

ICEfaces 1.8
Next Generation Enterprise Web Development

Build Web 2.0 Applications using Ajax Push, JSF,
Facelets, Spring, and JPA

Rainer Eschen

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

ICEfaces 1.8
Next Generation Enterprise Web Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1261009

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-24-5

www.packtpub.com

Cover Image by Filippo Sarti (filosarti@tiscali.it)

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Credits

Author
Rainer Eschen

Reviewers
Dhrubojyoti Kayal

Ted Goddard

Acquisition Editor
Sarah Cullington

Development Editor
Darshana Shinde

Technical Editor
Tarun Singh

Copy Editor
Sneha Kulkarni

Indexer
Hemangini Bari

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Priya Mukherji

Project Coordinator
Zainab Bagasrawala

Proofreader
Sandra Hopper

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

About the Author

Rainer Eschen has a degree in computer science. He looks back on more than 20
years of programming experience. Since 1994, he works as an IT professional with a
focus on consulting and architecture. He has also been part of "the source" for three
years, working as Sun Sales Support Engineer and Sun Java Center Architect at Sun
Microsystems, Germany.

Today, he is focused on architectures using the Spring framework in conjunction
with the Java Persistence API (JPA). ICEfaces is a central part of the web
development for several years now. Meanwhile, the development of the Facelets
components takes up a lot of space.

Besides ICEfaces, the use of Flex has become increasingly important to him. After a
successful integration of ICEfaces, Flex, and Spring using Spring BlazeDS,
he currently designs pure Flex and AIR clients with Spring backends. His design
allows the ICEfaces and Flex/AIR clients to use the same Spring backend.

User experience and software ergonomics are constant companions in all his
decisions. If possible, he uses multimedia technologies to improve the user
experience of web applications. For this, he had a deeper look at semiprofessional
audio, video, and 3D production concepts over the last years. According to him,
the most promising are humanoid avatars with lip-sync animations using
computer-generated voices. They are a cheap but efficient tool for an optimal
user acceptance.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Acknowledgments

First of all, a big thank you to my wife Silvia Regina, my son Lucas Eric, and my
daughter Lisa Estelle. A lot of evenings and weekends were blocked for writing this
book. Many thanks for the support, understanding, and love. I love you all.

This book exists because I won the ICEfaces Technical Blog Award in October 2008.
I got a nice T-shirt and my first Apple gear, an iPod Touch, from ICEsoft. Thanks to
Tracy Gulka for the hard work to get it right before Christmas.

In November 2008, my editor—Sarah Cullington—asked me to "develop a book that
shows readers how to create and deploy rich Internet applications with ICEFaces." I
never thought about writing a book on ICEfaces. Although ICEfaces got momentum
in 2008, a useful introduction was still missing. Actually, it was a good opportunity
to gain more experience in writing and to have my first book on the market. So, I
took the chance of writing the first ICEfaces book. Sarah was a great help to get all
this done. A special thanks to the rest of the Packt Publishing team that helped me
realize this book. You did a great job. I am pretty happy with the result. It was a
pleasure to work with you on this book.

Actually, this book is a documentation of a full-blown ICEfaces web application
example, which I have named ICEcube. So, for two-thirds of my scheduled time,
I was a developer. It was a very tough schedule because the result had to be
something really useful for the Enterprise AJAX developer. Micha Kiener, Head
of Research & Innovation, mimacom, and Ted Goddard, Senior Software Architect,
ICEsoft, put in ideas that helped to get things running. Thanks for your time
(despite the heavy project load).

I also want to thank Wilbur Turner, VP of Sales and Customer Support, ICEsoft, as
well as Robert Lepack, VP of Marketing and Product Management, ICEsoft, and also
David Krebs, CTO, mimacom, for the open communication and their willingness to
support the book.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Last but not least, I thank the ICEfaces community for its support over the past few
years. Although I was not a very active forum member, I hope the book can give
something back. Special thanks to all the members who made suggestions for the
outline. A lot of your suggestions were pretty interesting and worth writing about.
Sadly, this is a beginner's book and the number of pages is limited. I will keep all
this in mind for my future projects.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

About the Reviewers

Dhrubojyoti Kayal works as an Agile developer architect for Capgemini
Consulting. He has more than eight years of experience designing and developing
Enterprise Java applications and products. He is an open source evangelist and
author of the book Pro Java™ EE Spring Patterns: Best Practices and Design Strategies
Implementing Java EE Patterns with the Spring Framework—Apress (Aug 2008).

Prior to Capgemini, Dhrubojyoti worked with Cognizant Technology Solutions,
Oracle, and TATA Consultancy Services.

Ted Goddard is the Chief Software Architect at ICEsoft Technologies and is
the technical lead for the JavaServer Faces Ajax framework, ICEfaces. Following
a PhD in Mathematics from Emory University, which answered open problems
in complexity theory and infinite colorings for ordered sets, he proceeded with
post-doctoral research in component and web-based collaborative technologies.
He has held positions at Sun Microsystems, AudeSi Technologies, and Wind
River Systems, and currently participates in the Servlet and JavaServer Faces
expert groups.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Table of Contents
Preface	 1
Chapter 1: Next Generation Java Development	 7

Past problems	 7
State of the art	 9
Frontend development	 9

Struts	 9
JSF	 10
AJAX	 10
Rich Internet Applications (RIA)	 11

ICEfaces features	 12
JSF reference implementation support	 12
Interoperability	 13

Framework integration challenges	 13
IDE plugins	 15
Application server support	 15
Portal server support	 16

Components for ergonomic interface design	 16
Customer-specific skins	 17
Server-initiated client updates	 17
Optimized page updates	 17
Community	 18

Summary	 19
Chapter 2: Development Environment	 21

Tools	 21
Java Development Kit (JDK)	 21
Installation	 22

Eclipse IDE	 23
Customized distributions	 23
Pulse download service	 24

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Table of Contents

[ii]

Yoxos download service	 25
The ICEfaces book profile at Yoxos	 25
Installation	 26
Customization of the ICEfaces book profile	 26

Maven 2 build system	 26
Installation	 27

Jetty web container	 27
Use in Maven 2 Environments	 28
Installation	 28

MySQL Database Management System	 28
Installation of Community Server	 28
Installation of GUI Tools	 32

Additional Eclipse configurations	 32
ICEfaces plugin	 33

Installation	 33
Maven 2 and the JDK	 35
Jetty server support	 36

The Eclipse web project samples	 37
ICEfaces	 37

The Run on server configuration	 40
ICEfaces and Facelets	 40
The JEE development stack	 42
AppFuse	 43
The edoras framework	 43
ICEfusion	 43
ICEcube	 44

The Spring framework	 45
Hibernate	 45
Apache Tomahawk	 45
JSP Standard Tag Library (JSTL)	 46

Summary	 46
Chapter 3: User Interface Design	 47

Revival of the desktop	 47
Software ergonomics	 48
Challenges	 49
Apply Occam's razor	 49

Reduction	 49
Oversimplification	 50

User interface design principles	 50
Suitability for the task	 50
Self-descriptiveness	 51
Controllability	 51
Conformity with user expectations	 51
Error tolerance	 52
Suitability for individualization	 53

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Table of Contents

[iii]

Suitability for learning	 53
Interface layout	 54

Create drafts with a mockup tool	 54
Layout design	 55

Header	 56
Main navigation	 56
Content	 56
Footer	 57

Facelets templating	 57
The page template	 58
Using the template	 62

The templating in ICEfusion	 66
Running ICEfusion	 66
The ICEfusion files	 67

Summary	 73
Chapter 4: Components for Navigation and Layout	 75

Static pull-down menu	 75
Resource bundles	 78
Page Navigation	 81

Dynamic pull-down menu	 82
ActionListener	 86

Pop-up menu	 87
Tabbed panel	 89
Collapsible panel	 93
Summary	 98

Chapter 5: Components for Feedback and Behavior	 99
Pop-up dialog boxes	 99

The panelPopup tag	 100
ICEfusion dialog tags	 102

MessageDialog	 102
ErrorDialog	 107
QuestionDialog	 110

Connection status	 114
Tooltip	 117
Autocomplete	 121
Drag-and-drop	 126
Summary	 130

Chapter 6: Components for Data Presentation and Multimedia	 131
Data table	 131

Pagination	 134
Dynamic data table	 135

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Table of Contents

[iv]

Sortable columns	 138
Lazy loading	 141

Tree	 142
Chart	 146
Google Maps	 150

License	 152
GMaps4JSF	 153

Media Player	 153
Summary	 157

Chapter 7: Components for Data Creation and Selection	 159
Forms	 159

AJAX bridge and partial submit	 160
Partial submit and the JSF lifecycle	 162
Form field processing	 162
Partial submit supporting tags	 164

Text entry	 164
Selection	 164
Click	 168

Validation with dialogs	 168
Login form component	 168
Validation model	 172
Login form with validation	 172
Validation dialog	 174
Validators	 177

Calendar	 178
Rich text editor	 180
Summary	 183

Chapter 8: User Interface Customization	 185
Administration	 185
Customization	 186

Password	 186
Username	 187

Email address	 187
Units	 188
Number format	 188
Language	 188
Skinning	 189

Language management	 189
Multilingual page template	 190

Language selector	 192
Global language switcher	 194

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Table of Contents

[v]

Skin management	 196
Skin folders	 196
Skinnable page template	 197
Skin context	 199
Skin selector	 200
Skinning in components	 203
Designing your own skins	 204

Images	 205
Colors and fonts	 207
ICEfaces components	 208

Summary	 209
Chapter 9: Reusable Facelets Components	 211

Facelets	 211
Taglibs	 212
Tags	 214

Component logic	 216
Attribute parameters	 218
Attribute references	 220
Backing bean injection through the Facelets attribute	 223

Using interfaces for parameter passing	 223
Hiding the ICEfaces components used for parameter passing	 226
Accessing the Facelets attribute references	 226

Facelets component reuse	 228
Initialization through Facelets or backing bean attributes	 231

Summary	 235
Chapter 10: Push Technology	 237

AJAX Push	 237
Programming model	 238
Architecture	 239

Configuration	 240
Deployment descriptor	 240
Spring scopes	 240
Push server	 241

Production	 241
Deployment	 242
ICEcube/ICEfusion	 242

The ProgressDialog tag	 244
ICEmapper	 251

Object model	 253
Client side	 254

Message handlers	 258
Button handlers	 259

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Table of Contents

[vi]

Status information	 260
Server side	 261

Summary	 264
Index	 265

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Preface
ICEfaces is the technology leader in the integration of AJAX with the JEE stack. Its
vendor, ICEsoft, offers a wide support for application servers, portal servers, and
important open source frameworks. So, you do not have to bother yourself with the
integration aspects of your project. You can focus on the implementation of business
logic and its presentation in the web browser instead.

If you plan a rock-solid Web 2.0 implementation based on the JSF standard, ICEfaces
is an ideal solution. Important enhancements of the JSF 2.0 standard are already
available in ICEfaces 1.8. So, you can expect minimal porting efforts.

ICEfaces technologies such as skinning, multimedia, and AJAX Push already
deliver the standards of tomorrow and ease the development of collaborative web
applications. ICEfaces can even be mixed with modern RIA concepts based on
Adobe Flex. A community of almost 90,000 developers (at the end of 2009) proves
the quality and potential of the ICEfaces implementation.

This book is an introduction to the ICEfaces framework for enterprise developers
with JSF experience. It describes how you can use ICEfaces components to build Web
2.0 applications with a desktop-like character.

The book examples will explain to you how ICEfaces helps integrating AJAX into a
JEE stack (using AJAX Push, JSF, Facelets, Spring, and JPA/Hibernate) without using
a line of JavaScript code. The book has a special focus on the Facelets technology
that is now a part of the JSF 2.0 specification. This will help you to write your own
components for a better reuse and maintenance.

By the end of the book, you will have a solid understanding of how to build modern
and ergonomic web interfaces that fully integrate with the modern Java Enterprise
stacks. You will be able to design and implement reusable and maintainable
presentation components that allow creating customizable, skinnable, and
multilingual web applications.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Preface

[2]

What this book covers
This book focuses on the implementation of desktop-like web applications that
generate a high user acceptance. Each chapter describes a different aspect of how
ICEfaces can be used to achieve this.

Chapter 1 gives a short introduction of modern JEE web development. It shows why
we use AJAX and JSF today, and why ICEfaces is an ideal framework to use.

Chapter 2 helps you to set up tools and frameworks that are used to create and
execute the sample code. We will have a look at a Windows XP environment using
the Sun Microsystems JDK, the Eclipse IDE, the Maven 2 Build System, the Jetty
web container, and the MySQL Database system. There is a special focus on the
installation and the use of the ICEfaces plugin for Eclipse.

Chapter 3 takes a look at what a desktop-like presentation means to modern web
applications. We will have a look at the design principles and start with a common
page layout based on the Facelets templating.

Chapter 4 presents the ICEfaces components that help us to implement an intuitive
navigation. The layout ideas from the previous chapter are further developed using
the ICEfaces components.

Chapter 5 shows how your web application provides feedback to the user. We
will have a deeper look at the special Facelets components that deliver similar
functionality to that which a desktop developer would use in his/her applications.
Additionally, we will have a look at the ICEfaces components that deliver a
desktop-like behavior so that the user gets fast results with minimal effort.

Chapter 6 discusses data presentation components. We will focus on dynamic data
tables that are fed by the database, and offer sortable and resizable columns. The
second part of the chapter describes how to integrate Google Maps, videos, and Flash
animations into your web application.

Chapter 7 describes the partial submit concept that ICEfaces offers to update forms
on the fly. We also take a look at dialog-based validation and how advanced form
elements, such as calendars and rich text editors, can be used.

Chapter 8 offers a model on how to implement the idea of user settings with the help
of ICEfaces. We will take a deeper look at the language and skin management.

Chapter 9 takes a deeper look at the implementation details of Facelets components
that were used in the previous chapters. We will discuss some fundamental design
principles that help to create reusable and maintainable components without ever
writing JSF custom components from scratch.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Preface

[3]

Chapter 10 discusses the principle of AJAX-based push technology and shows how
easily it can be used with ICEfaces. For your amusement, we will implement the
multiuser ICEmapper game, which uses Google Maps for the presentation.

Who this book is for
If you are an enterprise developer who wants to add the latest Web 2.0 features
to a JSF project, this book is for you. You need a basic knowledge of the Spring
framework configuration through annotations and the usage of the JPA annotations.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The <ui:insert> tag allows us to set
defaults that are used if we do not define something for replacement."

A block of code is set as follows:

<ui:component>
 <c:if test="#{context.dynamicMenu}">
 <icefusion:dynamicMenu/>
 </c:if>
 <c:if test="#{!context.dynamicMenu}">
 <icefusion:menu/>
 </c:if>
 <icefusion:menuIcons />

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<f:view locale="#{context.locale}">
<f:loadBundle basename="icefusion.icefusion" var=
 "icefusion"/>
<f:loadBundle basename="icecube.icecube" var="icecube"/>
<head>

Any command-line input or output is written as follows:

#java -jar start.jar

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The server
works fine if you see the Jetty logo and a note, Welcome to Jetty 6."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7245_Code.zip
to directly download the example code.
The downloadable files contain instructions on how to use them.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the let us know link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata added to any list of existing errata. Any existing errata can be viewed by selecting
your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java
Development

Why do we use JavaServer Faces (JSF)? Why do we add Asynchronous JavaScript
and XML (AJAX) technologies to it these days? This chapter will have a quick look
at the past, present, and future of modern Enterprise Java to answer these questions.

Enterprise Java has radically changed from its beginning in the late 1990s up to now.
One of the new trends is the growing use of open source frameworks in the central
parts of modern software architectures.

ICEfaces is one of those open source frameworks that speeds up the change in
frontend development. This chapter will also discuss some of the ICEfaces features
that show how the speed up is achieved.

Past problems
Enterprise Java was invented at Sun Microsystems in the 1990s. Everything
started with a standardized and effective architecture to establish web container
development. The first part of the Java 2 Enterprise Edition (J2EE) was born, and
it brought us Servlets and JavaServer Pages (JSP).

The reference implementation for this, namely Tomcat, became the de facto standard
from the early beginning. Even a decade after this, Tomcat is still one of the most
used web containers. Surprisingly, it was even chosen by the Spring framework team
to be the deployment platform of choice.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java Development

[8]

The success of the web container concept led the Sun engineers to think about a
wider concept: a standardized infrastructure that allowed secure and transactional
communication and data exchange. This should even work in heterogeneous
environments with different operation systems, data representation standards,
and network infrastructures.

There were already solutions, such as the Common Object Request Broker
Architecture (CORBA) that was the most successful in those days. However, none
of them had a native support for the upcoming Web, or had delivered a dedicated
development model based on a pure object-oriented language.

So, the second part of J2EE became the Enterprise Java Beans (EJB) container. It
allowed us to use an application server that had to implement certain services and
Application Programming Interfaces (APIs) to conform with the J2EE specification.
Application developers should be freed from thinking about infrastructure and
allowed to concentrate on business logic. For this, the EJB component model defined
two bean types:

•	 Session beans, which are used to implement the business workflow
of the application

•	 Entity beans, which are defined to handle data persistence

In theory, this is a pretty nice concept; but it failed.

Over the years, J2EE became the de facto standard for distributed application
development. However, some of the implementation details for such application
servers produced time-consuming development processes. The J2EE developers had
to develop and use code generators in cases such as overcoming the required code
verbosity, for example.

Rod Johnson, the father of the Spring framework, was one of the first who deeply
analyzed and criticized J2EE. The most important design problem of J2EE was the
lack of object-oriented concepts, such as inheritance. So, Plain Old Java Objects
(POJO) could not be used for implementation and this made the concrete design
very complex.

New development concepts, such as unit testing and continuous integration, that
came with the agile software development did not really work with the old J2EE
ideas. So, the Java community developed new ideas to establish a lightweight Java
development model. The business objects that were based on EJB technology should
become less dependent on their containers, follow the POJO model, and deliver
feasible reusability.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 1

[9]

State of the art
For delivering feasible reusability, the Dependency Injection (DI) was established.
DI allows one to write POJOs that do not know in which environment they live
during runtime. Instead of establishing relations to other objects themselves, they
get those relations injected. For this, attributes are defined, which follow the Java
Bean model: You define getter and setter methods for attributes, following a certain
naming convention. The container uses the setter to write instances of dependent
objects into attributes with the same class type. If a POJO needs to communicate
with a dependent object, it uses its own getter method to get the reference.

This lightweight development model is a central part of the Spring framework that
is on the way to replace the old J2EE architecture. The current Spring release is able
to replace almost 90% of the old EJB container functionality. Best of all, it can be used
with a standard web container such as the good old Tomcat. It is also possible to
use Spring in standalone applications; for example, applications based on the Rich
Client Platform (RCP) ideas of the Eclipse team.

The return to pure web container environments for the deployment allows us to
create and manage simpler infrastructures. This additionally helps to reduce costs
and allows a faster time to market.

Frontend development
In the beginning of J2EE, the JSP development model was invented to ease
the design of web pages. It allowed the separation of the presentation from
the application logic. They had to be mixed only when using servlets.

Struts
The previous development model missed a useful concept of reusability and
maintenance. So, the Apache Group offered Struts, a Model View Controller (MVC)
framework, which soon became the de facto standard for frontend development.
It is still in use in a lot of projects that started in the early J2EE years.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java Development

[10]

JSF
The Java Community Process (JCP) recognized the demand for standardization
and developed JSF some years later.

The JSF concept uses the existing servlet and JSP implementations, and adds a
modern component and event model to it. JSF allows us to follow the classical
request-response development model that we know from JSP. For the existing
JSP implementations, a migration to JSF can be done step-by-step.

JSF also allows us to follow the ideas of desktop application development. This
kind of implementation becomes increasingly important because of the demand
for desktop-like presentations in web applications.

AJAX
AJAX technology is the key for implementing desktop application behavior in web
applications today. It allows the changing of the web browser from a simple "show
an information page" to a "let me use a web-based application" user model.

A clever combination of dynamic HTML with a JavaScript-based backend
communication (for example, using XML messages) allows us to skip the reloading
of pages. This helps to mimic the behavior of desktop applications in the browser.

As AJAX is established through widely accepted frameworks such as Dojo, it is
possible to use such a behavior in other web development environments such as
JSF. However, the integration quality of both the worlds is very important for an
application's maintenance. Tests of different JSF frameworks in the past have shown
that there are a lot of tweaks. ICEsoft, the company behind the ICEfaces framework,
is a technology leader in such integration aspects.

The use of AJAX technology is not without problems. Although it mimics the
behavior of desktop applications, the result is still HTML and Cascading Style
Sheets (CSS), plus a lot of JavaScript. This can soon be a maintenance nightmare
because JavaScript in the AJAX context is fragile and is often used in places it was
not designed for. For this, a JSF framework should have renderers that shield a
developer from JavaScript coding manually. ICEfaces is such a framework. However,
even ICEfaces (with a dedicated renderer for each supported browser) is not able to
create the same presentation or behavior in any case.

Another limitation of AJAX is the presentation of complex data. HTML has images,
but offers no interactivity or immediate feedback for in-place manipulation.
You have to send an HTML form to change parameters on the server side for
regeneration before the image changes in the client side.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 1

[11]

This is contradictory to the behavior of typical desktop applications. However,
the demand for such functionality is rising in web browser environments.

Rich Internet Applications (RIA)
There are new technologies on the horizon that try to solve the challenge of complex
data presentation. Flex, based on the Flash platform, was the first RIA solution. In
comparison to other RIA technologies, it is the most mature one.

The Flash player, which is used as the Flex runtime, was invented a decade ago and
is the most widespread web browser plugin ever. It has a rock-solid architecture and
is used in mission-critical environments. Flex adds a development model to it that
allows you to develop applications using the Eclipse IDE (Flex Builder). So, you are
no longer bound to the Adobe Flash tools.

Adobe invests a lot of money to integrate Flex with modern Java
technologies, such as the Spring framework, using BlazeDS
(http://blog.rainer.eschen.name/2008/07/02/flex-
supports-spring-are-you-ready-to-skip-web-20/) or
Spring-Flex (http://www.springsource.org/spring-flex).
This helps us to use Flex for more complex data presentations inside
of the JSF environments. Both solutions can already be used in the
ICEfaces projects. Spring-Flex is more modern and recommended to use.

Additionally, there is the JSF-Flex project (http://jsf-flex.googlecode.com/)
that allows a tight integration of the Flex components in JSF environments. It
implements special JSF tags to use the MXML components' Flex delivers. So, the JSF
development model can be kept when you use Flex for complex data presentations.
This is a very promising idea from the maintenance point of view. However, the
project uses Dojo and we have to mix different AJAX frameworks if we integrate it
with ICEfaces. A mixture of AJAX frameworks is always problematic.

JSF-Flex was published at the time of writing this book. So, it is not clear if it can be
integrated with ICEfaces. It is also not clear whether a Spring-Flex integration with
JSF-Flex will be possible. A fully integrated software stack with these frameworks
would be a powerful tool to implement very complex data presentations based on
the ICEfaces, Flex, and Spring technologies.

The first design studies with pure Flex clients based on JEE (Java Enterprise Edition)
backends exist. So, the change from the mixed JSF/Flex presentations to a pure Flex
presentation is foreseeable. The possibility to port such an implementation without
any effort to the desktop, using the Adobe Integrated Runtime (AIR), will speed up
this trend.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java Development

[12]

For both Flex and AIR applications, we need a Flash runtime that has to be installed
first. This can be a challenge if administrators on the customer side do not manage
Flash applications and also block those installations for their users. However, we
can expect this problem to disappear with the increasing number of Flex and AIR
applications that will be used in production over the next years.

ICEfaces features
If you are thinking about using JSF as the new frontend technology for your
project, it is a good time to start right now with a first prototype. The technology is
mature enough to be used in mission-critical environments. The upcoming JSF 2.0
specification, JSR 314 (http://jcp.org/en/jsr/detail?id=314), improves the
JSF model so that faster development and easier integration with other important
frontend technologies will be possible. We can expect all the teething troubles from
the 1.x specification to be resolved.

The current ICEfaces release already delivers a lot of the expected changes from JSF
2.0. So, even if you go productive with your project in the near future, the porting
efforts of your ICEfaces project to JSF 2.0 will be minimal. It is possible to use the
current JSF 2.0 RI Beta instead of the 1.x RI implementations with ICEfaces. There
is also the ICEfaces glimmer code tree for JSF 2.0 native support that you can play
with (http://blog.icefaces.org/blojsom/blog/default/2009/07/01/
On-the-road-to-ICEfaces-2-0/).

JSF reference implementation support
If we have a look at today's JSF implementations, we can see that we have two
framework layers:

•	 The JSF Reference Implementation (RI)
•	 The vendor-specific add-ons

The most well-known reference implementations are:

•	 Sun Microsystems RI (https://javaserverfaces.dev.java.net)
•	 Apache MyFaces (http://myfaces.apache.org)

All of the important JSF vendors support both. So, your choice can be made
dependent on the deployment environment. If an application server already delivers
the necessary JSF libraries, like Glassfish V2 does with the Sun RI, you may stay
with these. Often, you get extras such as stability, tighter integration, or better
performance with such a delivery.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 1

[13]

The ICEfaces framework is an example for the vendor-specific add-on layer.
ICEsoft defines it as an Ajax extension for JavaServer Faces.

The next sections will show why ICEfaces is an excellent example for developer
productivity in JSF environments with an AJAX support.

Interoperability
The ICEfaces framework follows a standard, namely JSF, that allows us to use
the framework in common JEE environments without extra efforts. For best
interoperability and no vendor lock-in, the ICEsoft engineers offer excellent
support to integrate the framework with:

•	 Other important open source frameworks
•	 All important IDEs
•	 All important application servers
•	 All important portal servers

Framework integration challenges
Today, you have choice. There are several JSF-based open source projects you
can choose from. It is no problem to run pure open source development projects
these days. However, you pay a price for missing integration efforts and pure
documentation in the open source landscape. One of the worst experiences of the
past few years was to integrate such open source frameworks without support
by the framework developers.

The problem
Although, you have full access to the code, you will not have much time to analyze
it. All of the important frameworks are complex due to the number of classes
they deliver. The time pressure in your project, and also a natural reservation
against analyzing black boxes keep you from a deep understanding. Mostly, the
documentation is mean. Only a few open source projects deliver a documented
architecture. Javadocs, if written, are seldom precise enough to compensate for
the lack of architectural information. So, the analysis has to become a guess.

Handmade integration workarounds by other framework users often cover only
a certain focus. So, even if you get workarounds in the source code, you have to
transfer this solution to your problem; and such integration efforts in projects can
still lack stability.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java Development

[14]

To search for the cause of an integration problem is a hopeless venture in these cases.
The most annoying thing with this is the fact that you cannot be sure if a certain
problem is because of your development style or the deficient integration.

Before our team decided to choose ICEfaces in August 2007, we did a deep analysis
of several competing open source products. All lacked the required stable integration
with Facelets, the JSF de facto standard for templating. This was the most important
requirement to us because of the flexibility we could have using the Facelets
component design ideas.

At that time, ICEfaces was the only framework with a fully integrated Facelets
distribution that was updated with every release. Our prototypes showed that,
otherwise, we had to manage Facelets-specific source trees for our own patches.
With every new release of a JSF framework, or an update of the Facelets framework,
there was a likelihood of having to rework the patches. This kind of a maintenance
hell was not an option for us.

The ICEfaces way
The ICEsoft engineers recognized earlier than others that the adoption of a
framework depends on its integration quality. Hence, the ICEfaces framework can
be integrated with other JSF frameworks by default. However, there is one limitation:
This only works if you do not have to mix different AJAX technologies.

By contrast, non-JSF frameworks need more integration efforts. Hence, the number
of supported frameworks is growing slowly.

Today, ICEsoft supports these open source frameworks:

•	 JavaServer Faces 1.x (http://java.sun.com/javaee/javaserverfaces)
•	 Facelets (https://facelets.dev.java.net)
•	 MyFaces Tomahawk (http://myfaces.apache.org/tomahawk/

index.html)
•	 JBoss Seam (http://www.jboss.com/products/seam)
•	 Liferay Portal (http://www.liferay.com)
•	 Spring Web Flow (http://www.springsource.org/webflow)

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 1

[15]

IDE plugins
JSF development is comparable to desktop development—both have visual
components and event handling. It would be nice to have an IDE that allows the
user to work like a desktop developer, but that also has all the bells and whistles
that modern web development delivers.

Although the offered functionality is not comparable to what you may know from
Delphi or Visual Basic, ICEsoft offers IDE plugins that help to get something similar.
So, you get (for example) code completion, syntax highlighting, or the possibility to
visually design web pages.

There are some limitations with the "What You See Is What You Get" presentation,
but the integration is mature enough to deliver a real benefit. As ICEsoft supports all
of the important IDEs, you can stay with your preferred IDE. The ICEfaces download
page (http://www.icefaces.org/main/downloads/os-downloads.iface)
delivers plugins for the following IDEs. (You need an account for downloading.)

•	 Eclipse (http://www.eclipse.org)
•	 myEclipse (http://www.myeclipseide.com)
•	 Rational Application Developer (http://www.ibm.com/software/

awdtools/developer/application)
•	 Netbeans (http://www.netbeans.org)

Application server support
ICEsoft also supports all of the important application servers, such as:

•	 Apache Tomcat (http://tomcat.apache.org)
•	 BEA Weblogic Server (http://www.oracle.com/appserver/index.html)
•	 JBoss Application Server (http://www.jboss.org/jbossas)
•	 IBM Websphere Application Server (http://www.ibm.com/software/

websphere)
•	 Oracle Application Server Container for J2EE [OC4J] (http://www.oracle.

com/technology/tech/java/oc4j/index.html)
•	 SAP NetWeaver (http://www.sap.com/platform/netweaver)
•	 Sun GlassFish / Sun Java System Application Server (https://glassfish.

dev.java.net)
•	 Webtide Jetty (http://www.mortbay.org/jetty)

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java Development

[16]

ICEsoft offers extended configuration descriptions (http://support.
icesoft.com/jive/category.jspa?categoryID=80) and
deployment examples that help to get your project running. For the
samples, have a look at /icefaces/samples in the source distribution
at http://www.icefaces.org/main/downloads/os-downloads.
iface. You need an account to download.

Portal server support
Portlet development, which is standardized in JSR 168 (http://jcp.org/en/jsr/
detail?id=168) in combination with the Liferay framework (http://www.liferay.
com/), is supported for the following portal servers:

•	 BEA WebLogic Portal (http://www.oracle.com/products/middleware/
user-interaction/weblogic-portal.html)

•	 JBoss Portal (http://www.jboss.org/jbossportal)
•	 Apache Pluto (http://portals.apache.org/pluto)
•	 JetSpeed 2 (http://portals.apache.org/jetspeed-2)

Similar to the application server deployment examples, you get portlet sample
applications to start with.

Have a look at /icefaces/samples/portlet in the source
distribution at http://www.icefaces.org/main/downloads/
os-downloads.iface. You need an account to download.

If your project is using portal technology and you want to implement your portlets
based on JSF, the ICEfaces framework is an excellent candidate to do so.

Components for ergonomic interface design
Although the ergonomics of user interfaces is defined by the way you choose page
layout and navigation, the design quality of the visual components that you can use
for it is not without influence. The ICEfaces framework offers everything that an
ergonomic user interface design needs for today's web applications.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 1

[17]

In highly competitive situations where web applications have to persuade
customers within seconds, the functionality is not deciding in the first step. If your
web application lacks ergonomics, you will lose a prospect. It seems that the ICEsoft
engineers considered this during the components' design. They found an excellent
combination of AJAX and JSF, and even a development model, that will cause
minimal efforts for the developer.

Customer-specific skins
Individual solutions become more and more important to customers.
Customization is a central part of modern web architectures. This is especially
true for the visualization.

Modern implementations allow users to adapt the presentation to customer-specific
colors, fonts, images, and so on. Even the layout has to be changeable in some cases.
For this, we need components that separate presentation from business logic.

Web applications that support a change of the visualization during runtime are
called skinnable. The ICEfaces framework delivers standard skin definitions to
start with. However, you can also define your own skins through the change of
component-specific CSS classes.

Server-initiated client updates
Push technology gets a revival through AJAX. We are able to update certain
values inside of a web page when the server side changes. This can be done
without initiation through the client.

ICEfaces has a seamless integration of this idea using AJAX in a JSF context.
ICEfaces delivers the most advanced implementation to get the best of both
worlds without the necessity to program a single line of JavaScript.

The push can be done to a group of clients simultaneously. This helps to
establish collaborative computing.

Optimized page updates
Web pages are fully loaded only once. After this, the update is limited to certain
parts of a page. Updates can be initiated by the server, and are done asynchronously.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Next Generation Java Development

[18]

The development model behind this is server-side AJAX. Although the client
(namely, the web browser) uses AJAX, the developer does not have to program the
client side. Instead, he uses the JSF notation on the server side. The rest is done by
the framework. All of the context information, which is necessary to decide when
and which parts of a page should be updated, is calculated automatically without
any extra programming by the developer.

This is even true for all dependencies between update areas of a page. So, you do not
have to define where to update, when to update, or which dependencies an update
has to consider. You only define events in your JSF code without even using special
tags. The context management for dependent visualization is done by the framework
and is transparent to the developer. So, we can concentrate on the business logic.

ICEsoft calls this technology Direct-to-DOM. Direct-to-DOM manages a server-side
Document Object Model (DOM), which is similar to the web browser's DOM, to
present a web page. All the changes that are necessary inside a page are done in the
server-side DOM first, and then the AJAX update mechanism updates the client-side
DOM. The client and server are kept in sync through the AJAX bridge.

The event control is kept on the server side. You do not have to care for browser
releases or vendor-specific limitations in JavaScript or CSS implementations.
ICEfaces delivers browser-specific renderers that circumvent all of the JavaScript
problems. The results are code stability and also better security.

Community
No successful framework is without a vital community. The ICEfaces community is
growing continuously. This is certainly an indication of the quality of the framework.

You can get into contact with other ICEfaces developers at
http://www.icefaces.org/JForum/forums/list.page. If you
have any questions, the ICEfaces forum will help you out. Some of the
ICEsoft engineers read and write in this forum on a regular basis. You
need an account to use the forum.

The combination of JSF and AJAX has its own problems. Although the architecture
behind ICEfaces is remarkable, the implementation has its challenges. The Issue
Tracker at http://jira.icefaces.org/ can help to check if your development
style is the problem, or if it is the current ICEfaces release. Often, the ICEfaces
forum can offer a workaround in the meantime. You need an account to use the
Issue Tracker.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 1

[19]

For more official communication, the ICEsoft team uses a company blog (also known
as the ICEfaces Water Cooler). For latest news or programming tips and tricks, have
a look at http://blog.icefaces.org.

Summary
This chapter had a quick look at the history of Java Enterprise, with a special
focus on frontend development.

The Java community is changing from the heavyweight, EJB-based development
model to a lightweight, POJO-like one. The comeback of pure web container
deployments and the universal use of Dependency Injection allow a faster
time to market.

ICEfaces, the JEE presentation framework based on the JSF standard,
perfectly integrates into the new development model. It adds the AJAX Push
and Direct-to-DOM technologies that allow you to develop desktop-like web
applications without using special tags or JavaScript development.

Such web applications can be integrated with popular frontend and backend
frameworks. You do not have to change your development environment to start
with ICEfaces. The ICEfaces applications can be deployed to all of the established
application servers and portal servers.

The next chapter will describe the installation and configuration of the Eclipse
IDE for ICEfaces development. Additionally, we will have a first look at a modern
software stack that uses ICEfaces as its presentation framework. The obligatory
Hello World! example will also be discussed in the next chapter.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment
This chapter will take a look at the tools and frameworks that we will use in the
chapters to come. We start with the setup of JDK, Eclipse IDE, Maven 2 Build
System, Jetty web container, and MySQL Database system on Windows XP. With
the help of the ICEfaces plugin for Eclipse, we will create our first web applications.
Finally, we will have a look at the advanced JEE development stack based on
ICEfusion (AppFuse), which will be used in the upcoming chapters.

Tools
This section will show you how to install the following on a Windows XP system:

•	 The JDK
•	 The Eclipse IDE
•	 The Maven 2 build system
•	 The Jetty web container
•	 The MySQL database system

If you are already familiar with all this, you may proceed with the Additional Eclipse
Configurations section.

Java Development Kit (JDK)
Although the Windows update installer may have installed a Java runtime on your
computer, we need a full-blown JDK installation. Eclipse, and also the Maven 2 build
system, expects this. We will use JDK 1.6.0_15 for our examples.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[22]

Installation
The JDK can be downloaded from http://java.sun.com/products/archive/
j2se/6u15/index.html. Click on the Download JDK link. The next page asks for
a platform. Choose Windows. Do not forget to select the legal checkbox before you
click on the Continue button. Click on the link jdk-6u15-windows-i586-p.exe, or
select the checkbox and use the Download Selected with Sun Download Manager
button to download the file.

After downloading the JDK, start the installation by double-clicking on the
jdk-6u15-windows-i586-p.exe file. Follow the dialog instructions and use the
suggested paths. After the installation, we have to set the environment variable
JAVA_HOME and extend the PATH variable. For this, go to Start | Control Panel |
Performance and Maintenance | System | Advanced and click on the Environment
Variables button.

In the top list, click on the New button and create a JAVA_HOME variable with the
value C:\Program files\Java\jdk1.6.0_15. In the bottom list, select the Path
variable entry and click on the Edit button. Add ;C:\Program files\Java\
jdk1.6.0_15\bin at the end of the Value. Do not forget the semicolon that is used
as a separator. Close all of the control panel dialogs that are open so that Windows
activates your changes. You also have to close all of the opened command windows
because such windows still use the old settings that were valid before you made
your changes.

For testing the new environment, we will open a new command window and type:

javac -version

You should get the answer:

javac 1.6.0_15

You may have to wait for some time before the answer is created.

If you get the message that the javac command cannot be found, check your
environment variable PATH:

set PATH

You should see the path C:\Program files\Java\jdk1.6.0_15\bin at the end of
the PATH result.

For further installation details, have a look at http://java.sun.com/javase/6/
webnotes/install/jdk/install-windows.html.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[23]

Eclipse IDE
Eclipse is today's most well-known and also the most important Integrated
Development Environment (IDE). It delivers the base functionality for most
of the commercial IDE products that you buy today.

The Eclipse ecosystem consists of a lot of subprojects, which deliver extensions
(plugins) for the Eclipse kernel. Meanwhile, the number of plugins has reached
a level that does not allow a beginner to start without a deeper study of them.

The plugin concept supports reusability. So, plugin A can use plugin B to deliver
certain functionality. The Eclipse installer can solve such dependencies and
install dependent plugins, if necessary. However, it cannot manage higher-level
dependencies when you have to decide how to combine a number of plugins for
a certain category, such as database development.

Customized distributions
For the management of higher-level dependencies between Eclipse plugins,
there exist download services that offer online tools to create customized Eclipse
distributions. You choose a certain Eclipse-based package and add plugins from
several categories to it. Finally, the online system generates a single file that you can
download and use for installation on your local machine. Your selection can be saved
in a profile. You can edit the profile or share it with others. With the profile, you can
generate a new installation file at any time.

The advantages of such a download service are:

•	 The plugins are tested with the current Eclipse base so that the customized
distribution is stable in any case.

•	 You do not have to monitor plugin dependencies. If a plugin is useful for
another one inside a category, you get a hint. With your confirmation, all
necessaries are added automatically.

•	 You do not have to follow the market for every new plugin that may help
your project. You can browse the categories instead. Most plugins have a
detailed description, or even show extra hints from the service vendor.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[24]

Through a shift in the target group marketing, some vendors now offer their service
free of charge. Such free offers are useful for a single developer, or for a group
of developers in small projects. If you plan for a more standardized IDE rollout
management in bigger development teams, or if you need special service support,
have a look at the payable offers instead.

Pulse download service
There are two products that are widely used today:

•	 Pulse (http://www.poweredbypulse.com/)
•	 Yoxos (http://ondemand.yoxos.com/)

If you are new to Eclipse, you may have a look at the free part of Pulse first. It offers
Eclipse-based packages just as the download page of the Eclipse home page does.
However, you manage these in a desktop application, the Pulse Explorer, which you
have to download first. The category management is more clearly arranged, but is
not as comprehensive as the Yoxos one.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[25]

Yoxos download service
Yoxos offers an online catalog manager, which is supplemented with an Eclipse
perspective that has nearly the same presentation. This kind of management seems to
be a bit more handy. The comprehensive catalog seldom lets you think about adding
plugins by hand. However, the ICEfaces plugin is not a part of the catalog and we
actually have to do this later.

The ICEfaces book profile at Yoxos
Yoxos allows you to manage profiles and offers them to the public. To download
the ICEfaces book profile use the following URL in your web browser:

http://ondemand.yoxos.com/geteclipse/rap?profil
es=868129468_1232759792533368664

In the Schedule tab, all dependent plugins are shown:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[26]

Instead of typing the key yourself, you can also choose the Yoxos ICEfaces book
profile link at http://blog.rainer.eschen.name/icefaces/icefaces-book-
chapter-2/.

When you click on Start Download, dialog box pops up with the download link
on top. You can ignore the additionally shown feedback form.

Installation
You can take the ZIP file and expand it to your Program Files folder. It will create
an Elipse folder with every plugin in it that the profile defines. You can start Eclipse
by double-clicking on eclipse.exe, which can be found in the root of the folder
structure. You may create a desktop link to it for later use.

Customization of the ICEfaces book profile
If you have used this Yoxos distribution for a while, you may miss a plugin or rethink
the use of some of the existing ones. You can change the ICEfaces book profile for this.

To add plugins, use the Plug-In Explorer tab on the left for the selection, and the green
arrow to add a plugin to the Schedule tab. Choose plugins you want to delete inside
the Schedule tab and click on the red cross on the left of the list. To save the result,
click on Save As Profile. You may have to create an account for this.

If you use the online tool to customize the profile, do not forget to
save all your changes before the pages are changed. If you forget to do
this, all your changes will be lost. The tool has no memory for it.

Maven 2 build system
The Maven build system is the successor of Ant (http://ant.apache.org/), the
first build system that is based on a pure Java implementation. Maven 1 implements
new ideas that came up during the development of Java products at the Apache
Software Foundation some years ago. Maven 2 is the result of a redesign based on
the experiences of Maven 1 through the Java community. Maven 1 and Maven 2
are incompatible. To avoid confusion, we add the release number to the product
name here.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[27]

The automatic management of transient dependencies is what makes Maven
superior to Ant. Your build does not have to define all the dependencies that the
project JARs have. Instead, you define the first dependency layer—the JARs you use
directly. All the following layers, which describe the dependencies that the JARs
from the first layer have, are managed by the build system. So, if you change a JAR
release, all the necessary dependency changes are done by the build system.

This is done through a cascade of the Project Object Model (POM) files that describe
such dependencies for a Maven artifact. A Maven artifact can be a JAR file, for
example. However, you can also define the build of a WAR artifact. With its plugin
concept, Maven allows you to do a lot of different things, such as the creation of
POJOs from a database or the creation of Javadocs.

Installation
Maven can be downloaded at http://maven.apache.org/download.html. Take the
2.2.1 release ZIP archive and extract it to your Program Files folder. It will create
the apache-maven-2.2.1 folder. Inside, you will find the bin folder that delivers the
start scripts. Open a command shell with this folder chosen and type the following
command to test your Maven installation:

mvn -version

Normally, it shows the version number.

For your convenience, it is a good idea to add the Maven bin folder to your
environment path. So, you can use the mvn command independently in every
folder where a pom.xml can be found.

By default, there is no repository folder generated when you execute Maven the
first time. However, the Eclipse Maven Plugin expects one.

To create such a repository folder, also type this command:

mvn clean

You will get a build error message because Maven can not find a POM file. But,
it downloads the Maven Clean Plugin and with it, it generates a valid repository
folder structure.

Jetty web container
For web development, we need an additional web container, also known as a servlet
container. The Jetty web container is similar to Tomcat, which we discussed in the
last chapter. A key feature of Jetty is its ability to run in an embedded mode, which
allows you to integrate it in other environments.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[28]

Use in Maven 2 Environments
The Maven 2 build system is such an environment. Jetty can be used to deploy
a Maven build without a dedicated installation. This is very useful if you want
to have a quick look at a source distribution. Build the distribution with the
following command:

mvn install

Now, you can deploy and test it with the following command:

mvn jetty:run

For more details, have a look at http://docs.codehaus.org/display/JETTY/
Maven+Jetty+Plugin.

Installation
Jetty can be found at http://dist.codehaus.org/jetty/. We use the 6.1.9 release.
If you click on the folder link, you can find the jetty-6.1.9.zip file. Download
the file and extract the archive to a folder which path has no spaces in it. Jetty
faces problems with handling spaces in its installation path. So you can not use the
jetty-6.1.9 folder is created. Open a command window and change to the newly
created folder. Type this to start the server:

java -jar start.jar

If you can see the Started SelectChannelConnector@0.0.0.0:8080 log entry, the server
is ready to use. Open your web browser and use http://localhost:8080/test/ to
open a page. The server works fine if you see the Jetty logo and a note, Welcome to
Jetty 6.

MySQL Database Management System
MySQL is the most used open source Relational Database Management System
(RDBMS) on the planet. It is the standard database in the AppFuse project. So, for
our ICEfusion implementation, we will use it too.

Installation of Community Server
Have a look at http://dev.mysql.com/downloads/mysql/5.1.html#win32 for
the download. We use the Community Server 5.1 edition. Take the Windows MSI
Installer (x86) by clicking on the Download link on the right. The mysql-5.1.39-
win32.msi installer can be started with a double-click.

For the Setup Type, choose Typical because we will not do anything special with
the database.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[29]

At the end of the installation, keep the Configure the MySQL Server now checkbox
selected. The database system has to be initialized first, as shown in the next screenshot:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[30]

For the Configuration Type, use Standard Configuration:

In the Windows Configuration, keep everything as is. Even if you do not like
to install MySQL as a Windows Service, this is the simplest way to install it:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[31]

In the Security Options, keep all settings selected and set the password as icefaces:

After the configuration is finished, we can test the installation. For this, we execute
MySQL Command Line Client in the Windows start menu at Programs | MySQL
| MySQL Server 5.1. First, enter the password icefaces. Now have a look into the
RDBMS to test it. We ask for the number of users in the system:

select count(*) users;

The result looks similar to this:

mysql> select count(*) users;
+-------+
| users |
+-------+
| 1 |
+-------+
1 row in set (0.03 sec)

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[32]

Installation of GUI Tools
Additionally, there is a GUI Tools Bundle 5.0 that you can find at http://dev.
mysql.com/get/Downloads/MySQLGUITools/mysql-gui-tools-5.0-r16-win32.
msi/from/pick. Ignore the form and have a look at the end of the page to click on
the link No thanks, just take me to the downloads!. Start the mysql-gui-tools-
5.0-r16-win32.msi installer through double-click. We use Complete in Setup
Type, as shown in the next image:

We do not necessarily need the MySQL GUI Tools. However, it is more comfortable
to have a look into the database structures with these tools than using the Database
Developer Tools of Eclipse.

Additional Eclipse configurations
Before we can create our Hello world! examples, we have to add some more
functionality to the Yoxos distribution by hand. This section assumes that you are
familiar with Eclipse configuration basics. Although the following descriptions are
detailed, not all steps are explicitly described. For a general introduction into Eclipse,
study the Workbench User Guide at http://help.eclipse.org.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[33]

ICEfaces plugin
Open source framework developers, who also deliver extensions for the common
IDEs, deserve a closer attention. And ICEsoft is one of those teams. Although the
corresponding Eclipse plugin has its limitations in the "What You See Is What You
Get" presentation of JSF and Facelets markup, it has its strengths in other cases. So,
using it is basically a good idea.

It is important to have a look at the ICEfaces release that is supported. Each ICEfaces
release follows a corresponding Eclipse plugin some time later. For new projects, like
our book examples, this is not important because the ICEfaces JARs can be installed
with the plugin too. However, there can be differences with the existing projects if
you use Maven to build the project and Eclipse only as a smart editor.

With the installation of the plugin, you get:

•	 ICEfaces and Facelets support for dynamic web projects
•	 Easy creation of the Eclipse projects with the ICEfaces and Facelets support
•	 Full integration for deployment on Eclipse-managed web containers
•	 Syntax highlighting, code completion, and visual tag management in the

Web Page Editor

Installation
ICEsoft offers an update site. So, the download and installation by hand, that was
necessary before release 3.6.2, is no longer necessary for the plugin.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[34]

Start Eclipse and go to Help | Install New Software... | Add.

The Location is set with the update site http://www.icefaces.org/eclipse-
updates. Set a Name such as ICEfaces Plugin and click on the OK button.

In the next step, you can choose the items you want to install. You may have to
change Work with; to All Available Sites. In the list, we check ICEfaces Plugins v3.6.2:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[35]

A click on the Next button starts the download. You may get a Security Warning
telling you that you are trying to install unsigned content. You can ignore this
because the update site is managed by ICEsoft.

After the installation, Eclipse has to be restarted.

Maven 2 and the JDK
The Maven 2 support for Eclipse is already a part of the Yoxos distribution.
However, the standard installation of Eclipse only references the JRE. Maven 2
needs the JDK instead.

Have a look at Window | Preferences | Java | Installed JREs. The list shows the
referenced JRE. Click on the Add button and choose Standard VM from the list. In
the next dialog box, click on Directory and choose the installation folder of the JDK.

The list of Installed JREs shows the JDK reference. Select the checkbox to make it
the default one. You may also delete the old JRE entry.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[36]

To complete the JDK support for Maven, we explicitly have to set the JDK as virtual
machine for Eclipse. Normally, we would add a command to the eclipse.ini that
can be found in the Eclipse installation folder. But, this does not work. Instead, we
add a command line parameter to the icon that is used to start Eclipse:

"C:\Program Files\eclipse\eclipse.exe" -vm "C:\Program files\Java\
jdk1.6.0_15\bin\javaw.exe"

If you want Eclipse to load and work faster you may also add these parameters:

-vmargs -Xms512m -Xmx512M -XX:PermSize=256m -XX:MaxPermSize=256m
-XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled
-XX:+CMSPermGenSweepingEnabled

Jetty server support
Eclipse allows us to manage our standalone Jetty inside the IDE. This allows us to
deploy Eclipse web projects to it. We can also debug these with the standalone Jetty.

First, you have to open the Servers View with Windows | Show View | Other.
Select Server | Servers from the tree to open the view. Next, we create a new
entry for Jetty. For this, open the context menu inside the server view and choose
New | Server.

Jetty is not a part of the standard distribution support. So, you have to click on the
Download additional server adapters link. The dialog box shows a list of those
adapters. Choose Jetty Generic Server Adaptor and accept the license agreement.
After downloading, a restart of Eclipse is necessary.

At the time of writing this book, there was a repository problem with
Eclipse 3.5 – the adaptor dependencies could not be resolved. If you still
get errors during your installation, try to install the necessary plugin
manually. Have a look at Help | Install New Software... | Add and use
http://www.webtide.com/eclipse for Location.

We open the context menu inside the server view and choose New | Server again.
The list now shows the Jetty entry. Click on it and choose Jetty 6. You may give the
server a different name. The next dialog page lets you choose the JRE and the Jetty
installation folder.

For JRE, use the JDK reference we installed for the Maven 2 plugin. For Jetty Home,
use the folder you installed the standalone Jetty in. The next dialog page can be kept
and is for information purposes. If you try to start a deployment in the web browser,
use localhost:8080. In Internet Explorer or the Eclipse web browser, this will be
http://localhost:8080.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[37]

We can skip the next dialog page because we have no Eclipse project at the moment
that can be added to the Jetty server. So, click on the Finish button. The server view
now shows the active Jetty entry.

For further details, have a look at http://docs.codehaus.org/display/JETTY/
Web+Tooling+Support.

The Eclipse web project samples
It is time for the mandatory Hello World! implementation. We will have two of them.
The first one is based on the standard ICEfaces implementation. The second one
adds Facelets to it. However, we will not really implement templating. Facelets will
be discussed in detail in the next chapter.

ICEfaces
ICEfaces projects are specialized Eclipse dynamic web projects. So, we start with the
creation of a dynamic web project and configure it for the ICEfaces use. Have a look
at File | New | Project... | Web | Dynamic Web Project in the following screenshot:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[38]

The important things to note in this dialog are Dynamic Web Module version, which
has to be the latest release (2.5 in our case), and Configuration. You can choose from
different combinations using ICEfaces and Facelets. For our first example, we need
the ICEfaces Project entry. Click on the Next button to continue.

All entries in the next dialog page, Java, can be kept as is and you can click on the
Next button immediately. The third dialog page, Web Module, has to be set here:

Within this dialog, it is important that the Generate web.xml deployment descriptor
checkbox is selected. Click on the Next button for the library settings as follows:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[39]

We have to select and download the necessary libraries because these are not a part
of the ICEfaces Eclipse plugin distribution anymore. Before you add them, have a
look at the Include libraries with this application checkbox. This should be selected.

Click on the Download library button (disk icon on the right) for the
libraries selection.

Our development is based on Apache MyFaces. For this, we select:

•	 ICEfaces Core Library v1.8.2
•	 JSF 1.2 (Apache MyFaces)

Each entry has to be downloaded separately. For each click on the Next button,
select the I accept the terms of this license checkbox and click on the Finish button.
After this, the download will start. The dialog will close automatically. Now, you
can continue with the rest of the libraries list.

The last dialog page ICEfaces configurations can be kept as is, and left with an
immediate click on the Finish button.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[40]

The Run on server configuration
The generated project is shown in the Project Explorer. If you open the context menu
by clicking on the project name, you can open the settings dialog of Run As | Run
on Server. Choose Jetty 6 from the list and select Always use this server when
running this project. Click on the Finish button.

If you have a look at the Servers view, you will notice that Jetty starts and tries
to deploy the project. The Console view presents the log statements during the
deployment. The web browser is started in parallel.

If the web browser shows an error, you have to wait until the deployment is done.
After this, the browser reload should show a welcome message.

java.lang.IllegalStateException: No Factories configured for this
Application. This happens if the faces-initialization does not
work at all - make sure that you properly include all configuration
settings necessary for a basic faces application and that all the
necessary libs are included. Also check the logging output of your web
application and your container for any exceptions!
If you did that and find nothing, the mistake might be due to the
fact that you use some special web-containers which do not support
registering context-listeners via TLD files and a context listener is
not setup in your web.xml.

The web.xml file of the generated project is missing the following:

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>

If you add this and run the project again, the web browser will show Welcome
to ICEfaces. You may have to reload the browser window in Eclipse. This is the
standard output text of the ICEfacesPage1.jspx page. You can change the output
to Hello World! to complete the project.

ICEfaces and Facelets
The creation of a Hello World! ICEfaces project using Facelets is similar to the
creation of a Hello World! ICEfaces project without Facelets. So, we only describe
the differences here. In the Dynamic Web Project dialog, you have to choose
ICEfaces Facelets Project instead of ICEfaces Project:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[41]

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[42]

You have to download and select the following in the JSF Capabilities dialog and
the Download Library dialog:

•	 ICEfaces Core Library v1.8.2
•	 ICEfaces Facelets Library v1.8.2
•	 JSF 1.2 (Apache MyFaces)

After the deployment and the browser reload, the page asks you to add some
ICEfaces components.

The JEE development stack
You may wonder why we chose Maven 2, Jetty, or MySQL in the tools section. All
three support an integration framework that lays the ground for our JEE application
that we will start to develop with the next chapter.

For a realistic project scenario, the JEE application will integrate today's most
important open source frameworks. These will deliver or support the next generation
Java technologies such as:

•	 Dependency Injection
•	 Aspect-oriented programming
•	 Annotations
•	 Object-relational mapping and data access objects

These technologies will be used to implement non-functional requirements such as:

•	 Transaction management
•	 Persistence
•	 Security

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[43]

AppFuse
To integrate all the JEE frameworks from scratch still requires a tremendous effort.
However, we avoid this by using the integration framework AppFuse
(http://www.appfuse.org).

AppFuse was started in 2002 by Matt Raible, primarily to support a book project.
Now it is a production-ready kickstarter for modern JEE implementations. The
framework supports the most important open source frameworks and even allows
you to combine them individually. For more details about the framework support,
have a look at http://www.appfuse.org/display/APF/Reference+Guide.

The edoras framework
During the writing of this book, an alternative to AppFuse became open source—the
edoras framework (http://www.edorasframework.org/) by mimacom (http://
www.mimacom.ch/en/solutions/), the company that is offering ICEfaces support
in Europe. edoras has a strong focus on frameworks that are supported by ICEsoft;
for example, Liferay. It also delivers Facelets components and other extensions to
ICEfaces that ease the enterprise development.

ICEfusion
Although AppFuse has pretty nice features, it is missing a fundamental feature that
we need—ICEfaces support. This is a feature that has been discussed by the AppFuse
community since ICEfaces became open source. However, nobody has implemented
it yet for the public.

As there was no real alternative to AppFuse before edoras became open source, I,
with the support of Matt, developed a solution. The current implementation can be
found at http://icefusion.googlecode.com.

ICEfusion is an adaptation of the basic JSF Maven Archetype that is delivered
with AppFuse. ICEfusion keeps the existing backend technology that allows us
to implement transaction management, persistence, and security. The frontend
technology is almost fully replaced with a new ICEfaces and Facelets implementation.

All code changes follow the idea of keeping the original AppFuse structure, so that
the AppFuse or ICEfaces updates can be integrated without effort. As the Maven
build process delivers an extensive automation, a lot of code is actually generated
during the build, and not all preconditions can be changed. So, some obsolete files
are still a part of the project. You will even find configurations that circumvent the
original ideas to get the new implementation behavior. However, that would never
be implemented in this way in a project from scratch.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[44]

Nevertheless, for our book application, this is not dramatic. We will only have a look
at certain packages or files that allow extending ICEfusion. So, you can ignore all this
in the first step. However, if you think about using ICEfusion for your own project,
you may need to have a look at these details.

ICEcube
Our example implementation is a full-blown web application. For this, it gets its own
name: ICEcube. The implementation is based on the ICEfusion architecture and its
Facelets components. ICEcube shows how to use and combine these components in
certain presentation contexts.

The following image presents the architecture behind ICEcube:

ICEcube Architecture

Web browser

ICEfusion

ICEfaces 1.8.1

ICE Facelets 1.8.1

AppFuse 2.0.2

Tomahawk 1.1.6JSTL 1.1.2

MyFaces 1.2.2

Spring 2.5.4

Hibernate 3.2.6

MySQL Connector 5.1.6

JDK 1.6.0_13 Jetty 6.1.9 MySQL 5.1

The building blocks are:

•	 The Java platform
•	 The Jetty web container
•	 The MySQL database management system
•	 The AppFuse integration framework
•	 The ICEfusion ICEfaces adapter for AppFuse
•	 The web browser

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 2

[45]

The following sections will provide some more details about those parts of the
architecture that were not discussed before.

The Spring framework
A central part of the architecture is the use of Dependency Injection. The Spring
framework delivers everything necessary for this. This allows ICEcube to use
Spring beans instead of JSF beans for implementing the backing bean concept.

Spring is used in all the layers. So, it is also used to establish transaction management
and persistence using Hibernate for Object-Relational Mapping. Most of the
configuration for this is done through annotations.

Spring Security is used to protect the web access. It is also used to manage the login,
Remember me, and logout functionality.

Hibernate
Hibernate allows us to use POJOs for managing persistence. One of the biggest
advantages of the AppFuse framework is the automated generation of all the
necessary Hibernate artifacts during the build process.

So, the programming of POJOs is pretty simple. We define the POJO attributes and
the getters and setters, and add some annotations. As long as we use simple CRUD
(Create, Read, Update, Delete) processing, we do not have to invest more time for
transaction management and persistence.

If you have to take action manually, you can use the Generic DAO (Data Access
Object) concept. The creation of DAOs, which you use to manage the persistence
of POJOs, is done through Generics. So, you can have the same DAO functionality
with every POJO type and you do not have to implement such functionality yourself.

Annotations and Generics are the reason why we use JDK 6.

Apache Tomahawk
Normally, the ICEfaces framework delivers everything you need for presentation
purposes. However, there are some JSF components that you may miss. Apache
Tomahawk is a popular extension to the MyFaces implementation and can help here.

ICEsoft has spent some time integrating Tomahawk and ICEfaces, so that a mixture
of JSF tags can be used. Not all Tomahawk tags can be used the same way that
you know as a standalone Tomahawk implementation. Have a look at http://
support.icesoft.com/jive/servlet/KbServlet/download/731-102-1045/
ICEfacesTomahawkCompSupport.html for tips and possible limitations.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Development Environment

[46]

If you plan to use the ICEfaces skinning, it is not useful to mix ICEfaces tags
with other JSF framework tags. The skinning expects some extras from the JSF
components that other JSF frameworks do not support.

JSP Standard Tag Library (JSTL)
The JSP Standard Tag Library (JSTL) is not a part of the JSF 1.x specification.
However, it is compatible with JSF and we can use it in the ICEfaces contexts too.
You will primarily use it for control structures that are necessary if decisions have
to be made outside of backing beans, so to speak, as part of the tag layer.

Summary
This chapter described which tools we will use in the next chapters. It showed how
to install and configure them. For some, the interdependencies were also discussed.

You used Eclipse and ICEfaces plugins to create your first web application. It was
possible to create a standard ICEfaces project and deploy this on an Eclipse-managed
Jetty container. Additionally, we created a project with a Facelets support.

The tools selection was primarily done to support the development of our
AppFuse/ICEfusion-based JEE application—ICEcube. Although AppFuse delivers
everything for a real-world implementation, it lacks the ICEfaces support. I have
started the ICEfusion project to overcome this limitation.

The ICEcube architecture integrates all of the important open source frameworks
for transaction management, persistence, and security. It follows the next generation
Java programming model: Dependency Injection, aspect-oriented programming,
annotations, object-relational mapping, and generic data access objects.

In the next chapter, we will start developing ICEcube, beginning with the page
layout for desktop-like user interface presentations.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design
Before we take a more detailed look at the ICEfaces components, we will discuss the
desktop character of modern web applications in this chapter. Desktop technology
is about 40 years old now and there are best practices that can help us in our web
application design.

An important part of the user interface design is the page layout. We will have a look
at the corresponding design process using a mockup tool. The Facelets example from
the last chapter will be extended to show how to implement such a mockup design
using Facelets templating. Finally, we will have a look at the production-ready
templating of ICEfusion.

Revival of the desktop
The number of desktop-like web applications is growing faster and faster. The
demand for this is not a big surprise. Using full-featured desktops meant that users
had to suffer from the limited-user model of the first generation Web. This usage gap
is now filled by web applications that mimic desktop behavior.

However, there is a difference between the desktop and the Web. Although
equipped with desktop-like presentations, web applications have to fulfill different
user expectations. So, we have a revival of the desktop metaphor in the Web context;
but it is mixed with user habits based on the first decade of the Web. Nevertheless,
the demand for a purer desktop presentation is already foreseeable.

If you primarily followed the traditional web programming model in the past,
namely the request-response pattern, you may first have to shift your mind to
components and events. If you already have some desktop-programming experience,
you will discover a lot of similarities. However, you will also recognize how limited
the Web 2.0 programming world is in comparison to modern desktops.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[48]

The difference is understandable because desktop design has a long tradition. The
first system was built at the end of the 1960s. There is a lot of experience in this
domain. Best of all, we have established rules we can follow. Web design is still a
challenge compared to desktop design.

Although this book cannot discuss all of the important details of today's desktop
design, we will have a quick look at the basics that are applicable to nearly all user
interface designs. We can subsume all this with the following question:

What makes a software system user-friendly?

Software ergonomics
Have you ever heard of the ISO standard 9241, Ergonomics of Human System
Interaction (http://en.wikipedia.org/wiki/ISO_9241)? This standard describes
how a system has to be designed to be human-engineered.

There are a lot of aspects in it, from the hardware design for a machine that has to
be used by a human to the user interface design of software applications. A poor
hardware or interface design can result in not only injury, but also mental distress
that results in the waste of working time. The primary target is to prevent humans
from damage.

The most important part of ISO 9241 for software developers is part 110, dialog
principles. It considers the design of dialogs between humans and information
systems with a focus on:

•	 Suitability for the task
•	 Suitability for learning
•	 Suitability for individualization
•	 Conformity with user expectations
•	 Self-descriptiveness
•	 Controllability
•	 Error tolerance

We will take a deeper look at these later.

ISO 9241-110 has its roots in a German industry standard based on research work
from the early 1980s. I first had a look at all this during a study almost 20 years ago.
Most interesting with part 110 is the stability of the theoretical model behind it.
Independent of the technical advances of the IT industry in the last two decades,
we can still apply these standards to modern web application design.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[49]

Challenges
The principles of ISO 9241-110 can help you to get better results, but they only
serve as a rule. Even if you follow such principles slavishly, the result will not
be automatically valuable.

Creating a useful interface is still a challenging business. You have to accept a
process of trial and error, ask for customer feedback, and accept a lot of iterations
in development before usability becomes your friend.

The technical limitations that derive from your framework decisions can be
additionally frustrating. The problems that we have with today's AJAX technology
are a good example of it, especially if you are already experienced with desktop
development and its design rules.

Apply Occam's razor
Everything should be made as simple as possible, but not simpler.

Albert Einstein's quote mentions two important aspects in creative processes that
are also true for user interface design:

•	 Reduction
•	 Oversimplification

Reduction
Have you ever realized how difficult it is to recognize what is important or
necessary, and what is superfluous when you enter a new domain? Often, things
seem to be clear and pretty simple at the first sight. However, such a perception
is based on experiences that were made outside of the domain. There is a lack of
essential experiences in a majority of the cases. You may have to invest several years
to get the whole picture and develop an accurate understanding before you come
to an adequate decision.

If your new domain is user interface design, these findings can help you to
understand your customers better. If you keep questioning the eye-catching
solutions that come to your mind and try to slip into the customer's role, you
will get better results faster.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[50]

Oversimplification
Oversimplification makes user interfaces more complex to use. This phenomenon
arises if the target group for a user interface is defined as less experienced than it is
in reality. For advanced users, a beginner's design is more time-consuming to use.

In many cases, it is assumed that a bigger part of the users consists of beginners.
However, reality shows us that advanced users make up the bigger part, whereas
beginners and super users may have a portion of up to 10% each.

Designing a user interface for beginners that can be used by all users may be an
intuitive idea at first sight, but it is not. You have to consider the advanced users if
you want to be successful with your design. This is indeed an essential experience
to come to an adequate decision.

User interface design principles
Besides the aforementioned recommendations, the following are the most influential
principles for an adequate interface design:

•	 Suitability for the task
•	 Self-descriptiveness
•	 Controllability
•	 Conformity with user expectations
•	 Error tolerance
•	 Suitability for individualization
•	 Suitability for learning

Suitability for the task
Although it seems to be a trivial requirement, the functionality of a web application
seldom delivers what the user requires to fulfill his needs. Additionally, the
presentation, navigation, or lingo often does not work for the user or is not
well-suited for the function it represents.

A good user interface design is based on the customer's lingo. You can write a
glossary that describes the meaning of terms you use. A requirements management
that results in a detailed use case model can help in implementing the adequate
functionality. The iterative development of interactive user interface prototypes to
get customer feedback allows finding a suitable presentation and navigation.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[51]

Self-descriptiveness
Ergonomic applications have an interface design that allows answering the following
questions at any time:

•	 What is the context I am working in at the moment?
•	 What is the next possible step?

The answers to these questions become immediately important when a user is, for
example, disrupted by a telephone call and continues his work after attending to it.
The shorter the time to recognize the last working step, the better the design is.

A rule of thumb is to have a caption for every web page that describes its context.
Navigational elements, such as buttons, show descriptive text that allows
recognizing the function behind it. If possible, separate a page into subsections that
also have their captions for a better orientation.

Controllability
Applications have to offer their functionality in a way that the user can decide for
himself when and how the application is fulfilling his requirements. For this, it is
important that the application offers different ways to start a function. Beginners
may prefer using the mouse to select an entry in a pull-down menu. Advanced
users normally work with the keyboard because hotkeys let them use the
application faster.

It is also important that the user must be able to stop his/her work at any time; for
example, for a lunch break or telephone call, without any disadvantages. It is not
acceptable that the user has to start the last function again. With web application, this
cannot be fulfilled in any case because of security reasons or limited server resources.

Conformity with user expectations
User expectations are, maybe, the most important principle, but also the most
sophisticated one. The expectations are closely connected to the cultural background
of the target group. So, the interface designer has to have a similar socialization.

We need to have a look at the use of words of the target language. Although target
groups share the same language, certain terms can have different meanings; for
example, the correct use of colors or pictures in icon bars is pretty important because
we use these in contexts without extra explanation. However, there are cases when a
color or an image can mean the opposite of what it was designed for.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[52]

The behavior of an application can also be a problem when it differs from the
standards of real-world processes. The advantage of standardization is an immediate
understanding of processing steps, or the correct use of tools without education. If
an application does not consider this and varies, the standard users have to rethink
every step before they can fulfill their duties. This needs extra energy, is annoying,
and is pretty bad for the acceptance of the application in the long run.

If we look at the design itself, consistency in presentation, navigation, or form use
is another important part. The user expects immutable behavior of the application
in similar contexts. Contexts should be learned only once, and the learned ones are
reusable in all other occurrences. Following this concept also helps to reuse the visual
components during development. So, you have a single implementation for each
context that is reused in different web pages.

Error tolerance
User acceptance also suffers if a user model does not allow mishandling of the
application. The trial and error process that the user follows during the study of
an application's behavior has to be error-tolerant.

It is a fact that we cannot write error-free code. User interface designers have to
respect this, else they will lose user acceptance and user motivation. However,
even if you have a focus on this, you skate on thin ice.

Today, it is debated as to whether an application has to show error dialogs at
all. The user's frustration grows with every presentation of an error. So, if you
cannot give up certain error dialogs, keep in mind that the user cannot recognize
why the error occurred until your dialog box presents corresponding information.
It is also important to tell the user what the next step to do is. Maybe he has to
retry a function or change the last input, but there are also cases in which an
administrator has to be contacted.

For this, also deliver the contact data in the error dialog to keep the time to solve a
problem as short as possible for the user. It is pretty annoying if the contact data has
to be searched inside the application, or even worse, in printed handbooks or other
kinds of documentation that are not in direct access to the user.

Basically, it is a good idea to use defaults where possible and assume certain
standard behavior of users. This helps in avoiding error dialogs. If you combine this
with the corresponding personalization features, the user will be quite happy with
your interface design.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[53]

Suitability for individualization
The user performance also depends on the flexibility that an application offers.
The more the application can be adapted to individual solution strategies, the
faster the user can produce a result. This helps to get even better results.

However, it can be problematic to understand how an individual should be
interpreted. Quite often, this cannot be precisely described from the customer
side. If possible, try to take on the role of a user and simulate work with the user
interface like you would do it in production. Working with the user interface helps to
recognize inflexibilities. If you add more flexibility to the user interface, keep in mind
that it becomes more complex. Finding the right balance is a process. So, do not stop
with the first iteration.

Suitability for learning
Nobody really wants to read long essays about how to use a web application. So,
mostly, the user chooses the trial and error process to learn a new application. For
this, the application has to be intuitive in its usage. It has to use the user's lingo.
Additionally, it has to offer answers to questions that may come up during the
usage of the application.

Modern applications offer different concepts for this. The most well-known is the
context-sensitive help. Press a function key and you get information about what you
can see in the application. For this, the context is calculated by the application and a
corresponding help is selected in the end.

With technical progress, the text-heavy presentation of such help systems changes to
a more multimedia-based content. Flash technology has pioneered this trend for the
Web. Today, it is possible to add video and audio to the help system. Audio-visual
presentations are more natural to users, and so we get a better benefit in shorter time.

The advances in computer-based training in the past allow a location and
time-independent self-study of applications today. You can learn anything where
you like and when you like. This allows the user to invest a minimal amount of time
to become productive with an application.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[54]

Interface layout
Before we can implement a user interface, we have to create a design. We can
differentiate between:

•	 The layout design: Defines the logical output sections of a web application
•	 The navigation design: Defines how to use the web application
•	 The skin design: Defines how a web application looks

Create drafts with a mockup tool
A pencil and a sheet of paper are the right tools to create a first draft. However,
with more than one iteration, the redesign process becomes tedious. Even if you scan
your paperwork and re-edit your design with a graphical editor, the process is not
really handy.

Alternatively, you can use a Graphical User Interface (GUI) designer. A lot of IDEs
deliver one, but if the result cannot be used in development, you invest a lot of time
for nothing. Often, you do not need so many details for the ongoing discussion with
customers and other stakeholders.

There is a new category on the horizon that allows you to create simple designs
very fast: mockup tools. These offer simplified graphical elements representing user
interface components you can combine in an image.

One of the most appealing tools in this category is Balsamiq Mockup
(http://www.balsamiq.com). The presentation is similar to hand-drawn pictures,
and the selection of user interface components and their customization is pretty
fast. Best of all, the results are very useful to describe which components have to be
implemented in a single web page and how the presentation (for example, position
or size) will look. Experience shows that the additional text can concentrate on the
backend communication to describe what has to be shown and managed in the
user interface. It is seldom that the mockup design itself has to be detailed through
additional text.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[55]

Layout design
The following screenshot shows a typical layout for a desktop created in
Balsamiq Mockup:

The web page is separated into:

•	 Header
•	 Main navigation
•	 Content
•	 Footer

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[56]

Although a lot of designers in Europe prefer to show the main navigation on the left,
we choose to present it on the top. This allows the design to be more desktop-like.

Header
In most cases, the header is a part of a company's corporate design. For this, it is a
good idea to manage a graphic that covers the complete section. When we talk about
skinning, you will recognize that the header is an integral part of brand recognition.

Main navigation
Although the header follows traditional web design, the main navigation is
more similar to desktop design. We use a common pull-down menu that offers
the functionality of a web application. Besides this, additional icons offer global
functions that should have direct access. This is a bit like the icon bar in a desktop
application. However, it is not positioned under the pull-down menu to save space.

Saving space is one of the main differences between web design and desktop design.
The browser, with its controls, already takes a certain amount of space that cannot be
used for a web application. Additionally, the controls you get with ICEfaces are not
as flexible in presentation as those normally used in desktop development. Although
scrollable areas can be implemented, this is not comparable to the flexibility and
usability of similar desktop components. With the current architecture of the Web,
even AJAX cannot work wonders.

Content
The content section is the non-static part in this layout design. It is used for
everything that has to be presented to the user. It may present:

•	 Forms to manipulate data of the backend; for example, for administration
purposes

•	 Informational pages that show, for example, tables of data records for certain
system objects

•	 More complex and interactive components that may allow a prompt result,
such as a GoogleMap presentation

Web applications always present their content in the same window. The
desktop, instead, allows us to use dialogs with a caption. This allows a better
self-descriptiveness. Even modern web applications do not follow this presentation.
There is no tradition in the web world for using dialogs, and user expectations are
actually different.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[57]

Although the HTML <title> tag allows us to set a kind of caption, visually, it
is never near the content it stands for. So, we need something better. There is the
breadcrumb idea, a line of links that is a mixture between navigation history and
caption. The caption is presented through the last link in the line. ICEfaces does not
have a component for this, and managing this by hand can become a maintenance
nightmare. If you try to be as near to the desktop presentation as possible, using
a breadcrumb alongside a pull-down menu, this will deliver an inconsistent
navigation. You may face some trouble with user expectations because of this.

A good alternative is to use a tabset. The caption can be set in the tab title. The tab
frame itself delivers a visual grouping of your content just like a desktop dialog does.
Although this kind of presentation may be a bit unusual, it becomes pretty useful if
you recognize it for navigation purposes. It is easier for the user to navigate through
web pages with similar context through a tabset than through a pull-down menu.
For this, you can combine different menu entries into a single one that presents a
tabset when it is clicked on.

Footer
The footer is primarily used for status information; for example, the release number
of the current deployment. Additionally, you can add your copyright. If you are
bound by law to show information, for example, about the legal form of your
company, the footer is the right place for links that show the information in the
content section. The same is true for important information that has to be shown
on every page, like a privacy policy, the terms of use, or a link to an about page.

Facelets templating
To implement the layout design, we use the Facelets templating that is officially
a part of the JSF specification since release 2.0. This book will only have a look at
certain parts of the Facelets technology. So, we will not discuss how to configure
a web project to use Facelets. You can study the source code examples of this chapter,
or have a look at the developer documentation (https://facelets.dev.java.
net/nonav/docs/dev/docbook.html) and the articles section of the Facelets wiki
(http://wiki.java.net/bin/view/Projects/FaceletsArticles) for
further details.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[58]

The page template
First of all, we define a page template that follows our mockup design. For this, we
reuse the HelloWorld (Facelets) application from the last chapter. You can import
the WAR file now if you did not create a Facelets project as given in the last chapter.

For importing a WAR file, use the menu File | Import | Web | WAR file. In the
dialog box, click on the Browse button and select the corresponding WAR file from
Chapter 2. Click on the Finish button to start the import. The run configuration is
done as described in the last chapter. However, you do not have to configure the
Jetty server again. Instead, it can be simply selected as your target.

We start coding with a new XHTML file in the WebContent folder. Use the
menu File | New | Other | Web | HTML Page and click on the Next button.
Use page-template.xhtml for File name in the next dialog. Click on the Next
button again and choose New ICEfaces Facelets.xhtml File (.xhtml). Click on
the Finish button to create the file.

The ICEfaces plugin creates this code:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
<head>
 <title>
 <ui:insert name="title">
 Default title
 </ui:insert>
 </title>
</head>
<body>
 <div id="header">
 <ui:include src="/header.xhtml">
 <ui:param name="param_name" value="param_value"/>
 </ui:include>
 </div>
 <div id="content">
 <ice:form>
 </ice:form>
 </div>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[59]

The structure of the page is almost pure HTML. This is an advantage when using
Facelets. The handling of pages is easier and can even be done with a standard
HTML editor.

The generated code is not what we need. If you try to run this, you will get an error
because the header.xhtml file is missing in the project. So, we delete the code
between the <body> tags and add the basic structure for the templating. The changed
code looks like this:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
<head>
 <title>
 <ui:insert name="title">
 Default title
 </ui:insert>
 </title>
</head>
<body>
 <table align="center" cellpadding="0" cellspacing="0">
 <tr><td><!-- header --></td></tr>
 <tr><td><!-- main navigation --></td></tr>
 <tr><td><!-- content --></td></tr>
 <tr><td><!-- footer --></td></tr>
 </table>
</body>
</html>

We change the <body> part to a table structure. You may wonder why we use a
<table> for the layout, and even the align attribute, when there is a <div> tag and
CSS. The answer is pragmatism. We do not follow the doctrine because we want to
get a clean code and keep things simple. If you have a look at the insufficient CSS
support of the Internet Explorer family and the necessary waste of time to get things
running, it makes no sense to do so. The CSS support in Internet Explorer is a good
example of the violation of user expectations.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[60]

We define four rows in the table to follow our layout design. You may have
recognized that the <title> tag still has its <ui:insert> definition. This is the
Facelets tag we use to tell the templating where we want to insert our page-specific
code. To separate the different insert areas from each other, the <ui:insert> has a
name attribute.

We substitute the comments with the <ui:insert> definitions, so that the
templating can do the replacements:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
<head>
 <title>
 <ui:insert name="title">
 Default title
 </ui:insert>
 </title>
</head>
<body>
 <table align="center" cellpadding="0" cellspacing="0">
 <tr><td><ui:insert name="header"/></td></tr>
 <tr><td><ui:insert name="mainNavigation"/></td></tr>
 <tr><td><ui:insert name="content"/></td></tr>
 <tr><td><ui:insert name="footer"/></td></tr>
 </table>
</body>
</html>

The <ui:insert> tag allows us to set defaults that are used if we do not define
something for replacement. Everything defined between <ui:insert> and </
ui:insert> will then be shown instead. We will use this to define a standard
behavior of a page that can be overwritten, if necessary. Additionally, this allows
us to give hints in the rendering output if something that should be defined in a
page is missing.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[61]

Here is the code showing both aspects:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
<head>
 <ice:outputStyle href="/xmlhttp/css/royale/royale.css" />
 <title>
 <ui:insert name="title">
 Please, define a title.
 </ui:insert>
 </title>
</head>
<body>
 <table align="center" cellpadding="0" cellspacing="0">
 <tr><td>
 <ui:insert name="header">
 <ice:graphicImage url="/logo.png" />
 </ui:insert>
 </td></tr>
 <tr><td>
 <ui:insert name="mainNavigation">
 <ice:form>
 <ice:menuBar noIcons="true">
 <ice:menuItem value="Menu 1"/>
 <ice:menuItem value="Menu 2"/>
 <ice:menuItem value="Menu 3"/>
 </ice:menuBar>
 </ice:form>
 </ui:insert>
 </td></tr>
 <tr><td>
 <ui:insert name="content">
 Please, define some content.
 </ui:insert>
 </td></tr>
 <tr><td>
 <ui:insert name="footer">
 <ice:outputText

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[62]

 value="© 2009 by The ICEcubes." />
 </ui:insert>
 </td></tr>
 </table>
</body>
</html>

The header, the main navigation, and the footer now have defaults. For the page
title and the page content, there are messages that ask for an explicit definition. The
header has a reference to an image. Add any image you like to the WebContent and
adapt the url attribute of the <ice:graphicImage> tag, if necessary. The example
project for this chapter will show the ICEcube logo. It is the logo that is shown in the
mockup above. The <ice:menuBar> tag has to be surrounded by a <ice:form> tag,
so that the JSF actions of the menu entries can be processed. Additionally, we need a
reference to one of the ICEfaces default skins in the <head> tag to get a correct menu
presentation. We take the Royale skin here.

If you do not know what the Royale skin looks like, you can have a look at the
ICEfaces Component Showcase (http://component-showcase.icefaces.org) and
select it in the combobox on the top left. After your selection, all components present
themselves in this skin definition.

Using the template
A productive page template has a lot more to define and is also different in its
structure. References to your own CSS, JavaScript, or FavIcon files are missing
here. The page template would be unmaintainable soon if we were to manage the
pull-down menu this way.

However, we will primarily look at the basics here. So, we keep the page template
for now. Next, we adapt the existing ICEfacesPage1.xhtml to use the page template
for its rendering.

Here is the original code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
 <head>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[63]

 <title>
 <ui:insert name="title">
 Default title
 </ui:insert>
 </title>
 </head>
 <body>
 <div id="header">
 <!--
 <ui:include src="/header.xhtml" >
 <ui:param name="param_name" value="param_value" />
 </ui:include>
 -->
 </div>
 <div id="content">
 <ice:form>
 <ice:outputText value="Hello World!"/>
 <!--
 drop ICEfaces components here
 -->
 </ice:form>
 </div>
 </body>
</html>

We keep the Hello World! output and use the new page template to give some
decoration to it. First of all, we need a reference to the page template so that the
templating knows that it has to manage the page. As the page template defines
the page structure, we no longer need a <head> tag definition.

You may recognize <ui:insert> in the <title> tag. This is indeed the code we
normally use in a page template. It was no problem for the Chapter 2 example to
have this structure in the code. Facelets has rendered the content in between because
it did not find a replacement tag. Theoretically, you are free to define such statements
in any location of your code. However, this is not recommended. Facelets has a
look at the complete code base and matches pairs of corresponding name attribute
definitions between <ui:insert name="..."> and <ui:define name="..."> tags.

Here is the adapted code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[64]

 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
<body>
<ui:composition template="/page-template.xhtml">
 <div id="content">
 <ice:form>
 <ice:outputText value="Hello World!"/>
 </ice:form>
 </div>
</ui:composition>
</body>
</html>

This code creates the following output:

We can see our friendly reminders for the missing title and the missing content. The
header, the main navigation, and the footer are rendered as expected. The structure
of the template seems to be valid, although we recognize that a CSS file is necessary
to define some space between the rows of our layout table.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[65]

However, something is wrong. Any idea what it is? If you have a look at the
hello-world.xhtml again, you can find our Hello World! output; but this cannot
be found in the rendering result. As we use the page template, we have to tell the
templating where something has to be rendered in the page. However, we did not do
this for our Hello World! output.

The following code defines the missing <ui:define> tag and skips the <div> and
<ice:form> tags that are not really necessary here:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component">
<body>
<ui:composition template="/page-template.xhtml">
 <ui:define name="title">
 Hello World on Facelets
 </ui:define>
 <ui:define name="content">
 <ice:outputText value="Hello World!"/>
 </ui:define>
</ui:composition>
</body>
</html>

The code shows that Facelets supports textual output in two ways:

•	 Using a tag as we do with the Hello World! output
•	 Without a tag as we do with the <title> tag

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[66]

The next screenshot shows the rendering result:

The templating in ICEfusion
ICEfusion already delivers a standardized templating. This is based on experiences
from productive development. We will use this for ICEcube and extend it in the
coming chapters. To familiarize you with the ideas, we will first have a look at some
of the implementation details.

Running ICEfusion
There is a ZIP archive for this chapter that delivers release 1.0.1 of ICEfusion. You
can use this distribution for the following source code studies. For this, take care
that the MySQL server is already running.

You can use the following command in Maven 2 to build the project in the
pom.xml folder (or run first-time-run.bat):

mvn install

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[67]

Ignore the errors that are shown during running the tests. The important thing with
this run is the initialization of the database. After this, you can run Maven 2 again
using the following command (or run run.bat):

mvn clean install jetty:run-war -Dmaven.test.skip=true

The tests will be skipped to prevent the errors and the Maven 2 internal Jetty is used
for deployment. Use http://localhost:8080 in your web browser to have a look at
the application.

The ICEfusion files
The ICEfusion project follows the Maven 2 conventions. So, the ICEfusion extensions
to AppFuse can be found in /icefusion/src/main/webapp/icefusion/. In this
folder, you can find the Spring configuration files. Additionally, there are folders
for JavaScripts (/scripts/), ICEfaces skins (/styles/), and the Facelets templating
(/taglibs/). The folder names follow the AppFuse conventions.

The page layout files can be found in /icefusion/src/main/webapp/icefusion/
taglibs/commons/. We'll have a look at the page template first (/icefusion/src/
main/webapp/icefusion/taglibs/commons/page.xhtml).

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion="http://icefusion.googlecode.com/icefusion">
<f:view locale="#{context.locale}">
<f:loadBundle basename="icefusion.icefusion"
 var="icefusion"/>
<head>
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/page.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/icefaces.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/style.css" />
 <script type="text/javascript" src=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/connectionStatus.js" >
 </script>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[68]

 <script type="text/javascript" src=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/icefusion.js" />
 <link rel="shortcut icon" href=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.skinBase}/#{context.skin}/
 images/page.ico"/>
 <title>
 #{iceFusionConsts.application}
 #{iceFusionConsts.release} - <ui:insert name="title">
 This page has no title.</ui:insert>
 </title>
</head>
<body>
 <icefusion:connectionStatus />
 <table align="center" cellpadding="0" cellspacing="0"
 class="layout">
 <tr><td class="header">
 <ui:insert name="header">
 <icefusion:header/>
 </ui:insert>
 </td></tr>
 <tr><td class="navigation">
 <ui:insert name="navigation">
 <icefusion:navigation/>
 </ui:insert>
 </td></tr>
 <tr><td class="content">
 <ui:insert name="content">
 This page has no content.
 </ui:insert>
 </td></tr>
 <tr><td class="footer">
 <ui:insert name="footer">
 <icefusion:footer/>
 </ui:insert>
 </td></tr>
 </table>
 <ui:debug/>
</body>
</f:view>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[69]

The code is similar to our example above. However, it references skin definitions
that are varied via an Expression Language reference to a Spring bean, context.
skin. The bean delivers a folder name. Each of the possible skin folders has the
same folder and file structure. This allows us to switch between them without
any adaptation in the templating. We will discuss this in detail in Chapter 8,
User Interface Customization.

Another variation is the use of custom Facelets tags. We use these to define the
different sections in the page layout. This is primarily done for maintenance
purposes. In contrast to our Facelets example, the menu can then be managed
in a dedicated file.

The new tags are managed via a Facelets tag library. We use the icefusion
namespace to reference the tags. More details about the management of custom
Facelets tags will be described in Chapter 9, Reusable Facelets Components.

Next, we will look at the code of the icefusion tags. The header can be found
at /icefusion/src/main/webapp/icefusion/taglibs/commons/header.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:graphicImage url="#{iceFusionConsts.skinBase}/
 #{context.skin}/images/logo.png" />
</ui:component>
</body>
</html>

This looks almost like our example, although the logo is managed via the skin
selection. You may recognize the <ui:component> tag. This describes where
the code for a Facelets tag starts and stops. Everything outside this tag is ignored.

The main navigation is defined in /icefusion/src/main/webapp/icefusion/
taglibs/commons/navigation.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[70]

 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <c:if test="#{context.dynamicMenu}">
 <icefusion:dynamicMenu/>
 </c:if>
 <c:if test="#{!context.dynamicMenu}">
 <icefusion:menu/>
 </c:if>
 <icefusion:menuIcons />
</ui:component>
</body>
</html>

The navigation tag already considers the mockup design. We have definitions for a
menu and additional menu icons. The menu definition allows you to choose between
a static menu definition and a dynamic one.

The corresponding code for the static menu tag can be found in /icefusion/src/
main/webapp/icefusion/taglibs/commons/menu.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:form>
 <ice:menuBar noIcons="true">
 <!-- Add your menu items here -->
 <!-- ICEfusion standard entries -->	
 <ice:menuItem value=
 "#{icefusion['application.menu.extra']}">
 <ice:menuItem value="#{icefusion[
 'application.menu.extra.settings']}"
 action="settings"/>
 <ice:menuItem value="#{icefusion[
 'application.menu.extra.about']}"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[71]

 action="about"/>
 </ice:menuItem>
 </ice:menuBar>
 </ice:form>
</ui:component>
</body>
</html>

The code for the dynamic menu is defined in /icefusion/src/main/webapp/
icefusion/taglibs/commons/dynamicMenu.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelGrid columns="2">
 <ice:form>
 <ice:menuBar noIcons="true">
 <ice:menuItems value="#{dynamicMenu.menuModel}" />
 </ice:menuBar>
 </ice:form>
 </ice:panelGrid>
</ui:component>
</body>
</html>

The menu entries are created by a special backing bean. The dynamic menu creates
the same presentation as the static menu does.

The menu icons are defined in /icefusion/src/main/webapp/icefusion/
taglibs/commons/menuIcons.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Design

[72]

<body>
<ui:component>
 <div class="menuIcons">
 <ice:form>
 <ice:panelGroup columns="2">
 <ice:commandLink action="#{menuIcons.switchToEn}">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/
 #{menuIcons.skin}/images/locale/en.png" />
 </ice:commandLink>
 <ice:commandLink action="#{menuIcons.switchToDe}">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/
 #{menuIcons.skin}/images/locale/de.png" />
 </ice:commandLink>
 </ice:panelGroup>
 </ice:form>
 </div>
</ui:component>
</body>
</html>

Last but not the least, we will have a look at the footer code that can be found at
/icefusion/src/main/webapp/icefusion/taglibs/commons/footer.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:outputLink value="http://icefusion.googlecode.com"
 target="_blank">
 <ice:outputText value="ICEfusion" />
 </ice:outputLink>
 <ice:outputText value=" © 2009 Rainer Eschen |
 AppFuse © 2004-2008 Matt Raible et al." />

 <ice:outputLink value=
 "http://www.apache.org/licenses/LICENSE-2.0"
 target="_blank">
 <ice:outputText value="Apache License 2.0" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 3

[73]

 </ice:outputLink>
</ui:component>
</body>
</html>

This footer also defines a copyright hint. It is extended with a link to the license text.

The following screenshot shows how the rendered result looks:

In the next chapter, we will adapt the ICEfusion code base to create our ICEcube base
from it. The ICEcube code base will then be iteratively extended with the sample
code of the different chapters. At the end of this book, we will have a single web
application that allows us to have a look at all samples in a single deployment.

Summary
The creation of desktop-like web applications is a challenging task. Following the
principles of ergonomics is an important part on our way to a useful interface design.
However, we have to expect several iterations before we get a suitable result. During
this process, a mockup tool can help us develop page designs in a fast and easy way.

The Facelets templating can be used to implement flexible and maintainable page
designs. With ICEfusion, we get a production-ready templating implementation that
can be used for the creation of ICEcube. ICEcube can then be extended with the code
examples from the chapters that follow.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation
and Layout

This chapter and those that follow describe important ICEfaces components
in a compact manner. We start with the most important navigation and layout
components here—those that allow us to define the common behavior of a web
application and its layout structure.

Static pull-down menu
The most important navigation component in desktop applications is the pull-down
menu. It groups the functional areas of an application to give a compact overview.
The main menu entries are the navigational starting points. So, their labels have to be
selected with care. One or two words have to describe what is behind the menu. The
labels should be taken from the customer's domain. Their meaning should be clear
and should leave no room for misunderstanding.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[76]

Here is a screenshot of the pulldown menu from ICEcube:

For ICEcube, the main menu entries show the content of this chapter as well as
those that follow. Each submenu lists entries that allow you to select the different
component examples of a chapter.

This chapter will tell you something about Navigation.

A pulldown menu is defined through different tags. We have a parent tag,
<ice:menuBar>, and child tags <ice:menuItem> and <ice:menuItemSeparator>.
Both can be combined as often as required to build a hierarchical structure.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[77]

For the presentation in the screenshots, the main navigation of ICEfusion (we had
a look at it in the last chapter) was adapted (/src/main/webapp/icefusion/
taglibs/commons/menu.xhtml).

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:form>
 <ice:menuBar noIcons="true">
 <ice:menuItem value="#{icecube[
 'application.menu.navigation']}">
 <ice:menuItem value="#{icecube[
 'application.menu.navigation.pulldownMenu']}"
 action="pulldownMenu"/>
 <ice:menuItem value="#{icecube[
 'application.menu.navigation.popupMenu']}"
 action="popupMenu"/>
 <ice:menuItem value="#{icecube[
 'application.menu.navigation.tabbedPanel']}"
 action="tabbedPanel"/>
 <ice:menuItem value="#{icecube[
 'application.menu.navigation
 .collapsiblePanel']}"
 action="collapsiblePanel"/>
 </ice:menuItem>
...
 <!-- ICEfusion standard entries -->	
 <ice:menuItem value="#{icefusion[
 'application.menu.extra']}">
 <ice:menuItem value="#{icefusion[
 'application.menu.extra.settings']}"
 action="settings"/>
 <ice:menuItem value="#{icefusion[
 'application.menu.extra.about']}"
 action="about"/>
 </ice:menuItem>
 </ice:menuBar>
 </ice:form>
</ui:component>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[78]

The file describes the structure of the ICEcube pull-down menu. The original
ICEfusion menu, Extra, was retained. The highlighted code marks the Navigation
menu definition that corresponds to this chapter. The ICEcube example code also
shows the menu entries of all the chapters that will follow.

The pulldown menu is used in a minimalistic style and without any icons. For a
single menuItem:

•	 The value attribute describes the menu label. It is defined through a resource
bundle ID to support multilingual presentations (#{resource_bundle_
id['label_id']}).

•	 The action attribute defines which page context should be used when the
menu entry is clicked on. JSF defines those contexts through a view id; but in
our case, the term navigation id describes it better.

Resource bundles
We use two resource bundles here:

•	 icefusion for the Extra menu
•	 icecube for all the additional ICEcube menus

Basically, all ICEcube definitions (*.java, *.xhtml, *.properties, and so on)
are separated from those that were created for ICEfusion. For this, you can find
an additional resource bundle entry in the page template (/src/main/webapp/
icefusion/taglibs/commons/page.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion="http://icefusion.googlecode.com/
 icefusion">
<f:view locale="#{context.locale}">
<f:loadBundle basename="icefusion.icefusion" var=
 "icefusion"/>
<f:loadBundle basename="icecube.icecube" var="icecube"/>
<head>
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/page.css" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[79]

 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/icefaces.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/style.css" />
 <script type="text/javascript" src=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/connectionStatus.js" >
 </script>
 <script type="text/javascript" src=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/icefusion.js" />
 <link rel="shortcut icon" href=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.skinBase}/#{context.skin}/
 images/page.ico"/>
 <title>#{iceFusionConsts.application}
 #{iceFusionConsts.release} - <ui:insert name="title">
 This page has no title.</ui:insert>
 </title>
</head>
<body>
 <icefusion:connectionStatus />
 <table align="center" cellpadding="0" cellspacing="0"
 class="layout">
 <tr><td class="header">
 <ui:insert name="header">
 <icefusion:header/>
 </ui:insert>
 </td></tr>
 <tr><td class="navigation">
 <ui:insert name="navigation">
 <icefusion:navigation/>
 </ui:insert>
 </td></tr>
 <tr><td class="content">
 <ui:insert name="content">
 This page has no content.
 </ui:insert>
 </td></tr>
 <tr><td class="footer">
 <ui:insert name="footer">
 <icefusion:footer/>
 </ui:insert>
 </td></tr>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[80]

 </table>
 <ui:debug/>
</body>
</f:view>
</html>

The resource bundle files can be found in the Maven 2 resource folder structure
(/src/main/resources/icefusion/ and /src/main/resources/icecube/).
All *.properties files with icefusion or icecube in their name are a part of our
locale management. As we have defined English as the default locale, you have to
edit the English language in the icefusion.properties or icecube.properties
file. Although the icefusion_en.properties or icecube_en.properties file is
empty by default, it could be used for definitions that should be used in English,
but not for all the other locales that you do not have a properties file for.

The additional locale attribute definition in our page template allows us to change
the language during runtime. If we change the locale attribute using the Settings
page in the Extra menu, the new language is used with the next page reload:

Chapter 8, User Interface Customization, will describe this in more detail.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[81]

Page Navigation
The navigation IDs that are used by the action attributes in /src/main/webapp/
icefusion/taglibs/commons/menu.xhtml are defined in /src/main/webapp/
icecube/faces-config.xml. (We will take a look at the Navigation menu only.)

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <navigation-rule>
 <from-view-id>/*</from-view-id>
 <navigation-case>
 <from-outcome>pulldownMenu</from-outcome>

 <to-view-id>
 /icecube/navigation/pulldownMenu.xhtml
 </to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/*</from-view-id>
 <navigation-case>
 <from-outcome>popupMenu</from-outcome>

 <to-view-id>
 /icecube/navigation/popupMenu.xhtml
 </to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/*</from-view-id>
 <navigation-case>
 <from-outcome>tabbedPanel</from-outcome>

 <to-view-id>
 /icecube/navigation/tabbedPanel.xhtml
 </to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[82]

 <from-view-id>/*</from-view-id>
 <navigation-case>
 <redirect/>
 </navigation-case>
 </navigation-rule>
</faces-config>

The <from-outcome> definitions correspond to the action attributes in
/src/main/webapp/icefusion/taglibs/commons/menu.xhtml. So if you
search for a page definition of a menu entry, you have to have a look at the
<navigation-rule> definitions.

For an easier management of the menu pages, there exists a folder for each
main menu entry. The definitions for the Navigation menu, for example, have
/navigation/ in their <to-view-id>.

Dynamic pull-down menu
There are a lot of similarities between static and dynamic menus. For example, they
share the same data structure, but differ in its definition. Static menus can describe
their structures completely in the xhtml file. Dynamic menus have a pretty short
entry in the xhtml file, but a pretty long Java code in the corresponding backing bean.

The definition of the ICEfusion dynamic pull-down menu looks like this:
(/src/main/webapp/icefusion/taglibs/commons/dynamicMenu.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelGrid columns="2">
 <ice:form>
 <ice:menuBar noIcons="true">
 <ice:menuItems value="#{dynamicMenu.menuModel}" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[83]

 </ice:menuBar>
 </ice:form>
 </ice:panelGrid>
</ui:component>
</body>
</html>

To create a similar structure to the static pull-down menu, the ICEfusion code in
the xhtml file can be retained. Instead, we will extend the DynamicMenu backing
bean at /src/main/java/com/googlecode/icefusion/ui/commons/navigation/
DynamicMenu.java:

public List<MenuItem> getMenuModel() {
 if (!this.dynamicMenu.isEmpty()) {
 return this.dynamicMenu;
 }
 this.init();
 for (Entry<String, String> main : mainMenu.entrySet()) {
 MenuItem mainItem = this.addEntry(this.dynamicMenu,
 main);
 if (main.getKey().equals("navigation")) {
 for (Entry<String, String> navigation :
 navigationMenu.entrySet()) {
 MenuItem navigationItem = this.addEntry(mainItem,
 navigation);
 }
 }
 if (main.getKey().equals("feedback")) {
 for (Entry<String, String> feedback :
 feedbackMenu.entrySet()) {
 MenuItem feedbackItem = this.addEntry(mainItem,
 feedback);
 }
 }
 if (main.getKey().equals("presentation")) {
 for (Entry<String, String> presentation :
 presentationMenu.entrySet()) {
 MenuItem presentationItem = this.addEntry(
 mainItem, presentation);
 }
 }
 if (main.getKey().equals("creation")) {
 for (Entry<String, String> creation :
 creationMenu.entrySet()) {

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[84]

 MenuItem creationItem = this.addEntry(mainItem,
 creation);
 }
 }
 if (main.getKey().equals("push")) {
 for (Entry<String, String> push :
 pushMenu.entrySet()) {
 MenuItem pushItem = this.addEntry(mainItem, push);
 }
 }
 // ICEfusion standard entries
 if (main.getKey().equals("extra")) {
 for (Entry<String, String> extra :
 extraMenu.entrySet()) {
 MenuItem extraItem = this.addEntry(mainItem,
 extra);
 }
 }
 }
 return this.dynamicMenu;
}

The original code already defined the menu structure for the Extra menu. The
method was extended for the ICEcube main menu entries. If the method is called
for the first time, an initialization of a menu data structure is done before the loops
for each main menu entry. Use this structure to create a corresponding ICEfaces
structure for the XHTML file.

The menu data structure consists of several Map definitions that are set in the init()
method of the DynamicMenu backing bean:

ArrayList<MenuItem> dynamicMenu = new ArrayList<MenuItem>();
LinkedHashMap<String, String> mainMenu =
 new LinkedHashMap<String, String>();
LinkedHashMap<String, String> navigationMenu =
 new LinkedHashMap<String, String>();
LinkedHashMap<String, String> feedbackMenu =
 new LinkedHashMap<String, String>();
LinkedHashMap<String, String> presentationMenu =
 new LinkedHashMap<String, String>();
LinkedHashMap<String, String> creationMenu =
 new LinkedHashMap<String, String>();
LinkedHashMap<String, String> pushMenu =
 new LinkedHashMap<String, String>();
// ICEfusion standard entries

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[85]

LinkedHashMap<String, String> extraMenu =
 new LinkedHashMap<String, String>();
protected void init() {
 mainMenu.put("navigation", consts.getLocalized(
 "application.menu.navigation", "icecube"));
 mainMenu.put("feedback", consts.getLocalized(
 "application.menu.feedback", "icecube"));
 mainMenu.put("presentation", consts.getLocalized(
 "application.menu.presentation", "icecube"));
 mainMenu.put("creation", consts.getLocalized(
 "application.menu.creation", "icecube"));
 mainMenu.put("push", consts.getLocalized(
 "application.menu.push", "icecube"));
 navigationMenu.put("pulldownMenu", consts.getLocalized(
 "application.menu.navigation.pulldownMenu", "icecube"));
 navigationMenu.put("popupMenu", consts.getLocalized(
 "application.menu.navigation.popupMenu", "icecube"));
 navigationMenu.put("tabbedPanel", consts.getLocalized(
 "application.menu.navigation.tabbedPanel", "icecube"));
 navigationMenu.put("collapsiblePanel", consts.getLocalized(
 "application.menu.navigation.collapsiblePanel",
 "icecube"));
 feedbackMenu.put("popupDialog", consts.getLocalized(
 "application.menu.feedback.popupDialog", "icecube"));
 feedbackMenu.put("connectionStatus", consts.getLocalized(
 "application.menu.feedback.connectionStatus",
 "icecube"));
 feedbackMenu.put("tooltip", consts.getLocalized(
 "application.menu.feedback.tooltip", "icecube"));
 feedbackMenu.put("autocomplete", consts.getLocalized(
 "application.menu.feedback.autocomplete", "icecube"));
 feedbackMenu.put("dragAndDrop", consts.getLocalized(
 "application.menu.feedback.dragAndDrop", "icecube"));
 presentationMenu.put("dragAndDrop", consts.getLocalized(
 "application.menu.feedback.dragAndDrop", "icecube"));
 creationMenu.put("dragAndDrop", consts.getLocalized(
 "application.menu.feedback.dragAndDrop", "icecube"));
 pushMenu.put("dragAndDrop", consts.getLocalized(
 "application.menu.feedback.dragAndDrop", "icecube"));
 // ICEfusion standard entries
 mainMenu.put("extra", consts.getLocalized(
 "application.menu.extra", "icefusion"));
 extraMenu.put("settings", consts.getLocalized(
 "application.menu.extra.settings", "icefusion"));

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[86]

 extraMenu.put("about", consts.getLocalized(
 "application.menu.extra.about", "icefusion"));
}

After the initialization, we have a main menu entry map and several submenu maps
that represent the subentries of the main menu entries. The getLocalized() method
helps to set the localized label of single menu entries. Its last parameter defines
which resource bundle has to be used.

If you want to extend ICEfusion with your own menu entry definitions, you have to:

1.	 Extend the data map for the main menu with labels.
2.	 Define data maps for the submenus.
3.	 Extend the init() method with the corresponding data structure

initializations.
4.	 Extend the getMenuModel() method with the for loops that create

ICEfaces structures from your data structures.

Do not forget that the order in which this is done in the code is important.

ActionListener
There is one important thing we did not take a look at: the action handling. The
static code had an attribute for this. But how is this done in the dynamic code?

To simulate the action of the static menu, we define an ActionListener and use
the menuItem id attribute as a placeholder for the navigation ID to use when a
menu entry is clicked. Here is the code from the DynamicMenu backing bean for
setting a submenu:

 protected MenuItem addEntry(
 MenuItem parent,Entry<String,String> entry) {
 MenuItem menuItem = new MenuItem();
 menuItem.setValue(entry.getValue());
 menuItem.setId(entry.getKey());
 menuItem.addActionListener(
 new DynamicMenuActionListener());
 parent.getChildren().add(menuItem);
 return menuItem;
 }

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[87]

The specialized ActionListener is defined in /src/main/java/com/googlecode/
icefusion/ui/commons/navigation/DynamicMenuActionListener.java:

public void navigation(String navigationId) {
 FacesContext context = FacesContext.getCurrentInstance();
 context.getApplication().getNavigationHandler()
 .handleNavigation(context, null, navigationId);
}
public void processAction(ActionEvent actionEvent) throws
AbortProcessingException {
 if (this.getNavigationId() == null) {
 this.setNavigationId(((UIComponent)actionEvent
 .getSource()).getId());
 }
 this.navigation(this.getNavigationId());
}

The code in the processAction() method refers the id attribute of its menu
entry and uses this to initiate a navigation through the navigation() method.
This works like the resolution of a navigation ID in the static menu. So, we can
reuse the navigation ID definitions of the static menu in /src/main/webapp/
icecube/faces-config.xml.

DynamicMenuActionListener even has a getter and a setter to manage an explicit
navigation ID. So, the management of an id attribute of a menu entry is, in fact,
coded as a fallback strategy in the case when no explicit navigation ID is set in the
ActionListener, as we did in DynamicMenu.

Pop-up menu
Pop-up menus offer a certain functionality in the context of another component.
For this, the user has to click on the context button of the mouse on the component
and the menu is rendered. The usage of pop-up menus follows the usage of
pull-down submenus.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[88]

Here is the sample implementation of ICEcube. It displays a pop-up menu when you
click on the text panel that is shown on the page:

The pop-up menu is defined in the demo page /src/main/webapp/icecube/
navigation/popupMenu.xhtml through static menu entry definitions:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.navigation.popupMenu']}
 </ui:define>
 <ui:define name="content">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[89]

 <ice:form>
 <ice:panelGroup menuPopup="popup">
 #{icecube['application.menu.navigation
 .popupMenu.text']}
 </ice:panelGroup>
 <ice:menuPopup id="popup" noIcons="true">
 <ice:menuItem value="#{icecube[
 'application.menu.navigation.pulldownMenu']}"
 action="pulldownMenu"/>
 <ice:menuItem value="#{icecube[
 'application.menu.navigation.popupMenu']}"
 action="popupMenu"/>
 <ice:menuItem value="#{icecube[
 'application.menu.navigation.tabbedPanel']}"
 action="tabbedPanel"/>
 <ice:menuItem value="#{icecube['application
 .menu.navigation.collapsiblePanel']}"
 action="collapsiblePanel"/>
 </ice:menuPopup>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The definition is taken from the main menu Navigation of the pull-down menu.
What is important with pop-up menus is the context component they are used with.
The id attribute in the menuPopup tag is referenced by the menuPopup attribute of the
panelGroup tag in our example. If you hover your mouse over the panelGroup area
and click on the context mouse button, the pop-up will be shown. Clicking on one of
the menu entries activates the rendering of the corresponding page defined through
the action attribute and its navigation id.

Tabbed panel
Tabbed panels allow you to segment dialog boxes in desktop applications. They
are very useful if you have to present a lot of information simultaneously, but not
necessarily in one page. As they show only a certain amount of information at a
particular time, the user retains the overview.

We have a look at the tabbed panel in the context of navigation because it helps
us to manage the caption of a web page in an elegant way. Additionally, it allows
us to extend a single page with additional pages through tabs so that these can be
combined in a single menu entry.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[90]

Here is a screenshot of the sample page in ICEcube:

We have two tabs here. The first tab shows a 3D-based image that is a part of the
ICEcube distribution (/src/main/webapp/icecube/images/TheFlyBot800x600.
jpg). The second tab references a page of my blog about using 3D technology for
your web pages, with a focus on human character creation (http://blog.rainer.
eschen.name/2008/02/14/how-to-humanize-your-web-site-for-free/):

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[91]

A tabbed panel is defined through different tags. We have a <ice:panelTabSet>
parent tag that represents a container and one or more <ice:panelTab> child tags
to present the separate pages.

In our example page (/src/main/webapp/icecube/navigation/tabbedPanel.
xhtml), we use two <ice:panelTab> tags:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[92]

 #{icecube['application.menu.navigation.tabbedPanel']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.navigation.tabbedPanel
 .text']}
 <h3>#{icecube['application.menu.navigation
 .tabbedPanel.header']}</h3>
 <ice:form>
 <ice:panelTabSet>
 <ice:panelTab label="#{icecube['application
 .menu.navigation.tabbedPanel.tab1.header']}">
 <div align="center">
 <ice:graphicImage alt="#{icecube[
 'application.menu.navigation.tabbedPanel
 .image']}"
 url="/icecube/images/
 TheFlyBot800x600.jpg"/>
 </div>
 </ice:panelTab>
 <ice:panelTab label="#{icecube['application
 .menu.navigation.tabbedPanel.tab2.header']}">
 <iframe src="http://blog.rainer.eschen.name/
 2008/02/14/how-to-humanize-your-web-site-
 for-free/" width="100%" height="650px"/>
 </ice:panelTab>
 </ice:panelTabSet>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The first tab uses a standard ICEfaces <graphicImage> output tag to show the
image. The second tab embeds the blog page into an <iframe> with a predefined
size to present the external web page.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[93]

Collapsible panel
Space is an important design aspect with web applications. So, a component that
allows hiding certain content on a web page during runtime is of a great help. The
collapsible panel is one such component.

Besides the hiding of content, collapsible panels are also a means to visually group
components. In a lot of cases, it is useful that we group something and also hide it.

If you combine these design ideas with a session-spanning persistence
of the hiding state, you get a self-managed user interface behavior.

The ICEcube sample page for the collapsible panel looks like this:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[94]

The screenshot shows two panels, both in a closed state. If we open the first panel,
it looks like this:

We reused the content from the ICEcube tabbed panel example. So, you can guess
what the content of the second panel looks like:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[95]

The corresponding page definition can be found at /src/main/webapp/icecube/
navigation/collapsiblePanel.xhtml:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.navigation

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[96]

 .collapsiblePanel']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.navigation
 .collapsiblePanel.text']}
 <h3>#{icecube['application.menu.navigation
 .collapsiblePanel.header']}</h3>
 <ice:form>
 <ice:panelCollapsible expanded="true"
 toggleOnClick="true" >
 <f:facet name="header">
 #{icecube['application.menu.navigation
 .collapsiblePanel.panel1.header']}
 </f:facet>
 <div align="center">
 <ice:graphicImage alt="#{icecube[
 'application.menu.navigation
 .collapsiblePanel.image']}" url=
 "/icecube/images/TheFlyBot800x600.jpg"/>
 </div>
 </ice:panelCollapsible>
 <ice:panelCollapsible expanded="false"
 toggleOnClick="true" >
 <f:facet name="header">
 #{icecube['application.menu.navigation
 .collapsiblePanel.panel2.header']}
 </f:facet>
 <iframe src="http://blog.rainer.eschen.name/
 2008/02/14/how-to-humanize-your-web-site-
 for-free/" width="100%" height="650px"/>
 </ice:panelCollapsible>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

Similar to the ICEcube tabbed panel example, the first panel uses a standard ICEfaces
<graphicImage> output tag to show the image. The second panel embeds the blog
page into an <iframe> with a predefined size to use for the presentation of the
external web page. To set a header for each panel, we have to use a <facet> tag
named header.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 4

[97]

For a better user experience, the collapsible panel got an extension with the
ICEfusion implementation. With the standard ICEfaces implementation, a collapsible
panel shows a simple header with a bold title and a minimally different background
color. Normally, you cannot recognize that this is a clickable area to open something.
For this, a special extension to the following CSS classes was made. It used the CSS
file for personal skin definitions to overwrite the ICEfaces defaults (/src/main/
webapp/icefusion/styles/[skin_name]/style.css):

/* Collapsible panels with visual opener or closer */
.icePnlClpsblColpsdHdr {
 background-color: #F2F2F2;
 background-image: url("css-images/PnlHdr_collapsed.gif");
 background-position: left top;
 background-repeat: no-repeat;
 padding-top: 2px;
 padding-left: 25px;
 cursor: pointer
}
.icePnlClpsblHdr {
 background-color: #F2F2F2;
 background-image: url("css-images/PnlHdr_down.gif");
 background-position: left top;
 background-repeat: no-repeat;
 padding-top: 2px;
 padding-left: 25px;
 cursor: pointer
}

Most important is the addition of images that correspond to those the tabbed panel is
using to show an opened or closed state. As we have no special component construct
to which we can add an image, we define a background image that is not repeated.
The old background is now lost. For this, we add a standard background color that
corresponds to the primary color of the images.

If you have a deeper look at the header presentation, you will recognize that some
parts of the images miss a background color. The tabbed notebook headers are not
designed with a complete background color set. For a perfect design, you will have
to define your own images.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Navigation and Layout

[98]

Summary
We learned how effective navigation and layout presentation can be done with the
few ICEfaces components that were described in this chapter. Using the predefined
structures of ICEfusion, it is a simple task to create a desktop-like navigation. Even
if you need a more complex dynamic menu definition, the ICEcube code shows that
the extensions are minimal and manageable.

In the next chapter, we will continue to have a look at components that support a
desktop-like presentation. The chapter focuses on dialog components and other
means to give a feedback to the user during runtime.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback
and Behavior

This chapter takes a look at the components that allow you to give feedback to users.
We will take a detailed look at the types of feedback that are common to desktop
applications. Additionally, we will take a look at the components that allow you to
give a web application a certain kind of behavior. This behavior helps the user to get
fast results with less effort.

Pop-up dialog boxes
Pop-up dialog boxes are used to present processing results to the user. They can also
be used to ask questions and let the user decide what the next processing step will
be. They can even interrupt the current processing; for example, when errors occur.

There are three kinds of dialog boxes you will find in any modern application:

•	 Show a message
•	 Show an error
•	 Ask a question

Desktop systems such as Windows offer special components that let you use such
dialog boxes in your application. You may only have to add text parameters to use
them and ask for the dialog results. ICEfaces lacks this luxury.

Nevertheless, it is possible to get such comfort with ICEfaces too. For this, ICEfusion
delivers special Facelets tags that we can use in our ICEcube application. But before
we use these tags, we will take a look at the <ice:panelPopup> tag and how it is
used to create the ICEfusion tags.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[100]

The panelPopup tag
The panelPopup tag allows us to present information in a predefined presentation
area of the browser window. Such a pop-up is virtually presented in a layer above
the current browser content. It can be decorated with a header and a frame so that
it looks similar to a dialog box of a desktop application.

Here is a simple code example for a message dialog:

<ice:form>
 <ice:panelPopup autoCentre="false"
 draggable="false" modal="true"
 rendered="#{myBackingBean.show}"
 visible="#{myBackingBean.show}">
 <f:facet name="header">
 <ice:panelGrid>
 <ice:outputText value="My Title"/>
 </ice:panelGrid>
 </f:facet>
 <f:facet name="body">
 <ice:panelGrid>
 <ice:outputText value="My Text"/>
 <ice:commandButton value="OK"
 action="#{myBackingBean.buttonOk}"/>
 </ice:panelGrid>
 </f:facet>
 </ice:panelPopup>
</ice:form>

The panelPopup tag has attributes that define a certain behavior. So, it is possible to
simulate modal dialogs when we use the modal="true" attribute. A modal dialog
locks the application until a dialog button is clicked. This stops every other activity
the web application may offer in the current presentation context.

The panelPopup tag also allows the presentation of movable dialogs that help
display extra information besides the main browser content. For this, we define the
modal="false" and draggable="true" attributes. Such dialogs have to be movable
because they hide a certain area of information from the main browser content.

One important difference in desktop application frameworks is the necessity to
define such dialogs as a part of the web page definition. For this, you need to have
explicit visibility management in your backing bean for every dialog that is used in
your page.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[101]

We use the rendered and visibility attributes in combination to control the
dialog presentation. You may wonder why the visibility attribute cannot be used
alone. It can be used alone, but then you may have to expect some side effects. If just
the dialog is invisible, its content tags are still a part of the rendering process. An
invisible dialog is still rendered. Experience has shown that such a dialog can tweak
the presentation of the main browser content. So, to be on the safe side, always set
the rendered attribute with the value of the visibility attribute.

There is another tweak with the current ICEfaces release. An activated autoCentre
attribute creates unexpected behavior in certain browsers. When you scroll the
browser window (for example, if your main browser content is longer than the
visible browser area), the dialog leaves its relative position. Tests show that this
attribute is not really necessary to get a centered dialog presentation.

The panelPopup tag seems to have a strong dependency on the quality of CSS
support in web browsers. It is recommended that you test different attribute
settings in your target browsers and play with the CSS classes for panelPopup to
find a stable implementation for your project. The ICEfusion tags may help here too.

The content of a panelPopup tag is defined through two facets:

•	 Header
•	 Body

You are free to define what you want inside these facets. But do not forget to
surround your tags with a grouping tag to follow the single tag rule for facets. It is
recommended to use <ice:panelGrid> for this. Tests have shown tweaks when
using <ice:panelGroup> in Mozilla browsers.

To get the behavior of a dialog box, we also need a button that closes the dialog box.
The action method for this looks as follows:

public String buttonOK() {
 this.setShow(false);
 return null;
}

With these basics in mind, you can develop a questions dialog that manages, for
example, a Boolean answer attribute via two dialog button actions, or you can
extend the code to offer a stacktrace via a collapsible panel when the dialog box has
access to a Throwable exception attribute. This is indeed how the ICEfusion dialog
tags are implemented.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[102]

ICEfusion dialog tags
The ICEfusion dialog tags try to deliver a bit of the comfort that desktop
developers have. However, we still need to have an eye on the self-managed
visibility for dialogs.

We have dialogs for:

•	 Simple messages using <icefusion:messageDialog>
•	 Error handling using <icefusion:errorDialog>
•	 Asking questions using <icefusion:questionDialog>

To keep their usage simple, all dialogs work in a modal mode and use the same
attribute names for the same contexts. Wherever possible, they offer default values
that can be overwritten on demand. The corresponding backing beans offer a simple
event handling for their buttons by default. This can be redefined with external
references to other backing beans. Special Interfaces exist for this.

You can find the ICEfusion XHTML files for the dialogs in /src/main/webapp/
icefusion/taglibs/commons/dialog/ and the corresponding backing beans in /
src/main/java/com/googlecode/icefusion/ui/commons/dialog. Each dialog
also shows an image. The images are a part of the skin management and can be
exchanged. Have a look at /src/main/webapp/icefusion/styles/[skin]/
images/*Dialog.png. The look of the dialogs can be changed in /src/main/
webapp/icefusion/styles/[skin]/style.css. Have a look at the icePnl* and
icePanel* classes.

MessageDialog
The syntax for the message dialog is:

<icefusion:messageDialog title="my_title" text="my_text"
 eventBean="#{my_button_event_bean}" />

All attributes are optional. However, this makes no real sense for the text attribute
that delivers a Please, define a text here. The default for title is Information. The
eventBean allows you to manage the button event by another bean instead of
MessageDialog.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[103]

Here is an example of the message dialog. The ICEcube example page can be found
in the menu at Feedback | Popup Dialog:

The corresponding definition from the ICEcube demo looks like this (/src/main/
webapp/icecube/feedback/popupDialog.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.feedback.popupDialog']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.feedback.popupDialog.text']}
 <ice:form>
 <ice:panelGrid>
 <ice:panelGrid columns="2">
 <ice:commandButton action=
 "#{popupDialog.showMessage}" value=

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[104]

 "#{icecube['application.menu.feedback
 .popupDialog.messageDialog.button']}" />
 <ice:commandButton action=
 "#{popupDialog.showMessageCustomHandler}"
 value="#{icecube['application.menu
 .feedback.popupDialog.messageDialog
 .customHandler.button']}" />
 </ice:panelGrid>
 </ice:panelGrid>
 </ice:form>
 <ice:outputText value=
 "#{icecube[popupDialog.buttonClickedMessage]}" />
 <icefusion:messageDialog title=
 "#{icecube['application.menu.feedback.popupDialog']}"
 text="#{icecube['application.menu.feedback
 .popupDialog.messageDialog.text']}"
 eventBean="#{popupDialog.messageDialogHandler}"/>
 </ui:define>
</ui:composition>
</body>
</html>

The code shows two implementations using a common <icefusion:messageDialog>
tag for:

•	 The default messageDialog behavior
•	 A customized messageDialog using your own event handler

implementation

Both implementations can be used through separate buttons. When a dialog is
closed, the result is shown through an outputText tag like this:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[105]

The events for the Message button and the Message (Custom Event Handler)
button are managed in the page backing bean, PopupDialog (/src/main/java/com/
googlecode/icecube/feedback/PopupDialog.java):

package com.googlecode.icecube.feedback;
import org.springframework.beans.factory.annotation
 .Autowired;
import org.springframework.beans.factory.annotation
 .Qualifier;
import com.googlecode.icefusion.ui.commons
 .BackingBeanForm;
import com.googlecode.icefusion.ui.commons.dialog
 .IMessageDialog;
import com.googlecode.icefusion.ui.commons.dialog
 .MessageDialog;
public class PopupDialog extends BackingBeanForm implements
 IMessageDialog {
 @Autowired
 @Qualifier("messageDialog")
 private MessageDialog messageDialog;
 public String showMessage () {
 this.setMessageDialogHandler(this.messageDialog);
 this.messageDialog.setShow(true);
 return null;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[106]

 }
 public String showMessageCustomHandler () {
 this.setMessageDialogHandler(this);
 this.messageDialog.setShow(true);
 return null;
 }
 public String messageDialogButtonOk() {
 this.setButtonClickedMessage(
 "application.menu.feedback.popupDialog
 .messageDialog.customHandler.result.ok");
 this.messageDialog.setShow(false);
 return null;
}

The showMessage() and showMessageCustomHandler()methods manage the
button clicks. Both use a reference to the messageDialog backing bean to set
the show attribute.

We use the Spring @Autowired functionality to create a reference
between two beans. All backing beans in ICEcube and ICEfusion are
Spring managed. As all backing beans for dialogs have a parent class—
Dialog—for the implementation of a common dialog behavior, Spring
has problems in recognizing the correct bean. For this, we also use a @
Qualifier to explicitly tell the name of the bean we want to reference.
Here is the important part of the Spring application context definition for
ICEcube in /src/main/webapp/icecube/spring-feedback.xml:

<bean id="popupDialog"
 class="com.googlecode.icecube.feedback.
PopupDialog"
 scope="session">
 <aop:scoped-proxy/>
</bean>

For ICEfusion, it is in /src/main/webapp/icefusion/spring-
commons.xml:

<bean id="messageDialog"
 class="com.googlecode.icefusion.ui.commons.dialog
 .MessageDialog"
 scope="session">
<aop:scoped-proxy/>
</bean>

With @Autowired, there are no longer any properties in the Spring xml
files and the beans no longer need getter and setter for the references.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[107]

The xhtml file above shows a single messageDialog tag used for both contexts. We
use a reference to the messageDialogHandler attribute that is pointing to a custom
event handler and is changed on the fly The showMessage() sets the standard handler
of the messageDialog backing bean, whereas showMessageCustomHandler() uses the
handler of the page backing bean, namely messageDialogButtonOk().

The messageDialogButtonOk() is defined through the IMessageDialog interface.
The method is called when you click on the OK button in the opened message
dialog. The implementation of the messageDialog backing bean only closes the
dialog. In our custom event handler, a text is set for the buttonClickedMessage
attribute to prepare the output of a status message.

The IMessageDialog interface looks like this (/src/main/java/com/googlecode/
icefusion/ui/commons/dialog/IMessageDialog.java):

package com.googlecode.icefusion.ui.commons.dialog;
import java.io.Serializable;
public interface IMessageDialog extends Serializable {
 public String messageDialogButtonOk();
}

ErrorDialog
The <icefusion:messageDialog> and <icefusion:errorDialog> tags have a lot
in common. This is also true for the event interfaces or backing beans. Both dialog
types follow the same principles. So, if you need a more flexible handling of error
dialogs, have a look at the description for message dialogs.

The syntax for the error dialog is:

<icefusion:errorDialog title="my_title" text="my_text"
 contact="my_support_contact"
 eventBean="#{my_button_event_bean}" />

Similar to the messageDialog, all the errorDialog attributes are optional. It is
recommended to set the text attribute to get a useful context description.

In this section, we will concentrate on the little differences in the presentation of
both dialog types:

•	 Additional contact data for further help
•	 A stacktrace for error details

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[108]

Both dialog types are presented as collapsible panels and can be used as standalone,
or in combination. The panels are closed by default. The contact data panel helps the
user to solve the problem, whereas the stacktrace panel delivers valuable information
that can help the support team.

The contact data can be set in HTML. It allows us, for example, to show a detailed
description of the steps to get help. Here is a simple example that shows an email
address and additional links for home pages with further details. The ICEcube
example page can be found in the menu at Feedback | Popup Dialog:

It would be worth getting the support team to have a look at the stacktrace when
an exception is thrown. Although your server log files should deliver the same
information, it can be time consuming to find the corresponding part. If the user can
copy and paste the text into an email or an instant messenger, the support team can
help a lot faster.

The ICEcube example page implements for us the important parts of the
errorDialog example like this (/src/main/webapp/icecube/feedback/
popupDialog.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[109]

 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.feedback.popupDialog']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.feedback.popupDialog.text']}
 <ice:form>
 <ice:commandButton action=
 "#{popupDialog.showErrorException}" value=
 "#{icecube['application.menu.feedback
 .popupDialog.errorDialog.exception
 .button']}" />
 </ice:form>
 <icefusion:errorDialog title=
 "#{icecube['application.menu.feedback.popupDialog']}"
 text="#{icecube[popupDialog.errorText]}"
 contact="Rainer Eschen,
 mail[at]jigetiser.com
<a href=
 'http://blog.rainer.eschen.name' target='_blank'>
 Blog, <a href='http://
 icefusion.googlecode.com' target='_blank'>
 ICEfusion home, <a href='http://
 www.appfuse.org' target='blank'>
 AppFuse home"
 eventBean="#{popupDialog.errorDialogHandler}"/>
 </ui:define>
</ui:composition>
</body>
</html>

To get the contact data that is presented in the screenshot, you have to set the
contact attribute. The highlighted code above shows the corresponding HTML
output code.

For a stacktrace, you have to set the Exception in the ErrorDialog backing bean.
The page backing bean, PopupDialog, implements an example for this (/src/main/
java/com/googlecode/icecube/feedback/PopupDialog.java):

package com.googlecode.icecube.feedback;
import org.springframework.beans.factory.annotation
 .Autowired;
import org.springframework.beans.factory.annotation
 .Qualifier;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[110]

import com.googlecode.icefusion.ui.commons
 .BackingBeanForm;
import com.googlecode.icefusion.ui.commons.dialog
 .ErrorDialog;
public class PopupDialog extends BackingBeanForm {
 @Autowired
 @Qualifier("errorDialog")
 private ErrorDialog errorDialog;
 public String showErrorException () {
 try {
 // Simulation of an exception for
 // stacktrace presentation
 throw new NullPointerException();
 }
 catch (NullPointerException e) {
 this.errorDialog.setException(e);
 this.errorDialog.setShow(true);
 }
 return null;
 }
}

The showErrorException() method implements the behavior of the Error
(Exception) button. The showErrorException() is used to initialize the
errorDialog tag. The method also opens the dialog by setting the show attribute.

For an impressive dialog presentation, we need a valid Exception. The method
artificially creates one. This allows us to hand the exception over to the errorDialog
backing bean using the setException() method. If the exception attribute is set,
a collapsible panel is rendered in the dialog and the corresponding stacktrace is
created as the content for the panel.

QuestionDialog
For everything that needs a decision from the user, you can use a question dialog.
It allows you to present a question through the dialog text, and lets the user choose
between two answers through the buttons.

The syntax for a question dialog is:

<icefusion:questionDialog title="my_title" text="my_text"
 yes="my_yesButton_text" no="my_noButton_text"
 eventBean="#{my_button_event_bean}" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[111]

The title and text tags follow the ideas of the other dialogs. The yes and no
tags allow the user to exchange the button texts, so that you do not have to phrase
questions that only allow a yes or no. The eventBean allows managing the button
events outside of the questionDialog scope.

Here is an example of how a question dialog looks. The example page can be found
in the ICEcube menu at Feedback | Popup Dialog:

A simplified parameter set to produce this presentation looks like this:

<icefusion:questionDialog title="Popup Dialog"
 text="What do you like most?"
 yes="Apples" no="Oranges" />

The ICEcube example page defines the following code to create this presentation (/
src/main/webapp/icecube/feedback/popupDialog.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[112]

 <ui:define name="title">
 #{icecube['application.menu.feedback.popupDialog']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.feedback.popupDialog.text']}
 <ice:form>
 <ice:commandButton action=
 "#{popupDialog.showQuestionOtherButtons}" value=
 "#{icecube['application.menu.feedback
 .popupDialog.questionDialog.otherButtons
 .button']}"/>
 </ice:form>
 <ice:outputText value=
 "#{icecube[popupDialog.buttonClickedMessage]}" />
 <icefusion:questionDialog title=
 "#{icecube['application.menu.feedback.popupDialog']}"
 text="#{icecube[popupDialog.questionText]}"
 yes="#{icecube[popupDialog.yesButtonText]}"
 no="#{icecube[popupDialog.noButtonText]}"
 eventBean="#{popupDialog}" />
 </ui:define>
</ui:composition>
</body>
</html>

As we use a single <icefusion:questionDialog> tag, the setting of the texts
is done in the backing bean. Similar to the other discussed dialog example
implementations, we have a custom event handler defined that is indeed the
backing bean of the example page itself.

A custom event handler has to implement the IQuestionDialog interface
(/src/main/java/com/googlecode/icefusion/ui/commons/dialog/
IMessageDialog.java):

package com.googlecode.icefusion.ui.commons.dialog;
import java.io.Serializable;
public interface IQuestionDialog extends Serializable {
 public String questionDialogButtonYes();
 public String questionDialogButtonNo();
}

To understand how the event handling for a questionDialog works, we will
take a look at the backing bean of questionDialog. As it implements the
IQuestionDialog interface, we can have a look at the event handling for both:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[113]

•	 The standard behavior
•	 The implementation of a custom event handling

The QuestionDialog backing bean looks like this (/src/main/java/com/
googlecode/icefusion/ui/commons/dialog/QuestionDialog.java):

package com.googlecode.icefusion.ui.commons.dialog;
public class QuestionDialog extends Dialog implements
 IQuestionDialog {
 private Boolean yesClicked = false;
 public String questionDialogButtonYes() {
 this.setShow(false);
 this.setYesClicked(true);
 return null;
 }
 public String questionDialogButtonNo() {
 this.setShow(false);
 this.setYesClicked(false);
 return null;
 }
}

The standard event handling manages the show attribute and the yesClicked
attribute. The latter can be checked from outside, for example, after the dialog is
closed. It is true if the first button (normally, the Yes button), was clicked. So, you
do not need your own event handling implementation to find out which button
was clicked.

If we use the Spring reference from the ICEcube example page backing bean
(/src/main/java/com/googlecode/icecube/feedback/PopupDialog.java):

 @Autowired
 @Qualifier("questionDialog")
 private QuestionDialog questionDialog;

we can use the following statement after the questionDialog was opened:

if (questionDialog.getYesClicked()) {
 // Dialog was left with yes click
}

The yes and no attributes are used to manage the button texts. You can also change
their texts through changing these attributes. If nothing is set, the buttons show a Yes
and No.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[114]

Connection status
The connection status allows you to present the current communication status
between a web browser and a web container. It complements the standard status
presentation of the web browser. The connection status is very important when the
AJAX bridge of ICEfaces manages part updates of web pages. It even allows us to
recognize that an update is in preparation. These updates do not follow the classic
request/response communication model that the web browser tracks in its own
status presentation.

The connection status differs between:

•	 Idle: An existing connection, but no data exchange
•	 Active: An existing connection with current data exchange
•	 Caution: A no longer existing connection because of a communication

problem
•	 Disconnected: A terminated connection because of server timeout

The connection status is the most important feedback component in an ICEfaces
application. For this, it should be a part of the page template design so that it is
shown on every page. As the communication between a web browser and web
container becomes a continuous process through ICEfaces' AJAX bridge, the
connection status should be kept visible in any case.

ICEfusion delivers the <icefusion:connectionStatus> component, which fulfills
this need. Independent from the length or the current visible section of a web page,
the connection status is kept visible in the same position. Even when the web browser
is smaller than the content, the connectionStatus is moved in front of the content.

Here is an example of a connection that was disconnected when the browser showed
one of the modal dialog boxes. The visible area of the web page is moved, but the
connectionStatus retains its position:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[115]

The implementation of the connectionStatus calculates the position on the fly
(/src/main/webapp/icefusion/taglibs/commons/connectionStatus.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion="http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <div id="divStayTopLeft" style="position:absolute">
 <ice:outputConnectionStatus />
 </div>
 <script type="text/javascript">
 //<![CDATA[
 var verticalpos="fromtop"
 JSFX_FloatTopDiv();
 //]]>
 </script>
</ui:component>
</body>
</html>

An <ice:outputConnectionStatus /> tag, without any extras, is put in a <div>
tag. This tag is managed by a JavaScript from the Dynamic Drive home page
(http://www.dynamicdrive.com/). The code can be found in JSFX_FloatTopDiv()
at path /src/main/webapp/icefusion/scripts/connectionStatus.js.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[116]

To get the connectionStatus into every page of the ICEfusion project, and with
it also in every page of the ICEcube web application, the connectionStatus tag
was added to the /src/main/webapp/icefusion/taglibs/commons/page.xhtml
page template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
 xhtml1-transitional.dtd">
<html xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion="http://icefusion.googlecode.com/
 icefusion">
<f:view locale="#{context.locale}">
<f:loadBundle basename="icefusion.icefusion"
 var="icefusion"/>
<f:loadBundle basename="icecube.icecube" var="icecube"/>
<head>
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/page.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/icefaces.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/style.css" />
 <script type="text/javascript"
src=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/
 connectionStatus.js" >
 /***
 * Floating Menu script- (c) Dynamic Drive
 (http://www.dynamicdrive.com)
 * This notice MUST stay intact for legal use
 * Visit http://www.dynamicdrive.com/ for this
 script and 100s more.
 ***/
 </script>
 <script type="text/javascript"
src=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/icefusion.js" />
 <link rel="shortcut icon"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[117]

href=
 "#{iceFusionConsts.contextPath}
 #{iceFusionConsts.skinBase}/
 #{iceFusionConsts.skin}/images/page.ico"/>
 <title>
 #{iceFusionConsts.application}
 #{iceFusionConsts.release} -
 <ui:insert name="title">
 This page has no title.
 </ui:insert>
 </title>
</head>
<body>
 <icefusion:connectionStatus />
</body>
</f:view>
</html>

The highlighted parts show the connectionStatus tag and the JavaScript file that
is necessary to get the dynamic behavior. It is a part of the license agreement with
Dynamic Drive that the page code show this copyright hint.

Tooltip
Tooltips were invented when desktop applications got toolbars full of icons. The
icons should help us to use important functions in an application faster. But the icon
images were seldom intuitive enough to recognize what function could be found
behind an icon. So, the interface designers gave every icon a tooltip that described
their functionality.

These days, the users are familiar with a set of icons so that the use of tooltips may
only be necessary when they learn a new program. But if you study what images
are used for what functionality, these days you rarely find a correlation that lets you
stand up and say: "Yeah, that is really intuitive". The magnifying glass icon is a good
example for this. Users had to learn that it is used to search for something. In reality,
a magnifying glass is used to magnify small things.

Nevertheless, the use of tooltips is a good idea in contexts that may need a short
description. Often, the ambiguity of terms makes it necessary to have an explanation
of which definition is actually meant. If you design forms, this can be a challenge that
you can solve with tooltips.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[118]

Although a full-blown help page would be a better answer, often the user is not
interested in reading an introduction. Instead, he wants to select explanations
when they are necessary to him.

The <icefusion:hint> component delivers such a behavior for edit field contexts.
It can render a special icon, for example, with a question mark that is positioned
behind the edit field. The icon delivers the explanation with a mouseover.
Additionally, it can be used to deliver standardized explanations for every
<ice:panelGroup> context.

The syntax looks like this:

<icefusion:hint title="my_title" text="my_text"
 panel="my_panel_context" />

The title attribute allows you to define a title for the explanation. It is optional,
so that you can get the classical design of tooltips if you do not define it. The text
attribute shows the written explanation. The panel attribute defines the context the
hint component will be used in. It follows the <ice:panelTooltip> behavior that
can be studied in the hint component definition (/src/main/webapp/icefusion/
taglibs/commons/help/hint.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelTooltip hideOn="mouseout" hoverDelay="200"
 id="#{(not empty panel) ? panel : 'hintIcon'}">
 <c:if test="#{not empty title}">
 <f:facet name="header">
 <ice:outputText value="#{title}"/>
 </f:facet>
 </c:if>
 <f:facet name="body">
 <ice:outputText value="#{(not empty text) ?
 text : icefusion['application.hint.none']}"/>
 </f:facet>
 </ice:panelTooltip>
 <ice:panelGroup panelTooltip="hintIcon"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[119]

 rendered="#{empty panel}">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/#{context.skin}/
 images/hint.png" />
 </ice:panelGroup>
</ui:component>
</body>
</html>

The panelTooltip tag has an id attribute. This is referenced by a panelGroup tag
through its panelTooltip attribute. If you roll your mouse over the panelGroup,
the panelTooltip definition is shown near the cursor.

A panelTooltip defines two facets:

•	 Header
•	 Body

Keep in mind that you need a grouping tag such as <ice:panelGrid> if you use
more than one tag inside a facet. The code above does not need this because it
defines simple text outputs through single tags.

If the panel attribute of the hint component is not defined, the component renders
an additional icon inside a panelGroup. This panelGroup automatically references
the panelTooltip. So, you only need to position the hint tag behind an edit field
to get the correct presentation and behavior.

Here is an example of how it looks if you skip the panel attribute. The ICEcube
example page can be found in the menu at Feedback | Tooltip:

The ICEcube page example looks like this (/src/main/webapp/icecube/feedback/
tooltip.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[120]

 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.feedback.tooltip']}
 </ui:define>
 <ui:define name="content">
 <ice:form>
 <ice:panelGroup panelTooltip="hint">
 #{icecube['application.menu.feedback
 .tooltip.text']}
 </ice:panelGroup>
 <icefusion:hint title=
 "#{icecube['application.menu.feedback.tooltip
 .hint.title']}" text=
 "#{icecube['application.menu.feedback
 .tooltip.hint.text']}" panel="hint"/>

 #{icecube['application.menu.feedback
 .tooltip.icon.text']}
 <ice:panelGrid columns="2">
 <ice:inputText readonly="true" />
 <icefusion:hint text=
 "#{icecube['application.menu.feedback.tooltip
 .hint.icon.text']}" />
 </ice:panelGrid>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[121]

The panelGrid tag positions the hint component behind the edit field. There is no
relation to a panelGroup or an image tag. The second code example defines a text
panel with a tooltip. It uses a panel attribute definition. The tooltip also shows a title:

Autocomplete
If you have a form and a certain field allows only predefined values, you normally
use a combobox that the user can select an entry from. But there are situations
where you want to offer more flexibility, or the amount of data is too high to use
a combobox. For such situations, an autocomplete add-on to a simple edit field is
a good solution.

The edit field is used like a standard edit field, but with the first character you
type in, a search function starts its work in the background. It collects all matching
entries from a data pool (for example, a database table) and presents these in a
list underneath the edit field. If the number of hits exceeds the number of rows to
present, only the top-rated entries are shown. If you select an entry from the list, the
typed characters are replaced with it in the edit field. If you change the edit field, the
search starts again and delivers new suggestions.

ICEfusion delivers the <icefusion:completer> component, which allows you to
define edit fields with such a behavior. The following screenshot shows how this looks
in ICEcube. The example page can be found in the menu at Feedback | Autocomplete:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[122]

The screenshot presents the suggestion list after the first suggestion is shown and
the input is deleted. Additionally, an explanation is shown.

The ICEcube example code for the completer component looks like this
(/src/main/webapp/icecube/feedback/autocomplete.xhtml):

<!DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.feedback.autocomplete']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.feedback.autocomplete
 .text']}
 <ice:form>
 <icefusion:completer title=
 "#{icecube['application.menu.feedback
 .autocomplete.completer.title']}" hintText=
 "#{icecube['application.menu.feedback
 .autocomplete.completer.hint.text']}"	
 valueBean="#{autocomplete}"/>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The completer component uses the following syntax:

<icefusion:completer title="my_title"
 hintTitle="my_hint_title" hintText="my_hint_text"
 valueBean="#{my_value_and_baseList_manager}"
 rows="my_number_for_entries_in_hit_list" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[123]

The title attribute is used to define a textual description of the edit field that is
rendered through the completer. The title is positioned in front of the edit field. The
completer also uses the ICEfusion hint component that is rendered if a hintText
attribute is defined. The hintTitle attribute defines an optional title for the hint. The
valueBean attribute defines the reference to a bean that delivers the data pool to work
with. For this, the bean has to implement the ICompleter interface. The valueBean
attribute is the only attribute that is required. The rows attribute defines how many
entries the list of suggestions will present. The default is 10.

The interface for the valueBean implementation looks like this (/src/main/java/
com/googlecode/icefusion/ui/commons/form/ICompleter.java):

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
import java.util.List;
import javax.faces.model.SelectItem;
public interface ICompleter extends Serializable {
 public List<SelectItem> getCompleterBaseList();
 public String getCompleterValue();
 public void setCompleterValue(String value);
}

The interface defines the data pool list and the getter/setter for the value of the
edit field. The latter is the result of all previous inputs that can be used for further
processing in the form that the input field is a part of.

The completer is based on the <ice:selectInputText> tag. This allows us to
define a suggestion list and a valueChangeListener, which is used to process
the data pool search and the final update of the suggestion list. The completer
component implementation shows the details.

We start with the XHTML code (/src/main/webapp/icefusion/taglibs/
commons/form/completer.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelGrid columns="3">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[124]

 <ice:outputText value="#{(not empty title) ?
 title : icefusion['application.completer.none']}"/>
 <ice:selectInputText value="#{valueBean.completerValue}"
 valueChangeListener="#{completer.listener}"
 rows="#{(not empty rows) ?
 rows : completer.rows}">
 <f:selectItems value="#{completer.resultList}" />
 </ice:selectInputText>

 <icefusion:hint title="#{hintTitle}"
 text="#{hintText}"/>
 </c:if>
 <c:if test="#{(empty hintTitle)}">
 <!-- Facelets need this empty attribute, else it
 would use title from the completer -->
 <icefusion:hint title="" text="#{hintText}"/>
 </c:if>
 </c:if>
 </ice:panelGrid>
 <!-- Manage valueBean list as parameter for backing
 bean -->
 <ice:selectInputText visible="false" binding=
 "#{completer.baseList}" listValue=
 "#{valueBean.completerBaseList}" />
</ui:component>
</body>
</html>

The completer manages its output in three columns:

•	 Title
•	 Edit field
•	 Hint

The selectInputText references the completerValue implementation of the
ICompleter interface. Additionally, it has a reference to the completer backing
bean for the listener and the resultList management. The listener uses the
second selectInputText, which manages the valueBean attribute to reference the
completerBaseList implementation of the ICompleter interface. Using the second
selectInputText is a trick to set the parameters of backing beans from the Facelets
programming side through component binding.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[125]

The backing bean for the completer component looks like this (/src/main/java/
com/googlecode/icefusion/ui/commons/form/Completer.java):

package com.googlecode.icefusion.ui.commons.form;
import javax.faces.event.ValueChangeEvent;
import javax.faces.model.SelectItem;
import com.googlecode.icefusion.ui.commons
 .BackingBeanForm;
import com.icesoft.faces.component.selectinputtext
 .SelectInputText;
public class Completer extends BackingBeanForm {
 private List<SelectItem> matches =
 new ArrayList<SelectItem>();
 public void listener(ValueChangeEvent event) {
 if (event.getComponent() instanceof SelectInputText) {
 String search = (String) event.getNewValue();
 Long matches_i = 0L;
 matches.clear();
 for (SelectItem entry : (ArrayList<SelectItem>)
 this.getBaseList().getListValue()) {
 if ((matches_i > this.getRows())) {
 break;
 }
 if (entry.getLabel().toString()
 .toUpperCase(this.context.getSettings()
 .getLocale().getLocale()).startsWith(
 search.toUpperCase(this.context.getSettings()
 .getLocale().getLocale()))) {
 matches.add(entry);
 matches_i++;
 }
 }
 }
 }
 public List<SelectItem> getResultList() {
 return matches;
 }
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[126]

The event listener references the second SelectInputText and its listValue
attribute to get access to the data pool. Using the baseList attribute, all entries
in this list are compared to the current input value that is delivered via the event
object. The matching is done via a multilingual, case-insensitive search, whereas the
input has to match the beginning of the data pool entries. All matching entries are
collected in the matches list.

Drag-and-drop
Drag-and-drop is a concept that allows dragging a visual entity on the desktop and
dropping it in a different place to trigger an event. The desktop file explorer is doing
this when you move a file from one folder to another.

Today's AJAX frameworks also deliver this functionality for the web browser.
ICEfaces' drag-and-drop feature is based on the AJAX framework, script.aculo.us.
So, you can use the effects that this framework delivers in your web application.

Drag-and-drop is realized through two <ice:panelGroup> definitions:

<ice:panelGroup
 draggable="true" dragOptions="dragGhost"
 dragMask="dragging,drag_cancel,hover_start,hover_end"
 dropMask="dragging,drag_cancel,hover_start,hover_end"
 dragListener="#{dadSelector.dragListener}"
 dragValue="#{source}">
<ice:panelGroup/>
<ice:panelGroup dropTarget="true">
<ice:panelGroup/>

The first panel defines the draggable components that a user can move. You can
use images, texts, or whatever can be grouped by a panelGroup. The usage of the
drag-and-drop feature follows the ideas of similar desktop implementations.

The draggable attribute allows a simple panelGroup to transform into something
ultra modern—a draggable area. The second panelGroup defines a droppable area
through the dropTarget attribute.

The dragOptions attribute allows us to influence the behavior of draggable
components during drag-and-drop. The dragGhost parameter defines that draggable
elements cannot be moved to areas that are outside of the droppable area. If you try
to do so, the draggable element returns back to its homebase.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[127]

Using drag-and-drop can be very time consuming. The permanent communication
with the server side needs a lot of computing power. For optimization purposes,
the dragMask and dropMask attributes allow us to define events that will not be
processed by the system. With a typical implementation, you define all of the
allowed events here (except for the dropped event) that we need in order to follow
the user behavior during drag-and-drop.

We track the user behavior through the event handler that is set in the dragListener
attribute. With the dragValue attribute, it is possible to add common objects to the
draggable element that can be processed by the dragListener.

ICEfusion delivers the <icefusion:dadSelector> component, which simplifies
the usage of drag-and-drop. The following screenshot shows what its presentation
looks like. The ICEcube example page can be found in the menu at Feedback |
Drag and Drop:

The dadSelector has the following syntax:

<icefusion:dadSelector
 title="my_title"
 text="my_description_of_the_list_entries_use"
 valueBean="#{my_source_and_selected_list_manager}" />

Besides the title and text attributes, we know from the other ICEfusion tags that
it also has a valueBean attribute. The valueBean implements the IDadSelector
interface (/src/main/java/com/googlecode/icefusion/ui/commons/form/
IDadSelector.java):

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
import java.util.List;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[128]

public interface IDadSelector extends Serializable {
 public List<DadSelectorItem> getDadSelectorSourceList();
 public List<DadSelectorItem>
 getDadSelectorSelectedList();
}

The sourceList represents the left side in the screenshot and manages all
entries you can choose from. The selectedList represents the right side of the
dadSelector and manages all elements you have chosen. The DadSelectorItem is
an extension to the JSF SelectorItem and adds image attributes. This allows you to
present images instead of movable text labels.

Here is the corresponding definition from the ICEcube example (/src/main/
webapp/icecube/feedback/dragAndDrop.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.feedback.dragAndDrop']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.feedback.dragAndDrop.text']}
 <ice:form>
 <icefusion:dadSelector title=
 "#{icecube['application.menu.feedback
 .dragAndDrop.dadSelector.title']}" text=
 "#{icecube['application.menu.feedback
 .dragAndDrop.dadSelector.text']}" valueBean=
 "#{dragAndDrop}" />
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 5

[129]

The dragAndDrop backing bean from the example page looks like this (/src/main/
java/com/googlecode/icecube/feedback/dragAndDrop.java):

package com.googlecode.icecube.feedback;
import com.googlecode.icefusion.ui.commons
 .BackingBeanForm;
import com.googlecode.icefusion.ui.commons.form
 .IDadSelector;
import com.googlecode.icefusion.ui.commons.form
 .DadSelectorItem;
public class DragAndDrop extends BackingBeanForm
 implements IDadSelector {
 private ArrayList<DadSelectorItem> source;
 private ArrayList<DadSelectorItem> selected =
 new ArrayList<DadSelectorItem>();
 protected void init() {
 source = new ArrayList<DadSelectorItem>();
 selected = new ArrayList<DadSelectorItem>();
 DadSelectorItem item0 = new DadSelectorItem();
 item0.setImageUrl(consts.getContextPath() +
 consts.getSkinBase() + "/" + consts.getSkin() +
 "/images/messageDialog.png");
 source.add(item0);
 }
 public List<DadSelectorItem> getDadSelectorSelectedList() {
 return this.getSelected();
 }
 public List<DadSelectorItem> getDadSelectorSourceList() {
 if (this.getSource() == null) {
 this.init();
 }
 return this.getSource();
 }
}

The init() method prepares the source list that is used on the left side of the
dadSelector presentation.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Feedback and Behavior

[130]

Summary
In this chapter, we discussed how we can use a subset of ICEfusion components
to implement a desktop-like feedback management. We also had a look at the
components that bring a desktop behavior into the web browser, such as the
ICEfusion drag-and-drop component.

These ICEfusion components are enhancements to the existing ICEfaces components,
and ease development. Their implementation and usage follow the ideas of modern
desktop components.

In the following two chapters, we will take a deeper look at components for data
management. Data management forms a central part of enterprise development.
The next chapter starts with the components for the data presentation.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data
Presentation and Multimedia

This chapter will discuss components that are primarily used to present data in
different formats. We will start with the classic data table and tree components
—surely, the most used components in enterprise programming. Next, we will
take a look at the charts and maps that are specialized in graphical data presentation.
Multimedia presentations are on the way to becoming the next important standard.
So, we will also take a look at video presentation components.

Data table
The ICEfaces data table follows the implementation of the JSF standard data table.
It is primarily enhanced with skinning and security features. It also has some
additional components that make its use more comfortable.

We will have a look at two variants of the ICEfaces data table in this chapter.
Both implementations use the same set of data. First, we will take a look at the
static variant and discuss important JSF features. Next, we will take a look at
a dynamic implementation that is offered by the <icefusion:table> tag.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[132]

The static table example can be found in the ICEcube menu at Presentation | Data
Table and looks like this:

In ICEfaces, a data table is defined by an <ice:dataTable> tag, some <ice:column>
tags, and a list of objects. The implementation of the ICEcube example page can be
found at /src/main/webapp/icecube/presentation/dataTable.xhtml:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template=”#{iceFusionConsts.templatePage}”>
 <ui:define name=»title»>
 #{icecube['application.menu.presentation.dataTable']}
 </ui:define>
 <ui:define name=»content»>
 #{icecube['application.menu.presentation.dataTable.text']}
 <ice:form>
 <ice:panelGrid>
 <ice:dataTable id="table" var="tableRows"
 value="#{dataTable.rowsList}" 			
 rows="3" resizable="true">
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="#{icecube[
 'application.menu.presentation.
 dataTable.attribute.firstname']}"/>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[133]

 </f:facet>
 <ice:outputText
 value="#{tableRows.firstname}"/>
 </ice:column>
 </ice:dataTable>
 </ice:panelGrid>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The list of objects that is delivered by the backing bean is referenced in the value
attribute of the dataTable. The dataTable iterates over the value list and sets
the var attribute for each member. The column tags define how the data has to be
presented for each member.

You may have recognized the bigger lines between the columns in the screenshot.
These are a result of the resizable attribute in the dataTable tag. If you click on
these and move the mouse, the size of the left column is changed. Normally, you
have to start with the outer right columns to get a useful result.

In the backing bean, we define a list of Java authors with their names, blog addresses,
and a flag if JSF is their main business (/src/main/java/com/googlecode/
icecube/presentation/DataTable.java):

package com.googlecode.icecube.presentation;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.form.ITable;
import com.googlecode.icefusion.ui.commons.form
 .ITableRowSortable;
public class DataTable extends BackingBeanForm
 implements ITable {
 private ArrayList<DataTableRow4JavaAuthors>
 authors = new ArrayList<DataTableRow4JavaAuthors>();
 protected void init() {
 authors.clear();
 authors.add(new DataTableRow4JavaAuthors(
 "Rod","Johnson",
 "http://blog.springsource.com/author/rodj/",false));
 authors.add(new DataTableRow4JavaAuthors(
 "Matt","Raible",
 "http://raibledesigns.com/",false));
 this.initialized = true;
 }

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[134]

 public List<ITableRowSortable> getRowsList() {
 if (!this.initialized) {
 init();
 }
 return this.getAuthors();
 }

The list of object construct behind the value attribute allows us to use well-known
components from the Java collections, such as List or Map. Just as they can handle
any kind of object, the dataTable tag can also do this. In combination with the JSF
Expression Language (EL) and its internal reflection, we are able to implement
highly reusable presentation components for different business contexts.

The EL lets you reference an attribute by its name, which is independent from its
type. So, it is possible to use different objects that use the same name for a certain
attribute in the same context without any adaptation in the XHTML or the backing
bean. This is independent from the list type or the attribute type you use with such
an attribute name.

In our example, we have a DataTableRow4JavaAuthors class that allows us to
define the necessary attributes that we want to present in the columns. The class
is a simple POJO that defines attributes with getters and setters.

Pagination
Normally, the dataTable lists have so many objects that it is not useful to present
these all at once in the web browser. So, we need a dataTable extension that allows
limiting the number of objects to render for a single page. For this, we use the
<ice:dataPaginator> tag. It also offers navigation inside the object list. (See the
navigation bar in the screenshot above.) The ICEcube example defines the navigation
like this (/src/main/webapp/icecube/presentation/dataTable.xhtml):

<ice:form>
 <ice:panelGrid>
 <ice:dataTable id="table" var="tableRows"
 value="#{dataTable.rowsList}"
 rows="3" resizable="true">
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="#{icecube[
 'application.menu.presentation.
 dataTable.attribute.firstname']}"/>
 </f:facet>
 <ice:outputText
 value="#{tableRows.firstname}"/>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[135]

 </ice:column>
 </ice:dataTable>
 <ice:dataPaginator for="table">
 <f:facet name="first">
 <ice:graphicImage style="border:none;"
 url="#{iceFusionConsts.skinBase}/ ... /
 arrow-first.gif"></ice:graphicImage>
 </f:facet>
 <f:facet name="last">
 <ice:graphicImage style=”border:none;”
 url=”#{iceFusionConsts.skinBase}/ ... /
 arrow-last.gif»></ice:graphicImage>
 </f:facet>
 </ice:dataPaginator>
 </ice:panelGrid>
</ice:form>

The dataPaginator allows to define navigation controls. In our example, we
reference icons that are part of the ICEfaces standard skin Rime. The ICEfusion
skins are based on Rime and with it, also the ICEcube skins.

The dataTable tag defines an id attribute so that the dataPaginator can reference
to it via its for attribute. The dataPaginator becomes active when the rows
attribute of the dataTable defines a number of lines that is smaller than the size
of the list of objects defined via the value attribute.

If you define a dataPaginator tag, it is always rendered even if it doesn't need to
be. So, it is a good idea to check if the rows attribute of dataTable is really smaller
than the size of the list of objects. You can use the result in the rendered attribute
of the dataPaginator.

Dynamic data table
Static tables are easy to manage. You edit the tag definition and get a new column,
or change the sequence of columns through cut and paste. In more complex
applications that try to reach a higher level of reuse in the presentation layer, this
kind of management is too inflexible. If the column definition varies during runtime,
you may have to define a table for each variation. This can be a maintenance hell in
the long run.

Alternatively, you use a component that can be configured for how the presentation
will look. ICEfusion delivers a table tag that can work like this. It integrates
the features from the static table above, but decides during runtime how columns
are rendered.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[136]

The ICEfusion dynamic data table allows defining:

•	 The columns that are presented. So, a dedicated selection of object attributes
can be done.

•	 The sequence of columns. So, the presentation order of object attributes can
be freely defined.

In comparison to the implementation we used for the static data table, the dynamic data
table definition is minimalistic. Here is an example from the ICEcube implementation
(/src/main/webapp/icecube/presentation/dataTableDynamic.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.presentation.dataTable
 .dynamic']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.presentation.dataTable
 .dynamic.text']}
 <ice:form>
 <icefusion:table valueBean="#{dataTable}"
 resizable="true"/>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[137]

The ICEcube backing bean of the page and the backing bean of the table tag have to
supply the missing functionality instead. The syntax for the table tag looks like this:

<icefusion:table valueBean="#{bean_that_implements_ITable}"
 resizable="true|false" rows="number_of_rows_to_show"/>

The resizable attribute and the rows attribute follow the description for the static
data table. The valueBean attribute is the central part of this definition. It defines a
bean that implements methods that deliver:

•	 The list of rows to show: The list has objects that implement the
ITableRowSortable interface so that a column sorting is possible.

•	 The list of columns that have to be shown in the table: We use a
LinkedHashMap here, which defines the attribute names and the resource
bundle IDs to use for multilingual presentation of the column headers.
This kind of a Map allows you to keep the sequence of creation.

The backing bean of the page has to implement the ITable interface if it manages
what the table tag has to show. Here is the definition for ITable (/src/main/java/
com/googlecode/icefusion/ui/commons/form/ITable.java):

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
public interface ITable extends Serializable {
 public List<ITableRowSortable> getRowsList();
 public LinkedHashMap<String, String> getColumnsMap();
}

The backing bean of the ICEcube page example looks like this (/src/main/java/
com/googlecode/icecube/presentation/DataTable.java):

package com.googlecode.icecube.presentation;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.form.ITable;
import com.googlecode.icefusion.ui.commons.form.ITableRowSortable;
public class DataTable extends BackingBeanForm implements ITable {
 private ArrayList<DataTableRow4JavaAuthors>
 authors = new ArrayList<DataTableRow4JavaAuthors>();
 private LinkedHashMap<String,String>
 attributes = new LinkedHashMap<String,String>();
 protected void init() {
 authors.clear();
 authors.add(new DataTableRow4JavaAuthors(
 "Rod","Johnson",
 "http://blog.springsource.com/author/rodj/",false));
 authors.add(new DataTableRow4JavaAuthors(

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[138]

 "Matt","Raible",
 "http://raibledesigns.com/",false));
 // We define the order of attribute-to-column
 attributes.clear();
 attributes.put("lastname","application.menu
 .presentation.dataTable.dynamic.attribute.lastname");
 attributes.put("firstname","application.menu
 .presentation.dataTable.dynamic.attribute
 .firstname");
 this.initialized = true;
 }
 public LinkedHashMap<String, String> getColumnsMap() {
 if (!this.initialized) {
 init();
 }
 return this.getAttributes();
 }
 public List<ITableRowSortable> getRowsList() {
 if (!this.initialized) {
 init();
 }
 return this.getAuthors();
 }
}

The code shows the ITable methods—getColumnsMap() and getRowsList().
These deliver backing bean local definitions of a Map and a List, both of which
are initialized in the init() method.

Sortable columns
Sortable columns form an important feature of data tables. The current JSF table
implementations initialize a sorting through clicking on a column header. This
only works when our list object DataTableRow4JavaAuthors implements the
ITableRowSortable interface (/src/main/java/com/googlecode/icefusion/ui/
commons/form/ITableRowSortable.java):

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
public interface ITableRowSortable extends Serializable {
 public int compareByAttribute(ITableRowSortable object,
 String attribute);
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[139]

For a column-specific sorting in the table, we need a special comparator
implementation that allows defining which attribute is to be used for sorting. The
backing bean of the ICEfusion table uses this implementation to initialize a sorting if
the user clicks on a column header. For this, compareByAttribute() compares the
selected attribute of the object implementing the Interface with the same attribute
of the given object and returns integer values:

•	 -1: The given object is bigger
•	 0: Both objects are equal
•	 +1: The given object is smaller

The DataTableRow4JavaAuthors list object implements the ITableRowSortable
interface like this (/src/main/java/com/googlecode/icecube/presentation/
DataTableRow4JavaAuthors.java):

package com.googlecode.icecube.presentation;
import com.googlecode.icefusion.ui.commons.form
 .ITableRowSortable;
public class DataTableRow4JavaAuthors implements
 ITableRowSortable {
 public int compareByAttribute(ITableRowSortable object,
 String attribute) {
 if (attribute.equals("firstname")) {
 return this.firstname.compareTo(
 ((DataTableRow4JavaAuthors)object)
 .getFirstname());
 }
 if (attribute.equals("lastname")) {
 return this.lastname.compareTo(
 ((DataTableRow4JavaAuthors)object).getLastname());
 }
 return 0;
 }
}

For each attribute of the object data definition, the compareByAttribute() method
implements a comparison. So, every attribute can be used in a sortable column of
the table.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[140]

The most important part, and also the reason for the Interface definition, is the
typecast for the object parameter. The Interface allows the backing bean of the
ICEfusion table tag to keep itself unaware of the class it processes as a row. The
knowledge about handling the attributes is kept in the object data class. So, the
backing bean can, indeed, handle every data definition. The corresponding data
classes only have to implement the ITableRowSortable interface.

The result of the dynamic data table implementation is nearly the same as the static
data table implementation. The dataPaginator is not active because the ICEfusion
table tag defines that this is only shown if the rows parameter of the tag defines a
number that is smaller than the number of the rows to process. Indeed, we have no
rows parameter defined in the page so that all of the available rows are shown.
Have a look at the ICEcube menu at Presentation | Dynamic Data Table:

If you click on one of the column headers, a sorting is done. We click on the First
name column for this:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[141]

A second click on the column header flips the sorting:

The triangle behind the column header label shows how the column is sorted.

Lazy loading
The use of the dataPaginator may create the impression that even the database
access is done in pages. ICEfaces has no support for this by default. Actually, your
backend delivers a complete list of objects and the dataTable component manages
the paging locally inside the web container. This can become a scaling problem if
you have to manage a lot of data and a user has unlimited access to it.

So you may have to implement a better strategy yourself. On the ICEfaces tutorial
pages, you can study an example for this (http://facestutorials.icefaces.org/
tutorial/dataTable-JPA-tutorial.html). If you are interested in a framework
that is specialized in the JPA support for lazy loading implementations, have a look
at the Crank framework (http://krank.googlecode.com/).

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[142]

Tree
In classic web applications, trees were sometimes used for navigation. In modern
web applications that use pulldown menus, trees are primarily used to visualize
hierarchical relations of objects. Here is what the ICEcube example is generating.
Have a look in the menu at Presentation | Tree:

The <ice:tree> tag shows a simple text output that describes a hierarchy. The
icons are from the current skin and can be set individually. Unfortunately, the nodes
cannot be set in the XHTML code, but have to be created via the backing bean.

The tree model in the previous image is inspired by the Swing programming model.
This may be a help for a formal Swing developer. However, a lot of web developers
will recognize an unnecessary complexity in it.

We'll have a look at the tag structure first. The ICEcube example page looks like this
(/src/main/webapp/icecube/presentation/tree.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template=”#{iceFusionConsts.templatePage}”>
 <ui:define name=»title»>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[143]

 #{icecube['application.menu.presentation.tree']}
 </ui:define>
 <ui:define name=»content»>
 #{icecube['application.menu.presentation.tree.text']}
 <ice:form>
 <ice:panelGrid>
 <ice:tree value="#{tree.model}" var="item"
 hideRootNode="false"
 hideNavigation="false"
 imageDir="#{iceFusionConsts.skinBase}/
 #{context.skin}/css-images/">
 <ice:treeNode>
 <f:facet name="icon">
 <ice:panelGroup style="display: inline" >
 <ice:graphicImage
 value="#{item.userObject.icon}"/>
 </ice:panelGroup>
 </f:facet>
 <f:facet name="content">
 <ice:panelGroup style="display: inline" >
 <ice:outputText
 value="#{item.userObject.text} "/>
 </ice:panelGroup>
 </f:facet>
 </ice:treeNode>
 </ice:tree>
 </ice:panelGrid>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The tag structure is similar to the data table definition. We have a value tag that is
managing the model, and a var attribute for referencing single objects and attributes
for the node presentation.

The model structure is a bit different and defines a tree with the
DefaultMutableTreeNode nodes. These additionally have the IceUserObject
objects for managing your data.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[144]

The creation of such a tree model looks like this (/src/main/java/com/
googlecode/icecube/presentation/Tree.java):

package com.googlecode.icecube.presentation;
import javax.swing.tree.DefaultMutableTreeNode;
import javax.swing.tree.DefaultTreeModel;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
public class Tree extends BackingBeanForm {
 private DefaultTreeModel model;
 public void init() {
 int ids = 0;
 String skin = consts.getSkinBase() + "/" +
 context.getSkin();
 // create root node with its children expanded
 DefaultMutableTreeNode rootTreeNode =
 new DefaultMutableTreeNode();
 TreeNodeUserObject rootObject =
 new TreeNodeUserObject(rootTreeNode,skin);
 rootObject.setId(ids++);
 rootObject.setText("Root Node");
 rootTreeNode.setUserObject(rootObject);
 model = new DefaultTreeModel(rootTreeNode);
 // add some child nodes
 for (int i = 0; i < 3; i++) {
 DefaultMutableTreeNode branchNode =
 new DefaultMutableTreeNode();
 TreeNodeUserObject branchObject =
 new TreeNodeUserObject(branchNode,skin);
 branchObject.setId(ids++);
 branchObject.setText("node-" + i);
 branchObject.setLeaf(false);
 branchNode.setUserObject(branchObject);
 rootTreeNode.add(branchNode);
 // add some more sub children
 for (int k = 0; k < 2; k++) {
 DefaultMutableTreeNode subBranchNode =
 new DefaultMutableTreeNode();
 TreeNodeUserObject subBranchObject =
 new TreeNodeUserObject(subBranchNode,skin);
 subBranchObject.setId(ids++);
 subBranchObject.setText("sub-node-" + i +
 "-" + k);
 subBranchObject.setLeaf(true);
 subBranchNode.setUserObject(subBranchObject);

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[145]

 branchNode.add(subBranchNode);
 }
 }
 }
 public DefaultTreeModel getModel() {
 init();
 return model;
 }
}

The init() method creates the structure using the related
DefaultMutableTreeNode objects. Each of these nodes has a TreeNodeUserObject
that manages concrete node data that we want to use for presentation.
TreeNodeUserObject extends IceUserObject and can be found at /src/main/
java/com/googlecode/icecube/presentation/TreeNodeUserObject.java:

package com.googlecode.icecube.presentation;
import javax.swing.tree.DefaultMutableTreeNode;
import com.icesoft.faces.component.tree.IceUserObject;
public class TreeNodeUserObject extends IceUserObject {
 private int id;
 public TreeNodeUserObject(DefaultMutableTreeNode wrapper,
 String skin) {
 super(wrapper);
 this.init(skin);
 }
 protected void init(String skin) {
 this.setBranchExpandedIcon(skin +
 «/css-images/tree_folder_open.gif»);
 this.setBranchContractedIcon(skin +
 «/css-images/tree_folder_closed.gif»);
 this.setLeafIcon(skin +
 «/css-images/tree_document.gif»);
 this.setExpanded(true);
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[146]

This extension defines an id attribute for every node and helps to set the
corresponding skin icons automatically. If you need other node data to manage,
you would put it into this definition. Such attributes are referenced like this:
#{item.userObject.attribute_name}.

Chart
Charts help to visualize data. The ICEfaces framework offers a JSF-like
implementation of the JCharts project (http://jcharts.sourceforge.net/).
The first part of the ICEcube example page in the menu at Presentation | Chart
looks like this:

Bar Chart Pie Chart

Bar (stacked)

Bar (stacked)

Te
ch

no
lo

gy
Te

ch
no

lo
gy

48

36

24

12

0

0

2009

2009

2010

2010

2011

2011

Years

Years

Pie 2D

Pie Chart (3D)

Pie 3D

Bar Chart (stacked)

68

51

34

17

Flash AJAX

Flash AJAX

Flash
AJAX

JSF

JSF

Flash AJAX

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[147]

The example page shows an example for every ICEfaces chart. The output is
organized in two columns. The following screenshot shows the last part of the
example page:

Flash AJAX

Flash AJAXFlash AJAX

Flash AJAX

0

0 0

0

12

12 12

12

24

24 24

24

36

36 36

36

48

48 48

48

2009

20092009

20092010

20102010

20102011

2011

2011

Te
ch

no
lo

gy
Te

ch
no

lo
gy

Te
ch

no
lo

gy

Te
ch

no
lo

gy
Te

ch
no

lo
gy

Line

Flash AJAX

Area
Area

Years

Years

Years

Years

Years

Point
Point

Bar (clustered)

Area (stacked)

Area (stacked)

0

17

34

51

68

2009 2010

Bar Chart (clustered) Line

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[148]

The corresponding code looks like this (/src/main/webapp/icecube/
presentation/chart.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion="http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.presentation.chart']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.presentation.chart.text']}
 <ice:form>
 <ice:panelGrid columns="2">
 <ice:panelGrid>
 <h3>Bar Chart</h3>
 <ice:outputChart type="bar"
 chartTitle="Bar"
 yaxisTitle="Technology"
 xaxisTitle="Years"
 xaxisLabels="2009, 2010, 2011"
 labels="Flash, AJAX"
 data="23, 30, 43: 36, 34, 20"
 colors="blue, green"/> 			
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Pie Chart</h3>
 <ice:outputChart type="pie2d"
 chartTitle="Pie 2D"
 labels="JSF, AJAX, Flash"
 data="43, 30, 27"
 colors="blue, green, cyan"/>
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Line</h3>
 <ice:outputChart type="line"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[149]

 chartTitle="Line"
 yaxisTitle="Technology"
 xaxisTitle="Years"
 xaxisLabels="2009, 2010, 2011"
 labels="Flash, AJAX"
 data="23, 30, 43: 36, 34, 20"/> 			
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Area</h3>
 <ice:outputChart type="area"
 chartTitle="Area"
 yaxisTitle="Technology"
 xaxisTitle="Years"
 xaxisLabels="2009, 2010, 2011"
 labels="Flash, AJAX"
 data="23, 30, 43: 36, 34, 20"/> 			
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Point</h3>
 <ice:outputChart type="point"
 chartTitle="Point"
 yaxisTitle="Technology"
 xaxisTitle="Years"
 xaxisLabels="2009, 2010, 2011"
 labels="Flash, AJAX"
 data="23, 30, 43: 36, 34, 20"/> 			
 </ice:panelGrid>
 </ice:panelGrid>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The code shows the use of attributes for the main chart types. So the attributes for the
bar also work for the barstacked or barclustered type. The <ice:outputChart>
tag is responsible for the rendering of all kinds of charts. It supports:

•	 Bar
•	 Bar (stacked)
•	 Bar (clustered)
•	 Pie
•	 Pie 3D

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[150]

•	 Area
•	 Area (stacked)
•	 Line
•	 Point

The type attribute defines which kind of chart is rendered. The data to be processed
is defined via the data attribute. Values are comma separated and the sets are
separated by a colon. The example page uses the same data for all of the charts. The
bar chart and all the pie charts use single sets. Although two sets are defined, the
bar chart interprets only the first set.

The labels attribute lists the comma-separated names that are used for the sets
defined in data. The same is done for defining a color for a set using the colors
attribute. The first two charts have a colors attribute set and their colors are kept.
All other charts create colors by accident each time the page is rendered. This is for
demonstration purposes only. Such color combinations are seldom useful.

For labeling the chart, you can use the chartTitle attribute for a header title, the
yaxisTitle attribute for the Y-axis, and the xaxisTitle attribute for the X-axis.

Google Maps
The ICEfaces framework supports the presentation of Google Maps right out of
the box. For this, you do not need any JavaScript. There are several tags that help
to present a Google Map in your web application. Here is the code for the ICEcube
example page (/src/main/webapp/icecube/presentation/googleMap.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template=”#{iceFusionConsts.templatePage}”>
 <ui:define name=»title»>
 #{icecube['application.menu.presentation.googleMap']}
 </ui:define>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[151]

 <ui:define name=»content»>
 #{icecube['application.menu.presentation.
 googleMap.text']}
 <ice:gMap latitude=»50.5001262» longitude=»9.6912457»
 zoomLevel=»16» type=»Hybrid»>
 <ice:gMapControl name=»GLargeMapControl»/>
 <ice:gMapControl name=»GScaleControl»/>
 <ice:gMapControl name=»GMapTypeControl»/>
 <ice:gMapControl name=»GOverviewMapControl»/>
 <ice:gMapMarker>
 <ice:gMapLatLng latitude=»50.5001262»
 longitude=»9.6912457»/>
 </ice:gMapMarker>
 </ice:gMap>
 </ui:define>
</ui:composition>
</body>
</html>

The <ice:gMap> tag defines the position, the zoom level, and the kind of map
to show. It has four controls for manipulation and a marker to highlight the
chosen position. The result looks like this (see ICEcube menu at Presentation
| Google Map):

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[152]

The GLargeMapControl definition allows you to pan and zoom the map section. It
initiates the control on the top left. The GScaleControl shows a map scale on the
bottom left. The GMapTypeControl shows different buttons on the top right. These
allow toggling between different map types. The GOverviewMapControl shown on
the bottom right allows moving the map section in context to the surrounding area.

The gMapMarker tag allows us to set one or more visual markers. These are shown
in red by default. Each of its gMapLatLng elements renders a visual marker through
setting the longitude and latitude attributes. We have chosen the same position
that the gMap tag uses. This allows you to visually highlight the chosen map section
with a corresponding marker.

The ICEfaces framework allows customizing the presentation of Google Maps
through a number of CSS stylesheets. The presentation above only uses one
individual style definition that can be found in /src/main/webapp/icefusion/
styles/icefusion/style.css:

.iceGmpMapTd div.gmap {
 width: 750px;
 height: 400px;
}

It defines the dimensions of the map to show.

License
If you integrate Google Maps into your application, you actually integrate a service
you have to pay for. With your agreement, Google supplies you with a special
key that has to be used when you use the service. Our example uses a key that is
delivered by ICEsoft for testing purposes only.

The key is managed in the web.xml through the com.icesoft.faces.gmapKey
context parameter. For ICEcube, the testing key can be found in /src/main/webapp/
WEB-INF/web.xml:

<context-param>
 <param-name>com.icesoft.faces.gmapKey</param-name>
 <param-value>ABQIAAAADlu0ZiSTam64EKaCQr9eTRTOTuQNzJNXRlYR
 Lknj4cQ89tFfpxTEqxQnVWL4k55OPICgF5_SOZE06A</param-value>
</context-param>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[153]

GMaps4JSF
If the use of Google Maps is critical to your project, you may also have a look at
GMaps4JSF (http://code.google.com/p/gmaps4jsf/). The ICEcube example
page for Google Maps also presents a GMaps4JSF example.

GMaps4JSF is more flexible to use. It allows defining events, for example.
Chapter 10, Push Technology, will show this in more detail when we develop
the ICEmapper game.

Media Player
The <ice:outputMedia> tag allows you to present different multimedia formats
inside a web application. The simplest use case is to play a video, whereas the most
complex one is to present a Flash-based application. The initialized ICEcube example
page found in the menu at Presentation | Media Player looks like this (for Firefox
on Windows XP):

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[154]

In Microsoft Internet Explorer, it looks like this:

Besides the visual difference after the page initialization, the players work fine.
The page defines four players:

•	 A standard Flash video
•	 A standard Quicktime video
•	 A Flash animation
•	 A standard Windows Media Player

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[155]

Players that show no controls have a context menu to start their content. All video
players use a video from the ICEfaces component showcase that comes in different
formats. So, they show the same video in different contexts. The Snowman Joe
animation is an example of a more complex Flash presentation. It is based on a 3D
animation that was rendered as Flash. If you have a look at it in the web browser,
you will recognize that it is a combination of two animations:

•	 Subtle movement to present a lively character during inactivity
•	 A lip-sync speaking character during activity, telling something about

a Xmas home page context

Such animations can be used in application contexts where the "human factor" can
help to transport a message more efficiently. Online tutorials or online help systems
are a good example of this.

To create the media players from the previous screenshot, the ICEcube example page
looks like this (/src/main/webapp/icecube/presentation/mediaPlayer.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.presentation.mediaPlayer']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.presentation.
 mediaPlayer.text']}
 <ice:panelGrid columns="2">
 <ice:panelGrid>
 <h3>Flash (Video)</h3>
 <ice:outputMedia player="flash"
 source="... /ICEfaces_Flash.swf"
 style="width:300px;height:250px;">
 <f:param name="play" value="false"/>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Presentation and Multimedia

[156]

 <f:param name="menu" value="true"/>
 </ice:outputMedia>
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Quicktime</h3>
 <ice:outputMedia player="quicktime"
 source="... /ICEfaces_Quicktime.mov"
 style="width:300px;height:270px;">
 <f:param name="autoplay" value="false"/>
 <f:param name="controller" value="true"/>
 </ice:outputMedia>
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Flash (Snowman Joe Animation)</h3>
 <ice:outputMedia player="flash"
 source="... /SnowmanJoeHead_Data/FlashSwf.swf"
 style="width:200px;height:200px;">
 <f:param name="play" value="false"/>
 <f:param name="menu" value="true"/>
 <f:param name="flashvars"
 value="StandByVideo=
 SnowmanJoeHeadStandby&
 BrowseVideo=SnowmanJoeHead" />
 </ice:outputMedia>
 </ice:panelGrid>
 <ice:panelGrid>
 <h3>Windows Media</h3>
 <ice:outputMedia player="windows"
 source="... /ICEfaces_Windows_Media.wmv"
 style="width:300px;height:250px;">
 <f:param name="autostart" value="0"/>
 <f:param name="showcontrols" value="1"/>
 </ice:outputMedia>
 </ice:panelGrid>
 </ice:panelGrid>
 </ui:define>
</ui:composition>
</body>
</html>

The player attribute of the outputMedia tag defines which player technology you
want to use. The file to play is defined through the source attribute. The style
attribute is used in our example to define the dimensions the player should render
for the presentation.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 6

[157]

Parameters that you would set with the original HTML embedding code are
defined via the <f:param> tag. Besides the play or controls parameters that every
player defines, the Snowman Joe animation also shows an example of a flashvar
parameter definition. What is important with the parameter string is to write it
XML-conform (&, instead of &).

Summary
The ICEfaces framework offers a wide range of components to present data.
Besides the classic data table and tree presentations, it allows you to integrate
state-of-the-art presentation and interaction, such as Google Maps. With the Media
Player component, you already hold a tool in your hands that allows building the
next generation of web browser applications. These applications will present their
information based on multimedia. Video and Flash-based interaction will then be
a central part of the data presentation.

We will continue our discussion of data management components in the next
chapter. It discusses data creation components, with a focus on forms.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data
Creation and Selection

This chapter has a focus on forms. We will take a deeper look at partial submit
technology and how it can be used with certain form elements. Additionally, we
will take a look at form validation, using dialogs for presentation. At the end of the
chapter, we will look at advanced form elements that extend the standard JSF tags.

Forms
The standard implementation of JSF follows the request-response communication
model. Fill in a form, submit it to the server, and the server generates a response
page. The response may show the same form with extra information, such as
validation hints. If you like to have a more desktop-like behavior, you have to keep
the form and prevent it from reloading. Additionally, the event handling has to be
more fine-grained so that you can react on single-field inputs.

Theoretically, you can surround every field with its own form tag. So, you get a
single event handling for fields and the presentation will still show a complete form.
But this is not practical because you are still bound to the standard JSF lifecycle.
Moreover, it can be pretty complicated to manage these single forms as virtual
through extra coding in the backing bean.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[160]

AJAX bridge and partial submit
The ICEfaces framework delivers two tools to manage forms in a desktop-like manner:

•	 AJAX bridge
•	 Partial submit

The AJAX bridge allows keeping the presentation without a reload of pages in the
web browser. ICEfaces manages a server-side Document Object Model (DOM),
that is indeed a copy of the browser's DOM. All changes are made on the server-side
DOM first. Next, the AJAX bridge analyzes which parts have to be updated on the
client side. Changes of the client-side DOM initiate a presentation update, but not a
reload of a web page.

For a fine-grained management of form fields, the partial submit can be used. One
example is to implement dependent edit fields to ease the input for the user. You
may fill in a form for an address that shows other state selection lists after you have
chosen a country. Another example is a language selector that immediately changes
the user-interface language.

ICEfaces delivers enhanced JSF tags that allow you to set the partialSubmit
attribute. You can use this for the complete form, so that all of the fields are managed
in this way. The ICEcube sample page, /src/main/webapp/icecube/creation/
form.xhtml, shows this:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.creation.form']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.creation.form.text']}
 <ice:form partialSubmit="true" >
 <ice:panelGrid columns="3">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[161]

 <ice:outputText value="#{icecube[
 'application.menu.creation.form
 .inputText']}" />
 <ice:inputText value=
 "#{form.inputText}" />
 <ice:outputText value=
 "#{form.inputText}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.form
 .inputSecret']}" />
 <ice:inputSecret value=
 "#{form.inputSecret}" />
 <ice:outputText value=
 "#{form.inputSecret}" />
 </ice:panelGrid>
 <ice:commandButton value="#{icecube[
 'application.menu.creation.form
 .commandButton']}"
 action="#{form.commandButton}" />
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

If you write something in the inputText field and move to the next field with a Tab
key, the form Submit is processed in a special manner. The result can be found in
the ICEcube menu at Creation | Form and looks like this:

After pressing the Tab key, the cursor is shown in the inputSecret field. You may
not have clicked on the Submit button, but the form was processed like the Submit
button was clicked. The proof for this is the text output behind the edit field.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[162]

Partial submit and the JSF lifecycle
Technically, we are still working inside the JSF lifecycle. But before you submit,
ICEfaces prepares the processing. To circumvent the possible validation constraints,
the required validation is turned off for all of the fields except the one responsible
for submitting the form. So, it is a bit like a simulation of a completely filled out
form. For filled fields, the standard JSF validation is still processed. After processing
the JSF lifecycle, the validation attributes are restored.

A partial submit is a standard-compliant implementation that manipulates the
actual state of a form during runtime. This allows you to have a single event
processing per field.

Form field processing
Besides a global partialSubmit for a form, you can also have a more fine-grained
behavior. For this, you omit the partialSubmit attribute for the form tag and
use it with single fields instead (/src/main/webapp/icecube/creation/
textEntry.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.creation.textEntry']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.creation.textEntry
 .text']}
 <ice:form>
 <ice:panelGrid columns="3">
 <ice:outputText value="#{icecube[
 'application.menu.creation.textEntry
 .inputSecret']}" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[163]

 <ice:inputSecret value=
 "#{textEntry.inputSecret}"
 partialSubmit="true" />

 <ice:outputText value=
 "#{textEntry.inputSecret}" />
 <ice:outputText value=
 "#{icecube['application.menu
 .creation.textEntry.inputText']}" />
 <ice:inputText value=
 "#{textEntry.inputText}"
 partialSubmit="true" />

 <ice:outputText value=
 "#{textEntry.inputText}" />			
 <ice:outputText value="#{icecube[
 'application.menu.creation.textEntry
 .inputTextarea']}" />
 <ice:inputTextarea value=
 "#{textEntry.inputTextarea}"
 partialSubmit="true" />
 <ice:outputText value=
 "#{textEntry.inputTextarea}" />
 </ice:panelGrid>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

A submit is processed by leaving a single field that has a partialSubmit attribute
set. All our fields have one, so we can skip the Submit button. Although it is
technically possible to omit the button, you may add one so that you do not violate
the design principle of conformity with user expectations.

The result can be found in the ICEcube menu at Creation | Text Entry and looks
like this:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[164]

You can click in any of the fields, put in some text, and leave the field to get a partial
submitting. Your input is shown behind the field.

Partial submit supporting tags
The ICEfaces tags that offer the partialSubmit attribute can be separated into the
following categories:

•	 Text entry
•	 Selection
•	 Click

Text entry
The following tags are a part of this category:

•	 inputSecret

•	 inputText

•	 inputTextarea

We have already shown an example of how to use these tags in the sample code
of the previous section.

The InputSecret and inputText tags also offer the action and actionListener
attributes, which can be used similarly to a commandButton. The ICEfaces release
that was used during writing this book had some tweaks. So, you have to test if it
is useful to have a field action or a field action listener in your project.

Selection
The following tags are a part of this category:

•	 selectBooleanCheckbox

•	 selectManyCheckbox

•	 selectManyListbox

•	 selectManyMenu

•	 selectOneListbox

•	 selectOneMenu

•	 selectOneRadio

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[165]

The example code in the ICEcube sample page, /src/main/webapp/icecube/
creation/selection.xhtml, looks like this:

<ice:panelGrid columns="3">
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectBooleanCheckbox']}" />
 <ice:form>
 <ice:selectBooleanCheckbox
 value="#{selection.selectBooleanCheckbox}"
 partialSubmit="true" />
 </ice:form>
 <ice:outputText
 value="#{selection.selectBooleanCheckbox}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectManyCheckbox']}" />
 <ice:form>
 <ice:selectManyCheckbox
 value="#{selection.selectManyCheckbox}"
 partialSubmit="true" >
 <f:selectItems value="#{selection.items}"/>
 </ice:selectManyCheckbox>
 </ice:form>
 <ice:outputText value="#{selection.selectManyCheckbox}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectManyListbox']}" />
 <ice:form>
 <ice:selectManyListbox
 value="#{selection.selectManyListbox}"
 partialSubmit="true">
 <f:selectItems value="#{selection.items}"/>
 </ice:selectManyListbox>
 </ice:form>
 <ice:outputText value="#{selection.selectManyListbox}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectManyMenu']}" />
 <ice:form>
 <ice:selectManyMenu
 value="#{selection.selectManyMenu}"
 partialSubmit="true">
 <f:selectItems value="#{selection.items}"/>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[166]

 </ice:selectManyMenu>
 </ice:form>
 <ice:outputText value="#{selection.selectManyMenu}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectOneListbox']}" />
 <ice:form>
 <ice:selectOneListbox
 value="#{selection.selectOneListbox}"
 partialSubmit="true">
 <f:selectItems value="#{selection.items}"/>
 </ice:selectOneListbox>	
 </ice:form>
 <ice:outputText value="#{selection.selectOneListbox}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectOneMenu']}" />
 <ice:form>
 <ice:selectOneMenu value="#{selection.selectOneMenu}"
 partialSubmit="true">
 <f:selectItems value="#{selection.items}"/>
 </ice:selectOneMenu>
 </ice:form>
 <ice:outputText value="#{selection.selectOneMenu}" />
 <ice:outputText value="#{icecube[
 'application.menu.creation.selection
 .selectOneRadio']}" />
 <ice:form>
 <ice:selectOneRadio
 value="#{selection.selectOneRadio}"
 partialSubmit="true">
 <f:selectItems value="#{selection.items}"/>
 </ice:selectOneRadio>
 </ice:form>
 <ice:outputText value="#{selection.selectOneRadio}" />
</ice:panelGrid>

You may wonder why we use separate form tags per field. This is to get a similar
presentation like we have with the text entry example. With this implementation,
only the current field is updated in the outputs. With a global form, all outputs
would be updated even if a field has no explicit selection set. This looks a bit
cluttered. In comparison to this, the text entry example always has empty strings.
So, the output is always attractive.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[167]

The presentation of the code in the ICEcube menu at Creation | Text Entry looks
like this:

The option selectManyCheckbox was selected for test3. The result is shown behind
the field.

There is one tweak in the screenshot. The option selectManyMenu is missing the up
and down arrows on the right. The screenshot shows a Firefox rendering. Here is a
correct rendering with Internet Explorer:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[168]

Click
The following tags are a part of this category:

•	 commandButton

•	 commandLink

Besides their behavior of submitting a complete form, it is possible to have a
presentation inside a form that works independently. You can offer, for example, a
button to explicitly change a state via the backing bean, which is then processed by
the form submit.

Validation with dialogs
JSF implements a very strong validation concept. But this is only useful if you
follow the traditional presentation of forms. If you think about presenting forms in
a desktop-like manner (for example, using dialog boxes for the validation messages),
you are stuck.

Using our experiences with the ICEfusion dialog concept, we will now have a
look at a standardized login form that is using validation dialogs to give a feedback
to the user.

Login form component
ICEcube delivers a generic solution for a classic login form through the
<icefusion:login> tag. Its presentation can be found in the ICEcube menu
at Creation | Validation Form:

The login form allows you to change the current language. The selector uses a partial
submit. So, the language change is separated from the login data processing. User
name and Password are a part of a standard form processing that is started with a
click on Login.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[169]

The login tag can be used like this:

<icefusion:login eventBean="#{action_handler_for_login}" />

The eventBean is a backing bean that defines the context in which the login tag is
managed. ICEcube defines a backing bean for the example page that is used for the
eventBean attribute. The implementation for the login tag looks like this (/src/
main/webapp/icefusion/taglibs/commons/form/login.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <!-- Manage eventBean as parameter for backing bean -->
 <ice:dataTable style="visibility:hidden;"
 binding="#{login.parameters}" value="#{eventBean}"/>
 <ice:form>
 <ice:panelGrid>
 <ice:panelGrid columns="2">
 <ice:outputText value=
 "#{icefusion['application.login
 .language']}" />
 <ice:selectOneMenu value="#{login.locale}"
 partialSubmit="true">
 <f:selectItems
 value="#{login.locales}"/>
 </ice:selectOneMenu>
 <ice:outputText value=
 "#{icefusion['application.login
 .username']}" />
 <ice:inputText value="#{login.username}"/>
 <ice:outputText value=
 "#{icefusion['application.login
 .password']}" />
 <ice:inputSecret
 value="#{login.password}"/>
 <ice:commandButton value=
 "#{icefusion['application.login
 .button']}"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[170]

 action="#{login.login}" />
 </ice:panelGrid>
 </ice:panelGrid>
 </ice:form>
 <icefusion:validationDialog eventBean="#{login}"/>
</ui:component>
</body>
</html>

The login tag is separated into three parts:

•	 The parameter handling for the eventBean reference that asks for the
login input (the dataTable tag has no special meaning here)

•	 The form handling (language, user name, password, and button)
•	 The validation dialog handling

The eventBean reference has to implement the ILogin interface so that username
and password can be set in the eventBean.

Here is the interface definition that can be found at /src/main/java/com/
googlecode/icefusion/ui/commons/form/ILogin.java:

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
public interface ILogin extends Serializable {
 public void setLoginUsername(String username);
 public void setLoginPassword(String password);
 public String loginAction();
}

When the login tag has processed the user input and no validation error is found, it
sets both field values via the setLoginUsername() and setLoginPassword()setters,
and finally calls loginAction().

The backing bean of the login tag can be found at /src/main/java/com/
googlecode/icefusion/ui/commons/form/Login.java and looks like this.
(The code is simplified and is missing the validation implementation, about
which we will talk later.)

package com.googlecode.icefusion.ui.commons.form;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import javax.faces.model.SelectItem;
import com.icesoft.faces.component.ext.HtmlDataTable;
public class Login extends BackingBeanForm {
 HtmlDataTable parameters;
 private String username;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[171]

 private String password;
 public SelectItem[] getLocales() {
 SelectItem[] locales = new SelectItem[
 this.context.getSettings().getLocales().size()];
 int i = 0;
 for (Locale locale : this.context.getSettings()
 .getLocales()) {
 locales[i++] = new SelectItem(locale.getCode(),
 consts.getLocalized(locale.getLabel(),
 "icefusion"));
 }
 return locales;
 }
 public String login() {
 ((Ilogin)this.parameters.getValue())
 .setLoginUsername(
this.getUsername());
 ((Ilogin)this.parameters.getValue())
 .setLoginPassword(
this.getPassword());
 return ((Ilogin)this.parameters.getValue())
 .loginAction();
}
 public String getLocale() {
 return this.context.getSettings().getLocale()
 .getCode();
 }
 public void setLocale(String locale) {
 this.context.getSettings().setLocale(locale);
 }
}

The communication with the eventBean is done through (ILogin)this.
parameters.getValue(). This is the dataTable binding definition in the XHTML
code. The getter and setter for the current locale selection handle the persistence
outside of the backing bean to keep the selection for the web application. ICEcube
will change its menu language if you change the language in the login example.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[172]

Validation model
The following image shows how the validation for the login tag is constructed:

We have a Validation Processor that uses the Validation in context to configured
Validators. Each Validator is following a certain rule to check a field value state.
Which Validator is combined with which field value is defined in the Validation
Processor. The Validation Processor gets a list of resource bundle IDs for multilingual
output from the Validation. The IDs are processed by the Validation Dialog.

Login form with validation
To extend the login backing bean for validation, it implements the
IValidationProcessor interface. The interface definition can be found at
/src/main/java/com/googlecode/icefusion/ui/commons/validation/
IValidationProcessor.java:

package com.googlecode.icefusion.ui.commons.validation;
import java.io.Serializable;
public interface IValidationProcessor extends Serializable {
 public List<String> getValidationMessages();
 public void setValidationMessages(List<String> messages);
 public Boolean getValidationErrorStatus();
 public void setValidationField(String field);
 public String getValidationField();
 public String validationDialogButtonOk();
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[173]

The Validation that is managed via the login backing bean delivers a list of
resource bundle IDs if errors occur. The <icefusion:validationDialog>
uses the getValidationMessages() for processing. Additionally, the dialog
uses the getValidationField() to set a title that corresponds to the input
field. The validationDialogButtonOk() manages the button action, and
getValidationErrorStatus() manages the rendering of the validationDialog.

The validation-relevant parts of the login backing bean look like this (/src/main/
java/com/googlecode/icefusion/ui/commons/form/Login.java):

package com.googlecode.icefusion.ui.commons.form;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.validation
 .IValidationProcessor;
import com.googlecode.icefusion.ui.commons.validation
 .Validation;
import com.googlecode.icefusion.ui.commons.validation
 .validator.PasswordLengthValidator;
import com.googlecode.icefusion.ui.commons.validation
 .validator.RequiredValidator;
import com.googlecode.icefusion.ui.commons.validation
 .validator.UsernameLowerCaseValidator;
public class Login extends BackingBeanForm implements
 IValidationProcessor {
 private List<String> validationMessages =
 new ArrayList<String>();
 private String validationField;
 private Validation usernameValidation =
 new Validation(this, new RequiredValidator(),
 new UsernameLowerCaseValidator());
 private Validation passwordValidation =
 new Validation(this, new RequiredValidator(),
 new PasswordLengthValidator());
 public String login() {
 this.usernameValidation();
 this.passwordValidation();
 if (!this.getValidationErrorStatus()) {
 ((Ilogin)this.parameters.getValue())
 .setLoginUsername(this.getUsername());
 ((Ilogin)this.parameters.getValue())
 .setLoginPassword(this.getPassword());
 return ((Ilogin)this.parameters.getValue())
 .loginAction();
 }

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[174]

 return null;
 }
 public void usernameValidation() {
 if (!this.getValidationErrorStatus()) {
 this.setValidationField("application.login
 .username");
 this.usernameValidation.validateValue(
 this.username);
 }
 }
 public void passwordValidation() {
 if (!this.getValidationErrorStatus()) {
 this.setValidationField("application.login
 .password");
 this.passwordValidation.validateValue(
 this.password);
 }
 }
}

The login() method has some additional validation statements. The eventBean
loginAction() method call is only done if the validation does not deliver errors.
We define a validation context for every form field using the Validation class.
This class can handle different Validators that implement rules for checking a field
value. The backing bean defines Validators for username and password through
Validation attributes.

The Validation constructor allows defining a list of Validator variables.
Additionally, it gets a reference to a backing bean that implements the
IValidationProcessing interface. This reference is used to deliver a list of
resource bundle IDs for validation errors using the setValidationMessages().
The messages are a preparation for the Validation dialog.

Validation dialog
The Validation dialog is also using the IValidationProcessing interface to
communicate with the login backing bean. Here is the XHTML code that can
be found at /src/main/webapp/icefusion/taglibs/commons/validation/
validationDialog.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[175]

 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:form>
 <ice:panelPopup autoCentre="false" draggable="false"
 modal="true"
 rendered="#{eventBean.validationErrorStatus}"
 visible="#{eventBean.validationErrorStatus}">
 <f:facet name="header">
 <ice:panelGrid>
 <ice:outputText value="#{icefusion[
 eventBean.validationField]}"/>
 </ice:panelGrid>
 </f:facet>
 <f:facet name="body">
 <ice:panelGrid>
 <ice:panelGrid columns="2" columnClasses=
 "icePanelPopupImage
 icePanelPopupText">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/
 #{context.skin}/images/
 validationDialog.png" />
 <ice:panelGrid>
 <c:forEach var="message"
 items="#{eventBean
 .validationMessages}">
 <ice:outputText value=
 "#{icefusion[message]}"/>

 </c:forEach>
 </ice:panelGrid>
 </ice:panelGrid>
 <ice:panelGrid columns="1" styleClass=
 "icePanelPopupButtons">
 <ice:commandButton value=
 "#{icefusion['application
 .validation
 .message.button.ok']}"
 action="#{eventBean

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[176]

 .validationDialogButtonOk}"
 styleClass="icePanelPopupButton"/>
 </ice:panelGrid>
 </ice:panelGrid>
 </f:facet>
 </ice:panelPopup>
 </ice:form>
</ui:component>
</body>
</html>

The validationDialog is similar to the other ICEfusion dialogs, but it has no
backing bean. Instead it uses a bean reference, in our example the login backing
bean, which is delivered via the eventBean attribute:

<icefusion:validationDialog eventBean=
 "#{my_validation_processor_bean}" />

The validationDialog uses the getValidationMessages()
and getValidationField() methods to process the output. The
getValidationErrorStatus() method defines if errors exist and if the dialog has to
be shown. The validationDialogButtonOk() method is doing the action processing.
In our example, the login backing bean uses it to clear all error messages.

An example of a validation error dialog looks like this (see ICEcube menu at
Creation | Validation Form):

The User name input Atest has an uppercase character. Uppercase characters are not
allowed, due to which the corresponding validation fails. The form also shows an
empty Password field. The ICEfusion Validation Processor is able to show both errors
in one dialog. But, the login backing bean checks if a validation error already exists
with every validation. In this case, further processing of the validation is suppressed.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[177]

Validators
ICEfusion allows extending the number of Validators. All of the existing Validators
can be found at /src/main/java/com/googlecode/icefusion/ui/commons/
validation/validator. If you want to implement your own Validator, you have
to implement the IValidator interface (/src/main/java/com/googlecode/
icefusion/ui/commons/validation/IValidator.java):

package com.googlecode.icefusion.ui.commons.validation;
import java.io.Serializable;
public interface IValidator extends Serializable {
 public Boolean validate();
 public Object getValue();
 public void setValue(Object value);
 public String getMessage();
 public void setMessage(String key);
}

The UsernameLowerCaseValidator shows how it is used (/src/main/
java/com/googlecode/icefusion/ui/commons/validation/validator/
UsernameLowerCaseValidator.java):

package com.googlecode.icefusion.ui.commons.validation.validator;
import com.googlecode.icefusion.ui.commons.validation.IValidator;
public class UsernameLowerCaseValidator implements IValidator {
 String message =
 "application.validation.validator.usernameLowerCase";
 Object value;
 public Boolean validate() {
 String username = (String)this.value;
 return username.equals(username.toLowerCase());
 }
}

Each Validator sets a resource bundle ID message that is used if the validate()
method delivers a false. The Validator processes a value object that corresponds
to the input of a form field the Validator is related to. The validate()
implementation is pretty simple in this example. But it can also implement a
matching with database values or results that are delivered by web service calls.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[178]

Calendar
Besides the enhanced standard JSF form tags, ICEfaces delivers advanced components
that ease the input of data. For the selection of dates, it delivers the calendar
component <ice:selectInputDate>. The calendar can be used in two modes:

•	 Simple
•	 Pop-up

The rendering of the calendar looks like this (see the ICEcube menu at Creation |
Calendar):

The simple mode is shown on the left side, whereas the pop-up mode is shown on
the right side. When you click on the icon, you get this:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[179]

Here is the corresponding code from the ICEcube sample page (/src/main/webapp/
icecube/creation/calendar.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.creation.calendar']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.creation.calendar.text']}
 <ice:form>
 <ice:panelGrid columns="2">
 <ice:panelGrid>
 <ice:selectInputDate
 value="#{calendar.date}" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[180]

 <ice:outputText value="#{calendar.date}" />
 </ice:panelGrid>
 <ice:panelGrid>
 <ice:selectInputDate
 value="#{calendar.datePopup}"
 renderAsPopup="true" />
 <ice:outputText
 value="#{calendar.datePopup}" />
 </ice:panelGrid>
 </ice:panelGrid>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The different presentations are controlled by the use of the renderAsPopup attribute.

Rich text editor
For the web-browser-based input of formatted text, there are different solutions
available in the open source community. A lot of them are implemented in
JavaScript. ICEfaces reuses the FCKeditor (http://www.fckeditor.net/)
implementation (FCKeditor has now been replaced by the CKEditor which
inherits the quality and strong features that were available with FCKeditor).
The implementation is wrapped so that it can be used in the JSF context.

The rich text editor component <ice:inputRichText> offers different
presentation modes:

•	 Standard icon set (the default mode)
•	 Reduced icon set (the basic mode)

The standard toolbar presentation can be found in the ICEcube menu at
Creation | Rich Text Editor:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[181]

The reduced toolbar looks like this:

The corresponding code of the ICEcube sample page looks like this (/src/main/
webapp/icecube/creation/richTextEditor.xhtml):

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Components for Data Creation and Selection

[182]

 #{icecube['application.menu.creation
 .richTextEditor']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.creation.richTextEditor
 .text']}
 <ice:panelGrid columns="2" style="width: 100%">
 <ice:form>
 <ice:panelGrid>
 <ice:inputRichText value=
 "#{richTextEditor.text}"
 toolbar="Default"
 language="#{context.locale}"
 width="550" height="300"/>
 <ice:outputText value=
 "#{richTextEditor.text}" />
 </ice:panelGrid>
 </ice:form>
 <ice:form>
 <ice:panelGrid>
 <ice:inputRichText value=
 "#{richTextEditor.textBasic}"
 toolbar="Basic"
 language="#{context.locale}"
 width="350" height="300"/>
 <ice:outputText value=
 "#{richTextEditor.textBasic}" />
 </ice:panelGrid>
 </ice:form>
 </ice:panelGrid>
 </ui:define>
</ui:composition>
</body>
</html>

The main difference between both presentations is the use of the toolbar attribute.
The width and height attributes allow a fixed size presentation of a rich text editor.

Each editor shows a Save icon that allows setting the editor input in the backing
bean. ICEcube has output tags defined that show the result after saving. The first rich
text editor screenshot shows that you get an HTML notation for text attributes you use
in the editor.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 7

[183]

Summary
This chapter has shown that it is possible to implement desktop-like behavior for
forms. Using the AJAX bridge, partial submit, and a re-implemented validation is
a good base to implement even more complex forms. The calendar and the rich
text editor are additional tools to implement desktop application behavior in the
web browser.

All important ICEfaces components are discussed. The next chapter will add
everything missing in ICEcube to get a full-blown web application that follows
the desktop metaphor.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization
The most important difference between an informational web site and a web
application is the behavior. A web site is almost static, whereas a web application
is non-sequential and dynamic. An application allows the user to influence or
customize the behavior. This chapter will describe a model to show how this can
be done for web applications using ICEfaces. We will have a detailed look at the
implementation of a multilingual and skinnable presentation. A skin is a set of
images, colors, and layouts that can be changed on the fly.

The individualization of a web application in our model can be described as follows:

•	 Administration: All settings an administrator is managing
•	 Customization: A subset of the settings that is changeable by the user

Administration
Complex web applications have their own administration. It allows creating and
managing users, user groups, and other entities that are necessary for a user to
produce useful working results. In this context, we can consider a web application
as a collection of services. The administration defines which services are allowed
to be used by which user.

Flexible administration concepts are often designed to be complex to ensure that a
standard user does not get in touch with the administration directly. Normally, an
administrator predefines all necessary services a user is allowed to use. The standard
web application behavior, for example, of the user interface is predefined by the
administrator, too.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[186]

But not all presets are useful in any case. Normally, the parameters of a preset are
chosen so that the user can start working with a web application immediately. We
can expect that not all users will be able to follow what an administrator assumes as
useful. The users will have a demand for a more individualized behavior of the web
application. In short, a user will want to customize our application.

Customization
If a web application allows you to customize its behavior, you have to strike a
balance between flexibility and security. On one hand, the user wants to have
features that allow him to individualize the application, make it more comfortable,
and create optimal working results. On the other hand, you have to keep an eye on
its security, reliability, and maintenance. Customization features can influence your
service costs because of the additional support that you have to deliver.

There are a lot of possibilities in implementing customization features for a user.
Some are common for all web applications, such as a password changer, whereas
others strongly depend on the workflow that the web application is a part of.

We will have a look at some of the web application features in this chapter, such as:

•	 Password
•	 Username
•	 Units
•	 Number format
•	 Language
•	 Skinning

Language and skinning will be discussed in detail in this chapter. For this, we will
have a look at the ICEcube and ICEfusion implementation. For the other features,
you will get some tips that you have to keep in mind when you implement them on
your own.

Password
If we take a look at what is common for customization features today, we will find
the password changer on top of the list. It allows changing the password whenever
the user wants. This is also the most relevant security issue.

Even if your backend has a strong security technology in use, it can suffer from a
weak password selection immediately. To keep up the security quality implemented
by the administration, you can add a validation that checks, for example:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[187]

•	 The password length
•	 The usage of numbers, punctuation, and a mixture of upper and

lowercase letters
•	 If the password can be guessed by comparing the hashed value with

a library of codes based on natural language and common passwords

Here, it is important to note that there is no administrator with a certain experience
to care for security besides the user. Instead, the web application has to do this job
on the fly. It has to offer a procedure that guarantees the quality even if the user is
a beginner in computer usage.

We will not have a deeper look at the security issues because a concrete
implementation heavily depends on the technology you use to secure your
web application.

Username
If you take the role of an administrator, you can expect that users will ask you
to change their username. Although this can create extra efforts, it improves the
usability for a single user if you support this.

To relieve the administrator, it can be useful to allow the user to change the username
as a part of the self-administration. This implementation would be similar to the
password management. However, your administration model has to be designed for
it. If your model does not define any dependency to the concrete username, this should
be possible. Normally, this is the case if you use the username only to calculate the
login result that tells the system if the user is allowed to use the application.

Email address
You often find systems that use the email address of a user for the username. This
helps the administrator to get unique usernames. But the spam problem compels
users to change their email address more often these days. It is pretty annoying for
a user to be forced to use an old email address after he has changed his preferred
one. So, if you follow the idea of using the email address as a username, your
administration model has to allow the changing of the username in any case.

Keep in mind that the current email address may already be invalid when the user
tries to set a new one for the username. So, it is a good idea to ask which email
address should be used for the necessary validation before the username can be
changed permanently.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[188]

Units
Web applications are often written for target groups with different cultural
backgrounds. If your application is handling numbers with certain units, it can be
useful to offer a conversion. The most convenient way is to normalize all values to
the metric system (http://en.wikipedia.org/wiki/Metric_system) before saving
them to the database.

The customized target units are used to define the factor that is necessary to calculate
the presentation value. If you are not able to normalize the values, you have to save
the source unit. The calculation will be more complicated for this.

For a concrete implementation, there are a lot of unit combinations that have to be
considered. Although the metric system is the official standard, not all countries use
it. Even in countries that use it, you have cases where the unit that was used before
starting with the metric system is still preferred. For your own implementation, you
may have a look at http://www.onlineconversion.com/ to get inspired.

Number format
Although a language also defines how the number format is rendered, it can be
useful to differ from it. Maybe your web application does not offer the preferred
language, or the user explicitly wants a different language and number format.

For a simple implementation, your application may offer an exchange between a dot
and a comma for both separators. This works for most Western countries. However,
Switzerland uses an apostrophe for the thousand separator (http://en.wikipedia.
org/wiki/Decimal_separator). If you have a look at India, for example, you need
a comma for the thousand separator and the decimal separator. A good idea for a
worldwide support is to offer the possible separator characters in two lists—one
for the thousand and another for the decimal separator, and let the user choose the
combination he/she needs.

Language
Most web applications these days are used in multilingual contexts. It makes
no difference from which location of the world an application is used. So, the
application has to offer a language selection by default.

This customization feature influences the user acceptance. Besides the possibility of
changing the language, the number of offered languages is pretty important. It should
correspond to the target group your project has defined for the web application.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[189]

Skinning
If your target group has a demand for a more individualized presentation of the user
interface to follow a corporate design, we need a skinning feature. ICEfaces has a
built-in mechanism to use this by default. Each component supports one or more CSS
classes and may also allow individual images that can be changed during runtime.

Language management
The multilingual support we use in ICEcube and ICEfusion is based on the standards
that come with the JVM and JSF for locale management. We use resource bundles
that can be found at /src/main/resources/icefusion (used by the Facelets
components) and /src/main/resources/icecube (used by the examples). So, the
default texts for the configuration page that you can open via Extra | Settings in the
ICEcube menu can be found in the /src/main/resources/icefusion/icefusion.
properties file:

application.menu.extra=Extra
application.menu.extra.settings=Settings
application.menu.extra.settings.text=Choose a new entry in
 the combobox to change the presentation.

For a complete definition of the locale management, JSF contains something like this
in the /src/main/webapp/WEB-INF/face-config.xml file:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>de</supported-locale>
</locale-config>

This defines that English is the default language that is used even when the user has
a web browser that uses a language that the web application does not know. If you
have a look inside the folders, you will also find an icefusion_de.properties or
icefusion_en.properties file. The latter allows you to explicitly define an English
variant that is used for users who demand English language in their web browsers.
Although it's a more theoretical example with ICEcube, it can be useful if you use
full-blown locale IDs such as en_US with a UK-based default implementation.
ICEcube uses US English by default, though.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[190]

Multilingual page template
In addition to the JVM and JSF definitions, contains tags for the support of multilingual
presentations. The page template can be found at /src/main/webapp/icefusion/
taglibs/commons/page.xhtml:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<f:view locale="#{context.locale}">
<ice:loadBundle basename="icefusion.icefusion"
 var="icefusion"/>
<ice:loadBundle basename="icecube.icecube" var="icecube"/>
<head>
</head>
<body>
</body>
</f:view>
</html>

The <ice:loadBundle> tag allows us to define a variable per bundle that can be
used inside the XHTML files. ICEcube has its own resource bundle that is used
via the icecube variable. The ICEfusion components use the icefusion variable.

Before ICEfaces 1.8, we had to use <f:loadBundle>. The ICEfaces
implementation fixes some caching problems so that resource
bundles are unloaded when a dynamic locale change is recognized.

For an example of how the icefusion variable is used, we have a look at the
configuration page, /src/main/webapp/icefusion/menu/extra/settings.xhtml.
This is delivered by ICEfusion using the icefusion variable:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[191]

 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icefusion['application.menu.extra.settings']}
 </ui:define>
 <ui:define name="content">
 #{icefusion['application.menu.extra.settings.text']}
 <ice:form>
 <ice:panelGrid>
 <ice:panelGrid columns="2">
 <ice:outputText value=
 "#{icefusion[
 'application.settings.language']}" />
 <ice:selectOneMenu value=
 "#{settings.locale}">
 <f:selectItems value=
 "#{settings.locales}"/>
 </ice:selectOneMenu>
 <ice:outputText value=
 "#{icefusion[
 'application.settings.skin']}" />
 <ice:selectOneMenu value="#{settings.skin}">
 <f:selectItems value=
 "#{settings.skins}"/>
 </ice:selectOneMenu>
 <ice:commandButton value=
 "#{icefusion[
 'application.settings.button']}"
 action="#{settings.change}" />
 </ice:panelGrid>
 </ice:panelGrid>
 </ice:form>
 	</ui:define>
</ui:composition>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[192]

The Expression Language term to reference a text in a resource bundle uses
the bundle variable we have defined in the page template and the resource bundle
ID of the text we want rendered:

#{bundle_variable['resource_bundle_id']}

The page example shows such definitions as well without using an explicit output
tag. Facelets allows defining a text output without using a special tag. Take a look
at the following code:

#{icefusion['application.menu.extra.settings']}

The previous line of code corresponds to the following code:

<ice:outputText value=
 "#{icefusion['application.menu.extra.settings']}" />

Both deliver the output, Settings.

Language selector
The implementation of the language selector looks like this (see Extra | Settings
in the ICEcube menu):

It shows a list of languages that ICEcube and ICEfusion support, namely English
and German. We have a /src/main/java/com/googlecode/icefusion/ui/
commons/extra/Settings.java backing bean for the settings page that delivers
the list entries. Here are the important parts of the locale management:

package com.googlecode.icefusion.ui.commons.extra;
import javax.faces.model.SelectItem;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.constant.Context;
import com.googlecode.icefusion.ui.commons.constant
 .ICEfusionConsts;
import com.googlecode.icefusion.ui.commons.constant.Locale;
public class Settings extends BackingBeanForm {
 public SelectItem[] getLocales() {

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[193]

 SelectItem[] locales = new SelectItem[
 this.context.getLocales().size()];
 int i = 0;
 for (Locale locale : this.context.getLocales()) {
 locales[i++] =
 new SelectItem(locale.getCode(),
 consts.getLocalized(locale.getLabel(),
 "icefusion"));
 }
 return locales;
 }
 public String getLocale() {
 return this.context.getLocaleCode();
 }
 public void setLocale(String locale) {
 this.context.setLocale(locale);
 }
 public String change() {
 return null;
 }
}

The getLocale() function manages the current selection of the languages list,
whereas getLocales() delivers the list. The backing bean uses the Context bean
to manage all of the user-specific settings in a session.

Here is the code for /src/main/java/com/googlecode/icefusion/ui/commons/
constant/Context.java showing the locale management parts:

package com.googlecode.icefusion.ui.commons.constant;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
public class Context extends BackingBeanForm {
 Settings settings = new Settings();
 public String switchToEn() {
 this.getSettings().setLocale("en");
 return null;
 }
 public String switchToDe() {
 this.getSettings().setLocale("de");
 return null;
 }
 public java.util.Locale getLocale() {
 return this.getSettings().getLocale().getLocale();
 }
 public String getLocaleCode() {

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[194]

 return this.getSettings().getLocale().getCode();
 }
 public List<Locale> getLocales() {
 return this.getSettings().getLocales();
 }
 public void setLocale(String code) {
 this.getSettings().setLocale(code);
 }
}

The settings reference is used for the persistence.

Global language switcher
To change the language more comfortably, modern web applications present a
component near the pull-down menu. Often, the languages are shown as flags
so that a suitable language can be visually chosen even if the current language
is unknown, as shown in the next image:

The flags are implemented in a separate ICEfusion component through the /src/
main/webapp/icefusion/taglibs/commons/menuIcons.xhtml file, as shown in
the following code:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <div class="menuIcons">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[195]

 <ice:form>
 <ice:panelGrid columns="2">
 <ice:commandLink action=
 "#{menuIcons.switchToEn}">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/
 #{menuIcons.skin}/
 images/locale/en.png" />
 </ice:commandLink>
 <ice:commandLink action=
 "#{menuIcons.switchToDe}">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/
 #{menuIcons.skin}/
 images/locale/de.png" />
 </ice:commandLink>
 </ice:panelGrid>
 </ice:form>
 </div>
</ui:component>
</body>
</html>

The backing bean for the flag switching can be found at /src/main/java/com/
googlecode/icefusion/ui/commons/navigation/MenuIcons.java, as shown
in the following code:

package com.googlecode.icefusion.ui.commons.navigation;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.constant.Context;
public class MenuIcons extends BackingBeanForm {
 public String switchToEn() {
 this.context.setLocale("en");
 return null;
 }
 public String switchToDe() {
 this.context.setLocale("de");
 return null;
 }
 public String getSkin() {
 return this.context.getSkin();
 }
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[196]

Each flag has its own method that activates the corresponding language. The flag
images are managed via skinning.

Skin management
The skinning we use in ICEcube is based on the CSS support that is delivered with
the ICEfaces components. ICEfaces allows influencing the component presentation,
for example, by changing the CSS definitions for:

•	 Images
•	 Colors
•	 Fonts
•	 Positions
•	 Sizes

Some ICEfaces components also use special tag attributes to influence the presentation.

The ICEfaces sources deliver different skin definitions that you can use as a base
for your own implementation. The standard ICEfusion skins are based on the
ICEfaces Rime skin. You can have a look at it in the component showcase at
http://component-showcase.icefaces.org. The first combobox on the left
selects one of the standard skins, and should show Rime by default.

ICEcube reuses the ICEfusion skinning by reusing the ICEfusion page template
and its dependent files.

Skin folders
ICEfusion establishes an extended skin management in comparison to the skins you
get with the ICEfaces sources. The design allows separating your own extensions,
so that you can update the ICEfaces standard skin with future ICEfaces releases.
A simple copy and paste of the files is possible without affecting your extensions.

The skins that ICEfusion is using can be found at /src/main/webapp/icefusion/
styles/. The skin folder names are used as IDs inside the skin management.
During the presentation of pages or components, a calculation of file paths is done
depending on the current skin ID. The most important part of this is the calculation
of CSS files that are referenced through the page template.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[197]

Skinnable page template
The global definitions that are used for skinning can be found in the page template
/src/main/webapp/icefusion/taglibs/commons/page.xhtml. The template looks
as shown in the following:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<f:view locale="#{context.locale}">
<ice:loadBundle basename="icefusion.icefusion"
 var="icefusion"/>
<f:loadBundle basename="icecube.icecube" var="icecube"/>
<head>
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/page.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/icefaces.css" />
 <ice:outputStyle href="#{iceFusionConsts.skinBase}/
 #{context.skin}/style.css" />
 <script type="text/javascript"
 src="#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/connectionStatus.js" >
 </script>
 <script type="text/javascript"
 src="#{iceFusionConsts.contextPath}
 #{iceFusionConsts.scriptBase}/icefusion.js" />
 <link rel="shortcut icon"
 href="#{iceFusionConsts.contextPath}
 #{iceFusionConsts.skinBase}/#{context.skin}
 /images/page.ico"/>
 <title>#{iceFusionConsts.application}
 #{iceFusionConsts.release} -
 <ui:insert name="title">
 This page has no title.
 </ui:insert>
 </title>
</head>
<body>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[198]

</body>
</f:view>
</html>

There are three CSS files that are used to realize the ICEfusion skinning:

•	 icefaces.css

•	 page.css

•	 style.css

The icefaces.css file is an exact copy of the Rime skin stylesheet file that is
delivered with the ICEfaces sources. It was renamed for a better self-description.

The structure of the ICEfusion skin folder allows you to keep this file in its original
format. Any change that is necessary for the original CSS classes is done in the
style.css. So, if you update the ICEfaces release in the future, you can take the
original Rime stylesheet file that comes with the release sources and overwrite
the existing icefaces.css.

If you do not change the files in the /css-images folder that delivers the Rime
standard images, this can also be replaced. But if your skin design needs to adapt
to the standard images in order to leave the icefaces.css untouched, you have
to compare images file-by-file and add only the additional images that come with
the new ICEfaces release.

Theoretically, it is possible to define CSS classes in the style.css and reference
a different folder for the adapted images that these classes use. But the ICEfaces
component design is not as homogeneous as you would expect it to be. There is a
mixture of direct references to images versus references to CSS classes with image
definitions. Some components also need an explicit path to a skin folder set. So, expect
tweaks when you think about skinning. If you do not have time for a trial-and-error
journey, replace the images in /css-images with your changes and make a file-by-file
comparison with updates of every ICEfaces release.

The page.css file is used to define the structure of the web application. It also
defines the basic fonts and colors to use. So, if you want to change the header width
or height (for example), you have to take a look here.

Although page.css tries to be the global definition file for an ICEfusion skin, it is not
in any case. The icefusion.css file has its own ideas of how global colors have to
be interpreted. So, changes in basic fonts or basic colors need adaptations for certain
classes through redefining the classes in style.css.

All images that are used besides the standard Rime images can be found in /images.
Here, you can find the images of the ICEfusion dialog components, for example.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[199]

Skin context
The page template above shows that we use two beans for the management of skins.
The ICEfusionConsts file at /src/main/java/com/googlecode/icefusion/ui/
commons/constant/ICEfusionConsts.java defines all folders that are normally
fixed, but can be changed if you think about moving these inside the web application
project. It delivers the skinBase that is set to /src/main/webapp/icefusion/
styles/ by default:

 private String base = "/icefusion";
 private String skinBase = base + "/styles";

For the definition of the CSS files in the page template, this information is sufficient.
But if you need skin-dependent paths for standard HTML tags, such as a link for
 a FavIcon, you also need an extra context string that allows you to create a
full-blown web container path. For this, contextPath from ICEfusionConsts is
additionally used as follows:

 public String getContextPath() {
 return FacesContext.getCurrentInstance().
 getExternalContext().getRequestContextPath();
 }

For the skin selection, all paths use getSkin() from the Context bean at /src/main/
java/com/googlecode/icefusion/ui/commons/constant/Context.java, as
shown in the following code:

package com.googlecode.icefusion.ui.commons.constant;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
public class Context extends BackingBeanForm {
 Settings settings = new Settings();
 public Settings getSettings() {
 return settings;
 }
 public void setSettings(Settings settings) {
 this.settings = settings;
 }
 public List<Skin> getSkins() {
 return this.getSettings().getSkins();
 }
 public String getSkin() {
 return this.getSettings().getSkin();
 }

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[200]

 public void setSkin(String code) {
 this.getSettings().setSkin(code);
 }
}

Similar to the locale management, we have a selected skin ID and a list of available
skin that are managed through the Context bean. The Context bean is used by
the backing bean of the settings page in ICEcube to manage the skin selector. The
Context bean also knows a settings reference for persistence.

Skin selector
The implementation of the skin selector looks like this (see ICEcube menu Extra |
Settings):

The skin list shows two skin definitions:

•	 ICEfusion: The standard skin almost identical to the ICEfaces Rime skin
•	 ICEsaurian: An experimental skin that uses different images for the logo

and the ICEfusion components, and a subtly different color scheme

The ICEfusion skin presentation looks like this:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[201]

The alternative to the pretty woman is an icy dinosaur:

Both screenshots show nearly the same presentation of the settings page. The main
difference is the logo in this example. But we are not limited to this. Your own skin
implementation can change a lot more.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[202]

The skin selector is supported by the backing bean of the settings page at /src/
main/java/com/googlecode/icefusion/ui/commons/extra/Settings.java,
as shown in the following code:

package com.googlecode.icefusion.ui.commons.extra;
import javax.faces.model.SelectItem;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.constant.Context;
import com.googlecode.icefusion.ui.commons.constant
 .ICEfusionConsts;
import com.googlecode.icefusion.ui.commons.constant.Skin;
public class Settings extends BackingBeanForm {
 public SelectItem[] getSkins() {
 SelectItem[] skins =
 new SelectItem[this.context.getSkins().size()];
 int i = 0;
 for (Skin skin : this.context.getSkins()) {
 skins[i++] = new SelectItem(skin.getCode(),
 consts.getLocalized(skin.getLabel(),
 "icefusion"));
 }
 return skins;
 }
 public String getSkin() {
 return this.context.getSkin();
 }
 public void setSkin(String skin) {
 this.context.setSkin(skin);
 }
 public String change() {
 return null;
 }
}

Its methods use the Context bean for the presentation and management of the
skin settings.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[203]

Skinning in components
For a concrete example of how to use skins in your own components, we will take
a look at the ICEfusion messageDialog component again. With the ICEsaurian skin,
it looks like this:

If you have a look at the XHTML file at /src/main/webapp/icefusion/taglibs/
dialog/messageDialog.xhtml, you will recognize that the image reference is
dependent on the skin management, as shown in the following code:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[204]

<body>
 <f:facet name="body">
 <ice:panelGrid>
 <ice:panelGrid columns="2" columnClasses=
 "icePanelPopupImage icePanelPopupText">
 <ice:graphicImage url=
 "#{iceFusionConsts.skinBase}/
 #{context.skin}/images/
 messageDialog.png" />
 <ice:outputText value=
 "#{(not empty text) ? Text :
 ((not empty messageDialog.text) ?
 messageDialog.text : icefusion[
 'application.dialog.message.text'])}"/>
 </ice:panelGrid>
 </ice:panelGrid>
 </f:facet>
</body>
</html>

We have a look at the image here because this is the only extension to Rime
in the ICEsaurian skin that is used by the dialog. The code is similar to what we
have already seen for the page template. The ICEfusion components reference the
/images folder that is a part of every skin folder by default. However, you are free
to choose a different folder if you want. There is only one thing you have to keep in
mind—the skin base folder has to be retained:

#{iceFusionConsts.skinBase}/#{context.skin}/

Here is an example of a different access to the images by your own dialog
component:

#{iceFusionConsts.skinBase}/#{context.skin}/images/
 myDialogs/messageDialog.png

Designing your own skins
If your web application is highly customizable, you can expect having to implement
a lot of customer-specific skins. For such a customer, it is important that the web
application shows something familiar. You can achieve this by implementing the
skin using an official design guide that is following a corporate design as a part of
the corporate identity. If such a guide is not available, you can analyze the customer's
web home page and try to imitate it.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[205]

When implementing a new skin, we have to take a look at:

•	 Images that the web application uses, such as a logo, colors, and fonts that
have to be used

•	 ICEfaces components using skin images that influence the color scheme

You may develop your own skin template that helps you to start a new customer
skin. We will use the ICEsaurian skin like a template skin in the following sections
for the adaptation details at which you should take a look.

Images
The most relevant image is the logo image. By default, /images/logo.png is
used for the header presentation of the web application. You have to follow the
dimensions that are defined in the /page.css:

.layout {
 border: 1px solid;
 border-color: #91D4E6;	
 width: 952px;
}

.header {
 height: 180px;
}

You are free to change the page layout and define something different from 952x180
for the logo image.

You may need a company logo, which is separated from a second image showing
the company's products. If you need to adapt the structure of the header, take a look
at the header component at /src/main/webapp/taglibs/commons/header.xhtml,
as shown in the following code:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[206]

 <ice:graphicImage url="#{iceFusionConsts.skinBase}/
 #{context.skin}/images/logo.png" />
</ui:component>
</body>
</html>

You can change this to a two-image header like this:

<ui:component>
 <ice:panelGrid columns="2">
 <ice:graphicImage url="#{iceFusionConsts.skinBase}/
 #{context.skin}/images/logo.png" />
 <ice:graphicImage url="#{iceFusionConsts.skinBase}/
 #{context.skin}/images/products.png" />
 </ice:panelGrid>
</ui:component>

There are other images you have to adapt in the /images folder. A thumbnail
preview helps to get an overview. Here is an example of the ICEsaurian skin:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[207]

The /images/locale folder manages all language flags, which normally do not
have to be changed.

Colors and fonts
Basic colors and fonts are managed in the page.css file. So, it is a good idea to
adapt this file first. A test with the new skin may show some differences in the
color schema if you have a look at the different pages of your web application. To
recognize which CSS classes from the icefaces.css file have to be overwritten
through a redefinition in the style.css file, you can analyze the rendered HTML
code. The most well-known tool for such an analysis is the Firefox plugin, Firebug
(http://getfirebug.com/).

Firebug allows selecting certain parts of a home page and shows corresponding
HTML code. In the following example, the header text of the messageDialog is
chosen. The HTML code is shown at the bottom left, and the CSS class definition
hierarchy is shown on the bottom right:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

User Interface Customization

[208]

You can even experiment with the values and change font or background colors to
test the results interactively.

ICEfaces components
Firebug can also be used to recognize which images of certain ICEfaces components
have to be adapted. This is important because some color effects are based on images,
and not on CSS attributes. Here is an extract of the images found in /css-images:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 8

[209]

All icons can be replaced. But images that are used to realize special presentation
effects may have to be re-colored. In the worst case, you have to develop a new
presentation effect for a certain ICEfaces component that includes editing all of the
involved (single) images.

This kind of adaptation can be very time consuming. If possible, develop a more
neutral color presentation for reuse. This allows adapting only the important parts
of the skin. So, you can show some corporate design color schema aspects without
adapting every component that suffers from a lack of useful skin support.

Summary
This chapter has shown examples for user settings that a modern web application
can offer for a better user experience. We took a detailed look at the ICEcube language
management, which allows you to add new languages without much effort.

The ICEcube skin management, as a second implementation example, showed
you how a customer-specific corporate design can be managed. Following some
conventions, the creation of new skins is pretty comfortable.

With the user settings implementation, our web application is now almost complete.
For a real-world implementation, we would need to add a context-sensitive help
system. But this is a bit out of the scope of this book.

The next chapter will take a detailed look at the implementation aspects of certain
ICEfusion components that we used in the previous chapters. This chapter will
help you write your own Facelets components that deliver all of the advantages we
discussed in the previous chapters using the ICEfusion implementation.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets
Components

One of the strengths of ICEfaces is its tight integration with Facelets. This allows
you to extend the ICEfaces component set with new components without ever
writing JSF custom components from scratch. This chapter takes some of the
more advanced ICEfusion components to describe the principles behind such
a development, as follows:

•	 Creating your own taglib and using a new namespace for it
•	 Adding new tags through the Facelets component definitions
•	 Managing tag parameters through the JSF Expression Language
•	 Referencing parameter objects through a backing bean injection
•	 Reusing the ICEfaces tags by combining them into a new tag

Facelets
Facelets is a view technology for JSF that allows defining pages with less effort.
These pages are written in XHTML. One of the advantages of Facelets is that you can
update pages without redeployment. A change in a Facelets-based page can be seen
immediately in the web browser. You only need to save the change to an XHTML file
and reload the page in your web browser. It is even possible to test the page without
a servlet container.

Facelets is also a lightweight templating system. It is tightly integrated with JSF
and is very flexible to use. Best of all, you can create your own taglib without
implementing it in Java.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[212]

This chapter cannot describe all the details for using Facelets. So, we will only
have a look at how we can define our own tags and how we can use them. If you
are new to Facelets, you may also have a look at the developer documentation at
https://facelets.dev.java.net/docs/dev/docbook.html.

Facelets allows you to create new JSF components. This enables us, for example,
to combine ICEfaces tags with reusable Facelets components. For this, we have
to define a taglib with a new namespace that lets us reference the new tags.

One of the key features of Facelets is the ability of describing the main functionality
of new tags in XHTML instead of Java code. This allows us to have tags written
in pure XHTML. We can use this feature to combine the existing ICEfaces tags to
establish a reusable and standardized presentation.

For a more complex behavior of our new Facelets components, we can add the
backing bean concept. This allows you to use all the means Java delivers for
challenging implementations. The underlying Expression Language that combines
tags and the backing beans is an additional powerful tool in itself. So, you may
have to decide if you want to implement component functionality in a backing bean
method, or as a more complex expression of the Expression Language in the XHTML
part. A rule of thumb is to use the backing bean implementation if the readability of
the Expression Language code suffers.

Taglibs
The ICEfusion components are defined through a single taglib. This allows you to
use the same namespace for all tags throughout the web application. The ICEfusion
taglib can be found at /src/main/webapp/icefusion/taglibs/icefusion.
taglib.xml and looks like this:

<?xml version="1.0"?>
<!DOCTYPE facelet-taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
 "http://java.sun.com/dtd/facelet-taglib_1_0.dtd">
<facelet-taglib>
 <namespace>
 http://icefusion.googlecode.com/icefusion
 </namespace>
 <tag>
 <tag-name>header</tag-name>
 <source>commons/header.xhtml</source>
 </tag>
 <tag>
 <tag-name>navigation</tag-name>
 <source>commons/navigation.xhtml</source>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[213]

 </tag>
 <tag>
 <tag-name>connectionStatus</tag-name>
 <source>commons/connectionStatus.xhtml</source>
 </tag>
 <tag>
 <tag-name>messageDialog</tag-name>
 <source>commons/dialog/messageDialog.xhtml</source>
 </tag>
 <tag>
 <tag-name>errorDialog</tag-name>
 <source>commons/dialog/errorDialog.xhtml</source>
 </tag>
 <tag>
 <tag-name>questionDialog</tag-name>
 <source>commons/dialog/questionDialog.xhtml</source>
 </tag>
</facelet-taglib>

The taglib lists tag names and corresponding references to XHTML definition
files. These files define how the component implementation looks, for example,
if backing beans are used or not.

It is possible to choose an individual folder structure to manage the
component implementations.

For ICEfusion, the components are organized next to the /src/main/webapp/
icefusion/taglibs/icefusion.taglib.xml using the commons subfolder:

•	 dialog: Components for dialog presentation
•	 form : Components for more complex form handling
•	 help: Components for support of self-descriptiveness and learning
•	 validation: Components to support input validation

This structure is extensible. So we could have, for example, more specific
components that are useful in different industries. Each industry would have
its own folder besides the commons folder then.

The second important part in the taglib is the definition of the namespace that is
used with the new tags. It can be found on top of the taglib file. For ICEfusion,
we use:

 <namespace>
 http://icefusion.googlecode.com/icefusion
 </namespace>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[214]

The string is following a convention. But the URL never delivers something useful,
or even the taglib itself. This string is only relevant for the Facelets template files or
page files you want to use the new tags for.

An ICEfusion definition for such files looks like this:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
 <icefusion:connectionStatus />
</body>

If we use the namespace identifier icefusion with a tag name, such as
connectionStatus, inside a page, Facelets recognizes that the taglib definition
for http://icefusion.googlecode.com/icefusion has to be used to find the
corresponding component implementation.

Tags
Facelets allows combining JSF tags. For this, you have to define a Facelets
component structure like we did for the <icefusion:connectionStatus>:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[215]

You can find the component definition at /src/main/webapp/icefusion/taglibs/
commons/connectionStatus.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <div id="divStayTopLeft" style="position:absolute">
 <ice:outputConnectionStatus />
 </div>
 <script type="text/javascript">
 //<![CDATA[
 var verticalpos="fromtop"
 JSFX_FloatTopDiv();
 //]]>
 </script>
</ui:component>
</body>
</html>

Only JSF tags between the <ui:component> tags are relevant to Facelets. Every page
or template you use the connectionStatus tag for gets a replacement with the JSF
tags from the component during runtime.

The connectionStatus is a good example of a pure XHTML component definition.
It uses the corresponding ICEfaces outputConnectionStatus component that
shows a status icon for the connection between web browser and web container.
Additionally, the component has a JavaScript definition that allows a free-floating
behavior of the icon inside the web browser. So, if you scroll down the browser's
content, the icon stays on the top left.

Although connectionStatus is pretty simple, it shows all advantages of the
Facelets component concept:

•	 We do not have to code in Java in any case, or do not have to implement
something complex.

•	 The implementation can be done very quickly and the maintenance is
kept easy.

•	 Page and template code becomes simpler and more readable.
•	 The existing ICEfaces component model can be easily extended according

to the needs of your project.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[216]

•	 We can standardize more complex components, so that it is possible to
change their presentation or behavior at any time in a central place. This
is a powerful tool in bigger projects to reduce complexity.

•	 With an efficient component design, you get a better reusability in
your project.

Component logic
For more complex components, we need additional logic. We have three possibilities
to implement this for a Facelets component:

•	 JSTL-conform statements, such as <c:if>
•	 Backing bean methods
•	 A combination of both

Here is an example of the third possibility:

The component implementation looks like this (/src/main/webapp/icefusion/
taglibs/commons/navigation.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <c:if test="#{context.dynamicMenu}">
 <icefusion:dynamicMenu/>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[217]

 </c:if>
 <c:if test="#{!context.dynamicMenu}">
 <icefusion:menu/>
 </c:if>
 <icefusion:menuIcons />
</ui:component>
</body>
</html>

The navigation component manages the navigation area of the page template.
ICEfusion allows managing a dynamic menu and a static menu. This component
checks which menu type has to be rendered through the context bean (/src/main/
java/com/googlecode/icefusion/ui/commons/constant/Context.java). The
<c:if> statement helps to suppress the unnecessary menu definition. Additionally,
the navigation renders the menu icons that are shown on the right side of the
pull-down menu.

We have a reference to a backing bean in this code and also to a JSTL logic element,
the <c:if> statement. As the context bean is a more global management construct,
and not a corresponding backing bean of the navigation component, it makes sense
to put in some JSTL logic instead.

This logic should not be a part of the context bean because we would violate the
separation of concerns rule. However, this kind of implementation is only useful
for simple implementations. With a more complex component, we would have
a backing bean anyway and would put the logic into the corresponding backing
bean, of course.

This example also shows the limitations of the JSTL logic elements. In our case, a
missing else statement negatively influences the readability of the code. The code
gets worse with the number of conditions that have to be processed.

Experience shows that it is a good idea to have one backing bean for every Facelets
component. This corresponds to the rule of having one backing bean for every page
in your web application.

Here is an example of a dedicated backing bean used by the dynamicMenu
component defined at /src/main/webapp/icefusion/taglibs/commons/
dynamicMenu.xhtml (The presentation result is the same as the screenshot above.):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[218]

 xmlns:icefusion="http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelGrid columns="2">
 <ice:form>
 <ice:menuBar noIcons="true">
 <ice:menuItems value="#{dynamicMenu.menuModel}" />
 </ice:menuBar>
 </ice:form>
 </ice:panelGrid>
</ui:component>
</body>
</html>

The dynamicMenu backing bean defines the menu structure. This is a simple example
of such a usage. For more complex components, we would use more methods of the
backing bean.

You may recognize that the naming convention uses the same label in both contexts:
backing bean and the XHTML file. This helps to recognize relations if you have a look
into different folders of the web application. Experience shows that it is even useful to
use this principle for the folder names. For this, ICEfusion and ICEcube have similar
structures in the /src/main/java and /src/main/webapp folder branches.

Attribute parameters
If you have a look at the JSF components, you will find attributes you can use to
influence their behavior. We can define such attributes with Facelets components too.
For this, we use the principles of the JSF Expression Language we already followed
in the previous chapters.

Attributes are defined indirectly through the use inside an expression by a
component's tag. So, if you reference a #{my_attribute} attribute in the component,
and the component tag has an attribute set with the same name:

<icefusion:my_component my_attribute="test"/>

the #{my_attribute} expression delivers the test value.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[219]

We start with the ICEfusion hint component for the first example:

The syntax for the hint component use looks like this:

<icefusion:hint title="my_title" text="my_text"
 panel="my_panel_context"/>

Here is the code for the component implementation (/src/main/webapp/
icefusion/taglibs/commons/help/hint.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelTooltip hideOn="mouseout" hoverDelay="200"
 id="#{(not empty panel) ? panel : 'hintIcon'}">
 <c:if test="#{not empty title}">
 <f:facet name="header">
 <ice:outputText value="#{title}"/>
 </f:facet>
 </c:if>
 <f:facet name="body">
 <ice:outputText value="#{(not empty text) ?
 text : icefusion['application.hint.none']}”/>
 </f:facet>
 </ice:panelTooltip>
 <ice:panelGroup panelTooltip="hintIcon"
 rendered="#{empty panel}">
 <ice:graphicImage url="#{iceFusionConsts.skinBase}/
 #{context.skin}/images/hint.png" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[220]

 </ice:panelGroup>
</ui:component>
</body>
</html>

This implementation shows the JSTL logic elements that are controlled by a
component attribute. The title attribute defines if the title is rendered or not. If
this attribute's value is not empty, the facet header is shown. Something similar
is done with the text to show. If the text is not set, a standard text is shown instead.
It informs about the missing text.

The most interesting feature with this implementation is the handling of the panel
reference. If the panel attribute is set, the ICEfaces component panelTooltip
takes this object for reference. If the panel attribute is not set, it takes the hintIcon
reference to a panel the component has defined itself.

The correct use of interfaces and classes is important with the Facelets component
attributes. Although XHTML processes everything as text, the JSF components
process interfaces and classes as is.

Attribute references
The panel attribute of the hint component already showed that it is possible to
work with references. We now have a look at self-defined object references. These
allow working with an external context inside a Facelets component.

We will have a look at the validationDialog component, for example:

The syntax looks like this:

<icefusion:validationDialog eventBean=
 "#{my_validation_processor_bean}" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[221]

We set an eventBean that defines the reference to work with. With self-defined
object references, it is important that the developer of such an object knows what is
to be delivered so that the Facelets component can work correctly. For this, we define
an Interface.

The validationDialog references the IValidationProcessor interface that can be
found at /src/main/java/com/googlecode/icefusion/ui/commons/validation/
IValidationProcessor.java:

package com.googlecode.icefusion.ui.commons.validation;
import java.io.Serializable;
public interface IValidationProcessor extends Serializable {
 public List<String> getValidationMessages();
 public void setValidationMessages(List<String> messages);
 public Boolean getValidationErrorStatus();
 public void setValidationField(String field);
 public String getValidationField();
 public String validationDialogButtonOk();
}

Here is the code for the validationDialog component implementation
(/src/main/webapp/icefusion/taglibs/commons/validation/
validationDialog.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:form>
 <ice:panelPopup autoCentre="false" draggable="false"
 modal="true"
 rendered="#{eventBean.validationErrorStatus}"
 visible="#{eventBean.validationErrorStatus}">
 <f:facet name="header">
 <ice:panelGrid>
 <ice:outputText value=
 "#{icefusion[eventBean.validationField]}"/>
 </ice:panelGrid>
 </f:facet>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[222]

 <f:facet name="body">
 <ice:panelGrid>
 <ice:panelGrid columns="2" columnClasses=
 "icePanelPopupImage icePanelPopupText">
 <ice:graphicImage url=
 “#{iceFusionConsts.skinBase}/
 #{context.skin}/images/
 validationDialog.png” />
 <ice:panelGrid>
 <c:forEach var=»message» items=
 "#{eventBean.validationMessages}">
 <ice:outputText value=
 "#{icefusion[message]}"/>
 </c:forEach>
 </ice:panelGrid>	
 </ice:panelGrid>
 <ice:panelGrid columns="1" styleClass=
 "icePanelPopupButtons">
 <ice:commandButton value="#{icefusion[
 'application.validation.
 message.button.ok']}"
 action="
 #{eventBean.validationDialogButtonOk}"
 styleClass="icePanelPopupButton"/>
 </ice:panelGrid>
 </ice:panelGrid>
 </f:facet>
 </ice:panelPopup>
 </ice:form>
</ui:component>
</body>
</html>

The eventBean is used in two modes:

•	 Get information for processing
•	 Call external event handler

The information is delivered by

 public Boolean getValidationErrorStatus();
 public String getValidationField();
 public List<String> getValidationMessages();

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[223]

to decide if the dialog is rendered, which field is currently validated, and which
validation errors have to be shown.

The external event handler for the OK button is delivered by:

 public String validationDialogButtonOk();

Backing bean injection through the Facelets
attribute
The next step in referencing is to use the referenced object in the backing bean of the
Facelets component. Although you can set such injections with the help of the Spring
configuration, it is more intuitive and also more flexible to do so through an attribute.

Using interfaces for parameter passing
Let's have a look at the completer component:

The syntax looks like this:

<icefusion:completer title="my_title"
 hintTitle="my_hint_title" hintText="my_hint_text"
 valueBean="#{my_value_and_baseList_manager}"
 rows="my_number_for_entries_in_hit_list" />

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[224]

The backing bean injection is done through the valueBean attribute. Here is the
example page (/src/main/webapp/icecube/feedback/autocomplete.xhtml)
that shows how it is used:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template=”#{iceFusionConsts.templatePage}”>
 <ui:define name=»title»>
 #{icecube['application.menu.feedback.autocomplete']}
 </ui:define>
 <ui:define name=»content»>
 #{icecube['application.menu.feedback.autocomplete
 .text']}
 <ice:form>
 <icefusion:completer title=»#{icecube[
 'application.menu.feedback.autocomplete
 .completer.title']}» hintText=»#{icecube[
 'application.menu.feedback.autocomplete
 .completer.hint.text']}»	
 valueBean="#{autocomplete}"/>
 </ice:form>
 </ui:define>
</ui:composition>
</body>
</html>

The ICompleter interface exists for objects that are set via the valueBean attribute
(/src/main/java/com/googlecode/icefusion/ui/commons/form/ICompleter.
java), as shown:

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
import javax.faces.model.SelectItem;
public interface ICompleter extends Serializable {
 public List<SelectItem> getCompleterBaseList();
 public String getCompleterValue();

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[225]

 public void setCompleterValue(String value);
}

The implementation of the completer component looks like this (/src/main/
webapp/icefusion/taglibs/commons/form/completer.xhtml):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:panelGrid columns="3">
 <ice:outputText value="#{(not empty title) ? title :
 icefusion['application.completer.none']}"/>
 <ice:selectInputText value="#{valueBean.completerValue}"
 valueChangeListener="#{completer.listener}"
 rows="#{(not empty rows) ? rows : completer.rows}">
 <f:selectItems value="#{completer.resultList}" />
 </ice:selectInputText>
 <icefusion:hint title="" text="#{hintText}"/>
 </ice:panelGrid>
 <!-- Manage valueBean list as parameter for backing
 bean -->
 <ice:selectInputText visible="false" binding=
 "#{completer.baseList}" listValue=
 "#{valueBean.completerBaseList}" />
</ui:component>
</body>
</html>

To inject the object reference into the backing bean, we use a trick. We define an
artificial JSF component in our example, the ICEfaces selectInputText, and use a
component binding through its binding attribute. This allows us to access the object
that is injected inside the backing bean.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[226]

Hiding the ICEfaces components used for
parameter passing
When you use ICEfaces components for a parameter passing, you have to take
care of the rendering. These components will not be a part of the visual presentation.
We can:

•	 Set an attribute that an ICEfaces component offers for visibility management
•	 Manage the visibility ourselves using cascading stylesheet definitions

Here is an example of a visibility attribute:

<ice:selectInputText visible="false"
 binding="#{completer.baseList}"
 listValue="#{valueBean.completerBaseList}" />

The visible attribute allows hiding the selectInputText we use in the
completer component.

If an ICEfaces component does not deliver a visibility attribute, you can use the
style attribute instead:

<ice:dataTable style="visibility:hidden;"
 binding="#{login.parameters}"
 value="#{eventBean}"/>

This is an explicit management of visibility using a standard stylesheet attribute. You
have to keep in mind that this will be more expensive to use because the ICEfaces
renderer has no possibility of optimization.

Accessing the Facelets attribute references
Which JSF component we use for the parameter passing depends on the object you
want to inject because we have a strict type checking here. For example, for a generic
list of objects, the dataTable component is a good choice.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[227]

In the completer example above, we use similar structures for injection (input) and
presentation (output). So, we use the same component type here for both. But, this is
only done to make the code more readable. As we have to typecast all parameters in
the backing bean, and the parameter passing concept using the ICEfaces components
is generic, we have a very flexible choice of the component to use.

Our parameter passing component in the completer example is referenced via the
baseList attribute in the backing bean for component binding, and gets a special
kind of list for the listValue attribute. The list type is defined in the ICompleter
interface description:

 public List<SelectItem> getCompleterBaseList();

SelectItem is a list element definition of the JSF standard implementation.
It describes list elements that are used in JSF presentation components
(for example, comboboxes).

The backing bean of the completer component looks like this (/src/main/java/
com/googlecode/icefusion/ui/commons/form/Completer.java):

package com.googlecode.icefusion.ui.commons.form;
import javax.faces.event.ValueChangeEvent;
import javax.faces.model.SelectItem;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.icesoft.faces.component.selectinputtext
 .SelectInputText;
public class Completer extends BackingBeanForm {
 private SelectInputText baseList;
 private List<SelectItem> matches =
 new ArrayList<SelectItem>();
 public void listener(ValueChangeEvent event) {
 if (event.getComponent() instanceof SelectInputText) {
 String search = (String) event.getNewValue();
 Long matches_i = 0L;
 matches.clear();
 for (SelectItem entry : (ArrayList<SelectItem>)this
 .getBaseList().getListValue()) {
 if ((matches_i > this.getRows())) {
 break;
 }
 if (entry.getLabel().toString().toUpperCase(
 this.context.getSettings().getLocale()
 .getLocale()).startsWith(search.toUpperCase(
 this.context.getSettings().getLocale()
 .getLocale()))) {

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[228]

 matches.add(entry);
 matches_i++;
 }
 }
 }
 }
}

The listener() method uses the baseList attribute to get access to the list
of searchable items via the listValue getter. We need an explicit typecast to
SelectItem to get back the original object type defined in the interface description.

Facelets component reuse
The completer component shows another interesting aspect with the Facelets
components design: reuse of the Facelets components inside other Facelets
components. In our example, we have a ICEfusion hint component added to
the completer:

 <ice:panelGrid columns="3">
 <ice:outputText value="#{(not empty title) ? title :
 icefusion['application.completer.none']}"/>
 <ice:selectInputText value="#{valueBean.completerValue}"
 valueChangeListener="#{completer.listener}"
 rows="#{(not empty rows) ? rows : completer.rows}">
 <f:selectItems value="#{completer.resultList}" />
 </ice:selectInputText>
 <c:if test="#{(not empty hintText)}">
 <icefusion:hint title="" text="#{hintText}"/>
 </ice:panelGrid>

The hint component is used transparently because the corresponding parameters
are not processed directly.

Another example for reuse of Facelets components is the login component:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[229]

It uses the following syntax:

<icefusion:login eventBean="#{action_handler_for_login}" />

The login component processes User name and Password through an external
reference that is set via the eventBean attribute. The interface for the bean
implementation looks like this (/src/main/java/com/googlecode/icefusion/ui/
commons/form/ILogin.java):

package com.googlecode.icefusion.ui.commons.form;
import java.io.Serializable;
public interface ILogin extends Serializable {
 public void setLoginUsername(String username);
 public void setLoginPassword(String password);
 public String loginAction();
}

The management of username and password is externalized. The processing is
initialized by the loginAction event that is called by the login component when
the button is clicked in the form.

The component implementation can be found at /src/main/webapp/icefusion/
taglibs/commons/form/login.xhtml:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <!-- Manage eventBean as parameter for backing bean -->
 <ice:dataTable style="visibility:hidden;" binding=
 "#{login.parameters}" value="#{eventBean}"/>
 <ice:form>
 <ice:panelGrid>
 <ice:panelGrid columns="2">
 <ice:outputText value="#{icefusion[
 'application.login.language']}" />
 <ice:selectOneMenu value="#{login.locale}"
 partialSubmit="true">
 <f:selectItems value="#{login.locales}"/>
 </ice:selectOneMenu>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[230]

 <ice:outputText value="#{icefusion[
 'application.login.username']}" />
 <ice:inputText value="#{login.username}"/>
 <ice:outputText value="#{icefusion['
 application.login.password']}" />
 <ice:inputSecret value="#{login.password}"/>
 <ice:commandButton value="#{icefusion[
 'application.login.button']}"
 action="#{login.login}" />
 </ice:panelGrid>
 </ice:panelGrid>
 </ice:form>
 <icefusion:validationDialog eventBean=”#{login}”/>
</ui:component>
</body>
</html>

The eventBean attribute is managed by the backing bean of the login component.
For the validation results, it uses an ICEfusion validationDialog component that
we discussed previously. The eventBean attribute of the ValidationDialog is
implemented by the backing bean of the login component (/src/main/java/com/
googlecode/icefusion/ui/commons/form/Login.java):

package com.googlecode.icefusion.ui.commons.form;
import javax.faces.model.SelectItem;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.validation
 .IValidationProcessor;
public class Login extends BackingBeanForm implements
IValidationProcessor {
 private List<String> validationMessages =
 new ArrayList<String>();
 private String validationField;
 public String validationDialogButtonOk() {
 this.validationMessages.clear();
 return null;
 }
 public Boolean getValidationErrorStatus() {
 return this.validationMessages.size() > 0;
 }
 public List<String> getValidationMessages() {
 return this.validationMessages;
 }
 public void setValidationMessages(List<String> messages) {
 this.validationMessages = messages;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[231]

 }
 public String getValidationField() {
 return this.validationField;
 }
 public void setValidationField(String field) {
 this.validationField = field;
 }
}

If the Login button is clicked, the login event initializes the validation for the User
name and Password fields. Before the validation is done for each field, its label is
set for the validationDialog. If the validation recognizes errors, it delivers the
corresponding error messages back to the login backing bean. Then, these are
referenced by the validationDialog because the errorStatus is true when more
than one message exists.

Initialization through Facelets or backing
bean attributes
All previous examples used the Facelets component attributes to initialize the
component. But a component can also be initialized through the attributes of a
backing bean. We can use the Spring context for this if the web application allows
a component initialization during the web application initialization. Alternatively,
we use injected objects in the backing bean and set attributes during runtime via
processed events. But we do not have to decide between the Facelets attributes and
the backing bean attributes initialization. Indeed, it is possible to mix those so that
the developer can decide when to initialize what and how to do this.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[232]

For an example, we will take a look at the questionDialog component:

Here is the syntax:

<icefusion:questionDialog
 title="my_title" text="my_text"
 yes="my_yesButton_text" no="my_noButton_text"
 rendered="true|false"
 eventBean="#{my_button_event_bean}"/>

All presentation parts of the dialog can be set through the Facelets attributes.
The event handling is managed externally via the eventBean attribute. The
corresponding IQuestionDialog interface looks like this (/src/main/java/com/
googlecode/icefusion/ui/commons/dialog/IQuestionDialog.java):

package com.googlecode.icefusion.ui.commons.dialog;
import java.io.Serializable;
public interface IQuestionDialog extends Serializable {
 public String questionDialogButtonYes();
 public String questionDialogButtonNo();
}

Depending on the button that is clicked in the dialog, the yes or no variant
is processed.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[233]

The implementation of the questionDialog component can be found at /src/main/
webapp/icefusion/taglibs/commons/dialog/questionsDialog.xhtml,
as shown:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:form>
 <ice:panelPopup autoCentre="false" draggable="false"
 modal="true" rendered="#{(not empty rendered) ?
 rendered : questionDialog.show}"
 visible="#{(not empty rendered) ? Rendered :
 questionDialog.show}">
 <f:facet name="body">
 <c:if test="#{empty eventBean}">
 <ice:commandButton value=
 "#{(not empty yes) ? yes : ((not empty
 questionDialog.yes) ?
 questionDialog.yes : icefusion[
 'application.dialog.question.button
 .yes'])}” action=”#{questionDialog
 .questionDialogButtonYes}»
 styleClass=»icePanelPopupButton»/>
 <ice:commandButton value=
 "#{(not empty no) ? no : ((not empty
 questionDialog.no) ?
 questionDialog.no : icefusion[
 'application.dialog.question.button
 .no'])}” action=”#{questionDialog
 .questionDialogButtonNo}»
 styleClass=»icePanelPopupButton»/>
 </c:if>
 </f:facet>
 </ice:panelPopup>
 </ice:form>
</ui:component>
</body>
</html>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Reusable Facelets Components

[234]

If we take a look at the rendered attribute of the ICEfaces panelPopup component,
we find this expression:

<ice:panelPopup rendered=
 "#{(not empty rendered) ? rendered : questionDialog.show}"
/>

We have a rendered attribute from the questionDialog component that is checked
first. So, the Facelets component attribute gets a higher priority. If it is not set, the
value is taken from the show attribute of the backing bean. It is important that the
backing bean delivers a valid value in any case. In this example, the boolean fulfills
this. But in cases where you use other attribute types, you have to prevent a null
value delivery inside the backing bean.

When we need pure strings for the output, we can manage defaults inside the
XHTML file:

<ice:commandButton value=
 "#{(not empty yes) ? Yes : (
 (not empty questionDialog.yes) ? questionDialog.yes :
 icefusion[
 'application.dialog.question.button.yes'])}"
/>

First, the questionDialog attribute yes is processed. If this is not set, the backing
bean attribute yes is checked. If this is also not defined, we take a resource bundle ID
for processing.

The backing bean for the questionDialog component looks like this (/src/main/
java/com/googlecode/icefusion/ui/commons/dialog/QuestionDialog.java):

package com.googlecode.icefusion.ui.commons.dialog;
public class QuestionDialog extends Dialog implements
 IQuestionDialog {
 private String yes;
 private String no;
 private Boolean yesClicked;
 public String getYes() {
 return yes;
 }
 public void setYes(String yes) {
 this.yes = yes;
 }
 public String getNo() {
 return no;
 }
 public void setNo(String no) {
 this.no = no;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 9

[235]

 }
 public Boolean getYesClicked() {
 return yesClicked;
 }
 public void setYesClicked(Boolean yesClicked) {
 this.yesClicked = yesClicked;
 }
 public String questionDialogButtonYes() {
 this.setShow(false);
 this.setYesClicked(true);
 return null;
 }
 public String questionDialogButtonNo() {
 this.setShow(false);
 this.setYesClicked(false);
 return null;
 }
}

The backing bean implements the IQuestionDialog interface by default. So,
there is no real difference to an external bean implementation you would set via a
Facelets attribute. The expressions in the XHTML file allow keeping a "Backing Bean
Attribute Only" usage simple. You can use the setter for the presentation strings and
leave the questionDialog Facelets attributes unset.

An example of a mix with a Facelets attribute initialization is setting an external
reference bean that processes the button clicks, but uses the backing bean to set the
presentation strings. This can be useful if you always use the same presentation, but
want to manage different contexts for the dialog answer buttons.

Summary
Facelets allow you to extend ICEfaces so that you can build even more powerful
components. In contrast to the custom JSF component development, this can be done
much more easily. But easier does not mean that you get only simple results. The
Facelets concept is flexible enough to enable you to implement even more complex
components. This helps in designing reusable components which, in turn, help to
keep the maintenance efforts minimal.

Until now, we primarily had a look at the standard JSF programming model that
follows the request-response pattern. This needs interaction in the web browser to
get a different presentation.

The last chapter will discuss the AJAX Push technology that allows you to initiate a
change in the browser presentation from the web container side.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology
This chapter will discuss one of the most exciting features of ICEfaces: AJAX-based
push technology, or AJAX Push for short. First, we will take a look at how to configure
its use for our project. The implementation of a progress dialog will show how it works
concretely. Finally, we will take a look at ICEmapper, an AJAX Push game that shows
how to implement multiuser concepts.

AJAX Push
The concept behind AJAX Push is quite simple. Instead of letting the web browser
initiate the rendering according to the request-response pattern of classic web
containers, the server does it on its own. Additionally, this is done in a multicast
so that a one-to-many communication is established. With this, the server
communicates with a predefined group of users, or web browser instances, that
are updated in parallel.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[238]

The use of AJAX Push is interesting in contexts where users share information and
need near real-time updates about changes. Auctions or chats are such examples.
You can find a live system from the examples of the ICEfaces sources distribution
at http://auctionmonitor.icefaces.org. For a test, open two web browsers or
more and use them for different bids. You can even start a chat conversation. Here
is a screenshot that shows how it looks:

Programming model
If you take a look at the programming model of the ICEfaces AJAX Push, you
will find it quite simple to use. Here are the steps:

1.	 Define a group label that is used to describe the group of users and the
informational context respectively.

2.	 Add your session to the SessionRenderer using this group label.
3.	 Initialize a rendering with the SessionRenderer using the group label if

the informational context changes.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[239]

A simplified code example looks like this:

package com.domain.push;
import com.icesoft.faces.async.render.SessionRenderer;
public class MyAJAXPush {
 private String renderGroup = "myAJAXPushGroup";
 public void init() {
 // do some initialization
 // ...
 SessionRenderer.addCurrentSession(this.renderGroup);
 }
 public void update() {
 // update the informational context
 // ...
 SessionRenderer.render(this.renderGroup);
 }
}

The SessionRenderer is used globally in your web application. So, it is also possible
to initialize the update for a certain user group in another bean context. For this, we
would define the user group label in our global constants.

Architecture
The use of the SessionRenderer is quite simple. This is possible because of the
strong standardization and transparent behavior of the multicast rendering in the
background. You are able to implement AJAX Push differently so that you get more
control over rendering. For this, ICEfaces offers other renderers and interfaces that
you can use for your backing bean implementations.

But the architecture behind AJAX Push in the lower layers is quite complex. This is
because it not only inverts the JSF communication between a web browser and a web
container using a different technology, but also circumvents a lot of limitations. We
will not take a look at these details here. If you are interested in this, have a look at
http://www.icefaces.org/main/ajax-java/ajaxpush.iface.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[240]

Configuration
Using AJAX Push in our project needs some special configurations. We have to
take a look at the following:

•	 Communication mode between a web browser and a web container
•	 Scope for backing beans
•	 Push server infrastructure

Deployment descriptor
The /src/main/webapp/WEB-INF/web.xml file allows setting the communication
mode between a web browser and a web container. We have to allow asynchronous
communication and with it, the use of AJAX Push, as shown here:

<context-param>
 <param-name>
 com.icesoft.faces.synchronousUpdate
 </param-name>
 <param-value>false</param-value>
</context-param>

As AJAX Push is active by default, it is not really necessary to set this parameter
explicitly. But it is a good idea to document that you use it this way for later
maintenance purposes.

Spring scopes
We manage our backing beans via the Spring framework. Similar to the
faces-config.xml definition for managed beans in JSF, Spring has a scope
attribute. This is set with the bean definition in the Spring application context.
For AJAX Push, we have to use the following scopes:

•	 Session
•	 Application

Here is an example of a session scoped bean:

<bean id="myAJAXPush" class="com.domain.push.MyAJAXPush"
 scope="session">
 <aop:scoped-proxy/>
</bean>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[241]

To avoid exceptions because of lost dependencies, we add a scoped-proxy
definition. This allows us to have dependencies between different scopes, such
as between session scope and application scope, without any disadvantages.

To realize an application scope, we omit the scope attribute definition.
Spring is working in the application scope mode by default when deployed to
a web container.

Meanwhile, there are additional frameworks for Spring environments that deliver
a more fine-grained scope model (for example, the edoras framework). These allow
a more efficient management of beans in the web container. If you use ICEfaces
without Spring, you can use the ICEfaces extended request scope.

Push server
The communication between a web browser and a web container is very restrictive.
Normally, you are allowed to use two communication channels in parallel per web
browser. For a modern AJAX communication, this is limited in a lot of cases.

This limitation in channels is protocol dependent and also restricted on the client
side through the web browser implementation. So, it is only possible to keep all
communication within the existing limits, even if you actually need more channels.

With the ICEfaces push server—a separate WAR file—you get a tool that allows you
to get rid of these limitations. It implements a global channeling on the server side.
After the deployment of the push server, all other ICEfaces deployments recognize
it automatically and use its channel management for their communication. This
virtualized communication only needs a single permanent "physical" connection.

Production
In previous ICEfaces releases (before 1.8.x), there was no push server. This kind
of implementation still works. But if you skip the push server, you may recognize
inconsistencies in the web browser renderings from time to time. If you use multiple
push applications in a single web container, it is recommended to deploy the push
server in any case.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[242]

Deployment
The push server can be seen as an extra deployment for your projects. You deploy
its WAR only once to the web container that you will use for your web application
deployments. After that, your multiuser AJAX Push is ready to use.

You can find the WAR at /icefaces/push-server in the ICEfaces binary distribution.

ICEcube/ICEfusion
ICEcube and ICEfusion are Maven 2 projects. These allow deploying the project
to a Jetty web container on the fly, without any extra installation. For the extra
deployment of the push server, we use a trick. We:

•	 Define a Jetty configuration file for the push server WAR
•	 Let the WAR be a part of the project
•	 Let the Maven POM process this configuration

The WAR can be found at /target-push/push-server-1.8.1.war. The filename
has an explicit release number to document which release is in use. Expect a strong
dependency with the next releases because AJAX Push is under development, even
if it is production ready. It is important that you exchange this file if you change the
ICEfaces dependencies in the POM later.

Here is the Jetty configuration file " (/jetty.xml):

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC
 "-//Mort Bay Consulting//DTD Configure//EN"
 "http://jetty.mortbay.org/configure.dtd">
<Configure id="Server" class="org.mortbay.jetty.Server">
 <Set name="handler">
 <New id="Handlers"
 class="org.mortbay.jetty.handler.HandlerCollection">
 <Set name="handlers">
 <Array type="org.mortbay.jetty.Handler">
 <Item>
 <New id="WebHandler"
 class="org.mortbay
 .jetty.webapp.WebAppContext" />
 </Item>
 </Array>
 </Set>
 </New>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[243]

 </Set>
 <Ref id="WebHandler">
 <Set name="contextPath">/push-server</Set>
 <Set name="war">target-push/push-server-1.8.1.war</Set>
 </Ref>
</Configure>

You may also have to adapt the WebHandler definition if you exchange the push
server WAR.

The POM is using the Jetty configuration like this (/pom.xml):

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <version>6.1.9</version>
 <configuration>
 <jettyConfig>jetty.xml</jettyConfig>
 <contextPath>/</contextPath>
 <scanIntervalSeconds>3</scanIntervalSeconds>
 <scanTargetPatterns>
 <scanTargetPattern>
 <directory>src/main/webapp/WEB-INF</directory>
 <excludes>
 <exclude>**/*.jsp</exclude>
 <exclude>**/*.xhtml</exclude>
 </excludes>
 <includes>
 <include>**/*.properties</include>
 <include>**/*.xml</include>
 </includes>
 </scanTargetPattern>
 </scanTargetPatterns>
 </configuration>
</plugin>

This is also the original Jetty plugin definition of the AppFuse code ICEfusion is
based on. It was only extended with a single line.

ICEcube creates a log file (/icecube.log) that allows checking if the push server is
deployed. Each web application logs the probe to connect to the push server. If the
push server is not deployed, you get a message like this:

[icecube] 2009-06-24 08:29:48,765 DEBUG [http-8080-2] HttpAdapter.
publish(239) | Outgoing message:
source_servletContextPath: /icecube

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[244]

message_type: Presence
destination_servletContextPath: push-server
source_nodeAddress: 192.168.56.1
Hello
[icecube] 2009-06-24 08:29:48,796 WARN [http-8080-2] MainServlet.
setUpMessageServiceClient(285) | Push Server not found - the Push
Server must be deployed to support multiple asynchronous applications.
[icecube] 2009-06-24 08:29:48,796 INFO [http-8080-2] MainServlet.
setUpMessageServiceClient(291) | Adapting to Push environment.

The ProgressDialog tag
The ProgressDialog tag follows the principles of the ICEfusion dialog tags
implementation. But there is a difference in the kind of information delivery during
the runtime. A progress component describes the percentage of work that is done in
the context of an ongoing process. For this, the progress component uses numbers
and/or a graphics bar.

The real-time presentation of the actual percentage needs direct communication
between the process and the visual presentation panel, namely, the web browser.
This is a classic Observer-Observable pattern, where the browser is the Observer.
So, the web browser needs a direct link to the Observable that allows it to recognize
when to update its presentation.

One challenge with the classic request-response model is that we do not have a direct
and active link between Observer (a web browser) and the Observable (the process
in a web container). Here, AJAX Push helps to provide such a link. So, we can use
a SessionRenderer to push the updates to the progress component that is shown
inside the ProgressDialog.

Here is an example of how this looks (see Push | Progress Dialog in the
ICEcube menu):

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[245]

The tag can be used like this:

<icefusion:progressDialog title="my_title" />

The title attribute is optional. The screenshot shows a non-set title.

The corresponding ICEcube demo looks like this (/src/main/webapp/icecube/
push/popupProgressDialog.xhtml):

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.push.popupProgressDialog']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.push.popupProgressDialog
 .text']}
 <ice:form>
 <ice:commandButton value="#{icecube[
 'application.menu.push.popupProgressDialog
 .button']}"
 action="#{popupProgressDialog.progress}"/>
 </ice:form>

 <icefusion:progressDialog />
 </ui:define>
</ui:composition>
</body>
</html>

If you click on the Start Process button, the backing bean prepares the process
that controls the updates in the progress bar. The backing bean also initiates the
rendering of the progressDialog.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[246]

The backing bean looks like this (/src/main/java/com/googlecode/icecube/
push/PopupProgressDialog.java):

package com.googlecode.icecube.push;
import org.springframework.beans.factory.annotation
 .Autowired;
import org.springframework.beans.factory.annotation
 .Qualifier;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.push
 .IProgressDialog;
import com.googlecode.icefusion.ui.commons.push
 .ProgressDialog;
public class PopupProgressDialog extends BackingBeanForm
 implements IProgressDialog {
 @Autowired
 @Qualifier("progressDialog")
 private ProgressDialog progressDialog;
 Long progress = 0L;
 Boolean cancel = false;
 public Long getProgress() {
 //The progress dialog is waiting one second before
 //the next update is processed. So, with this
 //increment we have a 10 seconds presentation.
 this.setProgress(this.progress + 10);
 return this.progress;
 }
 public String progress() {
 this.setProgress(0L);
 this.progressDialog.startProcess(this);
 return null;
 }
}

Each process has to implement the IProgressDialog interface that:

•	 Defines the progress exchange from the process to the dialog
•	 Defines how to react on a Cancel button event in the dialog

For this, we have a dependency injection, @Autowired, between the backing bean
of the ProgressDialog component and our process implementation. Additionally,
the progress() event to open the dialog sets a reference of the process back to the
backing bean of the dialog. Finally, we can communicate in both directions.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[247]

The IProgressDialog interface can be found at /src/main/java/com/googlecode/
icefusion/ui/commons/push/IProgressDialog.java:

package com.googlecode.icefusion.ui.commons.push;
import java.io.Serializable;
public interface IProgressDialog extends Serializable {
 public Long getProgress();
 public void setProgress(Long progress);
 public Boolean getCancel();
 public void setCancel(Boolean cancel);
}

The backing bean of the ProgressDialog looks like this (/src/main/java/com/
googlecode/icefusion/ui/commons/push/ProgressDialog.java):

package com.googlecode.icefusion.ui.commons.push;
import java.io.Serializable;
import com.googlecode.icefusion.ui.commons.dialog.Dialog;
import com.icesoft.faces.async.render.SessionRenderer;
public class ProgressDialog extends Dialog implements Serializable {
 private Long progress = 0L;
 private IProgressDialog process;
 private String renderGroup = "progressbar";
 private Boolean cancel = false;
 private Boolean ready = false;
 public void startProcess(IProgressDialog process) {
 this.process = process;
 this.setReady(false);
 this.setCancel(false);
 this.setProgress(0L);
 this.setShow(true);
 SessionRenderer.addCurrentSession(this.renderGroup);
 }
 public String buttonOk() {
 this.setShow(false);
 return null;
 }
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[248]

The backing bean shows the basic structure of the SessionRenderer usage
we discussed at the beginning of this chapter. Its initialization is done by the
startProcess()method. This method is called by the backing bean of the
ICEcube demo. The buttonOK() method manages the button event of the dialog.

The backing bean has an inner class that works as a thread, as shown here:

import edu.emory.mathcs.backport.java.util.concurrent
 .LinkedBlockingQueue;
import edu.emory.mathcs.backport.java.util.concurrent
 .ThreadPoolExecutor;
import edu.emory.mathcs.backport.java.util.concurrent
 .TimeUnit;
public class ProgressDialog extends Dialog implements
 Serializable {
 protected static ThreadPoolExecutor threadPool =
 new ThreadPoolExecutor(5, 15, 30, TimeUnit.SECONDS,
 new LinkedBlockingQueue(20));
 public void startProcess(IProgressDialog process) {
 threadPool.execute(new updateThread());
 }
 public String buttonCancel() {
 this.setCancel(true);
 this.setShow(false);
 return null;
 }
 // Inner class
 protected class updateThread implements Runnable {
 private Long last = 0L;
 private Long current = 0L;
 public void run() {
 while ((last < 100) && !cancel) {
 this.current = process.getProgress();
 if (this.current > this.last) {
 last = current;
 // prepare output
 progress = current;
 SessionRenderer.render(renderGroup);
 }
 try {
 Thread.sleep(500);

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[249]

 if (cancel) {
 break;
 }
 Thread.sleep(500);
 } catch (InterruptedException e) {
 // ignore
 }
 }
 if (!cancel) {
 ready = true;
 } else {
 process.setCancel(cancel);
 }
 SessionRenderer.render(renderGroup);
 }
 }
}

The thread is initialized by startProcess() and is stopped early by
buttonCancel() by changing the cancel attribute. Inside the thread, the current
progress (that is set by the demo backing bean in our example) is tracked on a
regular basis. If it is increased, an AJAX Push rendering is initiated. If the progress
has reached 100%, the OK button is rendered by setting the ready attribute for
the presentation . The code for this is shown as follows (/src/main/webapp/
icefusion/taglibs/commons/push/progressDialog.xhtml).

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:icefusion=
 "http://icefusion.googlecode.com/icefusion">
<body>
<ui:component>
 <ice:form>
 <ice:panelPopup autoCentre="false" draggable="false"
 modal="true" rendered="#{progressDialog.show}"
 visible="#{progressDialog.show}">
 <f:facet name="header">
 <ice:panelGrid>
 <ice:outputText value="#{(not empty title) ?
 title : ((not empty progressDialog.title) ?
 progressDialog.title : icefusion[

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[250]

 'application.dialog.progress.title'])}"/>
 </ice:panelGrid>
 </f:facet>
 <f:facet name="body">
 <ice:panelGrid>
 <ice:outputProgress value=
 "#{progressDialog.progress}"
 indeterminate="false"/>
 <ice:panelGrid columns="1"
 styleClass="icePanelPopupButtons">
 <ice:commandButton value=
 "#{icefusion['application.dialog.
 progress.button.cancel']}"
 action="#{progressDialog.buttonCancel}"
 styleClass="icePanelPopupButton"
 rendered="#{!progressDialog.ready}"/>
 <ice:commandButton value="#{icefusion[
 'application.dialog.progress.button.ok']}"
 action="#{progressDialog.buttonOk}"
 styleClass="icePanelPopupButton"
 rendered="#{progressDialog.ready}"/>
 </ice:panelGrid>
 </ice:panelGrid>
 </f:facet>
 </ice:panelPopup>
 </ice:form>
</ui:component>
</body>
</html>

The separate thread in the backing bean allows having a separation of concerns. The
underlying process increases the progress, but it does not have to worry about the
presentation. The progressDialog is indeed independent from the implementation
of the process and can be kept reusable.

The progressDialog is an example of a kind of local or single-user usage of the
AJAX Push. Next, we will have a look at the ICEmapper game, which supports
multiuser AJAX Push.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[251]

ICEmapper
You've already had a look at the auction and chat implementation in the ICEfaces
examples. These examples are pretty cool and also present realistic use cases. The
book example should follow this idea. But the aim was to create something fresh
and new, and not just a poor copy of the existing stuff.

The first idea for such an implementation came up when I had a look at the concrete
usage of Google Maps while studying its JavaScript APIs. To keep things simple, it
finally became a game project: ICEmapper.

The basic idea is a mixture between Battleship® and Risk®. But instead of "Ships,"
we have invisibly-allocated countries to hit. And the "Army" of a country can be
beaten immediately by naming the country.

Each player has five allocated countries, which are only shown in his own map
using red markers (using a flag). If a country was hit, its marker changes to gray.
All countries of other players that are hit are marked with a special gray marker,
as shown here:

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[252]

Dependent on the resolution of the map, you can recognize what was or wasn't hit.
For a better overview, a list of the current status is shown beneath the map. Besides
choosing a name before you start the game, you get a list of the following:

•	 The allocated countries you have (and the name of the player who hit a
single country already)

•	 The list of other players (and their countries you already hit)
•	 The list of losers (players whose countries were all hit)

You can use the input field to type a country's name, or you can click on a country
inside the map. However, there is one limitation with international users. Google
Maps automatically uses the locale of the web browser to define the writing of
the countries. So, a German browser, for example, uses the German writing of a
country when you click on the map. But ICEmapper can only use English names
for comparisons.

Google Maps only allows hardcoding of the locale it will use as a part of the
<script> tag URL. But it does not support a change of the locale during runtime
via JavaScript. The URL parameter does not work like expected. So, you may have
to change your default web browser locale to English, or type the countries' names
by hand. The input accepts and matches partial country names.

The application checks your country suggestion after clicking on the Check button.
If you lose the game, the Check button is hidden. So, you have to click on Leave
Game to become a part of another game.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[253]

Object model
ICEmapper implements a classic client-server model:

Web Browser

<<Client>>
Game

1
1

1

1 1

1

5 10..*

allocated

hit 0..*

0..*

0..1

current existing

<<Server>>
MultiUserGame

Player Country

<<AJAX Push>>
SessionRenderer

Each Player who corresponds to a Web Browser instance is managed by a Game
client. It is implemented as a backing bean for the example page. The client primarily
manages the Country relations, which we have seen beneath the map in the
screenshot above.

To get a multiuser context, the MultiUserGame exists. It helps Game to describe
contexts that exist between players. MultiUserGame is also used to initiate new
players, or to describe the total of all countries.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[254]

Client side
We start by taking a look at the ICEcube example page that can be found at /src/
main/webapp/icecube/push/game.xhtml. The code is separated into sections,
each with its own description. Look at the following:

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:t="http://myfaces.apache.org/tomahawk"
 xmlns:icefusion="http://icefusion.googlecode.com/icefusion"
 xmlns:m="http://code.google.com/p/gmaps4jsf/">
<body>
<ui:composition template="#{iceFusionConsts.templatePage}">
 <ui:define name="title">
 #{icecube['application.menu.push.game']}
 </ui:define>
 <ui:define name="content">
 #{icecube['application.menu.push.game.text']}
 <!-- Use ICEfaces config for gmaps4jsf -->
 <style type="text/css">
 .iceGmpMapTd div.gmap {width: 0px; height: 0px}
 .iceGmpMapTd {visibility: hidden}
 </style>
 <ice:gMap/>

Although we do not use the ICEfaces Google Map component for presentation
purposes, we added it to the code to use its initialization feature.

 <script>
 function clickedMap(marker, point) {
 if(!marker) {
 var pointString=point.lat()+ "," +
 point.lng();
 var geocoder = new GClientGeocoder();
 geocoder.getLocations(pointString,
 calculateCountry);
 }
 }
 function calculateCountry(response) {

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[255]

 var country;
 if (!response ||
 response.Status.code != 200) {
 country="None";
 }
 else {
 if (response.Placemark[0]
 .AddressDetails == undefined) {
 country="None";
 }
 else {
 country=response.Placemark[0]
 .AddressDetails.Country
 .CountryName;
 }
 }
 document.getElementById(
 "gmapGameForm:country").value=country;
 }
 </script>

The clickedMap() JavaScript method takes the position of a mouse click in the map
and calculates a country name. The name is set in the Country edit field so that it can
be used for the game to Check.

 <ice:form id="playerGameForm"
 rendered="#{game.player eq null}">
 <ice:panelGrid columns="3">
 <ice:outputText value="#{icecube[
 'application.menu.push.game.player
 .text']}" />
 <ice:inputText id="name" value="#{game.name}"
 required="true"/>
 <ice:commandButton value="#{icecube[
 'application.menu.push.game.player
 .button']}"
 action="#{game.addPlayer}" />
 </ice:panelGrid>
 </ice:form>

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[256]

If the Game client is in its initialization phase, it shows a form that allows setting
the player name in the Your Name in the Game edit field.

 <ice:form id="gmapGameForm" rendered=
 "#{game.player ne null and
 !game.playerNotAddedMessage.rendered}">
 <m:map id="gmapGame" jsVariable="gmapGameJS"
 width="930" height="400" zoom="2"
 autoReshape="true" type="G_NORMAL_MAP"
 renderOnWindowLoad="false">
 <ui:repeat var="country" value=
 "#{game.countriesMap}" >
 <m:marker address="#{country.key}">
 <m:icon imageURL="#{country.value}"
 width="28" height="28"/>
 </m:marker>
 </ui:repeat>
 <m:mapControl name="GLargeMapControl"
 position="G_ANCHOR_TOP_LEFT"/>
 <m:mapControl name="GScaleControl"
 position="G_ANCHOR_BOTTOM_LEFT"
 offsetWidth="70"/>
 <m:mapControl name="GMapTypeControl"
 position="G_ANCHOR_TOP_RIGHT"/>
 <m:eventListener eventName="click"
 jsFunction="clickedMap"/>	
 </m:map>

We use an alternative Google Maps component here that is based on the GMaps4JSF
implementation (http://code.google.com/p/gmaps4jsf/). Although the
ICEfaces component delivers enough comfort to present a map, it lacks support
for interactivity. ICEmapper uses the map to select countries. This cannot be
implemented with the current ICEfaces component in a short time.

Interesting with the <m:map> tag is the support for event handling. The <m:
eventListener> allows us to define the JavaScript function, clickedMap(), which
handles the country selection and delivery to the edit field. It would have been
possible to have an automatic check after a click on a country in the map. However,
with the current implementation, we are also able to use a classic string input for a
country check.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[257]

The output for the markers is given through <ui:repeat> and <m:marker>.
The backing bean delivers a Map<Country_name,Image_url> structure that handles
all contexts. Which kind of image is shown for a certain country is calculated through
MultiUserGame.

 <ice:panelGrid columns="1">
 <ice:outputText value="#{icecube[
 'application.menu.push.game.player.status
 .name']}: #{game.name}" />
 <ice:outputText value="#{icecube[
 'application.menu.push.game.player
 .status.countries']}:
 #{game.countries}" />
 <ice:outputText value="#{icecube[
 'application.menu.push.game.player.status
 .countries.hit']}:
 #{game.countriesHit}" />
 <ice:outputText value="#{icecube[
 'application.menu.push.game.player.status
 .losers']}: #{game.losers}" />
 </ice:panelGrid>
 <ice:panelGrid columns="3">
 <ice:outputText value="#{icecube[
 'application.menu.push.game.country
 .text']}" />
 <ice:inputText id="country" value=
 "#{game.country}" />
 <ice:commandButton value="#{icecube[
 'application.menu.push.game.country
 .button']}" action="#{game.checkCountry}"
 rendered="#{!game.loser}"/>
 </ice:panelGrid>
 <ice:commandButton value="#{icecube[
 'application.menu.push.game.leave.button']}"
 action="#{game.deletePlayer}" />
 </ice:form>

The status information shows the state of the game from the player's perspective.
A player can leave the game at any time using the Leave Game button.

 <icefusion:messageDialog title="#{icecube[
 'application.menu.push.game.player.message
 .notAdded.title']}" text="#{icecube[
 'application.menu.push.game.player.message
 .notAdded.text']}" rendered="#{game

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[258]

 .playerNotAddedMessage.rendered}"
 eventBean="#{game.playerNotAddedMessage}"/>
 <icefusion:messageDialog title="#{icecube[
 'application.menu.push.game.player.message.hit
 .title']}" text="#{icecube['application
 .menu.push.game.player.message.hit.text']}"
 rendered="#{game.playerHitMessage.rendered}"
 eventBean="#{game.playerHitMessage}">
 </icefusion:messageDialog>
 </ui:define>
</ui:composition>
</body>
</html>

The game uses two messageDialogs to inform the player about the following:

•	 The problem in letting him be a part of the game because of the absence
of free countries

•	 A hit of a country of another player

Message handlers
The corresponding handler beans are implemented as inner classes of the backing
bean for the example page. We will have a look at their implementation first. The
code can be found at /src/main/java/com/googlecode/icecube/push/game/
Game.java, as shown:

package com.googlecode.icecube.push.game;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
import com.googlecode.icefusion.ui.commons.dialog
 .IMessageDialog;
public class Game extends BackingBeanForm {
 private String name;
 // inner classes for messageDialogs
 public class PlayerNotAddedMessage implements
 IMessageDialog {
 private Boolean rendered = false;
 public String messageDialogButtonOk() {
 this.setRendered(false);
 setName(null);
 return null;
 }
 }

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[259]

 public class PlayerHitMessage implements IMessageDialog {
 private Boolean rendered = false;
 public String messageDialogButtonOk() {
 this.setRendered(false);
 multiUserGame.push();
 return null;
 }
 }
}

The PlayerNotAddedMessage inner class manages the situation when the Player
cannot be added to an ongoing game. In this situation, the Player already has set
a user name to use. This is reset in the messageDialogButtonOK() event handler.

The PlayerHitMessage manages a hit of a Country of another Player. In this
situation, we have to initiate an AJAX Push rendering, so that all status messages
in the current clients are updated. Although the rendering definitions are managed
by MultiUserGame, we indeed leverage the global character of the AJAX Push
and initiate the rendering outside of the context holder. For a better abstraction,
MultiUserGame offers the push() method.

Button handlers
The example page offers different buttons to initiate a behavior (/src/main/java/
com/googlecode/icecube/push/game/Game.java):

package com.googlecode.icecube.push.game;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
public class Game extends BackingBeanForm {
 private String name;
 private Player player;
 private String country;
 public String addPlayer() {
 try {
 this.setPlayer(this.multiUserGame.addPlayer(
 this.name));
 // Maybe the name was adapted
 this.setName(this.getPlayer().getName());
 this.multiUserGame.push();
 } catch (NotEnoughCountriesException e) {
 this.getPlayerNotAddedMessage().setRendered(
 true);
 }
 return null;
 }

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[260]

 public String deletePlayer() {
 this.multiUserGame.deletePlayer(this.getPlayer());
 this.setPlayer(null);
 this.setName(null);
 this.multiUserGame.push();
 return null;
 }
 public String checkCountry() {
 Player playerHit = this.multiUserGame.checkCountry(
 this.getPlayer(), this.getCountry());
 if (playerHit != null) {
 this.playerHitMessage.setRendered(true);
 this.multiUserGame.push();
 }
 return null;
 }
}

The addPlayer()method tries to add the Player to an ongoing game.
If this initialization works, an update of all clients has to be done. If the
NotEnoughCountriesException is thrown, the corresponding messageDialog
is activated.

DeletePlayer() manages the Leave Game button. It resets all settings of the
Player and updates the status information of all the clients.

CheckCountry() takes the input of the current edit field for the Country and lets
MultiUserGame check if there are any matches. If the Player realizes a hit, the
corresponding messageDialog is activated and all of the clients get an update.

Status information
The status information that is shown beneath the map is calculated by
MultiUserGame. So, Game only outputs the results (/src/main/java/com/
googlecode/icecube/push/game/Game.java).

package com.googlecode.icecube.push.game;
import com.googlecode.icefusion.ui.commons.BackingBeanForm;
public class Game extends BackingBeanForm {
 private Player player;
 public List<Map.Entry<String, String>>
 getCountriesMap() {

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[261]

 return this.multiUserGame.getCountriesMap(
 this.getPlayer());
 }
 public String getCountries() {
 return this.multiUserGame.getCountries(
 this.getPlayer());
 }
 public String getCountriesHit() {
 return this.multiUserGame.getCountriesHit(
 this.getPlayer());
 }
 public String getLosers() {
 return this.multiUserGame.getLosers(
 this.getPlayer());
 }
}

Server side
The server-side part of the implementation is used as player independent as well
as session independent. The corresponding Spring bean does not define any scope
(what corresponds to the application scope). This is necessary to keep and manage
the status of the current game globally.

The implementation works with a dynamic list of players. So, it is possible to add
or delete players during runtime without an influence on the general game behavior.

MultiUserGame manages calculations that are necessary to evaluate the relations
between each Player. The data model describes these as shown in the next image:

1

1 5 10..*

allocated

hit 0..*

0..*

0..1

Player Country

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[262]

The allocated composition defines the countries the Player possesses. A Player starts
with five countries when he becomes a part of the game. The hit relation is added
later and describes which of those countries get a relation with another Player. If all
of his countries have such a relation, the Player has lost.

If we have a look at the status information again, the calculation looks like this:
•	 The list of allocated countries you have (and the name of the player who

hit a single country already)
°° Take the list of my countries. Generate a list of names and

add a player's name to it if a relation to another player exists.
•	 The list of other players (and their countries you already hit)

°° Have a look at the global players list and filter Me. Generate a
list of names and a list of country names for each player when
you find Me as a reference set for a country.

•	 The list of losers (players whose countries were all hit)
°° Take the list of global players. Generate a name if all countries

of a player have a relation to another player set.

With this description, the loops in the corresponding methods should be easy to
understand. The code for MultiUserGame.java is as shown (/src/main/java/com/
googlecode/icecube/push/game/MultiUserGame.java).

public String getCountries(Player player) {
 String countriesList = "";
 int index = players.indexOf(player);
 if (index == -1) {
 return countriesList;
 }
 Map<String, Player> countries =
 players.get(index).getCountries();
 for (Entry<String, Player>country : countries.entrySet()) {
 countriesList += country.getKey();
 if (country.getValue() != null) {
 countriesList += "[" +
 country.getValue().getName() + "]";
 }
 countriesList += ", ";
 }
 String returnString = (countriesList.length() < 2) ?
 countriesList : countriesList.substring(0,
 countriesList.length() - 2);
 return returnString;

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Chapter 10

[263]

}
public String getCountriesHit(Player currentPlayer) {
 String hitList = "";
 for (Player player : players) {
 if (!player.equals(currentPlayer)) {
 hitList += player.getName();
 if (player.getCountries().values().contains(
 currentPlayer)) {
 hitList += "[";
 for (Entry<String, Player> country :
 player.getCountries().entrySet()) {
 if (country.getValue() != null &&
 currentPlayer.equals(country.getValue())) {
 hitList += country.getKey() + ", ";
 }
 }
 hitList = hitList.substring(0,
 hitList.length() - 2);
 hitList += "]";
 }
 hitList += ", ";
 }
 }
 return (hitList.length() < 2) ? hitList :
 hitList.substring(0, hitList.length() - 2);
}
public String getLosers(Player currentPlayer) {
 String losersList = "";
 for (Player player : players) {
 if (!player.equals(currentPlayer) &&
 !player.getCountries().values().contains(null)) {
 losersList += player.getName() + ", ";
 }
 }
 return (losersList.length() < 2) ? losersList :
 losersList.substring(0, losersList.length() - 2);
}

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Push Technology

[264]

Summary
AJAX Push is a flexible and powerful tool to establish a server-side rendering
infrastructure. It makes no difference if we use it in a single-user context such
as the progressDialog, or in a multiuser context such as the ICEmapper game.

The use of the SessionRenderer is pretty easy. You can use it inside a single
backing bean, or in a more global context when different beans initiate a rendering
update alternately. In any case, the usage of the SessionRenderer is transparent.

With the end of this chapter, we have discussed all relevant aspects of
the ICEfaces framework to implement desktop-like web applications. To
use this know-how successfully in your project, have a deeper look at the
implementation and configuration details of ICEcube/ICEfusion. The
implementation allows you to use it both as a blueprint for a first prototype
and for a concrete productive implementation.

Good luck!

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Index
A
ActionListener

about 86
definition 87

addPlayer()method 260
administration 185
AIR 11
AJAX

about 10
AJAX bridge 160
AJAX Push

about 237
architecture 239
programming model 238
uses 238

Apache MyFaces 12
Apache Tomahawk 45, 46
Apache Tomcat 15
API 8
AppFuse, Eclipse web project samples 43
application scope, Spring 241
application server support

about 15
Apache Tomcat 15
BEA Weblogic Server 15
IBM Websphere Application Server 15
JBoss Application Server 15
Oracle Application Server Container for

J2EE [OC4J] 15
SAP NetWeaver 15
Sun GlassFish / Sun Java System Applica-

tion Server 15
Webtide Jetty 15

attribute parameters 218, 220

attribute references 220-222
autocomplete

about 121-125
completer component 122
ICEcube example code 122
valueBean implementation 123

B
backing bean injection

Facelets attribute references, accessing 226,
227

ICEfaces components, using for parameter
passing 226

interfaces, using for parameter passing
223-225

via, Facelets attribute 223
baseList attribute 227
BEA Weblogic Server 15
buttonCancel() method 249
buttonOK() method 248

C
calendar

about 178
pop-up mode 178
simple mode 178

cancel attribute 249
chart

chartabout 146
chartexample 147
chartlabeling 150
charttypes 147

CheckCountry() 260
clickedMap() JavaScript method 255

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[266]

click, partial submit supporting tags 168
client-server model, ICEmapper

server-side part 261
client-side, ICEmapper

button handlers 259
message handlers 258
status information 260

COBRA 8
collapsible panel

about 93
page definition 95, 96

community 18
Community Server, MySQL Database Man-

agement System
installing 28-31

completer component
about 223

components, ergonomic interface design 16
configuration, ICEfaces

about 240
deployment descriptor 240
push server 241
Spring scopes 240

connection status
connection statusabout 114-117

CSS 10
customer-specific skins 17

colors and fonts 207
ICEfaces components 208, 209
images 205, 207

customization 186
customization features

about 186
email address 187
language 188
number format 188
password 186
skinning 189
units 188
username 187

D
data table component

about 131
dynamic implementation 135
JSF featues 134

pagination 134, 135
data table componentstatic implementation

131-134
dataTable component 226
DeletePlayer() 260
Dependency Injection 9
desktop technology 47
DOM 18
drag-and-drop 126-129
dynamic implementation, data table com-

ponent
about 135-137
columns, sorting 138-140
scaling issue 141
sortable columns 138

dynamic pulldown menu
about 82
ActionListener 86, 87
definition 82
extending 83, 84
menu data structure 84-86

E
Eclipse configurations

about 32
ICEfaces plugin 33
ICEfaces plugin, downloading 33
ICEfaces plugin, installing 34, 35
JDK 35
Jetty server support 36
Maven 2 support 35

Eclipse ecosystem 23
Eclipse IDE

about 23
customized distributions 23
downloading 26
download services 23
download services, advantages 23
ICEfaces book profile, at Yoxos 25
ICEfaces book profile, customizing 26
installation 26
Pulse download service 24
Yoxos download service 25

Eclipse web project samples
about 37
AppFuse 43

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[267]

edoras famework 43
ICEcube 44
ICEfaces projects 37, 38, 39
ICEfaces projects, Run on server configura-

tion 40
ICEfaces project, with Facelets 40, 42
ICEfusion 43
JEE development stack 42

edoras famework, Eclipse web project sam-
ples 43

EJB 8
email address

customizing 187
eventBean

about 222
modes 222

Expression Language term 192

F
Facelets 14

about 211
advantages 211
features 212

Facelets component
implementing 216

Facelets component reuse 228-231
Facelets templating

about 57
page template 58

FavIcon 199
form field processing 162
forms

about 159
form field processing 162
managing, AJAX bridge used 160
managing, partial submit used 160
partial submit and JSF lifecycle 162

framework integration challenges
about 13
ICEfaces way 14
issues 13

frontend development
about 9
AJAX 10
JSF 10

RIA 11
Struts 9

G
getLocale() 193
getSkin() 199
global language switcher 194, 195
GMaps4JSF 153
Google Maps

about 150-152
lincense 152

GUI designer 54
GUI Tools, MySQL Database Management

System
installing 32

H
Hibernate 45
hint component 219

I
IBM Websphere Application Server 15
ICEcube

language management 189
skin management 196

ICEcube, Eclipse web project samples
about 44
Apache Tomahawk 45
architecture 44
building blocks 44
Hibernate 45
JSTL 46
Spring framework 45

ICEfaces
about 7
AJAX Push 237
calendar 178
charts 146
configuration 240
data table 131
dynamic data table 135
forms 159
Google Maps 150
media player 153

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[268]

rich text editor 180
tree presentation 142-146
validation, implementing 168

icefaces.css 198
ICEfaces, Eclipse web project samples

about 37, 38, 39
run on server configuration 40

ICEfaces features
about 12
community 18
components for ergonomic interface design

16
customer-specific skins 17
interoperability 13
JSF reference implementation support 12
optimized page updates 17
server-initiated client-updates 17

ICEfaces plugin
about 33
downloading 33-35
installing 33

ICEfaces project with Facelets, Eclipse web
project samples 40-42

ICEfaces push server
about 241
deploying 242
Jetty configuration file 243
Jetty configuration, used by POM 243
production 241
WAR file 243

ICEfusion
code 69
code, for dynamic tag 71
code, for Facelets tag 69
code, for navigation tag 70
code, for static menu tag 70
configuration files 67
footer code 72
menu icons 71
page layout files 67, 68
running 66
templating 66

ICEfusion code base 73
icefusion.css 198

ICEfusion dialog tags
about 102
message dialog 102
question dialog 110

ICEfusion, Eclipse web project samples 43
ICEfusion files 67
ICEfusion messageDialog component 203
ICEfusion skinning

icefaces.css 198
page.css 198
style.css 198

ICEfusion skin presentation 200-202
ICEmapper

about 251, 252
client-server model 253
object model 253

ICEsoft
application server support 15
framework integration challenges 13
IDE plugins 15
portal server support 16

IDE plugins 15
initialization

via, backing bean attributes 231-235
ivia, Facelets attributes 231-235

interface layout
about 54
drafts, creating with mockup tool 54
layout design 55

interface layout design
about 55
content 56, 57
footer 57
header 56
implementing, Facelets templating used 57
main navigation 56

IProgressDialog interface 246

J
Java Community Process. See JSF
Java Development Kit. See JDK
Java Enterprise

history 7
past issues 7

JavaServer Faces 1.x 14

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[269]

JBoss Application Server 15
JBoss Seam 14
JDK

about 21
downloading 22
installing 22

JEE development stack, Eclipse web project
samples 42

Jetty web container
about 27
downloading 28
installing 28
using, in Maven 2 build system 28

JSF 10
JSF implementations

about 12
Apache MyFaces 12
JSF Reference Implementation 12
Sun Microsystems RI 12
vendor-specific add-ons 12

JSP Standard Tag Library 46
JSTL 46

L
language

customizing 188
language management

about 189, 190
Expression Language term 192
global language switcher 194

language selector 192
Liferay Portal 14
listener() method 228
login component 228
login form component

about 168
functions 168

login form, with validation 172-174
login tag

seperating, in parts 170
using 169

M
Maven 2 build system

about 26
downloading 27

installing 27
media player

about 153-156
features 155
flash-based application 153
supporting formats 153, 154

messageDialogButtonOK() event handler
259

message dialog, ICEfusion dialog tags
about 102-110
example 103-110

messageDialogs 258
MyFaces Tomahawk 14
MySQL Database Management System

about 28
Community Server, installing 28-31
GUI Tools, installing 32

N
navigation and layout components

about 75
dynamic pulldown menu 82
static pulldown menu 75

number format
customizing 188

O
object model, ICEmapper 253
OccamOs razor

applying 49
oversimplification 50
reduction 49

open source frameworks, ICEsoft
Facelets 14
JavaServer Faces 1.x 14
JBoss Seam 14
Liferay Portal 14
MyFaces Tomahawk 14
Spring Web Flow 14

optimized page updates 17
Oracle Application Server Container for

J2EE [OC4J] 15

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[270]

P
page.css 198
page navigation, static pulldown menu

about 81, 82
page template, Facelets templating

about 58-62
defining 58
Hello World! example 65
using 62-64

panelPopup tag
about 100, 101
features 100, 101

partial submit 160-161
partial submit supporting tags

about 164
click 168
selection 164, 166
text entry 164

password
customizing 186

PlayerHitMessage 259
PlayerNotAddedMessage inner class 259
POJO 8
pop-up dialog boxes

about 99
ICEfusion dialog tags 102
panelPopup tag 100

pop-up menus
about 87
defining 88, 89

Portal server support 16
ProgressDialog component 246
ProgressDialog tag

about 244
backing bean 247
example 245-249
using, in AJAX Push 244-250

progress() event 246
Project Object Model (POM) 27
push() method 259

Q
questionDialog component 233, 234
question dialog, ICEfusion dialog tags

about 110-113
example 111-113

R
RCP 9
rendered attribute 234
resource bundles, static pulldown menu

about 78
ICEcube 78
ICEfusion 78

revival of the desktop
about 47
challenges 49
Occamrs razor, applying 49
software ergonomics 48
user interface design principles 50

RIA 11
Rich Internet Applications. See RIA
rich text editor

about 180
presentation modes 180
reduced toolbar presentation 181
standard toolbar presentation 180

S
SAP NetWeaver 15
selection, partial submit supporting tags

164-167
SelectItem 227
server-initiated client-updates 17
server-side, ICEmapper 261-263
SessionRenderer

about 238
uses 239

session scope, Spring 240
show attribute 234
showMessageCustomHandler() method 106
showMessage method 106
skin context, skin management 199-200

 199, 200
skin folders, skin management 196
skin management

about 196
customer-specific skins, implementing 204
skin context 199
skin folders 196
skinnable page template 197
skinning, in components 203

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[271]

skin selector 200
skinnable page template, skin management

197, 198
skinning

customizing 189
skin selector, skin management

about 200
ICEfusion skin 200
ICEsaurian skin 200
implementing 200

Spring framework 45
Spring scopes, ICEfaces configuration

about 240
application scope 241
session scope 240

Spring Web Flow 14
startProcess()method 248, 249
static implementation, data table component

about 131
example 132

static pulldown menu
about 75, 76
defining, through different tags 76
page navigation 81
resource bundles 78
uses 78

Struts
Strutsabout 9

style.css 198
Sun GlassFish / Sun Java System Applica-

tion Server 15

T
tabbed panel

about 89
defining 91, 92
detailed article 90
example image 90

taglibs 212, 213
tags

about 214, 215
attribute parameters 218
attribute references 220
backing bean injection, via Facelets

attribute 223
component logic 216

dynamicMenu backing bean 218
dynamicMenu component 217
Facelet component 216
initialization, via backing bean attributes

231-235
initialization, via Facelets attributes 231-235
navigation component 217
reuse, Facelets components 228

templating, ICEfusion 66
text entry, partial submit supporting tags

164
tools

Eclipse IDE 23
JDK 21
Jetty web container 27
Maven 2 build system 26
MySQL Database Management System 28

tooltip
about 117
features 117
panelTooltip tag 119

tree 142-146
tree model 142

U
units

customizing 188
user interface design principles

about 50
conformity with user expectations 51
controllability 51
error tolerance 52
self-descriptiveness 51
suitability for individualization 53
suitability for learning 53
suitability for the task 50

username
customizing 187

V
validation dialog 174, 175
validationDialog component 220
validation implementation

about 168
login form component 168

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

[272]

login form, with validation 172
validation dialog 174
validation model 172
validators 177

validation model 172
validators 177
valueBean attribute 224
visible attribute 226

W
Webtide Jetty 15

Y
Yoxos download service 25

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Thank you for buying
ICEfaces 1.8: Next Generation
Enterprise Web Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing ICEfaces 1.8: Next Generation Enterprise Web Development,
Packt will have given some of the money received to the ICEfaces project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Spring Web Flow 2 Web
Development
ISBN: 978-1-847195-42-5 Paperback: 272 pages

Master Spring's well-designed web frameworks to
develop powerful web applications

1.	 Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2.	 Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces

3.	 Stay up-to-date with the latest version of Spring
Web Flow

Spring Persistence with Hibernate
ISBN: 978-1-849510-56-1 Paperback: 340 pages

Build robust and reliable persistence solutions for
your enterprise Java application

1.	 Get to grips with Hibernate and its
configuration manager, mappings, types,
session APIs, queries, and much more

2.	 Integrate Hibernate and Spring as part of your
enterprise Java stack development

3.	 Work with Spring IoC (Inversion of Control),
Spring AOP, transaction management, web
development, and unit testing considerations
and features

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

Grok 1.0 Web Development
ISBN: 978-1-847197-48-1 Paperback: 250 pages

Create flexible, agile web applications using the
power of Grok—a Python web framework

1.	 Develop efficient and powerful web
applications and web sites from start to finish
using Grok, which is based on Zope 3

2.	 Integrate your applications or web sites with
relational databases easily

3.	 Extend your applications using the power of
the Zope Toolkit

Tapestry 5: Building Web
Applications
ISBN: 978-1-847193-07-0 Paperback: 280 pages

A step-by-step guide to Java Web development with
the developer-friendly Apache Tapestry framework

1.	 Latest version of Tapestry web development
framework

2.	 Get working with Tapestry components

3.	 Gain hands-on experience developing an
example site

4.	 Practical step-by-step tutorial

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by andrew mayo on 7th November 2009

2406 W. 16th Street, , Wilmington, , 19806

Download at WoweBook.Com

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Next Generation Java Development
	Past problems
	State of the art
	Frontend development
	Struts
	JSF
	AJAX
	Rich Internet Applications (RIA)

	ICEfaces features
	JSF reference implementation support
	Interoperability
	Framework integration challenges
	IDE plugins
	Application server support
	Portal server support

	Components for ergonomic interface design
	Customer-specific skins
	Server-initiated client updates
	Optimized page updates
	Community

	Summary

	Chapter 2: Development Environment
	Tools
	Java Development Kit (JDK)
	Installation

	Eclipse IDE
	Customized distributions
	Pulse download service
	Yoxos download service
	The ICEfaces book profile at Yoxos
	Installation
	Customization of the ICEfaces book profile

	Maven 2 build system
	Installation

	Jetty web container
	Use in Maven 2 Environments
	Installation

	MySQL Database Management System
	Installation of Community Server
	Installation of GUI Tools

	Additional Eclipse configurations
	ICEfaces plugin
	Installation

	Maven 2 and the JDK
	Jetty server support

	The Eclipse web project samples
	ICEfaces
	The Run on server configuration

	ICEfaces and Facelets
	The JEE development stack
	AppFuse
	The edoras framework
	ICEfusion
	ICEcube
	The Spring framework
	Hibernate
	Apache Tomahawk
	JSP Standard Tag Library (JSTL)

	Summary

	Chapter 3: User Interface Design
	Revival of the desktop
	Software ergonomics
	Challenges
	Apply Occam's razor
	Reduction
	Oversimplification

	User interface design principles
	Suitability for the task
	Self-descriptiveness
	Controllability
	Conformity with user expectations
	Error tolerance
	Suitability for individualization
	Suitability for learning

	Interface layout
	Create drafts with a mockup tool
	Layout design
	Header
	Main navigation
	Content
	Footer

	Facelets templating
	The page template
	Using the template

	The templating in ICEfusion
	Running ICEfusion
	The ICEfusion files

	Summary

	Chapter 4: Components for Navigation and Layout
	Static pull-down menu
	Resource bundles
	Page Navigation

	Dynamic pull-down menu
	ActionListener

	Pop-up menu
	Tabbed panel
	Collapsible panel
	Summary

	Chapter 5: Components for Feedback and Behavior
	Pop-up dialog boxes
	The panelPopup tag
	ICEfusion dialog tags
	MessageDialog
	ErrorDialog
	QuestionDialog

	Connection status
	Tooltip
	Autocomplete
	Drag-and-drop
	Summary

	Chapter 6: Components for Data Presentation and Multimedia
	Data table
	Pagination

	Dynamic data table
	Sortable columns
	Lazy loading

	Tree
	Chart
	Google Maps
	License
	GMaps4JSF

	Media Player
	Summary

	Chapter 7: Components for Data Creation and Selection
	Forms
	AJAX bridge and partial submit
	Partial submit and the JSF lifecycle
	Form field processing
	Partial submit supporting tags
	Text entry
	Selection
	Click

	Validation with dialogs
	Login form component
	Validation model
	Login form with validation
	Validation dialog
	Validators

	Calendar
	Rich text editor
	Summary

	Chapter 8: User Interface Customization
	Administration
	Customization
	Password
	Username
	Email address

	Units
	Number format
	Language
	Skinning

	Language management
	Multilingual page template
	Language selector
	Global language switcher

	Skin management
	Skin folders
	Skinnable page template
	Skin context
	Skin selector
	Skinning in components
	Designing your own skins
	Images
	Colors and fonts
	ICEfaces components

	Summary

	Chapter 9: Reusable Facelets Components
	Facelets
	Taglibs
	Tags
	Component logic
	Attribute parameters
	Attribute references
	Backing bean injection through the Facelets attribute
	Using interfaces for parameter passing
	Hiding the ICEfaces components used for parameter passing
	Accessing the Facelets attribute references

	Facelets component reuse
	Initialization through Facelets or backing bean attributes

	Summary

	Chapter 10: Push Technology
	AJAX Push
	Programming model
	Architecture

	Configuration
	Deployment descriptor
	Spring scopes
	Push server
	Production
	Deployment
	ICEcube/ICEfusion

	The ProgressDialog tag
	ICEmapper
	Object model
	Client side
	Message handlers
	Button handlers
	Status information

	Server side

	Summary

	Index

