.tagext.*;

i mport java.io.*;

public class casestatenent extends TagSupport {
/I This is the value to match on sone when tag
private String val ue
/1 Thi s bool ean states whether or not at |ease one
/ I whenst atenent is found
private bool ean whenstat enentfound = fal se
/1 Thi s bool ean states whether or not one of the when
/lstatenents has a value that matches that of the case
/] statenent.
private bool ean whenst at enent val uef ound = fal se

public void setValue(String val) {
val ue = val ;

}

public String getValue() {
return val ue ;

}

public void setWenstat enent f ound(bool ean found) {
whenst at enent f ound = found ;

}

publ i c bool ean get Whenst at enrent f ound() {
return whenstat enentfound ;

}

public void setWenst at enent val uef ound(bool ean found) {
whenst at enrent val uef ound = found ;

}

publ i c bool ean get Whenst at enrent val uef ound() {
return whenst at enent val uef ound ;

}

public int doStartTag() {
return EVAL_BODY_| NCLUDE ;

}

The code for the case tag (the outer tag) merely establishes the indicator properties and the val ue attribute that may or
may not match some when tags.

The doSt art Tag method coded here instructs the JSP container to continue to evaluate the tag body. Notice that,
because you are not using the tag body by a call to doAf t er Body, the casest at ement class extends the convenience

class TagSupport, not Body TagSupport.

At to this point, you haven’t seen anything new in this tag handler. Next, you can take a look for an implementation of the

when tag, which shows how to access parent class properties.

The when Statement Tag

The when tag is the child tag of the case tag and needs to access information in the parent tag's implementing class. For

this reason, you need a method that identifies the class already instantiated with a bean from the parent tag's implementing
class. The method fi ndAncest or Wt hCl ass does exactly that; f i ndAncest or Wt hCl ass returns the instance of the

parent tag class, thereby enabling child classes access to parent tag properties. Listing 7-11 shows the code for the when
statement tag.

Listing 7-11: Tag handler class for the when tag

public class whenstatement extends BodyTagSupport {
private String val ue ;
public void setValue(String val) {
val ue = val ;
}
public String getValue() {
return val ue ;
}

public int doStartTag() throws JspException {
//See if this is enclosed within a case tag
casest atement caseTag =
(casestatenent) findAncestorWthd ass(this, casestatenent.class);
if (caseTag == null)
t hr ow new
JspException("when tag not enclosed in case tag") ;
el se //set when statenent found indicator
caseTag. set Whenst at enent f ound(true) ;
/[/See if this is the when statenment that has a val ue
/I matching that of the case tag
if (caseTag.getVal ue().conpareTo(getValue()) == 0) {
/1Set indicator in case tag to indicate a match
caseTag. set Whenst at enent val uef ound(true) ;
return EVAL_BODY_TAG ;
}
el se
return SKI P_BODY ;

public int doAfterBody() throws JspException {

BodyCont ent tagBody = get BodyContent() ;

String tagBodyAsString = tagBody.getString() ;

try {
JspWiter out = tagBody. get EnclosingWiter() ;
out.print(tagBodyAsString) ;
} catch (1 OException ex) {

t hrow new JspTagException(ex.toString());

} return SKI P_BCODY ;

The doSt art Tag method enables you to determine if a parent (case) class exists or if the value coded in the when tag
matches that coded in the case tag. When a match of values is found, code in doSt ar t Tag, which sets the property
whenst at enent val uef ound in the case tag class to true; the ot her wi se tag accesses this indicator as you can see in

the next section. The doAf t er Body method lists the tag body.

The otherwise Statement Tag

The code for

the ot her wi se tag handler is very similar to the code for the when tag handler. Decisions to process the tag

body are made in the doSt ar t Tag method; the doAf t er Body tag lists the tag body to the screen. Listing 7-12 shows the

code.

Listing 7-12:

Tag handler class for the otherwise tag

package chapter?7;

i mport javax.servlet.jsp.*;
i mport javax.servlet.jsp.tagext.*;
i mport java.io.*;

public class ot herw sestatenment extends BodyTagSupport {
public int doStartTag() throws JspException {

}

publ i
}
}

}

//See if this is enclosed within a case tag
casest atenment caseTag =
(casestatenent) findAncestorWthd ass(this, casestatenent.class);
if (caseTag == null)
t hrow new JspException("otherwi se tag not encl osed"+
"within case tag") ;
//See if a when statenent was found
if (!caseTag. get Whenst at enment found())
t hrow new JspException("otherw se tag found without"+
"when tag(s)") ;
/*See if a previous when statenent was execut ed.
Actually, see if a previous when statenent has the
sane value as that found on the case statenent */
if (!caseTag. get Whenst at enent val uef ound())
return EVAL_BODY_TAG ;
el se
return SKI P_BODY;

c int doAfterBody() throws JspException {

BodyCont ent tagBody = get BodyContent() ;

String tagBodyAsString = tagBody.getString() ;

try {
JspWiter out = tagBody. getEnclosingWiter() ;
out.print(tagBodyAsString) ;

catch (1 CeException ex) {

t hrow new JspTagException(ex.toString());

return SKI P_BODY ;

The doSt art Tag method uses fi ndAncest or Wt hd ass to communicate with the parent class. The JSP API does not

provide a mechanism to communicate directly with siblings. Siblings are tags that have the same parent tag. One
procedure for sibling tags to communicate is to access properties of a shared parent class, as is done here.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Implementing a Custom Tag

Throughout the rest of the chapter, we will work in stages to create the following custom tag:

<nytagli b: formatLi ne fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
This is Line 1
</ nytaglib:formatLine>

The implementation is shown in different stages. First we'll see how to implement an empty tag without attributes that writes
the text “Here’s another line” to the page:

<nytaglib: formatlLine />

Then, we'll change the tag components to implement an empty tag with attributes:
<nmytaglib:formatLine htmline="This is Line 1" />

After adding an attribute, we'll change the tag components to implement the tag with a body:

<nytaglib: format Li ne>
This is Line 1
</ mytaglib:formatlLine>

Finally, we'll create the tag with the body and three attributes, f ont Si ze, f ont Col or, and r ever se, as shown at the
beginning of this section.

Implementing the Empty Tag Without Attributes

As previously mentioned, you need to code three parts: at agl i b directive that references the t | d file, the class that
implements the tag behavior, and the t | d file, although not necessarily in that order.

The JSP Page

You might as well start with the JSP page called exanpl e2. j sp containing the taglib directive and the tag reference. Listing
7-1 shows the page:

Listing 7-1: JSP page example2.jsp containing a custom empty tag

<% - Tell JSP that this page renders HTM. --%
<% page content Type="text/htm" %

<htm >

<head>

<title>Using a Custom Tag to Generate HTM.</title>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=284020653

</ head>

<body bgcol or ="#dddddd" >

<% - Here is the taglib directive --%

<U@taglib uri="ch7taglib.tld" prefix="nytaglib" %
<% - Here is the tag reference --%
<nmytagli b: format Li ne />

</ body>
</htm >

Figure 7-2 below shows the output of the page:

i Using a Cusiom Tag to Generate HTML - BMicrossll Internet Ex... M= E3

Fie Edt Yiew Favostes Took Help El
'Mﬂrﬂ‘-’l&l‘ﬂ_] g /e albaost GIRL pocammpledy/jips chapba T hesarmpla? jip :J G
e S E| ~ T
Bock Sikp Rebath Hsest
=
This i# Line |
=

Figure 7-2: JSP output from page in Listing 7-1
The t agl i b directive names the t| d as the file ch7t agl i b. t | d, stored in the same directory as this JSP page. The

reference to the f or mat Li ne tag in the t | d (Listing 7-3) names the implementing class for this tag as f or mat Li ne. Even

though the tag and the implementing class have the same name in this example, this does not have to be the case. Now let's
take a look at the implementation of the cl ass f or nat Li ne.

The Tag Handler Class: Empty Tag Without Attributes

Listing 7-2 shows an implementation of our custom tag.

Listing 7-2: Implementing the empty tag without attributes

package chapter?7;

i mport javax.servlet.jsp.*;

i mport javax.servlet.jsp.tagext.*;

import java.io.Witer;

i mport java.io.| OException;

/lor inmport java.io.* if you prefer

/**

* Exanple 1: Wite a line of text to the page
*/

public class formatLi ne extends TagSupport {

public int doStartTag() throws JspException {

try {

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fg0702_0.jpg&image_id=17&previd=IMG_17&titlelabel=Figure+7-2%3A&title=JSP+output+from+page+in+Listing+7-1

JspWiter out= pageContext.getQut() ;
out.print("This is Line 1") ;
} catch (1 OException ex) {
t hrow new JspTagException(ex.toString());
}

return SKI P_BODY ;

Aside from being good programming practice, some servers (Tomcat included) require that your tag implementations be
stored in packages. At a minimum, you can code the import statements that follow the package statement whenever you
implement a custom tag.

As previously mentioned, you can implement an empty tag by extending the convenience class TagSupport . Here, all you
need to do is direct the server to take action when the JSP container detects the start tag (<nyt agl i b: f or mat Li ne />)
by overriding the doSt ar t Tag method. You could have directed the server to produce output when the JSP container
detected the end tag by overriding the doEndTag method in TagSuppor t , too.

Note Although you don’t code an end tag per se when the tag is empty, the server invokes a doEndTag method.

The doSt ar t Tag method throws a JspExcept i on so you can normally enclose your code within a try/catch block, as
shown in Listing 7-2. Here, you're performing a write operation, so you can catch | OExcept i ons and throw a

JspExcepti on.

Output performed by code implementing custom tags is directed to the implicit object out , an instance of the specialized
writer class named JspW i t er. The output is merely the text you want to appear in the page.

The doSt ar t Tag method returns an integer. As mentioned earlier, the tag interface defines four constants that determine
the disposition of the tag body. The constant SKI P_BQODY instruct the server to ignore the body of the tag. Your

doSt art Tag method should return SKI P_BODY when included in the implementation of an empty tag.

The last component that needs coding is the tag library descriptor file.

The tld that Describes the Empty Tag Without Attributes

Listing 7-3 shows the t | d that describes the f or mat Li ne tag.

Listing 7-3: The TLD for the empty tag without attributes

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<IDOCTYPE taglib

PUBLI C "-//SunM crosystens, Inc.//DID JSP Tag Library 1.1//EN
"http://java.sun.com dtd/ Web-j sptaglibrary_1 1.dtd">

<!-- Tag library descriptor -->

<taglib>
<tlibversion>1.0</tlibversion>
<j spversi on>1. 1</ j spversi on>

<short name>nyt agl i b</ shor t nane>
<uri></uri>

<i nf 0>
An exanple tag library description file for Chapter 7
</info>

<!-- Place Tag infornmation between <tag> tags -->

<t ag>
<nane>f or mat Li ne</ name>
<t agcl ass>chapter 7. format Li ne</tagcl ass>
<info> Wite a hardcoded string to the JSP page </info>
<bodycont ent >enpt y</ bodycont ent >

</tag>
<!-- Oher tag descriptions could follow -->
</taglib>

Your t | d starts with an XML declaration and a DOCTYPE statement. As Sun Microsystems releases new versions of JSP,
the PUBLI C and SYSTEMidentifiers in the DOCTYPE statement will change to reflect the new releases.

Caution Sun changed the element names in the DTD for tag library descriptors in JSP release 1.2. Table 7-2 shows the

new element names corresponding to the elements used in JSP release 1.1. The element names not listed in
Table 7-2 are the same for both releases.

Table 7-2;: TLD Element Names in JSP Release 1.1 and 1.2

Element Name, R1.1 Element Name, R1.2 Description

tlibversion tlib-version Version of your tag library.

j spversion j sp-version JSP release.

short nanme short - nane Prefix used in referring to tags

within the library. Notice that the
short name inthet| d, myt agl i b,

is used in the t agl i b directive in
Listing 7-1.

The uri tag names a public URI that points to the t | d. In the example, you are not using a public uri , hence, the uri tag
has no content.

The i nf o tag provides a short description about the tag library.
Tl d’s that describe tags that contain attributes and bodies contain additional tags, which are covered later in this chapter.

The content of the t | d is mostly contained within the <t ag> elements. The elements shown in Listing 7-3 have the following
meaning:

. hane — The name of the tag used in the JSP page. Actually, the content of the name element is only part of the tag
name; the actual name of the tag is the prefix coded in the t agl i b directive followed by the value of the name element in
thet! d.

. tagcl ass — The package and class name that contains the implementation of the tag’s behavior, or the name of the tag
handler class.

. i nf o — A short description of the tag.

. bodycont ent — One of three values: enpt y for empty tags (such as the example), JSP for tags that contain JSP
statements in the tag body, or t agdependent for tags that do not rely on the JSP container for processing.

Every tag in the tag library has an accompanying <t ag> entry in the t | d.

To use this tag library, you can place the t | d file in the same directory as the JSP page. Place the tag handler class in
directory Web- i nf / cl asses/ chapt er 7. Depending on your operating system, the case of this directory may or may not

matter, so check the directory where you JSP page is located to be sure. Now you can invoke your JSP page. If you're using
Tomcat, enter this URL in your browser:

htt p://1 ocal host: 8080/ exanpl es/ j sp/ chapt er 7/ exanpl e2. j sp

Refer to the screen shown in Figure 7-2. Now, let's change our tag by adding attributes.

Implementing the Empty Tag with Attributes

Here's the tag you want to implement:
<mytaglib:formatLine htmline="This is Line 1" />

Of course, the value of the attribute ht m | i ne can be any string.

The JSP page is the same as Listing 7-1 except for the preceding tag reference ; there’s no need to show the entire page
here. Also, the displayed page is the same. The changes you need to make are in the tag handler class and the t | d.

The Tag Handler Class: Empty Tag with Attributes

Listing 7-4 shows the code for the tag handler class for the tag shown in the preceding section.

Listing 7-4: Implementing the empty tag with attributes

package chapter?7;
i mport javax.servlet.jsp.*;
i nport javax.servlet.jsp.tagext.*;
import java.io.Witer;
i mport java.io.| OException;
/lor inport java.io.* if you prefer
/**
* Exanple 2: Process the Tag with attributes
*/
public class formatLi ne extends TagSupport {
private String htmline ;
/] Code get and set nethods for the attribute
public void setHmline(String aLine) {
htm |ine = aLine ;
}
public String getHmline() {
return htmline ;

}
public int doStartTag() throws JspException {
try {
JspWiter out= pageContext.getQut()
out.print(getHmMline())
} catch (1 CException ex) {
t hrow new JspTagException(ex.toString());

}
return SKI P_BODY ;

To get the JSP container to process the attribute coded in the tag, you simply code a pair of get / set methods for the

attribute. Then you can use the attribute value while processing the tag methods.

You do not need to code both get and set methods for your tag attributes. You are required to code a set method. Of
course, if you want any other class (bean) to access the values of your tag attributes, you must code a get method because
attribute instance variables should have private visibility.

You see that the tag handler class implementing the behavior of the tag with attributes is truly a bean. Unlike beans available

to JSPs by using the j sp: useBean action, tag handlers may use non-empty constructors. You may have to change thet | d
to reference the tag attributes. The next section shows you how.

The tld that Describes the Empty Tag with Attributes

For each attribute coded in the tag, include an <at t ri but e>tag in your t | d. Listing 7-5 shows the tag elementinthetl| d
for this empty tag with attributes; the rest of the t | d is the same as that shown in Listing 7-2.

Listing 7-5: Tag library definition entry for an empty tag with attributes

<t ag>
<nane> formatLi ne </ nanme>
<t agcl ass>chapter 7. f or mat Li ne</t agcl ass>
<info> Format an HTM. Line </info>
<bodycont ent >enpt y</ bodycont ent >
<attribute>
<nane>ht m | i ne</ name>
<requi red>true</required>
<!-- rtexpvalue is optional -->
<rtexpval ue>true</rtexpval ue>

</attribute>
<!-- other attributes for this tag would follow -->

</tag>

Here’s what the additional tags in the t | d mean:

. attribut e — Required tag that signals the start of an attribute description.
. name — Required tag that is the name of the attribute.

. requi r ed — Required tag that is true if a value for this attribute is required, false, if not. If you code false for the required
tag, you may omit the attribute when you code the tag in your JSP page. However, when you omit the tag, the tag’s
corresponding set method does not get invoked. You would be wise to code an initial value for an optional attribute in

your tag handler class.

. rtexpval ue — Optional attribute that is true if the value of the attribute may be a Java runtime expression, false if not

(value must be a fixed string). For example:
<apref:atag attr="<% new java.util.Date() %" />

If at ag has the rt expval ue element set to true, the expression is evaluated and used as the value returned by the tag
handler’s get At ag method,; if false, the string is used as the value returned. False is the default value so you can safely
omit coding this tag in your t | d when the attribute value is a fixed string.

So far, you've seen how to code custom empty tags with and without attributes. Next, you can read how to code custom tags

that contain a body.

Implementing the Tag with a Body

Here's the tag you want to implement:

<mytagli b: f or mat Li ne>
This is Line 1
</ nytagli b: f or mat Li ne>

You've taken the line of text, formerly an attribute, and placed it in the body of the tag. There’s no change to the JSPtagli b
directive, so let's get to the tag handler class for the preceding tag.

Listing 7-6 shows the code for the tag handler class for the tag shown in the preceding section. The presence or absence of
attributes has nothing to do with the coding constructs required to process the tag body. First, let’s look at the required code:

Listing 7-6: Tag handler for a tag with a body

package chapter?7;
i mport javax.servlet.jsp.*;
i nport javax.servlet.jsp.tagext.*;
import java.io.Witer;
i mport java.io.| OException;
/lor inmport java.io.* if you prefer
/**
* Exanple 3: Process the tag body
*/
public class formatLi ne extends TagSupport {
public int doStartTag() {

return EVAL_BODY_| NCLUDE ;
}

That's it! The code states that when the JSP container encounters the start of the tag, the container processes the tag body.
If the tag body contains JSP expressions, the expressions are evaluated.

Notice that the inclusion of a tag body in your JSP page is no guarantee that the body is processed. The decision whether or
not to process the tag body is made by the tag handler class, not the tag reference or the t | d. If you code the doSt art Tag

method as follows, your tag body won't be processed.

public int doStartTag() {
return SKI P_BODY ;
}

And you cannot expect the following code to work because by the time the JSP container gets to the end tag, it's too late to
process the tag body.

public class formatlLine extends TagSupport {
public int doEndTag() {
return EVAL_BODY_| NCLUDE ;

}
}

Speaking of the doEndTag method, when would you ever code this method? The next section provides some answers.

The Tag Handler Class: Coding a doEndTag Method

When a tag is empty, you rarely take action at the end of this tag. When a tag has a body, you can find yourself coding
doEndTag methods from time to time. Imagine your tag handler performing some output at the start of a tag, in a

doSt ar t Tag method, such as writing HTML for an HTML table to the implicit out object. The tag body contains JSP and

static text that gets written to out . You could use a doEndTag method to complete the HTML for the table. Your doEndTag
method could resemble the following:

public int doEndTag() {
JspWiter out = pageContent.getQut() ;
/] Several out.print statements that finish the table
return EVAL_PAGE;

}

The preceding example returned a constant instructing the JSP container to continue processing the remainder of the JSP
page. At times, you may want to skip the remainder of the page. Imagine your JSP page is laid out such that if a certain
condition arises after you process the tag body, you do not want to process the remainder of the JSP page. For instance, a
condition may arise when a registered user logs onto a system and the remainder of the page shows user information; but if
that user is not registered, no information is displayed and there’s no need to process the remainder of the page. Your
doEndTag method could resemble the following:

public int doEndTag() {
i f (conditionFronEval TagMeansSki pRest of Page)
return SKI P_PAGE;
el se
return EVAL_PACGE ;

}

Now you know how to conditionally process the remainder of the page. Next, you can see how to code the t | d to describe a
custom tag with a body.

The tld That Dwescribes the Tag with a Body

To code the t | d to describe a custom tag with a body, you need make only a single change to the t | d. Listing 7-7 shows
the t | d tag entry for a tag with a body.

Listing 7-7: Tag library descriptor entry for a tag with a body

<t ag>
<name> format Li ne </ name>
<t agcl ass>chapt er 7. f or mat Li ne</ t agcl ass>
<info> Wite Body of Text to Page </info>
<bodycont ent >JSP</ bodycont ent >
<attribute>
<!-- Describe an attribute here -- >
</attribute>
</tag>

The only change you need to make is to the value of the bodycont ent tag, from enpty to JSP.

Note The bodycont ent tag can use a value of t agdependent , which causes your tag to interpret the tag body as non-
JSP.

Optionally Processing the Tag Body

To this point, you've been shown implementations of tags that are empty, that omit the tag body, or always include the tag
body. If you code a doSt ar t Met hod according to the following template, you can optionally include or skip the tag body.

public int doStartTag() {

i f (youWant ToPr ocessTagBody)
return EVAL_BODY_I NCLUDE ;
el se
return SKI P_BODY ;

In the section on coding the doEndTag method, you encountered a similar situation in which, based on a condition, the

method returned a constant, generated during tag body processing that directed processing of the remainder of the page.
Because this discussion surrounds whether or not to process the tag body, you cannot use a condition generated during
body processing; you may not want to process the tag body. You can assume that the origin of the condition that determines
tag body processing must occur before the JSP container encounters the tag. Possible origins of the condition are from a tag
attribute that has its value dynamically generated, and processes earlier in the page or earlier in some other page. In
general, somewhere before encountering the start of the tag, some property in some object or bean must be set that the
doSt art Tag method can access.

Attribute values from the tag can be accessed by invoking the appropriate get methods, as can bean properties. If the
property is derived from some request time parameter, the doSt ar t Tag method accesses the implicit object by invoking the
get Request method of the pageCont ext object.

What if you want to do something other than include the tag body or skip it? What if you want to selectively process parts of
the tag body? The next section discusses how you would affect the tag body contents.

Selectively Processing the Tag Body

Here, you want to implement the following tag:

<nmytaglib: formatLine fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
This is Line 1
</ nytagli b: f or mat Li ne>

When the r ever se attribute has a true value, you want to list the string backwards. You also want to append font tags to get
the specified color and font size. Listing 7-8 shows the tag handler that accomplishes the goal.

Listing 7-8: Tag handler for a tag that selectively processes its body

package chapter?7;

i mport javax.servlet.jsp.*;

i mport javax.servlet.sp.tagext.*;

i mport java.io.*;

/**
* Exanple 4: Color, Size text and optionally Print backwards
*/

public class fornatLine extends BodyTagSupport

{

private bool ean reverse ;
private String color, fontSize ;

public void setReverse(bool ean rev) {
reverse = rev;

}

publ i c bool ean get Reverse() {
return reverse ;

}
public void setFontSize(String size) {

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=978301159#wbpch07fP328

fontSize = size;

}
public String getFontSize() {

return fontSize;
}

public void setColor(String col) {
color = col ;
}

public String getColor() {
return color ;
}

public int doAfterBody() throws JspException {
BodyCont ent tagBody = get BodyContent() ;
String tagBodyAsString = tagBody.getString() ;
try {
JspWiter out = tagBody.getEnclosingWiter() ;

if (getReverse())
tagBodyAsString = ((new StringBuffer(tagBodyAsString)).reverse()).toString() ;

out.print("<font color=" + getColor() +
"><font size=" + getFontSize() +
">" + tagBodyAsString + "") ;

} catch (1 CException ex) {
t hrow new JspTagException(ex.toString());

}
return SKI P_BODY ;

The get and set methods for the attributes are as before — nothing new there. The new code constructs are in italic. Let's
take a look.

The first new construct is found on the cl ass statement:

public class formatLine extends BodyTagSupport

Classes that change the tag body must implement the Body Tag interface or extend the convenience class
BodyTagSupport . The BodyTag interface extends the tag interface so you can continue to code doSt art Tag and

doEndTag methods if you need to. In this example, you do not need to take action at the start or the end of the tag, hence,
you did not code the doSt art Tag and doEndTag methods.

For the most part, you would code doSt art Tag and doEndTag the same way in classes that extend Body TagSupport as
you would in classes that extend TagSupport . However, doSt ar t Tag should return the constant EVAL_BCODY_TAG, a
constant not found in the tag interface.

The name of the method that processes the tag’s body is doAf t er Body. More accurately, the doAf t er Body method is
invoked after the JSP container evaluates any statements or expressions. If you want to perform processing on the tag body
before any JSP statements are evaluated, code a dol ni t Body method.

Perhaps a table showing the order of method invocation is in order. Table 7-3 illustrates the order of method invocation.

Table 7-3;: Order of Method Invocation

Method Name When Executed

doSt art Tag The JSP container hits the start tag.

dol ni t Body After doSt ar t Tag execution, before JSP processing of
tag body.

no method The JSP container processes the tag body.

doAf t er Body After the JSP container processes the tag body.

doEndTag When the JSP container hits the end tag, after

processing the tag body.

The preceding order can be short-circuited by the return values of the methods. In the following section, you learn that if the
doAf t er Body method returns EVAL_BODY_TAG, the doAf t er Body method gets reinvoked after JSP tag body evaluation.

For you to process the tag body in your bean (tag handler), you must have access to the tag body. The method
get BodyCont ent provides such access, returning the tag body as an object of, appropriately, class BodyCont ent . Class

BodyCont ent is an abstract extension of JspW i t er. You operate on the tag body by invoking methods of class
BodyCont ent .

In Listing 7-8, you retrieved the tag body as a String by invoking the get St ri ng method. The String returned by
get St ri ng reflects the JSP processing done on the body.

To write output, you need a reference to the implicit out object. Although you may assume that you can access out by
referencing the pageCont ext object, you can’t. While your tag handler class would successfully compile, you would not get
any output.

To get a reference to the out object, you must invoke the get Encl osi ngW i t er method. Once you have the reference,
you write to the out object as usual.

Class BodyCont ent includes the get Reader method that returns the invoking Body Cont ent object as an input stream,
thereby enabling input stream operations to be performed on tag bodies.

Repetitively Processing the Tag Body

The doAf t er Body method should return SKI P_BQODY, assuming the tag body is to be evaluated only once. If you want to
repetitively process the tag body, your doAf t er Tag method should return a value of EVAL_BODY_TAG When doAf t er Tag
returns EVAL_BODY_TAG, the tag body is again processed by the JSP container and is followed by another call to

doAft er Tag.

For example, if you want the following tag:

<nytaglib:repeattag repeat="3">
This is line nunber
</ nytaglib: repeattag>

To produce the following lines of output:
This is line nunber 1

This is |line nunber 2
This is line nunber 3

The tag handler shown in Listing 7-9 does the trick.

Listing 7-9: Tag handler for repeating tag body processing

public class repeatline extends BodyTagSupport

{
private int nunfli nmes, nunili nmesLeft ;
private String repeat ;
public void setRepeat(String repString) {
repeat = repString ;
try {
nunili mesl eft = Integer.parselnt(repString) ;
} catch (Nunber For mat Exception nfe) {
nunii mesLeft = 1 ;
}
}

public String getRepeat() {
return repeat ;

}
public int doStartTag() {
try {

nunli mes = | nteger. parselnt(getRepeat())

} catch (Nunber For mat Exception nfe) {
numfi nes = 1 ;

}

return EVAL_BODY_TAG ;

}
public int doAfterBody() throws JspException {
if (numtinmesleft >0) {
int idx = nuntines - nuntinmesleft + 1 ;
BodyCont ent tagBody = get BodyContent() ;
String tagBodyAsString = tagBody. getString()
try {
JspWiter out = tagBody.getEnclosingWiter() ;
out.print(tagBodyAsString + " " + idx + "
")
t agBody. cl ear Body() ;
nuntinmesleft-- ;
} catch (1 CException ex) {
t hrow new JspTagException(ex.toString());
}

return EVAL_BODY_TAG ;
}

el se
return SKI P_BODY ;

The overall idea is to process the tag body based on the value of an integer named numTi nesLef t . Each time the tag body
is processed, the code decrements nunii nesLef t . When nunili mesLef t is zero, the code decides not to process the
loop body.

The key to this code is the returned value of doAf t er Body. When doAf t er Body returns EVAL_BODY_TAG, the JSP engine
processes the tag body, and then the server calls doAf t er Body again. Take note of the following line:

t agBody. cl ear Body() ;

The cl ear Body method erases the tag body content associated with the tag body object. If you omit this line of code, your
output would be as follows:

Here is line 1

Here is line Here is line 2
Here is line Here is line Here is line 3

Each invocation of doAf t er Body picks up the output from the previous invocations, along with the current contents of the
tag body.

Here’s another variation of repetitively processing the tag body, using a combination of tags:

<nytaglib:repeatline repeat="3" >

<nytaglib: formatLine reverse="fal se" fontSize="5" col or="green">
Here is line

</ nytaglib:formatLine>

</nytaglib:repeatline>

You can see that one tag is coded within another; the nyt agl i b: f or mat Li ne is a child tag of nyt agl i b. repeat|i ne.

You do not need to change the tag handlers for the preceding two tags to use the tags as coded. The output for the above
pair of tags is the same as the output for the myt agl i b: r epeat | i ne tag with the line of text as the tag body.

The body of the outer tag nmyt agl i b: r epeat | i ne is the result of processing the inner tag, myt agl i b: f or mat Li ne.
When the doAf t er Body method coded for the outer tag invokes its get Body Cont ent method, the invocation does not
return the code for the inner tag. The get BodyCont ent method returns the result of processing the inner tag.

You can reverse the order of the parent/child relationship as follows:

<nytaglib: formatLine reverse="true" fontSize="5" col or="green">
<nytaglib:repeatline repeat="3" >

Here is line

</nytaglib:repeatline>

</ nytaglib:formatLi ne>

Here is the generated HTML from this tag combination;

>r b<3
enil enil si sihT
>r b<2
enil enil si sihT
>r b<1

enil enil si sihT

If you were to test this example, this generated HTML would appear as a single green line in your browser.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tag Library Classes, Interfaces, and Components

As you might imagine, there’s plenty of behind-the-scenes activity to get the JSP container to understand a custom
tag. For a custom tag to work you need to:

1. Indicate in the JSP page that it uses custom tags using the t agl i b directive;
2. Tell the JSP container what to do when the it sees the tag by creating at ag handl er class;

3. Tell the JSP container what class to use when it processes the tag by creating a tag library descriptor file for the
tag library.

Let's examine these coding constructs one at a time, starting with the t agl i b directive.

Using the taglib Directive

The t agl i b directive has a simple syntax shown below:

<y@taglib uri=where_taglib_descriptor_is prefix=sone_prefix %

The uri attribute names the location of the tag library descriptor file. You can read about this file later in this chapter.

For now, know that the tag library descriptor file does what its name says — it describes the characteristics of the tag
library. The t agl i b directive tells your JSP page that the page uses a library, not a particular tag. The library might
only contain a single tag, or it might contain dozens.

A natural question arises — how do you reference an individual tag in the library in your JSP page? The answer is that
you use a prefix, identified as the value of the second attribute of the t agl i b directive, with the name of an individual

tag in the library. For example, the t agl i b directive shown below identifies all tags prefixed with nyt agl i b to be an
individual tag within the tag library described by format i b. t 1 d.

<v@taglib uri="formatlib.tld" prefix=nytaglib %

Here’s how such a tag may be referenced in a JSP page:

<nytaglib: Fornmat Li ne fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
Here’'s another |ine

</ nytagl i b: For mat Li ne>

In the preceding example, f ormat | i b. t | d is in the same directory as the JSP page containing the t agl i b
directive.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=996591096

Caution If the uri attribute value is an absolute reference (that is, one that begins with a slash), some servers,

such as Tomcat, map that absolute value to a file on the local system. You may be confused if you
specify a uri value that doesn'’t exist and notice that your JSP pages may still locate the tag library

descriptor file.

Now that you can tell your JSP page that it uses custom tags, you need to tell the JSP container what to do with the
tag.

Examining the Tag Interface

You implement the functionality of your tag by coding a Tag Handler Class. Your tag handler class implements the
j avax. servl et.jsp.tagext. Tag interface. This interface contains constants and methods that the container

invokes during the life cycle of your tag, including methods to perform at the start tag and the end tag.

In practice, your tag handler class does not usually implement the tag interface directly. Instead, you can extend a
convenience class of the tag interface named TagSuppor t if your tag is empty. You can also extend
BodyTagSupport if you want to process the tag’s body. This class already implements the BodyTag interface, which
extends the tag interface.

The tag interface defines four constants that govern the disposition of the tag body. Methods you code that describe

the actions that occur when the JSP container encounters your tag should return the appropriate constant. Table 7-1
lists these constants and their meanings.

Table 7-1: Constants in the Tag Interface

Constant Description

SKI P_BODY The server should not process the body of the tag.

SKI P_PAGE The server should not process the remainder of the
JSP page.

EVAL_BODY_| NCLUDE The server should evaluate the tag body.

EVAL_PAGE The server should process the remainder of the JSP
page.

Before delving into the details of the preceding — named classes and other classes required to implement a custom
tag — let’s take a look at the last component required to implement a custom tag: the tag library descriptor file.

Creating a Tag Library Descriptor File

The tag library descriptor file is a file in XML format that describes the class that implements the functionality of the
custom tags in your JSPs. The tag library descriptor file, or t | d, contains the names of the tags with additional

information.

You can find the official DTD describing the elements and attributes ofatl dathttp://j ava. sun. com dt d/ Wb-
jsptaglibrary 1 1.dtd forJSP, release 1.1.

You cannot create a t | d unless you have a basic understanding of XML. If you haven’'t read Appendix D yet, read it
now.

Next, you can see how to code acl ass, t| d, and t agl i b directive for a custom tag. Let’s start with coding the t | d.

http://java.sun.com/dtd/Web-jsptaglibrary_1_1.dtd
http://java.sun.com/dtd/Web-jsptaglibrary_1_1.dtd

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Tags Versus Using JavaBeans

In Chapter 6, you read about using the j sp: useBean action to access a bean from a JSP page. However, this action

is limited to accessing the bean's exposed properties. Within your bean, your mutator methods influence the values of
your bean properties. For example, the JSP code below accesses a bean that generates HTML of a certain font size
and color. In addition, the bean has a property that, when true, reverses the text. The entire JSP page does not need
to be shown; the relevant code illustrates the point.

<j sp: useBean i d="exbean" cl ass="chapter7. ExBean"/>

<j sp: set Property nane="exbean" property="fontSize" val ue="2" />

<j sp: set Property nane="exbean" property="fontColor" val ue="red" />

<j sp: set Property nane="exbean" property="reverse" value="false" />

<j sp: set Property nane="exbean" property="htm line" value="This is <i>Line 1</i>" />
<p>HTM. |ine

<j sp: get Property nane="exbean" property="htnmline" />

<j sp: set Property nane="exbean" property="fontSize" val ue="5" />

<j sp: set Property nane="exbean" property="fontCol or" val ue="blue" />

<j sp: set Property nane="exbean" property="reverse" value="true" />

<j sp: set Property nane="exbean" property="htm line" value="Here's another line" />
<p>Anot her HTM |i ne

<j sp: get Property nane="exbean" property="htmline" />

Here’s the code within the bean class ExBean that sets the value of bean property ht ml | i ne. As with the preceding
listing for the JSP page, the entire bean doesn’t need to be shown because the set method for the ht ni | i ne
property suffices.

public void setHtmline(String linel) {
String | ocFont Si ze = get Font Si ze() ;
String col or = get Font Col or ()
String linetext = (getReverse())?
((new StringBuffer(linel)).reverse()).toString() : linel ;

htmline = "" +
"" + |inetext +
"</ font>";

}

Figure 7-1 shows the page.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=173255841

E Usging a Béan 16 Ganérate HTRL - Miciosoll [atéinet Exploiai M= E

Fle Edt Yiew Favoites Iook Hebp m

| Addrass [hip /Ao bt BRI eearmples g chapte Texample jip x| G

T [~ =) i
Bk L =] FAsheth Hurer

[|

HTHL line

e e =i

Anokher HTML line
enil rehtona s'ereH

-

Figure 7-1: Using bean properties to generate HTML

Compare how clumsy and inelegant the preceding example is with the following code:

<nytaglib: Fornmat Li ne fontSi ze="2"
f ont Col or ="r ed"
reverse="fal se">
This is <i>Line 1</i>
</ mytaglib: For mat Li ne>
<nytaglib: Fornmat Li ne fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
Here’'s another |ine
</ mytaglib: For mat Li ne>

Notice how natural the syntax of the custom tag fits with a page of HTML or XML text. By comparison, the JSP code
for using the bean seems archaic. Getting, setting, and using bean property values in your JSP pages is a worthwhile
and powerful feature. Sadly, using beans and the associated j sp: set Property and j sp: get Property actions

clutters your pages with counterintuitive coding structures.

Yes, you can code scriptlets to generate the content shown in Figure 7-1. However, placing the Java code inside your
JSP page could blur the distinction between presentation and logic. You would trade using JSP actions with using
Java code.

In summary, you can use JavaBeans with the JSP action commands (or scriptlets) to accomplish much of what you
can with custom JSP tags. However, coding custom tags in your JSP pages looks more natural than the alternatives.

Next, you can read about the components that constitute a custom tag followed by the code for a simple tag.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 6: JSP and JavaBeans

You may recall from Chapter 3 that an essential advantage of using JSP over competing technologies is that JSP

enables you to separate the business logic from the appearance of your Web pages. You can separate business logic
from presentation by using J2SE and J2EE APIs to code your business logic in Java components and by using static
and dynamically generated HTML to code your presentation. Java components called JavaBeans are particularly
important to the JSP author.

This chapter shows you how to use JavaBeans in your JavaServer Pages, starting with an overview of JavaBeans,
including how to access data within JavaBeans in your JSP pages. Several examples of accessing JSP pages and
changing data within JavaBeans are shown. At the end of this chapter, you can be ready to use JavaBeans in your
JSP pages.

A JavaBeans Primer

JavaBeans is a topic worthy of entire tomes, but you do not need to be a JavaBeans expert to use them in your JSP
pages. The purpose of this section is to cover enough about JavaBeans to show you how to integrate JavaBeans with
your JSP pages.

JavaBeans Defined

Simply defined, JavaBeans are a standard for writing Java software components. As mentioned in Chapter 1, an
important virtue of using software components is the ability to plug in components as needed. To accomplish the all-
important separation of logic from presentation, it's necessary to discuss how to plug JavaBean components into JSP
pages because JavaBeans encapsulate the business logic.

Note Do not confuse JavaBeans with Enterprise JavaBeans. Enterprise JavaBeans are JavaBeans with special
characteristics that allow them to work with EJB containers. Enterprise JavaBeans are the focus of the
second half of this book. Feel free to read ahead in Chapter 11 for a more complete explanation of

Enterprise JavaBeans.

Note Sun provides the Bean Development Kit, or BDK, for Java developers interested in creating JavaBeans. You
can download a copy at http://java.sun.com/products/javabeans/software/bdk_download.html.

The JavaBean specifies a component architecture for Java classes where a JavaBean is a public class that
(minimally) has an empty constructor, no public instance variables, and get/set methods for accessing persistent data
stored within the bean. In other words, a JavaBean is an object with a well-defined interface. Good Java programmers
already code Java classes with hidden instance variables encapsulated with accessor methods. You are halfway there
to coding JavaBeans for use in your JSP pages!

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=769372013
http://java.sun.com/products/javabeans/software/bdk_download.html.

Note You may encounter the term bean as you read about JavaBeans, here and throughout Java literature. A
bean is an instance of a class created as a JavaBean. In some circles, a bean may mean an Enterprise
JavaBean, too. In this book, bean refers to an instance of a JavaBean class and enterprise bean refers to an
instance of an Enterprise JavaBean.

Professional Java development environments use the Java Programming Language's inherent introspection feature to
peek inside JavaBeans, enabling the Java developer to access and change the properties of JavaBeans by using a
GUI. The environments use structures akin to property sheets to get and set bean property values. You must follow a
convention, which you may already know, when naming your accessor methods. This convention is explained later in
this chapter in the section “Coding JavaBean Property Accessor Methods.” It's important to note that a Java developer
can use a JavaBean without knowing anything about the bean’s internals; the entire state of the bean is described
through its properties, which must be accessible through the bean’s accessor methods. After all, that's what writing
component software is all about.

Another requirement of all JavaBeans is that they implement either the Seri al i zabl e interface or the
Ext er nal i zabl e interface. This requirement allows a bean to be persistent, an attribute inherent to all objects that
implement either of these interfaces. In this book we will only consider the Seri al i zabl e interface.

You may be muttering to yourself, “Great! | have to become a JavaBean maven in order to use JavaBeans in
JavaServer Pages.” Don't worry! Everything you need to know about using JavaBeans in your JSPs is in the
preceding brief definition. If you create a public class with a zero-argument constructor and no public instance
variables, you can use this class in your JSP pages. If you want to save persistent data, you can write this data to a
database or implement Seri al i zabl e. Rather than coding blocks of scriptlets or methods in your JSPs, you can

code JavaBeans containing the scriptlet or method code and invoke the methods from the bean in your JSPs. Now,
that's not so bad, is it?

Before you read about how to code your JSPs to use JavaBeans, a few words about coding JavaBeans are in order.

Coding JavaBeans

Basically, coding JavaBeans resembles coding any Java class; remember to code your bean publ i c, write (or
enable Java to automatically create) a zero-argument constructor, define no publ i ¢ instance variables, and use get
and set methods to provide access to your nonpublic instance variables.

You may already know how to code a public Java class and use a zero-argument class constructor. Whether this is
the case or not, here’'s an example of a public class declaration with a zero-argument constructor:

public class Soned assNane {
/I Here's the no —arg constructor
public Somed assNane() { }
// Rest of the code for this class follows...

You can give your instance variables any visibility except publ i ¢, although most of the time you may opt for
pri vat e visibility for your instance variables.

Writing a method in a JavaBean is exactly the same as writing a method in any Java class. Code your methods as you
would for any Java class, using the familiar Java language constructs you've come to know and love.

Coding JavaBean Property Accessor Methods

As previously mentioned, you must follow a naming convention when coding accessor methods to read values from
and write values to instance variables. JavaBean tools follow the naming convention when looking inside the bean.
These tools then extract the bean properties, enabling the bean user to change the state of the bean by changing the
bean properties through a property sheet.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=624853273#wbpch06fP27

The naming convention details depend on whether or not the instance variable representing a bean property is an
array or not. Bean properties represented as arrays are known as indexed properties. First, let’'s consider the case in
which bean properties are not represented as arrays.

Coding Accessor Methods for Non-Array Bean Properties
The following is a description of the naming convention for accessor methods of non-array bean properties:

Given a variable named anl nst anceVar i abl e, declared as follows:

private Soned assOrPrimtiveType anlnstanceVari abl e ;

the get method that reads the variable’s name can be coded as follows:

public Somed assOrPrinmtiveType get Anl nstanceVari abl e() {
return anl nstanceVari abl e ;
}

Notice the following about the variable declaration and the get method:

. The variable anl nst anceVari abl e is declared pri vat e. The pri vat e declaration insures that users of your
bean cannot access the bean’s i nst ance variables at will. The bean user has to access the i nst ance variables
through an approved interface.

. The get method is declared publ i c. The get method is part of the approved interface the bean exposes to the
outside world.

. The get method takes no arguments.

. The name of the get method is the word "get" followed by the name of the instance variable with the first letter of
the variable name capitalized. However, when the instance variable is of type bool ean, you may name the
method starting with the word is instead of the word get.

. The get method returns some element of the same class or primitive data type as the i nst ance variable.

The preceding list of restrictions is required for bean use. Suppose you coded the get Anl nst anceVari abl e
method without following the rules? For example:

public Somed assOPrimtiveType

get Anl nst anceVari abl e(O assl objCassl) {
return anlnstanceVari abl e ;

You could invoke the method to “get” the instance variable. However, JavaBean tools would not know the preceding
coded method is a get method. The difference in signatures between the no-argument get method and the method

coded above would "fool" the bean tool. Stated differently, the preceding coded method does not follow the standard
for coding JavaBeans. To the bean tool, the above method is not related to a bean property.

One common mistake is to forget that the first letter of the i nst ance variable name included in the set method name
must be capitalized. Hence, the method header coded as follows fails the naming standard:

public Somed assOrPrimtiveType getanl nstanceVari abl e()

When you access bean properties in your JSPs, you must code get methods according to the convention described
previously, or else the JSP engine, as with bean tools, will fail to recognize the method as a get method.

In the preceding example, the get method merely returns the i nst ance variable. Of course, you may code methods

that do all sorts of useful work before returning the element. You are free to use any elements at your disposal to
derive a value for the method to return. For example:

public Sonmed assOPrimtiveType get Anl nstanceVari abl e() {
Classl objectdassl = new O assl() ;
SoneC assOrPrimtiveType aVar =
obj ect d assl1Anot her Met hod (objectd assl1,
anot her El ement) ;
return avar ;

In the preceding example a new object is created and another method queried before the final value, aVar is returned
to the caller.

You may also have get methods that don't query an specific instance variable. For example, if you have a bean with
the bool ean property net wor kUp, the method i sNet wor kUp would query the network and return a result based on
the status of the network.

In practice, many get methods just return the current value of the i nst ance variable. Much of the manipulation of
setting i nst ance variable values is done in "set" methods. Set, or mutator, methods enable a bean user to change
the value of a bean property. Here’s an example modeled after the get method above:

public void setAnl nstanceVari abl e(SoneC assOrPrimtiveType aVar) ({
anl nstanceVvari able = aVar ;

}

Notice the following about the set method:

. The set method is declared publ i c.
. The set method returns voi d.
. The set method takes one argument of the same class or primitive type as the i nst ance variable.

. The nane of the get method is the word "set" followed by the name of the i nst ance variable with the first letter of
the variable name capitalized.

Notice that set Anl nst anceVari abl e, anl nst anceVari abl e is set to the value of aVar which was passed into
the method. While it is not a requirement of the set method that it contain one or more assignment statements, this is
usually the case.

You don't need to write both get and set methods for a bean property. If your JSP or Java code doesn’t need to
change a bean property, then you shouldn't create a set method for that property.

The following section takes a quick look at coding accessor methods for indexed bean properties.

Coding Accessor Methods for Indexed Bean Properties

The basic idea and rationale for coding get and set methods for indexed properties is the same as those for non-

array properties. Needing some mechanism for accessing an array element, consider the following indexed property
declaration:

private SupportedType[] anArrayO Thi sType ;

Then the method header would appear as follows:
public SupportedType get AnArrayCf Thi sType(int arrlndex)

For example, the method invocation coded below reads the fourth element (or index value 3):
aVar O Support edType = get AnArrayCF Thi sType(3) ;
The set method that writes an indexed property requires two arguments: the array position and the data to be written
to the property. Here’s the method header for a set method for the indexed property declared in the previous code
listing:
public void set AnArrayOf Thi sType(int arrlndex,

SupportedType aVar)

For example, the method invocation in the following writes some data into the fourth array element:
set AnArrayO Thi sType(3, aVar Of SupportedType) ;

Now that you've seen the basic elements that comprise a bean, let’s take a look at a simple bean.

Creating a Simple Bean

The code in Listing 6-1 shows a simple bean. Later in the chapter, this bean will be used in a JSP.

Listing 6-1: The CalcBean class

1 package cbean ; /11

2 public class Cal cBean {

3 /**

4 Cal cul ator bean for Chapter 6

5 */

6 private int operandl = 0 ; /12
7 private int operand2 = 0 ;

8 private double result =0

9 private String operation = "" ;

10

11 /I No-arg constructor for bean...

12 public Cal cBean() { } /13
13

14 /] Get/ Set methods follow

15 public void setOperandl(int opl) { /14
16 operandl = opl

17 }

18 public void setCperand2(int op2) {
19 operand2 = op2

20 }

21 public void setOperation(String oper) {
22 operation = oper

23 }

24 public void setResult(double aResult) {
25 result = aResult

26 }

27 public int getQperandl() { /15
28 return operandl ;

29 }

30 public int getOperand2() {

31 return operand2 ;

32 }

33 public String getQperation() {

34 return operation

35 }

37 public double getResult() {

38 return perfornrheQperation() ; //6
39 }

40 | **

41 Performthe operation..... generate the result
42 */

43 private doubl e perfornirheOperation() {
44 doubl e aResult = 0.0

45

46 if (operation.equals("+"))

47 aResult = operandl + operand2 ;
48 el se

49 if (operation.equals("-"))

50 aResult = operandl - operand2 ;
51 el se

52 if (operation.equals("*"))

53 aResult = operandl * operand2 ;
54 el se

55 if (operation.equals("/"))

56 aResult = operandl / operand2 ;
57

58 return aResult

59 }

60 }

A cursory examination of Listing 6-1 reveals its purpose, which is to serve as a simple calculator. Cal cBean has four
properties: two operands, an operation, and the result of the operation applied to the operands. To keep things simple,
this bean does not include any code that checks for errors (such as zer odi vi de) or performs any edit checks on
property values.

Line 1 shows the bean stored as a package. It is a good Java programming practice to use packages to group related

classes together. Here, we have only one class so the use of packages may seem a bit pedantic. Later, you'll see
where you should put the Cal cBean class within the Tomcat server’s directory structure.

Line / / 2 shows the declarations for the bean properties. Notice that the properties are declared with the pri vat e
visibility modifier. The bean requirement is that bean properties are not declared publ i ¢c; you can have declared

bean properties as protected or use default package visibility. If our bean has subclasses that need access to the
bean’s properties, you can make a case for using the pr ot ect ed visibility modifier. Of course, you can still declare

the properties pri vat e and use get / set methods within the subclasses to gain access to the bean properties. Note

that because bean properties are permitted to have initialized values, when this bean is created, its properties are
given these initial values.

Line / / 3 shows the no-arg constructor. You do not need to explicitly code the empty constructor because, as you

recall, Java uses the empty constructor by default. The important point is not to code a constructor that requires
arguments.

Line / / 4 shows a typical set method and line / / 5 shows a typical get method. The coding of the get and set

methods follows the convention described in the preceding section. Remember, if you do not code your accessor
methods according to the described convention, bean tools and the JSP container recognize the methods as accessor
methods.

Line / / 6 shows a get method that invokes a method to generate the result of the calculation. You could have
included the body of the method per f or nTheQper at i on within the get method or coded per f or nTheQper ati on
in another bean or class.

JavaBeans, as software components, must have the ability to communicate with other components. In the following
section, you can read how to code your beans so they can communicate with other beans.

Communicating with Other Beans

The standard Java event delegation mechanism enables you to code JavaBeans to communicate with other objects or
beans. Beans that are the source of communication are designated event sources, whereas interested beans, ones
that care about the activities of source beans, are the event listeners.

For example, you may want bean A to know when properties in bean B change. If so, bean B is the event source and
bean A is the event listener. The events bean A listens for are property change events.

Top <

| <= Prov_ | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining Some JSP Pages

In this section, you'll see a few simple JSP pages and read a brief explanation of the JSP elements and how these
elements produce dynamic content.

A Simple JSP Page: Your Name Here and ereH emaN ruoY

This JSP page code in Listing 3-1 requests that the user enter his or her name, after which it invokes a JSP that
displays the user’s name and the name spelled backward. Listing 3-1 shows an HTML page that contains a reference

to a JSP followed by a JSP that generates the HTML containing the entered name and the name in reverse. Listing 3-
1 shows the HTML page, f or war dr ever se. ht ml , that requests user input.

Listing 3-1: HTML page requesting a JSP

<HTM_>

<HEAD>

<TI TLE>JSP Page to Display Name, Forward and Reverse</ Tl TLE>
</ HEAD>

<BCDY>

<P>Ent er Your Nane Bel ow</ P>

U WN PP

~

<FORM METHOD="GET" ACTI ON=" ShowFor war dAndRever se. j sp" >
8 <I NPUT TYPE="TEXT" S| ZE="20" NAME="your nang" >

9 <INPUT TYPE="SUBM T" >
10 </ FORW>
11 </ BODY>
12 </ HTM.>

The HTML page above does not contain any JSP. Rather, the <FORM> tag on line 7 invokes a JSP named

Showkor war dAndRever se. j sp when the user clicks the Submit button. If the user enters the name Lou Marco, the
SUBM T process encodes the data and passes it as a name-value pair, your name=Lou+Mar co, and then passes the
following URL to the server: http://I ocal host: 8080/ f or war dr ever se. ht M ?your name=Lou+Mar co.

Note Use the Tomcat Web server, which has a JSP engine. See Appendix C for instructions on installing and
configuring the Tomcat server.

Listing 3-2 is the first of two examples that show slightly different ways to code Showor war dAndRever se. j sp.

Listing 3-2: A JSP page that prints name forward and reverse

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=631828715

1 <%@ page | anguage="java" %

2 <% - JSP Page Wth Scriptlet --%

3 <!-- JSP Page Wth Scriptlet -->

4 <HTM.>

5 </ HEAD>

6 <TI TLE>Showror war dAndRever se. j sp</ Tl TLE>

7 </ HEAD>

8 <BODY>

9 <% - Here is the JSP scriptlet --%

10 <% String yourNanme = request. get Paraneter("yournane") ;
11 StringBuffer yourNanmeReverse =

12 new StringBuffer(yourNane).reverse() ;

13 out.println("<P>You Entered " + yourNane) ;

14 out.println("<P>Your Nanme Backwards is " + yourNaneReverse) ;
15 %

16 </ BODY>
17 </ HTM.>

The first thing that pops out is that the JSP page contains elements that begin with the characters <%and end with the
characters % . JSP elements are bracketed with <%and %. The JSP engine identifies types of JSP elements with
additional characters appended to <% For example, lines 2 and 9, bracketed with <% - and - - %, are JSP
comments. The JSP engine does not include JSP comments during the class file translation and, of course, the JSP
engine does not use the JSP comments when compiling the page into a servlet. As an aside, line 3, the HTML
comment, is passed to the JSP engine for translation and compilation.

Lines 3 through 8 and 16 and 17 are static HTML, which are passed to the JSP engine for translation and compilation.
The resultant servlet writes these lines to the output stream with out . wr i t e statements.

Line 1 is an example of a JSP directive. A JSP directive sets various page parameters that affect the structure and
properties of the JSP page. The directive coded on line 2 states that the scripting language used in this JSP page is
Java. In the JSP 1.1 and 1.2 specifications, the only defined and required scripting language for the | anguage

attribute is j ava. However, other JSP implementations support other scripting languages beside Java. Allaire's "Jrun"
and Caucho Technology's "Resin" are JSP implementations that support JavaScript and Java as scripting languages.

A few points about coding JSP directives are in order here. Notice that the JSP directive (line 1) is bracketed by <%@
and % . You may code whitespace between the @sign and the directive (page in this case). You cannot code any
whitespace between the attribute and its value (I anguage="j ava" in this case). Chapter 4, "The Elements of a JSP
Page," contains more information on JSP directives.

Lines 10 through 15 contain a JSP scriptlet. Scriptlets are pieces of Java code that are inserted into the service
method generated by the JSP translator. Scriptlets are sandwiched between <%and %. Line 10 shows a Java String

declare with a call to method get Par anet er from the predefined request object instantiated from class

Ht t pSer vl et Request . As you can read in Chapter 4, JSP pages have access to a set of predefined objects, of
which the request object is one. The call to get Par anet er requires a parameter name represented as a string object
as an argument. The argument used is the name of the text input box coded on line 2 from Listing 3-1 (your nane).

Line 11 shows another string declare, your NaneRever se, initialized with a call to r ever se() , a method from the
Stri ngBuffer classinthe j ava. | ang package. You do not need to do anything to have JSPs recognize elements
from j ava. | ang because JSPs are translated into a Java class and then compiled into a servlet. The compiler that
creates the servlet does not need any import statements or special setup to recognize elements from the j ava. | ang
package. If your JSP needed methods from, say, j ava. uti |l . Vect or, you would have to use a JSP directive (the
page directive, actually) to generate an import statement that imports the required methods.

Lines 13 and 14 compile to output statements that write the entered name forward and backward. These two lines
reference pri nt | n from another JSP predefined object, out . As previously mentioned, Chapter 4 has the full scoop

on these JSP predefined objects.

Notice that lines 13 and 14 output an HTML <P> tag. Although you can code HTML tags with JSP output statements,
you should not do so. It's good design practice to separate the programming logic, provided by coding JSP tags, from
page formatting tags. You can read a bit more on the separation of logic from presentation later in this chapter.

Listing 3-3 shows the generated HTML resulting from the JSP page in Listing 3-2.

Listing 3-3: The HTML generated by the JSP page

<l-- JSP Page Wth Scriptlet -->
<HTM_>
</ HEAD>
<TI TLE>ShowFor war dAndRever se. j sp</ Tl TLE>
</ HEAD>
<BODY>
<P>You Entered Lou Marco
<P>Your Nane Backwards is ocraM uoL
</ BODY>
0 </ HTML>

P OO~NOOOTDS WNPE

Listing 3-4 shows another variation of the JSP page that can generate the HTML shown in Listing 3-3.

Listing 3-4: A variation of the forward and backward JSP page

1 <%@ page | anguage="java" %

2 <% - JSP Page Wth a Declaration and Expressions --%

3 <HTM_>

4 </ HEAD>

5 <TI TLE>ShowFor war dAndRever se. j sp</ TI TLE>

6 </ HEAD>

7 <BODY>

8 <% - Here is a JSP declaration --%

9 <% String yourNanme = request.getParaneter("yournane") ; %

10 <% - Here are sonme JSP expressions %

11 <P>You Entered <% yourNane %

<P><% "Your Nane Backwards is " +

12 new StringBuf fer(yourNane).reverse() %
13 </ BODY>

14 </ HTML>

Line 2 of Listing 3-4 is a JSP comment and line 1 is the same JSP directive as coded in Listing 3-2. Again, lines 3

through 7 and 13 and 14 are straight HTML. Line 9 is an example of a JSP declaration. JSP declarations are
bracketed with <% and %. You may code complete Java declare statements and complete Java method code in a

JSP declaration. Line 9 shows the declaration and initialization of the string variable containing the string entered in
the HTML form.

Lines 11 and 12 are examples of JSP expressions. A JSP expression is compiled to an output statement that writes a
string. The string is formed by evaluating the expression sandwiched between <@ and %>. JSP expressions use the
toString() method to convert non-string objects to strings for output, as in the following expression:

<% your Nane %

produces the same output as the scriptlet below:
<% out.println(yourName) ; %

Line 11 shows a JSP expression containing a variable declared with a JSP declare. Line 12 shows some text
concatenated with a Java method invocation. The HTML paragraph tags are outside the JSP expression tag markers.
JSP may accept HTML tags coded within the tag markers. However, including HTML tags, which are formatting
elements, with logic elements within JSP expressions is usually a poor coding practice.

The generated HTML is identical to that shown in Listing 3-3; no need to be repetitious.

Now that you've seen a few simple JSP pages, you might wonder about competing technologies. How does JSP stack
up against the competition? What features does JSP have that the competition doesn’t? What are the advantages and
disadvantages of using JSP? The above questions are addressed in the next section.

Top <

| <= Prov_ | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=570140911#wbpch03fP87

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 4: The Elements of a JSP Page

In the previous chapter, you explored some simple JSP pages. In this chapter, you learn about all the elements of a

JSP page and you see coding examples using these elements. After you read this chapter, you'll have an
understanding of how to code all the JSP elements mentioned.

Coding Static Page Content in JSP Pages

You've read that a JSP page is static text, often in the form of HTML or XML tags, combined with programming
elements responsible for generating dynamic content. Often, a sizeable chunk of your JSP page is static. To use such
static text in your JSP, you code the static text “as is” into the page, using whatever syntax rules apply to the class of
text. If your static text is HTML, for example, you code the HTML as you always would, using the known and familiar
syntax rules for proper HTML formation.

The static text you code in the JSP page ends up as Java pri nt | n statements in the generated servlet. The

generated servlet eventually passes the text back to the client, where the browser displays the text together with
generated dynamic page content. Typing text in a JSP page is a plus compared with writing pri nt | n statements to

generate the text in a servlet.

Before you leave the subject of including invariant text in your JSP pages, know that HTML or XML comments will
pass through unchanged like any other static text and display in the browser, but JISP comments will not.

The remainder of this chapter describes the programmable elements of a JSP — those elements responsible for
generating dynamic content.

Top <

| <= Prov_ | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=730249795

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

JSP is useful in Web application programming because it allows us to create dynamic Web pages that leverage the
full power of the Java programming language by mixing static HTML and JSP tags. JSP pages are created in a text
editor and are interpreted by a JSP container. The JSP container translates JSP pages into Java class files, which are
compiled into servlets. JSP offers distinct advantages over competing technologies but is not without its shortcomings.

In this chapter we've seen our first JSP page examples. In the following chapter we'll break down the parts of a JSP
page and examine them each in turn.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=736132539

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & J5F _ by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Programmable JSP Elements

Programmable JSP elements are divided into five categories: directives, scripting elements, declarations, expressions, and
actions. Let’s take a look at the elements in the first category.

JSP Directives

JSP directives are JSP elements that send messages to the JSP container. Directives affect the overall structure of the servlet
generated from the JSP page. JSP directives do not produce any output to the generated document.

The general format of a JSP directive is:
<Y@directiveType attributelist %

The first word, di r ect i veType, is one of three values: page, i ncl ude, and t agl i b. The second word, attri butelist,is

one or more name-value pairs; the name part is the name of the attribute relevant to the directive type and the value is a quoted
string relevant to the attribute name. If the directive contains more than one name-value pair, the distinct pairs are delimited by
one or more spaces, such as the following JSP directive:

<% page buffer="8k" |anguage="java" %

Note The syntax for name-value pairs is the same as the syntax for XML name-value pairs. See Appendix D, “XML Overview,” for an overview of XML syntax.

Pay heed to the “at” (@ sign after the <%at the start of the directive; pay equal attention to the absence of the "at" sign at the end
of the directive. Also note that the space between the start of the directive and the di r ect i veType is not required.

The page Directive

The page directive enables you to communicate a number of important attributes to the generated servlet. Using the page

http://www.unltded.com/viewer.asp?bkid=2878&destid=542#542

directive, you can direct the servlet to import classes, define a general error reporting page, or set a content type. The page
directive follows the general form shown below:
<%@ page attributelist %

You can code one or more page directives in your JSP page. However, with one exception, take care to ensure that you code
only one name-value pair per page. The exception is that you may code more than one i nport attribute, the use of which is
explained shortly.

You may code page directives anywhere in your JSP page. By convention, page directives are coded at the top of the JSP
page.

JSP also permits a coding style that follows XML syntax rules. The following is an example of a page directive coded with the
XML style:

<jsp:directive. page buffer="8k" />

The preceding page directive is the same as the example shown here:
<%@ page buffer="8k" %

Table 4-1 lists the allowable list of attributes with a short description of each.

Table 4-1: Allowable Page Directive Attributes

| Page Directive Attributes | Short Description

| buf f er | Specifies a buffering model for the output stream

| aut oFl ush | Controls the behavior of the servlet output buffer

| cont ent Type | Defines the character encoding scheme

| error Page | Defines the URL of another JSP that reports on Java unchecked runtime exceptions

| i sErrorPage | Indicates if this JSP page is a URL specified by another JSP page's er r or Page attribute
| ext ends | Specifies a superclass that the generated servlet must extend

| i mport | Specifies a list of packages or classes for use in the JSP as the Java i nport statement does for Java classes
| info | Defines a string that can be accessed with the servlet's get Ser vl et | nf o() method

| i sThreadSaf e | Defines the threading model for the generated servlet

| | anguage | Defines the programming language used in the JSP page.

| session | Specifies whether or not the JSP page participates in HTTP sessions

Now let's explore the attributes listed in Table 4-1 in more detail.

The buffer Attribute

The buf f er attribute specifies buffering characteristics for the server output response object. You’'d want a buffer for efficiency

because buffered output is usually quicker than unbuffered output. Writing to the browser requires resources. The server sends
buffered output in large blocks a few times, which requires less resources than sending unbuffered output in small blocks more
often. You may code a value of "none" to specify no buffering so that all servlet output is immediately directed to the response
object. You may code a maximum buffer size in kilobytes, which directs the servlet to write to the buffer before writing to the
response object. Here are a few coding examples:

To direct the servlet to write output directly to the response output object, use the following:
<% page buffer="none" %

Use the following to direct the servlet to write output to a buffer of size not less than 8 kilobytes:
<%@ page buffer="8kb" %

The exact size depends on the server. The behavior of the buffer when full is indicated by the value of the aut oFl ush attribute,
which is described in the next section. The default value of the buf f er attribute depends on the server implementation.

The autoFlush Attribute

The aut oFl ush attribute controls the behavior of the buffer or, more specifically, what happens to the output buffer when the
JSP is buffered and the buffer is full (see the buf f er attribute above). The aut oFl ush attribute takes a Boolean as a value.
Some examples accompanied by a brief description of the directive follow.

The following directive causes the servlet to throw an exception when the servlet’s output buffer is full:

<% page aut oFl ush="fal se">

This directive causes the servlet to flush the output buffer when full:

<% page aut oFl ush="true">

Usually, the buf f er and aut oFl ush attributes are coded on a single page directive as follows:

<% page buffer="16kb" autoflush="true" %
The preceding directive establishes an output buffer not greater than 16 kilobytes that is flushed automatically when full.

This directive generates an error. It doesn’t make sense to code the aut oFl ush attribute without a buffer:

<%@ page buffer="none" autoflush="fal se" %

http://www.unltded.com/viewer.asp?bkid=2878&destid=80#80

The default value of the aut oFl ush attribute is true.

The contentType Attribute

The cont ent Type attribute sets the character encoding for the JSP page and for the generated response page. Put differently,
the cont ent Type attribute tells the browser how to render the generated page. You can code ani ne typeoram ne type
and char set . Some examples follow.

The following statement directs the browser to render the generated page as HTML:
<% page content Type="text/htm" %

The following statement directs the browser to render the generated page as plain text:
<%@ page content Type="text/plain" %

Note Internet Explorer seems to ignore the cont ent Type value of t ext / pl ai n. If your JSP page contains HTML, Internet Explorer will render the page as HTML.

The following directive sets the content type as a Microsoft Word document. Listing 4-1 is an example of a JSP page that
specifies a cont ent Type of Microsoft Word.

<% page cont ent Type="application/ msword" %

Listing 4-1: JSP page specifying page content is a Microsoft Word document

<%@ page cont ent Type="application/ msword" %
<htm >

<head>

<title>Showi ng the content Type Attribute</title>
</ head>

<body>
Here's sone Bol ded Text followed by sone
<i>ltalicized Text</i>.

<P>Here's sone nore text
</ body>

</htm >

Displaying this page in Internet Explorer gives rise to the File Download prompt, shown in Figure 4-1.

il b Chirian o dowrload a Rl bom Bhit location

frateetyge B nom kocabad

Wt vl o B i s v B e
 Deen s e liom i cunend location
% [i il b)

Ayt b bedone ofsereng Bie hype of ke

[0k]| coce | Moelio |
Figure 4-1: Internet Explorer asks you what to do with this MIME type.

Were you to open the file from its present location, Internet Explorer would display the file as a Word document. Were you to
save the file, Windows would save the file as a Word document. Netscape would behave in a similar fashion.

You can set a character set for encoding as the following example illustrates:
<%@ page content Type="TYPE=t ext/ pl ai n; CHARSET=| SO 8859- 1" %

Set the type to plain text using the character set | SO 8859- 1.

The errorPage Attribute

The er r or Page attribute defines another JSP page as one that handles unchecked runtime exceptions. The value of the
er r or Page attribute is a relative URL.

Note Relative URLs, when coded with / as the first character (called a context-relative path), are referenced from the application; when coded without / as the first character, they are
referenced from the JSP page. You cannot code an absolute URL reference in JSP pages.

For example, the following directive displays MyEr r or Page. j sp when all uncaught exceptions are thrown:
<%@ page error Page="MErrorPage.jsp" %

MyEr r or Page. j sp is stored in the same directory as the page containing the above page directive. If you code the directive as
follows:
<% page errorPage="/ MyErrorPage.jsp" %

then MyErrorPage is stored in the root directory of the application.

You can use the set At tri but e() method of class j avax. servl et. | sp. Servl et Except i on to pass the exception object

to the error page. Since JSP error pages are meant to inform on uncaught exceptions, you'll use error pages to report on such
exceptions rather than attempt recovery.

The JSP page MYEr r or Page. j sp must have a page directive with the i sEr r or Page attribute set to true.

The isErrorPage Attribute

The i sErr or Page attribute indicates whether or not the JSP page is the URL coded in another JSP page’s er r or Page
attribute. The value of i SErr or Page is either true or false. The default value of the i sEr r or Page attribute is false.

The extends Attribute

The ext ends attribute specifies a superclass that the generated servlet must extend. For example, the following directive directs
the JSP translator to generate the servlet such that the servlet extends sonePackage. Soned ass:

<% page extends="sonmePackage. SoneC ass" %

Do you see a potential problem with coding a value for the ext ends attribute? The server may be using a superclass already, or
may require that generated servlets extend another, different superclass than the superclass coded as a value for the ext ends
attribute. If you use the ext ends attribute, be careful.

The import Attribute

The i nport attribute serves the same function as, and behaves like, the Java import statement. Classes coded as values for
the i nport attribute are made known to the generated servlet.

If you do not code any page directives with i nport attributes, the generated servlet imports, at a minimum, the following
classes:

. java.l ang. *
. javax.servlet.*
. javax.servlet.jsp.*

. javax.servlet.http.*

Different servers may import additional classes, but the preceding list of classes is required to have a functioning JSP
environment.

You should not rely on your JSP pages having access to classes other than the ones listed without importing the classes
yourself! Wouldn’t you be embarrassed if your carefully coded JSP pages executed perfectly on server A but choked big time
when the company switched to server B, a different Java-enabled server?

The following example allows you to code unqualified references in a JSP page for classes in sonePackage:
<%@ page i nport="sonmePackage.*" %

The i nport attribute is the only attribute that may be coded multiple times in a JSP.

Be advised that different Web servers use different directory structures. Therefore, in all likelihood, server A may force you to
store your custom classes in a different directory than server B. Some servers require that you store classes used by your JSP
pages in a different directory than the directory used to store custom classes for your servlets. The moral of the story is that a
cursory glance at the server documentation is worth an hour of directory code examination and trial and error.

The info Attribute

The i nf o attribute enables you to make a string available to your JSP pages by invoking the JSP page implementation of the
Servl et. get Servl et | nfo() method. The string can be pretty much anything you desire. The following is a coding example:

<%@ page i nfo="This JSP Page Witten By Lou Marco" %

The isThreadSafe Attribute

The i sThr eadSaf e attribute lets the JSP container know how to dispatch requests to the page. The value of this attribute is a
bool ean. When the value is false, the JSP container dispatches one request at a time; when the value is true, the JSP
container dispatches all outstanding requests simultaneously.

Servlets usually create a thread per user request. Multiple requests result in the servlet dispatching multiple threads, each thread
accessing the ser vi ce() method of the same servlet. The underlying assumption is that the servlet is thread safe. The servlet

synchronizes access to data so that threads do not "step on" each other.

Assigning a value of true to i sThr eadSaf e does not make your code thread safe. The i sThr eadSaf e attribute is merely a
statement about your code’s ability to handle multiple threads. Although you should write your code to assume correct execution
in a multithreaded environment, you may encounter a situation in which a class you need to use is not thread safe. Hence, you
may, at times, code a value of false for the i sThr eadSave attribute. The default value is true.

The language Attribute

The | anguage attribute indicates the programming language used in scripting the JSP page. The JSP specification requires that
a JSP implementation support a value of j ava for the | anguage attribute. However, other JSP implementations may, and do,
support other values for the | anguage attribute.

The session Attribute

The sessi on attribute indicates whether or not the JSP page uses HTTP sessions. A value of true means that the JSP page
has access to a bui | t i n object called session; a value of false means that the JSP page cannot access the bui | ti n session
object. Put another way, the following directive allows the JSP page to use any of the bui | ti n object session methods, such as
session. get Creati onTi me() orsessi on. get Last AccessTi nme():

<% page session="true" %

When the sessi on attribute has a value of false, any attempt to access the bui | t i n object session causes an error during JSP
to servlet translation.

In Chapter 5, “JSP Web Sessions,” sessions are covered in detail. You should recall that an advantage of using servlets over

traditional CGl is that servlets allow for sessions that maintain information about the client across multiple Web pages whereas
CGlI does not.

To wrap up the plethora of attributes for the page directive, | want to note again that these attributes do not direct any output to
the eventually displayed page. You may code multiple page directives in your JSP page, but, with the exception of the i nmpor t

attribute, attributes can appear at most once in the page. In addition, you may code more than one attribute in a single page
directive, with some combinations (such as buf f er =" none" and aut oFl ush="f al se") not permitted.

JSP has two other directives: the i ncl ude and the t agl i b directives, which are covered in the following two sections.

The include Directive

You probably have an idea of the purpose of the i ncl ude directive. The i ncl ude directive enables you to bring external code

into your JSP at the point of reference. The syntax is as follows:
<Y@include file="relativeURL" %

Unlike page directives, the placement of the i ncl ude directive is critical. The JSP translator copies the code stored at
rel ati veURL into your JSP page starting at the location of the i ncl ude directive. The URL specification in the value of the

http://www.unltded.com/viewer.asp?bkid=2878&destid=94#94

fil e attribute is a relative URL.

A few caveats concerning the use of the i ncl ude directive are in order. First, be aware that the file to be included may (and
usually does) contain JSP code. If the to-be-included file contains page directives, the restriction about the multiple occurrences
of page directive attributes applies. In other words, you cannot have an included file contain a page directive with an attribute
already coded in the JSP page (except the i nport attribute).

Another caveat is that when you change an included file, you must update all the JSP files that include the changed file. What
you need is a JSP or server command that tells the JSP translator to retranslate, but such a command is not currently available.
The JSP translator detects when JSP pages require translation based on modification dates. An admittedly primitive but effective
workaround is to change a comment in your pages that uses included files to force a retranslation.

Later in this chapter, in the section titled “Coding JSP Standard Actions,” you'll read about the <j sp: i ncl ude action that also
brings external code into your JSP pages.

The taglib Directive

In Chapter 7, “JSP Tag Extensions,” we explore using custom tags in JSP pages. Without giving too much away before then,
know that a custom tag is part of a tag library. A tag library is a set of user-defined tags that implement custom behavior. In short,
you are extending the functionality of JSP pages by creating a set of tags that implement new behaviors for your JSP pages.
While this sounds a bit like using JavaBeans in your pages (see Chapter 6, “JSP, JavaBeans, and JDBC,” for JavaBean usage

in JSP pages), the tag library usage plays a slightly different role than JavaBean usage does. Because of the scope of the topic,
you’ll have to wait until you read Chapters 6 and 7 for the full story.

Given that you have a “thing” called a tag library for use in your JSP page, you have to tell the JSP container about the library.
You do so by using a JSP t agl i b directive.

The t agl i b directive declares that your JSP page uses a set of custom tags, identifies the location of the library, and provides a
means for identifying the custom tags in your JSP page. Here’s an example of at agl i b directive:
<U@taglib uri=http://joestags.tld prefix="joe" %

Here, the uri attribute provides an absolute ur i containing the code that implements the custom tag’s behaviors. The value of
the uri attribute can be an absolute (shown above) or relative reference. The pr ef i x attribute associates the custom tag coded
in the JSP page with the library name coded as a value of the uri attribute.

Note The term uri means Universal Resource Identifier. Think of a uri as a URL or a file reference.

The following is an example of a custom tag from ht t p: / /] oest ags. t | d referenced by the value of the pr ef i x attribute
coded in the t agl i b directive:

http://www.unltded.com/viewer.asp?bkid=2878&destid=80#80

<j oe: doMyCal c />

Note Custom tags follow XML coding conventions. See Appendix D for an overview of XML syntax.
You must code the t agl i b directive before coding any references to the custom tags from the tag library.

Well, that’s the story on coding JSP directives. Worth repeating is that JSP directives do not produce output per se; JSP
directives communicate certain parameters and set certain attributes that affect the generated servlet and resultant output page.

What about JSP commands that do result in output? You'll read about these commands next, starting with JSP scripting
elements.

JSP Scripting Elements

JSP scripting elements enable you to insert code into the JSP page that results in code in the generated servlet. Scripting
elements range from one-sentence variable declares to entire Java methods. | examine three categories of scripting elements:
expressions, declarations, and scriptlets.

JSP Expressions

A JSP expression inserts data in the resultant output page. A JSP expression has the following syntax:

<% j avaExpression %

The JSP translator evaluates j avaExpr essi on, converts j avaExpr essi on into a string, and places the resultant string
directly in the output page. If the expression cannot be converted to a string, the runtime throws a Cl assCast Excepti on. For
example, the following JSP expression generates the date and time the JSP page was requested:

<% new java.util.Date() %

Or, using a page directive that allows for an unqualified reference to the Dat e class with the expression:

<%@ page inport="java.util.*" %
<@ new Date() %

JSP expressions are evaluated at the time the JSP page is requested (by entering the name of a JSP page in the location bar of
a browser or clicking a hyperlink that references the JSP page), or at runtime, not at JSP translation time. The result of the
evaluation being done at runtime is that variables or objects referenced in the expression have access to any information about
the request.

You may use the XML form of a JSP expressions as follows:

<j sp: expr essi on>
Java expression

</j sp: expressi on>

The engineers at Sun Microsystems make life a bit easier for the JSP programmer by providing the programmer access to
predefined environment objects called implicit objects. These objects are accessible from JSP expressions and JSP scriptlets.
You read about these objects later in this chapter.

JSP Declarations

As with any programming language, JSP uses variables to hold program data or code that performs various tasks. One JSP
feature that makes variables or program code known to the JSP page is called a JSP declaration.

JSP declarations have the following format:
<@ JspDecl aration @

In Listing 4-2 you see a simple page with a JSP declaration and expression.

Listing 4-2: Simple JSP page with a declaration and expression

<%@ page content Type="text/htm" %

<htm >

<head>

<title>Sinple JSP Decl aration Exanple</title>
</ head>

<body>

<% - Here's a JSP Declaration --%
<% int counter = 0 ; %

<P>Thi s page has been accessed
<% - Here's a JSP Expression --%
<% ++counter % tinmes

</ body>

</htm >

JSP declarations by themselves do not cause output. Rather, JSP declarations are used with the JSP expressions and scriptlets
to cause output. Note that the preceding expression could not have generated a value for counter without the count er variable
being declared.

Worthy of mention is that instance variables declared in JSP declarations need not be declared static because instance variables
are shared among separate page requests.

JSP declarations may include entire methods. Listing 4-3 shows a small JSP illustrating a method decl ar e.

Listing 4-3: Coding and invoking a method in a JSP declaration

<% page content Type="text/htm" %

<htm >

<head>

<title>Coding and I nvoking a Method</title>
</ head>

<body>
<% - Here's a variable and nethod declaration --%
<% int tolnteger = 100

int sunOf Firstlntegers = addl ntegers(100)

public int addlintegers(int to) {

return to * (to +1) / 2 ;
} %

<P> The sumof integers from1l to <% tolnteger % is:
 <% sunOfFirstlntegers %
</ body>

</htm >

Listing 4-3 also includes a few JSP expressions.

As you may have guessed by now, you can code JSP declarations in XML style syntax as follows:

<j sp: decl arati on>
Java Code
</jsp:decl aration>

JSPs also permit you to code pieces of Java in your page by coding scriptlets, as explained in the next section.

JSP Scriptlets

A scriptlet is an arbitrary piece of Java code. The general format is as follows:
<% aPi ece(f JavaCode %

Understand that a “piece” of code can be entire statements or groups of statements.

Scriptlets are executed at request time. Hence, code contained in scriptlets may modify objects by invoking methods. Listing 4-4
shows a page similar to Listing 4-3 but using a scriptlet.

Listing 4-4: JSP page with a scriptlet

<%@ page content Type="text/htm" %
<htm >

<head>

<title>JSP scriptlet exanple</title>
</ head>

<body>
<% - Here's a JSP scriptlet --%
<% int tolnteger = 100

int sunOfFirstintegers = tolnteger * (tolnteger + 1) / 2;

int sunByLoop = O ;
for (int counter = 1; counter <= tolnteger; counter++)
sunByLoop += counter ;
%
<P> The sumof integers from1l to <% tolnteger % by |oop is:
 <% sunByLoop %
</ body>

</htm >

Notice that Listing 4-4 uses pieces of Java code as opposed to an entire method. Changing Listing 4-4 to use a declaration
causes the JSP translator to generate an error, as shown in Listing 4-5.

Listing 4-5: Tomcat reacts to using a JSP declaration where a scriptlet is called for

Error: 500
Location: /exanpl es/jsp/loutest/loutest.jsp
Internal Servlet Error:
or g. apache. j asper. Jasper Exception: Unable to conpile class for
JSPD: \ t ontat 32\ wor k\ | ocal host _8080%2Fexanpl es\ _0002fj sp_0002f | out est _0002f | out est _0002¢j spl out est _j sp_0.j ava: 24: Type
expect ed.
for (int counter = 1; counter <= tolnteger; counter++)
N

1 error

The actual diagnostic shows a rather long stack trace, but the included top piece of the diagnostic shown in Listing 4-5 should give
you the essential flavor of the problem.

JSP scriptlets do not have to be complete Java statements. You may code pieces as long as all the pieces together form complete
Java statements. Listing 4-6 illustrates the concept.

Listing 4-6: JSP scriptlets with pieces of Java code

<%@ page content Type="text/htm" %
<htm >

<head>

<title>JSP scriptlet exanple</title>
</ head>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=767832684#wbpch04fP241

<body>
<% - Here's a JSP scriptlet with pieces of code --%
<% int tolnteger =
I nt eger. parsel nt (request. get Paraneter("to")) ;
int sunOfFFirstintegers = tolnteger * (tolnteger + 1) / 2;

if (sunOfFirstlntegers > 100000) {
%
Bi g Nunber </ b>
<%} else { %
<i >Smal | Nunber</i>
<%} %

</ body>
</htm >

As you can see, the i f statement is broken into pieces with some pieces as HTML and some as Java code. The requirement for a
syntactically correct scriptlet is that all the pieces must form syntactically correct Java code.

The following statement uses an implicit object called r equest :

int tolnteger = Integer. parselnt(request.getParaneter("to"));

You pass the parameter by entering the name of the JSP with the parameter entry as shown here:
http://1 ocal host: 8080/ exanpl es/jsp/l outest/| outest.jsp?to=50

You can code JSP scriptlets as XML tags, as follows:

<jsp:scriptlet>
Java Code
</jsp:scriptlet>

You see that JSP allows you, the JSP programmer, to use Java code in your JSP pages in interesting and flexible ways. However,
you have additional capabilities that do not involve embedding Java code in your JSP page. JSP supports a variety of standard
actions, which are covered in the next section.

Top st

[<= Prov [Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 11: A First Look at EJB

Overview

You've spent some time reading about JavaServer Pages, sometimes referred to as the front door to J2EE
applications. In Part Ill, you can read about Enterprise JavaBeans. As mentioned in Chapter 1, “Enterprise Computing
Concepts,” Enterprise JavaBeans are a server-side software component architecture. In other words, the Enterprise
JavaBeans specification describes how to develop distributed objects and how to deploy these objects in a distributed
computing environment.

This chapter provides an introduction to Enterprise JavaBeans (EJBs). This chapter’s first order of business is to
dispense with the belief that Enterprise JavaBeans are related to JavaBeans. Then you can read about the ambitious
goals of the EJB architecture. EJB release 1.1 is discussed here, along with features of EJB release 2.0 (Sun released
the final draft on October 25, 2000).

This chapter also introduces the important topic of EJB Roles and how these roles enable the development of
compatible EJBs by different vendors.

Top <

| <= Prov_ | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=884130291

EJE & ISP

Java On The Edge

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part Ill: Enterprise JavaBeans

Chapter 11

Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:

Chapter 20:

: A First Look at EJB

The Elements of an EJB

EJB Contexts and Containers

EJB Session Beans

EJB Entity Beans

EJB Security

EJB and Transaction Management
Creating EJB Clients

The Proposed EJB 2.0 Specification

Integrating JSPs and EJBs

Appendix A: The JSP API

Appendix B: The EJB API

Appendix C: Configuring the Tomcat Web Server

Appendix D: XML Overview

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=287854827

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You have now seen a complete JSP application. This application has combined JSP pages and JavaBeans to provide
dynamic Web page content. JavaBeans have been used to access database resources and provide client information.
JSP error handling, which we discussed in the previous chapter, was used to handle incorrect user input. You should
now have a better understanding of how these different parts of a JSP application work together. In the coming
chapters we'll learn how to use Enterprise JavaBeans, making our Internet applications even more powerful.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=674124268

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 12: The Elements of an EJB

Overview

At this point, you've been introduced to the rationale for Enterprise JavaBeans (EJBs), which is the need for server-
side distributed components. You've learned about the players in the world of EJBs and about the lofty goals of the
EJB architecture. Now, you're ready to learn about the nuts and bolts of an Enterprise JavaBean.

This chapter discusses the components of an EJB. You can read about the required interfaces for implementing and
constructing an enterprise bean. You can discover that EJB supports three different bean types — entity beans,
session beans, and (new with EJB 2.0) message-driven beans. And you can learn why you need different enterprise
bean types in an application. You can also read about the environment required by enterprise beans for living,
working, and playing, including how to deploy your beans once developed.

First, let's take a look at the makeup of an enterprise bean followed by a description of the bean’s components.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=816505363

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You've just taken a quick tour of Enterprise JavaBeans. You've learned that EJBs are distributed, server-side software
components that live inside an abstraction called a container. You've been introduced to the goals of the EJB
architecture. You've learned that the EJB specification provides for three different types of enterprise bean — the
session bean, the entity bean and, with release 2.0, the message bean. You've learned that clients do not access
enterprise beans directly; rather, they access enterprise beans by going through the bean’s home or remote interface.
You've read about the deployment descriptor, which enables you to customize an enterprise bean’s behavior without
changing the bean’s source code. You've also been introduced to the concept of EJB roles and how these roles are
important to the software component market. This should be enough to let us begin to dig into EJBs in detail with
some coding examples in the next chapter.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=459021557

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining EJB Release 1.1

Sun released Enterprise JavaBeans 2.0 as a final draft in late October 2000. However, this book concentrates on
Enterprise JavaBeans 1.1, because, at the time of this writing, no commercially available application servers support
the EJB 2.0 specification. In Part 1l of this book, EJB 2.0 features are discussed where appropriate.

The best place to start when examining the functionality provided by release 1.1 is with the core of EJB — the
enterprise bean itself. This chapter also covers other core concepts and key architecture elements that you need in
order to understand how enterprise beans work.

Examining the EJB and Its Environment

The EJB specification describes two types of enterprise beans: a session bean and an entity bean. A session bean is
a bean that models a process; an entity bean is a bean that models data. A considerable portion of Part Il of this book

is devoted to describing these bean types.

Note Release 2.0 of the EJB specification describes a third enterprise bean type — the message-driven bean (or,
more simply, a message bean). Message beans were specifically designed to handle incoming JMS
messages. Chapter 12, “The Elements of an EJB,” covers the new message bean in more detail.

Clients do not directly access session or entity beans. Clients (which can be other enterprise beans) usually access
enterprise beans by using a naming service, such as JNDI. The EJB architecture describes the relevant interfaces
used to access enterprise beans, about which more is said throughout this chapter.

Enterprise beans of all types live within EJB containers. The EJB container is not a physical piece of hardware or
software but rather an abstract entity that manages the various instances of enterprise bean classes. Most industry
EJB containers are packaged as part of a larger software product, like IBM's WebSphere and Allaire's JRun. The
container provides support for contained enterprise beans through a set of interfaces defined in the architecture
specification.

Note Release 1.0 of the EJB specification stated that support for entity beans within EJB containers was optional.
Since release 1.1, support for entity beans within EJB containers is mandatory.

The containers live within an EJB server. You can think of the EJB server as the outermost box containing all the
elements of an EJB environment. The server is responsible for providing access to services and resources, such as
threads and processes, the network, storage devices, and memory.

Because the client does not directly access enterprise beans, it must access enterprise beans through interfaces.
Here’s a brief overview on these interfaces.

The home interface describes the methods responsible for managing the life of the enterprise bean. The home
interface has descriptions for methods that enable a client to create, locate, and destroy EJB instances. The object
that implements the home interface for an enterprise bean is referred to as the Home Object, or EJB Home.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=368086864

The remote interface describes methods that the enterprise bean uses to do its work. Clients can call methods of the
remote interface. The object that implements the remote interface is referred to as the EJB Object.

Figure 11-1 depicts clients accessing EJB instances by going through, or using, the home and remote interfaces.

EJB Serier

LIE Containg EJB Conlainer

tJH EIE
Home Dbject
Home Remsie Home Remale
Interface Interfae Interdace siertace

L T

Figure 11-1: Accessing enterprise beans through the home and remote interfaces

The basic idea is that clients, which can be Java applets, Java servlets, or other enterprise beans, can access EJB
instances only through the home or remote interfaces. Notice that clients access both bean types through the home
and remote interfaces.

The EJB instances are objects from the actual enterprise bean class, or bean class. The bean class contains
implementations of the business methods, which do the actual work of the bean. However, the bean class does not
implement the methods described in the remote interface. To further complicate matters, the bean class methods
must have signatures that match those found in the bean’s remote interface and several methods found in the bean’s
home interface. Chapter 12, “The Elements of an EJB,” discusses in detail how the home interface, remote interface,

and bean class interrelate.

While session, entity, and message beans are different animals, they have much in common. The next section
discusses essential enterprise bean properties that are shared by session and entity beans.

Essential Enterprise Bean Properties

The EJB specification describes essential bean properties as follows:

. Containers manage enterprise bean activities.

The EJB container has the responsibility for creating, destroying, and otherwise manipulating the enterprise bean.
Various runtime services required by the bean are not directly accessible by the bean; these services are provided
to the bean by the EJB container. Each container may house multiple enterprise beans, and an EJB server may

contain multiple EJB containers.

The EJB architecture requires that enterprise beans be deployed in suitable containers. Stated differently, EJBs
must live within containers that are capable of providing needed services.

. Enterprise beans can, and usually are, customized during deployment.

The most elegantly crafted enterprise bean is useless unless deployable in a customer’s environment. Given that
enterprise computing environments differ in unknown ways, customers who deploy enterprise beans need an easy
way to adapt the bean’s properties to fit with the peculiarities of an environment. The architecture calls for
enterprise beans to be packaged with a file called a deployment descriptor. The deployment descriptor is a text file
in XML format that can be edited to suit the needs of the customer. Hence, the customer does not need to have
access to Java source code to change the behavior of an enterprise bean to fit his or her environment.

Note Deployment descriptors are in XML format. Appendix D provides an overview of XML.

. The client that accesses enterprise beans does not care about the server or container particulars.

Because a client accesses enterprise beans through the home and remote interfaces, and not directly through the
server or container, the client does not need to be concerned with the server or container particulars. The home
and remote interfaces are not dependent on server or container particulars above those required by the EJB
specification. The upshot is that enterprise beans are highly portable among servers and containers that follow the
EJB specification.

Examining EJB Roles

The EJB architecture describes a role as a set of responsibilities (often called a contract) assumed by a party in the
development and deployment of an enterprise bean. The basic idea is that delineating the responsibilities of each role
ensures that the outputs of one party are compatible with the inputs of others.

The six roles described by the EJB release 1.1 specification, and a seventh introduced in EJB release 2.0, are
described in the following.

The Enterprise Bean Provider

The enterprise bean provider supplies software components (enterprise beans) that customers may purchase for use
in their computing environments. The provider is responsible for supplying the class files that implement one or more
processes, the definitions of the bean’s home and remote interfaces, and a deployment descriptor that describes how
the bean can be adjusted to fit into the customer’s environment.

The output of the enterprise bean provider is one or more enterprise beans packaged into ejb-jar files, which contain
the class files and bean deployment descriptors. You can probably imagine bean providers marketing enterprise
beans that perform useful tasks, like processing credit card transactions, which could be plugged into a customer's
Internet application as needed.

The Application Assembler

The application assembler combines enterprise beans and possibly other software components and elements into a
deployable application. Typically, the application assembler must be adept in the firm’s business and with the
particulars of how the application’s components work together.

The inputs received by the application assembler are the ejb-jar files produced by the enterprise bean provider. The
outputs delivered are these ejb-jar files with deployment descriptors modified to reflect the environment'’s particulars.

The application assembler can be one or more programmers that write glue code that binds together several classes
provided by the bean provider. Possibly, the application assembler needs to tweak a user interface to fine-tune a
particular process. A good description of the application assembler’s ultimate responsibility is to do whatever must be

done to turn a group of EJBs into something deployable.

The Deployer

The deployer performs the actual application deployment of the combined components into a suitable environment.
The environment is one or more EJB containers resident on one or more EJB servers. To do its job, the deployer
needs inputs from the application assembler, the EJB container provider, and the EJB server provider.

The output of the deployer is one or more EJBs or an application consisting of one or more EJBs on a specific EJB
container. The deployer knows about the details of the EJB containers and EJB servers. Typically, the deployer is
knowledgeable of the firm’'s computing environment.

The EJB Container Provider and the EJB Server Provider

The EJB container provider provides various system-level services available to applications composed of EJBs, such
as transaction support, security, storage, and memory.

The EJB server provider supplies the EJB-enabled application server that provides all the system services required by
the EJB containers. The EJB architecture does not specify a distinction between the container provider and the server
provider. In practice, one organization typically acts as both the container and server provider. In other words, an
organization providing EJB-enabled application servers also provides suitable EJB containers.

EJB servers usually contain tools that assist the deployer in deploying EJBs to containers and customizing the
enterprise beans if required.

The System Administrator

The system administrator is responsible for managing and maintaining the infrastructure needed for continual
operation of the application. The EJB specification does not require any specific inputs from other parties. Typically,
the system administrator uses various monitoring and system tuning tools available from the server providers.

The Persistence Manager

The EJB 2.0 specification has introduced a new role — the persistence manager provider. The persistence manager
is a new participant in the world of Enterprise JavaBeans dealing with entity beans. A discussion of the persistence
manager and the persistence manager provider role can be found in Chapter 15, “EJB Entity Beans.”

Wrapping up the Roles Discussion

One party may assume several roles, as is the case with container and server providers. As time goes on, it is easy to
envision a marketplace with vendors assuming one or more roles in providing enterprise beans, container, server, and
administrative services to customers. When vendors follow the EJB standard, customers can be reasonably sure that
different vendor products can operate well with each other.

In addition, the EJB specification may further delineate responsibilities, either by providing additional roles (the
persistence manager role in release 2.0, for example) or by defining distinctions between container and server
providers.

In short, the purpose of defining the above roles is to define areas of responsibilities to ensure the production of
quality, portable enterprise beans that adhere to the EJB specification.

Top

| <= Prov | Noxt =

EIB Server

EJB Container
ElBs
EJB EJB
Home Object

EIB Container

T

Home
Interface

Remote
Interface

=

ElBs
EJB EIB
Home Object
Home Remote
Interface Interface

\\ //“ Vil

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 15: EJB Entity Beans

You've read a bit about entity beans in previous chapters, but in this chapter you'll further explore the vitally important entity bean. You'll read about characteristics
of entity beans and the entity bean interface, in addition to learning about container-managed and bean-managed persistence. You'll also learn about the life cycle
of an entity bean, in addition to examining some code that implements an entity bean. Let’s start by learning about the characteristics of entity beans and their
uses.

Examining Entity Bean Characteristics

Entity beans provide an application with a consistent interface for accessing and manipulating data. A client interacts with the application’s data by invoking entity
bean methods defined in the remote interface, or by invoking session bean methods, which, in turn, invoke entity bean methods, again, through their respective
remote interfaces.

Many of the concepts and methods needed to implement entity beans should be familiar to you. In Chapter 14, “EJB Session Beans,” | covered bean activation
and passivation, which are relevant to entity beans. Entity beans have a context object — an instance of the Ent i t yCont ext class — that a bean uses to interact
with the EJB container, like a session bean’s Sessi onCont ext object. In short, entity beans have much in common with stateful session beans.

It should come as no surprise that you still code and implement a home and r enot e interface to represent the client view of an entity bean. The client still uses
JNDI to locate a reference to the bean’s hone interface, as with session beans. The client still invokes methods contained in the r enpt e interface to communicate
with the container, then the bean, as with session beans.

A key difference between implementing a session bean and implementing an entity bean is that the session bean class implements the

j avax. ej b. Sessi onBean interface, and the entity bean implements the j avax. ej b. Ent i t yBean interface. Throughout this chapter, you will read about the
methods in the Ent i t yBean interface that require implementation.

Using Entity Beans for Persistent Data
You, the EJB developer, use entity beans to model some data relevant to the application. The data should be persistent; that is, the data source should be a

persistent data store such as a database. The data should have meaning and use for more than a single client, or the data should be useful in a distributed
application environment.

Accessing Entity Beans with a Primary Key

Because entity beans are an in-memory representation of some database data, it makes sense to use a key to access entity beans, just as you would for database
data. A primary key used to access an entity bean is, of course, an instance of a Java class.

Primary key objects usually map to a key in the underlying database. However, you are not limited to defining primary key classes as objects of a relational
database type, such as var char ori nt eger. You may construct your primary key as any Java object as long as the primary key class is serializable.

Looking at the Entity Bean Life Cycle

Entity beans, representing persistent data, have a long lifetime — as long as the data the bean represents. In reality, entity bean instances are pooled and the
container may manipulate bean instances to service multiple clients. However, from a client perspective, the entity bean is the data. As you'll see in the code
examples in this chapter, when a client takes action that impacts the state of an entity bean, the persistent data the bean represents also changes. In short, the life
cycle of an entity bean closely mirrors that of the life cycle of the persistent data it models.

Later in this chapter, you learn about the states that an entity bean assumes throughout its lifetime.

Examining Entity Bean Client Scenarios

Entity beans are not bound to a particular client as stateful session beans are. The data being modeled by an entity bean has relevance and use to multiple clients
(barring exceptional situations in which only one client has privilege to access some data). Hence, a container strategy that instantiates an entity bean and weds
that bean to a single client may suffer performance bottlenecks.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=881632064

You can imagine a scenario in which multiple clients require access to the same data, modeled as entity beans. Would a container vendor instantiate multiple
beans, each bean representing the same data? Would a container vendor instantiate a single bean and write code that threads multiple requests to the entity
bean’s methods? Would the burden of writing thread-safe code fall on the EJB developer’s shoulders?

The EJB specification requires that all enterprise beans must contain one and only one thread. The promise of thread-safe execution within the container is a big
plus for the EJB architecture and helps ensure that the container and the enterprise application are stable.

Containers from different vendors can pool entity bean instances before filling these bean instances with data. As with session beans, the pooling strategy
undertaken by the container vendor is completely transparent to the client and to the EJB developer. When several clients access the same data, some containers
may instantiate several entity beans and present each bean to a separate client. These clients could access the bean instances simultaneously. But do you see a
problem with the aforementioned approach?

The process of several clients accessing the same data at the same time raises data consistency issues. Client A accesses data. Client B accesses and changes
the same data. However, client A has its copy of the data, which does not reflect the changes made by client B. At this point, client A has “stale” data. Also, if client
A changes the data, then the changes made by client B may be overwritten and lost. In short, multiple clients accessing the same data requires additional
housekeeping to ensure that the clients do not step on each other’s changes.

These problems are not specific or unique to entity beans; they are the classic problems faced by database application developers. As you'll read later in this
chapter, entity beans have means to ensure that these types of problems do not occur. For now, know that EJBs contain callbacks that help guard against lost
update scenarios by synchronizing the bean instance with the database.

Because of the close relationship between entity beans and the data that they model, a short discussion of data persistence is in order.

Data Persistence

Actions taken on an entity bean affect data in the database. When the container creates a new entity bean, the data corresponding to the new bean must be
inserted into the database. When a bean property corresponding to a column in the database changes, that changed value must be altered in the database as
well. Some agency must be responsible for ensuring that changes in the bean are properly reflected in the database.

In the multiple-client, same-data scenario presented in the previous section, you read that EJBs contain callbacks that help synchronize bean changes and

database changes. In some cases, the EJB developer must write code to maintain data consistency, or persisting changes; in other cases, the container handles
this chore.

The division of responsibility for persisting changes from the beans to the database results in different classifications for entity beans. Beans that can have the
container manage persistence are called container-managed persistence (CMP) beans. Beans that contain code that manages persistence are called bean-
managed persistence (BMP) beans.

Like stateful and stateless session beans, the interfaces you code to implement CMP beans and BMP beans are pretty much the same. The client accessing the
bean has no knowledge of whether or not the entity bean is a CMP bean or a BMP bean. As they say, the devil's in the details. Let’s take a closer look at these two
bean classifications, starting with CMP beans.

Container-Managed Persistence Entity Beans

CMP beans are a boon to the EJB developer. By developing CMP beans, you can insert, update, or delete rows from multiple tables in a relational database
without writing a single line of SQL! In other words, you write code that manages the activity of the CMP bean and the container automatically reflects your bean
activity in the database.

If a client invokes a cr eat e method in the CMP bean’s r enot e interface, the container is responsible for inserting the row(s) into the table(s). If a client invokes a
set method to change the name of a CMP bean property assigned to a database column, the container is responsible for updating the corresponding value in the
database. EJB folk call bean properties that map to columns in a table container-managed fields. A container-managed field can be any Java primitive type or any
serializable object

To sweeten the deal, the container for CMP beans also handles data consistency problems previously mentioned, by using the same mechanism to apply
database updates based on client invocations of bean set methods.

You may wonder how a CMP bean can possibly apply changes to a table in a relational database without SQL written by the bean developer. The container
vendor must provide a tool that enables a bean developer to map CMP bean properties to columns in the database and to associate SQL with CMP bean actions,
such as bean creation and removal.

The code in the CMP bean class does not contain any SQL. Also, the CMP bean is defined independently of the database used to store the bean’s state. This
independent definition and separation of the CMP bean from the database helps in making the bean reusable. The CMP bean contains business logic — not
transaction details such as commits and rollbacks — and, with any luck, applies to multiple business scenarios within the organization.

By now you can see that, given a choice, you should strive to develop CMP bean entity beans. Even if you are a “go it alone” type, you should understand the
wisdom in having the container manage the details of maintaining consistency between the CMP bean’s state and the data contained in the database. Even if you
rather enjoy writing SQL, you may see the wisdom in having the container issue any SQL needed, behind the scenes, to maintain the data.

CMP in EJB 2.0

Container-managed persistence will undergo significant changes in the upcoming EJB release 2.0. Sun and industry participants deemed the changes necessary

to clarify some ambiguities in the EJB 1.1 specification. For example, the following code defines a Customer CMP bean that relies on a dependent class:

public class Custoner inplenents javax.ejb.EntityBean {
public int custlD ;
public String cust Nane ;
public Address cust Addr ess ;
/IO her fields and nethods to conplete the bean definition..

The Addr ess class instantiates regular (non-EJB) objects:

public class Address {
public String street ;
public String city ;
/1 CQther fields and nethods that conplete the class definition

The problem is that the EJB 1.1 specification is unclear as how to handle the persistence of objects of class Addr ess that are instance variables of the Customer
CMP bean. Are the Addr ess objects serialized and saved? Are the instance variables (fields) within the Addr ess objects mapped?

EJB 2.0 uses the persistence manager to alleviate this ambiguity. The persistence manager requires that the CMP bean developer code the relationships between
objects of class Addr ess (the dependent class) and the Cust oner bean class by using new tags in the deployment descriptor. The container vendor is
responsible for providing tools that use the information in the deployment descriptor to generate the required access (get / set and cr eat e) methods that the
bean instances need from the dependent objects. The following code shows a likely deployment descriptor that describes the relationship between the bean class
and the dependent class:

<ej b-jar>
<enterprise-beans>
</ enterprise-beans>

<dependent s>
<dependent >
<descri pti on>Addr ess dependent cl ass</description>
<dependent - cl ass>Addr ess</ dependent - cl ass>
<dependent - nane>Addr ess</ dependent - nanme>
<cnp-fiel d><fiel d-name>street</fiel d-name></cnp-fiel d>
<cnp-fiel d><fiel d-name>city</fiel d-name></cnp-fiel d>
</ dependent >
</ dependent s>

<rel ati onshi ps>

<l-- One to One: Custoner Address -->
<ej b-rel ati on>
<ej b-rel ati onshi p- name>Cust oner - Addr ess</ ej b-rel ati onshi p- nanme>
<l-- defines role relationship frombean perspective -->
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>
cust oner - has- addr ess
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>One</multiplicity>
<r ol e- sour ce><ej b- name>Cust oner </ ej b- name></r ol e- sour ce>
<cnr-field><cnr-field-name>cust Address</cnr-field-name></cnr-field>
</ ej b-rel ati onshi p-rol e>

<l-- defines role relationship from dependent object perspective -->
<ej b-rel ati onshi p-rol e>

<ej b-rel ati onshi p-rol e- nane>

addr ess- bel ongs-t o- cust oner

</ ej b-rel ati onshi p-rol e- nane>

<mul tiplicity>One</mnultiplicity>

<r ol e- sour ce><dependent - nane>Addr ess</ dependent - name></r ol e- sour ce>

<cnr-field><cnr-field-name>custoner</cnr-field-name></cnr-field>
</ ej b-rel ati onshi p-rol e>

</ ejb-rel ati on>

</rel ationshi ps>

<ej b-jar>

The contai ner uses the information coded in the deploynent descriptor to generate the required accessor nethods for both
cl asses.

The dependence on a container tool to nmap database columms to container-nmanaged fields is a drawback to usi ng CMP beans.
As of yet, container tools are not mature enough to address a w de range of mapping scenarios. O course, tools never go
the di stance; organi zations will always have the odd requirenent or two that baffles the current state of autonation. In
these rare cases, the EJB devel oper nust forgo CMP beans and wite the code to have the bean nanage the data’s

persistence. Such entity beans are call ed bean-nmanaged persistence (BWP) beans and are the subject of the next section.

Bean-Managed Persistence Entity Beans

As the name implies, a BMP bean must have code that maintains consistency between the state of the bean and the state of the data in the database. In other
words, the BMP bean developer is responsible for writing code that explicitly manages the persistence logic of the database.

Naturally, the BMP bean developer must know about the database, the columns in the tables, the SQL used to access and modify the data, and when to issue the
SQL statements. When compared to the work required to code a CMP bean, coding a BMP bean seems like a real effort!

Later in this chapter, | provide code for a CMP bean and show the required changes to transform the CMP bean into a BMP bean. First, you need to take a look at
the j avax. ej b. Ent i t yBean interface, used to define both CMP bean and BMP beans.

Top sy

[<= Prov | [Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 14: EJB Session Beans

Although you’ve been introduced to session beans in previous chapters, now it's time to learn more about the
vitally important session bean. This chapter discusses the characteristics of session beans and the session bean
interface. You can also learn about stateful and stateless session beans and their respective life cycles, including the
myriad states of a session bean. In addition, you can examine some actual code that implements a session bean.

Understanding Session Beans

Session beans provide the generic components of an application that represent tasks or business processes. Session
beans perform actions on behalf of a single client and serve as the entry for the client to the enterprise application. A
client interacts with the application by invoking session bean methods defined in the remote interface, which access
the functional behavior and services of the application.

The EJB developer uses session beans to model some process or task relevant to the application. These tasks range
from the type you might expect, such as performing a computation or billing a customer account, to the type you might
not expect, such as issuing an arrest warrant.

Session Bean Life Cycle

Because session beans are typically bound to a client, the lifetime of the session bean is usually as long as that of the
client session. Often, an EJB server (or container depending on the implementation) has a time limit for inactive
sessions, meaning the container may purge session beans after a period of inactivity. However, one of the benefits of
the EJB architecture is that the EJB developer does not need to be concerned with bean-purging activities because
such activity is one of the many services provided to the EJB developer.

I mentioned that usually session beans live only as long as the client session. One exception to this rule exists when
EJB containers use bean pools. With bean pooling, the container or server creates multiple instances of session
beans and reuses bean instances to service multiple clients at different times.

One Client, One Thread, One Session Bean, One Time

One ramification of a session bean being bound to a single client is that the EJB container ensures that only a single
client has access to a single session bean instance. When a client invokes a session bean method through its remote
interface, the EJB container (or server, depending on the implementation) guarantees that no other client can use the
bound session bean instance. The benefit to you, the EJB developer, is that you do not have to write reentrant or
thread-safe session bean code.

The EJB container is under no obligation to create bean instances for every client. The EJB container has a session
bean instance ready for each and every client. The container takes care of the messy details of making session bean

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=203232933

instances available. The container may pull a session bean instance from a pre-created pool of beans, create a new
one, or load a previously serialized session bean from storage. The details are not important; all you need to do is
code your session beans to solve your business problems and let the EJB container take care of the rest.

As you've already read in Chapter 12, “The Elements of an EJB,” session beans come in two flavors: stateless and
stateful. Let’s find out more about stateless session beans.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

This chapter introduced the importance of EJB contexts. The nature of Java is to empower programmers by providing
tools that Java programs may use to discern relevant information about the program’s environment. Bean developers
can glean useful information about the all-important EJB container during runtime execution from the context objects
discussed in this chapter. In the next two chapters we will continue to examine context objects as we discuss session
and entity beans in turn.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=956244925

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Understanding the EJB Container

Chapter 11, “A First Look at EJB,” introduced the EJB roles that guide the responsible parties in the development,

deployment, use, and maintenance of Enterprise JavaBeans and applications that use beans. In this section, | delve
further into the EJB container. In particular, you read about the requirements for a functioning, compliant EJB
container, as well as the EJB container requirements under the proposed EJB 2.0 release.

The Container’'s Responsibility
The container is responsible for providing the deployment tools and for managing the bean instances at runtime. By
deployment tools, | mean a tool suite that generates various bean classes and helps the deployer make entries into a

deployment descriptor.

The EJB specification does not define any API between deployment tools and the container. Therefore, you do not
specify what entity provides the deployment tools. However, the container must have tools to support the generation
of enterprise bean implementation classes.

Some EJB implementation classes and interfaces are used by all two (EJB 1.1) or three (EJB 2.0) bean types while
other EJB implementation classes and interfaces are specific to the different bean types. | won't go into a laundry list
of these classes now as you'll encounter all the bean classes and interfaces in subsequent chapters.

The Required EJB Container Runtime Environment

The requirements described here are considered to be the minimal requirements for an EJB 1.1-compliant container.
A container provider is free to provide additional functionality that is not required by the EJB specification. As usual,
when you stray away from the requirements, you run the risk of limiting your portability.

Java APIs Required for EJB Container

A complex environment that supports EJB, namely a container, requires more than the Java 2 Standard Edition. A
Java 2 platform-based EJB container must make the following APIs available to the enterprise bean instances at
runtime:

. Java 2 Standard Edition APIs
. EJB1.1or2.0APIs

. JNDI 1.2

. JTA101

. JDBC 2.0

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=499324187

. JavaMail 1.1

The Required J2SE APIs

The EJB container must provide the full set of Java 2 Standard Edition APls. However, the EJB container is allowed
to, and usually does, make certain Java functionality unavailable to the enterprise bean instances by using the Java 2
platform security policy mechanism. The container must take steps to protect its environment and to prevent the
enterprise bean instances from interfering with the container’s functions.

JNDI 1.2

The container must provide a Java Naming and Directory Interface (JNDI) APl name space to the enterprise bean
instances. The container must make the name space available to an instance when the instance invokes the
j avax. nam ng. | ni ti al Cont ext no-arg constructor.

The container needs to make the home interfaces of other enterprise beans available by using the JNDI API. The
code snippet that follows shows how a client can use the JNDI API to locate a home object:

Context initial Context = new Initial Context();
Cart Home cartHome =
(Cart Hone)
j avax. rm . Port abl eRenot ehj ect . narr ow
i nitial Context.|ookup("java: conp/env/ejb/cart"),
Cart Hone. cl ass) ;

In Chapter 18, “Working with Persistent Data,” | discuss the coding of client programs that access enterprise beans,

so let's defer discussion of the details until then. For now, note that the preceding code uses the default no-arg
constructor for the | ni ti al Cont ext class to construct the JNDI context.

The container also needs JNDI to locate resources used by the enterprise beans. The code snippet that follows shows
how a bean method would use the default no-arg constructor to locate a resource. Here, the resource is an object of
j avax. sql . Dat aSour ce, or a database:

Initial Context initCtx = new Initial Context();
myData = (DataSource)initCtx.|ookup("java: conp/env/ nydat abase");

JTA1.0.1

The container must include the Java Transaction APl (JTA) 1.0.1 extension. The relevant JTA interface for EJB is the
j avax.transaction. User Tr ansact i on interface.

Recall that the EJBCont ext interface defined three methods dealing with transactions. The set Rol | backOnl y and
get Rol | backOnl y methods of EJBCont ext help developers of container-managed transaction beans control some

behaviors of transactions. For developers of bean-managed transaction beans, these two methods are of no help.
Bean-managed transaction developers rely on methods in the j avax. transacti on. User Tr ansact i on interface

to provide similar functionality.

The third method of the EJBCont ext interface, get User Tr ansact i on, is also available to developers of bean-

managed transaction beans. This method returns an object of a class that implements the
j avax.transaction. User Tr ansact i on interface.

The container is not required to implement the other interfaces defined in the JTA specification. The other JTA
interfaces are low-level transaction manager and resource manager integration interfaces and are not intended for
direct use by enterprise beans.

JDBC 2.0 extension

The container must include some of the JDBC 2.0 extension and provide its functionality to the enterprise bean
instances. The container makes the J2SE package j ava. sql . * available, as well as the J2EE package

j avax. sql . *, which allows the container to connect to a database and pool database connections.

Of particular interest is the j avax. sql . Dat aSour ce interface, which allows you to connect to a database. Objects
derived from the Dat aSour ce interface are located by using JINDI — the second code snippet in the section "JNDI
1.2" demonstrates a typical use of a Dat aSour ce object.

The JDBC 2.0 extension includes packages that perform low-level distributed transaction (XA) and connection pooling
interfaces. These low-level interfaces are intended for integration of a JDBC driver with an application server, not for
direct use by enterprise beans.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Understanding EJBs

From reading about JavaBeans in Chapter 6, “JSP, JavaBeans, and JDBC,” you know that JavaBeans are software

components. Because EJBs are software components, and the “JB” in EJB stands for “JavaBean,” you may conclude
that an EJB is an enhanced JavaBean. While this is a reasonable assumption, it is incorrect.

Both JavaBeans and Enterprise JavaBeans are standards for the development of software components, but that's
where the similarity ends. A JavaBean is a software component that simply follows the naming conventions for
properties and accessor methods, contains a ho-argument constructor, and is persistent. EJBs are deployable
components. Java developers can combine several Enterprise JavaBeans, and possibly other application parts, to
form deployable components. In other words, an EJB provides some base functionality useful in a distributed
computing environment.

Another distinction between JavaBeans and EJBs is that you do not need a special runtime, other than a Java Virtual
Machine (JVM), to use JavaBeans, whereas you need a special runtime to use an EJB. The special runtime provides
services to the EJBs, such as creating new instances or removing unused instances of a component class. You may
recall from Chapter 1, “Enterprise Computing Concepts,” that these special runtimes are called containers.

JavaBeans are components accessed within the context of a single process that exists in a single address space.
Your Java component accesses a JavaBean as an instance of a JavaBean class by name. EJBs are distributed
components accessed remotely within multiple contexts. Your application uses some sort of directory service to locate
and use an EJB.

Before completing this discussion of differentiating JavaBeans and EJBs, it is worthy of mention that you can, and
probably will, use JavaBeans as components when building EJBs.

Top <

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=860474155

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

EIE & ISP
Java On The Edge

| Your Guide to Cutting-Edge J2EE Programming
i .| Techniques.

Goals of the EJB Architecture

Sun Microsystems and its business partners set out to achieve several goals when they jointly developed the EJB
architecture. This section introduces these goals and offers some insights into the underlying intentions and
meanings.

The EJB specification document, available at htt p: // j ava. sun. coni pr oduct s/ ej b/ docs. ht m , contains the

goals for the EJB architecture. Our discussion in this section will focus on the general goals of the architecture. Later
in this chapter we will discuss goals added in new releases of the EJB specification.

1. The Enterprise JavaBeans architecture will be the standard component architecture for building
distributed object-oriented business applications in the Java programming language.

According to this goal, any organization developing server-side distributed software components in Java must
follow the standards set by the EBJ specification. Perhaps, more accurately stated, this goal alerts organizations
that are developing a distributed object software component architecture that they are wasting their time because
the architecture has already been developed.

Of course, all the players in the industry realize that the EBJ specification in its current form is not the last word on
developing Java-based distributed software components. EJB specification will undergo revisions and
enhancements as it is further developed. However, the foundations of the EJB architecture probably will not
change for a significant amount of time.

2. The Enterprise JavaBeans architecture will make it possible to build distributed applications by
combining components developed using tools from different vendors.

A key feature of the EJB architecture is the construction of applications from software components (enterprise
beans). The EBJ architecture defines what the enterprise beans are made of, including the classes and interfaces
enterprise beans extend or implement. The EJB architecture does not define how a vendor constructs enterprise
beans; the vendor is free to use whatever tools and technologies are at its disposal. The intention behind this goal
is to create a rich marketplace in which vendors can reuse server-side distributed components and an industry of
customers can mix and match different vendor offerings, secure in the knowledge that the developed enterprise
beans work according to the EJB architecture.

3. The Enterprise JavaBeans architecture will make it easy to write applications. Application developers will
not have to understand low-level transaction and state management details, multi-threading, connection
pooling, and other complex, low-level APlIs.

As mentioned in Chapter 1, “Enterprise Computing Concepts,” developing multi-tiered applications is not a trivial

task. The application development team must be concerned with many important but nonbusiness services, such
as application security, transaction management, and data integrity. The EJB architecture defines the
responsibilities of the EJB Container, which provides the preceding, along with other, services to enterprise beans.
The application development team, freed from having to understand and provide such services, can concentrate
on solving the business problems they are paid to solve.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=281448647
http://java.sun.com/products/ejb/docs.html

. Enterprise JavaBeans applications will follow the “Write Once, Run Anywhere” philosophy of the Java
programming language. An enterprise bean can be developed once, and then deployed on multiple
platforms without recompilation or source code modification.

Because the EJB architecture is a standard, as opposed to a product, any vendor that adheres to the standard
can develop enterprise beans deployable on any suitable Java-enabled platform, such as an application server.
When a vendor states that a piece of software is Java-enabled, the vendor must put the software through a series
of tests described in the Java Compatibility Kit. An enterprise bean developed according to the EJB architecture
must run on such a platform.

Note the preceding goal states that the enterprise bean can be deployed without recompilation or source code
modification. Given the wide variety of differences among enterprise computing environments, the goal may, at
first, sound impossible to attain. As you can read later in this chapter, you can change some particulars of an
enterprise bean without recompilation by using a deployment descriptor. The deployment descriptor, as the name
implies, is a file that describes the particulars of how the enterprise bean is to be deployed. Think of a properties
file and you get the essential idea.

. The Enterprise JavaBeans architecture will address the development, deployment, and runtime aspects of
an enterprise application’s life cycle.

This goal is an acknowledgment of the vitally important role distributed software components play in the enterprise
application. However, this goal is somewhat vague in how the architecture addresses these aspects of the
application. One way of looking at this goal is to remember that every phase of the application development cycle,
in some manner, deals with the EBJ architecture. However, another way of looking at this goal is to remember that
the EJB architecture has something to say about every phase of the application development cycle. Nonetheless,
the importance of distributed software components cannot be understated, a fact known to the creators of the EJB
architecture.

. The Enterprise JavaBeans architecture will define the contracts that enable tools from multiple vendors to
develop and deploy components that can interoperate at runtime.

As previously mentioned, the architecture defines a standard that enables developed enterprise beans to combine
to form applications. A Java-based enterprise application consisting of enterprise beans is not static, such as an
executable file formed by a compile/link cycle. A Java-based enterprise application is dynamic, with classes
creating, loading, and disposing of instances during execution. To facilitate this dynamic behavior, the EJB
architecture defines how enterprise beans interoperate at runtime.

Above and beyond the stated behavior of communicating enterprise beans during application, execution is how
these enterprise beans are created to permit this behavior. The EJB architecture defines what parts of enterprise
beans should be exposed to the software development tools the vendors use to empower enterprise beans with
the preceding behavior.

. The Enterprise JavaBeans architecture will be compatible with existing server platforms. Vendors will be
able to extend their existing products to support Enterprise JavaBeans.

To create an EJB-capable server, the vendor must provide an environment in which enterprise beans can
execute. The environment is called an EJB container. The architecture accomplishes this apparent feat of magic
by providing a set of APIs that the EJB container must implement.

. The Enterprise JavaBeans architecture will be compatible with other Java programming language APIs.

This goal enables application developers to use other Java Language APIs in the construction, deployment, and
execution of enterprise beans. Developers may use the JavaBeans API to construct beans that form pieces of
enterprise beans. Developers may use the Java servlet API to write servlets that invoke enterprise beans, perhaps
by using another Java API, such as RMI. Enterprise beans may use the JDBC API to manipulate persistent data.
Developers use the JNDI API to locate enterprise beans in the distributed environment.

. The Enterprise JavaBeans architecture will provide interoperability between enterprise beans and non-
Java programming language applications.

10.

Let's face it: For a software component to be truly useful, the component must communicate with pieces of
software written in other programming languages. Most customers are not going to scrap their existing, functioning
applications any time soon. The creators of the EJB architecture realized this sobering fact and, in response,
established guidelines to ensure that an enterprise bean must have the ability to communicate with existing
applications written in other programming languages. The architecture provides mechanisms to enable this cross-
language interoperability.

The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

As you read in Chapter 2, “J2EE Component APIs,” CORBA (the Common Object Request Broker Architecture) is
the granddaddy of distributed object architectures. CORBA is more encompassing than Enterprise JavaBeans and
has been around for over a decade. The EBJ architects recognized the importance of CORBA interoperability and
have provided the Java IDL to enable Java programmers to represent Java objects in general, and enterprise
beans in particular, as CORBA objects.

In short, the goals of the EJB architecture are ambitious but, for the most part, realized with the current release of the
architecture. Sun Microsystems and its business partners are continually enhancing the EJB architecture with new
releases. The following section discusses, release by release, the major features of Enterprise JavaBeans.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 18: Creating EJB Clients

In previous chapters you learned about the elements of session and entity beans. You also read about EJB security

and transactions and examined code that implements some enterprise beans. In this chapter, you explore the coding
constructs required to create EJB clients. | begin by describing some general principles, followed by the requirements
that EJB clients must follow. In addition, | describe the particulars of invoking session bean and entity bean methods.

Examining the Rules of EJB Clients

This section examines some properties that EJB clients share, regardless of the bean type the client accesses.

The Client Never Talks to the Bean or to the Container

I've covered the fact that an EJB client never interacts directly with an enterprise bean. Instead, the client interacts
with the EJB object, which requests the EJB container to invoke bean methods on behalf of the client.

Let's review quickly the relationship between the client, the EJB object, the container, and the enterprise bean. The
EJB object is defined by methods in the r enpt e interface. It is through this r enot e interface that the client accesses

the enterprise bean. The object that implements this r enpt e interface is the EJB object.

The EJB specification does not define a client-container API, which is a ten-dollar way of saying that the client never
interacts directly with the container. The workings of the container are transparent to the client. Good thing, too, given
that one of the primary reasons developers are interested in distributed object technologies such as EJB is that the
container provides numerous services to clients in a transparent manner.

The Client Acquires References to EJB Objects Through a home Object

Before the client can access an EJB object, the client needs a reference to the object. Regardless of the type of bean
(session, entity, message-driven) accessed by the container by way of the EJB object, the client gets a reference to
the EJB object the same way: by initially referencing a home object.

The home object (called an EJB object factory in the EJB specification) is an object from a class that implements the

bean’s home interface. As you've read, the hone interface defines methods that allow a client to request the creation,
location, and destruction of enterprise beans.

The Client Does Not Know Where the Bean Lives

The client has no knowledge of the location of the enterprise bean. That's the goal of a distributed object technology

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=906766270

such as Enterprise JavaBeans — the location of the bean is unknown to the client because the client accesses the
bean regardless of the bean’s location on the network. In other words, the client does not know what JVM the bean
resides on.

The Client Does Not Know How the Bean Is Implemented

The client has no knowledge of the enterprise bean implementation. The bean may be an entity bean representing
relational database data or a wrapping of a CICS (Customer Information Control System) transaction. The client
accesses the bean in the manner dictated by the EJB specifications, not by the particulars of the implementation.

The technology used by the container provider is of no interest or importance to the client. Once again, the client

accesses enterprise beans according to the EJB specifications, not according to any implementation-specific details of
the container.

The Client Accesses Session Beans Much as It Does Entity Beans

A client, for the most part, accesses a session bean much as it does an entity bean. You've read that session beans
have different uses and capabilities than entity beans. Of course, the client invokes different methods to utilize
particular features of an entity bean instead of a session bean. That said, the methods and techniques to perform
common operations on both bean types, such as locating, creating, and destroying the bean, are done by the client
the same way.

The Client May Be One of Several Java Objects

An EJB client can be, but need not be, a Java application, through the standard use of a method:
public static void main(String[] args){ ... }

A client can also be an applet or a Java servlet. A client can even be a CORBA client not necessarily written in Java.

A client can be another enterprise bean. (It is common for one enterprise bean to invoke the methods in another
bean.) The client bean may or may not reside in the same container or the same JVM as the server bean.

Whatever the makeup of the client, the methods used by the client to access the enterprise bean are the same.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

The EJB component architecture was designed to provide a component architecture for enterprise-level applications.
Transactions are inherent to applications of the enterprise level, and with them come the difficulties of ensuring data
integrity. In this chapter we've read about transaction management mechanisms built into the EJB architecture. These
mechanisms give you the tools to control transactions at the level that best suits the nature of your enterprise
application. As you leverage the power of EJB transaction support, you will be able to build more robust applications
at the same time as you reduce your application development time.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=626525949

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming

f Techniques.

Isolating Transactions at Different Levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of work from each
other, provided that the system enables concurrent execution of multiple units of work (recall the isolation property of
ACID).

The isolation level describes the degree to which the access to a resource manager by a transaction is isolated from
the access to the resource manager by other concurrently executing transactions.

Isolation Conditions

Certain conditions, called isolation conditions, are a by-product of transactional systems when multiple transactions
operate on the same data. These conditions are dirty reads and phantom reads.

Dealing with Dirty Reads

Dirty reads are a problem common to systems where multiple transactions can act on the same data. Suppose
transaction B reads the uncommitted results from transaction A. If transaction A is rolled back, a dirty read has
occurred because now transaction B is using data that is out-of-state, or invalid. Depending on the nature of your
application, you can choose to handle dirty reads using one of two different types of strategies, known as repeatable
reads and nonrepeatable reads.

Repeatable reads address the problem of dirty reads by forcing the data to look the same if read multiple times within
the same transaction. The resource manager may lock the data, thereby denying access to that data to any other
transactions. Another strategy to implement a repeatable read is to take a snapshot of the data. With the snapshot,
other transactions may change the data, but the current transaction does not see the changes; the current transaction
sees the snapshot.

Your application requirements determine if locking or taking a snapshot is necessary. It is noteworthy that most
database managers implement locking at the row level.

The opposite of repeatable reads are nonrepeatable reads. When using nonrepeatable reads, different reads of the
same data by the same transaction may yield different results, possibly from actions performed by different
transactions. Nonrepeatable reads may not always be a problem. Your application may require that the same data be
changed by multiple transactions and that these changes be seen by a single transaction.

Dealing with Phantom Reads

A phantom read occurs when a transaction detects new data between two separate read operations. The difference
between a phantom read and a nonrepeatable read is that the data is always new in phantom reads, whereas the data
in nonrepeatable reads may be new or changed.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=377246311

The next section describes some locking techniques used in dealing with the problems resulting from dirty and
phantom read problems.

Using Database Locking Strategies

The most popular database locking strategies are listed below:

. Write locks: Write locks prevent other transactions from changing the data until the current transaction completes.
Typically, other transactions can read the uncommitted changes.

. Exclusive write locks: Exclusive write locks prevent other transactions from looking at or changing the data. This
type of lock effectively eliminates the dirty read problem.

. Read locks: Read locks eliminate nonrepeatable reads by preventing transactions from changing just-read data
until the reading transaction ends. The data can be read by other transactions but not updated by them.

You may think that the best solution is to code as restrictive a lock as possible (exclusive write lock), thereby avoiding
all sorts of dirty and phantom read problems. Sadly, the more you lock your data, the slower your application may
execute. If you have multiple users who need access to the same data (and who doesn’t?), excessive locks cause the
transaction manager to roll back or suspend transactions, thereby degrading application performance.

Until the application has been up and running for a while, you may not know which is the best locking strategy to use.
That said, the next section offers some guidelines for managing isolation levels in enterprise beans.

Managing Isolation Levels

The following are guidelines for managing isolation levels in enterprise beans:

. The API for managing an isolation level is resource-manager specific. Therefore, the EJB architecture does not
define an API for managing isolation levels.

. If an enterprise bean uses multiple resource managers, the Bean Provider may specify the same or different
isolation level for each resource manager. As a result, if an enterprise bean accesses multiple resource managers
in a transaction, access to each resource manager may be associated with a different isolation level.

. The Bean Provider must take care when setting an isolation level. Most resource managers require that all
accesses to the resource manager within a transaction be done with the same isolation level. An attempt to change
the isolation level in the middle of a transaction may cause undesirable behavior, such as a commit of the changes
done so far.

. For session beans and message-driven beans with bean-managed transaction demarcation, the Bean Provider
can specify the desirable isolation level programmatically in the enterprise bean’s methods, using the resource-
manager specific APIl. For example, the Bean Provider can use the
java. sql . Connecti on. set Transact i onl sol at i on method to set the appropriate isolation level for
database access.

The following code snippet sets an isolation level for a database connection:
String url ForDB = ...;

Dat aSource nyDSrc = (] avax. sql . Dat aSour ce)
j ndi CTX. | ookup(url ForDB) ;

Connection nmyConn = nyDsrc. get Connection ;
MyConn. set Tr ansacti onl sol ati on

(Connecti on. TRANSACTI ON_READ COW TTED) ;

. For entity beans with container-managed persistence, transaction isolation is managed by the data access classes
that are generated by the persistence manager provider’s tools. The tools must ensure that the management of the
isolation levels performed by the data access classes will not result in conflicting isolation level requests for a
resource manager within a transaction.

. Additional care must be taken if multiple enterprise beans access the same resource manager in the same
transaction. Conflicts in the requested isolation levels must be avoided.

You cannot control isolation levels for container-managed transaction beans. Sun Microsystem'’s reasoning is that
vendors had numerous difficulties implementing isolation levels at the transaction component level. The only real
alternative is to use JDBC's isolation control facilities, as shown in the preceding code snippet.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Supporting Transactions in EJBs

Enterprise JavaBeans may be, and typically are, transactional and execute within a distributed transaction-processing
environment. Being transactional means that enterprise beans, together with the EJB container, may implement the
ACID transaction properties. The beauty of using Enterprise JavaBeans is that the EJB container performs many of
the tasks needed to implement the ACID properties and the concepts described previously. The containers and EJB
servers implement the low-level APIs needed to provide transaction support services and protocols, thereby freeing
the application developer from tending to the details of coding these services. In short, EJB hides much of the
complexities of transaction support in a distributed transactional environment from the developer.

Enterprise JavaBeans support transactions that adhere to the OMG Object Transaction Service (OTS) for flat
transactions. The OTS is a distributed transaction processing service specified by the Object Management Group. The
OMG specification extends the CORBA model and defines a set of interfaces to perform transaction processing
across multiple CORBA objects. As of release 2.0, Enterprise JavaBeans do not provide support for nested
transactions.

Managing EJB Transactions

You, the EJB developer, freed from much of the mundane details of managing transactions, rarely have to deal with
low-level transaction APIs. Your code never has to directly deal with the underbelly of the transaction manager. Your
job is to write application code that addresses the needs of your customers. You tap the power of EJB by deciding
how EJB manages your transactions.

What choices do you have? You can tell EJB to use a programmatic transaction demarcation or use a declarative
transaction demarcation. Let's explore these two choices next.

Managing Transactions at the Bean Level

With programmatic transaction demarcation (often called bean-managed transaction demarcation), the EJB developer
is responsible for defining the boundaries of the transaction. Your code should expose methods that start the
transaction, perform all required operations, and commit or abort the transaction. In short, bean-managed demarcation
is the traditional way of coding transaction-driven applications.

You might be wondering what, with bean-managed transaction demarcation, is the benefit to using Enterprise
JavaBeans. Well, you still have the benefits afforded by a distributed object manager, such as location transparency.
Also, you need not fret over coding the details of having the transaction manager coordinate efforts with the resource
managers during the execution of the transaction operations. You write code invoking methods that implement the
operations required to complete the transaction; the EJB container and server handle the coordination of the system
components needed to complete (or abort) the transaction.

With bean-managed transaction demarcation, the enterprise bean code demarcates transactions using the
javax. transaction. User Transact i on interface. All resource manager accesses between the

User Transacti on. begi n and User Transact i on. comi t calls are part of a transaction. Hence, your beans

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=679005605

would invoke the User Tr ansact i on. begi n method of the current transaction object to start a transaction and
invoke the User Tr ansacti on. commit or User Transacti on. r ol | back method to end a transaction. Listing 17-1
has a template that illustrates the use of the aforementioned methods.

Listing 17-1: Using bean-managed transaction demarcation

public void doMyTransaction(Somed assl anOhj d assli,
Soned ass2 anObj Cl ass2,

) |
try {
/1 Get a reference to the current transaction
/1

j avax.transaction. User Transacti on nyTrans =
ej bCont ext . get User Tr ansaction() ;
//start the transaction
11
myTr ans. begi n() ;
/I Execute the operations that constitute the transaction
11
doQperationl(anCbhjd assl) ;
doQperation2(anChjd ass2) ;

[/ Commit the transaction. If any of the doOperation()
[/ methods fail, we may assune the fail ed operation passed
/lan exception back to this method.

myTrans. conmit () ;
}
catch (Exception anExc) {
/1 Tend to exceptions. You would need logic to
/[/deternmine if arollback is called for.
/1

nyTrans. rol | back();

Notice how the code in Listing 17-1 explicitly sets the transaction boundaries.

Because you make use of the Java Transaction API for bean-managed transaction demarcation, perhaps a few words
on the APl is in order.

Using the Java Transaction API

The Java Transaction API consists of two elements: an application-level transaction demarcation interface and a
standard Java mapping of the X/Open XA protocol. You've seen the application-level transaction demarcation
interface in Listing 17-1. Listing 17-2 shows the j avax. t ransacti on. User Tr ansact i on interface.

Listing 17-2: The javax.transaction.UserTransaction interface

package javax.transaction ;
i nterface User Transaction{

11
public void begin()
t hrows Not Support edExcepti on, Syst enException ;

public void comit ()
throws Rol | backException, HeuristicM xedExcepti on,
Heuri sti cRol | backExcepti on,
j ava. |l ang. SecurityExcepti on,
java.l ang. |11 egal St at eExcepti on,
Syst enException ;
public void roll back()
throws java.lang. |1l egal St at eExcepti on,
j ava. |l ang. SecurityExcepti on,
Syst enException ;
public void setRoll backOnly()
throws java.lang. |1l egal St at eExcepti on,
Syst enException ;
public void getStatus()
t hrows SystenkException ;
public void setTransactionTi neout ()
t hrows SystenkException ;

Note The j avax. transacti on. User Transact i on package in earlier releases of J2EE contained status
codes. In the latest J2EE release, Sun moved the status codes out of the User Tr ansact i on interface and
placed the codes in a separate interface, j avax. t ransacti on. St at us.

The begi n method creates a new transaction and associates it with the current thread.

The conmi t method completes the transaction associated with the current thread by running the two-phase commit
process. When conmi t completes, the thread becomes associated with no transaction.

The r ol | back method rolls back the transaction associated with the current thread. When r ol | back completes, the
thread becomes associated with no transaction.

The set Rol | Back method modifies the transaction associated with the current thread such that the only possible
outcome of the transaction is to roll back the transaction. You can use set Rol | Back to determine what your
transaction components do without committing any changes to permanent storage.

The get St at us method obtains the status of the transaction associated with the current thread.

The set Transact i onTi meout method modifies the value of the timeout value that is associated with the

transactions started by the current thread with the begin method. If an application has not called
set Transact i onTi neout , the transaction service uses some default value for the transaction timeout.

Managing Transactions at the Container Level

With declarative transaction demarcation (often called container-managed transaction demarcation), the EJB
container is responsible for defining the boundaries of the transaction. Your code never invokes any method that
explicitly starts a transaction, or commits or rolls back a transaction. The EJB container does all the necessary work
for you.

Just how does EJB accomplish the necessary tasks of demarcating your transactions? The EJB container intercepts
any client request that involves a transaction and automatically starts, manages, and ends the transaction. As you've
probably guessed, you tell the EJB container what to do by setting various parameters in the bean’s deployment
descriptor. The parameter you must set to direct the EJB container to participate in container-managed transaction
demarcation is the t r ansact i on attribute. The next section describes this vitally important parameter, providing

examples of deployment descriptors that inform the EJB container of the t r ansact i on attribute value.

The transaction Attribute

Atransacti on attribute is a value associated with a method of a session or entity bean’s r enpt e or home interface.
The t ransact i on attribute specifies how the container must manage transactions for a method when a client
invokes the method via the enterprise bean’s hone or r enot e interface.

For a session bean, the t r ansact i on attributes must be specified for the methods defined in the bean’s r enpt e
interface and all the direct and indirect superinterfaces of the r enot e interface, excluding the methods of the

j avax. ej b. EJBbj ect interface. t r ansact i on attributes must not be specified for the methods of a session
bean’s horme interface.

For an entity bean, the t r ansact i on attributes must be specified for the methods defined in the bean’s r enot e
interface and all the direct and indirect superinterfaces of the r enot e interface, excluding the get EJBHon®,

get Handl e, get Pri mar yKey, and i sl dent i cal methods; and for the methods defined in the bean’s horne
interface and all the direct and indirect superinterfaces of the hone interface, excluding the get EJBMet aDat a and
get HomeHandl e methods.

Providing the t r ansact i on attributes for an enterprise bean is an optional requirement for the application assembler.
For a given enterprise bean, an application assembler must either specify a value of the t r ansact i on attribute for all
of the methods for which at r ansact i on attribute must be specified, or an assembler must specify none. If the
transact i on attributes are not specified for the methods of an enterprise bean, the deployer must specify them.

Enterprise JavaBeans define the following values for the t r ansact i on attribute:

. Not Support ed: If you set a bean or method’s t r ansact i on attribute to Not Suppor t ed, the bean cannot be

involved in a transaction. If a method is currently involved in a transaction to invoke a bean method coded as
Not Suppor t ed, the container should suspend the transaction until the Not Suppor t ed method completes.

. Requi r ed: If you set a mean or method’s t r ansact i on attribute to Requi r ed, the bean or method always runs
in some transaction context. Any method of a bean with the Requi r ed transaction attribute, invoked by a bean

currently involved in a transaction, participates in that transaction. If a method of a bean not involved in a
transaction invokes a bean with the Requi r ed t r ansact i on attribute, the bean will initiate a new transaction.

. Supports: If you set a bean or method’s t r ansact i on attribute to Support s, then the bean runs in a

transaction only if the invoking method or client is already involved in a transaction. If the invoking method is not
involved in a transaction, the bean with at r ansact i on attribute of Suppor t s executes outside of a transaction

context.

. Requi resNew. Code a bean or method’s t r ansact i on attribute to Requi r esNew if you always want a new

transaction to start when a method of the bean is invoked. If a client or another bean that invokes the
Requi r esNew bean is already involved in a transaction, the container should suspend the already running

transaction and start a new transaction. The new transaction lasts as long as the method of the Requi r esNew
bean executes. After the method of the Requi r esNew bean completes execution, the container resumes
execution of the suspended transaction.

. Mandat ory: Use a value of Mandat or y to instruct the EJB container to include the bean in an already executing

transaction. Hence, a transaction must already be executing when a bean with a transaction attribute of
Mandat or y is invoked. If no transaction is executing, the invocation throws a

javax.transaction. Transacti onRequi r edExcepti on.

. Never: Beans coded with a transaction attribute of Never cannot be a part of a transaction. If a bean or client
involved in a transaction invokes a bean with a transaction attribute of Never , the invocation throws a
Renot eExcepti on.

Note Message-driven beans (EJB 2.0) support only the Requi r ed and Not Suppor t ed transaction attribute
values and must be coded for the Message bean’s onMessage method.

Coding the Transaction Attribute

As previously mentioned, you code a value of the t r ansact i on attribute in the bean’s deployment descriptor. EJB
enables you to provide a value of the t ransact i on attribute for the entire bean or for methods within beans. Also,
you may code different values of the attribute for different methods of the same bean.

You use the container-transaction elements to define the t r ansact i on attributes for the methods of session and
entity bean’s r enot e and hone interfaces and for the onMessage methods of message-driven beans. Each

cont ai ner-transacti on element consists of a list of one or more et hod elements, and thetrans-attri bute
element. The cont ai ner-transact i on element specifies that all the listed methods are assigned the specified
transacti on attribute value. It is required that all the methods specified in a single cont ai ner -transacti on
element be methods of the same enterprise bean.

The net hod element uses the ej b- nane, net hod- nane, and net hod- par ans elements to denote one or more
methods of an enterprise bean’s hone and r enot e interfaces. The three legal styles of composing the net hod
element are as follows:

Style 1:

<met hod>

<ej b- nane> EJBNAME</ ej b- nanme>

<met hod- name>* </ net hod- nanme>

</ met hod>

This style is used to specify a default value of the t r ansact i on attribute for the methods for which there is no Style 2
or Style 3 element specified. There must be at most one cont ai ner -t ransact i on element that uses the Style 1
et hod element for a given enterprise bean.

Style 2:

<met hod>

<ej b- nane> EJBNAME</ ej b- nane>

<met hod- name> METHOD</ net hod- nanme>
</ met hod>

This style is used for referring to a specified method of the r enot e or hone interface of the specified enterprise bean.
If there are multiple methods with the same overloaded name, this style refers to all the methods with the same name.
There must be at most one cont ai ner -transacti on element that uses the Style 2 net hod element for a given
method name. If there is also a cont ai ner -t ransact i on element that uses Style 1 element for the same bean, the
value specified by the Style 2 element takes precedence.

Style 3:

<met hod>

<ej b- nanme> EJBNAME</ ej b- nanme>

<met hod- name> METHOD</ net hod- nane>

<met hod- par ans>

<net hod- par anm> PARAMETER 1</ net hod- par an®

<met hod- par an> PARAMETER _N</ net hod- par an®
</ met hod- par ans>
</ met hod>

This style is used to refer to a single method within a set of methods with an overloaded name. The method must be
one defined in the r enot e or hone interface of the specified enterprise bean. If there is also a cont ai ner -

transact i on element that uses the Style 2 element for the method name, or the Style 1 element for the bean, the

value specified by the Style 3 element takes precedence.

The optional met hod- i nt f element can be used to differentiate between methods with the same name and signature

that are defined in both the r enot e and hone interfaces.

Listing 17-3 shows the specification of the t r ansact i on attributes in a deployment descriptor. The
updat ePhoneNunber method of the Enpl oyeeRecor d enterprise bean is assigned the transaction attribute
Mandat or y; all other methods of the Enpl oyeeRecor d bean are assigned the attribute Requi r ed. All the methods

of the enterprise bean Aar dvar kPayr ol | are assigned the attribute Requi r esNew.

Listing 17-3: Deployment descriptor showing transaction attribute values

<ej b-jar>
<assenbl y- descri pt or>

<cont ai ner-transacti on>

<met hod>

<ej b- nane>Enpl oyeeRecor d</ ej b- name>

<met hod- nane>* </ met hod- nanme>

</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

<cont ai ner-transacti on>

<met hod>

<ej b- nane>Enpl oyeeRecor d</ ej b- name>

<met hod- nane>updat ePhoneNunber </ et hod- nane>
</ met hod>
<trans-attribute>Mandatory</trans-attri bute>
</ cont ai ner-transacti on>

<cont ai ner-transacti on>

<met hod>

<ej b- nane>Aar dvar kPayr ol | </ ej b- name>

<met hod- nane>* </ met hod- nanme>

</ met hod>

<trans-attribute>Requi resNew</trans-attribute>
</ cont ai ner-transacti on>

</ assenbl y-descri pt or >

</ejb-jar>

Another important transaction property supported by EJB is the property of Isolation Level. The next section provides

some details about this property.

| <= Prov_

| Noxt =

Top <

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Transaction Properties

Many of us have an intuitive understanding of a transaction, which is a set of operations that transforms data from one
consistent state to another. The set of operations that constitutes the transaction is usually initiated by a client and
consists of client requests for data access, data manipulation, and data removal.

Although describing a transaction is simple, implementing a transaction isn’t quite as simple. The difficulty often arises
when the set of operations must be implemented across a group of distributed components using data from several
locations. For example, if you write an enterprise bean that represents an online shopping cart, it may need to make
entries in your warehouse database in Chicago, your accounting database in Dallas, and your customer database in
New York. The operations involved in these transactions must be coordinated and possibly synchronized — this can
be a source of difficulty.

Our goal in this chapter is to understand transactions and how EJBs help ease these and other difficulties inherent in
implementing and managing transactions.

Understanding Transaction Terminology

Before you can explore transactions, it is necessary to become acquainted with the most commonly used terms found
in the world of transactions.

Processing Transactions

To process transactions, a system needs access to several components, namely application components, a resource
manager, and a transaction manager. Let’s take a look at these vitally important terms.

Application Components

The application consists of one or more application components. Application components are clients for the
transactional resources, or the programs with which the application developer implements business transactions. As
you might have guessed, enterprise beans are the application components of an EJB-based transactional system.
Application components operate on data by using the services of a resource manager.

Resource Managers

The resource manager supports distributed transactions by managing resources. In the context of a transactional
system, a resource may represent a permanent data store or a message queue.

Resource managers implement a transaction resource interface, such as a database driver to communicate with a
relational database. The X/Open XA protocol, supported by nearly all the major database players, is another example

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=270866982

of a resource manager.

Transaction Managers

The transaction manager is the heart and soul of a transaction-processing environment. Its primary responsibilities are
to create transactions when requested by application components and to manage the actions resulting from the
success or failure of transactions by working with the resource managers.

The transaction manager may act as a traffic cop, temporarily halting or suspending one transaction and enabling
another to proceed. Perhaps one transaction requires a resource held by another, currently executing transaction. If
s0, the transaction manager may abort the one transaction or suspend it until the transaction holding the needed
resource completes. The transaction manager coordinates activities with the resource managers to make the
previously held resource available to the waiting transaction. Once available, the transaction manager allows the
suspended transaction to resume execution.

These three previously mentioned components are discussed later in this chapter, specifically in the section
“Transaction Processing Concepts.” Now, it's time to look at the four defining characteristics of a transaction: the ACID

properties.

Learning the ACID Properties

Transactions have several important properties known as ACID properties, which are as follow:

. Atomicity: Transactions implement several operations, which must be completed in order for the transaction to be
successful. If any one of the constituent operations fails, the entire transaction fails. We say that transactions are
atomic in nature, meaning the operations of the transaction must be considered as an indivisible unit when
deciding whether or not the transaction is successful.

. Consistency: Transactions must ensure that the system remains in a consistent state, regardless of whether or
not the transactions successfully execute. The consistency of the system is defined by business rules, which the
application must enforce and implement.

. Isolation: The results of transaction execution should be independent of other executing transactions. Stated
differently, the effects of one transaction should not be visible to any other transaction until the transaction
completes. Although several transactions may be executing in parallel, the net effect is as if the transactions were
executing in serial.

. Durability: Changes made by a transaction must be permanent. Once the transaction successfully completes its
work, the system ensures that subsequent failures (software, hardware, network, and so on) cannot undo the
changes to the system resulting from a transaction.

When you develop a single-user program, implementing the ACID properties is simple. However, when you are
engaged in the development of enterprise-wide applications whereby hundreds or thousands of users have access to
common, distributed data stores, implementing the ACID properties is anything but simple.

In the past, the onus for supporting and implementing the highly desirable ACID properties fell to the application
programmer. With EJB, you can see that some of this burden is lifted from the programmer and placed on the back of
the EJB container. However, the application programmer is still left with a fair share of the load.

Differentiating Transaction States

A transaction results in one of two states: committed or rolled back. A transaction is committed if all its component
operations successfully execute and the changes in system state are persisted. In other words, the transaction
successfully implemented the ACID properties previously mentioned.

A transaction is rolled back if any one of its component operations fails. You may recall that the atomicity property of a
transaction requires that all of the transaction’s operations successfully complete. If one or more operations fail, the
system must be put back into a consistent state. Recall that the consistency property requires that the transaction
must leave the system in a consistent state. A good strategy for leaving the system in a consistent state after a
transaction operation failure is to undo all changes made by the transaction’s component operations (if any). The
process of undoing the changes made by the component operations is called rolling back the transaction.

A rolled-back transaction should remove all traces of its existence except for, perhaps, entries in various log files.
Please realize that a rolled-back transaction may not necessarily result from an error; it may be the result of the
implementation of a business rule or a change of state not present at the transaction’s onset.

Before continuing the discussion on transactions and transaction management, let's describe some transaction
processing concepts.

Learning Some Transaction Concepts

In the world of transaction processing, many important concepts exist, such as transaction context, two-phase commit,
resource enlistment, transaction demarcation, and transaction models.

Transaction Context

Because multiple application components and resources participate in a transaction, the transaction manager needs
to establish and maintain the state of the transaction as it occurs, usually in the form of a transaction context.

The transaction context is an association among the transactional operations on the resources, and the application
components invoking the operations. During the course of a transaction, all the components participating in the
transaction share the transaction context. Thus, the transaction context logically envelops all the operations performed
on transactional resources during a transaction. The transaction manager is responsible for managing the transaction
context in a manner transparent to the applications and resource managers.

Two-Phase Commit

The two-phase commit protocol between the transaction manager and all the resources enlisted for a transaction
ensures that either all the resource managers commit the transaction or they all abort.

In this protocol, when the application requests for committing the transaction, the transaction manager issues a “get
ready to commit” request to all the resource managers involved. The “get ready” request is the initial part of phase one
in the two-phase commit protocol.

Each resource manager may send a reply to the transaction manager indicating whether or not the resource manager
is ready to commit the changes made by the currently executing transaction. The reply is the second part of phase
one in the two-phase commit protocol. Only when all the resource managers reply that they are ready for a commit
does the transaction manager issue a commit request to all the resource managers. The request is (you guessed it)
phase two of the two-phase commit protocol. If a single resource manager vetoes the commit request made by the
transaction manager, the transaction manager issues a rollback request and the transaction is rolled back.

Resource Enlistment

The ten-dollar phrase used to describe how the resource managers notify the transaction manager of their
involvement in a transaction is resource enlistment. The transaction manager must have a mechanism to keep track of
the specific resource managers (and their underlying resources) used in each transactions. Also, the transaction
manager needs to keep tabs on the resource managers to implement the two-phase commit protocol.

At the end of a transaction (after a commit or rollback), the transaction manager delists the resources, which severs
any relationship between the transaction and the resource(s).

Transaction Demarcation

Transaction demarcation involves defining the players that are involved in the transaction, including who starts the
transaction, who performs an update or a delete, and who commits or rolls back the transaction. Transaction
demarcation is a way of marking groups of operations as a transaction.

Transaction Models

A transaction model is a generalized framework that describes a class of transactions. The two most popular, or often-
used, models are the flat and the nested transaction models.

The Flat Transaction Model

The flat transaction model is a direct implementation of a series of operations that constitute a transaction. The
operations are applied in a specific order. If any single operation fails, the entire transaction is aborted, or rolled back,
in accordance with the atomicity property of transactions.

The resource managers enlisted in the processing of a flat transaction typically hold off making permanent changes to
the underlying resource until the transaction manager directs the managers to commit the changes. This way, the
transaction can be safely rolled back if an operation fails and the system is left in a consistent state.

The Nested Transaction Model

In contrast to the flat model, the nested transaction model enables a transaction to contain multiple units of work. The
multiple units of work combine to form the complete unit of work required to complete the transaction.

The classic example of a nested transaction is the trip-planning problem. Consider booking a trip that contains several
legs. The entire trip is a transaction; each of the legs may be considered a contained unit of work. The transaction
manager could book each leg separately, or independently of the other legs. If all legs are successfully booked, the
transaction manager could direct the resource managers to commit the transaction.

So far, the previous description of planning a trip may resemble a flat transaction. However, consider what a
transaction manager would do if one of the legs were currently unavailable for booking. If this trip were implemented
as a flat transaction, the transaction manager would have no choice but to direct the resource managers to roll back
the transaction. However, with a nested transaction, the currently unavailable trip is a separate unit of work contained
within the larger transaction. The transaction manager can put the transaction on hold and try to book the unavailable
leg later. If the later booking is successful, the trip transaction can be committed.

The application program can be written to try alternate legs when a leg cannot be immediately booked. If this is the
case, the transaction manager suspends the trip transaction while the application attempts to locate an alternative
(perhaps to complete the leg by boat instead of by jet). If an alternative is located, the transaction can be committed.

The application can also be written to book the “hard-to-book” legs first. With nested transactions, you are not
necessarily tied to a rigid order of operations as with the flat model. Of course, all the legs eventually must be booked
in order for the transaction to be committed. The nested transaction model affords the application developer more
flexibility in designing transactions.

Now that you have some terminology under your belt, it's time to discuss how Enterprise JavaBeans support
transactions.

Top <

| <= Prov_ | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 17: EJB and Transaction Management

Overview

If you had to pick a property common to all enterprise-wide applications, surely the use of a database would be at the
top of the list. A database does more than store data, however. A database helps ensure that the application has
access to accurate data, although data accuracy is not the sole responsibility of the database. The database needs
help from the application, and from various pieces of system software, to ensure that the data housed in the database
is indeed accurate. The strategy used to ensure data accuracy includes the use and management of transactions.

Transactions are a proven technique for simplifying application programming. Transactions give the application
programmer the freedom from dealing with the complex issues of failure recovery and multi-user programming.

If the application programmer uses transactions, the programmer divides the application’s work into units called
transactions. The transactional system ensures that a unit of work fully completes or is fully rolled back. Furthermore,
transactions enable the programmer to design the application as if it were running in an environment that executes
units of work serially.

You may recall that a prime motivation for using a distributed component architecture to develop applications is to take
advantage of the services provided by the architecture. One of the vitally important services provided by the
Enterprise JavaBeans architecture is transaction support. This chapter discusses how Enterprise JavaBeans provide
transaction support, starting with a description of the transaction properties, and then following with a recap of the
Java APls involved in transactions. Next, you can explore the services relating to transactions provided by EJB, and
you can finish the chapter with an examination of code that provides transaction support.

Top

[<= Prov_ | Next —_

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=652474880

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

¥

1

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Security is a complex topic that continues to grow in importance each and every day. In this chapter, you've glanced
at Java's security features with emphasis on what Enterprise JavaBeans have to offer in the information security
realm. Thanks to the advanced architecture of EJB, you can build on the security features of Java to leverage security
in the construction of your EJBs.

Even though EJBs may not be the dominant piece of your applications, EJBs typically are the gateway to mission-
critical corporate data. This data is the target of hackers, crackers, and other scurrilous individuals with a not-too-nice
agenda. Fortunately, you have the tools and the technology to prevent most of these disasters.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=366628067

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Securing the Rest of Your Environment

Systems that are not 100 percent pure Java (and that means just about every large system out there) have additional
security concerns. Some techniques for addressing security in non-Java systems are SSL, HTTPS, IPSEC, and, of
course, using passwords.

SSL, or Secure Sockets Later, is a technology that enables a network administrator to secure transmissions between
two sockets. Once the network has established a channel connecting the two sockets, the transmissions are

encrypted.

HTTPS is a secure version of HTTP. The deal here is that HTTPS sends encrypted requests from Web hosts to
servers.

IPSEC is perhaps the strongest level of network security. In IPSEC, all IP messages sent over the network are
encrypted.

While encryption has an impact on network performance, the protection of information, corporate or private, can be far
more important.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=953719074

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

EJB Players and Security

Here is a brief rundown of the EJB players (roles) and their responsibilities in the security arena.

The Enterprise Bean Provider

The bean provider should implement neither security mechanisms nor hard-code security policies in the enterprise
bean’s business methods. Rather, the bean provider should rely on the security mechanisms provided by the EJB
container, and should let the application assembler and deployer define the appropriate security policies for the
application.

The bean provider and application assembler may use the deployment descriptor to convey security-related
information to the deployer. The information helps the deployer to set up the appropriate security policy for the
enterprise bean application.

The bean provider has methods available in the EJB API to glean security-related information. The
j avax. ej b. EJBCont ext interface provides two methods that enable the bean provider to access security

information about the enterprise bean’s caller:

java.security. Principal getCallerPrincipal();
bool ean isCall erl nRol e(String rol eNane);

The main purpose of the i sCal | er | nRol e() method is to enable the bean provider to code the security checks that

cannot be easily defined declaratively in the deployment descriptor using method permissions. Such a check might
impose a role-based limit on a request, or it might depend on information stored in the database.

The Application Assembler

The application assembler (which could be the same party as the bean provider) may define a security view of the
enterprise beans contained in the ej b-j ar file. Providing the security view in the deployment descriptor is optional for

the bean provider and application assembler.

The security view consists of a set of security roles. A security role is a semantic grouping of permissions that a given
type of users of an application must have in order to successfully use the application.

The application assembler defines method permissions for each security role. A method permission is a permission to
invoke a specified group of methods of the enterprise bean’s hone and r enot e interfaces. In other words, the
application assembler is responsible for the creation of roles and placing this information in the deployment descriptor
as described in previous sections.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=759618185

The Deployer

The deployer is responsible for ensuring that an assembled application is secure after it has been deployed in the
target operational environment.

The deployer is responsible for assigning the security domain and principal realm to an enterprise bean application.
Security domains and realms are security components from Java 2, not EJB.

Typically, the deployer is more knowledgeable of the EJB’s operational environment than the other parties. Hence, the
deployer may use the security view defined in the deployment descriptor by the bean provider and application
assembler merely as “hints” and may change the information whenever necessary to adapt the security policy to the
operational environment.

Providing security information may fall upon the deployer’s shoulders. The EJB specification states that the creation of
security information (roles, method permissions, and so on) by the application assembler is not mandated. If the
application assembler fails to provide security information, the deployer must pick up the slack.

The EJB Container Provider and Server Provider

The EJB Container Provider is responsible for providing the deployment tools that the deployer can use to perform
security-related tasks described in this chapter.

The deployment tools read the information from the deployment descriptor and present the information to the
deployer. The tools guide the deployer through the deployment process, and present him or her with choices for
mapping the security information in the deployment descriptor to the security management mechanisms and policies
used in the target operational environment.

The deployment tools’ output is stored in an EJB container—specific manner, and is available at runtime to the EJB
container.

The System Administrator

The system administrator’s security responsibilities usually fall outside the scope of EJB. That is, the system
administrator is involved with security of the network, such as granting users’ access to the network and adding and
removing user network accounts. In addition, if the EJB container provides an audit trail facility, the system
administrator is responsible for its management.

Note The EJB specification defines no security requirements for the Persistence Manager.

Top

[<= Prov_ | Next —_

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Securing EJB Applications

So far you've taken a high-level look at the security features of the Java language and JVM. Enterprise JavaBeans
bring additional security requirements to the table because EJBs are distributed software components. The two
overriding concerns with designing EJBs are identifying and authorizing the client and managing access to resources.

Identifying and Authorizing Clients

During the design of EJBs, the designer might have groups of users that can access the bean. These groups of users
may be classified into roles. For example, managers, tellers, and customers can access a bank account EJB and a

specific role can be assigned to each of the three groups. The bean designer decides the business methods that each
role has access to within the bean. Table 16-1 shows a possible grid that describes who has access to what methods.

Table 16-1;: Method Permissions in a Bank Account EJB

| Method | Manager Role | Teller Role | Customer Role

| cr eat eAcct | Yes ’ Yes ’ No

| r emoveAcct | Yes ’ Yes ’ No

I audi t Account I Yes ; No ; No
creditAcct No No Yes

| debi t Acct | No ’ No ’ Yes

| t ransf er Funds | No ’ No ’ Yes

The assignment of the role to the method is usually done through an EJB deployment tool. If you are hard-core, you
may code the permissions by role in the bean’s deployment descriptor. Listing 16-1 shows a piece of a deployment

descriptor with a role and method-permission instructions.

Listing 16-1: Deployment descriptor snippet showing role and method permissions

<assenbl y-descri pt or>
<security-rol e>
<description>This role represents bank branch managers
</ descri ption>
<r ol e- name>manager </ r ol e- nane>
</security-role>

<net hod- per m ssi on>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=833781883

<r ol e- nane>manager </ r ol e- nanme>

<net hod>
<ej b- nanme>BankAccount Bean</ ej b- nane>
<net hod- nane>cr eat eAcct </ et hod- nane>
<net hod- nane>r enoveAcct </ et hod- nane>
<!-- and so on --!>

</ met hod>

</ met hod- per ni ssi on>

<net hod- per m ssi on>
<r ol e- nane>cust oner </ r ol e- nane>
<net hod>
<ej b- name>BankAccount Bean</ ej b- nane>
<net hod- nanme>t r ansf er Funds</ net hod- nane>
<net hod- nane>debi t Acct </ net hod- nane>
<!-- and so on --!>
</ met hod>
</ met hod- per ni ssi on>

<cont ai ner-transacti on>
<l-- We don't care about transaction attributes for now --!>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or >

EJB uses a default role called, appropriately enough, everyone.

Managing Access to Resources in EJBs

The EJB specification indicates that permissions can be declaratively assigned to EJB methods via the deployment
descriptor. As previously mentioned, your EJB tools should make such assignments a bit easier by providing a
graphical interface. Table 16-2 shows the EJB 1.1 security restrictions as delineated in Section 18.2.1.1 of the

specification.

Table 16-2: EJB Security Rules

| Permission | EJB Rule

| java.security. Al l Perm ssion | deny

| j ava. awt . AWIPer ni ssi on | deny

| java.io. Fil ePerm ssion | deny

| j ava. net . Net Per ni ssi on | deny

| java.util.PropertyPerm ssion | grantr ead, *; deny others

| java.lang.refl ect.Refl ect Perm ssion | deny

| java. | ang. Runt i nePer ni ssi on | grant queuePr i nt Job; deny others
| java. | ang. SecurityPerm si son | deny

| java.l ang. Seri al i zabl ePer mi ssi on | deny

| j ava. net . Socket Per m ssi on | grant connect, *; deny others

EJB security uses policy files with the EJB Security Manager first enforcing the permissions contained in the policy
file. If those checks pass successfully — the user has permission to execute the given method as delineated by the
permissions in the file — then the additional preceding checks are enforced if the operation is being attempted in the
context of an EJB.

Recall from Chapter 11, “A First Look at EJB,” that the EJB specifications cite seven players in the EJB arena. Each
player has a role in the development, installation, and configuration of an EJB. In the following, you can read which
player is responsible for what piece of EJB security.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & J5P | by Lou Marco ISBN: 0764548026
Java On The Edge]

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Reviewing Java Language Security Features

To understand what EJB offers in the way of security, it is necessary to briefly discuss the offerings of Java, the programming
language and runtime environment. An interesting aspect of Java is that many of the language's features that help
programmers write better applications also assist us in writing applications that are more secure. We will look at several of
these features in this section.

The overriding property of the Java language and runtime is that Java manages most memory-related tasks. Not only does
Java do the thankless work of managing memory, Java forbids the programmer from doing this thankless work. The engineers
at Sun Microsystems realized that the vast majority of computing hacks come from clever folk who outfox the operating system
by performing memory sleight of hand with pointers, pointer arithmetic, improper object casting, and extending arrays beyond
declared bounds.

An example of a security language feature is the Java requirement that the programmer can cast objects to and from super and
subclasses only. This casting requirement ensures that the programmer uses valid references to objects. Casting of objects
outside a hierarchy chain, as allowed in other programming languages, could cause the runtime to overlap or corrupt memory
as the runtime attempts to interpret dissimilar objects.

Java checks the appropriateness of an object cast at compile time. The compile-time check finds errors early and is a feature
that enables programmers to write better code more quickly, without waiting for the runtime to crash and burn. In addition, Java
also checks some objects cast at runtime. So, it's very difficult to outfox Java in the area of object casting.

Java does not allow a programmer to access memory by address. The Java programmer cannot explicitly use pointers. Of
course, the Java programmer causes the JVM to use pointers internally each time an object is referenced. However, the object
reference is not a pointer in the classic sense; the reference cannot be manipulated by performing arithmetic or bit-shifting. The
only real manipulation of the reference itself (as opposed to the underlying object) is an object cast, and as we read in the
previous paragraph, Java has object casts well secured.

The prohibition of explicit pointer use in Java stops a host of bugs and has the wholesome effect of making Java code secure
against memory-related attacks.

Java does not allow a programmer to explicitly allocate and free memory chunks. You cannot find dangling pointers in a Java
program. The runtime detects the presence of unused objects and sweeps them up automatically (garbage collection).

Try as you may, you cannot access an array outside its allocated extents. Again, the overriding theme is Java’s control over
memory. You may know that some programming languages enable array access past declared bounds and that such access
can corrupt code and data.

The watchword here is predictability. Memory-related errors behave in unpredictable ways. Such unpredictability is the bane of
anyone concerned with security. By stopping memory errors, Java enables programmers to improve the predictability of
applications.

Speaking of predictability, Java also uses a structured exception-reporting mechanism. While Java does not force programmers
to use this mechanism to handle all exceptions, nearly all of them take advantage of Java’s exception-reporting mechanism. As
a result, programmers improve the predictability of a program in the event of an error.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=267387736

Out-of-the-box Java includes an impressive array of features that enable a programmer to engineer well-developed and secure
systems. However, Java security encompasses more than the features of the language. The Java runtime, or JVM, also
contains a few features that affect system security, which is discussed in the following.

Using the JVM Security Features

Of course, the Java language security features, and the Java language itself, cannot exist without the JVM, which has a few
features that affect system security.

The JVM contains a bytecode verifier, which is the initial line of defense. In brief, the verifier scans the bytecode representing a
Java software object and checks to determine if the bytecode has been altered before executing it.

For example, the following program produces bytecode with the output string imbedded in the file:

public class BytecodeTest ({
public static void main(String [] a) {
System out. println("Tanper with nmy Bytecode") ;

If you open the class file containing the bytecode with a text editor and change the word “with” to “WITH” and then run the
bytecode, here’s how JVM responds:

java.lang. d assFormat Error: BytecodeTest (Illegal constant pool type)
at java.lang. d assLoader. defi neCl assO(Native Method)
at java.l ang. d assLoader. defi ned ass(C assLoader. j ava: 486)
at java.security. SecureC assLoader. defi ned ass(SecureC assLoader.java: 111)
at java.net.URLC assLoader. defi neC ass(URLC assLoader. j ava: 248)
at java.net.URLC assLoader. access$100(URLCl assLoader.j ava: 56)
at java.net.URLCO assLoader $1. run(URLC assLoader.j ava: 195)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLC assLoader. findC ass(URLC assLoader.java: 188)
at java.lang. d assLoader.| oadC ass(C assLoader. j ava: 297)
at sun. m sc. Launcher $Appd assLoader . | oadC ass(Launcher.java: 286)
at java.lang. d assLoader. | oadd ass(C assLoader . j ava: 253)
at java.lang. d assLoader.| oadd assl nternal (C assLoader. java: 313)
Exception in thread "main"

You can see that even an apparently benign change in the bytecode causes the JVM to react.

Another feature of the JVM, apparent in the above diagnostic, is the class loader. The class loader controls how and when
classes are added to the JVM during execution. A JVM contains many class loaders. The stack trace above shows a
URLCl assLoader, a Secur e assLoader, and a Cl assLoader . Class loaders are responsible for determining when

classes may be added to the Java environment.

The JVM also makes use of the security manager. The security manager is responsible for controlling how classes use
accessible interfaces. The security manager performs runtime checks and can issue security exceptions to veto potentially
dangerous or unauthorized actions. The security manager works hand-in-hand with the various class loaders to check for
access violations at runtime.

Up to this point in the chapter you've read about Java and JVM features that enable you to write more secure software, but
there’s more to tell regarding Java security features. Java contains a set of packages and tools that specifically address
security, which is covered in the following section.

Looking at the Java Security Packages

The relevant Java packages that deal with security are the j ava. security,java. security.cert,
java.security.interfaces,andjava. security. spec packages, as well as a few classes in the base package,
j ava. | ang.

The j ava. securi ty package provides the classes and interfaces for the security framework, including classes that

implement a user-configurable, fine-grained access control security architecture. This package also supports the generation
and storage of cryptographic public key pairs, as well as a number of exportable cryptographic operations including those for
message digest and signature generation. Finally, this package provides classes that support signed/guarded objects and
secure random number generation. The cryptographic and secure random number generator classes are provider-based. The
implementations themselves may then be written by independent third-party vendors and plugged in seamlessly as needed.
Therefore, application developers may take advantage of any number of provider-based implementations without having to add
or rewrite code.

The j ava. security. cert package contains classes and interfaces for parsing and managing X.509 version 3 certificates. A

certificate is a digitally signed statement from one entity, stating that the key (and some other information) of another entity has
some specific value. The key is usually a public key, meaning that the key is freely available to any and all who need to receive
information from the certificate sender. The X.509 standard is the accepted standard for digital certificates and is maintained by
the Public Key Infrastructure Group.

The j ava. security.interfaces package contains interfaces for generating RSA (Rivest, Shamir, and Adleman

AsymmetricCipher algorithm) keys as defined in the RSA Laboratory Technical Note PKCS#1, and DSA (Digital Signature
Algorithm) keys. The ugly details of the algorithm and the specifications of the keys are defined in NIST's Federal Information
Processing Standards Publication, number 186.

The j ava. security. spec package contains classes and interfaces for key specifications and algorithm parameter

specifications. A key specification is a transparent representation of the key material that constitutes a key. A key may be
specified in an algorithm-specific way, or in an algorithm-independent encoding format. This package contains key
specifications for public and private keys in RSA, X.509, and other formats.

Security Features Available in the java.lang Package

The j ava. | ang package contains classes that address security. These classes implement a security policy by using a security
manager to check permissions in conjunction with a policy file. Let's take a look at how these pieces fit together.

The SecurityManager Class

A commonly used class from base Java is the Secur i t yManager class. This class and subclasses enable applications to
implement a security policy. The Securi t yManager class enables an application to determine, before performing a possibly

unsafe or sensitive operation, what the operation is and whether it is being attempted in a security context, which would permit
the operation to be performed. The application can allow or disallow the operation. When the operation is not allowed, the
application may throw a security exception.

The Securi t yManager class contains methods with names that begin with the word "check," such as checkRead() and
checkW i t e(), which check if the application can read from or write to a stream specified in the argument. These methods

are called by various methods in the Java libraries before those methods perform certain potentially sensitive operations. For
example, the invocation of a checkRead() method may resemble the code snippet shown below:

/1 Get a security nmanager to check perm ssions

try {
SecurityManager security = System get SecurityManager();
if (security !'= null) {
//Here’s one pernission...
security. checkRead(nyStringFileArg);
/1 Do the operation...
success = doRead(nyStringFileArg) ;
}

catch (SecurityException skEx) { sEx.printStackTrace() } ;

The security manager allows the Java programmer to enforce a fine-grained level of access control by granting permissions on
a method-by-method basis.

The class RM Secur i t yManager , a subclass of Securi t yManager , is used to manage permissions for RMI applications.
Use RM Securi t yManager as you would use Securi t yManager; get an instance of the RM Securi t yManager and
invoke the check XXX methods.

Using Policy Files

The security manager examines a policy file to determine if a given permission is allowable. A policy file is a text file containing
a list of allowable operations. Operations not explicitly included in the policy file are forbidden. The basic structure of a policy
file is shown below:

grant [SignedBy "signer"] [, CodeBase "url"] {

per m ssion pernission_class
["target"] [,"action"] [, SignedBy "signers"];
/1 Addi ti onal perm ssion statenents may foll ow

In the preceding code snippet, if a read permission were not included in the policy file, the code would throw a
SecurityExcepti on.

Assuming that you have a policy file called nypol i cyfi | e, you associate the policy file with an application
MyAppl i cati on. cl ass as follows:

java -Dj ava. security. policy=nypolicyfile M/Application

Tip There are hundreds of Java methods that require permissions. Rather than provide an exhaustive list here, check out

the following URL:
http://java.sun.com j2se/ 1. 3/ docs/ qui de/ security/ perm ssions. htm

Here, you can find the definitive list of methods and the permissions they require.

In addition to supplying classes as part of the core language, Sun provides several tools to help you navigate the security
minefield.

Using Sun JDK Security Tools

The Java JDK contains tools for creating certificates and applying those certificates to your code (sign your code). The relevant
tools are keyt ool andj ar si gner.

The keytool Utility

The keyt ool utility, available since Java 1.2, enables you to:

. Manage a database of keys and names called a keystore
. Generate public and private key pairs
. Store these keys in encrypted format

. Assign a password to allow controlled access to the keyst or e database

. Import and export X.509 certificates

http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html

The keyt ool utility has numerous command line options. Here’s an example of generating a pair of keys and an X.509
certificate with password-protected access. The options appear in italics.

keyt ool —genkey —alias nykeypair -keypass pairpass —keystore nykeystore —storepass nystorepass

This command accomplishes the following:

. Creates a keyst or e database called nykeyst or e in the current directory and assigns the password st or epass to
control access.

. Generates a pair of public and private keys and names the pair nykeypai r and password-protects access to the keys by
assigning the password pai r pass.

. Issues a series of prompts for information required for an X.509 certificate, such as name, company name, address, and
other identifying information.

. Generates an X.509 certificate that includes the key associated with the name nykeypai r .
Note Most Java IDEs provide a user interface to create certificates, sign code, and import or export certificates.
Tip While certificates that you create with the keyt ool utility are valid, they may not be trusted by other parties in all

instances. There are companies that provide what are known as "trusted" certificates that can be purchased on a
subscription basis. For more check out VeriSign (ht t p: / / ww\. veri si gn. com’).

The jarsigner Utility

The j ar si gner tool is used to sign (apply a certificate to) jar files. The utility works with the keys and certificates generated in
the keyt ool utility described earlier. Here’s how you create a signed jar file using the information generated with the keyt ool
command above.

. Create your application, applet, or Java software object

. Create a jar of the class file(s) using Sun’s j ar utility
jar cvf MyJavaSoftware.jar MyJavaSoftware.class ...

. Sign the jar file with the j ar si gner tool; command options are in italics.
j arsi gner —keystore nykeystore
—si gnedj ar MySi gnedJavaSoftware.jar MyJavaSoftware.jar nykeypair

The j ar si gner tool prompts for the keyst or e password (myst or epass) and the key password (pai r pass). Notice that
j ar si gner need not overwrite your jar file.

Now that you have an idea of the security features available to the Java programmer, let’s take a look at EJB security concerns
and features.

Topst

[+ Prov_ [Noxt =

http://www.verisign.com/

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

System Security Overview

In this instance, the term security means exercising control over the resources of the computing environment, which
involves physical security and information security.

Physical security deals with controlling access to buildings, rooms, and machines. Today, many companies hire
security guards and require employees to display and use encoded identification badges to gain entrance into
buildings, rooms, and parking garages. Companies may also install cameras and motion detectors, and they may
monitor employee e-mail and, at times, telephone calls — all in the name of providing a more secure environment to
conduct business. The high cost of such measures underscores the importance that companies place on physical
security.

Information security deals with protecting access to and ensuring the integrity of information, particularly in an
electronic form. Not only do security managers need to make sure that the wrong people do not access valuable
information, but they need to make sure that the integrity of that information is never compromised!

Regarding information security, a searchon ht t p: / / www. exci t e. cont for the string "information security" returns

over 5 millions results. Even if a very small percentage of these Web sites addresses the issue of information security,
that's still an absurd number of sites on the topic! Clearly, security is a hot topic and it’s likely to gain importance in this
ever-increasing networked world in which we live.

A searchon http://ww. anazon. coni for "information security" lands 376 total matches. That's a large number of
books, which, once again, illustrates the high level of interest software folk have in the topic of information security.

Enterprise JavaBeans’ security features extend those of the Java programming language. Java, being a modern
software technology, has several features that directly address information security. Next, you can read about some of
Java’s security features.

Top

[<= Prov_ | Next —_

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=536768366
http://www.excite.com/
http://www.amazon.com/

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 16: EJB Security

Overview

Today, corporate information systems departments are growing more concerned with threats to system security from
a Microsoft Word virus to a denial of service attack to a hack resulting in a loss or corruption of data. More than ever
before, decision-makers must take steps to secure their systems. Fortunately, decision-makers who have made Java
technologies, including EJB, an integral part of their shops are a step ahead of those who haven't.

This chapter discusses the security features available when deploying Enterprise JavaBeans, starting with a brief
overview of security and then focusing on security features found in the Java programming language. This chapter
also introduces the additional security features EJB brings to the table, featuring a discussion of the security roles of
the players in the EJB arena, and concluding with a few thoughts on system security outside the Java environment.

First, let's take a look at the topic of system security and what the Java environment has to offer in the security arena.

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=350942273

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter you've learned about the use of entity beans to model data in an enterprise computing environment.
You've examined the life-cycle of entity beans and you've looked at the differences between container-managed
persistence and bean-managed persistence. Lastly, you've had the opportunity to create both CMP and BMP entity
beans in our employee bean examples. You should be able to use the information garnered from this chapter to
design and deploy entity beans to model data in future J2EE applications.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=492050716

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Implementing an Entity Bean

The listings that follow show code for an employee entity bean that models an employee in a company. This bean
provides the client with access to information about the employee, including salary, grade, and classification. The
bean also provides the client with methods to reassign or to promote the employee and to give the employee a raise.

In the following sections we’ll look at the r enpt e interface, the hone interface, the primary key class, and, of course,
the bean class used to implement this employee entity bean.

Creating the remote Interface

Listing 15-3 shows the r enot e interface for the employee bean. The r enpt e interface has the usual get and set

methods along with some business methods that represents the client’s view of the enterprise bean. Notice that all the
r enot e interface methods throw an EJBExcept i on.

Listing 15-3: Remote interface for employee bean

package chapter 15. enpl oyee ;

import java.util.* ;

i mport chapter15. enpl oyee. * ;

i mport javax.ejb.* ;

public interface Enpl oyee extends EJBOhject ({

/1 Get nethods for Enpl oyee Bean Properties

String get Enpl oyeel IX() throws EJBException ;
String get Enpl oyeeNane() throws EJBException ;
Dat e get H reDat e() throws EJBException ;
i nt get Grade() throws EJBException ;
String getd assification() throws EJBException ;
doubl e get Sal ary() throws EJBException ;
String get Dept Code() throws EJBException ;

/1 Set nethods for Enpl oyee Bean properties (sone of
/lthem anyway)
voi d setGrade (int newG ade) throws EJBException ;
voi d set Sal ary(doubl e newSal ary) throws EJBException ;
voi d set Dept Code(String newDept Code) throws EJBException ;
/1A few business net hods
voi d gi veEnpl oyeeAPronoti on(doubl e percentl ncrease,

i nt new ade .

String newd assification)

throws EJBException ;

voi d gi veEnpl oyeeARai se(doubl e percentlncrease)

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=434620030

t hrows EJBException ;
voi d reassi gn(String newbDept Code) t hrows EJBException ;

Next, you take a look at the home interface for the BMP Employee bean.

Creating the home Interface
Listing 15-4 shows the employee bean hone interface. The hone interface contains cr eat e, r enove and
fi nder methods. Notice that cr eat e methods throw a Cr eat eExcept i on, the f i nder method throws a

Fi nder Excepti on, and the r enove method throws a RenoveExcept i on.

Listing 15-4: The home interface

package chapter 15. enpl oyee ;

i mport chapter15. enpl oyee. * ;
i mport javax.ejb.* ;
inmport java.util.* ;

public interface Enpl oyeeHone extends EJBHone {

public Enpl oyee create(String enpl oyeel D,
String firstNane,
String | ast Nane,
Dat e hi reDat e,
i nt gr ade,
String classification,
doubl e sal ary,
String dept Code)
t hrows EJBException, CreateException ;
/1 This create() nethod is used to assign enpl oyees
//to a default departnent, classification, grade and sal ary
public Enpl oyee createTenp(String enpl oyeel D,
String firstNane,
String | ast Nane,
Dat e hireDate)
t hrows EJBException, CreateException ;
/1 One finder nethod....
public Enpl oyee findByPrimaryKey (Enpl oyeePK enpPK)
t hrows EJBException, FinderException ;
/1 And a renove net hod
public void remove(Enpl oyeePK enmpPK)
t hrows EJBException, RenoveException ;

Creating the Primary Key Class
Entity beans need a primary key for access. With BMP beans, the bean code must directly use the primary key to
locate beans. Listing 15-5 shows the code for a key class whose objects have values that serve as keys to locate

particular entity beans.

Listing 15-5: The primary key class

package chapter 15. enpl oyee ;
import java.io.* ;

public class Enpl oyeePK inplenents Serializable {
public String enpl oyeel D ;

public Enpl oyeePK(String enplD) {
enpl oyeel D = enpl D ;
}

/I No Arg constructor for CMP beans
public Enpl oyeePK() ({

}
public bool ean equal s(Object enplD) {

bool ean i sequal = false ;

if (enplD instanceof Enpl oyeePK)

i sEqual =
(((Enpl oyeePK) enpl D). enpl oyeel D == enpl oyeel D) ;

return i sEqual ;

}

public String toString() {
return enpl oyeel D ;

}

Notice that the primary key class satisfies the criteria cited earlier. The class is serializable, and overrides the
Object.equals and Object.toString methods. It doesn’t need to override Object.hashcode because the sole instance
variable, employeelD, is a string.

Implementing the Bean Class as a BMP Bean

Listing 15-6 shows the bean class coded as a BMP bean. Notice the ej bCr eat e and ej bFi ndByPr i mar yKey
methods corresponding to the cr eat e and f i ndByPr i mar yKey methods in the hone interface.

Listing 15-6: The bean class coded as a BMP bean

package chapter 15. enpl oyee ;

import java.util.* ;

i mport chapter15. enpl oyee. * ;
i mport javax.ejb.* ;

i mport java.sql.* ;

i mport javax.sql.* ;

i mport javax.nam ng.* ;

public class Enpl oyeeBean inplenments EntityBean {
/] Copy of EntityContext
private EntityContext enpECx ;
/Il nstance variabl es for Enpl oyee bean
public String enpl oyeel D ;
public String firstNanme ;
public String | ast Nane ;
public java.util.Date hi reDat e ;

public

public String classification ;
public doubl e salary ;

public String dept Code

/I Default instance variables for
public static final i nt
public static final String
public static final doubl e
public static final String

i nt gr ade ;

tenporary enpl oyees

TEMPGRADE = 30

TEMPCLASSI FI CATION = "TEMP" ;
TEMPSALARY = 2000. 00;
TEMPDEPTCODE = "T100";

/] ejbCreate and ej bPost Creat e net hods
public Enpl oyeePK ej bCreate(String enpl oyeel D,

String
String
java.u
i nt
String
doubl e
String
t hrows EJBException, Cr

first Nane,

| ast Narre,
til.Date hi reDat e,
gr ade,
classification,

sal ary,

dept Code)
eat eException {

/1 Assign fields to instance variabl es

t hi
t hi
t hi
t hi
t hi
t hi
t hi
t hi

n unuunuunnonon

S.

/l1ssue SQL to insert into dat
if (enpl oyeeAdded(enpl oyeel

el se

}

hi r eDat e,
salary, d

.enpl oyeel D = enpl oyeel D ;
.firstNane = firstNane ;

.l ast Nare = | ast Nane ;
.hireDate = hireDate

. grade = grade ;
.classification = classification
.sal ary = salary ;

dept Code = dept Code

abase

D, firstNane, |astNane,
grade, classification,
ept Code))

return new Enpl oyeePK(enpl oyeel D)

t hrow new Creat eException("SQ For Enpl oyee " +

enpl oyeelD + " failed.”)

public void ejbPostCreate(String enpl oyeel D,

Stri
Stri
j ava
i nt
Stri
doub
Stri
t hrows EJBExcepti on,

/I Not hi ng goi ng on here...

}

ng firstNane,
ng | ast Nane,

.util.Date hi reDat e,
gr ade,

ng cl assification,

| e sal ary,

ng dept Code)
Cr eat eException {

/1 This create() nethod is used to assign Tenp enpl oyees
//to a default departnent, class
public Enpl oyeePK ej bCreateTenp(String enpl oyeel D

ification, grade and sal ary

String firstNane,
String | ast Nane,
java.util.Date hireDate)

t hrows EJBException, CreateException{
return ej bCreate(enpl oyeel D,

TEMPGRADE

firstName, |astNane, hirebDate,
TEMPCLASSI FI CATI ON

TEMPSALARY, TEMPDEPTCCODE) ;

}

public void ejbPostCreate(String enpl oyeel D,
String firstNane,
String | ast Nane,
java.util . Date hireDate)

t hrows EJBException, CreateException {
/ /' Not hi ng goi ng on here.....

}

/1 ej bFind nmethod follows

Enpl oyeePK ej bFi ndByPri mar yKey(Enpl oyeePK enpPK)

t hrows EJBException, FinderException {

Pr epar edSt at enent selectS@Q = null ;
Connecti on sel ect Conn = null ;
Resul t Set fi ndRS = null ;
String sel ect SQLString =

"sel ect enpl oyeel D from enpt abl e where enpl oyeel D = ?" ;
try {
sel ect Conn = get Connection() ;
sel ect SQL = sel ect Conn. prepareSt at enent (sel ect SQLString) ;
select SQ.setString(1, enplD.toString()) ;
fi ndRS = sel ect SQL. execut eQuery() ;

if (findRS == null)
t hrow new EJBException("Locate of enployee " +
enplD.toString() + " failed.")

el se {

fi ndRS. next ()

enpl oyeel D = findRS. get String("enpl oyeel D')
}

}

catch(Exception exc) {
t hrow new EJBException (exc.toString()) ;

}
finally {
/1 ose up shop
try {
if (selectSQ !'= null)
sel ect SQ.. cl ose() ;
if (loadRS !'= null)
| oadRS. cl ose() ;
if (selectConn !'= null)
sel ect Conn. cl ose() ;
}

catch (Exception exc) {} ;

}

/I Busi ness net hods, including get and set nethods
String get Enpl oyeel D() throws EJBException {
return enpl oyeel D ;

}

String get Enpl oyeeNane() throws EJBException {
return firstName + " " + | ast Nane ;

}

java.util.Date getHi reDate() throws EJBException {
return hireDate ;
}

int getGade() throws EJBException {
return grade ;

}
String getC assification() throws EJBException {

return classification ;

doubl e getSal ary() throws EJBException {
return salary ;
}

String get Dept Code() throws EJBException {
return dept Code ;
}

void setGade (int newGade) throws EJBException {
grade = new ade ;
}

voi d set Sal ary(double newSalary) throws EJBException {
salary = newSal ary ;
}

voi d set Dept Code(String newDept Code) throws EJBException {
dept Code = newDept Code ;
}

/I A few busi ness net hods
voi d gi veEnpl oyeeAPronoti on(doubl e percentlncrease,
i nt newG ade ,
String newCl assification)
t hrows EJBException {
sal ary salary * (1.0 + percentlncrease) ;
gr ade newG ade ;
classification newd assification ;

}

voi d gi veEnpl oyeeARai se(doubl e percentlncrease)
t hrows EJBException {
sal ary = salary * (1.0 + percentlncrease) ;
}
voi d reassign(String newDeptCode) throws EJBException {
dept Code = newDept Code ;

}

/1 Required nethods for EntityBean decl ared here

/] Save the entity context

public void setEntityContext(EntityContext ectx) {
empECGt x = ectx ;

}

public void unsetEntityContext() throws EJBException {
enpECtx = null ;

}

public void ejbActivate() throws EJBException {
/I Not hi ng goi ng on here....

}

public void ejbPassivate() throws EJBException {
/I Not hi ng goi ng on here....

}

public void ejblLoad() t hrows EJBException {
//Load the correct database data to correspond with
//this bean instance
Enpl oyeePK t hi sPK
String enpl oyeel D
Resul t Set | oadRS

(Enpl oyeePK) enpECt x. get Pri mar yKey() ;
t hi sPK. enpl oyeel D ;
nul | ;

String sel ect SQLString =
"select * fromenpTabl e where enpl oyeel D = ?"

Pr epar edSt at enent selectS@Q = null ;

Connecti on

try {
sel ect Conn = get Connection() ;

}

sel ect SQL = sel ect Conn. prepareSt at enent (sel ect SQLString)

sel ect Conn =

sel ect SQL. set String(1,

t hrow new EJBException("Load of Enployee
enpl oyeel D + " failed.")

| oadRS
if (loadRS == null
el se {

| oadRS. next () ;

)

nul |

enpl oyeel D)
= sel ect SQL. execut eQuery()

" +

enpl oyeel D = | oadRS. get String("enpl oyeel D') ;
firstName = | oadRS.getString("firstName") ;

| ast Name

hireDate = (java.util.Date)

= | oadRS. get String("l ast Nane"
= | oadRS. get Dat e("hireDate")

grade = | oadRS. getlInt("grade")

classification = | oadRS.getString("classification")

sal ary = | oadRS. get Doubl e("sal ary")

dept Code
}

)

= | oadRS. get Stri ng("dept Code") ;

catch(Exception exc) {
t hrow new EJBException (exc.toString()) ;

}

finally {

/1 ose up
try {

shop

if (selectSQ !'= null
sel ect SQ.. cl ose() ;
if (loadRS != null
| oadRS. cl ose()

if (selectConn != null)
sel ect Conn. cl ose() ;

}

)
)

catch (Exception exc) {} ;

Connecti on updat eConn
String updateSQ.String =
set enpl oyeel D
hireDate = ?,

"updat e

"] ast Nanme

"grade
"sal ary

enpt abl e
?

?

?

= nul |

= nul |

classification
dept Code =

//1ssue SQL to update the database
try {

[/ First,

updat eConn = get Connecti on()

/| Second,

updat eSQL
updat eSQL.
updat eSQL.
updat eSQL.
updat eSQL.
updat eSQL.
updat eSQL.
updat eSQL.
updat eSQL.

prepare the SQ statenent
= updat eConn. prepar eSt at enment (updat eSQ.String)

set String(
set String(
set String(
setDate (
set | nt (
set String(
set Doubl e(
set String(

O~NO U A WNP

?)

public void ejbStore() throws EJBException
Pr epar edSt at enent updat eSQL

?

?

+

get a database connection....

enpl oyeel D) ;

firstName)

| ast Nane)

firstName = 2,

+

(java.sql .Date) hireDate)

grade)

classification)

salary)
dept Code)

[/ Third, issue the SQ insert statenent.
/] Save results as bool ean for return
if (updateSQ.. executeUpdate() !'=1)
t hrow new EJBException("Update Failed during ejbStore");
}
catch (Exception exc) {
t hrow new EJBException(exc.toString()) ;
}

finally {
/1 ose up shop
try {
if (updateSQ != null)
updat eSQL. cl ose() ;
if (updateSQ != null)
updat eSQL. cl ose() ;

}
catch (Exception exc) {} ;

}
public void ej bRemove() t hrows EJBException {

Enpl oyeePK t hi sPK = (Enpl oyeePK) enpECt x. get Pri maryKey() ;
String enpl oyeel D = thi sPK. enpl oyeel D ;

String deleteSQString =
"del ete from enpTabl e where enpl oyeelD = ?"
Pr epar edSt at enent del eteSQL = nul |
Connection del eteConn = nul |
try {
del et eConn = get Connecti on()
del et eSQ = del et eConn. prepar eSt at enent (del eteSQLString)
del eteSQ..set String(1, enployeelD)
if (deleteSQ.executeUpdate() !'=1)
t hrow new EJBException("Del ete of Enployee " +
enpl oyeelD + " failed.”)
}
catch(Exception exc) {
t hr ow new EJBException (exc.toString())
}
finally {
/1 Cl ose up shop
try {
if (deleteSQ !'= null)
del et eSQL. cl ose()
if (deleteConn != null)
del et eConn. cl ose()

}
catch (Exception exc) {}

}

}

[TUility method to establish a database connection
private Connection getConnection()
throws SQLException, Nani ngException {
String dbURL = "java: conp/ env/ enpdb" ;

Initial Context initCtx = new Initial Context();
Dat aSour ce enpDB = (DataSource) initCx.|ookup(dbURL);
Connection con = enpDB. get Connection();

return con ;

}

[TUility method to insert an enpl oyee into the database

private bool ean enpl oyeeAdded(String enpl oyeel D
String firstNane,
String | ast Nane,
java.util.Date hi r eDat e,
i nt gr ade,
String classification,
doubl e sal ary,
String dept Code)

t hrows EJBException {

bool ean i nsert Successful = fal se
Pr epar edSt at enent insertSQ = null
Connecti on insertConn = null ;
String insertSQLString =
"insert into enptable " +
" (enpl oyeel D, firstNane, | ast Nane, hireDate, " +

grade, classification, salary, deptCode) " +
"values (?,?,?2,?2,2,2,2,?2)"
//1ssue SQL to insert into database
try {
[l First, get a database connection...
i nsert Conn = get Connection() ;
/] Second, prepare the SQL statenent
insert SQL = insertConn. prepareStatenent (i nsertSQLString) ;
nsert SQL.setString(1, enployeelD) ;

i

insertSQ.setString(2, firstNane) ;
insertSQ.setString(3, lastName) ;
insertSQL.setDate (4, (java.sql.Date) hireDate) ;
i nsert SQL. setlnt (5 grade) ;
insertSQ.setString(6, classification) ;

i nsert SQL. set Doubl e(7, salary) ;
insertSQ..setString(8, deptCode) ;

[/ Third, issue the SQ insert statenent.
/] Save results as bool ean for return
i nsertSuccessful = (insertSQ.executeUpdate() == 1) ;

}

catch (Exception exc) {
t hrow new EJBException(exc.toString()) ;

}
finally {
/1 ose up shop
try {
if (insertSQ !'= null)
i nsert SQL. cl ose() ;
if (insertConn != null)
i nsert Conn. cl ose() ;
}
catch (Exception exc) {} ;
return insertSuccessful ;
}

Because this bean class is for a bean-managed entity bean, it contains plenty of SQL code that performs the bean’s
major duties. The ejbCreate methods require the use of an SQL INSERT statement. The ejbFindByPrimaryKey and
the ejbLoad methods require an SQL SELECT statement. The ejpRemove method requires the use of an SQL
DELETE statement. The ejbStore method requires an SQL UPDATE statement.

The database connection is acquired by using the JNDI naming context, as in the example of a session bean shown in
Chapter 14, “EJB Session Beans.” Of course, the usual spate of accessor and nut at or methods is also present,

along with business methods.

Let’'s now take a look at the Employee bean coded as a container-managed bean.

Implementing the Bean Class as a CMP Bean

1.

The differences between the BMP and CMP bean versions are startling. You must have noticed all the SQL in the
BMP bean class. Please notice the absence of SQL in the CMP bean class. Listing 15-7 shows the bean coded as

a CMP bean.

Listing 15-7: The bean class as a CMP bean

package chapter 15. enpl oyee ;

inport java.util.* ;
i mport chapter15. enpl oyee. * ;
i nport javax.ejb.* ;

public class Enpl oyeeBeanCMP i npl enents EntityBean {
/] Copy of EntityContext
private EntityContext enpECtX ;
/'l nstance variabl es for Enpl oyee bean
public String enpl oyeel D ;

public String firstNane ;

public String | ast Nane ;

public java.util.Date hireDate ;
public i nt gr ade ;

public String classification ;
public doubl e salary ;

public String dept Code ;
/I Default instance variables for tenporary enpl oyees
public static final i nt TEMPGRADE = 30 ;

public static final String TEMPCLASSI FI CATION = "TEMP" ;
public static final doubl e TEMPSALARY = 2000. 00;
public static final String TEMPDEPTCODE = "T100";

/1 ejbCreate and ej bPost Creat e net hods
public void ejbCreate(String enpl oyeel D,
String firstNane,
String | ast Nane,
java. util.Date hi r eDat e,
i nt gr ade,
String classification,
doubl e sal ary,
String dept Code)
throws EJBException, CreateException {
/1 Assign fields to instance vari abl es
thi s. enpl oyeel D enpl oyeel D ;
this.firstName firstNane ;
this. | ast Nane | ast Nane ;

this.hirebDate = hireDate ;

t hi s. grade = grade ;
this.classification = classification ;
this.salary = salary ;

t hi s. dept Code = dept Code ;

public void ejbPostCreate(String enpl oyeel D,
String firstNane,
String | ast Nane,
java. util.Date hi r eDat e,
i nt gr ade,
String classification,
doubl e sal ary,
String dept Code)
throws EJBException, CreateException {
[/ Not hi ng goi ng on here. ...
}
/1 This create() nethod is used to assign Tenp enpl oyees
//to a default departnent, classification, grade and sal ary
public void ejbCreateTenp(String enpl oyeel D,
String firstNane,
String | ast Nane,
java. util.Date hireDate)
throws EJBException, CreateException {
ej bCreat e(enpl oyeel D, firstNane, |astName, hireDate,
TEMPGRADE, TEMPCLASSI FI CATI ON,
TEMPSALARY, TEMPDEPTCODE) ;

public void ejbPostCreate(String enpl oyeel D,
String firstNane,
String | ast Nane,
java.util . Date hireDate)
t hrows EJBException, CreateException {
/ /' Not hi ng going on here.....

}

/I Busi ness net hods, including get and set nethods

String get Enpl oyeel () t hrows EJBException {
return enpl oyeel D ;

}

String get Enpl oyeeNane() t hrows EJBException {
return firstName + " " + | ast Nane ;

}

java.util.Date get Hi reDat e() t hrows EJBException {
return hireDate ;

}

i nt get Grade() t hrows EJBException {
return grade ;

}

String getC assification() t hrows EJBException {
return classification ;

}
doubl e get Sal ary() t hrows EJBException {
return salary ;
}
String get Dept Code() t hrows EJBException {
return dept Code ;
}
voi d setGrade (int newG ade) t hrows EJBException {

grade = new ade ;

}
voi d set Sal ary(doubl e newSal ary) t hrows EJBException {

salary = newSal ary ;
}

voi d set Dept Code(String newDept Code) t hrows EJBException {
dept Code = newDept Code ;
}

/1 A few busi ness net hods
voi d gi veEnpl oyeeAPronoti on(doubl e percentlncrease,
i nt newG ade ,
String newCl assification)
t hrows EJBException {
sal ary = salary * (1.0 + percentlncrease) ;
gr ade = newG ade ;
classification = newCl assification ;
}
voi d gi veEnpl oyeeARai se(doubl e percentlncrease)
t hrows EJBException {
sal ary = salary * (1.0 + percentlncrease) ;
}
voi d reassign(String newDept Code) throws EJBException {
dept Code = newDept Code ;

}

/1 Requi red nethods for EntityBean decl ared here

/] Save the entity context

public void setEntityContext(EntityContext ectx) {
empECGt x = ectx ;

}

public void unsetEntityContext() throws EJBException {
enpECtx = null ;

}

public void ejbActivate() throws EJBException {
/I Not hi ng goi ng on here....

}

public void ejbPassivate() throws EJBException {
/I Not hi ng goi ng on here....

}
public void ejblLoad() t hrows EJBException {
}
public void ejbStore() t hrows EJBException {
public void ej bRenmove() t hrows EJBException {
}

With the container managing the bean instance-to-database relationship, the bean code doesn’t need to issue any
SQL. With the need for SQL gone, so too is the need for utility methods that get database connections and the like.

Finder methods are absent in CMP beans, too. The container generates primary key values and uses these values to
access and manipulate beans and the underlying data.

Notice that the ej bCr eat e methods return a void, not an instance of the primary key class. The container tends to
many of the mundane details of creating and accessing database data.

Just how does the container know what to do? All the required information is kept in the deployment descriptor.

Writing the Deployment Descriptor for a CMP bean

Listing 15-8 shows a piece of the deployment descriptor instructing the container to handle database interactions with
instance variables of the employee bean.

Listing 15-8: Deployment descriptor naming container-managed fields

<entity>

<descri ption>

The Enpl oyee entity bean encapsul ates access to the

enpl oyee records. The deployer will use contai ner-managed
persistence to integrate the entity bean with the back-end
syst em nmanagi ng the enpl oyee records.
</ descri pti on>
<ej b- name>Enpl oyee</ ej b- nane>
<honme>chapt er 15. enpl oyee. Enpl oyeeHone</ hone>
<r enot e>chapt er 15. enpl oyee. Enpl oyee</ r enot e>
<ej b- cl ass>chapt er 15. enpl oyee. Enpl oyeeBeanCWVP</ e b- cl ass>
<per si st ence-type>Cont ai ner </ per si st ence-type>
<pri m key-cl ass>chapt er 15. enpl oyee. Enpl oyeel D</ pri m key- cl ass>
<reentrant >True</ reentrant >
<cnp-fi el d><fi el d- name>enpl oyeel D</ fi el d- nane></cnp-fi el d>
<cmp-field><fiel d-name>firstNane</fiel d-nanme></cnp-fiel d>
<cnp-fiel d><fi el d- nane>| ast Nane</ fi el d- nane></cnp-fi el d>
<cnp-fiel d><fi el d- nanme>hi reDat e</ fi el d- nanme></cnp-fi el d>
<cnp-fiel d><fi el d- name>gr ade</fi el d- nane></cnp-fi el d>
<cnp-fiel d><fiel d-name>cl assification</field-nanme></cnp-fiel d>
<cnp-fiel d><fiel d-name>sal ary</fi el d- nane></cnp-fi el d>
<cnp-fi el d><fi el d- nane>dept Code</ fi el d- nane></cnp-fi el d>

</entity>

The container is smart enough to generate the correct SQL (or whatever language is used by the database) for
creates, deletes, and most selects and updates, based on the information contained in the deployment descriptor.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Looking at the Life Cycle of an Entity Bean

In this section, | describe the life cycle of an entity bean and discuss some container-invoked methods that execute as
the bean progresses through its life cycle.

Examining the Possible Entity Bean States

An entity bean exists in one of three states:

. Does Not Exist: The bean has not been created yet.

. Pooled: An entity bean in the pooled state exists but has no identity. In other words, the bean is ready to rock-and-
roll but cannot be identified by a client.

. Ready: An entity bean in the ready state has identity, or can be identified by a client. In other words, a ready state
bean can perform useful work on behalf of a client.

Figure 15-1 shows the methods invoked by the client and the container that causes the entity bean to transition from
one state to another.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=170405216

w nitance throws
I "
does ot axivt e Syilem exceEplion
) Araares By ek hed
o A

&

I. mevalnstance 1. unsetEstityContextl]
2. setEntityContextiec)

¥

T

&) biHisme | egtFund

o
":_ poaled ~ui
' ____.-'.q— egbhelect \EIB 2.0 Dinky]
/ &

I." 'h."

| i
|
ejtlCreate ejbActivate(] lr||:F".|':-'-.l.'.|‘.-rII| ejbRemoved)
ejbPosiCreate |

ifbload]) ~ ejb5borel)

Wi,
I"'q..r'll W/

I PoE S T e ejbSetect [EIE 2.0 Uwly]
Figure 15-1: Entity bean life cycle

The following sections describe the life cycle of an entity bean instance.

Instantiating an Entity Bean

An entity bean instance’s life starts when the container creates the instance using the Cl ass method newl nst ance.
The container calls the default constructor for your bean class.

Please realize that an EJB container is under no obligation to create a new instance of your bean class for every
client. Actually, most containers try to create as few beans as possible because object creation is not cheap. The
thrust behind the pooling strategy is to dole out a few bean instances to multiple clients. The same entity bean
instance usually services multiple clients. Never develop EJB applications under the assumption that the container will
create an entity bean at any particular time or situation.

The container then invokes the set Ent i t yCont ext method to pass the instance a reference to the
Enti t yCont ext interface. The Ent i t yCont ext interface allows the instance to invoke services provided by the
container and to obtain the information about the caller of a client-invoked method.

In Chapter 13, “EJB Basics,” | discussed the methods in the EJBCont ext interface and in Chapter 14, "EJB Session
Beans," | discussed the methods in the Sessi onCont ext subinterface. Let's take a look at the subinterface of
EJBCont ext for entity beans named, appropriately enough, Ent i t yCont ext .

The EntityContext Interface

The Ent i t yCont ext interface provides a bean instance with access to its container-provided runtime context. The
container passes the Ent i t yCont ext interface to an entity bean instance after the instance has been created.

The Ent i t yCont ext interface remains associated with the instance for the lifetime of the instance. Note that the
information that the instance obtains using the Ent i t yCont ext interface (such as the result of the get Pri mar yKey
method) may change, as the container assigns the instance to different EJB objects during the instance's life cycle.

Listing 15-2 shows the Ent i t yCont ext interface.

Listing 15-2: The EntityContext interface

public interface javax.ejb. EntityContext
ext ends javax. ejb. EJBCont ext {

EJBObj ect get EJBObj ect ()
throws java.lang. ||l egal Stat eException ;

oj ect get PrimaryKey()
throws java.lang. ||| egal StateException ;

The get EJBOhj ect method returns a reference to the EJB object associated with the bean instance. Hence, your

bean can invoke this method only when your bean has identity, or is in the ready state. Entity beans may call
get EJBObj ect from their ej bActi vat e, ej bPassi vat e, ej bPost Cr eat e, ej bRenove, ej bLoad, ej bSt or e,
and business methods.

If you need to code a method that passes a reference of the bean instance to another method, you should use the
reference returned by get EJBObj ect . You may think you can pass t hi s to refer to the current bean instance.

However, recall that the work done by beans is done by the associated EJB object, through the container. You may
get unpredictable results by passing t hi s around from method to method.

The get Pri mar yKey method gets the primary key of the EJB object that is currently associated with this instance.
The same restrictions for invoking this method as those for invoking get EJBOhj ect apply — the bean must be
associated with an EJB object.

It is important to save a reference to the entity context. If you don't, you cannot legally invoke the get Pri mar yKey or
get EJBObj ect methods because when your bean is in a legal state to do so, the set Ent i t yCont ext method has
already executed and the entity context will go out of scope.

Moving an Entity Bean to the Pool

Once the entity bean is instantiated, it enters the pool of available instances. Each entity bean has its own pool. While
the instance is in the available pool, the instance is not associated with any particular entity object identity. All
instances in the pool are considered equivalent, and therefore any instance can be assigned by the container to any
entity object identity at the transition to the ready state.

While the instance is in the pooled state, the container may use the instance to execute any of the entity bean’s
fi nder or home methods (shown as ej bFi nd and ej bHone in the Figure 15-1, respectively). The instance does

not move to the ready state during the execution of a f i nder or a hone method.

Transitioning to the Ready State

An instance transitions from the pooled state to the ready state when the container selects that instance to service a
client call to an entity object. There are two possible transitions from the pooled to the ready state: through the
ej bCr eat e and ej bPost Cr eat e methods, or through the ej bAct i vat e method.

The container invokes the ej bCr eat e and ej bPost Cr eat e methods when the instance is assigned to an entity
object during entity object creation (i.e., when the client invokes a cr eat e method on the entity bean’s home object).
The container invokes the ej bAct i vat e method on an instance when an instance needs to be activated to service
an invocation on an existing entity object. This occurs because there is no suitable instance in the ready state to

service the client’s call.

When an entity bean instance is in the ready state, the instance is associated with a specific entity object identity.
While the instance is in the ready state, the container can invoke the ej bLoad and ej bSt or e methods zero or more

times. A business method can be invoked on the instance zero or more times. Invocations of the ej bLoad and
ej bSt or e methods can be arbitrarily mixed with invocations of business methods.

The purpose of the ej bLoad and ej bSt or e methods is to synchronize the state of the instance with the state of the

entity in the underlying data source. The container can invoke these methods whenever it determines a need to
synchronize the instance’s state.

The container can choose to passivate an entity bean instance within a transaction. To passivate an instance, the
container first invokes the ej bSt or e method to allow the instance to synchronize the database state with the

instance’s state, and then the container invokes the ej bPassi vat e method to return the instance to the pooled state.

Returning to the Pooled State

Eventually, the container moves the bean instance from the ready state to the pooled state. There are three possible
transitions from the ready to the pooled state:

. After execution of the ej bPassi vat e method.

. After the execution of the ej bRenbve method. Contrary to the method name, ej bRenove does not delete or
destroy the bean instance. After the container invokes ej bRenove, the bean instance retreats back into the
instance pool.

. After a transaction rollback for ej bCr eat e, ej bPost Cr eat e,or ej bRenove (not shown in Figure 15-1).

The container invokes the ej bPassi vat e method when the container wants to disassociate the instance from the
entity object identity without removing the entity object. The container invokes the ej bRenove method when the
container is removing the entity object (i.e., when the client invokes the r enpve method on the entity object’s r enot e
interface, or on the entity bean’s hone interface). If ej bCr eat e, ej bPost Cr eat e, or ej bRenpve is called and the
transaction rolls back, the container transitions the bean instance to the pooled state. Chapter 17, "EJB and
Transaction Management," has more information about transactions and Enterprise JavaBeans.

When the instance is put back into the pool, it is no longer associated with an entity object identity. The container can
assign the instance to any entity object within the same entity bean home.
Killing an Entity Bean

You can remove an instance in the pool by calling the unset Ent i t yCont ext method on the instance. Recall that
the container executing ej bRerove does not delete the bean instance.

Top <

| <= Prov | Noxt =

instance throws
does not exist system exception
from any method

1. newlnstance 1. unsetEntityContext()
2. setEntityContext(ec)

Y
ejbHome pooled ejbFind
ejbSelect (EJB 2.0 Only)
ejbCreate ejbActivate() ejbPassivate() | ejbRemovel()
ejbPostCreate
Y
ejbload() ready ejbStore()

A,

business method ejbSelect (EJB 2.0 Only)

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 13: EJB Contexts and Containers

The previous chapter described the elements of session and entity beans. You've also read about the bean classes
and the home and remote interfaces. In this chapter, you read about the methods available from the EJBCont ext

interface. The chapter closes with some comments on the relationship, or contract, between the enterprise bean and
the EJB container.

Exploring the EJB Context

You know of the two enterprise bean types defined by the EJB 1.1 specification — entity and session beans. You may
recall that EJB 2.0 defines a third bean type — the message-driven bean. All these bean types (and others that may
be defined in future EJB releases) must provide information about their status and the container in which they reside
at runtime.

Enterprise JavaBeans provide developers with several interfaces to gather status or container information. Each bean
type supports a context interface that supplies this information. The context interfaces for each bean type are:

. The Enti t yCont ext interface for entity beans. See Chapter 15, "EJB Entity Beans," for more details on the
Enti t yCont ext interface.

. The Sessi onCont ext interface for session beans. See Chapter 14, "EJB Session Beans," for more details on the
Sessi onCont ext interface.

. The MessageDri venCont ext interface for message-driven beans (EJB 2.0 only). See Chapter 19, "The
Proposed EJB 2.0 Specification," for more details on the MessageDr i venCont ext interface.

The preceding three context interfaces have a parent interface called the EJBCont ext interface. This section
discusses the methods available to bean developers from the EJBCont ext interface.

Various Java technologies that utilize containers support the use of a context object that holds, and allows access to,
information about the container. Servlets, for example, support a Ser vl et Cont ext object that serves much the

same purpose as the EJB context objects. However, rarely does an enterprise bean use an object derived from the
EJBCont ext interface. More often, the bean uses a context object derived from one of the three child interfaces listed

previously. Because of Java's inheritance mechanism, all the methods available in EJBCont ext are available to
objects derived from all of the three child interfaces.

Before discussing the methods available through the EJBCont ext interface, let's see how to gain access to a context
object.

Gaining Access to a Context Object

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=373631229

With EJBs (and other Java container type technologies), context objects are available at certain times in the bean’s
life cycle. Chapters 14 and 15 discuss enterprise bean life cycles, so | won't cover the life cycle here. An enterprise

bean context object becomes available to the bean when the container creates an instance of the bean.

The fact that the context object is available to your bean does not mean that your bean has automatic access to the
context object. You need to write code to save a reference to the context object. The code snippet that follows saves a
reference to the Ent i t yCont ext , which is the context available to entity beans:

public MyEntityBean inplenents EntityBean {
/I Decl ared outside any net hod
private nyEntityContext ;

public void setEntityContext(EntityContext ectx)
t hr ows Renot eException {
myEntityContext = ectx ;

}

/'l Rest of bean nethods foll ow

Now the entity context is available to any bean method through the reference nyEnt i t yCont ext . Methods similar to
set Enti t yCont ext are available for session beans and message-driven beans. Chapter 15 discusses the
set Ent i t yCont ext method in more detail.

Using EJBContext Methods

Listing 13-1 shows the methods that the EJBCont ext interface provides. All enterprise bean types have access to
these methods. We will discuss each of these methods in turn in the rest of this section.

Listing 13-1: The EJBContext interface

public interface javax.ejb. EJBContext {

public java.security. Principal get Cal |l er Princi pal () ;
public bool ean i sCallerlnRol e(String rol eNane) ;
public bool ean get Rol | backOnl y()
throws java.lang. |1l egal Stat eException ;
public void set Rol | backOnl y()
throws java.lang. 1!l egal St at eException ;

public javax.jts. UserTransacti on getUser Transacti on()
throws java.lang. ||l egal St at eException ;

public javax.ejb. EJBHone get EJBHome() ;

Note EJB release 1.0 defined three methods, since deprecated. The methods and their replacements are:
public java.security.ldentity getCallerldentity,replacedbypublic

java.security.Principal getCallerPrincipal; public java.util.Properties
get Envi r onment , replaced by using JNDI to get bean environment properties; and public boolean
i sCall erl nRol e(java. security.ldentity role) replaced by public boolean
isCallerlnRole(String role).

The methods from EJBCont ext fall into three categories: security, transaction support, and accessing the home

http://www.unltded.com/viewer.asp?bkid=2878&destid=294#294
http://www.unltded.com/viewer.asp?bkid=2878&destid=339#339

object. Let’'s examine the methods in these three categories.

EJBContext Security Methods

As a general rule, the EJB container should handle security issues in a manner transparent to the execution of your
beans. However, rules are made to be broken. If you have a real need to access security information about the caller
of your bean methods, the EJBCont ext interface provides two methods that deal with EJB security:

getCal l erPrincipal andi sCal |l erlnRol e.

The get Cal | er Pri nci pal andi sCal | er | nRol e methods can be invoked only in the enterprise bean’s business

methods for which the container has a client security context. If these methods are invoked when no security context
exists, they should throw the j ava. | ang. I | | egal St at eExcept i on runtime exception.

Let's examine each of these security methods in turn in the following two sections. In Chapter 16, “EJB Security,” we
will return to address EJB security issues in more detail.

The getCallerPrincipal Method

The get Cal | er Pri nci pal method returns an object of a class that implements the j ava. security. Pri nci pal

interface, which we’ll call a principal. A principal can be an individual, a corporation, a program thread, or anything that
can have an identity.

An enterprise bean can invoke the get Cal | er Pri nci pal method to obtain a j ava. security. Pri nci pal

interface representing the current caller. The enterprise bean can then obtain the distinguished name of the caller
principal using the get Name method of the j ava. security. Pri nci pal interface.

The meaning of the current caller, the Java class that implements the j ava. security. Pri nci pal interface, and
the realm of the principals returned by the get Cal | er Pri nci pal method depend on the operational environment
and the configuration of the application.

The isCallerInRole Method

The main purpose of the i sCal | er | nRol e method is to allow the bean provider to code the security checks that

cannot be easily defined in the deployment descriptor using method permissions. Such a check might impose a role-
based limit on a request, or it might depend on information stored in the database.

The enterprise bean code uses the i sCal | er I nRol e method to test whether the current caller has been assigned to
a given security role. The application assembler typically defines security roles in the deployment descriptor. The
deployer assigns the security roles to principals or principal groups that exist in the operational environment.

Listing 13-2 shows a code snippet that checks if the method caller has a specific security role named payr ol | . If not,
the code throws a Securi t yExcepti on. If so, the caller presumably has clearance to perform updates to the data.

Listing 13-2: Invoking isCallerinRole

public class Payroll Bean inplenents EntityBean {

/W use EntityContext because the PayrollBean is an

/lentity bean

EntityCont ext ej bContext;

/I Typi cal EJB busi ness net hod

public voi d updat eEnpl oyeel nfo(Enpl I nfo info) {
oldinfo = ... read from dat abase;
/1A'l users who do not have the security role
[lof ‘payroll’ are booted fromthe nethod.

if (info.salary !'= oldlinfo.salary &&
lej bContext.isCallerlnRol e("payroll")) {
t hr ow
new SecurityException("You cannot update salaries!");

As previously mentioned, security roles are declared in the bean’s deployment descriptor. Listing 13-3 shows a piece
of a deployment descriptor that allows current callers with a role of payr ol | to invoke the updat eEnpl oyeel nf o
method.

Listing 13-3: Deployment descriptor showing security role

<security-rol e>
<descri pti on>
This role represents Human Resource Staff
aut hori zed to perform payroll operations
</ description>
<r ol e- name>payrol | </rol e- nane>
</ security-rol e>

<met hod- per m ssi on>
<r ol e- nanme>payrol | </ rol e- nane>
<met hod>
<ej b- nane>Payr ol | Bean</ ej b- nanme>
<met hod- nane>updat eEnpl oyeel nf o</ net hod- name>
<I- - Oher nethods may follow --!>
</ met hod>
</ met hod- per m ssi on>

It bears repeating that, as much as possible, the bean developer should allow the container to manage security
matters. After all, if you don’t want to take advantage of the services provided by the Enterprise JavaBeans container,
why are you developing EJBs?

The EJBContext Methods Dealing with Transactions

The topic of transactions is discussed in detail in Chapter 17, “EJB and Transaction Management.” However, a few
words on the EJBCont ext methods dealing with transactions are in order. The three methods provided by the context
interface are get Rol | backOnl y, set Rol | backOnl y, and get User Tr ansact i on.

The getRollbackOnly and setRollbackOnly Methods

Code the get Rol | backOnl y method to test if the transaction has been marked for rollback only. An enterprise bean

instance can use this operation to test, after an exception has been caught, whether it is fruitless to continue
computation on behalf of the current transaction.

Code the set Rol | backOnl y method to mark the current transaction for rollback and the transaction will become

permanently marked for rollback. A transaction marked for rollback can never commit, by the way. Typically, an
enterprise bean marks a transaction for rollback to protect data integrity before throwing an application exception
because application exceptions do not automatically cause the container to roll back the transaction.

As you'll learn in Chapter 17, "EJB and Transaction Management," you can defer many of the details of transaction

management to the container. Beans that have their transaction state managed by the container are called (surprise)
container-managed transaction beans. Those beans that contain code to manage the nuts and bolts of transactions

are called bean-managed transaction beans.

| draw the distinction between bean-managed and container-managed beans in this section because only enterprise
beans with container-managed transactions are allowed to use get Rol | backOnl y and set Rol | backOnl y.

However, bean-managed beans may invoke the get St at us method of the

javax. transaction. User Transact i on interface to get the same information as get Rol | backOnl y and may
invoke the j avax. t ransacti on. r ol | back method to roll back a transaction. While these methods in the

j avax. transacti on package are not identical in function to the get and set rollback methods in the EJBCont ext
object, the j avax. t r ansact i on package methods achieve the same end results.

The getUserTransaction Method

Code the get User Tr ansact i on method to obtain a reference to the current transaction if there is one. Once
obtained, your code can take over transaction duties and issue commits and rollbacks.

As you may have guessed by now, beans with container-managed transactions cannot invoke

get User Tr ansact i on. Having container-managed beans obtain a reference to the current transaction is a bit silly
because the container wouldn't be managing the transaction at all. Hence, only enterprise beans that are bean-
managed may usefully invoke the get User Tr ansact i on method.

The code snippet that follows shows a bean method acquiring a reference to the current transaction using the
get User Transact i on method. Remember that you need to save the context in a variable known to all methods of
the bean class.

public MySessi onBean i npl enents Sessi onBean {
/] SessionContext is the session bean subinterface of EJBContext
Sessi onCont ext nySessi onCont ext ;

/| Save the session context...
public void set Sessi onContext (Sessi onContext sctx)
t hrows Renpt eException {
mySessi onCont ext = sctx ;

}

publ i c sonmeBeanMet hod() {
/I'nmyTransaction is a reference to the current transaction
User Transaction nyTransaction =
mySessi onCont ext . get User Transacti on();
myTr ansact i on. begi n();
/ /Do transaction stuff...
myTransaction.commit();

At the risk of sounding overly repetitive, boring, and preachy: strive to let the container manage as much of your bean
activity as possible. Security was one of the main reasons Sun developed the EJB technology in the first place.

The getEJBHome Method

The get EJBHone method returns a reference to the bean’s hone object. | covered a bit about the horre object in
Chapter 12, "The Elements of an EJB," but to refresh your memory, the hone object is the broker between the client
and the EJB container. Put another way, the client invokes methods that are defined in the hone object, and the hone

object delegates client calls to the EJB container, which in turn, invokes the appropriate method in your enterprise
bean class.

The get EJBHonme method allows your client to get a reference to the homne object. In addition, your bean may use

get EJBHorme to get a reference to its hone object. A bean method may need to pass a reference to its hone object as
a parameter to another method in a different class.

By now you may have the strong sense that the EJB container plays an integral part in the development, deployment,
and use of enterprise beans. Next, you read about the EJB container and the support services it provides.

Top

[<= Prov_ | Next —_

EJB & JSP: Java On The Edge, Unlimited Edition
EJE & J5F | by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding Entity Bean Creation Methods

As expected, a client accesses entity beans through the container’s implementation of the bean’s home interface. The home interface enables the client to create
an entity bean, to obtain a reference to an existing bean, and to remove a bean. The creation, location, and removal of entity beans is done by the container (once
again, the client never accesses or interacts with an enterprise bean directly).

You, or a client, create an entity bean the same way you would a session bean. The client program issues a call to the create method. The client class then
implements j avax. ej b. EJBHorre, which signals the container to invoke a corresponding ej bCr eat e method implemented in the bean class. Recall that for
session beans, you must code at least one ej bCr eat e method in your bean class. However, you are not required to code any ej bCr eat e methods for entity
beans. For example, an online shopping application may have the product catalog stored in a database accessed through Enterprise JavaBeans. You certainly
would want shoppers to peruse the catalog but you would not want shoppers to create new catalog items.

Of course, if the application designers decide not to allow entity bean creation through container invocations of ej bCr eat e methods, the designers need other
methods to create entity beans. Fortunately, you can create the data underlying entity beans through conventional means — SQL insert statements, for example.

You code a create method in your client application, which instructs the container to invoke a corresponding ej bCr eat e method, followed by invoking an

ej bPost Cr eat e method, coded in your bean class. Also, you may code multiple create methods, passing different parameters. For every create method coded in
your horre interface and invoked in your client, you must code a corresponding ej bCr eat e method and a corresponding ej bPost Cr eat e method containing the
same parameter list.

You code ej bCr eat e methods for bean-managed entity beans a bit differently than ej bCr eat e methods for container-managed beans. However, the client code
that invokes the create methods is the same for both entity bean types.

Let's see how to code create methods in the hone interface and ej bCr eat e and ej bPost Cr eat e methods of the bean class for BMP beans and CMP beans.

Coding create Methods

As previously mentioned, you are not required to code any cr eat e methods when implementing your bean’s hone interface. If you do, the signature will resemble
the method signature that follows:

Renot el nt er f aceNanme creat e<optional >(C assPropl propl,
Cl assProp2 prop2, ...)
throws CreateException, RenoteException,

Appl i cati onDefi nedExceptionl,

Appl i cati onDefi nedExcepti onN ;
Because EJB clients interact with the container through a renote interface, any create nethod should return an object of
the bean’s renote interface. As described in Chapter 12, "The El enents of an EJB," the renote interface defines the
client view of the bean.

You may code a cr eat e method using the word "create" only or you may code a cr eat e method that includes optional words, such as a subclass name. For
example, the cr eat e method that follows, when invoked, requests that the container create a special class of account called a large account:

Account createlLargeAccount(String firstnane, String |astnane,
doubl e initial Bal ance)
t hrows Renot eException, CreateException;

Here, Account is the name of the bean’s remote interface.

The arguments for the cr eat e methods are one or more properties of the bean class. You can code cr eat e methods with different arguments to initialize
different properties of the bean. For example:

/1 Create account passing nane and initial balance
Account create(String firstName, String |astNane,
doubl e initial Bal ance)

t hrows Renot eException, CreateException;

/] Create account by passing account nunber and initial balance
Account create(String account Number, double initial Bal ance)
throws RenpteException, CreateException,
Low ni ti al Bal anceExcepti on;
Finally, create nmethods coded in the hone interface should throw, at a mninmum a RenpteException and a Creat eException.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=189113198

Remenber that Enterprise JavaBeans is a distributed object technol ogy and that nethod invocations are conmmunicated to a
container that resides on a different JVM The nmechanismis simlar to RM, whereby a nmethod invocati on goes through a
stub, across the network, to another JVM Hence, nethods invoked by a client should throw a RenoteException.

The Cr eat eExcept i on is peculiar to EJB cr eat e methods. You've seen other EJB-specific exceptions, such as RemoveExcept i on in Listing 15-1 for the
ej bRenpve method and the general-purpose EJBExcept i on for all methods in the bean class.

You may also instruct hone interface methods to throw one or more application-defined exceptions. The second cr eat e example in the previous code shows the
cr eat e method throwing a Lowi ni ti al Bal anceExcept i on. You learn more about application-defined exceptions later in this chapter.

Your bean classes should have ej bCr eat e and ej bPost Cr eat e methods for every cr eat e method coded in the home interface. Let’s take a look at how to
code methods in the next two sections.

Coding ejbCreate Methods for BMP Beans

The container invokes an ej bCr eat e method after the client calls a cr eat e method of the home object. Your ej bCr eat e method header would resemble the
following for your BMP beans:
Pri mar yKeyCl assNane ej bCreat e<opti onal >(C assPropl propl,
Cl assProp2 prop2, ...)
throws CreateException, EJBException,
Appl i cati onDefi nedExceptionl,
Appl i cati onDefi nedExcepti onN ;

When coding ej bCr eat e methods for bean-managed beans, you must return an instance of the primary key class. If you think about it, returning the primary key
object makes sense from the container’s viewpoint because the container will need the primary key object to locate the bean.

The prefix ej b of the bean class’s ej bCr eat e methods is not a slip of the pen. The container knows how to match bean ej bCr eat e methods with the
corresponding cr eat e methods in the hone interface. The parameter lists of the cr eat e and ej bCr eat e methods must match.

For example, the BMP bean ej bCr eat e method corresponding to the cr eat eLar geAccount method shown in the previous section is as follows:

Account PK ej bCr eat eLar geAccount (String firstname, String |astnane,
doubl e initial Bal ance)
throws EJBException, CreateException;

When the client calls the cr eat eLar geAccount method, the home object would call the ej bCr eat eLar geAccount method.

Other than the bean method returning an instance of the primary key class and the name of the method prefixed with ej b, the remainder of the cr eat e method in
the hone interface is the same as the ej bCr eat e method in the bean class.

One final point: As of Enterprise JavaBeans 1.1, ej bCr eat e methods should not throw a Renpt eExcept i on. The recommended practice is for ej bCr eat e
methods to throw, at a minimum, an EJBExcept i on and a Cr eat eExcepti on.

Note As of the EJB 1.1 specification, EJB containers are still required to support the deprecated use of the Renpt eExcept i on. If a Renpt eExcepti on is
thrown, EJB containers are instructed to treat it in the same way specified for treating a thrown EJBExcept i on.

Coding ejbPostCreate Methods for BMP Beans

As previously mentioned, you should code an ej bPost Cr eat e method for each ej bCr eat e method coded in your bean class. The ej bCr eat e and
ej bPost Cr eat e methods are in pairs; each should have the same argument list and the same return type, and should throw the same exceptions.

The container calls the ej bPost Cr eat e method immediately after calling the ej bCr eat e method. You have the chance to perform any initializations not possible
in the corresponding ej bCr eat e method.

The syntax for the ej bPost Cr eat e method is identical to that of the ej bCr eat e method described previously except for the method hame — ej bPost Cr eat e
versus ej bCr eat e.

Coding ejbCreate and ejbPostCreate Methods for CMP Beans

Most of what you read in the previous section about ej bCr eat e and ej bPost Cr eat e methods with BMP beans applies to CMP beans as well. The main
difference is that ej bCr eat e and ej bPost Cr eat e methods coded in a CMP bean do not return an instance of the primary key; they return void.

In BMP beans, the bean needs the primary key to access the bean instance. In CMP beans, the bean doesn’t need to know about the primary key to access the
bean because the container is responsible for bean access (hence, the name container-managed). It is the responsibility of the container to create a primary key
used for CMP beans.

When the container invokes an ej bCr eat e method and the subsequent ej bPost Cr eat e method (in response to a client invoking a cr eat e method), the

http://www.unltded.com/viewer.asp?bkid=2878&destid=350#350
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=148252284#wbpch15fP181

container typically inserts a row of data into the database for both BMP and CMP beans. The difference is that, with BMP beans, you must write code (usually an
SQL | NSERT statement) to perform the insert, whereas with CMP beans, you don’t need to write any SQL.

Now that I've covered a bit about creating new entity beans, a few words on accessing existing entity beans are in order.

Coding finder Methods in the home Interface and ejbFind Methods in the Bean Class

The f i nder methods locate existing beans based on one or more criteria. Often a f i nder method uses instances of the primary key class to locate existing
beans. However, you may code multiple f i nder methods, each passing a different set of parameters.

As with the cr eat e methods described previously, you code f i nder methods in the hore interface. All f i nder methods have corresponding ej bFi nd methods
in the bean class. As you might imagine, coding f i nder methods is different depending on whether you are coding for BMP beans or for CMP beans. You can
read about coding f i nder methods in the bean class as we continue in this chapter, but first, let's take a look at coding f i nder methods in the hore interface.

Coding finder Methods in the home Interface

Finder methods enable you to access beans in much the same way that SQL SELECT statements enable you to access data in relational database tables. Finder
methods in the hone interface have one of two looks, shown here:

Renmot el nterfaced ass findByPrimaryKey (PKC ass aPri maryKey)
t hrows Renot eException, Finder Excepti on,
Appl i cati onSpeci fi cException ;

Col | ecti on fi ndBy<Oneor Mor eProperties> (O assPropl aProplQoj,

Cl assPropN aPr opNObj)
t hrows Renot eException, Fi nder Excepti on,
Appl i cati onSpeci fi cException ;

Again, because the f i nder method is invoked in a client that communicates to the container through the r enot e interface, the f i nder method returns an object
of the r enot e interface.

Using a primary key for bean access should return one instance of the entity bean, just as accessing a relational table or view with a primary key should return one
row of data.

Also notice the presence of a new exception class called Fi nder Except i on. If you pardon the lame pun, there’s nothing exceptional about Fi nder Except i on
(or Cr eat eExcept i on for that matter). All you need to do is code the method header and throw the proper exception at the proper time. Coding your method to
throw application-specific exceptions is not required.

You may wonder if EJB technology enables you to access or locate multiple entity beans, like the user of a relational database would use to access or locate
multiple rows of a table or view. You can code multiple f i nder methods in your hore interface. By accessing different properties of your entity beans, your
fi nder method may return zero to many entity beans.

For example, the f i nder methods that follow locate entity beans by using different search criteria:

/1 Find account by using account hol der nane
Col | ection findByLastName(String |astName)
t hrows RenoteException, Finder Exception ;

//Find all Large Accounts
Col | ection findLargeAccounts(double accountLimt)
t hrows Renot eException, FinderException;

Notice the preceding two f i nder methods return an object of the j ava. uti | . Col | ecti on interface. A good rule of thumb is that f i ndByPr i mar yKey returns
one object; fi ndBy<ot her property> returns a collection.

Now, let's look at how to code the corresponding f i nder methods in the bean class.

Coding ejbFind methods in BMP Beans

As with cr eat e methods, you should code f i nder methods in your BMP bean class that correspond to the f i nder methods coded in your hore interface. For
every f i nder method coded in your home interface, you code an ej bFi nd method in your bean class. The general form should resemble one of the two
templates that follow:

PKCl ass ej bFi ndByPri maryKey (PKC ass aPri maryKey)

throws Fi nder Excepti on,
Appl i cati onSpeci fi cException ;

Col | ecti on ej bFi ndBy<Oneor Mor eProperties> (C assPropl aProplQoj,

Cl assPropN aPr opNObj)
t hrows Fi nder Excepti on,
Appl i cati onSpeci fi cException ;

As with the cr eat e methods, the client invokes a f i nder method, which instructs the EJB object to get the container to invoke the corresponding ej bFi nd
method from the bean class.

The body of the fi nder methods should contain SQL or whatever database access language code you use to select data from the underlying database. That's
why some entity beans are called bean-managed; the code in the bean is responsible for creating, accessing, and otherwise manipulating database data.

Not Coding Finder Methods in CMP Beans

In CMP beans, you do not code f i nder methods. A virtue of using CMP beans is that the container is responsible for locating beans and generating primary keys.
You don't need to code f i nder methods in your CMP bean classes that return primary keys to the client.

Actually, in CMP beans, you do not code any database access language code. The container assumes full responsibility for any data manipulation. Later in this
chapter, you learn how the container manages this apparent feat of magic.

The Primary Key Class

The earlier discussions in this chapter on the f i nder method and the ej bRenove and ej bLoad methods both mention the use of a primary key. In EJBs,
primary keys are instances of a class which are used to locate particular entity beans. You need keys to access entity bean instances because EJB containers
typically pool entity beans and may use a single entity bean to represent several instances of database data.

The primary key enables you to access a particular bean instance among several in the container. As previously mentioned, when you remove beans, you should
take pains to ensure that the bean about to be removed (put back in the pool, actually) maps to database data that you intend to delete from the database. Also,
when the container invokes an ej bLoad method, you should ensure that the data loaded from the database eventually gets assigned to instance variables of the
bean instance currently bound to the EJB object.

A primary key class is just an ordinary, serializable Java class — it does not extend a bean class nor implement a bean interface. A primary key class is merely an
encapsulation of one or more database columns that serve as the primary key to the data. The only hard and fast requirement of the primary key class is that the
class implements the Seri al i zabl e interface.

Primary key classes should override the equal s, hashcode, andt oSt ri ng methods from class Qbj ect . Recall that the standard object equality operator (==)
compares object references, not contents. At times, you'll need to know if two primary key objects have equal contents. The equal s method from class Obj ect
offers no help because it just uses ==; you should override Cbj ect . equal s.

So, too, with the hashcode method in class Obj ect — the hashcode method generates a hash code based on memory locations. However, for string objects,
the hashcode method uses the value of the string to generate a hashcode. Thus, if the underlying data representation of your primary key is one or more strings,
you don't need to override hashcode.

Finally, you should override the Qbj ect . t oSt ri ng method. You'll need a string representation of your primary key, but the default Obj ect . t oSt ri ng method
appends additional object information, which makes the Obj ect . t oSt ri ng method unsuitable for converting a key to a string. Most of the time all you need to

return is the instance variable (or variables) of the primary key object as strings.

In summary, a primary key class:

. is serializable
. overrides Object.equals, Object.hashcode, and Object.toString
For an example of a primary key class, please refer to Listing 15-5 later in this chapter.

Now let's take an in-depth look at the life cycle of an entity bean.

[<= Prov [Noxt —

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 19: The Proposed EJB 2.0 Specification

Throughout the book, you've read references to the latest proposal for Enterprise Java Beans, the specifications for
the 2.0 release. With the Sun Microsystems specification document for EJB 2.0 weighing in at 558 pages (up from 314
pages for EJB 1.1), EJB 2.0 is no mere point release! In this chapter, you learn more about this “great leap forward.”
Sun published the final draft of the EJB 2.0 on October 23, 2000.

The chapter begins with a description of changes from EJB 1.1 to EJB 2.0. As you'll see, EJB 2.0 contains some new
features plus refinements of existing (EJB 1.1) features. | explain the new features of EJB 2.0 and compare and
contrast the refinements to the EJB architecture brought about by the new release.

EJB 1.1 Versus EJB 2.0: The Major Changes

With over 150 additional pages of specifications, you might expect that EJB 2.0 introduces some significant changes
to Enterprise JavaBeans — and you’'d be correct. The following is a brief rundown of the major changes:

. Introduction of the MessageDr i venBean: In addition to supporting session beans and entity beans, EJB 2.0
provides support for a new type of bean called a MessageDr i venBean, or message-driven beans. The short story
is that a message-driven bean provides the integration of Java Messaging Service (JMS) with Enterprise
JavaBeans. The longer story is covered later in this chapter.

. The new container-managed persistence model: Recall that container-managed persistence applies to entity
beans where the EJB container automatically persists beans to the underlying database. As you read in Chapter
15, “EJB Entity Beans,” the manner by which the EJB 1.1 container persisted beans is a bit ambiguous when
objects contain other objects. The EJB 2.0 specification tightens up the rules for container-managed persistence by
employing the services of the persistence manager.

. The EJB Query Language (QL): Entity beans are Java objects that are persisted to a database. The users of
entity beans use f i nd methods on the horme interface for the bean to create and do searches for these objects. A

lot of projects required custom f i nd methods to support complex queries efficiently. This was possible using
proprietary extensions provided by the application server vendors. These extensions used SQL to specify a WHERE
clause for the query.

Sun Microsystems recognized that relying on vendor-specific extensions was in conflict with the spirit of Enterprise
JavaBeans. In response, Sun defined a new language for specifying these custom queries called the EJB Query
Language, or QL. QL enables bean developers to use references to attributes on entity beans rather than columns
in the database, further isolating bean developers from how the beans are mapped to the underlying database.

. Additional methods in hone interface: Sun has provided additional support for the hone interface to implement
business logic that is independent of a specific enterprise bean instance by including additional methods.

Sun also added a run-as security identity functionality for enterprise beans. This functionality allows for the
declarative specification of the principal to be used for the run-as identity of an enterprise bean in terms of its

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=944260496

security role.

Sun defined an interoperability protocol based on CORBA/IIOP to allow invocations on session and entity beans
from J2EE components that are deployed in products from different vendors.

Let's now take a more detailed look at the preceding enhancements to EJB available with the 2.0 release, starting with
a discussion of the message-driven bean.

The MessageDrivenBean Type

A message-driven bean is an asynchronous message consumer. The EJB container invokes a message-driven bean
as a result of the arrival of a JIMS message. The container controls the life cycle for the message-driven bean. A
message-driven bean has neither a hone nor a r enot e interface. A message-driven bean instance is an instance of

a message-driven bean class.

To a client, a message-driven bean is a JMS message consumer running on the server that implements some
business logic. A client accesses a message-driven bean through JMS by sending messages to the JMS Destination
(Queue or Topic) for which the message-driven bean class is the message listener.

Message-driven bean instances have no conversational state, which means that all bean instances, like stateless
session beans, are equivalent when they are not involved in servicing a client message. In other words, message-
driven beans have no special identity to the client. Actually, message-driven beans are not even visible to the client.

A bean instance has no state for a specific client. However, the instance variables of the message-driven bean
instance can maintain state during the handling of client messages. Examples of state a message-driven bean might
maintain include an open database connection or an object reference to an EJB object.

Leveraging Message-driven Beans

Although session and entity beans work well in implementing transactions, they’re not perfect. Often, when session
and entity beans work to complete a transaction, they do so in a synchronous manner. When dealing with messages,
beans may have to wait until a message request is acknowledged. This waiting period could severely impede EJB
performance.

To alleviate potential performance bottlenecks arising from the synchronous handling of messages, Sun Microsystems
introduced JMS support for EJB in release 1.1. JMS is an asynchronous messaging service, which means that a JIMS
message sender doesn’t need to wait for a response.

For example, if one or more beans are involved with a transaction, the steps required to complete the transaction
usually follow a prescribed sequence. In addition, the next step in the transaction should not commence unless the
previous step has successfully completed. Any messaging involved in processing a transaction should be
synchronous.

In contrast, if the business scenario requires that other beans be notified of the status of the transaction, the
notification may be sent asynchronously. An order placement bean may send messages to inventory beans so the
inventory beans can adjust the stock items; the inventory bean may not need to message the order bean back.

Although EJB 1.1 supported JMS (and asynchronous messaging), EJB 2.0 wraps JMS inside a bean type and
delegates much of the message-driven bean handling to the EJB container. In short, the EJB 2.0 bean developer may
take advantage of the asynchronous messaging capabilities of IMS by developing beans as opposed to writing native
JMS calls.

How does an EJB developer code a message-driven bean? In the next section, | show you how.

Coding a Message-driven bean

Not surprisingly, you code a message-driven bean by implementing interfaces. The three interfaces used when
implementing message-driven beans are the j avax. ej b. MessageDr i venBean interface, the

j avax. ej b. MessageDri venCont ext interface, and the j avax. j ns. Messageli st ener interface (note that the
third interface is in the j avax. j ms package).

Let's first look at the required interfaces that every message-driven bean must implement, and then let's look at a
message-driven bean template.

The MessageDrivenBean Interface

All message-driven beans are coded as classes that implement the MessageDr i venBean interface. The
MessageDr i venBean interface, like the Sessi onBean and Ent i t yBean interfaces, extends the Ent er pri seBean
interface. The container uses the MessageDr i venBean methods to notify the bean instances of the instance's life
cycle events.

The MessageDr i venBean interface contains two methods:

. set MessageDri venCont ext : The bean container calls set MessageDr i venCont ext to associate a message-

driven bean instance with its context maintained by the container. Typically a message-driven bean instance
retains its message context as part of its state. Essentially, set MessageDr i venCont ext serves the same

function for message-driven beans as set Ent i t yCont ext does for entity beans and set Sessi onCont ext
does for session beans.

. ej bRenpve: When the container decides to remove an instance of a message-driven bean class, the container
invokes the ej bRenbve method. Again, ej bRenpve serves the same purpose for message-driven beans as it
does for entity and session beans.

The MessageDrivenContext Interface

The MessageDr i venCont ext interface, a subinterface of EJBCont ext , provides access to the runtime message-

driven context that the container provides for a message-driven enterprise bean instance. The container passes the
MessageDri venCont ext interface to an instance after the instance has been created. The message-driven context

remains associated with the instance for the lifetime of the instance.

The MessageDri venCont ext interface adds no new methods to the EJBCont ext interface. However, message-
driven beans must not call the get Cal | er Pri nci pal method, thei sCal | er | nRol e method, or the get EJBHone
method.

The MessageListener Interface

Message-driven beans must implement the MessagelLi st ener interface. This interface has only one method
requiring implementation, the onMessage method. The onMessage method is called by the bean’s container when a
message has arrived for the bean to service. The onMessage method contains the business logic that handles the
processing of the message. The onMessage method has a single argument, the incoming message.

Only message-driven beans can asynchronously receive messages. Session and entity beans are not permitted to be
JMS Messageli st eners.

Generic Message-driven Bean Template

Listing 19-1 is a generic message-driven bean. You supply the implementation of the onMessage method to complete
the bean.

Listing 19-1: A generic message-driven bean template

public class GenericMessageBean inpl ements MessageDrivenBean, Messageli stener ({
private MessageDri venContext nCTX;

/] Sets the MessageDri venCont ext .

public void set MessageDri venCont ext (MessageDri venCont ext ctx) {
nCTX = ctx;

}

/1ejbCreate() with no argunents is required
/1 by the EIJB 2.0 specification

public void ejbCreate () throws CreateException {}

/**

Supply an inpl enentati on of Messageli stener by coding the
onMessage() nethod bel ow.

*/

public void onMessage(Message nsg) {

/1 I mplenent your onMessage() nethod inside a try/catch bl ock

try {
//Do it here.....

}
cat ch(Exception ex) {

ex. print StackTrace();
}

}

/[l Public, no arg constructor

public MessagelLogBean() {}

/1l ejbActivate is required by the EJB Specification
public void ejbActivate() { }

/1l ejbRenove is required by the EJB Specification

public void ej bRenove() {
nCTX = nul | ;
}

/1 ejbPassivate is required by the EJB Specification

public void ejbPassivate() { }

Notice that, as with other bean types, several methods are required even though these required methods contain no
real method body.

Message-driven Bean Life Cycle
A message-driven bean instance’s life starts when the container invokes newl nst ance on the message-driven bean

class to create a new instance. Next, the container calls set MessageDr i venCont ext followed by ej bCr eat e. Any
client can now deliver a message to the message-driven bean instance.

Figure 19-1 shows a state diagram for a message-driven bean'’s life cycle.

I.-"—"‘x_
| doed mol exrl
J
i
1. newlnstanced] ejbRemowe])
2. sethMewsage DrivenContext [mdc)
3. ejbCreatel]
L4
i —"’F

onblesage|rag| ,:':F | micthod-neady |

E-'i"l"'a._ PO Y,

o bessage(rsg) aCtian resulting fram client message arival
ejbCreatell aclicn initiated by container

Figure 19-1: Message bean life cycle

When the container no longer needs the instance (which usually happens when the container wants to reduce the
number of instances in the method-ready pool), the container invokes the bean’s ej bRenmove method. This ends the
life of the message-driven bean instance.

Closing Thoughts on Message-driven Beans

Message-driven beans are necessary to allow EJB application servers to compete on a level playing field against
traditional transaction processing (TP) monitors. Modern enterprise applications are increasingly using message-
based architectures. The message-driven bean feature now allows EJB application servers to be used out of the box
in message-based architectures without resorting to using custom “message-driven beans.”

Previously, the lack of support for message synks and transactions contained in JMS and JDBC was a problem when
using EJB servers in large applications. With the introduction of the new message-driven bean, this obstacle has been
removed.

The New Container-Managed Persistence Model

EJB 2.0 redefines the container-managed persistence model for entity beans. The major features of the new model
include the introduction of a new role, the persistence manager; a new technique for defining container-managed
fields; and new ways of working with objects of dependent classes and other EJBs.

The Persistence Manager

In EJB 2.0, the persistence manager handles persistence of container-managed entity beans automatically at runtime.
The persistence manager is responsible for mapping the entity bean to the database based on a new bean-
persistence manager contract called the abstract persistence schema. By having the persistence manager handle
bean and dependent object relationships instead of the EJB container, entity beans developed under EJB 2.0 should
be more portable across multiple containers than their EJB 1.1 counterparts.

The bean provider specifies the persistent fields and the relationships between dependent objects by coding abstract
persistence schema statements in the deployment descriptor. The persistence manager provider should have tools to

map the persistent fields to a database according to the rules coded in the abstract persistence schema. The tools
should generate all needed classes to provide for persisting the indicated fields at runtime.

Listing 19-2 shows a snippet from a deployment descriptor that uses the abstract persistence schema to specify a one-
to-many relationship between two fields: Or der and Li nel t em

Listing 19-2: Deployment descriptor showing one-to-many relationship between two fields

<l-- ONE-TO MANY: Order Lineltem-->
<ej b-rel ation>
<ej b-rel ati on- nanme>Or der - Li nel t enx/ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>
order-has-lineitens
</ ej b-rel ati onshi p-rol e- nane>
<multiplicity>One</multiplicity>
<rol e- source>
<ej b- nane>0Or der EJB</ ej b- nane>
</rol e-source>
<cmr-field>
<cnmr-field-nanme>lineltens</cnr-field-nane>
<cnr-field-type>java.util.Collection</cnr-field-type>
</cnmr-field>
</ ejb-rel ati onshi p-rol e>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- name>l i nei t em bel ongst o_or der
</ ej b-rel ati onshi p-rol e- name>
<mul tiplicity>Many</nultiplicity>
<cascade-del ete/ >
<rol e- source>
<dependent - nanme>Li nel t enkdependent - nanme>
</rol e-source>
<cnr-field>
<cnr-field-nanme>order</cnr-field-nane>
</cnr-field>
</ ej b-rel ati onshi p-rol e>
</ejb-relation>

Each ej b-rel ati onshi p-rol e element describes a relationship role, its name, its multiplicity within a relation, and
its navigability. From the perspective of the participating bean (or its dependent object class), ej b-r el ati onshi p-
r ol e also specifies the name of the cnr - f i el d that is used.

Each relationship role refers to an entity bean or a dependent object class by using an ej b- nane, ar enot e- ej b-
name, or a dependent - nane element contained in the r ol e- sour ce element. The bean provider must ensure that
the content of each r ol e- sour ce element refers to an existing entity bean, entity bean reference, or dependent
object class.

Closing Thoughts on EJB 2.0 Container-Managed Persistence

The EJB 2.0 CMP model helps normalize the CMP vendor offerings and makes beans much more likely to be portable
between persistence manager providers. However, the EJB 2.0 CMP model requirements do not define a completely
portable persistence mechanism. Because the object-to-datastore mapping is undefined, it remains possible to
provide implementations that vary in their capabilities. For example, it is possible for a vendor to supply a CMP
implementation in which a given object can map only to a single table. In addition, no interface is defined between the
persistence manager and the container, which means that collaboration between the two occurs in a proprietary,

application server—specific way. In general, though, the CMP model defined in EJB 2.0 provides a more robust
infrastructure than EJB 1.1 for persisting data.

Using the EJB Query Language

The persistence manager is responsible for implementing and executing f i nd methods based on a new query
language called EJB Query Language (EJB QL). The structure of the QL statements depends on the f i nd methods
coded in the hone interface of the entity bean and the relationships of fields between beans coded in the deployment
descriptor.

The EJB QL defines query methods (f i nd and sel ect methods) for entity beans with container-managed
persistence. EJB QL defines query methods so that they are portable across containers and persistence managers.
EJB QL is a declarative, SQL-like language intended to be compiled to the target language of the persistent data store
used by a persistence manager.

EJB QL is based on a subset of SQL92 and is enhanced by path expressions that allow navigation over the
relationships defined for entity beans and dependent object classes.

EJB QL is a specification language that can be compiled to the persistent storage target language used by the
persistence manager, such as SQL. This allows the responsibility for the execution of queries to be shifted to the
native language facilities provided for the persistent store (e.g., RDBMS). Queries should no longer need to be
executed directly on the persistent manager’s representation of the entity bean’s state. As a result, you can more
easily optimize query methods. The methods are also easily portable between different database systems.

The EJB QL uses the abstract persistence schema of entity beans and dependent object classes, including their
relationships, for its data model. It defines operators and expressions based on this data model.

The bean provider uses EJB QL to write queries based on the abstract persistence schemas and the relationships
defined in the deployment descriptor. EJB QL depends on navigation and selection based on the cnp-fi el ds and

cnr - fi el ds of the abstract schema types of related entity beans and dependent objects.

The bean provider can navigate from an entity bean or dependent object to other dependent objects or beans by using
the names of cnr - fi el ds in EJB QL queries.

EJB QL allows the bean provider to use the abstract schema types of related entity beans in a query if the abstract
persistence schemas of the related beans are defined in the same deployment descriptor as the query. The bean
provider can navigate to both locally defined entity beans and to remote entity beans. (In this context, remote entity
beans are entity beans with bean-managed persistence, entity beans using EJB 1.1 container-managed persistence,
and beans whose abstract persistence schemas are defined in a different deployment descriptor.) Although the
abstract persistence schemas of remote entity beans are not available to the bean provider, it is still possible to use
EJB QL to navigate to such remote entity beans. In addition, special expressions in the language allow the bean
provider to invoke the f i nd methods of remote entity beans in queries.

EJB QL Statement Structure

An EJB QL query is a string containing one of the following three clauses:

. A SELECT clause, which indicates the types of the objects or values to be selected

. A FROMclause, which provides navigation declarations that designate the domain to which the conditional
expression specified in the WHERE clause of the query applies

. A VWHERE clause, which restricts the results that are returned by the query

The FROMclause is required; SELECT and WHERE are optional.

EJB SQL supports many of the SQL92 operators used in predicates, such as i n, bet ween, | i ke, not, and the use
of nul I .

An EJB QL Example

Because QL statements are based on the f i nd methods in the bean’s hone interface, you need an example horne
interface to work with. Listing 19-3 is a home interface for a customer bean.

Listing 19-3: A home interface for a customer bean

public interface CustonmerHone extends javax.ejb. EJBHonme {
public Enpl oyee findByPrimaryKey(Integer id)
t hrows Renot eException, CreateException;

public Collection findByZi pCode(String zi pcode)
t hrows Renot eException, CreateException;

public Collection findByProduct(String Product Nane)
t hrows Renot eException, CreateException;

You can use EJB QL to specify how the persistence manager should execute the f i nd methods. All entity beans are
required to have a f i ndByPr i mar yKey method. You don’t use QL to execute the fi ndByPr i mar yKey method; you
use the fields in the primary key to search the database.

The f i ndByZi pCode method is used to obtain all the customer beans with a certain zip code. You can use the
following EJB QL in the deployment descriptor as follows:

FROM cust oner Tabl e WHERE custonerTable.zip = ?1

The question mark, reminiscent of the Pr epar edSt at enent interface in JDBC, is a placeholder for the argument
passed by the fi ndByZi pCode method.

EJB QL expressions are coded in the deployment descriptor. Listing 19-4 provides an example.

Listing 19-4: EJB QL coded in deployment descriptor

<query>
<query- net hod>
<met hod- nane>f i ndByZi pCode</ net hod- name>
</ met hod- par ans>
<ej b- gl > FROM cust oner Tabl e WHERE cust oner Table. zip = ?1

</ejb-ql >
<query- net hod>
</ query>

Closing Thoughts on EJB QL

EJB QL allows the bean developer to delegate the execution of bean f i nd methods to the persistence manager. The
EJB developer is not required to use EJB QL, but the straightforward syntax should make EJB QL an essential tool in

the EJB developer’s bag of tricks.

Additional Methods in home Interfaces

EJB 2.0 allows bean developers to code additional methods in the hone interface that do not apply to any single bean
instance. Such methods are implemented by corresponding ej bHonme methods. For example, the method header
coded in the following customer bean’s home interface:

public interface CustonmerHonme extends javax.ejb. EJBHonme {

public void increaseCredit(double increasePercentage)
t hrows Renot eException ;

would have a method in the customer bean class with the following signature:
public void ej bHonel ncreaseCredit(doubl e increasePercentage)

hone interfaces in EJB 1.x specifications looked like singletons (that is, there was only one instance) to the developer.
They contained f i nd methods for their associated bean (each bean has its own home) and methods to create and
delete the beans. Developers had a need for methods that applied to all beans represented by the home. There was

no standard place to put these in the EJB 1.x servers, so developers usually created a stateless session bean and put
the method there.

Developers can now add these methods to the hone interface where they belong. A typical use for these methods is
as follows: You have an employee entity bean that holds employee names and salaries. Previously, you would have a
method on the employee bean to adjust the salary. If you wanted to change all salaries, the client of the bean wrote
code that iterated over all beans and called the method for each one. Such an operation should go in a session bean,
which is co-located with the entity bean for best performance. You can now put this method on the hore interface.
This makes much more sense, because it's where one expects to find all "static* methods for a bean.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you've read about the elements of an EJB and how these elements relate to one another. You've read
about the interfaces that represent server-side EJB components to clients and about the enterprise bean class. Now,
you know that EJBs come in three flavors, with each flavor dealing with a specific feature of using objects in a
distributed environment. You should be able to use this information to model your application components based on
which ones should be entity, session, or message beans. In the next chapter we'll continue to look at EJB code, and

we'll examine them in yet deeper detail.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=791678514

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The javax.ejb.EntityBean Interface

The Ent i t yBean interface, a subinterface of j avax. ej b. Ent er pri seBean, is implemented by every entity
enterprise bean class. The container uses the Ent i t yBean methods to notify the enterprise bean instances of the

instance's life cycle events. Here you implement any access methods to the bean’s data. As you can see, you need
not implement most of these methods for CMP beans, as the container does most of the dirty work for you. Listing 15-

1 shows the entity bean interface.

Listing 15-1: The EntityBean interface

public interface javax.ejb.EntityBean
ext ends javax.ejb. EnterpriseBean {

public void ejbRenmove()
throws javax. ejb. RenbveExcepti on,
throws javax. ejb. EJBExcepti on;

public void setEntityContext(EntityContext ctx)
throws javax.ejb. EJBExcepti on;

public void unsetEntityContext()
throws java.rm .EJBException ;

public void ejbPassivate()
throws javax. ejb. EJBExcepti on;

public void ejbActivate()
throws javax.ejb. EJBExcepti on;

public void ejbStore()
throws javax.ejb. EJBExcepti on;

public void ejblLoad()
throws javax. ejb. EJBExcepti on;

Note Release 1.0 of EJB required that entity (and session) bean methods throw a Renpt eExcept i on. You may
see bean method signatures that throw both Renot eExcept i on and EJBExcept i on. With newer EJB
releases, all you need to throw is EJBExcept i on, although Renot eExcept i on may be present for
backward compatibility with EJB 1.0.

You've seen some of these methods in Chapter 14, “EJB Session Beans.” In particular, the methods ej bPassi vat e,
ej bActi vat e, and ej bRenpve perform much the same function for session beans as for entity beans. No need to

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=349394262

repeat the descriptions of these methods. I'll mention any differences between these methods when used for session
and entity beans later.

Let’s look at the methods in the entity bean interface.

Using ejpbRemove

The ej bRenobvemethod behaves a bit differently when invoked from a session bean than from an entity bean. If you
flip back to Chapter 14, you'll note that the signature of ej bRenpve for session beans throws an EJBExcepti on; if
you look at Listing 15-1, you'll note that ej bRenove for entity beans throws an EJBExcepti on and a
RenmoveExcepti on.

Recall from Chapter 14 that the EJB container invokes ej bRenove immediately prior to the container’s removal of a
session bean instance. The EJB container activity leading up to invoking an ej bRenove method for an entity bean is
a bit different. The EJB container invokes ej bRemnpve in response to a client invocation of a r enove method (like

session beans). However, the container does not remove an instance of an entity bean before, during, or after the
invocation of ej bRenpve. The container, when executing ej bRenove, removes the data in the database represented

by the entity bean, not the instance of the bean. Put another way, the container changes the state of an entity bean
from "ready" to "pooled.”

You need to ensure that the bean you are about to remove corresponds to the correct row of data in the database.
Because the container pools beans, you run the risk of removing a bean that is bound to a different row of database
data than the data you wish to remove from the database. You may be wondering how you tell the container which
row of data to remove.

The answer is that you access the primary key from the container’s entity context, and then use that primary key to
locate the correct data from the database. With the primary key, you issue a SQL delete or whatever database dialect
is used to remove database data. You learn more about the primary key later in this chapter.

You may think that the difference between the behavior of ej bRenove for session and entity beans is insignificant.

Why should the client or you, the distributed object programmer, care about the pooling of beans and beans
transitioning from a "ready" state to a "pooled" state? Most of the time you won't care. The important difference
between ej bRenove when applied to an entity bean is that the container will remove data from the database as part

of processing the ej bRenove method.

Using setEntityContext

The set Enti t yCont ext method serves a similar function for entity beans as the set Sessi onCont ext method

does for session beans. The entity context allows your entity beans to learn about and communicate with the EJB
container. Later in this chapter, you'll read about the methods available in the Ent i t yCont ext interface and the

methods in the superinterface of both Sessi onCont ext and Enti t yCont ext — the EJBCont ext interface.

Typically, your bean class contains a method implementation of set Ent i t yCont ext that holds onto a reference of
the entity context object. The implementation will closely resemble the following example.

/I Decl ared outsi de any met hod
private myEntityContext ;

public void setEntityContext(EntityContext ectx)
t hrows Renot eException {
myEntityContext = ectx ;

Now, any bean method can access the entity context through nyEnt i t yCont ext , which is known throughout the
bean class.

Using unsetEntityContext

Unlike the session bean interface, the entity bean interface contains a method to disassociate the bean from its
context. This method, unset Ent i t yCont ext (), serves the same purpose for entity beans as ej bRenove() does

for session beans. The container invokes unset Ent i t yCont ext () when the container decides to move an entity
bean from the "pooled" state to the "does not exist" state.

Using ejbPassivate and ejbActivate

The ej bPassi vat e and ej bAct i vat e methods perform much the same function for entity beans as for session

beans. When the EJB container decides to pull out an entity bean from the pool and draft the bean for use, the
container invokes the bean’s ej bAct i vat e method; immediately before the EJB container decides it's time for the

bean to return to the pool, the container executes the ej bPassi vat e method.

Using ejbStore and ejbLoad

The ej bSt or e method is used with entity beans, not with session beans. Recall that entity beans represent data

resident in some underlying data store. When the EJB container passivates an entity bean, the container needs a
mechanism to save the data to the data store so the persistent data reflects the state of the entity bean.

Before the container passivates an entity bean, the container invokes the ej bSt or e method. The purpose of
ej bSt or e is to save the entity bean’s instance variables to the database.

It's not difficult to deduce the purpose of the ej bLoad method. Immediately following bean activation, or the
invocation of ej bAct i vat e, the container invokes the bean’s ej bLoad method. The ej bLoad method refreshes the
newly activated bean with the latest version of its underlying data.

Loading the database data into the bean’s instance variables requires querying the data from persistent storage
(usually a relational database) and using the appropriate mechanism (usually SQL). However, for BMP beans, you
should ensure that the data you are loading belongs to the bean instance bound to the current EJB object. You need
to be sure because the container pools beans and may use one bean instance to represent several EJB objects.

How do you guarantee that you are loading the right data, specifically the data belonging to the instance bound to the
current EJB object? You fetch the bean instance that corresponds to the EJB object by using a primary key and a
finder method. You can read more on coding and using finder methods and primary keys later in this chapter.

Why Does EJB Require load and store Methods?

Perhaps you are wondering why the container requires separate methods to activate and passivate beans and to load
and store beans. Why doesn't the container load the entity bean as part of its ej bAct i vat e method and save the

bean as part of its ej bPassi vat e method? After all, the container doesn’t require | oad and st or e methods for
session beans; the container is able to save and load the state of a session bean through its act i vat e and
passi vat e methods.

Recall that an entity bean represents data whereas a session bean does not. The acti vat e and passi vat e

methods for a session bean save its state through serialization. However, more than serialization is required for entity
beans. As a result, the act i vat e and passi vat e methods for entity beans deserialize and serialize the bean; the
| oad and st or e methods tend to fetch and save entity bean data stored in a database.

Other Methods You Would Typically Implement When Coding Entity Beans

A quick look at the j avax. ej b. Ent i t yBean interface reveals an absence of methods used to create new entity

beans and to access existing entity beans. Recall that a client application interacts with the EJB container to create,
access, and manipulate enterprise beans. Methods used to create and locate entity beans are defined in the bean’s
hone interface. The code that implements the actions required to create and access the bean is located in the bean

class, or the class that implements j avax. ej b. Enti t yBean.

You can also implement methods that enable a client to instruct the container to access an instance variable of an
entity bean — a column of a row of underlying relational database data, perhaps. You can code get and set

methods to access and change column values. Later in this chapter you will see that your CMP beans will not contain
SQL statements, while your BMP beans will.

In Chapter 12, “The Elements of an EJB,” | discussed the hone interface and briefly described the hone interface
methods. In the following sections, | describe the homne interface methods for entity beans in more detail.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You made it! You've now looked at session beans in their stateful and stateless varieties and you've been able to read
about how you can use them in your enterprise applications. After examining the sample session beans that you've
seen implemented in this chapter, you should have a strong understanding of the different situations in which you may
want to use stateful and stateless session beans. In the next chapter, we'll complement this knowledge with a

discussion of entity beans and an example implementing them.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=676423997

does not exist

A
1. newlnstance() ejbRemove()
2. setMessageDrivenContext(mdc)
3. ejbCreate()
Y
pool

onMessage(msg) action resulting from client message arrival
ejbCreate() action initiated by container

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In the previous chapters in Part 11l of this book we've concentrated on learning to develop entity and session enterprise
beans. Now we've learned how to create EJB clients to access these EJBs. Coding EJB clients is a matter of coding
some statements up front — namely, creating the initial context and locating the home object via JNDI. Once you take
care of the housekeeping, you can invoke bean methods as if they were located on the same JVM as the client.
Whether your EJB client is an application, servlet, applet, or another enterprise bean, you can now access and use
EJBs with ease.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=593609307

EJB & JSP: Java On The Edge, Unlimited Edition
TIYE RN | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Y]

Summary

Sun Microsystems has introduced dramatic and meaningful changes in the EJB 2.0 release. Message-driven beans,
persistence managers, and EJB QL are all aspects that give the developer the ability to build better enterprise
applications that are more flexible, portable, and robust. Although vendor support for the new release is scarce, if
nonexistent, these changes are welcomed by developers of distributed applications. Developer support of the
specification and the fact that Java is the language of Internet programming will ensure that vendor support grows as
this specification takes hold in industry.

Now, let's continue to the last chapter in this book and tie it all together, building a Web-based JSP application
powered by EJBs.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=231877669

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

EJB Deployment Descriptors

Notice that in all of the talk about home and remote interfaces and entity and session beans, there has been no
discussion of how to tell the Java environment various runtime attributes of beans. In addition, the topic of security or
transaction properties has not been discussed. Although the EJB container handles these, and other, system-level
services, you still must tell the container how to handle these services. Here’s where the deployment descriptor comes
into play.

The role of the deployment descriptor is to capture the declarative information (i.e., information that is not included
directly in the enterprise bean’s code) that is intended for the consumer of the ej b-j ar file.

A deployment descriptor is a set of serialized classes that serve a similar function to property files. If you are using a
Java IDE for enterprise application development, the IDE probably has a tool that may assist you in the creation of a
deployment descriptor.

There are two basic kinds of information in the deployment descriptor: structural and application assembly information.

Structural information describes the structure of an enterprise bean and declares an enterprise bean’s external
dependencies. Providing structural information in the deployment descriptor is mandatory for the ej b-j ar file
producer. The structural information cannot, in general, be changed because doing so can break the enterprise bean’s
function.

Application assembly information describes how the enterprise bean (or beans) in the ej b-j ar file is composed into

a larger application deployment unit. Providing assembly information in the deployment descriptor is optional for the
ej b-j ar file producer. Assembly level information can be changed without breaking the enterprise bean’s function,

although doing so may alter the behavior of an assembled application.

In Chapters 14 and 15, you will create EJBs and their corresponding deployment descriptors. For now, understand
that by using deployment descriptors, the bean deployer can customize the behavior of EJBs at runtime.

Top <

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=637650378

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding an EJB Client

The Enterprise JavaBeans architecture makes coding client applications that access enterprise beans straightforward.
The overall structure is that the client needs to obtain a reference to the bean and then invoke methods defined in the
bean’s remote interface. As you've read, the r enot e interface methods correspond to bean methods. When the client
invokes a remote method, the EJB object delegates the invocation to the container. The container invokes the
corresponding bean method and handles the return of any needed data to the client. The general mechanism is
similar to using Java RMI.

Obtaining a Reference to the EJB Object

Before a client can invoke methods of the EJB object, which requests that the container invoke bean methods, the
client must obtain a reference to the EJB object. As mentioned earlier, the client first obtains a reference to the home
object. The home object contains methods that enable the client to locate EJB objects. The EJB objects contain
methods that map to enterprise bean business methods.

Obtaining a Reference to the Home Object
A client uses JNDI to get a reference to the home object, which must then be cast to the hone interface. Listing 18-1
demonstrates code that gets a reference to the home object. The code is shown with fully qualified class hames to

show where the JNDI and RMI classes derive from.

Listing 18-1: Obtaining a reference to the home object

/I Name of the bean as coded in the depl oynent descri ptor
private static final String HOVE | FACE REF =
"java: conp/ env/ ej b/ MyBean" ;
try {
/1'Use JNDI to obtain a default naming context
j avax. nam ng. Context jndi Ctx =
javax. nam ng. I nitial Context () ;

/1 Use | ookup() to get the home object
bj ect bj = jndi Ctx.lookup(HOVE | FACE REF) ;

/[l Use the ‘special cast’ to coerce to hone interface type
Honel f aced ass honmehj = (Honel faced ass)
javax. rm . Port abl eRenot ehj ect . narr ow obj ,
Honel f aced ass. cl ass) ;
/I Ref erence EJB (bjects, create, destroy, etc.

}

catch (javax. nani ng. Nam ngException ne) {
/I Mention somehow that the JNDI | ookup nmethod failed

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=638945908

//to locate the hone object

The JNDI Name for the Home Object

The static string HOVE_| FACE_REF is the JNDI name for the home object. Listing 18-2 shows how the JNDI name is
coded in the deployment descriptor.

Listing 18-2: Deployment descriptor showing home interface JNDI reference

<ej b-ref>

<descri ption>

Exanpl e bean used in Chapter 18

</ descri ption>

<ej b-r ef - name>ej b/ MyBean</ ej b-r ef - name>

<ej b-ref-type>Entity</ejb-ref-type>

<hone>chapt er 18. MyBeanHone</ hone>

<r enot e>chapt er 18. MyBeanRenot e</ r enot e>
</ejb-ref>

As you can see, the JNDI name is coded as content for the ej b- r ef - nane tag. The choice of an enti t y bean type
is completely arbitrary in this example.

Obtaining the Initial INDI Naming Context

The call to the method | ni t i al Cont ext () of the j avax. nham ng package generates an initial JINDI naming
context. You need the initial context to perform a lookup in the JNDI nhamespace for the home object.

Looking Up the Home Object

The call to the method | ookup() with the INDI name coded in the deployment descriptor as the method argument
yields an object reference or throws a Nam ngExcept i on if not found.

Performing the “ Special Cast”

The | ookup() method returns an object of class Cbj ect . For this object to be of any use, it must be cast into the
class that implements the hone interface. Because a stated goal of Enterprise JavaBeans is CORBA compatibility,

EJB does not permit a Java-style cast because CORBA objects may not be Java-based and, if not, will fail to yield to a
Java-style cast. To allow EJB to comply with CORBA as far as object casting is concerned, EJB permits the use of the
nar r owm() method of class j avax. r mi . Port abl eRenot eCbj ect . The effect of using nar r ow() is tantamount to

using a Java-style cast.

Notice that you can't tell by looking at the code in Listing 18-1 what sort of Java object the client is. The client can be
an application, applet, servlet, or another enterprise bean.

Now that you have a reference to the home object, you can prepare to access the EJB object and the accompanying
bean operations.

Creating an EJB Object

Before you look at code that “creates” EJB objects, know that methods invoked by the client may not create any
objects. In the case of stateless session beans, an EJB object is likely pulled from a bean pool, activated, and bound
to the client for the duration of the method execution. In the case of a stateful session bean, an EJB object is likely
created and bound to the client for the duration of the session. In the case of an entity bean, an EJB object is likely
pulled from the pool, activated, and associated with data that will eventually be persisted if a transaction occurs and is
committed. However, from the client’s point of view, the code that “creates” the object provides the client an object by
which the client can invoke bean methods.

The following code “creates” an EJB object that the client may use to communicate requests to the container.

/] Statel ess session bean — no argunents to create() nethod

Renot eSt at el essSessi onC ass nyBeanOhj ect = honmeOhj . create() ;
/[1Entity Bean — may or nmmy not have argunents

Renot eEnti tyd ass myBeanCbj ect = hone(bj.create(aParm);

Of course, the cr eat e() method of the hone interface may or may not take arguments depending on the type of
bean and the particulars of the bean being "created.”

EJB cr eat e() methods may throw a j avax. ej b. Cr eat eExcept i on. The client should be prepared to catch the
exception.

Invoking a Bean Method

Now that the client has a reference to a bean or, more accurately, a reference that allows the client to communicate a
method invocation request to the container, invoking the method is straightforward:

/I Paraneters vary with nethod, of course
Ad ass obj ACl ass = nyBeanObj ect. doSonet hi ng(aParnl, aParn) ;

In other words, the client invokes the method as if the method were available locally, in the same JVM as the client.

Finding One or More Beans

Locating an entity bean by primary key is also straightforward. The code snippet that follows shows the creation of a
primary key and then the location of the bean referenced by that key:

/l aKeyVal ue is declared and initialized to the correct type
Renot eEnt it yd assPK = new Renot eEntityCd assPK(aKeyVal ue) ;
/1Look for the bean (reference to a renpte object, really)
/laccessed by this key val ue
Renot eEnt i t yBean myQt her Bean =
honme(Qbj . fi ndByPri mar yKey(Renot eEnti tyd assPK) ;

Notice that the fi nd() method is invoked from the home object reference.

To locate multiple beans with a f i nd() method, you need to set the search parameters as arguments to the fi nd()
method and save the return value of the f i nd() method as an object from a class that implements the Col | ecti on
interface. The code that follows returns a collection of "big beans."

Col | ecti on myBi gBeans =
Honebj . f i ndBi gBeans(si zeFor Bi gBean) ;

EJB fi ndBy() methods may throw a j avax. ej b. Fi nder Except i on. The client should be prepared to catch the
exception.

Removing a Bean

Removing a bean does not delete the bean or purge the bean from memory. However, from the client’s point of view,
removing the bean makes any references to the bean invalid. Thus, to the client, the net effect of bean removal is the
same as if the bean were deleted or purged.

The following line of code “removes” the bean, making any references to the bean invalid:
myQt her Bean. renove() ;

If only all things in life were so simple!

EJB renove() methods may throw a j avax. ej b. RemoveExcept i on. The client should be prepared to catch the
exception.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 20: Integrating JSPs and EJBs

Overview

In Chapter 10 you read about how to use JSPs to implement a straightforward brokerage application. The application

used JSP pages to generate a front end for clients and to communicate with a database in response to client
requests.

Since then you've also read about the different types of enterprise beans — session, entity, and message-driven
beans — and have studied code samples that implement enterprise beans. You've read about coding EJB clients in
Chapter 18. The EJB clients presented in Chapter 18 were Java classes containing methods that communicated with

enterprise beans.

In this chapter, you will learn how to code EJB clients as JSP pages. This chapter presents code that implements the
“View Transaction History” feature of a version of the “Make Money” Brokerage Application presented in Chapter 10.

The major difference between the version in Chapter 10 and that in this chapter is that the Chapter 10 version relies

solely on JSP pages for client interface and data access tasks whereas the version in this chapter relies on a JSP
page for client interface and an enterprise bean for data access.

Top <

| <= Prov_ | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=500032077

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The Bean Class

Objects of the bean class are the enterprise beans. As previously mentioned, beans come in three flavors: entity,
session, and message driven. The bean class contains implementations for methods that parallel those found in the
home interface and remote interface. The method names and the signatures listed in the remote interface must
exactly match the method names and signatures of the business methods defined by the enterprise bean. This differs
from the home interface, whose method signatures match, but whose names are different.

The interface Ent er pri seBean is a marker interface, serving as a superinterface for three interfaces corresponding
to the three bean types previously mentioned. You can’t implement the Ent er pri seBean interface directly. Instead,
you implement the Ent i t yBean, Sessi onBean, or MessageDr i venBean interfaces.

The next sections describe the three bean types previously mentioned, starting with entity beans.

Using Entity Beans

An entity bean represents persistent data, methods that act on that data, and state management callback methods. In
relational terms, an entity bean might represent an underlying database row, or a single result row returned by a SQL
query. In an object-oriented database (OODB), an entity bean may represent a single object, with its associated
attributes and relationships. An example of an entity bean might be a room object in a particular hotel, or a specific
customer in a customer database.

Entity beans are associated with database transactions and may provide data access to multiple users. Because the
data that an entity bean represents is persistent, entity beans survive server crashes because as soon as the server
comes back online, the server may reconstruct the bean from existing data. In addition, references to an entity bean
survive server crashes. A client can later connect to the same entity bean using its object reference because it
encapsulates a unique primary key, enabling the enterprise bean, or its container, to reload its state.

The management callback methods notify the entity bean when a significant change of state is about to occur. For
example, an entity bean can be notified when the bean is about to be removed from the JVM, causing the underlying
data to be removed from the database. The entity bean may want to do some additional cleanup before removal.

Entity beans support two types of persistence: container-managed and bean-managed.

In container-managed persistence, the EJB container is responsible for saving the state of the entity bean. Because it
is container-managed, the implementation is independent of the data source. All container-managed fields need to be
specified in the deployment descriptor for the persistence to be automatically handled by the container. Later in this
chapter, you can read a bit about EJB deployment descriptors.

In bean-managed persistence, the entity bean is directly responsible for saving its own state, and the container does
not need to generate any database calls. Consequently, bean-managed persistence is less adaptable than container-
managed persistence because the persistence needs to be hard-coded into the bean.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=633261621

An EJB feature, new with release 2.0, available to entity beans with container-managed persistence is the EJB Query
Language (EJB QL). EJB QL is a specification language that can be compiled to a target language (SQL is the most
likely candidate) of a database used by the persistence manager. (Recall that the persistence manager is the newest
role, discussed in Chapter 11, “A First Look at EJB.”) With EJB QL, the responsibility for the execution of queries is

shifted to the native language facilities available in the underlying database instead of requiring queries to be executed
directly on the entity beans. You can read more about EJB QL in Chapter 15, “EJB Entity Beans.”

To summarize, every entity bean has the following characteristics:

. Entity beans represent data in a database.

. Entity beans can participate in transactions.

. Entity beans are persistent, living as long as the bean’s underlying data lives in the database.

. Entity beans may be accessed by multiple users.

. Entity beans can survive EJB server crashes. Any EJB server crash is always transparent to the client.
. Entity beans have a persistent object reference called the primary key.

. Entity beans may implement persistence in two ways: container-managed and bean-managed.

. Container-managed beans may use EJB QL, a new feature with EJB 2.0 that enables execution of queries on the
underlying database.

You can read more about entity beans in Chapter 15, “EJB Entity Beans,” and in the remaining chapters.

If you're wondering what the code for an entity bean looks like, the next section discusses a possible template for an
entity bean.

Entity Bean Template

Your implementation of an entity bean that works with the home interface template (Listing 12-2) and the remote
interface template (Listing 12-4) can resemble the template shown in Listing 12-5.

Listing 12-5: Template for defining an entity bean

import java.rm.* ;
i mport javax.ejb.* ;
import java.util.* ;

public class MBeand ass inplenments EntityBean {

[** Bean properties Follow **/
public Typel beanPropl ;
public Type2 beanProp2 ;

public Typen beanpropn ;
public Typei beanPropi ;
public Typej beanPropj ;

(9]

public Typez beanpropz ;

public void ejbCreate (Typel varTypel,
Type2 var Type2,

Typen var Typen) {
beanPropl = varTypel ;

beanProp2 = varType2 ;

beanPr opn

/**

Initialize other properties

**/

initializePropsi Throughz() ;

var Typen ;

public void ejbAnotherCreate (Typei varTypei,
Typej varTypej,

Typez var Typez) {

beanPropi = varTypei ;
beanPropj = varTypej ;
beanPropz = varTypez ;
/**

Initialize other properties

**/

initializePropslThroughn() ;

publ i c MyBeanCl assKey ej bFi ndByPri maryKey(myBeanC assKey aKey) {
/** Code to access a relational store with JDBC,
per haps...

**/

return nyBeanC assObj ect ;

public Collection ejbFindByDi ffTypes
(DffTypel varDiffType,
D ffType2 varDiffType2) {
/** Code to access a relational store with JDBC...
**/
return nyBeanC assObj ect ;

}

public Typel get TypelProperty()
t hrows Renpt eException {
return beanPropl ;

}

public void setTypelProperty(Typel varTypel)
t hrows Renpt eException {

beanPropl = varTypel ;
}
11
/I O her accessor nethods would follow
11
publ i c bool ean processWasSuccessful (Typel var Typel,

Typen var Typen)
t hrows Renpt eException {
/[** Sonme code to do this process **/
return successful

public void doAProcess (Typea var Typea,

Typez var Typez)
t hrows Renot eException {
/** Sonme code to do this process **/
}
I
/1 & her business nethods would foll ow
I
public void ejbPostCreate (Typel var Typel,
Type2 var Type2,

Typen var Typen)
t hr ows Renot eException {
[** Take action if the business |ogic dictates

activity after the bean is created
**/

public void ej bPost Anot herCreate (Typei varTypei,
Typej varTypej,

Typez var Typez)
t hrows Renpt eException {
[** Take action if the business |ogic dictates
activity after the bean is created
**/

}
/] State managenent nethods follow No inplenentations
/I provided for this exanple
public void setEntityContext(EntityContext eCTX)
t hrows Renpt eException {
11

public void unsetEntityContext ()
t hrows Renpt eException {
11

public void ejbActivate ()
t hrows Renpt eException {
11

public void ejbPassivate ()
t hrows Renpt eException {
11

public void ejbStore ()
t hrows Renpt eException {
11

public void ejblLoad ()
t hrows Renpt eException {
11

public void ejbRenove ()
t hrows Renpt eException {
11

About the preceding code listing a few points are worthy of mention:

. All methods defined in the home interface are referenced in the bean class. However, the methods in the bean
class have the prefix ej b. Hence, in the hone method, the method cr eat e is known as ej bCr eat e in the bean

class. Notice that the prefacing of the honme method name with ej b also holds for f i nder methods, too.

. Speaking of f i nder methods, notice that the method f i ndByPr i mar yKey coded in the home interface template
returns an object of the bean class, whereas the method ej bFi ndByPr i mar yKey returns an object of the bean’s
class primary key. A moment’s reflection reveals the wisdom of this construct: The bean class method, invoked
remotely through the home interface, should return a reference to the object. Because a primary key uniquely
knows the entity bean, returning the primary key is the logical choice. However, remember that your client writes
code to invoke the method on the home interface, not the bean interface. Part of the magic of EJB is the remote
invocation of the bean method on the server when the client invokes the corresponding method from the home (or
remote) interface.

. You can code f i nder methods for those entity beans with bean-managed persistence. Beans with container-
managed persistence implement f i nder methods for you.

. Methods described in the remote interface have the same name as the corresponding methods in the bean
interface. Do not prefix remote interface methods with ej b.

. Entity beans require that you code an ej bPost Cr eat e method for every cr eat e method described in your home
interface. Notice the presence of two ej bPost cr eat e methods: ej bPost Cr eat e and
ej bPost Anot her Cr eat e. The ej bPost methods execute after the cr eat e methods.

. The last seven methods are the entity bean’s state management callback methods, which are explained in detail in
the next chapter. Here, you can say that these methods notify the entity bean when a bean is created, loaded from
permanent storage, or destroyed. Because j avax. ebj . Enti t yBean is an interface, you must supply a method
body for these required state management methods, but you need not do anything meaningful. Many developers
use adapter classes to provide empty method bodies in those rare cases in which beans are not already extending
a superclass. You can read about the state management callback methods in Chapters 13, 14, and 15.

Let's put aside our discussion on entity beans for a moment and take a look at session beans.

Using Session Beans

A session bean is created by a client and, as a rule, exists only for the duration of a single session. A session bean
performs tasks or processes on behalf of (usually) a single client, such as database access, number crunching, or
some other relevant business process.

Although session beans can be transactional, they are not recoverable following a system crash. They can be
stateless or they can maintain conversational state across methods and transactions. The container manages the
conversational state of a session bean if it needs to be removed from memory. A session bean must manage its own
persistent data.

Two types of session beans exist: stateless and stateful session beans.

Stateless session beans have no conversational state. In other words, stateless session beans are ignorant of the
results of any prior method invocation. This ignorance may be put to good use. As a consequence, stateless session
beans can be pooled to service multiple clients.

Stateful session beans possess conversational states. In other words, the activities (method invocations) taking place
within a session bean are affected by prior method invocations.

Only one EJB client can exist per stateful session bean. However, stateful session beans can be saved and restored
across client sessions. You use the getHandle method to return a bean object’s instance handle, which can be used to

save the bean’s state. Later, you may use the getEJBObject method to restore a bean from persistent storage.

Session beans do not have a primary key. However, you may assign your own identifier, such as a host name/port
number pair of a remote connection, or even just a random number that the client may use to uniquely identify a given
bean.

The characteristics of a session bean can be summarized as follows:

. Session beans model tasks or processes.
. Session beans are used by a single client.
. Session beans may be transaction-aware and can update data in an underlying database.

. Session beans are relatively short-lived. The lifetime of stateless session beans is limited to that of their client.
However, stateful session beans may be saved and later restored across sessions.

. Session beans may be destroyed when the EJB server crashes. The client has to establish a connection with a
new session bean object to resume its work.

What does the code for a session bean look like? The next section discusses a possible template for a session bean.

Session Bean Template

A sample session bean resembles the sample template entity bean in Listing 12-5. Listing 12-6 shows such a sample.

Listing 12-6: Template for defining a session bean

import java.rm.* ;
i mport javax.ejb.* ;
import java.util.* ;

public class MBeand ass inplenments SessionBean {

[** Bean properties Follow **/
public Typel beanPropl ;
public Type2 beanProp2 ;

public Typen beanpropn ;
public Typei beanPropi ;
public Typej beanPropj ;

(9]

public Typez beanpropz ;

public void ejbCreate (Typel varTypel,
Type2 var Type2,

Typen \./.z.irTypen) {

beanPropl = varTypel ;
beanProp2 = varTypeZ2 ;
beanPropn = var Typen ;
/**

Initialize other properties
**/

initializePropsi Throughz() ;
}

public void ejbAnotherCreate (Typei varTypei,

Typej varTypej,

Typez varTypez) {

beanPropi = varTypei ;
beanPropj = varTypej ;
beanPropz = varTypez ;
/**

Initialize other properties

**/

initializePropslThroughn() ;

}

public Typel get TypelProperty()
t hrows Renpt eException {
return beanPropl ;

}

public void setTypelProperty(Typel varTypel)
t hrows Renot eException {

beanPropl = varTypel ;
}
/1
/1 & her accessor nethods would foll ow
/1
publ i c bool ean processWasSuccessful (Typel var Typel,

Typen var Typen)
t hrows Renot eException {
/** Sonme code to do this process **/
return successful ;

}
public void doAProcess (Typea var Typea,

Typez varTypez)
t hrows Renpt eException {
/** Sonme code to do this process **/
}
/1
/] & her business nethods would follow
/1
/] State managenent nethods follow No inplenentations
[l provided for this exanple
public void set Sessi onCont ext(SessionContext sCIX) {
/1
}
public void ejbActivate ()
t hrows Renpt eException {
/1
}
public void ejbPassivate ()
t hrows Renpt eException {
/1
}
public void ejbRenove ()
t hrows Renpt eException {
/1

In this section, the naming rules, which describe the entity bean template, apply to session beans as well. The names
of the session bean methods that correspond to the method descriptions in the home interface must be prefixed with
ej b. Also, the names of the session bean methods corresponding to the remote method interface descriptions must

match exactly.

Because session beans do not represent persistent data, you won’t need the state management routines ej bSt or e
and ej bLoad. You may set a session context with set Sessi onCont ext , but you need not remove the context.

It is unlikely that a session bean and an entity bean will use the same business methods or the same properties. The
templates shown in Listings 12-5 and 12-6 are meant to illustrate the overall structure of an entity bean and a session
bean, including showing you how to name your methods to correspond to those in the home and remote interfaces, as
well as showing you which state management methods to include. The next two chapters will show concrete examples
of both session and entity beans.

Comparing Entity Beans and Session Beans

Of course, the most dramatic difference between session and entity beans is that session beans manage information
relating to a conversation between the client and the server, whereas entity beans represent and manipulate
persistent application domain data. One way to conceptualize this is that entity beans replace the various sorts of
queries used in a traditional two- or three-tier system, and session beans do everything else. Methods dealing with
processing (tasks) found in entity beans have more to do with logic required in assigning persistent fields values than
application workflow.

Session beans are supposed to be private resources, used only by the client that creates them. For this reason, a
session bean hides its identity and is anonymous, in sharp contrast to an entity bean that exposes its identity through
its primary key.

Table 12-1 summarizes some of the major differences between a session bean and an entity bean.

Table 12-1: Entity Beans and Session Beans Compared and Contrasted

Entity Bean Session Bean

The data members of the entity bean represent The data members of the session bean contain
actual data in the database. conversational state information.

Entity beans may be used for database access by A session bean may perform database access for a
many clients. single client.

There is a one-to-one relationship between entity There is a one-to-one relationship between session
beans and a row in a relational table. beans and the bean’s client.

An entity bean is persistent; it lives as long as its A session bean lives as long as the client session.
underlying data is stored in a database.

Entity beans survive system crashes. Session beans do not survive system crashes.
Entity beans may not store client state information. Stateful session beans store client state information.

In the next section is a discussion of some considerations you may ponder when using session beans and entity
beans.

Using Session and Entity Beans

You may include methods to perform tasks in both entity beans and session beans. A natural question is what
processes should be coded in each bean type.

Use entity beans for a persistent object model (to act as a JDBC wrapper, for instance). By doing so, you provide the
rest of your application an object-oriented interface to your data model. Use session beans for application logic.
Enable code in your entity beans to interact directly with the underlying database and enable code in your session
beans to interact with the object-oriented layer presented by the entity beans.

Use session beans as the only interface to the client, providing a high-level interface to the underlying model. You
should use entity beans to enforce the accuracy and integrity of your data in addition to an object representation of
your data. The client invokes methods in your session beans, which runs processes that operate on the databases.
This split reduces the pain of introducing new and changed processes because such changes are localized to the
session beans.

Insist on reuse of entity beans. Although they may initially be hard to develop, over time they prove a valuable asset
for your company. In contrast, expect little reuse of session beans. Often, session beans that model a set of
processes are unique to a specific application domain. Of course, some thoughtful planning during design may result
in increased reusability.

To summarize:

. Use session beans for application logic.

. Use session beans as the only interface to the client.

. Expect little reuse of session beans.

. Use session beans to control the workflow of a group of entity beans.
. Use entity beans to wrap all your JDBC code.

. Use entity beans to enforce accuracy and integrity of your database.

. Insist on reuse of entity beans.

The Primary Key Class
Every enterprise bean has a unique identifier. For entity beans, this unique identifier forms the identity of the
information. For example, a pr oduct | Dnunber might uniquely identify a product object in an inventory system. This

is analogous to the concept of a primary key in a relational database system.

The primary key class is an abstraction that enables you to model entity beans as database entities. The primary key
is a reference that you use to locate an entity bean that corresponds to a unique database entity. The only
requirement is that objects of the primary key class be serializable.

Because session beans are not persistent, they do not use a primary key.

New with EJB 2.0: Message-Driven Beans

A message-driven bean is an asynchronous message consumer. The EJB container invokes methods in the message-
driven bean. Message-driven beans do not have a home or a remote interface.

To a client, a message-driven bean is a Java Messaging Service (JMS) message consumer that implements some

business logic running on the server. Message-driven beans are not visible to the client and have no identity. A client
accesses a message-driven bean through JMS by sending messages to the JMS destination (Queue or Topic) for
which the message-driven bean class is the MessagelLi st ener .

Message-driven bean instances have no conversational state. This means that all bean instances are equivalent when
they are not involved in servicing a client message. However, the instance variables of the message-driven bean
instance can contain state across the handling of client messages. Examples of such state include an open database
connection and an object reference to an EJB object.

The EJB container is responsible for the life-cycle of a message-driven bean instance; your client may have no
knowledge of, or be capable of, controlling the birth and death of a message bean instance.

The topic of message-driven beans, along with other new features of EJB 2.0, is discussed in greater detail in Chapter
19, “The Proposed EJB 2.0 Specification.”

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining the EJB Interfaces

When you access an enterprise bean’s properties or invoke its methods, you should not know where the bean lives, or
what server or JVM the bean resides on. Of course, you need a mechanism to access the bean, regardless of where
the bean lives, without knowing the bean’s location. The mechanism requires the EJB developer to implement two
interfaces and two classes. The interfaces define how a client interacts with the bean, or they define the client’s view
of the bean.

The client EJB object and the server EJB component implement the same interface. Hence, the client object and the
server component look the same, even though they are separate classes. Think of using your garage door opener:
you click a button on your (client-side) locally held remote control; the clicking activates a device in a remote (server)
location, your garage, which opens your garage door. The button (client interface) on your remote looks the same as
the button (server interface) on your garage wall; both buttons perform the same function.

Note Java practitioners of RMI can see much in common with the concept of a client and server implementing the
same interface. However, with RMI, you implement only one interface; with EJB, you must implement two.

The two interfaces you must implement to create an enterprise bean are called the home interface and the remote
interface. Let’'s examine the home interface first.

Understanding the Home Interface

Each EJB component class has what is called a home interface, which defines the methods for creating, initializing,
destroying, and finding EJB instances on the server. When an EJB client needs to use the services of an enterprise
bean, the client creates the bean by invoking one of several cr eat e methods defined in its home interface. You may

code several cr eat e methods that create objects in different states. When you no longer need a particular bean, you
may invoke a r enrove method, also defined in its home interface.

Take a look at the methods that require implementation from the home interface below.

Home Interface Methods

The requirements for the home interface are not many. For starters, the home interface extends the interface
j avax. ej b. EJBHon®e, which extends j ava. r mi . Renot e. The EJBHon® interface defines a minimal set of

requirements, meaning your beans extend j avax. ej b. EJBHone and implement more methods than required by this
interface. For example, you are likely to define one or more cr eat e methods to create instances of your enterprise
bean, or f i nd methods to locate bean instances.

Listing 12-1 below shows the interface j avax. ej b. EJBHone.

Listing 12-1: The javax.ejb.EJBHome interface

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=998161076

public interface javax.ejb. EJBHone extends java.rm .Renote {

publ i c EJBMet aDat a get EJBMet aDat a()
throws java.rnm . Renot eException ;

public void renove (Handl e handl e)
throws java.rm . Renot eExcepti on,
j avax. ej b. RenoveExcepti on ;

public void renmove(Object prinmaryKey)
throws java.rm . Renot eException,
j avax. ej b. RenoveException ;

public javax.ejb. HoneHandl e get HomeHandl e()
throws java.rnm . Renot eException ;

The method get EJBMet aDat a returns an object of some class that implements the EJBMet aDat a interface. Objects
of this class contain information associated with the bean’s classes. For example, an EJBMet aDat a object enables a

client to get the Java classes that create objects by using the home interface and the remote interface. EJB
application developers may never invoke get EJBMet aDat a; the method is used primarily by tool and EJB container

developers.

The r enove methods remove an EJB object identified by the method argument. The r enove(Handl e) method
requires an object from a class that implements the Handl e interface. Objects of this class provide a reference to a
networked EJB object. The renove(hj ect) method, used for entity beans only, requires an object that
represents a bean’s primary key. Calling this flavor of the r enmbve method on a bean type other than entity bean
results in Renot eExcept i on being thrown. Later, you can read about primary keys and entity beans.

As you might have guessed, the j avax. ej b. RemoveExcept i on is thrown when the container or the object does
not permit the object’s removal.

The method get HoneHandl e returns an object of a class that implements the HoneHandl e interface. An object of

this class is a handle, or reference, to the home object. The short story is that the home object is an object of a class
that implements the home interface.

Note Before you become overwhelmed with the preceding discussion on interfaces and classes, keep in mind that
you do not create most of the previously mentioned classes. The EJB container creates most of these
classes implementing these interfaces for you. You remember the EJB container — that nebulous entity that
provides essential system services to your enterprise beans — don’t you? Well, creating all these support
classes is part of the services that the EJB container provides.

Methods defined in the home interface must follow the standard rules for RMI-IIOP remote interfaces. One rule is that
any method that may be invoked across a network must throw j ava. r m . Renpt eExcept i on. Notice that all the
methods described in Listing 12-1 throw this exception. You include at hrows java.rm . Renot eExcepti on

clause in each method header in your home interface. You are free to, and probably will, include other exceptions in
your t hr ows clause. Another rule is that arguments passed to remotely invoked methods and returned types must be

serializable. This makes sense, because such arguments and returned values are passed over a network, and Java
RMI-IIOP uses object serialization to pass such data.

Note Because EJB relies on dynamic class loading across the network, enterprise beans must follow certain
security precautions. The issue of EJB security is covered in Chapter 16, “EJB Security.”

You've read that the home interface is used to invoke life-cycle methods on your enterprise beans. The next section
provides a template for a possible home interface implementation.

Home Interface Template

Your implementation of the home interface can resemble the template shown in Listing 12-2.

Listing 12-2: Template for defining a home interface

inmport java.rm.* ;
i mport javax.ejb.* ;

public interface MyHone extends EJBHone {

public MyBeanC ass create(Typel var Typel,
Type2 var Type2,

Typen var Typen)
t hrows CreateException, RenoteException ;

public MyBeanCl ass anot her Create(Typei varTypei,
Typej varTypej,

Typez var Typez)
t hrows CreateException, RenoteException ;

public MyBeand ass findByPrimaryKey(mnyBeanC assKey aKey)
t hrows Fi nder Excepti on, RenoteException ;

public Collection findByDiffTypes(D ffTypel varDiffType,
Di ff Type2 varDiffType2)
t hrows Fi nder Excepti on, RenoteException ;

Listing 12-2 shows a couple of cr eat e methods and a couple of f i nder methods. As previously mentioned, you may
code multiple cr eat e methods to create enterprise beans having a certain initial state. If you may need to access
your beans by primary, secondary, and non-key fields, you may code multiple f i nder methods, as Listing 12-2
shows.

Cr eat eExcepti on and Fi nder Except i on are part of the EJB API. For now, keep in mind that every cr eat e
method you implement requires that you code at hr ows Cr eat eExcepti on, and that every fi nder method you
implement requires that you code at hr ows Fi nder Excepti on.

The template in Listing 12-2 defines two cr eat e methods taking different parameters. All cr eat e method names
must start with the word cr eat e.

The fi ndByPr i mar yKey method returns the unique instance of the bean accessed by the primary key argument.
However, notice the returned type of method fi ndByDi ff Types: Col | ecti on. The idea is that when searching on
nonprimary key values, you may return 0 to many objects.

You implement the home interface by creating an object called, not surprisingly, the home object. An instance of the
home object is created on a remote server and is made available to the clients for creating the enterprise bean. Let's
take a look at the home object next.

The Home Object

The home object is an instance of a class that implements an interface that extends the j avax. ej b. EJBHone
interface. You use the home object to invoke methods that create enterprise beans on a remote server.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=344022946#wbpch12fP57

The home object has the needed cr eat e, fi nd, and r enrove methods. These life-cycle methods invoke a
corresponding ej bCr eat e, e] bFi nd, and ej bRenove method of the same signature in the actual enterprise bean
from the bean class being created.

When a client wants to create an enterprise bean, it uses the Java Naming and Directory Interface (JNDI) to locate the
home interface for the class of bean it wants. JNDI provides a service to any Java environment that enables Java
programs to locate, use, and find information about resources by name. As of EJB 1.1, you must use JNDI to look up
just about everything in your Java environment pertinent to EJBs. In the next chapter, you can see coding examples of

using JNDI from a client to locate a home interface.

Once you have access to the home object, you can invoke methods that request the EJB container to create objects
of your bean class to do work for the client. Barring any thrown exceptions, the server responds by creating an
instance of the bean class remotely and returning a reference to an object. This object is an instance of a class that
implements the same interface as the one implemented by the EJB component. That interface is called the remote
interface, which you can read about in the following.

Understanding the Remote Interface

The remote interface makes the enterprise bean’s business methods accessible to client objects. Methods defined in
the remote interface do the work of the bean. The object of the class that implements the remote interface is called the
EJB object. Once your client has a reference to an EJB object, your object can invoke that object's methods, which
are implementations of the EJB component class's remote interface.

A short description of the methods required to implement the remote interface follows.

Remote Interface Methods

As with the home interface, the requirements for remote interface methods are few. Methods of a class that implement
the remote interface typically extend j avax. ej b. EJBObj ect , which extends j ava. r m . Renot e. Hence, remote
interface methods must conform to the rules for RMI-IIOP methods described for the home interface methods in the
previous section.

Listing 12-3 provides the code for the j avax. ej b. EJBObj ect interface.

Listing 12-3: The javax.ejb.EJBObject interface

public interface javax.ejb. EJBObject extends java.rm.Renote {

public javax.ejb. EJBHone get EJBHone()
throws java.rm . Renot eException ;

public java.lang. Object getPrimaryKey()
throws java.rm . Renot eExcepti on;

public void renmove()
throws java.rm . Renot eException,
j avax. ej b. RenoveException ;

public javax.ejb. Handl e get Handl e()
throws java.rm . Renot eException ;

publ i c boolean isldentical (javax.ejb. EJBObject)
throws java.rm . Renpt eException ;

The method get EJBHone returns a reference to the home object for an enterprise bean.

The get Pri mar yKey method returns a primary key for a bean. As you've read previously, primary keys are used only
with entity beans.

Use the r emove method to destroy the bean, thereby making available any resources previously held by this object.
The get Handl e method returns a reference to this bean. You use get Handl e as you would use the home interface
method get HomeHandl e — to get a reference to an EJB object that you can save and later use to reference the

object.

The i sl denti cal method tests whether two enterprise beans are identical. As with any Java objects, you do not use
the Java operator = = unless you are testing to see if two variables point to the same object handle in memory.

Recall that the remote interface exposes business logic methods to the client. What would a possible implementation
of the remote interface look like? The next section shows a likely template.

Remote Interface Template

Your implementation of the home interface can resemble the template shown in Listing 12-4.

Listing 12-4: Template for defining a remote interface

import java.rm.* ;
i mport javax.ejb.* ;

public interface MyRenote extends EJBOhject

public Typel get TypelProperty()
t hr ows Renot eException ;

public void setTypelProperty(Typel varTypel)
t hrows Renot eException ;

/I &t her accessor nmethods for other properties would follow

publi ¢ bool ean processWasSuccessful (Typel varTypel,

Typen var Typen)
throws java.rnm . Renot eException ;

public void doAProcess (Typea var Typea,

Typez var Typez)
throws java.rm . Renot eException ;
/I Ot her business nmethod definitions would foll ow

No surprises here, right? The remote interface defines business methods, which include accessor methods for
various bean properties as well as garden variety processing methods.

Now, let's talk some more about the previously mentioned EJB object.

The EJB Object

The EJB object is a server-side distributed object that implements the remote interface. Once your client has access
to the EJB object, the client invokes its exposed methods. The methods get invoked remotely via RMI-IIOP and are

executed on the server. Then the client uses the EJB object as if it were a local object with the remote object doing all
of the work.

You may be wondering how the EJB object and the home object are created, and how the server knows what
methods to invoke when a client invokes a method implemented from a bean’s remote and home interfaces. The
following section addresses these, and other, questions.

About the Home and EJB Object

You may have figured out that you do not write code that implements the methods in the EJB and home objects. The
EJB container generates the code that implements these methods. The container provider includes tools that
automatically generate the required code.

Actually, you may never see the EJB and home objects, nor should you. The EJB specification describes the end-
product of the code generated by the container, not the process or details. All you need to do is invoke the methods
guaranteed by the interfaces to remotely invoke methods in your beans.

How does a client program create objects on a server? Operations involving the life cycle of server-side beans are the
responsibility of the EJB container. The client program actually contacts the container and requests that a particular
type of object be created, and the container responds with an EJB object that can be used to manipulate the new EJB
component.

How does the container know what method of the enterprise bean to invoke when a client invokes a method from the
home or remote interface? Before this question can be answered, a discussion about the creation of the bean class is
in order.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

EIE & ISP
Java On The Edge

| Your Guide to Cutting-Edge J2EE Programming
i .| Techniques.

Using the Enterprise Bean

An enterprise bean is a server-side software component that lives somewhere in a distributed environment. The
component is the implementation of a Java class coded to follow the convention laid out by the EJB specification. The
specification describes how to code the enterprise bean such that a client, or bean user, may use the bean to create
EJB components on a remote server (or different JVM) and manipulate these components as if they were local
objects. In the EJB distributed environment we have simplified writing clients, or applications, that access remote
objects, thereby achieving the valued property of location transparency. While the developer writes client code that
simply creates, uses, and destroys objects, these objects have counterparts executing on a server that do the actual
work.

You must draw a distinction between an EJB object and an EJB component. The EJB object is a client-side object that
accesses properties and invokes methods on an EJB server-side component.

Enterprise bean clients can be just about anything; applets, servlets, and other enterprise beans are possible, and
likely, candidates. Using other enterprise beans as clients makes possible a “divide-and-conquer” approach to
problem solving. The developer can divide the problem into bite-sized tasks, in which each task is implemented as a
separate bean.

Describing the components of an EJB is difficult because these components refer to each other. In other words, it's
hard to describe an EJB component without some knowledge of other EJB components. To alleviate potential
confusion that may arise when describing the EJB components, a short description of these components follows.

EJB Components: The Short Story

To create and use an enterprise bean, you need to implement two interfaces and create two classes. The two
interfaces are called the home interface and the remote interface. The two classes are called the bean class and the
primary key class.

The class implementing the home interface provides methods that govern the enterprise bean’s life-cycle. Here is
where you invoke methods that find, create, and remove enterprise beans.

The class implementing the remote interface provides methods that describe the bean’s business methods, which are
the methods that do the work of the bean.

The bean class contains methods that do the work of the bean. Beans of the bean class come in three flavors: entity
beans represent persistent data, session beans represent processes, and message-driven beans represent
asynchronous messaging with Java Messaging Services (JMS). In this chapter, the word bean without qualification
refers to an instance of the bean class.

The primary key class is used to get references to entity beans. Imagine that you have created multiple instances of
entity beans corresponding to rows in a relational database. The primary key would be used to access a particular
bean instance.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=547205858

As you read about each of the interfaces and classes discussed in the preceding, you learn how they interrelate to
create bean instances and perform work.

Top <3

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The “Make Money” Brokerage Application Revisited

This chapter starts with a brief discussion of how you can use a JSP page as a client to an enterprise bean. You'll take
a look at the JSP page that contains the custom tag to locate an EJB home object as well as enterprise bean business
method references in JSP scriptlets and expressions. You'll also see that the JSP page shown in this chapter is
strikingly similar to the JSP page shown in Listing 10-8 in Chapter 10.

The JSP pages that handle the logon and checks for a valid user/password combination is the same as the JSP
pages in Chapter 10. For our purposes here, you will concentrate on the user option to display the client’s transaction

history, where you will see one approach in using beans together with JSPs to implement the transaction history
function. Next, you'll see the code that constitutes the custom tag used in the JSP page. You'll also see the code for
the tag library descriptor used to describe the tag.

The code for the enterprise bean comes next. Here's where the code that implements the business methods resides.
The business methods use very similar code to the methods of the Acct Hi st or y bean shown in Listing 10-9 in

Chapter 10. Included is a deployment descriptor that describes the properties of the enterprise bean to the EJB
container.

You may want to quickly glance at Chapter 10, “The ‘Make Money’ Brokerage Application,” if you need a quick
refresher on the application’s functionality.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=923261810

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JSP Pages as EJB Clients

For a JSP page to be an EJB client, the page has to perform the tasks described in Chapter 18, “Creating EJB
Clients.” These tasks are:

. Locate the EJB home object in order to obtain a reference to the EJB object.
. Direct the EJB container (by invoking methods on the EJB object) to create or remove enterprise beans.
. Direct the EJB container (by invoking methods on the EJB object) to invoke enterprise bean business methods.

We can create JSP pages to communicate with enterprise beans in two ways, by implementing either a JavaBean or a
custom JSP tag. Either way entails writing a Java class and coding methods that perform the EJB client tasks.

Coding a JavaBean results in the JSP pages using the bean containing <j sp: usebean tags and references to the

bean methods in the JSP pages in JSP scriptlets or expressions. Coding a custom tag means that the JSP pages will
contain references to the bean methods as JSP tags and, possibly, as code in JSP scriptlets or expressions.

The end result is the same whether you use JavaBeans or custom tags. However, as mentioned in Chapter 7, “JSP

Tag Extensions,” using custom tags gives your JSP pages more of a natural look than using JavaBeans. The natural
look comes from having the page's functionality encapsulated in code invoked by tags as opposed to having the
page's functionality encapsulated in bean method invocations.

The example JSP page shown in this chapter uses a custom tag to locate the EJB home object.

Top <3

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=151219388

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding the JSP Page That Implements an EJB Client

The JSP page shown in Listing 20-1 is pretty close to the page used in Chapter 10. The major difference is that the
page shown in this chapter is a client to an enterprise bean.

The page uses a custom tag to locate an EJB object. Once the JSP page locates the EJB object through the horre
interface and creates a reference to a session bean, the JSP page invokes the bean's business methods through the
EJB object.

Listing 20-1 lists the JSP page that acts as an EJB client. The page contains a custom tag. However, custom tag
usage is not a requirement for creating JSP pages that are clients to enterprise beans. The code in the page dealing

with the custom tag is shown in italics.

Listing 20-1: JSP Page containing a custom tag to locate an EJB object

<%@ page content Type="text/htm"
i mport ="chapt er20. *"
error Page="error pageexl.jsp" %

<% - The taglib directive identifies the tag descriptor library --%
<% - and nanes a prefix used to denote the tags described in --%
<% - the tag decscriptor library that are used in the page. --%

<v@taglib uri="ch20taglib.tld" prefix="ch20" %
<% - Display the account activity for this custoner --%

<%
Cust oner Bean cust oner = (CustonerBean) session.getAttribute("custoner") ;
String cust oner Nane cust oner . get Cust oner Nane() ;
String acct Num cust oner . get Acct Nunber () ;

%

<htm >

<title>Transaction History for <%custonerNane % <% acctNum % </title>

<body bgcol or ="#dddddd" >

<center>

<% - Put in their pictures for the page top --%
<j sp:include page="imagetable. htm " flush="true" />
<% - Here's the tag that |ooks up the EIJB --%

<ch20: | ookupbean
hone(bj ect =" ch20Home"
JNDI | ocati on="j ava: conp/ env/ Acct Hi st ory"
hone(Obj ect Cl ass="Acct Hi st or yHorre"

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=273404816

renot eCbj ect Gl ass="Acct H story"
r enot eCbj ect Name="anAcct Hi story" />

<% - Let's create an instance of the EJB using the honme object --%
<%

anAcct Hi story = ch20Hone. create(acctNum) ;
%

<% - The rest of the JSP is the same as the page in Chapter 10 --%
<%
if (anAcctHi story. getHi storyThi sAccount(acctNum)) {

%

<p><% custonerNane %, here is a list of your transactions

<hr w dt h="50% >

<f orm name="hi storyform' acti on="showcustoptions.jsp" nethod="POST">

<t abl e>

<%
whil e (anAcct Hi story. get Next H st Record()) {
%
<tr><td>
On <% anAcct Hi story. get Colum("transacti ondate") %, you traded
<% anAcct Hi st ory. get Col um(" nunber shares") % shares of
<% anAcct Hi story. get Col uim("security") % on a
<% anAcct Hi story. get Col uim("transacti ontype") % order.
</td>
</tr>
<tr bgcol or="red" ><t d> </td> </tr>

<%

}
%
<tr>
<t d><p>
<i nput type="submt"
nane="Return" value="Return to Custoner Options">
</td>

</[tr>

</tabl e>

</fornme

<hr wi dt h="50% >
</center>

</ body>
</htm >

Recall from Chapter 7 that JSPs require a t agl i b directive when using custom tags. The following lineisthetagl i b
directive used in the JSP shown in Listing 20-1.

<v@taglib uri="ch20taglib.tld" prefix="ch20" %

The t agl i b directive provides a reference to the tag library descriptor file, ch20t agl i b. t | d, and a prefix used to

reference the library throughout the page, ch20. Every custom tag described by the tag library descriptor file used in
this page must be prefixed with the value of the pr ef i x attribute, or ch20.

Here, we're using a custom tag to locate an EJB object that the EJB container will associate with an instance of your
bean. The tag contains information, encoded in attributes, that enable the tag library code to locate a suitable EJB
object. The tag listed here is the tag used in Listing 20-1.

<ch20: | ookupbean
hone(bj ect =" ch20Home"
JNDI | ocati on="j ava: conp/ env/ Acct Hi st ory"
hone(bj ect C ass="Acct Hi st or yHorre"
renot eCbj ect A ass="Acct Hi story"
r enot eCbj ect Name="anAcct Hi story" />

Recall that the first task of an EJB client is to locate the home object, which the client uses to obtain a reference to the
EJB object. The hone(bj ect attribute provides a reference that the JSP page uses later to create references to

enterprise beans — in our case, just a single session bean.

The JNDI Locat i on attribute provides the location of the bean class as the default naming context. Once we have the
naming context, we can get a reference to the home object by invoking the | ookup method of class
j avax. Nam ng. Cont ext .

The | ookup method returns the reference to the home object as an object of class Obj ect . We need the name of the
hone interface to cast the home object reference to a usable form. Therefore, we include an attribute in our custom
tag, named homehj ect d ass, that provides the hone interface name.

An EJB client uses the methods in the horne interface to create EJB objects. The EJB object is an object of the

r enot e interface. The r enot e interface contains descriptions of the enterprise bean's business methods. Therefore,
for a client to invoke bean business methods defined in the r enpt e interface, the client needs to know the name of
the r enot e interface. Hence, we provide the r enot e interface as an attribute value aptly named

r enot eCbj ect A ass in our custom tag. While we're at it, we need a name for our EJB object, which we'll supply as
a value of the attribute r enot eObj ect Nane. The tag library code requires these parameters to locate and narrow the
EJB object to the correct class.

With an appropriate EJB object reference handy, the JSP creates a reference to the bean by using the home object’s
cr eat e method, as shown in the following line of code:

anAcct Hi story = ch20Hone. create(acctNum) ;
Use the account number from the customer object as a unique client identifier.

Once we create the EJB object, we're ready to request the EJB container execute business methods. These methods
will access the transaction history database and return data to the JSP page. The page will format and display the
returned data just like the page shown in Listing 10-8 of Chapter 10.

Now let's take a look at the code that implements the custom tag.

The Tag Library Code

The tag library code implements the EJB client methods that locate and narrow a home object. To create our custom
tag, we'll need to implement a class that provides the tag's functionality, or the tag class. We'll also need a tag library
descriptor file (t | d) that describes the tag class and allows you to use the custom tags in your JSP pages.

The Tag Class

The tag class is a class that extends the convenience class TagSuppor t . Recall from Chapter 7 that class
TagSupport is an implementation of the tag interface for custom tags that do not contain a tag body. The name of
the tag class is not terribly important. What is important is that elements in the t | d associate the name of the tag
class with the name of the custom tag. Listing 20-2 shows the code for the tag class.

Listing 20-2: Code for the tag class

package chapter20 ;

i mport javax.ejb.*;

i mport j avax.nam ng. *;

i mport javax.rm.¥*;

i mport j avax.servlet.jsp.*;

i mport j avax.servlet.sp.tagext.*;

public class LookupCh20Bean extends TagSupport
{

private String JNDI | ocation;
private String honme(hjectd ass;
private String renotelhjectd ass;
private String renoteChject Nang;

/1 Set the class of the hone interface.

public void setType(String type)

{
this. home(hj ect d ass = type;

}

//Set the JNDI |ocation of the hone.

public void setLocation(String |ocation)

{

this.JNDI | ocation = | ocation;

}

//Set the class of the renote interface.

public void setRenpteType(String renoteType)
{

this.renoteChj ectCl ass = renoteType;

}

// Set the nane of the renote interface vari abl e.

public void set RenbteNane(String renoteNane)

{ thi s. renot eCbj ect Nane = renot eNaneg;
}
public int doStartTag() throws JspException
{
try
{

Initial Context context = new Initial Context();

/1l Get the honme interface class using the
/1 proper (the page's) C asslLoader.
Cl ass honmed ass =
Cl ass. forNanme(this. homeQbj ect d ass, true,
pageCont ext . get Page() . get d ass(). get C assLoader());

/1 Lookup the hone object
bj ect honeObj ect = context.| ookup(this.JNDIIocation);

/1 Narrow the hone object

EJBHonme home =

(EJBHone) j avax. rmi . Port abl eRenot eChj ect . narr owm homrebj ect,
honed ass) ;

/1 Put the hone object into the PageContext
pageCont ext.setAttribute(this.getld(), hone);

}
cat ch(Nam ngException e)
{
t hrow new JspException("Error |ooking up home at " +
this.JNDI I ocation);
}
cat ch(d assNot FoundExcepti on e)
{
t hrow new JspException("Honme class not found: " +
thi s. home(oj ect d ass) ;
}
return SKI P_BODY;

The tag library code is straightforward. The class contains methods to set the values of the tag attributes to object
properties and to invoke the | ookup and nar r ow methods. Notice how the code wraps up the exceptions as
JSPExcepti ons.

The tag class uses the pageCont ext variable to hold a reference to the home object. The JSP page needs the
reference to the home object to create an EJB object by invoking the home object's cr eat e method.

The tag class contains code to locate a home object. There's no code in our tag to access the session bean (or
access the EJB object that, in turn, requests the EJB container to execute a remote method). There's no code in our
tag to create EJB objects. The code to request bean business method execution and to create EJB objects is included
in the JSP page.

The Tag Descriptor File

The t | d describes the tag’s properties, notably, the tag’s attributes. Listing 20-3 shows the t | d for our enterprise
bean locator tag.

Listing 20-3: tld for the bean locator tag

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<! DOCTYPE taglib PUBLIC
"-//Sun M crosystens, Inc.//DTD JSP Tag Library 1.1//EN'
"web-jsptaglib_ 1 1.dtd">

<taglib>
<j spversi on>1. 1</ j spversi on>
<tlibversion>1.0</tli bversion>

<short nane>ch20l i b</ shor t name>
<ur n></ urn>

<i nf o>

Tag Library That Provides Info on Tags That Display Trade
Hi story For Custoners

</info>

<t ag>

<name>| ookupbean</ nane>

<t agcl ass>LookupCh20Bean</t agcl ass>

<teiclass></teiclass>

<bodycont ent >enpt y</ bodycont ent >

<info>This tag | ocates a hone object for a session bean</info>

<attribute>
<nane>honebj ect </ nane>
<requi red>t rue</required>
<rtexprval ue>true</rtexprval ue>
</attribute>

<attri bute>
<nane>JNDI | ocat i on</ name>
<requi red>true</required>
<rtexprval ue>true</rtexprval ue>
</attribute>

<attri bute>
<name>homebj ect C ass</ nanme>
<requi red>t rue</required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>

<attribute>
<nane>r enot e(bj ect Cl ass</ nane>
<requi red>t rue</requir ed>
<rtexprval ue>fal se</rtexprval ue>
</attribute>

<attribute>
<name>r enot e(bj ect Nane</ nanme>
<requi red>true</required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>

</tag>
</taglib>

The t | d describes the tag as an empty tag, as shown by the bodycont ent element

(<bodycont ent >enpt y</ bodycont ent >). Also, all attributes are required, as shown by the r equi r ed element, a
child element of the at t r i but e element (<r equi r ed>t r ue</ r equi r ed>). Finally, no attribute contains JSP
expressions or JSP tags as shown by the rt expr val ue element (<rt expr val ue>f al se</rt exprval ue>).

Now let’s look at the components of the enterprise bean.

The Enterprise Bean

The enterprise bean requires essentially the same methods as the JavaBean used in Chapter 10. The EJB requires

methods to determine if the client has history records and to access a transaction history record. In addition, to satisfy
the architectural requirements of an enterprise bean, the bean must provide implementations of all the methods of a
bean. Some of the required method implementations are “dummy” implementations, or a method signature with a pair
of empty braces. Nonetheless, the EJB architecture requires that you implement the laundry list of required methods,
even if you code dummy implementations.

The Home Interface
The hone interface contains a reference to the cr eat e method used by the JSP page to request that the EJB

container create a reference to the home obiject. Listing 20-4 shows the small but vitally important code that
constitutes the hone interface.

Listing 20-4: The home interface

i mport javax.ejb.*;
import java.rm.*;

public interface AcctH storyHone extends EJBHone

{
public AcctHistory create(String acctlD)

t hrows Renot eException, CreateException;

Notice that the cr eat e method requires an argument and that your bean is bound to a particular customer by the
account ID.

The Remote Interface

Recall that the r enpt e interface contains references to the business methods contained in the bean. You request that
the EJB container invoke a bean method by invoking a like-named method described in the r enpt e interface. The
reference to the EJB object, obtained through the hone object, allows your EJB client to issue requests for remote
enterprise bean method invocation. Listing 20-5 shows the code for the r enot e interface.

Listing 20-5: The remote interface

i mport javax.ejb.*;
i mport java.rm.*;

// Renote Interface

public interface AcctH story extends EJBObj ect
{
public bool ean getH storyThi sAccount(String accountl|D)
t hr ows Renot eException ;
/1 Di sconnect from database —cl ose connection, stm, resultset
public void takeDown() throws RenoteException ;
publ i c bool ean get Next Hi st Record() throws RenoteException ;
/1 Gt a colum for display in the HTM. tabl e
public String getColum(String inCol) throws RenoteException ;

Notice that the four methods described in the r enot e interface are those methods used in the JSP page to list the
customer’s transaction history.

The Enterprise Bean Code

The enterprise bean is a stateful session bean that looks very similar to the code shown in Chapter 10. Listing 20-6
shows the EJB code that retrieves the customer’s transaction history.

Listing 20-6: Session bean code that displays transaction history

i mport java.sql.* ;

i mport javax.ejb.*;

i mport javax.nam ng.* ;
i mport javax.sql.* ;

public class AcctHi storyBean inplenents SessionBean {
private ResultSet nmyResultSet ;

private SessionContext nySessi onContext;
private Connection nmyConn = nul | ;
private Statenent st = null ;

/' Use the account nunber to access the history table.
public bool ean get Hi storyThi sAccount(String accountlD)
throws Exception {
String histQuery = "select accountid, transactiondate," + ,
"transactiontype, security, nunbershares " +
"fromtransactionhi story where accountid = " ;

String query = histQuery + "'" + accountID + "'";
try {

myConn = get Connection() ;

st = myConn. createSt at ement () ;

nyResul t Set = stnt.executeQuery(query);

return nyResultSet !'= null ;

}
catch (SQLException sql Ex) {
t hr ow new EJBException(sql Ex) ;

}
}
publ i c bool ean get Next Hi st Record() throws Exception
{try {
return nyResult Set. next();
i:atch (SQ.Exception sqgl Ex) {
t hrow new EJBException(sqlEx) ; }
}
public String getColum(String inCol) throws Exception
Ery {
return nyResul t Set.getString(inCol);
%atch (SQLException sql Ex) { throw new EJBException(sql Ex) ;
}

public void takeDown() throws Exception

{

try {
if (stnt !'=null) stnt.close() ;
if (myConn != null) nyConn.close() ;
}
catch (SQLException sql Ex) {sql Ex.printStackTrace();}

}
[TUtility method from Chapter 14 that establishes a connection

private Connection get Connection() {
String jndi DBNane = "java: conp/env/jdbc/stock" ;

try {
Initial Context jndiCtx = new Initial Context() ;
Dat aSour ce stockDS =

(Dat aSour ce) jndi Ctx. | ookup(jndi DBNane);
return stockDS. get Connection() ;

}
catch (Nam ngException ne) {throw new EJBException(ne);}

catch (SQLException sql Ex) {throw new EJBException(sql Ex);}
}
/1 EJB nethods. Mdst of these methods are dummy i npl enentati ons.
/| However, the SessionBean interface requires the inplenenting
/1 class provide inplenentations of ALL the methods.

public void ejbActivate()

{
}

public void ejbPassivate()

{
}

public void ej bRemove()

{
}

public void ejbCreate() throws CreateException

{
}

public void set Sessi onCont ext (Sessi onCont ext sessi onCont ext)

{

mySessi onCont ext = sessi onCont ext ;

}

Aside from the extra code required for bean implementation and the method used to locate the database, the code
shown in Listing 20-6 is the same as that used in Chapter 10.

The method get Connect i on used to locate and establish a database connection differs from the methods used in
Chapter 10 to establish a connection. With enterprise beans, we can code database location information in the bean's
deployment descriptor. Enterprise beans may access the location information with the same | ookup method used to
locate a home obiject.

The Deployment Descriptor

The deployment descriptor shows the location of the database as well as providing some details on the EJB’s
components. Listing 20-7 shows the deployment descriptor.

Listing 20-7: The EJB deployment descriptor

<?xm version="1.0""?7>

<! DOCTYPE ej b-jar PUBLIC
"-//Sun M crosystens, Inc.//DID Enterprise JavaBeans 1.1//EN
"http://java.sun.com j2ee/dtds/ejb-jar_1 1.dtd" >

<ej b-jar>

<ent er pri se- beans>
<sessi on>
<ej b- nane>Acct Hi st or yBean</ ej b- nane>
<hone>chapt er 20. Acct Hi st or yHone</ hone>
<r enot e>chapt er 20. Acct Hi st ory</r enot e>
<ej b- cl ass>chapt er 20. Acct Hi st or yBean</ ej b- cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>
<resource-ref>
<descri pti on>Br oker age Dat abase Data Store</description>
<res-ref-nanme>j dbc/ st ock</res-ref-nane>
<res-type>javax. sql . Dat aSource </res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
</ sessi on>
</ enterprise-beans>

<assenbl y-descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- nane>Acct Hi st or yBean</ ej b- nane>
<met hod- i nt f >Renot e</ net hod-i nt f >
<met hod- nane>* </ met hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or >

</ejb-jar>

The deployment descriptor contains three main groups of information: bean particulars, resources used by the bean,
and transaction information.

The bean particulars include the bean type (stateful session, stateless session, entity, or message-driven), the hone
and r enot e interface names, the bean class name, and how transactions are managed.

The resources used by the bean are described as child elements of the r esour ce- r ef element. The content of the
res-type element, j avax. sql . Dat aSour ce, tells the container this resource is a reference to a database.

The transaction information is described by child elements of the cont ai ner -t ransacti on element.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Stateless Session Beans

The EJB developer can use stateless session beans to implement a business process that does not require extended
contact or conversation with a client. In other words, your stateless session beans may perform a task that requires no
knowledge about a particular client.

Stateless session beans are ignorant of the results of any prior method invocation. Some examples of tasks that can
be performed by a stateless session bean are:

. Calculating the price for an item
. Evaluating the current value of a portfolio

. Converting an RGB color space value to an HSV color space value

Characteristics of Stateless Session Beans

As mentioned previously in this chapter, stateless session beans are blissfully unaware of client particulars. This
ignorance leads the EJB container and server developers to devise strategies for pooling session bean instances.

Pooling Stateless Session Beans

Because any stateless session bean can service any client, the container may create instances of a stateless session
bean ahead of time and keep them “on ice.” When a client invokes a stateless session bean method through the
bean’s remote interface, the container may have a bean instance available for use. The advantage of having the
container pull a bean from a ready-made pool of instances, as opposed to creating an instance on demand, is
performance. The pooling strategy is faster than the create-on-demand strategy because a small number of stateless
session beans may service a large number of clients.

Using the create and ejbCreate Methods with Stateless Session Beans

In the previous chapter, you read about creating instances of beans by invoking ej bCr eat e methods by invoking a
cr eat e method in the home interface. Because stateless session beans have no concept of state, they do not retain
any knowledge of parameters passed to the bean via ej bCr eat e. Therefore, you should not code stateless session
bean cr eat e methods in your home interface and any corresponding ej bCr eat e methods in your bean class that
require parameters.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=749740627

Caution You may be thinking that a stateless session bean shouldn't use instance variables since it doesn't track
state. You are free to include instance variables in your session bean. However, each method in a
stateless session bean exposed to clients must be provided with all information needed for your bean to
do its work. You cannot pass data by way of arguments to cr eat e methods, so you are left with passing
arguments when you invoke bean methods.

Instance variables for stateless session beans do not hold information that can be used for subsequent
method invocations of the bean. That is, the stateless bean has no knowledge from one method
invocation to the next, or any knowledge of the previous method invocation. If a stateless bean contains
three business methods exposed to a client through the bean’s remote interface, a client typically invokes
only one of those methods. Once a client invokes a bean method, the data contained in any of the bean’s
instance variables cannot be used by a subsequent method invocation.

Life Cycle of Stateless Session Beans

The simplicity of stateless session beans is mirrored in its life cycle. Stateless session beans exist in only two states:
the nonexistent state and the method-ready state.

You don't have to be a rocket scientist to glean what the nonexistent state means. This state is used to describe when
a bean is no longer needed and its existence is ended with a call to ej bRenove.

When a bean is in the method-ready state, the bean instance is in a pool or has been created to service a client
request. Such beans are ready to perform work on behalf of their clients.

Another way of looking at the bean instance pool is that a stateless session bean is bound to a particular EJB object,
which is the entity managed by the container that works on behalf of the client. The creation and destruction of beans
may or may hot correspond to the creation and destruction of EJB objects. The client interacts with interfaces that
interact with the EJB container that manipulates EJB objects. The particular EJB container implementation may
involve bean instance creation for every client or (more likely) creating a pool of bean instances and binding these
instances to EJB objects.

As previously mentioned, EJB containers usually create multiple instances of stateless session beans for performance
reasons. The container manages assigning bean instances to clients based on client requests. If the container pools
beans, the container issues the C ass. new nst ance method to create an instance of the bean and put that instance

in the bean pool. Next, the bean receives a reference to its EJBCont ext when the container invokes the

Sessi onBean. set Sessi onCont ext method. When a client issues a call to cr eat e in the bean’s hon® interface,
the container invokes the ej bCr eat e method (with no arguments, remember?). At a time of the container’'s choosing,
the container purges the bean by issuing an ej bRenove method.

In truth, the client does not really operate on the bean instance. The client, by making calls to methods in the bean’s
home (and remote) interface, operates on the underlying EJB object. The client may view the container activity as
creating and purging beans. That's part of the EJB magic — hiding the implementation details from the client and, of
course, the client and developer’s code.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming

f Techniques.

Using Stateful Session Beans

Stateful session beans model business processes where the concept of a conversational state takes center stage. In
other words, the activities (method invocations) taking place within a session bean are affected by prior method
invocations.

Characteristics of Stateful Session Beans

A stateful session bean needs a way of identifying one particular client among many. The simplest (and surprisingly
effective) way for EJB containers to cause stateful session beans to maintain client identity is to bind the underlying
EJB object to a particular client for the lifetime of the bean.

Pooling (or not) Stateful Session Beans

EJB containers typically do not create pools of stateful session beans and swap the bean instances among multiple
EJB objects. Once a client requests the creation of an EJB object by invoking the home interface’s cr eat e method,

the EJB object is bound to that client for life.

Although the EJB object corresponding to the stateful session bean is dedicated to a single client, the EJB container
may swap bean instances to and from storage or perform whatever optimizations the container creators deem
necessary.

So, do EJB containers pool stateful session beans or not? The practical result of the container swapping stateful
session beans is the same as pooling bean instances. However, there are differences between the swapping of
stateful session beans and the pooling of stateless session beans. Later in this chapter, the section titled "Using the

j avax. ej b. Sessi onBean Interface" will discuss these differences.

The create and ejbCreate Methods with Stateful Session Beans

Unlike their stateless cousins, stateful session beans may accept data via a cr eat e method in the bean’s home
interface (and the corresponding ej bCr eat e method in the bean class). Stateful session beans remember data from

one method invocation to the next for the same client. It makes sense to initialize EJB objects corresponding to
session beans with data peculiar to a particular client.

In addition, you may code multiple cr eat e methods, each with a different set of parameters (or no parameters) when
instructing the container to create an EJB object to serve as an agent for a stateful session bean.

Instance Variables and Stateful Session Beans

Instance variables of stateful session beans may serve different uses than instance variables of stateless session
beans. Because stateful session beans are used to maintain a sense of session with a single client, instance variables

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=121732317
http://www.unltded.com/viewer.asp?bkid=2878&destid=305#305
http://www.unltded.com/viewer.asp?bkid=2878&destid=305#305

may hold information relevant to successive method invocations. If a stateful session bean exposes three methods to
a client through the bean’s remote interface, any of these method invocations may use instance variables to store data
for use by subsequent method invocations.

Life Cycle of Stateful Session Beans

One important difference between the life cycle of a stateful and a stateless bean is that stateful beans are not pooled
whereas stateless beans are pooled. From the client’s perspective, the client has access to a stateful bean (do you
recall that the client has access to the EJB object?) for the life of the client session. If the server or EJB container
decides to swap the stateful session bean, the server or container must preserve the state of the conversation
between the EJB object and the client. The container may decide to perform the swap to conserve server resources or
to implement a "last-used" strategy to decide when to remove beans from memory.

Activating and Passivating Beans

The process of swapping out a stateful session bean from memory to storage is called passivation. It's important to
understand that passivation is the process that an EJB container uses to preserve the state of a stateful session bean
(or an entity bean) when the container swaps the bean out to storage.

Do not confuse passivation with storing a piece of persistent data. When you save data to persistent storage, you hold
on to that data for an indefinite period of time. The persistent storage is usually a database. Although passivation
usually includes writing out the bean to storage, the intent is not to save the stateful session bean for an indefinite
period of time. Rather, the intent is to make room for other beans that, at the present time, are more used than the
passivated bean. The server reloads the passivated bean when some client needs it. The passivated bean is not data
per se; the passivated bean represents the state of a client session with the enterprise application.

The opposite of passivation is the process called activation. A stateful session bean is activated when the client issues
a method invocation through the bean’s remote interface that requires the services of the EJB object. The server is
responsible for reloading the previously passivated EJB object from storage to memory so that the methods of the
EJB object may be invoked and work may be done.

Because stateless session beans do not maintain any state, the concepts of passivation and activation are not
relevant with stateless session beans.

The activation and passivation process affects the makeup of instance variables. You may have figured out that the
server uses Java’'s object serialization to passivate and activate a bean. Hence, any instance variable critical to
describing the conversational state of the bean must be serializable or be declared as a Java primitive type.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using the javax.ejb.SessionBean Interface

To write session beans, you must create a class that implements the Sessi onBean interface. The Sessi onBean

interface contains callbacks that govern the container’s treatment of your bean. Please note that the client never calls
these methods. In other words, the methods in the Sessi onBean interface are not made available to the client
through the remote interface.

As with other Java interfaces, you may not need implementations of all of the methods defined in the Sessi onBean
interface. If this is the case, you may code an empty implementation for unneeded methods. For your convenience,

some EJB servers contain adapter classes such as those used in GUI event handlers. Of course, you may code your
own adapters as well.

Listing 14-1 shows the Sessi onBean interface.

Listing 14-1: The SessionBean interface

public interface javax.ejb. Sessi onBean
extends javax. ejb. EnterpriseBean {

public abstract void set SessionContext(SessionContext ctx)
throws java.rm . Renot eException ;

public abstract void ejbPassivate()
throws java.rm . Renot eException ;

public abstract void ejbActivate()
throws java.rm . RenoteException ;

public abstract void ej bRenmove()
throws java.rm . Renot eException ;

Your bean class implements the methods in the Sessi onBean interface and the business methods in the bean’s
r enot e interface. You can take a look at the methods in the Sessi onBean interface now. Remember that all of the
methods that follow are invoked by the EJB container.

ejbActivate

The ej bAct i vat e method is a callback invoked by the container immediately after activating a bean. Of course, you
remember that the container activates a bean by loading a previously saved (passivated) bean from storage into

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=641821652

memory in response to a client request through the EJB object’s remote interface. Once the container resurrects your
bean, the container invokes the bean class’s ej bAct i vat e method.

Because activation and passivation do not apply to stateless session beans, you must code empty implementations
for e] bActi vat e and ej bPassi vat e for stateless session beans.

Use ej bAct i vat e to acquire the resources your bean needs to accomplish its appointed duty. For example,

i mport javax.ejb.* ;
/I Qther inports as required for the bean
public class Sanpl eSt at ef ul Sessi onBean i npl enents Sessi onBean {

public void ejbActivate() (

/I Open Dat abase connecti ons

/1 Open files, |oad properties, etc.
}
/I Ot her required SessionBean interface nethods and
/ I busi ness nmethods defined in the bean’s hone
/linterface follow

ejbPassivate

The ej bPassi vat e method is invoked by the EJB container immediately prior to the passivation of the stateful

session bean. As we read earlier in the section titled "Activating and Passivating Beans," passivation is the process,
involving Java serialization, in which the container writes a bean to storage.

For stateless beans, you code dummy implementations as follows:

i mport javax.ejb.* ;
/I Other inports as required for the bean
public class Sanpl eSt at el essSessi onBean i npl enments Sessi onBean {

public void ejbActivate() (
/1 Do not code any statenents here

}
public void ejbPassivate() (

/1 Do not code any statenents here
}
/1 Ot her required SessionBean interface nethods and
/] busi ness nethods defined in the bean's home
/[linterface foll ow

For a stateful session bean, you would release resources held by the bean in the ej bPassi vat e implementation.
These resources would then be reacquired in your e] bAct i vat e method implementation.

ejobRemove

The EJB container calls the e] bRenbve method immediately prior to removing a session bean instance. Do not

confuse removing the instance with passivating the instance. When the container passivates the bean, the container
may bring the bean back to satisfy a client request. When the container removes the bean, that bean is dead, gone,
finished, whacked.

setSessionContext

The bean’s Sessi onCont ext object provides methods for the bean to interact with the EJB container. Later in this

chapter you can learn more about the session context. For now, it's enough to know that the session context is set by
a call to the set Sessi onCont ext method.

A commonly used technique is to declare a session context outside any method and assign the session context to this
object. For example, the following code does the trick:

i mport javax.ejb.* ;

/I Other inports, etc.

public class Sanpl eSessi onBean i npl enents Sessi onBean {
private SessionContext sCtx ;

public void set Sessi onContext(SessionContext ctx) {
sCtx = ctx ;

}
/I Ot her SessionBean and busi ness net hod i npl enent ati ons
//follow

}

ejbCreate

Strictly speaking, the e] bCr eat e method is not included in the Sessi onBean interface. For session beans, however,
you must code at least one cr eat e method. Thus, a discussion of cr eat e and ej bCr eat e is included here.

To direct the container to create beans for your use, issue a cr eat e method implemented on the bean’s hone
interface. When the client invokes the cr eat e method, the container invokes a corresponding ej bCr eat e method,

which makes an EJB object available to the client.

From the client’s perspective, the call to cr eat e creates a session bean. But that may or may not be true; the truth
depends on the EJB container implementation. If the client requires access to an enterprise bean, the client issues a
call to cr eat e, which, in turn, causes the container to issue a call to an ej bCr eat e method.

As previously mentioned, for stateless session beans, you may code only the garden-variety, parameterless cr eat e
and ej bCr eat e methods. For stateful session beans, you are free to code several cr eat e and corresponding

e] bCr eat e methods. The only requirement is that the cr eat e and e] bCr eat e methods must have matching
argument lists and all return void.

For example, if you coded the following cr eat e method signature in your hone interface:

public void create(Custoner aCust, double payAnt)
t hrows Renot eException, CreateException {

You would code the following method signature in your bean class:

i mport javax.ejb.* ;

/I Qher inports as required for the bean

public class Sanpl eSt at ef ul Sessi onBean i npl ements Sessi onBean {

public void ejbCreate(Custoner aCust, double payAmt) (
/[llnitialize bean with arg vari ables or use as you see fit
}

/I Ot her required SessionBean interface nethods and
/I busi ness nethods defined in the bean's hone
[linterface follow

As an aside, you must code cr eat e methods in your hone interface that throw Cr eat eExcept i on. Recall that all
methods coded in the r enpt e and hone interfaces must throw a remote exception. In Chapter 15, "EJB Entity

Beans," when you read about entity beans, you'll learn that f i nder methods coded in the hone interface must throw
a Fi nder Excepti on.

Top £
| <= Prov_ | Next =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The javax.ejb.SessionContext Interface

No bean is an island. Beans work and play within containers. You might imagine that beans and their containers
engage in a fair amount of communication. The Sessi onCont ext interface extends the more general EJBCont ext

interface. You can read about the EJBCont ext interface in Chapter 15. The following section covers the
Sessi onCont ext interface.

getEJBODbject

As it turns out, your beans may need to communicate with the container when your beans need to invoke methods in
other EJBs. Session beans have access to a Sessi onCont ext object to facilitate interbean communication. This

object enables your bean to invoke one method, get EJBObj ect , which enables your bean to pass a reference to
itself to other EJBs.

You might be thinking, “Why can’t the session bean use the t hi s keyword to pass a reference to itself to another
bean?" Recall that clients do not invoke bean methods directly on the bean; clients invoke bean methods through a
reference to the r enot e interface, or its EJB object. If the bean returned t hi s, it would be returning a reference to
the bean itself and not to its EJB object. The bean must return a reference to the EJB object, hence the purpose of the
get EJBObj ect method.

Top <3

| <= Prov_ | Noxt =>_

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=923003551

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Creating a Stateless Session Bean

The code in this section implements a system in which a customer can buy or sell stocks. The application executes
one of two methods from a stateless session bean: buy and sell. What follows is the code for the home and remote
interfaces, support classes, and a sample client that invokes the EJB object through the remote interface.

The buy and sel | methods interact with a relational table called st ockt abl e. Here are the relevant columns for
table st ockt abl e used in the stateless session bean example:

Create table stocktabl g(

custoner| D NUVBER Primary Key,
shar esynbol CHARACTER(4) Primary Key,
nunShar esOnAcct NUMBER

)

Although simple, the table suffices for our sample stateless bean application.

The payment bean uses two application classes: St ockCust oner and St ockTr adeResul t . Listings 14-2 and 14-3
show the code for these classes.

Listing 14-2: Code for the StockCustomer class

package chapter 14. st ocktrader ;
import java.io.* ;

public class StockCustoner inplenents Serializable {
private String custNane ;
private int custiID ;
private String custAcct Num ;

public StockCustoner(String cName, int clID, String cAcctNum) ({

cust Nane = cNane ;
custl D =clD;
cust Acct Num = cAcct Num ;

}

public String getCustNane () {
return cust Nane ;

}
public int getCustID () {

return custlD ;

}
public String getCustAcctNum () {

return cust Acct Num ;

}

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=414023816
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=369081763#wbpch14fP167
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=369081763#wbpch14fP195

Notice that this class implements j ava. i 0. Seri al i zabl e, because the code passes objects of class
St ockCust oner to remote methods.

Listing 14-3 shows the class St ockTr adeResul t . An instance of this class is returned to the client after each trade.
As you'd expect, St ockTr adeResul t implements j ava. i 0. Seri al i zabl e.

Listing 14-3: Code for the StockTradeResult class

package chapter 14. st ockt r ader;

i mport java.io.Serializable;

public final class StockTradeResult inplenents Serializable {

private String statusMsg ; /' Successful or not?.
private int nunmber Traded; //# of shares bought or sold.
private String custNane i //Like it says.

private String stockSynbol; /1Ditto.

public StockTradeResult(String status,
String cNane,

int nt,
String ss) {
st at usMsg = status ;
cust Nanme = cNane ;
nunber Traded = nt;
stockSynbol = ss;

}
public String getStatusMsg() return statusMsg; }

{
public String get Cust Nane() { return custNane; }

public int get Nunber Tr aded() { return nunberTraded; }
public String getStockSynbol () { return stockSynbol; }

Coding the Remote Interface

Listing 14-4 provides the code for the remote interface St ockTr ader . Notice that both methods return an object of
class St ockTr adeResul t .

Listing 14-4: Code for the remote interface

package chapter 14. st ockt rader;

i mport java.rm . Renot eExcepti on;
i mport javax.ejb. EJBObj ect;

/*
Renote interface for the Stock Trader. These nethods
get inplenented in the bean class StockTraderBean

*/

public interface StockTrader extends EJBObject {

public StockTradeResult buy (StockCustoner aCust,
String st ockSynbol ,
i nt nunthar es)
t hrows Renot eExcepti on;

public StockTradeResult sell (StockCustoner aCust,
String st ockSynbol ,
i nt nunthar es)
t hrows Renot eExcepti on;

Coding the home Interface
Listing 14-5 shows the code for the hone interface. All you need is a cr eat e method as required by the EJB
specification for session beans. Remember that you cannot pass arguments to the cr eat e method for stateless

session beans.

Listing 14-5: Code for the home interface

package chapter 14. st ockt r ader;

i mport java.rm . Renot eExcepti on;
i mport javax.ejb. Creat eExcepti on;
i mport javax. ej b. EJBHone;

public interface StockTraderHone extends EJBHone {

St ockTrader create() throws CreateException, RenoteException;

}

Coding the Bean Class

The code for bean class St ockTr ader Bean is shown in Listing 14-6. Implement the required methods from the
Sessi onBean interface plus business methods defined in the r enot e interface.

Listing 14-6: Code for the bean class

package chapter 14. st ockt rader;

i mport j avax.ejb. Creat eExcepti on;

i mport j avax.ejb. Sessi onBean;

i mport j avax. ej b. Sessi onCont ext ;

i mport javax.ejb. EJBException ;

i mport javax.nam ng.Initial Context;
i mport j avax.nam ng. Nam ngExcepti on;

import java.io.* ;

i mport java.sql.* ;

i mport java.rm . Renot eException ;
i mport j avax. sql . Dat aSource ;
inmport java.util.* ;

public class StockTraderBean inplenments SessionBean {

/** Declare the connection and preparedStatenent object so we
can use themin multiple nmethods. Al so, we want to

reuse the connection because we'll issue two SQ statenents
her e.

For a buy order, we need to determine if the custonmer has
this stock already. If so, we issue an UPDATE sql. If not,

we i ssue an | NSERT SQ..
For a sell order, we need to see how many shares the custoner

has to sell. If not enough, we issue a StockTrader Excepti on.
I f enough, we issue an UPDATE to change the shares on
account .

*/

Connecti on payConn nul | ;

Pr epar edSt at enent payPS nul | ;

private SessionContext sCx;

/** These are the required nethods of the SessionBean interface.
Al t hough we don’t need them we nust supply a dumry
i mpl enent ati on.

*/

public void ejbActivate() { } ;

public void ejbRemove() { } ;

public void ejbPassivate() { } ;

*

/*/

public void set Sessi onCont ext (Sessi onCont ext ctx) {

sCtx = ctx;

/* When the bean becones avail able, the contai ner nakes a
sessi on object available. Here’'s a good place to perform
startup tasks. Recall that statel ess session beans live
and die for a single nmethod invocation.

Let's acquire the DB connection here... */
payConn = get Connection() ;

}

public void ejbCreate () throws CreateException { } ;
/* Finally! A business nethod inplenentation.
*/
public StockTradeResult buy(StockCustoner aCust,
String stockSynbol,
i nt shares)
t hrows Renpt eException {
/* To buy stock, we merely update the record if this
custonmer has sonme stock or add a new record if not.
*/
bool ean success = fal se ;
String statusMsg = "Stock Purchase Fail ed" ;
i nt nunthares = get NuntShares(aCust.getCustlD(), stockSynbol) ;
if (nunthares > 0)
success = updat eCustoner Record(aCust.getCustlX),
st ockSynbol ,
nunthares + shares) ;
el se
success = addCustoner Record(aCust.getCustlX),
st ockSynbol ,
nuntShares) ;

if (success)
statusMsg = "Stock Purchase Successful " ;
/*
Let the client know the status of the trade.

*/
return new StockTradeResul t (st at usMsg,

}

/*

aCust . get Cust Nane(),
shares,
st ockSynbol) ;

The ot her busi ness net hod...

*/
public StockTradeResult sell (StockCustoner aCust,

}

String st ockSynbol ,
i nt shar es)
t hr ows Renot eException {
/* To sell stock, we check if the custonmer has enough stock
to cover the sell order or update the stock on hand after
a successful sale.
*/
bool ean success fal se ;
String statusMsg "Stock Sal e Failed" ;
i nt nuntBhares = get NuntBhares(aCust.getCustlX),
stockSynbol) ;

if (nuntBhares >= shares) {
success = updat eCustomner Record(aCust.getCustlX),

st ockSynbol ,
nunthares - shares) ;
statusMsg = "Stock Sale Successful." ;
}
el se {
statusMsg = statusMsg + "Not enough shares on account"” ;
shar es =0 ;
}

return new StockTradeResul t (st at usMsg,
aCust . get Cust Name() ,
shares,
st ockSynbol) ;

/*Thi s met hod adds custoner share table returning success/
failure flag. When a custoner buys stock and has none

on hand, this nethod adds a record for the

cust oner | DY shar esynbol conbi nati on.

*/
pr

i vat e bool ean addCust onmer Record(int aCust oner | D,
String stockSynbol,
i nt nunthar es) {

try {

payPS = payConn. prepareStatenent (" insert " +
" into stocktable " +
"(custonerid, sharesynbol, " +
" nunBharesOnAcct) " +
" wvalues (?,?2,?) ") ;
[* Well, let's set the parametters.... */
payPS. set | nt (1, aCustonerlD)
payPS. set String(2, stockSymbol)
payPS. set | nt (3, nunthares)
/* lssue the SQ....
Tabl e primary key is conpound key CustlD and Shar eSynbol
1 row inpacted or error. */
i nt nunmRowsAdded = payPS. execut eUpdat e()
/* Let's get the result. */

if (nunRowsAdded !'= 1)
t hrow new EJBException ("Table Addition Failed!!!")

}
catch (SQLException sql Ex) {

t hr ow new EJBException (sqlEx) ;
}

finally {
try {
if (payPS !'= null) payPS. cl ose() ;
/* W& shut down the connection here..no nore SQ
today!! */
if (payConn != null) payConn.close() ;

catch (SQLException sql Ex) {
sql Ex. print StackTrace() ;
}

}
[* If we get here, we're successful */
return true
}
/*Thi s met hod updates custoner share table returning success
failure flag. This nethod gets called for buys and sells. */

private bool ean updat eCust ormer Record(int aCust oner | D,
String stockSynbol,
i nt nunthar es) {

try {

payPS = payConn. prepar eSt at enent (" Update stocktable " +
" Set nuntharesOnAcct = ? " +
" where custonerid = ? "+
" and sharesynbol =7? ") ;
[* Well, let's set the paranmetters.... */
payPS. set | nt (1, nunthares) ;
payPS. set | nt (2, aCustomerlD) ;
payPS. set String(3, stockSynbol) ;
/* lIssue the SQ.. ..
Tabl e primary key is conmpound key CustlD and Shar eSynbol
1 row inpacted or error. */
i nt nunmRowsUpdat ed = payPS. execut eUpdate() ;
/* Let's get the result. */
if (nunRowsUpdated != 1)
t hr ow new EJBException ("Table Update Failed!!!")

}
catch (SQ.Exception sqgl Ex) {
t hrow new EJBException (sql Ex)

}
finally {
try {
if (payPS !'= null) payPS. cl ose()
/* We shut down the connection here..no nore SQ
today!! */
if (payConn != null) payConn.cl ose()
catch (SQ.Exception sql Ex) {
sql Ex. print St ackTrace()

}

}

/* If we get here, we're successful */
return true

}

/*This method returns the nunber of stock the custoner has.
Both buy and sell invokes this nethod —if the custoner
puts in a sell order, the nmethod checks if the custonmer has
the requisite stock on hand. For buy orders, we use the
nunber of existing shares added to the new purchase to
update the table. */

private int getNuntBhares(int aCust oner | D,
String stockSynbol) {
i nt nuntShares = 0 ;
Resul t Set nuntharesOnTable = null ;
try {

payPS = payConn. prepar eSt at enent (
Sel ect nuntSharesOnAcct " +

" from stocktable " +

' where custonerid = ? "o+

" and sharesynbol =2 ") ;
[* Well, let's set the paranetters.... */

payPS. set | nt (1, aCustonerlD) ;
payPS. setString(2, stockSynbol) ;
/* lssue the SQ....
Tabl e primary key is conmpound key CustlD and Shar eSynbol
Either O or 1 row returned. */
nunShar esOnTabl e = payPS. execut eQuery()
/* Let's get the result. */
whi |l e (nuntBharesOnTabl e. next ())
nunShares = nuntharesOnTabl e.getInt(1)

}

catch (SQLException sql Ex) {
t hr ow new EJBException (sql Ex)

}
finally {
try {
if (payPS!= null)
payPS. cl ose() ;
if (nunBharesOnTable != null)
nuntShar esOnTabl e. cl ose() ;
}

catch (SQLException sql Ex) {
sql Ex. print St ackTrace()
}

}
/[* If no shares on record, zero is returned, right? */
return nuntShares ;
}
[TUility method to acquire a database connection
private Connection get Connection() {
/1 The string below is coded in the Depl oynent Descri ptor
String jndi DBName = "java: conp/ env/j dbc/ paynent DB"
try {
Initial Context jndiCtx = new Initial Context()
Dat aSour ce payDS =
(Dat aSour ce) jndi Cx. | ookup(jndi DBNane)
return payDS. get Connecti on()

}
catch (Nam ngException ne) {

t hrow new EJBException(ne)
}

catch (SQLException sql Ex) {
t hrow new EJBException(sql Ex)
}

}

Notice that every business method requires information identifying the particular client. Also, the “business” of the
bean can be completed in a single method invocation from the client.

You acquire a connection to the database by using an object of class Dat aSour ce, which is found in the J2EE

version of JDBC that works with other J2EE APIs such as JNDI. By following the code examples in this chapter, you
can learn more about JNDI.

Coding the Deployment Descriptor

Listing 14-7 shows the deployment descriptor for the St ockTr ader bean.

Listing 14-7: Code for the deployment descriptor

<?xml version="1.0"7?>

<! DOCTYPE ejb-jar PUBLIC '-//Sun M crosystens, Inc.//DTD Enterprise JavaBeans 1.1//EN
"http://java.sun.conm j2ee/dtds/ejb-jar_1 1.dtd' >

<ej b-jar>

<ent er pri se- beans>
<sessi on>

<ej b- nane>exanpl eSt at el essSessi onBean</ ej b- nane>
<honme>chapt er 14. st ockt rader. St ockTr ader Hone</ honme>
<r enot e>chapt er 14. st ockt rader. St ockTr ader </ r enot e>
<ej b- cl ass>chapt er 14. st ockt rader. St ockTr ader Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transacti on-type>
<resource-ref>

<descri ption>

Cust omer shares datasource reference

</ description>

<res-ref-nanme>j dbc/ cust st ockDB</ r es-r ef - nane>

<res-type>javax. sql . Dat aSource </res-type>

<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>

</ sessi on>
</ enterprise-beans>

<assenbl y-descri pt or >
<cont ai ner-transacti on>
<net hod>
<ej b- nane>exanpl eSt at el essSessi onBean</ e b- nane>
<nmet hod- i nt f >Renot e</ nmet hod-i ntf>
<nmet hod- nanme>* </ met hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >

</ejb-jar>

For the most part, your EJB deployment tool generates deployment descriptors for you. But, a few words on the
content of this deployment descriptor are in order.

. The root element of a deployment descriptor is <ej b-j ar >.
. You may code information pertaining to more than one EJB in a single deployment descriptor.
. The deployment descriptor contains sections that describe session and entity beans.

. The deployment descriptor contains information that JINDI needs to locate resources. Notice the reference to the
database used in the above bean in the <r esour ce- r ef > tag.

. The <assenbl y- descri pt or > tag may contain transaction and security-related information. The topic of
transactions or security hasn’t been discussed yet, so you haven't missed anything.

Code for a Sample Client

Listing 14-8 shows some code for a sample client. The meat of the client is the invocation of the buy and sel |
methods defined in the r enot e interface.

Listing 14-8: Code for a sample client

i mport chapt er 14. st ocktrader;

i mport java.rm . Renot eExcepti on;
import java.util.Properties;

i mport javax.ejb. Creat eExcepti on;

i mport javax.ej b. RenoveExcepti on;

i mport j avax.nami ng. Cont ext;

i mport javax.nam ng.|nitial Context;

i mport javax.nam ng. Nam ngExcepti on;

i mport javax.rm . Portabl eRenpt eQbj ect ;
import java.util.* ;

public class StockTraderdient ({
private static final String JNDI _NAME = " St ockTrader Hone";
private StockTrader Home hone;

private StockCustomer me = new StockCustoner("Lou Marco",
12345,
"123ABC') ;
/I Represents the result returned fromthe buy or sell order
private StockTradeResult resultlLastTrans = null ;

public StockTraderdient()
t hrows Nam ngException

{

home = | ookupHone();

}

/*
* Runs this exanple fromthe comand |ine.
*/

public static void main(String[] args) throws Exception {

StockTraderdient client = null
try {
client = new StockTraderClient();
} catch (Nani ngException ne) {
Systemexit(1);
}

}
/**
* Runs this exanple.
*/
public void exanpl e()
throws CreateException, RenoteException, RenpoveException

{

//Create a StockTrader

St ockTrader trader = (StockTrader)
Por t abl eRenot ehj ect . narr ow(horne. creat e(),
St ockTr ader . cl ass);

String [] stocks = {"LMAA", "I QOU2", "DOAP', "RI PP" };

/'l execute sone buys

for (int i=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
System out. println("Buying + shares +

stocks[i] + ".");

resultlLast Trans = trader. buy(nme, stocks[i], shares);
[lList out result of this trade
showTr adeResul t (resultlLastTrans) ;

shares of " +

}

/] execute sone sells

for (int i=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
Systemout.printin("Selling " + shares +

stocks[i]+".");

trader.sell (nme, stocks[i], shares);
//List out result of this trade
showTr adeResul t (resultlLastTrans) ;

shares of" +

}

[/ W' re done..renove the instance of our trader bean
trader. renmove();

}

private void showlradeResult(StockTradeResult str) {
Dat e now = new Dat e()
Systemout.println("On " + now + str.getStatusMsg())

Systemout.print("You traded " + str.getNunber Traded())
Systemout.println(" shares of " + str.getStockSynbol () +

)
}
/*
* Lookup the EJB hone in the JNDI tree
*/

private StockTraderHome | ookupHome()
t hrows Nam ngExcepti on

{

/* Lookup the beans home using JNDI.
RM/I110P clients shoul d use
Por t abl eRenot ehj ect . narrow function */
Context ctx = new Initial Context();

try {
bj ect home = ctx. | ookup(JNDI _NAME) ;

return (StockTrader Hone)
Por t abl eRenot ehj ect . narr ow(horre,
St ockTr ader Hone. cl ass) ;
} catch (Nani ngException ne) {
System out . println("Cannot |ocate Hone object") ;
t hr ow ne;
}
}

The client acquires a reference to the hone interface and then invokes business methods defined in the bean’s
r enot e interface.

Using JNDI

The Java Naming and Directory Interface, or JNDI, is pervasive in creating and using EJBs. Resources are stored in a
JNDI tree, which resembles a directory tree. JNDI enables Java code to locate needed resources by using a structure
called the JNDI Context. The context contains a JNDI method called | ookup used, not surprisingly, to locate objects
in the JNDI tree.

The process is to first acquire an | ni ti al Cont ext using a constructor. Then, you invoke the | ookup method of
class I ni ti al Cont ext to locate a resource on the JNDI tree.

The JNDI | ookup method takes a name registered with JNDI through some other Java facility. For EJBs, JNDI is
used in both the client and the enterprise bean.

The client uses JNDI to locate a reference to the hone interface as shown in the | ookup method. The name for the
home method used in the client must match the name coded in the deployment descriptor. Fortunately, EJB servers
and containers have tools that enable you to use a GUI to enter deployment descriptor information.

To maintain compatibility with CORBA, Java clients use the Por t abl eRenpt eCbj ect . narr ow() method. This
method is not a INDI method. Think of using this method as a way of coding a CORBA-compliant cast. The nar r ow
method takes two arguments: an object of class Obj ect to be cast, and an object of class Cl ass, representing the
class to cast the object to. The returned value of the nar r owmethod is cast, Java-style, to the desired class. In the
case of using the nar r ow method on hone interfaces, the cast is to the class of the hone interface of the bean.

The bean uses JNDI to locate a reference to the database. The process is the same as that used in the client
program: acquire an | ni ti al Cont ext object followed by invoking the | ookup method.

If one bean needs to call another bean, the calling bean may need access to the called bean’s home object. In this
scenario, the calling bean acts as a client. The calling bean could use JNDI to locate the hone interface of the called
bean.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Creating a Stateful Session Bean

The code presented in this section implements the same bean as shown in the preceding section but as a stateful
session bean. The main difference is that the client passes a customer ID as an argument to the cr eat e method,

which enables the stateful bean to maintain state.

Coding the remote Interface

The difference in the remote interface shown in Listing 14-9 for the stateful bean is the absence of a customer object

passed to business methods. When the stateful bean is created, the container remembers the client who invoked the
cr eat e method. The client does not have to pass a client identifier to the bean.

Listing 14-9: Code for the remote interface

package chapter 14. st ocktraderstateful ;

i mport java.rm . Renot eExcepti on;
i mport javax.ejb. EJBObj ect;

/*
Renote interface for the Stock Trader. These net hods
get inplenented in the bean class StockTraderBean

*/

public interface StockTraderStateful extends EJBObject {

public StockTradeResult buy (String st ockSynbol ,
i nt nunthar es)
t hr ows Renot eExcepti on;

public StockTradeResult sell (String st ockSynbol ,
i nt nunthar es)
t hrows Renot eExcepti on;

Coding the home Interface

Listing 14-10 contains the code for the hone interface. The difference between this and the stateless bean version is
that here, you pass a client identifier as an argument to the cr eat e method.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=842239398

Listing

14-10: Code for the home interface

package chapter 14. st ocktrader st at ef ul ;

i mport
i mport
i mport

public

St oc
}

j ava. rm . Renot eExcepti on;
j avax. ej b. Creat eExcepti on;
j avax. ej b. EJBHone;

i nterface StockTrader St at ef ul Honme ext ends EJBHome {

kTrader create(int custlD) throws CreateException, RenoteException;

Coding the Bean Class

Listing 14-11 shows the code for the stateful bean version. The bean class is very similar to the stateless version, but
the stateful version uses a cust oner | D to maintain client identity. This version does not access objects of class
Cust omer , and the business methods — buy St at ef ul and sel | St at ef ul — do not accept an argument that
identifies the client. The relational database access routines are identical to those in the stateless bean version.

Listing

14-11: Code for the stateful bean

packag

i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport

public

/**

*/
Conn
Prep
i nt
priv

/**

*/

e chapter 14. st ockt rader st at ef ul ;

j avax. ej b. Creat eExcepti on;

j avax. ej b. Sessi onBean;

j avax. ej b. Sessi onCont ext ;

j avax. ej b. EJBException ;

j avax. nam ng. I niti al Cont ext;
j avax. nam ng. Nam ngExcepti on;

java.io.* ;

java.sql.* ;

j ava.rm . Renot eException ;
j avax. sql . Dat aSource ;
java.util.* ;

cl ass StockTraderBeanStateful inplements SessionBean {

Decl are the connection and preparedStatenment object so we
can use themin multiple nmethods. Al so, we want to

reuse the connection because we'll issue two SQ statenents
her e.

For a buy order, we need to determine if the customer has
this stock already. If so, we issue an UPDATE sql. If not,

we issue an | NSERT SQ..

For a sell order, we need to see how many shares the customer
has to sell. If not enough, we issue a StockTrader Excepti on.
I f enough, we issue an UPDATE to change the shares on
account .

ection payConn
aredSt at enent payPS = null ;
custonerl| D ;

I
>
=3

at e Sessi onCont ext sCtx;

public void ejbActivate() { } ;

public void ejbRenove() { } ;

public void ejbPassivate() { } ;

/*

*/

public void set Sessi onCont ext (Sessi onContext ctx) {
sCx = ctx;
/* Let's acquire the DB connection here... */
payConn = get Connection() ;

}

/*
Here, we pass a custoner |ID which will define
the conversational state of the bean.

*/

public void ejbCreate (int custlD) throws CreateException {
customer| D = custlD;

P

/*

Note the absence of a client identifier passed as an argunent
The bean instance variable customer| D serves to identify the
Client.
*/
public StockTradeResult buyStateful (String stockSynbol,
i nt shares)
t hr ows Renot eException {
/* To buy stock, we nerely update the record if this custoner has
some stock or add a new record if not.
*/
bool ean success
String statusMsg
i nt nunthar es
if (nunBhares > 0)
success = updat eCust onmer Record(custonerl| D,
st ockSynbol ,
nuntShares + shares) ;

fal se ;
"Stock Purchase Fail ed" ;
get Nunthares(customer| D, stockSynbol) ;

el se
success = addCust oner Record(custonerl| D,
st ockSynbol ,
nunShares) ;

if (success)
statusMsg = "Stock Purchase Successful " ;

return new StockTradeResul t (st at usMsg,
"Custoner Wth ID" + custonerl D,
shares,
st ockSynbol) ;

}

/**

*/
public StockTradeResult sell Stateful (String st ockSynbol ,
i nt shar es)
t hrows Renpt eException {
/* To buy stock, we nerely update the record
if this customer has
some stock or add a new record if not.
*/
bool ean success = fal se ;
String statusMsg = "Stock Sale Fail ed" ;

i nt nuntBhares = get NuntShares(custoner| D, stockSynbol) ;
if (nuntShares >= shares) {
success = updat eCustoner Record(custonerl| D,

st ockSynbol ,
nuntShares - shares) ;
statusMsg = "Stock Sal e Successful." ;
}
el se {
statusMsg = statusMsg + "Not enough shares on account"” ;
shares =0 ;
}

return new StockTradeResul t (st at usMsg,
"Custoner Wth ID" + custonerlD,
shar es,
st ockSynbol) ;
}
/1 Thi s met hod adds custoner share table returning success/
[lfailure flag

private bool ean addCustoner Record(int aCust oner | D,
String stockSynbol,
i nt nunthar es) {
try {
payPS = payConn. prepareSt atenent ("i nsert into stocktable" +
"(custonerid, sharesynbol, " +
" nuntharesOnAcct) " +
" wvalues (?2,?2,?) ") ;
[* Well, let's set the paranmetters.... */

payPS. set | nt (1, aCustomerliD) ;

payPS. set String(2, stockSynbol) ;

payPS. set | nt (3, nunthares) ;

/* lIssue the SQ.. ..
Tabl e primary key is conmpound key CustlD and
ShareSynbol 1 row inpacted or error. */

i nt nunmRowsAdded = payPS. execut eUpdate() ;

/* Let's get the result. */

if (nunRowsAdded !'= 1)
t hrow new EJBException ("Table Addition Failed!!!")

}
catch (SQ.Exception sql Ex) {
t hrow new EJBException (sql Ex)

}
finally {

try {
if (payPS !'= null) payPS. cl ose() ;
/* We shut down the connection here..no nore SQ
today!! */
if (payConn != null) payConn.close() ;
catch (SQLException sqgl Ex) {
sql Ex. print StackTrace() ;
}
}

/* If we get here, we're successful */
return true ;
}
/1 Thi s met hod updates custoner share table returning success/
[/failure flag
private bool ean updat eCust onmer Record(int aCust oner | D,
String stockSynbol,

i nt nunthar es) {
try {
payPS = payConn. prepar eSt at enent (" Update stocktable " +
" Set nuntSharesOnAcct = ? " +
" where custonerid = ? " +
and sharesynbol = ? ")
[* Well, let's set the paranmetters.... */
payPS. set | nt (1, nunthares) ;
payPS. set | nt (2, aCustonerlD) ;
payPS.setString(3, stockSynbol) ;
/* lssue the SQ....
Tabl e primary key is conpound key
Cust| D and Shar eSynbol
1 row inpacted or error. */
i nt nunRowsUpdat ed = payPS. execut eUpdat e()
/* Let's get the result. */
if (nunRowsUpdated != 1)
t hrow new EJBException ("Table Update Failed!!!")

}
catch (SQLException sql Ex) {
t hr ow new EJBException (sql Ex)

}
finally {
try {
if (payPS !'= null) payPS. cl ose() ;
/* W& shut down the connection here..no nore SQ
today!! */
if (payConn != null) payConn.close() ;
}
catch (SQ.Exception sqgl Ex) {
sql Ex. print StackTrace() ;

}

}

/* If we get here, we're successful */
return true

}
/1 This method returns the nunber of stock the customer has
private int getNunBShares(int aCust oner | D
String stockSymbol) {
i nt nunthares = 0
Resul t Set nuntharesOnTable = null ;
try {
payPS = payConn. prepar eSt at enent (" Sel ect nunSharesOnAcct " +
" from stocktable " +
" where custonerid = ? "o+
" and sharesynbol =? ") ;
[* Well, let's set the parametters.... */

payPS. set | nt (1, aCustonerlD)
payPS. set String(2, stockSymbol)
/* lssue the SQ....

Tabl e primary key is conpound key CustlD and Shar eSynbol
Either O or 1 row returned. */
nuntShar esOnTabl e = payPS. execut eQuery()

/* Let's get the result. */
whil e (nuntharesOnTabl e. next ())
nuntShares = nuntharesOnTabl e.getlnt(1)

}
catch (SQ.Exception sql Ex) {

t hrow new EJBException (sql Ex) ;

}
finally {

try {
if (payPS !'= null) payPS. close() ;
i f (nuntharesOnTable != null)
nunShar esOnTabl e. cl ose() ;

}

catch (SQ.Exception sql Ex) {

sql Ex. print StackTrace() ;
}

}

/* 1f no shares on record, zero is returned, right? */
return nuntShares ;
}
[TUility method to acquire a database connection
private Connection get Connection() {
String jndi DBNane = "java: conp/ env/j dbc/ paynent DB ;
try {
Initial Context jndiCtx = new Initial Context() ;
Dat aSour ce payDS = (Dat aSource)
j ndi Ct x. | ookup(jndi DBName) ;
return payDS. get Connection() ;
}
catch (Nam ngException ne) {
t hrow new EJBException(ne) ;
}
catch (SQ.Exception sql Ex) {
t hr ow new EJBException(sql Ex) ;

Coding the Deployment Descriptor
The deployment descriptor for the stateful version is the same except for the <sessi on-

type>St at el ess</ sessi on-t ype> tag, which, of course, would be coded as <sessi on-
type>St at ef ul </ sessi on-type>.

Code for a Sample Client

The client code uses a customer ID as an argument to create and remove the object of class Customer as the first
argument to the buy St at ef ul and sel | St at ef ul methods. Listing 14-12 shows the code.

Listing 14-12: Client implementation using the stateful bean

i mport chapter14. st ocktraderstateful;

i mport java.rm . Renot eExcepti on;
import java.util.Properties;

i mport | avax. ej b. Creat eExcepti on;
i mport | avax. ej b. RenoveExcepti on;

i mport j avax.nam ng. Cont ext;

i mport javax.nam ng.Initial Context;

i mport javax.nam ng. Nam ngExcepti on;

i mport javax.rm . Portabl eRenot e(bj ect;
import java.util.* ;

public class StockTraderCientStateful {
private static final String JND _NAME = " St ockTrader Hone";

private StockTrader Home hone;

/1 This gets passed to the bean to identify the client
private StockCustonerlD ne = 12345;

/| Represents the returned fromthe buy or sell order
private StockTradeResult resultlLastTrans = null ;

public StockTraderdient()
t hrows Nam ngExcepti on

{
honme = | ookupHone();
}
/**
* Runs this exanple fromthe command |ine.
*/

public static void main(String[] args) throws Exception {

StockTraderdient client = null;
try {
client = new StockTraderClient();
} catch (Nani ngException ne) {
Systemexit(1);
}

}
/**
* Runs this exanple.
*/
public void exanpl e()
throws CreateException, RenoteException, RenpveException

{

[/l Create a StockTrader Stateful object. Note that the
[lcustomer IDis passed to the hone.create()
/Imethod as the first argunent to
/1 Port abl eRenpt eQbj ect . narrow()
St ockTrader Stateful trader = (StockTrader Stateful)
Por t abl eRenot ehj ect . narr ow(hornre. create(ne),
St ockTr ader St at ef ul . cl ass);

String [] stocks = {"LMAA", "1OU2", "DOAP', "RIPP" };

/'l execute sone buys. Note the absence of a client identifier
/lin the call to the business nethods
for (int i=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
System out. println("Buying "+shares+" shares of" +
stocks[i]+".");
resultlLast Trans = trader. buyStateful (stocks[i], shares);
//List out result of this trade
showTr adeResul t (resultlLastTrans) ;

}

}

/'l execute sone sells
for (int i=0; i<stocks.length; i++) {
int shares = (i+1) * 100;

Systemout.println("Selling "+shares+" shares of" +

stocks[i]+".");
trader.sell Stateful (stocks[i], shares);
[lList out result of this trade
showTr adeResul t (resultlLastTrans) ;

}

private void showlradeResult(StockTradeResult str) {

Date now = new Date() ;

Systemout.println("On " + now + str.getStatusMg()) ;

Systemout.print("You traded " + str.get Nunber Traded())
Systemout.println(" shares of " + str.getStockSynbol () +

"\n") ;
}
/**
* Lookup the EJBs hone in the JND tree
*/
private StockTrader Stateful Home | cokupHone()
t hrows Nam ngException

{

/* Lookup the beans home using JNDI.

RM/110P clients should use Portabl eRenot eChj ect

function */
Context ctx = new Initial Context();

try {
bj ect home = ctx. | ookup(JNDI _NAME) ;

return (StockTrader St at ef ul Horre)
Por t abl eRenot ehj ect . narr ow(horre,

St ockTr ader St at ef ul Hone. cl ass) ;

} catch (Nam ngException ne) {

System out . println("Cannot |ocate Hone object"

t hr ow ne;

}
}

. harrow

| <= Prov

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Error handling and debugging JSPs have much in common with the same tasks in regular Java development.
However, the nature of JSPs can make this task much more difficult. The techniques and tools that you have learned
about in this chapter, especially the use of the er r or Page and i sEr r or Page directives, should help you overcome

many of the problems that you will face when handling errors and debugging your JSP pages.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=913197708

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Debugging Techniques

A syntax error in a JSP causes a compile error, with references to code in the servlet, not the JSP. Because JSP
errors rarely reference the true cause, debugging JSPs can be quite different from other debugging you may be used
to. This section provides some often-used techniques to debug JSPs.

Remembering Good Coding Practices

To get a job done within the deadline, even the most meticulous programmer may not follow all good coding practices.
However, diligence following good practices will save you time as you develop JSP pages.

Comment, Comment, Comment!

If JSP authors take the time and trouble to comment their code, they may not make the coding mistakes that cause
many runtime errors. The act of commenting the code often makes you stop and think about what you are coding. By
expressing the intent of the code in human language, it's possible to uncover flaws in our reasoning — flaws that can
result in runtime errors.

The JSP author can write JSP comments (<% - ... - - %), write Java comments in scriptlets and declarations, or
write HTML comments. Java and HTML comments get passed to the JSP translator and eventually end up in the
generated servlet.

All of us have used comments to block out pieces of code in an attempt to isolate the code causing an error, but be
mindful of commenting out code in JSP scriptlets. Sometimes, a scriptlet intermingles static text with Java code.
Combining the Java scriptlet code and static text results in syntactically correct Java, with the static text represented
as out . pri nt statements in the generated servlet. Comment out the wrong piece of scriptlet code and you will

generate all sorts of translation (compile) errors.

The following code is an example JSP construct composed of several scriptlets. It shows a piece of the JSP page
exanpl el. | sp (from Listing 9-1) modified to display square roots in excess of 50 in blue.

<tr>
<t d><% nunber %</td>
<t d>
<%if (squareRootNunber > 50) { %

<%} %

<% squar eRoot Nunber %
<% if (squareRoot Nunmber > 50) { %
</ font>
<%} %
</td>
<t d><% cubeRoot Nunber %</t d>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=320632524

</[tr>

Notice the proliferation of JSP scriptlet identifiers required to generate even a simple change. Commenting out pieces
of scriptlet code while debugging or coding is an invitation to meet a translation time error.

Although Java and HTML comments get passed to the JSP translator and end up in the generated servlet, you can
perform some JSP processing within HTML comments. You can embed JSP expressions within HTML comments
without affecting the layout of the finished HTML page. For example:

<!-- Val ue of |obound paraneter =
<%r equest . get Paraneter("I obound") % -->

You would not see this comment line in the displayed page, but if you viewed the resultant HTML source you would
see:

<!-- Value of |obound paranmeter = 2000.25 -->

You can embed time information in HTML comments throughout your pages if you want to know the order of the JSP
processing — if page A is processed before page B, for example. Once you have fixed your errors and your JSP page
is put into a production environment, such comments should not be visible to the end user. There are two methods of
hiding debug comments from the end user that | will discuss briefly. First, you can remove the code that created the
comments from the JSP pages. This method, while surefire, forces you to add them to the pages at a future time when
debugging. A second method that is more robust is to use a sessi on variable to flag whether debugging comments
should be output. This flag could be turned on or off through a password-protected page so that you could switch to
and from debugging mode as necessary.

Does the Resultant HTML (or XML) Work?

Although your JSPs may generate the HTML (or XML) you desire, the result of the generation may be in error. In other
words, you may be generating HTML that is incorrect. The JSP is generating the incorrect HTML correctly.

Some JSP authors create several HTML pages that model the desired result of the JSP execution, without using their
JSPs. If you have a working end product — one or more HTML pages that you want your JSPs to produce — you may
be in a better position to catch logic errors in your JSPs.

Reloading JSPs and Classes

As you debug your application and find errors, you will see these errors in your JSP pages or Java classes. As you
make changes and test them, you need to be sure that the changes are reflected in the server. By default, your server
may not recompile JSP pages or reload classes that have been changed without being restarted. If you think you've
fixed an error but your changes don't appear to be reflected, try restarting the server. Also, examine your server
documentation to see how you can set it up to reload classes that have been changed and recompile JSP pages that
have been altered.

Using println and log Methods

Often used by practitioners and frowned upon by theorists, intermittent attribute and variable values dumped to output
by using various println and log methods can be very illuminating.

Using out . pri nt | n is quick, requires no real setup or changes to your environment, and is unlikely to introduce any

additional errors in your JSPs. You see the results in your JSP page after execution. However, adding output to the
final, rendered page by using out . pri nt | n will likely alter the presentation. It is not entirely a bad thing that

out . printl n alters the presentation because it makes it obvious for subsequent removal where you coded the
out . printl n statements.

If you want most of the convenience of using out . pri nt | n without the possibility of altering your presentation, you

can direct debugging output to the server. The destination of output depends on your server and your server
configuration. You'll likely need a console window open to catch the output.

In Tomcat, you get a console window by using the standard startup batch files. For Windows environments, remember
to set the command window properties to allow for scrolling or else your output may scroll into nowhere. Some servers
have a startup switch that opens a console window, which will receive output from Syst em out . printl n.

The | og method of class Gener i cSer vl et writes to a server-dependent log file (in Tomcat, the log file is in
TOMCAT_HOME/ docs/ ser vl et . | 0g). All you do to invoke the method is include the invocation in a declaration or a
scriptlet.

The following is an example of the | og function in a JSP declaration:

<%
private doubl e getBound(String bound) {
I og("In method getBound") ;
return Doubl e. par seDoubl e(bound) ;

}

%

Here’s an example in a scriptlet:
<%l og("End of Table Generation") ; %

Because log files typically append output, open the log file after JSP execution and view the results. It's a bit tedious
to open the log, scroll to the bottom, and close the log, but just think of using the | og method as another wrench in

your JSP toolbox.

If you decide to use logging or Syst em out . pri nt | n, you can toggle this debugging information on or off using a
sessi on debug flag. This method, as mentioned in the previous section on comments, will allow you to quickly
transfer from a testing to a production environment with minimal time and changes on your part.

Debugging Concurrency Issues

Developing code that works with concurrent users is tough enough when your application consists of components that
use visible code. Developing working code with components from nonvisible components just makes this more
difficult. Code that is not developed to be thread-safe usually won't be. In addition, problems arising from timing issues
are very difficult, if not impossible, to re-create.

That said, there are a few tips that may prove useful in debugging problems that arise from concurrent access of your
JSPs.

You cannot solve a coding problem unless you can re-create it. The marketplace offers several tools to stress-test
Java servlets, which may be used to create several concurrent requests to JSP pages.

You can include a generous sprinkling of pri nt | n calls that write information identifying the client (session) and the
threads. You can use the following line of code to track the client session:

<% Systemout.printin("Cient Session ID = + session.getld()) ; %

You may use the following line to list the currently executing thread:

<% Systemout.println("Thread Nane = +
Thread. current Thread. get Nane()) ; %

There's always the possibility that the activity of writing output via Syst em out . pri nt| n can introduce additional
timing problems or make the problems that caused the original error more difficult to reproduce.

You can always try to take advantage of a debugger. Since you already use some sort of IDE, and virtually all IDEs
come with a debugger, you probably have a debugger at your fingertips. However, I'm talking about JSP and servlet
debugging here, and not all Java IDEs have support for debugging JSPs. If you set breakpoints and step through the

code and timing is the root of the problem, you'll rarely find the error, because code-stepping freezes the program and
allows you to look at a statement in isolation. The very nature of a multithreaded application is that not all statements
can be viewed in isolation. In short, using a code-stepping debugger is a less-than-perfect solution to a complex
problem. As JSP development becomes more popular, hopefully we will see more robust and useful JSP debugging

Is.
tools m
| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tracking JSP Errors

JSP processing involves several steps, using several different software tools. An error encountered in using any of
these tools may be difficult to track down. In the following sections, | will discuss using the JSP page directive
attributes err or Page and i sErr or Page to handle errors. | also cover the differences between JSP translation

errors, which are coding mistakes, and runtime errors, which may or may not be coding mistakes.

Recall that JSPs use the page directive to set properties of the JSP by way of assigning values to attributes. Two
attributes of the page directive especially applicable to JSP debugging are er r or Page and i sEr r or Page. Also, the

JSP implicit object called except i on is useful in handling JSP errors. Let's go ahead and look at the use and
importance of er r or Page, i SErr or Page, and except i on next.

The errorPage Page Directive Attribute

The er r or Page attribute names a JSP page that handles exceptions not handled in the current page. In the following
coding example, the er r or Page attribute is a relative URL.

<%@ page errorPage="nydir/ nyErrorPage.|sp" %
The virtue of using custom error pages is that your JSP code is not cluttered with handling errors. (Remember that

one of the design goals of JSPs is to separate business logic from presentation details.) Code that handles errors, a
business logic activity, should not be intermingled with code to handle the presentation.

The actual reporting of the error is not done within the page containing the page directive with the er r or Page
attribute set. Instead, the reporting is done in the JSP page named as the er r or Page, or the value of the er r or Page

attribute. The page mentioned should itself use the i sEr r or Page attribute. Before showing an example of the
err or Page attribute in action, let’s first take a look at the i SEr r or Page attribute.

The isErrorPage Page Directive Attribute

The i sErr or Page attribute identifies a JSP page to handle errors. The coding is straightforward:

<%@ page i sErrorPage="true" %

The i sErr or Page attribute defaults to false.

The JSP exanpl el. j sp, for example, generates a table of square and cube roots based on the request parameters
I obound and hi bound. The JSP page directs errors not caught in the page to an error page. Listing 9-1 shows the

code for exanpl el. j sp.

Listing 9-1: JSP example showing use of the errorPage attribute

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=837978814

<% - Tell JSP to redirect uncaught exceptions to errorpageexl.jsp --%
<%@ page errorPage="errorpageexl.jsp" %

<htm >
<head>
<title>errorPage and i sErrorPage Denonstration</title>
</ head>

<body bgcol or =" #dddddd" >

<%
private doubl e getBound(String bound) {
return Doubl e. par seDoubl e(bound) ;
}
%
<%

doubl e | oBound
doubl e hi Bound
doubl e i ncrenment

get Bound(request. getParaneter("l oboun
get Bound(request. get Paraneter("hiboun
(hi Bound - 1 oBound) / 5;

d
dll

))
))

%

<cent er>
Table of Roots from <% | oBound % to <% hi Bound %
<t abl e border=2>
<tr>

<t d>Nunber </ t d>

<t d>Squar e Root </t d>

<t d>Cube Root</td>
</[tr>
<%

doubl e nunber, squareRoot Nunber, cubeRoot Nunber ;

for (int num DX = 0; num DX < 6; num DX++) {
number | oBound + increnent * num DX ;
squar eRoot Nunber Mat h. sqrt (nunber) ;
cubeRoot Nunber Mat h. pow(nunber, 0.3333) ;

%
<tr>
<t d><% nunber %</td>
<t d><% squar eRoot Nunber %</t d>
<t d><% cubeRoot Nunber %</t d>
</tr>
<%
}
%
</tabl e>
</ body>
</ htnml >

The page directive at the beginning of Listing 9-1 directs exceptions to the JSP page er r or pageex1. j sp. Notice
that the routine get Bound does not catch any exceptions, notably the Nunber For mat Except i on. Any exceptions
will be directed to the JSP page er r or pageex1.j sp

Figure 9-2 shows what a faultless execution of the JSP page exanpl el. j sp looks like.

Bl [e Fpsde ook e |

Seghiewint] vy v s ML rmaepien (ot by e | pp ke TIE Sdbrs I = e
gl e i ra a | 3 £ :
Fack =it i Hona Sewch e Hatms [T

Table of Roots from 2000.25 to 3000.0

Humber Square Root Cubw oot
00,25 bk, P21 SASATEDA TS 12, S0 S 18406 T 26T
F00. T S DG SSENET TS 1 3 00T 21 pasLi] 4
20015 43 89 32ST6IEEITS

3. 30471 2] 31 46

E:lh- 1 ok
Figure 9-2: Display of examplel.jsp without errors

Notice the presence of the request parameters | obound and hi bound on the browser location bar.
Change the value of hi bound from 3000 to 3000Z. The new value for hi bound will generate a

Nunber For mat Except i on. Because there is no code to catch the exception, you expect the processing to be
directed to the error page. Figure 9-3 shows what you will see.

(e [0 e sl [osh el iﬂ

Beghvmint] v em sb WL arpies Soges b i | pop e rrade TUE b DI = ea
T e i r 2 L&l X £ 2
Fack tar [Hima Sewch e Hanzg [

The Following Error Occurred in examplel.jsp .

on Thu May 17 15:11:11 CDT 2001

Coll 4-4444 and report the sbowe line inred Bxc = jpave Larsg HumbasformatEsception

J000E
- - H
jeit= ok e

Figure 9-3: Display of examplel.jsp with errors

Figure 9-3 is output of the JSP page er r or pageex1. j sp. Recall that er r or pageex1. j sp is the value of the
attribute er r or Page of the page directive of exanpl el. j sp. Listing 9-2 provides the code for er r or pageex1. j sp.

Listing 9-2: Code for error page errorpageexl.jsp

<% - Tell JSP that this is an error page --%
<%@ page i sErrorPage="true" %

<htm >

<head>

<title>Using an Error Page</title>
</ head>

<body bgcol or =" #dddddd" >

<P>

The Following Error Occurred in exanpl el.jsp

on <% new java.util.Date() %

<hr >

<%exception %

<hr >

<p>Cal | 4-4444 and report the above line in red.

</ body>
</htm >

The error page can contain a list of probable causes, a list of contacts, e-mail links, or any other useful information.

An error page identified by the i sEr r or Page attribute can handle errors from multiple pages. For generic error
reporting, you might have a small set of core error pages with a few others to handle specific cases.

Caution The server output buffer is flushed prior to display of an error page. If the aut oFl ush attribute of the
page directive is set to true, the display of the error page may cause an error.

The exception Implicit Variable

You may wonder if you can catch exceptions yourself and forward error-processing to a JSP page using the
j sp: f orwar d action, instead of using the er r or Page and i sEr r or Page directives. Well, you can. Any JSP page

can be used to handle exceptions. However, only JSPs with the i SEr r or Page attribute set to true have access to the
implicit variable except i on. During the rest of this discussion, when we talk about JSP error pages, | will be referring
to JSP pages with the i sErr or Page attribute set to true.

Notice the following statement from Listing 9-2:

<%excepti on %

The expression <%= excepti on % yields the following output (in this example):

j ava. | ang. Nunber For mat Excepti on: 3000Z

The except i on variable represents the Thr owabl e object that caused the JSP container to invoke the page named

as the error page. This variable exists only for the duration, or life, of the error page. You can hold on to the variable
by saving its value as an attribute as follows:

session.setAttri bute("errorVarPageex1l1", exception) ;

Table 9-1 shows some handy JSP expressions using the except i on variable.

Table 9-1: JSP Expressions Using the exception Variable

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=921275931#wbpch09fP133

Expression Meaning

<Y%excepti on> Displays a description of the exception.
<%exception. get Message() % Displays the message associated with the exception.
<%exception.getlocal i zedMessage() % Displays a local version of the exception. If

localization parameters are not set,
exception. getl ocal i zedMessage returns the

same output as except i on. get Message.

<Y%exception. printStackTrace() % Displays a stack trace.

Remember that JSP error pages have access to the implicit variable except i on. The implication is that non-error
pages do not have access to this variable. The truth is you can reference the except i on variable as an attribute of
the implicit r equest object. You can think of the except i on variable as a convenient reference for the value of the
request attribute j avax. servl et.j sp. JspExcepti on.

JSP Translation Errors

As you should know by now, JSP pages are translated into Java servlets. When you introduce syntax errors in your
JSPs, you will generate compilation errors. Compilation errors will not be detected by error page redirection. Put
differently, you need functioning, syntactically correct JSP pages to use error pages.

The default output of a JSP translation/compilation error is server-dependent. The output should strongly resemble
what you would see if you compiled the generated servlet directly. Refer to Figure 9-1 to see an example of a screen

displayed in response to a translation error for the Tomcat Web server; your server should display something similar.

Your Web server should also generate log files describing, among other things, translation and runtime activity. You
should reference your server’'s documentation and locate these log files, as one of them may provide details on
translation (compile-time) errors.

Recall that JSPs are loaded and translated when first referenced. Subsequent references do not cause a JSP page
retranslation; the server kicks off another thread and loads the existing copy of the previously translated servlet. The
JSP author can compile the JSP page and save the results of the compilation on the server. If the author compiles the
JSP page ahead of time, the first user to access the JSP page does not have to wait for JSP page translation. In
essence, the user is accessing a servlet.

Compiling your JSP pages ahead of time will not only save the end-user time when pages are first accessed, but the
author is assured that the pages are syntactically correct. Many servers have tools that enable you to compile the JSP
page; Tomcat has the JspC tool located in the bin directory.

When repairing translation errors, you should not make changes to the generated servlet directly. Even though you
know what you are doing, the next person may not. More important, the next time the JSP is compiled, the servlet will
be regenerated, causing any changes to be destroyed.

JSP Runtime Errors

Sadly, the execution of syntactically correct JSP pages can still generate runtime errors. Because JSP runtime errors
are essentially Java runtime errors, you can use Java exception handling mechanisms to catch and handle errors. In
particular, you may include t r y/ cat ch blocks in Java scriptlet code and methods coded in Java declarations.

Within t ry/ cat ch blocks, you cannot easily use the j sp: f or war d action to redirect activities to another JSP page.
The following syntax is not correct:

http://www.unltded.com/viewer.asp?bkid=2878&destid=198#198

<%

try {
/] Some Java code

}

catch (soneExceptionC ass sexobj) {
<j sp:forward page="sonePage.|sp">

}
%

Instead, use the sendRedi r ect method of the class j ava. servl et. http. H t pSer vl et Request to redirect JSP
processing within a t r y/ cat ch block, as shown in the following code:

<%

try {
/] Somre Java code

}

catch (soneExceptionC ass sexobj) {
response. sendRedi rect ("sonePage. | sp") ;

}
%

Of course, you can also use the JSP err or Page and i sErr or Page attributes of the page directive, as shown
earlier.

JSP Exception Classes

The two exception classes specific to JSP are JspExcept i on and JspEr r or . You encountered these classes in
Chapter 7, "JSP Tag Extensions." JspExcept i on is a subclass of Except i on, and JspEr r or is a subclass of
JspExcepti on (not class Er r or). Both JSP exception classes may be found in the j avax. servl et . j sp package.

Note Unless you are writing custom tag libraries, you're not likely to use these exception classes.

Now that you have a feel for the nature of the errors you'll encounter as you author JSP pages, let's discuss how to
track the errors down.

Top

[<= Prov_ | Next —_

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining a JSP Error

The laws of thermodynamics state that energy cannot be created or destroyed; it can only be transformed from one
form into another. You can make an analogous statement about JSP creation. Yes, JSPs do lots of work for you.
Think of all that effort — or energy — you can save by not having to code servlets to generate dynamic content.
However, work not done by you is transferred to the JSP translator. The JSP translator performs the task of changing
the JSP page into a servlet. While this process simplifies your development work, it can also, at times, make the
source of an error in a JSP more difficult to find.

JSPs get translated into servlets. Often, your diagnostics will refer to activity in the generated servlet. For this reason
alone, you should have a good handle on Java servlets to make advanced JSP development go more smoothly.
Although JSPs are touted as a Web page designer’s tool, a JSP author will have an extremely difficult time tracking
down errors if he or she doesn’t have a programming background or the help of somebody with one.

The following JSP syntax error generates a runtime error, which generates the error page shown in Figure 9-1.

iy boraThms S ¢ gorpiem, ap chapie M gngmple T pup ek g s SEE D Ly grol= TEE . BBy g ndgre
Bl [B fem Fpwie Lk el &)
Aghiwnn] v e shes WL rearpien g b ey | pp b TIE i EE = s
- - o3 i 3 a2 | x £y :

Fack e [[Sewch e Hatms [

Error: 500
Location: fexamples/jsp/chapterd/examplel.jsp

Initermnal SEmAet Ervoe

. s el . JRl S0 SRR DS T LG Db DS 10 OOl L O LaAF DO JIFSLCCESaN 1D ol B LoD &l Oan Bons
deprghin pabowsd - geiBowsd| prgenpd gt Farmemeieg (7|l i

Bl e B e Yy e e, _BOB0L] Fenamg bed 000 [Jép _DO0T Eclkapfat_(ENI1%_0000 Dendmp e _o000|_D003e
doubie hsbousd v gecBound| cegquast.getRarssscers “hibcasa® 0 | 2

= ACEECE

Wi SO apsche. Jasper . compi e Compl bar . comp i D iComp i der . Jeva B34
WL A R B B plaid 3, el Sl TR L EE]|

=
ppdacy LacRragper . losd{fNecernasp iJerdaryvies . puv
SRR LEE M A b

|SEpRE T IR, JaAsR TN
Wi eq. by, UL rplanvid anvicedrpl Liwidepery jarema kB
L B AR, RAGET . EECV IFL SRS BTV (A EEEETY LT . hEwal S uﬂ

4l
F]""" I e
Figure 9-1: Typical JSP error screen

<0
doubl e | oBound = get Bound(request.getParaneter("l obound"))

%

The incorrectly coded JSP declaration should be coded as a JSP scriptlet. The correct syntax is as follows:

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=199364256

<%
doubl e | oBound = get Bound(request.getParaneter("lobound")) ;

%

Notice that the line numbers and the file references in the stack trace in Figure 9-1 do not refer to the JSP page but to

the contents of the generated servlet (although the file location points to the JSP page). In addition, nothing in the
diagnostic directly discusses JSP declarations or JSP scriptlets.

Most JSP-enabled servers have an option that allows you to save the generated source code. Hunt that option down
and switch it on now. You'll have a hard time finding and solving problems unless you can see the actual generated
servlet source code.

Note Tomcat uses a directory called "work" under TOMCAT_HOME where intermediate files, including compiled
JSP servlets, are stored.

JSP pages usually generate HTML, possibly combined with Javascript, that is returned to the client's browser. Any
page with more than one programming languages can be quite confusing to read. Finding errors in these situations
can be challenging. Your JSP pages may be generating HTML or scripting code that contains errors. Given the
interesting ways different browsers render HTML, you can have resulting pages that render properly on one browser
but fail to render on a different browser.

While multiple clients may access the same JSP pages, concurrent access opens up a set of debugging issues.
During debugging, you'll need ways of identifying different clients and different threads. I'll have more to say about
debugging when there are multiple (concurrent) clients later in this chapter.

Top <

| <= Prov_ | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you learned about using sessions in your JSP pages. Sessions are a convenient way for an application
to share data among multiple JSP pages during the same client session. However, they are resource intensive, so
remember to examine if you need to use them, depending on the needs of your application. In conclusion, sessions
are a powerful tool that overcome the stateless HTTP protocol, thus making our Web applications more robust and
user-friendly.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=337348285

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary of Session Methods
Table 5-2 is a list of methods you can use to manage and manipulate the session object. Most of the method names

are self-explanatory. Most of these methods throw an | | | egal St at eExcept i on when invoked from an invalidated
session object. Unless otherwise specified, the method throws the previously mentioned exception.

Table 5-2: Session Methods

Method | Description

hj ect getAttribute(String) Fetches an object that was previously stored in the
session object with set At tri but e.

void setAttribute(String, Object) Assigns a value to a session object. Returns null if
the property does not exist in the session object.
Also, you cannot store primitive types in session
objects; you need to use a wrapper class to
generate an object representation before saving to
the session object. Any object listening for changes
to the session object has its val ueBound method

executed.

Enuneration get Attri buteNanes Returns the list of objects stored in the session
object.

| ong getCreationTi me Returns the number of milliseconds since January
1st, 1970, since the session was created.

String = getld Returns the session ID.

| ong = getLast AccessedTi ne Returns the number of milliseconds since January

1st, 1970, since the session was last accessed.

i nt get Maxl nactivel nterval Returns the number of seconds of inactivity that
must occur before the session times out. When this
method returns a negative number, the session
never timeouts.

voi d set Maxl nacti vel nterval (int) Sets the number of seconds of inactivity before a
session timeout.

void invalidate Removes all objects stored in the session object and
invalidates the session. Any object listening to
changes in the session object has its

val ueUnbound method invoked.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=813486175

bool ean = i sNew

Returns true when a session object is created and
known to the server but not known to the client; false
otherwise. If your application relies on cookies to
track sessions and a client has disabled cookies,

i sNew always returns true.

voi d renoveAttribute(String)

Removes the object referenced by the property
name argument from the session object. All objects
listening to changes in the session object are
notified, and their respective val ueUnbound
methods are executed on the server. If the property
named in the argument does not exist in the session
object, nothing happens (not even the invocation of
the val ueUnbound methods).

You may see session methods put Val ue, get Val ue, and get Val ueNanes. These three methods have been

deprecated since the 2.2 release of the Java Servlet API.

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Understanding Sessions

Simply put, a session is a series of client requests and server responses such that the requests and responses are
somewhat dependent on one another. Put differently, a session is a group of requests and responses coming from
and going to the same client over a continuous period of time. A session is the difference between a simple exchange
of information and an extended conversation. Sessions make possible complex Web transactions, such as electronic
shopping cart implementations and interactive data analysis (fetch data, fine-tune selection based on data returned,
and so on).

The JSP/servlet implementation of a session is an object called, appropriately enough, a session object. The session
object is available to JSPs and servlets. The JSPs and servlets use the session object to store and retrieve data
relevant to the ongoing session.

HTTP, the major Internet protocol, is stateless. HTTP sends a client request to a server. The server processes the
client’s request and uses HTTP to send a response back to the client. HTTP works at the single request/response

level, meaning that each request is handled independently of any other. Your application consists of independently
sent HTTP requests and responses to these requests.

Note You may have heard about HTTP 1.1, which can use a persistent connection. The basic idea is to group
requests and send them as a single transmission, thereby avoiding some of the overhead incurred by
initiating several transmissions.

No one would fault you for thinking that a persistent connection somehow implies a session as discussed
previously. However, the HTTP 1.1 persistent connection involves network transmissions and has nothing to
do with the server maintaining a connection with the same client.

As previously mentioned, HTTP is a stateless protocol. You have to graft JSP and servlet features and capabilities
atop HTTP to create, maintain, and track sessions. In short, these features are methods available to your JSPs by
accessing the aforementioned session object.

JSPs use the implicit session object to track the requests of a single client and to distinguish one client from another.
Consider an application used concurrently by multiple clients. Each client progresses through a series of steps to
complete a transaction. A good, if not overused, example of such a multi-step transaction is an electronic shopping
cart. A client must complete steps A, B, and C before proceeding to step D. Meanwhile, other clients are progressing
through the same steps. By using sessions, the application is able to identify what clients are doing and what steps
the clients are executing. Imagine the chaos if an application mixes up clients’ shopping carts!

The Session Life Cycle

This section discusses how a session is created, how the client and server use the session to maintain state and
communicate, and how a session dies.

Creating a Session

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=954633440

The client requests the display of a Web page from a server. The request causes the server to issue a call to the

get Sessi on method. The get Sessi on method requests that a session be established for this client-server pair. The
successful execution of get Sessi on results in a returned object, the session object, mentioned in the previous
section, as an instance of class HTTPSessi on.

Recall that JSPs use a group of implicit objects, one of which is the session object. The session object is implicit
because your JSP code need not explicitly create the session object. Having immediate access to the session object
through a well-defined interface is one advantage of using JSPs. Another way of saying that JSPs automatically have
access to the session object is saying that JSPs automatically participate in sessions.

Note Although JSP pages by default have access to the implicit session object, you can override the default by
coding the following page directive:
<%@ page session="fal se" %

The session object holds data relevant to the session. However, you still need a mechanism for identifying the client
among possibly thousands of clients. The solution is for the server to generate a unique session ID. The server
returns the session ID to the client by using a cookie (if the browser has cookies enabled) or by appending the session
ID to a URL (called URL rewriting). However, there is no session connecting the client to the server until the client
returns the session ID back to the server by issuing a new request for some server resource.

Note If the browser (client) has disabled cookies or the server does not support URL rewriting, no session ID is
returned from the client to the server. Now, every JSP page that requests some server resource causes the
server to generate a new session object. That means information does not pass between pages.

Your JSP pages or servlets never have to look at the session ID. The format of the session ID is dependent on the
Web server. Actually, the session ID is the sole piece of information identifying the session that is presented to the
client.

Client-Server Interaction During a Session

Every time the client requests some resource available from the server, the client passes the session ID as part of the
request. The server uses the session ID to access the requested resource. Think of the server maintaining a collection
of dictionaries or hash tables — one for each client — and the session ID is the entry into the dictionary/table for that
client. Figure 5-1 depicts interaction between a client and a server during a session.

Client A

— session.putAttribute{"ob) 1 Name®, objiValue];
myDbj= sessiongetAttribute]"objiName");
i

| objdalue | ‘r_,.-'
HH._ 2) . -//
ATO1X, AT,
“abj 1Mame”, objiValue "objiMame” 1

CeLan albject, Client &

T

SessionlD & —= | "obj1Name" "obj1alue"

Aonx ; :
“obj2Name” “objValue"
“objiMName® "ok XWalue®
“obj4Mame” "abj4Value"
“obSMame” "ok SValue”

Sewsion object, Client B

Serviet Contaimer

Figure 5-1: Client-server interaction during a session

The server has established a session with client A by issuing a get Sessi on method invocation. (The call to
get Sessi on is not shown in Figure 5-1.)

Note The session ID in our example has a value of A101X. The value used for the session ID is purely for
illustrative purposes. For example, a session ID returned by the Tomcat server by the call to get Sessi on in
a JSP page by coding the expression <% r equest . get Sessi on % is
or g. apache. tontat . sessi on. St andar dSessi on@df a45.

The session ID for client A is different than the session ID for other clients. An important point is that the JSP page
need not explicitly use the session ID when communicating with the server. You do not code the session ID as an
argument to JSP or servlet methods.

Figure 5-1 depicts the session object as a table, with the left column containing names and the right column containing

values. In JSP and servlet parlance, the left column contains the session object’s attributes and the right column
contains the attribute values.

The method invocation put Attri bute(attri buteNane, attributeVal ue) places the name-value pair in the
session object. Figure 5-1 shows the name-value pair together with the session ID being transmitted to the server.
The server knows to access the session object for client A because of the session ID sent with the request.

In a JSP page, you can code the put At t ri but e method as a scriptlet:

<% sessi on. set Attri but e("nanmeLuLu", (Qbject)"LuLu"); %

Figure 5-1 also shows a client (JSP page, for example) retrieving the value of a previously saved session attribute

named obj3Name. Again, the session ID gets sent to the server along with the attribute name. The session ID for
client A points the way to the session object stored for client A. The server reacts to the client request by accessing
the session object and returns the value of the requested attribute.

In a JSP page, you can code the get At t ri but e method invocation in a scriptlet or expression:

<% session.getAttribute("naneLuLu") %

Your JSP pages and servlets get and set attribute values for the life of the session. The session object provides
access to the attribute values and the session ID provides access to the session object.

Note You may see calls to the methods get Val ue and set Val ue in some JSPs or servlets that purport to fetch
or change session attribute values. The get Val ue and set Val ue methods are deprecated as of Java
Servlet 2.2, replaced by get Att ri but e and set Attri but e.

In short, your JSPs and servlets access and change session object data by using set At tri but e and
get Attri but e methods.

Saving Session Data

Session data is saved for the duration of the client connection to the server. When a client logs off a site, the session
data generated during the client visit would normally be destroyed once the client logged off the site. If you have a
need to save client data, you should use a storage-based solution, such as using a database or using cookies, to save
the data.

Using Cookies to Save Session Data

A cookie is a piece of data placed on a client by a server. Cookies were developed for the express purpose of
providing a mechanism to save session data. Cookies can be temporary (for the life of the session) or semi-
permanent (days or months).

Cookies have several limitations that make them less than perfect as a session tracking mechanism. Browsers are
required to accept 20 cookies per site, 300 cookies per user and can limit the size of the cookie to 4K.

One severe limitation in using cookies to store session data is that the client has control over the storage of cookies
on the client machine. If the client turns cookies off, the application that relies solely on cookies to save session data
cannot do so. That's why applications that rely on sessions implement multiple session tracking mechanisms.

You can use cookies by invoking the methods in the class j avax. servl et . htt p. Cooki e. Table 5-1 lists some of
the methods available to JSPs (and, therefore, to servlets) to use cookies.

Table 5-1: Methods Used to Manipulate Cookies

Method Description
oj ect cl one Returns a copy of the cookie.
String get Comrent Returns the comment set for this cookie with the

set Conment method. If no comment exists,
get Commrent returns null.

voi d set Comment (String)

Specifies a comment that describes the cookie's
purpose.

String getDonain

Returns the URL set for this cookie with the
set Domai n method.

voi d set Domai n(String)

Specifies the domain where this cookie should be
presented.

i nt get MaxAge

Returns the maximum age for the cookie, possibly
set by set MaxAge. The default value of —1 means
the cookie lasts until the client closes the browser.

voi d set MaxAge(int)

Sets the maximum age for the cookie in seconds.

String get Name

Returns the name of the cookie set with the cookie
constructor.

String getPath

Returns the location of the cookie on the server set
by the set Pat h method.

void setPath(String)

Specifies a path where the client should return the
cookie.

bool ean get Secure

Returns true when the browser sends the cookie
over a secure protocol, false otherwise.

voi d set Secure(bool ean)

Indicates whether the cookie should be sent using a
secure (HTTPS or SSL) protocol.

String getVal ue

Returns the value of the cookie set with the
set Val ue method.

voi d setValue(String)

Specifies a value for the cookie.

i nt getVersion

Returns the version of the protocol, 0 (original) or 1

(Netscape) set with the set Ver si on method.

void setVersion(int) The version of the cookie protocol this cookie

compiles with.

Listing 5-1 shows adding a cookie in a JSP and listing the names of all cookies.

Listing 5-1: Adding a cookie and listing all cookies in a JSP

<htnl >
<head>
<title>Cookies in JSP</title>
</ head>

<body bgcol or =" #dddddd" >

<%

/] Create a new cookie and add to the rest

/ /" Nane", "Val ue"

Cooki e ch5Cooki e = new Cooki e ("Ch5Cookie", "Chapter 5");

/1 This cookie will persist for 1 minute

ch5Cooki e. set MaxAge(60*2) ;

ch5Cooki e. set Conment ("This is a test Cookie for Chapter 5") ;
r esponse. addCooki e(ch5Cooki €) ;

/11

/I Loop over all cookies, printing out sone cookie info
Cooki e aCookie = null ;

Cooki e[] all Cooki es = request. get Cooki es() ;

for (int cIDX = 0; cIDX < all Cookies.length; clDX++) {
aCooki e = al |l Cookies[cIDX] ;
out.print("Cookie # " + cIDX + ": Nane
out.print(" Val ue

" + aCooki e. get Name()+ "
") ;
" + aCooki e. getVal ue()+ "
") ;

}

%
</ body>
</htnl >

To add a cookie, you instantiate a cookie object and add attributes to the cookie followed by invoking the addCooki e
method from the r esponse object.

Class cooki e has no method to access a cookie by nhame. The technique is to grab all the cookies by invoking the
get Cooki es method from the r equest object. Loop over the array of cookies and use cookie methods to extract the
desired information.

As an aside, note the use of the implicit out object in the scriptlet to generate HTML output. Figure 5-2 shows the JSP
page in Listing 5-1.

Figure 5-2: JSP page with cookie information

Terminating a Session

The session can be terminated by a client logging out (assuming the client had to log in), by a timeout (period of client
inactivity), or by an explicit call by the client or server of the session method i nval i dat e. The session object is
tagged for garbage collection after the session terminates.

Should All Your JSPs Participate in Sessions?

You may not want to use the session object. Think about it — the session object allows a client and a server to have
access to the same data, the data stored in the session object. If you do not need this requirement, and you do not
need for the client and server to share some data, then you may not need to establish a session.

Later, you'll see that several JSPs can access the session object. If you don’t want several JSP pages to have access
to the same information, you probably do not need to establish a session.

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fg0502_0.jpg&image_id=8&previd=IMG_8&titlelabel=Figure+5-2%3A&title=JSP+page+with+cookie+information

Recall that JSP participation in sessions (JSP access to the implicit session object) is the default behavior. The
pertinent question is whether or not you should, at times, squelch the default behavior of JSP session participation? In
other words, is there a reason why sessions are not good for your Web application?

The answer is that sessions do, indeed, exact a performance penalty on your application. The main performance
penalties include use of memory and the amount of time and server resources required to access and manipulate the
session object. Remember that no server is an island; think of all those other clients out there hungry for server
resources. If your application has no need of sessions, merely code the page directive with the session attribute set to
false. If you try to access the session object in a page that isn't participating with sessions, you receive a fatal error
from your JSP container.

Sharing Data with Sessions

As previously mentioned, one good use of sessions is to share data with a server and a client. The session object with
the object’s associated data, is known to all JSPs used by a client during a session. If JSP page A invokes JSP page
B, JSP page B has access to data in the session object established by JSP page A because JSP pages A and B are
of the same session.

Listing 5-1 shows a JSP page that has references to the session object and a link to another JSP page. The
references to the session object are in italics.

Listing 5-2: JSP page A with references to the session object

<% - Tell JSP that this page renders HTM. --%
<%@ page content Type="text/htm" %

<htm >

<head>

<title>Show Session Data Across JSP Pages</title>
</ head>

<body bgcol or =" #dddddd" >
Sonme Session Data: <p>

<p>Sessi on = <% request. get Session() %</ b>
<p>Session | D = <% session.getld() %

<P>Session Create Tine = <%sessi on. get Creati onTi me() %</ b>
<P>Sessi on Last Access Tine =

<% sessi on. get Last AccessedTi me() % </ b>
<P>Sessi on Kept Open (alive) Wthout |Inputs For

<% sessi on. get Maxl nacti vel nterval () % </ b>Seconds
<P>Adding 100 to the tine the session is Kept Open (alive) Wthout Inputs.

<% sessi on. set Maxl nacti vel nterval (

sessi on. get Maxl nactivelnterval () + 100); %
<p>Set session attribute nameLuLu to string "LuLu"

<% sessi on. set Attri but e("nanmeLuLu”, (Cbject)"LuLu"); %

Cick Here for Next JSP Page

</ body>

</ htm >

Figure 5-3 is the page displayed from the JSP code in Listing 5-2.

|1: = e -.-'E ni'L r-g'. S.En r.._:in i
Agdress (0] kg o skt BRI e bt g T Fobpt et b il = B
Some Sasslon Data -
Sesslon = orgeapadhe, tomcat, session, StandardSession@4fdaZc
Sesslon [0 = Gr8zwmtl2]

Session Create Tims = 290023660740

Session Last Aoccess Time = 990024721850

Session Kept Open {alive) without Inputs For 1600 Seccnds

bdding 100 to the time the sesasion is Kept Open (alive) Without Inputs

St session attribute namelulu B strirg “LuLu®
- L
B Dors £y Lot miaret

Figure 5-3: The JSP page resulting from the code in Listing 5.1

Recall that JSP pages, by default, participate in sessions. If the JSP page that would be displayed when the user
clicksonthe link dick Here for Next JSP Page does not have a page directive that denies session

participation (<%@ page session="fal se" %), the JSP page has access to the session object.

When you have multiple JSP pages accessing the same objects within the session object, you may have to pay
special heed to synchronization issues. JSP does not help you here — you must tend to such issues yourself. You
also may have to tend to changes in the session object, which is covered in the next section.

Tending to Changes in the Session Object

Because the session object may be shared among all servlets and JSPs in a client’s session, the objects in your
application may need to know when objects are added, removed, or changed to the session object. Fortunately, the
Java servlet API provides for an event-listener mechanism familiar to Java programmers such as you.

When a class implements the j avax. servl et. http. Ht t pSessi onBi ndi ngLi st ener interface, the objects

instantiated from the class are notified of changes to the session object. We say that an object is bound to a session
when the object implements the interface. When the application issues a set Attri but e orrenoveAttri bute

method call, the bound objects are notified and can take action. One common use is to allow objects to save their
state when the user, or application, is about to terminate the session.

The Ht t pSessi onBi ndi ngLi st ener interface has two methods:

public abstract void val ueBound(Htt pSessi onBi ndi ngEvent hshbe)

An object implements this method to be notified of additions to the session object by use of the set At tri bute
method.

public abstract void val ueUnbound(Ht t pSessi onBi ndi ngEvent hsbe)

An object implements this method to be notified of removals from the session object by use of the r enoveAttri but e
method.

Invoking ValueBound and ValueUnbound

Here’s how val ueBound and val ueUnbound get invoked based on session object activity. First, you create an
object from a class that implements the Ht t pSessi onBi ndi ngLi st ener interface:

public class C assFor M/Obj inplenents
Ht t pSessi onBi ndi ngLi st ener

Cl assFor yObj nmyQhj = new C assFor MyQbj () ;

Next, you bind the object to the session using put At tri but e:

sessionObj ect.setAttribute("Attri bName", nmyQoj) ;

After execution of the put At t ri but e method, the server executes the implementation of val ueBound for object
ny Qoj .

When the application takes some action that causes the removal of object ny Qbj , either by session termination using
i nval i dat e or removing the attribute using r enoveAt t r i but e, the server executes the implementation of
val ueUnbound for object ny Qbj .

Top <

| <= Prov_ | Noxt =

Client A

— session.putAttribute("obj1Name”, obj1Value);
myObj= session.getAttribute("obj3Name");

obj4Value
- /
AT01X, AT01X,
"obj1Narme", obj1Value "obj3Name"
vy Session object, Client A
Session|D A —| "obj1Name” "obj1Value”
A101X ; :
"obj2Name” "obj2Value”
"obj3Name” "obj3Value”
"obj4Name” "obj4Value”
"obj5Name” "obj5Value”

Session object, Client B

Servlet Container

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 5: JSP Web Sessions

Overview

Suppose that you encounter a Web site that looks interesting and you want to explore it. Before you proceed, the site
requests that you provide some information. You dutifully enter the requested information and click a link on the site,
but then the site asks you to enter the same information you entered a few screens earlier. In disgust, you move on
and find another interesting site. As with the previous site, the second site also requests that you enter information.
You comply, click a link, and proceed to explore the site unfettered. Unlike the first site you visited, the second site
“knows” who you are and recalls the previously entered data. The programmers of the second site have established a
way for the site to remember who you are.

If you, the Web applications developer, want your application to remember previous visits by clients, you have to add
something extra to your Web application called Web sessions.

This chapter describes how you implement Web sessions with the help of JSP features. You can read about Web
sessions in general and JSP support for Web sessions in particular. This chapter also includes several JSP pages that
implement JSP Web session support.

Top <

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=814358501

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You've covered a lot of ground in this chapter! You've read about using static content in your JSP pages. You've also
looked at the different types of JSP tags, including those that are programmable and those that are directives. We will
be able to combine these elements to create working applications once we've covered Web sessions and how to use
JavaBeans with your JSPs in the next two chapters.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=659931002

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Implicit Objects

You, the JSP programmer, have access to several predefined objects known as implicit objects. Some of these
objects correspond to the value of the scope attribute for the useBean action described previously. Others represent

the request and response objects for the generated servlet. Because the implicit objects are objects, they have scope
like other Java objects. Table 4-4 lists the essential details of the JSP implicit objects.

Table 4-4: JSP Implicit Object Scope and Descriptions

Object Name | Scope | Description

application Appl i cation Represents the servlet context, or where the JSP is
executing. The application object is an instance of class
j avax. servl et . Servl et Cont ext .

config Page Represents the servlet configuration. Object methods
enable you to store and retrieve initialization data. These
objects are instances of the class

j avax. servl et. Servl et Confi g.

exception Page Represents a Thr owabl e object. Only JSP pages that
setthe i sErr or Page attribute to true define this implicit
object.

out Page Represents the output sent back to the client browser.

The out object is an instance of
javax.servlet.jsp.JspWiter.

page Page Represents the current JSP page. The page object is an
instance of class Obj ect and can be referenced by the

Java keyword t hi s.

pageCont ext Page Represents the current JSP page context. This object is
an instance of class
j avax. servl et .j sp. PageCont ext .

request Request Represents the request coming from the client for
processing by the JSP page. The request object is an
instance of class j avax. servl et. Ser vl et Request .

response Page Represents the response sent back to the client browser,
generated by the servlet derived from the JSP page. The
response object is an instance of class

j avax. servl et. Servl et Response.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=390882188

sessi on Sessi on Represents the session created for the client. The
sessi on object is an instance of class

javax.servlet. http. Htt pSessi on.

Listing 4-7 shows a JSP page that accesses some of the methods in some of the implicit objects listed in Table 4-4.

Listing 4-7: JSP showing some implicit object methods

<%@ page content Type="text/htm" %
<ht m >

<head>

<title>nplicit Variable exanple</title>
</ head>

<body>

Server Info is:

<% application.getServerinfo() %

Host Nanme: <% request. get RenoteHost() %
Session ID: </ b><% session.getld() %

</ body>

</htm >

Notice that you need to reference only the object. Figure 4-2 shows the resulting page shown in Internet Explorer.

2 Imphicil ‘Warlable pnemple Biresel inlninet Explone

o D8 fe Fpoies [uk Hee i
R | | a1 s | | K | =
Bach. thap g iy Y B prming ek,

-ﬁll'l'll-l-'_' [LERESE BT o PR TR SRR AT TS) _‘] i

: ; =

Server Info is:

Tomcal Web Server3 2 (Ainal) (5P 1.1; Serviet 222; laes 13000 Wirdow

v v w G Mirodyatema [

l‘t;fl-':l.h-:ﬂlll.': i ' Session 10z BlEzwenl21

- . =,
e s Lo P
Figure 4-2: Internet Explorer screen showing page generated by Listing 4-7

For details on the supported methods attached to the implicit objects, refer to the appendixes or your Java
documentation for the classes mentioned in Table 4-4. For example, to determine what methods are attached to the

r equest object, reference the documentation for class j avax. servl et . Ser vl et Request .

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP I by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Beans in a JSP Page

Now that we've examined what JavaBeans are in the first half of this chapter, we are going to look at how we can use JavaBeans in our JSP
pages. There are three important JSP actions required to interact with beans in your JSP pages. The jsp:useBean action is used to make a
JavaBean known to your JSP page. The jsp:setProperty and jsp:getProperty actions are used to change a bean property and query a bean
property respectively.

Here’s a JSP action that makes the calculator bean shown in Listing 6-1 known to a JSP page:

<j sp: useBean i d="Cal cBean" cl ass="cbean. Cal cBean" />

The above JSP action states that a JavaBean called Cal cBean in package cbean goes by the name Cal cBean when referenced in the JSP
page. The i d attribute does not need to be the same as the class name.

As noted in Chapter 4, the j sp: useBean action has the following format:

<j sp: useBean i d="beanl nst anceNane" cl ass="cl assNane"
scope="beanScope" type="cl assType" />

You can read more about the scope and t ype attributes later in this chapter. To use the bean shown in Listing 6-1 now, you only need the i d
and cl ass attributes.

To refer to the properties of Cal cBean, you use the j sp: get Property and the j sp: set Proper ty actions respectively. For example, to refer
to the oper at i on property, you code:

<j sp: get Property nane="Cal cBean" property="operation" />
Here, the value of the nane attribute must match the value of the i d attribute in the j sp: useBean action.

To change the value of a property of our Cal cBean from a JSP page, code a j sp: set Property action as follows:

<j sp: set Property nanme="Cal cBean" property="operation" val ue="*" />

Variations on a Theme

You can use other JSP constructs to access bean properties, such as JSP expressions. For example, the following expressions also read and
write the oper at i on property of our Cal cBean:

To read the value of the bean property:
<% Cal cBean. get Qperation() ; %

To write the value of the bean property:
<% Cal cBean. set Operation("+") ; %

Use scriptlets to load bean properties into Java variables. For example, the following expression hangs onto the value of a bean property for
possible use in your JSP pages:

<% int enteredQperandl = Cal cBean. get Operandl() ; %

Now, you can use the Java variable ent er edOper and1l in expressions or scriptlets, as follows:

<% if (enteredOperandl > 1000000) { %
<p> You Entered a | arge</ b> nunber

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=107540702

<%} else { %
<p> You Entered a small nunber
<%} %

You can combine expressions within scriptlets as follows:
<% if (enteredOperandl > 1000000) { %

<p> You Entered <% enteredOperandl %, a l| arge nunber
<%} else { %

<p> You Entered <% enteredOperandl %, a snall nunber
<%} %

You can combine JSP actions to access bean properties with static HTML text as follows:

<% if (enteredOperandl > 1000000) { %
<p> You Entered <jsp:getProperty name="Cal cBean"
property="operandl" />a l| arge nunber
<%} else { %
<p> You Entered <jsp:getProperty name="Cal cBean"
property="operandl" />a snal | </ b> nunber
<%} %

Notice how the scriptlets include curly braces in order to construct valid Java statements.

The following construct will not translate:

<% int enteredOperandl = <jsp:getProperty nane="Cal cBean"
property="operandl" /> ; %

You can use the JSP actions in place of static page text, not Java code.
You've now seen some examples of JSP actions, expressions, and scriptlet code that make JavaBean properties known to a JSP page. Before

you get into an example of displaying the values of Cal cBean properties in Web pages, let's begin by exploring an example of how to collect
values of Cal cBean properties to the bean.

Collecting Values of Bean Properties from Web Pages

The following example shows a Web page that collects some inputs by using an HTML form, and then makes this data known to a JavaBean
referenced within a JSP page. Figure 6-1 shows the Web page, cal cpage. ht mi , that collects the inputs.

O e e e T]

Back Saop Pz, e Cpmrh (== Ty

-idﬂ'lrll-lv]rm.'.'.r-rr..'i|'|-|'.-'i.u.jll.'|.¢ur|.i-'.'rp'r.q_'.-I.w ﬂ 1';'6\:-
[

A Simple Calculator

Enter Opirand] and Opicand? (Integers)
ad Select & operation From e Pull Down
Man, thean Click Calculate to Continue

Erter Operand] |':“:I
Enter Opeerand? |4'.-.-
Salect Oparation | '|

Lo |

[l Dere X4 Loca vt
Figure 6-1: Web page that collects input for the Calculator Bean

For the purpose of discussion, Figure 6-1 contains all of the essentials. You don't have to be a rocket scientist to deduce that the input field
Oper and1 refers to the bean property oper andl, and so on. Listing 6-2 shows the code for the Calculator Bean Web page shown in Figure 6-1.

Listing 6-2: Form used to get input for the CalcBean

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fg0601_0.jpg&image_id=10&previd=IMG_10&titlelabel=Figure+6-1%3A&title=Web+page+that+collects+input+for+the+Calculator+Bean
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=962309439#wbpch06fP216

<htm >

<head>

<title>JSP Sanpl e Page - Calculator Bean</title>

</ head>

<body bgcol or ="#dddddd" >

<cent er>

<pr >

<h1>A Sinpl e Cal cul at or</ hl>

<l-- Here is the reference to the JSP that uses Cal cBean -->

<f orm name="cal cfornf action="cal cul ate.jsp" nethod="POST" >

<p>Enter Operandl and Operand2 (I ntegers)

and Sel ect an operation Fromthe Pull Down

Menu, then Cdick Cal cul ate to Conti nue

<pr >
<hr w dt h="50% >
<t abl e>
<tr>
<t d><P>Ent er QOperandl: </td>
<l-- Entered value to be Cal cBean property called operandl -->
<td><i nput type="text" name="operandl" val ue="" w dt h="25"></td>
</tr>
<tr>
<t d><P>Enter QOperand2: </td>
<!-- Entered value to be Cal cBean property called operand2 -->
<t d><i nput type="text" nane="operand2" val ue="" w dth="25"></td>
</tr>
<tr>

<t d><P>Sel ect Operation: </td>
<!-- Selected value to be Cal cBean property called operation -->
<t d><sel ect NAME="operation">
<option> +

<option> -
<option> *
<option> /
</ sel ect>
</td>
<tr>

<l-- dick here to invoke the JSP page coded in the FORMtag -->
<t d><i nput type="button" name="Cal cul ate"

val ue="Cal cul ate"></td>

</tr>

</tabl e>

<hr wi dt h="50% >

</ center>

</fornm>
</ body>
</htnl >

The first thing you may notice about cal cpage. ht m is that the Web page is not a JSP. Changing the Web page into a JSP simply requires
changing the name, depending on the Web server used. For Tomcat, files with an extension . j sp are recognized as JSP pages. If we named the
preceding HTML page cal c. j sp, Tomcat would take the Web page through the translation process, generating and storing a servlet on the
server for subsequent execution. Because this page contains no JSP expressions, scriptlets, actions, or means of generating dynamic content,

let's leave it as an HTML page for now.

Cal cpage. ht M does have code that refers to the JSP that uses the calculator bean. The following line does just that:

<f orm nanme="cal cfornf' action="cal cul ate.jsp" method="POST" >

The following form input fields capture the data that corresponds to the properties of Cal cBean:

<i nput type="text" name="operandl" val ue="" w dt h="25">
<i nput type="text" name="operand2" val ue="" w dt h="25">
<sel ect NAME="operation">

<option> +

<option> -

<option> *

<option> /
</ sel ect>

When you enter numbers, select an operation, and click the “Calculate” button, the data entered in the form is sent to the server and the JSP page
(cal cul at e. j sp) is translated (if necessary), and then executed. The JSP cal cul at e. j sp contains JSP coding constructs that access the
entered data and invokes methods coded in Cal cBean. j ava. You can dissect cal cul at e. j sp in the following section.

Displaying and Using Values of Bean Properties in JSP Pages

Figure 6-2 shows cal cul at e. j sp as displayed with the values of Cal cBean properties derived from inputs entered in cal cpage. ht i .

B Ed Ve ™ | Agdress (@] ron o sbod DO iy fepcbaan ol 1 =] G E

Here's what was entered from calcpage. it

The next 4 lires show using the jspgetProperty action to fetdh bean
properties

Operand] 123
Opprarcdy 456
Qiperation +
Result 579.0

The next 4 lines show wsing the reguest impdicit object to fiebdn ingut
properties

Operandl 123

Dperand? 456

Operation +

result - not an Input parameter! null

The naxt group of lines access and display bean properties by using
scriptlet code, expressions and J50 actions

123 Is smaller than 456

Figure 6-2: JSP page displaying values of CalcBean properties

Looking at the rendered JSP page tells little about the page’s workings. After all, you're looking at generated HTML now, not JSP code. Listing 6-3
provides the code for cal cul ate. j sp.

Listing 6-3: Using the CalcBean in JSP based on user input

<% - Tell JSP that this page renders HTM. --%

<%@ page content Type="text/htm" %

<% - Tell JSP to use the bean Cal cBean --%

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" />

<% - Tell JSP to map Cal cBean properties to |ike-naned input paraneters --%
<j sp: set Property nane="Cal cBean" property="*" />

<htm >

<head>

<title>Show Calc Results bean</title>

</ head>

<body bgcol or ="#dddddd" >

Here's what was entered from <i >cal cpage. html </i>: <p>

<P>The next 4 lines show using the jsp:getProperty action to fetch bean properties
<% - jsp:getProperty wites the value of the bean property where coded --%
<p>Operandl <jsp:getProperty nanme="Cal cBean" property="operandl" />

<p>Qper and2 <j sp: get Property nane="Cal cBean" property="operand2" />
<p>Operati on <jsp: get Property nane="Cal cBean" property="operation" />
<p>Result <jsp:getProperty name="Cal cBean" property="result" />

<P>The next 4 lines show using the request inplicit object to fetch input properties
<% - Access input paraneters by accessing the request object. --%

<p>Operandl <% request. get Paraneter ("operandl") %</ b>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=962309439#wbpch06fP286

<p>Oper and2 <% request. get Paranet er (" operand2") %</ b>
<p>Operation <% request. get Paraneter ("operation")%
<p>result - not an input paraneter!
<% request.getParaneter("result") %</ b>
<pr >
<p>The next group of lines access and display bean properties by using scriptlet code, expressions
and JSP actions
<% - |Invoke the 'get' nethod of the bean directly to get the property value --%
<% int enteredOperandl = Cal cBean. get Operandl();
int enteredOperand2 = Cal cBean. get Operand2();
if (enteredOperandl > enteredOperand2) { %
<% - You may use expressions, actions and scriptlets together in your JSPs as shown bel ow --%
<p> <j sp: get Property nane="Cal cBean" property="operandl" /> is l arger than <% enteredOperand2 %
<%} else { %
<p> <% enteredOperandl % is smaller than <jsp:getProperty name="Cal cBean" property="operand2" />
<%} %

</ body>
</htnl >

Here’s the rundown on the JSP code included in cal cul at e. j sp:

The JSP directive shown in the following tells the JSP engine that the results of the dynamic text generation is HTML:
<%@ page content Type="text/htm" %

You do not need to code this because the value of the cont ent Type attribute is the default.

Here’s the line in the JSP file that directs JSP to access the bean class Cal cBean:

<j sp: useBean i d="Cal cBean" class="cbhean. Cal cBean" />

As mentioned previously, JSP actions are coded as XML tags — note the ending tag / >. Also, in Listing 6-1, Cal cBean was placed in a package
called cbean. Note the value of the cl ass attribute in the above j sp: useBean tag.

The value of the i d attribute is the instance of Cal cBean used in JSP page(s) that access the bean. You do not need to name the instance the
same as the class name.

The j sp: useBean action does not make property values known to your JSPs. You cannot read or write bean property values without coding the
j sp: useBean action. In the following section, you can take a closer look at JSP statements that manipulate bean property values.

JSP Code That Reads and Writes Bean Property Values

You read bean property values by coding the j sp: get Property action and write property values by coding the j sp: set Property action. If
you accessed bean property values in your JSPs immediately after coding the j sp: useBean action, you would access the default, or initialized,
pr oper ty bean values. Make sure that your beans contain meaningful data before accessing the beans’ pr oper t y values. This can be done
using the jsp: set Pr oper t y action in a variety of ways, which we look at next.

The j sp: set Property action coded in cal cul at e. j sp changes the values of all the bean properties with like-named input parameters.

<j sp: set Property nane="Cal cBean" property="*" />

The input parameters come from the <FORM> submitted in cal cpage. ht m . The single JSP action shown above matches the names of the FORM

input elements to the names of the bean’s properties and uses the values from the form as the values of the bean properties. Put differently, the
above JSP action is a very handy and quick way of sticking input data into a bean occurrence.

Did you think it was a happy coincidence that the input FORMelements in cal cpage. ht nl have the same names as the properties in bean
Cal cBean? Later in this chapter, you learn that the names of bean properties do not need to match those of request-input parameters and you
can learn how to change bean properties when the names differ.

You can get your hands on the values of the bean properties in a number of ways. Here is a JSP action that fetches the value of the oper and1
bean property:
<j sp: get Property nane="Cal cBean" property="operandl" />

Here is a JSP expression that fetches the value of the FORMinput parameter by accessing the implicit JSP r equest object:

<% request . get Paranet er (" operandl") %

Caution If you invoke the get Par anmet er method for the request object for a nonexistent parameter, the method returns null, as shown in the

following code:
<p>result - not an input paraneter!

<% request.get Paranmeter("result") %</ b>
Refer to Figure 6-2, and you can see that JSP renders the word null on the page.

Here is a JSP expression that invokes the bean accessor method directly:
<% Cal cBean. get Oper andi(); %

Notice that get Oper andl is the accessor method coded within Cal cBean in accordance with the naming convention described earlier in this
chapter; however, you can invoke any method in Cal cBean in a JSP expression.

It's sensible to question which of the preceding methods is preferable for accessing values of bean properties. This question is tackled in the
following section.

Comparing Ways to Access Bean Properties in a JSP Page
Not surprisingly, each method of accessing bean property data has certain advantages and disadvantages.

Using the j sp: get Property action is more explicit inasmuch as the j sp: get Proper ty action is specifically designed to access bean
properties. In addition, using the action may be more understandable by nonprogrammers than coding Java method invocations.

Using the bean get method invocation is shorter (requires less code) and can be used in some places where the j sp: get Property action
cannot. For example, the following line of JSP code causes a translation error:

<% int enteredOperandl = <jsp:getProperty nanme="Cal cBean"
property="operandl" /> ; %

Whereas the following line of JSP code does not:
<% int enteredOperandl = Cal cBean.getOperandl(); %

Using the implicit r equest object is, strictly speaking, not accessing a bean property. The r equest object access fetches the bean property data
because Cal cBean and cal cpage. ht i were craftily coded to use the same names for the bean properties and the input parameters.

Before you mutter to yourself, “What’s the big deal?” take a look at the three lines of JSP code here:

<j sp: set Property nane="Cal cBean" property="operation" val ue="Lou"/>
<p>From getProperty: <jsp:getProperty name="Cal cBean" property="operation" />
<p>From request object: <% request.getParaneter("operation") %

The first line changes the value of the bean property to the string Lou by using the j sp: set Property action. The second line fetches the
recently changed value and generates the following line of output:

From get Property: Lou

The third line accesses the value of the parameter stored in the implicit r equest object. Before you read on, do you think the j sp: set Property
action changed the value of the parameter of the r equest object? Here's the line resulting from the expression that references the value of the
parameter of the r equest object:

From request object: +

No surprise here because you've read that invoking the get Par anmet er method from the r equest object does not access the bean property.
The moral of the story is that if you want to access a bean property, use a JSP technique designed to access bean properties. If you can get away
with using the j sp: get Pr operty action, do so. If you want to store the value for use in a Java variable for use in a scriptlet or some other use,

invoke the bean accessor method directly.

As previously mentioned, bean property names do not need to be the same as request input properties. If they are not the same, you cannot use
the following JSP action to change the values of bean properties:

<j sp: set Property nane="Cal cBean" property="*" />

Read on to see how to use other attributes of the j sp: set Pr operty action to change bean property values.

More About jsp:setProperty

Let’s take a look at all the attributes of the JSP action j sp: set Property. You may code three versions of j sp: set Property. One version is
what you've already seen, the version to change all bean properties with names matching those of the r equest object. Another version is shown
in the following segment of code:

<j sp: set Property nane="Cal cBean" property="operation" val ue="Lou"/>

This version follows the syntax for the j sp: set Property action shown here:

<j sp: set Property nane="beanNane"
property="propertyNanme"
val ue="scriptletO StringVval ue" />

Here, you change the value of a bean property by referring to that property and assigning a value. You can code a string or dynamically generate
a value. For example, you may use the value of an input parameter. Look at the code below and try to figure out what it does:

<j sp: set Property nane="Cal cBean" property="operandl"
val ue="<% Cal cBean. get Oper and2() %"/ >

Can you see that the JSP action above assigns the value of the bean parameter oper andl to the bean property oper and2?

You may think that you are limited to using simple expressions to assign bean property values from within your JSP pages. But this isn’t the case.
The piece of JSP code below gives a hint of the possibilities:

<% i nt enteredOperandl Cal cBean. get Oper and1();
i nt enteredOperand2 Cal cBean. get Oper and2() ;
%
<% String whichlsLarger(int opl, int op2) {
int theLarger = (opl > op2)? opl: op2 ;
return "This Nunber is " + theLarger +
" the larger of the two operands" ;
} %
<j sp: set Property name="Cal cBean" property="operation"
val ue=' <% whi chl sLarger(enteredOperandl,
ent eredOperand2) %' />

<I--Qutput fromthe below |line:
From Scriptlet. Operation = This nunber is 456 the |arger of
the two operands
-1 >
From Scriptlet. Operation = <jsp:getProperty name="Cal cBean"
property="operation"/>

Notice that the j sp: set Pr oper t y action enables you to code expressions that invoke methods coded within your JSP. Actually, you can invoke
methods coded within your beans in addition to those coded within your JSP pages.

Using the form of j sp: set Pr operty with the val ue attribute does present a problem. Look at the following line of JSP for an illustration:

<j sp: set Property nane="Cal cBean" property="operandl"”
val ue=' <%r equest . get Par anet er (" operandl") %' />

When you pass this line of JSP to the translator, it rudely responds as follows:

Error: 500

Locati on: /exanpl es/jsp/cbean/cal cul ate.jsp

Internal Servlet Error:

org. apache. j asper. Jasper Exception: argunent type m smatch

Input parameters, or properties of the r equest object, are class St ri ng, whereas the bean property oper and1, is type i nt . When you use the
val ue attribute to assign data to bean properties, you need to ensure that the data type of your data agrees with the data type of the bean
property. The following code shows the essential strategy:

<%
int operl =0 ;
try {
operl = Integer. parselnt(request.getParaneter("operandl"));
}

catch (Number For mat Excepti on nmyNFE) {}
%

<j sp: set Property nane="Cal cBean" property="operandl"
val ue="<% operl %" />

Generate an equivalent value of the desired class or primitive type and use a JSP expression to assign the value to the bean property.

Note that you can assign a value, as follows, without worrying about data types:
<j sp: set Property nane="Cal cBean" property="operand2" val ue="25"/>

The other form of the j sp: set Proper ty action has the following format:

<j sp: set Property name="beanNane"
property="propertyName"
par am=" par anNane" />

You can use the preceding format for the j sp: set Pr oper t y action when you want to assign the value of an individual input parameter from the
request object to a bean property. In addition, you do not need to write JSP code to perform data type conversions because the result of the
j sp: set Property action with the par amattribute performs most conversions automatically.

The JSP following code automatically performs the conversion from class St ri ng to type i nt .

<j sp: set Property nane="Cal cBean" property="operandl"”
par am=" oper andl1" />

The form of the j sp: set Property action with the par amattribute performs type conversions from class St r i ng to any primitive type or object
representation of a primitive type (Integer for i nt , Float for f | oat , for example).

Note The form of the j sp: set Property action which copies all values of input parameters to like-named bean properties also performs
automatic type conversions.

You can see how useful it is to have access to JavaBeans in your JSP pages. You may be wondering if you can leverage your beans across
several JSPs in your application. Well, you don’t have to wonder anymore! The following section discusses how to use your beans with multiple
JSPs in your application.

Top sy

[<= Prov [Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

A Typical JSP Execution

Here’s the rundown on a typical JSP execution. Figure 3-1 summarizes the following steps:

1. The customer enters the name of the JSP page in the browser location area or clicks some action item in an
HTML page (button or menu selection, for example) that invokes the JSP page.

2. The browser sends the JSP page to the Java-enabled Web server as an HTTP request.

Note The JSP specification does not mandate use of the HTTP protocol. Some companies use JSP with their
proprietary protocols. However, a JSP-enabled server must, at a minimum, support HTTP.

3. The Web server recognizes (by the . j sp extension) that the JSP page requires special handling and forwards the
JSP to the JSP engine. The JSP engine translates the JSP page into a Java class file, implementing the special
JSP tags found in the page.

4. The server sends the class file to the servlet engine, which generates a servlet from the class file by using the
Java compiler and associated files.

5. The servlet engine compiles, loads, and executes the generated servlet. Successful execution of the generated
servlet creates an HTML file, which the server pumps back to the customer’s browser for display.

6. The newly generated HTML file is displayed in the customer’s browser.

Cir
@ Enter J5P Page [J5F Submit JSP to Server
In Browser T Via HTTP GET ar POST

HTTP Request @

Java Enabled Web Server

Compile Serdet,
Translate @ Load/Execute

L e

J5P Engine

HTML Generated From "EI
Generated Servler | %

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=100648600

Figure 3-1: Executing a JSP Page

Figure 3-1 shows the process for using, or of calling, a JSP page for the first time, or if the JSP page changed from
the first invocation. The process is different when a customer calls a page that has been viewed before. The JSP
engine will not retranslate the page, nor will the servlet engine recompile the class file. The servlet engine creates a
new thread to handle the execution of the generated servlet.

A JSP page may use other files, including other JSP pages. The JSP engine translates other, referenced JSP page
files into their own class files. These class files are passed to the servlet engine for compilation and execution.

Top <

| <= Prov_ | Noxt =

Or

Enter JSP Page ISP | Submit JSP to Server
In Browser \ia HTTP GET or POST
HTTP Request @
lava Enabled Web Server
Compile Servlet,
Translate @ Load/Execute
5P @ Serviet ®
Java Class File i
JSP Engine /

HTML Generated From
Generated Servlet

)

©

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part Il: JavaServer Pages

Chapter List

Chapter 3: A First Look at JavaServer Pages
Chapter 4: The Elements of a JSP Page
Chapter 5: JSP Web Sessions

Chapter 6: JSP and JavaBeans

Chapter 7: JSP Tag Extensions

Chapter 8: JSPs and Servlets Revisited
Chapter 9: JSP Errors and Debugging

Chapter 10: The “Make Money” Brokerage Application

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=292245414

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You have now read about the major classifications of J2EE APIs and have read a short description of each. In the
following chapter, we will dive into JavaServer Pages in depth.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=496782075

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tag Extensions

Tag extensions or custom tags are application-defined language extensions to JavaServer Pages. You can use
custom tags in your JSP pages to do the following:

. Create static text (HTML, XML) or JSP output

. Create objects that are hidden from the JSP page or that can be seen as scripting variables in the JSP page
. Process a block of JSP page text

. Determine if a section of the calling JSP should be processed or skipped

Custom-related tags are grouped together into a tag library. This chapter talks about creating and using tag libraries.
Some custom-tag activities relate to the tag library, whereas others relate to individual tags within the library.

A tag is a bean that implements either the j avax. servl et . j sp. t agext. Tag or
j avax. servl et.jsp.tagext. BodyTag interfaces. The two classes,
javax.servlet.jsp.tagext. TagSupport andj ava. servl et.j sp. tagext.BodyTagSupport, are

convenience classes that the developer can subclass to create tags as well. These classes implement the
aforementioned interfaces respectively. You can read more about these two interfaces and classes later.

A simple description of how custom tags work is that when the JSP engine comes across a tag in a JSP page, it
invokes a method of the bean with which this tag is related. Throughout the rest of this chapter we will elaborate on
this process.

Custom tags are referenced in your JSP page as an XML element, such as the examples shown below:

<nytagli b: at agwi t hbody>
This tag has a body
</mytaglib:atagw t hbody >

Custom JSP tags may contain a body. The tag body can be static text or JSP code. The particulars of the tag's
behavior govern how the JSP container interprets the tag body.

Custom tags may also be empty, that is without a body, as shown in the following example:
<nytaglib: anenptytag />

Custom tags may also contain attributes, as in the following:
<nytaglib:anenptytagwi thattrs attr1="attr1Val ue" attr2="attr2Val ue" />

You can nest tags to any practical level, as shown in the following example:

<nytaglib:outertag >
This tag can contain plain old text

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=306185017

<% session.getAttribute("userlD') %
<nytaglib:innertag anattr="attrval ue">
<p>This tag <l >too</I|>
</mytaglib:innertag>
</mytaglib:outertag>

Custom tags follow XML syntax rules. See Appendix D for details on XML syntax. You may be thinking that if a

custom tag causes the invocation of a bean, why use custom tags at all? Why not code the bean and use the JSP
action j sp: useBean instead? Let's tackle this question in the following section.

Top <

| <= Prov_ | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

A Simple XML Document

This section shows one of the simplest XML documents you can create and also explores some of the document’s
properties. Some important rules about writing XML documents that should be noted are:

. XML is case-sensitive
. XML tags must have a corresponding closing tag, or use a special self-closing syntax
. Attributes in an XML tag must use quotes

Now, let's look at the code for the simple XML document:
<?xm version="1.0" standal one="yes" ?>
<First>

My First XM. Docunent

</First>

This document has code that tells a parser that it is an XML document. The document’s content is the phrase “My
First XML Document.” The document’s first line tells the parser that the document is an XML document. Notice the
presence of the characters <? and ?>; these characters indicate the presence of an XML processing instruction. The

word after the characters <? (xnl , in this case) tells the parser the particular processing instruction that is an XML
declaration.

XML documents are free form, because XML parsers typically do not care about column positions or white space.
Thus, XML document authors should take some time making their documents easy to read with judicious use of tabs,
white space, and blank lines.

XML processing instructions and tags often use XML attributes, which are name/value pairs separated by an equal (=)

sign. The values must be enclosed in quotes. (Although XML requires the use of quotes, most HTML values do not
require the quotes.) The XML declaration requires the use of the ver si on and st andal one attributes. For now, it's

important to note that the XML declaration shown here states that the document conforms to XML version 1.0 and
does not require any other documents for parsing its content.

It is worth mentioning that this document does not contain any display or formatting information. Recall that a big part
of XML is the separation of content from display. Therefore, you would need a style sheet and a way of telling the XML
document to use that style sheet to display the XML document. Let’s use the following simple style sheet, saved as
forfirst.css inthe same directory as the XML document. Notice that the style sheet refers to the tag <Fi r st >
used in the document.

First {display: block; font-size: 36pt; font-weight: bold; col or="00FF00";}

The second, italicized processing instruction associates the style sheet with the XML document:

<?xm version="1.0" standal one="yes" ?>

<?xm - styl esheet type="text/css" href="forfirst.css"?>
<First>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=835637580

My First XML Docunent
</First>

Figure D-1 shows this simple XML document displayed in Internet Explorer 5.0.

e = o A AT

| Bo B8 e Py L B 2

i_nlﬂl: N, gaaty et T s i PSP B0 W . (e) - 0, v Caache gl sl _'ﬂ ol |

My First XML Document

Figure D-1: A simple XML document displayed in Internet Explorer 5.0

|

8 Dore [[y T

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgd01_0.jpg&image_id=38&previd=IMG_38&titlelabel=Figure+D-1%3A&title=A+simple+XML+document+displayed+in+Internet+Explorer+5.0

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming

f Techniques.

XML Document Components

XML documents consist of data and markup texts. The data is what the author encodes and the markups tell the XML
parser how this data is organized and structured. Markup includes processing instructions, comments, elements,
entity references, CDATA delimiters, and Document Type Definitions (DTDs). All of these markups are case sensitive
and are described later in this appendix.

The preceding simple XML document contains an XML declaration, a processing instruction that associates a style
sheet with the document, and a tag (or element). The XML declaration, a processing instruction, is an optional
statement that identifies the XML version in use; currently, version 1.0 is the only version. If present, the XML
declaration must be the first statement in the document. If an XML document must be displayed, a processing
instruction that associates one or more display documents (such as a CSS) must be coded as well.

XML comments begin with <! - - and end with - - >. However, an XML author cannot place comments with reckless
abandon. Comments cannot be coded before the XML declaration. Comments may not be coded inside element tags,
and they may not be nested. Comments may not include two successive dashes other than those that start and end
the comment.

XML document content is enclosed in tags, or elements. Our simple example explored previously contains one
element coded as <Fi r st >. XML documents require that one element enclose all others. In XML lingo, that special
element is called the root element. Stated differently, every element coded in an XML document must be sandwiched
between the opening and closing tags of the root element. Elements that are coded within (sandwiched between)
other elements are known as child elements. Listing D-1 shows an XML document with child elements.

Listing D-1: XML document with child elements

<?xm version="1.0" standal one="yes" ?>
<?xm - styl esheet type="text/css" href="mystyl esheet.css"?>

<Root >
<Enpl oyee_Dat a>
<Nane>
John Q Public
</ Name>

<Depart nment >
Human Resour ces

</ Depart nent >

<Hi r e_Dat e>
May 1 2000

</ H re_Dat e>

<Revi ew_Dat e>
Decenber 1 2000

</ Revi ew_Dat e>

</ Enpl oyee_Dat a>
</ Root >

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=717655522

All elements other than <Root > (which is not a keyword) are child elements. Style sheet display attributes may be

attached to each element or a child element may inherit display attributes from its parent element. For example, if the
file myst yl esheet . css, associated with the above XML document, contained only the following line, then all the

content in the XML document would be 36-point blue text.
Root {di splay: block; font-size: 36pt; font-weight: bold; color="blue";}

However, if the following line were also present, the content for element Hi r e_Dat e would be 18-point red text
positioned slightly to the left.

Hre Date {position: absolute; top:90; |eft:190;display: block; font-size: 18pt;
font-weight: bold;color="red";}

Element names must begin with either the underscore character or a letter; following characters may be just about
anything except spaces. Also, element names are case sensitive. For instance, </ aTag> is not the closing tag for
<At ag>.

XML enables tags to contain no data. For example, HTML tags that contain no data have no closing tags (for
example, no </ | MG> tag is required). HTML may or may not ignore unknown tags. However, XML must be able to
recognize and process every tag present in a document. To deal with tags that contain no data, XML allows for empty
tags. An empty tag is closed with / > (for example, <I M4 >).

XML enables an author to categorize data by using meaningful tag names and organize data by developing a
hierarchy between parent and child elements. An author may also attach attributes to an element. As in HTML, XML
enables an author to code name/value pairs with elements. For example, the following element contains one attribute:

<Depart nent Locati on="Honme O fice">

Notice that an author could have coded a separate location element.

Then the question arises of when an author should code attributes instead of elements. Rather than supply a laundry
list of dos and don'ts, a simple rule works best here. If an author needs to access and independently display some
data or the data has structure, it may work best to encode that data in an element. If an author needs to encode some
data about the data (sometimes called metadata) or a piece of data does not need to be independently accessed, the
best approach may be to encode that data in an attribute. A good example of using attributes instead of elements is
coding the Hei ght and W dt h attributes of the <I MG> tag in an HTML document.

Entity references are markup that the XML parser replaces with a single character. For example, authors who need to
encode data that includes a less-than sign (<)would use the entity reference &l t ; . If the author didn't use this entity

reference, the XML parser would interpret < as the start of a tag.

Table D-1 contains examples of entity references. Note the presence of the semicolon after each entity reference.

Table D-1: Predefined XML Entity Reference

Entity Reference Character
&anp; &

' ‘

> ; >

< <

" ;

An XML author may want to include a block of text as is, without having the XML parser perform any translations. The
data may contain numerous entity characters (such as the preceding example), and coding the entity references may
become tiresome. XML has markup that enables an author to include text as is, including comments, called the
CDATA section. Just enclose text between the CDATA delimiters <! [CDATA[and]] >.

Top <3

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition
TIYE RN | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Rules for Well-Formed XML Documents

XML requires that an author follow certain rules when creating an XML document. These rules were designed to
enable XML parsers to understand properly constructed XML documents. In XML lingo, an XML document that obeys
the rules, shown in the following, for proper construction is said to be well-formed.

. The XML declaration, if present, must be the first statement in the document.

. Every XML tag that contains data must have a closing tag. Close empty tags with / >.
. Include a root element.

. Put attribute values in quotes.

. Use < only to start element tags; use & to start entity references.

. Enclose every element tag (except the root) inside another. For example, the following line is not well-formed XML:
<Quter> This is NOT <l nner> Wll-Formed </Quter> XM. </ nner>

. Use the five entity references shown in Table D-1.

Top <3

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=623412457

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Document Type Definitions

XML enables an author to create entirely new markup languages with tags that contain industry-specific language.
The markup language creator can define the language with a Document Type Definition, or DTD. In short, DTDs
define a set of rules that govern the relationships among the tags contained in a document. For example, a DTD
describing a company's personnel may specify that every Enpl oyee element have at least one Hi r e_Dat e child

element and one and only one Name child element.

When the tags in an XML document conform to the specifications in an associated DTD, the XML document is said to
be valid. An XML document can be well-formed without being valid. Also, DTD keywords are case sensitive.

A Simple DTD

Let’s look at a simple XML document with a DTD:

<?xm version="1.0" standal one="yes" ?>

<I DOCTYPE First |
<! ELEMENT First (#PCDATA) >
1>
<First>
My First XML Docunent
</First>

The three italicized lines are the Document Type Declaration, not a DTD. The declaration is delimited by <! DOCTYPE
root nanme and] >; the DTD is what is sandwiched between these delimiters. The r oot nane of the XML document
must follow the starting delimiter.

The DTD author may opt to store the DTD as opposed to coding the DTD in the XML document. If so, the Document
Type Declaration changes to:

<! DOCTYPE First SYSTEM " nyDTD. dt d" >

The entire DTD, <! ELEMENT Fi rst (#PCDATA) >, states that the element Fi r st must contain parsed character

data only, or text that has no markup, such as child elements. The following section covers additional element
declarations that a DTD author can code.

Element DTD Declarations

DTD element declarations begin with <! ELEMENT and end with >. The name of the element must follow the starting
delimiter. Element attributes specified in the DTD for that element follow, usually in parentheses. Each element should
have one, and only one, declaration. The order of declarations is not important; XML enables forward and backward
references.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=716850564

Table D-2 shows some DTD element declarations and their meanings.

Table D-2: DTD Element Declarations and Their Meanings

| DTD Element Declaration | Meaning

| <! ELEMENT usual | yARoot El ement ANY> ’ No restrictions on element use
<! ELEMENT Enpl oyee_Dat a (Nane) > One occurrence of Nane for Enpl oyee_Dat a
<IELEMENT Parent (Child1, Child2)> One occurrence of Chi | d1 and Chi | d2 for

Par ent

| <!l ELEMENT Parent (Child, Child, Child)> ’ Exactly three occurrences of Chi | d

| <! ELEMENT Parent (Child+)> ’ One or more occurrences of Chi | d

| <! ELEMENT Parent (Child*)> ’ Zero or more occurrences of Chi | d

| <ELEMENT Parent (Chil d?)> ’ Zero or one occurrence of Chi | d
<! ELEMENT Parent (Choicel | Choice 2 | Exactly one of Choi ce 1,2, or 3
Choice 3) >

| <! ELEMENT Parent (#PCDATA | Child)> ’ Both character data and occurrence of Chi | d
<! ELEMENT Parent (Childl | Child2 | Zero or more occurrences of Chi | d1, 2, or 3
Chi | d3) *>
<I'ELEMENT Parent (Childl ,Child2, One or more occurrences of Chi | d1 and 2 and
Chi 1 d3) +> 3
<IELEMENT Parent (Childl, (Child2 | One occurrence of Chi | d1 followed by one
child3d)) > occurrence of Child 2or3
<! ELEMENT Parent (Child1?, (Zero or one occurrence of Chi | d1 followed by
Child2, Child3)+ | Child4*)) > one or more occurrences of Chi | d2 and

Chi | d3 or zero or more of Chi | d4

Note how a DTD author can build complex relationships between elements by combining different requirements inside
nested parentheses.

DTD Entities

DTDs support the inclusion of text from internal and external sources. In essence, the DTD author codes a general
entity reference that, when processed, substitutes text in the XML document for the entity reference. The mechanism
is identical to that described for the XML entity references. First, the DTD author codes the <ENTI TY> tag:

<IENTITY entityName "Repl acenent Text">

The XML document may contain the element:
<SonmeTag> Were is that &entityNane; going? </ SoneTag>

During processing, the XML processor substitutes Repl acenent Text for &enti t yNane; . The semicolon must be
the last character in the entity reference.

External general entities enable the author to include text from other locations into a document. For example, the
author can code the following line, in which soneFi | e can be a URL or a file on the network or on the local machine.

<IENTITY entityNanme SYSTEM "soneFil e">

The internal and external general entities become part of the XML document, not the DTD. XML provides a
mechanism, called a parameter entity reference, that enables authors to substitute text in the DTD. The coding of a
parameter entity reference is similar to that of a general entity reference, but with two differences: Parameter entity
references start with a percent sign (not an ampersand), and parameter entity references cannot appear in the
document content.

Here is a DTD entry for a parameter entity reference and some references to the entity:

<IENTITY % entityNaneLi st "Repl acement Text">

<! ELEMENT anEl ement 1 (Childl, (%entityNaneList;)) >

<I--anEl ement 2 through 999 follow with the sane paraneter entity reference-- >
<! ELEMENT anEl emrent 1000 (Chil dA, (%entityNaneList;)) >

If the author needs to add or remove an element from the list, the author can change the parameter entity reference
instead of each <! ELEMENT tag.

Top <

| <= Prov_ | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Related XML Technologies

As previously mentioned, XML stresses the separation of content from presentation. This appendix uses CSS for XML
document display. However, a strong up-and-coming contender for XML display is XSL, the Extensible Style
Language. XSL, an XML application, consists of a transformation language and a formatting language. The
transformation language specifies how one XML document may be transformed into another — for example, how the
custom tags used in an XML document may be changed to tags of another. The formatting language, similar to CSS,
describes how an XML document is rendered.

XML developers can mix and match tags from multiple applications. However, a mechanism needs to be in place to
enable XML applications to distinguish between elements and attributes of the same name. A related XML technology
called Namespaces enables an XML developer to prefix custom tags by directing the XML parser to reference a
unique resource (dataset, URL).

The XML community is crying out for more robust technologies than DTDs to perform XML document structure and
element/attribute validations. XML Schemas is an attempt to provide database-like validations, such as data types, to
XML elements.

With the proliferation of Web pages on the Internet, technology that facilitates quick and accurate searches is in
increasing demand. The XML application RDF, the Resource Description Framework, encodes data about data, or
metadata. In other words, RDF provides a consistent way to describe metadata. The basic idea is that RDF
standardizes vocabularies used to describe metadata and should provide a strong foundation for building applications
to search XML documents.

Top

[<= Prov_ | Next —_

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=434512465

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

| Your Guide to Cutting-Edge J2EE Programming
i .| Techniques.

Objects and Components

The basic idea behind object technology dates back to the 1960s (yes, the 1960s) and the work done by Xerox and
others with the Smalltalk and Simula programming languages. Object technology treats software as a set of
cooperating objects. Each object is derived from a class, or a template describing similar objects, or objects with the
same behavior. Objects have a well-defined interface that allows for complete and concise communication. The
objects have no knowledge of other objects’ internals; all they know is what is exposed in the interface to other
objects. Object software development environments allow for the creation of objects that share some, or most, of the
behaviors of other objects.

Object technology makes possible the development of software components. A software component is simply a piece
of code with a well-defined interface. In other words, a software component is an object that can be reused. The goal
is that an object development team can create libraries of interrelated software components that model fundamental,
low-level behaviors such as database access (finely grained components) or application tasks such as printing
(coarsely grained components), and that object applications can be constructed by pulling together existing
components. This plug-and-play property has always been the Holy Grail of application development, and object
technology brings the grail closer than before. As discussed later in the chapter, developing and deploying software
components are integral parts of the modern enterprise applications environment.

Of course, one milestone in the development and refinement of object technology is the Java programming language.
Scarcely six years old, Java is dominant on the Internet, is taught by any school that teaches computer science (even
some high schools), and is gaining a frothy head of steam as it charges into the business data processing community.
Java is well suited to serve as the backbone of a host of technologies that help the enterprise application developer
accomplish his or her difficult task.

How does the application development team leverage the power of objects and components when developing
applications? The answer, described in the next section, is that the team combines the use of objects and components

with application servers.

Server Component Architecture

Developing n-tier applications involves writing much more than the code that implements the business logic. Many
ancillary but important functions — such as transaction support, security, resource allocation, and dealing with
hardware failures — have to be implemented. In addition, you can’t forget numerous procedural and analysis matters,
such as performance monitoring and tuning, database administration, and training.

Thank goodness for application servers! The raison d’'étre for application servers is to supply the services mentioned,
plus many more, to enterprise application development teams. Freed from the drudgery of providing these services
from scratch, application developers can concentrate on the job at hand — solving the problems of their customers.

Still, the application programmer’s code has to communicate with these application servers in order to use the various
system services these servers offer. Given the numerous services required in a substantial enterprise application, the
developer still faces a monumental task. The developer needs a consistent, well-defined method of having his or her
code communicate with application server code that provides much-needed services. In other words, the developer

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=925057499

needs a server-side architecture to provide and help enforce a consistent method for interacting with application
servers.

The server architecture should provide a set of well-defined interfaces to application server services. The developer
need not know or care how these services are implemented on the application server; all he or she needs to know is
the interface required to access the required services.

Ideally, the architecture should allow for plug-and-play components. For example, the application should allow a
database connection pooling component X from company ABC to be compatible with a transaction support
component from company XYZ on the same application server, as long as both components follow the same server-
side architecture.

All this is starting to sound a bit like using object technology and software components, isn't it? For this reason, the
major players in the server-side architecture business have embraced some flavor of object technology. The
application server vendors believe in the strength and value of components and realize that components combined
with application servers offer customers a powerful combination: the implementation of a server-side architecture that
enables customers to plug in their own components to communicate with server components, thereby making the
myriad services available on the application server. A server-side architecture that allows for the use of software
components is called a server component architecture.

Several server component architectures exist today. Microsoft's DNA (Distributed Internet Applications Architecture)
ties together various Microsoft technologies with a Windows platform to provide a server-side component architecture.
CORBA (Common Object Request Broker Architecture) is a specification for the use of distributed objects. J2EE (Java
2 Platform, Enterprise Edition), like CORBA, is a specification for a server-side architecture.

What About Web Applications?

Simply put, a Web application is an application with a Web browser serving as the client (implementation of the
presentation layer) working with an application server known as a Web server. A Web server is an application server
that is good at speaking HTTP (Hypertext Transfer Protocol), a browser’s native tongue.

The information in the previous sections about n-tier applications also applies to n-tier Web applications. Any server-

side architecture that supports Web applications requires additional features, or should provide additional services, to
facilitate Web application construction. Notably, the server architecture should allow a customer to get to the server's
services by using HTTP from the client, either directly or indirectly.

Some server component architectures, such as J2EE, permit the use of a Web server and an application server,
possibly housed on separate hardware.

The Java programming language is a good choice for developing software components. Because Java is not tied to
any particular hardware or operating system, components written in Java can, ideally, be hosted on different platforms
(remember Sun's slogan “Write Once, Run Anywhere”?) that contain a Java runtime. Whereas the presence of a
required runtime could be a maintenance issue for using Java on the client, it is not much of an issue for using Java
on the server (unless the company has thousands of servers!).

Java’s ease of use, combined with powerful features for component development, makes Java a natural for server-
side development. Sun Microsystems, along with industry participants, created J2EE to provide a Java-based server-
side component architecture. J2EE is the result of consolidating several Java-based server technologies into a single
specification.

J2EE describes how a customer’s component interacts with server components to use the application and Web
server’s services. Basically, J2EE is a set of Application Programming Interfaces (APIs) that defines the interaction
between customer components and server services. Hence, the job of the enterprise application developer working
within the J2EE framework is to understand the how, when, and why of using the various APIs to invoke various
application and Web server services.

J2EE is based on the concept of containers. A container is an environment that exposes application and Web server

services to a housed software component. The component interacts with the server by declaring the services required
by the component, and the container makes these services available to the housed component. This book focuses on
two J2EE containers: the Web server container that houses JSPs (and Java servlets, too) and the application server
container that houses EJBs. Figure 1-2 illustrates the basic ideas behind using containers.

J2EE

2ETVIce M

Component
Container

(F__,_.-ﬂ—__ __——-5_\ Service B
P =

El'-'rl"lpﬂ-ﬂrnt Contaner Fetches
. | Meed At Eallisl‘- _ I2EE Service
Service X° _,,____:_-_________h
—_— — :
| Service X

Service X Plut

'\.&_ RunTime Su p-pl:-_r:_d_d_,.-"

——

Service T

Figure 1-2: A J2EE container at work

In Figure 1-2, a component living in a J2EE container needs service X from the application server. The component

has code that makes one or more API calls to the service. The container fetches the service and makes that service
available to the needy component. The container also establishes a runtime so the component can use the service
without having to tend to runtime concerns, such as memory management.

JSP and EJB with the J2EE Specification

JSP is a key component in developing Web-based applications. A JSP is a Web page that contains static HTML or
XML, as well as JSP scripting tags. JSPs are compiled into Java servlets on the Web server.

Because JSPs eventually become Java servlets, one can rightfully assume that a developer can use Java servlets to
dynamically generate HTML and XML, thereby removing the need to learn and use yet another APIl. However, JSPs
are a better solution than servlets to the problem of providing dynamic Web content because JSPs are easier to write
and provide a more straightforward way of separating presentation layer code from application logic code.

EJB is the J2EE component that defines a component model, or architecture, for creating software components.
These components are the heart and soul of the enterprise application. Although the long list of J2EE APIs is
necessary for the implementation of any substantial n-tier application, most of the API sets define interfaces to support
services and external resources. EJB is the API that deals with creating application components and how these
components interact with the other J2EE API sets (see Figure 1-3).

Presentation HTML, XML, 5P Enabled
Layer Applets Page

...

Application M Web
Lavyer SeErver
5P
Serviet
R Engine
Serviets
——
Application
Es8] Lerver
IDBC
Data |
Data 51
Ly 3 Stores

Figure 1-3: A high-level overview of a Web application request

Figure 1-3 shows how a request made from a Web page containing a reference to a JSP could flow up and down

through the various components and tiers of a Web application. The dashed lines represent tier boundaries. The Web
server and the application server can reside on the same hardware. Also, please note that the Web server, Java
Virtual Machine (JVM), and the application server contain more components than are shown here.

Here’s a high-level overview of a client interacting with a Web application that uses J2EE technology:

1. Client makes a request by filling out a form on a Web page that contains a reference to one or more JSPs and
clicking a submit button.

2. The request (entered data) with other information coded on the Web page goes to the Web server via HTTP.
3. The Web server recognizes the page as JSP and sends the page to be compiled into a Java servlet.

4. The newly compiled servlet communicates with one or more EJBs on the application server to get data or goes
right to the data store (bypassing the EJBs), or both.

5. The EJB components fetch data from the data store and return this data to the Web server.

6. The JSP creates a new Web page based on the data fetched by the servlet or EJB and sends this page to the
client via HTTP.

7. The client displays the new, JSP-generated Web page in the browser.

The preceding scenario is a condensed version of what happens. Every step of this process is explained in detail in
the remaining chapters of this book. Note that every step involves using either JSP or EJB, which underscores the
importance of JSP and EJB in the J2EE architecture.

J2EE

Component
Container

.
S

Component
API Call(s)
"l Need -
Service X"
Service X Plus

\\H_unTime SUEFEE—/

Service A

Service B

Container Fetches
J2EE Service

N

Service X

Service X

Service Y

uj oy

Presentation HTML, XML, JSP Enabled
Layer Applets Page
Application Web
Layer Server
Servlet
Engine
Servlets
EIB Application
Server
A
JODBC
Y Y
e Data Stores
Layer

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Client-server architectures are used to implement enterprise applications as discrete layers of functionality. Any
serious application built on an n-tier component architecture can access services needed through application servers.
Java 2 Enterprise Edition and its API sets have been introduced as a way to develop n-tier applications. In the J2EE
architecture, information flows from JSP-enabled client Web pages, to EJBs, to a data store, and back.

Top

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=102142820

