
Lecture Notes in Computer Science 1851
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Magnús M. Halldórsson (Ed.)

Algorithm Theory –
SWAT 2000

7th Scandinavian Workshop on Algorithm Theory
Bergen, Norway, July 5-7, 2000
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Magnús M. Halldórsson
University of Iceland and University of Bergen
Taeknigardur, 107 Reykjavik, Iceland
E-mail: mmh@hi.is

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Algorithm theory : proceedings / SWAT ’2000, 7th Scandinavian Workshop
on Algorithm Theory, Bergen, Norway, July 5 - 7, 2000, Magnús M.
Halldórsson (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1851)
ISBN 3-540-67690-2

CR Subject Classification (1998): F.2, E.1, G.2, I.3.5, C.2

ISSN 0302-9743
ISBN 3-540-67690-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingräber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN: 10722125 06/3142 5 4 3 2 1 0

Preface

The papers in this volume were presented at SWAT 2000, the Seventh Scandina-
vian Workshop on Algorithm Theory. The workshop, which is really a conference,
has been held biennially since 1988, rotating between the five Nordic countries
(Sweden, Norway, Finland, Denmark, and Iceland). It also has a loose associa-
tion with the WADS (Workshop on Algorithms and Data Structures) conference
that is held in odd numbered years. SWAT is intended as a forum for researchers
in the area of design and analysis of algorithms. The SWAT conferences are coor-
dinated by the SWAT steering committee, which consists of B. Aspvall (Bergen),
S. Carlsson (Lule̊a), H. Hafsteinsson (U. Iceland), R. Karlsson (Lund), A. Lingas
(Lund), E. Schmidt (Aarhus), and E. Ukkonen (Helsinki).

The call for papers sought contributions in all areas of algorithms and data
structures, including computational geometry, parallel and distributed comput-
ing, graph theory, and computational biology. A total of 105 papers were sub-
mitted, out of which the program committee selected 43 for presentation. In
addition, invited lectures were presented by Uriel Feige (Weizmann), Mikkel
Thorup (AT&T Labs-Research), and Esko Ukkonen (Helsinki).

SWAT 2000 was held in Bergen, July 5-7, 2000, and was locally organized by
a committee consisting of Pinar Heggernes, Petter Kristiansen, Fredrik Manne,
and Jan Arne Telle (chair), all from the department of informatics, University
of Bergen.

We wish to thank all the referees who aided in evaluating the papers. We
also thank The Research Council of Norway (NFR) and the City of Bergen for
financial support.

July 2000 Magnús M. Halldórsson

VI Organization

Program Committee

Amotz Bar-Noy, Tel-Aviv Univ.
Luisa Gargano, Univ. of Salerno
Jens Gustedt, LORIA and INRIA Lorraine
Magnús M. Halldórsson, chair, U. Iceland and U. Bergen
Kazuo Iwama, Kyoto Univ.
Klaus Jansen, Univ. of Kiel
Jan Kratochv́ıl, Charles Univ.
Andrzej Lingas, Lund Univ.
Jaikumar Radhakrishnan, Tata Institute
R. Ravi, Carnegie Mellon Univ.
Jörg-Rudicher Sack, Carleton Univ.
Baruch Schieber, IBM Research
Sven Skyum, Univ. of Aarhus
Hisao Tamaki, Meiji Univ.
Jan Arne Telle, Univ. of Bergen
Esko Ukkonen, Univ. of Helsinki
Gerhard Woeginger, Technical Univ. Graz

Referees

Pankaj Agarwal
Helmut Alt
Larse Arge
David Avis
Luitpold Babel
Bruno Beauquier
Binay Bhattacharya
Therese Biedl
Andreas Björklund
Claudson Bornstein
Gerth Stølting Brodal
Eranda Çela
Timothy M. Chan
Joseph Cheriyan
Johanne Cohen
Artur Czumaj
Frank Dehne
Ingvar Eidhammer
Aleksei V. Fishkin
Éric Fleury
Fedor Fomin
Gudmund S. Frandsen
Leszek Ga̧sieniec

Laura Grigori
Joachim Gudmundsson
Bjarni V. Halldórsson
Mikael Hammar
Michael Houle
David Hutchinson
Rahul Jain
Jesper Jansson
Rolf Karlsson
T. Kavita
Jyrki Kivinen
Rolf Klein
Bettina Klinz
Jochen Könemann
Goran Konjevod
S. Krishnan
Christos Levcopoulos
Moshe Lewenstein
Alex Lopez-Ortiz
Ross McConnell
Ewa Malesinska
Monaldo Mastrolilli
Brian M. Mayoh

Jiri Matoušek
Peter Bro Miltersen
Gabriele Neyer
Anna Östlin
Rasmus Pagh
Jakob Pagter
Christian N. S. Pedersen
Marco Pellegrini
Cecilia M. Procopiuc
Wojtek Rytter
Fatma Sibel Salman
Sven Schuierer
Eike Seidel
Pranab Sen
Jop Sibeyn
Michiel Smid
Edyta Szymanska
Ariel Tamir
Santosh Vempala
S. Venkatesh
Alexander Wolff
Anders Yeo

Table of Contents

Invited Talks

Dynamic Graph Algorithms with Applications . 1
Mikkel Thorup (AT&T Labs-Research) and David R. Karger (MIT)

Coping with the NP-Hardness of the Graph Bandwidth Problem 10
Uriel Feige (Weizmann Institute)

Toward Complete Genome Data Mining in Computational Biology 20
Esko Ukkonen (University of Helsinki)

Data Structures

A New Trade-Off for Deterministic Dictionaries . 22
Rasmus Pagh (University of Aarhus)

Improved Upper Bounds for Pairing Heaps . 32
John Iacono (Rutgers University)

Maintaining Center and Median in Dynamic Trees . 46
Stephen Alstrup, Jacob Holm (IT University of Copenhagen),
and Mikkel Thorup (AT&T Labs–Research)

Dynamic Planar Convex Hull with Optimal Query Time
and O(log n · log logn) Update Time . 57

Gerth Stølting Brodal and Riko Jacob (University of Aarhus)

Dynamic Partitions

A Dynamic Algorithm for Maintaining Graph Partitions 71
Lyudmil G. Aleksandrov (Bulgarian Academy of Sciences)
and Hristo N. Djidjev (University of Warwick)

Data Structures for Maintaining Set Partitions . 83
Michael A. Bender, Saurabh Sethia, and Steven Skiena
(SUNY Stony Brook)

Graph Algorithms

Fixed Parameter Algorithms for Planar Dominating Set
and Related Problems . 97

Jochen Alber (Universität Tübingen), Hans L. Bodlaender (Utrecht
University), Henning Fernau, and Rolf Niedermeier (Universität Tübingen)

VIII

Embeddings of k-Connected Graphs of Pathwidth k . 111
Arvind Gupta (Simon Fraser University), Naomi Nishimura
(University of Waterloo), Andrzej Proskurowski (University
of Oregon), and Prabhakar Ragde (University of Waterloo)

On Graph Powers for Leaf-Labeled Trees . 125
Naomi Nishimura, Prabhakar Ragde (University of Waterloo),
and Dimitrios M. Thilikos (Universitat Politècnica de Catalunya)

Recognizing Weakly Triangulated Graphs by Edge Separability 139
Anne Berry, Jean-Paul Bordat (LIRMM, Montpellier)
and Pinar Heggernes (University of Bergen)

Online Algorithms

Caching for Web Searching . 150
Bala Kalyanasundaram (Georgetown University), John Noga
(Technical University of Graz), Kirk Pruhs (University of Pittsburgh),
and Gerhard Woeginger (Technical University of Graz)

On-Line Scheduling with Precedence Constraints . 164
Yossi Azar and Leah Epstein (Tel-Aviv University)

Scheduling Jobs Before Shut-Down . 175
Vincenzo Liberatore (UMIACS)

Resource Augmentation in Load Balancing . 189
Yossi Azar, Leah Epstein (Tel-Aviv University), and Rob van Stee
(Centre for Mathematics and Computer Science, CWI)

Fair versus Unrestricted Bin Packing . 200
Yossi Azar (Tel-Aviv University), Joan Boyar, Lene M. Favrholdt,
Kim S. Larsen, and Morten N. Nielsen (University of Southern
Denmark)

Approximation Algorithms

A d/2 Approximation for Maximum Weight Independent Set in d-Claw
Free Graphs . 214

Piotr Berman (Pennsylvania State University)

Approximation Algorithms for the Label-CoverMAX and Red-Blue Set
Cover Problems . 220

David Peleg (Weizmann Institute)

Approximation Algorithms for Maximum Linear Arrangement 231
Refael Hassin and Shlomi Rubinstein (Tel-Aviv University)

IX

Approximation Algorithms for Clustering
to Minimize the Sum of Diameters . 237

Srinivas R. Doddi, Madhav V. Marathe (Los Alamos National
Laboratory), S. S. Ravi (SUNY Albany), David Scot Taylor (UCLA),
and Peter Widmayer (ETH)

Matchings

Robust Matchings and Maximum Clustering . 251
Refael Hassin and Shlomi Rubinstein (Tel-Aviv University)

The Hospitals/Residents Problem with Ties . 259
Robert W. Irving, David F. Manlove, and Sandy Scott (University
of Glasgow)

Network Design

Incremental Maintenance of the 5-Edge-Connectivity Classes of a Graph . . 272
Yefim Dinitz (Ben-Gurion University) and Ronit Nossenson
(Technion)

On the Minimum Augmentation of an �-Connected Graph
to a k-Connected Graph . 286

Toshimasa Ishii and Hiroshi Nagamochi (Toyohashi University
of Technology)

Locating Sources to Meet Flow Demands in Undirected Networks 300
Kouji Arata (Osaka University), Satoru Iwata (University of Tokyo),
Kazuhisa Makino, and Satoru Fujishige (Osaka University)

Improved Greedy Algorithms for Constructing Sparse Geometric Spanners 314
Joachim Gudmundsson, Christos Levcopoulos (Lund University),
and Giri Narasimhan (University of Memphis)

Computational Geometry

Computing the Penetration Depth of Two Convex Polytopes in 3D 328
Pankaj K. Agarwal (Duke University), Leonidas J. Guibas (Stanford
University), Sariel Har-Peled (Duke University), Alexander Rabinovitch
(Synopsys Inc.), and Micha Sharir (Tel Aviv University)

Compact Voronoi Diagrams for Moving Convex Polygons 339
Leonidas J. Guibas (Stanford University), Jack Snoeyink (University
of North Carolina), and Li Zhang (Stanford University)

Efficient Expected-Case Algorithms for Planar Point Location 353
Sunil Arya, Siu-Wing Cheng (Hong Kong University of Science and
Technology), David M. Mount (University of Maryland), and H. Ramesh
(Indian Institute of Science)

X

A New Competitive Strategy for Reaching the Kernel
of an Unknown Polygon . 367

Leonidas Palios (University of Ioannina)

Strings and Algorithm Engineering

The Enhanced Double Digest Problem for DNA Physical Mapping 383
Ming-Yang Kao, Jared Samet (Yale University), and Wing-Kin Sung
(University of Hong Kong)

Generalization of a Suffix Tree for RNA Structural Pattern Matching 393
Tetsuo Shibuya (IBM Tokyo Research Laboratory)

Efficient Computation of All Longest Common Subsequences 407
Claus Rick (Universität Bonn)

A Blocked All-Pairs Shortest-Paths Algorithm . 419
Gayathri Venkataraman, Sartaj Sahni, and Srabani Mukhopadhyaya
(University of Florida)

External Memory Algorithms

On External-Memory MST, SSSP,
and Multi-way Planar Graph Separation . 433

Lars Arge (Duke University), Gerth Stølting Brodal (University of Aarhus)
and Laura Toma (Duke University)

I/O-Space Trade-Offs . 448
Lars Arge (Duke University), and Jakob Pagter (University of Aarhus)

Optimization

Optimal Flow Aggregation . 462
Subhash Suri, Tuomas Sandholm, and Priyank Ramesh Warkhede
(Washington University)

On the Complexities of the Optimal Rounding Problems
of Sequences and Matrices . 476

Tetsuo Asano (JAIST), Tomomi Matsui (University of Tokyo),
and Takeshi Tokuyama (Tohoku University)

On the Complexity of the Sub-permutation Problem 490
Shlomo Ahal (Ben-Gurion University) and Yuri Rabinovich (Haifa
University)

Parallel Attribute-Efficient Learning of Monotone Boolean Functions 504
Peter Damaschke (FernUniversität Hagen)

XI

Distributed Computing and Fault-Tolerance

Max- and Min-Neighborhood Monopolies . 513
Kazuhisa Makino (Osaka University), Masafumi Yamashita (Kyushu
University), and Tiko Kameda (Simon Fraser University)

Optimal Adaptive Fault Diagnosis of Hypercubes . 527
Andreas Björklund (Lund University)

Fibonacci Correction Networks . 535
Grzegorz Stachowiak (University of Wroc=law)

Least Adaptive Optimal Search with Unreliable Tests 549
Ferdinando Cicalese, Ugo Vaccaro (Università di Salerno),
and Daniele Mundici (Università di Milano)

Author Index . 563

Dynamic Graph Algorithms with Applications

Mikkel Thorup1 and David R. Karger2

1 AT&T Labs–Research, Shannon Laboratory, 180 Park Avenue, Florham Park,
NJ 07932. mthorup@research.att.com.

2 MIT Laboratory for Computer Science, Cambridge, MA 02138.
karger@theory.lcs.mit.edu

Abstract. First we review amortized fully-dynamic polylogarithmic al-
gorithms for connectivity, minimum spanning trees (MST), 2-edge- and
biconnectivity. Second we discuss how they yield improved static algo-
rithms: connectivity for constructing a tree from homeomorphic subtrees,
2-edge connectivity for finding unique matchings in graphs, and MST for
packing spanning trees in graphs.
The application of MST for spanning tree packing is new and when
boot-strapped, it yields a fully-dynamic polylogarithmic algorithm for
approximating general edge connectivity within a factor

√
2 + o(1).

Finally, on the more practical side, we will discuss how output sensitive
algorithms for dynamic shortest paths have been applied successfully to
speed up local search algorithms for improving routing on the internet,
roughly doubling the capacity.

1 Dynamic Graph Algorithms

In this talk, we will discuss some simple dynamic graph algorithms and their
applications within static graph problems. As a new result, we will derive a
fully dynamic polylogarithmic algorithm approximating the edge connectivity λ
within a factor

√
2 + o(1), that is, the algorithm will output a value between

λ/
√

2 + o(1) and λ ×√2 + o(1).
The talk is not intended as a general survey of dynamic graph algorithms and

their applications. Rather its goal is just to present a few nice illustrations of the
potent relationship between dynamic graph algorithms and their applications in
static graph problems, showing contexts in which dynamic graph algorithms play
a role similar to that played by priority queues for greedy algorithms.

In a fully dynamic graph problem, we are considering a graph G over a fixed
vertex set V , |V | = n. The graph G may be updated by insertions and deletions of
edges. Unless otherwise stated, we assume that we start with an empty edge set.
We will review the fully dynamic graph algorithms of Holm et al. [11] for connec-
tivity, minimum spanning trees (MST), 2-edge, and biconnectivity in undirected
graphs. For the connectivity type problems, the updates may be interspersed by
queries on (2-edge-/bi-) connectivity of the graph or between specified vertices.
For MST, the fully dynamic algorithm should update the MST in connection
with each update to the graph: an inserted edge might have to go into the MST,
and if an MST edge is deleted, we should replace with the lightest edge possible.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 1–9, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 M. Thorup and D.R. Karger

Both updates and queries are presented on-line, meaning that we have to
respond to an update or query without knowing anything about the future.

The time bounds for these operations are polylogarithmic but amortized
meaning that we only bound the average operation time over any sequence of
operations, starting with no edges. In our later applications for static graph
problems, we only care about the total amount of time spent over all dynamic
graph operations, and hence the amortized time bounds suffice.

The above mentioned results are all for undirected graphs. For directed
graphs there are very few results. In a recent break-through, King [16] showed
how to maintain the full transitive closure of a graph in Õ(n2) amortized time
per update. Further, she showed how to maintain all pairs shortest paths in
O(n2.5√log C) time per update if C is the maximum weight in the graph. How-
ever, if one is is just interested in maintaining whether t can be reached from s
for two fixed vertices s and t, nobody knows how to do this in o(m) time.

On the more practical side, Ramalingan and Reps [24] have suggested a
lazy implementation of Dijkstra’s [4] single source shortest paths algorithm for a
dynamic directed graph. If X is the number of vertices that change distance from
the source s in connection with an arc insertion or deletion, they can update a
shortest path tree from s in Õ(

∑
v∈X degree(v)) time. Although this does not in

general improve over the Õ(m) time it takes to compute a single source shortest
path tree from scratch, there has been experimental evidence suggesting that
this kind of laziness is worthwhile in connection with internet like topologies [7].

2 Applications

We are now going to review some simple applications of dynamic graph algo-
rithms for solving problems on static graphs.

2.1 Dynamic Connectivity and the Construction of Trees
from Homeomorphic Subtrees

Our first application is of Henzinger, King, and Warnow [10]. We are given a set A
of leaves and a set X of triples ((a, b), c) ∈ A3. The problem is then, if possible, to
find a so-called concensus tree T with leaf set A such that for every ((a, b), c) ∈ X,
the least common ancestor of a and b is a strict descendant of the least common
ancestor of b and c. The concensus tree problem was raised in 1981 by Aho,
Sagiv, Szymanski, and Ullman in the context of optimizing relational expressions
[2], and they presented an O(|A||X|) time solution. Since then the consensus
problem has found applications in computational biology [10,12]. Henzinger,
King, and Warnow [10] have reduced the consensus tree problem to decremental
connectivity, thereby getting an Õ(|X|) bound.

An example of an application of fully dynamic connectivity, due to Karger
[14], is for identifying highly connected subgraphs in a randomized max-flow
algorithm. This application is, however, too complicated for the current talk.

Dynamic Graph Algorithms with Applications 3

2.2 Dynamic 2-Edge Connectivity and Matchings

The dynamic algorithms for 2-edge connectivity have proved useful in making
efficient constructions in relation to some classical theorems in matching theory.

A theorem of Petersen from 1891 [22] states that every bridgeless 3-regular
graph has a perfect matching. Biedl, Bose, Demaine, and Lubiw [3] have used
dynamic 2-edge connectivity to construct such a perfect matching in Õ(n) time,
improving over the bound the Õ(n3/2) obtained using the general time bound
for matching when m = O(n).

A theorem of of Kotzig from 1959 [17] states that any unique perfect matching
contains a bridge. Using dynamic 2-edge connectivity for maintaining bridges,
Gabow, Kaplan, and Tarjan [9] used Kotzig’s theorem to check if a graph has a
unique matching, improving the running time from Õ(mn) to Õ(m).

In this talk we will only review the simple and elegant construction of Gabow,
Kaplan, and Tarjan.

2.3 Dynamic MST, Tree Packing, and Edge Connectivity

The dynamic MST algorithm can be used directly to speed up (1−ε)-approximate
tree packing based on the Lagrangian relaxation techniques suggested by Plotkin,
Smoys, and Tardos [23], with the refinements of Young [25]. Using a theorem of
Nash-Williams [21] this leads to a

√
2 + ε-approximation of the edge connectiv-

ity of a graph. What makes all this really interesting is that the construction
can be made fully dynamic, implying that we can maintain the edge connectiv-
ity of a graph within a factor

√
2 + o(1) in polylogarithmic amortized time per

operation.
The above construction is new and the details are presented in Section 3.

2.4 Dynamic Shortest Paths and Local Search
for Routing on the Internet

Our last application is of practical nature, illustrating how dynamic graph al-
gorithms can be used to speed up local search [1]. The general strategy in lo-
cal search is to iteratively improve some feasible solution by considering small
changes to it. In the context of graph, this small change may the the insertion
or deletion of an edge, or just a weight change. We can then speed up the local
search if we can find an efficient solution to the fully-dynamic graph problem of
maintaining the objective function under edge updates and weight changes.

This general strategy was recently used in a local search for improving the
capacity of the internet by Fortz et al. [6]. Currently, Open Shortest Path First
(OSPF) [19] is the most widely used intra-domain internet routing protocol.
Packets are routed along shortest paths to their destination. The weights of
the links, and thereby the shortest path routes, can be changed by the network
operator. The weights could be set proportional to their physical distances, but
often the main goal is to avoid congestion, i.e. overloading of links, and the

4 M. Thorup and D.R. Karger

standard heuristic recommended by Cisco is to make the weight of a link inversely
proportional to its capacity.

A natural question is if one can improve the weight setting given some esti-
mate of the demands. In [6] this was tested both for a proposed AT&T WorldNet
backbone, and for various synthetic networks, and weight setting were found
allowing for a 50–110% increase in the demands over what is achieved with
standard weight setting heuristics.

The approach in [6] is a local search algorithm where one repeatedly tries to
make one or a few weight changes, and see if this improves the routing. In order to
simulate and evaluate the routing relative to these changes, we need to recompute
all pairs shortest paths. The networks considered were all sparse (m ≤ 4n) so
the Õ(n2.5√log C) time algorithm of King [16] would be worse than recomputing
from scratch in Õ(n2) time. Instead we used the lazy approach of Ramalingan
and Reps [24]. Even though the networks considered were comparatively small
(n ≤ 100), this lead to a speed up from around 20 hours and down to about 1.5
hours, thus making the programs much more attractive to the business units at
WorldNet.

3 Tree Packings and Edge Connectivity

We will now present the new results on tree packing and fully dynamic edge
connectivity. The two concepts are strongly tied, as detailed below.

The edge connectivity of a graph is the minimal number of edges whose
removal disconnects graph. We will denote this number by λ(G), or just λ when
G is understood. Note that λn ≤ 2m since the minimal degree is an upper bound
on λ.

A tree packing in G is an assignments of weights to spanning trees of G so
that each edge e has gets load

`(e) =
∑

T :e∈T

w(T) ≤ 1.

The value of the tree packing is
∑

T w(T). We let τ denote the value of the
maximal tree packing of G.

Theorem 1 (Nash-Williams [21]). λ/2 ≤ τ ≤ λ.

Above, τ ≤ λ follows directly from the fact that any cut is crossed by all spanning
trees.

We are going to use fully dynamic MST to speed up a (1 − ε)-approximate
tree packing based on Lagrangian relaxation [23,25], improving the running time
from Õ(λm) to Õ(m). For comparison, the best exact tree packing of Gabow [8]
takes Õ((λn)2) time.

Next, we will argue that this (1 − ε)-approximate tree packing can be main-
tained dynamically, using polylogarithmic amortized time per operation if 1/ε
and the edge connectivity is polylogarithmic. Rounding and multiplying our es-
timated packing value by

√
2, we will approximate the edge connectivity within

a factor
√

2.

Dynamic Graph Algorithms with Applications 5

Applying the above construction to a logarithmic number of random sub-
graphs G(p), p = 1, 1/2...., with high probability, we end up maintaining edge
connectivity within a factor

√
2 + o(1) in polylogarithmic amortized time per

operation.
For fully-dynamic connectivity, the best exact algorithm spends Õ(λn) time

per update, combining the Õ(m) randomized static edge connectivity algorithm
of Karger [15] with the sparse certificates of Nagamochi and Ibaraki [20], and
the dynamic sparsification technique of Eppstein et al. [5].

A previous dynamic randomized fully dynamic edge connectivity algorithm
has been suggested by Karger [13]. For any α > 0, it produces a

√
1 + 2/α-

approximation with Õ(nα) amortized update time if combined with the fully
dynamic polylogarithmic MST technique from [11]. For example, with α = 1/2,
it uses Õ(

√
n) amortized update time to get an approximation factor of

√
5, as

opposed to our factor
√

2 + o(1) with polylogarithmic amortized update time.

3.1 Lagrangian Tree Packing

Young has verified [personal communication, 1999] that his variant [25] of the
Lagrangian packing technique of Shmoys, Plotkin, and Tardos [23] implies the
following result when specialized to tree packing:

Theorem 2 (Shmoys et al. [23], Young [25]). The following algorithm pro-
duces a tree packing of value W where (1 − ε)τ ≤ W ≤ τ .

1. Initially no spanning tree has any weight.
2. Set W := 0.
3. While no edge has load 1

(a) Pick a load-minimal spanning tree T .
(b) w(T) := w(T) + ε2/(3 ln m).
(c) W := W + ε2/(3 ln m).

4. Return W .

Since each iteration increases the value of the tree packing by ε2/(3 ln m), the
above algorithm must terminate in τ3 ln m/ε2 ≤ λ3 ln m/ε2 iterations. Using a
standard static MST algorithm, this takes Õ(λm ln m/ε2) time.

Using the dynamic MST algorithm from [11], we get

Theorem 3. A (1−ε)-approximate tree packing can be constructed in Õ(m/ε2)
time.

Proof. We use the dynamic MST algorithm from [11] to maintain the load min-
imal spanning tree in the algorithm from Theorem 2. In each iteration, we first
make a copy T of the current spanning tree, and then, for each edge e ∈ T , we
increase the load by ε2/3 ln m. Since no load gets beyond 1, the total number of
load increases is O(m log m/ε2), and each load increase is supported in logO(1) n
amortized time.

By Theorem 1, if we multiply the found tree packing value by
√

2, we immediately
get a deterministic Õ(m) time

√
2 + o(1)-approximation of edge connectivity,

matching a result of Matula [18].

6 M. Thorup and D.R. Karger

3.2 Fully-Dynamic Packing with Small Cuts

We are now going to present a fully dynamic version of the algorithm from
the previous section, assuming that we are only interested in edge connectivity
≤ λmax. Also, assume, for the moment, that the graph remains connected.

We will pack q = 3λmax ln m/ε2 spanning trees T1, ..., Tq, each with weight 1.
We will not have any limits on how much load can be put on the edges. Using the
MST data structure from [11], each spanning tree Ti is a load minimal spanning
tree where the load of edge e is

`i−1(e) = |{Tj : j < i, e ∈ Tj}|

For technical reasons, we assign unique priorities to the edges so that edges of
higher priority are preferred. Then the MST is unique. The priority of an edge
is the same for all the different values of i.

The maximal load in our packing is

L = max
e∈E

|{Ti : e ∈ Ti}|

Scaling down the weights by L to give maximal load 1, we get a tree packing of
value q/L.

If q/L > λmax, we conclude that the graph has edge connectivity ≥ λmax.
Otherwise, by Theorem 2, (1 − ε′)τ/ ≥ q/L ≤ τ , where ε′2/(3 ln m) = 1/L ≤
λmax/q = ε2/(3 ln m), so ε′ ≤ ε.

For the analysis of the update time of the above algorithms, we need the
following lemma:

Lemma 1. Each insertion or deletion of an edge changes at most i edge loads
`i for each i.

Proof. By symmetry, it suffices to consider the deletion of an edge e.
Since we assumed the graph remains connected, the total load remains i(n−

1). When e is deleted, its load drops to 0, so the load increase over all edges
f 6= e is `old

i (e) ≤ i. Consequently, it suffices to prove that loads on edges f 6= e
do not decrease. By induction over i, we may assume `new

i−1 (f) ≥ `old
i−1(f).

Now, if f 6∈ T old
i \ Tnew

i , `new
i (f) − `new

i−1 (f) ≥ `old
i (f) − `old

i−1(f), so `new
i (f) ≥

`old
i (f), as desired. Suppose instead that f ∈ T old

i \ Tnew
i . Since the edges

have unique priorities and no `i−1 load has decreased, f ∈ T old
i \ Tnew

i im-
plies `new

i−1 (f) > `old
i−1(f). Hence `new

i (f) ≥ `new
i−1 (f) ≥ `old

i−1(f) + 1 ≥ `old
i (f). This

completes the proof of the lemma.

Theorem 4. For graphs with edge connectivity ≤ λmax, we can maintain a
(1 − ε)-approximate tree packing in Õ(λ2

maxpolylog n/ε4) amortized time per
update. The algorithm announces that the edge connectivity is > λmax before it
gives a worse approximation.

Dynamic Graph Algorithms with Applications 7

Proof. The time spent on maintaining the MST data structure from [11] for
each Ti is amortized over load changes. Each load change takes polylogarithmic
amortized time. Hence the result follows from Lemma 1 stating that the total
number of load changes per edge update is bounded by

∑
i≤q i < q2.

If we remove the condition that the graph remains connected, each Ti should
instead be a load minimal spanning forest, that is, a load minimal forest with
a tree spanning each connected component. The algorithm from [11] maintains
such minimal spanning forests. If the graph is disconnected, instead of returning
q/L, we just return 0. Concerning the analysis, if a bridge e from some component
is deleted/inserted, this simply has the effect of deleting/inserting e in each Ti,
thus giving q dynamic MST operations. To analyze the deletion or insertion
of a non-bridge, we simply apply the analysis from Lemma 1 to the affected
component, thus getting the same

∑
i≤q i < q2 bound as above.

Corollary 1. For graphs with polylogarithmic edge connectivity, we can main-
tain the edge connectivity within a factor

√
2 in polylogarithmic time per update,

and further, announce if the graph is too connected for the approximation guar-
antee.

Proof. Since the edge connectivity is an integer, we just set ε = 1/(6λmax), where
λmax is polylogarithmic, and round the value of the tree packing to the nearest
multiple of 1/2 to get a value W in [λ/2, λ]. Afterwards we return

√
2W .

3.3 Larger Edge Connectivity

The approach from the previous section gives polylogarithmic time bounds for
polylogarithmic edge connectivity. In order to approximate larger edge connec-
tivity, we consider random subgraphs of the graph in question. Let G(p) denote
the random subgraph of G including each edge of G independently with proba-
bility p.

Lemma 2 (Karger [13]). Let G be a graph with edge connectivity λ and let
pλ ≥ 6 ln n/ε2. Then the probability that the value of any cut in G(p) differs by
a factor (1 + ε) from its expected value is O(1/n).

It is now easy to provide a
√

2 + o(1) approximation dynamic algorithm for edge
connectivity:

– For p = 1, 1/2, 1/4, 1/8..., let Hp = G(p). That is, whenever and edge is
inserted in G, it is inserted in Hp with probability p.

– For each Hp, maintain edge connectivity ≤ log2 n as described in Corollary
1.

– After each edge update, let pmax be the largest value of p for which the
algorithm from Corollary 1 does not report that the edge connectivity is too
large.

– Our approximate edge connectivity is the one approximated for Hpmax di-
vided by pmax.

8 M. Thorup and D.R. Karger

Theorem 5. There is a randomized fully dynamic algorithm supporting updates
in amortized polylogarithmic time that with high probability approximates edge
connectivity within a factor

√
2 + o(1).

Proof. Since we only maintain a logarithmic number of graphs Hp, the time
bound is immediate from Corollary 1.

If λ = O(log n), we will have pmax = 1, and hence we get a factor
√

2
directly from Corollary 1. However, for λ = ω(log n), the result is immediate
from Lemma 2.

References

1. E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Opti-
mization. Discrete Mathematics and Optimization. Wiley-Interscience, Chichester,
England, June 1997.

2. A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM J. Computing, 10(3):405–421, 1981.

3. T.C. Biedl, P. Bose, E.D. Demaine, and A. Lubiw. Efficient algorithms for Pe-
tersen’s matching theorem. In Proc. 10th ACM-SIAM Symp. on Discrete Algo-
rithms, pages 130–139, 1999.

4. E. W. Dijkstra. A note on two problems in connection with graphs. Numer. Math.,
1:269–271, 1959.

5. D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification — a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696,
1997. See also FOCS’92.

6. B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights.
In Proc. 19th IEEE INFOCOM - Conf. Computer Communications, pages 519–528,
2000.

7. D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasqualone. Experimental analysis of
dynamic algorithms for the single-source shortest path problem. ACM J. Experi-
mental Algorithmics, 3, article 5, 1998.

8. H. N. Gabow. A matroid approach to finding edge connectivity and packing ar-
borescences. J. Comp. Syst. Sc., 50:259–273, 1995.

9. H.N. Gabow, H. Kaplan, and R.E. Tarjan. Unique maximum matching algorithms.
In Proc. 31st ACM Symp. on Theory of Computing, pages 70–78, 1999.

10. M.R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica,
24(1):1–13, 1999.

11. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. In Proc. 30th ACM Symp. on Theory of Computing, pages 79–89, 1998.

12. S. Kannan, T. Warnow, and S. Yooseph. Computing the local consensus of trees.
SIAM J. Computing, 27(6):1695–1724, 1998.

13. D. R. Karger. Using randomized sparsification to approximate minimum cuts. In
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pages 424–432, 1994.

14. D. R. Karger. Better random sampling algorithms for flows in undirected graphs.
In Proc. 9th ACM-SIAM Symp. on Discrete Algorithms, pages 490–499, 1998.

15. D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1), 2000.

Dynamic Graph Algorithms with Applications 9

16. V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In Proc. 40th IEEE Symp. on Foundations of Com-
puter Science, pages 81–89, 1999.

17. A. Kotzig. On the theory of finite graphs with a linear factor I. Mat.-Fyz. C̆asopis
Slovensk. Akad. Vied, 9:73–91, 1959.

18. D. W. Matula. A linear time 2 + ε approximation algorithm for edge connectivity.
In Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pages 500–504, 1993.

19. J. T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley,
1999.

20. H. Nagamochi and T. Ibaraki. Linear time algorithms for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7:583–596,
1992.

21. C. St. J. A. Nash-Williams. Edge disjoint spanning trees of finite graphs. J. London
Math. Soc., 36:445–450, 1991.

22. J. Petersen. Die theorie der regulären graphs. Acta Mathematica, 15:193–220,
1891.

23. S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for
fractional packing and covering problems. Mathematics of Operations Research,
20:257–301, 1995.

24. G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms, 21(2):267–305, 1996.

25. N. Young. Randomized rounding without solving the linear program. In Proc. 6th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 170–178, 1995.

Coping with the NP-Hardness
of the Graph Bandwidth Problem

Uriel Feige

Weizmann Institute, Rehovot 76100, Israel

Abstract. We review several approaches of coping with NP-hardness,
and see how they apply (if at all) to the problem of computing the
bandwidth of a graph.

1 Introduction

An important goal of the theory of algorithms is to produce efficient algorithms
that solve computationally difficult problems. When considering the class of
NP-hard combinatorial optimization problems, this goal is beyond our reach.
As these problems need to be solved routinely, we seek ways of coping with
NP-completeness. Perhaps the most common approaches are the following:

– Easy special cases. Do not solve the problem in its full generality. Identify
properties of the input instances that make the problem easier, and design
an algorithm that makes use of these properties.

– Somewhat efficient algorithms. Design an algorithm that always solves
the problem whose running time is not polynomial, but still much faster
than exhaustive search. This approach may be useful for inputs of moderate
size.

– Approximation algorithms. Sacrifice the quality of the solution so as
to obtain more efficient algorithms. Instead of finding the optimal solution,
settle for a near optimal solution. Hopefully, this makes the problem easier.

– Heuristics. Design algorithms that work well on many instances, though
not on all instances. This is perhaps the approach most commonly used in
practice.

We review the four approaches mentioned above. For concreteness, we do so
in the context of one particular NP-hard combinatorial optimization problem –
that of computing a linear arrangement with minimum bandwidth for a graph.
Given an n-vertex graph, a linear arrangement is a numbering of the vertices
from 1 to n (which can be viewed as a layout of the graph vertices on a line) and
its bandwidth is the maximum difference in numbers given to the endpoints of an
edge (the maximum stretch of an edge on the line). The minimum bandwidth
problem asks for a linear arrangement of minimum bandwidth. This problem is
NP-hard [29].

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 10–19, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Coping with the NP-Hardness of the Graph Bandwidth Problem 11

2 Easy Special Cases

The bandwidth problem is a graph problem. By sufficiently restricting the class
of graphs considered, one can identify classes of graphs for which the bandwidth
can be computed in polynomial time (e.g., interval graphs [25]). Somewhat sur-
prisingly, unlike many NP-complete problems, the bandwidth remains NP-hard
on trees [17,28].

To see what kind of restriction on the input graph may be relevant to practi-
cal applications, let us consider a typical scenario in which the graph bandwidth
problem arises. This scenario is that of minimizing the bandwidth of a matrix.
For a symmetric matrix M , we say that its bandwidth is b if all its nonzero
entries lie on entries at most b locations away from the diagonal. It is relatively
easy to store and manipulate matrices of low bandwidth (e.g., diagonal matrices
or tridiagonal matrices). Sometimes a symmetric matrix has large bandwidth,
but can be transformed into a low bandwidth matrix just by renaming – ap-
plying a permutation on its rows, and the same permutation on its columns (to
preserve symmetry). Finding a transformation that minimizes the bandwidth is
equivalent to finding a linear arrangement of minimum bandwidth for a graph
whose adjacency matrix is derived from M by replacing every nonzero entry
by 1.

Minimizing the bandwidth of a matrix is worth the trouble only if the result-
ing matrix has small bandwidth. Hence a class of graphs for which the bandwidth
problem is especially interesting is that of graphs with small bandwidth. Hence
we may wish to study the complexity of the bandwidth problem as a function
of b, the minimum bandwidth of the input graph.

For the case b = 1, the graph has to be a collection of paths, and finding a
linear arrangement of minimum bandwidth is trivial. For the case b = 2, Garey,
Graham, Johnson and Knuth [17] design a linear time algorithm for finding a
linear arrangement with this bandwidth. They ask whether the case b = 3 is NP-
hard or polynomially solvable. This was answered by Saxe [30] who designed an
algorithm that finds a linear arrangement of bandwidth b (if one exists) in time
roughly O(nb+1). The algorithm uses dynamic programming and is sketched
below.

Build a linear arrangement of bandwidth at most b by a extending partial
linear arrangements (that include the first j vertices in the linear arrangement)
by one more vertex, in all possible consistent ways. Namely, add one more vertex,
such that no edge so far has length more than b, and moreover, such that this
vertex did not previously appear in the linear arrangement. This last condition
is the tricky one – how do we know which vertices appeared in the prefix?

To solve the above problem, we make the following two observations:

1. A graph has bandwidth at most b iff each of its connected components has
bandwidth at most b. Hence we may w.l.o.g. assume that the graph is con-
nected. This is a simple observation, but essential to the success of the algo-
rithm.

12 U. Feige

2. Any set of consecutive vertices in a linear arrangement of bandwidth b has
at most 2b neighbors in G.

From a prefix of a linear arrangement of length j, we shall record only:

– The last b vertices, which we call the “buffer” vertices.
– Which of their 2b neighbors have not yet appeared in the linear arrangement.

We call these the “dangling” vertices. (In the dynamic programming algo-
rithm, maintain only those partial linear arrangements in which the number
of neighbors of the buffer vertices is at most 2b.)

The point is that this representation implicitly includes all vertices in the
prefix – those are the vertices which after the removal of the dangling vertices
still have a path to some buffer vertex (due to observation 1 above). The amount
of information we need to record is nb possibilities for the buffer vertices, and at
most 22b possibilities for the dangling vertices (by observation 2 above), giving
a polynomial running time when b is fixed.

Even though the algorithm runs in polynomial time for every fixed value of
b, its running time is not practical even for moderate values of b. The question
then arises of whether an algorithm can be found with better dependence on
b. For example, is there an algorithm for computing the bandwidth that runs
in time O(ncf(b)), where c is some fixed constant independent of b, and f is
an arbitrary function that does not depend on n. Note that a positive answer
would not contradict the NP-hardness of the bandwidth problem (e.g., we can
set f(b) = 2b and then the running time becomes exponential when the band-
width is large). Questions of this type are studied by the theory of parameterized
complexity, and problems having a running type of the above form are called
fixed parameter tractable. See [11] and references therein. Using reductions be-
tween parameterized NP-hard problems, a hierarchy of problems is established,
in which problems that are hard for a certain level of the hierarchy are not fixed
parameter tractable unless all problems lying in levels below it are. The band-
width problem is hard for every fixed level of the fixed parameter tractability
hierarchy [6].

3 Somewhat Efficient Algorithms

NP-complete problems can be solved by exhaustive search. The running time for
exhaustive search becomes forbiddingly large already for instances of small size.
Sometimes, it is possible to design algorithms that are significantly faster than
exhaustive search, though still not polynomial time. This makes the solution of
somewhat larger size problems possible. This is often the case for problems in
number theory such as factoring (these problems are often not NP-hard, but
still considered untractable), where for several decades there has been gradual
improvement in the running time. See [1], for example. These improvements
are of great significance to cryptography (and result in the need to use larger
numbers in cryptosystems such as RSA).

Coping with the NP-Hardness of the Graph Bandwidth Problem 13

For NP-hard combinatorial optimization problems, the improvements in run-
ning times are less dramatic. For problems such as 3SAT and max-CLIQUE, the
current best running times are still O(cn), for some 1 < c < 2 (rather than
roughly 2n which is the running time of exhaustive search).

For the bandwidth problem, we can exhaustively try all possible linear ar-
rangements and choose the one with the lowest bandwidth. This has running
time roughly n! ' nn. Can we get the running time down to cn for some c > 0
independent of n?

By analogy with other problems, we may hope that the answer is positive.
Problems such as min-TSP, min-CUTWIDTH, minsum-LINEAR ARRANGE-
MENT also require an ordering of the vertices while minimizing a certain ob-
jective function (length of tour, maximum number of edges that cross a cut,
sum of edge lengths, respectively). They can all be solved in time roughly 2n us-
ing dynamic programming (one need only remember which vertices appeared in
the prefix of a linear arrangement, but not in what order they appeared). How-
ever, the same dynamic programming approach does not work for the bandwidth
problem.

Here we sketch an algorithm (from [15]) for the bandwidth that runs in time
cn. For simplicity in this presentation, we shall assume that both n and b are
powers of 2, and that G is connected.

1. First phase (finds to which segment each vertex belongs).
(a) Partition the interval [1, n] into 2n/b segments of length b/2.
(b) Place vertex v1 in one of the segments. There are 2n/b possibilities here,

and all of them will be tried out using exhaustive search.
(c) Iteratively, take a yet unplaced vertex v that has a neighbor that is

already placed, and place v in a segment that is of distance at most two
from each one of its placed neighbors’ segments. There are at most 5
possible segments available to v. There are n − 1 vertices to place using
this procedure, and hence at most 5n−1 possible placements. All of them
will be tried out using exhaustive search.

At the end of the first phase we have at most roughly 5n arrangements of
vertices into segments, such that at least one of them is correct. Assume
now that the second phase is performed with a correct arrangement (and
multiply the running time by 5n).

2. Second phase (finds exact locations within segments):
(a) Keep only edges that connect vertices that are two segments away, as all

other edges will have length at most b regardless of the internal place-
ment of vertices within segments. The problem now decomposes to two
independent subproblems: that of finding a linear arrangement for ver-
tices within the even numbered segments, and that of finding a linear
arrangement for vertices within the odd numbered segments.

(b) For each subproblem recursively divide segments in two (of size b/4 at
the first step of the recursion, and sizes decrease by a factor of two with
each new level), guess for each vertex whether to place it in the left half
or right half of its segment, and then again partition the subproblem

14 U. Feige

into two independent problems, one involving the left side and the other
involving the right side. For a subproblem involving k vertices, there are
k guesses to make, leading to 2k possibilities, all of which are tried out.
Keep only those possibilities in which no edge connects subsegments that
are at distance more than b apart.

The number of possibilities tried out in the second phase satisfies the recur-
sion T (k) ≤ 2k + 2T (k/2)) implying roughly 2n possibilities altogether. Hence
the running time of the algorithm is at most 5n2n = 10n (up to polynomial fac-
tors). The base of the exponent can be somewhat improved using more careful
analysis.

We note that a running time of 10n improves over n! only for values of n for
which neither of these running times is practical. A more dramatic improvement
in the running time would be desirable. For example, is there for every ε > 0 an
algorithm that computes the bandwidth in time O(2εn). We call such running
times weakly exponential. Similar questions are being asked for other problems,
such as 3SAT, and the answer is unknown. There is initial work on systematic
study of the issue of weakly exponential running time. For example, one would
like to establish for a large class of problems that either all of them have weakly
exponential running times, or none of them do. This calls for reductions between
instances that are linear in terms of the resulting problem size (rather than poly-
nomial, as in the case of reductions establishing NP-hardness). The computation
time of the reductions can be allowed to be weakly exponential. See [23,22] for
some interesting work in this respect.

For the bandwidth, the original reduction showing its NP-hardness [29] starts
with a 3CNF formula with n variables, and ends with a graph with nc vertices,
where c > 1. However, it is possible to design other polynomial time reductions
from 3SAT to bandwidth in which the number of vertices in the resulting graph
is O(n) [15], establishing that bandwidth does not have weakly exponential al-
gorithms unless 3SAT does.

4 Approximation Algorithms

Due to the intractability of the bandwidth problem, one may be willing to settle
for a polynomial time algorithm that finds a linear arrangement whose band-
width is not optimal, but also not much larger than optimum. We say that an
algorithm has approximation ratio ρ(n) if on an n node graph it produces a
linear arrangement whose bandwidth is within a factor of at most ρ(n) from
optimal.

A known lower bound on the bandwidth is obtained via the local density
bound. Let N(v, d) be the set of vertices at distance at most d from v. Then the
local density of a graph is D = maxv,d[|N(v, d)|/2d], and the optimal bandwidth
b satisfies b ≥ D.

The algorithm with best approximation ratio known for the bandwidth prob-
lem produces (with high probability) a linear arrangement with bandwidth

Coping with the NP-Hardness of the Graph Bandwidth Problem 15

O(D(log n)3
√

log n log log n) [12]. The algorithm can be interpreted in a geomet-
ric fashion as follows. It first embeds the vertices of the graph in high dimensional
Euclidean space while balancing two conflicting requirements: keeping the Eu-
clidean distance between vertices not larger than their distance in the graph, and
making the volumes of the convex hulls of subsets of vertices of logarithmic size
as large as possible. It then projects the geometric embedding on a random line
and outputs the vertices in order of appearance on this line. The algorithm is
nearly practical in terms of its running time (only slightly superlinear). Despite
having an approximation ratio that is by far superior to that of any other known
algorithm, the algorithm fails to take advantage of easy input instances, and of-
ten produces linear arrangements of higher bandwidth than those produced by
other algorithms. For trees, Gupta [19] shows an algorithm that produces a lin-
ear arrangement with bandwidth O(D(log n)5/2). The analysis of this algorithm
borrows ideas from the analysis in [12], but the algorithm itself is different, and
is more likely to produce good linear arrangements in practice (though only for
trees).

The analysis of the known approximation algorithms for the bandwidth com-
pares the bandwidth of the linear arrangement obtained to the local density of
the graph. Such an approach is not likely to produce approximation algorithms
with sublogarithmic approximation ratios (compared to the true bandwidth).
There are families of graphs with local density bounded above by a univer-
sal constant, whereas their bandwidth can be arbitrarily large [9,8]. A gap of
Ω(log n) between local density and bandwidth can be demonstrated on trees [9]
and on expander graphs.

It is questionable whether there are polynomial time algorithms with sublog-
arithmic approximation ratios for the bandwidth. Blache, Karpinski and Wirt-
gen [3] showed that it is NP-hard to approximate the bandwidth within a ratio
better than 3/2. This was later improved by Unger to every constant factor [32].
Presumably, Unger’s result can be extended to showing that the bandwidth can-
not be approximated within a ratio that is a slowly growing function of n, unless
3SAT has subexponential algorithms. It would be interesting to see whether this
function comes close to log n.

5 Heuristics

In practice, heuristics for minimizing the bandwidth appear to work rather
well [10]. These heuristics are often based on numbering the vertices in breadth
first search order, or on simple variations on this approach.

A theoretical explanation for the success of heuristics is given by Turner [31].
He studies a random graph model in which a random graph with edge probability
p is forced to have bandwidth at most b by deleting all edges that connect
vertices whose indices differ by more than b. Thereafter the names of vertices
are permuted at random and the resulting graph is given as input to the heuristic.
Turner shows that a heuristic similar to BFS recovers for most such graphs a

16 U. Feige

linear arrangement of bandwidth at most b + O(log n). This is almost optimal
(when b � log n) as it can be shown that the bandwidth of most such graphs is
at least b − O(log n).

Turner assumes in his work that 0 < p < 1 is some constant independent of
n. The case where p may depend on n was handled in [16], where a modified
algorithm is showed to produce a linear arrangement of bandwidth at most (1 +
ε)b, when p > log n/b. This modified algorithm produces two linear arrangements
(essentially performing BFS once from the left most vertex and once from the
right most vertex) and combines them into one linear arrangement. It is also
shown in [16] that the algorithm extends to a semirandom graph model, in
which an adversary is allowed to add arbitrary edges of its choice to the random
graph prior to the deletion of the long edges.

There are graphs on which the heuristics mentioned above output a linear
arrangement with bandwidth that is a factor of Ω(n/ log n) larger than optimal.
However, the quality of a heuristic is measured neither with respect to worst
case input instances, nor with respect to best case input instances. To evaluate
a heuristic we need a notion of an average case input instance. This is a very
elusive concept, and there is no one particular model for average case analysis.
Unlike the case of approximation algorithms, in which we can order the quality
of approximation algorithms by their worst case approximation ratio, there does
not seem to be any agreed upon way of deciding which of two heuristics give
better results (unless one of the heuristics is better than the other on every
instance). There is also a great difficulty of establishing negative results for
heuristics. We describe below two methodologies for establishing limitations on
what can be achieved using heuristics. So far, neither of them had major impact
on the theory of heuristics, and much work remains to be done in this respect.

Levin [27] (see also [18]) develops a theory of average case polynomial time. In
his framework, we associate probability distributions with problems, and sample
input instances using this probability distribution. Then an algorithm needs to
solve the input problem in average polynomial time, where averaging takes into
account the probability of generating the input instance. One may argue that
a distributional problem is hard on average if every other NP-problem with
a polynomially sampleable distribution can be reduced to this problem. Some
distributional problems are known to be hard under this notion, and it remains
a challenge to use this notion to prove average case hardness results for common
NP-problems under “natural” distributions.

Another approach for proving hardness results is to work in a semirandom
model in which the input instance is chosen at random and then modified (sub-
ject to some constraints) by an adversary. There it is sometimes possible to show
that by varying some parameter of the input instances (that controls what frac-
tion of the input is random and what fraction is adversarial) there is a shift
from classes of inputs that are polynomial time solvable on average to classes of
inputs that are NP-hard on average. See [5,14] for more details.

Coping with the NP-Hardness of the Graph Bandwidth Problem 17

6 Conclusions

We discussed four approaches for dealing with NP-hard problems. Three of these
approaches (parameterized versions of the problem, weakly exponential time al-
gorithms, approximation algorithms) involve worst case performance measures,
leading to familiar methods for evaluating and comparing the quality of algo-
rithms. Reductions between problems is a very important tool in this respect.
The fourth approach (heuristics) involves average case performance measures,
and conceptual work is still needed in defining measures for quantifying the
quality of a heuristic.

Of course, one can study mixtures of the approaches presented above. For
example, one can mix the first and third approach and study approximation
algorithms for special families of graphs. Indeed, this was done for the bandwidth
problem [21,24,26]. As another example, one may mix the first three approaches,
and study relations between the approximability of parameterized versions of
problems and the existence of weakly exponential time algorithms. In [13] it is
shown that if one can distinguish in polynomial time between graphs with cliques
of size at most log n and graphs with cliques of size at least 2 log n, then 3SAT
can be solved in expected time roughly 2

√
n.

Of the questions that remain open for the bandwidth problem, let us mention
three:

1. Does the bandwidth problem have considerably faster exponential time algo-
rithms? E.g., can it be solved in time roughly 2n (rather than 10n, as shown
in [15])?

2. Does the local density approximate the bandwidth within a logarithmic fac-
tor (rather than polylogarithmic, as shown in [12])? That is, is it true that
b = O(D log n).

3. For a random graph (with constant edge probability p), remove all edges
that connected vertices whose indices differ by more than b. The bandwidth
of the resulting graph is at most b. Turner [31] shows that it is at least
b − O(log n) (under some restrictions on the size of b). When b �√

n/ ln n,
the bandwidth is at least b − O(1) [16]. Is the bandwidth of these random
graphs exactly b (with high probability)?

Acknowledgements

The author is the Incumbent of the Joseph and Celia Reskin Career Development
Chair. Part of this work is supported by a Minerva grant, project number 8354
at the Weizmann Institute.

18 U. Feige

References

1. L. Adleman. “Algorithmic Number Theory – The Complexity Contribution”. Proc.
of 35th FOCS, 1994, 88–113.

2. S. Assman, G. Peck, M. Syslo, J Zak. “The bandwidth of caterpillars with hairs of
length 1 and 2”. SIAM J. Algebraic Discrete Methods 2 (1981), 387–393.

3. G. Blache, M. Karpinski, J. Wirtgen. “On approximation intractability of the band-
width problem”. Manuscript, 1998.

4. A. Blum, G. Konjevod, R. Ravi, S. Vempala. “Semidefinite relaxations for mini-
mum bandwidth and other vertex-ordering problems”. Proc. of 30th STOC, 1998,
100–105.

5. A. Blum, J. Spencer. “Coloring Random and Semi-Random k-Colorable Graphs”.
Journal of Algorithms 19, 204–234, 1995.

6. H. Bodlaender, M. Fellows, M. Hallet. “Beyond NP-completeness for problems of
bounded width: hardness for the W Hierarchy”. Proc. of 26th STOC, 1994, 449–
458.

7. P. Chinn, J. Chvatalova, A. Dewdney, N. Gibbs. “The bandwidth problem for
graphs and matrices – a survey”. Journal of Graph Theory, 6 (1982), 223–254.

8. F. Chung, P. Seymour. “Graphs with small bandwidth and cutwidth”. Discrete
Mathematics 75 (1989) 113–119.

9. J. Chvatalova. On the bandwidth problem for graphs, Ph.D. dissertation, Univer-
sity of Waterloo, 1980.

10. E. Cuthill, J. McKee. “Reducing the bandwidth of sparse symmetric matrices”.
ACM National Conference Proceedings, 24, 1969, 157–172.

11. R. Downey, M. Fellows. Parameterized Complexity. Springer-Verlag New York,
1999.

12. U. Feige. “Approximating the Bandwidth via Volume Respecting Embeddings”.
Journal of Computer and System Sciences, to appear. (A preliminary version ap-
peared in the proceedings of the 30th STOC, 1998, 90–99.)

13. U. Feige, J. Kilian. “On limited versus polynomial nondeterminism”. Chicago Jour-
nal of Theoretical Computer Science, 12 March 1997.
http://www.cs.uchicago.edu/pub/publications/cjtcs/index.html

14. U. Feige, J. Kilian. “Heuristics for semirandom graph problems” Journal of Com-
puter and System Sciences, to appear. (Preliminary version in Proc. of 39th FOCS,
1998, 674–683.)

15. U. Feige, J. Kilian. “Exponential time algorithms for computing the bandwidth of
a graph”. Manuscript in preparation.

16. U. Feige, R. Krauthgamer. “Improved performance guarantees for bandwidth min-
imization heuristics”. Manuscript, 1998.

17. M. Garey, R. Graham, D. Johnson, D. Knuth. “Complexity results for bandwidth
minimization”. SIAM J. Appl. Math. 34 (1978), 477-495.

18. O. Goldreich. “Notes on Levin’s Theory of Average-Case Complexity”. Manuscript,
1997.
www.wisdom.weizmann.ac.il/home/odedg

19. A. Gupta. “Improved bandwidth approximation algorithms for trees”. Proc. SODA
2000.

20. E. Gurari, I. Sudborough. “Improved dynamic programming algorithms for band-
width minimization and the min-cut linear arrangement problems”. J. Algorithms,
5 (1984), 531–546.

Coping with the NP-Hardness of the Graph Bandwidth Problem 19

21. J. Haralambides, F. Makedon, B. Monien. “Bandwidth minimization: an approxi-
mation algorithm for caterpillars”. Math Systems Theory 24, 169-177 (1991).

22. R. Impagliazzo, R. Paturi. “Complexity of k-SAT”. Proc. Computational Complex-
ity, 1999.

23. R. Impagliazzo, R. Paturi, F. Zane. “Which problems have strongly exponential
complexity”. Proc. FOCS 1988, 653–663.

24. M. Karpinski, J. Wirtgen, A. Zelikovsky. “An approximation algorithm for the
bandwidth problem on dense graphs”. ECCC TR97-017.

25. D. Kleitman, R. Vohra. “Computing the bandwidth of interval graphs”. SIAM
J. Discrete Math., 3 (1990), 373–375.

26. T. Kloks, D. Kratsch, H. Muller. “Approximating the bandwidth for asteroidal
triple-free graphs”. In Algorithms – ESA ’95, Paul Spirakis (Ed.), Lecture Notes
in Computer Science 979, 434–447, Springer.

27. L. Levin. “Average case complete problems”. SIAM J. Comput, 15(1):285–286,
1986.

28. B. Monien. “The bandwidth-minimization problem for caterpillars with hair-
length 3 is NP-complete”. SIAM J. Algebraic Discrete Methods 7 (1986), 505–512.

29. C. Papadimitriou. “The NP-completeness of the bandwidth minimization prob-
lem”. Computing 16 (1976), 263–270.

30. J. Saxe. “Dynamic programming algorithms for recognizing small-bandwidth
graphs in polynomial time”. SIAM Journal on Algebraic Methods 1 (1980), 363–
369.

31. J. Turner. “On the probable performance of heuristics for bandwidth minimiza-
tion”. SIAM J. Comput., 15, (1986), 561–580.

32. W. Unger. “The complexity of the approximation of the bandwidth problem”. In
Proc. 39th Annual IEEE Symposium on Foundations of Computer Science, 1998,
82–91.

Toward Complete Genome Data Mining
in Computational Biology ?

Esko Ukkonen

Department of Computer Science
P.O.Box 26, FIN–00014 University of Helsinki, Finland

ukkonen@cs.Helsinki.Fi

Summary. The invention of the so–called DNA sequencing more than 20 years
ago has by now created an exponentially exploding flood of sequence data. For
a computer scientist, such data consists of strings of symbols in an alphabet of
size four. Being discrete by nature, the analysis and handling of sequence data is
an exceptionally attractive and – noting its role in the heart of life – challenging
application domain for combinatorial algorithmics. Hence it does not come as a
surprise that computational molecular biology and bioinformatics are currently
very active interdiciplinary research areas [5,10].

The algorithms for solving the so–called DNA fragment assembly problem
and their implementations used as an integral part of the DNA sequencing pro-
cess are one of the major successes of computational biology. The early develop-
ments [8,7] have been followed by more sophisticated methods [3]. This line of
research culminated on the recent announcement by Celera Genomics of com-
pleted sequencing of the entire human genome. Computational methods have
had a crucial role in this achievment.

Another important success of computational biology is the creation of se-
quence databases and, in particular, the development of the very fast methods
such as BLAST for homology searching, that is, for finding in the database the
sequences that are approximately similar to a given sequence [2]. Such searches
are routinely used in biological research to compare any new sequence against
all old ones.

The availability of entire genomes of several organisms as well as some new
measuring instruments such as the DNA microarrays are rapidly introducing
new computational problems. Knowing the raw DNA sequence of a genome is
just a starting point for more refined analysis. The DNA microarrays give time–
series data on the expression levels of the genes, i.e., how actively each gene is
used, during different phases of the development of the organism or under exter-
nal stress or diseases [1,4]. Analysing this rich data together with the genomic
sequence itself opens new opportunities to trace the ’run–time behaviour’ of the
’program’ encoded into the genome.

For example, the following data analysis scenario can be followed: First, find
potentially co–regulated groups of genes by clustering together the genes with
similar expresssion level profiles. Next, pick from the genome the so–called regu-
latory regions associated with each gene in each group. Then, search for patterns

? A work supported by the Academy of Finland.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 20–21, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Toward Complete Genome Data Mining in Computational Biology 21

of symbols that are overrepresented in the regulatory regions for each group. Such
patterns are potential transcription binding sites, i.e., sites in the genome where
a protein, specific for the pattern, binds itself and regulates in this way the use
of the gene.

I will discuss in the talk our work [9] along this line, applied to the yeast
(Saccharomyces cerevisiae) genome. Different clustering problems are the most
interesting algorithmic tasks contained in this type of study. One of them, namely
finding common patterns of symbols in a set of sequences, will be discussed in
more detail. A quite general and flexible solution can be obtained using simple
suffix–tree techniques [6].

To conclude, it should be emphasized that in computational biology the typ-
ical data is noisy and incomplete. Hence the algorithms must be robust and
noise–tolerant, both properties that are often ignored in theoretical algorith-
mics. Statistical considerations are also becoming more and more important. As
a positive remark it should be noted that, perhaps unexpectedly, the genomes
are not intolerably large. The speed and storage capacity of the basic PC is in-
creasing rapidly. Therefore it will soon be possible to store and mine the entire 3
billion bases long human genome in the core memory of your desktop computer.

References

1. A. Alizadeh et al., Distinct types of diffuse large B–cell lymphoma identified by
gene expression profiling, Nature 403 (3 February 2000) 503–511.

2. S. Altschul, W. Gish, W. Miller, E. W. Myers & D. Lipman, A basic local aligment
search tool, J. Mol. Biol 215 (1990) 403–410.

3. E. Anson & G. Myers, Algorithms for whole genome shotgun sequencing, RE-
COMB99, ACM Press (1999) 1–9.

4. J. L. DeRisi, V. R. Iyer & P. O. Brown, Exploring the metabolic and genetic control
of gene expression on a genomic scale, Science 278 (1997) 680–686.

5. D. Gusfield, Algorithms on Strings, Trees, and Sequences – Computer Science and
Computational Biology, Cambridge University Press 1997.

6. http://www.ebi.ac.uk/∼vilo/Expression Profiler/
7. H. Peltola, H. Söderlund, J. Tarhio & E. Ukkonen, Algorithms for some string

matching problems arising in molecular genetics, Proc. 9th IFIP World Computer
Congress, Elsevier (1983) 59–64.

8. R. Staden, Automation of the computer handling of gel reading data produced
by the shotgun method of DNA sequencing, Nucleic Acids Research 10 (1982),
4731–4751.

9. J. Vilo, A. Brazma, I. Jonassen, A. Robinson & E. Ukkonen, Mining for putative
regulatory elements in the yeast genome using gene expression data, Proc. Eighth
Int. Conference on Intelligent Systems for Molecular Biology ISMB 2000, in press,
AAAI Press (2000).

10. M. S. Waterman, Introduction to Computational Biology: Maps, Sequences,
Genomes, Chapman and Hall 1995.

A New Trade-Off for Deterministic Dictionaries

Rasmus Pagh

BRICS?, Department of Computer Science, University of Aarhus,
8000 Aarhus C, Denmark

pagh@brics.dk

Abstract. We consider dictionaries over the universe U = {0, 1}w on
a unit-cost RAM with word size w and a standard instruction set. We
present a linear space deterministic dictionary with membership queries
in time (log log n)O(1) and updates in time (log n)O(1), where n is the size
of the set stored. This is the first such data structure to simultaneously
achieve query time (log n)o(1) and update time O(2(log n)c

) for a constant
c < 1.

1 Introduction

Among the most fundamental data structures is the dictionary. A dictionary
stores a subset S of a universe U , offering membership queries of the form “x ∈
S?”. The result of a membership query is either ’no’ or a piece of satellite data
associated with x. Updates of the set are supported via insertion and deletion
of single elements.

Several performance measures are of interest for dictionaries: The amount of
space used, the time needed to answer queries, and the time needed to perform
updates. The most efficient dictionaries known depend on a source of random
bits (are randomized, as opposed to deterministic). However, being randomized
means that either: 1. There is a chance that the expected time bounds do not
hold, or 2. There is a chance of the data structure returning a wrong answer.
In some situations, this may not be acceptable. Even if their use is acceptable,
random bits may be expensive or unavailable. Finally, an understanding of the
power of randomization is important from a theoretical point of view. All this
has led to an interest in derandomization of known randomized algorithms and
data structures. Several recent papers consider deterministic dictionaries [4, 10,
11, 12, 13]. However, previous space-efficient dictionaries with very fast lookups
(time (log n)o(1)) have had update time much larger than that of, say, binary
search trees. Therefore these dictionaries are of interest mainly when insertions
are quite rare compared to lookups. Our interest here lies in obtaining space-
efficient deterministic dictionaries which combine fast updates (time (log n)O(1))
with very fast lookups.

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 22–31, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A New Trade-Off for Deterministic Dictionaries 23

The model of computation used is a unit-cost word RAM, in which each mem-
ory register contains a w-bit integer (a word). This model of computation, resem-
bling modern computers, has been the object of much recent research. Hagerup’s
survey [9] contains a description of the model. We adopt the multiplication model
whose instruction set includes addition, bitwise boolean operations, shifts and
multiplication. Note that all operations can also be carried out in constant time
on arguments spanning a constant number of words. The universe considered is
the set of machine words, U = {0, 1}w. For simplicity, we assume that each piece
of satellite data occupies a single machine word (this could be a pointer to more
bulky data). Throughout this paper, S will refer to a set of n elements from U .
For notational convenience we omit the “time tag” on S, n and other symbols
denoting dynamically changing values. All bounds will be independent of w, un-
less explicitly stated. Note that the optimal space consumption of a dictionary
is Θ(n) words.

1.1 Related Work

The seminal result of Fredman, Komlós and Szemerédi [7] is that a static dictio-
nary (i.e. without update operations) can have constant query time and linear
space consumption. Allowing randomization, the FKS static dictionary can be
made dynamic, supporting insertions and deletions in amortized expected con-
stant time [4]. Improving this, Dietzfelbinger and Meyer auf der Heide [5] have
constructed a dictionary in which all operations are done in constant time with
high probability (i.e. probability at least 1 − n−c, where c is any constant of our
choice). A simpler dictionary with the same properties was later developed [3].
As for randomized dictionaries, this leaves very little to be improved.

Without a source of random bits, the task of simultaneously achieving fast
updates and constant query time seems considerably harder. The best determin-
istic dictionary with constant query time supports updates in time O(nε), for
constant ε > 0 [11]. In fact, a range of trade-offs between update time and query
time is known. For query time O(q(n)), where q(n) = O(

√
log n), update time

O(n1/q(n)) can be achieved [12]. The best known result in the situation where
update and query time are considered equally important, is O(

√
log n/ log log n)

time per dictionary operation. It is a dynamization of the static data structure of
Beame and Fich [2] using the exponential search trees of Andersson and Thorup
[1].

The Beame-Fich-Andersson-Thorup (BFAT) data structure in fact supports
predecessor queries of the form “What is the largest element of S not greater
than x?”. Its time bound improves significantly if the word length is not too
large compared to log n. For example, if w = (log n)O(1), the time per operation
is O((log log n)2/ log log log n). This will be a key component in our construction.

An unpublished manuscript by Sundar [13] states an amortized lower bound
of time Ω(log logw n

log log logw n) per operation for a deterministic dictionary in Yao’s cell
probe model [15], which in particular implies the same lower bound on the word
RAM. Note that for w = (log n)O(1), the BFAT data structure has time per

24 R. Pagh

log log n

log n

1 log log n log n
lookup

n
[12][11]

[1,2]
[here]

update

Fig. 1. Overview of deterministic dictionaries using linear space.

operation polynomially related to the lower bound. The challenge therefore seems
to be finding ways of dealing with large word length.

1.2 This Work

In this paper we obtain a dictionary with query time O((log log n)2/ log log log n)
and amortized update time O((log n)2) (we sketch how to make the latter bound
worst-case). We deal with the problem of large word lengths by devising a dy-
namic universe reduction scheme, which reduces the problem to one within a
smaller universe, which is then handled by the BFAT data structure. An in-
teresting aspect of the reduction is that queries for the same element at two
consecutive points in time usually translate to different BFAT queries. In par-
ticular, it is crucial that the BFAT data structure answers predecessor queries,
and not just membership queries.

Our data structure is the first deterministic dictionary to simultaneously
achieve query time (log n)o(1) and update time O(2(log n)c

) for a constant c < 1.
The data structure is weakly non-uniform in that it needs access to a fixed
number of word-size constants depending (only) on w. These constants may be
thought of as computed at “compile time”.

In the following we assume that w ≥ (log n)5. Smaller word sizes can be han-
dled using the BFAT data structure directly, and standard rebuilding techniques
can be used to change from one data structure to the other. Similarly, we as-
sume that n is larger than some fixed, sufficiently large constant, since constant
size dictionaries are trivial to handle. We will look at machine words as binary
numbers, with the most significant bits on the left and the least significant bits
on the right. Bit positions are numbered from right to left, starting with zero.

2 Universe Reduction

Miltersen [11] has shown the utility of error-correcting codes to deterministic
universe reduction. A universe reduction function ρ : U → U ′ translates the

A New Trade-Off for Deterministic Dictionaries 25

dictionary problem from universe U to the reduced universe U ′ (a search for x
becomes a search for ρ(x)). The advantage of this is that U ′ may be smaller and
easier to handle. Previous universe reduction functions for the static dictionary
problem [7, 11, 12] have been 1-1 on S. In the dynamic case this appears hard to
combine with efficient updates, and in our construction the reduction function is
O(log n)-1. That is, O(log n) elements of S may translate into the same element
ρ(x). A search among the elements “attached to ρ(x)” is then needed to establish
whether x ∈ S.

2.1 Error-Correcting Codes and Distinguishing Bits

Miltersen’s approach plays a key role in our construction, so we review it here.
The basic idea is to employ an error-correcting code e : {0, 1}w → {0, 1}4w and
look at the dictionary problem for the transformed set {e(x) | x ∈ S}. For this it
is possible to find a very simple function which is 1-1 on S, namely a projection
onto O(log n) bit positions.

The code must have relative minimum distance bounded from 0 by a fixed
positive constant, that is, there must exist a constant α > 0 such that any two
distinct codewords e(x) and e(y) have Hamming distance at least α · 4w (the
supremum of such constants is called the relative minimum distance of the code).
We can look at the transformed set without loss of generality, since Miltersen
has shown that such an error-correcting code can be computed in constant time
using multiplication: e(x) = cw · x, for suitable cw ∈ {0, 1}3w. The choice of cw

is a source of weak non-uniformity. The relative minimum distance for this code
is greater than 1/11. In the following, α will denote a constant strictly smaller
than the relative minimum distance of the error-correcting code (e.g. α = 1/11).

Lemma 1. (Miltersen) For any R ⊆ U × U there exists a discriminating bit
position i ∈ {0, . . . , 4w − 1} such that |{(x, y) ∈ R | x 6= y, e(x)i = e(y)i}| ≤
(1 − α) |R|.

Corollary 2. (Miltersen) Let T be a set of m elements. There exists a set of
distinguishing bit positions D ⊆ {0, . . . , 4w−1} with |D| < 2

α log m such that for
all pairs of distinct elements x, y ∈ S, there is i ∈ D where e(x)i 6= e(y)i. The set
D can be constructed deterministically in time O(m log m), given a deterministic
O(m) time algorithm for finding a discriminating bit from the equivalence classes
of an equivalence relation over T .

Proof sketch. Elements of D may be found one by one, as discriminating bits
of the equivalence relation where x, y ∈ T are equal iff e(x) and e(y) do not
differ on the bit positions already chosen. The number of pairs not distinguished
decreases exponentially with the number of bit positions chosen. ut

Miltersen’s universe reduction function is simply x 7→ e(x) and d, where
and denotes bitwise conjunction and d is the incidence vector of D. The reduced
universe U ′ consists of the 4w-bit vectors which are zero outside the positions
given by D.

26 R. Pagh

Two problems remain: 1. We must show how to find discriminating bit posi-
tions in time O(m). 2. We want the reduction function to map to O(log m) con-
secutive bits, that is, to {0, 1}O(log m). The first problem was solved by Hagerup
[10]. We need the following slight extension of his result to also solve the second
problem:

Lemma 3. (Hagerup) Given a set T of m elements, divided into equivalence
classes, a discriminating bit position i can be found in time O(m) by a deter-
ministic, weakly non-uniform algorithm. Further, for any set I ⊆ {0, . . . , 4w−1}
of size O((log n)4) (given as a bit vector), we can assure that i 6∈ I.

Proof sketch. It can be shown how to compute |{{x, y} ⊆ T | x 6= y, x ≡
y, e(x)i = e(y)i}| for all i ∈ {0, . . . , 4w−1} in time O(m). The algorithm employs
word-level parallelism, and the result vector spans O(log m) words, since each
number occupies O(log m) bits. Word-parallel binary search can be used to find
the smallest entry. To avoid entries in I, simply overwrite the entries of I with
the largest possible integer before finding the minimum. This corresponds to
changing the error-correcting code to be constant (i.e. non-discriminating) on
the bit positions of I. Since |I| = O((log n)4) and the length of codewords is
4w ≥ 4 (log n)5, the relative minimum distance of this modified code is still
> α (for n large enough). Hence, this procedure will find a discriminating bit
position. ut

2.2 Multiple Set Universe Reduction

To accommodate efficient updates, we will not maintain a set of distinguishing bit
positions for S itself. Instead, we maintain k = dlog(n + 1)e sets of distinguishing
bit positions D0, . . . , Dk−1 for subsets S0, . . . , Sk−1 whose (disjoint) union is S
and where |Si| ∈ {0, 2i}. By the results of Sect. 2.1 we can achieve |Di| = O(i),
and recomputation of Di when Si changes takes time O(2i i). Additionally, we
can make the complete set of distinguishing bit positions well separated, that
is, no pair of positions differ by less than 2c (log n)2, where c is a suitably large
constant.

Since the distinguishing bit positions are well separated, we are able to “col-
lect” and order the distinguishing bits within O((log n)2) consecutive bit po-
sitions, such that the distinguishing bits of S0 are least significant, and the
distinguishing bits of Sk−1 are most significant. For each empty set Si we will
have a number of zero-bits. The following lemma makes this precise.

Lemma 4. Given a list d1, . . . , dp of well separated bit positions, where p ≤
c (log n)2, there is a function fd̄ : {0, 1}4w 7→ {0, 1}p such that for any x, fd̄(x)i =
xdi

. The function can be evaluated in constant time, and updated under changes
of bit positions in constant time.

Proof. We will show how to “move” bit di of x ∈ {0, 1}4w to bit u+i of a u+p-bit
string, where u ≥ maxi di (the desired value can then be obtained by shifting the
word by u bits). We simply multiply x by md̄ =

∑
i 2u+i−di (a method adopted

A New Trade-Off for Deterministic Dictionaries 27

from [8, p. 428-429]). One can think of the multiplication as p shifted versions
of x being added. Note that if there are no carries in this addition, we do indeed
get the right bits moved to u + 1, . . . , u + p + 1. However, since the bit positions
are well separated, all carries occur either left of the u + pth position (which
is harmless) or right of position u − p (which can never influence the values at
positions greater than u, since there are more than enough zeros in between to
swallow all carries). Note that md̄ can be updated in constant time when a bit
position changes. ut

We are now ready to describe how to update the dynamic universe reduction
function under updates. New elements are inserted in the lowest numbered empty
set Si together with the elements of S0, . . . , Si−1 (these sets are then “emptied”).
Note that the work per element when constructing a new set of distinguishing
positions is O(log n). Since elements are always transferred to higher numbered
sets, the total amortized work for an insertion is O(k log n) = O((log n)2). As we
will see in the next section, this cost will be dominant in the cost of an insertion
in the final dictionary.

The universe reduction function will not be updated during deletions. Rather,
deletions are implemented by simply marking deleted elements in the dictionary.
When more than half of the elements in the dictionary are marked, a new dic-
tionary containing the unmarked elements is constructed. The cost of this is
amortized over the deletions, which hence also have cost O((log n)2).

3 Using the Predecessor Data Structure

Recall that our universe reduction function, which we will call ρ, computes the
concatenation of functions fk, . . . , f0 which are 1-1 on Sk, . . . , S0, respectively.
The value ρ(x) after x is inserted in Si is used as key for x in the BFAT pre-
decessor data structure. Functions f0, . . . , fi−1 return zero vectors at this time.
However, these functions will change in the period until the next update of Si,
and specifically f0(x), . . . , fi−1(x) may change. When a search for ρ(x) is con-
ducted, the result will be either the BFAT key for x, or that of a key y later
inserted, whose BFAT key agrees with that of x except possibly for some of
the values of f0, . . . , fi−1. In this case we want x to be present in y’s associ-
ated (sorted) list of elements. That is, for each new key ρ(y) in the BFAT data
structure, we want a list of elements which includes x ∈ Si iff x and y agree on
fk, . . . , fi.

A predecessor query on ρ(y) − 1 will return the BFAT key which has the
longest common prefix with y (if any). By invariant, the associated list of this
key contains all the elements needed, apart from y itself, so it is easy to create
the list associated with y. The crux is that, since fk, . . . , f0 are 1-1, an associated
list can contain at most one element from each set.

Example. We go through Fig. 2. This example has 3, 4 and 5 distinguishing
bit positions for S0, S1 and S2, respectively. The keys inserted in the BFAT

28 R. Pagh

data structure are annotated with their list of elements. At t = 4 the dictionary
contains four elements, denoted a, b, c, d, all residing in S2. At t = 5 element e is
inserted and put into S0. The key for e coincides with the key for c on the first
five bits, so the associated list contains c and e. A search for the key of c at this
time would in fact find 00111 0000 000, so c is not strictly necessary in the new
list. However, at t = 6 element f enters, and S1 is filled by e and f . After this,
a search for the key of c will find 00111 0010 000, and c can be found in the new
list. At t = 7 element g is inserted, and its key coincides with both the first five
bits of c’s key and the first nine bits of e’s key, so the associated list becomes
ceg.

00010 0000 100

00111 0000 001
11011 0000 110

00110 0000 110
00010 0001 010
00110 1000 000
00111 0101 011
11011 0010 001

00111 0010 101
11111 1101 100

00111 0010 000 c

00010 0001 000

00111 1100 000
11011 0010 000

00110 1000 00000110 0000 000 b
00111 0000 000 c
11011 0000 000 d

S

S 1

2

00111 0000 011 cS 0

t=4 t=5 t=6 t=7

11111 1101 000

e

e
f

g10111 0010 011 ce

00010 0000 000 a

Fig. 2. Universe reduction function values for elements in S during three insertions.

3.1 Time and Space

A search for x requires computation of ρ(x) in constant time, a predecessor
lookup in time O((log log n)2/ log log log n) and finally search of an associated
list in time O(log log n). That is, the total time is O((log log n)2/ log log log n).

As for insertions, we already argued that the amortized cost of maintaining
the universe reduction function is O((log n)2), so we only need to see that the
cost of maintaining the associated lists is no larger. This is not hard, since all
that is needed is a single predecessor query and insertion of an element in a
sorted list of length O(log n).

The only part of the data structure which is not clearly in linear space is
the set of associated lists, where elements may occur log n times. To see that
their total length is O(n), note that there can be no more than n/2i−1 lists of
length i, since such lists must have been created in connection with insertion of
elements in S0, . . . , Sk+1−i.

A New Trade-Off for Deterministic Dictionaries 29

4 Final Remarks

4.1 Speedups

Updates can be sped up slightly, to time O((log n)2/ log log n), by using another
strategy, in which there are Θ(log n) sets of each size, and only O(log n/ log log n)
different set sizes. If the requirement of linear space is abandoned, substituting
van Emde Boas trees [14] for the BFAT data structure gives membership queries
in time O(log log n). The space usage then rises to nO(log n).

It can be noted that the predecessor data structure is used in such a way that
it essentially answers “longest common prefix” queries on strings of length k +1,
where the characters are described by the bits corresponding to sets Sk, . . . , S0,
respectively. A plausible way of improving the query time to, say, O(log log n) is
by designing a faster data structure which can find such longest common prefixes.

4.2 Worst-Case Bounds

We gave amortized bounds. The same worst-case bounds follow by standard
lazy rebuilding techniques, to be sketched below. Where the amortized insertion
algorithm would “build” Si and empty Si−1, . . . , S0, the worst-case insertion
algorithm keeps Si−1, . . . , S0 in memory and starts building Si at a pace of
c log n steps per insertion (for some sufficiently large constant c). Only when Si

is completed, we throw out the lower numbered sets.
More precisely, we now have sets Si,j for 0 ≤ j < i ≤ k, where |Si,j | ∈

{0, 2j}. The first index signifies that Si,j will next become part of a new set of
size 2i. Consider insertion number 2bd − 2a, where a < b (any positive integer
can be written like this for unique integers a, b and d). At this point we start
constructing Sb,a from the new element and Sa,0, . . . , Sa,a−1. As the last stage of
the construction, we set Sa,0 = · · · = Sa,a−1 = ∅. Constant c above can be chosen
such that this is guaranteed to be finished before any of the sets Sa,0, . . . , Sa,a−1
are to be reconstructed. The ordering of distinguishing bits is with respect to
primarily the first index, secondarily the second index.

Since we need associated element lists of length Ω((log n)2), we cannot afford
to use sorted lists as before (updates would become more expensive). Instead,
we use persistent balanced search trees [6], which support updates and queries
in time O(log t) for a sequence of trees of size at most t. One technicality is that
many instances of the algorithm finding distinguishing bits have to run at the
same time and must produce well separated bit positions. However, since posi-
tions are chosen one by one, this poses no problem. In addition to what is done
in the amortized case, the worst-case deletion algorithm inserts two elements of
S in a new dictionary. When the transfer of all elements in S is completed, the
new dictionary takes the place of the old one. Of course, transferred elements
may be deleted before the new dictionary takes over.

30 R. Pagh

5 Conclusion

We have seen a new lookup time vs insertion time trade-off for linear space de-
terministic dictionaries. This presents progress towards closing the gap between
known upper and lower bounds. It also shows that universe reduction techniques
have a place not only in the static setting.

The big open question is whether updates in such a dictionary can be accom-
modated in time (log n)o(1). For example, time (log log n)O(1) would mean that
Sundar’s lower bound is tight up to a polynomial. For w = (log n)O(1) this is
achieved by the BFAT data structure. Thus, large word length seems to be the
main enemy, and new universe reduction schemes with faster updates appear a
promising approach.

Acknowledgments

The author would like to thank Rolf Fagerberg and Jakob Pagter for useful
feedback.

References

[1] Arne Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic
searching and priority queues. In Proceedings of the 32th Annual ACM Symposium
on Theory of Computing (STOC 2000), New York, 2000. ACM Press.

[2] Paul Beame and Faith Fich. Optimal bounds for the predecessor problem. In
Proceedings of the 31th Annual ACM Symposium on Theory of Computing (STOC
’99), pages 295–304, New York, 1999. ACM Press.

[3] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polyno-
mial hash functions are reliable (extended abstract). In Proceedings of the 19th In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’92),
volume 623 of Lecture Notes in Computer Science, pages 235–246, Berlin, 1992.
Springer-Verlag.

[4] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der
Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM Journal on Computing, 23(4):738–761, August 1994.

[5] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class
of hash functions and dynamic hashing in real time. In Automata, languages and
programming (Coventry, 1990), pages 6–19. Springer, New York, 1990.

[6] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making
data structures persistent. J. Comput. System Sci., 38(1):86–124, 1989. 18th
Annual ACM Symposium on Theory of Computing (Berkeley, CA, 1986).

[7] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with O(1) worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, 1984.

[8] Michael L. Fredman and Dan E. Willard. Surpassing the information-theoretic
bound with fusion trees. J. Comput. System Sci., 47:424–436, 1993.

[9] Torben Hagerup. Sorting and searching on the word RAM. In Proceedings of the
15th Symposium on Theoretical Aspects of Computer Science (STACS ’98), pages
366–398. Springer, Berlin, 1998.

A New Trade-Off for Deterministic Dictionaries 31

[10] Torben Hagerup. Fast deterministic construction of static dictionaries. In Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1999), pages 414–418, New York, 1999. ACM.

[11] Peter Bro Miltersen. Error correcting codes, perfect hashing circuits, and de-
terministic dynamic dictionaries. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 1998), pages 556–563, New York, 1998.
ACM.

[12] Rasmus Pagh. Faster deterministic dictionaries. In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pages 487–
493, New York, 2000. ACM.

[13] R. Sundar. A lower bound on the cell probe complexity of the dictionary problem.
Manuscript, 1993.

[14] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In
16th Annual Symposium on Foundations of Computer Science (Berkeley, Calif.,
1975), pages 75–84, Long Beach, Calif., 1975. IEEE Computer Society.

[15] Andrew Chi Chih Yao. Should tables be sorted? J. Assoc. Comput. Mach.,
28(3):615–628, 1981.

Improved Upper Bounds for Pairing Heaps

John Iacono?

Department of Computer Science, Rutgers University, New Brunswick NJ 08903
iacono@john.rutgers.edu

Abstract. Pairing heaps are shown to have constant amortized time in-
sert and zero amortized time meld, thus improving the previous O(log n)
amortized time bound on these operations. It is also shown that pairing
heaps have a distribution sensitive behavior whereby the cost to per-
form an extract-min on an element x is O(log min(n, k)) where k is the
number of heap operations performed since x’s insertion. Fredman has
observed that pairing heaps can be used to merge sorted lists of varying
sized optimally, within constant factors. Utilizing the distribution sensi-
tive behavior of pairing heap, an alternative method the employs pairing
heaps for optimal list merging is derived.

1 Introduction

Self adjusting data structures, through the use of simple update rules, are often
able to match the asymptotic performance of non-self adjusting data structures
over any sequence of operations. They do not store balance information and
thus require less memory. Self adjusting structures are relatively easy to code
and often empirically outperform their non-self adjusting counterparts. Some self
adjusting data structures asymptotically perform as well as off-line algorithms
on classes of execution sequences defined by various structural or distributional
characteristics. Splay trees [9], a self adjusting binary search tree, have all of these
qualities, and are clearly favorable over their non-self adjusting counterparts,
both theoretically and empirically, in many situations. However, with respect
to heap design, the self adjusting methodology has not achieved corresponding
success. For pairing heaps, one form of self adjusting heap, we partially rectify
this by asymptotically improving existing upper bounds to bring them closer
to the best non-self adjusting data structure as well as introducing distribution
sensitive upper bounds.

The leading non-self adjusting heap is the Fibonacci heap [7] which has con-
stant amortized time make-heap, insert, find-min, meld, and decrease-key, while
supporting delete and extract-min in O(log n) amortized time. A recent alter-
native to Fibonacci heaps due to Kaplan and Tarjan, thin heaps [8], lowers
the pointer and balance requirements, but remains cumbersome. It was conjec-
tured in [6] and empirical evidence was presented in Stasko and Vitter [11] that
pairing heaps share the same amortized cost per operation as Fibonacci heaps.
? Research supported by NSF grant CCR-9732689.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 32–45, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Improved Upper Bounds for Pairing Heaps 33

However, this possibility was eliminated when it was shown by Fredman [4] that
the amortized cost of decrease-key can not be below O(log log n). In this work
we present a tighter analysis of pairing heaps than found in [6] that proves, with
the exception of decrease-key operations, pairing heaps share the same asymp-
totic runtime per operation as Fibonacci heaps. Specifically, the amortized upper
bound of O(log n) for the insert and meld operations, is improved to O(1) for
insert and O(0)1 for meld. It should be noted that Stasko and Vitter in [11] intro-
duced a variant of pairing heaps, the auxiliary twopass method, and proved that
this structure supported constant time insert. However, their analysis explicitly
forbade the decrease-key operation.

Pairing heaps use a restructuring heuristic that bears a strong similarity to
that of splay trees. While the ability of splay trees to exhibit certain types of
distribution sensitive optimality has been extensively studied [9,12,2,1,13], such
behavior, while expected in pairing heaps, has never been demonstrated. We
prove one result, similar to the working set theorem for splay trees [9], that
implies that if an item is in a pairing heap of maximum size n and k heap
operations have been performed since its insertion, extract-min operations take
amortized time O(log min(n, k)). This result holds for several variants of pairing
heap and through the depletion transformation of Fredman [5], for top down
skew heaps [10] as well. Our results are more robust than some of the results
on splay trees, as we allow the heap size and contents to dynamically change,
as opposed to the analyses of splay trees which only study the access operation
when investigating distribution sensitive effects.

Fredman [3] has shown that n sorted lists of varying sizes can be optimally
merged (within constant factors) using pairing heaps in the following manner:
First, each sorted list is represented as a linked listed, viewed as a linearly struc-
tured heap-ordered tree. These trees are then combined into a single tree using n
pairing heap meld operations. Finally, a single sorted list is obtained by executing
repeated extract-min operations. Inspired by Fredman’s results, an alternative
approach to list merging proceeds by inserting the smallest element from each
list into a pairing heap, and then repeatedly executing the pattern: extract-min,
insert ; where each insertion involves the next element from the input list that
contains the previously extracted element. An application of the O(log min(n, k))
result shows that this approach to list merging achieves optimal performance,
within constant factors, in both pairing and top-down skew heaps.

2 Pairing Heaps

A pairing heap is a heap ordered general tree. The basic operation on a pairing
heap is the pairing operation, which combines two pairing heaps by attaching
the root with the larger key value to the other root as its leftmost child. Priority
1 Meld in Fibonacci heaps is typically stated as taking O(1) amortized time. However,

since meld operations must be dominated by make-heap operations, meld operations
can never asymptotically change the runtime of any sequence, and thus take O(0)
amortized time.

34 J. Iacono

queue operations are implemented in a pairing heap as follows: Make-heap creates
a new single node heap. Find-min returns the data in the root of the heap. Merge
pairs the roots of the two heaps. Insert pairs the new node with the root of heap.
Decrease-key breaks off the node and its subtree from the heap (if the node is
not the root), decreases the key value, and then pairs it with the root of the
heap. Delete breaks off the node to be deleted and its subtree, performs an
an extract-min on the subtree, and pairs the resultant tree to the root of the
heap. Extract-min removes and returns the root, and then, in pairs, pairs the
remaining trees. Then, the remaining trees from right to left are incrementally
paired. All pairing heap operations take constant actual time, except extract-
min and delete, which take time linear in the number of children of the node
to be removed. For the purposes of implementation, pairing heaps are stored
as a binary tree using the leftmost child, right sibling correspondence. Unless
otherwise stated, the standard tree terminology will refer to the general tree
representation.

3 Constant Amortized Time Insert and Zero Amortized
Time Meld in Pairing Heaps

We claim that in a pairing heap the amortized runtime of find-min, make-heap,
and insert is O(1), meld is O(0) and decrease-key, delete and extract-min is
O(log n). The n used in the analysis is number of items in the heap that will
be removed during execution sequence in question, rather than simply the total
number of items in the heap. Proving these amortized costs is equivalent to
proving the following statement:

Theorem Given a sequence S = s1 . . . sm of m operations, where D =
{i|si is a extract-min, decrease-key or delete operation}, C = {i|si is a find-
min, make-heap, or insert operation}, and ni is the size of the heap before the
execution of si, S can be executed on an initially empty forest of paring heaps in
time O(|C| + Σi∈D log ni). Note that meld operations are allowed but can never
asymptotically affect the runtime of any sequence; that is the meaning of O(0)
amortized time.

Proof The potential method is used. The amortized time of operation i, âi, is
defined to be the actual time of the operation, ai, plus the change in potential,
Φi − Φi−1. Summing over the sequence S and rearranging yields:

∑m
i=1 ai =∑m

i=1 âi +Φ0 −Φm. Thus, the actual runtime of a sequence of operations is equal
to the sum of the amortized time of the operations plus the net loss of potential.
Note that the amortized times that we prove below are different then the ones
stated above; We prove these amortized times to bound the runtime of the entire
sequence, and that in turn proves our originally stated amortized costs.

For the analysis, a color, black or white, is assigned to every node, and a
weight is assigned to those nodes colored white. A node is black if it will remain
in the forest of heaps at the end of execution of sequence S, and white otherwise.
We say that a white node is heavy if the number of white nodes in its left subtree
in the binary representation is greater than or equal to the number of white

Improved Upper Bounds for Pairing Heaps 35

nodes in its right subtree. Roots and leaves are always heavy by this definition
and every node can have a maximum of log n heavy children. We say that a
white node that is not heavy is light.

We say a white node has been captured if its parent is black. Captured
nodes must have either a decrease-key or a delete performed on them later in
the execution sequence, and until such time they are not involved in any pairings.

The potential of a white node is the sum of four components: Rank poten-
tial, weight potential, triple white potential, and capture potential. The rank
potential of a white node is the 9 times the logarithm of the number of white
nodes in its induced subtree in the binary representation. If node is white and
has right and left siblings that are also white, then the node has a triple white
potential of −6, else it has no triple white potential. Heavy nodes have a weight
potential of −6, and light nodes have no weight potential. We assign captured
nodes a capture potential of −6 and non-captured nodes no capture potential.
The potential of a black node is −6 if its parent, in the general representation,
is black, and 0 otherwise. The potential of a forest of heaps, Φ, is the sum of the
potentials of the nodes in the heaps.

The amortized cost of each operation is now calculated using this potential
function:

Amortized cost of create-heap is O(1): Actual cost is 1, and the newly inserted
node has at most 0 potential (This is true if it is white or black). Thus the
amortized cost is at most 1.

Amortized cost of Insert is O(log n), if the newly inserted node is white:
Actual cost is 1. The newly inserted node will have a potential at most 9 log n.
The old root is the only other node that will change potential, gaining at most
9 log n. Thus the amortized cost of this operation, which is the sum of the actual
cost and the change in potential, is 1 + 18 log n.

Amortized cost of Insert is O(1), if the newly inserted node is black: Actual
cost is 1, and there are no gains of potential, for an amortized cost of 1.

Amortized cost of Meld on two trees with black roots, or on a white tree
with a white root, and the root of a heap composed entirely of black nodes is
O(1): Actual cost is 1, and there are no potential increases. Thus the amortized
cost is 1.

Amortized cost of Meld on two heaps with white roots or one heap with
a white root and one heap with a black node that is the root of a heap that
contains at least one captured white node is O(log n): Actual cost is 1. At most
two nodes, the roots of the trees to be melded, increase potential. Both could
gain rank potential, up to 9 log n each. Also the root with smaller key value
could change from heavy to light, causing a gain of 6. Thus the amortized cost
is 7 + 18 log n

Amortized cost of decrease-key is O(log n) Actual cost is 1. The node on which
the decrease-key is performed could gain as much as 9 log n in rank potential, 6
in weight potential, and 6 in capture potential. Among the node on which the
decrease-key is performed, and its two former siblings to the left and right, a
total of 6 units of triple white potential can be gained. Also, on the path from

36 J. Iacono

the node on which the decrease-key is to be performed to the root, the removal
of the node and its subtree may cause some nodes to change their status from
light to heavy or vice versa. Only changing from heavy to light causes a potential
gain, and this gain of 6 can only happen in log n nodes. Thus the amortized cost
is 19 + 15 log n.

Amortized cost of extract-min is O(log n):
If there are c children of the root, the actual cost is c − 1. The removal of

the root itself causes a potential gain of at most 6, since it was heavy, and is
not captured or a triple-white. There are at most log n heavy children of the
root, and so the potential gain caused by heavy nodes becoming light is at most
6 log n. Given that there are w white-white pairings in the first pairing pass,
the first pairing pass causes a rank potential gain of at most 18 log n − 18w.
The second pairing pass causes a rank potential gain of at most 9 log n. The
derivation of the changes in rank potential may be found in [6].

The extract-min operation can cause no increase in capture potential, as none
of the children of the are be captured.

In order to analyze other changes in potential (changes in triple white poten-
tial, losses of weight potential caused by a node becoming heavy, and changes in
black nodes’ potential) we break the children of the root into blocks of six nodes,
excluding the rightmost two nodes. At most 7 nodes can not be included in this
analysis, and they could incur a potential gain of up to 12 each. In analyzing
these specific potential changes in each block of six, there are six cases.

Case 1: There is at least one white-white pairing in the first pairing pass.
The only gains in potential are the possible gain of 6 units of triple white

potential for each white involved in a white-white pairing. This is the only case
where a gain in potential, among the components of the potential function under
consideration is possible.

Case 2: There are no white-white pairings and at least one black-black pairing
in the first pairing pass.

The black-black pairing(s) causes a loss of at least 6 units of potential.
Case 3: All are black-white pairings in the first pairing pass, and at least one

of the three white nodes is captured.
The capturing of the node(s) causes a capture potential loss of at least 6.
Case 4: All are black-white pairings in the first pairing pass, but all three

nodes that participate in the second pairing pass lose.
Having all three loose the pairings in the second pairing pass causes a loss of

potential of 6, due to the change of status of the middle white node to a triple
white.

Case 5: All are black-white pairings in the first pairing pass, and at least one
of the three nodes that participate in the second pairing pass wins, and at least
one of the white nodes is light.

The light node becomes heavy, as all nodes previously on its right are now
in its subtree. Additional nodes that were to the node’s left may also be added
to its subtree, but this just makes it more heavy. This causes a loss of 6 units of
heavy potential.

Improved Upper Bounds for Pairing Heaps 37

Case 6: All are black-white pairings in the first pairing pass, and at least one
of the nodes that participates in the second pairing pass wins, and all of the
whites that win in the second pairing pass are heavy.

There is no potential gain. This case can only happen log n times, because
there are at most log n heavy children of the root.

Case 1 causes a potential gain of at most 12w, and cases 2-6 cause a potential
loss of at least −6(b c−2

6 c − w − log n). These potential changes are in addition
to the gain of at most 33 log n−18w discussed earlier. Thus summing the actual
cost of the extract-min operation, c − 1 with the maximum potential gain yields
an amortized cost of 89 + 39 log n.

The amortized cost of delete is O(log n): If the node to be deleted has c
children, the actual cost to delete a node is c − 1. The removal of the node and
its subtree can cause a weight potential gain of 6 log n in its ancestors. Among
the node on which the delete is performed, and its two former siblings to the left
and right, a total of 6 units of triple white potential can be gained. Performing
an extract-min on the newly extracted subtree causes a potential gain of at most
89 + 39 log n − c (See analysis of extract-min above). Pairing the resultant tree
with the root of the original tree causes a potential gain of at most 6 + 18 log n
(see analysis of meld). Thus the total potential gain is at most 101 + 63 log n− c
and the amortized cost is 100 + 63 log n

The total potential loss over the execution of the sequence S, Φ0 − Φm, is
at most −6|C|: The initial potential of the empty data structure is 0 potential
is zero. At the end of the execution sequence, the data structure is a forest of
black nodes. Each non-root node has a potential of −6. Since |C| is at least the
total number of nodes inserted into the structure, the total potential loss is at
most −6|C|.

The sum of the amortized cost to perform the extract-min, decrease-key and
delete operations is O(Σi∈D log ni). It can also been seen that the sum of the
O(log n) amortized costs to insert white nodes and to perform meld operations
on two heaps where the root of one of the heaps is white and the other heap
contains at least one white node can not exceed O(Σi∈D log ni). Thus the sum
of the amortized costs of all operations except create-heap, insert on a black
node, and meld where both roots are black or at least one of the two heaps is
entirely composed of black nodes is O(Σi∈D log ni). There can not be more than
|C| insertions of black nodes, meld operations where both roots are black or at
least one of the two heaps is entirely composed of black nodes, or create-heap
operations, all of which we have shown take constant amortized time. Therefore,
the sum of the amortized times of all of the operations is at most O(|C| +
Σi∈D log ni). Adding the maximum potential drop of O(|C|) to the sum of the
amortized costs yields a bound of O(|C| + Σi∈D log ni) on the actual runtime of
the execution sequence S.

38 J. Iacono

4 The Working Set Theorem

Terminology: Let ti(x) = 1+ the number of items in the heap at time i that
were not in the heap when x was inserted.2 If time i is before x was inserted,
ti(x) = 0. Let Ti(x) = maxi

j=1 tj(x). Furthermore, assuming x was inserted
at time a and the maximum size of the heap from time a to b is n, Tb(x) ≤
min(b − a, n). The value of Ti(x) is nondecreasing in i. We use ni to denote the
current number of nodes in the heap and ηi to denote the maximum value of
Tj(x) among all nodes x, among all times j up to the and including i. Note that
ηi is also equal to the maximum size the of the heap up to and including time
i. In this section the standard tree terminology refers exclusively to the binary
representation.

Working Set Theorem for Pairing Heaps:
Let A = a1 . . . am be a sequence of m insert and extract-min operations

performed on an initially empty heap. Let I = {i|ai is a insert operation } and
E = {i|ai is a extract min operation }. Let ri denote the root at time i; Thus if
e ∈ E, then re is the item extracted at time e. The time to sequentially perform
the operations in A on a pairing heap is:

O

(
nm log ηm +

∑

i∈E

log Ti(ri)

)

Proof:
The potential method is used to analyze these operations. In order to analyze

the pairing heap, we will introduce the notion of a dummy node. Each node will
be inserted with a dummy node, and when extracted, the dummy node will
either be extracted with it, or on the subsequent operation, if the subsequent
operation is an insert. The dummy node of x, denoted as d(x) will be located
as x’s rightmost child. The position of the dummy nodes is invariant under the
pairing operation. The dummy nodes are for analysis purposes only, they are
not stored in an implementation. In the node counting required to compute the
t function defined above, we do not count dummy nodes. We instead adopt the
convention that ti(x) = ti(d(x)).

Lemma For any fixed time i, there can never exist two nodes x and y such
that Ti(x) = Ti(y), unless one is the dummy node of the other.

Proof Assume x was inserted before y. Thus at any time j when both x and
y are in the heap tj(x) > tj(y). This is true because every node inserted after y
that is still in the heap is a node that was inserted after x that was still in the
heap, and y itself contributes 1 to tj(x) but not to tj(y).

2 Note that time i refers to the state of the data structure before the ith operation
has completed. Time zero refers to the initial empty state of the data structure.

Improved Upper Bounds for Pairing Heaps 39

Definitions
f(x) = 1

2(1+x)2

Si(x) = {y|y is in the subtree induced
by x at time i }

ri = the root
εi = 2pi−1(ri−1)

if i − 1 ∈ E and i ∈ I, 0 otherwise
ri(x) =

∑
y∈Si(x) f(Ti(y))

pi(x) = log ri(x)
Φi = εi +

∑
y∈Si(ri) pi(x) − 6ni

The amortized time of operation i, âi, is defined to be the actual time of the
operation, ai, plus the change in potential, Φi+1 −Φi. Summing and rearranging
terms yields

∑i=m
i=1 ai =

∑m
i=1 âi + Φ0 − Φm+1 Thus the actual runtime of a

sequence of operations is equal to the sum of the amortized time of the operations
plus the net loss of potential. To prove the working set theorem, it shall be
sufficient to prove the following three lemmas:

Lemma (Potential loss): Φ1 − ΦN = O(nm log ηm)
Lemma (insert): If i ∈ I, âi = 0.
Lemma (extract-min): If i ∈ E, âi = O(log(Ti(ri)))
Proof (Potential loss lemma):

Φ1 − Φm+1

≤ ε1 − εm+1 +
∑

x∈S1(r1)

p1(x)

−
∑

x∈Sm+1(rm+1)

pm+1(x)

≤ −
∑

x∈Sm+1(rm+1)

log rm+1(x)

≤ −nm+1(−2 log(1 + ηm+1) − 1)
= O(nm log ηm)

Proof (Extract-min Lemma): We track the change in potential over every
step involved in the extract-min operation: The removal of the root, the first
pairing pass, the second pairing pass, the removal of the dummy node, and the
changing of ε, T (x), and n. We assume the current operation is aτ .

Removal of root: The removal of the root causes a change in potential of

−pτ (rτ) = − log rτ (rτ) ≤ 1 + 2 log(1 + Tτ (rτ))

First Pairing Pass: The effect on the binary representation of the first
paring pass may be viewed as a sequence of applications of the double pairing
transformation illustrated in Figure 1, along with at most one application of a
single pairing transformation from Figure 2.

40 J. Iacono

c

d e

a

b

D

A

B

C
b

c d

e

a

A’

B’

D’

C’

c d

e

D’

C’

b a

A’

B’

Before Pairing After pairing, Case 1 After pairing, Case 2

e

d c

D’

C’

B’

a b

A’

e

b a

A’

B’

d c

D’

C’

After pairing, Case 3 After pairing, Case 4

Fig. 1. Effect of first pairing pass on two pairs of nodes

Lemma: A single application of a double pairing transformation causes a
potential gain of at most 4pτ (A) − 4pτ (B).

Proof : The proof for the first case is provided, the remaining three are
substantially similar.

pτ (A′) + pτ (B′) + pτ (C ′) + pτ (D′)
−pτ (A) − pτ (B) − pτ (C) − pτ (D)

= log rτ (A′) + log rτ (C ′) + log rτ (D′)
− log rτ (B) − log rτ (C) − log rτ (D)

= log rτ (A′) + log rτ (D) + log 4
+ log rτ (C ′) + log rτ (D′)
− log rτ (B) − log rτ (C) − 2 log rτ (D) − 2

≤ log(4rτ (A′)rτ (D)) + 2 log rτ (A)
−4 log rτ (D) − 2

≤ 2 log(rτ (A′) + rτ (D))
+2 log rτ (A) − 4 log rτ (D) − 2

≤ 4 log rτ (A) − 4 log rτ (D) − 2
≤ 4pτ (A) − 4pτ (D) − 2

Improved Upper Bounds for Pairing Heaps 41

Lemma: A single application of a single pairing transformation from Figure 2
causes a potential gain of at most log pτ (A)−log pτ (B) ≤ 4 log pτ (A)−4 log pτ (B)

Proof : Again, the proof for the first case is provided, with the second case
being similar:

pτ (A′) − pτ (B′) − pτ (A) − pτ (B)
= pτ (B′) − pτ (B)
≤ pτ (A) − pτ (B)
≤ 4pτ (A) − 4pτ (B)

If the number of parings required is even, then the first pairing pass is ana-
lyzed by repeatedly applying double transformations. If the number of pairings
required is odd, the pairings are carried out by using one single-pairing transfor-
mation and several double-pairing transformations. Note that d(rτ), which will
be at the bottom of the right path, does not participate in the transformations,
as it is not actually stored in the heap. Let l be the number of pairing transfor-
mations performed. All of the transformations applied form an telescoping sum
with the result that the total potential gain is at most

4pτ (L(rτ)) − 4pτ (d(rτ)) − (l − 1)
≤ 9 + 4 log(Tτ (d(rτ))) − l

≤ 9 + 4 log(Tτ (rτ)) − l

A

Ba

b c

c

A’

B’

b a

B’

a b

A’ c

Before pairing After pairing, case 1 After pairing, case 2

Fig. 2. Effect of a single pairing

Second pairing pass: The second pairing pass can be viewed as a sequence
of single transformations. As stated above the potential change of each applica-
tion of a single transformations transformation is ≤ log A − log B. Repeatedly
applying this transformation going up the right path generates a telescoping sum.
Since the dummy node of the recently extracted node still lies at the bottom of

42 J. Iacono

the right path, the sum is bounded by:

1 + 2 log(Tτ (rτ) + 1)

Removal of dummy node: Removing d(rτ) cases a potential gain of

−pτ (d(rτ)) ≤ 1 + 2 log(1 + Tτ (d(rτ))
= 1 + 2 log(1 + Tτ (rτ))

The dummy node is only removed if the next operation is not an insertion. In
any event the change in potential caused by the possible removal of the dummy
node is

≤ 1 + 2 log(Tτ (rτ) + 1)

Setting of ετ : Epsilon is assigned the value −2pτ (rτ) only if the next oper-
ation is an insert. As the previous value of ε is zero, this causes a potential gain
of at most

−2f(Tτ (rτ)) ≤ 2 + 4 log(T (rτ) + 1))

Changing of T (x) and n For all nodes x (except rτ , which has been re-
moved), Tτ+1(x) = Tτ (x). Thus no potential change due to the changing of the
T values occurs. The removal of a nodes causes a potential gain of 6.

Summary The amortized cost of a remove min is the actual cost plus the
change in potential. If we charge 1

2 unit of time for each pairing used, the actual
cost is a ≤ l + 1

2 . Note that by doubling the potential function it is possible
to charge the more pleasing one unit of time per operation however, this was
not done to simplify the presentation. Thus combining the actual cost with the
changes in potential for the removal of the root, the first and second pairing
passes, the removal of the dummy node and the possible setting of ε yields:

â = a + Φτ+1 − Φτ

≤ l +
1
2

+ 12 log(T (rτ) + 1) + 12 − l

≤ 12 log(Tτ (rτ) + 1) +
25
2

≤ O(log Tτ (rτ))

Proof (Insert Lemma): Inserting a new node x into a heap with root
rτ−1 will have two possible outcomes, depending on whether x is the smallest
element of the new heap or not. This is depicted in Figure 3. Recall that if the
previous operation was an extract-max, then the dummy of the previous root
is still present, and ε is nonzero. This possibility splits each of the two cases.

Improved Upper Bounds for Pairing Heaps 43

We may assume that the possible lowering of the values of rτ (x) caused by
the possible increase of Tτ (x) for some nodes x, has been performed. Note that
the potential loss lemma limits the total potential decrease over a sequence of
operations, and thus needs not be considered here. We also note the loss of 6
here caused by increasing n by one.

a D

r

x

r’

a
d(x)

a

x

r’

d(x)

Before Insertion After insertion, case 1 After insertion, case 2

Fig. 3. Effect of insertion of a new element x in a pairing heap. D represents the
dummy node that is present if the previous operation was an extract-min

Previous operation was an insert :

pτ (x) + pτ (r′
τ) − pτ (rτ) ≤ −pτ (rτ)

Since the last operation was an insert there is one element (either r or an
element of A) that has T (x) = 2. Thus

−pτ (rτ) ≤ − log f(Tτ (2)) ≤ log 18

Previous operation was an extract-min: Removing the dummy causes
a potential gain of −pτ (d(rτ−1)). Decreasing ετ to zero causes a potential gain
of 2pτ−1(d(rτ−1)). It is also the case that pτ (r) ≥ pτ (d(rτ−1). Thus the total
potential gain is:

pτ (r′) + pτ (x) − pτ (r) − pτ (D) − ετ

= −pτ (d(rτ−1) + −pτ (d(rτ−1) + +2pτ−1(d(rτ−1))
≤ 0
Summary: Since the actual cost of the insert operation is a = 1, and the

gain is potential is at most log 18 the amortized cost is:

â = 1 + log 18 − 6 ≤ 0

4.1 The Working Set Theorem for Top Down Skew Heaps

The working set theorem presented above can easily be adapted for seq-pairing
heaps. Skew pairing heaps were introduced in [5], and implement all operations
except extract-min identically to standard twopass pairing heaps. In the skew

44 J. Iacono

pairing heap, extract-min pairs every other tree, incrementally from right to left.
The remaining trees are also paired incrementally from right to left. Finally, the
two resultant trees are paired together. In [5] it is shown that given any sequence
of N operations (excluding (decrease-key) and (delete) that takes time T , the
same sequence can be executed on a top down skew heap in time T ′ where
T ≤ T ′ ≤ nN log nN . Since ≤ nN log nN ≤ ηN log nN , the same asymptotic
bound of O

(
nN log ηN +

∑
i∈E log Ti(ri)

)
holds for executing the sequence on a

top down skew heap.

4.2 Populate Replace Heaps

Define a populate-replace-heap to be an abstract data structure that supports
the following two operations:

Populate: Given n items, populate inserts them into the heap.
Replace-Min: Replace the minimum element with another.
Theorem: Define s(x) to be the number of items smaller than x when x is

inserted into a heap. In populate replace heap, implemented as a pairing heap,
threepass pairing, skew pairing or top down skew heap, one populate operation
with n items x1 . . . xn, followed by N replace-min operations, where y1 . . . yN

are the replacement items takes time O(n log n +
∑N

i=1 log s(yi))
Proof: Two observations: First, nT ≤ n throughout the life of the heap.

Secondly, if when item x is inserted into a heap of n items there were k items
smaller then x then there will never be more than n items inserted after x in the
heap concurrently with x, if the heap size never exceeds n. This is because the
n−k items larger then x upon insertion will still be present at x’s removal. Thus
when x is removed T (x) ≤ k. These two observations, along with the working set
theorem for pairing heaps complete the proof. Note that constant time insertion
in threepass pairing heaps yields a charge of n rather than n log n in the above
analysis.

4.3 {Pairing, Skew-Pairing, Top-Down Skew} Heaps Merge Sorted
Lists Optimally within a Constant Factor

A populate replace heap, implemented as a pairing, skew-pairing, or top-down
skew heap can be used to merge the items of m ordered lists of lengths n1, n2, . . .
nm by storing one element of each list in a the heap, and then repeatedly remov-
ing the smallest item and replacing it with the next item in its list. Define ki,j

to be the number of items in the heap when j’th item from list xi is removed.
Define N =

∑m
i=0 ni Note that ∀i

∑ni

j=1 ki,j ≤ N .
Theorem: Pairing heaps merge m ordered lists size n1, n2 . . . nm with a total

of N elements optimally in time Θ
(
m log m + N +

∑m
i=1 ni log

(
N
ni

))

Lower bound
The Information theory bound
Given a set of m ordered lists {x1, x2 . . . xn}, where list i has ni elements,

we wish to generate one ordered list X with N =
∑m

i=1 ni elements. Since

Improved Upper Bounds for Pairing Heaps 45

the number of possible orderings of X is given by the multinomial coefficient(
N

n1, n2, . . . , nm

)
, the information theoretic bound on this problem is

log
(

N
n1, n2, . . . , nm

)
which is Ω

(
−N log e +

∑m
i=1 ni log

(
N
ni

))

Other lower bounds
We assume a lower bound of Ω(N), since each item must be looked it.
Since merging this lists sorts the m heads of each list there is an lower bound

of Ω(m log m)
Summary
Linearly combining the three lower bounds above with suitable constants

yields a lower bound of Ω
(
m log m + N +

∑m
i=1 ni log

(
N
ni

))

Upper bound
The total cost of merging the lists according to the populate replace theorem

is m log m +
∑m

i=1
∑ni

j=1 log ki,j = O
(
m log m + N +

∑m
i=1 ni log

(
N
ni

))

References

1. R. Cole. On the dynamic finger conjecture for splay trees. part ii: The proof.
Technical Report Computer Science TR1995-701, New York Univerity, 1995.

2. R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger conjecture for
splay trees. part i: Splay sorting log n-block sequences. Technical Report Computer
Science TR1995-700, New York Univerity, 1995.

3. M. L. Fredman. Manuscript in preparation.
4. M. L Fredman. On the efficiency of pairing heaps and related data structures.

JACM, 46(4):473–501, 1999.
5. M. L Fredman. A priority queue transform. In Workshop on Algorithm Engineer-

ing, pages 243–257, 1999. LNCS 1668.
6. M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap:

A new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.
7. M. L Fredman and R. E. Tarjan. Fibonacci heaps and their used in improved

network optimization algorithms. JACM, 34:596–615, 1987.
8. Haim Kaplan and Robert E. Tarjan. New heap data structures. Technical Report

Computer Science TR-597-99, Princeton University, 1999.
9. D. D. Sleator and R. E. Tarjan. Self-adjusting binary trees. JACM, 32:652–686,

1985.
10. D. D. Sleator and R. E. Tarjan. Self-adjusting heaps. SIAM Journal of Computing,

15:52–69, 1986.
11. J. T. Stasko and J. S. Vitter. Pairing heaps: experiments and analysis. CACM,

15:234–249, 1987.
12. R. Sundar. Amoritzed Complexity of Data Structures. PhD thesis, New York

University, 1991.
13. R. E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica,

5:367–378, 1985.

Maintaining Center and Median
in Dynamic Trees

Stephen Alstrup1, Jacob Holm1, and Mikkel Thorup2

1 The IT University of Copenhagen, Glentevej 67, DK-2400, Denmark.
{stephen,jholm}@itu.dk

2 AT&T Labs–Research, mthorup@research.att.com

Abstract. We show how to maintain centers and medians for a collec-
tion of dynamic trees where edges may be inserted and deleted and node
and edge weights may be changed. All updates are supported in O(log n)
time, where n is the size of the tree(s) involved in the update.

1 Introduction

In this paper we study the problem of locating facilities in a collection of dynamic
trees. For each tree, we wish to maintain (1) a center, which is a node minimizing
the maximal distance to all other nodes, and (2) a median, minimizing the sum
of the distances to all other nodes. In both cases, we have edge weights, and
in the later case, it is relevant to have node weights, and then the cost of the
median is the weighted sum of distances to all other nodes.

In 1971 Goldman [17] gave a linear time algorithm for determining the median
in a tree. In 1973 Handler [19] showed how one in linear time can compute the
center of a tree. The static median and center problems have been investigated
and generalized in many papers, see e.g. [18,3,15,11]. A long list of references to
the median and center problem and similar problems can be found in [26].

In our dynamic setting, we allow weights to be changed, and further edges
may be inserted and deleted. In the rest of this paper, n denotes the size of the
tree(s) involved in an operation. Our main result is that both centers and me-
dians can be maintained in O(log n) time per update. For centers, the previous
bound was O(log2 n) [6]. For medians, polylogarithmic bounds were only known
for changes of node weights [3], but not for edge insertions and deletions. More
precisely, [3] presents an O(log n) bound for the monotone case where weights
may only be increased. If the weights may be both increased and decreased,
they claim an O(log2 n) bound. However, to achieve these results, they claim
they can access subtree weights in constant time, spending O(log n) per weight
update [3, p. 445]. This contradicts a cell-probe lower bound (for word size log n)
saying that an update time of tu implies a query time of Ω(log n/ log(tu log2 n)),
even if the tree is just a path (prefix-sum) [13, p. 348 (2)]. Our O(log n) solu-
tion to the dynamic median problem does not maintain all subtree weights. All
our algorithms are elementary in that they can be implemented on a pointer
machine [28].

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 46–56, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Maintaining Center and Median in Dynamic Trees 47

A common problem in finding medians and centers are that they are “non-
local” properties. Here, by a local property we mean that if a node has the
property in a tree, then it has the property in all subtrees it appears in. Local
properties lend themselves nicely to bottom-up computations, whereas non-local
properties tend to be more challenging.

A main advantage to our solutions of the dynamic center and median prob-
lems are that they are simple, based on the top trees from [2]. Towards the end
of the paper, we will argue that it would have been more technical to solve the
problem with the classical dynamic trees from [27]. Thus, our methodological
contribution is to pin-point advantages of designing dynamic tree algorithms
with top trees.

2 Top Trees

In this preliminary section, we discuss our basic starting point: top trees from [2].
Our presentation of the interface will be somewhat more precise and thorough
than that in [2]. The more exact understanding of the interface is needed for
both our applications, and for our later methodological discussion of top trees
versus more classical data structures for dynamic trees [10,12,27].

A top tree is defined based on a pair consisting of a tree T and a set ∂T
of at most 2 nodes from T , called external boundary nodes. Given (T, ∂T), any
connected subtree C of T has a set ∂(T,∂T)C of boundary nodes which are the
nodes of C that are either in ∂T or incident to an edge in T leaving C. The
subtree C is called a cluster of (T, ∂T) if it has at most two boundary nodes.
Then T is itself a cluster with ∂(T,∂T)T = ∂T . Also, if A is a subtree of C,
∂(C,∂(T,∂T)C)A = ∂(T,∂T)A, so A is a cluster of (C, ∂(T,∂T)C) if and only if A is a
cluster of (T, ∂T). Since ∂(T,∂T) is a canonical generalization of ∂ from T to all
subtrees of T , we will use ∂ as a shorthand for ∂(T,∂T) in the rest of the paper.

A top tree T over (T, ∂T) is a binary tree such that:

1. The nodes of T are clusters of (T, ∂T).
2. The leaves of T are the edges of T .
3. If C is an internal node of T with children A and B, then C = A ∪ B and A

and B are neighbors, that is they share a single node (see Figure 1).
4. The root of T is T itself.

A tree with a single node has an empty top tree.
The top trees over the trees in our forest are maintained under the following

operations:
Link(v, w): where v and w are in different trees, links these trees by adding the edge

(v, w) to our dynamic forest.

Cut(e): removes the edge e from our dynamic forest.

Expose(v, w): where v and w are in the same tree T , makes v and w the external
boundary nodes of T . Moreover, Expose returns the new root cluster of the top
tree over T .
Expose can also be called with one or zero nodes as arguments if we want less
than two external boundary nodes.

48 S. Alstrup, J. Holm, and M. Thorup

cluster path

boundary node(4)(2)

(3)(1)

Fig. 1. Combining two clusters in one. The boundary nodes and cluster paths in the
figure are for the resulting cluster.

In general, Link and Cut makes the set of external boundary nodes for the
resulting trees empty. Every update of the top tree can be implemented as a
sequence of the following two operations:
Merge(A, B): where A and B are the root-clusters of two top trees TA and TB .

Creates a new cluster C = A∪B and makes it the common root of A and B, thus
turning TA and TB into a single new top tree TC . Finally, the new root cluster C
is returned.

Split(C): where C is the root-cluster of a top tree TC and has children A and B.
Deletes C, thus turning TC into the two top trees TA and TB .

Recall that n denotes the size of the trees involved in a given update operation.
From [2,10] we have:

Theorem 1 For a dynamic forest we can maintain top trees of height O(log n)
supporting each Link, Cut, or Expose with a sequence of O(log n) Merge and
Split. Here the sequence itself is identified in O(log n) time. The space usage of
the top trees is linear in the size of the dynamic forest.

Note that since the height is maintained logarithmic, any edge is contained
in at most O(log n) clusters. In contrast, a node v can appear in Θ(n) clusters.
However, v can only be a non-boundary node in O(log n) clusters. More precisely,
if v is not an external boundary node, there is a unique cluster C :=Merge(A, B)
where {v} = A ∩ B and v 6∈ ∂C. Then v is a non-boundary node in a cluster D
if and only if D = C or D is one of the O(log n) ancestors to C.

Notation If v and w are connected in a tree, v · · ·w denotes the unique path
from v to w. If a cluster C has two boundary nodes a and b, we call a · · · b the
cluster path of C, denoted π(C). If |∂(C)| < 2, π(C) = ∅. Note that if A is a
child cluster of C and A shares an edge with π(C), then π(A) ⊆ π(C), and then
we call A a path child of C. In terms of boundary nodes, if C has children A and
B, A is a path child of A if and only if |∂C| = 2 and either ∂A = ∂C (Fig. 1 (2))
or ∂C ⊂ ∂A ∪ ∂B (Fig. 1 (1)).

Representation and usage of top trees A top tree is represented as a standard
binary rooted tree with parent and children pointers. The “top” nodes of the
binary tree represent the clusters, and with each top node is associated the set of

Maintaining Center and Median in Dynamic Trees 49

at most two boundary nodes of the represented cluster. The leaves of the binary
top tree are still identified with the edges of our tree. Finally, from each node v,
there is a pointer C(v) to the smallest cluster that v is a non-boundary node in,
or to the root cluster containing v if v is an external boundary node.

The user of the top tree data structure has direct access to the above rep-
resentation, and will typically associate some extra information with the top
nodes. The user is guaranteed that the top tree is only modified with Merge and
Split. In connection with each Merge and Split the user is notified and given
pointers to the top nodes representing the involved clusters. The user can then
update his information associated with these top nodes.

For example, suppose, as in [27], that we want to maintain the minimum
weight on the path between any two vertices. Then with each (top node repre-
senting a) cluster C, we store as extra information the minimum weight WC on
the cluster path π(C). For an edge, this is just the edge weight. When C is cre-
ated by a merge, we store the minimum weight stored at its path children. When
C is split, we just discard the information stored with C. Now, to find the min-
imum weight between v and w, we set C :=Expose(v, w). Then π(C) = v · · ·w,
and we return WC .

Together with Theorem 1, the above description of how to modify and use
our extra information WC allows us to conclude that we can maintain a dynamic
collection of trees with Cut, Link and queries to minimum weights between given
nodes in O(log n) time per operation.

We shall refer to the algorithm from Theorem 1 that translates Cut, Link,
and Expose into sequences of Merge and Split as a driver. In our description of
our extra information, we did not need to worry about how the driver scheduled
the Merge and Split; we just had to tell how information had to be modified in
connection with an arbitrary Merge and Split.

Above, Split was trivial. To see its relevance, suppose as in [27], that we as an
additional operation want to add a weight x to all edges on a path v · · ·w. Then,
for each cluster C, we introduce a “lazy” weight ∆C which is to be added to all
edges in π(C) in all clusters strictly descending from C. The addition of x to
v · · ·w is now done by calling C :=Expose(v, w) and adding x to WC and to ∆C .
Then Split(C) requires that for each path child A of C, we set WA := WA + ∆C

and ∆A := ∆A + ∆C . For C :=Merge(A, B), we set WC := min{WA, WB}
and ∆C := 0. Finally, to find the minimum weight on the path v · · ·w, we set
C :=Expose(v, w) and return WC .

Put in perspective, our top trees are natural generalizations of standard bal-
anced binary trees over dynamic collections of lists that may be concatenated
and split. In the balanced binary trees, each node represent a segment of a list,
which in top terminology is just a special case of a cluster. Standard drivers for
balanced binary trees also ascertain that the height is O(log n), and that each
concatenation can be done by O(log n) local modification, called rotations.

50 S. Alstrup, J. Holm, and M. Thorup

3 Non-local Searching

We are now going to build a black-box on top of our top trees for maintainance
of centers and medians. As discussed in the introduction, the common fea-
ture of centers and medians is that they represent non-local properties. Here
a node/edge property is local if it being satisfied by a node in a tree implies
that the node satisfies the property in all subtrees containing it. For example,
being the minimum edge on a given path is a local property. Local properties
lend themselves nicely to bottom-up computations whereas non-local properties
appear to be more challenging.

For our general non-local searching, the user should supply a function Select
that given the root cluster of a topology tree, selects one of the two children.
Recall here that a root cluster represents the whole underlying tree, which is
important when dealing with non-local properties. Our black box will use Select
to guide a binary search after a desired edge.

Theorem 2 (Non-Local Search) Given a top tree, after O(log n) calls to Se-
lect, Merge, and Split, there is a unique edge (v, w) contained in all clusters
chosen by Select, and then (v, w) is returned.

As stipulated in the general interface to top trees, the driver behind Theorem 2
will only manipulate the top tree with merge and split operations.

Before proving Theorem 2 we apply it to the center and median problems.
Our general approach is to first decide the information needed for Select, second
show how to make the information available.

3.1 Dynamic Center

For any tree T and node v let hv(T) denote the length of the longest path from
v in T . A center is a node v minimizing hv(T).

Lemma 3 Let T be a tree, and let A and B be neighboring clusters with A∩B =
{c} and A ∪ B = T . If hc(A) ≥ hc(B), A contains all centers.

Proof: Let w be a node in A of maximal distance to c. Then dist(c, w) =
hc(A) = hc(T). Now, if v ∈ B \ A, hv(T) ≥ dist(v, w) = dist(v, c) + dist(c, w) =
dist(v, c) + hc(T). Since the edge weights are positive, dist(v, c) > 0, so v cannot
be a center minimizing hv(T). ut

For every cluster C, ∂C = {a, b}, we maintain:

– The distance between the boundary nodes: dist(C)
– The maximal distance in C from each boundary node: ha(C), hb(C)

Thus, for a new edge (v, w) with weight x, we just set
dist((v, w)), hv((v, w)), hw((v, w)) := x. Consider merging A and B in C. To get
dist(C) we just sum dist(D) for each path child D ∈ {A, B} of C (In Fig. 1, we
have two path children in (1), one in (2), and none in (3,4)). For each a ∈ ∂C,

Maintaining Center and Median in Dynamic Trees 51

we compute ha(C) as a maximum over the two cluster children A and B of C,
depending on which the node furthest from a is found in. If a ∈ ∂A, the maximal
distance to a node in A is ha(A). If a 6∈ ∂A and {c} = A ∩ B, we have to pass B
to get to c, so the maximal distance to a node in A is dist(B) + hc(A). Splitting
a node does not require moving any information, so we conclude that we can
maintain the above information for the clusters in constant time per merge or
split, hence in O(log n) time per link or cut by Theorem 1.

We will now define Select given a root cluster C with children A and B,
A ∩ B = {c}. If hc(A) ≥ hc(B), Select picks A, otherwise it picks B. By Lemma
3, any cluster picked contains all centers, so following Theorem 2, the returned
edge (v, w) contains all centers. Since Select takes constant time, (v, w) is found
in O(log n) time.

To find out if whether v or w is a center, we compute C :=Expose(v, w) in
O(log n) time, using Theorem 1. Since C coincides with T , we can return v if
hv(C) < hw(C); w otherwise.

Theorem 4 The center can be maintained dynamically under link, cut and
change of edge weights in O(log n) worst case time per operation.

Proof: Since the above Merge, Split, and Select are supported in constant time,
the time bound follows from Theorem 2. ut

3.2 Dynamic Median

Let T be a tree with both positive node and edge weights. A median is a node
m minimizing

∑
v∈V weight(v) ∗ dist(v, m), where dist(v, m) is the sum of cost

of edges on the unique path from v to m in the tree. For any tree T , let w(T)
denote the sum of node weights of T . Our approach to finding medians is similar
to that for centers, but for the median, it is natural to allow the user to change
node weights, and this requires a simple trick.

The lemma below is implicit in Goldman [17].

Lemma 5 Let (v, w) be an edge in the weighted tree T . Let Tv and Tw be the
trees from T \ {(v, w)} containing v and w, respectively. If w(Tv) = w(Tw), v
and w are the only medians in T , and if w(Tv) > w(Tw), all medians in T are
in Tv.

Corollary 6 Let T be a tree, let m be a median of T and let A and B be
neighboring clusters with A ∩ B = {c} and A ∪ B = T . Then w(A) ≥ w(B) ⇒
m ∈ A.

Proof: Let (c, w) be any edge in B leaving c. Then Tc = A and w(Tc) = w(A) ≥
w(B) > w(Tw), so by Lemma 5 there are no medians in Tw. It follows that there
cannot be any medians in B \ {c}. ut

The above corollary suggest that we should maintain the weight of each cluster,
but this gives rise to a problem; namely that a single node can be contained

52 S. Alstrup, J. Holm, and M. Thorup

in arbitrarily many clusters, and a change in the node’s weight would affect all
these clusters.

Our solution is that for each cluster C, we only maintain their “internal
weight” wi(C) = w(C \ ∂C). This means that when we merge two clusters A
and B, A ∩ B = {c} into C, we add their internal weights plus the weight of c
if c 6∈ ∂C. The point is that any node is only non-boundary in O(log n) clusters,
and the internal weight of these clusters is trivially updated in O(log n) time if
a node weight changes.

Since clusters have at most two boundary nodes, for a given cluster, we can
always compute the real weight from the internal weights in constant time, and
hence we can implement Select choosing the lightest cluster in constant time,
getting an edge (v, w) which contains the median in O(log n) time.

To find out which of v and w is the median, we apply Lemma 5. We now cut
the edge (v, w), and return v if the (root cluster of the) tree Tv containing v is
heavier; w otherwise. Before returning v and w, we link (v, w) back in T . The
link and cut take O(log n) time, so we conclude:

Theorem 7 The median can be maintained dynamically under link, cut and
change of edge/node weights in O(log n) worst case time per operation.

3.3 Non-local Search Implementation

We will now prove Theorem 2. Essentially our search will follow a path down
the given top tree T . As we search down, we will modify the top tree so as to
facilitate calls to select, but we will end up restoring it in its original form. Thus,
when we start the search, we assume that some driver, as in Theorem 1, provides
a top tree of height O(log n). It is convenient to assume that there is at least one
external boundary node so that all clusters have at least one boundary node.
During the search, we manipulate the top tree, but we end up returning it to the
driver in exactly the same shape as we got it. All modifications for the search
are done via Split and Merge, as stipulated in the general interface to top trees.

Our search consists of O(log n) iterations i = 0, At the beginning of it-
eration i, there will be a cluster Ci on depth i in the original top tree which
contains exactly the edges that have been in all clusters selected so far. If Ci is a
single edge (v, w), we return (v, w). Otherwise Ci has children Ai and Bi in the
original tree. Select will then be presented a root cluster with children A∗

i and
B∗

i such that Ai ⊆ A∗
i and Bi ⊆ B∗

i . If the user selects A∗
i , we have Ci+1 = Ai

for the next iteration. Otherwise Ci+1 = Bi.
To simplify the description of the generation of A∗

i and B∗
i , define the top

tree of a singleton node c to be the cluster consisting of that node. Moreover, if
c is a boundary node of a cluster C, define a merge with c to be neutral for C,
that is, C remains a root cluster which is returned by the merge.

Now, let ∂Ci = {a, b}, a ∈ Ai, and b ∈ Bi. Here, possibly, a = b. At the
beginning of iteration i, we have three root clusters, Ci, Âi 3 a, and B̂i 3 b,
partitioning T in the sense that they contain all edges and only overlap in a and

Maintaining Center and Median in Dynamic Trees 53

b. In the first iteration, we have C0 = T , Â0 = {a} and B̂0 = {b}. For any i, we
call the user-defined Select with the root cluster obtained as

Merge(Merge(Âi, Ai), Merge(Bi, B̂i))

By symmetry, we may assume that the user selects Merge(Âi, Ai). We then split
the newly created root cluster, as well as Merge(Âi, Ai), and then we have the
three root clusters Âi+1 = Âi, Ci+1 = Ai, and B̂i+1 =Merge(Bi, B̂i) ready for
iteration i + 1.

As mentioned, the iterations stop as soon as we arrive at a Ci which is just a
single edge (v, w). Since the height of the top tree before the search is O(log n)
and since each iteration only involves a constant number of Merge and Split, we
conclude that the total number of Merge and Split is O(log n). At the end when
we have found Ci = (v, w), we just reverse all Merge and Split to restore the top
tree in its original form, and return the edge (v, w).

4 Methodological Remarks

Our main results in Theorem 4 and 7 could also have been achieved based on
either the Sleator and Tarjan’s dynamic trees [27], or Frederickson’s topology
trees [10,12]. However, we claim that the derivation from these more classical
data structures would have been more technical.

Sleator and Tarjan’s dynamic trees Sleator and Tarjan provide an axiomatic
interface for their dynamic trees [27] where the user can choose a root with a
so-called Evert-operation, and then, for any specific node, add weights to all
edges on the path to the root, or ask for the minimum of all weights on this
path. This is basically the interface we implemented with top trees at the end
of Section 2, assuming that we expose both the desired root and the specified
node.

Before discussing limitations to the above interface, we first illustrate its gen-
erality viewing the min-query as representing an arbitrary associative operator
⊕. Suppose, for example, as in [27] that we want to implement parent pointers
to the current root. We then let the weight of an edge be its pair of end-points
and define a ⊕ b = a. Then the “min”-query returns the end-points of the first
edge on the path to the root, from which we immediately get a parent pointer.

Unfortunately, the above axiomatic interface has been found too limited for
many application of dynamic trees, and instead authors have worked directly
with the Sleator and Tarjan’s underlying representation [30,5,21,24,23,14,4,1,16],
[8,7,9,22]. In particular, this is the case for the previous solutions to the dynamic
center [6] and median problems [3], and we believe part of the reason for their
worse bounds and more complex solutions is difficulties in working directly with
Sleator and Tarjan’s underlying representation.

Of course, one may try to increase the applicability of the axiomatic interface
by augmenting it with further operations. For example, [25] shows how to find a

54 S. Alstrup, J. Holm, and M. Thorup

minimum weight node in a subtree. However, dealing with non-local properties
is not so immediate, and we find it unlikely that we will ever converge to a set
of operations so big that we can forget about the underlying representation.

The approach with top trees has instead been concentrated on designing a
representation which is very easy to deal with directly. For example, to compute
the minimum node of a given subtree as in [25], since we can insert and delete
edges, this is equivalent to maintaining the minimum node of each tree in a
dynamic forest, and this is again done by maintaining, for each cluster, the
minimum weight over its non-boundary nodes. Since each node is only non-
boundary in O(log n) clusters, weight changes of nodes are trivially supported.
If we do not expose any external boundary nodes, the root cluster will store the
desired minimum.

Frederickson’s topology trees Top trees are very similar to Frederickson’s topol-
ogy trees [10,12], from which they were originally derived. The essential differ-
ence is that the clusters of topology trees are not connected via nodes, but via
edges. Since Frederickson’s boundary consists of edges, he cannot have bounded
boundaries for unbounded degree trees. Thus, in applications for unbounded de-
grees one has to code these with ternary trees; a quite standard process whose
validity has to be verified for the individual application. Even if we assume we
are dealing with ternary trees, topology trees still have clusters with up to three
boundary edges instead of just two boundary nodes. Also topology merge com-
bines two clusters plus the edge between them whereas a top merge just unites
two neighboring clusters. Neither of these issues lead to fundamental difficulties,
but in our experience, they lead to significantly more cases.

Henzinger and King’s ET-trees For completeness, we also mention Henzinger
and King’s ET-trees [20]. This is a standard binary trees over the Euler tour
of a tree. This technique is much simpler to implement than those mentioned
above, and it can be used whenever we are interested in maintaining a min
over the edges or nodes of a tree, where the min may be interpreted as any
associative and commutative operation. Thus, the above mentioned result from
[25] on maintaining the minimum weight node of a tree is immediate, and in
fact, this was pointed out before [25] in [29]. However, the ET-trees cannot be
used to maintain any of the path information discussed so far. Also, they cannot
be used to maintain medians and centers.

5 Concluding Remarks

We have presented new and better bounds for maintaining medians and centers
in dynamic trees. The results were obtained based on top trees, and we have
argued more generally, that top trees in many instances would be the preferred
data structure for solving problems on dynamic trees.

A top driver as described in Theorem 1 can be implemented by reduction to
either Sleator and Tarjan’s techniques for dynamic tress [27], or Frederickson’s

Maintaining Center and Median in Dynamic Trees 55

techniques for topology trees [12]. The later option was pointed out in [2]. We
are currently experimenting with these different implementations to see which
leads to the better performance.

References

1. A.Kanevsky, R.Tamassia, G. Battista, and J. Chen. On-line maintenance of the
four-connected components of a graph (extended abstract). In 32nd FOCS, pages
793–801, 1991.

2. S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of
dynamic trees. In ICALP’97, pages 270–280, 1997.

3. V. Auletta, D. Parente, and G. Persiano. Dynamic and static algorithms for opti-
mal placement of resources in a tree. TCS, 165:441–461, 1996.

4. G. Battista and R. Tamassia. Incremental planarity testing (extended abstract).
In 30th FOCS, pages 436–441, 1989.

5. G. Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. In
ICALP’90, pages 598–611, 1990.

6. S. Cheng and M. Ng. Isomorphism testing and display of symmetries in dynamic
trees. In Proc. 7th SODA, 1996.

7. R. Cohen and R. Tamassia. Dynamic expression trees. Algorithmica, 13(3):245–
265, 1995.

8. R. Cohen and R. Tamassia. Combine and conquer. Algorithmica, 18(3):324–362,
1997.

9. R. F. Cohen and R. Tamassia. Dynamic expression trees and their applications.
In 2nd SODA, pages 52–61, 1991.

10. G. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SICOMP, 14(4):781–798, 1985.

11. G. Frederickson. Parametric search and locating supply centers in trees. In
WADS’91, volume 519 of LNCS, pages 299–319, 1991.

12. G. Frederickson. Ambivalent data structures for dynamic 2–edge–connectivity and
k smallest spanning trees. SICOMP, 26(2):484–538, 1997. See also FOCS’91.

13. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proc. 21st STOC, pages 345–354, 1989.

14. Z. Galil and G. Italiano. Maintaining biconnected components of dynamic planar
graphs. In ICALP’91, 1991.

15. B. Gavish and S. Sridhar. Computing the 2–median on tree networks in O(n log n)
time. Networks, 26, 1995. See also Networks Vol. 27, 1996.

16. A. Goldberg, M. Grigoriadis, and R. Tarjan. Use of dynamic trees in a network
simplex algorithm for the maximum flow problem. Math. Programming, 50:277–
290, 1991.

17. A. Goldman. Optimal center location in simple networks. Transportation Sci.,
5:212–221, 1971.

18. S. Hakimi and O. Kariv. An algorithmic approach to network location problems.
ii: the p-medians. SIAM J. APPL. MATH., 37(3):539–560, 1979.

19. G. Handler. Minimax location of a facility in an undirected tree network. Trans-
portation. Sci., 7:287–293, 1973.

20. M. R. Henzinger and V. King. Randomized dynamic graph algorithms with poly-
logarithmic time per operation. In Proc. 27th Symp. on Theory of Computing,
pages 519–527, 1995.

56 S. Alstrup, J. Holm, and M. Thorup

21. J. A. La Poutré. Dynamic graph algorithms and data structures. PhD thesis, Dep.
Comp. Sci., Utrecht Uni., 1991.

22. S. Peckham. Maintaining tree projections in amortized O(log n) time. Technical
Report TR89-1034, Cornell Uni., Comp. Sci. Dep., 1989.

23. J. A. L. Poutré. Alpha-algorithms for incremental planarity testing. In 26’th
STOC, pages 706–715, 1994.

24. J. L. Poutré. Maintenance of triconnected components of graphs. In ICALP’92,
volume 623 of LNCS, pages 354–365, 1992.

25. T. Radzik. Implementations of dynamic trees with in-subtree operations. ACM J.
Experimental Algorithmics, 3:Article 9, 1998.

26. A. Rosenthal and J. Pino. A generalized algorithm for centrality problems on trees.
J. ACM, 36:349–361, 1989.

27. D. Sleator and R. Tarjan. A data structure for dynamic trees. JCSS, 26(3):362–391,
1983. See also STOC’81.

28. R. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of computer and system sciences, 18(2):110–127, 1979. See also STOC
1977.

29. R. Tarjan. Dynamic trees and search trees via euler tours, applied to the network
simplex algorithm. Technical Report 503-95, Dep. Comp. Sci., Princeton Uni.,
September 1995.

30. J. Westbrook and R. Tarjan. Maintaining bridge-connected and biconnected com-
ponents on-line. Algorithmica, 7:433–464, 1992.

Dynamic Planar Convex Hull with Optimal
Query Time and O(log n · log log n) Update Time

Gerth Stølting Brodal? and Riko Jacob?

BRICS??, Department of Computer Science, University of Aarhus
{gerth,rjacob}@brics.dk

Abstract. The dynamic maintenance of the convex hull of a set of
points in the plane is one of the most important problems in compu-
tational geometry. We present a data structure supporting point inser-
tions in amortized O(log n · log log log n) time, point deletions in amor-
tized O(log n · log log n) time, and various queries about the convex hull
in optimal O(log n) worst-case time. The data structure requires O(n)
space. Applications of the new dynamic convex hull data structure are
improved deterministic algorithms for the k-level problem and the red–
blue segment intersection problem where all red and all blue segments
are connected.

1 Introduction

The problem of maintaining the convex hull of a set of points in the plane under
the insertion and deletion of points is one of the foremost important problems
in computational geometry [6,10]. A dynamic data structure for maintaining the
convex hull of a point set has numerous applications, e.g. in algorithms solving
the k-level problem [7] and the red–blue segment intersection problem where all
red and all blue segments are connected [1]. For further applications see [4].

Overmars and van Leeuwen in 1981 gave a solution for the fully dynamic
convex hull problem supporting point insertions and deletions in O(log2 n) time,
where n is the maximum number of points in the set [12]. The data structure
of Overmars and van Leeuwen stores the convex hull in a search tree and typ-
ical queries on the convex hull are supported in O(log n) time. Preparata and
Vitter gave a simpler approach achieving the same bounds as Overmars and
van Leeuwen in [14]. Until recently there was made no progress on improv-
ing the update bounds for the general case. First in 1999, Chan presented a
data structure that achieves amortized O(log1+ε n) update time, where ε > 0
is any arbitrary constant, and O(log n) query time for various types of queries,
e.g. membership and tangent-finding [4].

For special cases better update bounds are known. For the semi-dynamic
case where only insertions are allowed, it is easy to achieve O(log n) insertion
? Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).
?? Basic Research in Computer Science, Centre of the Danish National Research Foun-

dation.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 57–70, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

58 G.S. Brodal and R. Jacob

time [13]. For the other semi-dynamic case where only deletions are allowed after
preprocessing, Hershberger and Suri achieved O(n log n) preprocessing time and
amortized O(log n) deletion time [9]. For the off-line case where the sequence of
updates is given in advance, a data structure using O(n log n) time for processing
a sequence of n updates was given in [10]. The case where the sequence of updates
is random was considered in [11,15], where it was shown how to achieve expected
O(log n) update time.

In this paper, we first give a new data structure for the semi-dynamic problem
where only deletions are allowed after preprocessing, by extending the construc-
tion of Hershberger and Suri [9]. Provided that the initial point set is given
lexicographically sorted, we achieve amortized O(n) preprocessing time, and
amortized O(log n · log log n) deletion time. The data structure requires O(n)
space. Our main result for the fully dynamic case is a transformation strat-
egy that combines a fully dynamic data structure with a semi-dynamic data
structure for the deletions only case, and generates a new fully dynamic data
structure. The construction is based on the construction of Chan [4] combined
with several new ideas. Let U(n) and D(n) be two nondecreasing positive func-
tions, where U(n) ≥ log n and D(n) ≥ log n. If there exists a fully dynamic
data structure with amortized O(U(n)) update time and worst-case O(log n)
query time, and a semi-dynamic data structure with O(n) preprocessing time
and amortized O(D(n)) deletion time, then the transformation yields a data
structure with amortized O(U(log4 n) · log n/ log log n) insertion time, amortized
O(D(n)) deletion time, and worst-case O(log n) query time. The queries that can
be supported are: find the extreme point on the convex hull in a given direction;
report whether a given line intersects the convex hull; report if a given point is
contained in the interior of the convex hull; find the two points adjacent to a
point on the convex hull; and given an exterior point find the two tangent points
on the convex hull from the point.

Combining our semi-dynamic data structure with the fully dynamic data
structure of Overmars and van Leeuwen [12], we immediately get amortized
O(log n · log log n) deletion and insertion time. By bootstrapping, we can use the
resulting data structure as the fully dynamic data structure in the construction
and the insertion time reduces to amortized O(log n · log log log n) time, while
the deletion time remains amortized O(log n · log log n).

We note that a semi-dynamic data structure with O(n) preprocessing time
and O(log n) deletion time, would for any constant k imply a fully dynamic
data structure with amortized O(log n · log(k) n) insertion time and amortized
O(log n) deletion and worst-case O(log n) query time, by k − 1 applications
of our transformation strategy and using the data structure of Overmars and
van Leeuwen as the initial fully dynamic data structure.1

The paper is organized as follows. Section 2 contains a description of the semi-
dynamic data structure for the deletions only case, and Sect. 3 and 4 contain
the results for the fully dynamic case. Section 5 gives applications of the fully
dynamic data structure.

1 We let log(1) n = log n, and log(i+1) n = log log(i) n for i ≥ 1.

Dynamic Planar Convex Hull 59

Fig. 1. The convex hull CH(P) of a set of
points P can be partitioned into an up-
per hull UH(P), a lower hull LH(P), and
possibly two vertical lines.

Fig. 2. Deletion of the point p from the
upper hull implies that p is replaced by
the sequence of points p1, p2, p3.

Notation

Given a set of points P in the Euclidean plane, we let CH(P) ⊆ P denote the
set of points on the convex hull of P , and UH(P) and LH(P) denote respectively
the upper and lower hull of CH(P). Figure 1 shows the upper and lower hulls
of a set of points. In the following we restrict our attention to the upper hulls
of the sets of points, and assume for the sake of simplicity that points are in
general position, i.e. all points have distinct x-coordinates and no three points
are on a line. The results for the convex hull problems immediately follow from
the results on the upper hulls.

2 Semi-dynamic Data Structure

In this section we give a data structure for the semi-dynamic problem with amor-
tized O(n) preprocessing time, and which supports point deletions in amortized
O(log n · log log n) time. To achieve linear preprocessing time we require points
to be given lexicographically sorted. The data structure supports the operations:

Build Given a lexicographically sorted set P containing n points, builds a data
structure for P and returns the points on UH(P) from left-to-right.

Delete Deletes a point p from P , and returns the changes to UH(P), i.e. if p
was contained in UH(P) before the deletion then the sequence of new points
on UH(P) are returned from left-to-right (see Fig. 2).

Our result for the semi-dynamic problem is the following.

Theorem 1. There exists a data structure supporting Build in amortized O(n)
time and Delete in amortized O(log n·log log n) time. The data structure requires
O(n) space.

In the following we without loss of generality assume n ≥ 4, such that
log log n ≥ 1. Let P = {p1, p2, . . . , pn} be the initial set of points, where pi < pi+1
for 1 ≤ i < n, and let B = dlog ne and N = dn/Be. We partition P into
a sequence of blocks P1, . . . , PN , each of size B except for PN , where Pi =

60 G.S. Brodal and R. Jacob

{p1+(i−1)B , p2+(i−1)B , . . . , pmin(iB,n)}, for 1 ≤ i ≤ N . After a sequence of Delete
operations we let P̄ ⊆ P denote the set of points which have not been deleted
so far, and similarly we for P1, . . . , PN define P̄1, . . . , P̄N .

For each block Pi, the points P̄i are stored in sorted order in a linked list,
UH(P̄i) is stored as a perfect balanced binary tree, and furthermore the points
from left-to-right on UH(P̄i) are kept in a doubly linked list.

Since |P̄i| ≤ B, the upper hull UH(P̄i) can be constructed by a linear sweep
of UH(P̄i) in O(B) time, see e.g. [2, Sect. 1.1]. The balanced tree and the double
linked list storing UH(P̄i) can therefore be recomputed in O(B) time, when a
point is deleted from block Pi.

The blocks P1, . . . , PN are stored from left-to-right at the leaves of a perfect
balanced binary tree T with height dlog Ne. For each node v in T , we let Tv

denote the subtree of T rooted at v, and let P̄v denote the union of the sets P̄i

stored at the leaves of Tv. It is easy to see that UH(P̄v) ∩ UH(P̄i) is either
empty or a consecutive subsequence of UH(P̄i). At each node v of T we store
UH(P̄v) as a doubly linked list Lv of block-records, such that for each block Pi

contributing to UH(P̄v), i.e. UH(P̄v) ∩ UH(P̄i) 6= ∅, we have a block-record rv,i.
For each block-record rv,i we store pointers to the leftmost and rightmost points
in UH(P̄i) which are also in UH(P̄v). For a block Pi, let v0, v1, . . . , vk be the
prefix of the nodes in T on the path from the leaf v0 storing P̄i to the root,
where UH(P̄i) ∩ UH(P̄vj

) 6= ∅, i.e. rvj ,i ∈ Lvj
. For 0 ≤ j < k, we with rvj ,i store

an up-pointer to rvj+1,i. This representation allows us to efficiently navigate
UH(P̄v) in both directions from point-to-point and block-to-block in constant
time. Note that UH(P̄) is stored at the root of T .

Since each block requires O(B) space the total space for the N blocks is
O(N · B). Since P is partitioned into N blocks, the total space for the lists of
block-records at each level of T is at most O(N). The total space required is
O(N · B + N · log N) = O(n).

We now turn to the implementation of the operations. For Build the input
set P is first partitioned into N blocks, and for each block the upper hull is
computed by a sweep line algorithm in O(B) time and each block structure is
initialized in O(B) time. The construction time for all blocks is O(n + N · B) =
O(n). The tree T is then processed bottom-up level by level. Assume a node v
has two children w1 and w2, and Lw1 and Lw2 have already been computed (for a
leaf `, we define L` to only contain one block-record with pointers to the first and
last node of UH(P̄`)). First we let Lv be the concatenation of Lw1 and Lw2 . The
resulting list of block-records represents a sequence of points forming a convex
curve except for possible at one point, namely the last point from CH(P̄w1) or
the first point from CH(P̄w2), i.e. there is a pointer to p in one of the block
records in Lv.

To fix this problem we apply the standard method used in convex hull con-
struction algorithms: while we have a non-convex point p in the list of points,
i.e. p together with its predecessor and successor point in the list form a left-
turn, we remove p from the list. Removing p is done as follows: if p is in block Pi,
and p is the only point from UH(P̄i) in the list, i.e. both pointers in rv,i point

Dynamic Planar Convex Hull 61

to p, we remove rv,i from Lv. Otherwise we replace the pointer to p in rv,i by
a pointer to the next point in UH(P̄i) in the direction of the point given by
the other pointer in rv,i, where we utilize that the points in UH(P̄i) are kept
in a double linked list. We can at most remove a point once in the bottom-up
preprocessing of T , and the time for preprocessing one level of T is O(n) plus
the time used to eliminate left turns. The total time for constructing all Lv lists
becomes O(n + N · log N) = O(n). It follows that Build takes O(n) time.

Before describing the Delete operation, we observe that only upper hulls
actually containing p need to be updated (see Fig. 2). To perform Delete first in
O(log n) time make a binary search locating the block Pi containing p, assuming
that P was given as an array of points or that we keep P in a balanced search
tree. In O(B) time we check if p ∈ UH(P̄i). If p /∈ UH(P̄i) then no upper hull
needs to be updated and it is sufficient to remove p from the list of points in P̄i

in O(B) time. Otherwise p ∈ UH(P̄i), and let
←
p and

→
p be the predecessor and

successor of p in UH(P̄i) (if present), and rebuild in O(B) time the data structure
for block Pi after p has been deleted from the list of points in P̄i. What remains
is to update all the upper hulls which contained p. If p ∈ UH(P̄v) for a node v
then rv,i ∈ Lv. But then rv,i is reachable from P̄i using the stored up-pointers.

The reconstruction of upper hulls is done bottom-up in T . Consider a node v
and the effect of deleting p from UH(P̄v). Let pL and pR be the two points in P̄i

that rv,i has pointers to, where pL ≤ pR. If p < pL or p > pR then p /∈ UH(P̄v)
and we are done. If pL < p < pR then the changes to UH(P̄v) can only be
between pL and pR, i.e. the updates are done locally in block Pi and no changes
are required for Lv. The complicated case is when p = pL or p = pR. First we
need to delete p from the upper hull stored at v. If pL = pR then p was the only
point from block Pi, and we delete rv,i from Lv. Otherwise we have two cases: if
p = pL then we replace the pointer to p in rv,i by a pointer to

→
p , and if p = pR

then we replace the pointer to p in rv,i by a pointer to
←
p .

After having deleted p from UH(P̄v), we must insert new points onto UH(P̄v),
as illustrated by Fig. 2. If p was not an endpoint of the bridge connecting two
points on the two upper hulls stored at the children of v (see Fig. 3), then the
changes to UH(P̄v) are exactly the changes to UH(P̄w), where w is the child of v
where p ∈ UH(P̄w) before the deletion. It follows that it is sufficient to create
and update existing block-records in Lv with exactly the same pointers to points
in blocks as done for Lw.

The final case is when p is an endpoint of the bridge connecting the upper
hulls stored at the children of v, ad illustrated in Fig. 3. Assuming the new bridge
has been found, then updating Lv with respect to the new points on UH(P̄v)
consists of inserting a subsequence of the points from each of the upper hulls
stored at the children of v, by creating a sequence of new block-records in Lv

with the same information as stored at the two children of v and changing at
most four pointers in the block-records in Lv corresponding to the ends of the
subsequences copied.

To find the new bridge we apply a standard bridge searching algorithm,
with minor modifications. The standard bridge searching procedure keeps for

62 G.S. Brodal and R. Jacob

Fig. 3. The bridge between two horizontally separated upper hulls. The dashed lines
show the changes to the left upper hull and the new bridge when deleting point p.

the upper hulls two candidate intervals for each of endpoints of the bridge, and
performs a “simulations binary search” on both hulls, always halving at least
one of the intervals. See e.g. [13, Lemma 3.1] for further details. We replace the
binary search by a linear block search on each of the two upper hulls. The linear
block search at the left child proceeds left-to-right, always trying to advance one
block, whereas the linear block search at the right child proceeds right-to-left.
Whenever a search is advanced to the next block a block-record is added to Lv

in O(1) time.
The search process for each upper hull first tries to advance a complete block

at a time, using the information stored at the block-records at the children of v
to always pick the last point in the next block Pi contributing to UH(P̄i). After
having localized the block Pi containing one endpoint of the new bridge the
search then proceeds in a binary fashion using the search tree storing UH(P̄i).
The total time for finding a bridge becomes linear in the number of block-records
created plus O(log B). The output of Delete can be generated immediately from
the changes to Lroot(T).

The total time for a deletion becomes O(B + x + log N · log B), where x is
the total number of new block-records created. Since a deletion at most removes
one block-record from each level of T , it follows that D deletions at most delete
D · log N block-records. Since there can at most be O(N · log N) block-records,
it follows that the total time for D deletions is at most O(D ·B +N · log N +D ·
log N + D · log N · log B) = O(n + D · log n · log log n). Since the O(n) term can
be charged to Build, it follows that Build takes amortized O(n) time and each
Delete operation amortized O(log n log log n) time.

3 Fully Dynamic Data Structure

For this part of the paper we change the point of view of the exposition to the
dual problem and consider upper envelopes instead of upper hulls. This duality,
as explained e.g. in [2, p. 167], maps points to lines and vice versa in a way,
that preserves above/on/below relations. In this setting a set of points becomes
a collection of lines L, and the upper hull transforms to the upper envelope of
these lines, i.e. the collection of line segments such that points on a segment

Dynamic Planar Convex Hull 63

are not below any other line. An extreme point query, i.e. given a slope q find
the point of the upper hull that has a tangent of slope q, turns into a vertical
line query, i.e. given a vertical line with x-coordinate q, report the segment of
the upper envelope crossing this line. Note that this is really only a change in
point of view. There is no need to perform a computation to go from the original
setting to the dual and back.

We apply a standard dynamization technique that divides the current points
into sets and keeps one deletion only data structure per set. Additionally there is
a more explicit representation of the current upper envelope, namely an interval
tree, that allows fast queries without requiring too much work for updates. Inside
the interval tree have at each internal node a fully dynamic upper envelope data
structure, a so called secondary structure. The running time improvement relies
on a polylogarithmic bound on the size of the secondary structures.

The description so far fits as well to the data structure proposed in Chan [4].
Compared to that data structure we apply improved deletion only data struc-
tures. We also do some explicit grouping of the subenvelopes stemming from the
dynamization, such that the number of secondary structure storing segments
from one subenvelope is reduced.

The remaining of this section is devoted to proving the following theorem.

Theorem 2. Let U(n) and D(n) be two nondecreasing positive functions, where
U(n) ≥ log n and D(n) ≥ log n. Assume there exists a data structure for the dy-
namic upper envelope problem supporting Insert and Delete in amortized O(U(s))
time, and Vertical Line Query in worst-case O(log s) time, where s is the total
number of lines inserted. Assume further that there exists a data structure for
semi-dynamic upper envelope problem supporting Build on a lexicographically
sorted list of n points in amortized O(n) time and Delete in amortized O(D(n))
time, where n is the number of lines in the structure.

Then there exists a data structure for the dynamic upper envelope problem
supporting Insert in amortized O(log n · U(log4 n)/ log log n) time and Delete in
amortized O(D(n) + log n · U(log4 n)/ log log n) time, and Vertical Line Query in
worst-case O(log n) time, where n is the total number of lines inserted.

Applying this theorem to the data structure of Overmars and van Leeuwen
with U(s) = log2 s and the result from Sect. 2 with D(n) = log n · log log n,
we get Insert in O(log n · log2(log4 n)/ log log n) = O(log n · log log n), and Delete
in O(log n · log log n). Applying the theorem again on this new data structure
improves Insert to O(log n · log log log n). The performance of the deletion only
data structure is the bottleneck, that renders further applications of the theorem
useless.

For the purpose of describing our data structure, we separate it into sev-
eral layers. We first describe the layers in a top down fashion, we start with a
data structure that solves the fully dynamic upper envelope problem using some
auxiliary data structures. For the analysis we proceed in a bottom up fashion,
i.e. we always analyze the auxiliary data structure first. This avoids any forward
references.

64 G.S. Brodal and R. Jacob

3.1 The Interfaces

Fully dynamic upper envelopes.

Insert Insert a line, given by the parameters a and b in the representation y =
ax + b. Return a pointer to a new line data structure.

Delete Given a pointer to a line data structure, delete that structure and the
line it represents.

Query Given a value v, report the highest intersection of a line with the vertical
line given by x = v.

Query structure Q. This data structure combines several independent upper
envelopes. It is asserted (and could be easily checked), that the list of line seg-
ments in fact form envelopes. It is also asserted, that a line is present in at most
one set and has therefore at most one segment.

There is an active set of segments that is considered for queries. For all lists of
segments it is asserted, that the segments from this list form an upper envelope.
A segment is given by a line and an interval on the x-axis.

Init set with active envelope Given a lexicographically sorted list L of lines
and a list K ⊆ L of segments. Initialize a set data structure that can hold
upper envelopes stemming from lines in L and insert K into the active set.
It is asserted that K forms a complete upper envelope. Return a pointer to
a new data structure representing the set.

Delete set Delete a set given by a pointer, removing all segments from the active
set.

Replace inside an envelope Given a pointer to a set, pointers to (up to) three
segments `α, `, `ω, and a lexicographically sorted list of segments K with
K = `′α, . . . , `′ω. Here `ω and `′ω are the same segment with a changed left
boundary, and `α and l′α differ only in the right boundary. It is explicitly
allowed that `α and `ω are void, with the meaning that ` is unbounded to
the left and respectively to the right. Replace the three segments by K in
the active set. It is asserted that the active set forms an upper envelope after
the replacement.

Query Given a value v, report the highest intersection of an active segment with
the vertical line given by x = v.

Subenvelope structure T . This structure allows queries on a generalization
of segments, namely subenvelopes. A subenvelope is an lexicographically sorted
list of line segments where neighbors have precisely one point in common. We
will maintain a small upper bound on the size of an subenvelope. Again it is
asserted that the segments in fact are segments from upper envelopes.

Insert Given a list L of segments, insert the subenvelope formed by L. Return
a pointer to the newly created data structure of the subenvelope.

Dynamic Planar Convex Hull 65

Delete Given a pointer to a subenvelope, delete that subenvelope. Return the
segments of the subenvelope.

Query Given a value v, report the highest intersection of an inserted subenvelope
with the vertical line given by x = v.

3.2 Dynamization

Throughout the following we assume that we know the value of n, the total
number of insert operations, in advance. Standard doubling techniques justify
this assumption.

Starting from the monotonic data structure presented in Sect. 2, we apply a
general dynamization technique for decomposable search problems attributed
to Bentley and Saxe [3]. The idea is that we divide the set of lines L into
a partition C based on the order the lines are inserted. More precisely every
set C ∈ C has a rank. If there are d sets of the same rank i, we merge them into
one new set of rank i + 1. Sets of rank 0 have size 1. We choose the parameter
d = dlog ne, leading to at most r = O(logd n) = O(log n/ log log n) different
ranks. This is also an upper bound on the number of times a specific line can
participate in the merge of d sets. Furthermore the number e = |C| of sets is
bounded by e = O(rd) = O(log2 n/ log log n). Every set has a deletion only
structure and a set in the query structure attached.

The merge operation first deletes all the involved sets from the Query struc-
ture Q. Then it orders the lines (dual) according to their slopes, which corre-
sponds to sorting the corresponding (primal) points according to their x co-
ordinates. Here we exploit that the sets we are merging are already sorted in
that order. We use a heap of size d to iteratively find the remaining line with
smallest slope. Then we invoke the Build operation of the deletion only data
structure, and use the reported upper envelope in an Init set operation of the
query structure Q. We attach the returned pointer to the new set.

For an Insert(`) we create a new record for ` that keeps the coordinates (slope
and offset) and also a pointer p` to the set of C that currently contains `. Then
we create a new set of size 1 and rank 0 and perform necessary merge operations.
During the merge operations we update the pointers p` for all lines we move.

If we want to delete a line ` we look up the set C ∈ C that contains `, and
then we invoke the Delete(`) operation of the deletion only data structure from
Sect. 2. This returns a list of new segments, which implicitly gives also the two
neighbors of `. With this information we call the Replace inside set operation
of Q.

3.3 Grouping

Now we implement the query structure using only a Subenvelope structure. We
choose a block size parameter b = dlog n/ log log ne.

The Init set with active envelope operation first deletes all pointers to blocks
on the lines of the set. Then it groups the segments of K equally into as few as

66 G.S. Brodal and R. Jacob

possible blocks of size at most b. It inserts the resulting subenvelopes and stores
the subenvelope pointer at every line.

The Delete set operation walks along the set, deleting blocks pointed to by
the lines and deleting the pointers as well.

The Replace inside an envelope operation looks up the blocks where the three
lines are stored. Then it deletes the pointed to subenvelopes, building a list L
of segments that got deleted. In this list we replace `α, `, `ω by K. Then we
group L optimally into blocks of size b. We insert the blocks and update the
block pointers.

The query gets directly handed over. This is correct, as all active segments
are in some block.

3.4 The Interval Tree T for Subenvelopes

We implement the subenvelope structure as an interval tree. The interval tree T
is a rooted tree. We assume to know the number M of leaves of T . We choose
the degree parameter B = dlog ne. We keep T balanced by maintaining the
invariants that the degree of a node is at most 2B − 1 and at least 2 at the root
and at least B for all the other internal nodes. All leaves have the same distance
to the root. A leaf ` of T stores a (possibly unbounded) interval I`, its range.
Every internal node v of T stores its range Iv, the interval that is the (disjoint)
union of the ranges of its children. To deal with a non constant degree of a node
we maintain a dictionary (balanced tree) of the endpoints of the ranges of its
children. For an arbitrary interval I we say that the node u of T corresponds
to I if the range of u contains the interval, i.e. I ⊆ Iu, and for none of the
children v of u it is the case that I is contained in the range Iv of v. Note that
there is always a unique node of T corresponding to an interval. We can find
all the intervals containing a certain point p on the path from the root node to
the leaf that contains p. We assert that the range of every leaf node contains at
most one endpoint of the stored intervals.

We store subenvelopes at the node in T that corresponds to their interval,
i.e. the extent along the x-axis. We store the segments of the subenvelope in the
secondary structure at that node, i.e. as lines in a fully dynamic upper envelope
structure.

The Insert operation creates a record that has a list of the lines forming the
subenvelope, the interval, and a pointer to the node of T . A pointer to this record
is returned. It inserts the interval into T and finds the node u in T corresponding
to the interval and inserts all the lines into the secondary structure Su. It stores
the returned identifiers in a list in the newly created record.

As we have the strong restriction that the range of a leaf should contain at
most one endpoint of an interval stored in the tree, we might be forced to split
nodes of T in a bottom up fashion. Assume that node u of T has too many
children. Then we create a new right sibling v of u (creating a new root if u was
the root) and move the right half of the children of u to v. We walk through the
list of blocks being stored at u. For a block w we take Iw to decide if they should
stay at u, get moved to v or moved up to the parent p of u and v. If necessary

Dynamic Planar Convex Hull 67

we delete all the lines of w from the secondary structure Su of u. If the block
moves to v we insert the lines into Sv. If it moves up to p, we keep the block
w “on hold”, in case that p also gets split. During this we update the pointers
between the nodes of T and the records of blocks.

If a subenvelope has the interval] − ∞,∞[, it gets stored at the root of T ,
and it cannot cause any splits. We call such a subenvelope trivial. M accounts
only for non-trivial subenvelopes.

For the Delete operation we remove all the lines from the secondary structure.
For a Query operation with value x, we determine the path p in T from the

root to the leaf v of T whose range contains x. For all nodes u on p we perform
an upper envelope query for x on the secondary structure Su. We report the
topmost of the answers.

This answer is correct, because the block of the topmost segment at x is
stored in one of the parents of the leaf v that contains x.

3.5 Analysis

Bound on the number M of nontrivial subenvelope inserts. We have
to bound the number of operations on blocks performed within the query struc-
ture Q.

At the init operation we give every line a fractional coin that allows it to
participate as a fraction 2/b in a non-trivial insert operation, i.e. we need b/2
such coins to pay for a non-trivial insert. Then the init operation on a set of
size m costs us d2m/be non-trivial subenvelope insert operations. If the init
operation gives rise to a nontrivial insert, it is paid for.

A replace operation is going to pay for 3 subenvelope deletions and 4 suben-
velope insertions. If there are more blocks to be inserted, the blocks are definitely
half full, and only 2 blocks on each end contain any lines that have already used
their coins. The remaining block insertions can therefore be paid with coins.

Knowing that one line can only cause one replace operation and participate
in r init operations, we get a total account of M = O(n + n · r/b) = O(n + n ·
log n/ log log n · log log n/ log n) = O(n).

Bound s on the size of secondary structures in T . For every set in C we
have at most B subenvelopes stored at a node v. With the bounds on the size
of subenvelope and on |C| we get s = O(B · b · e) = O(log4 n).

A query takes O(log M + Q(s) · h) = O(log n + log log n · log n/ log log n) =
O(log n) time.

Work in the split operations. Every split operation creates at least one new
node. We will account on that node for all the insertions and deletions that
happened during this single split.

We charge the work of moving a block during a split operation entirely to
the newly created node of T . For this we define the level of a node u of T by
stating that leaves have level 0, and that the parent of nodes on level i has

68 G.S. Brodal and R. Jacob

level i + 1. Now we observe that an interval stored at u has both endpoints
at some leaf below u. Hence the condition of having at most one endpoint of
an interval per leaf implies that we have at most Ni = (2B)i intervals stored
at a node of level i. Now let u be a node on level i. Then u was created by a
split operation performed on one of its siblings v. So we know that v is also on
level i and the split operation involved at most Ni intervals. Additionally we
know e = O(rd) = O(log2 n/ log log n) which means for large n we have e < B2

and that any node in T stores at most e · B < B3 intervals.
Adding these costs level by level in the tree, we get that the total number

of intervals moved because of split operations is bounded by O((M/B)2B +
(M/B2)4B2 + (M/B3)B3 + (M/B4)B3 + (M/B5)B3 + · · ·) = O(M) = O(n).
We conclude that every subenvelope insertion causes in average constantly many
moves of a subenvelope during split operations.

Running time of the update operations in T . Given the previous para-
graph, we conclude that an update operation of a nontrivial block in T takes
amortized O(log M+b·U(s)) time for finding the correct node in T and to pay for
the insertions and deletions of the segments, including during split operations.

Since U(s) ≥ log s, we have b·U(s) = Ω(log n/ log log n·log log n) = Ω(log n),
so the amortized time of a non-trivial block insert operation becomes O(b ·U(s)).

For trivial blocks it takes amortized O(U(s)) time per segment. Note that
even so the root node of T is special, the upper bound s on the number of
segments stored there applies as well.

Running time of the Query structure / Fully dynamic structure. In the
init operation of the query structure we account for 2/b nontrivial block insert
operations for every line in the set. We already argued that this is sufficient to
pay for the initial insert operation of that line (i.e. when the line appears on the
upper envelope of the set we just initialized). Accounting also for the possibility
of being inserted as part of a trivial block, we get a per line amortized time of
O(U(s) + b · U(s)/b) = O(U(s)).

Knowing that every line gets initialized at the worst r times, we get an
amortized insert time for the fully dynamic data structure of O(r · U(s)) =
O(log n/ log log n · U(s)) as claimed in Theorem 2.

For the delete operation of the fully dynamic data structure we have to
account for the delete operation in the deletion only structure, and for the replace
operation in the query structure. As already argued, the replace operation has to
account for a constant number of block update operations, yielding an amortized
time of O(D(n)+b ·U(s)) = O(D(n)+log n ·U(s)/ log log n), the bound claimed
in Theorem 2.

4 Other Queries

With the so far explained data structure for vertical line queries we can efficiently
answer a whole class of other queries on the upper envelopes. Assume the query

Dynamic Planar Convex Hull 69

satisfies a so called locality property, that is for a vertical line q we can determine
on which side of q the answer lies by solely examine the highest line intersecting q.
Then we can use binary search to give an answer with O(log n) vertical line
queries, that is in O(log2 n) time. But this overhead is not always necessary. In
the next section we will give an important example where the already explained
data structure can be used to achieve a O(log n) query time for a more involved
query.

4.1 Arbitrary Line Queries

The query we address is in the primal setting: given a point p in the plane report
the two tangent lines through p touching the convex hull or state that the point
is inside the convex hull. This corresponds in the dual to: given an arbitrary line,
give the two intersection points of the line with the upper envelope, or “no” if
no such intersection exists. The exposition here adopts the dual point of view.
The important observation is, that our data structure has the same properties
as the data structure in [4], the argument given there applies here as well. We
only sketch the query algorithm in our setting.

We use the following fact about arbitrary line queries to navigate in the
interval tree of our data structure.

Lemma 1. Let a and b be to walls and E′ ⊆ E a subset of lines s.t. the upper
envelope of E′ at a and b coincides with the upper envelope of E. Assume that an
arbitrary line query for a line ` on E′ results in the right intersection point t. If t
lies between a and b then also the right intersection T of ` with E lies between a
and b.

Let ` be the line query. The query algorithm starts at the root node of the
interval tree. It performs the right intersection query on the secondary structure
of the current node, updating the current answer. Then it descends to the child
corresponding to the interval the current answer lies in. When it reaches a leaf,
the current answer reflects the right intersection of ` with the upper envelope of
all lines.

Given that our secondary structures support line queries in O(log s) time,
we have an overall query time of O((log B + log s)h) = O(log B log n/ log B) =
O(log n).

5 Applications

As a prominent example we consider the k-level of n lines, which is dually related
to the k-set question on n points. For this problem Edelsbrunner and Welzl [7]
gave an algorithm using the data structure of Overmars and van Leeuwen that
constructs the k-level in O(n · log n + m · log2 n) time, where m is the size of the
k-level. Applying Chan’s data structure this improves to O(n·log n+m·log1+ε n)
time, and using our data structure this yields an improved O(n · log n+m · log n ·
log log n) time bound. A randomized algorithm using expected O(λt+2(n + m) ·

70 G.S. Brodal and R. Jacob

log n) time has been given by Har-Peled [8], where λt+2(n + m) is the maximum
length of a Davenport-Schinzel sequence of order t + 2 having n + m symbols.

Basch, Guibas and Ramkumar [1] considered a version of the segment inter-
section problem: given a connected family R of n red line segments and a con-
nected family B of n blue line segments in the plane, report all intersecting pairs
from R×B. Chan [4] reported an improvement from O((n+m)·log3 n) time using
Overmars and van Leeuwen’s data structure to O((n+m)·log2+ε n) using Chan’s
data structure. We get a further improvement to O((n + m) · log2 n · log log n).

References

1. J. Basch, L. J. Guibas, and G. Ramkumar. Reporting red-blue intersections be-
tween two sets of connected line segments. In Proc. 4th European Symposium on
Algorithms, volume 1136 of Lecture Notes in Computer Science, pages 302–319.
Springer Verlag, Berlin, 1996.

2. M. de Berg, M. van K., M. Overmars, and O. Schwarzkopf. Computational Geom-
etry. Springer-Verlag, Berlin, 1997. Algorithms and applications.

3. J. Bentley and J. Saxe. Decomposable searching problems I: Static-to-dynamic
transformation. Journal of Algorithms, 1:301–358, 1980.

4. T. M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized
time. In Proc. 40th Ann. Symp. on Foundations of Computer Science (FOCS),
pages 92–99, 1999.

5. B. Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory,
IT-31:509–517, 1985.

6. Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry.
Proceedings of the IEEE, Special Issue on Computational Geometry, 80(9):1412–
1434, 1992.

7. H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements
with applications. SIAM J. Comput., Vol. 15, No. 1, 1986.

8. S. Har-Peled. Taking a walk in a planar arrangement. In Proc. 40th Ann. Symp. on
Foundations of Computer Science (FOCS), pages 100–110, 1999.

9. J. Hershberger and S. Suri. Applications of a semidynamic convex hull algorithm.
BIT, 32:249–267, 1992.

10. J. Hershberger and S. Suri. Off-line maintenance of planar configurations. Journal
of Algorithms, 21:453–475, 1996.

11. K. Mulmuley. Randomized multidimensional search trees: lazy balancing and dy-
namic shuffling. In Proc. 32nd Ann. Symp. on Foundations of Computer Science
(FOCS), pages 180–196, 1991.

12. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23:166–204, 1981.

13. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer Verlag, Berlin, 1985.

14. F. P. Preparata and J. S. Vitter. A simplified technique for hidden-line elimination
in terrains. International Journal of Computational Geometry & Applications,
3(2):167–181, 1993.

15. O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proc.
32nd Ann. Symp. on Foundations of Computer Science (FOCS), pages 197–206,
1991.

A Dynamic Algorithm
for Maintaining Graph Partitions ?

Lyudmil G. Aleksandrov1 and Hristo N. Djidjev2

1 Center of Informatics, Bulgarian Academy of Sciences
G.Bonchev Str. 25-A, 1113 Sofia, Bulgaria

2 Department of Computer Science
University of Warwick, Coventry CV4 7AL, UK

Abstract. We propose an algorithm for maintaining a partition of dy-
namic planar graphs motivated by applications in load balancing for
solving partial differential equations on a shared memory multiproces-
sor. We consider planar graphs of bounded face sizes that can be modified
by local insertions or deletions of vertices or edges so that planarity is
preserved. In our paper we describe a data structure that can be updated
in O(log n) time after any such modification of the graph, where n is the
current size of the graph, and allows an almost optimal partition of a
required size to be maintained. More precisely, the size of the separator
is within an O(nδ) factor of the optimal for the class of planar graphs,
where δ is any positive constant, and can be listed in time proportional
to its size. The dynamic data structure occupies O(n) space and can
initially be constructed in time linear to the size of the original graph.

1 Introduction

Separator theorems are efficient and widely used tool for the design of efficient
divide-and-conquer algorithms. Informally, a separator theorem claims that any
graph from a given class can be divided into two or more parts of roughly the
same size by removing a small number of vertices. The classical result of Lip-
ton and Tarjan [15] shows that any n-vertex planar graph can be divided into
components of no more than 2n/3 vertices by removing a set of no more than√

8n vertices. Moreover, such a separator can be found in O(n) time. Other in-
teresting results include separator theorems for the class of graphs of bounded
genus [6,8,1], the class of graphs of excluded minor [2], and classes of geomet-
ric graphs [17]. Separator theorems have applications in solving efficiently large
sparse systems of linear equations [14,9], for developing algorithms for VLSI lay-
out design [4,12], for shortest path problems [7], in parallel computing [10], and
in computational complexity [16].
? This work was partially supported by the EPA grant R82-5207-01-0, EPSRC grant

GR/M60750, and RTDF grant 98/99-0140. A two-page abstract of this work ap-
peared in the proceedings of CCCG’98.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 71–82, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

72 L.G. Aleksandrov and H.N. Djidjev

(d)(c)

original graph

(b)(a)

Fig. 1. Mesh refinement operations: (a) adding a point inside a face;
(b) adding a point onto an edge; (c) adding an edge; (d) edge flipping.

A class of problems for whose solutions separator theorems are especially
well suited is data partitioning and load balancing for parallel computing. The
modern high performance computing systems have large number of processors
and their memory is distributed among the processors. In order to achieve high
efficiency and speed when using such computers, the data has to be allocated
among the processors so that the computational load is even and the need for
communication is minimized. Since this mapping problem is NP-hard, several
approaches have been tried to find good approximate solutions. Popular parti-
tioning techniques include Kernighan-Lin’s local search algorithm [13], recursive
spectral bisection [18], simulated annealing [11], and graph separators [19]. The
advantage of the graph-separator approach is that it works well for unstruc-
tured meshes with good topology and that it gives a good guaranteed worst-case
performance.

In many time-dependent applications, after the initial partition, the data
might need to be modified and then reallocated to the processors. Thus the
problem for dynamic load balancing arises. For instance, in solving partial dif-
ferential equations, the mesh might need to be modified (refined or coarsened)
after every few time steps. For the case of triangular or bounded face size planar
meshes discussed in this paper refinement types of modifications include adding
a new point or edge inside an existing face, adding a new point onto an existing
edge, edge or face flipping, and others [Figure 1]. Efficient algorithms should use
the existing partition in order to compute the new one faster and with a small
number of data reallocations.

Unfortunately, there are no known deterministic algorithms that can recom-
pute efficiently the separator after modification of the graph. The existing al-
gorithms need to compute a separator of the new graph from scratch, without

A Dynamic Algorithm for Maintaining Graph Partitions 73

using any information from the previous separator. Armon and Reif constructed
a dynamic separator algorithm for planar graphs [3], but their algorithm is prob-
abilistic (works in O(log3 n) expected time per update) and it needs as an input
the so called sphere packing representation [5] of the input planar graph. Al-
though such a sphere representation is known to always exist, it is currently not
known whether it is computable in polynomial time.

The main difficulty for designing a fast deterministic algorithm for maintain-
ing partitions of dynamic planar graphs is related to the fact that most known
algorithms for constructing separators for static graphs use a breadth-first search
as essential step of the computation. There are no known algorithms that can
dynamically maintain a breadth-first tree of a planar graph in polylogarithmic
time.

In this paper we develop an algorithm that avoids recomputation of breadth-
first trees. Our approach is based on a representation of the current graph as
a hierarchy of partitions of different grades for that graph. By handling the
modification at an appropriate partition level, we can achieve rebalancing by re-
allocating a small number of faces. Specifically, we prove that our representation
allows a separator decomposition to be recomputed in O(log n) time after a local
insertion or deletion of a vertex or edge that preserves planarity, biconnectivity,
and bounded face sizes, where n is the current number of faces of the graph. The
total initial partition and the data structure can be computed in O(n) time by
using O(n) space.

The paper is organized as follows. In Section 2, we introduce the notation
and outline our approach. In Section 3, we specify the requirements to the par-
titions at each level of the hierarchy and describe efficient algorithm for their
construction. The data structure describing the partitions at different levels of
the hierarchy and its dynamic maintenance are discussed in Section 4. Finally,
in Section 5 we formulate our main theorem and comment the results and their
implications.

2 Preliminaries and Algorithm Outline

Embeddings and Regions

A graph is planar if it can be embedded in the plane so that no two edges
intersect except possibly at a shared endpoint. A graph G already embedded in
the plane is called a plane graph. Faces of G are the maximal connected regions
into which the embedding of G divides the plane. There is exactly one infinite
face called the outer face of the embedding, all other faces are called internal.
A face can be identified by the cycle of edges on its boundary. By V (G), E(G),
and F (G) we will denote the sets of vertices, edges, and faces of G, respectively.

Any set of faces is called a region of G. The subgraph that consists of the
vertices and the edges incident with the faces of a region R is called a subgraph
induced by R and will be denoted by G(R). A region R is connected if the dual

74 L.G. Aleksandrov and H.N. Djidjev

graph of G(R) is biconnected. The maximal connected subregions of R are called
connected components of R.

An edge e of G(R) is called an inner edge of R if both faces incident to e
belong to R. Otherwise e is called a boundary edge. The boundary ∂R of a region
R is the subgraph induced by the boundary edges of R.

A partition R of F (G) is called any set of regions {R1, · · · , Rr} such that each
face of G belongs to exactly one region of R. A partition R is called connected
if all of its regions are connected and it is called weakly connected if it is either
connected or each region has at most two neighboring regions. The boundary
∂R of R (called also boundary graph of R) is the union of the boundaries ∂Ri,
i = 1, · · · , r, of its regions.

In the typical case ∂R may contain long paths of degree 2 vertices. In order to
save time and space when dealing with such boundaries, we define a compressed
boundary CB(R) of ∂R to be the plane graph resulting after the contraction of
any maximal simple path of degree 2 vertices in ∂R to a single edge and any
simple cycle to a triangle. CB(R) is a graph with |R| internal faces corresponding
to the regions of R.

Definition 21 Let G be an n-face plane graph and ε > 0. The partition R is
said to be an ε-partition of G if no region of R has more than εn faces.

We will make use of the following generalization of a result from [1].

Theorem 1 Let G be a plane graph with n faces whose maximal size is d and
let h ≥ d2 be an integer. Then there exists a weakly connected h/n-partition
R = {R1, · · · , Rr} of G that satisfies the conditions

(i) |∂Ri| ≤ √
h; (1)

(ii) |R| ≤ cn/h , (2)

where c > 1 is a constant.

In this paper we present an algorithm for maintaining a hierarchy of ε-
partitions of a dynamic planar graph G. This algorithm can be used to solve
the load balancing problem, since for any integer p > 1 one can pick an ε-
partition for ε ≈ 1/p and then distribute the regions between the processors
using a greedy method so that the sum of the sizes of all regions assigned to a
processor does not exceed n/p + εn ≤ 2n/p. If better balancing is required, we
just need to reduce the value of ε accordingly.

Our algorithms will handle the following update and query operations. We
assume that the original graph is plane with face size bounded by some constant
d and that no operation violates planarity or creates a face with size greater
than d.

– insert vertex(v,e): Adds a new vertex v and replace edge e = (u, w) by two
edges (u, v) and (v, w).

A Dynamic Algorithm for Maintaining Graph Partitions 75

– delete vertex(v): Deletes vertex v of degree two and its incident edges (u, v)
and (v, w) and adds edge (u, w).

– insert edge(u,w,F): Adds a new edge (u, w) inside the face F . Assumes u and
w are non-adjacent vertices on F .

– delete edge(e): Deletes edge e = (u, w). Assumes the degrees of u and w are
greater than two.

– list separator (ε): Given any ε > 0, lists an εn-separator of the current graph.

Note that these update operations are powerful enough to allow any plane graph
to be transformed into any other plane graph using a sequence of update oper-
ations.

Our Approach
We need to maintain a representation of the graph G that will support fast

separator queries, where each query will ask for an ε-partition of the current
graph. For that purpose we maintain a balanced tree called a partition tree that
represents a hierarchy of partitions of G. The partition corresponding to the root
defines the coarsest partition of G into at most h regions of roughly the same
size, where h will be an appropriately chosen constant . Each subsequent level
defines a finer partition, with the leaves corresponding to single faces. Thus, the
levels of the partitions tree form a hierarchy of partitions of G. In particular, the
leaves of T , on level 0, represent the faces of G, the nodes at the level 1 represent
the regions of an h/n-partition R1, the nodes at level 2 represent regions of an
h/n-partition of the graph CB(R1), and so on.

When a local change is applied on the graph G, it can affect only nodes that
are ancestors of the face where the change occurs. The algorithm maintains a
number of local invariants that guarantee the validity of the partitions and the
small height of the tree. The algorithm locates the lowest level of T , where some
of these invariants is violated (if any). Suppose that at node N any of these
invariants is violated. The algorithm considers the subtree consisting of N plus
its children and grandchildren and redefines the children of N by finding a new
partition of the graph induced by the grandchildren of N . This subtree has O(1)
size and thus it can be rebalanced in O(1) time so that all invariants hold. Since
the same procedure might need to be applied to all ancestor nodes from N to
the root of T , the total update time is proportional to the height of T , which
will be shown to be O(log n).

3 P–Tree Data Structure

In this subsection we define and study the properties of a data structure, called a
P–tree, for describing partitions of a plane graph G and show that the structure
can be constructed in linear time. For the initial construction of the tree, we will
define a sequence (hierarchy) of partitions whose elements will be then stored at
the nodes of the tree.

More precisely, let G be a plane graph with n faces each of size not exceeding
d. Let h be an integer constant such that h ≥ max(d2, 2c), where c is the constant

76 L.G. Aleksandrov and H.N. Djidjev

from Theorem 1. By applying Theorem 1 iteratively, we will construct a sequence
of graphs and their h-partitions

G = G(0),R(1), G(1), · · · ,R(l), G(l)

called a GR-sequence, so that the graph G(0) is the original graph G and the
region partition R(l) consists of a single region of no more than h faces.

Constructing the GR-Sequence
Assuming that G(i−1) has already been constructed for some i > 1 and

that it has ni−1 > h faces with each face boundary of at most
√

h edges, we can
construct G(i) from G(i−1) by applying the following procedure. We let G(0) = G.

Algorithm GR–sequence

Step 1: Apply Theorem 1 with a parameter h on G(i−1) to find an h/ni−1-
partition R(i) of G(i−1) such that |R(i)| ≤ cni−1/h.

Step 2: For each region R ∈ R(i) construct the subgraph Gi−1(R) of Gi−1

induced by R and find its boundary ∂R.
Step 3: If R(i) is a connected partition, then G(i) will just be the compressed

boundary of R(i). In the general case, replace each region of R(i) by a single
face of G(i) as follows.
3.1. Compute the compressed boundary graph CB = CB(R(i)) of R(i). For

each new edge e defined during the compression store the list of edges
of the path corresponding to e.

3.2. For any non-connected region Rnc of R(i) merge the faces in CB cor-
responding to the connected components of Rnc into one of those faces
(arbitrarily selected).

Note that the above algorithm constructs G(i) together with its embedding in
the plane and its faces correspond to the regions of R(i). According to Theorem 1
G(i) has no more than cni−1/h faces and the size of each face does not exceed√

h. Thus the same algorithm can be used for constructing G(i+1) assuming G(i)

has at least h faces.
Since the parameter h was chosen to be at least 2c, the graph G(l) will be

obtained in no more than log n+1 iterations. Iteration k takes time proportional
to the size of G(k−1) and thus the total time for constructing the GR-sequence
will be

l−1∑

k=0

O((c/h)kn) = O(n).

Constructing the P–Tree
Let G be a plane graph for which a GR-sequence S has already been con-

structed. A P–tree for G with respect to S is a data structure whose elements
are associated with a rooted tree Th(G) with l+1 levels. The k-th level of Th(G)

A Dynamic Algorithm for Maintaining Graph Partitions 77

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

GG
(k)

face F(N) region R(N) graph R(N)

(k-1)

Fig. 2. Information associated with node N at level k of Th(G). N has 4 children
corresponding to the 4 faces of R(N). The relevant subgraphs of G(k−1) and G(k) are
shown. Each face of G(k−1) corresponds to a region of G.

for k = 1, · · · , l contains the information gathered during the k-th iteration of
the construction of S, namely, the partition R(k), its boundary ∂R(k), and the
graph G(k). The nodes at the k-th level of the P–tree correspond to the regions
of R(k) (or, equivalently, to the faces of G(k)). The leaves of Th(G) are at level
0 and each leaf corresponds to a face of the original graph G = G(0). The root
node is at level l and contains the graph G(l).

With each node N on level k > 0 we associate the following information
(Figure 2):

(i) F (N) – the face of G(k) corresponding to N ;
(ii) R(N) – the region of G(k−1) corresponding to F (N); and
(iii) ∂R(N) – the boundary graph of R(N).

If N is a node on level 0, then F (N) is defined as in (i) above and R(N) =
∂R(N) = F (N). Let G(N) denote the graph G(R(N)).

Note that the amount of data associated with any node N of T is proportional
to the size of G(N). Since G(N) is a planar graph with no more than h faces and
each face has size at most

√
h, the size of G(N) is O(h3/2) (which is a constant

since h = O(1)).
The edges of Th(G) (called links hereafter to be distinguishable from the edges

of G(k)) connect certain pairs of nodes on consecutive levels. More precisely, there
is a link between a node N from level k − 1 corresponding to a region R, and

78 L.G. Aleksandrov and H.N. Djidjev

a node N ′ from level k corresponding to a region R′, iff R is transformed by
Algorithm GR-sequence into a face of R′. By Theorem 1, each node of Th(G)
has at most h children.

Note that any edge of G(k−1) appears in either three or four nodes of the tree
Th(G). It appears twice on the (k − 1)-th level at the nodes that correspond to
its two incident faces and also at one or two nodes on the k-th level, depending
on whether this edge is entirely inside some of the regions of Rk, or lies between
two such regions. We assume that there are pointers between any edge and its
occurrences on the lower level. These pointers define an edge forest EF on the
set of edges of G(k) for k = 0, · · · , l that is consistent with Th(G). Namely, all
edges on path that is compressed to an edge e are descendants of e. Thus, the
edges of the graph G(k) for k > 1 have descendants that are edges of G(k−1). On
the other hand, an edge e′ from level k − 1 has an ancestor if and only if e′ is
on the boundary of some of the regions of ∂Rk.

In accordance with EF , we define weights wt(·) on the edges of G(k) as the
number of their descendants in F at level 0. The weight of the boundary of
a region or a face is defined as the sum of the weights of the edges on that
boundary.

Definition 31 A P–tree node N is called balanced, if all of the following three
conditions are satisfied.

(B1) N and each child of N have no more than h children each.
(B2) The ratio between the number of the children and the number of the grand-

children of N does not exceed c/h, where c is the constant from Theorem 1.
(B3) For any child N1 of N wt(∂F (N1)) ≤ dh(k−1)/2, where k is the level of

N .

A P -tree is called balanced if all its non-root nodes are balanced.

By Algorithm GR–sequence and Theorem 1 we have the following.

Lemma 31 If G is a plane graph with n faces, then the algorithm from this
section constructs in O(n) time a balanced P–tree for G.

Proof. Since Step 1 of Algorithm GR–sequence constructs an h/ni−1-partition
of G(i−1), any node of the tree has at most h children, implying (B1). Property
(B2) follows from conditions (1) and (2) of Theorem 1. Finally, Property (B3)
follows from condition (1) of Theorem 1, the assumption that the maximum face
size of the original graph is no more than d, and an induction on k.

We will maintain our P–tree balanced.

3.1 Update and Query Operations

Next we describe the basic operation on P–trees used to maintain the balance
property of nodes. It is possible that more than one node is unbalanced at a

A Dynamic Algorithm for Maintaining Graph Partitions 79

time, but all unbalanced nodes belong to a single simple path from certain node
to the root of the tree.

Balancing the Tree

We will first describe the basic algorithm for maintaining the balance of the
P–tree, called Fix-Tree.

Algorithm Fix-Tree starts at an unbalanced node N on a lowest possible
level and makes the subtree consisting of N and all its descendants balanced in
constant time. Then the same operation is applied on the parent of N , and so
on, until the root is processed.

Let N be a node at level k, 2 ≤ k ≤ l + 1, that is unbalanced, but all its
proper descendants are balanced. Denote the subgraph of G(k−2) induced by the
faces of the grandchildren of N by G(k−2)(N). Repartition G(k−2)(N) using the
algorithm from Theorem 1 and construct again the portion of the tree (with
height two) rooted at N , its children, and its grandchildren using algorithm
similar to the one for construction of P–trees. The time required to fix N will be
proportional to the number of faces of G(k−2)(N), which is O(h2) by of Property
(B1) of Definition 31. Since the height of the P–tree is O(log n), balancing the
tree will take O(log n) time.

Implementation of the Update Operations

We will describe and analyze the implementation of the four update opera-
tions described in Section 2. Our assumption is that the current graph G is a
connected plane graph with no vertices of degree 1 and no face size exceeding d
and that the update operations preserve these properties. By T we denote the
current P -tree of G.

insert vertex(v, e) The operation asks that edge e = (u, w) be replaced by
edges e1 = (u, v) and e2 = (v, w).
Let F1 and F2 be the two faces of G incident to e and let N1 and N2 be
the corresponding leaf nodes in T . First, update at nodes N1 and N2 the
corresponding descriptions of F1 and F2 by deleting e and inserting e1 and
e2 into the corresponding doubly linked lists. Update the weights of all edges
that were ancestors of e in the edge forest EF associated with T . Since these
updates can change the weights of the faces associated with the ancestors of
N1 and N2, we need to apply Fix Tree algorithm on the lowest unbalanced
ancestors of each of N1 and N2.

delete vertex(v) This operation deletes a vertex v of degree two, thereby chang-
ing the common boundary of the two faces incident to v. Hence, delete vertex
can be implemented in a similar way as insert vertex by changing the in-
formation associated with the two leaf nodes representing the faces incident
to v and updating the weights of O(1) edges per each level of the edge-forest
associated with T .

insert edge(u, w, F) Given two non-adjacent edges u and w on the same face
F of G, insert edge adds a new edge e = (u, w) inside F .

80 L.G. Aleksandrov and H.N. Djidjev

Denote by F1 and F2 the faces into which e splits F . Delete the leaf node
N that corresponds to F and create two new nodes N1 and N2 representing
the new faces. Make N1 and N2 children of the parent PN of N . Next,
update the region subgraph stored at PN by adding to R(PN) the edge e
inside face F . Finally, execute algorithm Fix Tree on the lowest unbalanced
ancestor of PN .

delete edge(e) This operation deletes edge e = (u, w), assuming the degrees of
u and w are greater than two.
Let F1 and F2 be the two faces of G incident to e and let N1 and N2 be the
corresponding nodes in T . Let F be the face that results after the deletion
of e and the merge of F1 and F2. In order to implement that operation, we
delete N1 and N2 and create a new leaf node N representing the face F .
Assume that N1 and N2 have different parents, say PN1 and PN2. In this
case we delete N2 and replace N1 with the new node N . As a result, the
number of children of PN2 is reduced by one and one of the children of PN1
represents a larger region. We make the corresponding changes in the parents
PN1 and PN2. These include updates in the structures F (PNi), R(PNi),
and ∂R(PNi), i = 1, 2. In particular, e is deleted from both faces F (PN1)
and F (PN2) and all edges of F2. We continue to make similar changes on
the ancestors of F (PN1) and F (PN2) until the nearest common ancestor of
N1 and N2 is reached.
Finally, we run the Algorithm Fix Tree on the parents of N1 and N2.

If in result of some update operation the degree of the root R becomes one,
then we cut R. In case the degree of R becomes greater than h+1, then we define
a new vertex R′ to be a parent of R and run Algorithm Fix Tree on vertex R′.

Note that any of the update operations described above changes information
at only constant number of nodes at any level of T and that we applied Fix Tree
on only one or two nodes of T . If all nodes of T are balanced, then by Condition
(B2) the height of T is at most logh/c n ≤ log n, since we have chosen h ≥ 2c.
Hence the time complexity of Algorithm Fix Tree is also O(log n). Thus we have
the following lemma.

Lemma 32 A balanced P -tree representing a planar connected graph G with no
vertex of degree one can be maintained subject to the operations insert vertex,
delete vertex, insert edge, and delete edge in O(log n) time per operation, as-
suming the maximum face size never exceeds a constant d.

Extraction of an ε-Partition

Recall that any node Ni at the k-th level represents a face F (Ni) of G(k). Sim-
ilarly, the children of Ni correspond to the faces of R(Ni) (the region of G(k−1)

associated with F (Ni)), and so on. Therefore, Ni defines a region in the graph
G = G(0) represented by the leaves that are descendants of Ni. We denote that
region of G by R̄(Ni). Let R(G, k) denotes the partition {R̄(N1), · · · , R̄(Ns)} of
G, where {N1, · · · , Ns} is the set of all nodes on level k.

A Dynamic Algorithm for Maintaining Graph Partitions 81

Lemma 33 Let 1 ≤ k ≤ l and εk = hk/n, where n is the number of faces in
G. Then the partition R(G, k) is an εk-partition of G with boundary of size not

exceeding d
√

n1+log c/ log(h/c)

εk
.

Proof. Clearly, R(G, k) is a partition of G since any face of G (which is a leaf
of the P -tree of G) belongs to exactly one of the regions R̄(Ni). For the size of
the regions of that partition R(G, k) we have

|R̄(Ni)| ≤ hk = εkn, for i = 1, · · · , s,
since the maximum degree of T is no more than h + 1. For the size of the
boundaries ∂R̄(Ni) we have

|∂R̄(Ni)| = wt(F (Ni)) ≤ dhk/2,

according to Condition (B2) of Definition 31. The number of nodes at level k is
at most hl−k, where l + 1 is the number of the levels in T . Therefore, the total
weight of the boundary of R(G, k) is

wt(R(G, k)) ≤ dhk/2hl−k = dhl−k/2 ≤ d
hlog n/ log(h/c)

h
k
2

= d 2
log n log h
log(h/c) /

√
εk = d

√
n1+log c/ log(h/c)/εk.

Now, in order to process a query asking for an ε-partition of G for some ε ∈
(0, 1), we determine the level k for which hk−1 < εn ≤ hk and apply Lemma 33.
Let us estimate the time necessary to list the boundary of the resulting partition.
Recall that F (N) is a compressed image of the boundary ∂R(N) of the region
R(N) of G(k−1). Each edge of F (N) represents a path on ∂R(N). Each edge of
∂R(N) itself represents a path in G(k−2) (if k ≥ 2), and so on. Therefore, each
edge of F (N) can be traced down to a path in the original graph G = G(0). The
boundary ∂R̄(N) of the region R̄(N) can be extracted from the P -tree in time
O(∂R̄(N)). Thus the boundary of the partition can be listed in time proportional
to its size, which is O(

√
n/ε). Thus we have the following lemma.

Lemma 34 The k-th level of a P -tree represents a hk-partition of G whose
boundary B can be listed in O(|B|) time.

We summarize the above results in the following theorem.

Theorem 2 Let G be a plane graph with n faces. Then for any δ > 0 a data
structure exists that

(i) can be constructed in O(n) time;
(ii) supports operations insert vertex, delete vertex, insert edge and delete edge

in O(log n) time assuming the maximum face size of any intermediate graph
is O(1).

(iii) supports operation list separator (ε) for any ε > 0 in time proportional to
the separator’s size, which is bounded by O(

√
n1+δ/ε).

Proof. Follows from Lemmas 31–34 for h = c1/δ.

82 L.G. Aleksandrov and H.N. Djidjev

References

1. Lyudmil Aleksandrov and Hristo N. Djidjev. Linear algorithms for partitioning
embedded graphs of bounded genus. SIAM Journal on Discrete Mathematics,
9:129–150, 1996.

2. Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for graphs
with an excluded minor and its applications. Proceedings of the 22nd Symp. on
Theory of Computing, pages 293–299, 1990.

3. D. Armon and J. Reif. A dynamic separator algorithm. In Proc. 3rd Worksh. Al-
gorithms and Data Structures, pages 107–118. Lecture Notes in Computer Science
709, Springer-Verlag, Berlin, 1993.

4. S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph layout prob-
lems. Journal of Computer and System Sciences, 28:300–343, 1984.

5. J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, 1988.

6. Hristo N. Djidjev. A separator theorem. Compt. rend. Acad. bulg. Sci., 34:643–645,
1981.

7. G.N. Frederickson. Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM Journal on Computing, 16:1004–1022, 1987.

8. John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem
for graphs of bounded genus. J. Algorithms, 5:391–407, 1984.

9. John R. Gilbert and Robert E. Tarjan. The analysis of a nested dissection algo-
rithm. Numerische Mathematik, 50:377–404, 1987.

10. Michael T. Goodrich. Planar separators and parallel polygon triangulation. Pro-
ceedings of 24th Symp. on Theory of Computing, pages 507–516, 1992.

11. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, pages 671–680, 1983.

12. C.E. Leiserson. Area efficient VLSI computation. In Foundations of Computing.
MIT Press, Cambridge, MA, 1983.

13. B.W. Kernighan & S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. Bell Systems Technical Journal, 49:291–308, 1970.

14. Richard J. Lipton, D. J. Rose, and Robert E. Tarjan. Generalized nested dissection.
SIAM J. Numer. Anal., 16:346–358, 1979.

15. Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs.
SIAM J. Appl. Math, 36:177–189, 1979.

16. Richard J. Lipton and Robert E. Tarjan. Applications of a planar separator theo-
rem. SIAM Journal on Computing, 9:615–627, 1980.

17. Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric
approach to graph separators. Proceedings of the 32nd FOCS, pages 538–547,
1991.

18. A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigen-
vectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, July 1990.

19. Eric J. Schwabe, Guy E. Blelloch, Anja Feldmann, Omar Ghattas, John R. Gilbert,
Gary L. Miller, David R. O’Hallaron, Jonathan R. Shewchuk, and Shang-Hua
Teng. A Separator-Based Framework for Automated Partitioning and Mapping of
Parallel Algorithms for Numerical Solution of PDEs. In Proceedings of the First
Annual Summer Institute on Issues and Obstacles in the Practical Implementation
of Parallel Algorithms and the Use of Parallel Machines in Parallel Computation
(DAGS/PC ’92), pages 48–62. Dartmouth Institute for Advanced Graduate Stud-
ies, June 1992.

Data Structures for Maintaining Set Partitions
(Extended Abstract)

Michael A. Bender, Saurabh Sethia, and Steven Skiena

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794-4400 USA, {bender|saurabh|skiena}@cs.sunysb.edu

1 Introduction

Each test or feature in a classification system defines a set partition on a class of
objects. Adding new features refines the classification, whereas deleting features
may result in merging previously distinguished classes. As an illustration, con-
sider the set of automobile types { VW Beetle, Toyota, Lexus, Cadillac }. The
feature size partitions the cars into sets of small and large cars, {{ VW Beetle,
Toyota}, { Lexus, Cadillac }}. The feature domestic-origin partitions the cars
into {{ VW Beetle, Toyota, Lexus }, { Cadillac }}. The feature ugly-shape dis-
tinguishes { VW Beetle, Cadillac } from { Toyota, Lexus }. Incorporating both
size and origin induces the refined partition {{ VW Beetle, Toyota}, { Lexus },
{ Cadillac }}, whereas the union of all three features completely distinguishes
the types of cars. In fact, size and ugly-shape are sufficient for complete iden-
tification, so domestic-origin could be deleted from the set of features without
affecting the induced partition.

Efficiently maintaining the partition induced by a set of features is an im-
portant problem in building decision tree classifiers. For example, in building
an optical character recognition (OCR) system [15,16] based on point-probe de-
cision trees [1], each of the 1500-plus pixels in each character-sized window of
the image may be evaluated as a possible feature. An important goal is to find
a small, robust set of probe points sufficient to distinguish among the 70-plus
characters in a font, a process that may require repeatedly inserting and deleting
features to see the impact on the final classification.

In this paper, we introduce techniques to speed up this process of feature
identification. We propose a series of data structures for maintaining a collection
of set partitions on elements U = {1, . . . , n}. The data structures efficiently
support the following three operations:

– Insert(P,S) – add a new partition P to the set of partitions S.
– Delete(P,S) – delete existing partition P from the set of partitions S.
– Report(S) – report the set partition of U induced by the set of partitions in

S.

Previous Work. A variety of data structures for sets and set partitions are known,
including dictionaries and bit vectors, but these are not directly applicable to
our problem. The primary difficulty of our problem lies in the fact that deleting

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 83–96, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

84 M.A. Bender, S. Sethia, and S. Skiena

a set partition may or may not result in the merger of two parts of the current
induced partition, depending upon which other set partitions are included in the
data structure. Union-find data structures [17] provide some support for merging
disjoint subsets (as occurs on deleting a partition), but do not permit us to break
up subsets (as occurs on adding a partition).

Partition refinement techniques are used in a variety of algorithms, notably
minimizing deterministic finite automatas [12] and its generalizations [14]. Habib,
et.al. [11] demonstrate that partition refinement can lead to simple and efficient
algorithms for graphs, strings, and matrices – although none of these operations
involves deleting arbitrary set partitions.

Yellin [20] efficiently supports a variety of subset testing operations (in-
sert/delete elements, create subsets, subset and intersection queries) in
O(n1/2 log n) time per operation, but it is not clear how to use these opera-
tions to improve even the naive bounds for our problem. Further, near matching
lower bounds are known on the complexity of any data structure that supports
these operations [6]. We have recently learned of a data structure for maintain-
ing dynamic set partitions in O(n) amortized time under all three operations by
Calinescu [2].

The problem of maintaining induced set partitions can be reduced to up-
dating an ambiguity graph on the n elements, where the presence of edge (i, j)
indicates that elements i and j occur in different parts of at least one of the k par-
titions. An extensive literature exists on efficient dynamic graph algorithms [7],
for such tasks as maintaining connected components under edge insertion and
deletion. However, the insertion or deletion of a single n-element set partition
can effect the status of Θ(n2) edges in such an ambiguity graph, rendering such
an approach infeasible.

Our Results. In this paper, we present a collection of efficient and practical data
structures for maintaining set partitions, as well as several generalizations of the
problem. Particularly interesting is the variety of algorithmic techniques which
they encompass, including classical balanced trees, randomization and random
walks, suffix trees, and spanning trees of low stabbing number. In particular:

– We provide a data structure that supports the insert and report operation
in optimal O(n) worst-case time, for general set partitions. Deletion takes
O(n lg k) time, where k is the number of set partitions currently in the data
structure and n is the number of elements in each partition. These results
are relatively straightforward, it appears nontrivial to improve all operations
to O(n), which is the best possible complexity.

– We provide randomized Monte Carlo and Las Vegas data structures that
support all three operations on bipartitions in linear or near-linear expected
time, although the Las Vegas bounds are amortized. The Monte Carlo data
structure is asymptotically optimal , and the Las Vegas data structure is
within a factor of α(n) of optimal. We believe that our Monte Carlo data
structure is particularly practical because of its simplicity. It appears widely
applicable and is used as a building block for other algorithms in the paper
such as the Las Vegas data structure and the geometric data structures.

Maintaining Set Partitions 85

– Robust classifiers compensate for noisy features by requiring more than one
piece of evidence to distinguish between every pair of objects. We provide an
alternate data structure that permits us to efficiently insert/delete partitions
and query arbitrary pairs of elements {x, y} to obtain the approximate num-
ber of partitions currently distinguishing x from y. Insert/delete run in time
O(n log log n) and query runs in polylogarithmic time. This data structure
uses techniques from random walks on a line. Randomization and approx-
imation appear to be powerful techniques in this setting, because, to our
knowledge, the best exact deterministic techniques require O(n2) time per
insertion or deletion of partitions.

– We provide an efficient data structure for maintaining geometric set par-
titions, where the set partitions are induced by linear separators of points
in the plane. We achieve O(

√
n log n) time for insertion/deletion and linear

report time, after an initial O(n1.5 log n) preprocessing step.
– We provide the first data structures for efficiently maintaining sorted strings

under character insertion/deletion. As an application, we use this structure
to find the shortest run of distinguishing features from an ordering of k
binary features in optimal O(nk) time.

Our paper is organized as follows. In Section 2, we present deterministic data
structures for maintaining set partitions. More efficient randomized data struc-
tures are presented in Section 3. The problem of maintaining robust classifiers
is discussed in Section 4. The special case of set partitions induced by geometric
arrangements is discussed in Section 5. A generalization of our problem, sorting
strings under character insertion/deletion is addressed in Section 6.

2 Basic Results: Deterministically Maintaining Set
Partitions

In this section, we present an efficient data structure for deterministically main-
taining set partitions under the operations insert , delete, and report . For delete,
we assume that we are given a pointer to the set partition in question and
hence defer the issue of retrieving these pointers to an auxiliary dictionary data
structure.

Notation. We use the following notation throughout the paper. Let the univer-
sal set U = {1, . . . , n}. Each set partition P partitions U into parts(P) disjoint
subsets P1, . . . , Pparts(P) such that ∪parts(P)

i=1 Pi = U . Without loss of general-
ity, we identify these subsets by the integers (1, . . . , parts(P)), respectively. Let
part(P, i) denote the part of P containing element i.
Lemma 1. Let A and B be set partitions of U = {1, . . . , n}. The induced par-
tition (or refinement) of A and B can be computed in O(n) time.

The proof of Lemma 1 appears in the full version of this paper. Repeated
application of Lemma 1 yields a data structure that supports insertion and report
in linear time but does not explicitly support deletion. A naive solution could

86 M.A. Bender, S. Sethia, and S. Skiena

recompute the induced partition from scratch on each deletion by repeatedly
applying Lemma 1, for a total cost of O(kn) per deletion.

Lemma 2. Set partitions can be dynamically maintained such that the insertion
and deletion operations take O(n lg k) time, while report can be performed in
O(n) time.

Proof. We maintain a balanced binary tree whose k leaves comprise the set of
input partitions S, and each intermediate node is the induced partition of its
two children. Therefore, the root of this tree represents the induced partition of
S, and can be produced in linear time to satisfy a report query.

Insertion and deletion can be implemented as in any balanced binary tree
such as [9]. Insertion and deletion in a red-black tree require O(1) rotations
in the worst case. Although each rotation affects only a constant number of
nodes, the induced partitions on all O(lg k) intermediate root-to-leaf nodes must
be recomputed using Lemma 1, so that the time required for insertion and/or
deletion is O(n lg k). ut

We note that a similar structure, called a partition tree, appears in a different
context in Yellin [19]. We can modify the data structure of Lemma 2 to reduce
the complexity of insertion to linear:

Theorem 1. Set partition can be maintained with O(n) insertion and report,
and O(n lg k) deletion.

Proof. Instead of maintaining a conventionally-balanced binary tree in the struc-
ture of Lemma 2, we maintain a forest of perfectly-balanced binary trees.

As before, the leaf level of our forest contains all k of the input partitions.
We number them from 1 to k according to time of insertion. On each insertion,
we will add one leaf to one tree, and construct at most one additional internal
node. Denoting where the leaves reside as level 0, we will add a new internal
node at the ith level every 2ith insertion. For each level i, we will maintain a
FIFO queue of pointers to the roots of trees of height i. In addition to this forest,
we will also maintain a separate global induced partition, initially {1, . . . , n}.

Inserting a Partition: We insert the kth partition as follows:

1. Increment the partition counter k. Construct a new leaf node for par-
tition Pk. Add the node k to the end of the level 0 queue.

2. Refine the global set partition with Pk using the algorithm of Lemma 1.
3. Define j to be the largest integer such that k + 1 ≥ 2j . Compute b,

the position of the least significant 1-bit of the binary representation
of s = k + 1 − 2j . If s = 0, then b is undefined.

4. Unless s = 0, dequeue the two oldest elements A and B of level queue
b. Merge the associated set partitions of A and B using the algorithm
of Lemma 1. Construct a new internal node to contain the refined
partition of A and B, and enqueue this node at level b + 1.

Maintaining Set Partitions 87

To implement report, we simply return the global result partition. To imple-
ment deletion, we replace the partition to be deleted by the partition of the last
leaf to have been inserted, and delete the internal node (if any) constructed dur-
ing the insertion of this leaf. We then recompute the O(lg k) induced partitions
of the internal nodes on the two effected root-to-leaf paths. Finally, we compute
the new global result partition by merging all the O(lg k) root partitions in our
forest. Hence it takes O(n lg k) time to do a deletion.

Note that the structure of forest depends only on the number of partitions
currently in S, and is independent of any deletions which may have taken place.
Hence to measure the complexity of insertions we can safely assume that k
insertions were performed sequentially. ut

3 Randomized Data Structures for Maintaining Set
Partitions

For simplicity we assume that each partition that we insert is a bipartition,
meaning it divides the elements into exactly two subsets. The results in this
section can be generalized to the setting in which a partition breaks the elements
into D sets, at an extra cost proportional to D.

We say that an event E occurs with high probability (w.h.p.) if for any c > 0
there exists a proper choice of constants such that Pr [E] ≥ 1 − n−c.

3.1 Monte Carlo Algorithm

Colors of Elements. We first describe how to maintain the partition information.
At each step t of the algorithm, an integer Ct[i] is associated with each element i.
We call Ct[i] the color of element i at step t. Specifically, Ct[i] ∈ {0, . . . , P − 1},
where P has size polynomial in n. That is, P ∈ O(nc), for some constant c. We
maintain the invariant that w.h.p., if two elements i and j are in the same set
at step t in the (cumulative) partition S iff they have the same color, that is,
Ct[i] = Ct[j].

We also store the partitions P1 . . . PK that comprise S, where the partitions
are ordered by increasing insertion time. We can access any element in the set
of partitions in time O(log K) ∈ O(n) using a balanced tree or any other basic
data structure.

Inserting a Partition. A new partition is supplied as a 0-1 array A[1 . . . n], where
A[i] ∈ {0, 1}. We insert the k-th partition in step t as follows.

1. rk := randomly chosen integer ∈ {1, . . . , P − 1}.
2. Pk[i] := rk · Ak[i], for i = 1 . . . n.
3. Ct[i] := Ct−1[i] + Pk[i] mod P, for i = 1 . . . n.
4. Store Pk[1 . . . n] in the list of partitions.

Note that once we have calculated Ct[i], we no longer need to store Ct−1[i].

88 M.A. Bender, S. Sethia, and S. Skiena

Deleting a Partition. We delete a partition Pk (in step t) as follows.

1. Find Pk[1 . . . n] in the partition list.
2. Ct[i] := Ct−1[i] − Pk[i] mod P, for i = 1 . . . n.
3. Delete Pk[1 . . . n] from the partition list.

Observe that errors are one-sided. Namely, if two elements have different colors,
they belong to different sets of S. An error occurs whenever two elements as-
signed the same color actually belong to different sets. We obtain the following
theorem.

Theorem 2. Insertions and deletions of partitions are executed in time O(n).
If the algorithm runs for a polynomial number of steps, then for sufficiently large
P = O(nc), w.h.p. all insertions and deletions are executed correctly.

The proof of Theorem 2 appears in the full version of this paper. We note
that the Monte Carlo algorithm should be extremely fast because it only uses
a small number of additions and subtractions. It is interesting to note that our
Monte Carlo algorithm suffices for the practical application of building a tree that
distinguishes all objects using a small number of probes. Our randomized scheme
will never classify two objects as different which are in fact indistinguishable,
and hence the only consequence of being unlucky is to add a small number of
additional probes to the test set.

3.2 Las Vegas Algorithm

We now describe the Las Vegas algorithm for the set partition problem. The
time complexity is almost the same as for the Monte Carlo algorithm except
that now it is amortized . In order to make the algorithm Las Vegas, we remove
the probability of error from the invariant that whenever two elements have the
same color, they are part of the same set in S. Thus, each time we perform an
insertion or deletion, we must verify that this invariant holds.

Verifying an Insertion. We first show how to verify an insertion for each step t.
This entails adding an additional step at the end of the operation:

5. Verify that for all i, j, (Ct[i] = Ct[j]) =⇒ (Ct−1[i] = Ct−1[j]).
6. If so, continue. If not, an error is found. Spawn off an independent

execution or run any other alternative protocol.

Step 5 can be executed in linear time by maintaining some additional struc-
ture of the elements. Namely, in each step we will keep the elements in sorted
order by increasing color. To do so, we use an additional array Πt[1 . . . n] =

Maintaining Set Partitions 89

π
(t)
1 . . . π

(t)
n , where π

(t)
` = j means that in step t, j is the element with the `-th

smallest color. (Ties are broken by taking into account the number of the ele-
ment.) If the ordering Πt−1[1 . . . n] in step t−1 is known, the ordering Πt[1 . . . n]
can be computed in linear time by merging three sorted (and interleaved) lists:

• the elements of Πt[1 . . . n] whose colors do not change between step t − 1
and step t,

• the elements of Πt[1 . . . n] whose colors increase by rk,
• the elements of Πt[1 . . . n] whose colors increase by rk and then (by the

rules of modular arithmetic) decrease by P .
Thus, step 5 can be broken into these substeps:

5a. Compute π
(t)
1 . . . π

(t)
n from π

(t−1)
1 . . . π

(t−1)
n by merging three lists.

5b. Verify that for ` = 1 . . . n,
(
Ct[π

(t)
`] = Ct[π

(t)
`+1]

)
=⇒

(
Ct−1[π(t)

`] = Ct−1[π(t)
`+1]

)
.

This test requires linear time because we only have to compare the
color of each element π

(t)
` with its neighboring elements π

(t)
`−1 and π

(t)
`+1

in the ordering.

Verifying a Deletion. We now show how to verify the deletion of partition
Pdel[1 . . . n] in step t. Let Px1 . . . Pxm

be the existing partitions in the system
after Pdel[1 . . . n] is deleted. Let Pxk

be the partition that appeared in S just
before Pdel.

Verifying deletions is more complicated for the following reasons. Suppose
that after the deletion of a partition Pdel[1 . . . n], two elements i and j have the
same color. We do not know a priori whether this is because the last partition
separating i and j has been removed, or whether i and j are erroneously assigned
the same color and are in fact separated by many partitions. Thus we verify
deletions as follows.

4. Verify that if Ct[i] = Ct[j], then i and j are in the same set of all
partitions Px1 . . . Pxn

(except for Pdel[1 . . . n]).
5. If so, continue. If not, an error is found. Spawn off an independent

execution or run any other alternative protocol.

We now show how to make the verification efficient. Note that step 4 could
potentially be very expensive because it may involve scanning through the entire
list of partitions Px1 . . . Pxn . Despite this, we show that the amortized cost of
verifying a deletion is O(nα(n)), where α(n) is the inverse Ackerman function.
To do this we will show that for verification, each partition is examined O(n)
times and each examination requires amortized time O(α(n)). As with insertions,

90 M.A. Bender, S. Sethia, and S. Skiena

we maintain the elements in sorted order and this again involves merging three
sorted lists. (The merge is minimally different; we now add instead of subtracting
and subtract instead of adding.)

We maintain a Union-Find data structure for each prefix of partitions
Px1 . . . Pxm

. Thus, two elements i and j belong to the same set in the data
structure Union-Find(x`) if they belong to the same set in all of the partitions
Px1 . . . Px`

. Because partitions are always inserted at the end of S, the sets in
each Union-Find(x`) data structure may coalesce when partitions are deleted
but will never split apart. The sets can combine together at most n − 1 times
before a single set remains and consequently all elements have the same color.
The operation Find-Set(x`)[i] locates the smallest element belonging to the
same set as element i (in the Union-Find(x`) data structure). The operation
Union(x`)[i , j] combines the set containing i and the set containing j (in the
Union-Find(x`) data structure).

The algorithm appears in the full version of this paper.

Theorem 3. Verifying an insertion or a deletion requires amortized time
O(nα(n)).

If a verification identifies an error, then we run an alternative protocol. Be-
cause the probability of an error is polynomially small, we obtain the following
theorem.

Theorem 4. Insertions and deletions run in amortized time O(nα(n)), both
expected and w.h.p..

4 Estimating the Number of Partitions Separating
Elements

When building a decision tree (e.g., for OCR), one may want to maintain more
detailed information besides the induced partition. In particular, for fault tol-
erance, one may insist that each element be separated by at least k partitions.
Thus, for each pair of elements the data structure could store and return the
number of partitions that separate the elements. Unfortunately, the naive solu-
tion to this problem requires O(n2) for insert and delete.

On the other hand, it may not be necessary to know the exact number of
partitions that separate elements i and j. In applications such as building deci-
sion trees, approximate knowledge of this number may be satisfactory. This is
the problem we explore in this section.

Our data structure supports the following three operations.

• Insert(P ,S) – add a new partition P to the set of partitions S.

• Delete(P ,S) – delete existing partition p from the set of partitions S.

• Query(i, j, S) – output an estimate of the number of partitions separating
elements i and j.

Maintaining Set Partitions 91

We show that the operations insert and delete can be implemented to run in
worst-case time O(n log n), or expected O(n) time. Query requires polylogarith-
mic time and returns an answer that is accurate to within any constant factor.
As it is stated, this algorithm works only for bipartitions.

As in Section 3, we assign integers called colors to elements. However now
the distance between two colors approximates the number of partitions sepa-
rating elements. More specifically, each element i has β log n separate colors,
C[i][1 . . . β log n]. Each color is modified independently.

Inserting a partition. A new partition is supplied as an array A[1 . . . n], where
A[i] ∈ {0, 1}. Note that each bipartition has two representations, where one
representation is the complement of the other. To insert a partition, we inde-
pendently modify each of the β log n colors of the elements as follows.

• Randomly choose one of the two representations of the partitions for each
of the β log n, and

• add these values to the composite colors of the elements.
Thus in the i-th position some of the colors are incremented by 1 and some of
the colors remain the same.

Deleting a partition. To delete a partition, we again modify each of the β log n
colors inversely to the changes on inserting the partition. For each color, we
subtract the appropriate representations of the partition from the composite
color so that each color either remains unmodified or decreases by 1.

Querying elements i and j. To estimate the number of colors separating elements
i and j, we compare the colors of i and j. Let Kt be the number of partitions in
the system at time t, and let E(C[i][l]) be the expected value of C[i][l]. Notice
that, for all colors of all elements, the expected value of the color is Kt/2.

However the actual colors will deviate from this expected value. If no sets
separate i and j, then for all ` = 1 . . . β log n, C[i][`] =C[j][`]. The less the value
of C[i][`] and C[j][`] are correlated, the more sets separate i and j. Specifically, if
there are d sets that separate elements i and j, then we can view the process of
choosing colors for i and j as a random walk of length d in the following sense.

Consider the basic random walk on the integer line. A walker starts at the
origin and at each step t, moves one unit to the right with probability 1/2 and
moves one unit to the left with probability 1/2. We compare this random walk
with the dynamics of the algorithm. Whenever i and j are in different partitions
than with probability 1/2, the color of i is incremented by 1 and the color of j
stays the same, and with probability 1/2, the color of j is incremented by 1 and
the color of i stays the same.

Thus, the probability

Pr [C[i][`] − C[j][`] = z]

is exactly the probability that a random walk of length d ends at integer z. Thus,
by examining the distribution of the colors of the elements, we can estimate the

92 M.A. Bender, S. Sethia, and S. Skiena

most likely value of d. The estimation method appears in the full version of this
paper. We obtain the following theorem.

Theorem 5. For any error parameter ε and constant c, there is a constant β
such that the following holds with probability 1 − 1/nc (w.h.p.): If the number
of sets separating elements i and j is d, then the estimate d′ of d is bounded as
follows:

(1 − ε)d ≤ d′ ≤ (1 + ε)d.

To implement the insert and delete operations in expected O(n log log n)
time, we must show how to increment the β log n colors by the prescribed random
bits in expected log log n time. This can be done by maintaining these colors as
log k sets of 2β integers, each of size log n. The first set of integers contains
the least significant bit of (log n)/2 colors, with each data bit flanked by zero
bits. Adding the random bits (similarly padded) to this integer increments each
of the colors simultaneously. If any carries occur, they appear as 1 bits in the
padded region, and require us to increment the appropriate next significant bits.
To avoid bad situations, we use nonunique representation of numbers. Each
round of incrementing takes constant time, and the expected number of levels
to propagate the carries is log log n.

5 Maintaining Geometric Set Partitions

Suppose the elements in each set partition were points in the plane, and that
each set partition was induced by a half-plane that distinguishes between the
points which lie to the left or right of the defining line. Such partitions have
been previously studied. For example, Freimer, et.al [8] prove it is NP-complete
to find the smallest subset of lines sufficient to completely shatter a point set,
i.e. induce a complete partition of the points.

Clearly, the data structure problem can be solved by testing all of the half-
planes against each point and reducing it to a non-geometric instance. However,
exploiting the geometry can make the problem easier. The following operations
should be supported by such a data structure.

– Insert-line(l,S) – add a separating line l to the arrangement of partitions
and points S.

– Delete-line(l,S) – delete existing separating line l from the arrangement of
partitions and points S.

– Report(S) – report the set partition of U induced by the arrangement of
partitions and points S.

A naive way to support these operations is by maintaining the arrangement
of the halfplanes. Any two points in the same cell of the arrangement represent
unpartitioned elements. A line insertion/deletion into the arrangement takes
O(k + n) time, the former term for inserting a line in an arrangement of k lines
[5] and the latter term to partition the lists of points in the split. And report takes

Maintaining Set Partitions 93

O(n) time because we can maintain a list of non-empty cells in the arrangement
with each cell maintaining a list of points in it.

This naive algorithm is faster than the algorithms in the non-geometric set-
ting when k is O(n), but its performance degrades for larger k. An important
drawback of this algorithm is that its not space efficient because it uses O(k2)
space to store the arrangement. We improve this naive algorithm so that in-
sert and delete run in sublinear time. The algorithm uses spanning trees of low
stabbing number and randomization.

Theorem 6. Geometric set partitions can be maintained with report in O(n)
and insert/delete in O(

√
n log n) time. The data structure uses O(n + k) space

and O(n1.5 log n) preprocessing time. The algorithm runs correctly in polynomial
time w.h.p.

Proof. First we preprocess the n points to obtain a spanning tree of low stab-
bing number. We can find a spanning tree T of stabbing number of O(

√
n) in

O(n1.5 log n) time [3,13]. We orient each edge of T arbitrarily. In addition we
maintain an integer or color for each edge, initially 0.

To insert a line L we first associate an integer or color with L. As in the
non-geometric randomized algorithms, the color is a randomly chosen integer
between 1 and P −1, where P is O(nc) for some constant c. Then we find the set
E of O(

√
n) edges of tree T stabbed by L. For each edge e in E we either add

or subtract the color of L modulo P from the color of e. We add if e goes from
left to right of L and subtract otherwise. Finding the set E takes O(

√
n log n)

time [3], and hence insertions take O(
√

n log n) time.
To delete a line L we find the set E of O(

√
n) edges of tree T stabbed by L.

Then we subtract or add modulo P the color of L from the color of each edge e
of the set E. We subtract if e goes from left to right of L and add otherwise. As
for insertions, finding the set E and hence deletions take O(

√
n log n) time.

To report we start with any node of T and assign it an integer or color 0.
We then traverse the tree and assign each node of T a color as follows. If a
node has color c0 and has an outgoing edge e1 with color c1 then the target of
e gets a color c0 + c1mod (P). Similarly for an incoming edge e2 with color c2
the source node gets a color c0 − c1mod (P). After assigning each node with a
color, we radix sort them by color and report the partition of nodes induced by
their colors. Clearly, this can be performed in O(n) time.

Note that this works because for two points in the same cell of arrangement of
lines, the unique path in T between them will intersect any line an even number
of times. See Figure 1. Thus while moving from one point to another we would
add and subtract colors of the lines an equal number of times and hence points
in the same cell will have the same color. On the other hand, if two points are
in different cells the unique path in T between them would intersect at least one
line odd number of times. Hence w.h.p. the two points will have different colors.

Details appear in the full paper. ut
Although the off-line version of constructing the induced set partition of k set

partitions of n elements can easily be solved in optimal Θ(kn) time by repeated

94 M.A. Bender, S. Sethia, and S. Skiena

Points

Spanning tree

Partitioning Lines

Fig. 1. Monte Carlo algorithm for geometric set partitioning.

application of Lemma 1, the geometric version of the off-line problem is more
interesting. Here we are given a set of k lines and n points, and seek to determine
the induced set partition of them. We obtain the following theorems. The proofs
appear in the full version.

Theorem 7. The induced set partition of k lines and n points in the plane can
be determined in total O(n1.5 + k

√
n) time and O(n + k) space w.h.p.

Theorem 8. The induced set partition of k lines and n points in the plane can
be determined in total O(k1.5 logω k + n

√
k log2 k) time and O(k log2 k) space,

where ω is a constant less than 4.3.

6 Maintaining Sorted Strings under Character
Insertion/Deletion

The problem of determining the partition induced by a collection of k set parti-
tions on {1, . . . , n} can easily be reduced to that of sorting strings. Arbitrarily as-
sign each of the parts of each partition p a distinct number from 0 to parts(p)−1.
Define Si to be the string of parts associated with element i, i.e. Si[j] = q iff
element i is in part q of set partition j. Elements x and y are indistinguishable iff
Sx = Sy. Hence sorting strings {S1, . . . , Sn} groups the elements into blocks of
equivalence classes. This gives us an alternate, more general formulation which
yields our original problem as a special case – maintain the sorted order of strings
where we are (1) allowed to delete the ith character from each string and (2)
append an extra character to each string.

In general, we have the problem of maintaining a set of strings S = {S1, . . . ,
Sn} under the following operations:

• Report(S) – Return the permutation of S representing the the sorted order
of the strings, with runs of duplicates identified.

• Insert(S,i,T) – Insert character T [j] after the ith position of each string Sj ,
1 ≤ j ≤ n. This increases the length of each string in S by one character.

• Delete(S,i) – Delete the ith character of each string Sj , 1 ≤ j ≤ n. This
decreases the length of each string in S by one character.

Maintaining Set Partitions 95

A data structure to implement these operations efficiently would yield a data
structure for maintaining dynamic set partitions as a special case. We propose
a series of data structures based on suffix trees [10] to efficiently support a re-
stricted set of these operations. In particular, we build our data structure around
Ukkonen’s linear time suffix tree construction algorithm [18]. In Ukkonen’s algo-
rithm, suffixes are inserted into the tree from left to right. Analogously, we can
continue to append new characters onto the end of a string by simulating the
insertion of another subsequent suffix.

We will augment this suffix tree to support constant-time least common an-
cestor queries. Cole and Hariharan [4] demonstrate how to maintain constant-
time least common ancestor queries in trees supporting leaf insertion/deletion
and edge-splitting updates.

Theorem 9. A data structure can support the operations of head deletion, tail
insertion, and sorted-order reporting in times O(n), amortized O(n), and O(n+
k) respectively.

The proof of Theorem 9 appears in the full version of this paper. The data
structure of Theorem 9 can be used to efficiently obtain the shortest contigu-
ous discriminating run of k preordered tests, which suggests a new heuristic
approach to finding small sets of discriminating features. We repeatedly insert
new features in the given order until they first suffice to completely discriminate
the n strings. At this point, we repeatedly delete the prefix characters of each
string, until the refined partition contains fewer than n parts. By interleaving
these phases of insertion and deletion, and maintaining the boundaries of the
shortest discriminating run encountered along the way:

Corollary 1. The shortest contiguous discriminating run of k ordered tests can
be computed in O(k(n + k)) time.

The presence of arbitrary deletions significantly complicates the problem of
maintaining sorted order. However, we have reasonable results when the number
of deletions is small:

Theorem 10. A data structure can support the operations of arbitrary deletion,
tail insertion, and sorted-order reporting in times O(n), (amortized) O(n), and
O(dn lg n) respectively, where d is the total number of deletions which have been
performed.

Acknowledgment

We thank Alex Zelikovsky for introducing us to this problem.

96 M.A. Bender, S. Sethia, and S. Skiena

References

1. E. Arkin, H. Meijer, J. Mitchell, D. Rappaport, and S. Skiena. Decision trees for
geometric objects. Int. J. Computational Geometry and Applications, 8:343–363,
1998.

2. Gruia Calinescu. A data structure for maintaining a partition. manuscript, 2000.
3. Bernard Chazelle, H. Edelsbrunner, M. Grigni, Leonidas J. Guibas, J. Hershberger,

Micha Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangu-
lations. Algorithmica, 12:54–68, 1994.

4. R. Cole and R. Hariharan. Dynamic LCA queries on trees. In Proc. Tenth ACM-
SIAM Symp. Discrete Algorithms (SODA), pages 235–244, 1999.

5. Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

6. P. Dietz, K. Mehlhorn, R. Raman, and C. Uhrig. Lower bounds for set intersection
queries. In Proc. Fourth ACM-SIAM Symp. Discrete Algorithms (SODA), pages
194–201, 1993.

7. J. Feigenbaum and S. Kannan. Dynamic graph algorithms. Handbook of Discrete
and Combinatorial Mathematics, 1995.

8. R. Freimer, J. Mitchell, and C. Piatko. On the complexity of shattering using
arrangements. In CCCG: Canadian Conference in Computational Geometry, 1990.

9. L. Guibas and R. Sedgewick. A bichromatic framework for balanced trees. In Proc.
19th IEEE Symp. Foundations of Computer Science, pages 8–21, 1978.

10. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

11. M. Habib, C. Paul, and L. Viennot. A synthesis on partition refinement: A useful
routine for strings, graphs, boolean matrices and automata. In Proc. Fifteenth
STACS, pages 25–38. Springer-Verlag LNCS, 1998.

12. J. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton.
In Z. Kohavi, editor, The theory of machines and computations, pages 189–196.
Academic Press, New York, 1971.

13. J. Matoušek. More on cutting arrangements and spanning trees with low cross-
ing number. Technical Report B-90-2, Fachbereich Mathematik, Freie Universität
Berlin, Berlin, 1990.

14. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Comput-
ing, 16:973–989, 1987.

15. G. Sazaklis, E. Arkin, J. Mitchell, and S. Skiena. Probe trees for touching character
recognition. In Proc. International Conference on Imaging Science, Systems and
Technology, (CISST), pages 282–289, Las Vegas, NV, 1998.

16. G. Sazaklis, E. Arkin, J. S. B. Mitchell, and S. Skiena. Geometric decision trees
for optical character recognition. In Proc. of 13th Annual ACM Symposium on
Computational Geometry, pages 490–492, Nice, France, June 1997.

17. R. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22:215–225, 1975.

18. E. Ukkonen. Constructing suffix trees on-line in linear time. In Intern. Federation
of Information Processing (IFIP ’92), pages 484–492, 1992.

19. D. Yellin. Representing sets with constant time equality testing. In Proc. First
ACM-SIAM Symp. Discrete Algorithms (SODA), pages 64–73, 1990.

20. D. Yellin. Algorithms for subset testing and finding maximal sets. In Proc. Third
ACM-SIAM Symp. Discrete Algorithms (SODA), pages 386–392, 1992.

Fixed Parameter Algorithms for
Planar Dominating Set and Related Problems

Jochen Alber?1, Hans L. Bodlaender2, Henning Fernau1, and Rolf Niedermeier1

1 Universität Tübingen, WSI für Informatik, Sand 13,
72076 Tübingen, Fed. Rep. of Germany,

{alber,fernau,niedermr}@informatik.uni-tuebingen.de
2 Utrecht University, Department of Computer Science,

Utrecht, The Netherlands,
hansb@cs.uu.nl

Abstract. We present an algorithm for computing the domination num-
ber of a planar graph that uses O(c

√
kn) time, where k is the domination

number of the given planar input graph and c = 36
√

34. To obtain this
result, we show that the treewidth of a planar graph with domination
number k is O(

√
k), and that such a tree decomposition can be found in

O(
√

kn) time. The same technique can be used to show that the disk
dimension problem (find a minimum set of faces that cover all vertices
of a given plane graph) can be solved in O(c

√
k

1 n) time for c1 = 26
√

34.
Similar results can be obtained for some variants of dominating set,
e.g., independent dominating set.

1 Introduction

A k-dominating set D of an undirected graph G is a set of k vertices of G such
that each of the rest of the vertices has at least one neighbor in D. A minimal k
such that the graph G has a k-dominating set is called the domination number
of G.

The k-dominating set problem, i.e., the task to decide, given a graph G =
(V, E) and a positive integer k, whether or not there exists a k-dominating
set, is among the core problems in algorithms, combinatorial optimization, and
computational complexity [11,16,19,24]. The problem is NP-complete, even when
restricted to planar graphs with maximum vertex degree 3 and to planar graphs
that are regular of degree 4 [16].

The approximability of the dominating set problem has received consider-
able attention [11,19]. It is not known and is not believed that dominating set
for general graphs has a constant factor approximation algorithm (see Crescenzi
and Kann [11] for details). However, the planar dominating set problem (i.e.,
the dominating set problem restricted to planar graphs) possesses a polynomial
? Work supported by the DFG-research project PEAL (Parameterized complexity and

Exact ALgorithms), NI 369/1-1.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 97–110, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

98 J. Alber et al.

time approximation scheme [1]. That is, there is a polynomial time approxima-
tion algorithm with approximation factor 1 + ε, where ε is a constant arbitrarily
close to 0. However, the degree of the polynomial grows with 1/ε. Hence, apply-
ing the approximation scheme does not always lead to practical solutions and
finding an “efficient” exact algorithm for planar dominating set is therefore
of interest.

Due to the hardness and relevance of dominating set, numerous papers
have studied special cases of dominating set, e.g., connected dominating set,
total dominating set, independent dominating set, dominating clique, and/or the
complexity of the problem in special graph classes [6,8,10,15,17,18,22,26]. For
example, a very recent result shows that there is a factor 2 + ε approximation
algorithm for dominating set on the class of circle graphs [12].

Lately, it has become popular to cope with computational intractability in
a different way besides approximation: parameterized complexity [14]. Here, the
basic observation is that, for many hard problems, the seemingly inherent combi-
natorial explosion can be restricted to a “small part” of the input, the parameter.
For instance, the vertex cover problem can be solved by an algorithm with
running time O(kn + 1.3k) [9,23], where the parameter k is a bound on the
maximum size of the vertex cover set we are looking for and n is the number
of vertices in the given graph. The fundamental assumption is k � n. As can
easily be seen, this yields an efficient, practical algorithm for small values of k. A
problem is called fixed parameter tractable if it can be solved in time f(k)nO(1)

for an arbitrary function f which depends only on k. Unfortunately, according to
the theory of parameterized complexity it is very unlikely that the dominating
set problem is fixed parameter tractable. On the contrary, it was proven to be
complete for W [2], a “complexity class of parameterized intractability” (refer to
Downey and Fellows [14] for any details). However, planar k-dominating set
is fixed parameter tractable. Downey and Fellows [13,14] state an O(11kn) time
bound for this problem, where n is the number of vertices.

In this paper, we present a drastic asymptotic improvement of this result.
We show that planar dominating set can be solved in time O(c

√
kn) for

some constant c. To the best of our knowledge, this is the first fixed parameter
tractability result where the exponent of the exponential term is not growing
linearly, but with the square root of the parameter. We show that a graph with
a dominating set of size k has treewidth O(

√
k), and we use this to solve pla-

nar dominating set using the corresponding tree decomposition of the graph.
Unfortunately, the constant base c of the exponential term that appears in the
running time of our algorithm still is quite large, namely c = 36

√
34. However,

the authors are confident that a more refined analysis of the applied techniques
can improve this constant considerably.

Our technique can also be used to significantly improve a known bound for
the disk dimension problem [2,25]. The problem is defined as follows [2,25]:
Given a plane graph G, i.e., a graph with a fixed embedding in the plane and
a positive integer k, is there a set of at most k faces (disks), such that all of
the graph vertices are covered? The problem is NP-complete [2]. Downey and

Fixed Parameter Algorithms 99

Fellows [14] gave an O(12kn) algorithm for this problem. For a slightly more
general version of the problem, Bienstock and Monma [2] showed that there is a
time O(ckn) algorithm, where c is an unspecified constant. In this paper, we give
an algorithm that solves disk dimension in time O(c

√
k

1 n) for some constant c1.
We also discuss some variants of the dominating set problem.

2 Preliminaries

In this section, we provide necessary notions and some known results. We assume
familiarity with basic graph-theoretical notation.

Definition 1 A graph G is outerplanar if there is a crossing-free embedding of
G in the plane such that all vertices are on the same face.

Definition 2 A graph G is r-outerplanar if, for r = 1, G is outerplanar or, for
r > 1, G has a planar embedding such that if all vertices on the exterior face
(which form the exterior layer L1) are deleted, the connected components of the
remaining graph are all at most (r − 1)-outerplanar.

In this way, we may speak of the layers L1, . . . , Lr of an r-outerplanar graph.
One easily makes the following central observation:

Proposition 1. If a planar graph G = (V, E) has a k-dominating set, then it
can be at most 3k-outerplanar.

The main tool we use in our algorithm is a suitable tree decomposition:

Definition 3 Let G = (V, E) be a graph. A tree decomposition of G is a pair
〈{Xi | i ∈ I}, T 〉, where each Xi is a subset of V and T is a tree with the elements
of I as nodes. The following three properties should hold:

• ⋃i∈I Xi = V ;
• for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;
• for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi∩Xk ⊆ Xj .

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimal k such that G has a tree decomposition of width k.

In [21, Table 2, page 550] or [5, Theorem 83], we can find:

Proposition 2. An r-outerplanar graph has treewidth of at most 3r − 1.

Propositions 1 and 2 imply that a graph with domination number k has
bounded treewidth, or, more precisely, its treewidth is bounded by 9k − 1, but
we will give a stronger bound later.

100 J. Alber et al.

Theorem 4. If a tree decomposition of width at most ` of a graph is known,
then a minimum dominating set can be determined in time 3`n, where n is the
number of nodes of the tree decomposition.

Comments on the proof: The theorem can be proved by using dynamic pro-
gramming techniques. For each bag (i.e., each set Xi of the corresponding tree
decomposition) one keeps a table. These tables store, for every vertex in the bag,
the information of whether that vertex is assumed to belong to either the dom-
inating set, the (known) set of dominated vertices, or the set of vertices whose
status is unknown at the given point. Since |Xi| ≤ `, the table size for each bag
is bounded by 3`. See e.g., [4,27].

In this way, a straightforward solution to the planar dominating set prob-
lem using tree decompositions leads to an algorithm which runs in time O(39kn).
(For a graph G = (V, E), there always is a tree decomposition with optimal width
and with at most |V | nodes.) Downey and Fellows [13,14] suggested an idea that
leads to a faster search tree algorithm. They state an algorithm with running
time O(11kn) (without using tree decompositions).

In what follows, we show that a graph with a k-dominating set has tree-
width O(

√
k). Combining this with Theorem 4 gives a significant asymptotic

improvement of the result of Downey and Fellows.

To understand the following technique, it is helpful to consider the concept
of a layer decomposition of an r-outerplanar graph G. It is a forest of height r
which is defined as follows: the nodes of the trees are sets of vertices of G and
the different trees correspond to different components of G. In general, the ith
layer of the layer decomposition forest defines a set of vertices Li, namely the
ith layer of G.

Consider now the ith layer of the forest, i.e., the nodes of level i in the
decomposition forest, consisting of, possibly, several vertex sets Ci,1, . . . , Ci,`i

.
In other words, Li =

⋃`i

j=1 Ci,j . The vertex sets Ci,1, . . . , Ci,`i correspond to the
vertices of different components of the subgraph induced by Li. We refer to Ci,j

as a layer-component . In particular, the first layer consists of layer-components
each of which equals the vertices from L1 of one particular component.

A layer-component Ci,j of layer Li is called non-empty if it contains vertices
from layer Li+1 in its interior.

Definition 5 Let ∅ 6= C ⊆ Ci,j be a subset of a non-empty layer-component
Ci,j of layer i, where i ≥ 2. Then the unique cycle B(C) in layer Li−1, such that
C is contained in the region enclosed by B(C) and no other vertex of layer Li−1
is contained in this region, is called the boundary cycle of C.

The existence and uniqueness of such a boundary cycle B(C) is easy to see.

Fixed Parameter Algorithms 101

3 Domination versus Treewidth

Our algorithm is based on Theorem 4. Therefore, in the following we show that a
planar graph with domination number k has treewidth of at most O(f(k)), where
f(k) is a sublinear function, which we are going to determine. Here, the main
idea is to find small separators of the graph and merge the tree decompositions
of the resulting subgraphs. To this end, the following observation is used.

Proposition 3. If a connected graph can be decomposed into components of
treewidth of at most t by means of a separator of size s, then the whole graph
has treewidth of at most t + s.

The proof is quite simple: Just merge the separator to every node in each tree
decomposition of width at most t which correspond to the distinct components.
Then add some arbitrary connections between the trees corresponding to the
components in order to form a tree decomposition of the whole graph.

For planar graphs, there is an iterated version of this observation.

Proposition 4. Let G be a planar graph with layers Li, (i = 1, . . . , r). For i =
1, . . . , `, let Li be a set of consecutive layers, i.e. Li = {Lji

, Lji+1, . . . , Lji+ni
},

such that Li ∩Li′ = ∅ for all i 6= i′. Moreover, suppose G can be decomposed into
components, each of treewidth of at most t, by means of separators S1, . . . , S`,
where Si ⊆ ⋃L∈Li

L for all i = 1, . . . , `. Then G has treewidth of at most t+ 2s,
where s = maxi=1,... ,` |Si|.

The proof again uses the merging-techniques illustrated in the previous proposi-
tion: Suppose, w.l.o.g., the sets Li appear in successive order, i.e. ji < ji+1. For
each i = 0, . . . , `, consider the component Gi of treewidth at most t which is cut
out by the separators Si and Si+1 (by default we set S0 = S`+1 = ∅). We add Si

and Si+1 to every node in a given tree decomposition of Gi. In order to obtain
a tree decomposition of G, we successively add an arbitrary connection between
the trees Ti and Ti+1 of the so-modified tree decompositions that correspond to
the subgraphs Gi and Gi+1.

Finally, we still have to show how to construct (in polynomial time) a tree
decomposition of width f(k) matching our theoretical treewidth bound. This
allows us to apply Theorem 4 to actually determine the dominating set we are
aiming at.

The whole algorithm we present has time complexity O(3f(k)n). Since f(k) ∈
O(

√
k), this obviously gives an asymptotic improvement of the O(11kn) algo-

rithm presented by Downey and Fellows.
In the following, we assume that our graph has a fixed plane embedding with

r layers. We show that the treewidth cannot exceed f(k) if a dominating set of
size k is given.

102 J. Alber et al.

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

y

x2

x1

Di−1 3 x

B(B(Ci+1,j)) ⊆ Li−1

Ci+1,j

B(Ci+1,j) ⊆ Li

z

Fig. 1. upper triples

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

z̃

x ∈ Di+1

Ci+1,j

ỹ
B(Ci+1,j) ⊆ Li

y

z Ci+1,j′

Fig. 2. lower triples

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

B(Ci+1,j) ⊆ Li

Ci+1,j

Case 1:

Ci+1,j

Case 2:

x ∈ Diy

x ∈ Di

z yz
B(Ci+1,j) ⊆ Li

Fig. 3. middle triples

3.1 Separators and Treewidth

We assume that we have a dominating set D of size at most k. Let ti be the
number of vertices of Di = D ∩ Li. Hence,

∑r
i=1 ti = k. In order to avoid case

distinctions, we set t0 = tr+1 = tr+2 = 0. Moreover, let ci denote the number of
non-empty layer-components of layer Li.

We need some definitions for certain triples in the plane graph. These triples
are defined in a way such that the union of these triples will yield separators of
small size.

We define the triples for a layer Li. The union of these triples separates ver-
tices of layer Li−1 from vertices of layer Li+2. For this purpose, in the following,
we write N(x) to describe the set of neighbors of a vertex x and use the notion
B(·) for boundary cycles as introduced in Definition 5.

Definition 6 An upper triple for layer Li is associated to a non-empty layer-
component Ci+1,j of layer Li+1 and a vertex x ∈ Di−1 that has a neighbor
on the boundary cycle B(Ci+1,j) (see Fig. 1). Then, clearly, x ∈ B(B(Ci+1,j)),

Fixed Parameter Algorithms 103

by definition of a boundary cycle. Let x1 and x2 be the neighbors of x on the
cycle B(B(Ci+1,j)). Starting from x1, we go around x up to x2 so that we visit
all neighbors of x in layer Li. We note the neighbors of x on the boundary
cycle B(Ci+1,j). Going around gives two outermost neighbors y and z on this
boundary cycle. The triple then is the three-element set {x, y, z}. In case x has
only a single neighbor y in B(Ci+1,j), the “triple” consists of only {x, y}.
For each non-empty layer-component Ci+1,j of Li+1 and each vertex x ∈ Di−1
with neighbors in B(Ci+1,j), we obtain such an upper triple.

Definition 7 A lower triple for layer Li is associated to a vertex x ∈ Di+1
and a non-empty layer-component Ci+1,j′ of layer Li+1 (see Fig. 2). Suppose
x lies in layer-component Ci+1,j . We only consider layer-components Ci+1,j′ of
layer Li+1 that are enclosed by the boundary cycle B(Ci+1,j). For each pair
ỹ, z̃ ∈ B(Ci+1,j) ∩ N(x) (where ỹ 6= z̃), we consider the path Pỹ,z̃ from ỹ to
z̃ along the cycle B(Ci+1,j), taking the direction such that the region enclosed
by {z̃, x}, {x, ỹ}, and Pỹ,z̃ contains the layer-component Ci+1,j′ . Let {y, z} ⊆
B(Ci+1,j) ∩ N(x) be the pair such that the corresponding path Py,z is shortest.
The triple, then, is the three-element set {x, y, z}. If x has no or only a single
neighbor y in B(Ci+1,j), then the “triple” consists only of {x}, or {x, y}.
For each vertex x ∈ Ci+1,j of Di+1 and each non-empty layer-component Ci+1,j′

that is enclosed by B(Ci+1,j), we obtain such a lower triple.

Definition 8 A middle triple for layer Li is associated to a non-empty layer-
component Ci+1,j and a vertex x ∈ Di that has a neighbor in B(Ci+1,j) (see
Fig. 3). Note that, due to the layer model, it is easy to see that a vertex x ∈ Di

can have at most two neighbors y, z in B(Ci+1,j). Depending on whether x itself
lies on the cycle B(Ci+1,j) or not, we obtain two different cases which both are
illustrated in Fig. 3. In either of these cases the middle triple is defined as the
set {x, y, z}. Again, if x has none or only a single neighbor y in B(Ci+1,j), then
the “triple” consists only of {x}, or {x, y}.
For each non-empty layer-component Ci+1,j and each vertex x ∈ Di, we obtain
such a middle triple.

Definition 9 We define the set Si as the union of all upper triples, lower triples
and middle triples of Li.

In the following, we will show that Si is a separator of the graph. Note that
the upper bounds on the size of Si, which are derived afterwards, are crucial for
the upper bound on the treewidth derived later on.

Theorem 10. The set Si separates vertices of Li−1 and Li+2.

104 J. Alber et al.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

d1
3

y2

z

d2
3

d2

d3

y1

x

Ci+1,j B(Ci+1,j)

B(B(Ci+1,j))

d1

Fig. 4. Si separates Li−1 and Li+2.

Proof. Suppose there is a path P (with no repeated vertices) from layer Li+2
to layer Li−1 that avoids Si. This clearly implies that there exists a path P ′

from a vertex x in a non-empty layer-component Ci+1,j of layer Li+1 to a vertex
z ∈ B(B(Ci+1,j)) in layer Li−1 which has the following two properties:

• P ′ ∩ Si = ∅.
• All vertices in between x and z belong to layer Li or to empty layer-

components of layer Li+1.

(This can be achieved by simply taking a suitable subpath P ′ of P .) Let y1 (and
y2, respectively) be the first (last) vertex along the path P ′ from x to z that lies
on the boundary cycle B(Ci+1,j) ⊆ Li (see Fig. 4).

Obviously, y2 cannot be an element of D, since, then, it would appear in
a middle triple of layer Li and, hence, in Si. We now consider the vertex that
dominates y2. This vertex can lie in layer Li−1, Li or Li+1.

Suppose first that y2 is dominated by a vertex d1 ∈ Li−1. Then d1 is in
B(B(Ci+1,j)), simply by definition of the boundary cycle (see Fig. 4). Since G
is planar, this implies that y2 must be an “outermost” neighbor of d1 among all
elements in N(d1) ∩B(Ci+1,j). If this were not the case, then there would be an
edge from d1 to a vertex on B(Ci+1,j) that leaves the closed region bounded by
{d1, y2}, the path from y2 to z, and the corresponding path from z to d1 along
B(B(Ci+1,j)). Hence, y2 is in the upper triple of layer Li which is associated to
the layer-component Ci+1,j and d1. This contradicts the fact that P ′ avoids Si.

Now, suppose that y2 is dominated by a vertex d2 ∈ Di (see Fig. 4). By
definition of the middle triples, this clearly implies that y2 is in the middle
triple associated to Ci+1,j and d2. Again, this contradicts the assumption that
P ′ ∩ Si = ∅.

Fixed Parameter Algorithms 105

Consequently, the dominating vertex d3 of y2 has to lie in layer Li+1. Let
{d3, d

1
3, d

2
3}, where d1

3, d
2
3 ∈ N(d3) ∩ B(Ci+1,j), be the lower triple associated to

layer-component Ci+1,j and d3 (see Fig. 4). By definition, Ci+1,j is contained
in the region enclosed by {d1

3, d3}, {d3, d
2
3} and the path from d2

3 to d1
3 along

B(Ci+1,j), which—assuming that y2 /∈ {d3, d
1
3, d

2
3}—does not hit y2 (see Fig. 4).

We now observe that, whenever the path from y1 to y2 leaves the cycle B(Ci+1,j)
to its exterior, say at a vertex q, then it has to return to B(Ci+1,j) at a vertex
q′ ∈ N(q) ∩ B(Ci+1,j). This, however, shows that the path P ′ has to hit either
d1
3 or d2

3 on its way from y1 to y2. Since d1
3, d

2
3 ∈ Si, this case also contradicts

the fact that P ′ ∩ Si = ∅. ut

Lemma 1. |Si| ≤ 5(ti−1 + ti + ti+1) + 12ci+1.

Proof. We give bounds for the number of vertices in upper, middle and lower
triples of layer i, separately.

Firstly, we discuss the upper triples of layer i, which were associated to a
non-empty layer-component Ci+1,j of layer Li+1 and a vertex x ∈ Di−1 with
neighbors in B(Ci+1,j). Consider the bipartite graph G′ which has vertices for
each non-empty layer-component Ci+1,j and for each vertex in Di−1. Whenever
a vertex in Di−1 has a neighbor in B(Ci+1,j), an edge is drawn between the cor-
responding vertices in G′. Each edge in G′, by construction, may correspond to
an upper triple of layer Li. Note that G′ is a planar bipartite graph whose bipar-
tition subsets consist of ti−1 and ci+1 vertices, respectively. Thus, the number of
edges of G′ is linear in the number of vertices; more precisely, it is bounded by
2(ti−1 + ci+1). From this, we obtain an upper bound for the number of vertices
in upper triples of layer Li as follows: Potentially, each vertex of Di−1 appears in
an upper triple and, for each edge in G′, we possibly obtain two further vertices
in an upper triple. This shows that the total number of vertices in upper triples
is bounded by ti−1 + 4(ti−1 + ci+1).

A similar analysis can be used to show that the number of vertices in the
lower triples is bounded by ti+1 + 4(ti+1 + ci+1) and that the number of vertices
in the middle triples can be bounded by ti + 4(ti + ci+1).

By definition of Si, this proves our claim. ut
Note that, by a more detailed investigation, the bound given in Lemma 1

probably can be improved. One observes, e.g., that the planar bipartite graph
G′, which was constructed in the proof, has the special property that it is a
“hyperplane” bipartite graph, i.e., one of the bipartition subsets can be arranged
on a line and all edges of the graph lie in one halfplane of this line. This property
of G′ is immediate from the fact that the upper triples associated to a non-empty
layer-component Ci+1,j lie within the boundary cycle B(B(Ci+1,j)). For such
graphs, first investigations indicate that one can obtain better estimates on the
number of their edges than the ones used in the proof of Lemma 1.

A similar observation can be made for estimating the bounds for the lower
triples.

Lemma 2. ci ≤ ti + ti+1 + ti+2.

106 J. Alber et al.

Proof. By definition, ci refers to only non-empty layer-components in layer Li,
i.e., there is at least one vertex of layer Li+1 contained within each such layer-
component. Such a vertex can only be dominated by a vertex from layer Li,
Li+1, or Li+2. In this way, we get the claimed upper bound. ut

Lemma 3.
∑r

i=1 |Si| ≤ 51k, where r is the number of layers of the graph.

Proof. This follows directly when we combine the previous two lemmas. ut

Consider the following three sets of vertices: S0 = S1 ∪ S4 ∪ S7 ∪ . . . , S1 =
S2 ∪ S5 ∪ S8 ∪ . . . and S2 = S3 ∪ S6 ∪ S9 ∪ As |S1| + |S2| + |S3| ≤ 51k, one
of these sets has size at most 51

3 k, say Sδ (with δ ∈ {0, 1, 2}).

Theorem 11. A planar graph with domination number k has treewidth of at
most 6

√
34

√
k.

Proof. Let δ and Sδ be as obtained above. Let d := 3
2

√
34. We now go through

the sequence S1+δ, S4+δ, S7+δ, . . . and look for separators of size at most s(k) :=
d
√

k. Due to the estimate on the size of Sδ, such separators of size at most s(k)
must appear within each n(k) := 51

3 d−1
√

k = 1
3

√
34

√
k sets in the sequence. In

this manner, we obtain a set of disjoint separators of size at most s(k) each, such
that any two consecutive separators from this set are at most 3n(k) layers apart.
Clearly, the separators chosen in this way fulfil the requirements in Proposition 4.

Observe that the components cut out in this way each have at most 3n(k)
layers and, hence, their treewidth is bounded by 9n(k) due to Proposition 2.

Using Proposition 4, we can compute an upper bound of the treewidth tw of
the originally given graph with domination number k:

tw(k) ≤ 2s(k) + 9n(k)

= 2(
3
2

√
34

√
k) + 9(

1
3

√
34

√
k)

= 6
√

34
√

k.

This proves our claim. ut

Observe that the tree structure of the tree decomposition obtained in the
preceding proof corresponds to the structure of the layer decomposition forest.

How did we come to the constants? We simply computed the minimum of
2s(k) + 9n(k) (the upper bound on the treewidth) given the bound s(k)n(k) ≤
51
3 k. This suggests s(k) = d

√
k, and d is optimal when 2s(k) = 9n(k) = 9 · 51

3 ·
k · s(k)−1, so, 2d = 153

d , i.e., d = 3
2

√
34.

As already mentioned above, it seems to be possible to improve upon the
bound of the treewidth by a more refined analysis.

Fixed Parameter Algorithms 107

3.2 Tree Decomposition

The proofs above can be turned into constructive algorithms that find tree de-
compositions of the stated widths. From the proof in [5] that an r-outerplanar
graph has treewidth at most 3r − 1, one can construct a linear time algorithm
that indeed finds a tree decomposition of width 3r − 1 of a given r-outerplanar
graph. The proofs in this paper can also be made constructive, but there is one
point that needs specific attention. As we do not start with the dominating set
given, we cannot construct the upper, middle, and lower triples. Instead, we
compute the minimum separator between Li−1 and Li+2 directly, and use that
set instead of Si as defined in the proof of Section 3.1. Such a minimum separator
can be computed with well known techniques based on maximum flow (see e.g.,
[20]). The running time to find one such separator is O(sn′), where s is the size
of the separator, and n′ the number of vertices that are involved. The total time
to find all separators, stopping when separators become so large that they will
not be used further in the algorithm, can be bounded by O(

√
kn).

Theorem 12. The planar dominating set problem can be solved in time
O(c

√
kn), where k is the domination number of the given graph of size n, and

c = 36
√

34.

Proof. A tree decomposition of width 6
√

34
√

k of G can be constructed in
O(

√
kn) time. (If k is not known in advance, then an O(

√
kn) time algorithm is

still possible for this step, using detailed bookkeeping techniques. Otherwise, one
can try different values of k – this can be done at the cost of an extra multiplica-
tive factor of O(log k) by using binary search.) Then, this tree decomposition can
be used to solve the dominating set problem, as described in Theorem 4. ut

The constant c above is 36
√

34, which is rather large. However, a more refined
analysis will help to reduce this constant significantly. Moreover, it is a worst
case estimate, which might be far from what happens in practical applications.

4 Variations of dominating set and disk dimension

For several variations of the dominating set problem, our technique can also
help to obtain algorithms with a similar running time. In particular, we have
the following. Let dominating set with property P be the following graph
problem: Given a graph G = (V, E), find the minimum size set W ⊆ V with W
a dominating set and where property P (W) holds.

Theorem 13. Suppose there is an algorithm that solves in O(q` · n) time the
dominating set with property P problem on graphs, given a tree decomposi-
tion with treewidth ` and n nodes for some constant q. Then the dominating set
with property P problem can be solved in O(qd

√
k · n) time on planar graphs,

where k is the minimum size dominating set with property P and d = 6
√

34.

108 J. Alber et al.

Proof. If the planar graph G admits a dominating set with property P of size
at most k, then, clearly, G has domination number at most k. By Theorem 11,
the treewidth of G is bounded by 6

√
34

√
k. According to the discussion in Sec-

tion 3.2, a corresponding tree decomposition can be found in time O(
√

kn). The
assumption on the existence of an O(q` ·n) time algorithm for given tree decom-
position of width ` then yields the claim. ut

Problems for which the condition of Theorem 13 holds and, hence, for which
we can find such an O(c

√
k ·n) time algorithm are, for instance, the independent

dominating set problem, total dominating set problem, or connected
dominating set problem.

We now turn our attention to the disk dimension problem (see [2,14,25])
which is the following: Given a plane graph G = (V, E) (i.e., a planar graph
with a fixed embedding), find the minimum set of faces that cover all vertices
of G. We can use the techniques established for solving dominating set with
property P on planar graphs to solve the disk dimension problem:

Let G = (V, E) be a plane graph. Consider the following graph: Add a vertex
to each face of G, and make each such “face vertex” adjacent to all vertices that
are on the boundary of that face. Let G′ = (V ′, E′) be the resulting graph. Write
V ′ = V ∪ VF , where VF is the set of vertices that represent a face in G.

For W ⊆ V ′, we define P ′(W) = true if and only if W ⊆ VF . Then, by
construction, there is a one-to-one correspondence between the sets of faces that
cover the vertices of G and dominating sets in G′ with property P ′. In this sense,
the disk dimension problem can be transformed to the dominating set with
property P ′ problem in linear time.

Theorem 14. The disk dimension problem can be solved in time O(c
√

k
1 n),

where k is the disk dimension of the given graph of size n, and c1 = 26
√

34.

Proof. Consider the graph G′ = (V ′, E′) with V ′ = V ∪VF as given above. Given
a tree decomposition of width `, the dominating set problem with property P ′

can be solved in time O(2` · n), similar to the dynamic programming algorithm
sketched in the proof of Theorem 4. Observe that the size of the tables we have to
use for each bag are smaller than for the general dominating set problem, since
each vertex of VF is either in the dominating set or not and each vertex of V is
either dominated or not. This gives table size 2`. Theorem 13 and the one-to-one
correspondence between this problem and the disk dimension problem yield the
claim. ut

We remark that the problem dominating set with property P ′ as defined
above is, in a bipartite variant, bascially called planar red/blue dominating
set in [14, p.38]. There, Downey and Fellows derive an O(12kn) algorithm for
this problem. In the same place, they give an O(12kn) algorithm for disk di-
mension, which they call face cover number for planar graphs. Hence,
our observations lead to asymptotic improvements of their results.

Fixed Parameter Algorithms 109

5 Conclusion

In this paper, we presented a treewidth-based approach to improve the fixed
parameter complexity of the planar dominating set and the disk dimension
problem drastically—we gained an exponential improvement over previous exact
solutions for the problems. Seemingly for the first time, our results provide fixed
parameter algorithms whose exponential factor has an exponent sublinear in the
parameter.

In the long version of this paper, we plan to give improved estimates for
the constant bases of the exponential terms. In addition, it would be interesting
to investigate the practical usefulness of our result, since our estimates for the
constants are worst case and very pessimistic ones. It also is interesting to see
if these results can be extended to more variants of Dominating Set and to
other graph classes (e.g., graphs of bounded genus). Another interesting open
problem is how to use the techniques of this paper for the variant of the disk
dimension problem, where the embedding is not given as ab input (i.e., for a
given planar graph, find an embedding with minimum number of faces that cover
all the vertices).

Finally, we remark that similar results on planar dominating set and
related problems can be obtained by making use of the small separator techniques
presented in this paper together with the algorithms for outerplanarity-bounded
graphs developed by Baker [1], which would also yield running times of the form
O(c

√
kn) for some constant c, where k is the domination number of the given

graph.

Acknowledgements

We thank Ton Kloks for many discussions on the topic of this paper.

References

1. B. S. Baker, Approximation algorithms for NP-complete problems on planar
graphs, Journal of the ACM 41:153–180, 1994.

2. D. Bienstock and C. L. Monma, On the complexity of covering vertices by faces
in a planar graph. SIAM J. Comput. 17(1):53–76, 1988.

3. H. L. Bodlaender, A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25:1305–1317, 1996.

4. H. L. Bodlaender, Treewidth: Algorithmic techniques and results. In Proceedings
22nd MFCS’97, Springer-Verlag LNCS 1295, pp. 19–36, 1997.

5. H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sci. 209:1–45, 1998.

6. A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: a Survey, SIAM Mono-
graphs on Discrete Mathematics and Applications, 1999.

7. H. J. Broersma, T. Kloks, D. Kratsch, and H. Müller, Independent sets in AT-free
graphs, In Proceedings ICALP’97, Springer-Verlag LNCS 1256, pp. 760–770, 1997.

8. M. S. Chang, Efficient algorithms for the domination problem on interval and
circular arc graphs, SIAM J. Comput. 27:1671–1694, 1998.

110 J. Alber et al.

9. J. Chen, I. Kanj, and W. Jia, Vertex cover: further observations and further
improvements. In Proceedings 25th WG, Springer-Verlag LNCS 1665, pp. 313–
324, 1999.

10. D. G. Corneil and L. K. Stewart, Dominating sets in perfect graphs, Discrete
Mathematics 86, (1990), 145–164.

11. P. Crescenzi and V. Kann, A compendium of NP optimization problems. Available
at http://www.nada.kth.se/theory/problemlist.html, August 1998.

12. M. Damian-Iordache and S.V. Pemmaraju, A (2 + ε)-approximation scheme
for minimum domination on circle graphs. In Proceedings 11th ACM-SIAM
SODA 2000, pp. 672–679.

13. R. G. Downey and M. R. Fellows, Parameterized computational feasibility. In P.
Clote, J. Remmel (eds.): Feasible Mathematics II, pp. 219–244. Birkhäuser, 1995.

14. R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag,
1999.

15. R. D. Dutton and R. C. Brigham, Domination in claw-free graphs, Congr. Num.
132: 69–75, 1998.

16. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, 1979.

17. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds.), Domination in graphs,
Marcel Dekker, 1998.

18. M. A. Henning, Domination in graphs, A survey, Congr. Num. 116:139–179, 1996.
19. D. S. Hochbaum (ed.), Approximation algorithms for NP-hard problems. PWS

Publishing Company, 1997.
20. A. Kanevsky, Finding all minimum-size separating vertex sets in a graph, Networks

23: 533–541, 1993.
21. J. van Leeuwen, Graph Algorithms, In Handbook of Theoretical Computer Science,

Vol. A: Algorithms and Complexity Theory , North Holland, 1990.
22. H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and domi-

nating set for chordal bipartite graphs, Theor. Comp. Sci. 53:257–265, 1987.
23. R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover further im-

proved. In Proceedings 16th STACS , Springer-Verlag LNCS 1563, pp. 561–570,
1999.

24. C. H. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.
25. R. C. Read, Prospects for graph theory algorithms. Ann. Discr. Math. 55:201–210,

1993.
26. J. A. Telle, Complexity of domination-type problems in graphs, Nordic J. Comput.

1:157–171, 1994.
27. J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on

partial k-trees, SIAM J. Discr. Math. 10(4):529–550, 1997.

Embeddings of k-Connected Graphs
of Pathwidth k ?

Arvind Gupta1, Naomi Nishimura2, Andrzej Proskurowski3,
and Prabhakar Ragde2

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
arvind@cs.sfu.ca

2 Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada {nishi,plragde}@uwaterloo.ca

3 Department of Computer Science, University of Oregon, Eugene, Oregon, USA
andrzej@cs.uoregon.edu

Abstract. We present O(n3) embedding algorithms (generalizing sub-
graph isomorphism) for classes of graphs of bounded pathwidth, where n
is the number of vertices in the graph. These include the first polynomial-
time algorithm for minor containment and the first O(nc) algorithm (c
a constant independent of k) for topological embedding of graphs from
subclasses of partial k-trees. Of independent interest are structural prop-
erties of k-connected graphs of bounded pathwidth on which our algo-
rithms are based. We also describe special cases which reduce to various
generalizations of string matching, permitting more efficient solutions.

1 Introduction

Many fundamental problems in a diverse set of research areas can be charac-
terized as graph embedding problems, where data is represented as graphs and
patterns can be detected by finding smaller graphs in larger ones. Classic pattern-
matching problems make use of the subgraph isomorphism problem, namely, the
problem of determining whether there is a subgraph of an input graph H that is
isomorphic to an input graph G. Viewed as an injective mapping, the subgraph
isomorphism of G into H consists of a mapping of vertices of G to vertices of
H so that edges of G map to corresponding edges of H. Generalizations of this
mapping include topological embedding, where vertices of G map to vertices of
H and edges of G map to vertex-disjoint paths in H, and minor containment,
where vertices of G map to disjoint connected subgraphs of H and edges of G
map to edges of H.

Subgraph isomorphism (and therefore its generalizations listed above) is
known to be NP-complete for general graphs, but can be solved in polyno-
mial time for many restricted classes of graphs. Of particular interest are partial
k-trees, also known as graphs of bounded treewidth (to be defined formally
? Research supported by the Natural Sciences and Engineering Research Council of

Canada and Communications and Information Technology Ontario.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 111–124, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

112 A. Gupta et al.

in Section 2), algorithms for which unify many of the known polynomial-time
algorithms for embedding problems. The embedding problems are also NP-
complete for general partial k-trees (implied by [Sys82]), even under many dif-
ferent connectivity and degree bounds on both graphs [GN96]. However, when
both G and H are k-connected partial k-trees, there are polynomial-time algo-
rithms for both subgraph isomorphism [MT92,DLP96] and topological embed-
ding [GN94,GN98] but minor containment remains NP-complete even for this
restricted class [MT92].

The state of our knowledge about these problems is unsatisfying in a number
of ways. The degree of the polynomial in the complexity of the algorithms for
subgraph isomorphism and topological embedding depends on the magnitude
of k, (e.g., O(nk2+k+5.5) time for topological embedding). This raises the ques-
tion of whether there is an algorithm that runs in time O(nc) for c a constant
independent of k. (Such an algorithm would be unlikely if the problems were
fixed-parameter intractable [DF95]). Furthermore, although polynomial-time al-
gorithms for minor containment have been obtained when there is a degree
bound [MT92,GN95], there are no previous results relating connectivity con-
straints and polynomial-time minor containment algorithms.

Our contributions in this paper demonstrate that for large subclasses of
graphs of bounded pathwidth (a restriction on partial k-trees), there exist O(nc)
algorithms for minor containment, topological embedding, and subgraph iso-
morphism. The algorithms make use of a new and elegant characterization of
k-connected graphs of bounded pathwidth (Section 3) which allows us to form
a common framework for the algorithms (Sections 4 and 5). We show that each
such graph has an essentially unique layout of the vertices on k “tracks”. These
layouts, and the restrictions they imply on the structure of topological embed-
dings and minor containments, allow the description of intuitive algorithms with
elegant proofs of correctness. In special cases (Section 6) we can exploit further
structure to reduce the problems to string matching and its variants, permitting
more efficient solutions. In this conference version, we omit many details; proofs
of the most important and complex theorems will be briefly discussed in the
text.

2 Preliminaries

2.1 Graphs, Treewidth, and Pathwidth

Throughout this paper we use standard graph-theoretic notation [BM76]. The
vertex and edge sets of a graph G are denoted by V (G) and E(G) respectively;
we use n to denote |V (G)|. All graphs we consider are simple and without self-
loops. The set of vertices adjacent to a vertex v, the neighbourhood of v, is
denoted by N(v). A graph is k-connected if there are k vertex-disjoint paths
between every pair of its vertices. Menger’s Theorem states that any separator
of a k-connected graph (a set of vertices whose removal disconnects the graph)
contains at least k vertices.

Embeddings of k-Connected Graphs of Pathwidth k 113

In this paper we deal with subclasses of graphs of bounded treewidth, as
defined below.

Definition 1. A tree decomposition of a graph G is a pair (T, χ) where T is a
tree and χ : V (T) → 2V (G) satisfies the following three properties: (1) for every
a ∈ V (G), there is an x ∈ V (T) such that a ∈ χ(x); (2) for every e = (a, b) ∈
E(G), there is an x ∈ V (T) such that a, b ∈ χ(x); and (3) for all x, y, z ∈ V (T),
if y is on the path from x to z in T then χ(x) ∩ χ(z) ⊆ χ(y).

The width of a tree decomposition (T, χ) is max{|χ(x)| − 1 : x ∈ V (T)}. The
treewidth of a graph G is the minimum width over all its tree decompositions;
a graph of bounded treewidth is a graph of treewidth k for some constant k. For
p a vertex of T , χ(p) is called a bag of T . A path decomposition of a graph is a
tree decomposition in which T is a path, and the pathwidth of G is the minimum
width over all its path decompositions. For fixed k, decompositions of treewidth
or pathwidth k can be found in linear time [Bod93].

There is an equivalent definition of graphs of bounded treewidth which is
often useful. A k-tree (sometimes full k-tree) is either a (k+ 1)-clique, or a graph
formed from a smaller k-tree by adding a new vertex v of degree k adjacent to
all vertices of a k-clique C (C is called the attachment clique of v). A k-leaf is
any degree-k vertex of a k-tree, and a partial k-tree is any subgraph of a k-tree.
Partial k-trees are exactly graphs of treewidth at most k [vL90].

A full k-path is a special type of k-tree. In its construction, we maintain the
notion of a “current clique” (initially k vertices of the first (k + 1)-clique, the
remaining vertex being the initial k-leaf). When a new vertex is added (with
the current clique as its attachment clique), it enters the current clique, and one
vertex (possibly the new one) leaves the current clique, never to return. Note that
if the new vertex immediately leaves, it is a k-leaf (the last vertex added being
the final k-leaf). In a proper k-path [TUK95], the new vertex is not permitted to
immediately leave (as a consequence, a proper k-path of size at least k + 2 has
only two k-leaves).

Figure 1(a) below illustrates a full k path, where a is the initial k-leaf and
{b, c} in the initial current clique. The vertices are added in order d, e, f, g, h, i,
with i being the final k-leaf. The graph is not a proper k-path since after f
is added to attachment clique {d, e}, it leaves immediately, allowing g to have
attachment clique {d, e} as well.

a

b

c

d

e
f

g

h

i

(a)

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

(b) (c)

Fig. 1. Example of a full k-path

114 A. Gupta et al.

The class of partial k-paths (subgraphs of k-paths) is equivalent to the class
of graphs of pathwidth at most k [Pro89]. The terminology we use here is in
common use, though the original use of “k-path” in the previous citation was
to refer to what we call a proper k-path, and other authors [KS96] have used
“proper pathwidth” as a synonym for bandwidth. A partial proper k-path is a
subgraph of a proper k-path.

We observe that a full k-path can be partitioned into the body, which is a
proper k-path that includes the initial and final k-leaves, and hairs, which are
the remaining k-leaves and their adjacent edges. We define an end of a full k-
path to be the neighborhood h of a degree-k vertex such that the subgraph of
G induced by V (G) \ {h} has at most one component of size greater than 1.
There are at most two possible ends in a full k-path of size at least k + 3, and
the initial and final k-leaves each have a distinct end as their neighbor set (the
head and tail, respectively). In Figure 1(b), the body is marked with thick lines
and the hair with thin lines; we can view N(a) as the head and N(i) as the tail.
We can view a partial k-path being decomposed in a similar fashion, where the
body is a partial proper k-path; in a k-connected graph the ends will still be
neighborhoods of degree-k vertices.

Our algorithms will make use of a special type of path decomposition, as
defined below:

Definition 2. A path decomposition (P, χ), P = p1, . . . , p`, of a graph G is a
normalized path decomposition if (1) |χ(pi)| = k + 1 for i odd; (2) |χ(pi)| = k
for i even; and (3) χ(pi−1) ∩ χ(pi+1) = χ(pi) for even i.

Notice that ` is always odd in this definition. It is not difficult to see that such
a decomposition can be generated during the construction of a k-path; the bags
of size k + 1 are the attachment cliques plus respective new vertices, and the
bags of size k are the current cliques. Given an already-constructed k-path, one
possible construction sequence can be established by a simple linear-time scan,
starting from one end.

Throughout this paper, we assume that G and H are k-connected graphs of
pathwidth k, and that all path decompositions are normalized.

2.2 Embeddings

Each of the embeddings considered in this paper can be defined in terms of
injective mappings. A subgraph isomorphism maps vertices of G to vertices of
H and edges of G to edges of H; it is a special case of a topological embedding,
which maps vertices of G to vertices of H and edges of G to vertex-disjoint paths
in H.

Definition 3. The graph G is topologically embeddable in the graph H if there
is a pair of injective functions f : V (G) → V (H) and φ : E(G) → {paths in H}
such that: (1) if e = (a, b) ∈ E(G) then φ(e) has endpoints f(a) and f(b); and
(2) for e, e′ ∈ E(G), e 6= e′, the only vertices that φ(e) and φ(e′) can have in
common are their endpoints.

Embeddings of k-Connected Graphs of Pathwidth k 115

A graph G is a minor of a graph H if a graph isomorphic to G can be
formed from H by a series of edge and vertex deletions and edge contractions.
Equivalently, each vertex of G is mapped to a distinct connected subgraph of H
and each edge of G to a distinct edge of H, as defined below.

Definition 4. The graph G is a minor of the graph H if there is a pair of
functions (f, ξ) such that: (1) f : V (G) → {connected subgraphs of H}; (2)
ξ : E(G) → E(H) is injective; (3) if e = (a, b) ∈ E(G) then there is are
vertices u ∈ V (f(a)) and v ∈ V (f(b)) such that ξ(e) = (u, v); and (4) for every
a, b ∈ V (G), a 6= b, V (f(a)) ∩V (f(b)) = ∅. We call (f, ξ) a minor embedding of
G into H.

In discussing properties of embeddings of G into H, we will often rely on the
fact that if G is embeddable in H, we can derive an induced path decomposition
of G from the path decomposition of H; details of this process for topological
embedding were developed for k-connected partial k-trees [GN98]. To facilitate
the definition, for a topological embedding (f, φ) we define a surjective function
ψ that inverts f on its image, and maps each interior vertex in φ(e) to one of
the endpoints of e. That is, ψ(f(a)) = a for every vertex a of G, and for every
edge e = (a, b) of G, there is a vertex u on φ(e) such that Q is the subpath of
φ(e) from f(a) to u, and R = φ(e)\Q, then for all vertices v of Q, ψ(v) = a and
for all vertices w of R, ψ(w) = b.

Definition 5. For (f, φ) a topological embedding of G into H, ψ the associ-
ated mapping of vertices in V (H) to vertices in V (G), and (P, χ) a path de-
composition of H, we define µ : V (P) → 2V (G) as follows: µ(p) = {ψ(u)|u ∈
χ(p) and either f(a) = u for some a or u appears on φ(e) for some e ∈ E(G)}.
We form a path PG from P by removing each node p ∈ V (P) such that |µ(p)| = 0
and by replacing each subpath q1, . . . , qm such that µ(qi) = µ(qj) for all i, j by a
single node q with µ(q) = µ(q1). We form χG by restricting µ to PG. (PG, χG)
is the path decomposition of G induced by (f, φ).

A similar definition can be made for minor embedding, and we can show that for
both topological embedding and minor containment, (PG, χG) is a normalized
path decomposition of width k.

3 Track Layouts

The additional requirement of k-connectivity imposes strong restrictions on the
structure of partial k-paths. We show that the body vertices can be partitioned
into k tracks where the tracks form vertex-disjoint paths from the initial k-leaf to
the final k-leaf. This partitioning is unique up to permutation of the tracks, and
is independent of any specific path decomposition. Track layouts of full k-paths
were considered previously [Pro84,PRS98], but our characterization of partial
k-path embeddings is new.

Tracks can be extracted by examining a path decomposition of the graph.
For (P, χ) a normalized width-k path decomposition of G, P = p1, . . . , p`, we

116 A. Gupta et al.

define the entry vertex of pi (i odd, i > 1), entry(pi), to be the unique vertex in
χ(pi)\χ(pi−1). Similarly, the exit vertex of pi (i odd, i < `), exit(pi), is the unique
vertex in χ(pi)\χ(pi+1). A vertex x of G is a hair vertex (a non-initial non-final
k-leaf) exactly when x = entry(pi) = exit(pi), and hence when entry(pi) or
exit(pi) is a body vertex of G, entry(pi) 6= exit(pi).

For body vertices, we can use exit and entry information to form paths
in G. If entry(pi) is not a k-leaf, it must be a neighbor of exit(pi) (otherwise
χ(pi)\{entry(pi), exit(pi)} is a set of size k− 1 separating entry(pi) and exit(pi)
in G). We say that entry(pi) replaces exit(pi). A track is a sequence of body
vertices a1, a2, . . . at such that ai+1 replaces ai for all 1 ≤ i < t. We use the
interval notation [ai, aj] to represent a segment ai, . . . , aj of a track. The track
on which a vertex a appears is denoted by track(a). For ease of notation, we
say that the k-leaves are on track 0. A track edge of G is any edge adjacent to
the initial or final k-leaf, or any edge between vertices on the same track. Note
that an internal vertex of a track is adjacent to exactly two other vertices on the
same track, namely the vertex it replaces, and its own replacement. A hair edge
is an edge adjacent to a hair. Any edge that is not a track edge or a hair edge
is called a cross edge. Figure 1(c) illustrates track edges (thick lines), hair edges
(dashed lines) and cross edges (thin lines). The lemma below is a consequence
of the definition of tracks, normalized path decompositions, and k-connectivity:

Lemma 1. In a path decomposition (P, χ) of G, there exists exactly one vertex
from each track in χ(pi) for i even. ut

We can view a layout of the vertices of G as starting with an initial k-
leaf at the leftmost point, a final k-leaf at the rightmost point, and each track
stretched out as a straight line from left to right. Thus, if b replaces a then
we say that a is the track predecessor of b and that b is the track successor
of a. The position of a vertex a on a track, denoted position(a), is defined as
follows: each vertex in the head is in position 1 on its track, and if b replaces
a, then position(b) = position(a) + 1. Moreover, for track(a) = track(b) and
position(a) < position(b), a is to the left of b and b is to the right of a. A track
layout of a graph G of pathwidth k is the numbering of tracks by 1 through k
and the association of each vertex a with a pair (track(a),position(a)).

Our algorithms proceed by attempting to create an embedding by mapping
a track layout of G to a track layout of H. The mapping will be particularly
useful if we select the track layout of G that “corresponds” to the track layout
of H.

The general idea of the algorithm to find a track layout is as follows: maintain
a set S (initially the head vertices, labeled 1 through k), and repeatedly find a
vertex a of S with one unlabeled neighbor b; give b the label of a and have
it replace a in S. Lemma 2 below implies that the algorithm yields the same
layout independent of the order in which vertices are processed. It shows that
if two vertices a1 and a2 could both be considered as a, they cannot both be
replaced by the same vertex b1 (which would lead to two layouts differing in the
track label of b1). Its proof gives an idea of the kinds of connectivity arguments
important in the proofs omitted from this conference version.

Embeddings of k-Connected Graphs of Pathwidth k 117

Lemma 2. Let G be a k-connected graph of pathwidth k and (P ′, λ) be a proper
prefix of at least one normalized path decomposition of G, where P ′ = (p1, . . . , ps)
for s odd. Then if a1 ∈ λ(ps), N(a1) \ ∪1≤i≤sλ(pi) = {b1}, a2 ∈ λ(ps), N(a2) \
∪1≤i≤sλ(pi) = {b2}, and a1 6= a2, then b1 6= b2.

Proof. For at least one vertex a ∈ χ(ps) such a vertex b exists, namely the
vertex entry(ps+1) for some path decomposition (P, χ) extending (P ′, λ). Sup-
pose instead that for a1 6= a2, b1 = b2. In any normalized path decomposition
(P, χ) of which (P ′, λ) is a prefix, since (a1, b1) and (a2, b1) are both edges in
G, there must exist a bag pj , j ≥ s + 1, such that {a1, a2, b1} ⊆ χ(pj) and
{a1, a2, b1} ∩ χ(pj−1) = {a1, a2}. Then χ(pj)\{a1, a2} is a set of size k− 1 sepa-
rating the initial and final k-leaves, violating the k-connectivity of G. ut

Theorem 1 below follows as a consequence. Since either end can be the head,
there are at most 2(k!) different track layouts of G, each of which can be deter-
mined in linear time. Arbitrary degree-k neighbors of the head and tail can be
identified as the initial and final k-leaf, with all other degree-k neighbors being
designated as hairs.

Theorem 1. For G a k-connected graph of pathwidth k, for each head h of G
and each numbering (permutation) π of the tracks, there is a unique track layout
(h, π) of G, which can be generated in linear time. ut

Although a track layout imposes a total order on the vertices of a particular
track, in general it provides only a partial order on the vertices of the entire
graph. Given a track decomposition starting from a particular head h, a comes
before b in the partial order if either a precedes b on the same track, or if there is
an edge from a to a vertex to the left of b on the track of b. This order reflects the
fact that in any path decomposition with head h, a must appear in a bag before
b. The partial order precludes the existence in the track layout of a transposition,
namely a pair of edges (a1, b2), (b1, a2) with four distinct endpoints, where a1
(respectively b1) is on the same track as and to the left of a2 (respectively b2).
This is important in proving the correctness of our algorithms.

We use Nt(a) to denote the set of neighbors of a on track t, and where
appropriate we generalize the function to Nt(A) for A a set of vertices.

4 Topological Embedding Algorithm

Our algorithm takes an initial injective mapping f of vertices of G to vertices
of H and iteratively refines the mapping until it forms an embedding of G into
H or fails. Throughout the execution of the algorithm, the possible mappings
considered will be constrained by track layouts of G and H. By choosing an
arbitrary path decomposition of H, we can fix a total order on the vertices of
H and a specific track layout. If G is embeddable in H, one of the 2(k!) track
layouts of G will be associated with the path decomposition of G induced by the
embedding.

118 A. Gupta et al.

We initially restrict our focus to G and H k-connected partial proper k-paths,
and then we discuss extensions to more general situations. The track layouts of
G and H can be exploited in the discussion of an embedding of G into H;
Lemma 3 below shows that track numbers and cross edges are preserved under
the embeddings. A topological embedding (f, φ) from G into H that satisfies
the conditions in the lemma is said to be a topological embedding with respect to
layouts (hG, πG) and (hH , πH)). Lemma 3 can be proved by showing that the
violation of any of the conditions of the lemma allows us, by using induced path
decompositions, to find a bag in the path decomposition of G violating Lemma 1.

Lemma 3. For G and H k-connected partial proper k-paths, G is topologically
embeddable in H if and only if there exists a topological embedding (f, φ) and
track layouts (hG, πG) of G and (hH , πH) of H such that for aI the initial k-leaf
and aF the final k-leaf in G:

1. for all a ∈ V (G) \ {aI , aF }, track(a) = track(f(a));
2. for each track edge (a, b) in G, a 6= aI and b 6= aF , φ((a, b)) consists of the

path from f(a) to f(b) on the track of a;
3. for each cross edge (a, b) in G, φ((a, b)) consists of the edge (f(a), f(b)); and
4. f(aI) = uI , f(aF) = uF , for all edges (aI , b), φ((aI , b)) is a path from f(aI)

to f(b) with all interior vertices on the track of b, and for all edges (b, aF),
φ((b, aF)) is a path from f(b) to f(aF) with all interior vertices on the track
of b. ut

The algorithm starts by forming a single track layout and total order for
H and all 2(k!) track layouts of G. For each possible layout of G, initially we
assign f(a) := u, where track(a) = track(u) and position(a) = position(u).
Given a mapping of vertices of G to vertices of H, extended in the obvious way
to map sets of vertices, we say that a ∈ V (G) is consistent if for all tracks t,
f(Nt(a)) ⊆ Nt(f(a)). We next repeatedly check consistency of vertices in G.
An inconsistency in which (a, b) ∈ E(G) but (f(a), f(b)) 6∈ E(H) is resolved by
changing one or both of f(a) and f(b). Consider the total ordering of edges of H
between the track of f(a) and f(b) (induced by the total order on vertices of H,
since there are no transpositions). The leftmost consistent edge with respect to
a, b ∈ V (G) and mapping f is the leftmost edge (u, v) (under this total ordering of
edges) such that position(f(a)) ≤ position(u) and position(f(b)) ≤ position(v).
To ensure (f(a), f(b)) ∈ E(H), f(a) is set to u and f(b) is set to v (which can be
viewed as “sliding” f(a) or f(b) along its track), and we update function f by
“sliding” vertices to the right of a and b as necessary to maintain the invariants
below.

Invariant A For each a ∈ V (G), track(a) = track(f(a)).
Invariant B For vertices a and b in V (G) such that track(a) = track(b), if

position(a) < position(b), then position(f(a)) < position(f(b)).

Lemma 4 follows from Lemma 3.

Embeddings of k-Connected Graphs of Pathwidth k 119

Lemma 4. If there exists a mapping that satisfies invariants A and B such that,
for each a ∈ V (G), a is consistent, then there is a topological embedding from G
into H. ut

GivenG topologically embeddable inH with respect to track layouts (hG, πG)
of G and (hH , πH) of H, we can determine a partial order among topological em-
beddings associated with the track layouts, where (f1, φ1) comes before (f2, φ2)
if for all a ∈ V (G), position(f1(a)) ≤ position(f2(a)). Our algorithm finds the
unique minimum embedding under this partial order, whose existence is guar-
anteed by the following lemma.

Lemma 5. If G is topologically embeddable in H with respect to (hG, πG) and
(hH , πH), then there is a unique minimum fm (with φ defined as in Lemma 3)
associated with (hG, πG) and (hH , πH).

Proof. Suppose instead there were incomparable minimal mappings (f1, φ1) and
(f2, φ2); there must exist a and b in V (G) such that the following conditions all
hold: track(a) 6=track(b), position(f1(a))<position(f2(a)) and position(f2(b))<
position(f1(b)). We can partition the vertices in V (G) into the following three
sets: S1 = {a ∈ V (G) | position(f1(a)) < position(f2(a))}, S2 = {a ∈ V (G)
| position(f2(a)) < position(f1(a))}, and S= = {a ∈ V (G) | position(f1(a)) =
position(f2(a))}.

We observe that there cannot exist an edge in E(G) between a ∈ S1 and
b ∈ S2, since the edges (f1(a), f1(b)) and (f2(a), f2(b)) form a transposition in
H. Consequently, all edges are either between vertices in the same set, between
S1 and S=, or between S2 and S=.

We can form f3 such that for a ∈ S1, f3(a) = f1(a), for a ∈ S2, f3(a) = f2(a),
and for a ∈ S=, f3(a) = f1(a) = f2(a). Clearly all edges can be mapped, and
hence f3 is an embedding violating the minimality of f1 and f2, yielding a
contradiction. ut

Lemma 6 below demonstrates that the algorithm finds the minimum embed-
ding. It is proved by considering the first hypothetical violation, namely a vertex
a for which position(f(a)) > position(fm(a)), and arguing that it was unneces-
sary to slide a past its location in the minimum embedding, since the edges of
H required for consistency of a exist at that point.

Lemma 6. If G is topologically embeddable in H with respect to track layouts
(hG, πG) and (hH , πH), then at any point during the execution of the algorithm
above where these track layouts are chosen, and for any vertex a ∈ V (G),
position(f(a)) ≤ position(fm(a)), where fm is the unique minimal f (as de-
fined in Lemma 5). ut

The algorithm implicit in Theorem 1 finds track layouts in linear time. In the
topological embedding algorithm, each vertex slides forward at most n positions
for a total of at most O(n2) slides. Each slide is the consequence of a failed
consistency check. To check all edges takes O(n) time, and so in O(n) time an
inconsistent pair can be detected, if one exists. The work done in each slide is

120 A. Gupta et al.

O(n). Thus we have described an O(n3) algorithm for topological embedding of
k-connected partial proper k-paths.

Theorem 2. For G and H k-connected partial proper k-paths, it is possible to
determine whether or not G is topogically embeddable in H in O(n3) time. ut

When H can have hairs and thus is no longer proper, the situation is more
complicated. A path of two hair edges in H can be used to embed a cross edge
of G in the preimage of the attachment clique of that hair (which may no longer
be a clique, since G is partial). Since there may be more than one candidate
cross edge, ambiguity is introduced. We are able to resolve this ambiguity to
obtain O(n3) algorithms when one of G and H is a full k-path and the other a
k-connected partial k-path.

5 Minor Embedding Algorithm

In the case of minor embedding, it would seem that vertices of G may now
map to seemingly arbitrary connected subgraphs of H. However, as we will
see, Lemma 9 gives a structural characterization which limits possible images
of vertices. Throughout this section we assume that G and H are k-connected
partial proper k-paths.

To facilitate the proof of Lemma 9, we first establish a few properties of
minor embeddings. We focus first on the role of the initial and final k-leaves.
Recall that the minor embedding function f maps vertices of G to connected
subgraphs of H.

Lemma 7. For any minor embedding (f, ξ) of G into H, for any a ∈ V (G),
if f(a) does not contain either uI or uF , then for any track layout (hH , πH) of
H there exists a track t in (hH , πH) such that f(a) consists of an interval of
vertices [u, v] on t. ut
Proof. We first demonstrate that f(a) cannot contain any cross edge (v, w) of
H. Since v and w are neighbors but neither is the exit vertex of the other, in
any path decomposition (P, χ) of H there must exist a bag pr, r even, such that
{v, w} ⊆ χ(pr). If v and w are in f(a), then in the induced path decomposition
(PG, χG), |χG(pr)| < k, contradicting the k-connectivity of G.

Since f(a) forms a connected subgraph of H and contains no cross edge nor
uI nor uF , f(a) is an interval of vertices [u, v] on a single track t in H. ut

Lemma 8. Let (f, ξ) be a minor embedding of G into H and (P, χ) be any path
decomposition of H. Then for a ∈ {aI , aF } the initial or final vertex of a track
layout of G, there must exist pj, j even, such that χ(pj) contains a vertex in
f(bi) for all 1 ≤ i ≤ k, where b1, . . . , bk are the neighbors of a. ut
Proof. Since G is k-connected, each bi has a neighbor in V (G)\{a, b1, . . . , bk}.
Each path decomposition of G must then contain a bag with {a, b1, . . . , bk} such

Embeddings of k-Connected Graphs of Pathwidth k 121

that b1, . . . , bk all appear in the next bag of the decomposition. If there is no
bag pr, r even, in (P, χ) such that that χ(pr) contains a vertex in f(bi) for all
1 ≤ i ≤ k, then the path decomposition of G induced by (f, ξ) fails to satisfy
the above property, yielding a contradiction. ut

With the aid of the preceding two lemmas, the proof of Lemma 9 is similar
to, though more complicated than, the proof of Lemma 3 (the analogous lemma
for topological embedding).

Lemma 9. For G and H k-connected partial proper k-paths, G is a minor of
H only if there exist a minor embedding (f, ξ) and track layouts (hG, πG) and
(hH , πH) such that, for aI and aF the initial and final k-leaves of (hG, πG) and
uI and uF the initial and final k-leaves of (hH , πH), the following conditions
hold:

1. for all a ∈ V (G)\{aI , aF }, f(a) is an interval of vertices [`(f(a)), r(f(a))] =
[u, v] on the track of a;

2. for each track edge (a, b) in G, ξ((a, b)) consists of the edge from r(f(a)) to
`(f(b));

3. for each cross edge (a, b) in G, ξ((a, b)) consists of an edge from a vertex in
f(a) to a vertex in f(b); and

4. f(aI) = {uI} and f(aF) = {uF }. ut
Proof. SinceG is a minor ofH, there must exist a minor embedding (g, γ) fromG
to H. Our proof proceeds by altering this embedding to form (f, ξ) and choosing
track layouts which satisfy the conditions. We fix (hH , πH) and then create a
layout for G and (f, ξ). For a ∈ {aI , aF }, we let b1, . . . , bk be the neighbors
of a. Since any bag in a path decomposition is a separator in the graph, as a
consequence of Lemma 8 we can conclude that the f(bj)’s separate f(a) from
the remainder of the graph. To satisfy condition 4 it will suffice to consider the
mapping of a and its neighbors to the prefix or suffix of (hH , πH) up to and
including the f(bj)’s.

By Lemmas 7, 8, and 1, each f(bj) maps to a distinct track in (hH , πH). By
choosing (hG, πG) such that track(bj) = track(f(bj)), we satisfy condition 1 for
each bj .

We consider two cases for each a ∈ {aI , aF }, depending on whether or not
g(a) contains a u ∈ {uI , uF }.
Case 1: g(a) contains u

We can direct (hG, πG) so that u = uI if and only if a = aI . We then form
f(a) by restricting g(a) to the single node u, and then set each f(bj) to be the
union of g(bj) and each vertex on the path from u to the leftmost vertex in g(bj)
(that is, an initial segment of the vertices on track track(bj)).
Case 2: g(a) does not contain uI or uF

We can conclude from Lemma 7 that g(a) consists of an interval [u, v] on a
track t in H. By condition 1 applied to the bj ’s we can conclude that there is a
path from g(a) to u ∈ {uI , uF } which contains no node in g(bj) for 1 ≤ j ≤ k.
We choose (hG, πG) so that u = uI if and only if a = aI .

122 A. Gupta et al.

To create (f, ξ), we set f(a) = u. We can then extend the images of the bj ’s
in order to include the paths from u to each g(bj). In particular, for br such that
track(g(br)) = track(g(a)), we set f(br) to be the union of g(br), g(a), and the
path from g(a) to u on track(g(a)). For each other bj such that j 6= r, we set
f(bj) to be the union of g(bj) and the path from g(bj) to u on track(g(bj)).

In both cases we have satisfied condition 4 and in addition conditions 1 and
2 for the two k-leaves and their neighbors. To see that condition 1 holds for the
remaining vertices, we use an argument similar to that used to prove Lemma 3
in a proof by induction on track position. Namely, we show that if a track
successor c of a bj is mapped to a track other than track(bj), then there exists
a bag in a path decomposition of H containing vertices in both f(bj) and f(c).
The result follows from the fact that this will violate Lemma 1 in the induced
path decomposition of G.

To complete the proof, we observe that condition 3 follows from the fact that
(g, γ) is a minor embedding, and that condition 2 follows from condition 1. ut

We can show that if there exists a mapping satisfying the following invariants
(analogous to Invariants A and B for topological embedding), with all vertices
in G consistent, then G is a minor of H. Furthermore, as for topological em-
beddings, we can determine a partial order among minor embeddings associated
with track layouts (hG, πG) and (hH , πH), where f1 comes before f2 if for all
a ∈ G, position(r(f1(a))) ≤ position(r(f2(a))), and show that there is a unique
minimum.

Invariant C For each vertex a ∈ V (G), f(a) = [u, v] for some u and v on the
track of a in H.

Invariant D For each vertex a ∈ V (G) with track successor b, position(`(f(b)))
= 1 + position(r(f(a))).

The O(n3) algorithm for determining (for k-connected partial proper k-paths
G and H) if G is a minor of H is a modification of the topological embedding
algorithm. Initially, for a ∈ V (G), the tentative minor embedding sets f(a)
to be the single vertex at (track(a),position(a)). The algorithm then checks
for inconsistencies and moves the right endpoints of intervals as necessary (by
Invariant D, this defines left endpoints). As the new intervals may now overlap
previously existing intervals, we may need to “slide” the right endpoints of those
intervals as well, in a manner similar to the sliding of vertices to the right of an
endpoint of an inconsistent edge in the topological embedding algorithm. The
proofs of correctness and complexity, making use of Lemma 9, are also similar
to those for topological embedding.

Theorem 3. For G and H k-connected partial proper k-paths, it is possible to
determine whether or not G is a minor of H in O(n3) time. ut

When trying to extend the algorithm to the case where H is no longer proper,
we encounter the difficulty that a star of cross-edges (a set of cross-edges with
one common endpoint) can map into a hair of H, and it is difficult to determine

Embeddings of k-Connected Graphs of Pathwidth k 123

which star to map. Again, if H is a full k-path and G a k-connected partial
k-path, we can resolve this ambiguity, and the minor containment algorithm
extends in the same fashion as the topological embedding algorithm.

6 Extensions and Open Problems

We can improve the complexity of our algorithms when there are additional
constraints on G and H. To specify a particular full k-path, a track layout and a
total order on the vertices (consistent with the partial order imposed by tracks)
are sufficient. The neighbors of each vertex are completely determined by the
total order. A full proper k-pathG can thus be represented as a k-character string
SG derived from the track numbers of the entry vertices in a path decomposition
of G [PRS98]; an extension of this notation allows us to handle full k-paths, as
well, by associating with each entry node a the number h(a) of hairs sharing its
attachment clique.

When G and H are both full proper k-paths, we can solve subgraph iso-
morphism by fixing a string representation of H and then executing string
matching between SH and each of the 2(k!) possible string representations of
G. When G and H are both full k-paths, we need to determine a matching
such that a ∈ V (G) matches u ∈ V (H) if and only if track(a) = track(u)
and h(a) ≤ h(u). This extension of string matching can be solved in time
O(|V (H)|√|V (G)| log(|V (G)|)) [AF91], for a total complexity of O(n

√
n log n).

It turns out that for topological embedding of full proper k-paths, a slight ex-
tension of this idea suffices to give an O(n

√
n log n) algorithm, though we omit

the details.
The most obvious open problem is to extend the algorithms to the case when

both G and H are k-connected partial k-paths. It is not difficult to construct
dynamic programming algorithms that solve the problems in O(nk+O(1)) time;
a dynamic programming subproblem asks if a “prefix” of a fixed track layout of
G (a subgraph closed under track predecessor, of which there are only O(nk))
can be mapped onto a particular track layout of H. These algorithms are es-
sentially a simplification of the O(nk2+k+5.5) algorithm for k-connected partial
k-trees [GN94,GN98]. The goal, however, remains the removal of any function
of k from the exponent. Beyond that, we suspect that the requirement of k-
connectivity may yield more useful structural information for partial k-trees
than has been discovered to date.

Acknowledgements

We wish to thank Ming Li, Esko Ukkonen, and S. Muthukrishnan for references
in the string-matching literature. We would also like to thank the referees for
comments which improved the presentation of the paper.

124 A. Gupta et al.

References

AF91. A. Amir and M. Farach. Efficient 2-dimensional approximate matching of
non-rectangular figures. In Proceedings of the Second Annual ACM-SIAM
Symposiumon Discrete Algorithms, pages 212–223, 1991.

BM76. J. A. Bondy and U.S.R. Murty. Graph Theory with Applications. North-
Holland, 1976.

Bod93. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. In Proceedings of the 25th Annual ACM Symposium on
the Theory of Computing, pages 226–234, 1993.

DF95. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness. I. Basic results. SIAM Journal on Computing, 24(4):873–921,
August 1995.

DLP96. A. Dessmark, A. Lingas, and A. Proskurowski. Faster algorithms for sub-
graph isomorphism of k-connected partial k-trees. In Proceedings of the
Fourth Annual European Symposium on Algorithms, pages 501–513, 1996.
To appear, Algorithmica.

GN94. A. Gupta and N. Nishimura. Sequential and parallel algorithms for embed-
ding problems on classes of partial k-trees. In Proceedings of the Fourth
Scandinavian Workshop on Algorithm Theory, pages 172–182, 1994.

GN95. A. Gupta and N. Nishimura. The parallel complexity of tree embedding
problems. Journal of Algorithms, 18(1):176–200, 1995.

GN96. A. Gupta and N. Nishimura. The complexity of subgraph isomorphism for
classes of partial k-trees. Theoretical Computer Science, 164:287–298, 1996.

GN98. A. Gupta and N. Nishimura. Topological embedding of k-connected partial
k-trees. submitted, 1998.

KS96. H. Kaplan and R. Shamir. Pathwidth, bandwidth and completion problems
to proper interval graphs with small cliques. SIAM Journal on Computing,
25(3):540–561, 1996.

MT92. J. Matoušek and R. Thomas. On the complexity of finding iso- and other
morphisms for partial k-trees. Discrete Mathematics, 108:343–364, 1992.

Pro84. A. Proskurowski. Separating subgraphs in k-trees: cables and caterpillars.
Discrete Mathematics, 49:275–285, 1984.

Pro89. A. Proskurowski. Maximal graphs of path-width k or searching a partial
k-caterpillar. Technical Report UO-CIS-TR-89-17, University of Oregon,
1989.

PRS98. A. Proskurowski, F. Ruskey, and M. Smith. Analysis of algorithms for listing
equivalence classes of k-ary strings. SIAM Journal of Discrete Mathematics,
11(1):94–109, 1998.

Sys82. M. M. Sys lo. The subgraph isomorphism problem for outerplanar graphs.
Theoretical Computer Science, 17:91–97, 1982.

TUK95. A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-
width. Theoretical Computer Science, 137(2):253–268, January 1995.

vL90. J. van Leeuwen. Handbook of Theoretical Computer Science A: Algorithms
and Complexity Theory, chapter Graph algorithms. North-Holland, Amster-
dam, 1990.

On Graph Powers for Leaf-Labeled Trees ?

Naomi Nishimura1, Prabhakar Ragde1, and Dimitrios M. Thilikos2 ??

1 Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada {nishi,plragde}@uwaterloo.ca

2 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya, Barcelona, Spain sedthilk@lsi.upc.es

Abstract. We extend the well-studied concept of a graph power to that
of a k-leaf power G of a tree T : G is formed by creating a node for each
leaf in the tree and an edge between a pair of nodes if and only if the
associated leaves are connected by a path of length at most k. By discov-
ering hidden combinatorial structure of cliques and neighbourhoods, we
have developed polynomial-time algorithms that, for k = 3 and k = 4,
identify whether or not a given graph G is a k-leaf power of a tree T ,
and if so, produce a tree T for which G is a k-leaf power. We believe that
our structural results will form the basis of a solution for more general
k. The general problem of inferring hidden tree structure on the basis of
leaf relationships shows up in several areas of application.

1 Introduction

The results in this paper are derived from two abundant areas of research: graph
powers and leaf-labeled trees. Both areas contain results of a purely theoreti-
cal nature as well as applications to such diverse areas as distributed comput-
ing [Lin92], computational biology, and mathematical psychology [BG91].

Trees are versatile in their ability to represent relations between data items
stored in their nodes. In many instances, data items are stored in a subset
of the nodes (typically leaves); the structure of internal nodes is dictated by
measures of distance or similarity among leaves. For example, a Steiner tree
is a tree of minimal length containing every point in a set of inputs; a more
general formulation is known as an X-tree [BG91]. A fundamental problem in
computational biology is the reconstruction of the phylogeny, or evolutionary
history, of a set of species or genes, typically represented as a phylogenetic tree
(the reader is referred to papers that review research in the area of evolutionary
history [HKW99,HSW99,KW99]). In a phylogenetic tree, each leaf is labeled by
a distinct known species; a tree is then formed by positing possible ancestors
that might have led to this set of species.
? Research supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC) and Communications and Information Technology Ontario
(CITO).

?? Research supported by the Ministry of Education and Culture of Spain, Grant num-
ber MEC-DGES SB98 0K148809.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 125–138, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

126 N. Nishimura, P. Ragde, and D.M. Thilikos

By viewing the correlations between leaves as distances between nodes in a
graph, we can frame the problem of forming a phylogenetic tree as the problem of
forming a tree from a graph. One such correlation between graphs and trees, or
more generally between graphs and graphs, arises in the notion of graph powers,
where a graph G is the kth power of a graph H if nodes x and y are adjacent in
G if and only if the length of the shortest path from x to y in H is at most k.
Although in general it is NP-complete to recognize a graph power [MS94], it is
possible to determine if a graph is the power of a tree in time O(n3), where n is
the number of vertices in the input graph [CK98].

In this paper we introduce the notion of a k-leaf power of an unlabeled tree
T , where a graph G is the k-leaf power of a tree T if there exists a vertex in
V (G) for each leaf in T and an edge in E(G) between vertices u and v if and
only if there is a path of length at most k between the leaves associated with u
and v in T . The problem of recognizing k-leaf powers is inspired by the problem
of forming a phylogenetic tree based on distance thresholds: given a graph G in
which there is an edge for each pair of species at distance at most k, the tree T
of which G is a k-leaf power is a phylogenetic tree in which the associated pair
of leaves is guaranteed to be at distance at most k. A related concept is that
of the threshold graph formed on a set of n nodes and a weighting function on
edges by including only edges less than a set threshold; there exist algorithms
to extract a tree from the graph by first finding connected components [BG91].

We derive polynomial-time algorithms for recognizing k-leaf powers for k = 3
and k = 4. Our algorithms are based on the hidden structure of k-leaf powers, of
independent combinatorial interest; as leaf labels do not play a part in our algo-
rithms, our work is applicable to arbitrary trees. The complex characterizations
of k-leaf powers are based on the structural properties of cliques and neighbour-
hoods. The properties are particularly tricky to derive in the presence of internal
nodes that are not the neighbours of leaves: such nodes serve as invisible enti-
ties that subtly alter the structure of the relationships of neighbourhoods. The
lemmas we prove may be helpful not only in generalizing our results to k > 4,
but also in unrelated problems on graphs and trees.

We first establish properties of neighbourhoods in trees in Section 3. Next, we
present a representation of the original graph as a clique graph, defined in Sec-
tion 4. Section 5 contains polynomial-time algorithms which determine whether
or not a graph G is a 3-leaf power or a 4-leaf power of a tree T , and if so,
demonstrate one such T . Finally, directions for future research are discussed in
Section 6. In this conference version, nearly all proofs, illustrations, and state-
ments of auxiliary lemmas are omitted to save space. A few proofs have been
included to give a flavour of the techniques used.

2 Preliminaries

2.1 Trees and k-Leaf Powers

To help avoid confusion, we will refer to vertices in a tree T and nodes in its k-leaf
power G. We classify each internal vertex as visible if it has a neighbouring leaf,

On Graph Powers for Leaf-Labeled Trees 127

or invisible otherwise. Leaves are not defined to be either visible or invisible. A
tree with no invisible vertices is an ideal tree.

The case of 2-leaf powers is not interesting; a 2-leaf power G is a set of
disjoint cliques, each clique corresponding to the leaves of T adjacent to one
internal vertex. Any tree formed by connecting the internal vertices yields the
same 2-leaf power.

When k > 2, the set of leaves of T adjacent to an internal vertex also forms a
clique in G, but these cliques may overlap and will not, in general, be maximal.
It is the maximal cliques of G that hold the key to reconstructing T , and we
must find elements in T that correspond to these cliques. Since a k-leaf power is
an induced subgraph of a power of trees, and powers of trees are chordal [CK98],
clearly the graphs we are trying to recognize are chordal. We can check for
chordality and find all maximal cliques in linear time [Gav72,RTL76].

A few easy observations will simplify our task. Given a graph G which is a
k-leaf power, we can treat each connected component separately, and connect
the resulting trees by paths of length k. Consequently, we can assume (and will
do so for the rest of the paper) that G is connected. Any tree T whose 3-leaf
power is connected has no invisible vertices (as these would disconnect the 3-leaf
power) and similarly, any tree T whose 4-leaf power is connected cannot have
two adjacent invisible vertices.

The distance d(u, v) between two nodes u, v in a tree T is the number of
edges in the unique path between them. We will find it convenient to define the
distance d(u, e) between a node u and an edge e = (v, w) as (d(u, v)+d(u,w))/2.
Note that, in a tree, this is always of the form j + 1

2 for an integer j; intuitively,
the extra half is the amount needed to “get to the center of the edge”. Similarly,
we define the distance d(e1, e2) between two edges e1 and e2 in a tree as one
more than the number of edges in the unique path between them. Intuitively,
the addition is due to the two extra halves needed to “get to the center” of each
edge. It is not hard to verify that the triangle inequality holds for this extended
notion of distance.

Definition 1. For i even, the i-neighbourhood with center vertex v (respec-
tively, center edge e for i odd) in a tree T is the set of all leaves of distance at
most i/2 from internal vertex v (respectively, edge e = (u, v), where u and v are
both internal vertices).

Lemma 1. In a 2k-leaf (resp. 2k + 1-leaf) power G of a tree T , the ver-
tices of any maximal clique M of G form a 2k-neighbourhood (resp. 2k + 1-
neighbourhood) in T of some internal vertex v (resp. edge e). ut
Proof. (even version) Let P be a longest path in T between two points of M
and let the endpoints of P be u and w. Clearly, P has length at most 2k. Let
v be the midpoint of P (if P contains an even number of vertices, break the tie
arbitrarily) and let N be the k-neighbourhood of v.

First, we show M ⊆ N . Let x be a vertex in M \ N (that is, d(v, x) > k).
Let z be the vertex at the point where the path from x to v meets P ; z divides

128 N. Nishimura, P. Ragde, and D.M. Thilikos

P into two pieces. If both of these pieces have length less than k, then the path
from x to either u or w is longer than P , contradicting the choice of P . So one
piece has length at least k; but then the distance from x to the endpoint of this
piece exceeds 2k, a contradiction. Thus no such vertex x exists.

Next, we show that N ⊆ M . Let y be an arbitrary vertex in N and x an arbi-
trary vertex of M . Since M ⊆ N , d(x, v) ≤ k. Thus d(x, y) ≤ d(x, v) + d(v, y) ≤
2k, and x and y are connected in G. Since x was arbitrary, y is connected to
every vertex in M , and by maximality of M , y ∈ M . ut

The converse of Lemma 1 fails to hold. For example, we can construct a path
u, v, w, and x of internal vertices such that both v and x are invisible, and all
other neighbours of w are leaves. Then, the 4-neighbourhood with center w (the
leaf neighbours of w) is a proper subset of the 4-neighbourhood with center v
(the leaf neighbours of u and w). Even in an ideal tree, vertices “close to the
edge” can have nonmaximal 4-neighbourhoods, in a way quantified in the next
section, where we look at the structure underlying neighbourhoods and maximal
cliques.

3 Properties of Neighbourhoods

We will discover the hidden structure of the underlying tree of a k-leaf power by
intersecting maximal cliques, which are neighbourhoods. The following technical
lemma aids in characterizing the structure of intersections of neighbourhoods.

Lemma 2. For v1 and v2 internal vertices or edges in a tree T such that
d(v1, v2) = r, and Si the ki-neighbourhood of vi for ki ≥ 2, i ∈ {1, 2}, the
following conditions hold:

(a) if k1 + k2 − 4 < 2r, then S1 ∩ S2 = ∅;
(b) if 2r ≤ k1 − k2, then S2 ⊆ S1;
(c) if 2r ≤ k2 − k1, then S1 ⊆ S2; and
(d) if k1 +k2 − 4 ≥ 2r > |k1 −k2|, then S1 ∩S2 is the (k1+k2

2 − r)-neighbourhood
of the unique vertex/edge whose distance from v1 is k1−k2

4 + r
2 and whose

distance from v2 is k2−k1
4 + r

2 . ut
Proof. We will examine the case where k1, k2, and r are all even. The analysis
for the other cases is very similar. Suppose that S1∩S2 6= ∅ and w is an arbitrary
leaf in S1 ∩ S2. Let v be the unique vertex of T that is adjacent to w. Clearly,
d(v, vi) ≤ ki/2 − 1, for i = 1, 2, and hence (a) follows from the fact that r =
dist(v1, v2) ≤ k1+k2

2 − 2.
Suppose now that k1 ≥ 2r + k2 and let x ∈ S2. This means that d(v2, x) ≤

k2/2. As d(v1, x) ≤ d(v1, v2)+d(v2, x), we can conclude that d(v1, x) ≤ r+k2/2 ≤
k1/2 and x ∈ S1. Therefore, S2 ⊆ S1 and (b) follows. The proof of (c) is very
similar.

We now let u be the unique vertex of T that is at distance k1−k2
4 + r

2 from
v1 and distance k2−k1

4 + r
2 from v2, and S be the (k1+k2

2 − r)-neighbourhood

On Graph Powers for Leaf-Labeled Trees 129

of u. We must show that S = S1 ∩ S2. For x ∈ S, d(x, u) ≤ k1+k2
4 − r

2 . As
d(u, v1) = k1−k2

4 + r
2 , we conclude that d(x, v1) ≤ d(x, u) + d(u, v1) = k1+k2

4 −
r
2 + k1−k2

4 + r
2 = k1/2, and x ∈ S1. Similarly, we can show that x ∈ S2 and thus

S ⊆ S1 ∩ S2.
For x 6∈ S, dist(x, u) > k1+k2

4 − r
2 . Deleting u divides T into connected

components; notice that one of the vi’s, say v1, is not in the connected component
that contains x. As v1 and x are in different connected components, clearly
d(x, v1) = dist(x, u) + d(u, v1) > k1+k2

4 − r
2 + k1−k2

4 + r
2 = k1/2 and x cannot be

in the k1-neighbourhood of v1. This implies that x 6∈ S1 ∩ S2, and we conclude
that S = S1 ∩ S2. ut

Using Lemma 2 we can easily prove the following results concerning the
structure of neighbourhoods by simply setting the parameters k1, k2, and r.
Although stated in a general form, in this paper we apply these primarily in the
case j = 4.

Lemma 3. The following conditions hold for any tree T and j ≥ 4:

1. The intersection of two distinct j-neighbourhoods is either empty or a j′-
neighbourhood for 2 ≤ j′ ≤ j − 1.

2. No (j − 1)-neighbourhood is a subset of more than two distinct j-
neighbourhoods for j even.

3. If a (j−2)-neighbourhood is a subset of a j-neighbourhood, then their centers
are either identical or adjacent.

4. The (j − 1)-neighbourhood of an edge is the intersection (union) of the j-
neighbourhoods ((j − 2)-neighbourhoods) of its endpoints.

5. The (j−2)-neighbourhood of a vertex of degree at least two is the intersection
of the j-neighbourhoods of any two of its neighbours for j even.

6. Let S be the intersection of two 3-neighbourhoods of two edges e1, e2. If e1
and e2 are adjacent then S is the 2-neighbourhood of their common endpoint;
otherwise S is empty. ut

We make use of terminology that distinguishes between types of vertices in
a tree. For T ′ the tree obtained from T after two successive leaf prunings, we
partition the internal vertices of T into those which are not in T ′ (marginal
vertices), those which are leaves in T ′ (peripheral vertices) and those which are
internal nodes in T ′ (central vertices). Any edge incident on a central vertex is
a central edge. An edge in T is pendant if one of its endpoints is a leaf.

4 Clique Graphs and Their Properties

Our algorithms rely on the representation of graphs as directed acyclic graphs of
maximal cliques and their intersections. In this section we introduce the notion
of a clique graph and establish properties that prove useful in the development
of our algorithms.

130 N. Nishimura, P. Ragde, and D.M. Thilikos

4.1 Clique Graphs

The clique graph CG of a chordal graph G is a directed acyclic graph, whose
nodes are labeled by cliques of vertices in G. The definition of CG is given
algorithmically. We build CG by first computing a set of node labels, and then
creating edges. The node label set is initialized to all maximal cliques. Then all
intersections of pairs of existing node labels are added to the set. This intersection
step is repeated one more time, which completes the set of node labels. A node
is created for each label, and an edge added from a node a to a node b if the
label of a is a subset of the label of b. In Lemma 8 we prove linear bounds on the
numbers of nodes and edges of clique graphs of leaf powers, and the algorithm
halts if these bounds are exceeded. This is necessary because the clique graph
of an arbitrary chordal graph could have exponential size (consider a graph on
vertices u1, . . . , un/2, v1, . . . , vn/2 in which there is an edge (ui, uj) and (ui, vj) for
all i 6= j). Finally, we construct the transitive reduction of the graph in a naive
fashion, by checking triples of nodes (a, b, c), and removing the edge (a, c) if edges
(a, b) and (b, c) exist (this is unambiguous since our graph is a directed acyclic
graph). Beyond ensuring a polynomial running time, we have not attempted
to optimize this construction; further investigation of the properties of chordal
graphs may improve the lemma below.

Lemma 4. Given a chordal graph G = (V,E), CG can be computed in time
O(|V |3).

Proof. (sketch) We first find all O(|V |) maximal cliques in time O(|V |2) (the
number of cliques and running time are a consequence of the linear-time recogni-
tion of chordal graphs by means of a perfect elimination ordering [RTL76,TY84]).
Next, we form sets of intersections of sets in O(|V |3) time. Forming the graph
and its transitive reduction can be can be accomplished naively in cubic time.

ut
The label of a node c in a clique graph is its clique graph label, denoted

cglabel(c). We use well-known tree/DAG terminology such as parent, child,
grandparent, grandchild, descendant, and ancestor to describe relationships be-
tween nodes of a clique graph. A node of the clique graph is a border node if
it has a unique parent. Sinks (labeled by maximum cliques) are at level k − 1
(where k−2 is the length of the longest directed path in CG) and any other node
is at a level one less than the minimum level of its children. If a node is at level
j we call it a level-j node. We use Cj,j+1 to denote the underlying undirected
subgraph of CG induced on edges between nodes at levels j and j + 1. Levels of
nodes in a clique graph can easily be found by depth-first search, and we prove
in subsequent sections that the clique graph of a k-leaf power has at most k− 1
levels (for k = 3, 4). The internal vertices of a sample input T are illustrated in
Figure 1; for convenience, sets of leaf neighbours, omitted from the figure, are
indicated by letter labels and invisible vertices are indicated by squares. Figure
2 depicts the clique graph G (for k = 4) generated from the tree T . In this
example, the nodes with clique graph labels mop, nmo, cde, jk, and gh are all
border nodes.

On Graph Powers for Leaf-Labeled Trees 131

o g

eanp

m

b

c

d

hk

j

Fig. 1. Internal vertices of tree T . Letter labels denote sets of leaf neighbours; squares
denote invisible vertices.

levels

mo a bc cd j g

dm

mop nmo ma abc bcd cde cj jk dg gh 3

2

1c

Fig. 2. Clique graph G (k = 4) of tree T in Figure 1.

A clique graph is an ideal clique graph if it can be generated from a k-
leaf power of an ideal tree T . Ideal clique graphs have elegant properties which
are absent from general clique graphs. We can view a general clique graph as
having been generated from an ideal clique graph, with subsequent “collapsing”
occurring at the invisible nodes.

4.2 General Clique Graphs and Clique Graph Partitioning

The presence of invisible nodes complicates the characterization of general clique
graphs of 4-leaf powers, for which the correlation between neighbourhoods and
levels is no longer so clean. For example, if u, v, w, and x form a path in T
such that v and x are invisible and the other neighbours of w are all leaves,
then the 4-neighbourhood of w is equal to the 2-neighbourhood of w and the
3-neighbourhoods of (v, w) and (w, x), and is a subset of the 4-neighbourhood
of v. As a consequence of the blurring of distinctions between types of neigh-
bourhoods, intuitively, general clique graphs of 4-leaf powers have the following
structure: the sections of height 3 look like ideal clique graphs, but the sections
of level 2 can be arbitrary bipartite trees. This is proved in Theorem 1. The fol-
lowing lemma characterizes a few constraints on the correlations between levels
and neighbourhoods:

Lemma 5. The clique graph of a 4-leaf power has at most three levels. In
any path of length three, the labels of the nodes are, in order from source to

132 N. Nishimura, P. Ragde, and D.M. Thilikos

sink, a 2-neighbourhood, a 3-neighbourhood, and a 4-neighbourhood. A level-
3 node is always a 4-neighbourhood, sometimes a 3-neighbourhood, and never
a 2-neighbourhood. A level-2 node can be a 2-neighbourhood and/or a 3-
neighbourhood, but never a 4-neighbourhood. ut

Given a three-level clique graph C, we decompose C into a set of subgraphs
and linking edges. We identify two types of three-level subgraphs, namely nonde-
generate and degenerate three-level subgraphs, as well as two-level subgraphs. In
Theorem 1 we stipulate additional conditions which ensure that C is the clique
graph of a 4-leaf power.

The decomposition algorithm starts by creating a partition N of level-1 nodes
that have at least two level-2 children, where two nodes are in the same set of
the partition if they share a level-2 child. For each set P of the partition, it forms
the subgraph NP of C induced by P , the level-2 children of nodes in P , and the
grandchildren of nodes in P . These are the nondegenerate three-level subgraphs.
Removing every NP from C temporarily, the algorithm starts to form the set
A of roots of degenerate three-level subgraphs. While there exists in C a level-1
node a with a level-2 child in C, it forms the subgraph Da of C induced by a, its
level-2 children and its grandchildren. Da is temporarily removed from C and a
is added to A.

What remains must be two-level subgraphs. The algorithm forms the sub-
graph F induced on vertices in C, renaming each level-1 vertex to be a level-2
vertex, and forms the set E of linking edges, namely all edges of C not in any
NP , Da, or F . All removed components are restored, and the partitioning is
done. We must now reason about its effects, and discover enough structure to
justify the reconstruction algorithm. Figure 3 illustrates the decomposition of
the clique graph G from Figure 2, with linking edges appearing as dashed lines.

levels

mo a bc cd j g

dm

mop nmo ma abc cde cj jk dg gh 3

2

1c

bcd

NPDa F FF

Fig. 3. Partitioned clique graph G.

Since the label of a node a of the clique graph C of a 4-leaf power of a
fixed tree T can be both an i-neighbourhood and a j-neighbourhood for i 6= j,
we introduce the notion of a range (intuitively, the size of the visible part of

On Graph Powers for Leaf-Labeled Trees 133

the neighbourhood) and a middle (the center of the visible part of the neigh-
bourhood). More formally, the range of a is the length of the longest path in
T connecting leaves in cglabel(a). The middle of a, denoted middle(a), is the
vertex/edge of T that is in the middle of such a path.

Lemma 6. If c is a node of range k, then cglabel(c) is the k-neighbourhood of
its middle. ut
Proof. Any vertex in cglabel(a) is at distance at most k/2 from the middle,
otherwise a path of length greater than k connecting vertices in cglabel(a) can
be constructed. Furthermore, the longest path in an i-neighbourhood with cen-
ter vertex/edge v is of length at most i. To see this, let the endpoints of the
longest path be v1 and v2, and note that d(v1, v2) ≤ d(v1, v) + d(v, v2) ≤ i.
Thus cglabel(a) cannot be an i-neighbourhood for i < k, and it must be a k-
neighbourhood. ut
We can extract structure by examining middles in conjunction with levels of
nodes.

Lemma 7. For c a node in a clique graph C of the 4-leaf power of a tree T ,

1. if middle(c) is a vertex v for a level-3 node c, then cglabel(c) is the 4-
neighbourhood of v and v has at least two visible neighbours;

2. if middle(c) is a vertex v for a level-2 node c, then cglabel(c) is the 2-
neighbourhood of v and v is visible; and

3. if middle(c) is an edge e, then cglabel(c) is the 3-neighbourhood of e and both
endpoints of e are visible. ut
We are now ready for the main theorem on decompositions of clique graphs.

Theorem 1. The following conditions are true of the clique graph C of the
connected 4-leaf power G of a tree T :

1. For P1 and P2 distinct sets in the partition N , NP1 and NP2 do not intersect.
2. For a1 and a2 distinct vertices in A, Da1 and Da2 do not intersect.
3. For any P ∈ N and a ∈ A, NP and Da do not overlap.
4. Each NP is isomorphic to a (necessarily ideal) clique graph of an ideal sub-

tree.
5. In each Da, a has only one child and exactly two grandchildren.
6. F is a forest without edges connecting nodes of the same level.
7. A linking edge can connect either a level-1 node of a three-level subgraph and

a level-3 node of two-level subgraph (central linking edge), a level-2 node
(formerly level-1) of a two-level subgraph and a level-2 node of a three-level
subgraph (peripheral linking edge), or a level-2 node of a two-level subgraph
and a level-3 node of a three-level subgraph (marginal linking edge).

Proof. (sketch) (1) and (5) follow with a bit of reasoning about properties of
clique graphs already proven. (2) and (3) are direct consequences of the algo-
rithm. The hardest parts to prove are (4) and (6). (4) is proved by by identifying

134 N. Nishimura, P. Ragde, and D.M. Thilikos

an ideal subtree of T and then proving that its clique subgraph is isomorphic to
the component NP ; (6) is proved by showing that C2,3, which contains F as a
subgraph, is topologically equivalent to a forest F ∗ created from T . These last
two proofs occupy several typeset pages and make good use of Lemma 7. Finally,
(7) is proved using tools developed in the proof of (4). ut
Referring to vertices by their clique graph labels, in Figure 3, the edges from
m to ma and from c to cj are central linking edges, the edge from d to cd is a
peripheral linking edge, and the edge from a to abc is a marginal linking edge.

Finally, we can quantify the constants in the linear bounds on the number
of nodes and edges in the clique graph of a 4-leaf power.

Lemma 8. If G is the connected 4-leaf power of a tree T , then the clique graph
algorithm generates at most 6n nodes and at most 18n edges.

Proof. (sketch) T has at most 2n internal vertices since no two invisible vertices
can be adjacent (otherwise the 4-leaf power is disconnected) and every visible
vertex has at least one associated leaf. Since each node in the clique graph is a 2-,
3-, or 4-neighbourhood of an internal vertex of G, there are at most 6n possible
nodes in the clique graph. Each edge between a level-1 node and a level-2 node
is either part of a three-level subgraph or is a peripheral linking edge, so we can
prove that these form a tree and hence number at most 6n. Similarly, the edges
between level-2 and level-3 nodes number at most 6n.

We finally determine the number of edges that may be generated between
level-1 and level-3 nodes (some of which will be subsequently deleted in the
transitive reduction). There is an edge from a level-1 node (a 2-neighbourhood)
to each 4-neighbourhood containing it. Since the 2-neighbourhood of a vertex v
is contained in exactly the 4-neighbourhoods of v itself and all of v’s neighbours,
the total number of edges is the sum over all internal vertices of the degree of
the vertex plus one. This sum equals the number of internal vertices plus twice
the number of nonpendant edges in T , and the total is at most 6n. ut

5 Reconstructing the Underlying Tree of a 4-Leaf Power

We will briefly sketch the intuition behind our reconstruction algorithms be-
fore giving details. For k = 3, our assumption that G is connected makes its
clique graph ideal. As a result, simple local replacement in the clique graph
will construct a suitable tree. Due to space reasons, we omit the algorithm and
justification, which is also simple. For k = 4, things are not so simple. Each
subgraph of the partitioned clique graph is treated by an appropriate form of
local replacement, and the trees thus obtained are joined in a suitable manner.
For clarity, we refer to nodes in the clique graph and vertices in the created tree
T . In the course of the algorithm, vertices are labeled with subsets of V (G).

The algorithm first creates a partitioned clique graph. For each three-level
nondegenerate component N , it checks for the the following properties, which
(by an omitted technical lemma) must be true of any ideal clique graph of height

On Graph Powers for Leaf-Labeled Trees 135

3. Every level-1 node must have at least two children, and all its children must
have a unique common level-3 child. Every level-2 node must have exactly two
children and if it has two parents, its label is the union of theirs. Two or more
parents of a level-3 node must have a unique common parent.

If these conditions are satisfied, the algorithm creates a subtree TN for
each nondegenerate three-level component N as described below. TN is initially
empty. For each level-1 node a in N , it creates a vertex t(a) labeled cglabel(a). If
level-1 nodes a and b share a child, it creates the edge (t(a), t(b)). For each border
node a with parent b, it creates a vertex t(a) in TN labeled cglabel(a)\cglabel(b),
and the edge (t(a), t(b)). For each level-3 node a with two parents b and c such
that A = cglabel(a)\{cglabel(b)∪cglabel(c)} is nonempty, it creates a vertex t(a)
labeled A, and for d the common parent of b and c, it creates edge (t(a), t(d)).

Next each degenerate three-level component D is checked to ensure that it is a
degenerate ideal clique graph (one level-1 and one level-2 node, at most two level-
3 nodes), and from it a tree TD is formed as described below. For the level-1 node
a, the algorithm creates t(a) labeled cglabel(a); for the level-2 node b, it creates
t(b) labeled cglabel(b)\cglabel(a); and for the level-3 nodes c and d, it creates t(c)
labeled cglabel(c)\cglabel(b) and t(d) labeled cglabel(d)\cglabel(b), as well as
edges (t(d), t(a)), (t(a), t(b)), (t(b), t(c)). Figure 4 illustrates the subtrees derived
for the three-level components of Figure 3.

bc cd

abc bcd cde

c

mo

m

mop nmo ma

o

p a

m

n

b

c

d

e

Fig. 4. Subtree derived from three-level components of Figure 3.

The subgraph F induced on nodes in C not in any N or D must be a forest
of nodes at levels 2 and 3. If it is, subtrees of T are created from its components.
For each tree S in F , an initially empty subtree TS is created. For each level-2
node a in S, the algorithm creates a vertex t(a) labeled cglabel(a). For each
level-3 node a, if A = cglabel(a)\ ∪b parent of a cglabel(b) is empty, it creates
a vertex t(a) with the empty label, and an edge (t(a), t(b)) for each parent b
of a. Otherwise, it creates a vertex t(a) labeled A, a vertex va with the empty
label, the edge (t(a), va), and an edge (t(b), va) for each parent b of a. Figure 5
illustrates this process.

The union of all TN , TD, and TS forms a labeled forest L. Subtrees are
connected as specified by linking edges. For each central linking edge (a, b), a in

136 N. Nishimura, P. Ragde, and D.M. Thilikos

a

ma

g

d

dg gh

j

cj jk

j

d

ga

m kc h

Fig. 5. Subtrees derived from two-level components of Figure 2.

TN or TD, b in TS , it creates the edge (t(a), vb), and removes the label of t(a)
from the label of t(b). For each peripheral or marginal linking edge (a, b), a in
TN or TD, b in TS , it identifies the nodes t(a) and t(b).

Finally, the vertex label of each vertex v is replaced by a set of leaves with
those names adjacent to v. Figure 6 shows the reconstructed tree for the running
example. Although it is not identical to Figure 1 (as a clique graph can represent
more than one possible tree), it is differs only in the absence of invisible vertices
between g and h and between j and k.

o g

eanp

m

b

c

d

hk

j

Fig. 6. Tree generated from clique graph of Figure 2 by reconstruction algorithm. As
before, sets of leaf neighbours are indicated by letter labels, and invisible vertices by
squares.

The correctness of the algorithm follows from the two lemmas below. The
first shows that the 4-leaf power of the constructed tree T is a subgraph of G.
The second shows that G is a subgraph of the 4-leaf power of T .

Lemma 9. If leaves u and v are of distance at most four in T , then there exists
an edge (u, v) in G.

Proof. (sketch) In the tree T formed by the algorithm, we consider all possible
parents p and q of u and v such that the distance between p and q is at most
two, and show that in each case (u, v) must have been an edge in G. ut

Lemma 10. If (u, v) is an edge in G, then u and v are of distance at most four
in T .

On Graph Powers for Leaf-Labeled Trees 137

Proof. (sketch) Since u and v are leaves of T , it suffices to show that their
associated internal vertices are of distance at most two in T . The edge (u, v)
must be in some maximal clique of G, and so u and v appear together in some
label of a level-3 node a in C. The proof proceeds by looking at what happens to
node a during the algorithm, and in which vertex labels u and v can be found.

ut

Theorem 2. Given a graph G with n vertices and e edges, it is possible in time
O(n3) to determine whether or not G is a 4-leaf power or a 3-leaf power of a
tree T , and if so, to determine such a T .

Proof. (sketch) We have seen that clique graph generation takes O(n3) time,
and produces a clique graph with O(n) vertices and edges; partitioning and
local replacement then clearly take time O(n). ut

6 Conclusions and Further Work

Reconstructing the k-leaf powers of ideal trees for k > 4 would be easy (by gen-
eralizing the part of the reconstruction algorithm that deals with nondegenerate
three-level subgraphs) but less interesting than handling more general trees. We
believe the clique graph approach offers promise for the general case, though
more work is needed to quantify exactly how collapses occur as a result of invisi-
ble vertices. The main stumbling block appears to be the combinatorial explosion
in the number of cases in the analysis of the extension of results like Theorem 1,
which may be controlled by discovery of further general structure. It might also
be possible to extend these techniques to consider the case of weighted edges in
the tree T .

Among the objections to practical use of the algorithms is that the number of
trees that correspond to a particular k-leaf power could be very large. It might be
interesting to determine all corresponding trees, or perhaps all trees that satisfy
a given set of additional constraints.

Acknowledgements

We would like to thank Paul Kearney for suggesting this problem to us. We
are grateful to the anonymous referees whose helpful comments improved the
presentation of this paper.

References

BG91. J.-P. Barthélemy and A. Guénoche. Trees and Proximity Representations.
John Wiley and Sons, 1991.

CK98. D. G. Corneil and P. Kearney. Tree powers. Journal of Algorithms, 29:111–
131, 1998.

138 N. Nishimura, P. Ragde, and D.M. Thilikos

Gav72. R. Gavril. Algorithms for minimum coloring, maximum clique, minimum
covering by cliques, and maximum independent set for chordal graphs.
SIAM Journal on Computing, 1:180–187, 1972.

HKW99. M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeo-
morphic subtrees, with applications to computational evolutionary biology.
Algorithmica, 24(1):1–13, 1999.

HSW99. D. H. Huson, K. A. Smith, and T. Warnow. Estimating large distances in
phylogenetic reconstruction. Algorithm Engineering, pages 270–285, 1999.

KW99. J. Kim and T. Warnow. Tutorial on phylogenetic tree estimation.
manuscript, Department of Ecology and Evolutionary Biology, Yale Uni-
versity, http://ismb99.gmd.de/TUTORIALS/Kim/4KimTutorial.ps, 1999.

Lin92. N. Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21:193–201, 1992.

MS94. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete
Applied Mathematics, 54:81–88, 1994.

RTL76. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

TY84. R. E. Tarjan and M. Yannakakis. Simple linear-time algorihtms to test
chodality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 13:566–579, 1984.

Recognizing Weakly Triangulated Graphs
by Edge Separability

Anne Berry1, Jean-Paul Bordat1, and Pinar Heggernes2

1 LIRMM, 161 Rue Ada, F-34392 Montpellier, France
{aberry, bordat}@lirmm.fr

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
pinar@ii.uib.no

Abstract. We apply Lekkerkerker and Boland’s recognition algorithm
for triangulated graphs to the class of weakly triangulated graphs. This
yields a new characterization of weakly triangulated graphs, as well as a
new recognition algorithm which, unlike the previous ones, is not based
on the notion of 2-pair, but rather on the structural properties of the
minimal separators of the graph. It also gives the strongest relationship
to the class of triangulated graphs that has been established so far.

1 Introduction

Weakly triangulated graphs were introduced by Hayward [10] as a natural ex-
tension of the perfect class of triangulated graphs. A graph is triangulated, or
chordal, if it does not contain a chordless cycle on four or more vertices. A graph
is weakly triangulated if neither the graph nor its complement contains a chord-
less cycle on five or more vertices, or equivalently, the graph contains neither a
hole nor an antihole. A graph with no hole can fail to be perfect, but Hayward
proved that for weakly triangulated graphs perfection is preserved.

This class has given rise to a continuous flow of research [15], [22], [13], [14],
[3], [23], [7], [16]. In particular, time complexity for recognition of the class has
steadily improved over the years. Hayward [11] proposed an O(n5) recognition
algorithm for weakly triangulated graphs that checks for the presence of a hole
in the graph and then in its complement. This was improved to O(n4.376) by
Spinrad’s hole-finding procedure [21].

Hayward, Hoàng, and Maffray [15] characterized weakly triangulated graphs
by the presence of a 2-pair : a pair {a, b} of non-adjacent vertices such that every
chordless path from a to b has exactly two edges. Arikati and Rangan [1] gave an
efficient algorithm for finding a 2-pair, and Spinrad and Sritharan [22] used this
to improve the recognition to O(n2m) by repeatedly finding a 2-pair {a, b} and
adding the edge ab, until the graph becomes complete. Their idea is that adding
an edge between the vertices that make up a 2-pair preserves the property of
being weakly triangulated, because if {a, b} is a 2-pair, then a and b together
cannot belong to a hole or an antihole. Note that this also implies that an edge
ab which is a 2-pair of the complement graph (called a co-pair [16]) can likewise
be deleted without changing the property of being weakly triangulated.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 139–149, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

140 A. Berry, J.-P. Bordat, and P. Heggernes

Hayward [13], [14], showed the presence of a separable set of edges, called a
handle, which form a connected subset such that all the edges of the handle see
all the vertices of the corresponding separator. This notion was used recently by
Hayward, Spinrad, and Sritharan [16] to give an O(m2) recognition algorithm,
which finds a set of co-pairs by computing a handle of a handle recursively, and
repeatedly removing a co-pair, until no edge is left in the graph.

In this paper, we introduce an algorithm for recognition of weakly trian-
gulated graphs that is not based on the notion of 2-pair or co-pair. Several
attempts have been made to establish a structural relationship between triangu-
lated graphs and weakly triangulated graphs. We establish a strong connection
between these two classes of graphs using the notion of LB-simpliciality, which
we will define in Section 3. The proof of this new structural relationship and a
recognition algorithm based on this result are given in Section 4. This introduces
a totally new and different approach to the recognition of weakly triangulated
graphs. We define LB-simpliciality for edges, and we simply check that all the
edges of the given graph are LB-simplicial. Although we believe that our algo-
rithm can be implemented to match the time bound O(m2), the proven time
complexity is O(n2m). Among the strengths of the presented algorithm are its
simplicity and elegance. In addition, the algorithm is highly parallel in spirit. The
edges of the given graph can be checked for the desired property independently
of each other in any order, or in particular in parallel. None of the previous
algorithms for recognition of weakly triangulated graphs have this property.

2 Preliminaries

All graphs in this work are undirected and finite. A graph is denoted G = (V, E),
with n = |V |, and m = |E|. G(A) denotes the subgraph induced by a vertex set
A ⊂ V , but we will often denote it simply by A when there is no ambiguity;
G(A) denotes the subgraph induced by A in the complement of G.

A graph is complete if all of its vertices are pairwise adjacent. A clique in a
graph is a complete subgraph. We denote a path on k vertices by Pk. A chord
is an edge between two non-consecutive vertices of a path or a cycle. A hole
is an induced chordless cycle on five or more vertices, and an antihole is the
complement of a hole. In this paper, we will regard all subgraphs as vertex sets.

The neighborhood of a vertex x is N(x) = {y 6= x | xy ∈ E}; we will say
that a vertex x sees another vertex y iff xy ∈ E. The neighborhood of a set of
vertices A is N(A) = ∪x∈AN(x) − A. A vertex is simplicial if its neighborhood
is a clique. For a set of vertices A, a confluence point is a vertex of A that sees
all the vertices in N(A).

In order to have analogous definitions for edges, we regard an edge ab as a
set of vertices {a, b}. The neighborhood of an edge is a vertex set. We will let
N(ab) denote the neighborhood of edge ab, i.e. N({a, b}). Hence, an edge ab sees
a vertex x if either a or b (or both) sees x.

For X ⊆ V , C(X) denotes the set of connected components of G(V − X)
(connected components are also vertex sets). S ⊂ V is called a separator if

Recognizing Weakly Triangulated Graphs by Edge Separability 141

|C(S)| ≥ 2, an ab-separator if a and b are in different connected components of
C(S), a minimal ab-separator if S is an ab-separator and no proper subset of S
is an ab-separator, and a minimal separator if there is some pair {a, b} such that
S is a minimal ab-separator. Equivalently, S is a minimal separator if there exist
C1 and C2 in C(S) such that N(C1) = N(C2) = S. A component C of C(S) is
called full if N(C) = S. S(G) denotes the set of minimal separators of G. A set
A ⊂ V is separable if N(A) is a minimal separator.

3 Connections between Triangulated
and Weakly Triangulated Graphs

The notion of a simplicial vertex in a triangulated graph was introduced inde-
pendently by Dirac [8] and by Lekkerkerker and Boland [18] as an extension of
the notion of a leaf in a tree, and is the basis for the following theorem by Dirac:

Theorem 1. [8] Any non-complete triangulated graph has at least two non-
adjacent simplicial vertices.

This led Fulkerson and Gross [9] to define their famous and characterizing sim-
plicial elimination scheme:

Characterization 1. [9] A graph is triangulated iff one can repeatedly find a
simplicial vertex and delete it from the graph, until no vertex is left.

Hayward [12] proposed a construction scheme for weakly triangulated graphs
which is inspired by this elimination scheme. He notes the following: 1. Trian-
gulated graphs can be generated by repeatedly adding a vertex which is not the
middle vertex of a P3; this added vertex is precisely a simplicial vertex. 2. Like-
wise, weakly triangulated graphs can be generated by repeatedly adding an edge
which is not the middle edge of a P4. This result shows that an edge in a weakly
triangulated graph plays a role similar to the one a vertex plays in a triangulated
graph.

Another interesting property of the same essence was suggested by Kratsch
[17]. In a triangulated graph, for every minimal separator S, every component
C of G(V − S) contains a confluence point. Kratsch showed that in a weakly
triangulated graph, for every minimal separator S, every full component C con-
tains either a confluence point or a confluence edge, i.e. an edge e such that
N(C) ⊆ N(e). Independently of this result, Hayward [13] introduced the stronger
notion of S-saturating edge, which will be defined in Section 4.

Our contribution in this paper is the extension of a characterization of tri-
angulated graphs due to Lekkerkerker and Boland [18], which implicitly uses
separation. In a paper contemporary to Dirac’s, they show that interval graphs
are the graphs that are both triangulated and AT-free (i.e. devoid of asteroidal
triples). Their search for an efficient recognition algorithm led them to study
triangulated graphs and to propose a characterization for these, which, with the
hindsight we now have on minimal separation, can be expressed in the following
fashion:

142 A. Berry, J.-P. Bordat, and P. Heggernes

Characterization 2. [18] A graph is triangulated iff for every vertex x, all the
minimal separators included in N(x) are cliques.

In order to simplify notations, we use the following definition (the abbreviation
LB refers to Lekkerkerker-Boland in all contexts throughout the paper):

Definition 1. A vertex is LB-simplicial if all the minimal separators included
in its neighborhood are cliques.

Characterization 2 can thus be reformulated in the following way:

Characterization 3. A graph is triangulated iff every vertex is LB-simplicial.

Linear-time algorithms for the recognition of triangulated graphs are based
on Characterization 1, as they require computing a simplicial ordering, which
was first done efficiently by the famous algorithm known as LexBFS, due to
Rose, Tarjan, and Lueker [20].

Recently, Berry, Bordat, and Heggernes [2], [6], used Characterization 3 to
compute a minimal triangulation of a graph by checking (in an arbitrary order)
the vertices for LB-simpliciality, and adding the necessary edges whenever an
anomaly is detected.

In this paper, we extend the notion of LB-simplicial vertex to that of LB-
simplicial edge, and show how we can derive an elegant and straightforward
recognition algorithm for weakly triangulated graphs by simply checking each
edge for LB-simpliciality. Thus, by extending Characterization 3, we will prove
in the next section that a graph is weakly triangulated iff every edge is LB-
simplicial.

4 Weakly Triangulated Graph Recognition

In this section, we extend Lekkerkerker and Boland’s algorithm for the recogni-
tion of triangulated graphs to weakly triangulated graphs.

4.1 Lekkerkerker and Boland’s Algorithm for Triangulated Graph
Rrecognition

Translated into our terminology, Lekkerkerker and Boland’s algorithm is the
following:

Recognizing Weakly Triangulated Graphs by Edge Separability 143

Algorithm LB-TG

input : A graph G = (V, E), with |V | = n and |E| = m.
output : An answer to the question: “Is G triangulated?”

begin
foreach v ∈ V do

if v is not an LB-simplicial vertex then
return(G is not triangulated);

return(G is triangulated);
end

Checking for LB-simpliciality of a vertex x requires computing the set of
minimal separators included in the neighborhood of x. In general, generating
minimal separators can be done by computing the neighborhoods of the con-
nected components resulting from the removal of certain vertex sets [5], [23].
In [18] the minimal separators in the neighborhood of vertex x are computed
in the following way: for each component C in C(x ∪ N(x)), compute N(C),
which is a minimal separator included in N(x). With the following theorem,
we give a formal description of all the minimal separators included in a clique
neighborhood.

Theorem 2. Let K be a clique of a graph G. The set of minimal separators
included in N(K) is exactly M = {N(C) | C ∈ C(K ∪ N(K))}.
Proof. For each C ∈ C(K ∪ N(K)), N(C) is a separator that separates C from
K. Thus G(V −N(C)) has at least two components; one is C, and another is the
one containing K. Since N(C) ⊆ N(K), both these components have the same
neighborhood, N(C), and consequently N(C) is a minimal separator. We have
to also show that there are no minimal separators included in N(K) outside of
M . Assume that S ⊆ N(K) is a minimal separator. Then there must exist at
least two components C1 and C2 in G(V − S) such that N(C1) = N(C2) = S
(i.e. full components). Since K is a clique, and S ⊆ N(K), the whole of K must
be included in some full component. Let C1 be a full component not containing
K. Since C1 cannot contain any neighbor of K, C1 must belong to C(K ∪N(K))
and the proof is complete.

4.2 A Characterization of Weakly Triangulated Graphs by
LB-Simplicial Edges

Our approach is based on Theorem 1 from Hayward’s original paper [10], which
we express as:

Theorem 3. [10] Let G be a weakly triangulated graph, and let S be a minimal
separator of G such that G(S) is connected. Then in each full component C of
C(S), there is a vertex that sees all the vertices of S.

144 A. Berry, J.-P. Bordat, and P. Heggernes

Hayward in [13] derives the following concept:

Definition 2. [13] Given a set S of vertices, an edge e of G(V −S) is said to be
S-saturating if, for each component Sj of G(S), at least one endpoint of e sees
all vertices of Sj.

and shows that in each full component of a minimal separator in a weakly tri-
angulated graph, there is either a confluence point or an S-saturating edge.

The following definition is central for the main result of this paper. We define
an LB-simplicial edge based on the role such an edge plays in a weakly triangu-
lated graph. The importance of this notion for weakly triangulated graph recog-
nition is analogous to that of an LB-simplicial vertex for triangulated graphs.

Definition 3. An edge e of E is LB-simplicial if, for each minimal separator S
included in the neighborhood of e, e is S-saturating.

We will quite naturally consider as LB-simplicial an edge e such that e∪N(e) =
V .

According to Theorem 2, the set of minimal separators included in the neigh-
borhood of an edge e can be computed in the following fashion: for each com-
ponent C of C(e ∪ N(e)), compute N(C).

Theorem 4. (Main Theorem) A graph G = (V, E) is weakly triangulated iff
every edge of E is LB-simplicial.

Proof. We will also prove a slightly stronger property, namely that an LB-
simplicial edge cannot belong to a hole.

⇐ Let G be a graph in which every edge is LB-simplicial.

1. Suppose that G has a hole x1x2...xk, k ≥ 5. Clearly, x4, ..., xk−1 belong
to the same component C of C(x1x2 ∪ N(x1x2)), and x3 and xk belong to
the same connected component S1 of G(N(C)), where N(C) is a minimal
separator and a subset of N(x1x2). As x2 fails to see xk and x1 fails to see
x3, edge x1x2 cannot be N(C)-saturating, which contradicts the assumption
that x1x2 is an LB-simplicial edge. Note that this argument holds for any
edge of a hole, thus no edge of a hole can be LB-simplicial.

2. Suppose that G has an antihole which is the complement of a hole on
x1x2...xk, k > 5, (for k = 5, x1x2...x5 is also a hole). Thus x2xk is an
edge that fails to see x1. Let C be the component of C(x2xk ∪ N(x2xk))
containing x1, so that N(C) is a minimal separator included in N(x2xk).
Vertices x3, ..., xk−1 are all in the neighborhood of both x1 and x2xk, thus
they all belong to N(C). Clearly, x3, ..., xk−1 belong to the same connected
component S1 of G(N(C)). But xk fails to see xk−1 and x2 fails to see x3,
thus edge x2xk is not N(C)-saturating, and fails to be LB-simplicial.

⇒ Let G be a weakly triangulated graph, and suppose some edge ab fails
to be LB-simplicial. Let S = N(C) be a minimal separator contained in the
neighborhood of ab for which ab fails to be S-saturating, let S1 be a connected

Recognizing Weakly Triangulated Graphs by Edge Separability 145

component of G(S) such that neither a nor b sees all the vertices of S1, and
consider the subgraph G′ induced by C ∪ S1 ∪ ab. As any subgraph of a weakly
triangulated graph is itself weakly triangulated, G′ must be weakly triangulated.
S1 is a minimal separator of G′, with 2 full components, {a, b} and C. G′(S1) is
connected, and for which ab is the only edge. Neither a nor b sees all the vertices
of S1, which contradicts Theorem 3.

4.3 Recognition Algorithm

Theorem 4 yields a recognition algorithm as direct application:

Algorithm LB-WT

input : A graph G = (V, E), with |V | = n and |E| = m.
output : An answer to the question: “Is G weakly triangulated”, and if G is

not, an edge e that belongs to a hole or an antihole.

begin
foreach e ∈ E do

if e is not an LB-simplicial edge then
return(G is not weakly triangulated, and e belongs to a hole or
an antihole);

return(G is weakly triangulated);
end

Remark 1. In a weakly triangulated graph, minimal separators which are not in
any edge neighborhood are an exception; this means that every component in
C(S) is restricted to a single (confluent) vertex, thus the graph would be of diam-
eter two. Consequently, just as in a triangulated graph every minimal separator
is included in some vertex neighborhood, in a non-trivial weakly triangulated
graph, every minimal separator is included in some edge neighborhood. Thus
LB-type algorithms actually scan the whole set of minimal separators and test
them. Just as minimal separators in a triangulated graph are characterized as
cliques included in the neighborhood of a vertex, the minimal separators of a
weakly triangulated graph can be characterized by the LB-simplicial edges whose
neighborhood contains them [4].

Example 1. In Figure 1, we use the first example from Hayward’s original paper
[10]. This graph is weakly triangulated, isomorphic to its complement, and devoid
of clique separators, and thus of simplicial and co-simplicial vertices. We will only
demonstrate LB-simpliciality of one edge.

LB-simpliciality testing of edge bh: N(bh) = {d, e, f, g}, and C(N(bh)∪bh) =
{a, c}. The only minimal separator of G included in the neighborhood of bh is

146 A. Berry, J.-P. Bordat, and P. Heggernes

N({a, c}) = {d, e, g}. Connected components of G({d, e, g}) are {d} and {e, g}.
Vertex h sees both vertices in {e, g}, and b sees d. Hence bh is {d, e, g}-saturating
and thus LB-simplicial.

Note that de ∪ N(de) = V , thus edge de will generate no minimal separator.
The total set of minimal separators is S(G) = {{a, d, g}, {a, d, h}, {b, e, g},
{b, e, h}, {c, e, g}, {d, e, g}, {d, e, h}, {d, f, h}}.

ab

cf

de

gh

Fig. 1. A weakly triangulated graph.

Remark 2. Note that, in Algorithm LB-WT, the edges are processed in an ar-
bitrary order. We would thus like to draw the reader’s attention to the parallel
spirit of this algorithm. Since no edges are added, and the LB-simpliciality of an
edge does not depend on that of any other edge, LB-simpliciality testing for all
edges can be done in parallel. For a shared memory parallelization, each proces-
sor that becomes idle picks an unprocessed edge from the global queue of edges,
and checks whether this edge is LB-simplicial. Every processor is able to read the
graph which is stored globally, whereas each processor locally computes the com-
ponents of G(V −e∪N(e)) and all the information that is necessary to establish
the LB-simpliciality of the edge being checked. None of the previous recognition
algorithms have the property that edges or vertices of the graph can be processed
independently and in an arbitrary order. Moreover, the straightforward parallel
implementation described here can be enhanced along the guidelines presented
in the complexity analysis given in the next subsection.

4.4 Complexity

For each of the m edges ab in E, computing ab ∪ N(ab) requires O(n) time.
Computing the minimal separators contained in the neighborhood of ab requires
computing the connected components of C(ab∪N(ab)) as well as their neighbor-
hoods in G, according to Theorem 2, and this can be done in a single O(m)-time
graph search for each edge ab. We will encounter at most n minimal separators
included in the neighborhood of ab. Moreover, the sum of the number of vertices
in these separators will be less than m for each edge ab. Thus for each edge ab,

Recognizing Weakly Triangulated Graphs by Edge Separability 147

encountering the minimal separators included in N(ab) can be done in O(m+n)
time, and at most O(n) separators will be encountered.

One problem is that we may encounter the same separator many times, and
we do not want to keep several copies of the same separator. Since each edge
encounters at most n separators, we might have a total of mn separators if we
allow multiple copies. However, it is shown in [4] that the number of minimal
separators in a weakly triangulated graph is at most m+n. In order to avoid mul-
tiple copies, we use a suitable data structure to memorize the minimal separators
and their co-connected components. Such a structure is described by Nourine
and Raynaud [19] (see also [5]). It guarantees that, if the number of separators
kept in the structure is O(m), then in O(n) time, we can check whether each
newly encountered separator is already in the structure, and if not, insert it in
the structure.

Let us look in more detail into how the LB-simpliciality testing of an edge
e = ab can be done:

foreach x ∈ N(e) do
if x sees only a then l(x) = 1;
if x sees only b then l(x) = 2;
else l(x) = 3;

foreach S ⊆ N(e) do
if S is not yet in S(G) then

insert S in S(G);
compute the set of connected components of G(S) and insert them in
the data structure;

foreach component Sj of G(S) do
if ∃{x, y} ∈ Sj | l(x) = 1 and l(y) = 2 then

return(e is not LB-simplicial);

return(e is LB-simplicial);

The first foreach loop requires O(n) time. For the second foreach loop,
because a weakly triangulated graph has at most n + m minimal separators, the
outer loop must be terminated if the number of minimal separators stocked in
the data structure exceeds n + m. In this case, we can readily conclude that the
given graph is not weakly triangulated. In any case, each outer loop has at most
O(n) iterations.

Assuming the above mentioned restriction, processing each minimal separa-
tor S requires:

1. – If S is not in S(G): a search and an insertion: O(n) per separator, and
then the computation of the set of co-connected components: O(m) per

148 A. Berry, J.-P. Bordat, and P. Heggernes

separator. These operations are only done once per separator, which en-
sures a global complexity of O(m2) for this.

– If S is in S(G): a search and retrieval of the set of co-connected com-
ponents from the data structure: O(n). These operations may have to
be done several times for each separator, thus this takes O(n2) for each
edge since there are at most O(n) separators in N(e) (or, equivalently,
O(n) iterations in the outer loop).

2. In either case we must check whether edge e is S-saturating: O(Σ|S|, S ⊆
N(e)), i.e. O(m) for each edge e.

The global time complexity is thus O(n2m), since there are m steps in Algo-
rithm LB-WT each corresponding to an edge of the given graph. Note that only
the second part of Case 1 mentioned above requires O(n2) time for each edge,
which leads us to conjecture that an amortized complexity analysis would yield
a global O(m2) time complexity.

5 Conclusion

We have shown new structural properties for the class of weakly triangulated
graphs, and we have established a strong relationship between this class and
triangulated graphs. Based on this novel insight, we have introduced a new
recognition algorithm for weakly triangulated graphs, which is easy to follow and
understand, and which does not use any of the previously introduced techniques
for recognition. Though we have not improved the recent current recognition
complexity, our algorithm represents a new step towards a better understanding
of this class. In addition, our algorithm possesses a great potential for parallel
implementations.

We leave open the question of computing a “weak triangulation” of an arbi-
trary graph, which would help generating weakly triangulated graphs arbitrarily.

Acknowledgments

The authors thank both Frédéric Maffray and Jerry Spinrad for open discussions
on weakly triangulated graphs.

References

1. S. Arikati and P. Rangan. An efficient algorithm for finding a two-pair, and its ap-
plications. Discrete Applied Mathematics and Combinatorial Operations Research
and Computer Science, 31, 1991.

2. A. Berry. A wide-range efficient algorithm for minimal triangulation. In Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99).

3. A. Berry. Désarticulation d’un graphe. PhD thesis, LIRMM, Montpellier, France,
1998.

Recognizing Weakly Triangulated Graphs by Edge Separability 149

4. A. Berry, J.-P. Bordat. Minimal separators in a weakly triangulated graph.
Res. Rep. LIRMM, April 2000.

5. A. Berry, J.-P. Bordat and O. Cogis. Generating all the minimal separators of a
graph. In Proceedings of WG’99.

6. A. Berry, J.-P. Bordat and P. Heggernes. Computing a minimal triangulation from
an arbitrary ordering. In preparation for journal submission.

7. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in of weakly triangulated
graphs. In LNCS 1563, Proceedings 16th Symposium on Theoretical Aspects of
Computer Science (STACS’99). Submitted to SIAM J. Comput.

8. G.A. Dirac. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg, 25:71–76,
1961.

9. D.R. Fulkerson and O.A. Gross. Incidence matrixes and interval graphs. Pacific
Journal of Math., 15:835–855, 1965.

10. R. Hayward. Weakly triangulated graphs. J. Comb. Theory, 39:200–208, 1985.
11. R. Hayward. Two classes of perfect graphs. PhD thesis, School of Computer

Science, McGill University, 1987.
12. R. Hayward. Generating weakly triangulated graphs. J. Graph Theory, 21:67–70,

1996.
13. R. Hayward. Meyniel weakly triangulated graphs - 1: co-perfect orderability. Dis-

crete Applied Mathematics, 73:199–210, 1997.
14. R. Hayward. Meyniel weakly triangulated graphs - 2: A theorem of Dirac. Discrete

Applied Mathematics, 78:283–289, 1997.
15. R. Hayward, C. Hoàng, and F. Maffray. Optimizing weakly triangulated graphs.

Graphs and Combinatorics, 5:339–349, 1989.
16. R. Hayward, J. Spinrad, and R. Sritharan. Weakly chordal graph algorithms via

handles. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’2000).

17. D. Kratsch. The structure of graphs and the design of efficient algorithms. In
Habilitation Thesis, Fakultät für Mathematik und Informatik der Friedrich-Schiller
Universität Jena, 1995.

18. C.G. Lekkerkerker and J.C. Boland. Representation of a finite graph by a set of
intervals on the real line. Fund. Math., 51(45–64), 1962.

19. L. Nourine and O. Raynaud, A Fast Algorithm for building Lattices. Information
Processing Letters, 71:199–20, 1999.

20. D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:146–160, 1976.

21. J. Spinrad. Finding large holes. Information Processing Letters, 39(4):227–229,
August 1991.

22. J. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Dis-
crete Applied Mathematics and Combinatorial Operations Research and Computer
Science, 59, 1995.

23. I. Todinca. Aspects algorithmiques des triangulations minimales des graphes. PhD
thesis, LIP, ENS Lyon, 1999.

Caching for Web Searching

Bala Kalyanasundaram?,1, John Noga??,2, Kirk Pruhs? ? ?,3,
and Gerhard Woeginger†,2

1 Dept. of Computer Science
Georgetown University

Washington D.C. 20057 USA
kalyan@cs.georgetown.edu

2 Department of Mathematics
Technical University of Graz

Graz, Austria
{noga, woeginger}@opt.math.tu-graz.ac.at

http://www.opt.math.tu-graz.ac.at/woe/index.html

3 Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA. 15260 USA
kirk@cs.pitt.edu

http://www.cs.pitt.edu/˜kirk

Abstract. We study web caching when the input sequence is a depth
first search traversal of some tree. There are at least two good motiva-
tions for investigating tree traversal as a search technique on the WWW:
First, empirical studies of people browsing and searching the WWW have
shown that user access patterns commonly are nearly depth first traver-
sals of some tree. Secondly, (as we will show in this paper) the problem
of visiting all the pages on some WWW site using anchor clicks (clicks
on links) and back button clicks — by far the two most common user
actions — reduces to the problem of how to best cache a tree traversal
sequence (up to constant factors).
We show that for tree traversal sequences the optimal offline strategy
can be computed efficiently. In the bit model, where the access time of a
page is proportional to its size, we show that the online algorithm LRU is
(1+ 1

ε
)-competitive against an adversary with unbounded cache as long as

LRU has a cache of size at least (1 + ε) times the size of the largest item
in the input sequence. In the general model, where pages have arbitrary
access times and sizes, we show that in order to be constant competitive,
any online algorithm needs a cache large enough to store Ω(log n) pages;
here n is the number of distinct pages in the input sequence. We provide
a matching upper bound by showing that the online algorithm Landlord
is constant competitive against an adversary with an unbounded cache

? Supported in part by NSF Grant CCR-9734927 and by ASOSR grant F49620010011.
?? Supported by the START program Y43-MAT of the Austrian Ministry of Science.

? ? ? Supported in part by NSF Grant CCR-9734927 and by ASOSR grant F49620010011.
† Supported by the START program Y43-MAT of the Austrian Ministry of Science.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 150–163, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Caching for Web Searching 151

if Landlord has a cache large enough to store the Ω(log n) largest pages.
This is further theoretical evidence that Landlord is the “right” algorithm
for web caching.

1 Introduction

1.1 Problem Statement and Motivation

Web caching is the temporary local storage of WWW pages by a browser for
later retrieval. From the user’s point of view, the primary benefit of caching
is reduced latency, as the time to access locally stored objects is minimal. We
adopt the following standard general model of web caching [1,5,8,14]:

Web Caching Problem Statement: The browser is given an online sequence
S of page requests, where each page pi ∈ S has a size s(i) (say, in bytes) and
an access time t(i) that is required if pi is not cached. If the requested page
pi is not in the cache (this is called a cache miss), then the time to access pi

is t(i). Otherwise, if pi is in the cache (this is called a cache hit), then pi may
be accessed instantaneously. After the request of page pi, but before the next
request, the algorithm may evict/decache any arbitrary collection of pages and
put pi in its cache. At no time can the aggregate sizes of the pages in cache
exceed the fixed cache size k. The objective function is to minimize the total
access time.

Note that we adopt the non-forced caching model here, that is, the algorithm
need not cache an accessed page. The differences between the results for forced
caching and for non-forced caching models are negligible.

All of the previous work Web Caching that we are aware of assumes that
the sequence S may be arbitrary. In this paper we consider the case that S is
a depth first traversal of some tree T of pages. (Note that this restriction on
the input allows us to obtain results that are stronger in a fundamental way.)
We are motivated to consider this problem for two reasons. The first reason is
that empirical studies of people browsing and searching the WWW have shown
that user access patterns are commonly nearly depth first tree traversals [4,7,12].
That is, people tend to visit new pages via an anchor click (more than 50% of
user actions are anchor clicks [4]), and to revisit pages using the back button
(more than 40% of user actions are back button clicks [4]). No other action
accounts for more than 2% of users’ actions [4]. Secondly, we show that the
problem of visiting all the pages on some WWW site using anchor clicks and
the back button essentially reduces to the problem of how to best cache a tree
traversal sequence. This may be viewed as providing theoretical justification for
tree traversal as a search technique on the WWW.

Site Search Problem Statement: Informally, the searcher starts at the home
page ph (say for example, www.microsoft.com) of some WWW site (say Mi-
crosoft’s WWW site) with unknown topology. The searcher’s goal is to visit
every page reachable from the home page using anchors and the back button.

152 B. Kalyanasundaram et al.

More formally, an online algorithm starts at some node in an initially unknown
directed graph G. Each node in G is a page pi with size s(i) and access time
t(i). We assume that every node in G is reachable from the start page. When the
online algorithm visits a node pi it learns s(i), t(i), and the names of each page
pj such that (pi, pj) is a directed edge in G. If pi is not in the cache then the
online algorithm must pay t(i), otherwise the online algorithm pays nothing for
this visit. After visiting pi, the algorithm may decache any arbitrary collection
of pages and put pi in its cache. At no time may the aggregate sizes of the pages
in the cache exceed k. After making its caching decision the online algorithm
may make one of two moves. First, it can push pi onto a stack S, and then move
to a page pj with the property that (pi, pj) is an edge in G. Second, it can pop
the top page pj off of S and return to pj . The online algorithm must visit every
page and return to the the initial home page ph. (Note that the requirement that
the online algorithm return to the initial page is for convenience. Dropping this
requirement will only change the competitive ratio by at most a factor of two.)
The objective function is to minimize the aggregate access time of those visits
where the visited page was not cached at the time of the visit.

Thus Site Search requires that the online algorithm must specify both a
search strategy and a caching strategy. We show that, without loss of generality,
online algorithms may restrict themselves to search strategies that traverse trees.
That is, we show that the competitive ratio of every online algorithm A for
the Site Search Problem is Θ

(
maxT∈Tn

A(T)
t(T)

)
, where Tn is the collection of all

directed rooted trees on n nodes with edges directed away from the root, A(T)
is the total access time for algorithm A on the tree T assuming that it starts at
the root of T , and t(T) =

∑
pi∈T t(i) is the aggregate access times of the nodes

in T .
Note that there are some differences between Site Search on trees and Web

Caching on depth first tree traversal sequences. The online algorithm in Site
Search may decide how it will traverse the tree T (this traversal need not be a
depth first search traversal), while the online algorithm for Web Caching does
not have this power. In Site Search, the online algorithm learns the degree of a
node when it visits that node, which is not the case in Web Caching on depth
first tree traversals. And most importantly, the competitive ratio for an online
algorithm A for Site Search on a tree compares A(T) against the aggregate
access times t(T) of the pages in T , while for Web Caching on depth first tree
traversal sequences S of T , the competitive ratio compares A(S) against the
optimal offline cost. We will show that the optimal offline cost may be much
higher than t(T).

There are three special cases of the caching models that have been studied
previously [1,8]. In the bit model the access time is assumed to equal the size of
the page. This model would be appropriate if the pages are large and the delay
in the network is small. In the cost model the size of each page is one, while
the access times are allowed to be arbitrary. This is an appropriate model if the
page sizes are roughly equal. For our purposes in this paper, the cost model is
really no easier for online algorithms than the general model. In the fault model

Caching for Web Searching 153

the access time for each page is constant, while page sizes may be arbitrary.
The fault model will not interest us here since it is obvious that every online
algorithm without a cache is constant competitive against an adversary with an
unbounded cache in the fault model for Web Caching on depth first tree traversal
sequences.

1.2 Our Results

Our results differ from prior work on caching in a fundamental way. In particular,
we bound the size of cache required by an online algorithm in order to be constant
competitive against an offline optimal algorithm that uses an unbounded amount
of cache.

In section 2, we give the following foundational results. We show that the
competitive ratio of any online algorithm for Site Search is Θ

(
maxT∈Tn

A(T)
t(T)

)
.

We give a pseudo-polynomial time offline dynamic programming algorithm to
compute Opt(S) when S is a depth first tree traversal. This stands in contrast
to offline Web Caching for general sequences, where no pseudo-polynomial time
algorithm is known [1].

In section 3, we investigate Site Search and Web Caching under the bit model.
For Web Caching, we show that the online algorithm LRU is (1+ 1

ε)-competitive
against an adversary with unbounded cache as long as LRU has a cache of size at
least (1 + ε)L, where L is the size of the largest item in the input sequence. Note
that an algorithm with unbounded cache only has to pay to access each item
once; so another way to state this result is that the total access time for LRU
is at most (1 + 1

ε) times the aggregate access times of the pages regardless of
how often these pages are accessed. Similarly, for Site Search we show that the
online algorithm that uses a depth first traversal and LRU is (1+ 1

ε)-competitive
against an adversary with an unbounded cache as long as LRU has a cache of
size at least (1 + ε)L.

In section 4, we give lower bounds on the competitive ratios for Web Caching
and Site Search in the cost model (obviously these also hold in the general
model). We first show a lower bound of Ω

(
min(k, n1/(k+1))

)
on the competitive

ratio of any deterministic online algorithm for Web Caching. We then show a
lower bound of Ω

(
max(1

k , k
log n)n1/(k+1)

)
on the competitive ratio of any deter-

ministic online algorithm for Site Search. We accomplish this by showing that
maxt∈Tn

Optk(T)
t(T) is Ω

(
max

(
1
k , k

log n

)
n1/(k+1)

)
, where Optk(T) is the opti-

mal offline cost for Site Search on T . Thus these results show that for both Web
Caching and Site Search, an online algorithm needs a logarithmically sized cache
to be constant competitive.

In section 5, we analyze the online algorithm Landlord (this algorithm is a
generalization of LRU and is also called Greedy-Dual-Size in the literature) [3],
[5], [14]. Although we will state all results in the cost model, the results hold for
the general model if k is replaced by k

L . We show that Landlord is

O
(

min
(
k, log n

k n1/(k+1)
))

-competitive for Web Caching on depth first tree

154 B. Kalyanasundaram et al.

traversal sequences. We also show that the online algorithm that uses a depth
first traversal and Landlord is O

(
min

(
k, log n

k

)
n1/(k+1)

)
-competitive for Site

Search. The proper way to interpret this result is that for both Site Search and
for Web Caching on tree sequences, Landlord is constant competitive against
an adversary with an unbounded cache if Landlord has a cache large enough
to hold at least log n pages. That is, a multiplicative increase in the number
of pages only requires an additive increase in cache size to remain competitive
against an adversary with infinite cache. Yet another way to interpret this result
is that the number of pages that an adversary has to use to really fool Landlord
is exponential in the cache size.

To date, Landlord appears to be the theoretical champion for Web Caching
on arbitrary sequences [3,5,14]. Section 4 and section 5 together show that even if
Landlord is not the theoretical champion for depth first tree traversal sequences,
then at least it is not far away from being the champion. That is, even if one
was going to design an online algorithm specifically for depth first tree traversal
sequences, one could not do a whole lot better than Landlord. We take this
as further theoretical evidence that Landlord is the “right” algorithm for Web
Caching.

In section 6 we introduce a new algorithm Slumlord for Web Caching on
depth first tree traversal sequences. Slumlord is a variation of the algorithm
Landlord in that instead of raising the rent on every page in the cache, Slumlord
in some sense only raises the rent on the one page that can least afford to pay
(this uses the rent analogy from [14]). Thus Slumlord is a much more conservative
algorithm than Landlord as it will wait longer to evict pages. We show that all
of the analysis results on Landlord from section 5 also hold for Slumlord. Our
purpose for introducing Slumlord is that we have some reason to suspect that in
some cases, i.e. for some particular relationships between k and n, Slumlord may
perform slightly better than Landlord on depth first tree traversal sequences.

Notice that LRU is what we will call an oblivious algorithm, in that it ignores
the access times of the pages. In section 7, we consider oblivious algorithms in the
cost model. We show that the online algorithm Least Frequently Evicted (LFE)
is optimally competitive among oblivious online algorithms for Web Caching on
tree traversal sequences. Furthermore, for Site Search we show that the online
algorithm that uses a depth first traversal and LFE is strongly competitive if
k = O(1). An online algorithm A is strongly competitive for a problem P if the
competitive ratio of A is at most a constant factor worse than the competitive
ratio of any other online algorithm for P. This is in contrast to Site Search in the
cost model with k = ω(1), and to Web Caching in the cost model over all ranges
of k, where we show that there are no strongly competitive oblivious algorithms.

Due to space limitations, most of the proofs could not be included in this
version of the paper. These proofs may be found in the full version of the paper,
on the third author’s home page.

Caching for Web Searching 155

1.3 Related Results

We first discuss known results for offline Web Caching. It is easy to see that Web
Caching in the bit model (and in the general model) is NP-hard in the ordinary
sense. In [8] polynomial-time offline O(log k)-approximation algorithms are given
for the bit model and for the fault model. In [1] a polynomial-time offline O(1)-
approximation is given, provided that the polynomial time algorithm is given
additional O(L) cache, where L is the size of the largest page. Additionally in
[1] a polynomial time offline O(log(k + L))-approximation algorithm is derived.

Next, let us consider online Web Caching. The algorithm Greedy-Dual-Size
is introduced in [3], where it is shown to be k-competitive. Greedy-Dual-Size is
a generalization of the algorithm Greedy-Dual in [13] that is specific for the cost
model. In [14] it is shown that Greedy-Dual-Size (this paper introduces the name
Landlord for this algorithm) is k

k−h+1 -competitive against an adversary with
cache size h assuming forced caching. In [14] it is also shown that in some sense for
most choices of k, the retrieval cost is either insignificant or the competitive ratio
is constant. In [5] it is shown, using linear programming duality, that Greedy-
Dual-Size is k+1

k−h+1 -competitive against an adversary with cache size h assuming
non-forced caching. In [8] online randomized O

(
log2 k

)
-competitive algorithms

are given for the bit and fault models .
Previous researchers have theoretically studied the caching problem with

uniform times and uniform sizes under particular input patterns. In [2] (and in
several follow-up papers) the input is assumed to be a walk in a graph, and in
[11] the input is assumed to be the output of a Markov chain. In [9] it is shown
that if the input sequence is a depth first traversal of a tree then LRU will have
2n − k cache misses, and that LRU always performs better than Most Recently
Used on depth first traversal sequences.

In [6] the direct-mapped caching problem was studied with sequential access
sequences. Perhaps the most closely related result to the search part of Site
Search is in [10]; Recasting the results from a geometric setting to the Site Search
setting, it is shown in [10] that there is an online algorithm that is constant
competitive if k = 0, G is planar, and the edge relation in G is symmetric.

2 Foundational Results

Theorem 1. For Site Search in any model (general, cost, or bit), the competitive
ratio of every deterministic online algorithm A is Θ

(
maxT∈Tn

A(T)
t(T)

)
.

Proof. The competitive ratio is at most maxT∈Tn

A(T)
t(T) , since the online searcher

may perform a depth first traversal of the site and the offline searcher has to
access every page at least once.

To see why the competitive ratio is at least 1
4 maxT∈Tn

A(T)
t(T) , let T be an

arbitrary directed rooted tree on n nodes with all edges directed away from the
root. Let pn be the last page in T visited by A. Create a directed graph G that
includes each directed edge in T and directed edges going from pn to every other

156 B. Kalyanasundaram et al.

node in T . Then A’s actions on G are identical to A’s actions on T until pn is
visited. From pn, A may return directly to the root; hence, A(G) ≥ 1

2A(T). The
offline adversary may visit all of G incurring cost at most 2t(T) by traversing
the shortest path from the root to pn, then visiting each remaining unvisited
node in a hub and spoke pattern from pn, and then backing up to the root.

For an instance T ∈ Tn of Site Search, we define Optk(T) to be a minimum
access time strategy for visiting all the nodes in T and returning to the root of
T assuming that the cache size is k. We show for Site Search on trees that the
optimal offline algorithm may use any depth first search that it likes. Note that
this in no way implies that the optimally competitive online algorithm uses
depth first search.

Lemma 1. For every depth first traversal S of a tree T , there is an optimal Site
Search strategy that uses S to traverse the tree T .

Lemma 2. For Web Caching on depth first tree traversals in the cost model,
and for Site Search in the cost model, Optk(T)/t(T) ≤ n

1
k+1 + 1 holds for any

tree T with n nodes.

We now give an optimal offline algorithm for Site Search on trees and for
Web Caching on depth first tree traversal sequences in the general model. Let
pr be a node in T with children pc1 , . . . , pcm

. If s(r) > k then obviously

Optk(Tr) = t(r) +
m∑

i=1

[Optk(Tci) + t(r)]

So now consider the case that s(r) ≤ k. We say that pci
is cheap if Optk−s(r)(Tci

)
−Optk(Tci

) < t(r), and otherwise we say that pci
is expensive. It easy to see

that one should cache pr before visiting a cheap child pci
since the time savings

from having additional s(r) cache is less than the access time for pr. Similarly,
one should not cache pr before visiting an expensive child pci since one can reap
a time savings of more than t(pr) by having additional s(r) cache during the
traversal of Tci

. Hence,

Optk(Tr) = t(r) +
∑

cheap pci

Optk−s(r)(Tci
) +

∑

expensive pci

[Optk(Tci
) + t(r))]

The obvious dynamic programming implementation of this recurrence runs in
time O(kn). Summarizing, this dynamic program yields a pseudo-polynomial
time algorithm for Web Caching of tree traversal input sequences in the bit
model and in the general model, and a polynomial time algorithm for the cost
model.

Caching for Web Searching 157

3 Bit Model

The algorithm Least Recently Used (LRU) evicts the least recently used items
until there is room to fit the most recently requested item in the cache. We show
that in the bit model the online algorithm LRU is (1 + 1

ε)-competitive against
an adversary with unbounded cache as long as LRU has a cache of size at least
(1 + ε)L. Recall L is the size of the largest item in the input sequence.

Theorem 2. Suppose 0 < ε ≤ 1 and that that LRU is equipped with a cache
of size k ≥ (1 + ε)L. Then for Web Caching in the bit model where the input
sequence S is a depth first traversal of some tree T , the algorithm LRU guarantees
that LRU(S)

t(T) ≤ 1 + 1
ε .

Proof. We split the cost of LRU into the cost incurred while moving downwards
(from a parent down to a child) and the cost incurred while moving upwards
(from a child up to its parent). We show by an amortization argument, that
the total cost for upward moves is at most t(T)

ε . There is an account Acci

associated with each page pi, and there is an account Acc(LRU) for LRU.
Initially, Acci = t(i)

ε for each page pi and Acc(LRU) = 0. When a page pi is
requested in a downward move, all accounts remain unchanged. When a node
pi is requested in an upward move and pi is not cached, then t(i) is deducted
from Acc(LRU). If the request sequence is next going to visit another child of
pi, then all the funds in Acc(LRU) are moved to Acci, and LRU enters this
subtree with an empty account. Otherwise, if the request sequence returns to
pi’s parent, then all the funds in Acci are transferred to Acc(LRU).

Our first goal is to show that during an upward move from a node pi to-
wards its parent, Acc(LRU) ≥ min(t(Ti)

ε , L) always holds. The proof is done by
induction. The base case is if pi is a leaf. In this case the account of pi with
value t(i)

ε has just been transferred to LRU, and thus Acc(LRU) ≥ t(i)
ε = t(Ti)

ε
holds. Next assume that the claim holds for each of the children pc1 , . . . , pcm

of pi. We break the proof into two cases: (Case 1) First, assume that for all j,
1 ≤ j ≤ m, t(Tcj

) ≤ εL holds. Then every Tcj
can be traversed without evicting

pi, and pi will be kept cached throughout the traversal of Ti. Since no charges
are deducted from the searchers account at pi, the inductive claim yields that
Acc(LRU) ≥ t(i)

ε +
∑m

j=1
t(Tcj

)
ε = t(Ti)

ε holds at the moment when LRU leaves
pi upwards to its parent. (Case 2) Now assume that there exists a j, 1 ≤ j ≤ m,
with t(Tcj

) > εL and consider the moment in time when the searcher returns
from pcj

up to pi. At this moment, pi need not be in the cache. By induction, the

value of Acc(LRU) is at least L = min(
t(Tcj

)
ε , L). Hence, after (possibly) paying

the charge for visiting pi, Acc(LRU) ≥ L − t(i) holds. If the request sequence
now returns to pi’s parent, then Acc(LRU) ≥ (L − t(i)) + t(i)

ε ≥ L (where the
second term is the original amount in Acci). Otherwise, if the request sequence
moves on to the next child of pi, then Acc(LRU) ≥ L − t(i) will be added to
Acci and so Acci ≥ (L − t(i)) + t(i)

ε ≥ L and this amount will eventually be
transferred to Acc(LRU) before it moves up to pi’s parent.

158 B. Kalyanasundaram et al.

Next, we argue that Acc(LRU) is never negative, and that therefore LRU
can always pay for the revisits. Consider visiting a parent pi from a child pc.
If t(Tc) ≤ εL then pi is still cached at this moment and no charge is taken.
Otherwise, if t(Tc) > εL then Acc(LRU) ≥ L and LRU can afford the charge
since t(i) ≤ L by the definition of L. Summarizing, the account of LRU stays
non-negative throughout the traversal of the tree. Since the total amount of
funds available in the beginning is t(T)

ε and since LRU is able to finance all its
upward moves from these funds, the total incurred cost indeed is at most t(T)

ε .
Since the total cost of LRU for downward moves equals t(T), the proof of the
theorem is complete.

This corollary is an immediate consequence of theorem 1 and theorem 2.

Corollary 1. For Site Search in the bit model, the algorithm that uses LRU and
a depth first traversal guarantees that LRU(S)

t(T) ≤ 1 + 1
ε .

It is easy to see that the above bounds are tight for ε = 1 by considering
trees where each internal node has one child, and all pages have access time L.
Note that in Site Search that this is not merely an artifice of our requirement
that the searcher return to the root as you could always enforce this condition
by adding a second leaf-child of the root.

4 Lower Bounds in the General Model

We show that in the cost model (and hence also in the general model), every
online algorithm for Web Caching and every online algorithm for Site Search
requires a cache of size Ω(log n) in order to be constant competitive.

Theorem 3. For Web Caching in the cost model, any deterministic online al-
gorithm A fulfills the following statements.

(i) Let k and n be integers such that k + 1 ≤ lg n. Then there exists a tree T
with Θ(n) nodes on which A is Ω

(
min(k + 1, n1/(k+1))

)
-competitive.

(ii) Let k and n be integers such that k + 1 ≤ lg n. Then there exists a tree T

with Θ(n) nodes such that A(T)/t(T) ≥ 1
4n

1
k+1 .

Proof. The adversary constructs a tree T with k+2 levels numbered 0, 1, . . . , k+
1. Level 0 only contains the root of T , level 1 contains all the children of the root,
and so on. Every page at level ` has access time xk+1−`, where x = 1

2n1/(k+1).
Note that x ≥ 1 since k + 1 ≤ lg n. Hence, every node has access time at least
one. The exact shape of T is determined by the adversary in dependence on the
behavior of the online algorithm A. The adversary follows a simple Hit-Where-
It-Hurts strategy. Let p be the last requested page, and let ` be the level that
contains p.

Caching for Web Searching 159

Expand: If ` < k + 1, then the adversary creates a path of k + 1 − `
new pages at levels ` + 1, . . . , k + 1 that are descendents of page p. The
pages on this path are then requested one by one.
Hit: Otherwise, ` = k + 1 holds. The adversary requests the ancestors
of p until it reaches a page that is currently not cached by the online
algorithm.

The adversary alternates between expansions and hits until it has created n
nodes (if this happens in the middle of an expansion or hit, this move is still
completed and then the process stops). Clearly, the thus created tree T has Θ(n)
nodes. By n`, 0 ≤ ` ≤ k + 1, we denote the total number of nodes at the `-th
level of tree T . Note that n0 = 1.

Now let p be a page at level ` ≤ k with m children. Since all leaves of T are
at level k + 1, m ≥ 1 holds. When the online algorithm pays for accessing p then
either the adversary is expanding the tree (and p is created) or the adversary
is hitting (and the request sequence returns from one of the m children). When
the request sequence returns from one of the first m − 1 children, the adversary
just has done a hit. The online algorithm pays for accessing p, and then the next
child is created in the following expansion. When the request sequence returns
from the last child, it immediately moves on to the parent of p and we are in
the middle of some hit. Altogether, for accessing page p, the algorithm A pays
m times the size of p, and for all the accesses to all the pages in level `, it pays
the total number n`+1 of their children times their access time xk+1−`. For the
pages in level k + 1, A altogether pays nk+1 times access time 1. Summarizing,
this yields

A(T) = nk+1+
k∑

`=0

n`+1x
k+1−` ≥ xt(T)−xk+2 = x(t(T)−n/2k+1) ≥ x

2
t(T).

(1)
In the last inequality, we used that t(T) ≥ n. This inequality holds since every
node has access time at least one.

One possible offline strategy always keeps all the predecessors of the currently
requested page in cache, with the exception of the pages at some fixed level λ
with 0 ≤ λ ≤ k. Since T has only k + 2 levels and since there is no need to cache
the pages at level k+1, this strategy can always be carried out with a cache of size
k. This offline strategy has to pay for accessing a page (a) if the page is requested
for the first time, or (b) if the page is at level λ and if the request sequence moves
from a page at level λ + 1 up to level λ. The total cost for (a) is t(T), and the
total cost for (b) is nλ+1x

k+1−λ. Hence, Opt(T) ≤ t(T)+mink
λ=0{nλ+1x

k+1−λ},
and a simple averaging argument yields

Opt(T) ≤ t(T) +
1

k + 1

k∑

`=0

n`+1x
k+1−` ≤ t(T) +

1
k + 1

x · t(T). (2)

By combining (1) and (2), we conclude that the competitive ratio of A is at least

A(T)/Opt(T) ≥ (k + 1)x · t(T)
2(k + 1 + x)t(T)

=
(k + 1)x

2(k + 1 + x)
(3)

160 B. Kalyanasundaram et al.

Now let us prove statement (i) of the theorem. If k+1 ≤ n1/(k+1), then k+1 ≤ 2x
and we derive from (3) that

A(T)/Opt(T) ≥ (k + 1)x
2(k + 1 + x)

≥ (k + 1)x
6x

=
1
6

(k + 1).

If on the other hand k + 1 ≥ n1/(k+1) holds, then k + 1 ≥ x and we derive in a
similar way that

A(T)/Opt(T) ≥ (k + 1)x
2(k + 1 + x)

≥ (k + 1)x
4(k + 1)

=
1
8
n1/(k+1).

This proves (i). Finally, statement (ii) follows from the inequality in (1) and
from x = 1

2n1/(k+1). With this, the proof of the theorem is complete.

Now we turn to the Site Search problem. We know from theorem 1 that
without loss of generality (and up to constant factors) we only need to consider
online algorithms A that traverse some subtree T of G. However, we do not
necessarily know that A performs a depth first traversal of T . To get around
this difficulty, we consider the following Modified Site Search problem. It is easy
to see that a lower bound on the competitive ratio for any online algorithm for
Modified Site Search also yields a lower bound on the competitive ratio for any
online algorithm for the original Site Search problem.

Modified Site Search Problem: The online algorithm is told that the topol-
ogy of G consists of a directed tree T , rooted at the initial page with the edges
directed away from the initial page, and edges directed from a secret page ps

to every other page. The online algorithm is told T a priori, but is not told the
identity of the secret node ps (and actually, the adversary will make ps the last
node that the online algorithm visits). The goal of the online algorithm is still
to visit all the nodes and to return to the initial page.

Recall that Optk(T) is the minimum access time strategy, with cache size
k, for visiting all the nodes in T and returning to the root of T . Also re-
call that by lemma 1 we may assume that Optk(T) uses a depth first search.
Note that Optk(T) can be computed by the online algorithm before it begins
its traversal. The competitive ratio of any online algorithm for Modified Site
Search is then Ω

(
maxT

Optk(T)
t(T)

)
. We show that maxT

Optk(T)
t(T) is at least

Ω
(

max
(

1
k , k

log n

)
n

1
k+1

)
.

Theorem 4. For Modified Site Search, the competitive ratio of every determin-
istic online algorithm A is at least Ω

(
max

(
1
k , k

log n

)
n

1
k+1

)
.

Corollary 2. For Site Search in the cost model, the competitive ratio of every
deterministic online algorithm A is at least Ω

(
max

(
1
k , k

log n

)
n

1
k+1

)
.

Caching for Web Searching 161

5 Analysis of Landlord

We show that for Web Caching on depth first tree traversal sequences and for Site
Search, Landlord is constant competitive against an adversary with unbounded
cache if Landlord has a cache large enough to hold at least log n pages.

Landlord Description: [5] The algorithm maintains a non-negative credit c(i)
for each page pi in the cache. Given a request for pi, if pi is in the cache the
algorithm resets c(i) to t(i). Otherwise, the algorithm sets c(i) = t(i) and “pre-
tends” pi is in the cache. Then it repeats the following eviction step while the
total size of the items in the cache exceeds k.
Eviction step: Let pm be a page in the cache that minimizes the ratio c(m)

s(m) and

let δ = c(m)
s(m) . For every pi in the cache, the algorithm decreases c(i) by δs(i),

and then evicts pm.

Proposition 1. [5,14] For Web Caching in the general model, Landlord is
k+1

k−h+1 -competitive against an adversary with a cache of size h ≤ k.

Theorem 5. For Site Search in the cost model, the online algorithm that uses
depth first search for traversing and Landlord for caching is

(i) O
(
kn

1
k+1

)
-competitive if k ≤ √

log n,

(ii) O
(

log n
k n

1
k+1

)
-competitive if

√
log n < k < 1

2 log n,

(iii) O(1)-competitive if k ≥ 1
2 log n.

Theorem 6. For Web Caching in the cost model, Landlord is
O

(
min

(
k, log n

k n
1

k+1

))
-competitive for k ≤ 1

2 log n caches, and O(1)-competi-

tive for k ≥ 1
2 log n caches.

6 Slumlord

Slumlord Description: The algorithm is identical to Landlord, except for two
changes. Firstly, a page p is decached if the user hits the back button from p.
Secondly the eviction step is different.
Eviction step: Let pi be currently requested page and let pj be the cache page

(other than pi) that was most recently requested. Let δ = min
(

c(i)
s(i) ,

c(j)
s(j)

)
. The

algorithm decreases c(i) by δs(i) and decreases c(j) by δs(j). The algorithm then
evicts one of pi and pj with zero credits.

We call the algorithm Slumlord for the following reason. In [14] the decre-
menting of the credits was thought of as being analogous to raising rents. In
the worst case trees the nodes lower in the trees have lower access times. So
Slumlord only raises the rent on those nodes lowest in tree, which are also the
ones that can least afford to pay.

162 B. Kalyanasundaram et al.

Theorem 7. For Web Caching, Slumlord is k+1
k−h+1 -competitive against an ad-

versary with a cache of size h ≤ k.

Theorem 8. For Site Search in the cost model, the online algorithm that uses a
depth first traversal and Slumlord for caching is O

(
min

(
k, log n

k

)
n

1
k+1

)
-competi-

tive.

Theorem 9. For Web Caching in the cost model, Slumlord is
O

(
min

(
k, log n

k n
1

k+1

))
-competitive.

7 Oblivious Algorithms for the Cost Model

We show that Least Frequently Evicted (LFE) is essentially the best oblivious
algorithm and that the algorithm for Site Search that uses depth first and LFE
is strongly competitive if k = O(1). Recall that an oblivious algorithm is one
that ignores access times.

LFE Description: An eviction count e(pi) is maintained for each page pi.
Initially each e(pi) = 0. Assume that the page pr has just been requested at
time u. If this is not the first time that pr was requested, the page pc requested
at time u− 1 is decached if pc is in the cache (note that pc is a child of pr). As a
consequence of this, LFE maintains the invariant that all the pages that are in
the cache are on the path from the root to the last requested page. If the cache
is not full just before pr was requested then pr is added to the cache. If the cache
was full before pr was requested, then LFE pretends that pr is in the cache and
selects a pi in the cache that minimizes e(pi); in case of a tie, pi is selected to
the the page closest to the root. Note that it may be the case that i = r. The
selected page pi is then evicted and e(pi) is incremented.

For fixed n and k, let γ = γ(n, k) be the smallest integer that satisfies
γ
(
γ+k

γ

)
= γ

(
γ+k

k

) ≥ n. Observe that (k + 1)(γ
k+1)k+1 ≤ γ

(
k+γ

γ

) ≤ (k + 1)

(e(γ+k)
k+1)k+1. For k ≤ 1

4 log n, we have γ = Θ(kn
1

k+1). We will call a page fat if
it has at least γ children, and otherwise we call the page skinny. Define a(k, `)
as the minimum over all trees of the number of distinct fat pages that must be
requested before LFE, with a cache of size k, causes the eviction count of some
page to reach γ + `. We now state some preliminary lemmas that are necessary
for the analysis of LFE.

Lemma 3. If 1 ≤ ` ≤ γ + 1 then a(k, `) ≥ (
k+`−1

`−1

)
.

Theorem 10. For Web Caching in the cost model, LFE is (2γ +2)-competitive,
and hence, Θ(kn

1
k+1)-competitive.

Corollary 3. For Site Search in the cost model, the algorithm that uses LFE
and depth first search is O(kn

1
k+1)-competitive.

Caching for Web Searching 163

We now show that every oblivious online algorithm for Web Caching has
competitive Ω(kn

1
k+1)-competitive. Since any page could have nonzero access

time while all other pages have zero access time, an γ-competitive oblivious
algorithm cannot miss any page more than γ times.

Theorem 11. For Web Caching in the cost model, every deterministic oblivious
online algorithm is Θ(kn

1
k+1)-competitive.

References

1. S. Albers, S. Arora, and S. Khanna, “Page replacement for general caching prob-
lems”, ACM/SIAM Symposium on Discrete Algorithms, 31–40, 1999.

2. A. Borodin, S. Irani, P. Raghavan, and B. Schieber, “Competitive paging with
locality of reference”, Journal of Computer and System Sciences 50, 244–258, 1995.

3. P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms”, USENIX
Symposium on Internet Technologies and Systems, 193–206, 1997.

4. L. Catledge and J. Pitkow, “Characterizing browsing strategies in the world wide
web”, Computer Networks and ISDN Systems 27, 1065-1073, 1995.

5. E. Cohen, and H. Kaplan, “Caching documents with variable sizes and fetching
costs: an LP based approach”, ACM/SIAM Symposium on Discrete Algorithms,
S879–S880, 1999.

6. R.E. Ladner, J.D. Fix, and A. LaMarca, “Cache performance analysis of traversal
and random accesses”, ACM/SIAM Symposium on Discrete Algorithms, 613–622,
1999.

7. B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose, “Strong regularities in world
wide web surfing”, Science 280, 95–97, 1998.

8. S. Irani, “Page replacement with multi-size pages and applications to web caching”,
ACM Symposium on Theory of Computing, 701–710, 1997.

9. B. Jiang, “DFS-traversing graphs in a paging environment, LRU or MRU”, Infor-
mation Processing Letters 40, 193–196, 1991.

10. B. Kalyanasundaram and K. Pruhs, “Constructing competitive tours from local
information”, Theoretical Computer Science 130, 125–138, 1994.

11. A. Karlin, S. Phillips, and P. Raghavan, ”Markov paging”, IEEE Symposium on
Foundations of Computer Science, 208–217, 1992.

12. L. Tauscher and S. Greenberg, “How people revisit web pages: empirical find-
ings and implications for the design of history systems”, International Journal of
Human-Computer Studies 47, 97–137, 1997.

13. N. Young, “The k-server dual and loose competitiveness”, Algorithmica 11, 525–
541, 1994.

14. N. Young, “On-line file caching”, ACM/SIAM Symposium on Discrete Algorithms,
82–86, 1998.

On-Line Scheduling with Precedence Constraints

Yossi Azar1,? and Leah Epstein1

Dept. of Computer Science, Tel-Aviv University. {azar,lea}@math.tau.ac.il

Abstract. We consider the on-line problem of scheduling jobs with
precedence constraints on m machines. We concentrate in two models,
the model of uniformly related machines and the model of restricted
assignment. For the related machines model, we show a lower bound
of Ω(

√
m) for deterministic and randomized on-line algorithms, with or

without preemptions even for jobs of known durations. This matches
the deterministic upper bound of O(

√
m) given by Jaffe for task sys-

tems. The lower bound should be contrasted with the known bounds
for jobs without precedence constraints. Specifically, without precedence
constraints, if we allow preemptions then the competitive ratio becomes
Θ(log m), and if the durations of the jobs are known then there are O(1)
competitive (preemptive and non-preemptive) algorithms.
We also consider the restricted assignment model. For the model with
consistent precedence constraints, we give a (randomized) lower bound of
Ω(log m) with or without preemptions. We show that the (deterministic)
greedy algorithm (no preemptions used), is optimal for this model i.e.
O(log m) competitive. However, for general precedence constraints, we
show a lower bound of m which is easily matched by a greedy algorithm.

1 Introduction

We consider the on-line problem of scheduling a sequence of jobs with prece-
dence constraints on m parallel machines. A job can be scheduled after all its
predecessors are completed. In the simplest model, the identical machines model,
each job j has a running time wj , and has to be scheduled on a machine for this
period of time.

In the related machines model each machine i has a speed vi. Each job may
be processed on any machine and the time to process a job j with a running time
wj on i would be wj/vi. In the restricted assignment model all machines have
identical speed, but each job may be assigned only to a subset of the machines.
For a job j, we denote by M(j) ⊆ {1, . . . , m} (M(j) 6= ∅) the subset of machines
on which it may be scheduled and by wj its running time on a machine is M(j).
The unrelated machines model is a generalization of all previous models. In this
model, each job j has a vector of m components, where for each i component i
gives its running time on machine i.
? Research supported in part by the Israel Science Foundation and by the United

States-Israel Binational Science Foundation (BSF).

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 164–174, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On-Line Scheduling with Precedence Constraints 165

We may or may not allow preemptions. If no preemptions are allowed, once a
job is scheduled on a machine, it must be processed on this machine continuously
until it is completed. Otherwise, if we allow preemption, a job may be stopped,
and resumed later on some (maybe different) machine.

The precedence constraints between jobs can be viewed as a directed graph
G. The vertices of G are the jobs. An edge (j1, j2) occurs when j1 is a predecessor
of j2, i.e. j2 may start its process only after j1 is completed. For restricted as-
signment the precedence constraints are called consistent if for every edge (j1, j2)
we have M(j2) ⊆ M(j1). The motivation for consistent precedence constraints
comes from the fact that if a job j1 requires some expertise which are known
only to some machines and j1 is a predecessor for another job j2, then j2 should
require at least the same expertise and hence can be processed only on subset
of machines that j1 can be processed on.

We discuss an on-line environment in which a job becomes known as soon
as all its predecessors are completed (there are no realize times). The goal is to
minimize the makespan which is the time that the last job is finished. We consider
two variations of the on-line model. In the known duration case, the durations of
a job is known upon its arrival, and in the unknown duration case, the duration
of a job becomes known only when it departs. Our lower bounds hold even for
the known duration case (and hence also for the unknown duration case) while
the algorithms do not use the informations on the durations and therefore are
valid for both cases. For a survey on on-line scheduling we refer the reader to
[8].

We measure the algorithms in terms of the competitive ratio. We compare
the cost (makespan) of the on-line algorithm (denoted by Con) to the cost of
the optimal off-line algorithm that knows the sequence in advance (denoted
by Copt). The off-line algorithm knows all jobs and their properties (running
time, precedence constraints and assignment restrictions) in advance. Note that
the on-line algorithm is familiar with all properties of a job as soon as the job
arrives (except for the running time, in the case of unknown durations), but a job
arrives only after all its predecessors are completed. A deterministic algorithm
is r competitive (has competitive ratio r) if Con ≤ rCopt. If the algorithm is
randomized, we use the expectation of the on-line cost instead of the cost and
the competitive ratio is r if E(Con) ≤ rCopt.

Our results. For related machines we give a deterministic and randomized
lower bound of Ω(

√
m) on the competitive ratio of any on-line algorithm for

jobs with precedence constraints. This matches the upper bound of Jaffe [7]
who gave an approximation algorithm which can be implemented in an on-line
environment. In fact, Davis and Jaffe [3] already gave a lower bound of Ω(

√
m)

for the case with no precedence constraints which obviously holds for the case
of precedence constraints. However, their lower bound is valid only for unknown
durations and no preemption. If we allow preemption then Shmoys, Wein and
Williamson [9] showed an upper bound of O(log m) for the case of no precedence
constraints. Moreover, if the durations are known then in principle one can get
1 competitive algorithm for both preemptive and non-preemptive cases. This

166 Y. Azar and L. Epstein

follows from the fact that if there are no precedence constraints then it implies
that all the jobs are known in advance and the problem becomes an off-line
one. This should be contrasted with our result that implies that with precedence
constraints one cannot get a better bound than Θ(

√
m) even if the duration are

known and the algorithms are preemptive. Moreover, our lower bound holds for
randomized preemptive online algorithm versus deterministic non-preemptive
adversary.

For the restricted assignment model we consider the greedy algorithm which
is an adaptation of the LIST algorithm of Graham [5,6]. This algorithm achieves
a competitive ratio of 2 − 1/m for scheduling jobs with precedence constraints
on identical machines. Epstein [4] shows that LIST is optimal for scheduling
jobs with precedence constraints on identical machines, even if preemptions are
allowed. Azar et al [1] showed that for the case of no precedence constraints
the greedy algorithm for scheduling jobs one by one in the restricted assign-
ment model achieves a competitive ratio of O(log m). We show that if we allow
consistent precedence constraints then the competitive ratio of the algorithm is
still O(log m). We show that the algorithm is optimal in this case by giving a
lower bound of Ω(log m) on the competitive ratio of any deterministic or ran-
domized algorithm for scheduling jobs with restricted assignment and consistent
precedence constraints. We note that our lower bound does not follow from the
lower bound of [1] since here we do not insist on scheduling a job immediately
upon its arrival. Our lower bound holds even for the known duration case and
the upper bound does not use the durations. Moreover, the lower bound holds
even for randomized preemptive algorithm versus deterministic non-preemptive
adversary while the upper bound holds for non-preemptive algorithm versus
preemptive adversary. Again, the precedence constraints are crucial for proving
the lower bounds with known durations, since, otherwise, it becomes an off-line
problems since all jobs are given at the beginning, and durations are known in
advance.

For general precedence constraints we show a lower bound of m for any online
algorithms (Ω(m) for randomized algorithms). This bound is easily matched by
the greedy algorithm which is m competitive. This implies that the unrelated
machines case is not of an interest since it is m competitive.

The Greedy algorithm. We adapt the Greedy algorithm ”List”, given
by Graham [5] for identical machines, to the case of restricted assignment as
follows. Each time that a machine i becomes idle, assign to it a job j (if exists)
such that i ∈ M(j) and j has not been scheduled yet. Each time that a new job
j arrives, assign it to an idle machine i ∈ M(j) if exists. Note that Greedy is
deterministic and does not use preemptions.

Randomized algorithms. To prove lower bounds on the competitive ratio
of randomized algorithms we use an adaptation of Yao’s theorem for on-line
algorithms. It states that if there exists a probability distribution on the input
sequences for a given problem such that E(Con/Copt) ≥ c for all deterministic on-
line algorithms, then c is a lower bound on the competitive ratio of all randomized

On-Line Scheduling with Precedence Constraints 167

algorithms for the problem. (see [2]). We will use only sequences for which Copt

is constant and thus in our case E(Con/Copt) = E(Con)/Copt.

2 Scheduling on Related Machines

Theorem 1. Any on-line algorithm for scheduling on related machines has the
competitive ratio of at least Ω(

√
m). This is true even for randomized preemptive

algorithms versus deterministic non-preemptive adversary.

Proof. We start by considering deterministic algorithms. We assume without loss
of generality that m − 1 is a square,

√
m − 1 = r. The set of machines consists

of one fast machine of speed r =
√

m − 1 (machine m) and m− 1 slow machines
of speed 1 (machines 1, . . . , m − 1). There are r phases of r + 1 unit jobs each in
the sequence. The sequence begins with r + 1 independent unit jobs (phase 1).
Next we define phase i, 2 ≤ i ≤ r, the phase contains r + 1 units jobs. Let bi−1
be the job in phase i− 1 that finishes last by the on-line algorithm, then all jobs
of phase i depend on bi−1.

Fig. 1. A possible on-line assignment in the proof of Theorem 1

The on-line algorithm, by the definition of bi, can start scheduling phase i+1
only after all jobs of phase i are completed. Since each phase consists of r + 1
jobs, it is possible to use at most r + 1 machines at each time. The r + 1 fastest
machines can process at most 2r unit jobs in one unit of time, and since the
total running time of all jobs in one phase is r + 1, each phase takes at least
(r + 1)/(2r) > 1/2 time units. Thus the total time to process all the sequence is
at least r((r + 1)/(2r)) = (r + 1)/2 = Ω(

√
m) (see Figure 1).

The optimal off-line algorithm assigns each bi to the fast machine at time
(i−1)/r, and thus the jobs of phase i+1 may be assigned at time i/r to machines
ir + 1, . . . , (i + 1)r. The jobs of phase r would finish at time (r − 1)/r + 1 < 2 on
the slow machines. The fast machine would finish at time 1 and thus Copt < 2
(see Figure 2). The competitive ratio is Ω(

√
m).

168 Y. Azar and L. Epstein

Fig. 2. A possible off-line assignment in the proof of Theorem 1

To extend the proof for randomized algorithms, bi is chosen uniformly at
random among all jobs of phase i. Clearly the optimal schedule remains the
same. Next we evaluate the expected on-line schedule. The probability that the
time starting from the arrival of phase i, till bi is completed is at least T would
be (r + 1 −k)/(r + 1) where k is the maximum number of jobs that it is possible
to complete in time T . For T = (r + 1)/(4r), it is possible to complete at most
b(r + 1)/2c jobs and thus the expectation of the time that passes from the
arrival of bi and till it is completed is at least (r + 1)/(8r) > 1/8, and thus
E(Con) = Ω(

√
m) and again the competitive ratio is Ω(

√
m) as well.

3 Restricted Assignment with Consistent Precedence
Constraints

In this section we consider consistent precedence constraints for the restricted
assignment model. Recall that precedence constraints are called consistent if for
every j1 which is a predecessor of j2 we have M(j2) ⊆ M(j1).

Theorem 2. Any on-line scheduling algorithm for the restricted assignment
model with consistent precedence constraints has a competitive ratio of at least
Ω(log m). This is true even for randomized preemptive algorithms versus deter-
ministic non-preemptive adversary.

Proof. We assume without loss of generality that m is a power of 2, m = 2k.
It is easy to extend the proof for general m. The sequence consists of mN jobs
where N > 2 log2 m = 2k, the jobs belong to k + 1 phases, where for 1 ≤ i ≤ k
phase i contains m(N + 2 − i)/2i unit jobs, and phase k + 1 contains N − log2 m
unit jobs. The jobs of phase i are restricted to machines {1, . . . , 2k−i+1}. We
define the dependencies according to the behavior of the on-line algorithm. Let
b1 the job that finishes last in phase 1, then all jobs of phase 2 depend on b1.

On-Line Scheduling with Precedence Constraints 169

For i = 2, . . . , k, let bi the job that finishes last from phase i, then all jobs of
phase i + 1 depend on bi.

Since bi is the job that finishes last at phase i, and all jobs of phase i + 1
depend on it, then no jobs of phase i + 1 are scheduled until all jobs of phase i
are done. For 1 ≤ i ≤ k, the jobs of phase i are restricted to 2k−i+1 = m/2i−1

machines, thus the time to finish all jobs of phase i is at least (N+2−i)/2 = Ω(N)
(even with preemptions). Since there are Ω(log m) phases, Con = Ω(N log m)
(see Figure 3).

Fig. 3. A possible on-line assignment in the proof of Theorem 2

Fig. 4. A possible optimal off-line assignment in the proof of Theorem 2

170 Y. Azar and L. Epstein

The optimal off-line algorithm schedules all bi on the first machine, each bi

is scheduled at time i − 1. The jobs of phase i are scheduled as follows: m/2i−1

jobs are scheduled on machines 1, . . . , m/2i−1 at time i − 1, all the other jobs
are scheduled from time i till time N on machines m/2i + 1, . . . , m/2i−1. The
jobs of phase k + 1 are scheduled on machine 1 starting time log2 m (see Figure
4). We conclude that since Copt = N , the competitive ratio is Ω(log m).

To extend the proof for randomized algorithms we use the same sequence, but
bi is chosen uniformly at random among all jobs of phase i. Again, let Pi be the
number of jobs that finish before bi in phase i. The time after the jobs of phase i
become available and before the next phase can start is at least (Pi + 1)/2k−i+1.
Since Pi gets the values 0, . . . , (N + 2 − i)2k−i − 1 with equal probability,

E(Pi) = ((N + 2 − i)2k−i − 1)/2 .

Hence,

Con ≥
k∑

i=1

E(Pi + 1)2−k+i−1 + N − log2 m

>

k∑

i=1

(N + 2 − i)/4 = O(N log m) .

Since Copt = N we conclude that the competitive ratio is Ω(log m).

Theorem 3. The competitive ratio of Greedy is O(log m) for the restricted as-
signment model with consistent precedence constraints.

Proof. For machine i, let A(i) be the set of jobs j that i ∈ M(j). Denote the
optimal off-line value by λ. We first prove the following Lemma:

Lemma 1. The total idle time on a machine i, from the beginning till the last
job in A(i) finishes its process (on any machine) is bounded by λ. (Some of this
idle time may be after the last job on i is already completed).

Proof. For each machine i, we build a chain of jobs in which each job is dependent
on the previous job, and each time i is idle, one of the jobs in the chain is running.
Since the total running time of jobs in the chain is at most λ (the optimal off-line
algorithm can not run more than one job of the chain simultaneously), the total
idle time of machine i would be also bounded by λ. We build the chain from the
top, starting from the last job in the chain. If there is no idle time on machine
i, the chain is empty and the lemma follows. Otherwise, we start the chain with
the job in A(i) that finishes last, denote it by J1. Assume that J1, . . . , Jq−1 are
defined. If Jq−1 has no predecessors, we finish the chain. Otherwise, let Jq be
the predecessor of Jq−1 that finishes last. Note that since all the chain consists
of predecessors of J1 and the precedence constraints are consistent, all the jobs
in the chain are also in A(i). Assume that i is idle at time t, and no job in the

On-Line Scheduling with Precedence Constraints 171

chain is running at time t. There is at least one job that finishes after time t
(J1 for example). Since there is no job of the chain running at time t, all these
jobs start running after time t. Let Jr be the first job of the chain that starts
running after time t. All the predecessors of Jr finish before time t thus since i
is idle at t, Jr could be scheduled at time t or before. This is a contradiction to
the definition of Greedy.

Note that it follows from Lemma 1 that the total idle time on a machine
from the beginning till the last job that runs on this machine is completed is
also bounded by λ.

Lemma 2. Let l ≥ 3λ be some time during the process of the algorithm. If the
total running time of jobs (or parts of jobs) that run after time l is Tl then the
total running time of jobs that run after time l − 3λ is at least 2Tl.

Proof. Let k1 = dTl

λ e. The optimal off-line uses at least k1 machines to run
the jobs that the on-line runs after time l. Since the maximum running time is
bounded by λ, these jobs start after time l − λ. For each machine i among the
k1 machines, there is a job that is allowed to be scheduled on it and is scheduled
after time l−λ, thus machine i has at most λ idle time from time l−3λ till time
l − λ. The total running time on i in this time period is at least λ. Summing
for all machines the total running time is at least k1λ, and adding the running
times after time l we get a total of k1λ + Tl ≥ Tl + Tl = 2Tl

Now, we can complete the proof of the theorem. Let T be the total running
time of all jobs, note that T ≤ mλ. Let k = bCon/(3λ)c. We can assume without
loss of generality that Con ≥ 3λ. Hence k ≥ 1. Note that the competitive ratio r
satisfies r = O(k). Let Tj be the total running time of jobs after time Con −3jλ.
According to Lemma 2, Tk satisfies Tk ≥ 2k−1T1 and according to Lemma 1, T1
satisfies T1 ≥ 2λ, this is correct since there is at least one machine that finishes
at time Con, and since the idle time on this machine is bounded by λ, this
machine worked at least for a period of time 2λ after time Con − 3λ. Combining
all observations together we get mλ ≥ T ≥ Tk ≥ 2k−1T1 ≥ 2 · 2k−1λ. Thus
k = O(log m), and also r = O(log m).

4 Restricted Assignment with General Precedence
Constraints

In this section we consider the restricted assignment model with general prece-
dence constraints between jobs.

Theorem 4. Any on-line scheduling algorithm for restricted assignment model
with general precedence constraints has the competitive ratio of at least m. This
is true even for preemptive algorithms versus non-preemptive adversary. Any
randomized algorithm for the same problem has the competitive ratio of Ω(m).
This is true even for randomized preemptive algorithms versus deterministic non-
preemptive adversary.

172 Y. Azar and L. Epstein

Proof. We first prove a lower bound on deterministic algorithms, and later ex-
tend it to randomized ones. We build the sequence according to the behavior
of the on-line algorithm. Let N be an integer N ≥ m, The optimal cost for
the sequence would be N . The sequence contains m phases, in each phase, all
jobs are restricted to a single machine. Phase 1 contains N unit jobs which are
restricted to machine 1. Let b1 be the job from phase 1 that finishes last. We
define the other phases recursively: In phase i (i ≥ 2), there are N − i + 1 unit
jobs which depend on the job bi−1, and are restricted to machine i. We denote
the job from phase i that finishes last by bi.

The on-line does not schedule any job from phase i+ 1 until all jobs of phase
i are completed, because all jobs of phase i + 1 depend on bi, thus the on-line
has at most one working machine at a time (each job is restricted to a single
machine) and the minimum possible on-line makespan is simply the sum of all
running times: Con ≥∑m

i=1(N − i + 1) = m(N − m/2 + 1/2) (see Figure 5).
The optimal off-line algorithm assigns each bi at time i − 1, and all other

jobs of phase i are scheduled starting from time i, hence Copt = N (see Figure
6). The competitive ratio is at least m − m2/(2N) + m/(2N) > m − m2/(2N),
for large values of N , this number approaches m.

Fig. 5. A possible on-line assignment in the proof of Theorem 4

On-Line Scheduling with Precedence Constraints 173

Fig. 6. A possible optimal off-line assignment in the proof of Theorem 4

To extend the proof to randomized algorithms we use a similar sequence,
which also has m phases, where phase i contains N −i+1 jobs that are restricted
to machine i, but here the job bi for i = 1, . . . , m − 1 is chosen uniformly at
random among all jobs of phase i. Let Pi be the position of bi, which is the
number of jobs from phase i that were completed before bi was completed. Pi

can get the values 0, . . . , N − i, all with equal probabilities. For i ≥ 2, the jobs of
phase i are scheduled after at least Pi−1 + 1 jobs were completed at phase i − 1
and thus Con =

∑m−1
i=1 (Pi + 1) + N − m + 1. Thus

E(Con) ≥
m−1∑

i=1

(E(Pi) + 1) + N − m + 1 ,

since E(Pi) = (N − i)/2 we get

E(Con) ≥ (m − 1)(N/2 + 1) −
m−1∑

i=1

i/2 + N − m + 1

= mN/2 − N/2 + m − 1 − m(m − 1)/4 + N − m + 1
= mN/2 + N/2 − O(m2) .

Since Copt = N , the competitive ratio is at least (m+1)/2−O(m2/N), for large
values of N , the lower bound approaches (m + 1)/2 = Θ(m).

Both lower bounds are valid even with preemptions since we only consider
finishing times of jobs, and not starting times.

Theorem 5. The competitive ratio of Greedy is m for the restricted assignment
model with precedence constraints.

Proof. If all machines become idle, then there are no new jobs and the sequence
is completed. Thus if Con = T , there is at least one working machine during
time T , the sum of all processing times is at least T , and Copt ≥ T/m, which
gives the competitive ratio of m.

174 Y. Azar and L. Epstein

We can define greedy also for unrelated machines. The algorithm assign a
job j to a machine i such that the running time of j on i is minimum over all i.

Theorem 6. The competitive ratio of Greedy is m for the unrelated machines
model with precedence constraints.

Proof. Since the time that the optimal off-line uses to run each job is at least
that of Greedy, we can imitate the proof of Theorem 5.

References

1. Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journal
of Algorithms, 18(2):221–237, 1995. Also in Proc. 3rd ACM-SIAM SODA, 1992, pp.
203-210.

2. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

3. E. Davis and J.M. Jaffe. Algorithms for scheduling tasks on unrelated processors.
J. Assoc. Comput. Mach., 28:712–736, 1981.

4. L. Epstein. Lower bounds for on-line scheduling with precedence constraints on
identical machines. In 1st Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX98), volume 1444 of LNCS, pages 89–98,
1998.

5. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

6. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:416–429, 1969.

7. J.M. Jaffe. Efficient scheduling of tasks without full use of processor resources.
Theoretical Computer Science, 12:1–17, 1980.

8. J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms: The State of the Art, volume 1442 of LNCS, pages 196–231. Springer-
Verlag, 1998.

9. D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on line.
SIAM J. on Computing, 24:1313–1331, 1995.

Scheduling Jobs Before Shut-Down

Vincenzo Liberatore1

UMIACS, A. V. Williams Building,
University of Maryland,
College Park, MD 20742,

U.S.A.
vliberatore@acm.org

Abstract. Distributed systems execute background or alternative jobs
while waiting for data or requests to arrive from another processor. In
those cases, the following shut-down scheduling problem arises: given a
set of jobs of known processing time, schedule them on m machines so
as to maximize the total weight of jobs completed before an initially un-
known deadline. We will present optimally competitive deterministic and
randomized algorithms for shut-down scheduling. Our deterministic al-
gorithm is parameterized by the number of machines m. Its competitive
ratio increases as the number of machines decreases, but it is optimal
for any given choice of m. Such family of deterministic algorithm can be
translated into a family of randomized algorithms that use progressively
less randomization and that are optimal for the given amount of ran-
domization. Hence, we establish a precise trade-off between amount of
randomization and competitive ratios. We also give a probabilistic anal-
ysis for the cases of uniform and exponential distributions. Finally, we
report experimental results from trace-driven simulations.

1 Introduction

Internet traffic alternate lulls with spikes of extreme activity [4, 23]. As a result,
Web performance is especially improved when operations are moved from peak
periods to intervening lulls. For example, idle periods can be exploited by servers
to speculatively disseminate data to dial-up clients, thus substantially reducing
the latency experienced to retrieve subsequent documents [6]. Delays can stall
the execution of a distributed query in a Web-based database system so as to
trigger alternate queries or query plans [22].

Shut-Down Scheduling. In those architectures, if a job is preempted, it will not
be resumed and any partially completed work is lost. Consequently, the follow-
ing core optimization problem arises: a set of alternative or background jobs can
be scheduled during a lull. A lull has unknown duration because it ends asyn-
chronously when a message is received from a remote host. We will refer to such
problem as shut-down scheduling because jobs execution is unpredictably inter-
rupted. The off-line version of shut-down scheduling is a maximum 0/1 multiple

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 175–188, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

176 V. Liberatore

knapsack problem where all knapsacks have the same capacity. A book summa-
rizes results in the theoretical and practical solution of the multiple knapsack
problem [18]: it is strongly NP-hard [18], and a polynomial-time approximation
scheme has been recently discovered [13]. Several authors have considered an
on-line single knapsack problem where the deadline is known in advance, and
jobs arrive on-line [15, 16]. The on-line knapsack problem can be regarded as
the dual of shut-down scheduling and it is substantially an admission control
problem [2, 7]. In general, shut-down scheduling is related to on-line call control
[2, 7], load balancing [2, 10], and bin packing [2, 3, 8]. Scheduling with machine
breakdowns has been considered as well [1, 11, 12]: jobs must be scheduled on
m processors so as to complete in the presence of permanent or transient faults.
Breakdowns differ from shut-down in several respects, as, for example, arrival
times, objective function, job restart, redundant scheduling, and for the tech-
niques and results of the analysis.

Our Results. We will present optimally competitive deterministic and random-
ized algorithms for shut-down scheduling. Randomized algorithms can be fully
derandomized provided that there are sufficiently many machines. If there is only
a small number m of machines, we will give an optimal deterministic algorithm
CSM that is parameterized by m. The competitive ratio of CSM increases as m
decreases, but, for any given choice of m, our CSM algorithm is optimal. We will
also interpret CSM as a family of randomized algorithms that use progressively
less randomization at the price of a worse competitive ratio. Our algorithm is
optimal for any given choice of the amount of randomization and coincides with
the optimal deterministic and randomized algorithms in the two extreme cases.
Thus, such algorithm establishes a precise trade-off between randomization and
competitive ratio. Randomized algorithms and lower bounds are transformed
into deterministic algorithms and lower bounds by a technique that is simple
and that might be more generally applicable to other scheduling problems. We
report experimental results on Web trace simulations and indicate that a com-
petitive algorithm indeed outperformed natural, but non-competitive strategies.

Probabilistic Analysis. We will also conduct a probabilistic analysis of algorithms
for shut-down scheduling on m = 1 machine. Probabilistic analyses of knapsack
problems have been performed by several authors [5, 9, 14, 19, 21]. A proba-
bilistic analysis was also performed for the on-line case [15, 16]. We will focus
on shut-down scheduling and on the case when the deadline D is exponentially
distributed. We will show a policy that maximizes the expected profit for the
exponential distribution. We also present a shut-down schedule that breaks ties
among jobs so as to minimize variance without worsening expected profit. There-
fore, the resulting strategy is, in the parlance of portfolio theory, E,V efficient
[17].

Contents. The paper is organized as follows. In §2, we introduce our notation for
shut-down scheduling. In §3, we present competitive analyses and give optimal
deterministic and randomized algorithm for shut-down scheduling. In §4, we

Scheduling Jobs Before Shut-Down 177

conduct a probabilistic analysis. In §5, we sketch some of the results of our
simulations.

2 Preliminaries

In this section, we give definitions and notations for the shut-down schedul-
ing problem. First, we introduce our notation for the m = 1 machine problem.
The maximum 0/1 knapsack problem is: given lengths l(i) ∈ IN (i ∈ [n] def=
{1, 2, . . . , n}), profits p(i) ∈ IN (i ∈ [n]), and a deadline D, find a subset J ⊆ [n]
such that

∑
i∈J l(i) ≤ D that maximizes

∑
i∈J p(i). We will now introduce some

notation. The profit p(J) and length l(J) of a set J ⊆ [n] are defined in the obvi-
ous way: p(J) =

∑
i∈J p(i) and l(J) =

∑
i∈J l(i). Let p∗(D) = maxJ:l(J)≤D p(J)

be the optimum 0/1 knapsack objective value. Let π = (π1, π2, . . . , πk) be a k-
permutation of [n], define Ji = {π1, π2, . . . , πi} (1 ≤ i ≤ k) and p(π, D) = p(Js)
where s is the largest integer such that l(Js) ≤ D. Note that when k < n and
D > l(Jk), the machine will remain idle after the completion of the k scheduled
jobs. Although it does not seem intuitive, some algorithms will in fact exploit the
fact that only some of the jobs are scheduled. Finally, we will omit the reference
to D in p∗(D) and p(π, D) when the deadline D is clear from the context.

We will consider a two-person zero-sum game which is based on the maximum
0/1 knapsack problem and which we call the knapsack game. In the knapsack
game, all the values l(i) and p(i) (i ∈ [n]) are known at the beginning, but the
deadline D is not. The player G selects a permutation π of [n] and the player
H chooses D. If p∗(D) > 0, the quantity v(π, D) def= p(π, D)/p∗(D) will be G’s
payoff corresponding to the strategies π and D. If p∗(D) = 0, we define G’s
payoff to be one. The objective of G is to maximize its payoff in the game. Since
G’s payoff is always at most one, we can assume without loss of generality that
D ≥ mini∈[n] l(i). Notice that G has at most n! strategies and H has at most
2n strategies, so that, for a given n, the knapsack game is a finite matrix game.
We interpret the knapsack game as an on-line problem as follows. We have a
set of n jobs numbered from 1 to n. Each job has a profit p(i) and it takes l(i)
units of time to be completed. The on-line algorithm G starts to schedule jobs
on one machine according to some ordering π. At time D, the adversary shuts
the machine down, and G gains the values of all the jobs completed before D. A
strict competitive ratio is an upper bound to the inverse of the game value. We
do not allow additive terms in the competitive ratio because the game is finite.
We remark the difference among the following quantities relative to an (on-line)
algorithm:

Profit Total profit of jobs completed before the deadline
Payoff Ratio of the algorithm’s profit over the adversary’s. The payoff is relative

to the chosen strategies for the on-line algorithm and for the adversary.
Game Value Best payoff an on-line player can achieve.
Competitive Ratio An upper bound on the inverse of the game value.

178 V. Liberatore

It can be noticed that the competitive ratio is defined in terms of inverse of
game values, which is the correct choice in maximization on-line games [2]. We
observe that the knapsack game is trivial if all p(i)’s are equal (choose the jobs
in non-decreasing length order) or if all l(i)’s are equal (choose the jobs in non-
increasing profit order). In the more general scenario, we will assume that a job
can be scheduled on any one of m machines that run at the same speed. The
adversary will shut all machines down at the deadline D.

Henceforth, we will use natural logarithms because they simplify notation and
derivatives. Of course, the logarithm base does not alter the order of asymptotic
bounds. Finally, we introduce some quantities that will be fundamental to the
analysis below. Define V = maxi∈[n]{p(i)}/ mini∈[n]{p(i)} as the ratio of the
largest to the smallest profit. Another important quantity is L, the number of
distinct length values in the job set, that is, L = |{l(j) : j ∈ [n]}| ≤ n. Finally,
we define the critical number of machines µ = min{L − 1, ln V }.

3 Competitive Analysis

In this section, we conduct competitiveness analysis for the shut-down scheduling
problem.

3.1 Randomized Algorithms

We present strongly competitive randomized algorithms for shut-down schedul-
ing. Here, we will focus on the case when L, V 6= O(1), and we will obtain
different competitive ratios depending on the relative growth rate of L and V .
We begin with a lower bound on the case of m = 1 machine

Lemma 1. No randomized algorithm for the knapsack game can be better than
Ω(L)-competitive when V = Ω(2L) and better than Ω(log V)-competitive when
V = o(2L).

The proof will exploit the minimax principle [2].

Proof (Sketch). Let ρ = 1/ L−1
√

V , l(i) = n + i − 1 and p(i) = bp(1)ρ1−ic for
all i ∈ [n]. Notice that p(1) ≤ p(2) ≤ . . . ≤ p(n) ≤ V , so that the ratio of
the largest to the smallest value is indeed bounded by V . The two fundamental
points of the proof are the following. First, if D ≤ 2n − 1, at most one job can
be scheduled before the deadline. If the on-line player guesses the right job, its
payoff is one. If it guesses a job that is longer than the deadline, its payoff is
naught. Finally, if it guesses a job that is shorter than the deadline, its payoff
is limited by the exponential growth of profits. The second point is to use the
minimax principle as follows. Let c = n(1 − ρ) + ρ. We can show a probability
distribution over D that forces any deterministic on-line strategy to have payoff
O(1/c). By the minimax principle, the value of the game is O(1/c), and so the
competitive ratio of a randomized on-line algorithm is Ω(c) = Ω(n(1 − ρ)). An
asymptotic analysis of c completes the proof. ut

Scheduling Jobs Before Shut-Down 179

We now show that the same lower bound holds for an arbitrary number m
of machines.

Corollary 2. No randomized algorithm for the shut-down scheduling on m ma-
chines can be better than Ω(L)-competitive when V = Ω(2L) and better than
Ω(log V)-competitive when V = o(2L).

Proof. The proof is a reduction to the case of m = 1 machine. Consider the same
counterexample as in Lemma 1 on n′ jobs and replicate each job for m times, so
that the total number of jobs is now n = n′m. The number L of length classes
remains unchanged. Again, at most one job can complete on any machine when
D ≤ 2n − 1. We will show how to convert any randomized algorithm for the
m machine instance into a randomized algorithm for the original one-machine
problem so that the two schedules achieve the same payoff. If D ≤ 2n − 1, any
randomized strategy for m machines is completely characterized by the expected
number fi of machines starting a job of length n+ i−1. Let h be the index with
D = l(h). By linearity of expectation, the on-line expected profit is

∑h
i=1 fip(i).

Meanwhile, the adversary’s profit is mp(h), so that the on-line expected payoff is∑h
i=1 fip(i)/(mp(h)). Consider an on-line algorithm for the one machine instance

that schedules job i with probability fi/m. Its expected payoff is exactly the same
as the m machine algorithm for any choice of deadline D ≤ 2n − 1. Hence, the
same lower bound as in Lemma 1 applies, and the proof is complete. ut

If m > 1 and all l(i)’s are equal, then shut-down scheduling is trivial (schedule
jobs in non-increasing profit order). We turn to the case when the p(i)’s are equal,
and show an O(1)-competitive algorithm. Such algorithm is an intermediate step
to solve the case of general profits. First, notice that when all profits are equal,
our objective is to maximize the number of completed jobs. Define the canonical
job scheduling algorithm for a set C ⊆ [n] as a list scheduling algorithm [10] that
orders the jobs from the shortest to the longest.

Lemma 3. Let C ⊆ [n] be a set of jobs. The canonical schedule of C completes
at least 1/5 of the jobs completed by any other algorithm before the deadline D.

Define the load of a machine as the total length of jobs completed on that
machine before the deadline and the makespan as the maximum load of any one
machine. The proof will exploit a result for load balancing of permanent jobs
[10].

Proof. The proof is organized as follows. We partition the jobs executed by the
optimum into five classes, depending on their starting and completion time with
respect to the deadline D and the makespan of the canonical schedule. Then,
we show that no class contains more jobs than those completed by the canonical
schedule before the deadline D. Hence, the canonical schedule completes at least
1/5 of the jobs completed by the optimum, which will complete the proof.

Assume without loss of generality that jobs are numbered in non-decreasing
order of length, that is, l(j + 1) ≥ l(j) for j = 1, 2, . . . , n − 1. Let G be the set

180 V. Liberatore

of jobs completed by the canonical schedule before D and let MG the makespan
of G, that is the time the last job in G is completed. By definition, MG ≤ D.
Observe that initially G starts by assigning one job in [m] to each machine. Let
H be a the largest set of jobs completed before D. Suppose first that |H| ≤ m.
Then, D is at least the length of the longest job in H, which is at least l(|H|).
Hence, G completes at least one job on at least |H| machines and the claim is
proven. Assume now |H| > m, so that D ≥ l(|H|) ≥ l(m). Hence, |G| ≥ m. We
now make the following definition: if X ⊆ [n] is a set of jobs, then M∗

X is the
minimum makespan to complete X. Observe that if X ⊆ Y , then M∗

X ≤ M∗
Y .

Analogously, if X, Y ⊆ [n] and if there is a one-to-one mapping f : Y → X with
l(j) ≥ l(f(j)) for all j ∈ Y , then M∗

X ≤ M∗
Y . Let M∗

G be the earliest time when
G can be completed. A load balancing results claims that 2M∗

G > MG. Schedule
H on m machine so that the schedule completes before time D and partition H
into five subsets according to such schedule as follows (Figure 1 gives an example
of such partition).

MG
*

MG

D

1 2 m

H1

H2

H3

H4

H5

Fig. 1. A partition of the optimal set H of jobs according to the optimal makespan
M∗

G and the actual makespan MG of the on-line algorithm.

– The subset H1 ⊆ H is the set of jobs that complete before time M∗
G. We

claim that |H1| ≤ |G|. Suppose by contradiction |H1| > |G|. Take any proper
subset H ′ ⊂ H1 with |H ′| = |G| elements. Since G consists of the |G| shortest
jobs, there is a one-to-one mapping f : H ′ → G with l(j) ≥ l(f(j)) for all j ∈
H ′. Hence, the optimal makespan M∗

H′ of H ′ is not smaller than the optimal
makespan M∗

G of G. Therefore, M∗
G ≤ M∗

H′ ≤ M∗
H and a contradiction is

reached. Therefore, we conclude |H1| ≤ |G|.
– The subset H2 ⊆ H is the set of jobs that start before time M∗

G and complete
after time M∗

G. The set H2 contains at most one job per machine, so that
|H2| ≤ m ≤ |G|.

Scheduling Jobs Before Shut-Down 181

– The subset H3 ⊆ H is the set of jobs that starts after time M∗
G and complete

after time MG. Since MG − M∗
G < M∗

G, we conclude that |H3| ≤ |G| with
an argument similar to H1.

– The subset H4 ⊆ H is the set of jobs that starts before time MG and
complete after time MG. The set H4 contains at most one job per machine
and so |H4| ≤ m ≤ |G|.

– The subset H5 ⊆ H is the set of jobs that start after MG. Notice that
D − MG < l(|G| + 1) or else G would have scheduled one more job. Hence,
H5 can contain at most |G| documents because job |G| + 1 does not fit in
the alloted time D − MG < l(|G| + 1).

Notice that H1, H2, . . . , H5 give indeed a partition of H. We conclude that |H| ≤
5|G|, which proves the lemma. ut
Corollary 4. The canonical schedule is 5-competitive for shut-down scheduling
on any number m of machines when p(i) = 1 for all jobs i.

The canonical schedule algorithm easily generalizes to the case of arbitrary
profits by using the CRS techniques. Partition the job set into O(log V) profit
classes such that no job is more than O(1) times as profitable as any other job
in the same class. Then, extract a profit class at random and execute jobs only
from that class. However, if V = Ω(2L), then jobs are partitioned according to
their length in such a way that a job class contains only jobs of the same length.
We conclude that

Theorem 5. The best randomized algorithm for shut-down scheduling is Θ(L)-
competitive when V = Ω(2L) and Θ(log V)-competitive when V = o(2L).

A consequence of the matching upper and lower bounds is that if we change
the number m of machines, we do not help nor hamper the competitive ratio of
randomized algorithms.

3.2 Deterministic Algorithms

We now turn to deterministic algorithms. It is helpful during the discussion to
refer to table 1 which summarizes our results. First, we argue that if there is

V = o(2L) V = Ω(2L)
m ≤ µ Θ(mρ) Θ(mρ)
m > µ Θ(log V) Θ(L)

Table 1. Competitive ratios of the best deterministic algorithm for the m machine
knapsack game, where L is the number of length classes, V is the ratio of largest and
smallest profit, µ = min{L− 1, ln V } is the critical number of machines, and ρ = m

√
V .

a sufficiently large number m > µ of machines, then, we can find deterministic

182 V. Liberatore

algorithms that match the randomized lower bound. We derandomize the CRSlog
algorithm as follows. If we have m ≥ µ + 1 ≥ ln V + 1 machines, we can assign
m′ = bm/(ln V +1)c machines to process jobs in each profit class according to the
canonical schedule. Roughly speaking, the derandomized version translates the
probability of executing jobs in class Ci into the fraction of machines assigned
to class Ci. It is critical that profit classes be disjoint sets, as otherwise a job
would have to be scheduled on more than one machine.

Lemma 6. The derandomized version of the CRSlog algorithm is O(log V)-
competitive for shut-down scheduling on m ≥ ln V + 1 machines.

Proof. At any time, the algorithm has completed at least 1 / 5 of the jobs in a
certain class that are completed by any other algorithm that uses m′ machines
for that class. Hence, the adversary completes in each class at most 5m/m′ =
O(log V) jobs more than the derandomized CRSlog algorithm, and, on each job,
it earns less than e times as much as the derandomized CRSlog. Thus, such
algorithm is O(log V)-competitive. ut

We can analogously derandomize the O(L)-competitive algorithm as long as
we have m ≥ µ + 1 ≥ L machines. It remains to establish deterministic compet-
itive ratios for m ≤ µ machines. In this case, Corollary 2 is tight for randomized
algorithms, but gives a weak lower bound for deterministic algorithms. Intu-
itively, the weakness of Corollary 2 stems from the fact that it is not always
possible to execute simultaneously all deterministic strategies that compose a
randomized algorithm if only few machines are available. Define ρ

def= m
√

V (such
notation is independent of that in Lemma 1) and notice that ρ > 1. We will
frequently use the equality ln ρ = (ln V)/m and m = ln V/ ln ρ.

Lemma 7. If m ≤ min{L − 1, ln V }, then no deterministic algorithm can be
better than Ω(mρ)-competitive.

Notice that mρ = ω(m log ρ) = ω(log V). On the other hand, if V = Ω(2L),
then ρ = Ω(2L/m) = ω(L/m), and so mρ = ω(L). Hence, Lemma 7 dominates
Corollary 2 when m ≤ µ.

Proof (Sketch). The proof is based on an instance with the property that the
adversary will be able to choose a bad deadline for any on-line algorithm. The
instance consists of m + 1 classes of m identical jobs such that jobs in class i are
ρ times more valuable than jobs in class i − 1. Job lengths are chosen in such a
way that only one job can complete on any one machine, which is similar to the
length distribution of Lemma 1. Since there are more classes than machines, the
on-line algorithm does not schedule any job from a certain class. The adversary
chooses the deadline so that the optimum strategy schedules jobs only from that
class, while the on-line algorithm achieves a small profit. We will now give some
details of the arguments.

Scheduling Jobs Before Shut-Down 183

Set-up. The proof is based on an instance where there are m identical jobs of
profit bp0ρ

ic (i = 0, 1, 2, . . . , m) for some minimal profit p0. Hence, the total
number of jobs is n = m(m + 1). Notice that L = m + 1 > m. Observe that the
minimum profit is p0 and the maximum profit is no more than p0V . A profit class
is a set of jobs with the same profit. We will think of profit classes as ordered
by the profit of the jobs they contain. A job of profit p0ρ

i has length 2m + i. If
D ≤ 3m, then at most one job can complete on any one machine.

Holes. Since the number of profit classes is m+1, there is at least one profit class
from which no job is completed before the deadline D ≤ 3m. We will say that
a hole is a maximal non-empty sequence of profit classes with the property that
no job has been scheduled from any class in the hole. Clearly, there is at least
one hole. If the first class C0 is in a hole, then the adversary will set D = 2m,
and the on-line algorithm achieves no profit. Therefore, we can assume from now
that the first class is not in a hole without loss of generality. Suppose that the
holes are H1 ≺ H2 ≺ . . . ≺ Hl. Let ki be the number of jobs scheduled from the
class immediately preceding hole Hi. We claim that there is at least one hole Hi

for which ki ≤ |Hi| + 1. Suppose that this is not true. Then, denote by ν the
number of classes that are not immediately followed by a hole and observe that
the total number of jobs is at least ν + 2l +

∑l
i=1 |Hi| = m + l > m, which is a

contradiction. The adversary chooses a deadline equalt to the maximum length
of a job in a hole H such that |H|+1 is a bound on the number of jobs scheduled
in the class immediately before the hole.

An analysis of payoffs concludes the proof. ut
Such lower bound is matched by the following CSM (Canonical Schedule for

m machines) algorithm. First, normalize job profits so that the minimum profit
is one and the maximum profit is V . CSM divides the job set into m classes
according to job profit, where class i consists of jobs of profit ρi−1 ≤ p(j) < ρi.
CSM schedules jobs of class i on machine i according to the canonical schedule.

Lemma 8. The CSM algorithm is O(mρ)-competitive for the knapsack game on
m of machines.

Proof. Define the hth profit class as Ch = {j : ρh−1 ≤ p(j) < ρh}. Let xh be the
number of jobs in class h scheduled by the optimum before the deadline D. Hence,
the optimum profit from class h is less than xhρh. The CSM algorithm schedules
at least a xh/(5m) jobs in class h, so that its profit is at least xhρh−1/(5m).
Hence, CSM has a payoff of at least

∑m
h=1 xhρh−1

m
∑m

h=1 xhρh
≥
∑m

h=1,xh 6=0 xhρh−1

m
∑m

h=1,xh 6=0 xhρh
≥ 1

5m

1
ρ

≥ 1
5mρ

.

The competitive ratio is the inverse of the payoff, and thus the proposition is
proven. ut

The lower bound and the CSM algorithm are summarized by:

Theorem 9. The best deterministic algorithm for the knapsack game on m ≤
min{L − 1, ln V + 1} machines is Θ(m m

√
V)-competitive.

184 V. Liberatore

3.3 Reduced Randomization

The CSM algorithm can be translated into a randomized algorithm, where a
random class of jobs is scheduled according to the canonical schedule. We will
name the resulting randomized algorithm CSMr.

Lemma 10. The CSMr algorithm is O(mρ)-competitive for the shut-down
scheduling problem.

Proof. Since there are m profit classes, jobs in the same classes have profits that
are within a factor of ρ, and the canonical schedules has a performance guarantee
of 5, we obtain that the payoff of CSMr is at least 1/(5mρ). ut

Hence, CSMr gives a precise trade-off between randomization and compet-
itive ratio. Indeed, if no randomization is allowed, then the best algorithm is
Θ(V)-competitive. As the amount of randomization increases to m strategies
(m ≤ ln V), performance improves as Θ(m m

√
V). Finally, when m = ln V + 1,

the best algorithm is Θ(log V)-competitive and, if V = o(2L), no further im-
provement stems from adding more machines. Meanwhile, we claim that CSMr
achieves optimal performance.

Theorem 11. The best randomized algorithm that is a distribution over only m
deterministic strategies is Θ(mρ)-competitive.

Proof (Sketch). Consider the proof of Lemma 7 and replace the number of ma-
chine starting a certain job class with the expected number of machines. ut

4 Probabilistic Analysis

In this section, we will conduct probabilistic analyses of shut-down scheduling
on m = 1 machine. Let π = (π1, π2, . . . , πn) be a permutation of [n] and Ji =
{π1, π2, . . . , πi}. Then,

E[p(π)] =
n∑

i=1

p(Ji)Pr[l(Ji) ≤ D < l(Ji+1)] =
n∑

i=1

p(πi)Pr[D ≥ l(Ji)] . (1)

Our objective is to find a permutation π that maximizes (1). A corresponding
decision problem is to find a permutation π such that E[p(π)] ≤ p̄ for some
given p̄. Such decision problem is easily seen to be NP-complete as it reduces
to a knapsack problem when there is a t with Pr[D = t] = 1. First, we give a
general optimality criterion.

Lemma 12. If a permutation π maximizes (1), then, for all i ∈ [n − 1],

p(πi)Pr[l(Ji) ≤ D < l(Ji+1)] ≥ p(πi+1)Pr[l(Ji−1) + l(πi+1) ≤ D < l(Ji+1)] .

Moreover, if π maximizes (1) and

p(πi)Pr[l(Ji) ≤ D < l(Ji+1)] = p(πi+1)Pr[l(Ji−1) + l(πi+1) ≤ D < l(Ji+1)] ,

then the permutation π′ obtained by exchanging πi and πi+1 is also optimal.

Scheduling Jobs Before Shut-Down 185

Proof (Sketch). If this were not so, exchange jobs πi and πi+1 to increase the
profit. Analogously, if equality holds, the profit remains unchanged, and thus
optimal. ut

A simple corollary is that if all p(i)’s are equal, then the optimal solution is
to arrange jobs in increasing order of length, independently of the distribution
of D. Another simple consequence is that if D is uniformly distributed in an
interval [0, A] of the real line with A ≥ l([n]), then he optimal permutation is to
arrange jobs in non-increasing profit density p(i)/l(i) (PD-order). The result for
the uniform distribution also follows by noticing that, under such distribution,
the objective (1) defines a weighted completion time problem, and we can apply
Smith’s rule [20].

We now turn to the case when the deadline D is extracted according to an
exponential distribution with rate λ. The exponential distribution models the
case when client requests arrive according to a Poisson process, and each request
terminates a lull. First, recall that, if D is exponentially distributed, we have
Pr[D ≥ t] = e−λt. Then, expression (1) becomes

E[p(π)] =
n∑

i=1

p(πi)e−λl(Ji) . (2)

Define the exponential density of job i as the ratio de(i) = p(i)/(eλl(i) − 1).
The Exponential Profit Density (EPD) algorithm arranges jobs in non-increasing
order of exponential profit density. We will say that a permutation is in EPD-
order if its jobs are in non-increasing order of exponential profit density.

Theorem 13. If Pr[D ≥ t] = e−λt, then a permutation maximizes (2) if and
only if it is in EPD-order.

Proof. If a permutation is optimal, then the optimality condition of Lemma
12 implies that it is in EPD-order. Conversely, assume that the identity is an
optimal EPD permutation, and suppose we exchange two terms h and h+1 with
the same exponential value density. Lemma 12 implies that the new permutation
is optimal as well. Any permutation in EPD-order can be obtained by a finite
exchange of jobs with the same exponential profit density, and the proposition
is proven. ut

The previous theorem suggests that in some sense lengths are exponentially
more important than values for an exponential distribution. On the other hand,
an exponential distribution can be approximated by a uniform distribution when
λ is large (λ ≥ l([n])), in which case we can show that PD is within 1.1312 of
the optimum.

We observe that there are in general several scheduling strategies in PD-order
(EPD-order). Although any such strategy maximizes the expected profit, we will
show that some optimal strategies have smaller variance than others. Variance
analysis is based on the optimality conditions and on the following

186 V. Liberatore

Lemma 14. If π is an optimal permutation that has minimum V ar[p(π)] among
all optimal permutations and p(πi)Pr[l(Ji) ≤ D < l(Ji+1)] = p(πi+1)Pr[l(Ji−1)
+l(πi+1) ≤ D < l(Ji+1)] 6= 0, then p(πi) ≤ p(πi+1).

Proof (Sketch). Since π is optimal, Lemma 12 holds. Hence, we can only ex-
change jobs for which the equality condition holds. Furthermore, p(π) is a con-
stant among all optimal permutation, so that minimizing the variance is tan-
tamount to maximizing the second moment E[p2(π)]. Therefore, we seek opti-
mality conditions for the problem where p(j) is replaced by −p2(j), subject to
the constraints given by Lemma 12. Such optimality conditions are found by an
exchange argument and the lemma is proven. ut

It can be seen that a tie breaking procedure for the uniform and exponential
distribution is to favor shorter jobs. Indeed, suppose that job i and i + 1 have
the same (exponential) profit density and p(i) ≤ p(i + 1). Then, l(i) ≤ l(i + 1).
Hence, the optimal strategy that minimizes risk is to arrange jobs in PD-order
(EPD-order) and break ties by scheduling shortest jobs first.

5 Simulations

In this section, we sketch the set-up and results of our simulations. We postpone a
complete account to the full paper. We simulated speculative data dissemination
during server idle periods. Simulation is based on four Web server traces. The
base server bandwidth value depends on the server load and is 8KB/s for cs.edu,
16KB/s for epa-http and 64KB/s for NASA. We assume that each client has an
extension cache [6] of moderate size to keep both requested and disseminated
documents. The major performance measure is the average delay . The delay is
the time for a client to receive the requested document, and it includes a fixed
network latency, the transmission time (document size over client bandwidth),
and the time spent in the server queue. We simulated five strategies:

1. Traditional http with no client cache, which is our baseline strategy.
2. The http protocol with extension [6] client caches of 128 KB.
3. Profit density (PD).
4. PD(rho), which is similar to PD but takes into account the packet drop

probability in estimating document profits, and
5. CSM for m = 1 machine, which sends documents from the shortest to the

longest.

Figure 2 compares delays normalized to the baseline http value. The CSM
algorithm outperformed PD in all traces, except cs.edu, where the two algo-
rithms have nearly equal performance. The PD algorithm performed better if
it uses packet drop probabilities (PD(rho)), but even so, it was almost always
outperformed by CSM. Both CSM and PD consistently improved over the case
when no speculative dissemination is executed.

Scheduling Jobs Before Shut-Down 187

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

cs.edu epa-http nasa (Aug 4) nasa (Aug 14)

re
la

tiv
e

de
la

y CSM

VD(rho)

VD

http+cache

ht tp

Fig. 2. Relative delays of traditional http with and without caches, PD with no knowl-
edge of the packet drop probability (PD), PD with perfect knowledge of the packet
drop probability (PD(rho)), and CSM (m = 1). Sum of individual document latencies
is normalized to traditional http with no client cache. Results for four Web server traces
are reported.

Acknowledgments

We are grateful to Brian Davison, Kevin Christian, Bala Kalyanasundaram,
Samir Khuller, and Xiao-Tong Zhuang for helpful discussions, and to an anony-
mous referee for his comments and corrections. The author was partially sup-
ported by grant CCR-9501355.

References

[1] Susanne Albers and Guenter Schmidt. Scheduling with unexpected machine
breakdowns. Technical Report MPI-I-98-1-021, Max-Planck-Institut Fuer Infor-
matik, 1998.

[2] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[3] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In Dorit S. Hochbaum, editor, Approximation Algorithms
for NP-hard Problems, chapter 2. PWS, Boston, 1997.

[4] Mark Crovella and Paul Barford. The network effects of prefetching. In Proceed-
ings of IEEE INFOCOM, 1998.

[5] Gianfranco D’Atri and Claude Puech. Probabilistic analysis of the subset-sum
problem. Discrete Appl. Math., 4(4):329–334, 1982.

[6] Li Fan, Pei Cao, and Quinn Jacobson. Web prefetching between low-bandwidth
clients and proxies: Potential and performance. In Proceedings ACM SIGMET-
RICS ’99, pages 178–187, 1999.

[7] Juan A. Garay, Inder S. Gopal, Shay Kutten, Yishay Mansour, and Moti Yung.
Efficient on-line call control algorithms. J. Algorithms, 23(1):180–194, 1997.

[8] M. R. Garey, R. L. Graham, and J. D. Ullman. An analysis of some packing
algorithms. In Combinatorial algorithms (Courant Comput. Sci. Sympos., No. 9,
1972), pages 39–47. Algorithmics Press, New York, 1973.

188 V. Liberatore

[9] Andrew V. Goldberg and Alberto Marchetti-Spaccamela. On finding the exact
solution to a zero-one knapsack problems. In Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, pages 359–368, 1984.

[10] R. L. Graham. Bound for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

[11] Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant scheduling. In Proceedings
of the Twentysixth Annual ACM Symposium on the Theory of Computing, pages
115–124, 1994.

[12] Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant real-time scheduling. In
Algorithms—ESA ’97 (Graz), pages 296–307. Springer, Berlin, 1997.

[13] Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack
problem. In Proceedings of The 2nd International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, 1999.

[14] George S. Lueker. On the average difference between the solutions to linear and
integer knapsack problems. In Applied probability—computer science: the inter-
face, Vol. I (Boca Raton, Fla., 1981), pages 489–504. Birkhäuser Boston, Boston,
Mass., 1982.

[15] George S. Lueker. Average-case analysis of off-line and on-line knapsack prob-
lems. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 179–188, 1995.

[16] A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.
Math. Programming, 68(1, Ser. A):73–104, 1995.

[17] Harry M. Markowitz. Portfolio Selection. Efficient Diversification of Investments.
Blackwell, New Haven, 1970.

[18] Silvano Martello and Paolo Toth. Knapsack problems. John Wiley & Sons Ltd.,
Chichester, 1990.

[19] M. Meanti, A. H. G. Rinnooy Kan, L. Stougie, and C. Vercellis. A probabilistic
analysis of the multiknapsack value function. Math. Programming, 46(2 (Ser.
A)):237–247, 1990.

[20] Wayne E. Smith. Various optimizers for single-stage production. Naval Res.
Logist. Quart., 3:59–66, 1956.

[21] Krzysztof Szkatu la and Marek Libura. On probabilistic properties of greedy-
like algorithms for the binary knapsack problem. In Stochastics in combinatorial
optimization (Udine, 1986), pages 233–254. World Sci. Publishing, Singapore,
1987.

[22] Tolga Urhan, Michael Franklin, and Laurent Amsaleg. Cost-based query scram-
bling for initial delays. In ACM SIGMOD Intl. Conference on Management of
Data (SIGMOD), pages 130–141, 1998.

[23] Walter Willinger and Vern Paxson. Where Mathematics meets the Internet. No-
tices of the AMS, 45(8):961–970, September 1998.

Resource Augmentation in Load Balancing

Yossi Azar1,?, Leah Epstein1,??, and Rob van Stee2,? ? ?

1 Dept. of Computer Science, Tel-Aviv University. {azar,lea}@math.tau.ac.il
2 Centre for Mathematics and Computer Science (CWI). Rob.van.Stee@cwi.nl

Abstract. We consider load balancing in the following setting. The on-
line algorithm is allowed to use n machines, whereas the optimal off-line
algorithm is limited to m machines, for some fixed m < n. We show that
while the greedy algorithm has a competitive ratio which decays linearly
in the inverse of n/m, the best on-line algorithm has a ratio which decays
exponentially in n/m. Specifically, we give an algorithm with competitive
ratio of 1 + 1/2

n
m

(1−o(1)), and a lower bound of 1 + 1/e
n
m

(1+o(1)) on the
competitive ratio of any randomized algorithm.
We also consider the preemptive case. We show an on-line algorithm with
a competitive ratio of 1 + 1/e

n
m

(1+o(1)). We show that the algorithm is
optimal by proving a matching lower bound.
We also consider the non-preemptive model with temporary tasks. We
prove that for n = m + 1, the greedy algorithm is optimal. (It is not
optimal for permanent tasks).

1 Introduction

Competitive analysis has been criticized for being too pessimistic. This worst
case analysis sometimes fails to differentiate between algorithms whose perfor-
mance is observed empirically to be very different. A general method to circum-
vent these shortcomings was introduced by Kalyanasundaram and Pruhs
[13]: resource augmentation. For certain scheduling problems with unbounded
competitive ratio, they show that it is possible to attain a good competitive ratio
if the machines of the on-line algorithm are slightly faster than the machines of
the off-line algorithm.

Resource augmentation has been applied to a number of problems. It was al-
ready used in the paper where the competitive ratio was introduced [20]: here the
performance of some paging algorithms was studied, where the on-line algorithm
has more memory than the optimal off-line one.

In several machine scheduling and load balancing problems [4,8,13,14,16,18],
the effect of adding more or faster machines has been studied.
? Research supported in part by the Israel Science Foundation and by the United

States-Israel Binational Science Foundation (BSF).
?? Part of the research was done while this author was visiting the Centre for Math-

ematics and Computer Science (CWI), supported by a grant from the Netherlands
Organization of Scientific Research.

? ? ? Research supported by the Netherlands Organization for Scientific Research (NWO),
project number SION 612-30-002.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 189–199, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

190 Y. Azar, L. Epstein, and R. van Stee

We consider the following load balancing problem. Jobs arrive on-line, where
job j has a certain weight wj . The job has to be assigned immediately to a
machine, adding wj to the machine’s load. The on-line algorithm has n identical
machines, and it is compared to an optimal offline algorithm which has m < n
identical machines.

For a job sequence σ we write An(σ) for the maximum load of A on n
machines when it is given this job sequence. Analogously, we write OPTm(σ). We
denote the competitive ratio of an online algorithm A with n machines relative
to an optimal offline algorithm with m machines by cm,n(A). Specifically,

cm,n(A) = max
σ

An(σ)
OPTm(σ)

.

The classical case of n = m was considered in a series of papers [11,12,3,15,1].
The best upper bound is 1.923 due to Albers [1] and the best lower bound is
1.853 [10] based on [1]. The case n > m was introduced by Brehob et al [5].
They showed that no matter how many machines the on-line algorithm has, it
can never perform optimally: cm,n(A) > 1 for all n > m ≥ 2. However, one may
expect that for reasonable algorithms cm,n(A) would approach 1 when t = n/m
increases. In fact, [5] showed that the greedy algorithm has a competitive ratio
which approaches 1 in a rate depending linearly on 1/t.

In contrast, while the greedy algorithm has a competitive ratio which ap-
proaches 1 in a rate depending linearly on 1/t, we design a non-greedy algo-
rithm whose competitive ratio approaches 1 in a rate depending exponentially
on t. More specifically, we give an algorithm of competitive ratio 1 + 1

2t(1−o(1)) .
Moreover, we show that the competitive ratio of any on-line algorithm cannot
decrease faster than exponentially in t by proving a lower bound of 1 + 1

et(1+o(1))

on the competitive ratio of any on-line algorithm. We also show for n = 2m a
lower bound of 5/4.

We also consider the preemptive case. Here we view load as time. Each job
may be assigned to one or more machines and time slots, where the time slots
have to be disjoint. The assignment has to be determined completely at the
arrival of a job. Using similar techniques as in [6,7,19] we prove a lower bound
of 1/(1 − (m−1

m)n) = 1 + 1
et(1+o(1)) on the competitive ratio of any randomized

preemptive algorithm. We also show a matching upper bound by adapting the
optimal preemptive algorithm of [7] to our problem.

We can also view time as a separate axis and not as the load axis. Here jobs
arrive and depart at arbitrary times and the cost of an algorithm is the maximum
load over time and machines. This model is called the temporary tasks model
(the case where jobs only arrive is called the permanent tasks model). It was
proved in [2] that for n = m the greedy algorithm, which is 2−1/m competitive,
is optimal for this model. We show that if n is just slightly larger than m, i.e.,
n = m + 1, then greedy which is 2 − 2/(m + 1) competitive is also optimal. Note
that the results in [1] implies that the greedy algorithm is not optimal in general
for permanent tasks also for n > m.

Resource Augmentation in Load Balancing 191

2 Permanent Tasks

In this section we check the growth of the competitive ratio as a function of
t = n/m. We start with the competitive ratio of the greedy algorithm. This
algorithm was first given by Graham [11], and assigns each new job to the least
loaded machine. The following lemma is shown in [5] using a similar analysis as
in [11]:

Lemma 1. The competitive ratio of the greedy algorithm is 1 + m−1
n .

The above theorem implies a competitive ratio which is a linear function in 1/t.
Surprisingly, we can give an algorithm called Buckets which has a competitive
ratio 1 + 1/2t(1−o(1)).

2.1 Algorithm Buckets

For describing the algorithm Buckets we assume that t > 3. (If t ≤ 3 we use the
greedy algorithm.) Let 0 < ε < 1 some parameter to be fixed later. We partition
all machines into buckets: k = bt − 2

εc small buckets, each of which contains m
machines, and one big bucket that contains all other machines. Note that the
big bucket contains at least 2m

ε machines.
Algorithm Buckets maintains a value λ. Denote by λi the value of λ after

the arrival of i jobs and by OPTi the optimal load after i jobs. The algorithm
consists of phases. During a phase j, the algorithm can use only the big bucket
and the small bucket number j mod k. We assign the first job to the first small
bucket and initialize λ1 = w1. We modify λ only when a new phase starts while
keeping the following two invariants on λ:

– maxj≤i wj ≤ λi

– (2 − ε)OPTi ≥ λi

On arrival of a job i (starting from i = 2), we do the following: If wi ≤ λi−1/2
assign i greedily to the least loaded machine in the big bucket. If λi−1/2 < wi ≤
λi−1, and there is a machine in the small bucket which was not used in the
current phase, assign i to this machine. Finally, if all m machines in the current
small bucket were used in the current phase, or if wi > λi−1, then a new phase
begins: we define λi = max((2− ε)λi−1, wi) and the job is assigned to a machine
in the next small bucket.

Theorem 1. The algorithm Buckets is 1 + 1
2t(1−o(1)) competitive for an appro-

priate choice of ε.

Proof. We start by showing that both invariants hold after the arrival of a job
(and thus hold throughout the execution of Buckets). After the assignment of
the first job, λ1 = OPT1 = w1, and both invariants hold since ε < 1.

The first invariant always holds, since when a job which is larger than λ
arrives, λ is modified. To show that the second invariant holds, we show that λ

192 Y. Azar, L. Epstein, and R. van Stee

is increased only when the previous λ is smaller than the current OPT , and that
λ is not increased too much. If λ is increased since λi−1 < wi, then OPTi ≥ wi

and since λi = max((2 − ε)λi−1, wi) then λi ≤ (2 − ε)wi ≤ (2 − ε)OPTi. If λ
is increased since all the machines in the small bucket were used in the current
phase, then there are at least m+1 jobs of weight more than λi−1

2 and hence the
optimal schedule has to assign two of them on one machine, yielding OPTi >
λi−1. Thus λi ≤ (2 − ε)OPTi.

Next we show that the maximum load in the big bucket never exceeds OPTi

at step i (after arrival of job i). It is easy to see that the maximum load of
running greedy on αm machines is at most OPTi

α + maxj≤i wj . Since wj ≤ λi−1
2

and λi−1/(2 − ε) ≤ OPTi−1, the load is bounded by (1
α + 2−ε

2)OPTi−1 ≤ (ε
2 +

2−ε
2)OPTi = OPTi.

Last, we bound the maximum load on the small bucket machines. When a
new phase starts, the value of λ is multiplied by at least 2 − ε. Each machine in
a small bucket is used at most once in each phase.

Consider a job which is assigned to a small bucket machine in the last time
it is used. Denote this job by i′, and let λ′ = λi′ . Then the previous job assigned
to the same machine is of weight at most λ′/(2 − ε)k. Moreover, a job that
was assigned r ≥ 1 jobs before i′ to the same machine is of weight at most
λ′/(2 − ε)rk. Thus the total weight of all jobs on this machine, except i′, is at
most 2λ′/(2 − ε)k. Since OPT ≥ 1

(2−ε)λ
′ we get that the total weight of jobs on

this machine is at most

w(j′) +
4OPT

(2 − ε)k
≤ (1 +

4
(2 − ε)k

)OPT ≤ (1 +
4

(2 − ε)t−2/ε−1)OPT.

Choosing an appropriate value of ε would give the required competitive ratio
(for example ε =

√
3/t is a suitable value). �

2.2 Lower Bounds

We begin by giving a simple exponential lower bound:

Theorem 2. The competitive ratio of any deterministic on line algorithm is at
least 1 + 1/22t−1.

Proof. We give a proof for even m and for integer t. It is easy to extend the proof
for all cases. The sequence consists of n + m

2 jobs that arrive in 2t + 1 phases.
Phase 1 consists of m

2 unit jobs, and phase i for i > 1 consists of m
2 jobs of weight

2i−2. The sequence stops after a phase in which the on-line schedules two jobs
on one machine. (If the algorithm reaches the last phase, there are more jobs
than on-line machines, therefore the on-line has two jobs on one machine). The
optimal off-line load after every phase is the weight of the last job. If the on-line
has two jobs on one machine, its load it at least 1 + x where x is the weight of
the last job. The minimum value of 1+x

x would be 1 + 1
2i−2 where i = 2t + 1,

hence 1 + 1/22t−1 is a lower bound on the competitive ratio. �

Resource Augmentation in Load Balancing 193

We can give a slightly better lower bound, this bound holds for deterministic
and randomized algorithms. In fact, we show a lower bound on preemptive algo-
rithms versus a non-preemptive optimal algorithm. Hence our lower bound holds
both for the preemptive and non-preemptive models. The lower bound builds on
the lower bounds given by Sgall [19] and independently by Chen, van Vliet
and Woeginger [6,7].

The main idea here is to use small jobs and a sequence of n big jobs Ji for
1 ≤ i ≤ n of increasing weight so that the optimal off-line load after job Ji, which
we denote by OPTi, is exactly equal to the weight of Ji. Hence, the weight of
each big job is equal to the total weight of all previous jobs divided by m − 1.
Specifically, the sequence begins by very small jobs of total weight m−1 followed
by the sequence of the n big jobs. The weight of Ji for 1 ≤ i ≤ n is µi−1 where
µ = m

m−1 .

Lemma 2. The optimal off-line load for the above sequence is µk−1 after the
arrival of the job Jk, for 1 ≤ k ≤ n.

Proof. We consider an algorithm which assigns all jobs on off-line machines, and
show that the resulting load is µk−1.

The algorithm assigns jobs to the off-line machines greedily, in non-increasing
order (sorted according to weight). This is equivalent to using the LPT rule. We
show that no big job is assigned in a way that some load exceeds µk−1. Note
that the total weight of all small jobs and first j big jobs is µj(m − 1) = µj−1m.

Assume that the assignment of job j causes the maximum load to exceed
µk−1. This means that all other machines are loaded by more than µk−1 −µj−1.
Since the total weight of jobs smaller or equal to Jj is µj−1m, we get that the
total weight of jobs is more than µk−1m which is a contradiction. Hence, the
assignment of the small job results in balanced machines, each with load of µk−1.
�

The following lemma, adapted from [19,9], is the key of lower bounding the
competitive ratio.

Lemma 3. For any deterministic or randomized, preemptive or non preemptive
algorithms for the sequence above the following holds: r ≥ W∑n

i=1 OPTi
, where r is

the competitive ratio and W is the total weight of the jobs.

Proof. Denote by A(Ji) the maximum load of the on-line algorithm A after the
assignment of the job Ji. Then

∑n
i=1 E(A(Ji))∑n

i=1 OPTi
≤
∑n

i=1 r · OPTi∑n
i=1 OPTi

= r.

Hence it is enough to show that
∑n

i=1 E(A(Ji)) ≥ W .
Assume that A is deterministic. For 1 ≤ l ≤ n let Tl be the load on the l’th
machine at the end of the sequence after sorting the machines by non-increasing

194 Y. Azar, L. Epstein, and R. van Stee

load. Removing any l − 1 jobs still leaves a machine with load at least Tl and
thus A(Jl) ≥ Tn−l+1. Since W =

∑n
k=1 Tk we conclude that

n∑

i=1

A(Ji) ≥
n∑

i=1

Tn−l+1 = W

as needed. If A is randomized, we average over the deterministic algorithms and
conclude that

n∑

i=1

E(A(Ji)) ≥ W .

�

Theorem 3. The competitive ratio of an on-line algorithm, deterministic or
randomized, preemptive or non-preemptive, is at least 1/(1 − (m−1

m)n) = 1 +
1/e

n
m (1+o(1)).

Proof. We use the above job sequence and apply Lemma 3. We have

W = µn(m − 1) ,

n∑

i=1

OPTi =
n∑

i=1

µi−1 =
µn − 1
µ − 1

and

r ≥ µn(m − 1)
(µn − 1)

(µ − 1) =
µn

µn − 1
=

1
1 − 1

µn

=
1

1 − (m−1
m)n

as needed. �
We can improve the bound for the special case t = 2 for the non-preemptive

deterministic case.

Claim. The competitive ratio of any on-line algorithm for n = 2m, where m ≥ 8,
is at least 5

4 .

Proof. We use a job sequence consisting of four phases:

– m jobs of weight 1
– bm

2 c jobs of weight 3/2
– bm

3 c + 1 jobs of weight 3
– bm+1

6 c + 1 jobs of weight 4.

The sequence stops after a phase in which the on-line schedules two jobs on one
machine. Note that the sequence contains more than 2m jobs.

m mod 6 0 1 2 3 4 5
Amount of jobs 2m + 2 2m + 1 2m + 1 2m + 1 2m + 1 2m + 1

Resource Augmentation in Load Balancing 195

We show that the optimal load in phase i is i. This is clear for phases 1 and
2. In phase 3, if the machines are packed to a maximum load of 3, at most 2.5
of space can be lost: 2 if a job of weight 1 has to go on its own machine, and
0.5 if there is an odd number of jobs of weight 1.5. The total weight is at most
m+ 3m

4 + (m+ 3) = 11m
4 + 3, which is at most 3m−2.5 for m ≥ 22. This implies

that the machines can be packed with a maximum load of 3 for m ≥ 22. By
inspection, the machines can be packed for 8 ≤ m ≤ 21 too.

In phase 4, the total weight is at most 11m
4 + 3 + 4m

6 + 14
3 . In the optimal

packing, at most 3.5 of space is lost. We have 41
12m + 23

3 ≤ 4m − 3.5 which holds
for m ≥ 20. Therefore the optimal algorithm can maintain a load of 4 in phase
4, if m ≥ 20. By inspection, it works for 8 ≤ m ≤ 19 as well.

As an example, we give the optimal schedules for phases 3 and 4 when m = 8
and m = 9 (see Figure 1).

phase 3

phase 4

m=8 m=9

phase 4

phase 3

Fig. 1. The last phases for m = 8, 9

Depending on the phase in which the on-line algorithm puts two jobs on the
same machine, we find competitive ratios of 2, 5

4 , 4
3 and 5

4 . Hence the competitive
ratio is at least 5/4. �

2.3 An Optimal Preemptive Algorithm

The last part of this section presents an optimal preemptive on-line algorithm.
The algorithm is similar to the algorithm in [7].

Let r = 1/(1 − 1
µn). We denote the load on machine i at time T by LT

i . The
algorithm maintains three invariants, which hold at any step T :

– LT
1 ≤ LT

2 ≤ . . . ≤ LT
n .

196 Y. Azar, L. Epstein, and R. van Stee

– LT
n ≤ r · OPTT .

– For 1 ≤ k ≤ n,
k∑

i=1

LT
i ≤ µk − 1

µn − 1
WT ,

where WT is the total weight of jobs which arrived till time T .

Similarly to the algorithm in [7], we try to maintain a ratio of m
m−1 between ma-

chine loads. We show how to assign a new job j with weight wj , arriving at time
T +1, to n machines. First the new optimal load is computed by max(WT+1/m,
max1≤i≤T+1 wi) [17], and then the following intervals are reserved for j: for
1 ≤ l ≤ n − 1, we reserve [LT

l , LT
l+1], and for l = n, reserve [LT

n , r · OPTT]. Note
that these intervals are disjoint. Next, for j = n down to 1, assign a portion out
of wj of size equal to the size of the reserved interval. We do that until we run
out of wj . (The last portion assigned might be smaller than the interval.)

It is easy to follow the proof in [7], replacing the number of machines used by
the on-line algorithm from m to n. The proof shows that each job is completely
distributed to the machines and that the invariants hold. By that we conclude
that the algorithm is r-competitive as required.

3 Temporary Tasks

Recall that for n = m the greedy algorithm is (2 − 1/m)-competitive for perma-
nent tasks as well as for temporary tasks. Greedy is not optimal for permanent
tasks, but is optimal for temporary tasks. Also for n > m, it is easy to see that
greedy has the same competitive ratio for temporary tasks as for permanent
tasks, which is 1 + (m − 1)/n. However, in contrast to the case n = m, greedy
is not optimal for temporary tasks, since algorithm Buckets (defined on tempo-
rary tasks) achieves a better competitive ratio for large n. Specifically, it is easy
to see that the same analysis of the competitive ratio of algorithm Buckets for
permanent tasks also holds for temporary tasks. However, we show that if the
online algorithm has one more machine than the optimal offline algorithm then
the greedy is still optimal.

Theorem 4. Greedy is optimal for temporary tasks for n = m + 1.

Proof. We need to show a lower bound of 2m
m+1 on the competitive ratio of any

on-line algorithm. The proof consists of two parts: one for odd m and one for
even m. In the proof we mention the value of the optimal load only when the
value increases.

Case A. m is odd. We start the sequence by (m − 1)m2 unit-weight jobs. The
optimal load is m(m − 1). We distinguish between two cases:

Resource Augmentation in Load Balancing 197

Case A1. The online algorithm places at least m(m − 1) jobs on one machine,
say machine x.

In this case, all the jobs leave except m(m − 1) jobs on x. Then, m(m − 1)
jobs of weight m − 1 arrive. Since the optimal load is again m(m − 1),at most
m − 2 of them can go on x. Otherwise the load would be (2m − 1)(m − 1) on x,
and (2m − 1)/m > 2m/(m + 1). So (m − 1)2 + 1 of these jobs must go on the m
empty machines. We distinguish between two sub-cases:

Case A1a. One machine (not x) has at least m jobs of weight m − 1.
All jobs of weight m − 1 leave except m job of weight m − 1 on one machine,

and m−1 jobs of weight m(m−1) arrive. The new optimal load is (m+1)(m−1).
Therefore all these jobs must go on different machines. Finally, a job of weight
m(m + 1) arrives. This completes the proof since the online load is 2m2, while
the optimal load is m(m+1): the last job has it own machine, the other machines
have one job of weight m(m− 1), one or two jobs of weight m− 1 and some jobs
of weight 1, so that the load is precisely m(m + 1).

Case A1b. All machines (except machine x) have at least one job of weight
m − 1.

All jobs of weight m−1 leave except m jobs, one such job is on each machine
except machine x. Next, m2−2m−1

2 jobs of weight 2(m − 1) arrive. The optimal
load is again m(m − 1). At most m−3

2 are assigned to machine x, otherwise the
load there is too large. There are m−3

2 + 1
m jobs on average on the other machines,

so there is at least one machine (not x) with at least m−1
2 jobs of this weight

and a load of at least m(m − 1), say machine y. All jobs leave except the unit
jobs on x and jobs of total weight precisely m(m − 1) on machine y.

Finally, m−1 jobs of weight m(m−1) arrive and one job of weight m(m+1).
Clearly, the online algorithm must assign each job of weight m(m−1) to an empty
machine and hence its final load is 2m2. The optimal algorithm can balance its
jobs to a load of m(m + 1) since there are at least 2(m − 1) jobs of weight 1,
which completes the proof.

Case A2. All machines now have load at least m − 1.
All jobs leave except m − 1 jobs on each machine, and m2 − m − 1 jobs of

weight m−1 arrive. The average number of jobs of weight m−1 on the machines
is m − 2 + 1

m+1 , and hence there is a machine with m − 1 jobs of weight m − 1
and a load of m(m − 1). The loads are now the same as in Case A1b just before
the arrival of the jobs of weight 2(m−1). Hence, we can continue as in that case.

Case B. m is even. We start the sequence by (m − 1)m2 unit jobs. The optimal
load is m(m − 1). We distinguish between two cases:

Case B1. One machine, say x, has at least m(m − 1) jobs. All jobs leave except
m(m − 1) jobs on x, and (m − 1)2 jobs of weight m arrive. The optimal load is
again m(m − 1). We distinguish between two sub-cases:

198 Y. Azar, L. Epstein, and R. van Stee

Case B1a. Another machine (not x) has load at least m(m − 1). Then all jobs
of weight m leave except m − 1 jobs on one machine, and m − 1 jobs of weight
m(m − 1) arrive followed by a job of weight m(m + 1). Clearly, the online load
is 2m2, while the optimal load is m(m + 1) which completes the proof.

Case B1b. Each machine except x has one job of weight m. All jobs of weight
m leave except m jobs, one on each machine except on machine x. Next m2−3m

2
jobs of weight 2m arrive. At most m−2

2 can go on machine x. Hence, the average
number of jobs of weight 2m on machines different than x is m

2 − 2 + 1
m . Thus,

one machine must have m
2 −1 jobs of weight 2m and a load of at least m(m−1).

All jobs leave except the unit jobs on x and jobs of total weight m(m − 1) on
the other machine. Finally, m − 1 jobs of weight m(m − 1) arrive and one job
of weight m(m + 1). Clearly, the online load is 2m2, while the optimal load is
m(m + 1) which completes the proof.

Case B2. There are at least m jobs on each machine.
All jobs leave except m jobs on each machine. Next, m2(m−2)−m

2 jobs of
weight 2 arrive. If there is a machine with load at least m(m − 1), we continue
as in Case B1. Otherwise, each machine has load at least 2m. Then, some jobs
of weight 2 leave in such a way that the load on each machine is 2(m− 1). Next,
m2 − 2m − 2 jobs of weight m − 1 arrive. Then, one machine will have a load of
at least m(m−1). Jobs of weight m−1 on that machine leave such that the load
becomes m(m − 1). All non-unit jobs on the other machines leave. We continue
as in Case B1b. �

4 Conclusions

We have examined the effects of resource augmentation for several load balancing
problems. For the problem of scheduling jobs on identical machine, we have
shown an algorithm with a competitive ratio which decreases exponentially in
n/m, while greedy has a competitive ratio that is linear in n/m.

An open question is whether it is possible to close the gap between the lower
bound and the upper bound on identical machines. Both bounds are decreasing
exponentially, and we conjecture that the true value of the competitive ratio is
closer to the lower bound.

Acknowledgements

The authors wish to thank Han La Poutré for helpful discussions.

References

1. S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on
Theory of Computing, pages 130–139, 1997.

Resource Augmentation in Load Balancing 199

2. Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical
machines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119–
125, 1997.

3. Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient
scheduling problem. In Proc. 24th ACM Symposium on Theory of Algorithms,
pages 51–58, 1992. To appear in Journal of Computer and System Sciences.

4. P. Berman and C. Coulston. Speed is more powerful than clairvoyance. In Nordic
Journal of Computing, pages 181–193, 1999.

5. M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to
load balancing. Manuscript, 1999.

6. B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online
scheduling. Information Processing Letters, 51:219–222, 1994.

7. B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive
on-line scheduling. Operations Research Letters, 18:127–131, 1995.

8. J. Edmonds. Scheduling in the dark. In Proceedings of the 31st ACM Symposium
on Theory of Computing, pages 179–188, 1999.

9. L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related
machines. To appear in Oper. Res. Lett., 2000.

10. T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for
request-answer games. In Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,
2000.

11. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

12. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:263–269, 1969.

13. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In
Proceedings of 36th IEEE Symposium on Foundations of Computer Science, pages
214–221, 1995.

14. Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. In
European Symposium on Algorithms, pages 235–246, 1998.

15. D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient
scheduling problem. In Proc. of the 5th ACM-SIAM Symposium on Discrete Al-
gorithms, pages 132–140, 1994.

16. Tak Wah Lam and Kar Keung To. Trade-offs between speed and processor in hard-
deadline scheduling. In ACM/SIAM Symposium on Discrete Algorithms, pages
623–632, 1999.

17. R. McNaughton. Scheduling with deadlines and loss functions. Management Sci.,
6:1–12, 1959.

18. Cynthia A. Philips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation. In Proceedings of the 29th ACM Symposium
on Theory of Computing, pages 140–149, 1997.

19. J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Inf.
Process. Lett., 63(1):51–55, 1997.

20. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202–208, 1985.

Fair versus Unrestricted Bin Packing

Yossi Azar1,?, Joan Boyar2,??, Lene M. Favrholdt2,
Kim S. Larsen2,??, and Morten N. Nielsen2

1 Department of Computer Science, Tel-Aviv University, azar@math.tau.ac.il
2 Department of Mathematics and Computer Science, University of Southern

Denmark, Odense, {joan,lenem,kslarsen,nyhave}@imada.sdu.dk.

Abstract. We consider the Unrestricted Bin Packing problem where we
have bins of equal size and a sequence of items. The goal is to maximize
the number of items that are packed in the bins by an on-line algorithm.
We investigate the power of performing admission control on the items,
i.e., rejecting items while there is enough space to pack them, versus
behaving fairly, i.e., rejecting an item only when there is not enough
space to pack it. We show that by performing admission control on the
items, we get better performance for various measures compared with
the performance achieved on the fair version of the problem. Our main
result shows that we can pack 2/3 of the items for sequences in which
the optimal can pack all the items.

1 Introduction

1.1 General

In this paper, we are investigating the competitive ratio for a bin packing prob-
lem. However, in addition to considering unrestricted request sequences, we
also consider some restricted sequences which we refer to as accommodating
sequences. Informally, these are sequences where an optimal algorithm can sat-
isfy all requests. Clearly, the competitive ratio on accommodating sequences1

is no worse than the competitive ratio on unrestricted sequences for any given
problem and sometimes can be much better. For problems where the compet-
itive ratio is a bad measure, it may be useful to compare algorithms by their
competitive ratio on accommodating sequences. Specifically, it was shown in
[4,5] that there are (benefit) problems where the competitive ratio tends to zero
while the competitive ratio on accommodating sequences is a constant, i.e., in-
dependent of the parameters of the problem. Moreover, when we are trying to
distinguish between two algorithms, the competitive ratio on accommodating
sequences may prefer one algorithm while the competitive ratio measure (on all
sequences) prefers the other [5].
? Supported in part by the Israel Science Foundation, and by a USA-Israel BSF grant.

?? Supported in part by the Danish Natural Science Research Council (SNF).
1 In earlier papers [4,5,6], this competitive ratio on accommodating sequences was

called the accommodating ratio. The change is made here for consistency with com-
mon practice in the field.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 200–213, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Fair versus Unrestricted Bin Packing 201

In the Bin Packing problem we are given some bins and the goal is to pack a
set of items into these bins. We concentrate on the benefit variant of the problem,
where there are n bins and the objective is to maximize the total number of items
in these bins. This problem has been studied in the off-line setting, starting in [8],
and its applicability to processor and storage allocation is discussed in [9]. (For
surveys on bin packing, see [10,7].)

In the on-line version of the problem the items arrive in some sequence and
the assignment of an item should be done before the next item arrives. We as-
sume that the items are integer-sized and the bins all have size k. One can discuss
the Fair Bin Packing problem2 where it is required that the packing be fair , that
is, an item can only be rejected if it cannot fit in any bin at the time when it is
given. Note that the optimal algorithm is also required to be fair. It is shown in
[5] that for this problem, Worst-Fit has a strictly better competitive ratio than
First-Fit, while First-Fit has a strictly better competitive ratio than Worst-Fit
on accommodating sequences. In this case, the competitive ratio on accommo-
dating sequences seems the more appropriate measure, since it is constant while
the competitive ratio (on all sequences) is close to zero, for large values of k, ba-
sically due to some sequences which seem very contrived. This demonstrated the
usefulness of the more general accommodating function [6] which comprises the
competitive ratio as well as the competitive ratio on accommodating sequences
(it is a function of the restriction on the request sequences).

Here, we consider what happens when the fairness restriction is removed.
Thus, for the on-line problem Unrestricted Bin Packing (UBP), there are again
n bins, all of size k, the items are integer-sized, and the goal is to maximize the
total number of items placed in the bins, but there is no fairness restriction.

We note that on accommodating sequences, the competitive ratio of UBP
is no worse than the competitive ratio of the fair problem, since the optimal
algorithm serves all the requests and hence is fair. In general, however, the
competitive ratio of UBP is not necessarily better than the competitive ratio
of the fair problem since the optimal algorithms may be different. In fact, in
many cases, considering unfair algorithms, i.e., performing admission control on
the requests, is the more challenging problem; see for example the results for
throughput routing in [1,2,3]. In particular, with the Unrestricted Bin Packing
problem, it is easier to differentiate between algorithms since both their com-
petitive ratio and their competitive ratio on accommodating sequences can vary
over a large range. This is in contrast to on-line algorithms for Fair Bin Packing
where all of them must have both within a constant factor of each other.

1.2 Accommodating Sequences and the Accommodating Function

For completeness, we define the competitive ratio and the accommodating func-
tion for Unrestricted Bin Packing. Note that Unrestricted Bin Packing is a max-
imization problem, and all ratios are less than or equal to 1.
2 In [6] where some of the results from [5] were first presented in a preliminary form,

this problem was called Unit Price Bin Packing.

202 Y. Azar et al.

Let A(I) denote the number of items algorithm A accepts when given request
sequence I and let OPT(I) denote the number an optimal off-line algorithm,
OPT, accepts. An on-line algorithm, A, is c-competitive if there exists a constant
b, such that A(I) ≥ c · OPT(I) − b for all sequences I. The competitive ratio
CR = sup{c | A is c-competitive}.

Next, we introduce the restricted request sequences. We say that I is an α-
sequence, if I could be packed in αn bins. We investigate the competitive ratio on
such restricted sequences. To be precise, an on-line algorithm A is c-competitive
on α-sequences if c ≤ 1 and there exists a constant b, such that for every α-
sequence I, A(I) ≥ c · OPT (I) − b. The accommodating function A is defined as
A(α) = sup{c | A is c-competitive on α-sequences}.

Thus, the accommodating function for an algorithm is the competitive ratio
of that algorithm on α-sequences as a function of α. We refer to 1-squences
as accommodating sequences, since the optimal algorithm can accommodate all
requests in such a sequence. We use AR to denote the competitive ratio on
accommodating sequences.

1.3 Results

We prove results on the Unrestricted Bin Packing problem for the usual com-
petitive ratio, the competitive ratio on accommodating sequences and the ac-
commodating function. We start with the competitive ratio.

For the usual competitive ratio we prove the following:

– The algorithm Log (Section 2.2) has a competitive ratio of Θ(1
log k).

– No on-line algorithm can have a competitive ratio which is better than
O(1

log k), even when considering randomized algorithms.
– We observe that the competitive ratios of First-Fit and Worst-Fit are 1

k .

These results should be compared with the competitive ratio of any on-line
algorithm for the fair problem: they are all Θ(1

k) [5].
For the competitive ratio on accommodating sequences we prove:

– The competitive ratio of Log on accommodating sequences is Θ(1
log k).

– We conclude from [5] that the competitive ratio of First-Fit on accommo-
dating sequences is between 5

8 and 7
11 , since the fairness restriction on OPT

is irrelevant when all of the items can be packed.
– We design an unrestricted algorithm, Unfair-First-Fit, whose competitive

ratio on accommodating sequences is 2
3 , which is strictly higher than the

competitive ratio of First-Fit on accommodating sequences.
– The competitive ratio of any on-line algorithm on accommodating sequences

is no better than 6
7 , even when considering randomized algorithms.

Thus, according to the usual competitive ratio, Log is the better algorithm, and
according to the competitive ratio on accommodating sequences, First-Fit is the
better algorithm (the same is true for Log and Unfair-First-Fit).

For the accommodating function we prove the following:

Fair versus Unrestricted Bin Packing 203

– We design randomized and deterministic algorithms for which the accommo-
dating function evaluated at any constant α is a constant, if the algorithm
is given the value α.

– In contrast, we observe that First-Fit’s (and Unfair-First-Fit’s) accommo-
dating function drops down to Θ(1

k) for α ≥ 1 + c, for any constant c > 0.

The main technical effort is to prove the competitive ratio of the algorithm
Unfair-First-Fit on accommodating sequences. The other results are easier to
prove. Algorithm Log uses derandomization of the standard classify and select
technique. The proof of the lower bound for Log is similar to the lower bound
proof in [2], and the proof of the general upper bound for the competitive ratio
is analogous to the proof of the corresponding lemma in [1].

Remark: In this paper, we assume that all items are integer-sized and the
bins have size k. All of the results hold with the weaker assumption that the
bins are unit-sized and the smallest item has size at least 1

k . However, some of
the results in [5] do not appear to hold with this assumption, so we use the
stronger assumption for consistency.

2 The Competitive Ratio

2.1 First-Fit and Worst-Fit

It is easy to see that the competitive ratio of First-Fit or Worst-Fit for Unre-
stricted Bin Packing is 1

k . For the upper bound, consider the sequence consisting
of n items of size k followed by n · k items of size 1. For the lower bound, note
that if First-Fit (or Worst-Fit) rejects anything, it accepts at least n items, and
no algorithm can accept more than n · k items. From that it follows that First-
Fit’s (and Worst-Fit’s) accommodating function drops down to 1

k for α ≥ 2.
Moreover, it is Θ(1

k) for α ≥ 1 + c, for any constant c > 0, by using (α − 1)n · k
(instead of n · k) items of size 1.

2.2 Algorithm Log

In the description of the algorithm Log, we assume that n > c dlog2 ke, for some
constant c > 1. If n is smaller, we can use simple randomization to achieve the
same results.

Log divides the n bins into dlog2 ke groups G1, G2, . . . , Gdlog2 ke. Let p =
b n

dlog2 kec and let s = n − p · dlog2 ke. Groups G1, G2, . . . , Gs consist of p + 1
bins and the rest of the groups consist of p bins. Let S1 = {x | k

2 ≤ x ≤ k}, and
Si = {x | k

2i ≤ x < k
2i−1 } , for 2 ≤ i ≤ dlog2 ke. When Log receives an item o

of size so ∈ Si, it decides which group Gj of bins to pack it in by calculating
j = max{j ≤ i | there is a bin in Gj that has room for o}. If j exists, o is packed
in Gj according to the First-Fit packing rule. If not, the item o is rejected.

Theorem 1. The competitive ratio of Log is Θ(1
log k), even on accommodating

sequences.

204 Y. Azar et al.

Proof. Consider first the lower bound. For i ∈ {1, 2, . . . , dlog2 ke}, let ni(I)
denote the number of items of size s ∈ Si accepted by OPT when given the
sequence I of items. Since group Gi is reserved for items of size k

2i−1 or smaller,
the bins in group Gi will receive at least min{2i−1p, ni(I)} items. OPT can
accept at most 2in items with sizes in Si, i.e. ni(I) ≤ 2in. Thus, 2i−1p >
2i−1(n

dlog2 ke − 1) ≥ ni(I)(1
2dlog2 ke − 1

2n). Given the same sequence, Log packs at
least ni(I)(1

2dlog2 ke − 1
2n) items in Gi, for i ∈ {1, 2, . . . , dlog2 ke}. So, for any I,

Log(I)
OPT(I)

>

∑

i∈{1,2,... ,dlog2 ke}
ni(I)(1

2dlog2 ke − 1
2n)

∑

i∈{1,2,... ,dlog2 ke}
ni(I)

=
1

2dlog2 ke − 1
2n

,

so CRLog > 1
2dlog2 ke − 1

2n .
For the upper bound, consider the sequence I with n items of size k. Then,

Log(I)
OPT(I)

=
d n

dlog2 kee
n

<
1

dlog2 ke +
1
n

,

so ARLog < 1
dlog2 ke + 1

n . Since all sequences are considered for the competitive
ratio, CRLog ≤ ARLog, and the result follows. ut

2.3 An Upper Bound on the Competitive Ratio

In this section, we consider an arbitrary on-line algorithm A for Unrestricted
Bin Packing and prove general bounds on how well it can do. First, note that
the only possible lower bound on the competitive ratio, even on accommodating
sequences, is zero, since for the algorithm which simply rejects everything, the
ratio is equal to zero.

Clearly, the algorithm Log does not have the best possible competitive ratio
on accommodating sequences, but its competitive ratio is quite close to optimal.

Theorem 2. Any deterministic or randomized algorithm for Unrestricted Bin
Packing has a competitive ratio of less than 2

log2 k .

Proof. Assume that k is a power of 2. The items are given in phases numbered
0, 1, . . . , r, r ≤ log2 k. In phase i, n2i items of size k/2i are given. Clearly, any
optimal off-line algorithm will accept all n2r items in phase r.

Let xi be the expected number of items that the on-line algorithm accepts in
phase i, 0 ≤ i ≤ r, and xi = 0, r < i ≤ log2 k. By the linearity of expectations,
the expected total number of items accepted by the on-line algorithm is

∑log2 k
i=0 xi

and the expected total volume of the items accepted is
∑log2 k

i=0 k2−ixi. Since
there are only nk units of capacity overall, we get:

∑log2 k
i=0 k2−ixi ≤ nk, or∑log2 k

i=0 2−ixi ≤ n.

Fair versus Unrestricted Bin Packing 205

We now show that r can be chosen such that
∑r

i=0 xi < 2·n2r

log2 k , mean-
ing that OPT will pack more than 1

2 log2 k times as many items as the on-line
algorithm. Defining Sj = 2−j

∑j
i=0 xi, this statement can be reformulated as

∃r ∈ {0, 1, . . . , log2 k} : Sr < 2n
log2 k , which is proven by the following inequality.

log2 k∑

j=0

Sj =
∑

0≤i≤j≤log2 k

2−jxi <

log2 k∑

i=0

2 · 2−ixi ≤ 2n. ut

3 The Competitive Ratio on Accommodating Sequences

3.1 An Upper Bound

Now we turn to the competitive ratio on accommodating sequences. In [5], it
was shown that for k ≥ 7, any deterministic Fair Bin Packing algorithm has a
competitive ratio on accommodating sequences of at most 6

7 . The same result
and essentially the same proof hold when the fairness restriction is removed,
even for randomized algorithms.

Theorem 3. For k ≥ 7, any deterministic or randomized Unrestricted Bin
Packing algorithm has a competitive ratio of at most 6

7 , even on accommodating
sequences.

Proof. Assume n is even. Consider an arbitrary on-line algorithm A. An adver-
sary can proceed as follows: Give n items of size dk

2 e − 1, and let q denote the
number of bins which contain two items after this. In the case where E[q] < 2n

7 ,
the adversary gives n

2 long requests of size k. The off-line algorithm can pack
the first n requests in the first n

2 bins and thus accept all 3n
2 items. On average,

the on-line algorithm places two items in E[q] bins and has at most one item in
every other bin. The performance ratio is thus at most E[n+q]

n+ n
2

= 2n+2q
3n < 6

7 .

In the case where E[q] ≥ 2n
7 , the adversary gives n requests of size bk

2 c + 1.
The off-line algorithm can pack the first n items one per bin and thus accept all
2n items. The on-line algorithm must reject at least E[q] items on average. The
performance ratio is thus at most E[2n−q]

2n ≤ 6
7 . ut

3.2 Unfair-First-Fit

The Algorithm. In Section 2.2, it was shown that there is an algorithm for Un-
restricted Bin Packing which has a better competitive ratio than any algorithm
for Fair Bin Packing. It would be difficult to do the same for the competitive ratio
on accommodating sequences, since the best upper bound known is 6

7 for both
problems. First-Fit’s competitive ratio on accommodating sequences is known
to lie between 5

8 and 7
11 [6], and no algorithm for Fair Bin Packing is known

to have a better competitive ratio on accommodating sequences. The algorithm
Unfair-First-Fit (UFF), presented below, is shown to have a competitive ratio on
accommodating sequences which is better than that of First-Fit as long as the

206 Y. Azar et al.

number of bins is at least 22; the ratio approaches 2
3 as n increases. What makes

Unfair-First-Fit different from First-Fit is that items larger than k
2 are rejected

if enough items have been accepted already to maintain the desired ratio of 2
3 .

Input: S = 〈o1, o2, . . . , on〉
Output: A, R, and a packing for those items in A

A:= {o1}; R:= {}; S:= tail(S)
while S 6= 〈〉

o:=hd(S); S:= tail(S)
if size(o) > k

2 and |A|
|A|+|R|+1 ≥ 2

3
R:=R ∪ {o}

else if there is space for o in some bin
place o according to the First-Fit rule
A:=A ∪ {o}

else
R:=R ∪ {o}

The Competitive Ratio on Accommodating Sequences.

Theorem 4. For n ≥ 9, the competitive ratio of Unfair-First-Fit on accommo-

dating sequences is more than
2
3

− 4
6n + 3

. Thus, for n ≥ 22, ARUFF > ARFF.

Proof. The term “large” is used for items strictly larger than k
2 , since they are

considered in a special way by the algorithm. Let B denote the set of large items
that are alone in a bin in UFF’s packing. Let s denote the size of the smallest
item in R. We divide the proof into two cases depending on the size of s. The
first case is easy.

Case 1: s > k
2 : Since the smallest item in R is larger than k

2 , the items
in R ∪ B are all larger than k

2 . Thus, since all items can be packed in n bins,
|R| + |B| ≤ n, or |R| ≤ n − |B|. Furthermore, at most one small item can be
alone in a bin: |A| ≥ 2n − |B| − 1. Thus, the performance ratio is

|A|
|A| + |R| ≥ 2n − |B| − 1

2n − |B| − 1 + n − |B| ≥ 2n − 1
3n − 1

=
2
3

− 1
9n − 3

.

Case 2: s ≤ k
2 : Since we consider the competitive ratio on accommodating

sequences, an optimal off-line algorithm, OPT, can pack all items in S. It may
be instructive to view the optimal packing as being done in 3 phases:

1. UFF is run on S.
2. The packed items are rearranged, creating room for the rejected items.
3. The rejected items are packed.

Fair versus Unrestricted Bin Packing 207

The packing after Phase 1 is denoted by PUFF, and the packing after Phase
3 is denoted by POPT. Similarly, EUFF and EOPT are used to denote the total
empty space after Phase 1 and Phase 3 respectively. We assume without loss of
generality that no large item is moved during Phase 2.

We divide the rejected items into two disjoint sets: Rb which contains large
items, and Rs which contains small items. We use the following equation to
bound the number of small items rejected.

|Rs| ≤ 1
s

·
(

EUFF − EOPT − k

2
|Rb|

)

It is easy to see that |R| < n, since the empty space in any bin in PUFF is
less than s and all rejected items have size at least s. Thus, if all bins contain
at least two items each, |A|

|A|+|R| > 2n
2n+n = 2

3 and we are through. Therefore,
assume that some bins contain only one item. Since the empty space in any bin
is less than k

2 , such items must be large. Thus, the items that are alone in a bin
are exactly the items in B.

It is now clear that |A| ≥ 2n − |B|. However, if some bins contain more
than two items, this lower bound is too pessimistic. Therefore, we try to “spread
out” the items a little more. Assume that the items in PUFF are labeled with
consecutive numbers in each bin according to their arrival time, i.e., the first
item in a bin is labeled 1, the next one is labeled 2, and so on. We split Phase 2
into two Subphases, 2A and 2B, such that in Subphase 2A only items with labels
higher than 2 are moved and in Subphase 2B the remaining moves are performed.
Note that the packing produced during Subphase 2A is only technical and used
for counting purposes; it might be illegal in that some bins might contain a total
volume larger than k.

If some of the items moved during Subphase 2A are moved to bins containing
items from B, a better lower bound on |A| can now be obtained (Lemma 1). The
set of items that are still alone after Subphase 2A is divided into two sets: X,
containing the items that are still alone after Subphase 2B, and L, containing
those that are not. Any item that is alone after Subphase 2A was alone in PUFF
as well. Since no such item can be combined with an item belonging to R, each
item in X is also alone in POPT. Therefore, the bins containing an item from X
do not contribute to EUFF − EOPT.

Lemma 1. |A| ≥ 2n − |L| − |X|.
Proof. L ∪ X is the set of objects that are alone after Subphase 2A. ut

The following easy lemma is used to prove Lemma 3 below which, loosely
speaking, shows that if we cannot guarantee that most of the bins contain at
least two items after Subphase 2A, then much of the empty space in PUFF is
used by large rejected items.

Let t denote the time just after the last large item was accepted by UFF and
let At denote the set of items accepted at time t.

Lemma 2. |Rb| ≥ 1
2 |At| − 1.

208 Y. Azar et al.

Proof. Since a large item was accepted just before time t, all items previously
rejected are large items and therefore contained in Rb. Since the item was ac-
cepted, |At|−1

|At|−1+|Rb|+1 < 2
3 . Solving for |Rb|, we get |Rb| > 1

2 |At| − 3
2 , and since

|Rb| must be integer, we get |Rb| ≥ 1
2 |At| − 1. ut

Assume that at time t all small items accepted by UFF are marked.

Lemma 3. |Rb| ≥ |L| + 1
2 |X| − 1.

Proof. It is shown that |At| ≥ 2|L| + |X|, which will complete the proof, since,
by Lemma 2, |Rb| ≥ 1

2 |At| − 1. To each item o ∈ L, a marked item is assigned
in the following way. Since no item in L is alone after Phase 2, we can assume
that the bin bo containing o will receive at least one item, o′, labeled 1 or 2
during Phase 2. If o′ is marked, it is assigned to o. Otherwise, it must be labeled
2, since all items labeled 1 in bins before bo are marked. The item which was
packed below o′ in PUFF was alone at time t. Therefore, this item is not moved
to any item in L. This item (labeled 1) can be assigned to o. In this way, every
item in L has an item assigned which arrived before time t and which is not in
L ∪ X. Since L ∪ X ⊆ At, |At| ≥ 2|L| + |X|. ut

Subcase 2a: s ≤ k
3 . Since the smallest item in R has size s, the empty space in

each bin in PUFF is smaller than s. Thus, we can use s(n − |X|) as an upper
bound on EUFF − EOPT:

|Rs| ≤ 1
s

·
(

EUFF − EOPT − k

2
|Rb|

)
<

1
s

(
s(n − |X|) − k

2
|Rb|

)

= n − |X| − k

2s
|Rb| ≤ n − |X| − 3

2
|Rb|.

Now, using Lemma 3, we get

|R| = |Rs| + |Rb| ≤ n − |X| − 1
2
|Rb| ≤ n − |X| − 1

2

(
|L| +

1
2
|X| − 1

)

= n − 5
4
|X| − 1

2
|L| +

1
2
.

Thus,

|A|
|A| + |R| ≥ 2n − |L| − |X|

2n − |L| − |X| + (n − 5
4 |X| − 1

2 |L| + 1
2)

≥ 2n − (|L| + |X|) + 1
3

3n − 3
2 (|L| + |X|) + 1

2

−
1
3

3n − 3
2 (|L| + |X|) + 1

2

≥ 2
3

− 2
12n − 3

,

since |L| + |X| ≤ 2
3 (n + 1), which follows from the fact that the number of large

items is at most n: n ≥ |Rb| + |L| + |X| ≥ (|L| + 1
2 |X| − 1) + |L| + |X| ≥

3
2 (|L| + |X|) − 1.

Fair versus Unrestricted Bin Packing 209

Subcase 2b: k
3 < s ≤ k

2 . In this case, s(n − |X|) is not a good bound on EUFF −
EOPT, but we will show that even in this case, EUFF−EOPT is “almost” bounded
by k

3 (n−|X|), if n ≥ 9 and |A|
|A|+|R| < 2

3 . Lemma 4 below is used for this purpose.

Lemma 4. Let m be the number of bins containing at least c items in a First-
Fit packing. If c ≥ 1 and m ≥ c + 1, then the volume V of the items in these m
bins is more than c

c+1mk.

Proof. Let C denote the set of bins containing at least c items, and, for any bin
b, let V (b) denote the sum of the sizes of the items in b.

Suppose, for the sake of contradiction, that V ≤ c
c+1mk. Then there is a bin

b ∈ C such that V (b) = c
c+1k − ε, ε ≥ 0. The size of any item placed in a bin to

the right of b must be greater than 1
c+1k + ε, since otherwise it would fit in b.

Therefore any bin b′ ∈ C to the right of b has V (b′) > c
c+1k + cε ≥ c

c+1k. This
means that there is only one bin b ∈ C with V (b) ≤ c

c+1k, and if b is not the
rightmost nonempty bin in C, then V > (m−2) c

c+1k+(c
c+1k−ε)+(c

c+1k+cε) ≥
m c

c+1k. Thus, b must be the rightmost nonempty bin in C.
One of the items in b must have size at most 1

c+1k− ε
c . Since this item was not

placed in one of the m−1 bins to the left of b, these must all be filled to more than
c

c+1k + ε
c . Thus, V > (m− 1)(c

c+1k + ε
c) + (c

c+1k − ε) = m c
c+1k + (m− 1) ε

c − ε ≥
m c

c+1k + c ε
c − ε = m c

c+1k, which is a contradiction. ut
Assuming n ≥ 9, Lemma 4 combined with Lemma 5 below says that the

average empty space in bins containing more than one item can be assumed to
be at most k

3 .

Lemma 5. Assume that n ≥ 9 and s ≤ k
2 . Then, in PUFF, at least three bins

contain two or more items.

Proof. Assume for the sake of contradiction that fewer than three bins contain
at least two items. Since s ≤ k

2 , no bin contains a single item of size at most
k
2 . Therefore, at least n − 2 bins contain large items, which all arrived before
time t, i.e., At ≥ n − 2. By Lemma 2, at least 1

2At − 1 large items are rejected.
Adding these up and noting that there can be at most n large items, we get
n − 2 + n−2

2 − 1 ≤ n. Solving for n yields n ≤ 8, which is a contradiction. ut
Our goal is now, roughly speaking, to show that the average empty space in

all n bins is bounded by approximately k
3 . Number the bins from left to right,

and let l be the number of the bin in which the last large item was placed.
Let e denote the largest empty space in bins containing an item from B. In
the proof of Lemma 7 we will show a lower bound on the number of bins to
the right of l of approximately |B|

2 . Each of these bins contains at least two
items of size larger than e. Thus, even if e > k

3 , the average empty space in the
B-bins and the bins to the right of l will be bounded above by approximately(
|B| e + (k − 2e) |B|

2

)
/ 3|B|

2 = k|B|
2 · 2

3|B| = k
3 . Lemma 4 combined with Lemma 6

below says that we can assume that the rest of the bins have an average empty
space of at most k

3 .

210 Y. Azar et al.

Lemma 6. Assume that n ≥ 9, s ≤ k
2 , e ≥ k

3 , and |A|
|A|+|R| < 2

3 . Then, in PUFF

at least three of the first l bins contain two or more items.

Proof. We count the total number of items of size larger than e. Since |A| ≥
2n − |B|, more than n − |B|

2 items are rejected, because otherwise we have a
performance ratio of 2

3 , which is a contradiction. After bin l, there are n− l bins
containing at least two items each. All of the rejected items and those in the last
n−l bins are larger than e and there are more than n− |B|

2 +2(n−l) of them. Bins
containing items from B cannot accept any of these items, and only two can be
put together since e ≥ k

3 . Thus, n− |B|
2 + 2(n− l) ≤ 2(n− |B|). Solving for l, we

get l ≥ n
2 + 3

4 |B|. This shows that at least n
2 − |B|

4 bins to the left of l contain two
or more items. By Lemma 5, |B| ≤ n − 3. Thus, n

2 − |B|
4 ≥ n

2 − n−3
4 = n+3

4 ≥ 3,
since n ≥ 9. ut

Lemma 7. Assume that n ≥ 9, s ≤ k
2 , and |A|

|A|+|R| < 2
3 . Then, EUFF −EOPT <

(n − |X|)k
3 + k

2 .

Proof. In the case where e ≤ k
3 , we have an upper bound of k

3 on the average
empty space in bins with one item as well as bins with more items. Thus, EUFF−
EOPT ≤ (n−|X|)k

3 . Now, assume that e > k
3 . First we show an upper bound on l.

At time t no two bins can contain only one small item each. Therefore, |At| ≥ 2l−
|B|−1. The total number of large items is |Rb|+|B| ≥ 1

2 |At|−1+|B| ≥ l+ |B|
2 − 3

2 .
Since OPT must pack all these items in separate bins, we have l + |B|

2 − 3
2 ≤ n.

Define z ≥ 0 such that n−l = z+ |B|
2 − 3

2 . Since every bin after bin l has two items
of size greater than e, we have the following upper bound on the empty space in
these n−l bins and the bins with an item from B\X: e(|B|−|X|)+(k−2e)(n−l) =
e|B|−e|X|+(k−2e)(z + |B|

2 − 3
2) < e|B|− k

3 |X|+(k−2e) |B|
2 +(k−2e)(z− 3

2) =
k|B|

2 − k
3 |X| + (k − 2e)(z − 3

2) ≤ k|B|
2 − k

3 |X| + (k − 2e)z < k|B|
2 − k

3 |X| + k
3 z.

Among the remaining bins, l − |B| = n − z − 3|B|
2 + 3

2 bins do not contain
an item from X. All of these bins have at least two items, and according to
Lemma 6, enough of these bins exist for us to conclude, by Lemma 4, that the
empty space is at most k

3 (n − z − 3|B|
2 + 3

2). The total empty space is then less
than k|B|

2 − k
3 |X| + k

3 z + k
3 (n − z − 3|B|

2 + 3
2) = (n − |X| + 3

2)k
3 . ut

Then, by Lemma 7, if n ≥ 9,

|Rs| ≤ 1
s

·
(

EUFF − EOPT − k

2
|Rb|

)
<

1
s

(
k

3
(n − |X|) +

k

2
− k

2
|Rb|

)

≤ n − |X| +
3
2

− 3
2
|Rb|.

Using Lemma 3 as in Subcase 2a, we get

|R| < n − |X| +
3
2

− 1
2

(|L| +
1
2
|X| − 1) = n − 5

4
|X| − 1

2
|L| + 2, for n ≥ 9.

Fair versus Unrestricted Bin Packing 211

Thus,

|A|
|A| + |R| ≥ 2n − |L| − |X|

2n − |L| − 5
4 |X| − 1

2 + 2

≥ 2n − (|L| + |X|) + 4
3

3n − 3
2 (|L| + |X|) + 2

−
4
3

3n − 3
2 (|L| + |X|) + 2

=
2
3

− 4
6n + 3

, for n ≥ 9.

This bound is lower than the lower bounds obtained in Case 1 and Subcase 2a
for all n. It is shown in [5] that 7

11 is an upper bound on FF’s competitive ratio
on accommodating sequences. For n ≥ 22, 2

3 − 4
6n+3 > 7

11 . Thus, for n ≥ 22,
UFF has a better competitive ratio than FF on accommodating sequences. ut

Remark: It is easy to see that UFF’s competitive ratio is 1
k . If it is less than

2
3 , then R is nonempty, so at least n items are accepted. OPT can accept at
most nk items, so the competitive ratio is at least 1

k . For the upper bound, if
3
2n items of size k followed by nk items of size 1 are given, UFF will accept n
items of size k, while OPT will accept all of the small ones, giving a ratio of 1

k .
Note that this means that AUFF(α) = 1

k , for α ≥ 5
2 . Furthermore, if 2n items of

size k
2 are given, followed by (α− 1)nk items of size 1, UFF will accept 2n items

of size k
2 , while OPT can accept 2n + (α − 1)n(k − 2) items, giving a ratio of

2
2+(α−1)(k−2) . Thus, for any constant c > 0, AUFF(α) ∈ Θ(1

k), if α ≥ 1 + c.

4 The Accommodating Function

Suppose that, for each sequence I of items, the on-line algorithm knows, before-
hand, the number αn of bins needed to pack the items in I (or a good upper
bound on α). Then an accommodating function can be achieved for which the
function value is constant (that is, independent of k and n) when evaluated at
a constant α.

4.1 A Randomized Algorithm

One way of exploiting the extra knowledge is to use αn “virtual” bins. At the
beginning the randomized algorithm R randomly decides which n of the αn
virtual bins are going to correspond to the “real” n bins. Call the set of these
n virtual bins BA and the rest of the αn virtual bins BR. An algorithm A with
a “good” competitive ratio on accommodating sequences ARA is used to decide
where the actual items would be packed in the αn virtual bins. When A packs
an item in a bin in BA, the algorithm R accepts the item and places it in the
corresponding real bin. All other items are rejected.

The expected fraction of the items which R accepts is at least ARA

α , since on
average |BA|

|BA|+|BR| = n
αn = 1

α of the items accepted by A will be packed in BA.

212 Y. Azar et al.

Using Unfair-First-Fit, this gives A(α) ≥ 2
3α (asymptotically), which is constant

when α is.
Another way of using virtual bins is to use an algorithm that is known to be

able to pack any 1-sequence of items in βn bins for some constant β. In this case,
αβn virtual bins are used. According to [7], for the algorithm Harmonic+1, β ≤
1.588720. Using Harmonic+1 for packing items in the virtual bins and randomly
choosing the n bins for BA gives A(α) ≥ 1

1.58872α ≈ 0.629
α . According to [7], even

for randomized algorithms, β ≥ 1.536. Since 1
1.536 ≈ 0.651, this approach cannot

give an accommodating function as good as the method described above using
αn virtual bins can.

Remark: Amos Fiat [11] has noted that the technique described above can be
used more generally, for many maximization problems, to give good values for
the accommodating function when α is small. If an algorithm A with competitive
ratio on accommodating sequences ARA is used with a quantity αn of the virtual
resource, and a quantity n of these virtual resources are randomly chosen and
used on the real resources, then the algorithm will achieve an accommodating
function of A(α) ≥ ARA

α .

4.2 A Deterministic Algorithm

It is also possible for a deterministic algorithm to have an accommodating func-
tion such that the function value of the accommodating function is constant
(that is, independent of k and n) when evaluated at a constant α as long as
n ≥ 5. The following algorithm D has this property.

D divides the possible item sizes into dlog2 ke intervals, S1, S2, . . . , Sdlog2 ke,
defined by S1 = {x | k

2 ≤ x ≤ k}, and Si = {x | k
2i ≤ x < k

2i−1 }, for 2 ≤ i ≤
dlog2 ke. Thus, for any two items with sizes sa and sb belonging to the same size
interval, sa ≥ 1

2sb.
For each i, 1 ≤ i ≤ dlog2 ke, D does the following. It accepts the first item

with size s ∈ Si. After that it accepts every α
β th item with size s ∈ Si, for a

given constant β, and rejects all other items with sizes in Si. The accepted items
are packed according to the First-Fit packing rule and the constant β will be
chosen as described below, so that D has no problem doing so. Since D accepts
every α

β th item in each size interval, A(α) ≥ β
α .

Let O be the set of all the items given, let OF be the set of items consisting
of the first item in each size interval and let O′ = O \ OF . Let A be the set of
items accepted by D and let A′ = A \OF . For any set S of items, let the volume
of S, denoted by V (S), be the sum of the sizes of the items in S.

It follows from Lemma 4 that the volume of the items in any First-Fit packing
using n bins is more than nk

2 . Thus, if β is chosen such that V (A) ≤ nk
2 , D will

be able to pack all the accepted items.
To determine an appropriate value for β, first notice that V (O′) ≤ V (O) ≤

αnk, since all the items can fit in αn bins, and V (O′) > 1
2

α
β V (A′), since for

every item o ∈ A′, α
β − 1 items, each of size s ≥ 1

2 size(o), have been rejected.

Fair versus Unrestricted Bin Packing 213

Combining these inequalities gives 1
2

α
β V (A′) < αnk, and solving for V (A′) yields

V (A′) < 2βnk.

Furthermore, V (OF) ≤
dlog2 ke−1∑

i=0

k

2i
<

∞∑

i=0

k

2i
= 2k.

We now have that V (A) = V (A′) + V (OF) < 2βnk + 2k. To obtain 2βnk +
2k ≤ nk

2 , n must be at least 5, for any β > 0. For n ≥ 5, β = 1
20 assures that

V (A) ≤ nk
2 . If we accept that n must be at least 10, then β = 3

20 can be used.
Thus, if n ≥ 5, A(α) ≥ 1

20α , and if n ≥ 10, A(α) ≥ 3
20α .

References

1. B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-Competitive On-Line Routing.
In 34th IEEE Symposium on Foundations of Computer Science, pages 32–40, 1993.

2. B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive Non-Preemptive Call
Control. In Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, pages
312–320, 1994.

3. B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line Admission Control
and Circuit Routing for High Performance Computation and Communication. In
35th IEEE Symposium on Foundations of Computer Science, pages 412–423, 1994.

4. J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica, 25:403–
417, 1999.

5. J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function — A
Generalization of the Competitive Ratio. Tech. report 24, Department of Math-
ematics and Computer Science, University of Southern Denmark, Main Campus:
Odense University, 1998. Extended version submitted for journal publication 1999.

6. J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function — A
Generalization of the Competitive Ratio. In Sixth International Workshop on Al-
gorithms and Data Structures, volume 1663 of Lecture Notes in Computer Science,
pages 74–79. Springer-Verlag, 1999.

7. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Algorithms for
Bin Packing: A Survey. In Dorit S. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, chapter 2, pages 46–93. PWS Publishing Company, 1997.

8. E. G. Coffman, Jr., J. Y-T. Leung, and D. W. Ting. Bin Packing: Maximizing the
Number of Pieces Packed. Acta Informatica, 9:263–271, 1978.

9. E. G. Coffman, Jr. and Joseph Y-T. Leung. Combinatorial Analysis of an Efficient
Algorithm for Processor and Storage Allocation. SIAM J. Comput., 8:202–217,
1979.

10. J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Gerhard
J. Woeginger Amos Fiat, editor, Online Algorithms, volume 1442 of Lecture Notes
in Computer Science, chapter 7, pages 147–177. Springer-Verlag, 1998.

11. A. Fiat. Personal communication, 1999.

A d/2 Approximation for Maximum Weight
Independent Set in d-Claw Free Graphs

Piotr Berman?

Dept. of Computer Science and Engineering,
The Pennsylvania State University

Abstract. In this paper we consider the following problem. Given is
a d-claw free graph G = (V, E,w) where w : V → R+. Our algorithm
finds an independent set A such that w(A∗)/w(A) ≤ d/2 where A∗ is an
independent that maximizes w(A∗). The previous best polynomial time
approximation algorithm obtained w(A∗)/w(A) ≤ 2d/3.

1 Introduction

In an undirected graph a d-claw C is an induced subgraph that consists of
an independent set TC of d nodes, called talons, and the center node that is
connected to all the talons. A graph is d-claw free if it possesses no d-claws.
For convenience, we define 1-claw to be a singleton set C with TC = C. We also
define the center set of a claw C as ZC = C − TC.

The d-claw free graphs are studied for two reasons. One is that these graphs
appear in many applications. In particular, we often consider graphs in which
nodes the set of nodes is a family of sets, and edges indicate non-empty set
intersections. If sets in the family have less than d elements, the graph are d-
claw free. Other examples include families of oriented squares of unit size, which
form 5-claw free graphs, and families of unit size circles which form 7-claw free
graphs.

Another reason is that d-claw free graphs form the broadest natural family
of graphs where algorithms for the Maximum Independent Set problem (MIS

for short) have constant approximation ratio. Even this very simple algorithm
assures ratio d − 1 (we always assume that (V, E) is the input graph):

definition
N(K, L) = {u ∈ L : ∃v ∈ K such that {u, v} ∈ E or u = v}

Greedy
A← ˘
while V − N(A, V) 6= ˘

choose u ∈ V − N(A, V)
A← A ∪ {u}

? Research supported by NSF grant CCR-9700053, berman@cse.psu.edu

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 214–219, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Maximum Weight Independent Set in d-Claw Free Graphs 215

One can generalize MIS problem by introducing a weight function w : V → R+.
The objective of w-MIS is to find an independent set A with maximum w(A).
The above Greedy algorithm achieves the same approximation ratio for w-MIS,
once we change the greedy selection as follows:

choose u ∈ V − N(A, V) with the maximum w(u)

An obvious challenge is to find polynomial time algorithms with better ap-
proximation. A natural idea is to apply small improvements. We say that a node
set C improves w(A) if w(A − N(C, A) ∪ C) > w(A). The following algorithm
approximates MIS for d-claw free graph with ratio d/2 (see [BNR]):

SizeTwoImp
A← ˘
while there exists {u, v} that improves |A|

A← A − N({u, v}, A) ∪ {u, v}

By increasing the size of allowed improvements, one can obtain polynomial
time algorithms with ratios approaching (d− 1)/2 [HS]. However, it was not ob-
vious how to extend this idea to w-MIS in d-claw free graphs. Recently, Chandra
and Halldórsson [CH] have found that the following algorithm has ratio 2/3 d1:

BestImp
A← ˘
while there exists claw C such that TC improves w(A)

if V − N(A, V) 6= ˘
choose u ∈ V − N(A, V) with maximum w(u), C← {u}

else
choose claw C that maximizes w(TC)/w(N(TC, A))

A← A − N(TC, A) ∪ TC

Chandra and Halldórsson show how to modify BestImp so it runs in poly-
nomial time: (i) find an approximate solution A using Greedy; (ii) rescale the
weight function so that w(A) = k|V |; (iii) run the algorithm BestImp for the
weight function bwc. Because each iteration increases bwc(A) by at least 1, and
we cannot get bwc(A) > w(A∗), there are fewer than (d − 1)k|V | iterations. In
turn, in each iteration we inspect only a polynomial number of candidates for the
claw C. This assures that the new algorithm runs in polynomial time. Moreover,
the solution of the new algorithm satisfies w(A) ≥ bwc(A) ≥ bwc(A∗)/(2/3 d) >

w(A∗)/(k/k-1 × 2/3 d), thus the approximation ratio increases by factor k/k-1.
In this paper, we analyze the following algorithm and show that it provides

the same approximation ratio for w-MIS as SizeTwoImp for MIS:

SquareImp
A← ˘
while there exists claw C such that TC improves w2(A)

A← A − N(TC, A) ∪ TC

1 The analysis of Chandra and Halldórsson holds only for the graphs formed from
sets with fewer than d elements.

216 P. Berman

2 Analysis of SquareImp

One can extend the analysis of the running time of BestImp to SquareImp.
While it does not have a polynomial bound on the running time, we can modify
this algorithm that it runs in time O(k2p(|V |)) for some fixed polynomial p, while
the increasing the approximation ratio by k/k-1 factor. The only difference is that
we have a different estimate on the number of iterations. In particular, after we
rescale w in step (ii), we have w(A) = k|V | and consequently w2(A) ≤ k2|V |2;
because Greedy for w is also Greedy for w2, this implies that w2(A∗) ≤
(d − 1)k2|V |2; thus our estimate on the number of iterations of the modified
SquareImp is higher then the estimate for the modified BestImp by k|V | factor.

To see that the approximation ratio of SquareImp is at least d/2, we may
construct a small example for each d, in which w(u) = 1 for every node. The
set of nodes in this example is a union of two independent sets, A and B. Set
A, has d − 1 elements. Set B consists of subsets of A with 1 or 2 elements; thus
|B| = (d− 1)(d− 2)/2+d− 1 = (d− 1)d/2 = d/2 |A|. For u ∈ A and v ∈ B, {u, v}

is an edge if and only if u ∈ v. Algorithm SquareImp may start by picking,
one by one, elements of set A. It is easy to see that subsequently SquareImp
terminates because no claw improves |A|.

The above example show also that we cannot improve SquareImp by re-
placing w2 with some other wc.

To show that the approximation ratio is at most d/2, we will start from the
analysis of algorithm WishfulThinking. The name of this algorithm comes
from the fact that it is quite obvious that it delivers the desired approximation
ratio, however this claim holds under the assumption that it terminates. Later,
instead of analyzing the running time of WishfulThinking directly, we will
show that it cannot make more iterations than SquareImp while SquareImp
cannot have a larger approximation ratio.

definition
N(u, A) = N({u}, A)
n(u) is a node v ∈ N(u, A) with the maximum value of w(v)

charge(u, v) =

{
w(u) − 1/2 w(N(u, A)) if v = n(u)
0 otherwise

C is a good claw if either N(C, A) = ˘ or
ZC = {v} ⊂ A and

∑
u∈TC

charge(u, v) > 1/2 w(v)

C is a nice claw it is a minimal set that is a good claw
WishfulThinking

A← ˘
while there exists a nice claw C

A← A − N(TC, A) ∪ TC

Lemma 1. Assume that WishfulThinking has terminated and that A∗ is an
independent set. Then w(A∗)/w(A) ≤ d/2.

Proof. We will distribute w(A∗) among the nodes of A in such a way that no
node v ∈ A receives more than 1/2 dw(v). The distribution consists of two steps.

Maximum Weight Independent Set in d-Claw Free Graphs 217

In the first, u ∈ A∗ sends to each v ∈ N(u, A) a portion of its weight equal to
1/2 w(v). Note that N(u, A) is non-empty, otherwise {u} is a nice claw. Also, in
this step u sends a portion of its weight equal to 1/2 w(N(u, A)), consequently
the portion of its weight that is not distributed yet equals charge(u, n(u)). In
the second step u sends charge(u, n(u)) to n(u).

On the receiving side, in the first step a node v ∈ A gets 1/2 w(v) from every
neighbor in A∗, and there are at most d− 1 of them (otherwise they would form
talons of a d-claw with center {v}). Thus v gets at most (d/2 − 1/2)w(v) in the
first step. Moreover, v gets at most 1/2 w(v) in the second step, otherwise the
nodes that send positive charges to v form talons of a good claw, and such a
claw cannot exists when WishfulThinking terminates. q

While the goal of WishfulThinking algorithm is the maximization of w(A),
an iteration may actually decrease w(A). Consider S = {v0, . . . v4} ⊂ A and
T = {u1, u2} ⊂ V − A and make the following assumptions:

(a) n(u) = v0 for u ∈ T ,
(b) w(u) = 18 for u ∈ T ,
(c) N(ui, A) = {v0, v2i−1, v2i} for i = 1, 2, and
(d) w(v) = 10 for v ∈ S.

One can see that charge(v, u0) = 3 for v ∈ T and that 3 + 3 ≥ 1/2 10, thus
T ∪ {u0} is a nice claw. If we apply this claw to perform an iteration of Wish-
fulThinking, A changes into A − S ∪ T and w(A) decreases by 12.

Because WishfulThinking can alternate between increasing and decreasing
w(A) we need the following lemma to show that it actually terminates.

Lemma 2. If C is a nice claw, then TC improves w2(A).

Proof. We will use T to denote TC. We need to show that w2(A−N(T, A)∪T) >

w2(A).
Consider first the case when N(T, A) = ˘ . In this case A−N(T, A)∪T = A∪T

and the claim is obvious.
In the remaining case ZC = {v} ⊂ A. We will develop a condition that implies

that w2(A − N(T, A) ∪ T)) > w2(A), and then we will show that if C is nice,
then T satisfies this condition.

By subtracting w2(A − N(T, A)) from both sides of w2(A − N(T, A) ∪ T) >

w2(A) we get an equivalent inequality

w2(T) > w2(N(T, A)) (1)

Observe that
N(T, A) = {v} ∪

⋃

u∈T

N(u, A − {v})

and therefore (1) is implied by∑
u∈T

w2(u) > w2(v) +
∑
u∈T

w2(N(u, A − {v})) ≡

∑
u∈T

w2(u) − w2(N(u, A − {v})) > w2(v) ≡

218 P. Berman

∑
u∈T

w2(u) − w2(N(u, A − {v}))

w(v)
> w(v) (2)

Now we will show that (2) holds if T∪{v} is a nice claw. Under this assumption,
T is a minimal set such that∑

u∈T

charge(u, v) > 1/2 w(v) (3)

Because set T is minimal, every term on the left-hand side of (3) is positive, and
in particular, n(u) = v. Thus to show (2) it suffices to show that

w2(u) − w2(N(u, A − {v}))

w(v)
≥ 2 × charge(u, v) (4)

holds if charge(u, v) > 0. By the definition of charge, this is true if

w2(u) − w2(N(u, A − {v}))

w(v)
≥ 2w(u) − w(N(u, A)) (5)

holds whenever v is an element of N(u, A) with the maximum weight and
2w(u) > w(N(u, A)).

If we replace the weight function w with cw, then both sides of (5) will
be multiplied by c and this is an equivalent transformation. Therefore we may
assume, for the ease of calculations, that w(N(u, A)) = 2. Because 2w(u) > 2,
we may assume that for some x > 0 we have w(u) = 1 + x. In the proof of (5)
we consider two cases.
Case 1. w(v) = 1 + y for some y ≥ 0. Then w(N(u, A − {v})) = 1 − y, hence
w2(N(u, A − {v})) ≤ (1 − y)2. Therefore (5) is implied by

(1 + x)2 − (1 − y)2

1 + y
≥ 2x ≡ 1 + 2x + x2 − 1 + 2y − y2 ≥ 2x + 2xy ≡

x2 + 2y ≥ y2 + 2xy ≡ x2 − 2xy + y2 ≥ 2y2 − 2y ≡ (x − y)2 ≥ −2y(1 − y).

Because 0 ≤ y ≤ 1, the last inequality is obvious.
Case 2. w(v) = 1 − y for some y ≥ 0. Then w(N(u, A − {v})) = 1 + y, while
the largest weight in N(u, A − {v}) is at most 1 − y, hence w2(N(u, A − {v})) ≤
(1 + y)(1 − y) = 1 − y2. Therefore (5) is implied by

(1 + x)2 − (1 − y2)

1 − y
≥ 2x ≡

1 + 2x + x2 − 1 + y2 ≥ 2x − 2xy ≡ x2 + y + 2 ≥ −2xy.

Again, the last inequality is obvious. q

Lemma 2 allows us to relate algorithms WishfulThinking and SquareImp.
Because each nice claw improves w2(A), a run of WishfulThinking forms
the initial part of a run of SquareImp. Consequently, the number of iteration

Maximum Weight Independent Set in d-Claw Free Graphs 219

performed by WishfulThinking is at most as large as the number of iterations
of SquareImp. In turn, when SquareImp terminates, we obtain a candidate
set A for which no claw improves w2(A), hence no nice claw may exists, hence
this candidate independent set satisfies the assumption of Lemma 1.

If we compare the virtues of these two algorithms, SquareImp has a more
succinct formulation, while WishfulThinking is more efficient: the searching
space is smaller when we seek a nice claw than when we seek a claw that improves
w2(A), therefore the time needed to perform an iteration is smaller in the case
of WishfulThinking.

To see that the searching space of WishfulThinking is indeed smaller, note
that we can approach it as follows. Given the current candidate A, for every node
u ∈ VA can can compute n(u) and charge(u, n(u)). Then for a given v ∈ A we
need to inspect independent sets contained in n−1(v) (possible sets of talons).
Moreover, we exclude the nodes that do not have a positive charge, and when
we evaluate a possible set of talons, we consider only its sum of charges, and we
do not need to compute its set of neighbors in A.

Without going into details of the running time analysis we can formulate the
following theorem:

Theorem 1. For every d there exists an algorithm that given a d-claw free graph
with n nodes and k > 1, finds a solution to w-MIS problem with approximation
ratio k/k-1 1/2 d in time that is polynomial in kn.

References

BNR. V. Bafna, B. Narayana and R. Ravi, Non-overlapping local alignments (weighted
independent sets of axis parallel rectangles, WADS 1995, Springer-Verlag LNCS
955:506-517, to appear in Disc. Appl. Math.

CH. B. Chandra and M. M. Halldórsson, Greedy local improvement and weighted pack-
ing approximation, SODA 1999.

HS. C. A. Hurkens and A. Schrijver, One the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio heuristics for packing
problems, SIAM J. Discr. Math. 2(1):68-72, Feb. 1989.

Approximation Algorithms
for the Label-CoverMAX

and Red-Blue Set Cover Problems
(Extended abstract)

David Peleg ?

The Weizmann Institute of Science,
Department of Computer Science and Applied Mathematics, Rehovot, 76100 Israel.

peleg@wisdom.weizmann.ac.il

Abstract. This paper presents approximation algorithms for two prob-
lems. First, a randomized algorithm guaranteeing approximation ratio√

n with high probability is proposed for the Max-Rep problem of [Kor98],
or the Label-CoverMAX problem (cf. [Hoc95]), where n is the number of
vertices in the graph. This algorithm is then generalized into a 4

√
n-

ratio algorithm for the nonuniform version of the problem. Secondly, it
is shown that the Red-Blue Set Cover problem of [CDKM00] can be ap-
proximated with ratio 2

√
n log β, where n is the number of sets and β

is the number of blue elements. Both algorithms can be adapted to the
weighted variants of the respective problems, yielding the same approx-
imation ratios.

1 Introduction

1.1 Background

Recent classifications of NP-hard problems by their approximability properties
have led to the identification of a group of problems termed class III prob-
lems in [Hoc95]. These problems can be informally characterized as ones known
to have no approximation algorithm with ratio 2log1−ε n (for any 0 < ε < 1)
under some plausible complexity-theoretic assumption (such as NP 6= P or
NP 6⊆ DTIME(nO(polylog n))). We henceforth refer to this property as strong
inapproximability. This class includes problems such as the minimization and
maximization versions of Label-Cover [ABSS93], AND/OR Scheduling [GM97],
Minimum-Monotone-Satisfying-Assignment (MMSA) [ABMP98], Min-Rep and
Max-Rep [Kor98], Red-Blue Set Cover [CDKM00], and more.

While negative (strong inapproximability) results are known for all of those
problems (and indeed, in a certain sense they define the class), less is known
about positive (approximability) results. The current paper is concerned with
providing such results for some of the above problems.
? Supported in part by a grant from the Israel Ministry of Science and Art.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 220–231, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Approximation of Label-CoverMAX 221

1.2 The Problems Considered

Max-Rep, Label-CoverMAX and related problems. The Max-Rep prob-
lem is defined in [Kor98] as follows. We are given a bipartite graph G(U, W, E),
where U and W are each split into a disjoint union of k sets, U =

⋃k
i=1 Ai

and W =
⋃k

i=1 Bi. The sets Ai, Bi all have size m. Let A = {A1, . . . , Ak}
and B = {B1, . . . , Bk}. An instance of the problem consists of the 5-tuple
(U, W, E,A,B). The bipartite graph G and the partitions A and B of U and
W induce a bipartite super-graph H = (A,B, EH). Two super-vertices Ai and
Bj are adjacent in H iff there exist some u ∈ Ai and w ∈ Bj which are adjacent
in G.

A set of vertices C ⊆ U ∪W is said to cover the super-edge (Ai, Bj) if it
contains a pair of vertices u, w such that u ∈ Ai, w ∈ Bj and (u, w) ∈ E. The set
C is a legal cover for H if it contains at most one vertex from each super-vertex.
It is required to select a legal cover C for H covering the maximum number of
super-edges possible.

A minimization version of this problem, called Min-Rep, is also introduced
in [Kor98]. In this version, a cover C must cover every super-edge, but it may
contain any number of vertices from each super-vertex, and the goal is to select
a minimum size cover C for H.

A closely related problem is the Label-Cover problem, introduced in [ABSS93]
and presented in [Hoc95] as one of six cannonical problems for proving hardness
of approximation. This problem has minimization and maximization versions
called Label-CoverMIN and Label-CoverMAX , which can be represented as vari-
ants of the Min-Rep and Max-Rep problems respectively, except that the notion
of super-edge coverage is slightly different. Namely, a super-edge (Ai, Bj) is said
to be covered if for every vertex u ∈ Ai ∩ C there is a vertex w ∈ Bj ∩ C such
that (u, w) ∈ E. Note that the Label-CoverMAX problem is equivalent to the
Max-Rep problem.

The Red-Blue Set Cover Problem. The Red-Blue Set Cover problem was
introduced in [CDKM00]. It is a natural generalization of the set-cover problem,
defined as follows. Consider a finite universe partitioned into two disjoint sets,
U = R∪B, where R = {r1, . . . , rρ} is a set of red elements and B = {b1, . . . , bβ}
is a set of blue elements. We are given a collection of sets over the universe U ,
S = {S1, S2, ..., Sn}. For any subcollection S ′ ⊆ S, let

U(S ′) =
⋃

Si∈S′
Si, B(S ′) = U(S ′) ∩B, R(S ′) = U(S ′) ∩R .

The goal is to choose a subcollection S ′ of S that covers all the elements of B
(i.e., s.t. B ⊆ B(S ′)) while minimizing |R(S ′)|, the number of red elements in
S ′.

The Red-Blue Set Cover problem is also shown in [CDKM00] to be equivalent
to MMSA3, the third level of the Minimum-Monotone-Satisfying-Assignment
problem introduced in [ABMP98].

222 D. Peleg

1.3 Previous Work

The Label-Cover problem was introduced in [ABSS93], where it was also shown
to be strongly inapproximable. More precisely, it was shown that it is quasi-
NP-hard to approximate the problem with ratio 2log1−ε n for any constant 0 <
ε < 1 (or in other words, such approximation is impossible unless NP ⊆
DTIME(nO(polylog n))). This result was recently improved in [DS99], by weak-
ening the complexity-theoretic assumption to NP 6= P and allowing ε to be as
small as log log−c n for any c < 1/2.

The Max-Rep and Min-Rep problems were introduced in [Kor98], where it
was also shown that both are strongly inapproximable.

The strong inapproximability of the Red-Blue Set Cover problem was shown
independently in [CDKM00] and [EP00]. Applications of the Red-Blue Set Cover
problem in a variety of domains, such as data mining applications, information
retrieval or general machine learning and classification, are discussed at length
in [CDKM00], as well as a number of special-case variants of the problem and
related problems, including Set Cover, Group Steiner and Directed Steiner, and
Minimum Color Path.

Few positive results exist for the above problems. The Red-Blue Set Cover
problem admits naive approximation algorithms with ratios β, ρ, or n log β. A
number of better approximation algorithms are given in [CDKM00] for this prob-
lem. Specifically, letting kB (respectively, kR) denote the maximum number of
blue (resp., red) elements in any of the sets Si, the paper presents approximation
algorithms with ratio 2

√
kB · n or O(n1−1/kR log n). Hence these algorithms are

efficient when kB or kR are small, but their approximation ratio may be as high
as Ω(

√
nβ) or Ω(n log n), respectively, in the general case.

In [EP00] it is shown that the Min-Rep and Label-CoverMIN problems ad-
mit a

√
n-approximation ratio. It is also shown that the Min-Rep and Label-

CoverMIN problems restricted to the cases where the girth of the induced super-
graph is greater than t, admit an n2/t approximation ratio. In particular, it fol-
lows that the Min-Rep and the Label-CoverMIN problems with girth greater
than logε n (for some constant ε > 0) are not strongly inapproximable.

1.4 Contributions

The current paper presents approximation algorithms for two of the above prob-
lems.

The first algorithm, presented in Section 2, is a randomized algorithm guar-
anteeing approximation ratio

√
n with high probability for the Max-Rep problem

(or for Label-CoverMAX). (A simple deterministic variant was recently pointed
out by Y. Hassin [Has00].) This algorithm is then generalized into a 4

√
n-ratio

algorithm for the nonuniform version of the problem, in which there may be a
different number of sets in A and B, and these sets may have different sizes. The
algorithm can be generalized also to the weighted version of the problem, where
super-edges have real nonnegative weights, and the goal is to maximize the total
weight of covered super-edges.

Approximation of Label-CoverMAX 223

In Section 3 we present an algorithm with approximation ratio 2
√

n log β
for the Red-Blue Set Cover problem. The algorithm can be generalized also to
the weighted version of the problem, in which every red element ri ∈ R has a
positive real weight associated with it, and the goal is to minimize the weight of
the selected cover.

2 An Approximation Algorithm
for the Max-Rep Problem

2.1 The Uniform Case

Let us start with some terminology. For every 1 ≤ i ≤ k, let Ai = {u1
i , . . . , u

m
i }

and Bi = {w1
i , . . . , wm

i }. We think of the graph as drawn with the vertices of U
on the left and the vertices of W on the right.

Consider a cover C. Without loss of generality we may assume that C =
UC ∪WC , where UC (respectively, WC) contains exactly one vertex uC

i (resp.,
wC

i) in each super-vertex Ai (resp., Bi) on the left (resp., right). In particular,
we denote by C∗ = U∗ ∪W ∗ the optimal solution to the problem, and let u∗

i

(resp., w∗
i) denote the unique vertex of U∗ ∩Ai (resp., W ∗ ∩Bi).

For vertex subsets U ′ ⊆ U and W ′ ⊆W , let G(U ′, W ′) denote the subgraph
of G induced by U ′ and W ′. For a vertex u ∈ U ′ (resp., w ∈W ′), let deg(u, W ′)
(resp., deg(w, U ′)) denote its degree in G(U ′, W ′). For u ∈ Al, let Γ (u,H) denote
the set of super-vertices Bi neighboring u, namely, such that there is an edge
(u, wj

i) ∈ E for some wj
i ∈ Bi. Let sdeg(u,H) denote the super-degree of u,

namely, the cardinality of Γ (u,H). The super-degree of a vertex represents the
number of super-edges it can potentially cover.

For any cover C, let Ê(C) denote the set of super-edges of H covered by C.
Note that these are precisely the super-edges corresponding to the edges of the
graph G(UC , WC). Denote the cardinality of this set by f(C) = |Ê(C)|.

We first present two approximation procedures for the problem. The first of
the two has approximation ratio k, so it applies well in case there are few sets.

Procedure Few Sets.

1. Calculate the super-degree sdeg(u,H) of every vertex u ∈ U .
2. Find the vertex û ∈ U with maximum super-degree.
3. Construct a set Ŵ consisting of one neighbor wji

i of û in every super-vertex
Bi ∈ Γ (û,H).

4. Complete the set Ŵ ∪ {û} into a cover Ĉ arbitrarily.
5. Output the cover Ĉ.

Lemma 1. Procedure Few Sets yields a k-approximation for the Max-Rep
problem.

224 D. Peleg

Proof. By the choice of û, sdeg(u∗
i ,H) ≤ f({û}∪Ŵ) ≤ f(Ĉ) for every 1 ≤ i ≤ k.

Subsequently,

f(C∗) ≤
∑

1≤i≤k

sdeg(u∗
i ,H) ≤ k · f(Ĉ).

Our second approximation procedure has approximation ratio 2m, so it ap-
plies well in case the sets are small.

Procedure Small Sets.

1. For every 1 ≤ i ≤ k, draw a vertex ũi ∈ Ai uniformly at random.
2. Let Ũ = {ũ1, · · · , ũk}.
3. For every 1 ≤ i ≤ k do:

(a) Compute the degree deg(wj
i , Ũ) for every vertex wj

i ∈Wi.
(b) Let w̃i be the vertex with maximum degree.

4. Let W̃ = {w̃1, · · · , w̃k}.
5. Output the cover C̃ = (Ũ , W̃).

For the analysis, we need to argue that the cover C̃ = (Ũ , W̃) constructed by
Procedure Small Sets is not much worse than the optimal cover C∗ = U∗∪W ∗.
To do that, let us first consider the intermediary “mixed” cover C̄ = (Ũ , W ∗).

By the choice of W̃ , it is clear that once Ũ is fixed, W ∗ is no better than W̃ .
Hence comparing C̃ to C̄, the following claim is immediate.

Lemma 2. f(C̃) ≥ f(C̄).

On the other hand, comparing C̄ to C∗ we have:

Lemma 3. IE(f(C̄)) ≥ 1
m · f(C∗).

Proof. Let d̃i = deg(ũi, W
∗) and d∗

i = deg(u∗
i , W

∗). Observe that if ũi = v∗
i then

d̃i = d∗
i . As this happens with probability 1/m, we have that IE(d̃i) ≥ 1

m · d∗
i .

Noting that f(C∗) =
∑k

i=1 d∗
i and f(C̄) =

∑k
i=1 d̃i, we conclude that

IE(f(C̄)) =
k∑

i=1

IE(d̃i) ≥ 1
m

k∑

i=1

d∗
i =

1
m
· f(C∗).

Corollary 1. IE(f(C̃)) ≥ 1
m · f(C∗).

To get this result with high probability, we apply the following procedure.

Approximation of Label-CoverMAX 225

Procedure Small Sets 2.

1. Set ` = 2m log n.
2. Invoke Procedure Small Sets for ` times.
3. Select the best result.

We rely on the following elementary fact.

Lemma 4. If X is a random variable in the range [0, mα] with expectation
IE(X) = α, then the probability that X ≤ α/2 is at most 1− 1

2m .

By applying the above fact to the random variable f(C̃) with α = f(C∗)/m,
we get that in each invocation of Procedure Small Sets, the probability that
the gain of the resulting cover C̃ is f(C̃) ≤ f(C∗)/2m is at most 1− 1

2m . Subse-
quently, the probability that the gain of none of the ` covers exceeds f(C∗)/2m
is at most (1− 1

2m)` ≈ 1/n.

Corollary 2. With probability at least 1−1/n, Procedure Small Sets 2 yields
a 2m-approximation for the Max-Rep problem.

Finally, by combining Lemma 1 and Corollary 2 we conclude that applying
both procedures Few Sets and Small Sets 2 and selecting the better result
yields an approximation ratio of min{k, 2m}. As n = 2km, either k ≤ √n or
2m ≤ √n must hold, hence we have the following.

Theorem 1. There is a randomized algorithm yielding an approximation with
ratio

√
n with probability at least 1− 1/n for the Max-Rep problem.

Let us remark that a simple deterministic variant of Procedure Small Sets,
and hence of the entire algorithm, was recently pointed out by Y. Hassin [Has00].

2.2 The Nonuniform Case

Let us now generalize the approximation algorithm to the case where the par-
titioning of the graph is nonuniform, i.e., there are kU sets Ai and kW sets Bi,
and each of those sets is possibly of different size.

It is easy to verify that the procedures described earlier still work correctly,
albeit with weaker approximation ratios. In particular, Procedure Few Sets
will guarantee approximation ratio at most kU . Analogously, a dual procedure
Few Sets 2 which reverses the roles of the sets U and W (i.e., selects the best
vertex ŵ ∈ W and bases the cover on ŵ and its neighbors in U) will yield
ratio kW . Procedure Small Sets 2 will guarantee approximation ratio at most
m̂(H) = max{|Ai| | 1 ≤ i ≤ kU}. Unfortunately, in a nonumiform instance, all
of these bounds might be simultaneously as large as Ω(n).

To get a better bound, we partition the problem into four subproblems as
follows. First, split the sets Ai and Bi into large and small ones, letting

AL = {Ai | |Ai| ≥
√

n}, AS = {Ai | |Ai| <
√

n},
BL = {Bi | |Bi| ≥

√
n}, BS = {Bi | |Bi| <

√
n},

226 D. Peleg

and taking

UL = ∪Ai∈AL
Ai, US = U \ UL,

WL = ∪Bi∈BL
Bi, WS = W \WL.

The edge set E is partitioned accordingly into four subsets

EXY = E ∩ UX ×WY , for X, Y ∈ {L, S}.

The problem now splits into four subproblems, denoted ΠXY for X, Y ∈ {L, S},
where ΠXY is defined over the graph GXY = (UX , WY , EXY) and the super-
graph HXY induced by the super-vertices of AX and BY .

Clearly, each cover C for the original problem induces four covers CXY for
the subproblems, with

f(C) = f(CLL) + f(CLS) + f(CSL) + f(CSS).

Subsequently, if it is possible to approximate each of the four subproblems ΠXY

for X, Y ∈ {L, S} separately, giving it a cover CXY with ratio at most γ, then
we can guarantee an approximation for the original problem with ratio at most
4γ, simply by taking the largest of the resulting four covers and completing it
arbitrarily.

The crucial observation is that on subproblems ΠLL and ΠLS we have
kUL

≤ √n, so Procedure Few Sets yields approximation ratio
√

n. Likewise,
on subproblem ΠSL we have kWL

≤ √n, so the dual Procedure Few Sets 2
again yields approximation ratio

√
n. Finally, on subproblem ΠSS we have

m̂(HSS) ≤ √n, so Procedure Small Sets 2 will yield approximation ratio
√

n.

Theorem 2. There is a randomized algorithm yielding an approximation with
ratio 4

√
n with probability at least 1−1/n for the Nonuniform Max-Rep problem.

2.3 The Weighted Problem

Finally, let us consider the weighted variant of the problem, in which every super-
edge (Ai, Bj) has a nonnegative real weight ω(Ai, Bj) associated with it, and the
goal is to maximize the weight of the selected cover. In the full paper we show
that Procedures Few Sets, Few Sets 2, Small Sets and Small Sets 2 can
be extended to the weighted setting with no change in the approximation ratio.
This is done by defining appropriate generalizations of the deg and sdeg functions
which take the super-edge weights into account. In particular, for a set E′ of
super-edges, let ω(E′) =

∑
e∈E′ ω(e). Let sdeg(u,H) denote the weighted super-

degree of u in H, namely, the total weight ω({(Al, Bi) | Bi ∈ Γ (u,H)}). The
super-degree of a vertex now represents the total weight of the super-edges it can
potentially cover. Denote the weight of the set Ê(C) by f(C) = ω(Ê(C)). Finally,
for every w ∈ W ′, let B(w) denote the set to which w belongs. For u ∈ Al,

Approximation of Label-CoverMAX 227

denote the set of neighbors of u in G by Γ (u, G). Then define deg(u, W ′) =∑
w∈W ′∩Γ (u,G) ω(Ai, B(w)).
With these definitions, the entire analysis goes through with little change.

We thus get the following.

Theorem 3. There is a randomized algorithm yielding an approximation with
ratio 4

√
n with probability at least 1−1/n for the Nonuniform Weighted Max-Rep

problem.

3 An Approximation Algorithm
for the Red-Blue Set Cover Problem

Let us first give some definitions. For every red element ri ∈ R and set collection
S, let deg(ri,S) denote the number of sets in S that contain ri. Let ∆(S) =
max{deg(ri,S) | ri ∈ R)}.

For a set Si, a set collection S and a subset R′ ⊆ R of red elements, denote
the set obtained by discarding the elements of R′ from Si by Φ(Si, R

′) = Si \R′,
and let

Φ(S, R′) = {Φ(Si, R
′) | Si ∈ S ′}.

For every set Si ∈ S, let r(Si) = |R({Si})|, and for every subcolection S ′ ⊆ S,
let r(S ′) = |R(S ′)|.

Let S∗ denote the optimal solution for the Red-Blue Set Cover problem on
the instance S.

3.1 The Greedy Procedure

We make use of the following approximation procedure for the Red-Blue Set
Cover problem.

Procedure Greedy RB.

1. Modify S into an instance T of the weighted set cover problem as follows.
(a) Take T = Φ(S, R),
(b) Assign each set Ti = Φ(Si, R) in T a weight ω(Ti) = r(Si).

2. Apply the greedy algorithm for weighted set cover to T , and generate a cover
T̃ .

3. Take the corresponding collection S̃ = {Si | Ti ∈ T̃ } as the resulting ap-
proximation.

For every subcolection T ′ of an instance T of the weighted set cover problem,
let ω(T ′) =

∑
Ti∈T ′ ω(Ti). It is easy to verify the following.

Lemma 5. For any set collection S ′ and corresponding instance T ′ = Φ(S ′, R)
of the weighted set cover problem,

r(S ′) ≤ ω(T ′) ≤ ∆(S) · r(S ′) .

228 D. Peleg

Proof. Note that

ω(T ′) =
∑

Ti∈T ′
ω(Ti) =

∑

Si∈S′
r(Si) =

∑

rj∈R(S′)

deg(rj ,S ′) .

As 1 ≤ deg(rj ,S ′) ≤ ∆(S ′) ≤ ∆(S) for every rj ∈ R(S ′), we get

r(S ′) ≤
∑

rj∈R(S′)

deg(rj ,S ′) ≤ ∆(S) · r(S ′) ,

implying the claim.

Lemma 6. Procedure Greedy RB has an approximation ratio of ∆(S) · log β.

Proof. Denote the minimum-weight set cover for T by T #, and let T ∗ = Φ(S∗, R)
be the instance of the weighted set cover problem corresponding to S∗. (Note that
T # and T ∗ need not necessarily be the same.) It is known that the greedy algo-
rithm yields a log β approximation for the weighted set cover problem, namely,
ω(T̃) ≤ log β · ω(T #) [Chv79]. Therefore, by Lemma 5,

r(S̃) ≤ ω(T̃) ≤ log β · ω(T #) .

The optimality of T # implies that ω(T #) ≤ ω(T ∗). Combined, we get that

r(S̃) ≤ log β · ω(T ∗) .

Applying Lemma 5 again we get that

r(S̃) ≤ log β ·∆(S) · r(S∗).

3.2 The Main Procedure

For an integer parameter X, we consider the following procedure.

Procedure Low Deg(X).

1. Discard from S the sets with more than X red elements, setting
SX ← {Si ∈ S | r(Si) ≤ X}.

2. If B(SX) 6= B then return S. /* SX is not feasible */
3. Set Y =

√
n/ log β

4. Separate the red elements into high and low degree elements, setting
RH ← {ri ∈ R | deg(ri,SX) > Y } and RL ← R \RH .

5. Discard the elements of RH from SX , setting SX,Y ← Φ(SX , RH).
6. Apply Procedure Greedy RB to SX,Y , and obtain a solution S̃X,Y .
7. Complete the sets of S̃X,Y into the corresponding sets of SX (by adding to

each set Ti ∈ S̃X,Y originally obtained from Si ∈ SX the discarded elements
Si ∩RH),
and return the resulting solution S̃X .

Approximation of Label-CoverMAX 229

Lemma 7. |RH | ≤
√

n log β ·X.

Proof. Each set Si ∈ SX has at most X red elements. Hence

|RH |·Y <
∑

rj∈RH

deg(rj ,SX) ≤
∑

rj∈R

deg(rj ,SX) =
∑

Si∈SX

r(Si) ≤ |SX |·X ≤ nX ,

so |RH | ≤ nX/Y , implying the lemma.

3.3 The Approximation Algorithm

Now let us set X̂ = max{r(S∗
i) | S∗

i ∈ S∗}, and consider the performance of
Procedure Low Deg when invoked with the parameter X = X̂.

Lemma 8. Procedure Low Deg(X̂) yields an approximation ratio of at most
2
√

n log β.

Proof. First observe, that SX̂ is necessarily feasible. Hence the procedure will
always return a solution in its Step 7 (and not Step 2).

Let S∗ be some optimal solution for the problem, and let r∗
H = |R(S∗)∩RH |

and r∗
L = |R(S∗) ∩ RL|. Since ∆(SX̂,Y) ≤ Y , Lemma 6 guarantees that the

solution produced by Procedure Low Deg(X̂) uses at most Y · log β · r∗
L =√

n log β · r∗
L red elements of R∗

L. By Lemma 7, the number of red elements of
R∗

H contained in the solution generated by the procedure is at most
√

n log β ·X̂.
Combined, the total number of red elements used by the procedure satisfies
r(S̃X̂) ≤ √n log β · r∗

L +
√

n log β · X̂. But by the definition of X̂, necessarily
r(S∗) ≥ X̂, and hence r(S̃X̂) ≤ 2

√
n log β · r(S∗), yielding the lemma.

As X̂ is not known to us in advance, it will be necessary to search for it. This
yields our final algorithm.

Algorithm Low Deg2.

1. For X = 1 to ρ do:
Invoke Procedure Low Deg(X).

2. Take the best of the obtained solutions.

Theorem 4. Algorithm Low Deg2 yields an approximation ratio of 2
√

n log β
for the Red-Blue Set Cover problem.

A minor variant of this algorithm yields an approximation ratio of (nρ)1/3.
However, the problem clearly admits also a trivial approximation algorithm of
ratio ρ, and (nρ)1/3 is always dominated by the smaller of ρ and

√
n, so this

variant is not as interesting (assuming the factor of log β is negligible compared
to the other terms).

230 D. Peleg

3.4 The Weighted Case

Finally, let us consider the weighted variant of the problem, in which every red
element ri ∈ R has a positive real weight ω(ri) associated with it, and the goal is
to minimize the weight of the selected cover. In the full paper we show that Pro-
cedures Greedy RB and Low Deg can be extended to the weighted setting
with no change in the approximation ratio. In particular, in addition to the previ-
ous definitions, define the weight of a set Si to be ω(Si) =

∑
rj∈Si

ω(rj), and for
a subcollection S ′ let ω(S ′) =

∑
rj∈R(S′) ω(rj). In Procedure Greedy RB, Step

1(b) should assign each set Ti in T the weight ω(Ti) = ω(Si). The inequalities
of Lemma 5 become

ω(S ′) ≤ ω(T ′) ≤ ∆(S) · ω(S ′) ,

with minimal changes in the proof, as well as in the proof of Lemma 6. In
Procedure Low Deg, the definition of SX changes to SX ← {Si ∈ S | ω(Si) ≤
X}. As a result, Lemma 7 now asserts that ω(RH) ≤ √n log β ·X. The definition
of X̂ becomes X̂ = max{ω(S∗

i) | S∗
i ∈ S∗}. The proof of Lemma 8 uses ω∗

H =
ω(R(S∗)∩RH) and ω∗

L = ω(R(S∗)∩RL) instead of r∗
H and r∗

L, respectively. We
thus get the following.

Theorem 5. There is an algorithm with approximation ratio 2
√

n log β for the
Weighted Red-Blue Set Cover problem.

Acknowledgements

I am grateful to Michael Elkin, Yehuda Hassin and Hadas Taubman for helpful
discussions.

References

ABMP98. M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum propositional
proof length is NP-hard to linearly approximate. Manuscript, 1998.

ABSS93. S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes and linear equations. In Proc. 34th IEEE Symp.
on Foundations of Computer Science, pages 724–733, 1993.

CDKM00. Robert Carr, Srinivas Doddi, Goran Konjevod, and Madhav Marathe. On
the red-blue set cover problem. In Proc. 11th ACM-SIAM Symp. on Dis-
crete Algorithms, 2000.

Chv79. V. Chvatal. A greedy heuristic for the set-covering problem. Math. of Oper.
Res., 4:233–235, 1979.

DS99. I. Dinur and S. Safra. On the hardness of approximating label cover. Techni-
cal Report 15, Electronic Colloquium on Computational Complexity, 1999.

EP00. Michael Elkin and David Peleg. The hardness of approximating spanner
problems. In Proc. 17th Symp. on Theoretical Aspects of Computer Science,
pages 370–381, February 2000.

Approximation of Label-CoverMAX 231

GM97. Michael H. Goldwasser and Rajeev Motwani. Intractability of assembly
sequencing: Unit disks in the plane. In Proc. Workshop on Algorithms and
Data Structures, volume LNCS 1272, pages 307–320. Springer-Verlag, 1997.

Has00. Y. Hassin. Private communication, 2000.
Hoc95. Dorit S. Hochbaum. Approximation Algorithms for NP-Hard Problems.

PWS Publishing Co., Boston, MA, 1995.
Kor98. G. Kortsarz. On the hardness of approximating spanners. In Proc. 1st Int.

Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, pages 135–146. Springer-Verlag, 1998. LNCS 1444.

Approximation Algorithms
for Maximum Linear Arrangement

Refael Hassin and Shlomi Rubinstein

Department of Statistics and Operations Research, School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel. {hassin,shlom}@math.tau.ac.il

Abstract. The generalized maximum linear arrangement prob-
lem is to compute for a given vector x ∈ IRn and an n × n non-negative
symmetric matrix w = (wi,j), a permutation π of {1, ..., n} that maxi-
mizes

∑
i,j

wπi,πj |xj −xi|. We present a fast 1
3 -approximation algorithm

for the problem. We also introduce a 1
2 -approximation algorithm for max

k-cut with given sizes. This matches the bound obtained by Ageev
and Sviridenko, but without using linear programming.

1 Introduction

We define the Generalized Linear Arrangement Problem as the problem
of computing for a given vector x = (x1 ≤ · · · ≤ xn) ∈ IRn of ‘points’ and an
n × n non-negative symmetric matrix w = (wi,j) of ‘weights’, a permutation π
of {1, . . . , n} so that

∑
i,j wπi,πj |xj −xi| is optimized. In an illustrative example,

consider n linearly ordered points in which a set of n machines is to be located,
and wi,j is a measure of association of the i-th and j-th machines. Our interest
is in the maximization version, the generalized maximum linear arrange-
ment problem (GMLAP), where the goal is to maximize

∑
i,j wπi,πj

|xj − xi|,
and keep the machines far from each other (compare with [7]).

The special (NP-hard) case in which xi = i is known as the linear ar-
rangement problem. Another special case of the problem is max cut prob-
lem with given sizes of sides where for some p ≤ n

2 , x1 = · · · = xp = 0
and xp+1 = · · · = xn = 1. Ageev and Sviridenko [3] applied a novel method
of rounding linear programming relaxations and developed a 1

2 -approximation
algorithm for this problem. ([2] contains a 1

2 -approximation for the more general
directed version of the problem.) They also obtained a similar result for a more
general max k-cut problem in which integers p1, ..., pk are given and the goal
is to compute a k-cut, that is, a partition S1, ..., Sk of {1, ..., n} with |Si| = pi

i = 1, ..., k, which maximizes the weight of edges whose ends are in different sides
of the partition.

The GMLAP is a special case of the maximum quadratic assignment
problem. In this problem two n × n nonnegative symmetric matrices A =
(ai,j) and B = (bi,j) are given and the objective is to compute a permutation
π of {1, . . . , n} so that

∑
i,j∈V

i6=j
aπ(i),π(j)bi,j is maximized. A 1

4 -approximation
algorithm for this problem, under the assumption that the values of one of the

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 231–236, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

232 R. Hassin and S. Rubinstein

matrices satisfy the triangle inequality, is given in [4]. Of course, this bound
applies also to the GMLAP.

We will present 1
3 -approximation algorithms for the GMLAP. An interest-

ing feature of our algorithm is that it simultaneously approximates the max cut
problems with sizes p and n − p for all possible values of p. We also present an
alternative 1

2 -approximation for max k-cut problem with given sizes of
the sides. Unlike the algorithm of Ageev and Sviridenko, the latter algorithm
doesn’t use linear programming. The full version of this paper also contains a
randomized 1

2 -approximation for the maximum linear arrangement prob-
lem.

We first describe, in Section 2, a generic randomized approximation algorithm
for max cut with given sizes of sides. The analysis of this special case will
be used in Section 3 where we obtain our main result on the GMLAP. In Section
4 we treat the max k-cut problem with given sizes of the sides.

For a partition (S, T) we mean by (i, j) ∈ (S, T) that i ∈ S and j ∈ T . We
denote by opt the optimal solution value in the problem under consideration.

2 Max Cut with Given Sizes of Sides

Given an undirected graph G = (V, E) with edge weights wi,j (i, j) ∈ E and
|V | = n, a cut is a partition (S, T) of V and its weight is

∑
s∈S t∈T ws,t. The

problem is to compute a maximum weight cut such that |S| = p. Without loss
of generality, we assume that p ≤ n

2 .

Max Cut
input
1. A graph G = (V, E) V = {1, ..., n} with edge weights wi,j (i, j) ∈ E.
2. An integer p ≤ n

2 .
returns
A partition S, T of V = {1, ..., n} such that |S| = p.
begin
for i = 1, ..., n

Wi :=
∑

j:(i,j)∈E
wi,j.

end for
P := {i1, ..., i2p ∈ V | Wi ≥ Wj ∀i ∈ P j /∈ P}.
Randomly choose p nodes from P to form S.
T := V \ S.
return S, T .
end Max Cut

Fig. 1. Algorithm Max Cut

Theorem 1 Let w(S, T) be the expected weight of the partition returned by Al-
gorithm Max Cut (Figure 1). Then, w(S, T) ≥ opt

3 .

Approximation Algorithms for Maximum Linear Arrangement 233

Proof: The probability that any given edge (ij , l) ij ∈ P to be separated
by (S, T) is 1

2 for both cases l ∈ P and l /∈ P . Consider an optimal solu-
tion and denote by OPT the set of size p in it. Let r = |OPT ∩ P |, s =∑

(i,j)∈(OPT∩P,P\OPT) wi,j , and t =
∑

(i,j)∈(OPT∩P,V \P) wi,j . Note that by defi-
nition of P , there is some threshold k such that Wi is at least k for i ∈ P and at
most k for i ∈ OPT \ P . Also note that edges with two ends in P are counted
twice in

∑
i∈P Wi so that

w(S, T) ≥ s +
∑

i∈P\OPT Wi

4
+

t

2
≥ s + (2p − r)k

4
+

t

2
,

and
opt ≤ (p − r)k + t + s.

We note that to compute a minimum possible value for the ratio w(S,T)
opt given

that it can be made smaller than 1
2 , we can assume w.l.o.g. that t = 0. Let

s = α(2p − r)k. We now distinguish two cases.
Suppose first that α ≤ 1. We use

w(S, T) ≥ k(1 + α)
2p − r

4
and

opt ≤ k((2p − r)(1 + α) − p),
so that

w(S, T)
opt

≥ 1
4

(2p − r)(1 + α)
(2p − r)(1 + α) − p

.

This ratio is monotone decreasing in α so that for the worst case we substitute
α = 1 and obtain

w(S, T)
opt

≥ 2p − r

2(3p − 2r)
.

This expression is maximized when r = 0, in which case we obtain the ratio 1
3 .

Suppose now that α > 1. We use the inequalities

w(S, T) ≥ s

2
,

and
opt ≤ (p − r)k + s ≤ 2p − r

2
k + s ≤ s

2α
+ s ≤ 3

2
s,

so that
w(S, T)

opt
≥ 1

3
.

Algorithm Max Cut is fast and simple, but for our results in the next section
we will use a variation of it, which is also easier for derandomization. In this
variation we change the main step of the algorithm as described in Figure 2.

Theorem 2 Let w(S, T) be the expected weight of the partition returned by
Max Cut with the modification given in Figure 2. Then, w(S, T) ≥ opt

3 .

Proof: As in Theorem 1 with P = {1, ..., 2p}.

234 R. Hassin and S. Rubinstein

begin
Sort V in non-increasing order of Wi.
(For simplicity, suppose that W1 ≥ · · · ≥ Wn.)
for i = 1, ..., p

Assign 2i − 1 to S, with probability 1
2 . Assign 2i to S otherwise.

end for

Fig. 2. Modified Max Cut

3 Generalized Maximum Linear Arrangement

We start by presenting an alternative way to compute the weight of a solution
π to GMLAP (cf. [6]): For p = 1, ..., n − 1 let Cp =

∑p
i=1
∑n

j=p+1 wπi,πj
. Note

that the problem of maximizing Cp over all permutations π of {1, ..., n} is the
max cut problem with sizes of sides p and n − p. Now we observe that

∑

i,j

wπi,πj
|xj − xi| =

n−1∑

p=1

Cp|xp+1 − xp|. (1)

In other words, the contribution of the interval [xp, xp+1] to the weight of the
solution is Cp|xp+1 − xp|. Our algorithm Randomized GMLA (see Figure 3)
approximates simultaneously all of these cut problems with factor 1

3 each, and
consequently the same bound applies to the GMLAP instance as well.

Randomized GMLA
input
1. A non-negative symmetric matrix W = (wi,j i, j = 1, ..., n).
2. A set of points x1, ..., xn ∈ IR.
returns A permutation π1, ..., πn of V = {1, ..., n}.
begin
for i = 1, ..., n

Wi :=
∑

j∈V \{i} wi,j.
end for

Sort V in non-increasing order of Wi.
(For simplicity, suppose that W1 ≥ · · · ≥ Wn.)
for i = 1, ..., bn

2 c
Set πi := 2i − 1 and πn−i+1 := 2i with probability 1

2 .
Set πi := 2i and πn−i+1 := 2i − 1 otherwise.
If n is odd, set π n+1

2
:= n.

end for
return π.
end Randomized GMLA

Fig. 3. Algorithm Randomized GMLA

Approximation Algorithms for Maximum Linear Arrangement 235

Theorem 3 Let π be the permutation returned by Randomized GMLA.
1. Let Sp = {π1, ..., πp}, Tp = {πp+1, ..., πn}. Then (Sp, Tp) is a 1

3 -approximation
for the max cut problem with sizes of sides p and n − p.
2. π is a 1

3 -approximation for the GMLAP.

Proof: By Theorem 2, for p = 1, ..., n − 1, the value of Cp in the output of the
algorithm is a 1

3 -approximation for the respective max cut problem. The proof
for the second part of the theorem follows now from Equation 1.

Derandomizing the algorithm is particularly simple. We apply the ‘method
of conditional expectations’. Consider the i-th iteration of the algorithm. We
should set πi to either 2i − 1 or to 2i, and πn−i+1 to the other value. This is
done so that the expected value of the solution is maximized given the previous
assignments and assuming that the following ones will be done according to
Randomized GMLA. We call the resulting algorithm GMLA.

Theorem 4 Let m = |{(i, j) : wi,j > 0}|. Then, Algorithm GMLA computes a
1
3 -approximation for the GMLAP and for max cut with given sizes of the
sides for every p = 1, ..., bn

2 c in time O(m + n log n).

4 Max k-Cut with Given Sizes of the Sides

Given a graph G = (V, E) with edge weights w and integers p1, ..., pk such that∑
pi = n, the max k-cut with given sizes of the sides is to compute a

k-cut, that is, a partition S1, ..., Sk of V such that |Si| = pi i = 1, ..., k, which
maximizes the weight of edges whose ends are in different parts of the partition.

A vertex v ∈ V is said to cover the weight of the edges {(u, v) ∈ E}. A
subset V ′ ⊂ V covers the weight of the union of edges which have at least one
end in it. Bar-Yehuda [5] developed an O(n2) 1

2 -approximation algorithm for the
following problem: Given w, compute a vertex set of minimum size that covers
edge weight of size at least w.

One can obtain from this result, in a straightforward way, a solution to the
following problem: Given p ≤ 1

2n find a set S′ of 2p vertices that covers edge
weight of at least w(p), where w(p) is the maximum edge weight that can be
covered by p vertices. To achieve this goal we apply binary search over [0, w(E)],
where w(E) is the total weight of E. For each test value, w, we apply Bar-
Yehuda’s algorithm and we stop with the highest value for which the algorithm
returns a set S′ with at most 2p vertices. The complexity of this procedure is
O(n2 log w(E)).

Our algorithm for the case of k = 2 (max cut with given sizes of the
sides) proceeds as follows: Randomly select p vertices from S′ and move them
to the other side of the cut. Let the resulting set be SA. We claim that the
expected size of the cut (SA, V \ SA) is a 1

2 -approximation for the problem. The
argument is that the weight of the edges covered by S′ is an upper bound on the
optimal solution value, and each of these edges will be in the cut with probability
1
2 . The algorithm can be derandomized by applying the ‘method of conditional
expectations’. Alternatively, the rounding method of Ageev and Sviridenko can

236 R. Hassin and S. Rubinstein

also be used to obtain a 1
2 -approximation in deterministic linear time, once S′

is given [1].
Our algorithm can be modified for the max k-cut problem with given

sizes of the sides as well: We first observe that if pi ≤ 1
2n for every i = 1, ..., k

then the cut contains more than half of the edges so that a random solution has
expected weight of at least half the total weight of the graph. Thus a random
solution suffices to obtain a 1

2 -approximation.
Assume now that p1 > n

2 . We compute as above sets S′ and SA with p =
n − p1. We set P1 = V \ SA and arbitrarily partition SA to form P2, ..., Pk. The
resulting k-cut has the property that the expected weight of edges between P1
and the other parts is already half the weight of the edges covered by S′ which is
itself an upper bound on the optimal solution. Thus the k-cut we constructed is
a 1

2 -approximation for the problem. Again, the algorithm can be derandomized.

References

1. A. A. Ageev, personal communication.
2. A. A. Ageev, R. Hassin, and M. I. Sviridenko, “Directed max cut with given

sizes of parts”, 1999.
3. A. A. Ageev and M. I. Sviridenko, “Approximation algorithms for maximum

coverage and max cut with given sizes of parts”, IPCO’99.
4. E. Arkin, R. Hassin and M. I. Sviridenko, “Approximating the maximum

quadratic assignment problem”. A preliminary version appeared in Proceed-
ings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA2000), 889-890.

5. R. Bar-Yehuda, “Using homogeneous weights for approximating the partial
cover problem”, Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA99), 71-75, 1999.

6. J-C. Picard and H. D. Ratliff, “A cut approach to the rectilinear distance
facility location problem”, Operations Research 26, 1978, 422-433.

7. A. Tamir, “Obnoxious facility location on graphs,” SIAM J. Discrete Mathe-
matics 4, 1991, 550-567.

Approximation Algorithms for Clustering
to Minimize the Sum of Diameters1

Srinivas R. Doddi1, Madhav V. Marathe2, S. S. Ravi3,
David Scot Taylor4, and Peter Widmayer5

1 Los Alamos National Laboratory, P. O. Box 1663, MS B265
Los Alamos, NM 87545, USA

srinu@lanl.gov
2 Los Alamos National Laboratory, P. O. Box 1663, MS M997

Los Alamos, NM 87545, USA
marathe@lanl.gov

3 Department of Computer Science
University at Albany - State University of New York

Albany, NY 12222, USA
ravi@cs.albany.edu

4 Department of Computer Science
University of California

Los Angeles, CA 90095-1596, USA
dstaylor@cs.ucla.edu

5 Institute for Theoretical Computer Science
ETH, 8092 Zürich, Switzerland

widmayer@inf.ethz.ch

Abstract. We consider the problem of partitioning the nodes of a com-
plete edge weighted graph into k clusters so as to minimize the sum
of the diameters of the clusters. Since the problem is NP-complete, our
focus is on the development of good approximation algorithms. When
edge weights satisfy the triangle inequality, we present the first approx-
imation algorithm for the problem. The approximation algorithm yields
a solution that has no more than 10k clusters such that the total diame-
ter of these clusters is within a factor O(log (n/k)) of the optimal value
for k clusters, where n is the number of nodes in the complete graph.
For any fixed k, we present an approximation algorithm that produces k
clusters whose total diameter is at most twice the optimal value. When
the distances are not required to satisfy the triangle inequality, we show
that, unless P = NP, for any ρ ≥ 1, there is no polynomial time approx-
imation algorithm that can provide a performance guarantee of ρ even
when the number of clusters is fixed at 3. Other results obtained include
a polynomial time algorithm for the problem when the underlying graph
is a tree with edge weights.

1 Research Supported by Department of Energy Contract W-7405-ENG-36 and by
NSF Grant CCR-97-34936.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 237–250, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

238 S.R. Doddi et al.

1 Introduction

1.1 Motivation

The main goal of clustering is to partition a set of objects into homogeneous
and well separated subsets (clusters). Clustering techniques have been used in a
wide variety of application areas including information retrieval, image process-
ing, pattern recognition and database systems [Ra97,ZRL96,JD88,DH73]. Over
the last three decades, several clustering methods have been developed for spe-
cific applications [HJ97,JD88]. Many of these methods define a distance (or a
similarity measure) between each pair of objects, and partition the collection
into clusters so as to optimize a suitable objective based on the distances. Some
of the objectives that have been studied in the literature include minimizing the
maximum diameter or radius, total pairwise distances in clusters, etc. The sur-
vey paper by Hansen and Jaumard [HJ97] provides an extensive list of clustering
objectives and applications for these objectives.

Clustering problems where the objective is to minimize the maximum clus-
ter diameter have been well studied from an algorithmic point of view (see Sec-
tion 1.4 for a summary). The focus of this paper is on clustering problems where
the objective is to partition a given collection of objects into a specified number
of clusters so as to minimize the sum of the diameters of individual clusters. The
motivation for this objective is derived from the fact that in several applications,
clustering algorithms that minimize the maximum diameter produce a “dissec-
tion effect” [HJ97,MS89]. This effect causes objects that should normally belong
to the same cluster to be assigned to different clusters, as otherwise the diam-
eter of a cluster becomes too large. In such applications, the sum of diameters
objective is more useful as it reduces the dissection effect [HJ97,MS89].

1.2 Problem Formulation and Previous Work

To study the clustering problem in a general setting, we represent the objects
to be clustered as nodes of a complete edge-weighted undirected graph G(V,E)
with |V | = n. The distance (or similarity measure) between any pair of objects
can then be represented as the weight of the corresponding edge in E. For an
edge {u, v} in E, we use ω(u, v) to denote the weight of the edge. It is assumed
that the edge weights are nonnegative. For any subset V ′ of V , the diameter of
V ′ (denoted by DIA(V ′)) is the weight of a largest edge in the complete subgraph
of G induced on V ′. Note that when |V ′| = 1, DIA(V ′) = 0. A formal statement
of the clustering problem considered in this paper is as follows.

Clustering to Minimize Sum of Diameters (Cmsd)

Instance: A complete graph G(V,E), a nonnegative weight (or distance) ω(u, v)
for each edge {u, v} in E and an integer k ≤ |V |.
Requirement: Partition V into k subsets V1, V2, . . ., Vk such that

∑k
i=1 DIA(Vi)

is minimized.

Approximation Algorithms for Clustering 239

In general, edge weights in instances of Cmsd need not satisfy the triangle
inequality. We use Cmsd∆ to denote instances of Cmsd where edge weights
satisfy the triangle inequality. Most of our results are for the Cmsd∆ problem.
We assume without loss of generality that the optimal solution value to any
given instance of Cmsd∆ is strictly greater than zero. We may do so since it is
easy to determine whether a given instance of Cmsd∆ can be partitioned into a
specified number of clusters each of which has a diameter of zero.

We now summarize the known results from the algorithmic literature for the
Cmsd problem. Brucker [Br78] showed that Cmsd (without triangle inequality)
is NP-complete for any fixed k ≥ 3. Hansen and Jaumard [HJ87] studied the
Cmsd problem with k = 2 and presented an algorithm with a running time
of O(n3 log n). They also showed that for k = 2, the minimization problem for
any given function of the two diameters can be solved in O(n5) time. When
the input is specified as an undirected edge weighted graph with n nodes and
m edges, Monma and Suri [MS89] showed that the Cmsd problem for k = 2
can be solved in time O(nm log n). This is an improvement over the algorithm of
[HJ87] for sparse graphs. Brucker [Br78] observed that the 1-dimensional version
of Cmsd∆ can be solved efficiently for any value of k. For the Euclidean version
of Cmsd∆ with k = 2, Monma and Suri [MS89] presented an algorithm which
uses O(n) space and runs in O(n2) time. Capoyleas et al. [CRW91] also studied
a generalized version of the Cmsd∆ problem for points in <2. They showed that
for any fixed k, the problem can be solved in polynomial time for any monotonic
increasing function of cluster radius or diameter. Examples of such monotonic
increasing functions include sum of diameters (or radii), maximum diameter (or
radius), etc.

1.3 Summary of Main Results

We study the complexity and approximability of the Cmsd problem. The main
results of this paper can be summarized as follows:

1. We show that unless P = NP, Cmsd cannot be efficiently approximated to
within any factor even when the number of clusters is fixed at 3. (In contrast,
note that Cmsd is known to be efficiently solvable when the number of
clusters is equal to 2 [HJ87,MS89].)

2. For Cmsd∆, we show that if the constraint on the number of clusters must
be met, then it is NP-hard to approximate the total diameter to within a
factor 2 − ε, for any ε > 0.

3. In contrast to the non-approximability results above, we present a polyno-
mial time bicriteria approximation algorithm [MR+98] for Cmsd∆. This ap-
proximation algorithm outputs a solution with at most 10k clusters whose
total diameter is within a factor of O(log (n/k)) of the minimum possible
total diameter with k clusters.

4. We also show that when the number of clusters k is fixed, there is an approx-
imation algorithm for Cmsd∆ which produces at most k clusters whose total
diameter is within a factor of 2 of the minimum possible total diameter.

A brief summary of our other results is given in Section 5.

240 S.R. Doddi et al.

1.4 Other Related Work

A number of researchers have addressed the clustering problem where the goal
is to minimize the maximum diameter or radius of a cluster. In the location
theory literature, the problem of minimizing the maximum radius is also known
as the k-center problem. For the metric version of the problem of minimizing
the maximum diameter, Gonzalez [Go85] presented a simple greedy heuristic
that runs in O(nk) time and provides a performance guarantee of 2. He also
showed that, unless P = NP, the performance guarantee cannot be improved.
Using a general technique for approximating bottleneck problems, Hochbaum
and Shmoys [HS86] also presented a heuristic with a performance guarantee of
2 for the metric version of the k-center problem.

In [FPT81,MS84], it is shown that the problems of minimizing the maximum
radius or diameter remain NP-hard even for points in <2. For this geometric ver-
sion, Feder and Greene [FG88] improved the running time of Gonzalez’s heuris-
tic to O(n log n). They also showed that it is NP-hard to achieve a performance
guarantee of 1.82 and 1.97 respectively for the diameter and radius problems in
<2. Recently, Agarwal and Procopiuc [AP98] have presented an exact algorithm
with a running time of nO(k1−1/d) for the k-center problem for points in <d. For
any ε > 0, they have also presented an (1 + ε) approximation algorithm with a
running time of O(n log k) + (k/ε)O(k(1−1/d)) for the problem.

Plesńık [Pl82] has addressed the problem of partitioning the edges of a given
graph G(V,E) into k subsets so that each subset forms a connected graph on the
vertex set V , and a given function of the diameters of the resulting subgraphs is
minimized. The objectives considered in [Pl82] include minimizing the maximum
diameter and minimizing the total diameter. It is shown that, unless P = NP,
even for k = 2, these objectives cannot be efficiently approximated to within
factors less than 3/2 and 5/4 respectively.

Several other types of clustering problems have also been studied in the
literature. For example, Charikar et al. [CC+97] study an incremental version
of the clustering problem for minimizing the maximum radius. Pferschy et al.
[PRW94] study geometric versions of clustering problems using objectives such
as minimizing the total perimeter. Agarwal and Procopiuc [AP00] study pro-
jective clustering problems where the goal is to cover a set of points in <d

using hyper-strips, and the objective is to minimize the maximum width of the
strips. References where other types of clustering problems are studied include
[Ma99,ABC+98,GH98,DKS97,Da94,BKK94].

2 Preliminaries

2.1 A Simple Upper Bound on the Optimal Solution Value

Given any instance of Cmsd, we can easily construct a feasible solution consisting
of k clusters with total diameter at most the maximum edge weight: form one
cluster consisting of n − k + 1 arbitrarily chosen vertices and make each of the

Approximation Algorithms for Clustering 241

remaining k − 1 vertices a singleton cluster. This observation is stated formally
below.

Remark 1. For any instance of I of Cmsd, the optimal solution value is at most
the maximum edge weight in I. ut

2.2 A Merging Lemma

The formulation of the Cmsd problem requires that the clusters be pairwise dis-
joint. Our approximation algorithms may produce clusters which may not satisfy
the disjointness condition. The following lemma points out that for instances of
Cmsd∆, we can merge pairs of intersecting sets without increasing the total
diameter.

Lemma 1. Let I be an instance of Cmsd∆ given by the edge weighted complete
graph G(V,E) and integer k. Let C = {C1, C2, . . . , Ck} be a collection of subsets
of V such that their union is V and the sum of the diameters of all the subsets
in C is ψ. Further, suppose Ci and Cj (i 6= j) are two sets in C such that
Ci ∩Cj 6= ∅. Then the total diameter of the collection C′ obtained by deleting Ci

and Cj from C and adding the set Ci ∪ Cj is at most ψ.

Proof. The lemma would follow by showing that DIA(Ci ∪ Cj) ≤ DIA(Ci) +
DIA(Cj). To do this, let x be a node in Ci ∩Cj and let u and v be two nodes in
Ci∪Cj such that ω(u, v) = DIA(Ci∪Cj). If u and v are both in Ci (or both in Cj),
then ω(u, v) ≤ DIA(Ci) (ω(u, v) ≤ DIA(Cj)), and the proof is trivial. So, assume
that u ∈ Ci and v ∈ Cj . By the triangle inequality, ω(u, v) ≤ ω(u, x) + ω(v, x).
Since u and x are both in Ci, ω(u, x) ≤ DIA(Ci). Similarly, ω(v, x) ≤ DIA(Cj).
Therefore, DIA(Ci ∪ Cj) = ω(u, v) ≤ DIA(Ci) + DIA(Cj), and this completes
the proof. ut

In view of the above lemma, when considering instances of Cmsd∆, we may
repeatedly merge pairs of clusters with nonempty intersection until the clusters
are pairwise disjoint. The merging process does not increase the total diameter
of the clusters.

2.3 Transformation to Weighted Set Cover

Our results rely on a transformation from instances of Cmsd∆ to instances
of the weighted set cover problem. Given an instance of Cmsd∆ along with a
nonnegative value f , the transformation in Figure 1 produces an instance of the
weighted set cover problem. It is clear that the transformation can be carried
out in polynomial time. The following lemma points out an important property
of the resulting set cover instance.

Lemma 2. Let I denote an instance of Cmsd∆ problem and let f be a non-
negative number. Let I ′ denote the instance of the weighted set cover problem
produced by the transformation in Figure 1 when I and f are given as inputs.
Let OPT(I) and OPT(I ′) denote the optimum solution values to I and I ′ re-
spectively. Then, OPT(I ′) ≤ 2 OPT(I) + f .

242 S.R. Doddi et al.

TransformToSetCover(G(V, E), k, f)
f is a nonnegative parameter.

Output: An instance of weighted set cover problem with base set Q, and collection
W of nonempty subsets of Q, each with a weight. The weight of a set W ∈ W is
denoted by c(W).

1. Q = V /* Note: |Q| = n. */
2. W = ∅
3. for each v ∈ V do

(a) Sort {ω(v, u) : u ∈ V } into (strictly) increasing order.
(b) Let α1 = 0 < α2 < . . . < αrv denote the sorted order.
(c) for i = 1 to rv do

i. Let W i
v = {u : ω(u, v) ≤ αi}

ii. Let c(W i
v) = DIA(W i

v) + f/k
iii. Add (W i

v) to W
4. return(Q, W)

Fig. 1. Transformation from Cmsd∆ to Weighted Set Cover

Proof. Let C1, C2, . . ., Ck denote the clusters in an optimal solution to I. Thus,
OPT(I) =

∑k
i=1 DIA(Ci). We will show that there is a subcollection of k sets

in I ′ such that the sets in the subcollection together cover the base set Q and
the total weight of the sets in the subcollection is at most 2 OPT(I) + f . The
lemma would then follow immediately.

Consider each cluster Ci (1 ≤ i ≤ k) in the optimal solution to I. If Ci

contains two or more nodes, let vi be a node in Ci such that vi is one of the
endpoints of an edge whose weight is equal to DIA(Ci). If Ci contains only one
node (i.e., DIA(Ci) = 0), let vi be that node. Now, by the transformation of
Figure 1, I ′ has a set, say Wi, that includes all the nodes which are at a distance
of at most DIA(Ci) from vi. By the triangle inequality, DIA(Wi) ≤ 2 DIA(Ci).
So, c(Wi) = DIA(Wi) + f/k ≤ 2 DIA(Ci) + f/k. Clearly, the subcollection
{W1,W2, . . . ,Wk} covers the base set Q. The weight of this cover is

∑k
i=1 c(Wi),

which is at most
∑k

i=1(2 DIA(Ci) + f/k) = 2 OPT(I) + f . This completes the
proof of the lemma. ut

2.4 The Budgeted Maximum Coverage Problem

For obtaining our approximation result for Cmsd∆ (where the number of clusters
k is a part of the problem instance), we use a known approximation result for the
Budgeted Maximum Coverage Problem (Bmcp). Below, we provide a definition
of the problem and state the necessary approximation result.

An instance of Bmcp consists of a base set Q = {q1, q2, . . . , qn}, a collection
W of nonempty subsets of Q, a nonnegative weight c(W) for each set W ∈ W
and a nonnegative budget B. The goal is to choose a subcollection of sets from W

Approximation Algorithms for Clustering 243

so that the total cost of the chosen sets is at most B and the number of elements
covered by the chosen sets is maximum. This problem is NP-hard since it is a
restatement of the minimum cost set cover problem. The following approximation
result for Bmcp is proved in [KMN99].

Theorem 1. Bmcp can be efficiently approximated to within a factor (1−1/e).
ut

It is shown in [KMN99] that the approximation algorithm referred to in
Theorem 1 can also be used for the more general version of Bmcp where there is
a weight associated with each element of the base set, and the goal is to maximize
the weight of the elements covered by the chosen sets. For our results, the unit
weight version of Bmcp where the weight of each element of the base set is 1,
suffices.

3 Approximating Cmsd∆

3.1 Algorithm Overview

We give a brief top-down description of our approximation algorithm Approx-
Cmsd∆, and introduce the terminology used in the analysis. At all times,
Approx-Cmsd∆ maintains a set D of clusters which cover all vertices in V , at
cost Ψ . We call these global clusters, since they cover all vertices in V . The algo-
rithm begins with D consisting of |V | singleton clusters, and progresses through
a series of rounds. During each round, it constructs a vertex set N by selecting
an arbitrary vertex from each of its current clusters. It then finds a clustering
C on N . We call the clusters in C local clusters, since they do not need to cover
all of V , but only N . As will be shown, the number of clusters |C| is at most
3k[1 + ln (|N |/k)]. We use ψ to denote their total cost. Next, Approx-Cmsd∆

uses Merge to suitably combine the clusters in D into a set of just |C| clusters,
which cover all of V at cost at most Ψ +ψ. This entire process is repeated until
the number of clusters in D is at most 10k.

Approx-Cmsd∆ uses FindCover to return the required C clusters during
each round. FindCover, in turn, iterates through at most O(ln (|N |/k)) calls
to ParametricBmcp each of which returns a set of at most 3k clusters which
cover all but a 1/e fraction of the remaining uncovered vertices from N . These
clusters have cost no more than 3(1 + ε)OPT.

Using TransformToSetCover from Figure 1, ParametricBmcp con-
verts the problem to a set cover instance, and repeatedly calls the Budgeted
Maximum Coverage Approximation Algorithm Bmcp, with growing budgets,
until the budget is large enough to make Bmcp cover the required fraction of
vertices. A complete description of the approximation algorithm is given in Fig-
ure 2.

244 S.R. Doddi et al.

Approx-Cmsd∆(G(V, E), k)
Output: A set of no more than 10k clusters with sum of diameters
O(ln (|V |/k)) OPT.

1. D = {{v} : v ∈ V }
2. while (|D| > 10k) do /* We call each iteration a Round */

(a) N = Set of vertices obtained by choosing one arbitrary vertex from each
D ∈ D.

(b) C =FindCover(G(N, E′), k) /* G(N, E′) : Complete subgraph on N */
(c) D =Merge(D, C)

3. return(D)

FindCover(G(N, E), k)
Output: A set of no more than 3k[1 + ln (|N |/k)] clusters which cover N with cost
no more than 3[1 + ln (|N |/k)](1 + ε)OPT.

1. C = ∅
2. while (N 6= ∅) do

(a) C′ = ParametricBmcp(G(N, E), k)
(b) C = C ∪ C′

(c) N = N − {i : i ∈ C for some C ∈ C′}
(d) E = Edges in the complete subgraph induced on the new, smaller N

3. return(C)

ParametricBmcp(G(N, E), k)
Output: A set of no more than 3k clusters which cover (1−1/e)|N | or more vertices
from N with cost no more than 3(1 + ε)OPT for any fixed ε > 0.

1. f = the smallest non-zero edge weight in G(N, E)
2. C′ = {{v} : v ∈ N}
3. while (|C′| > 3k or |{v : v ∈ C for some C ∈ C′}| < (1 − 1/e)|N |) do

(a) S =TransformToSetCover(G(N, E), k, f)
(b) C′ = Bmcp(S, 3f)
(c) f = (1 + ε)f

4. return(C′)

Merge(D, C)
Remark: D, C collections of vertex sets such that ∀D ∈ D, ∃C ∈ C such that
(D ∩ C 6= ∅).
Output: A set of |C| vertex sets which cover all {v : v ∈ X for some X ∈ D ∪ C}
at cost no more than the sum of the costs of C and D.

1. for each C ∈ C do
for each D ∈ D do

if (C ∩ D 6= ∅) then
C = C ∪ D ; D = D − D

2. return(C)

Fig. 2. Outline of Approx-Cmsd∆

Approximation Algorithms for Clustering 245

3.2 Correctness of Algorithm

To show that our algorithm runs in polynomial time and achieves the stated
performance guarantees, we analyze it from the lower level functions up to the
top level call, beginning with ParametricBmcp, and finishing with Approx-
Cmsd∆.

Lemma 3. Given graph G with optimal k-cluster cost OPT, ParametricBmcp
returns no more than 3k clusters which contain at least (1 − 1/e)|N | of the ver-
tices from |N |. Further, the sum of diameters of the returned clusters is no more
than 3(1 + ε)OPT.

Proof. By Lemma 2, the call to TransformToSetCover returns a set cover
instance with optimal solution no more than 2 OPT + f . When f > OPT, by
Theorem 1, the call to Bmcp with budget 3f > 3 OPT > 2 OPT + f , will return
sets which cover the stated number of vertices. Also, when f > 0, this solution
cannot have more than 3k clusters: each of the clusters has minimum cost f/k,
so any more than 3k clusters will have cost more than 3f . Therefore, with any
f > OPT, the call to Bmcp with budget 3f will return at most 3k clusters which
cover enough vertices.

Since we start f at the smallest possible (non-zero) value (in fact, we first
implicitly test if f = 0 suffices), and increase it by factors of (1 + ε), we are
guaranteed to try a value f such that f < (1 + ε)OPT. This will occur within
O(log1+ε OPT) iterations. Since OPT is at most the maximum edge weight (Re-
mark 1), the number of iterations is polynomial. ut

Lemma 4. Given graph G(N,E) with optimal k-cluster cost OPT, FindCover
returns no more than 3k[1+ln (|N |/k)] clusters which cover N with cost no more
than 3[1 + ln (|N |/k)](1 + ε)OPT.

Proof. By Lemma 3, each call to ParametricBmcp will return at most 3k
clusters of cost 3(1 + ε)OPT, and will leave at most |N |/e of the |N | vertices
uncovered. In the ensuing iterations of ParametricBmcp, we use a subset of
N which certainly has an optimal k-clustering with cost no greater than OPT.
After i iterations, we are guaranteed to have no more than 3k remaining vertices,
where |N |/ei ≤ 3k. To upper bound i, notice that if i is not the last iteration,
|N |/ei−1 > 3k, and i ≤ 1+ln (|N |/3k) ≤ ln (|N |/k). The final iteration generates
at most 3k additional singleton clusters with cost zero. Each of the 1+ln (|N |/k)
iterations returns no more than 3k clusters, of cost at most 3(1 + ε)OPT. The
lemma follows. ut

Lemma 5. Merge returns |C| vertex sets which cover all {v : v ∈ X for some
cluster X ∈ D ∪ C}, with cost no more than the sum of the costs of C and D.

Proof. Consider all C ∪D clusters whose cost is the sum of the costs of C and D.
Since each D ∈ D intersects some C ∈ C, we may replace D and C with D ∪C,
at no additional cost, by Lemma 1. This process can be continued until each
cluster in D has been merged into some cluster in C. ut

246 S.R. Doddi et al.

Finally, we need to show that the top level function Approx-Cmsd∆ does
in fact halt within a polynomial number of iterations. To do this, we show that
the number of clusters in D is eventually less than 10k, and that this happens
after no more than O(log2 log2 (n/k)) rounds.

Our algorithm begins with n vertices, and by Lemma 4, after the end of the
first round, we are left with 3k[1 + ln (n/k)] clusters, each of which contributes
one vertex towards the second round. Generalizing this for all rounds, let Di be
the set of global clusters at the end of round i, and ni = |Di|. Then, n0 = n, and
ni−1 is both the number of clusters at the end of round i− 1 and the number of
vertices we need to cluster in the ith round. We get the recurrence

ni+1 ≤ 3k[1 + ln(ni/k)].

Let ti = ni/k, we have ti+1 ≤ 3 + 3 · ln ti ≤ 6 · ln ti for ti ≥ e. By having enough
rounds to make ti constant, we will have a total of O(k) clusters. After O(log∗ t0)
rounds, ti becomes a constant, but here we will instead give a simple proof that
O(log2 log2 t0) = O(log2 log2 (n/k)) rounds are sufficient.

Lemma 6. After at most 5 + log2 log2 (n/k) rounds, |D| contains at most 10k
clusters.

Proof. Consider the “iterating” function used to get log∗ x from log2 x. For any
function f such that f(x) < x for sufficiently large x, the iterating function
is the number of times you must apply that function to get a constant. More
specifically, define the function (f)∗(x)C to be the number of times that f()
must be iteratively applied to get a result less than C. (Thus, (log2)∗(x)1 gives
the familiar function log∗ x.) Next, we use the fact that for x > 2109, 6 · lnx <√
x. Thus, (6 · ln)∗(x)2109 ≤ (√)∗(x)2109 ≤ (√)∗(x)1. However, (√)∗(x)1 =

dlog2 log2 xe, so we need to iterate less than log2 log2 t0 times before reaching
ti ≤ 2109. One more iteration for n gives us n1+log2 log2 t1 ≤ 3k + 3k · ln 2109 ≤
26k. Applying the recursion four more times gives n5+log2 log2 (n/k) ≤ 10k. ut

Thus, Approx-Cmsd∆ will terminate inO(log log (n/k)) rounds. Each round
has a call to FindCover, which makes at most O(log (n/k)) calls to Paramet-
ricBmcp. Using T (x) to denote the running time of Bmcp, the time taken by
all the calls to ParametricBmcp is O((n2 log n + T (n2)) log1+ε OPT). Thus,
the running time of the approximation algorithm is

O(log log (n/k)[log (n/k)(n2 log n+ T (n2)) log1+ε OPT]).

Since T (x) is polynomial by [KMN99], so is our algorithm.
Now all that is left is to show that the total cost is no more than the stated

bound. Let Ci denote the set of local clusters from round i. Since Ci covers the
set of N vertices, one from each D ∈ Di, we know that each D ∈ Di intersects
a cluster C in Ci. Let Ψi and ψi be the sum of diameters of the global and local
clusters during the ith round respectively. The following lemma can be proven
by induction on i.

Approximation Algorithms for Clustering 247

Lemma 7. After i rounds of Approx-Cmsd∆, Ψi ≤∑i
j=1 ψi. ut

To get the total cost of all global clusters at the end of the algorithm, we
just need to compute Ψ5+log2 log2 (n/k), since it was shown in Lemma 6 that the
number of rounds is at most 5 + log2 log2 (n/k).

Lemma 8. Ψ5+log2 log2 (n/k) = OPT ·O(ln (n/k)).

Proof. Note that by Lemma 7, Ψ5+log2 log2 (n/k) =
∑5+log2 log2 (n/k)

i=1 ψi. By sep-
arating the summation into the first term and all others, and noticing that ni

is decreasing (i.e., all terms with ni≥1 are upper bounded by n1), we get that
the first term in the summation is 3[1 + ln (n/k)](1 + ε)OPT, and the rest of
the terms are OPT · O((log2 log2 (n/k))2). For large enough n/k, the first term
dominates all of the rest, so for some constant ε′ > ε, the cost is no more than
3[1 + ln (n/k)](1 + ε′)OPT = OPT ·O(log2(n/k)), with small constant terms.

ut
Summarizing the above discussion, we have:

Theorem 2. There is a polynomial time approximation algorithm for the
Cmsd∆ problem that returns at most 10k clusters whose total diameter is at
most O(ln(n/k)) times the optimal solution value with k clusters. ut

3.3 An Approximation Algorithm for Cmsd∆ with Fixed k

When k is fixed, it is possible to obtain a simple 2-approximation algorithm for
the Cmsd∆ problem using the transformation shown in Figure 1. We present
this result below.

Theorem 3. When the number of clusters k is fixed, there is a 2-approximation
algorithm for Cmsd∆.

Proof. The steps of the approximation algorithm are as follows.

1. Using the transformation of Figure 1, construct an instance of the minimum
cost set cover problem from the given instance of Cmsd∆ with the parameter
f set to zero.

2. Find a minimum cost set cover consisting of at most k sets. Since k is fixed,
this step can be done in polynomial time by exhaustive search.

3. If the collection of sets obtained in Step 2 are not pairwise disjoint, then
repeatedly merge pairs of sets with nonempty intersection until the collection
is pairwise disjoint.

4. Output the collection of sets found in Step 3 as the solution to the Cmsd∆

instance.

Clearly, the approximation algorithm runs in polynomial time. Applying
Lemma 2 with f = 0, the cost of an optimal set cover is at most twice the
optimal solution value of the Cmsd∆ instance. Step 2 finds an optimal solution
to the set cover problem, and by Lemma 1, the merging operations in Step 3 do
not increase the total diameter of the clusters. Thus, the total diameter of the
clusters produced is at most twice the optimal value. ut

248 S.R. Doddi et al.

4 Non-approximability Results

4.1 Non-approximability without Triangle Inequality

We show that, unless P = NP, Cmsd cannot be efficiently approximated to
within any factor even when the number of clusters is fixed at 3. This result
can be established through a simple modification to the reduction from Graph
3-colorability (3-Color) to Cmsd given in [Br78]. We omit this proof due to
space constraints.

Proposition 1. Unless P = NP, for any ρ ≥ 1, no polynomial time algorithm
for the Cmsd problem can provide a performance guarantee of ρ. ut

This non-approximability result should be contrasted with the known result
that the Cmsd problem is solvable in polynomial time for 2 clusters [HJ87,MS89].

4.2 A Non-approximability Result for Cmsd∆

Here, we prove our non-approximability result for Cmsd∆. We establish this
result through a reduction from the well known Clique problem [GJ79].

Proposition 2. Unless P = NP, for any ε > 0, no polynomial time algorithm
for the Cmsd∆ problem can provide a solution which satisfies the bound on the
number of clusters and whose total diameter is within a factor 2−ε of the optimal
value.

Proof. We use a reduction from the Clique problem. Let the undirected graph
G(V,E) and integer J ≤ |V | denote an arbitrary instance of the Clique problem.
We construct an instance of the Cmsd∆ problem consisting of a complete edge
weighted graph G′ on the vertex set V as follows. For any pair of vertices u and
v, the weight of {u, v} is set to 1 if {u, v} is an edge in E and to 2 otherwise.
Obviously, the resulting edge weights satisfy the triangle inequality. The number
of clusters k is set to |V | − J + 1. Now, it is straightforward to see that if G
has a clique with J or more vertices, then G′ can be partitioned into at most k
clusters with a total diameter of 1: the vertices of the clique form one cluster of
diameter 1 and each of the remaining |V | − J vertices forms a separate cluster
with a diameter of zero. Further, if G does not have a clique with J or more
vertices, then any solution with at most k clusters must have a total diameter
of at least 2. The proposition follows. ut

5 Other Results

In this section, we briefly mention our other results on the Cmsd problem. Details
concerning these results will appear in a complete version of the paper.

We have considered the Cmsd problem when the underlying graph is a tree
with edge weights (rather than a complete graph). In this version, the distance
between any pair of nodes is the length of the path between the nodes in the

Approximation Algorithms for Clustering 249

tree. For this problem, we have developed a polynomial time algorithm using
dynamic programming. This algorithm uses O(kn2) space and runs in O(k2n3)
time. It can also be extended to work for graphs of bounded treewidth.

We have also considered the clustering problem where the goal is to minimize
the sum of the radii of the clusters (rather than the sum of the diameters). To
discuss these results, we first recall the definition of cluster radius. Let C be a
cluster. For any node v in C, let dv denote the maximum distance between v and
any other node in C. The radius of C is given by min{dv : v ∈ C}. A node v for
which dv is equal to the radius of C is a center of C. When edge weights satisfy
the triangle inequality, the diameter of a cluster is at most twice the radius.
Therefore, our approximation result for Cmsd∆ (Section 3) carries over (with a
different constant within the big-O) to the clustering problem where the goal is
to minimize the sum of the radii. We have also been able to show an interesting
contrast between the diameter and radius problems for the non-metric case. For
fixed k, while it is NP-hard to obtain even an approximation for the non-metric
version of the diameter problem (Section 4.1), the corresponding problem for
radius can be solved in polynomial time.

References

ABC+98. B. Awerbuch, B. Berger, L. Cowen and D. Peleg, “Near-Linear Time Con-
struction of Sparse Neighborhood Covers”, SIAM J. Computing, Vol. 28,
No. 1, 1998, pp. 263–277.

AP98. P. K. Agarwal and C. M. Procopiuc, “Exact and Approximate Algorithms
for Clustering”, Proc. 9th ACM-SIAM Symposium on Discrete Algorithms
(SODA’98), San Francisco, CA, Jan. 1998, pp. 658–667.

AP00. P. K. Agarwal and C. M. Procopiuc, “Approximation Algorithms for Projec-
tive Clustering”, Proc. 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA’2000), San Francisco, CA, Jan. 2000, pp. 538–547.

BKK94. V. Batagelj, S. Korenjak-Cerne and S. Klavzar, “Dynamic Programming
and Convex Clustering”, Algorithmica, Vol. 11, No. 2, Feb. 1994, pp. 93–
103.

Br78. P. Brucker, “On the Complexity of Clustering Problems”, in Optimization
and Operations Research, Lecture Notes in Economics and Mathematical
Systems, Vol. 157, Edited by M. Beckmann and H. Kunzi, Springer-Verlag,
Heidelberg, 1978, pp. 45–54.

CC+97. M. Charikar, C. Chekuri, T. Feder and R. Motwani, “Incremental Clustering
and Dynamic Information Retrieval”, Proc. 29th Annual ACM Symposium
on Theory of Computing (STOC’97), El Paso, TX, May 1997, pp. 626–634.

CRW91. V. Capoyleas, G. Rote and G. Woeginger, “Geometric Clusterings”, J. Al-
gorithms, Vol. 12, No. 2, Jun. 1991, pp. 341–356.

Da94. A. Datta, “Efficient Parallel Algorithms for Geometric k-Clustering Prob-
lems”, Proc. 11th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’94), Caen, France, Feb. 1994, Springer-Verlag Lecture
Notes in Computer Science, Vol. 775, pp. 475–486.

DH73. R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley-
Interscience, New York, NY, 1973.

250 S.R. Doddi et al.

DKS97. J. S. Deogan, D. Kratsch and G. Steiner, “An Approximation Algorithm
for Clustering Graphs with a Dominating Diametral Path”, Information
Processing Letters, Vol. 61, No. 3, Feb. 1997, pp. 121–127.

FG88. T. Feder and D. H. Greene, “Optimal Algorithms for Approximate Clus-
tering”, Proc. 20th Annual ACM Symposium on Theory of Computing
(STOC’88), Chicago, IL, May 1988, pp. 434–444.

FPT81. R. Fowler, M. Paterson and S. Tanimoto, “Optimal Packing and Covering
in the Plane”, Information Processing Letters, Vol. 12, 1981, pp. 133–137.

GH98. N. Guttmann-Beck and R. Hassin, “Approximation Algorithms for Min-sum
p-Clustering”, Discrete Applied Mathematics, Vol. 89, 1998, pp. 125–142.

GJ79. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness, W. H. Freeman and Co., San Francisco,
CA, 1979.

Go85. T. F. Gonzalez, “Clustering to Minimize the Maximum Intercluster Dis-
tance”, Theoretical Computer Science, Vol. 38, No. 2-3, Jun. 1985, pp. 293–
306.

HJ87. P. Hansen and B. Jaumard, “Minimum Sum of Diameters Clustering,” Jour-
nal of Classification, Vol. 4, 1987, pp. 215–226.

HJ97. P. Hansen and B. Jaumard, “Cluster Analysis and Mathematical Program-
ming, Mathematical Programming, Vol. 79, Aug. 1997, pp. 191–215.

Ho97. D. S. Hochbaum (Editor), Approximation Algorithms for NP-Hard Prob-
lems, PWS Publishing Company, Boston, MA, 1997.

HS86. D. S. Hochbaum and D. B. Shmoys, “A Unified Approach to Approximation
Algorithms for Bottleneck Problems”, J. ACM, Vol. 33, No. 3, July 1986,
pp. 533–550.

JD88. A. Jain and R. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1988.

KMN99. S. Khuller, A. Moss and J. Naor, “The Budgeted Maximum Coverage Prob-
lem”, Information Processing Letters, Vol. 70, 1999, pp. 39–45.

Ma99. J. Matousek, “On Approximate Geometric k-Clustering”, Manuscript, De-
partment of Applied Mathematics, Charles University, Prague, Czech Re-
public, 1999.

MR+98. M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz
and H. B. Hunt III, “Bicriteria Network Design Problems”, J. Algorithms,
Vol. 28, No. 1, July 1998, pp. 142–171.

MS84. N. Meggiddo and K. J. Supowit, “On the complexity of some common geo-
metric location problems,” SIAM J. Computing, Vol. 13, 1984, pp. 182–196.

MS89. C. L. Monma and S. Suri, “Partitioning Points and Graphs to Minimize
the Maximum or the Sum of Diameters”, Proc. 6th Int. Conf. Theory and
Applications of Graphs, Kalamazoo, Michigan, May 1989.

Pl82. J. Plesńık, “Complexity of Decomposing Graphs into Factors with Given
Diameters or Radii”, Math. Slovaca, Vol. 32, No. 4, 1982, pp. 379–388.

PRW94. U. Pferschy, R. Rudolf and G. J. Woeginger, “Some Geometric Clustering
Problems”, Nordic J. Computing, Vol. 1, No. 2, Summer 1994, pp. 246–263.

Ra97. P. Raghavan, “Information Retrieval Algorithms: A Survey”, Proc. 8th
ACM-SIAM Symposium on Discrete Algorithms (SODA’97), Jan. 1997, pp.
11–18.

ZRL96. T. Zhang, R. Ramakrishnan and M. Livny, “Birch: An Efficient Data Clus-
tering Method for Very Large Databases”, Proc. ACM-SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’96), Aug. 1996, pp.
103–114.

Robust Matchings and Maximum Clustering

Refael Hassin and Shlomi Rubinstein

Department of Statistics and Operations Research,
School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

{hassin,shlom}@math.tau.ac.il

Abstract. We consider complete graphs with nonnegative edge weights.
A p-matching is a set of p disjoint edges. We prove the existence of a
maximal (with respect to inclusion) matching M that contains for any
p ≤ |M | p edges whose total weight is at least 1√

2
of the maximum weight

of a p-matching. We use this property to approximate graph partitioning
problems in which the sizes of the parts of the partitioning are given.

1 Introduction

Let G = (V, E) be a complete graph with vertex set V such that |V | = n, edge
set E, and edge weights w(u, v) ≥ 0, (u, v) ∈ E. A p-matching is a set of p
disjoint edges in a graph. A p-matching with p = bn

2 c is called perfect. A perfect
matching M that contains for any p ≤ |M | a p-matching whose weight is at least
α times the maximum weight of a p-matching is said to be α-robust. We prove
that G contains a 1√

2
-robust matching. On the other hand, there are graphs that

do not contain an α-robust matching for any α > 1√
2
.

In Section 2 we generalize the robustness concept to independence systems.
Our theorem on robust matchings is proved in Section 3 and we use it to approx-
imate within a factor 1√

2
the following problem: Given constants c1 ≥ c2 ≥ · · · ≥

cp, find a p-matching M that maximizes
∑p

i=1 ciwi where w1 ≥ w2 ≥ · · · ≥ wp

are the edge weights in M .
In Section 4 we use these results to approximate the maximum clustering

problem with given sizes of the sides in which the goal is to partition the
vertex set to subsets of given sizes maximizing the total edge weight within the
same cluster. In the full version of this paper we also apply our results here to
approximate within the same bound the maximum capacitated star packing
problem in which it is also required to locate a center within each cluster and
the goal is to maximize the total distance from each vertex to its center. In both
cases we assume that the edge weights satisfy the triangle inequality.

For V ′ ⊆ V we denote by E(V ′) the edge set of the subgraph induced by V ′.
For E′ ⊂ E we denote by W (E′) the total weight of edges in E′.

For an optimization problem under consideration we denote by opt the op-
timal solution value and by apx the approximate value returned by a given ap-
proximation algorithm. Some of the proofs are omitted in this extended abstract
and will appear in the full version of the paper.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 251–258, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

252 R. Hassin and S. Rubinstein

2 Robust Independent Sets

An independence system is a pair (E,F) consisting of a ground set E and a
collection of independent sets, or equivalently, feasible solutions, such that F ′ ⊂
F ∈ F implies F ′ ∈ F . Let we ≥ 0 e ∈ E be weights attached to the elements of
E. The problem of computing an independent set of maximum weight generalizes
many interesting combinatorial optimization problems. Korte and Hausmann [4]
analyzed the performance of the greedy algorithm for the above problem. The
algorithm sorts the elements by weight and inserts them into the solution starting
with the heaviest one and excluding an element if its addition would generate a
set not in F . They proved the following theorem:

Theorem 2.1 For any E′ ⊆ E define l(E′)and u(E′) to be the smallest and
largest cardinality, respectively, of a maximal (with respect to inclusion) indepen-
dent set contained in E′. Let r(E,F) = minE′⊆E

l(E′)
u(E′) , then the greedy solution

is an r(E,F)-approximation, that is, the value of the greedy solution is at least
r(E,F) times the optimal value.

Consider now the following game: You choose a maximal independent set in
E. An adversary then selects p ∈ {1, ..., bnc}. Finally, you output the p heaviest
elements of your solution. By the definition of an independence system, the
output is independent. Your payoff is the ratio between the weight of your output
and the maximum weight of an independent set whose cardinality is at most p.
A solution is α-robust if it guarantees that the payoff is at least α.

Theorem 2.2 The greedy solution is r(E,F)-robust.

The edges and matchings in a graph constitute an independence system for
which r = 1

2 [4]. It follows that the greedy solution is 1
2 -robust. We obtain

stronger results in the next section.
Let c1 ≥ c2 ≥ · · · ≥ cm ≥ 0 be given constants. For an independent set

F = {e1, ..., em} with weights w1, w2, . . . , wm define C(F) =
∑m

j=1 cjwj . Since
we are interested in obtaining large values of C(F), we will assume that for any
given matching the edges are numbered so that w1 ≥ w2 ≥ · · · ≥ wm. Thus,
C(F) is well defined for any set F without explicitly specifying an order on its
edges. We will also denote Fp = {e1, ..., ep}, p = 1, ..., m and Fp = F for p > m.

Problem 2.1. Compute F ∈ F , |F | ≤ p, that maximizes C(Fp).

The following theorem was proved by Gerhard Woeginger [5]:

Theorem 2.3 Problem 2.1 is NP-hard even when F is the set of matchings in
a graph with edge set E (F ⊆ E is in F if it consists of vertex-disjoint edges).

Theorem 2.4 Let F and F ′ be independent sets. If F ′ is α-robust then C(F ′
p) ≥

αC(Fp) for every p = 1, 2, ... and any constants c1 ≥ c2 ≥ · · · ≥ cm ≥ 0.

Robust Matchings and Maximum Clustering 253

Proof: Let wj = 0 j > |F |. Let w1 ≥ w2 ≥ · · · ≥ wp and w′
1 ≥ w′

2 ≥ · · · ≥ w′
p

be the edge weights of Fp and F ′
p, respectively. Then,

C(F ′
p) =

p−1∑

j=1

(cj − cj+1)
j∑

i=1

w′
i + cp

p∑

i=1

w′
i

=
p−1∑

j=1

(cj − cj+1)W (F ′
j) + cpW (F ′

p)

≥
p−1∑

j=1

(cj − cj+1)αW (Fj) + cpαW (Fp)

= α

p∑

i=1

ciwi = αC(Fp).

3 Robust Matchings

A matching is a set of vertex-disjoint edges. The weight of a matching is the total
weight of its edges. A maximum matching is a matching with maximum weight.
A p-matching is a matching with p edges. We denote m = bn

2 c, the maximum
number of edges in a matching. An m-matching is said to be perfect.

For a perfect matching M we define Mp to be the set of its p heaviest edges,
p = 1, ..., m. We denote by M (p) a maximum p-matching. A matching is α-robust
if

W (Mp) ≥ αW (M (p)) p = 1, ..., m.

In this section we show that for every graph there exists a 1√
2
-robust matching

and that it can be constructed by a single application of a maximum match-
ing algorithm. The following example shows that the value of 1√

2
cannot be

increased.
Consider a 4-vertex graph with weights w(1, 2) = w(3, 4) = 1, w(2, 3) =

√
2

and all other edges have zero weight. For this graph W (M1) =
√

2 and W (M2) =
2. The graph has three perfect matchings and none is α-robust for α > 1√

2
: The

matchings {(1, 2), (3, 4)} and {(2, 3), (1, 4)} are 1√
2
-robust and {(1, 3), (2, 4)} is

0-robust.

Theorem 3.1 Let S be a maximum perfect matching with respect to the squared
weights w2(e) e ∈ E. S is 1√

2
-robust.

The rest of this section is devoted to proving Theorem 3.1. We will prove it by
treating the squared edge weights as variables whose sizes are to be determined in
order to form a contradiction to the theorem. We will prove that to achieve such

254 R. Hassin and S. Rubinstein

a contradiction we may make several assumptions on these variables. Finally
these assumptions will lead to the conclusion that the claim is true.

Consider the set S ∪ M (p). It consists of a collection of disjoint paths and
cycles. A path may consist of a single edge or it alternates between S and M (p).
Since S is perfect, the end edges of the path are from S except possibly one
end of one path in the case of odd n (since in this case there is exactly one
vertex which is not incident to an edge of S.) A cycle alternates between S and
M (p). We will construct from the edges of S a p-matching whose weight is at
least W (M(p))√

2
. Since the weight of this matching is at most the weight of the p

heaviest edges in S, this construction will prove the theorem.
We choose a p-matching from S as follows: Every edge in S ∪M (p) is chosen.

All of the edges of S contained in a cycle of S ∪ M (p) are chosen. From every
nontrivial path (containing more than a single edge) of S ∪ M (p) we choose all
the edges that belong to S except for the lightest one. There is one exception to
the last rule: If (n is odd and) there is a path with only one end edge from S then
we choose all of the S-edges of this path. The total number of edges selected is
equal to |M (p)| = p. It is sufficient to prove that the claimed bound on the ratio
of the edge weights in S and in M (p) holds for every such path and cycle.

Consider a nontrivial path P with squared weights x1, y1, x2, y2, ..., yr−1, xr

where the x values correspond to the edges of S and the y values correspond to
the edges of M (p) in the order they appear on P .

We denote x[i,j] =
∑j

l=i xl and similarly y[i,j] =
∑j

l=i yl. We are interested
in subpaths Pi,j of P consisting of the edges whose weights are xi, yi, ..., yj−1, xj .
Note that P = P1,r. Since S is maximum with respect to the squared weights,

x[i,j] ≥ y[i,j−1] 1 ≤ i < j ≤ r. (1)

Let xmin = min{xi | i = 1, ..., r}. Our goal is to prove that the ratio of the
total weight of the r − 1 heaviest edges in P ∩ S to the weight of P ∩ Mk is at
least 1√

2
, that is,

Z =
∑r

i=1
√

xi − √
xmin∑r−1

i=1
√

yi

≥ 1√
2

for all x, y that satisfy (1).
We will prove that Z ≥ 1√

2
for every nontrivial path by induction on r.

Note that the proof and induction hypothesis apply to any nontrivial path P in
S ∩ M (p), not just to maximal (with respect to inclusion) paths. A subpath is
subject to additional constraints arising from longer subpaths that contain it,
but these constraints may only increase the lower bound on Z for the subpath
in question.

Lemma 3.2 Z ≥ 1√
2

when r = 2.

Lemma 3.3 Z ≥ 1√
2

when r = 3.

Robust Matchings and Maximum Clustering 255

We now proceed to proving the general step of the induction for r > 3. Thus
we assume that the claim holds for smaller r values.

Lemma 3.4 We can assume that xj > xmin j = 2, ..., r − 1.

Proof: Suppose that xj = xmin for some j ∈ {2, ..., r − 1}. Then,

Z =
(
∑j

i=1
√

xi − √
xmin) + (

∑r
i=j

√
xi − √

xmin)
∑j−1

i=1
√

yi +
∑r−1

i=j

√
yi

≥ min{
∑j

i=1
√

xi − √
xmin∑j−1

i=1
√

yi

,

∑r
i=j

√
xi − √

xmin
∑r−1

i=j

√
yi

}.

Since xj = min{xi | i = 1, ..., j} = min{xi | i = j, ..., r}, it follows from the
induction hypothesis that Z ≥ 1√

2
.

We call a subpath Pi,j for which x[i,j] = y[i,j−1] tight.

Lemma 3.5 (i) Let i ≤ k ≤ j ≤ l such that i < j and k < l. If k < j and both
Pi,j and Pk,l are tight then so is Pj,k. (ii) Let i < j < k. If Pij is tight then Pj,k

isn’t.

Proof: (i) By assumption, x[i,j] = y[i,j−1] and x[k,l] = y[k,l−1]. Summing these
equations we get

x[i,l] + x[k,j] = x[i,j] + x[k,l] = y[i,j−1] + y[k,l−1] = y[i,l−1] + y[k,j−1].

Since x[i,l] ≥ y[i,l−1] and x[k,j] ≥ y[k,j−1] it follows that both of the latter relations
satisfy equality and the respective subpaths are tight.
(ii) From the same equation with j = k it follows that xj = 0 and 1 < j < r, in
contrast to Lemma 3.4.

Suppose that r ≥ 3. Let 1 < j < r. We can assume that there exists a tight
interval containing ej , otherwise we reduce xj till some subinterval containing ej

becomes tight, and this change reduces Z. Consider the intersection of all tight
intervals containing ej ∈ S. It follows from Lemma 3.5 that the intersection is
a non-trivial tight subpath. Again by these lemma, the x values in this subpath
share the same set of tight subpaths and therefore we can assume that the sum
of their squared roots is minimized subject to a single constrain on their sum.
By concavity of the square root function, this objective is attained by setting
all of these values to 0 except for a single one, say xk > 0. From Lemma 3.4
and since xmin ≥ 0, it follows that either k ≤ 3 or k = 4. For the former case
the claim has already been proved in Lemmas 3.2 and 3.3. In the latter case, it
must be that P12 and P34 are tight and thus x1 = x4 = y2 = 0 while y1 = x2
and y3 = x3. In this case Z = 1 and this completes the proof for paths with two
ends from S.

For a path with only one end edge from S we may assume that a fictitious S-
edge of zero weight is added at that end. The set of constraints (1) then extends
in a natural way and the same proof holds.

256 R. Hassin and S. Rubinstein

Suppose now that there is a cycle C that contradicts the claim. We will show
how to construct an instance consisting of a path that contradicts the claim.
Since we have already proved that this is impossible, it will follow that such
a cycle cannot exist. Specifically, we form a path by cutting C at an arbitrary
vertex and joining many copies of C pasted at the cut point. Finally add an
x edge at the end where it is missing with a sufficiently large weight, such as
W (C ∩ M (p)), so that (1) is satisfied. The path obtained this way will have
(asymptotically, as the number of pasted copies increases) the same Z-value as
C. This concludes the proof of Theorem 3.1.

4 Clustering

In the maximum clustering problem, the goal is to partition the vertex set
V into sets of given sizes so that the total weight of edges inside the clusters is
maximized. We treat a version of the problem in which cluster sizes c1 ≥ c2 ≥
· · · ≥ cp ≥ 1 such that c1 + · · · + cp = n are given. In the uniform version,
c1 = c2 = · · · = cp. We consider the problem under the triangle inequality
assumption.

Feo and Khellaf [2] treated the uniform case and developed a polynomial
algorithm whose error ratio is bounded by c

2(c−1) or c+1
2c where c = n

p is the
cluster’s size and it is even or odd, respectively. The bound decreases to 1

2 as c
approaches ∞. The algorithm’s time complexity is dominated by computation of
a maximum weight perfect matching. (Without the triangle inequality assump-
tion, the bound is 1

c−1 or 1
c , respectively, but Feo, Goldschmidt and Khellaf [1]

improved the bound to 1
2 in the cases of c = 3 and c = 4.) We describe an

alternative algorithm for the uniform case that achieves the ratio of 1
2 and has

a lower O(n2) complexity.
Hassin, Rubinstein and Tamir [3] generalized the algorithm of [2] and ob-

tained a bound of 1
2 for computing k clusters of size c each (1 ≤ k ≤ n

c) with
maximum total weight. Our discussion concerning the uniform case does not
apply to this generalization.

We first state some results concerning the uniform case. Consider the set of
partitions of V into clusters of size c each. A random solution is obtained by
randomly selecting such a partition.

Theorem 4.1 In the uniform case, under the triangle inequality assumption,
the expected weight of a random solution is at least 1

2opt.

The algorithm can be easily derandomized while preserving its performance
guarantee.

We now treat the general case. Given c1 ≥ c2 · · · ≥ cp, we want to partition V
into clusters of these sizes maximizing their total weight. We note that a random
solution may have a very small weight relative to opt.

Let dj = b cj

2 c, Dj = d1 + · · · + dj j = 1, ..., p, and D0 = 0. We propose the
following algorithm:

Robust Matchings and Maximum Clustering 257

Algorithm 4.2

1. Compute a maximum matching S with respect to the squared weights. Let
S = {(uj , vj) j = 1, ..., m}, where w(uj , vj) ≥ w(uj+1, vj+1) j = 1, ..., m− 1.

2. Set Vi = {uj , vj | j = Di−1 + 1, ..., Di} i = 1, ..., p.
3. For each i such that ci is odd, add to Vi an arbitrary yet unassigned vertex.

Theorem 4.3
apx ≥ 1

2
√

2
opt.

Proof: Consider an optimal partition O1, ..., Op. Let Mi be a maximum matching
in the subgraph induced by Oi, i = 1, ..., p. Denote the edge weights in Mi by
wi

1 ≥ · · · ≥ wi
di

.
Let bi = ci −1 if ci is even and bi = ci if ci is odd. The edges of E(Oi) can be

covered by a set of bi ≤ ci disjoint matchings. Since Mi is a maximum matching
in Gi it follows that biW (Mi) ≥ W (E(Oi)) and therefore

opt ≤
p∑

i=1

ciW (Mi).

Let V1, ..., Vp be the partition produced by Algorithm 4.2. Let Si = S∩E(Vi).
Consider a cluster Vi with vertices u, v, q ∈ Vi such that (u, v) ∈ Si. By the
triangle inequality, w(u, q) + w(v, q) ≥ w(u, v).

Suppose that ci is even. Sum this inequality over all q 6= u, v ∈ Vi, then sum
again over (u, v) ∈ Si. Note that every edge in E(Vi)\Si is summed twice. Thus,
every edge (u, v) ∈ Si contributes to the total weight of E(Vi) in addition to its
own weight also at least 1

2 (ci − 2) times its weight through the edges incident to
it. Thus, W (E(Vi)) ≥ 1

2ciW (Si).
Suppose now that ci is odd. In this case Vi contains a vertex, say vi, that

was added to Vi in Step 3 of the algorithm. In the summation, the weight of
edges incident to vi is used just once. Thus, each edge (u, v) ∈ Si contributes
its weight 1

2 (ci − 3) times when summed over Vi \ {u, v, vi}, once more through
w(u, vi) + w(v, vi), and once it contributes its own weight. Thus, also in this
case, W (E(Vi)) ≥ 1

2ciW (Si).
By Theorem 2.4 and the assumption c1 ≥ · · · ≥ cp,

apx ≥ 1
2

p∑

i=1

ciW (Si)

≥ 1
2
√

2

p∑

i=1

ciW (Mi)

≥ 1
2
√

2
opt.

258 R. Hassin and S. Rubinstein

References

1. T. Feo, O. Goldschmidt and M. Khellaf, “One half approximation algorithms
for the k-partition problem”, Operations Research 40, 1992, S170-S172.

2. T. Feo and M. Khellaf, “A class of bounded approximation algorithms for
graph partitioning”, Networks 20, 1990, 181-195.

3. R. Hassin, S. Rubinstein and A. Tamir, “Approximation algorithms for max-
imum dispersion”, Operations Research Letters, 21 (1997), 133-137.

4. B. Korte and D. Hausmann, “An analysis of the greedy heuristic for indepen-
dence systems,” Annals of Discrete Mathematics 2, 1978, 65-74.

5. G. Woeginger, private communication.

The Hospitals/Residents Problem with Ties

Robert W. Irving1, David F. Manlove1,?, and Sandy Scott2

1 Dept. of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland
{rwi,davidm}@dcs.gla.ac.uk

2 Dept. of Mathematics, University of Glasgow, Glasgow G12 8QQ, Scotland
ssc@maths.gla.ac.uk

Abstract. The hospitals/residents problem is an extensively-studied
many-one stable matching problem. Here, we consider the hospitals/
residents problem where ties are allowed in the preference lists. In this
extended setting, a number of natural definitions for a stable matching
arise. We present the first linear-time algorithm for the problem under
the strongest of these criteria, so-called super-stability. Our new results
have applications to large-scale matching schemes, such as the National
Resident Matching Program in the US, and similar schemes elsewhere.

1 Introduction

The Hospitals/Residents problem (HR) [4,14] is a many-one stable matching
problem which is so-named because of its application to large-scale matching
schemes, such as the National Resident Matching Program in the US [12], the
Canadian Resident Matching Service [1], and the Scottish Pre-registration house
officer Allocations (SPA) matching scheme [6]. Each of these centralised schemes
administers the annual match of graduating medical students to hospital ap-
pointments in its respective country.

An instance of HR involves a set R of residents and a set H of hospitals,
each resident r ∈ R seeking a post at one hospital, and each hospital h ∈ H
having q(h) ≥ 1 posts. Each resident in R ranks a subset of H in strict order,
and each hospital h ∈ H ranks its applicants in strict order. An agent p ∈ R∪H
finds an agent q ∈ R ∪ H acceptable if q appears on p’s preference list; p finds q
unacceptable otherwise. A matching M is a subset of R × H, where (r, h) ∈ M
implies that (i) r, h find each other acceptable, (ii) r is assigned to at most one
hospital in M , and (iii) at most q(h) residents are assigned to h in M . A matching
M for an instance of HR is stable if M admits no blocking pair. A blocking pair
(r, h) for M is a resident r and hospital h such that (i) r, h find each other
acceptable, (ii) r either is unassigned or prefers h to his assigned hospital in M ,
and (iii) h either is undersubscribed or prefers r to the worst resident assigned to
it in M . If (r, h) form a blocking pair with respect to a matching M , then (r, h)
is said to block M . Also, if (r, h) ∈ M for some stable matching M , then we say
? Supported by Engineering and Physical Sciences Research Council grant number

GR/M13329.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 259–271, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

260 R.W. Irving, D.F. Manlove, and S. Scott

that (r, h) is a stable pair, and r is a stable partner of h (and vice versa). Note
that, in view of the definitions of a matching and a blocking pair, we assume
throughout this paper, without loss of generality, that an agent p finds an agent
q acceptable if and only if q finds p acceptable. We say that the preference list
of a resident r ∈ R (resp. hospital h ∈ H) is complete if r (resp. h) finds all
hospitals in H (resp. residents in R) acceptable.

The classical Stable Marriage problem (SM) [4,14,8] is a restriction of HR
in which each hospital has exactly one post, the number of hospitals equals the
number of residents, and all preference lists are complete. For a given instance
I of HR, the Gale/Shapley algorithm for SM [2] may be extended in order to
find a stable matching for I (such a matching in I always exists) in O(mn)
time, where n = |R| and m = |H| [4, Section 1.6.3]. The Gale/Shapley algo-
rithm incorporates a sequence of proposals from one set of agents to the other;
if the residents propose to the hospitals (the resident-oriented algorithm), then
we obtain a stable matching M which is uniquely favourable to the residents:
every resident assigned in M is assigned to his best stable partner, and every
resident unassigned in M is unassigned in any stable matching [4, Section 1.6.3].
Analogously, if the hospitals propose to the residents (the hospital-oriented algo-
rithm), then we obtain a stable matching M which is uniquely favourable to the
hospitals: every hospital h ∈ H is assigned either its q(h) best stable partners, or
a set of fewer than q(h) residents; in the latter case, no other resident is assigned
to h in any stable matching [4, Section 1.6.2].

Although an instance of HR may admit more than one stable matching, every
stable matching has the same size, matches exactly the same set of residents,
and fills exactly the same number of posts at each hospital; indeed any hospital
that is undersubscribed in one stable matching is assigned exactly the same set
of residents in all stable matchings. (These results are collectively known as the
‘Rural Hospitals Theorem’ [12,3,13].)

Ties in the preference lists. A natural generalisation of HR occurs when
each agent’s preference list need not be strictly ordered, but may include ties –
we refer to this extension as the Hospitals/Residents problem with Ties (HRT).
When ties are permitted, more than one definition of stability is possible [5].

According to the weakest of these stability notions, a matching M is weakly
stable [5] if M admits no blocking pair1, where a blocking pair (r, h) for M is
a resident r and hospital h such that (i) r, h find each other acceptable, (ii) r
either is unassigned or strictly prefers h to his assigned hospital in M , and (iii)
h either is undersubscribed or strictly prefers r to the worst resident assigned to
it in M . Given an instance I of HRT, the existence of a weakly stable matching
is guaranteed: by breaking the ties in I arbitrarily, we obtain an instance I ′ of
HR, and clearly a stable matching in I ′ is weakly stable in I. Indeed, a converse
of sorts holds, giving the following proposition, whose proof is straightforward
and is omitted.
1 Note that throughout this paper, the form of stability to which the term blocking

pair refers should be clear from the context.

The Hospitals/Residents Problem with Ties 261

Proposition 1. Let I be an instance of HRT, and let M be a matching in I.
Then M is weakly stable in I if and only if M is stable in some instance I ′ of
HR obtained from I by breaking the ties in I in some way.

However, the weakly stable matchings in I may be of different cardinality, and
each of the problems of finding the maximum or minimum size of weakly stable
matching in an HRT instance is NP-hard, though approximable within a factor
of 2 [7,10].

A stronger form of stability may be defined as follows: a matching M is
super-stable [5] if M admits no blocking pair, where a blocking pair (r, h) for
M is a resident r and hospital h such that (i) (r, h) /∈ M , (ii) r, h find each
other acceptable, (iii) r either is unassigned or strictly prefers h to his assigned
hospital in M or is indifferent between them, and (iv) h either is undersubscribed
or strictly prefers r to the worst resident assigned to it in M or is indifferent
between them. Clearly a super-stable matching is weakly stable. Additionally,
the super-stability definition gives rise to the following analogue of Proposition
1 (again, the proof is straightforward and is omitted):

Proposition 2. Let I be an instance of HRT, and let M be a matching in I.
Then M is super-stable in I if and only if M is stable in every instance I ′ of
HR obtained from I by breaking the ties in I in some way.

It should be clear that an instance I of HRT may not admit a super-stable match-
ing: as a simple example, suppose that each hospital has just one post, and every
agent’s list is a single tie of length 2. It is the purpose of this paper to present
optimal O(mn) algorithms – linear in the size of the problem instance – for de-
termining whether a given instance of HRT admits a super-stable matching, and
if it does, to construct such a matching. The first algorithm, presented in Section
2, is resident-oriented in that it involves a sequence of proposals from the resi-
dents to the hospitals, and has similar optimality implications for the residents
to those of the resident-oriented algorithm for HR. Also in Section 2, we prove
an analogue of the Rural Hospitals Theorem for HRT. The second algorithm,
presented in Section 3, is the hospital-oriented version, incorporating proposals
from the hospitals to the residents, with analogous optimality implications for
the hospitals to those of the hospital-oriented algorithm for HR.

For space reasons, the majority of our attention is focused on the resident-
oriented algorithm for HRT. It is this algorithm that is likely to be of more
significance to implementors of large-scale matching schemes, since recent pres-
sure from student bodies has ensured that all three matching schemes mentioned
above essentially employ the resident-oriented algorithm for HR.

Applications. Note that permitting ties in the preference lists has important
practical applications. In the context of centralised matching schemes, some
participating hospitals with many applicants have found the task of producing
a strictly ordered preference list difficult, and they have expressed a desire to
include ties in their lists. In such a setting, choosing the weak stability definition
leads to two problems: (i) finding a weakly stable matching that matches as many

262 R.W. Irving, D.F. Manlove, and S. Scott

residents as possible, and (ii) the possibility of, say, a resident r persuading, by
some means, a hospital h to accept r at the expense of some allocated resident r′,
if h is indifferent between r and r′. The super-stability definition clearly avoids
problem (ii), and additionally guards against problem (i), as is demonstrated by
the following proposition, which is a consequence of Propositions 1 and 2, and
the Rural Hospitals Theorem for HR.

Proposition 3. Let I be an instance of HRT, and suppose that I admits a
super-stable matching M . Then the Rural Hospitals Theorem holds for the set of
weakly stable matchings in I.

Thus Proposition 3 tells us that if a super-stable matching exists, then all weakly
stable matchings are of the same size, and match exactly the same set of res-
idents. Of course, as observed earlier, a super-stable matching need not exist.
Nonetheless, it is arguable that a super-stable matching should be preferred by a
practical matching scheme in cases when one does exist. In Section 4, we address
the issue of the existence of super-stable matchings in an HRT instance.

Previous work. As mentioned above, optimal algorithms for constructing sta-
ble matchings in an instance of HR are known. For the case where ties are
permitted, there is an optimal O(n2) algorithm, due to Irving [5], for determin-
ing whether a given (one-one) instance of Stable Marriage in which preference
lists are complete but may incorporate ties (henceforth SMT) admits a super-
stable matching, and for constructing one if it does, where n is the number of
men and women. However, the problem of formulating such an algorithm for the
(many-one) HRT case has remained open until now.

2 Resident-Oriented Algorithm for HRT

For a given instance of HRT, Algorithm HRT-Super-Res, shown in Figure 1,
determines whether a super-stable matching exists, and if so will find such a
matching. We shall describe informally the execution of Algorithm HRT-Super-
Res. Before doing so, we make a number of definitions.

For a given instance I of HRT, suppose that (r, h) ∈ M for some super-stable
matching M . Then (r, h) is a super-stable pair, and r is a super-stable partner
of h (and vice versa). The term delete the pair (r, h), implies that r, h are to be
deleted from each other’s preference lists. By the head of a resident’s preference
list, we mean the set of one or more hospitals, tied in his current list (i.e. his
preference list after any deletions have been carried out), which he strictly prefers
to all other hospitals in his list. Similarly, the tail of a hospital’s list refers to the
set of one or more residents, tied in its current list, to whom it strictly prefers
all other residents in its list. By the term reduced lists, we mean the current lists
at the termination of Algorithm HRT-Super-Res.

Algorithm HRT-Super-Res involves a sequence of proposals from the resi-
dents to the hospitals, in the spirit of the resident-oriented Gale/Shapley algo-
rithm for HR. A resident proposes simultaneously to all hospitals at the head

The Hospitals/Residents Problem with Ties 263

assign each resident to be free;
assign each hospital to be totally unsubscribed;
for each hospital h loop

full(h) := false;
end loop;
while some resident r is free and has a nonempty list loop

for each hospital h at the head of r’s list loop
provisionally assign r to h; {r “proposes” to h}
if h is oversubscribed then (†)

for each resident s′ at the tail of h’s list loop
if s′ is provisionally assigned to h then

break the assignment;
end if;
delete the pair (s′, h);

end loop;
end if;
if h is full then (‡)

full(h) := true;
s := worst resident provisionally assigned to h; {any one, if > 1}
for each strict successor s′ of s on h’s list loop

delete the pair (s′, h);
end loop;

end if;
end loop;

end loop;
if some resident is multiply assigned or
(some hospital h is undersubscribed and full(h)) then

no super-stable matching exists;
else

the assignment relation is a super-stable matching;
end if;

Fig. 1. Algorithm HRT-Super-Res.

of his list, and all proposals are provisionally accepted. If a hospital h becomes
oversubscribed, it turns out that none of h’s worst-placed assignees (there must
be more than one), nor any residents tied with these assignees in h’s list, can
be a super-stable partner of h – such pairs (r, h) are deleted. If a hospital h is
full, then no resident strictly inferior than h’s worst-placed assignee(s) can be
a super-stable partner of h – again such pairs (r, h) are deleted. The proposal
sequence terminates once every resident either is assigned to a hospital or has
an empty list. At this point, it turns out that if a resident is assigned to more
than one hospital, or some hospital is undersubscribed but was previously full,
then no-super-stable matching exists. Otherwise, the assignment relation is a
super-stable matching.

In order to establish the correctness of Algorithm HRT-Super-Res, a number
of lemmas follow. The first three of these deal with the case that the assignment

264 R.W. Irving, D.F. Manlove, and S. Scott

relation is claimed to be a super-stable matching. In what follows, I is an instance
of HRT, in which R is the set of residents and H is the set of hospitals.

Lemma 1. If, at the termination of the while loop of Algorithm HRT-Super-Res,
the algorithm reports that the assignment relation M is a super-stable matching,
then M is indeed a matching.

Proof. Clearly, no hospital is oversubscribed in M . Also, no resident is multiply
assigned in M , for otherwise the algorithm would have reported that no super-
stable matching exists, a contradiction. ut

Lemma 2. If the pair (r, h) is deleted during an execution of Algorithm HRT-
Super-Res, then that pair cannot block any matching generated by Algorithm
HRT-Super-Res, comprising pairs that are never deleted.

Proof. Let M be a matching generated by Algorithm HRT-Super-Res, com-
prising pairs that are never deleted, and suppose that (r, h) is deleted during
execution of the algorithm. If h is full in M , then h strictly prefers its worst-
placed assignee in M to r, since r is a strict successor of any undeleted entries
in the reduced list of h. Hence (r, h) does not block M in this case. Now suppose
that h is undersubscribed in M . As the pair (r, h) is deleted by the algorithm,
then during some iteration of the while loop, h must have been full. Hence the
algorithm would have reported that no super-stable matching exists rather than
generating M , a contradiction. ut

Lemma 3. If, at the termination of the while loop of Algorithm HRT-Super-Res,
the algorithm reports that the assignment relation M is a super-stable matching,
then M is indeed a super-stable matching.

Proof. By Lemma 1, the assignment relation M is a matching. Now suppose that
M is blocked by some pair (r, h). Then r and h are acceptable to each other, so
that each is on the original preference list of the other. By Lemma 2, the pair
(r, h) has not been deleted. Hence each is on the reduced list of the other.

As the reduced list of r is nonempty, r is assigned to some hospital h′ in M .
Now h′ 6= h, as (r, h) blocks M . If r strictly prefers h to h′, then the pair (r, h)
has been deleted, since h′ is at the head of the reduced list of r, a contradiction.
Thus r is indifferent between h and h′, so that r proposed to h during the
execution of the algorithm. Hence r is assigned to h in M , for otherwise the pair
(r, h) would have been deleted, a contradiction. Thus (r, h) does not block M , a
contradiction. ut
The next lemma shows that Algorithm HRT-Super-Res will never delete a pair
that could belong to some super-stable matching.

Lemma 4. No super-stable pair is ever deleted during an execution of Algorithm
HRT-Super-Res.

The Hospitals/Residents Problem with Ties 265

Proof. Suppose, for a contradiction, that (r, h) is the first super-stable pair to
be deleted during an execution of Algorithm HRT-Super-Res. Let M be a super-
stable matching in I such that (r, h) ∈ M .

Case (i). Suppose that (r, h) is deleted as a result of h being oversubscribed.
Consider the assignment relation G at point (†) in the same iteration of the
while loop. At this point, some resident s is provisionally assigned to h in G,
where (s, h) /∈ M and h strictly prefers s to r or is indifferent between them,
since (r, h) ∈ M and h cannot be oversubscribed in M . There is no super-stable
matching in which s is assigned to a hospital h′ which he strictly prefers to h.
For otherwise, the super-stable pair (s, h′) would have been deleted before (r, h),
in order for s to propose to h, a contradiction. Thus either s is unassigned in
M , or s is assigned to h′ in M , where s strictly prefers h to h′ or is indifferent
between them. In any of these cases, (s, h) blocks M , a contradiction.

Case (ii). Suppose that (r, h) is deleted as a result of h being full. Consider the
assignment relation G at point (‡) in the same iteration of the while loop. At
this point, some resident s is provisionally assigned to h in G, where (s, h) /∈ M
and h strictly prefers s to r, since (r, h) ∈ M and r is not assigned to h in G. As
in part (i), there is no super-stable matching in which s is assigned a hospital
which he strictly prefers to h. Thus again, (s, h) blocks M , a contradiction. ut
The next two lemmas deal with the case that Algorithm HRT-Super-Res claims
the non-existence of a super-stable matching.

Lemma 5. If, at the termination of the while loop of Algorithm HRT-Super-Res,
some resident is multiply assigned, then I admits no super-stable matching.

Proof. Let G be the assignment relation at the termination of the while loop.
Suppose, for a contradiction, that there exists a super-stable matching M in I.

Firstly, we claim that some hospital must have fewer assignees in M than it
has provisional assignees in G. For, suppose not. Let pG(h) denote the provisional
assignees of hospital h in G, and let pM (h) denote the assignees of hospital h in
M , for any h ∈ H. Then by hypothesis,

∑

h∈H
|pM (h)| ≥

∑

h∈H
|pG(h)|. (1)

Now if some resident r is not provisionally assigned to a hospital in G, then the
reduced list of r is empty, so that by Lemma 4, r is unassigned in any super-
stable matching. Thus, letting R1 denote the residents who are provisionally
assigned to at least one hospital in G, and letting R2 denote the residents who
are assigned to a hospital in M , we have |R2| ≤ |R1|. Hence

∑

h∈H
|pM (h)| = |R2| ≤ |R1| <

∑

h∈H
|pG(h)|

as some resident is multiply assigned in G, which contradicts Inequality 1. Thus
the claim is established, so that some hospital h has fewer assignees in M than

266 R.W. Irving, D.F. Manlove, and S. Scott

it has provisional assignees in G. Hence h is undersubscribed in M , since no
hospital is oversubscribed in G. In particular, some resident r is assigned to h
in G but not in M . Thus by Lemma 4, r cannot be assigned to a hospital in M
which he strictly prefers to h. Hence (r, h) blocks M , a contradiction. ut

Lemma 6. If some hospital h became full during the while loop of Algorithm
HRT-Super-Res, and h subsequently ends up undersubscribed at the termination
of the while loop, then I admits no super-stable matching.

Proof. Let G be the assignment relation at the termination of the while loop.
Suppose, for a contradiction, that there exists a super-stable matching M in I.
By Lemma 5, no resident is multiply assigned in G. Let h′ be a hospital which
became full during the while loop and subsequently ends up undersubscribed in
G. Then there is some resident r′ who was provisionally assigned to h′ at some
point during the while loop, but is not assigned to h′ in G. Thus the pair (r′, h′)
was deleted during some iteration of the while loop, so that (r′, h′) /∈ M by
Lemma 4.

Now let pG(h), pM (h), R1, R2 be defined as in the proof of Lemma 5. Firstly,
we claim that if any hospital h is undersubscribed in M , then every resident
provisionally assigned to h in G is also assigned to h in M . For, if some resident
r is assigned to h in G but not in M , then (r, h) blocks M , since h is undersub-
scribed in M , and by Lemma 4, r cannot be assigned to a hospital in M which
he strictly prefers to h.

Secondly, we claim that each hospital has the same number of provisional
assignees in G as it has assignees in M . For, by the first claim, any hospital that
is full in G is also full in M , and any hospital that is undersubscribed in G fills
as many places in M as it does in G. Hence |pM (h)| ≥ |pG(h)| for each h ∈ H.
As in the proof of Lemma 5, we also have

∑

h∈H
|pM (h)| = |R2| ≤ |R1| =

∑

h∈H
|pG(h)|

since no resident is multiply assigned in G. Hence |pM (h)| = |pG(h)| for each
h ∈ H.

Thus (r′, h′) blocks M , since h′ is undersubscribed in M by the second claim,
and by Lemma 4, r′ cannot be assigned to a hospital in M which he strictly
prefers to h′. ut
Together, Lemmas 1-6 establish the correctness of Algorithm HRT-Super-Res. In
addition, Lemma 4 implies that there is an optimality property for the partner of
a given assigned resident in any super-stable matching output by the algorithm.
In particular, we have proved:

Theorem 1. For a given instance of HRT, Algorithm HRT-Super-Res deter-
mines whether or not a super-stable matching exists. If such a matching does
exist, all possible executions of the algorithm find one in which every assigned
resident has as good a partner as in any super-stable matching, and every unas-
signed resident is unassigned in all super-stable matchings.

The Hospitals/Residents Problem with Ties 267

By a suitable choice of data structures, Algorithm HRT-Super-Res can be im-
plemented to run in O(mn) time and space, where m = |H| and n = |R|. The
time bound follows by noting that the number of iterations of the while loop
is bounded by the number of deletions from the preference lists. Note that the
complexity of Algorithm HRT-Super-Res can also be expressed in terms of L,
the total length of all preference lists in the HRT instance: clearly the running
time is then O(L). Since SM is a special case of HRT, the Ω(L) lower bound of
Ng and Hirschberg [11] for SM implies that Algorithm HRT-Super-Res for HRT
is optimal.

We now present the Rural Hospitals Theorem for HRT under super-stability.

Theorem 2. Let I be a given instance of HRT. Then:
1. Each hospital is assigned the same number of residents in all super-stable

matchings.
2. Exactly the same residents are unassigned in all super-stable matchings.
3. Any hospital that is undersubscribed in one super-stable matching is matched

with exactly the same set of residents in all super-stable matchings.
Proof. Let M, M ′ be two super-stable matchings in I. Let I ′ be an instance of HR
obtained from I by resolving the ties in I arbitrarily. Then by Proposition 2, each
of M, M ′ is stable in I ′. By the Rural Hospitals Theorem for stable matchings in
an instance of HR [4, Theorem 1.6.3], each hospital is assigned the same number
of residents in M and M ′, exactly the same residents are unassigned in M and
M ′, and any hospital that is undersubscribed in M is matched with exactly the
same set of residents in M ′. ut

3 Hospital-Oriented Algorithm for HRT

In this section, we consider the hospital-oriented analogue of Algorithm HRT-
Super-Res, namely Algorithm HRT-Super-Hosp, shown in Figure 2. We begin
by describing the execution of Algorithm HRT-Super-Hosp informally.

Algorithm HRT-Super-Hosp involves a sequence of proposals from the hospi-
tals to the residents, in the spirit of the hospital-oriented Gale/Shapley algorithm
for HR. A hospital h proposes simultaneously to the most preferred resident r
on h’s list not already provisionally assigned to h, and to all other residents
tied with r in h’s list. These proposals are provisionally accepted. If a resident r
becomes multiply assigned and is indifferent between his provisional assignees,
it turns out that neither of r’s provisional assignees, nor any hospitals tied with
them in r’s list, can be a super-stable partner of r – such pairs (r, h′) are deleted.
If a resident r receives a proposal from a hospital h, then no hospital h′ to whom
r strictly prefers h can be a super-stable partner of r – again such pairs (r, h′) are
deleted. The proposal sequence terminates once every hospital is either full or
provisionally assigned to everyone on its current list. At this point, it turns out
that if a hospital is oversubscribed, or some resident is unassigned but was pre-
viously provisionally assigned, then no super-stable matching exists. Otherwise,
the assignment relation is a super-stable matching.

268 R.W. Irving, D.F. Manlove, and S. Scott

assign each resident to be free;
assign each hospital to be totally unsubscribed;
for each resident r loop

assigned(r) := false;
end loop;
while some hospital h is undersubscribed and
h’s list contains a resident r′ not provisionally assigned to h loop

r′ := most preferred such resident in h’s list; {any one, if > 1}
for each resident r tied with r′ in h’s list loop {including r′}

provisionally assign r to h; { h “proposes” to r}
assigned(r) := true;
if r is multiply assigned and
r is indifferent between his provisional assignees then

for each hospital h′ at the tail of r’s list loop
if r is provisionally assigned to h′ then

break the assignment;
end if;
delete the pair (r, h′);

end loop;
else

for each strict successor h′ of h on r’s list loop
if r is provisionally assigned to h′ then

break the assignment;
end if;
delete the pair (r, h′);

end loop;
end if;

end loop;
end loop;
if (some resident r is not assigned and assigned(r)) or
some hospital is oversubscribed then

no super-stable matching exists;
else

the assignment relation is a super-stable matching;
end if;

Fig. 2. Algorithm HRT-Super-Hosp.

In order to establish the correctness of Algorithm HRT-Super-Hosp, a number
of lemmas follow. We omit the proofs, which use similar techniques to those of
Section 2. We begin by stating the analogues of Lemmas 3 and 4 for Algorithm
HRT-Super-Hosp. In what follows, I is an instance of HRT, in which R is the
set of residents and H is the set of hospitals.

Lemma 7. If, at the termination of the while loop of Algorithm HRT-Super-
Hosp, the algorithm reports that the assignment relation M is a super-stable
matching, then M is indeed a super-stable matching.

The Hospitals/Residents Problem with Ties 269

Lemma 8. No super-stable pair is ever deleted during an execution of Algorithm
HRT-Super-Hosp.

The next two lemmas deal with the case that Algorithm HRT-Super-Hosp claims
the non-existence of a super-stable matching.

Lemma 9. If, at the termination of the while loop of Algorithm HRT-Super-
Hosp, some hospital is oversubscribed, then I admits no super-stable matching.

Lemma 10. If some resident r became assigned during the while loop of Algo-
rithm HRT-Super-Hosp, and r subsequently ends up unassigned at the termina-
tion of the while loop, then I admits no super-stable matching.

Together, Lemmas 7-10 establish the correctness of Algorithm HRT-Super-Hosp.
In addition, Lemma 8 implies that there is an optimality property for the as-
signees of a given fully-subscribed hospital in any super-stable matching output
by the algorithm. In particular, we have proved:

Theorem 3. For a given instance of HRT, Algorithm HRT-Super-Hosp deter-
mines whether or not a super-stable matching exists. If such a matching does
exist, all possible executions of the algorithm find one in which every hospital
h ∈ H is assigned either its q(h) best super-stable partners, or a set of fewer
than q(h) residents; in the latter case, no other resident is assigned to h in any
super-stable matching.

As is the case for Algorithm HRT-Super-Res, by considering suitable data struc-
tures, Algorithm HRT-Super-Hosp can be implemented to run in O(mn) time
and space, where m = |H| and n = |R|. Again, the time bound follows by noting
that the number of iterations of the while loop is bounded by the number of
deletions from the preference lists. Note that the complexity of Algorithm HRT-
Super-Hosp can also be expressed in terms of L, the total length of all preference
lists in the HRT instance: clearly the running time is then O(L). As is the case
for Algorithm HRT-Super-Res, this time bound is optimal.

4 Existence of Super-stable Matchings

Algorithm HRT-Super-Res has been implemented and some preliminary experi-
ments have been carried out, in order to give an indication of the likelihood of a
super-stable matching existing in a given HRT instance. There are clearly several
parameters that can be varied in these tests, such as the numbers of residents
and hospitals, the capacities of the hospitals, the lengths of the preference lists,
and the number, position and sizes of the ties. A range of vectors of values for
the aforementioned parameters were considered, and for each vector, a set of
random instances was created, each satisfying the particular constraints on the
instance. Finally, the percentage of instances in each set admitting a super-stable
matching was computed.

270 R.W. Irving, D.F. Manlove, and S. Scott

Perhaps not surprisingly, the empirical results suggest that the probability of
a super-stable matching existing decreases as the size of the instance increases,
and also decreases as the number and length of the ties increase. However, it
was found that the probability of a super-stable matching existing is likely to
be much higher if the ties occur on one side only, for example in the hospitals’
lists and not in the residents’ lists (further details may be found in [15]). This
is a situation that is likely to occur naturally in practice: for example, in the
context of resident/hospital matching schemes, residents are typically asked to
rank a relatively small number of hospitals, and might find it easier to produce a
strictly ordered preference list than would a large hospital with many applicants.

Due to the large number of different parameters that can be varied in em-
pirical tests, clearly such experiments cannot hope to provide a comprehensive
analysis of the likelihood of a super-stable matching existing in an arbitrary HRT
instance. It remains open to establish theoretical bounds on the probability of a
super-stable matching existing in a given random instance of HRT.

5 Concluding Remarks

In this paper we have highlighted the importance of the super-stability criterion
in HRT, with reference to large-scale matching schemes. Current practice in
the SPA scheme, for example, is that hospitals are permitted to express ties in
their preference lists. However, any ties are broken arbitrarily so as to give an
instance with strictly ordered lists. Hence by Proposition 1, the SPA scheme will
produce matchings that can only guarantee to be weakly stable in the original
instance. We suggest that such centralised matching schemes should first search
for a super-stable matching using Algorithm HRT-Super-Res, and only if none
exists should they settle for a weakly stable matching.

We finish with an open problem. A third stability criterion, so-called strong
stability, can be applied to an HRT instance [5]. In the strong stability case, the
definition of a blocking pair is similar to that of the super-stability case, except
that at most one agent in the pair is permitted to express indifference between
the other agent and its (possibly worst) partner(s) in the matching. Clearly a
super-stable matching is strongly stable, and a strongly stable matching is weakly
stable. Additionally, the strong stability and super-stability definitions coincide
if the ties belong to the preference lists of one set of agents only. As is the case
for super-stability, a given instance of HRT may not admit a strongly stable
matching (see [5] for further details). However, there is an O(n4) algorithm,
due to Irving [5], for determining whether a given instance of SMT admits a
strongly stable matching, and for constructing one if it does, where n is the
number of men and women. An extended version of this algorithm, also of O(n4)
complexity, has been formulated by Manlove for SMTI (the variant of SMT in
which preference lists may be incomplete) [9]. We leave open the problem of
constructing a polynomial-time algorithm, or establishing NP-completeness, for
HRT under strong stability.

The Hospitals/Residents Problem with Ties 271

References

1. Canadian Resident Matching Service. How the matching algorithm works. Web
document available at http://www.carms.ca/algorith.htm.

2. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

3. D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Dis-
crete Applied Mathematics, 11:223–232, 1985.

4. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

5. R.W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48:261–272, 1994.

6. R.W. Irving. Matching medical students to pairs of hospitals: a new variation
on an old theme. In Proceedings of ESA ’98: the Sixth European Symposium on
Algorithms, volume 1461 of Lecture Notes in Computer Science, pages 381–392.
Springer-Verlag, 1998.

7. K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incom-
plete lists and ties. In Proceedings of ICALP ’99: the 26th International Collo-
quium on Automata, Languages, and Programming, volume 1644 of Lecture Notes
in Computer Science, pages 443–452. Springer-Verlag, 1999.

8. D.E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems,
volume 10 of CRM Proceedings and Lecture Notes. American Mathematical Soci-
ety, 1997. English translation of Mariages Stables, Les Presses de L’Université de
Montréal, 1976.

9. D.F. Manlove. Stable marriage with ties and unacceptable partners. Technical
Report TR-1999-29, University of Glasgow, Department of Computing Science,
January 1999.

10. D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Technical Report TR-1999-43, University of Glasgow, Department
of Computing Science, September 1999. Submitted for publication.

11. C. Ng and D.S. Hirschberg. Lower bounds for the stable marriage problem and its
variants. SIAM Journal on Computing, 19:71–77, 1990.

12. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

13. A.E. Roth. On the allocation of residents to rural hospitals: a general property of
two-sided matching markets. Econometrica, 54:425–427, 1986.

14. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

15. S. Scott. Implementation of matching algorithms. Master’s thesis, University of
Glasgow, Department of Computing Science, 1999.

Incremental Maintenance
of the 5-Edge-Connectivity Classes of a Graph

Yefim Dinitz1 and Ronit Nossenson2

1 Dept. of Computer Science
Ben-Gurion University, Beer-Sheva, 84105, Israel

dinitz@cs.bgu.ac.il
2 Dept. of Computer Science
Technion, Haifa, 32000, Israel
ronitt@cs.technion.ac.il

Abstract. Two vertices of an undirected graph are called k-edge-conn-
ected if there exist k edge-disjoint paths between them. The equivalence
classes of this relation are called k-edge-connected classes, or k-classes
for short. This paper shows how to check whether two vertices belong
to the same 5-class of an arbitrary connected graph that is undergoing
edge insertions. For this purpose we suggest (i) a full description of the
4-cuts of an arbitrary graph and (ii) a representation of the k-classes,
1 ≤ k ≤ 5, of size linear in n—the number of vertices of the graph; these
representations can be constructed in a polynomial time. Using them, we
suggest an algorithm for incremental maintenance of the 5-classes. The
total time for a sequence of m Edge-Insert updates and q Same-5-Class?
queries is O(q + m + n · log2n); the worst-case time per query is O(1).

1 Introduction

Connectivity is a fundamental property of graphs which is used in network reli-
ability analysis, in network design problems, and other applications. In 1990’s,
dynamic maintenance and augmentation of high connectivity has become an im-
portant area of research (see, e.g., [1,2,7,8,9,12,15,16,20]). One of the directions
concerns 1-, 2-, . . . , k-connectivity in an arbitrary graph. As for motivation, de-
signers of communication networks are usually interested now in analysis and
maintenance for small values of k, even 1 or 2, since networks of higher connec-
tivity are too expensive. Theorists, on their side, try to extend their techniques
as far as possible to be ahead of today needs, as usual. However, complexity of
graph structures grows tremendously with k growing. In this paper we show that
the case k = 5 still admits a compact description and a more or less efficient
incremental algorithm. However, as far as we see, this is due to some lucky com-
bination of existing methods, while the approach is not like to be extendible to
greater connectivities.

Let G = (V,E) be an undirected connected multi-graph without loops. A
minimal edge-cut C of G (cut, for short) is an edge set whose removal disconnects
G and removal of any proper part of C does not disconnect G. If |C| = k then

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 272–285, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Incremental 5-Edge-Connectivity 273

C is called a k-cut. Two vertices {u, v} are called k-edge-connected if no k′-cut,
k′ < k, separates u from v. It is well known that the property “there exist k
edge-disjoint paths between u and v in G” defines the same relation (see [13]).
The equivalence classes of this relation are called the k-edge-connected classes (k-
classes, for short). The partition of V into the (k+1)-classes is a refinement of the
partition of V into k-classes. Thus, the connectivity classes have an hierarchical
structure.

In this paper we are concerned with the problem of maintaining the k-classes
of G under edge insertions, i.e., incremental maintenance. The main tool for
solving such a problem is a certain abstract model that describes the graph
connectivity structure in a way that enables to decide efficiently how this struc-
ture changes when the graph is modified. Such a model must represent not only
the connectivity classes but also the system of all minimal cuts that form these
classes (for example, the Gomory-Hu tree [11], which presents a bounded sub-
system of such cuts, cannot serve for efficient incremental maintenance).

Efficient algorithms for the problem of incremental maintenance of the 1-,
2-, 3- and 4-classes are known [20,12,15,9]. Westbrook and Tarjan [20] used the
bridge-tree of a graph to handle its 2-classes. Galil and Italiano [12] and, inde-
pendently, La Poutre, Leeuwen and Overmars [15] used the “cycle-tree” model
of a 2-connected graph to describe and maintain the 3-classes of a connected
graph. The well known cactus tree model [6] represents the (λ+ 1)-classes of an
arbitrary λ-connected graph and is used for their incremental maintenance [9]
(the bridge-tree and the cycle-tree are, in fact, special cases of this model.) In
[7], the 2-level cactus tree model was introduced. It generalizes the cactus tree
model to represent the (λ+1)- and (λ+2)-classes of any λ-connected graph and
serves for their incremental maintenance.

Paper [9] uses the cactus tree model to maintain the 1-, 2-, 3- and 4-classes.
The main innovation used is a special kind of a graph object: the 3-component
Ā corresponding to a 3-class A [4].1 The graph Ā has A as the vertex set and
mimics the connectivity structure of A in a localized fashion: it contains all edges
of G between vertices in A, and also an edge between each pair of vertices in A
that are connected by a path that travels entirely through vertices outside A.
The 3-component is 3-connected and its cactus tree model is a tree; this tree
represents all 4-classes of G contained in A. In [9], the problem of incremental
maintenance of the 1-, 2-, 3-, and 4-classes is hierarchically decomposed into
subproblems on k′-components of G, 1 ≤ k′ ≤ 3.

In general, there are several difficulties in the incremental maintenance of
the connectivity classes (see Figure 1 for illustration). The insertion of an edge
e = (u, v) into G can affect the structure associated with a k′-class that contains
neither u nor v. Furthermore, the changes in such a structure are not necessarily
as simple as those caused by the insertion of an edge between two vertices in A.

1 In the literature classes of k-edge-connectivity are sometimes called k-edge-connected
components. Following the common tradition concerning 1- and 2-components and
[18,14,4,9] concerning 3-components, we use the term “component” for a graph re-
lated to such a class.

274 Y. Dinitz and R. Nossenson

However, paper [9] shows that the changes for each individual k′-class, 1 ≤ k′ ≤
4, can be performed with only minimal knowledge of the connectivity structures
of the rest of G. When several k-classes merge, the model for the joint k-class is
be constructed, based on models of the constituting classes.

v
u uv e

e

Fig. 1. Changes in the connectivity classes resulting an edge insertion. (A dashed line
encircles one 3-class and a dotted line one 4-class, in each graph.)

In fact, the new light of [9] and [7] is crucial for analysis of dynamics of 5-
connectivity. Our work is the construction of entire building on the cornerstones
worked out in these papers. Our main contribution made during this construction
is as follows.

Concerning statics, we suggest, for the first time, a full description of the
4-cuts of an arbitrary graph, thus filling the gap between descriptions of [7] and
[9].

Generalizing the approach of [9], we associate the 2-level cactus tree model,
instead of the cactus model, with each 3-component Ā ofG, to describe the 4- and
5-classes contained in A. We extend the localized transformation of cactus tree
models suggested in [9] to 2-level cactus tree models, based on the incremental
maintenance algorithm [7]. Dynamics are much more complicated in our case
than in [9], since the 2-level cactus tree model is substantially more complicated
than the cactus tree model.

The (amortized) complexities of the incremental algorithms for 1, 2 and 3-
classes depend on the number of updates as the α-function, while the algorithm
[9] has an O(n log n) term. Our algorithm has an O(n log2 n) term instead of
it. To achieve this bound, we suggest a new technique that effectively handles a
wide spectrum of dynamic forest operations including both arbitrary tree linking
and breaking-into-two the cycle order of the children of a tree vertex (for the
first time, to the best of our knowledge). The sizes of all above models are linear
in |V |.

This paper is organized as follows. Section 2 brings basic definitions and
notations. Section 3 presents the static description of our model. Section 4 deals
with the model dynamics; in particular, in Section 4.2, a general example is
given. Section 5 describes the main ideas of the implementation.

Incremental 5-Edge-Connectivity 275

2 Preliminaries and Notations

Let G = (V,E) be an undirected connected multi-graph without loops, where
|V | = n ≥ 2 and |E| = m. In this paper we refer only to edge-cuts, so the prefix
“edge-” is omitted from now on. We refer to “minimal cuts” as simply “cuts”,
unless otherwise is mentioned. 1-cuts are referred as bridges. The family of all
k-cuts of G is denoted by F k.

Let X,Y ⊂ V , the set of edges with one end-vertex in X and the other in
Y is denoted by δ(X,Y); obviously, δ(X,Y) = δ(Y,X). We also denote V \ X
by X̄. Any cut C corresponds to the unique 2-partition (X, X̄) of V such that
C = δ(X, X̄) [7]. So we can refer to a cut by the 2-partition defining it.

We say that a cut C = δ(X, X̄) divides S, S ⊆ V (or that C is an S-cut),
if both X ∩ S and X̄ ∩ S are nonempty. We say that a cut divides a subgraph
if it divides its vertex set. A subset S of V , |S| ≥ 2, is k-connected if there
exist in G k edge-disjoint paths between every two vertices in S, that is, there
are no S-cuts of cardinality less than k in G. The connectivity λ(S) of S is
defined to be the maximum k for which S is k-connected, or in other words,
the connectivity of S is the minimum number of edges in an S-cut in G. The
connectivity of G is defined to be λ(V), denoted for short by λ.

For any S ⊆ V , the induced subgraph G(S) consists of the vertices in S
and edges in E connecting vertices in S. To shrink a subset of vertices S ⊆ V
means to replace G(S) by a single new vertex s, and, for every edge with one
end-vertex in S, to replace this end-vertex by s; any edge of a new graph is
identified with its corresponding edge of G. Let C = (v1, v2, . . . , vr, v1), r ≥ 2,
be a cycle. To squeeze a cycle at vi and vj , i < j, is to shrink the set {vi, vj}
to a new node v. This operation creates two new cycles from the old cycle C:
(v, vj+1, . . . , vr, v1, . . . , v) and (v, vi+1, . . . , vj−1, v). Each of the new cycles may
degenerate to the vertex v. To contract an edge e = (u, v) means to shrink the
set {u, v}. To break an edge e = (u, v) by a vertex x means to add a new vertex
x to G, and to replace the edge e by two new edges (u, x) and (x, v).

For a given partition P of V , the related quotient graph is defined to
be the result of shrinking each part of P into a single vertex. The quotient
mapping fP , defined on V , takes any vertex in such a part W to the vertex
given by shrinking W . We denote by Qk(G) the quotient graph of G generated
by shrinking each k-class, and by fk the corresponding quotient mapping. It is
easy to show that for any 1 ≤ k′ ≤ k−1, fk provides a bijection between the k′-
cuts of Qk(G) and the k′-cuts of G. The bridge-tree of a connected graph G is
Q2(G), see [15,20]. A bridge-path is an ordered sequence of bridges of a graph
which forms a path in its bridge-tree. Similarly, the cycle-tree of a 2-connected
graph is Q3(G) (see [12,15]). A cycle-path in a cycle-tree is an ordered sequence
of its cycles such that any two consequent cycles have (a single) common vertex.

For a family F of cuts of G, the equivalence classes of the relation “{x, y}
is not divided by any cut in F” are called F -atoms. A cut model for G
and a family F of cuts of G, is a triple (G, ψ,F) as follows. The connected
graph G = (V, E) is called the structure graph. We refer to its vertices as
nodes. The mapping ψ : V → V is called the structure mapping. For every

276 Y. Dinitz and R. Nossenson

node N of G, ψ−1(N) is either an F -atom or the empty set. If ψ−1(N) = Ø
we say that N is an empty node. We say that a cut C = δ(X , X̄) of G ψ-
induces a cut ψ−1(C) = δ(ψ−1(X), ψ−1(X̄)) of G if both ψ−1(X) and ψ−1(X̄)
are nonempty. F is a family of cuts of G, called the modeling family, such that
ψ−1(F) = F . Observe that, for any cut model, shrinking a subset of nodes of
G implies naturally a new model: its mapping is the composition of the original
mapping and the quotient one.

The bridge-tree mentioned above is a simple example of a cut model. The
set of its 1-cuts represents bijectively the set of 1-cuts of G. Another example
of a cut model, for a 2-connected graph, is the cycle-tree mentioned above. The
set of its 2-cuts represents bijectively the set of 2-cuts of G.

The cactus tree model [6] is a cut model for the family of minimum cuts
of a graph and the (λ + 1)-classes which V is ”cut into” by these cuts. The
cactus tree model is defined by the triple (H, ϕ,F) as follows. The structure
graph H = (VH, EH) is a tree-of-edges-and-cycles graph. It is a connected graph
s.t. every edge belongs to at most one cycle (in other words, every block of H is
an edge or a cycle); such a graph is called a cactus tree. In the case λ is odd,
H is cycle-free, meaning, it is a tree. For every node N of H, ϕ−1(N) is either
a (λ + 1)-class of G or the empty set. The modeling family F is the family of
minimal cuts of H, and ϕ−1(F) = Fλ. The number of edges in H is linear in the
number of (λ+ 1)-classes of G, i.e., is O(n). For an algorithm of construction of
the cactus tree model see [10] (its complexity is O(m+ λ2n · log(m/n))).

3 Model Description

In order to construct a model for representation and incremental maintenance of
the k-classes of a graph, 1 ≤ k ≤ 5, we combine two known models. The first one,
suggested by Dinitz and Westbrook in [9], represents the k-classes of a graph,
1 ≤ k ≤ 4, and serves to maintain this representation under edge insertions. The
second one, the 2-level cactus tree mode of Dinitz and Nutov [7], serves the same
purpose for 4 ≤ k ≤ 5, for a 3-connected graph.

In this section we follow [4,9,7]. The definition of the structure is done via
decomposition of the graph into auxiliary graphs, called components. The model
has an hierarchic structure which uses the above mentioned models: the bridge-
tree, the cycle-tree, the cactus tree and the 2-level cactus-tree. Consider a con-
nected graph G. Its associated bridge-tree provides a complete description of
the 2-classes in G. The 2-component associated with a 2-class, A, is the in-
duced graph Ā = G(A). The cycle-tree model of each 2-component is used to
describe its 3-classes. By [12,15], the collection of all cycle-tree models provides
a complete description of the 3-classes in G.

Let S be a 3-class contained in a 2-class H. Consider the cycle-tree of H,
Q3(H̄). Let L be a cycle of Q3(H̄) incident to S and let (u, v1) and (w, v2),
v1, v2 ∈ S, be the edges of G incident to S on L (see Figure 2). The vertices
v1 and v2 are called the attachment vertices. In the case they are distinct, the
virtual edge eS(L) is defined as (v1, v2). The 3-component S̄ associated with

Incremental 5-Edge-Connectivity 277

S is defined as the induced graph G(S) together with the virtual edges defined
by all such cycles. The 3-component S̄ mimics the connectivity structure of S in
a localized fashion in the following sense.

C

S

v

v
v

v
v

v

S

C

1

2

3

1

2

3

Fig. 2. The 3-component.

Theorem 1 ([4]). The 3-component S̄ has the following properties:

(i) It is 3-connected;
(ii) For each k-cut C of G dividing S, k ≥ 3, there is a k′-cut C̄, k′ ≤ k, of S̄

dividing S in the same way;
(iii) For each k-cut C̄ of S̄, k ≥ 3, there is a nonempty set (”bunch”) of k-cuts

of G dividing S in the same way as C̄ does.

It is easy to deduce from this theorem that the k-classes ofG, k ≥ 3, contained
in S are exactly the k-classes of S̄. Hence, all we need for the description is an
appropriate model for 4- and 5-classes of a 3-connected graph. Indeed, then the
collection of such models for all 3-components provides a full description of 4-
and 5-classes of G. Paper [9] uses cactus tree models of 3-components to describe
and maintain the 4-classes. For the 5-classes we use, instead of it, its extension:
the 2-level cactus tree model [7] (the case λ = 3). Such a model, for a graph, is
as follows.

Theorem 2 ([7]). In the case λ = 3, for F 3 ∪ F 4 there exists a cut model
(H2, ϕ2,F2) of size O(n), with the following properties:

(i) The structural graph H2 is a tree of edges, cycles, and cube graphs, such that
each node of each cube graph is empty and is incident to exactly one bridge;

(ii) The modeling family F2 consists of:

• the 1-cuts (bridges);
• the minimal 2-cuts which are all pairs of edges of any block of H2 that

is a cycle.
• for any block of H2 that is a cube graph, the three cuts consisting each

of four its pairwise nonadjacent edges;

278 Y. Dinitz and R. Nossenson

• the non-minimal 2-cuts of H2 of the form {{ε′, ε′′} : ε′, ε′′ ∈ P̂ , P̂ ∈ Π},
where Π is a certain set of bridge-paths of H2, such that any two of them
have at most one edge in common.

(iii) The mapping (ϕ2)−1 takes the set of 1-cuts bijectively onto F 3 and the set
of other cuts in F2 onto F 4.

Let us get more information from paper [7]. If we shrink each 2-class of the
2-level cactus tree H2 into a single node, we obtain a model which is isomorphic
to the cactus tree model of G. It is a tree since λ = 3 is odd; let us denote it by
H. For e = (u, v) ∈ E, P̂ (e) denotes the bridge-path between ϕ(u) and ϕ(v) in
H. The set of the bridge-paths Π consists of the paths P̂ (e) for all edges e such
that |P̂ (e)| contains at least two edges.

Paper [7] provides an efficient algorithm for incremental maintenance of 5-
classes of a 3-connected graph. However, the case of a general graph is more
complicated: in particular, an edge insertion causes, in general, merging of 3-
classes; thus, we need an algorithm for merging 2-level cactus models.

For the general case, we suggest the following full description of 4-cuts of an
arbitrary graph G (see Figure 3 for illustration).

S1

C2

S2

S1
S2

G2

C1 C2

1G

C1

e

C’

C

L
G

Fig. 3. Example for 4-cuts description.

Theorem 3 ([5]). For an arbitrary graph, G, the set of its 4-cuts consists of
the following two sub-families:

(i) The 4-cuts dividing a single 3-class. This sub-family is decomposed into
bunches corresponding to the 4-cuts C̄ of S̄, for all 3-components S̄. Any
such bunch is the result of all possible independent substitution in C̄ of every
virtual edge eS(L) by any edge from the cycle L.

Incremental 5-Edge-Connectivity 279

(ii) The 4-cuts dividing exactly two 3-classes. Such classes are 3-classes S1 and
S2 incident to the same cycle L of Q3(G), each by two distinct attachment
vertices, such that there exist 3-cuts C̄1 and C̄2 of the 3-components S̄1 and
S̄2, respectively, containing the virtual edges eS1(L) and eS2(L), respectively.
This sub-family is decomposed into bunches corresponding to the above pairs
of 3-cuts. Any such bunch is the result of all possible independent substitution
in C̄1 ∪ C̄2 \ {eS1(L), eS2(L)} of every virtual edge eS(L′), L 6= L′ by any
edge from the cycle L′.

Sketch of proof. The proof for the case (i) is based on Theorem 1.
Assume a 4-cut C divides some two 3-classes S1 and S2. Then there exists a

2-cut C ′ separating S1 from S2. Let us “divide” G into two auxiliary graphs G1,
G2 as in Figure 3. Then C, together with an edge e ∈ C ′, generates two cuts:
an r-cut C1 of G and of G1 and a q-cut C2 of G and of G2, where C1 ∪C2 = C,
C1 ∩C2 = {e}; hence, r+ q = 6. Since both cuts divide 3-classes, holds r, q ≥ 3;
hence, r = q = 3. By [4], any 3-cut of G containing an edge e in a 2-cut (i)
divides a single 3-class and (ii) this 3-class belongs to the (unique) cycle of the
cycle-tree model that e belongs to. Therefore, C divides exactly two 3-classes S1
and S2, these 3-classes belong to the same cycle, L, of the cycle-tree, and cuts
C1 and C2 contain the edges eS1(L) and eS2(L), respectively. Figure 3 presents
an example, with the bunch of 4-cuts defined by C. (Comment: notice that cuts
C1 and C2, and thus also C, do not divide any 4-class.)

4 Model Dynamics

Let us now turn to the model dynamics under insertion of an edge into G. Mean-
ing, we support updates Insert-Edge(u, v) where u, v ∈ V . Note that as a result
of an edge insertion, the only possible kind of modification in the connectivity
classes is that a subset of existing k-classes merges into a single k-class. For
proofs of the statements given below see [19].

Theorem 4. Let S ⊆ V be a k-class. The insertion of an edge between two
vertices in S can increase connectivity between vertices which belong to S only.

Following [9,7], we perform separately changes in each connectivity level. In
each level we translate the changes to several “local” changes. The changes are
done on single components, not on the entire G, and then the results in each
connectivity level are combined.

Paper [9] provides the incremental maintenance of the k-classes, 1 ≤ k ≤ 4,
of a connected graph. Paper [7] provides the incremental maintenance of the
5-classes of a 3-connected graph. Let us see what extension is needed for the
incremental maintenance of the 5-classes of a general connected graph. We dis-
tinguish the following three cases of insertion of a new edge: the vertices u and
v are 3-, 2- or only 1-connected.

In the first case, let u, v belong to some 3-class S. By theorem 4, no model
changes, except for the 2-level cactus-tree model of S̄. The algorithm of trans-
formation of a 2-level cactus-tree model is given in [7].

280 Y. Dinitz and R. Nossenson

In the third case, all three connectivity levels are influenced. By [9], the entire
transformation is reduced to a certain transformation of the bridge-tree and to
separate transformations for certain “involved” 2-components. Each one of the
latter transformations is exactly the same as if a certain edge is inserted into the
2-component [9]. Thus we have a reduction to the second case.

The second case includes most of our work. In this case we insert a new edge
e between two vertices u and v in the same 2-class H of G but v ∈ S, u ∈ T ,
where S, T are distinct 3-classes contained in H. By Theorem 4, this insertion
does not increase connectivity between vertices which do not belong to H. In
the cycle-tree Q3(G(H)), each node represents a 3-class. The involved 3-classes
are S, T and all 3-classes that separate between them in the cycle-tree. In this
case we change two levels of connectivity. At the first level, we correct the 2-
component H̄ and its model according to [9]. At the second level we correct
the involved 3-components and their models (by [9, Lemma 16], non-involved
3-components do not change resulting such an edge insertion.)

Paper [9] uses, as intermediate objects, results of certain T-transformations
of the 3-components S̄ and T̄ and their related models, and certain H-trans-
formations of the other involved 3-components and their related models (for
illustration see Figure 4). The T-transformation is caused by breaking a certain
edge eu by a new vertex û and adding the new edge (v, û). The H-transformation
is caused by breaking certain edges eu and ev by new vertices û and v̂, respec-
tively, and adding the new edge (v̂, û).

u

u

v

x y

v
T-tr. H-tr.

Fig. 4. The T- and H-transformations.

Paper [9] provides procedures for updating the cactus tree model of the in-
volved 3-components in T- and H-transformations. We generalize these transfor-
mations to a 2-level cactus tree model. Paper [9] also provides a procedure for
merging the involved 3-components and their cactus tree models. We generalize
this procedure to merge 2-level cactus-tree models. Our procedures are much
more complicated than in [9], since the 2-level cactus tree model is substantially
more complicated than the cactus tree model (see Theorem 2).

In this extended abstract we describe only T-transformation. The proof of
its correctness, as well as descriptions and proofs for H-transformation and for
the merge procedure can be found in [19].

Incremental 5-Edge-Connectivity 281

4.1 T-transformation

Let us see what changes occur in the 3,4-cuts of S̄ as the result of a T-transform-
ation, where eu = (x, y) (see Figure 5). Consider 3-cuts. First, a new 3-cut that
separates û from the rest of S̄ is added. Every 3-cut C1 = (A,B) such that x ∈ A
and y, v ∈ B creates two cuts. The first is the 3-cut C ′

1 = (A,B ∪ {û}) which
contains edge (x, û) instead of edge eu. The second is 4-cut C ′′

1 = (A ∪ {û}, B)
which contains edges (û, y) and (v, û) instead of edge eu. Each 3-cut which
separates v from both x and y gets the new edge (v, û) and becomes a 4-cut.
Consider 4-cuts. Every 4-cut C2 = (A,B) such that x ∈ A and y, v ∈ B creates
4-cut C ′

2 = (A,B ∪ {û}) which contains the edge (x, û) instead of the edge
eu. Every 4-cut which separates v from both x and y gets the new edge (v, û),
becomes a 5-cut and goes out of consideration.

uuC’1

C1

v v

x yyx

old 3-cut

new 4-cut

C

C’ C"

2

2 1

Fig. 5. Behavior of 3, 4-cuts under a T-transformation.

Let us describe the transformed 2-level cactus tree model. In this paper we
consider only the case where no block of the model is a cube graph (the general
case is considered in [19]). We use the following notation (for illustration see Fig-
ure 6). The path-of-edges-and-cycles between ϕ2(x) and ϕ2(y) in H2 is denoted
by P (eu). Its bridges form, in general, a path which belongs to Π, denoted by
P̂ (eu). The shortest path of bridges and cycle-edges between ϕ2(x) and ϕ2(y)
is denoted by P̃ (eu). We denote the node or cycle which belongs to P (eu) and
is the nearest to ϕ2(v) by Zu. We define Puv to be the path of edges-and-cycles
between Zu and ϕ2(v). The bridge which is on the path between ϕ2(x) (resp.,
ϕ2(y)) and Zu and is the nearest to Zu (if exists) is denoted by ex (resp., ey).
Note that ex, ey ∈ P (eu). By [7, Fact 5.1], in the case Zu is a cycle, Zu has
exactly one common cycle-edge with P̃ (eu); we denote this cycle-edge by eZu

.
Consider a path P̂ of Π which intersects both P (eu) and Puv. The sub-path

(P̂ ∩ (P (eu) ∪ Puv)) is called the intersection cycle-generating sub-path
(ICGS-path, for short) defined by P̂ . In general, we have four cases. Zu can be
a node or a cycle. In each case we have two possibilities: there exist or do not
exist ICGS-paths. Let us learn more about the ICGS-paths.

Lemma 1. There exist at most two distinct ICGS-paths, and if there exist two,
then at least one of them has exactly two bridges.

282 Y. Dinitz and R. Nossenson

x()

eZu
Zuu

2

()v2

()x2

()y2 ()y2

xe Px

P()e

Nu

u

X

e

b)a)

Fig. 6. Example of T-transformation in the case Zu is a cycle and there exists an
ICGS-path: (a) the original model; (b) the transformed model. (Two-arrowed lines
mark paths in Π.)

We use the following notation. By definition, each ICGS-path includes exactly
one of {ex, ey}. We assume, w.l.o.g., that if there exists a single ICGS-path, it
contains ex; we denote it by P̂x. In the case there are two ICGS-paths, we denote
by P̂y someone which has exactly two bridges. By Lemma 1, we have six cases:
Zu is a node and there exist either zero or one or two ICGS-paths, or Zu is a cycle
and there exist either zero or one or two ICGS-paths. The following statements
show that the third option can be reduced to the second one (so it is not taken
care of below), and that the sixth option cannot take place.

Lemma 2. If Zu is a node and there exist two distinct ICGS-paths, then the
4-cut of S which is ϕ2-induced by the single non-minimal 2-cut defined by P̂y is
represented twice in the model.

Lemma 3. If Zu is a cycle then there exists at most one ICGS-path.

Following is the description of the T -transformation of the 2-level cactus tree
model of S̄ (for illustration see Figure 6).

2-level-T-transformation(S̄, eu, ϕ2(v)):
1. Find P (eu), Zu, eZu , Puv, ex, and P̂x;
2. If P̂x exists then break ex by a new empty node X ;
3. Else if Zu is a cycle then break eZu by a new empty node X ;

Else (P̂x does not exist and Zu is not a cycle) denote Zu by X ;
4. Perform Algorithm[7](S̄, X , ϕ2(v));
5. Add a new node denoted by Nu, and a new bridge (Nu, X);
6. Replace path P̂ (eu) in Π by the two following paths:

• The part of P̂ (eu) between ϕ2(x) and X (if not empty) plus (Nu, X);
• The part of P̂ (eu) between ϕ2(y) and X (if not empty) plus (Nu, X);

7. Return(Nu, X);

The update of the structural mapping is as follows. For any vertex w ∈ V such
that ϕ2(w) = Nw and the node Nw has been shrunk (with some other nodes)
into a node N ′

w, the new image of w is N ′
w. The image of the new node û is Nu.

Incremental 5-Edge-Connectivity 283

4.2 General Example

In Figure 7, a general example is given. Part (a) presents the original graph
G, with the new edge shown by a dotted line. In part (b), there is given the
3-quotient of G, which has 4 nodes; the three nodes-nontrivial 3-classes are
shown by shadowed circles and ellipse. Part (c) contains the three involved 3-
components; the four virtual edges are the four vertical arcs in the middle of the
figure.

h)a)

e)d)

c) f)

b) g)

Fig. 7. General example.

The 2-level cactus tree models for these 3-components are presented in part
(d). The left and the middle models are, basically, the cactus tree models. In
addition, there is one path in Π in the left model, shown by the two-arrowed
line; the corresponding edge of G is shown dashed. There and further, thicker
structural edges belong to the cactus tree model of G, while thinner edges form
cycles representing 4-cuts (there are four such cycles of length 2 each in the right
model).

Parts (e-h) go upwards in the Figure, so that all the parts are placed in
a cyclic order. In part (e), the updated involved 3-components are shown; the
updates in the left and right models cause T-transformations, while the update
of the middle model causes an H-transformation. Part (f) presents the 2-level
cactus tree models of the updated 3-components; the left and right models result
from the algorithm given in Section 4.1.

284 Y. Dinitz and R. Nossenson

In part (g), these models are merged into the 2-level cactus tree model of
the united 3-component. This 3-component corresponds to the single nontriv-
ial 3-class of the incremented graph G; this 3-class is the union of the three
involved 3-classes of G. Part (h) shows the two-node 3-quotient of the incre-
mented graph. Inside the shadowed node, the new 3-component is shown; its
single virtual edge—corresponding to the pair of edges going to the other (triv-
ial) 3-component—is shown dashed.

One more comment on indication of paths in Π. Two-arrowed lines are longer
than necessary for pointing to all bridges in such a paths, they go along cycle
edges of the model too. This is done to show—by the ends of such a line—to
where are mapped the two end-vertices of the edge defining the path in Π, by
the structural mapping.

5 Implementation

For implementation of the above transformations we extend the technique of
[9], which uses dynamic trees of [17]. The main difficulty is that model graphs
associated with 3-components are not trees, as in [9], but cactus trees. As a
result, the squeeze-cycle operation must be added. We implement as follows.
First of all, a cycle L in a cactus tree is represented, as in [12,9], by a special
dummy vertex with an edge from it to every vertex of L, plus the list of vertices
of L in the cycle order. In this way a cactus tree is implemented as a tree.

Suppose we have to squeeze a cycle L at its vertices x and y, resulting in two
cycles L1 and L2. Assume |L1| ≤ |L2|. We scan L from x in both directions step
by step. In time O(|L1|) we arrive at y, thus finding L1. Using O(|L1|) dynamic
tree operations, we pull all vertices of L1 out of L forming two separate cycles
L1 and L2 with a single common vertex, instead of L, as required.

In order to bound time, we amortize the above dynamic tree operations on
vertex histories. Since |L1| is at most |L|/2 above, any vertex changes the cycle
it belongs to at most logn times. Since a dynamic tree operation costs O(log n),
the total time sums to O(n log2 n).

Theorem 5. The 5-classes of an arbitrary graph can be maintained under any
sequence of q Same-5-Class(u, v)? queries and m Insert-Edge(u, v) updates in
total time O(q +m+ n · log2n). The worst-case time per query is O(1).

References

1. A. A. Benczur, “Augmenting undirected connectivity in Õ(n3) time”, Proc. 26th
Annual ACM Symp. on Theory of Computing, ACM Press, 1994, 658–667.

2. A. A. Benczur, “The structure of near-minimum edge cuts”, In Proc. 36st Annual
Symp. on Foundations of Computer Science, 1995, 92–102.

3. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, McGraw-Hill,
New York, NY, 1990.

Incremental 5-Edge-Connectivity 285

4. Ye. Dinitz, “The 3-edge components and the structural description of all 3-edge
cuts in a graph”, Proc. 18th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG92), Lecture Notes in Computer Science, v.657, Springer-
Verlag, 1993, 145–157.

5. Ye. Dinitz, “The 3-edge components and the structural description of edge cuts in
a graph”, Manuscript.

6. E. A. Dinic, A. V. Karzanov and M. V. Lomonosov, “On the structure of the
system of minimum edge cuts in a graph”, Studies in Discrete Optimization, A. A.
Fridman (Ed.), Nauka, Moscow, 1976, 290–306 (in Russian).

7. Ye. Dinitz and Z. Nutov, “A 2-level cactus tree model for the minimum and min-
imum+1 edge cuts in a graph and its incremental maintenance”, Proc. the 27th
Symposium on Theory of Computing, 1995, 509–518.

8. Ye. Dinitz and A. Vainshtein, “The connectivity carcass of a vertex subset in a
graph and its incremental maintenance”, Proc. 26th Annual ACM Symp. on Theory
of Computing, ACM Press, 1994, 716–725 (see also TR-CS0804 and TR-CS0921,
Technion, Haifa, Israel).

9. Ye. Dinitz and J. Westbrook, “Maintaining the Classes of 4-Edge-Connectivity in
a Graph On-Line”, Algorithmica 20 (1998), no. 3, 242–276.

10. H. N. Gabow, “Applications of a poset representation to edge connectivity and
graph rigidity”, Proc. 23rd Annual ACM Symp. on Theory of Computing, 1991,
112–122.

11. R. E. Gomory and C. T. Hu, “Multi-terminal network flows”, J. SIAM 9(4) (1961),
551–570.

12. Z. Galil and G. F. Italiano, “Maintaining the 3-edge-connected components of a
graph on line”, SIAM J. Computing 22 (1), 1993, 11–28.

13. F. Harary. Graph Theory, Addison-Wesley, Reading, MA, 1972.
14. Hopcroft, J., and Tarjan, R.E., Dividing a graph into triconnected components.

SIAM J. Comput. 2 (1973) 135–158.
15. J. A. La Poutré, J. van Leeuwen, and M. H. Overmars. Maintenance of 2-and 3-

edge-connected components of graphs. Discrete Mathematics 114, 1993, 329–359.
16. D. Naor, D. Guisfield and C. Martel, “A fast algorithm for optimally increasing

the edge connectivity”, In Proc. 31st Annual Symp. on Foundations of Computer
Science, 1990, 698–707.

17. D. D. Sleator and R. E. Tarjan, “ A data structure for the dynamic trees”, In Proc.
13th Annual ACM Symposium on Theory of Computing, 1981, 114–122.

18. Tutte, W.T., Connectivity in Graphs, Univ. of Toronto Press, Toronto, 1966.
19. Teplixke, R.,2 Dynamic Maintenance of Connectivity Classes of a Graph, Using

Decomposition into 3-Components, M. Sc. Thesis, the Technion, Haifa, Israel, 1999.
20. J. Westbrook and R. E. Tarjan, “Maintaining bridge-connected and biconnected

components on line”, Algorithmica, 7 (1992), 433–464.

2 Teplixke is the maiden name of Ronit Nossenson.

On the Minimum Augmentation
of an `-Connected Graph
to a k-Connected Graph

Toshimasa Ishii and Hiroshi Nagamochi

Department of Information and Computer Science,
Toyohashi University of Technology,

Aichi 441-8580, Japan.
{ishii,naga}@ics.tut.ac.jp

Abstract. Given an undirected graph G = (V, E) and a positive integer
k, we consider the problem of augmenting G by the smallest number of
new edges to obtain a k-vertex-connected graph. In this paper, we show
that, for k ≥ 4 and k ≥ `+2, an `-vertex-connected graph G can be made
k-vertex-connected by adding at most δ(k−1)+max{0, (δ−1)(`−3)−1}
surplus edges over the optimum in O(δ(k2n2 + k3n3/2)) time, where
δ = k − ` and n = |V |.

1 Introduction

The problem of augmenting a graph by adding the smallest number of new edges
to meet vertex-connectivity requirements has been extensively studied as an important
subject in the network design problem [4], the data security problem, [13], the graph
drawing problem [12] and others, and many efficient algorithms have been developed
so far.

Given an undirected graph G = (V, E) and a positive integer k, we consider the
problem of augmenting G by the smallest number of new edges to obtain a k-vertex-
connected (k-connected, for short) graph. We call this problem the k-vertex-connectivity
augmentation problem (k-VCAP, for short). Currently it is known that k-VCAP for
k ∈ {2, 3, 4} can be solved in polynomial time ([2,7], [6,17] and [5] for k = 2, 3 and 4,
respectively), where an initial graph G may not be (k − 1)-connected. For an arbitrary
integer k > 0, whether k-VCAP is polynomially solvable or not is still an open question
(even if an initial graph is restricted to be (k − 1)-connected). When an initial graph
is (k − 1)-connected, Jordán presented an O(n5) time approximation algorithm for k-
VCAP with a general k [10,11]. The difference between the number of new edges added
by his algorithm and the optimal value is at most (k − 2)/2.

However, it was an open question whether there exists a good approximation algo-
rithm for k-VCAP if an initial graph is not (k − 1)-connected. For arbitrary integers k

and δ ≥ 2, we consider whether there exists a polynomial time algorithm that makes a
given (k − δ)-connected graph k-connected by adding a set E′ of new edges such that
the difference between |E′| and the optimal value opt is small, say |E′| − opt = O(δk).
One may apply Jordán’s algorithm δ times to obtain a k-connected graph. However,

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 286–299, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Minimum Augmentation to a k-Connected Graph 287

there is an example such that the number of edges added by this procedure cannot be
bounded by O(δk) over the optimum.

In this paper, for arbitrary k ≥ 4 and ` = k − δ, we consider the problem of
augmenting an `-connected graph G by adding the smallest number of new edges in
order to make G k-connected. We first present a lower bound on the number of edges
that is necessary to make a given graph G k-connected, and then show that the lower
bound plus δ(k−1)+max{0, (δ −1)(`−3)−1} edges suffices. The task of constructing
such set of new edges can be done in O(δ(k2n2 + k3n3/2)) time.

The paper is organized as follows. In Section 2, we state our main result that k-
VCAP is approximable within the absolute error O(δk) for a (k − δ)-connected graph,
after introducing some basic notations and deriving two lower bounds on the optimal
value of the problem. In Section 3, we describe an outline of our approximation al-
gorithm, called V-AUGMENT, for k-VCAP. In Section 4, we describe that the first
lower bound can be computed in polynomial time. After stating several properties of
k-connected graphs in Section 5, we show in Section 6, some previously known and
newly derived edge-splitting operations (which are procedures for replacing two edges
with a single edge while preserving k-connectivity). In Sections 7 and 8, we prove the
correctness of V-AUGMENT. In Section 9, we state some concluding remarks.

2 Main Theorem

Let G = (V, E) stand for an undirected graph with a set V of vertices and a set E of
edges, where we denote |V | by n (or by n(G)) and |E| by m (or by m(G)). An edge with
end vertices u and v is denoted by (u, v). In G = (V, E), its vertex set V and edge set
E may be denoted by V (G) and E(G), respectively. A singleton set {x} may be simply
written as x. For a subset V ′ ⊆ V (resp., E′ ⊆ E) in G, G[V ′] (resp., G[E′]) denotes
the subgraph induced by V ′ (resp., G[E′] = (V, E′)). For V ′ ⊂ V (resp., E′ ⊆ E),
we denote subgraph G[V − V ′] (resp., G[E − E′]) also by G − V ′ (resp., G − E′). For
E′ ⊂ E, we denote V (G[E′]) by V [E′]. For an edge set E′ with E′ ∩ E = ∅, we denote
the augmented graph G = (V, E ∪ E′) by G + E′. For two disjoint subsets of vertices
X, Y ⊂ V , we denote by EG(X, Y) the set of edges e = (x, y) such that x ∈ X and
y ∈ Y , and also denote |EG(X, Y)| by cG(X, Y). In particular, EG(u, v) is the set of
edges with end vertices u and v. A partition X1, . . . , Xt of the vertex set V means a
family of nonempty disjoint subsets of V whose union is V , and a subpartition of V

means a partition of a subset V ′ of V . For a subset X of V , a vertex v ∈ V −X is called
a neighbor of X if it is adjacent to some vertex u ∈ X, and the set of all neighbors
of X is denoted by ΓG(X). A maximal connected subgraph G′ in a graph G is called
a component of G (for notational convenience, a component H may be represented by
its vertex set X = V (H)), and denote the set of all components in G by C(G) and
the number of components in G by p(G). A disconnecting set of G is defined as a
subset S of V such that p(G − S) > p(G) holds and no S′ ⊂ S has this property. The
local vertex-connectivity κG(x, y) for two vertices x, y ∈ V is defined to be the number
of internally-disjoint paths between x and y in G. By Menger’s theorem, κG(x, y) for
nonadjacent vertices x and y is equal to the minimum size of a disconnecting set that
separates x and y. A component G′ of G with |V (G′)| ≥ 3 always has a disconnecting
set unless G is a complete graph Kn. For a connected G, a disconnecting set of the
minimum size is called a minimum disconnecting set, and its size, denoted by κ(G),

288 T. Ishii and H. Nagamochi

is called the vertex-connectivity of G; we define κ(G) = 0 if G is not connected, and
κ(G) = n−1 if G is a complete graph Kn. A graph G is called k-connected if κ(G) ≥ k.
A subset T ⊂ V is called tight if ΓG(T) is a minimum disconnecting set in G. A tight
set D is called minimal if no proper subset D′ of D is tight (hence a minimal tight set
D induces a connected subgraph G[D]). We denote a family of all minimal tight sets in
G by D(G). Let t(G) be the maximum number of pairwise disjoint minimal tight sets
in G, and let β(G) = max{p(G − S)|S is a minimum disconnecting set in G} (hence
|D(G)| ≥ t(G) ≥ β(G)).

For an initial graph G and a fixed integer k ≥ 1, let optk(G) denote the optimal
value of the k-VCAP in G, i.e., the minimum size |E′| of a set E′ of new edges to
obtain an k-connected graph G + E′. Several algorithms have been developed for k-
VCAP in the case where an initial graph G is (k − 1)-connected. These algorithms use
the following lower bound on optk(G). If κ(G) = k − 1, then we easily observe that
M(G) = max{dt(G)/2e, β(G) − 1} is a lower bound on optk(G). Eswaran and Tarjan
[2] proved that 2-VCAP can be solved by finding a set of M(G) edges. Watanabe and
Nakamura [17] stated the same result for 3-VCAP. Thus M(G) is indeed the optimal
value for κ(G) = k − 1 and k = 2, 3, while it is known that M(G) can be smaller than
the optimal value for general k ≥ 4. It is reported in [5] that 4-VCAP can be solved
in polynomial time for an arbitrary initial graph G. For k ≥ 5, Jordán proved [10,11]
that k-VCAP with κ(G) = k − 1 can be solved by an approximation algorithm which
finds a solution with absolute error at most (k − 2)/2.

In what follows, we derive two types of lower bounds, αk(G) and βk(G) − 1, on
optk(G), where κ(G) is not necessarily k − 1.

We call a subset X ⊆ V dominating in G if V −X−ΓG(X) = ∅, and non-dominating
if V − X − ΓG(X) 6= ∅.

To make G k-connected, it is necessary to add at least max{k − |ΓG(X)|, 0} edges
between X and V − X − ΓG(X) for any non-dominating set X ⊂ V . Given a family
X = {X1, . . . , Xp} of disjoint non-dominating sets, the total sum

∑
i=1,...,p

max{k −
|ΓG(Xi)|, 0} of “deficiencies” over X is decreased by at most two by adding one new
edge to G. ¿From this, we need at least dαk(G)/2e new edges to make G k-connected,
where

αk(G) = max
all families X of disjoint
non-dominating sets

{
∑

X∈X
(k − |ΓG(X)|)

}
. (1)

(Note that t(G) = αk(G) holds if κ(G) = k − 1.)
We now consider another case in which new edges becomes necessary. For a vertex

subset S ⊆ V of G with |S| = k − 1, let T1, . . . , Tq denote all the components in G−S,
where q = p(G−S). To make G k-connected, a new edge set E′ must be added to G so
that all Ti form a single connected component in (G + E′) −S. For this, it is necessary
to add at least p(G − S) − 1 edges to connect all components in G − S, where S is not
necessarily a minimum disconnecting set of G if κ(G) < k − 1. Here we define

βk(G) = max
all S ⊆ V with |S| = k − 1

{
p(G − S)

}
. (2)

Thus at least βk(G) − 1 new edges are necessary to make G k-connected. Define

γk(G) = max{dαk(G)/2e, βk(G) − 1}.

Minimum Augmentation to a k-Connected Graph 289

The next lemma combines the above two lower bounds.

Lemma 1. (Lower Bound) For a given graph G, it holds γk(G) ≤ optk(G). ut

In this paper, we prove the next result.

Theorem 1. Let G be an `-connected graph with ` ≥ 0. Then, for any integers k ≥ 4
and δ = k − ` ≥ 2, it holds

optk(G) ≤ γk(G) + δ(k − 1) + max{0, (δ − 1)(` − 3) − 1},

and a feasible solution E′ to k-VCAP with |E′| ≤ γk(G)+ δ(k −1)+max{0, (δ −1)(`−
3) − 1} can be found in O(δ(k2n2 + k3n3/2)) time, where n = |V (G)|. ut

3 Outline of Algorithm

In this section, we give a sketch of our algorithm for finding a set E′ of new edges in
Theorem 1, where the algorithm also plays a role proving the theorem.

3.1 s-Basal k-Connectivity

A graph H with a designated vertex s ∈ V (H), where H − s is denoted by G, is called
s-basally k-connected if

|ΓG(X)| + |ΓH(s) ∩ X| ≥ k for all non-dominating sets X ⊂ V (G) in G (3)

with |ΓG(X)| + |X| ≥ k,

|ΓG(x)| + cH(s, x) ≥ k for all singleton sets X = {x} ⊂ V (G). (4)

Claim. For an s-basally k-connected graph H, it holds

|ΓG(X)| + cH(s, X) ≥ k for all non-dominating sets X ⊂ V in G = H − s. (5)

3.2 Edge-Splitting Operation

An edge-splitting operation is defined as follows. Given a graph H with a designated
vertex s and vertices u, v ∈ ΓH(s) (possibly u = v), we construct graph H ′ from H

by deleting one edge from each of EH(s, u) and EH(s, v), and adding new one edge to
EH(u, v): cH′(s, u) := cH(s, u) − 1, cH′(s, v) := cH(s, v) − 1, cH′(u, v) := cH(u, v) + 1,
and cH′(x, y) := cH(x, y) for all other pairs x, y ∈ V (H) − s. In the case of u = v,
we interpret that cH′(s, u) := cH(s, u) − 2, cH′(u, u) := cH(u, u) + 1, and cH′(x, y) :=
cH(x, y) for all other pairs x, y ∈ V . We say that H ′ is obtained from H by splitting a
pair of edges (s, u) and (s, v) (or by splitting (s, u) and (s, v)). Conversely, we say that
H ′ is obtained from H by hooking up an edge (u, v) ∈ E(H − s) at s, if we construct
H ′ by replacing an edge (u, v) with two edges (s, u) and (s, v) in H.

290 T. Ishii and H. Nagamochi

3.3 Entire Algorithm

Given a graph G = (V, E), we try to start with computing the lower bound αk(G). For
this, we add a new vertex s to G together with some new edges between s and V such
that each non-dominating set X in G with ΓG(X) < k receives at least k−ΓG(X) edges
between s and X, where multiple edges are allowed between s and a vertex v ∈ V .
In the resulting graph H∗, we then split edges at s so that the vertex-connectivity of
H∗ −s increases one by one. During the algorithm, we may further add to H∗ −s some
new edges (which are not generated by splitting at s).

Algorithm V-AUGMENT

Input: An undirected graph G = (V, E) and integers k ≥ 4 and ` ≥ 0 such that
|V | ≥ k + 1, κ(G) = ` and k − ` ≥ 2.

Output: A set E′ of new edges with |E′| ≤ optk(G)+δ(k−1)+max{0, (δ−1)(`−3)−1}
such that G∗ = G + E′ is k-connected, where δ = k − `.

Step I (Addition of vertex s and associated edges): Add a new vertex s to-
gether with a set F ∗ of edges between s and V such that the resulting graph
H∗ = (V ∪{s}, E ∪F ∗) is s-basally k-connected and F ∗ is minimal subject to this
property.

Property 1. (1) The graph H∗ can be computed in O(min{k,
√

n}kn2) time.
(2) If |ΓH∗(s)| ≤ k, then there exists a set E′ of at most δ(k − 1) new edges
such that G + E′ is k-connected, and such E′ can be found in O(min{k,

√
n}

((δ − 1)k3n + δkn2)) time.
(3) If |ΓH∗(s)| ≥ k + 1, then |F ∗| = αk(G) holds. ut

Based on this property, if |ΓH∗(s)| ≤ k, then we find an E′ in Property 1(2) and
halt; we proceed to Step II otherwise.

Step II (Increasing the vertex-connectivity from ` to k − 1): Let j := ` and
H` := H∗.
For j = `, . . . , k − 2, we repeat computing from Hj a graph Hj+1 in the next
property.

Property 2. For an s-basally k-connected graph Hj with κ(Hj −s) = j, there exists
an s-basally k-connected graph Hj+1 with κ(Hj+1 − s) = j + 1 such that Hj+1 is
constructed from Hj by splitting some edges incident to s and by adding a set Ẽj

of at most max{2j − 2, j + 1} new edges. Moreover, such Hj+1 can be computed
in O(min{k,

√
n}(k3n + kn2)) time. ut

Thus, we obtain an s-basally k-connected graph Hk−1 = (V ∪{s}, E∪F ∗
k−1∪E∗

k−1∪
Ek−1) with κ(Hk−1 − s) = k − 1 and F ∗

k−1 ⊆ F ∗, where E∗
k−1 is the set of edges

generated by splitting edges in F ∗−F ∗
k−1 at s, and Ek−1 = E(Hk−1−s)−E−E∗

k−1

with |Ek−1| ≤ ∑k−2
i=`

max{2i − 2, i + 1} (hence Ek−1 is the set of edges directly
added to Hk−1).

Step III (Increasing the vertex-connectivity from k − 1 to k): ¿From Hk−1

obtained in Step II, we compute an s-basally k-connected graph Hk = (V ∪{s}, E∪
F ∗

k ∪ E∗
k ∪ Ek) in the next property.

Minimum Augmentation to a k-Connected Graph 291

Property 3. For an s-basally k-connected graph Hk−1 obtained in Step II, there
exists an s-basally k-connected graph Hk = (V ∪{s}, E ∪F ∗

k ∪E∗
k ∪Ek) with F ∗

k ⊆
F ∗ and Ek = E(Hk−s)−E−E∗

k , where E∗
k is the set of edges generated by splitting

edges in F ∗ −F ∗
k at s, such that |E∗

k ∪Ek| ≤ |F ∗ −F ∗
k |/2+

∑k−2
i=`

max{2i−2, i+1}
and Gk = G + (E∗

k ∪ Ek) (= Hk − s) can be made k-connected by adding a set Êk

of at most β(G) − |E∗
k ∪ Ek| − 1 or t(Gk) − 1(≤ max{2k − 3, k + 1} − 1) new edges.

Moreover, such Hk and Êk can be found in O(min{k,
√

n}(k3n + kn2)) time. ut

Then we augment G to a k-connected graph by adding with edge set E′ = E∗
k ∪Ek∪

Êk, where |E′| ≤ β(G)−1 or |E′| ≤ |F ∗−F ∗
k |/2+

∑k−2
i=`

max{2i−2, i+1}+t(Gk)−1
holds. If |E′| ≤ β(G)−1(≤ optk(G)), then G+E′ is an optimally augmented graph.
If |E′| ≤ |F ∗ − F ∗

k |/2 +
∑k−2

i=`
max{2i − 2, i + 1} + t(Gk) − 1, then by t(Gk) ≤ |F ∗

k |
and |F ∗| = αk(G), we have |F ∗ − F ∗

k |/2 +
∑k−2

i=`
max{2i − 2, i + 1} + t(Gk) − 1

≤ dαk(G)/2e + bt(Gk)/2c − 1 +
∑k−2

i=`
max{2i − 2, i + 1} ≤ optk(G) + k − 2 +∑k−2

i=`
max{2i − 2, i + 1} ≤ optk(G) + δ(k − 1) + max{0, (δ − 1)(` − 3) − 1}. ut

By summing up the running time in Steps I, II and III (where we apply Property 2
at most δ times), the entire time complexity of V-AUGMENT is O(δ min{k,

√
n}(kn2+

k3n)) = O(δ (k2n2 + k3n3/2)).

Remark: In general, it seems difficult to solve the maximization problem in (2) to
compute βk(G) in polynomial time. However, from our algorithm, if dαk(G)/2e+δ(k−
1)+max{0, (δ−1)(`−3)−1}+1 < βk(G), then βk(G) can be computed in polynomial
time. ut

4 Correctness of Step I

In this section, we observe the correctness of Step 1. For this, it suffices to prove
Property 1.

We say that a disconnecting set S ⊂ V disconnects two disjoint subsets Y and Y ′

of V − S if no two vertices x ∈ Y and y ∈ Y ′ are connected in G − S. In particular, a
disconnecting set S disconnects vertices x and y in V − S if x and y are contained in
different components of G − S. A vertex subset X intersects another vertex subset Y

if none of subsets X ∩ Y , X − Y and Y − X is empty. The following property holds for
two vertex subsets X and Y in G = (V, E):

|ΓG(X)| + |ΓG(Y)| ≥ |ΓG(X ∩ Y)| + |ΓG(X ∪ Y)|. (6)

Proof of Property 1(1): We start with the graph H obtained from G by adding a
new vertex s and max{1, k −|ΓG(v)|} edges between s and each vertex v ∈ V . It is not
difficult to see that H is s-basally k-connected. We then can check whether H − (s, v)
remains s-basally k-connected or not for each vertex v ∈ V with cH(s, v) = 1 >

k−|ΓG(v)| by computing κH−(s,v)(s, v). Hence, the s-basal k-connectivity of H − (s, v)
can be tested in O(m + min{k,

√
n}kn) time by using the network flow computation

[3] on a sparse spanning subgraph of H with O(kn) edges, where such sparsification

292 T. Ishii and H. Nagamochi

takes O(m) time [15,16]. Since there are O(n) such computation of κH−(s,v)(s, v), the
total time complexity for computing H∗ is O(min{k,

√
n}kn2). ut

Proof of Property 1(2): To prove this property, we use the next lemma.

Lemma 2. [14] Let C be a cycle in a k-connected graph G = (V, E) such that κ(G −
e) = k − 1 holds for every e ∈ E(C). Then there exists a vertex v ∈ V (C) with
|ΓG(v)| = k. ut

Assume that |ΓH∗(s)| ≤ k. We start from G` := G and continue to construct a (j + 1)-
connected graph Gj+1 from Gj by adding a set Ej of new edges in the following way
until j = k − 1 holds.

For each j ∈ {`, . . . , k−1}, since t(Gj) ≤ |ΓH∗(s)| ≤ k holds, Gj can be made (j+1)-
connected by adding a set Ej of new edges with |Ej | ≤ k −1 from Lemma 2. Note that
Gj+1 := Gj + Ej satisfies κ(Gj+1) = j + 1 and t(Gj+1) ≤ k since (Gj+1 ∪ {s}) + F ∗

remains s-basally k-connected.
Consequently, we can find a solution ∪k−1

i=` Ei whose size is | ∪k−1
i=` Ei| ≤ (k − `)(k −

1) = δ(k − 1). ut
Proof of Property 1(3): The minimality of F ∗ implies that for each edge (s, v) ∈
EH∗(s, V) = F ∗, there is a set Xv ⊆ V with v ∈ Xv such that

(i) |ΓG(Xv)| = k − 1, cH∗(s, Xv) = cH∗(s, v) = 1, and V − Xv − ΓG(Xv) 6= ∅, or

(ii) |Xv| = 1 and |ΓG(v)| + cH∗(s, v) = k,

and no proper subset X ′ ⊂ Xv satisfies this property. For an integer i ∈ {0, 1, . . . , k−1},
we call a set T ⊆ V i-critical in H∗, if T satisfies V − T − ΓG(T) 6= ∅, |ΓG(T)| = i,
|ΓG(T)| + |ΓH∗(s) ∩ T | = k, and cH∗(s, u) = 1 for each u ∈ ΓH∗(s) ∩ T , and no
proper subset T ′ ⊂ T satisfies this property for the fixed i. Note that cH∗(s, T) =
|ΓH∗(s) ∩ T | = k − i holds for an i-critical set T with i ∈ {0, 1, . . . , k − 1}. We call a
singleton set T = {v} with v ∈ V k-critical if |ΓG(v)|+cH∗(s, v) = k, and cH∗(s, v) > 0
hold. Note that the above set Xv satisfying (i) (resp., (ii)) is (k − 1)-critical (resp., k-
critical). Thus,

Lemma 3. Each v ∈ ΓH∗(s) is contained in a (k − 1)-critical set or a k-critical set.
ut

By using (1), we can prove the next property.

Lemma 4. Assume that H∗ has an i-critical set Ti and a j-critical set Tj such that
Ti and Tj intersect each other in G. If |ΓH∗(s)| ≥ k + 1, then Ti ∪ Tj contains an
(i + j − h)-critical set T with ΓH∗(s) ∩ (Ti ∪ Tj) ⊆ T , where h = |ΓG(Ti ∩ Tj)|. ut

Let T be a family of i-critical sets T ⊂ V , 0 ≤ i ≤ k, such that ΓH∗(s) ⊆ ∪T ′∈T T ′

holds and |T | is the minimum; Lemma 3 says that such T exists. Then we can observe
by Lemma 4 that if |ΓH∗(s)| ≥ k +1, then every two sets in T are pairwise disjoint. By
|ΓH∗(s)| ≥ k + 1, for a minimum family T of i-critical sets with ΓH∗(s) ⊆ ∪T∈T T , we
have |F ∗| = cH∗(s, V) =

∑
T∈T cH∗(s, T) =

∑
T∈T (k − |ΓG(T)|) ≤ αk(G). Moreover,

if |F ∗| < αk(G), then it is not difficult to see that at least one set X ∈ T (or {x} ∈ T)
would violate (3) or (4). Hence |F ∗| ≥ αk(G) also holds. ut

Minimum Augmentation to a k-Connected Graph 293

5 Structure of k-Connected Graphs

Before proving the correctness of Steps II and III of V-AUGMENT, we review some
properties of a k-connected graph, which will be a basis for deriving edge-splitting
operations in these steps.

Lemma 5. [10] Let G be k-connected. If t(G) ≥ k + 1, then any two minimal tight
sets X, Y ∈ D(G) are pairwise disjoint (i.e., t(G) = |D(G)|). ut

For a subset S ⊂ V in G, we call the components in G−S the S-components. Note that
the vertex set S is a disconnecting set in a connected G if and only if p(G − S) ≥ 2. A
tight set T is called a superleaf, if T contains exactly one minimal tight set D ∈ D(G)
and no superset T ′ ⊃ T satisfies this property. The following lemmas summarize some
properties of superleaves.

Lemma 6. [1] Let G = (V, E) be a connected graph with t(G) ≥ κ(G) + 3.
(1) For every minimal tight set, as well as every superleaf, the induced subgraph is
connected.
(2) For each minimal tight set D ∈ D(G), there is a unique superleaf Q containing Di.
(3) Every two superleaves are pairwise disjoint. Hence, a superleaf Q is disjoint from
all other minimal tight sets in D(G), except for the one in D(G) contained in Q. ut

We call a disconnecting set S a shredder if p(G − S) ≥ 3.

Lemma 7. [8,9] Let G = (V, E) satisfy t(G) ≥ κ(G) + 3, and S be a shredder with
|S| = κ(G). If an S-component T ∈ C(G − S) contains a minimal tight set D ∈ D(G),
but no other minimal tight set in D(G) − D, then T is the superleaf with T ⊇ D. ut

Lemma 8. [8,9] Let S be a shredder with |S| = κ(G) in a connected graph G = (V, E).
If p(G − S) ≥ κ(G) + 1, then every superleaf Q in G satisfies Q ∩ S = ∅. ut

Theorem 2. [1, Lemma 5.8] Let k ≥ 2 and G = (V, E) be a (k − 1)-connected graph
such that t(G) ≥ max{2k − 2, k + 2} and β(G) ≤ dt(G)/2e. Suppose that G has a
shredder S with |S| = κ(G) such that every S-component contains exactly one minimal
tight set. Then t(G) = 2k−2 holds and the minimum number of edges required to make
G k-connected is 2k − 4 if G is a complete bipartite graph Kk−1,k−1, and k − 2 + d(k −
1)/2e otherwise. Moreover, such set of edges can be found in O(n) time if all minimal
tight sets in G have been found. ut

We show a new property of a shredder in a k-connected graph (the proof is omitted).

Lemma 9. Let S be a shredder with |S| = κ(G) in a connected graph G = (V, E).
Assume that every S-component is a superleaf in G.
(1) If p(G − S) ≥ κ(G) + 1, then every minimum disconnecting set S1 other than S

satisfies p(G − S1) = 2 and S1 ∩ D = ∅ for all D ∈ D(G), and has an S1-component
T1 ⊆ Q for some S-component Q ∈ C(G − S).
(2) If p(G − S) ≥ κ(G) + 2, then for any subset W ⊂ V with |W | = κ(G) + 1 and
p(G − W) ≥ 2, there is at most one minimal tight set D ∈ D(G) with D ∩ W 6= ∅. ut

294 T. Ishii and H. Nagamochi

6 Edge-Splitting Preserving k-Connectivity

6.1 Edge-Splitting in (k − 1)-Connected Graphs

Let H = (V ∪ {s}, E) be a graph with a designated vertex s and |V | ≥ k + 1 such that
κH(x, y) ≥ k holds for all distinct two vertices x, y ∈ V (which is equivalent to the
condition that |ΓH(Y)| ≥ k for all non-dominating sets Y ⊆ V in G). Let G = H − s,
and assume that G is not k-connected. Then κ(G) = k − 1 holds, since G satisfies
κG(x, y) ≥ κH(x, y) − 1 ≥ k − 1 for all x, y ∈ V . Note that ΓH(s) ∩ D 6= ∅ holds
for every minimal tight set D ∈ D(G) since otherwise κH(x, y) ≥ k cannot hold for
x ∈ D and y ∈ V − D − ΓG(D). A pair {(s, u), (s, v)} of two edges in EH(s) is called
k-splittable, if the graph H ′ resulting from splitting edges (s, u) and (s, v) satisfies
κH′(x, y) ≥ k for all pairs x, y ∈ V .

The following theorems describe some conditions that admit k-splittable splittings
at s in a (k − 1)-connected graph G.

Theorem 3. [1] Let H = (V ∪ {s}, E) be a graph with a designated vertex s, k ≥ 2
be an integer such that κH(x, y) ≥ k for all pairs x, y ∈ V , and let G = H − s satisfy
κ(G) = k − 1 and t(G) ≥ k + 2. Assume that G has three distinct superleaves Q1, Q2

and Q3 such that ΓG(Q1) ∩Q2 = ∅ = ΓG(Q1) ∩Q3 holds and ΓG(Q1) is not a shredder
in G. Let Di ⊆ Qi, i = 1, 2, 3, be the minimal tight set in D(G). Then, for any three
vertices xi ∈ ΓH(s) ∩ Di, i = 1, 2, 3, at least one of {(s, x1), (s, x2)}, {(s, x2), (s, x3)}
and {(s, x3), (s, x1)} is k-splittable. Moreover t(H ′−s) = t(G)−2 holds for the resulting
graph H ′ from the splitting. ut

Theorem 4. [8,9] Let H = (V ∪ {s}, E) be a graph with a designated vertex s, k ≥ 2
be an integer such that κH(x, y) ≥ k for all pairs x, y ∈ V , and let G = H − s satisfy
κ(G) = k − 1 and t(G) ≥ max{2k − 2, k + 2}. Let Q ⊂ V be an arbitrary superleaf
such that S = ΓG(Q) is a shredder in G. If G has a set T ∗ ∈ C(G − S) − Q with
cH(s, T ∗) ≥ 2, then {(s, x), (s, y)} is k-splittable for any vertices x ∈ ΓH(s) ∩ Q and
y ∈ ΓH(s) ∩ T ∗. ut

Based on Theorems 2, 3 and 4, we can show the following three new properties on
k-splittable splitting pairs (the proofs are omitted).

Lemma 10. Let H = (V ∪ {s}, E) be a graph with a designated vertex s, k ≥ 2 be
an integer such that κH(x, y) ≥ k for all pairs x, y ∈ V , and let G = H − s satisfy
κ(G) = k − 1, t(G) ≥ max{2k − 2, k + 2, β(G) + 1}, and β(G) − 1 ≥ dt(G)/2e ≥ k − 1.
Then there is a k-splittable pair {(s, x), (s, y)} such that β(G + (x, y)) = β(G) − 1. ut

Lemma 11. Let H = (V ∪ {s}, E) be a graph with a designated vertex s, k ≥ 2 be an
integer such that κH(x, y) ≥ k for all pairs x, y ∈ V , and let G = H − s satisfy κ(G) =
k−1 and β(G) = t(G) ≥ max{2k−2, k+2}. Let S∗ be a shredder in G with |S∗| = k−1
and p(G − S∗) = β(G). Assume that G has an S∗-component T1 ∈ C(G − S∗) and an
edge e = (v1, v2) such that v1 ∈ T1, v2 ∈ T1 ∪ S∗, and p(G − S∗) = p(G − e − S∗). Let
H1 := H −e+{(s, v1), (s, v2)}. Then there is an edge-splitting of a pair {(s, u1), (s, u2)}
at s in H1 such that the graphs H ′ = H1−{(s, u1), (s, u2)}+{(u1, u2)} and G′ = H ′ −s

satisfy κH′(x, y) ≥ k for all pairs x, y ∈ V , κ(G′) = k−1 and β(G′−S∗) = β(G−S∗)−1.
ut

Minimum Augmentation to a k-Connected Graph 295

Lemma 12. Let H = (V ∪ {s}, E) be a graph with a designated vertex s, k ≥ 2 be
an integer such that κH(x, y) ≥ k for all pairs x, y ∈ V , and let G = H − s satisfy
κ(G) = k − 1, t(G) ≥ max{2k − 2, k + 2}, and β(G) ≤ dt(G)/2e. Then (a) there is a
k-splittable pair {(s, x), (s, y)} such that t(G + (x, y)) ≤ t(G) − 1, or (b) t(G) = 2k − 2
holds and G can be made k-connected by adding at most 2k − 4 new edges. ut

6.2 Edge-Splitting in an Arbitrary Graph

In this section, we consider an s-basally k-connected graph H = (V ∪ {s}, E) with a
designated vertex s. A pair {(s, u), (s, v)} of two edges in EH(s) is called k-feasible at
s, if the graph H ′ resulting from splitting edges (s, u) and (s, v) remains s-basally k-
connected. We show two properties on a k-feasible edge-splitting at s in H (the proofs
are omitted).

Theorem 5. Let H = (V ∪{s}, E) be an s-basally k-connected with a designated vertex
s, and k1 be an integer with k > k1 ≥ 2 such that G = H − s satisfies κ(G) = k1 − 1
and t(G) ≥ k1 + 2. Then there is a subgraph H1 = (V ∪ {s}, E1 = E(G) ∪ F ′) of H

such that F ′ ⊆ EH(s), |F ′| = |D(G)| and cH1(s, D) = 1 holds for all D ∈ D(G). For
such H1, if a pair {(s, v1), (s, v2)} is k1-splittable at s in H1, then {(s, v1), (s, v2)} is
k-feasible at s in H. ut

Theorem 6. Let H = (V ∪{s}, E) be an s-basally k-connected graph with a designated
vertex s and k1 be an integer with k > k1 ≥ 1 such that G = H − s satisfies κ(G) =
k1 − 1 and t(G) ≥ k1 + 2. Assume that G has a minimum disconnecting set S∗ with
p(G − S∗) ≥ k1 + 2 such that every S∗-component Qi ∈ {Q1, . . . , Qp} = C(G − S∗)
is a superleaf in G, where p = t(G) = p(G − S∗) holds (by Lemmas 7 and 8) and
Di ∈ D(G) denotes the minimal tight set contained in Qi. Then there is a subset
F ′ = {ei, e

′
i | i = 1, 2, . . . , p} ⊆ EH(s) such that for ei = (s, ui) and e′

i = (s, vi), i =
1, 2, . . . , p, ui, vi ∈ Di holds. For such F ′, the graph H ′ = H −∪p

i=2{(s, vi−1), (s, ui)}+
∪p

i=2{(vi−1, ui)} is s-basally k-connected and G′ = H ′ − s satisfies κ(G′) = k1. ut

7 Correctness of Step II

To show the correctness of Step II, it suffices to prove Property 2. For this, we present
an algorithm, called κ-SPLIT1, which finds from a given s-basally k-connected graph H

with κ(H−s) ≤ k−2 an s-basally k-connected graph H∗ with κ(H∗−s) = κ(H−s)+1
by splitting some edges incident to s and by adding at most max{2κ(H −s)−2, κ(H −
s) + 1} new edges.

Algorithm κ-SPLIT1(H, s, k)

Input: An s-basally k-connected graph H = (V ∪{s}, E∪F) with a designated vertex
s, F = EH(s), and |V | ≥ k + 1. Let k1 = κ(H − s) + 1 and G = H − s.

Output: An s-basally k-connected graph H∗ = (V ∪ {s}, E ∪ F0 ∪ E∗
1 ∪ E∗

2), where
F0 ⊆ F , E∗

1 is the set of edges generated by splitting the edges in EH(s) − F0 at
s, and E∗

2 is a set of new edges connecting vertices in V , such that κ(H∗ − s) = k1

and |E∗
2 | ≤ max{2k1 − 4, k1}.

296 T. Ishii and H. Nagamochi

Step 1. If k1 = 1, then choose a subset F ′ = {ei = (s, ui), e′
i = (s, vi) | i =

1, 2, . . . , p} ⊆ EH(s) such that ui, vi ∈ Di ∈ {D1, D2, . . . , Dp} = D(G) holds for
each i = 1, 2, . . . , p. Then the graph H∗ := H + ∪p

i=2{(vi−1, ui)}− ∪p
i=2{(s, vi−1),

(s, ui)} is s-basally k-connected and H∗ − s is connected by Theorem 6. Halt
outputting H∗, where E∗

2 = ∅.
If k1 ≥ 2, then we go to Step 2 after setting H2 := (V ∪{s}, E∪F2) with a minimal
subset F2 ⊆ F such that every Di ∈ D(G) satisfies cH2(s, Di) ≥ 1.

Step 2. Let G2 := H2 − s. If t(G2) ≤ max{2k1 − 3, k1 + 1}, then G2 can be made k1-
connected by adding a set E∗

2 of at most max{2k1 −4, k1} new edges by Lemma 2.
Halt after outputting H∗ := H2 + (F − F2) ∪ E∗

2 .
Otherwise, every Di ∈ D(G) satisfies cH2(s, Di) = 1 (by Lemma 5) and let ΓH2(s)∩
Di = {ui}. Repeat the following procedure (A) or (B) while t(G2) ≥ max{2k1 −
2, k1 + 2}, where we execute procedure (A) if β(G2) ≤ dt(G2)/2e or procedure (B)
otherwise.

Procedure (A):

(A-1) If there is a k1-splittable pair {(s, u), (s, v)} such that H ′ = H2 − {(s, u),
(s, v)} + {(u, v)} with G′ = H ′ − s satisfies t(G′) ≤ t(G2) − 1, then continue
executing Step 2 after setting H2 := H2 − {(s, u), (s, v)} + {(u, v)}.

(A-2) Otherwise, by Lemma 12, G2 can be made k1-connected by adding a set
E∗

2 of at most 2k1 − 4 new edges. Halt outputting H∗ := H2 + (F − F2) ∪ E∗
2 .

Property 4. Each iteration of procedure (A-1) decreases t(G2) by at least one. ut

Procedure (B): Choose a minimum disconnecting set S∗ in G2 satisfying p(G2 −
S∗) = β(G2), where S∗ is a shredder in G2 (by β(G2) ≥ dt(G2)/2e + 1 ≥ max{k1,

(k1 + 2)/2 + 1} ≥ 3).

(B-1) If t(G2) ≥ β(G2)+1, then find a k1-splittable pair {(s, u), (s, v)} in Lemma
10 such that H ′ = H2 − {(s, u), (s, v)} + {(u, v)} with G′ = H ′ − s satisfies
β(G′) ≤ β(G2) − 1. Continue executing Step 2 after setting H2 := H2 −
{(s, u), (s, v)} + {(u, v)}.

(B-2) Otherwise (β(G2) = t(G2)), by Lemma 7 and t(G2) ≥ k1 + 2, every S∗-
component T ∈ C(G2 − S∗) is a superleaf in G2. Moreover, Lemma 8 and
p(G2 − S∗) ≥ k1 tell that every superleaf Q in G2 satisfies Q ∩ S∗ = ∅. Hence
we have p(G2 − S∗) = t(G2) ≥ k1 + 2. Let D := {D ∈ D(G)|cH2(s, D) =
1} and (s, vi) ∈ EH(s, Di) − {(s, ui)} for Di ∈ D (such vi exists since H

satisfies (5) with respect to k ≥ k1 + 1). Let H3 := H + ∪p
i=2{(vi−1, ui)}−

∪p
i=2{(s, vi−1), (s, ui)}. Halt outputting H∗ := H3, where E∗

2 = ∅ and H3

remains s-basally k-connected by Theorem 6.

Property 5. Each iteration of (B-1) decreases β(G2) by one. ut

During execution of Step 2, no new edge is added to H2 immediately before con-
structing the final H∗. Then it is clear that the output H∗ = (V ∪{s}, E∪F0∪E∗

1 ∪E∗
2)

is constructed from H by splitting edges in F − F0 (where E∗
1 denotes the set of the

resulting split edges) and adding edges in E∗
2 . We prove that the output H∗ is s-

basally k-connected, and satisfies κ(H∗ − s) = k1 and |E∗
2 | ≤ max{2k1 − 4, k1}. If

H∗ is output in Step 1, then by Theorem 6 the output H∗ is s-basally connected,

Minimum Augmentation to a k-Connected Graph 297

and satisfies κ(H∗ − s) = k1 = 1 and E∗
2 = ∅. In procedures (A) and (B), we see from

Theorem 5 that H2∪(F −F2) is s-basally k-connected. In procedure (A), Lemma 12 en-
sures that we can execute either (A-1) or (A-2) if β(G2) ≤ dt(G2)/2e, and this proves
Property 4. In procedure (B), we can execute either (B-1) or (B-2) by Lemma 10
and by Theorem 6, respectively, where Theorem 6 is applicable to (B-2) by Lem-
mas 7 and 8. Property 5 follows from Lemma 10. Therefore, by Properties 4 and
5, H2 satisfies t(G2) ≤ max{2k1 − 3, k1 + 1}, or condition of (A-2) or (B-2) after
t(H2 − s) + β(H2 − s) ≤ n + k iterations of Step 2. If t(G2) ≤ max{2k1 − 3, k1 + 1}
holds in Step 2, then by Lemma 2 we can obtain a desired graph H∗.

The algorithm κ-SPLIT1(H, s, k) can be implemented to run in O(min{k1,
√

n}
(k3

1n + k1n
2)) time as follows. The running time of κ-SPLIT1(H, s, k) is equal to the

complexity of finding a sequence of k1-splittable pairs in H2, plus the complexity of
computing E∗

2 . The complexity of finding a sequence of k1-splittable pairs in H2 is
equal to that of finding κ-splittable pairs in [8,9]. The edge set E∗

2 can be computed in
O(min{k1,

√
n}k3

1n) time by applying Phase 5 of Jordán’s algorithm in [10].

8 Correctness of Step III

In this section, we prove the correctness of Step III by presenting an algorithm for
computing a graph Hk in Property 3.

Given a graph H with a designated vertex s, we say that a graph H ′ is obtained
from H by shifting an edge (s, u) to (s, v) at s, if we construct H ′ by replacing (s, u)
with (s, v) in H.

Algorithm κ-SPLIT2(H, s, F, k)

Input: An undirected graph H = (V ∪ {s}, E ∪ F ∗
k−1 ∪ E∗

k−1) and an integer k ≥ 2
such that F ∗

k−1 = EH(s) and κ(H − s) = k − 1 hold, and κH(x, y) ≥ k holds for
every x, y ∈ V . Let H ′ = (V ∪ {s}, E ∪ F ∗

k−1 ∪ F ′) denote the graph obtained from
H by hooking up all edges in E∗

k−1 at s, where F ′ is the set of the edges hooked
up.

Output: An undirected graph H∗ = (V ∪ {s}, E ∪ F ∗
k ∪ E∗

k) obtained from H ′ by
splitting edges in F ∗

k−1 ∪F ′ and by shifting some split edges such that H∗ satisfies
κH∗(x, y) ≥ k, x, y ∈ V and G∗ = H∗ − s satisfies κ(G∗) = k − 1 and one of the
following (a) – (c), where EH∗(s) = F ∗

k ⊆ F ∗
k−1 ∪ F ′.

(a) t(G∗) ≤ max{2k − 3, k + 1}.
(b) t(G∗) = 2k − 2 holds and G∗ can be made k-connected by adding at most
2k − 4 new edges.
(c) The graph (V, E ∪ E∗

k) can be made k-connected by adding at most p((V, E) −
S) − |E∗

k | − 1 new edges.
Step 1. After setting H1 := H, F := EH(s), and E′ := E(H1) − F − E, we go to

Step 2.
Step 2. Let G1 := H1 − s. If t(G1) ≤ max{2k − 3, k + 1} holds, then halt outputting

H∗ := H1.
Otherwise, while t(G1) ≥ max{2k −2, k + 2} holds, repeat the following procedure
(A) or (B), where we execute procedure (A) if β(G1) ≤ dt(G1)/2e or procedure
(B) otherwise.

298 T. Ishii and H. Nagamochi

Procedure (A):
(A-1) If there is a k-splittable pair {(s, u1), (s, u2)} such that H ′ = H1 −{(s, u1),

(s, u2)} + {(u1, u2)} satisfies t(H ′ − s) ≤ t(G1) − 1, then continue execut-
ing Step 2 after setting H1 := H1 − {(s, u1), (s, u2)} + {(u1, u2)}, F := F −
{(s, u1), (s, u2)}, and E′ := E′ ∪ {(u1, u2)}.

(A-2) Otherwise, by Lemma 12, t(G1) = 2k − 2 holds and G1 can be made k-
connected by adding at most 2k−4 new edges. Output H∗ := H1 as an solution
satisfying (b).

Property 6. Each iteration of (A-1) decreases t(G1) by at least one. ut
Procedure (B): Choose a minimum disconnecting set S∗ in G1 satisfying p(G1 −
S∗) = β(G1), where S∗ is a shredder in G1 by β(G1) ≥ dt(G1)/2e+1 ≥ max{k, (k+
2)/2 + 1} ≥ 3.
(B-1) If t(G1) ≥ β(G1) + 1 then, find a k-splittable pair {(s, u1), (s, u2)} in

Lemma 10 so that H ′ = H1 − {(s, u1), (s, u2)} + {(u1, u2)} with G′ = H ′ − s

satisfies β(G′) ≤ β(G1)−1. After setting H1 := H ′, F := F −{(s, u1), (s, u2)},
and E′ := E′ ∪ {(u1, u2)}, continue executing Step 2.

(B-2) Otherwise (β(G1) = t(G1)), let S∗ be a shredder in G1 with |S∗| = k − 1
and p(G1 −S∗) = β(G1). We distinguish the following three subcases in (B-2).

(B-2-1) G1 has an edge e = (v1, v2) ∈ E′ with {v1, v2} − S∗ 6= ∅ and p(G1 −
e − S∗) = p(G1 − S∗). Then after hooking up the edge e at s, we split a
pair {(s, u1), (s, u2)} in Lemma 11 such that the resulting graph H ′ := H1 −
{(s, u1), (s, u2), (v1, v2)} +{(u1, u2), (s, v1), (s, v2)} satisfies κH′(x, y) ≥ k for
all x, y ∈ V and G′ = H ′ − s satisfies κ(G′) = k − 1, and β(G′ −S∗) = β(G1 −
S∗) − 1. After setting H1 := H ′, F := F ∪ {(s, v1), (s, v2)} − {(s, u1), (s, u2)},
and E′ := E′ ∪ {(u1, u2)} − {(v1, v2)}, continue executing Step 2.

(B-2-2) There is an edge e = (v1, v2) ∈ E′ with v1, v2 ∈ S∗. We replace the
edge e with a new edge e′ = (v1, v3) for a vertex v3 ∈ V − S∗. Note that
H ′ := H1 − e + e′ also satisfies κH′(x, y) ≥ k for all x, y ∈ V by D ∩S∗ = ∅ for
all D ∈ D(G1) (by Lemma 8) and we have V (e′) − S∗ 6= ∅ and p((H ′ − s) −
e − S∗) = p((H ′ − s) − S∗). Then go to (B-2-1) after setting H1 := H ′, and
E′ := E′ ∪ {e′} − {e}.

(B-2-3) Every edge (u, v) ∈ E′ satisfies u, v ∈ V − S∗ and p((G1 − {e}) − S∗) =
p(G1 − S∗) + 1. Output H∗ := H1 as an solution satisfying (c).

Property 7. Each iteration of (B-1) and (B-2-1) decreases β(G1) at least by one.
ut

Let us prove that a graph H∗ = H1 in (B-2-3) satisfies condition (c). Since u, v ∈
V − S∗ and p((G1 − {e}) − S∗) = p(G1 − S∗) + 1 hold for all edges e = (u, v) ∈ E′,
we have p((V, E) − S∗) = p(G1 − S∗) + |E′|. Let {T1, . . . , Tp} = C(G1 − S∗), where
p = p(G1 −S∗). For each Ti ∈ C(G1 −S∗), let ui ∈ ΓH1(s)∩Di with Ti ⊇ Di ∈ D(G1).
We show that for a set E1 = {(ui, ui+1)|i = 1, . . . , p − 1} of new edges, G′ := G1 ∪ E1

is k-connected. If G′ has a disconnecting set S′ ⊂ V with S′ 6= S∗ and |S′| = k − 1,
then by Lemma 9(1) p(G′ − S′) = 2 holds and there is an S′-component T ′ ⊆ Ti for
some Ti ∈ C(G1 −S∗), which contradicts that the edge (ui, ui+1) or (ui−1, ui) connects
T ′(⊇ Di) and some Tj ∈ C(G1 − S∗) − {Ti} in G′. Therefore, G′ = (V, E ∪ E′′) with
E′′ = E∗

k ∪ E1 is k-connected, and |E1| = p((V, E) − S) − |E∗
k | − 1 holds.

We see that the algorithm κ-SPLIT2(H, s, F, k) runs in O(min{k,
√

n} kn2) time,
as observed in the analysis of the complexity of κ-SPLIT1(H, s, k).

Minimum Augmentation to a k-Connected Graph 299

9 Concluding Remarks
In this paper, we gave a polynomial time algorithm for augmenting a given `-connected
graph G to a k-connected graph by adding at most δ(k−1)+max{0, (δ −1)(`−3)−1}
surplus edges over the optimum for k ≥ 4, ` ≥ 0, and δ = k − `. However, in the case
of ` + 1 = k ≥ 4, Jordán’s algorithm [10,11] produces at most (k − 2)/2 surplus edges
over the optimum. Therefore, it is a future work to close the gap between this and our
bound.

References

1. J. Cheriyan and R. Thurimella, Fast algorithms for k-shredders and k-node connec-
tivity augmentation, J. Algorithms, Vol.33, 1999, pp. 15–50.

2. K. P. Eswaran and R. E. Tarjan, Augmentation problems, SIAM J. Comput.,
Vol.5,1976, pp. 653–665.

3. S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J.
Comput., Vol.4, 1975, pp. 507–518.

4. M. Grötschel, C. L. Monma and M. Stoer, Design of survivable networks, in: Hand-
book in Operations Research and Management Science, Vol.7, Network Models,
North-Holland, Amsterdam, 1995, pp. 617–672.

5. T. Hsu, Undirected vertex-connectivity structure and smallest four-vertex-
connectivity augmentation, Lecture Notes in Comput. Sci., 1004, Springer-Verlag,
Algorithms and Computation (Proc. ISAAC ’95), 1995, pp. 274–283.

6. T. Hsu and V. Ramachandran, A linear time algorithm for triconnectivity augmen-
tation, Proc. 32nd IEEE Symp. Found. Comp. Sci., 1991, pp. 548–559.

7. T. Hsu and V. Ramachandran, Finding a smallest augmentation to biconnect a
graph, SIAM J. Computing, Vol.22, 1993, pp. 889–912.

8. T. Ishii, Studies on multigraph connectivity augmentation problems, PhD thesis,
Dept. of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan, 2000.

9. T. Ishii, H. Nagamochi and T. Ibaraki, Augmenting a (k−1)-vertex-connected multi-
graph to an `-edge-connected and k-vertex-connected multigraph, Lecture Notes in
Comput. Sci., 1643, Springer-Verlag, Algorithms (Proc. ESA ’99), 1999, pp. 414–
425.

10. T. Jordán, On the optimal vertex-connectivity augmentation, J. Combin. Theory
Ser B, Vol.63, 1995, pp. 8–20.

11. T. Jordán, A note on the vertex-connectivity augmentation problem, J. Combin.
Theory Ser B., Vol.71, 1997, pp. 294–301.

12. G. Kant, Algorithms for drawing planar graphs, PhD thesis, Dept. of Computer
Science, Utrecht University, the Netherlands, 1993.

13. M. Kao, Data security equals graph connectivity, SIAM J. Discrete Math., Vol.9,
1996, pp. 87–100.

14. W. Mader, Ecken vom Grad n in Minimalen n-fach zusammenhängenden Graphen,
Arch. Math. Vol.23, 1972, pp. 219–224.

15. H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph, Algorithmica, Vol.7, 1992, pp.
583–596.

16. H. Nagamochi and T. Ibaraki, Computing edge-connectivity of multigraphs and
capacitated graphs, SIAM J. Discrete Math., Vol. 5, 1992, pp. 54–66.

17. T. Watanabe and A. Nakamura, A minimum 3-connectivity augmentation of a
graph, J. Comput. System Sci., Vol.46, 1993, pp. 91–128.

Locating Sources to Meet Flow Demands
in Undirected Networks

Kouji Arata1, Satoru Iwata2, Kazuhisa Makino3, and Satoru Fujishige4

1 Division of Systems Science, Graduate School of Engineering Science, Osaka
University, Toyonaka, Osaka 560-8531 Japan. arata@sflab.sys.es.osaka-u.ac.jp

2 Department of Mathematical Engineering and Information Physics, Graduate
School of Engineering, University of Tokyo, Tokyo 113-8656 Japan

iwata@sr3.t.u-tokyo.ac.jp
3 Division of Systems Science, Graduate School of Engineering Science, Osaka
University, Toyonaka, Osaka 560-8531 Japan. makino@sys.es.osaka-u.ac.jp
4 Division of Systems Science, Graduate School of Engineering Science, Osaka

University, Toyonaka, Osaka 560-8531 Japan. fujishig@sys.es.osaka-u.ac.jp

Abstract. This paper deals with the problem of finding a minimum-cost
vertex subset S in an undirected network such that for each vertex v we
can send d(v) units of flow from S to v. Although this problem is NP-hard
in general, Tamura et al. have presented a greedy algorithm for solving
the special case with uniform costs on the vertices. We give a simpler
proof on the validity of the greedy algorithm using linear programming
duality and improve the running time bound from O(n2M) to O(nM),
where n is the number of vertices in the network and M denotes the time
for max-flow computation in the network with n vertices and m edges.
We also present an O(n(m+n log n)) time algorithm for the special case
with uniform demands and arbitrary costs.

1 Introduction

Let N = (G, u, d, c) be an undirected network on the underlying graph G =
(V, E) with the vertex set V and the edge set E. Let n = |V | and m = |E|. It is
endowed with a capacity function u : E → R+, a demand function d : V → R+,
and a cost function c : V → R+, where R+ denotes the set of nonnegative reals.
This paper addresses the problem of finding a minimum-cost vertex subset S ⊆ V
such that for each v ∈ V we can send d(v) units of flow from S to v.

For a pair of disjoint subsets X, Y ⊆ V , we denote by λ(X, Y) the maximum
flow value between X and Y in N . We simply write λ(v, Y) and λ(X, w) for
v, w ∈ V instead of λ({v}, Y) and λ(X, {w}), respectively. For convenience, we
assign λ(X, Y) = +∞ if X ∩ Y 6= ∅. Then the problem is formulated as follows.

Minimize
∑

v∈S

c(v)

subject to S ⊆ V, (1)
λ(S, v) ≥ d(v) (v ∈ V).

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 300–313, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Locating Sources to Meet Flow Demands in Undirected Networks 301

We call this problem Source Location. We say that a vertex set S ⊆ V covers
a vertex v if λ(S, v) ≥ d(v). Namely, Source Location asks for a minimum-cost
subset S ⊆ V that covers all the vertices in V .

A special case of this problem with a constant cost function was introduced
by Tamura et al. [11]. They called it plural cover problem. They first considered
the case in which both d and c are constant and described an algorithm that
runs in O(n2M) time [10], where M denotes the time complexity for computing
an s-t maximum flow in a given network N [1,3,4]. Later Tamura et al. [11]
showed that a simple greedy algorithm solves problem Source Location in
O(n2M) time even if the demand function d is arbitrary while the cost function
c is still constant. Ito et al. [5] described another algorithm to improve the time
complexity to O(npM), where p is the number of distinct values of d(v) (v ∈ V),
i.e., p = |{d(v) | v ∈ V }|.

In this paper, we analyze the greedy algorithm of Tamura et al. [11] to give
a simpler proof based on the linear programming duality. We then improve the
greedy algorithm to run in O(nM) time.

As for the case in which the demand function d is constant, we give an
O(n(m + n log n)) time algorithm. The algorithm makes use of maximum ad-
jacency (MA) ordering (see Section 4 for MA ordering). The MA ordering has
been used by Nagamochi and Ibaraki for solving the problems of minimum cut
[6] and of edge-connectivity augmentation [7].

Finally, we show that Source Location is in general NP-hard. We show this
by reducing the knapsack problem to Source Location. Hence, it remains open
to prove the NP-hardness in the strong sense or to devise a pseudo-polynomial
time algorithm.

We summarize the time complexity of Source Location in Table 1, where
bold letters indicate the results obtained in this paper.

The rest of the paper is organized as follows. Section 2 formulates Source
Location as an integer programming problem, Section 3 considers Source
Location when the cost function c is constant, and Section 4 discusses the case
in which the demand function d is constant. In Section 5, we show that Source
Location is in general NP-hard.

2 Integer Programming Formulation

In this section, we formulate Source Location as an integer programming
problem with an exponential number of constraints.

A cut is a proper nonempty subset of V . For a cut X, let ∆X denote the set
of edges that cross X, i.e., ∆X = {e | e = (v, w) ∈ E, v ∈ X, w ∈ V − X}, and
κ(X) its capacity, i.e.,

κ(X) =
∑

e∈∆X

u(e).

302 K. Arata et al.

Table 1. Summary of the results on Source Location

c: constant c: arbitrary

O(n2M) Tamura et al. (1992) [10]

d: constant O(nM) Ito et al. (1997) [5] O(n(m + n log n))

O(n(m + n log n))

O(n2M) Tamura et al. (1998) [11]

d: arbitrary O(npM) Ito et al. (1997) [5] NP-hard

O(nM)

M : the time complexity for computing a maximum s-t flow in N .

p : the number of distinct values of d(v) (v ∈ V).

If X = {v}, we write κ(v) instead of κ({v}). For a disjoint pair of vertex subsets
X, Y ⊆ V , we denote κ(X, Y) =

∑

e∈∆X∩∆Y

u(e). For v ∈ V , we simply write

κ(X, v) instead of κ(X, {v}).
We also denote by d(W) the maximum demand in W , i.e.,

d(W) = max{d(v) | v ∈ W}.

We say that a vertex v ∈ W attains the maximum demand in W if d(v) = d(W).
A cut W is called deficient if κ(W) < d(W). If a cut W is deficient and no other
subset X ⊂ W is deficient, W is called a minimal deficient set.

Lemma 1 ([11]). Let N = (G = (V, E), u, d, c) be an undirected network. Then
S ⊆ V covers all vertices in V if and only if S ∩ W 6= ∅ holds for every minimal
deficient set W .

Let W = {W1, W2, · · · , Wl} be the family of all the minimal deficient sets
and let V = {v1, v2, · · · , vn}. Define an l × n matrix A = (Aij) by Aij = 1 if
vj ∈ Wi and Aij = 0 otherwise. From Lemma 1, Source Location can be
written as the following 0-1 integer programming problem:

Minimize
n∑

j=1

cjxj

subject to
n∑

j=1

Aijxj ≥ 1 (i = 1, 2, · · · , l) (2)

xj ∈ {0, 1} (j = 1, 2, · · · , n),

where cj = c(vj) (j = 1, 2, · · · , n), and x = (x1, x2, · · · , xn) is the characteristic
vector of a subset of V .

Locating Sources to Meet Flow Demands in Undirected Networks 303

Remark 1. Note that l = |W| might be exponential in n = |V | and m = |E|.
For example, let us consider a network N = (G = (V, E), u, d, c), where V =
{v1, v2, · · · , vn}, E = {(v1, vi) | i = 2, 3, · · · , n}, u(e) = 1 (e ∈ E) and

d(vi) =
{ dn

2 e if i = 0
0 otherwise,

and c is an arbitrary cost function. Then we can see that

W = { W | |W | =
⌊

n

2

⌋
+ 1, W 3 v1 },

and hence

|W| =
(

n − 1
bn

2 c
)

.

ut

3 The Uniform Cost Case

3.1 A Greedy Algorithm

In this section, we consider Source Location with a constant cost function.
Tamura et al. [11] proposed the following greedy algorithm to solve Source
Location.

Algorithm Greedy
Step 0: Arrange the vertices v1, v2, · · · , vn in V such that d(v1) ≤ d(v2) ≤ · · · ≤

d(vn).
Step 1: Initialize j:=1 and S:=V .
Step 2: If S − {vj} covers all vertices in V , then S:=S − {vj}.
Step 3: If j = n then output S and halt. Otherwise, j:=j + 1 and go to Step 2.

ut

Example 1. Let us apply Greedy to the network N = (G = (V, E), u, d, c)
given in Figure 1, where u and d are respectively attached to edges and vertices
in Figure 1 and c(v) = 1 for all v ∈ V . The results are illustrated in Figure 2.
We initially include all vertices in S and check whether the set S − {v1} covers
all vertices or not. Since it covers v1 (and hence all vertices in V), we update
S := S − {v1} (see (i)). We next check whether S − {v2} covers all vertices
or not. Since it covers both v1 and v2, we update S := S − {v2} (see (ii)). By
repeating this argument to the current S = {v3, v4, . . . , v7} (see (iii)–(vii)), we
finally obtain S = {v4, v5, v7} shown in (viii). ut

304 K. Arata et al.

7

2

3

1

1

2

1v2

v7

v

5
v

3v

1

v

4

v

6

5

4

3

2

5

4

8

11 3

9

10

Fig. 1. A network N = (G = (V, E), u, d, c), where c(v) = 1 (v ∈ V).

In order to show the correctness of algorithm Greedy, we consider the linear
programming relaxation of (2):

Minimize
n∑

j=1

cjxj

subject to
n∑

j=1

Aijxj ≥ 1 (i = 1, 2, · · · , l), (3)

xj ≥ 0 (j = 1, 2, · · · , n),

and its dual:

Maximize
l∑

i=1

yi

subject to
l∑

i=1

Aijyi ≤ cj (j = 1, 2, · · · , n), (4)

yi ≥ 0 (i = 1, 2, · · · , l).

Recall that cj = 1 (j = 1, 2, · · · , n) is assumed in this section.
We also replace Steps 1 and 2 in algorithm Greedy as follows.

Step 1′: Initialize j := 1, S := V and yi := 0 for i = 1, 2, · · · , l.
Step 2′: (2-1) If S − {vj} covers all vertices in V , then S:=S − {vj}.

(2-2) Otherwise, choose a Wi ∈ W with Wi ∩ S = {vj}, and yi := 1.

Note that Step 1′ (initialization of y) in the revised version might take expo-
nential time (since |W| might be exponential). However, this causes no trouble

Locating Sources to Meet Flow Demands in Undirected Networks 305

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

v3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

7

2

3

1

1

2

1v2

v1

v4

v6

3

v5

v7

5

4

3

2

5

4

8

11 3

9

10

v

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Fig. 2. Algorithm Greedy applied to the network N in Figure 1.

306 K. Arata et al.

since we are now interested in the validity of the algorithm. Obviously, the al-
gorithm always keeps a feasible solution S (i.e., S covers all vertices in V).

Let x∗ and y∗ be the primal and dual variables obtained at the end of the
revised greedy algorithm. Note that x∗ is the characteristic vector of the output
S of the algorithm.

The algorithm does not delete vj from S if and only if it updates yi as yi := 1
for some i with Wi ∩ S = {vj}. Hence, at the termination, we have

n∑

j=1

x∗
j =

l∑

i=1

y∗
i . (5)

Therefore, x∗ is a 0-1 solution satisfying (3) and (5). By the weak duality of
linear programming problems (3) and (4), we only need to prove the feasibility
of y∗ in (4) to show the correctness of the algorithm Greedy. The feasibility of
y∗ will be proved by Lemmas 2 and 3 given below.

Recall that the cut capacity function κ satisfies

κ(X) + κ(Y) ≥ κ(X − Y) + κ(Y − X) (X, Y ⊆ V). (6)

A set function satisfying (6) is called posi-modular in [8].

Lemma 2 ([11]). Let N = (G = (V, E), u, d, c) be an undirected flow network.
Let W1 and W2 be minimal deficient sets in N , and for each i = 1, 2, let vi ∈ Wi

be a vertex that attain the maximum demand in Wi. If W1 ∩ W2 6= ∅, then we
have v1 ∈ W1 ∩ W2 or v2 ∈ W1 ∩ W2.

Proof. Suppose, to the contrary, that both v1 ∈ W1 − W2 and v2 ∈ W2 − W1
hold. Since W1 and W2 are deficient sets, d(v1) > κ(W1) and d(v2) > κ(W2)
hold. It follows from (6) that

d(v1) + d(v2) > κ(W1) + κ(W2)
≥ κ(W1 − W2) + κ(W2 − W1).

This means that d(v1) > κ(W1 − W2) or d(v2) > κ(W2 − W1) holds. Since we
have v1 ∈ W1−W2 and v2 ∈ W2−W1 by the assumption, it follows that W1−W2
or W2 − W1 is deficient, which contradicts the minimality of W1 or W2. ut

Arrange the columns of A in such a way that d(v1) ≤ d(v2) ≤ · · · ≤ d(vn).
For each index i with 1 ≤ i ≤ l, let k(i) denote the maximum number k with
vk ∈ Wi. Then Lemma 2 implies that the matrix A does not contain

(j k(i1) k(i2)
i1 1 1 0
i2 1 0 1

)
(7)

as a submatrix.

Lemma 3. The dual variable y∗ obtained by the revised greedy algorithm is
feasible to (4).

Locating Sources to Meet Flow Demands in Undirected Networks 307

Proof. Suppose, to the contrary, that y∗ is infeasible. There is a pair of distinct
rows, i1, i2 and a column j such that y∗

i1
= y∗

i2
= 1 and Ai1j = Ai2j = 1. Let

j0 be the largest such number j, where we assume that the columns of A is
already arranged in such a way that d(v1) ≤ d(v2) ≤ · · · ≤ d(vn). Then we
have k(i1) 6= k(i2) since otherwise y∗

i1
and y∗

i2
must be updated in the same

iteration in Step 2′, a contradiction. Note that j0 = k(i1) implies y∗
i2

= 0 by the
greedy algorithm. Hence we have j0 < k(i1). Similarly, we also have j0 < k(i2).
Furthermore, we have Ai1k(i2) = 0 due to the definition of j0. Similarly, we have
Ai2k(i1) = 0. This implies that A contains submatrix (7) forbidden by Lemma
2. ut

We have thus shown the following.

Theorem 1. If the cost function c is constant, then algorithm Greedy produces
an optimal solution of Source Location.

3.2 An Efficient Implementation

We now analyze the time complexity of algorithm Greedy. Steps 0, 1 and 3
are clearly executed in O(n log n), O(1) and O(n) time, respectively. As for Step
2, Tamura et al. [11] checked if S − {vj} covers all vertices in V by computing
λ(S−{vj}, vi) (i.e., a max flow from S−{vj} to vi) for all vi. Clearly, this requires
O(nM) time, where M is the time complexity for computing a maximum s-t flow
in the network N [1,3,4]. Since Step 2 is iterated n times, the required time is
O(n2M) in total [11].

However, the following lemma implies that Step 2 can be replaced by

Step 2′′: If S − {vj} covers vj , then S:=S − {vj}.

Lemma 4. If S −{vj} covers vj in Step 2 of algorithm Greedy, then S −{vj}
covers vi for all i ≤ j.

Proof. Assume that some vi with i < j is not covered by S − {vj}. Then there
exists a cut X with vi ∈ X, V − X ⊇ S − {vj}, and κ(X) < d(vi). Then,
S ∩ X ⊆ {vj} clearly holds. Moreover, we have S ∩ X = {vj} since otherwise S
does not cover vi, which contradicts the property that Greedy always keeps a
feasible set S. Hence, X separates vj and S − {vj}. Since κ(X) < d(vi) ≤ d(vj),
it follows that S − {vj} does not cover vj , a contradiction. ut

Thus we have improved the time complexity.

Theorem 2. If the cost function c is constant, then problem Source Location
can be solved in O(nM) time.

308 K. Arata et al.

4 The Uniform Demand Case

In this section, we consider Source Location with a constant demand function
d. We assume that d(v) = g (a fixed positive real) holds for all v ∈ V . We
show that it can be solved in O(n(m + n log n)) time without maximum flow
computation. A key tool of the algorithm is the maximum adjacency (MA)
ordering.

An ordering v1, v2, · · · , vn of all vertices in V is called a maximum adjacency
(MA) ordering if it satisfies

κ({v1, v2, · · · , vi}, vi+1)≥κ({v1, v2, · · · , vi}, vj) for 1 ≤ i < j ≤ n.

The MA ordering plays a crucial role in this section through the following lemma.

Lemma 5 ([6,9]). Let G = (V, E) be an undirected graph with a nonnegative
capacity function u. Then, the following statements hold.

(i) An MA ordering v1, v2, · · · , vn can be computed in O(m + n log n) time.
(ii) The last two vertices vn−1 and vn for every MA ordering in G satisfy

λ(vn−1, vn) = κ(vn). (8)

ut
We mention here that we can choose the first vertex v1 arbitrarily.

Let us note that, if the demand function d is constant, minimal deficient sets
are pairwise disjoint by the posi-modularity (6) of κ, i.e.,

W1 ∩ W2 = ∅
holds for every pair of W1 and W2 in W. Therefore, in order to solve Source
Location, we try to find all minimal deficient sets W ∈ W and construct a
minimum-cost source set S ⊆ V by choosing from each W ∈ W a vertex v ∈ W
with the minimum cost c(v) among W .

Since any source set S must contain v ∈ V such that κ(v) < g, we initialize S
as S := {v ∈ V | κ(v) < g}. To make use of MA orderings, we attach a new vertex
s (6∈ V) to a given network N and, for each vertex v ∈ S, add the edge (s, v)
with the capacity u(s, v) = g. By this modification of N , every vertices v ∈ V
satisfies κ(v) ≥ g, i.e., either κ(v) ≥ g holds in the original network or v ∈ S
(i.e., the (modified) network N contains the edge (s, v) with u(s, v) = g). We
then apply to the network N an MA ordering v0 (= s), v1, · · · , vn−1, vn starting
from s. By Lemma 5, we have

λ(vn−1, vn) = κ(vn) ≥ g.

Namely, every cut X that separates vn−1 and vn satisfies κ(X) ≥ g. This means
that every minimal deficient set W ∈ W (in the original network) that separates
vn−1 and vn forms W = {vn−1} or {vn}, since by the modification of N , such a

Locating Sources to Meet Flow Demands in Undirected Networks 309

W must contain a vertex v ∈ V such that κ(v) < g in the original network, and
hence we have |W | = 1. Since we already checked whether a cut X of the type
X = {v} (v ∈ V) is deficient, we do not have to consider the cut X separating
vn−1 and vn. We thus merge the vertices vn−1 and vn into a single vertex v̂, and
check if v̂ satisfies κ(v̂) ≥ g. Since κ(v̂) < g implies that W = {vn−1, vn} is a
minimal deficient set in the original network, if κ(v̂) < g, we update the network
N by adding edge (s, v̂) with the capacity u(s, v̂) = g, and update S by adding
vn−1 if c(vn−1) < c(vn); otherwise, vn.

Now we have κ(v̂) ≥ g for all vertices except for s in the resulting network
N . By repeating the above argument for N (i.e., we apply MA ordering v0 (=
s), v1, · · · , vh−1, vh to N , merge the last two vertices vh−1 and vh, and so on), we
can compute a minimum-cost source set S. Formally it can be written as follows.

Algorithm Contract
Input: A network N = (G = (V, E), u, d, c), where d(v) = g for all v.
Output: A minimum-cost vertex set S ⊆ V which covers all vertices in V .
Step 0: Initialize S := ∅, V ′ := V ∪ {s}, E′ := E, and α(v) := v for all v ∈ V .
Step 1: For each vertex v ∈ V such that κ(v) < g, put E′ := E′ ∪ {(s, v)},

u(s, v) := g, and S := S ∪ {α(v)}.
Step 2:

(2-I) Compute an MA ordering v0 (= s), v1, · · · , vh−1, vh starting from s in
G′ = (V ′, E′).

(2-II) Merge the last two vertices vh−1 and vh in G′ into a single vertex v̂.
Denote the resulting graph by G′ again.

(2-III) If c(α(vh−1)) < c(α(vh)), then α(v̂) := α(vh−1); Otherwise, α(v̂) :=
α(vh).

(2-IV) If κ(v̂) < g in the current G′, then update E′ := E′ ∪ {(s, v̂)},
u(s, v̂) := g, and S := S ∪ {α(v̂)}.

Step 3: If |V ′| ≤ 2 or E′ contains the edges (s, v) for all v ∈ V ′ − {s}, then
output S and halt. Otherwise go to Step 2. ut
Note that the algorithm prepares α(·) for computing from each W ∈ W a

vertex v ∈ W with the minimum cost c(v) among W . Formally, α(v) (v ∈ V ′)
stores the vertex v∗ in the original network N having the minimum cost c(v∗)
among Pv, where Pv is the set of all vertices v in V which are merged to v.

Example 2. Let us apply Algorithm Contract to the network N = (G =
(V, E), u, d, c) given in Figure 3, where u and c are respectively attached to
edges and vertices in Figure 3 and d(v) = 8 for all v. The results are illustrated
in Figure 4. In Step 0, the algorithm initializes S, V ′, E′, and α (see (i)), and
since v8 only satisfies κ(vb) < 8, Step 1 updates the network (i) to (ii), and S :=
{vb}. Step 2 then compute an MA ordering v0 (= s), v1 (= vb), v2 (= vc), v3 (=
vd), v4 (= va), v5 (= vc) (see (iii-1)), and merge v4 (= va) and v5 (= vc) into vac
(see (iii-2)). Since c(α(va)) < c(α(vc)), Step 2 puts α(vac) := α(va). Moreover,
by κ(vac) < 8, Step 2 updates E′ := E′ ∪ {(s, vac)}, u(s, vac) := 8, and S :=
S ∪ {α(vac) (= va)} (see (iii-3)).

310 K. Arata et al.

6

3

5
2

1

2 vb

ve

vc

va

vd

1

2

3

3

14

Fig. 3. A network N = (G = (V, E), u, d, c), where d(v) = 8 (v ∈ V).

Since |V ′| = 5 and (s, vd) 6∈ E′ for example, the algorithm returns to Step
2. Step 2 again compute an MA ordering v0 (= s), v1 (= vb), v2 (= vac), v3 (=
vd), v4 (= ve) (see (iv-1)), and merge v3 (= vd) and v4 (= ve) into vde (see (iv-2)).
Since c(α(vd)) < c(α(ve)), Step 2 puts α(vde) := α(vd). Moreover, by κ(vde) < 8,
Step 2 updates E′ := E′ ∪{(s, vde)}, u(s, vde) := 8, and S := S ∪{α(vde) (= vd)}
(see (iv-3)). Now E′ contains the edges (s, v) for all v ∈ V ′ −{s}. Step 3 outputs
S = {va, vb, vd} whose cost is 6. ut

Theorem 3. Problem Source Location can be solved in O(n(m + n log n))
time if the demand function d is constant.

Proof. Since the above discussion shows the correctness of algorithm Contract,
we only consider its time complexity. Clearly Steps 0, 1 and 3 take O(n) time.
Step 2 can be executed in O(n(m + n log n)) time since it has n − 1 iterations
and each iteration takes O(m+n log n) time from Lemma 5. Therefore, in total,
it requires O(n(m + n log n)) time.

5 NP-hardness of General Case

In this section, we show the NP-hardness of Source Location with non-
constant cost and demand functions.

Theorem 4. Problem Source Location is NP-hard, even if the undirected
graph G = (V, E) is a star, i.e., E = {(v, w) | w ∈ V \{v}} for some v ∈ V .

Proof. We transform Problem Knapsack to this problem, where Knapsack is
known to be NP-hard [2].

Problem Knapsack
Input: A finite set Z = {z1, z2, · · · zn} associated with a size function σ : Z →

Z+ and a value function ω : Z → Z+, and positive integer b (≤ ∑
zi∈Z σ(zi)).

where Z+ denotes the set of all nonnegative integers.

Locating Sources to Meet Flow Demands in Undirected Networks 311

Fig. 4. Algorithm Contract applied to the network N in Figure 3.

312 K. Arata et al.

Output: A subset X ⊆ Z that is an optimal solution of

Maximize
∑

z∈X

ω(z)

subject to
∑

z∈X

σ(z) ≤ b, (9)

X ⊆ Z.

It is easy to see that Knapsack is polynomially equivalent to the problem
of computing a subset Y ⊆ Z that solves

Minimize
∑

z∈Y

ω(z)

subject to
∑

z∈Y

σ(z) ≥
∑

z∈Z

σ(z) − b, (10)

Y ⊆ Z,

by identifying Y with Z−X. Therefore, in the following we consider (10) instead
of (9).

For this problem instance, we consider an undirected network N = (G =
(V, E), u, d, c) with V = Z ∪ {z0}, E = {(z0, zi) | zi ∈ Z}, u(z0, zi) =
σ(zi) for i = 1, 2, · · · , n and

d(zi) =
{∑

zi∈Z σ(zi) − b if i = 0
0 otherwise,

c(zi) =
{∑

zi∈Z ω(zi) + 1 if i = 0
ω(zi) otherwise.

Note that d(zi) = 0 for all zi ∈ Z. Therefore S ⊆ V covers all vertices in V if
and only if it covers z0, i.e.,

λ(S, z0) ≥ d(z0) =
∑

zi∈Z

σ(zi) − b. (11)

Moreover, since {z0} and Z covers z0, and since c(z0) >
∑

zi∈Z c(zi), an
optimal S is contained in Z. This implies that

λ(S, z0) =
∑

zi∈S

u(z0, zi) =
∑

zi∈S

σ(zi), (12)

and hence (11) is equivalent to the constraint in (10).
Since c(zi) = ω(zi) for all zi ∈ Z, S ⊆ Z is an optimal solution for the

instance of problem (10) if and only if it is optimal for the corresponding instance
for Source Location. ut

Locating Sources to Meet Flow Demands in Undirected Networks 313

6 Conclusion

In this paper, we have analyzed the greedy algorithm of Tamura et al. [11] for
Source Location with a constant cost function and given a simpler proof
based on the linear programming duality. We have also improved the greedy
algorithm to run in O(nM) time. Moreover, we have given an O(n(m+n log n))
time algorithm for Source Location with a constant demand function. Fi-
nally, we have shown that Source Location is in general NP-hard by reducing
Knapsack to Source Location.

References

1. R. K. Ahuja, T. L. Magnanti and J. B. Orlin: Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, Englewood Cliffs, New Jersey, (1993).

2. M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freedman, New York, (1979).

3. A. V. Goldberg and S. Rao: Beyond the flow decomposition barrier, Journal of the
ACM, 45 (1998), 783–797.

4. A. V. Goldberg and S. Rao: Flows in undirected unit capacity networks, SIAM J.
Discrete Mathematics, 12 (1999), 1–5.

5. H. Ito, H. Uehara and M. Yokoyama: A faster and flexible algorithm for a location
problem on undirected flow networks, IEICE Trans. Fundamentals, E83-A, 2000,
to appear.

6. H. Nagamochi and T. Ibaraki: Computing edge-connectivity of multigraphs and
capacitated graphs, SIAM J. Discrete Mathematics, 5 (1992), 54–66.

7. H. Nagamochi and T. Ibaraki: Deterministic Õ(nm) time edge-splitting in undi-
rected graphs, J. Combinatorial Optimization, 1 (1997), 5–46.

8. H. Nagamochi and T. Ibaraki: A note on minimizing submodular functions, Infor-
mation Processing Letters, 67 (1998), 169–178.

9. M. Stoer and F. Wagner: A simple min cut algorithm, Journal of the ACM, 44,
(1997) 585–591.

10. H. Tamura, M. Sengoku, S. Shinoda and T. Abe: Some covering problems in loca-
tion theory on flow networks, IEICE Trans. Fundamentals, E75-A (1992), 678–683.

11. H. Tamura, H. Sugawara, M. Sengoku and S. Shinoda: Plural cover problem on
undirected flow networks, IEICE Trans. Fundamentals, J81-A (1998), 863–869 (in
Japanese).

Improved Greedy Algorithms
for Constructing Sparse Geometric Spanners

Joachim Gudmundsson1, Christos Levcopoulos1, and Giri Narasimhan2 ?

1 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
Joachim.Gudmundsson@cs.lth.se, Christos.Levcopoulos@cs.lth.se
2 Department of Mathematical Sciences, The University of Memphis,

Memphis, TN 38152, USA
Giri.Narasimhan@memphis.edu

Abstract. Let G=(V, E) be a connected graph with positive weights
and n vertices. A subgraph G′ is a t-spanner if for all u, v∈V , the distance
between u and v in the subgraph G′ is at most t times the corresponding
distance in G. We show a O(n log n)-time algorithm which, given a set
V of n points in d-dimensional space, and any constant t>1, produces a
t-spanner of the complete Euclidean graph of G. The produced spanner
have O(n) edges, constant degree and weight O(wt(MST)).

1 Introduction

Spanners have applications in the design of geometric networks. Consider a set
V of n points in Rd, where the dimension d is a constant. A geometric network
on V can be modeled as an undirected graph G with vertex set V and with
edges e = (u, v) of weight wt(e). A Euclidean network is a geometric network
where the weight of the edge e = (u, v) is equal to the Euclidean distance d(u, v)
between its two endpoints u and v. For u, v ∈ V , let P be a uv-path in G, i.e., a
path in G between u and v. The weight of the path P is denoted by wt(P) and is
defined as the sum of the weights of the edges of P . Let t > 1 be a real number.
We say that G is a t-spanner for V , if for each pair of points u, v ∈ V , there
exists a uv-path in G of weight at most t times the Euclidean distance between
u and v. A sparse t-spanner is defined to be a t-spanner of size O(n) and
weight O(wt(MST)). Given a geometric network G = (V, E), a weight function
w defined on its edges, and two vertices u, v ∈ V , we let D{G,w}(u, v) denote the
weight of the shortest path from u to v in G for the weight function w.

The problem of constructing spanners has been investigated by many re-
searchers. Keil and Gutwin [5] showed that for any t > 1, and any set V of n
points in the plane, a t-spanner for V having O(n) edges can be constructed in
O(n log n) time. Salowe [9], Vaidya [11] and Callahan and Kosaraju [2] showed
the same result for any fixed dimension d. Das and Narasimhan [4] gave an
O(n log2 n)-time algorithm that constructs for any set V of n points in Rd,
and any constant t > 1, a t-spanner for V in which the degree of every point
? Funded by NSF (CCR-940-9752) and Cadence Design Systems, Inc.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 314–328, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Sparse Geometric Spanners 315

is bounded by a constant, and whose total edge weight is proportional to the
weight of a minimum spanning tree of V . Chen et al. [3] showed that the lower
bound for computing any t-spanner for a given set of points V in Rd is Ω(n log n)
in the algebraic computation tree model.

Mount [6] has shown that a significant result claimed in Arya et al. [1] of an
O(n log n)-time algorithm to compute a sparse Euclidean spanner is incorrect.
Thus the problem of devising an O(n log n)-time algorithm to produce sparse
spanners remained unsolved. Sparse spanners are also useful in designing efficient
approximation schemes for geometric problems. In a startling development, Rao
and Smith [8] showed an optimal O(n log n)-time approximation scheme for the
well-known Euclidean traveling salesperson problem, assuming that it is possi-
ble to compute sparse spanners in time O(n log n). Since the claim by Arya et
al. [1] was incorrect, the existence of an O(n log n)-time algorithm to construct
sparse spanners has become a critical open problem. Note that the most efficient
algorithm to construct sparse spanners is due to Das and Narasimhan [4] and
runs in O(n log2 n) time. In this paper we design an algorithm that produces a
t-spanner in time O(n log n), in the standard real RAM model defined in [7].

Theorem 1. Given a set V of n points in d-dimensional space, and any real
constant t>1, a t-spanner of the complete Euclidean graph can be constructed
in O(n log n) time such that the spanner has O(n) edges, constant degree and
weight O(wt(MST)). The constants in the O-notation depend on t and d.

It was shown in [4] that the greedy algorithm produces spanners with O(n)
edges and weight O(1)·wt(MST). However, a naive implementation of the greedy
algorithm had a running time of O(n3 log n), mainly due to the fact that Ω(n)
shortest path queries needed to be answered in a “dynamic” graph with at most
O(n) edges, each of which could take O(n log n) time.

Our algorithm is inspired by the algorithm due to Das and Narasimhan [4].
They showed how to use “clustering” in order to speed up shortest path queries.
However, their algorithm was not efficient enough because they were unable
to “maintain” the clusters efficiently and the algorithm had to frequently re-
build the clusters. For convenience, we will refer to the O(n log2 n)-time algo-
rithm from [4] as the DN-Clustering spanner algorithm. We retain the general
framework of that algorithm. Our main contribution is in developing techniques
to efficiently perform “clustering”. We believe that the techniques that we have
developed are likely to be useful in designing other greedy-style “dynamic al-
gorithms”, i.e., in situations where only insertions take place and particularly
in “increasing” order of length. What we prove in this paper is that after some
preprocessing (which takes O(n log n) time), given a linear-sized edge-weighted
graph with integral edge weights in the range [0..N], and given a set of “cluster-
centers”, then we can perform “clustering” very efficiently in only O(n + N)
time. In 1999, Thorup [10] showed that single source shortest path queries could
be answered in linear time for undirected graphs with integer weights. The main
reasons why this algorithm is not used in this paper is that it does not visit the
vertices in order of increasing distance, which is crucial for our algorithm. Also,

316 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

it uses bit-shift for computing the floor function in constant time, which we do
not allow in the real RAM model.

2 The DN-Clustering Spanner Algorithm

We first describe the cluster-based spanner algorithm by Das and Narasimhan [4].
It can be roughly described as follows. The algorithm starts with an empty span-
ner G′. A preprocessing step helps to eliminate all but a linear number of edges.
Among the edges not eliminated, very short edges (i.e., those of length at most
D/n, where D is the distance between the farthest pair of points) are simply
added to G′ since their contribution to the overall weight of the spanner can-
not be more than the weight of a minimum spanning tree, wt(MST). For the
remaining edges, the greedy algorithm is simulated by sorting the edges, by
increasing weight, and then processing them in log n phases. Greedy process-
ing of an edge e = (u, v) entails a shortest path query, i.e., checking whether
D{G′,wt}(u, v) ≤ t · wt(e). If the answer to the query is no, then e is added to
the graph G′, else it is discarded. Whenever shortest path queries are required
to be answered, these are not solved on the graph G′ being constructed. Instead,
they are solved on a “cluster-graph” H, which is simultaneously maintained.
The cluster graph H from [4] has the following properties:
1. distances in H “closely” approximate distances in the current graph G′,
2. every vertex in H has bounded degree, and
3. “specialized” shortest path queries in H can be answered in O(1) time.

The shortest path query when processing edge e = (u, v) is “specialized” in the
sense that, at the instant that this query is processed, the cluster-graph H only
has edges whose lengths are within a constant factor of wt(e). For all practical
purposes, cluster-graph H behaves like an unweighted graph of bounded degree
for which a bounded radius subgraph around vertex u needs to be searched for
the presence of vertex v. Since the edges considered have weights in the range
(D/n, D] and they are processed in log n phases, the edges can be sorted into
log n bins, where the i-th bin has edges of weight in the range (2i−1·D/n, 2i·D/n].
In order for shortest path queries to be answered quickly, the cluster-graph
has to be carefully maintained. At the end of each phase, the cluster-graph is
recomputed from scratch using the graph G′. This was deemed necessary since,
in order to answer specialized shortest path queries about edge e=(u, v) in O(1)
time, all edges in H need to be of length within a constant factor of d(u, v).

The time complexity analysis is straightforward. Preprocessing steps ran in
O(n log n) time. The O(n) shortest path queries were processed in O(n) time,
since each query took only O(1) time. The cluster graph computation at the
start of each phase took O(n log n) time (using Dijkstra’s algorithm on linear-
sized graphs). Since there were log n phases, the cluster-graph computations took
a total of O(n log2 n) time. The crucial observation made in [4] was that shortest
path queries need not be answered precisely. Instead, approximate shortest path
queries suffice to produce low-weight spanners. The second observation was that
shortest path queries are expensive if the shortest path involves a number of

Sparse Geometric Spanners 317

small length edges, and that clustering can help eliminate all small length edges.
This, of course, meant that the greedy algorithm, too, was only approximately
simulated by the algorithm.

2.1 A Faster Spanner Algorithm

In this section, we present a simple modification to the DN-clustering algorithm
to construct sparse t-spanners. This algorithm improves on the time complexity
of the DN-clustering algorithm and runs in time O(n log2 n

log log n) in the algebraic
decision tree model of computation.

First we make the observation that there is wide disparity in the overall
time spent by the DN-clustering algorithm on shortest path queries (O(n)) and
the time spent on the cluster-graph computations (O(n log2 n)). In order to
balance out the two costs, it is necessary to do fewer than O(log n) cluster-
graph computations, which in turn would make the shortest path queries more
expensive. Instead of processing the edges in log n phases, we process them in
4·d·log n
log log n “batches”. We use the term batches to distinguish from the word phases
used by the earlier DN-clustering algorithm. If “clustering” is recomputed after
processing every batch of edges, since each call to the clustering algorithm takes
O(n log n) time, the total time for cluster graph computations will be O(n log2 n

log log n).
We carefully analyze the cost of the O(n) shortest path queries and show that
it can now be answered in a total of O(n log n) time. In [4], in phase i, edges
from the i-th bin were processed. These edges had weights in the range (W, 2W],
where W = 2i−1(D/n). During phase i, the cluster graph H could have edges
(“inter-cluster” edges) whose weights were in the range (δW, 2W (1 + 2δ)]. This
meant that for edge e = (u, v) of weight l ∈ (W, 2W], checking whether there
is path from u to v of length at most t · l could be done in O(1) time. More
precisely, it was observed in [4] that if there does exist a path from u to v of
length at most t·l, then the number of edges on this path can be at most 2t

δ (since
l ≤ 2W). It was further observed that since the vertices of H had a constant
degree bound (say c), and since there are at most O(c

2t
δ) vertices that lie 2t

δ edges
away from vertex u, this shortest path query could be done in O(c

2t
δ log c

2t
δ) time

(running Dijkstra’s algorithm starting from vertex u suffices). A tighter analysis
was unnecessary in the DN-Clustering algorithm of [4] since c, t, and δ were all
constants); below we show an improved analysis of this cost.

Recall that our algorithm works in 4·d·log n
log log n batches. Batch i of our algo-

rithm can be described as follows. For W = 2
(i−1)·log log n

4·d (D/n), the edges pro-
cessed in batch i have weights in the range (W, W2

log log n
4·d], i.e., they are in

the range (W, W (log n)
1

4·d]. This implies that, for edge e = (u, v) of weight
l ∈ (W, W (log n)

1
4·d], we need to check whether there is a path from u to v

of length at most t · l. During batch i, the cluster graph H could have edges
(“inter-cluster” edges) whose weights are in the range (δW, (1+2δ)W (log n)

1
4·d].

Thus, if there does exist such a path from u to v, then the number of edges on

this path can be at most t(log n)
1

4·d
δ . The crucial observation we make is that the

318 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

vertices of the cluster-graph correspond to clusters of radius δW . These clusters
may overlap, but their centers can lie in only one cluster. In other words, if these
clusters are shrunk in half, they do not intersect. Thus the vertices correspond
to disjoint clusters of radius δ · W/2. Now, it is possible to bound the number
of vertices within distance at most t · l = tW (log n)

1
4·d . A simple packing argu-

ment shows that the number of balls of radius r that can be packed in a ball
of radius R is bounded by O((R/r)d), where d is the dimension of the space.
In our case, the number of balls of radius r = δW

2 that can be packed in a

ball of radius R = tW (log n)
1

4·d is at most O((t·(log n)
1

4·d
δ2)d). Thus the maximum

number of vertices (and edges, due to the constant degree) that can be reached

when performing Dijkstra’s algorithm starting from vertex u is O((t·(log n)
1

4·d
δ2)d).

Since t, d and δ are constants, O((t·(log n)
1

4·d
δ2)d) = O((log n)

1
4). We conclude

that Dijkstra’s algorithm for a shortest path query has a time complexity of
O((log n)

1
4 · (log((log n)1/4))) = O(log n).

The obvious consequence is that all O(n) shortest path queries can be an-
swered in O(n log n) time, and hence, we have proved the following theorem:

Theorem 2. In the algebraic decision tree model of computation, given a set V
of n points in d-dimensional space, and any real constant t>1, a t-spanner of
the complete Euclidean graph can be constructed in O(n log2 n

log log n) time such that
the spanner has O(n) edges, constant degree and weight O(1) · wt(MST). The
constants implicit in the O-notation depend on t and d.

3 An Improved Spanner Algorithm

In the rest of the paper, we describe an efficient algorithm to construct sparse
spanners with a running time of O(n log n).The running time of O(n log n) for
our algorithm is achieved by designing an O(n)-time algorithm for the clustering
step, thus executing all the clustering steps in O(n log n) time. Note that the
running time is O(n log n) even if clustering is executed O(log n) times.

One crucial idea that we employ to speed up the clustering is to replace
the real-valued weights by integral values. As observed in [4], the shortest path
queries required by the algorithm need not be answered precisely; approximately
correct answers suffice. A convenient way to achieve the integralization is to use
the floor /ceiling function. However, this assumes a more powerful model of com-
putation. In order to get around this problem, we compute the O(n) floor/ceiling
functions needed by using operations allowed under the RAM model. The sec-
ond crucial component of our algorithm is an implementation of the clustering
algorithm in O(n) time assuming small integral weights for the edges. We also
prove that the integralization introduces only a bounded amount of error, and
that this error retains the correctness of the other required operations.

The improved spanner algorithm can be roughly described as follows. It is im-
portant to note that the skeleton of the algorithm is similar to the DN-clustering

Sparse Geometric Spanners 319

algorithm from [4]. In particular, this improved algorithm also runs in O(log n)
phases. The algorithm starts with an empty graph G′ and employs the same
preprocessing step to eliminate all but a linear number of edges. This step is
done by a call to the t-spanner algorithm presented by Arya et. al. in [1], with√

t/t′ as input parameter. Note that this algorithm in [1] is correct and runs in
time O(n log n). It also guarantees that the graph has constant degree. As before,
short edges of length at most D/n are simply added to G′; their contribution
to the overall weight of the spanner is bounded by wt(MST). The greedy algo-
rithm is now simulated on the remaining edges and the edges are added to the
graph G′. The edges of the graph have real-valued weights that are equal to the
Euclidean distance between their endpoints. The edges are sorted by increasing
weight and then processed in log n phases. Each of the edges also have cor-
responding integer-valued weights that are sufficiently close approximations of
the real-valued weights; these integer-valued weights change through the course
of the algorithm. In order to distinguish between the real- and integer-valued
weights, we assume that there are two different weight functions defined on the
edges of G′. For edge e = (u, v), the real-valued weight function wt(e), as men-
tioned before, is defined as the Euclidean distance d(u, v) between u and v. The
integer-valued weight function denoted by Iwti(e) is a function of wt(e) and the
phase number i is maintained by the algorithm as described later. Whenever the
phase number is clear by the context, we use the simpler notation Iwt(e) instead
of Iwti(e). Also, unless specified otherwise, we assume that when we refer to the
weight of an edge, we are referring to the real-valued weight of the edge. At the
start of each phase, the integer-valued weight function Iwt(e) is recomputed for
this phase. Then a set of vertices of G′ are selected as cluster-centers and a clus-
ter graph H is constructed from the current spanner graph G′ (using the weight
function Iwt); this graph H is a simpler graph than the graph G′ and distances
between vertices in H are reasonably close to distances between the same pair of
vertices in G′. The differences of this from the one in [4] lies in the fact that the
cluster-centers have to be selected before the clustering is done and the cluster-
ing is done with the weight function Iwt. As mentioned before, we improve on
the time complexity of this clustering step and show how it can be implemented
to run in O(n) time. Once the cluster graph H is constructed, the algorithm
processes the set of edges for that phase. Greedy processing of an edge e = (u, v)
entails a shortest path query, i.e., checking whether D{G′,wt}(u, v) ≤ t ·wt(e). As
in [4], this query is answered in O(1) time per query by performing an approxi-
mate shortest path query on the simpler graph H. If the answer to the query is
yes, then edge e is added to the graph G′, else it is discarded. Each of the steps
is described in more detail in the rest of the paper.

Since the edges that remain to be considered have weights in the range
(D/n, D] and they are processed in log n phases, the edges can be sorted into
log n bins, where the i-th bin has edges of weight in the range (2i−1·D/n, 2i·D/n].
At the start of each of the log n phases, the algorithm calls the “clustering” al-
gorithm, which is required to answer the shortest path queries efficiently. The
clustering algorithm is described in section 3.2. Later we show that the running

320 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

time of our algorithm is O(n log n). Note that processing is done in log n phases.
If fewer number of phases are used as in the faster spanner algorithm described
in section 2.1, then the error due to integralization could be too large. Even if
fewer number of phases can be used, the running time of the overall algorithm
will remain as O(n log n), since it is dominated by other steps in the algorithm.
In particular, the integralization itself has an initial cost of O(n log n).

The detailed algorithm is given below in Fig. 1.

Algorithm Improved-Greedy(V, t, t′)
1. Compute a (

√
t/t′)-spanner G = (V, E) using the algorithm from [1]

2. δ := min
(√

tt′−t′
4(

√
tt′+3t′) ,

√
tt′+34

√
tt′+1−(

√
tt′+5)

24

)

3. sort E; D := weight of largest edge in E;
4. W0 := 0; Wi := 2(i−1)D/n for i = 1, 2, . . . , log n
5. Ii := (Wi, Wi+1] for i = 0, 1, . . . , (log n − 1)
6. Ei := (sorted) edges of E with weights in Ii; E′ := E0; G′ := (V, E′);
7. Integralize(E0, 0)
8. C1 := Naive-Centers(G′, δ · W1); M1 := ∅
9. for i := 1 to log n do
10. Integralize(Ei, i)
11. ReIntegralize(E0 ∪ E1 ∪ . . . ∪ Ei−1)
12. H := Cluster-Graph(G′, Iwt, Ci, r, R)
13. for each edge e = (u, v) ∈ Ei do
14. if not Short-Path(H, u, v,

√
tt′ · d(u, v)) then

15. E′ := E′ ∪ {e}; G′ := (V, E′)
16. Ci+1 := Update-Centers(H, i, Ci, r)
17. output G′

Fig. 1. The O(n log n)-time spanner algorithm

3.1 Integralization

As mentioned before, in order to speed up the cluster-graph computation, we re-
place the real-valued edge weights by integral values. The integralization changes
in every phase. It is done in such a way that the edge weights and distances en-
countered in that phase are always in the range [0..N], where N = c · n for
some constant integer c. The choice of c will dictate the errors introduced in the
distance computations; this will be discussed later.

A closer inspection of a phase leads to the following simple observations. At
the start of phase i, the spanner graph constructed so far has edges of weight
at most Wi. During phase i, the edges considered for inclusion by the greedy
algorithm are in the range (Wi, 2Wi]. The shortest path queries for an edge of
length l involves checking whether the distance between a given pair of vertices

Sparse Geometric Spanners 321

is at most t · l. Hence the longest paths that need to be dealt with during phase
i are of weight t · 2Wi. The idea is to make the largest distance to correspond
to the integer c · n. To be on the safe side, since there are small errors in the
distance computations, we set 2t · 2Wi to correspond to c · n. Thus, in phase i,
unit integer length will correspond to real length of Ui = 4·t·Wi

c·n .
Although a constant-time floor/ceiling function is not used in the algorithm,

a convenient way to describe the integralization is as follows: Iwti(e) := dwt(e)
Ui

e.

Error Bounds: Assuming the integralization defined above, we observe that
the function Iwt always involves a “rounding up”. Hence, Iwti(e) · Ui ≥ wt(e).
It is also easy to see that in phase i, the error in the length of any single edge
of the spanner graph is at most Ui. In other words, Iwti(e) · Ui − wt(e) ≤ Ui.
Note that this error is an additive or an absolute error. Since any simple path
can use at most n − 1 edges, it is also easy to see that the error in the length
of any simple path of the spanner graph is at most nUi. Another consequence
is that given two simple paths P1 and P2, if Iwt(P1) = Iwt(P2), then |wt(P1) −
wt(P2)| ≤ nUi. It follows that nUi is also a bound on the error that can be
introduced when running Dijkstra’s single-source-shortest-path algorithm using
the integral weights instead of the real weights. The following lemma formalizes
this statement:

Lemma 1. In phase i, given any ε > 0 and given vertices u and v in G′

such that D{G′,wt}(u, v) ≥ Wi, D{G′,wt}(u, v) ≤ D{G′,Iwt}(u, v) · Ui < (1 +
ε) · D{G′,wt}(u, v).

Proof. We give a sketch of the proof. In phase i, for a path P such that wt(P) ≥
Wi, the error in computing its weight is at most nUi. Thus the relative error
(i.e., the ratio of the error to the weight of the path) is at most nUi/Wi = 4t

c .
The proof follows by setting ε = 4t

cδ > 4t
c and using the well-known property of

Dijkstra’s algorithm that the minimum value in the priority queue is monoton-
ically non-decreasing. Note that ε can be made as small as desired by choosing
an appropriate value of c. ut

Corollary 1. For a path P in G′ with wt(P) ≥ δWi (i.e., Iwt(P) ≥ R), the
absolute error in computing its weight is at most nUi, and the relative error is
at most nUi

δWi
= ε, for any ε > 0.

Computing the Integralization. Here we show how to compute the integer
values of the weights of the edges over all phases in O(n log n) time without
using the floor/ceiling function.

We first observe that the spanner graph has at most O(n) edges at the start
of any phase. Consider a specific phase i. In this phase, for a specific edge, since
its integer value is in the range [0..N] (where N = c · n), it can be computed
in O(log n) time without the use of the floor/ceiling function by performing a
binary search on the set of real values j · Ui, for j = 0, . . . , N . We assume that

322 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

the function Integralize(E, i) performs this operation for each edge in the set
E in O(log n) time per edge.

If the above observations are used in a naive fashion for all edges, then the
cost of integralization is O(n log n) just for one phase. Since the number of phases
is not a constant, the integralization would turn out to be too expensive. Our
algorithm spends O(log n) time for computing the integralization of an edge
weight over all the phases. The idea is to compute the integral value in O(log n)
time when the edge is encountered for the first time. Integralizations of an edge
for subsequent phases is done by calling ReIntegralize, and are computed in
O(1) time from the integer weights of the edge computed in the previous phase.
If the integral weight of an edge is I in phase i, then the integral weight of the
edge in phase i+1 will be I/2 if I is even, and (I+1)/2 if it is odd. This is correct
since Ui+1 = 2Ui, i.e., the integralization in phase i+ 1 is twice as coarse as that
in phase i. Checking if an integer is odd or even cannot be done in constant time
in the real RAM model, but can quite easily be accomplished by using O(n log n)
preprocessing. One way to accomplish this would be to build a balanced binary
tree including c · n elements with the values 1 . . . c · n. Every element in the tree
also contains a pointer to the element in the tree containing the value dval

2 e. This
value can be computed in time O(log n) and searching the tree for the value is
also done in O(log n). Hence, by using O(n log n) time preprocessing, the integral
weight of an edge for the next phase can be computed in constant time. Note
also that the relative error for an edge with newly computed weight is less than
Ui+1, hence Lemma 1 still holds. It is clear that ReIntegralize(F) performs
its operation for each edge in the edge set F in O(1) time per edge.

The above explanation proves that the integralization is computed in time
O(n log n) for all edges over all phases. The integer weights are then used directly
in the clustering algorithms described below.

3.2 Clustering the Graph

First for some definitions. Here we assume that G = (V, E) is an arbitrary
weighted graph, with weight function w defined on the edges in E. The following
definition of a cluster is modified from the one in [4] to allow for arbitrary weight
functions. The definition of a cluster-cover is also modified and is defined for a
given set of cluster-centers.

Definition 1. Cluster, cluster-center, and radius
Given a Euclidean graph G = (V, E), a vertex v ∈ V , a radius r, and a weight
function w defined on the edges in E, Cluster(G, v, r, w) is defined as the set of
all vertices u such that DG,w(v, u) ≤ r. The vertex v is called the cluster-center
of this cluster and r is called the radius of the cluster.

Definition 2. Cluster-cover
Given a Euclidean graph G = (V, E), a set C = {v1, v2, . . . , vm} ⊆ V , a ra-
dius r, and a weight function w defined on the edges in E, the Cluster-
Cover(G, C, r, w) is defined as a set of clusters K = {K1, K2, . . . , Km} such

Sparse Geometric Spanners 323

that Ki is a cluster with radius r and cluster-center at vi (i = 1, 2, . . . , m), and
such that K1 ∪ K2 ∪ · · · ∪ Km = V .

During the course of the algorithm, clustering is performed on the spanner
graph G′ with the weight function Iwt. Also, the set C and the value r will be
chosen in such a way that the cluster-cover always exists. In general, clusters in
a cluster-cover may overlap. We also modify the definition of a cluster-graph so
that it is a bit more general and it is defined for a given set of clusters and for
an arbitrary weight function.

Definition 3. Cluster graph
Assume that G = (V, E) is a Euclidean graph with a weight function w defined
on its edges. Assume that C = {v1, v2, . . . , vm} ⊆ V is a given set of cluster-
centers. For a given radius r, we assume that K = {K1, K2, . . . , Km} is equal to
Cluster-cover(G, C, r, w). Given R ≥ r, the Cluster-graph(G, w, C, r, R)
is defined as a graph H = (V, EH) with a weight function w defined on its edges
EH . The weight of an edge [u, v] in EH is defined to be equal to D{G,w}(u, v)
The edges of H are defined as follows.

Intra-cluster edges: For all Ki, and for all u ∈ Ki, [u, vi] ∈ EH .
Inter-cluster edges: For all vi, vj ∈ C, [vi, vj] is an inter-cluster edge

if either:
1. vi /∈ Kj and vj /∈ Ki and D{G,w}(vi, vj) ≤ R (Type 1), OR
2. there exists e = (ui, uj) ∈ E such that ui ∈ Ki, uj ∈ Kj (Type 2).

Computing the Cluster Graph. Here we describe how the cluster graph is
computed efficiently under some assumptions. We first describe how a cluster-
cover is computed. Once a cluster-cover is computed we show that the cluster
graph can be easily computed. Note that the input to the cluster-cover computa-
tion is a weighted graph G(V, E) with a weight function w defined on its edges,
a set C ⊆ V of cluster-centers and a radius R. We will assume that |V | = n,
|E| = O(n), the weight function w is integral, and R is an integer. Since we
do not have to deal with distances greater than R, we can safely assume that
the weight of any edge is an integer value in the range [0 .. R]. We will further
assume that the cluster-centers are chosen in such a way that a cluster-cover
exists, which will be shown in Section 3.3.

The obvious way to implement this algorithm is as was done in [4], i.e., to
run Dijkstra’s SSSP algorithm from all the cluster-centers and to compute the
clusters in the cluster-cover. However, this has a running time of O(n log n).
In order to speed it up, we run Dijkstra’s algorithm in parallel from all the
cluster-centers and use a simple and faster priority queue, which we denote by
PQ. The priority queue we use is an array of size R, indexed from 0 to R. This
is sufficient for our purposes because of the following reasons. Firstly, the weight
function is integral and the array contains all possible distance values from the
cluster-centers to vertices in the clusters. Secondly, in Dijkstra’s algorithm, once
a vertex has been extracted from the priority queue, its distance from the source
will never be updated again and the distance from the source at the time of the

324 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

extraction is the correct distance from the source. In other words, the minimum
value of the items in the priority queue is monotonic. Since the priority queue is
an array, Extract-Min can be implemented as a scan through the array for the
“next” largest item. This means that the O(n) calls to Extract-Min needed
by Dijkstra’s algorithm can be implemented in O(n + R) time.

One problem is that clusters can overlap and that vertices may have entries in
the priority queue with distances from several cluster-centers. This can be taken
care of by augmenting the priority queue entries to also store information about
the vertex as well as the corresponding cluster-center. It should also be noted that
Dijkstra’s algorithm needs to perform a number of Relax steps and that in each
such step the priority queue may need to be updated. The process of Relaxing
an edge (u, v) consists of testing whether we can improve the shortest path to v
found so far by going through u and, if so, updating the value for v. It should be
pointed out that this is the only place where we are unable to eliminate the use
of Random Access since it is critical that this update be performed efficiently,
i.e., in O(1) time. Also note that an edge (u, v) may be Relaxed several times,
each time with respect to a different cluster-center. Thus the time and space
complexity of the algorithm is affected by the amount of overlap of the clusters
in the cluster-cover. A careful implementation of cluster-cover can be made to
run in time O(m · cv · ce + R), where m is the number of cluster-centers, cv is
the maximum number of clusters that contain a vertex, and ce is the maximum
number of clusters that contain one of the endpoints of an edge. (In Section 3.3.
we show that for our purposes cv and ce are constants.)

We now describe how to compute the cluster graph. The input is a weighted
graph G with a weight function w, a set of cluster-centers C = {v1, . . . , vm}, and
two different radii r and R. In order to compute the cluster graph, the algorithm
computes a cluster-cover from the same set of cluster-centers but with the two
radii, r and R. Let the cluster-covers with radii r and R be denoted by Kr

and KR respectively. We augment the cluster-cover procedure to also produce
a data structure that supports the following queries for both the cluster-covers:
(a) FindCenters(v,K): Given v ∈ V , it returns all cluster-centers vi such
that v is in a cluster from K centered at vi, i.e., DG,Iwt(v, vi) is at most the
radius of the clusters in K. it also returns DG,w(v, vi) for these cluster-centers,
and (b) ComputeDistance(vi, v): Given v ∈ V , and a cluster-center vi, it
returns DG,Iwt(v, vi) if DG,Iwt(v, vi) ≤ R; otherwise, it returns the value ∞.

Now the cluster graph H = (V, EH) is computed easily as follows. The intra-
cluster edges of H are computed by performing FindCenters queries for each
vertex v ∈ V in the cluster-cover Kr and adding the corresponding edges. The
inter-cluster edges can be of two types. An edge [vi, vj] of type 1 is added if
vi /∈ Kj and vj /∈ Ki and D{G,Iwt}(vi, vj) ≤ R. Note that Ki and Kj are clusters
of radii r with centers at vi and vj respectively. For every cluster-center vi, we
use the FindCenters query to list all the clusters from KR that it is contained
in. The centers vj of these clusters satisfy the condition that D{G,w}(vi, vj) ≤ R.
Now we use the ComputeDistance queries to make sure that vi /∈ Kj and
vj /∈ Ki. A careful consideration of all the steps above shows that the time

Sparse Geometric Spanners 325

complexity of computing the cluster graph is O(n·c2
v). Having the cluster centers

before performing the clustering enables clusters to be grown in “parallel” and
thus the above algorithm is able to use one common priority queue to grow all
the clusters, and is consequently able to perform the clustering efficiently.

Maintaining the Cluster Graph. An edge of type 2 is added if there exists an
edge e = (ui, uj) ∈ E such that ui ∈ Ki and uj ∈ Kj . During the computation of
the cluster graph H, only intra-cluster edges and inter-cluster edges of type 1 are
added. Additional edges may be added during a phase of the greedy algorithm.
Every time the greedy algorithm decides to add an edge e = (u, v), several
inter-cluster edges of type 2 may be added to H. This is achieved as follows: for
every edge e = (ui, uj) that is to be added to G′, perform FindCenters queries
for ui and uj from Kr and join the corresponding cluster-centers by an inter-
cluster edge in H. The weight of such edges are computed by performing two
ComputeDistance queries for ui and uj with the corresponding cluster-centers
and adding it to w(ui, uj). The above function runs in O(1) time.

Selecting the Cluster Centers for a Phase. In order for the Cluster-
graph function to be implemented efficiently, it needs to have the set of cluster-
centers as input. For the first phase, the cluster-centers C1 are identified in a
greedy fashion using the weighted graph G′ = (V, E0) with real-valued edge
weights, and using a radius of r. This is referred to as Naive-Centers in the
algorithm given in Fig. 1. Naive-Centers runs in O(n log n) time, since this can
be implemented using the standard Dijkstra’s algorithm. For subsequent phases,
cluster-centers are identified (using UpdateCenters) in a different way. The
set of cluster-centers are always chosen as a subset of the cluster-centers used
in the previous phase. At the end of each phase, the algorithm selects a set of
cluster centers for the next phase. These centers are guaranteed to be sufficiently
far apart from each other. More specifically, the cluster centers Ci used in phase
i are guaranteed to be at a distance of at least r/2.

In phase i, the set of cluster-centers for phase i + 1 is computed as Ci+1 :=
Ci\Mi, i.e., a subset Mi of the cluster-centers are deleted from the list of cluster-
centers. We now describe how the set Mi is chosen. M1 is the empty set, implying
that C2 is identical to C1. For i > 1, the algorithm picks a cluster-center from Ci

and deletes all cluster-centers that are within distance r from it. (It is important
to note that since the integralization changes in every iteration, vertices that
are distance r′ in one iteration are at distance r′/2 in the next iteration.) This
is easily implemented by using the FindCenters query that is available after
the cluster-cover for phase i has been computed. The next cluster-center is then
picked and the process is continued until all centers are either picked or marked.
Clearly this process runs in time O(m · cv). We now show that in phase i the
cluster-centers are guaranteed to be at a distance of at least r/2 from each other.
In phase 1, since cluster centers are identified by using a radius of r, all cluster
centers are at a distance of at least r/2 from each other. In phase i − 1, if two
cluster-centers are at a distance of r or less, then one of them will get marked,

326 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

and will subsequently be deleted from the list Ci for phase i. Lemma 2 specifies
conditions under which vertices belong to at most a constant number of clusters.

Lemma 2. If C={v1, v2, . . . , vm} ⊆ V (G) vertices vi, vj∈C, D{G,Iwt}(vi, vj) >
r′, and if Kr′′ = {K1, K2, . . . , Km}, is returned by Cluster-Cover(G, C, r′′)
and if r′′ ≤ c′ · r′ for some constant c′, then each vertex v ∈ V (G) is contained
in at most a constant (which depends on d and c′) number of clusters from Kr′ .

The conditions of the lemma are true for the cluster graph as constructed
above with r′ = r/2 and c′ = 2 or c′ = 4t/δ. Hence any vertex in H is part
of at most a constant number of clusters in Kr or KR. The proof follows from
standard packing arguments. Similar arguments also show that the number of
inter-cluster edges incident on a cluster-center is also a constant (although it
might have a large number of intra-cluster edges). It follows that the degree of
any vertex in H that is not a cluster-center must be a constant, and the size
of H is O(n). Note that since the weights have been integralized, the resulting
clusters are approximate clusters; they are a little bit larger (since integers are
always rounded up) than the exact clusters.

3.3 Answering Shortest Path Queries

When the algorithm Improved-Greedy considers an edge e = (u, v) for inclu-
sion in the spanner graph, it needs to answer a shortest path query. It needs
to check if D{G′,wt}(u, v) ≤ t · d(u, v), where G′ is the spanner graph con-
structed so far. As noted earlier, it is sufficient for this query to be answered
approximately. So, it is sufficient to devise a procedure to efficiently check if
D{G′,wt}(u, v) ≤ t(1 + ε′) · d(u, v), for some small ε′ > 0. In other words, it
is sufficient to check if D{G′,Iwt}(u, v) ≤ t(1 + ε′′) · d(u, v)/Ui, for some small
ε′′ > 0. In fact, the algorithm will check if D{H,Iwt}(u, v) ≤ t · d(u, v)/Ui. The
time complexity of this test is a constant if D{H,Iwt}(u, v) is bounded by some
constant multiple of r is a constant. Hence, we conclude this section by noting
that the Improved-Greedy algorithm runs in time O(n log n).

3.4 The Graph Produced by Improved-Greedy Is a t-Spanner.

In order to show that a valid cluster graph H approximates the graph G′, we
need to prove lemmas that are analogous to Lemmas 3 and 4 from [4] modified
to account for the error introduced by the integralization. Next, we need to
show that the G′ is a t-spanner for V . Since the clusters are computed using
the function Iwt(·) instead of wt(·), clusters are not as precise as they were
in [4]. The following claims are stated without proof, which will be provided in
a full version of the paper. Consider the cluster graph H that results from the
clustering performed on G′ at the start of phase i. The following claims apply
to edges and paths in H. Many of them are modified versions of corresponding
lemmas in [4]:

Sparse Geometric Spanners 327

1. Let K be equal to Cluster(G′, v, r, Iwt) (i.e., it is a cluster with cluster-
center v and radius r = δW) computed in iteration i of the algorithm. If u
is a vertex in K, then D{G′,wt}(v, u) ≤ (1 + ε)rUi. Otherwise, if u /∈ K, then
D{G′,wt}(v, u) > rUi.

2. If u is a cluster-center and [u, v] is an intra-cluster edge in the cluster-graph
H, then D{G′,wt}(u, v) ≤ (1 + ε

δ)rUi.
3. If [u, v] is an inter-cluster edge, then ri < D{G′,wt}(u, v) ≤ (1+ε)·(Ri+2ri)Ui.
4. If there exists a path PH in H between vertices u and v such that Iwt(PH) =

L, then there exists a path PG′ between u and v such that Iwt(PG′) ≤ L.
5. Let H be a valid Cluster graph of G′ with cluster radii r and R = r/δ.

Let PG′ be a path between u and v in G′ of weight Iwt(PG′) such that
D{G′,wt}(u, v) > (1 + ε)W − 2δW . Then there exists a path PH between u

and v in H such that Iwt(PH) ≤
(

1+6δ
1−2δ

)
· Iwt(PG′).

The above claims are enough to prove that H is a cluster graph for G′, and
consequently that G′ is a t-spanner. As argued in Section 3.2, the resulting
spanner graph has constant degree. The weight of the spanner is O(1) ·wt(MST)
because of the leapfrog property from [4], the proof is omitted in this version.

This concludes the proof of Theorem 1.

4 Conclusions and Acknowledgments

We present improved algorithms for the sparse spanner problem. In the process,
we design linear-time algorithms for a clustering problem, which is likely to be
of independent interest.

We are grateful to Professor Michiel Smid for helpful discussions and for
pointing out errors in an earlier draft.

References

1. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners:
short, thin, and lanky. In Proc. ACM STOC’95, pages 489–498, 1995.

2. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42:67–90, 1995.

3. D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners
and approximate shortest paths. In Proc. CCCG’96, pages 155–160, 1996.

4. G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean
spanners. Internat. J. Comput. Geom. Appl., 7(4):297–315, 1997.

5. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete Comput. Geom., 7:13–28, 1992.

6. D. Mount. Personal communication, 1998.
7. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, New York, NY, 1985.
8. S. B. Rao and W. D. Smith. Improved approximation schemes for traveling sales-

man tours. In Proc. ACM STOC’98, 1998.

328 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan

9. J. S. Salowe. Construction of multidimensional spanner graphs with applications
to minimum spanning trees. In Proc. ACM SoCG’91, pages 256–261, 1991.

10. M. Thorup. Undirected single-source shortest path with positive integer weights
in linear time. J. ACM, 46(3):362–394, 1999.

11. P. M. Vaidya. A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete Comput. Geom., 6:369–381, 1991.

Computing the Penetration Depth
of Two Convex Polytopes in 3D?

Pankaj K. Agarwal1, Leonidas J. Guibas2, Sariel Har-Peled3,
Alexander Rabinovitch4, and Micha Sharir5

1 Center for Geometric Computing, Department of Computer Science, Box 90129,
Duke University, Durham, NC 27708-0129, USA. tpankaj@cs.duke.edu

2 Computer Graphics Laboratory, Computer Science Department, Stanford
University, Stanford CA 94305 tguibas@cs.stanford.edu

3 Center for Geometric Computing, Department of Computer Science, Box 90129,
Duke University, Durham, NC 27708-0129, USA. tsariel@cs.duke.edu

4 Synopsys Inc., 154 Crane Meadow Rd, Suite 300, Marlboro, MA 01752, USA.
talexra@synopsys.com

5 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel; and
Courant Institute of Mathematical Sciences, New York University, New York,

NY 10012, USA. tsharir@math.tau.ac.il

Abstract. Let A and B be two convex polytopes in R
3 with m and

n facets, respectively. The penetration depth of A and B, denoted as
π(A, B), is the minimum distance by which A has to be translated so
that A and B do not intersect. We present a randomized algorithm that
computes π(A, B) in O(m3/4+εn3/4+ε + m1+ε + n1+ε) expected time,
for any constant ε > 0. It also computes a vector t such that ‖t‖ =
π(A, B) and int(A + t) ∩ B = ∅. We show that if the Minkowski sum
B ⊕ (−A) has K facets, then the expected running time of our algorithm
is O

(
K1/2+εm1/4n1/4 + m1+ε + n1+ε

)
, for any ε > 0.

We also present an approximation algorithm for computing π(A, B). For
any δ > 0, we can compute, in time O(m+n+(log2(m+n))/δ), a vector
t such that ‖t‖ ≤ (1 + δ)π(A, B) and int(A + t) ∩ B = ∅. Our result also
gives a δ-approximation algorithm for computing the width of A in time
O(n + (log2 n)/δ), which is simpler and slightly faster than the recent
algorithm by Chan [4].

? Work by P.A. was supported by Army Research Office MURI grant DAAH04-96-
1-0013, by a Sloan fellowship, by NSF grants EIA–9870724, and CCR–9732787,
and by a grant from the U.S.-Israeli Binational Science Foundation. Work by L.G.
was supported in part by National Science Foundation grant CCR–9623851 and by
US Army MURI grant 5–23542–A. Work by S.H.-P. was supported by the second
author was supported by Army Research Office MURI grant DAAH04-96-1-0013.
Work by M.S. was supported by NSF Grants CCR-97-32101, CCR-94-24398, by
grants from the U.S.-Israeli Binational Science Foundation, the G.I.F., the German-
Israeli Foundation for Scientific Research and Development, and the ESPRIT IV
LTR project No. 21957 (CGAL), and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 328–338, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Computing the Penetration Depth of Two Convex Polytopes in 3D 329

1 Introduction

Let A and B be two convex polytopes in R
3, with m and n facets, respectively.

The penetration depth of A and B, denoted as π(A, B), is defined as

π(A, B) = min{‖t‖ | int(A + t) ∩ B = ∅, t ∈ R
3}.

One of the motivations for this problem comes from the field of robotics. Con-
sider, for instance, the problem of collision detection in robot motion planning,
where distance between objects is measured in the Euclidean metric. Numerous
efficient algorithms are known for computing the minimum distance between
two polyhedra in two and three dimensions (see [7,8]). Whenever two objects
intersect, this distance measure is zero. Thus, it fails to provide any information
about the extent of penetration. The penetration depth is a useful and natural
measure of this extent. In addition, penetration depth can be a useful quantity
to have available during physical simulations. Such simulations sample a moving
system during discrete time steps and detect collisions between objects using
a variety of methods. When a collision is detected, a penetration has usually
occurred, because of the discrete time sampling. The penetration depth of the
colliding bodies can be very useful in computing how to roll the simulation back
to the instant of first contact, and in estimating the impulse force required for
the appropriate collision response.

The problem is closely related to that of computing the width of a convex
polytope A. Recall that the width of A is the shortest distance between any
pair of parallel planes that support A. We will note below that if A = B then
π(A, A) = width(A). Thus the penetration depth is a natural extension of width.
The best algorithm known for computing the width is by Agarwal and Sharir
[2]; it is a randomized algorithm that runs in O(n3/2+ε) expected time, for any
constant ε > 0. This algorithm is based on a randomized algorithm, presented
in [2], for computing the closest bichromatic pair of lines for two vertically-
separated sets L and L′ of lines in R

3 in expected time O(|L|3/4+ε|L′|3/4+ε +
|L|1+ε + |L′|1+ε), for any ε > 0. We use this algorithm for computing π(A, B) in
expected time O(m3/4+εn3/4+ε + m1+ε + n1+ε), for any ε > 0. Actually, we will
show that if the number of facets of the Minkowski sum B ⊕ (−A) is K, then the
expected running time of the algorithm is O(K1/2+εm1/4n1/4+m1+ε+n1+ε), for
any ε > 0. This is, to the best of our knowledge, the first subquadratic algorithm
for computing π(A, B).

Dobkin et al. [10] showed that A and B can be preprocessed in O(m+n) time
so that, for a direction u, the distance by which A has to be translated in direction
u to separate it from B, denoted as ∆(u), can be computed in O(log2(m +
n)) time. We use this result to obtain a simple approximation algorithm for
computing π(A, B). In particular, for any given δ > 0, we present an O(m + n +
(log2(m+n))/δ)-time algorithm for computing a vector u such that int(A+u)∩
B = ∅ and ‖u‖ ≤ (1 + δ)π(A, B).

Our results imply an “output-sensitive” algorithm or computing the width of
a convex polytope A with n facets in randomized expected time O(K1/2+εn1/2 +

330 P.K. Agarwal et al.

n1+ε), where K is the number of facets in A⊕(−A), and a (1+δ)-approximation
algorithm for computing the width of A in time O(n + (log2 n)/δ). This ap-
proximation algorithm is simpler and slightly faster than the recent algorithm
by Chan [4], which computes a (1 + δ)-approximation of width(A) in time
O(n + (logc n)/δ) for some constant c > 2. Finally, we show how the Dobkin-
Kirkpatrick hierarchical representations of two convex polytopes A and B can
be used to obtain efficient implementation of various extremal queries concern-
ing the Minkowski sum B ⊕ (−A) without its explicit construction. For lack of
space, we omit this part from the current abstract.

2 Computing the Penetration Depth

Before describing the algorithm for computing π(A, B), we note the relationship
between the penetration depth of two polytopes and the width of a polytope.

Proposition 1 For any convex polytope P in R
3, width(P) = π(P, P).

Proof. Let λ denote the length of the shortest translation vector that separates
two initially-identical copies of P . Let v be the vector realizing the width of
P ; that is, v is a shortest vector between two parallel supporting planes of P
that realize the width of P . Clearly, int(P + v) ∩ int(P) = ∅, and therefore
λ ≤‖ v ‖= width(P). As for the other direction, let u be a shortest separating
translation vector. Clearly, P and P + u touch each other but have disjoint
interiors. Thus, there is a plane H that separates the interiors of P and P + u,
and intersects both P and P +u. In particular, P lies between the two planes H
and H − u. Since the distance between H and H − u is at most ‖ u ‖, it follows
that

width(P) ≤ d(H, H − u) ≤‖ u ‖= λ.

This proposition suggests that we attempt to modify the width-algorithm by
Agarwal and Sharir [2] to compute π(A, B), which is indeed what we proceed to
do. Conversely, we will also specialize the new techniques developed in this paper
to obtain new approximation and output-sensitive algorithms for computing
width(A).

Overall algorithm. Let A and B be two convex polytopes as defined above.
Using linear programming, we can determine in O(m + n) time whether A and
B intersect [3]. If A and B do not intersect, then we set π(A, B) = 0 and stop.
So we assume that A ∩ B 6= ∅.

We can formulate the problem of computing π(A, B) in terms of the config-
uration space that represents all possible placements of A relative to (the fixed)
B. That is, A turns into a point p(A) and B turns into the Minkowski sum
B ⊕ (−A) = {x − y | x ∈ B, y ∈ A}. Let us assume that the initial location of
the point p(A) corresponding to A in the configuration space is the origin O of
the coordinate system. Note that p(A) is inside the polytope P = B ⊕ (−A) if

Computing the Penetration Depth of Two Convex Polytopes in 3D 331

and only if A (in the corresponding translated placement) and B intersect. By
construction, it follows that

π(A, B) = min{d(O, x) | x ∈ ∂P}.

Let x ∈ ∂P be a point on the boundary so that d(x, O) = d(O,P). Then −→
Ox

is orthogonal to the facet of P containing x, because otherwise we could obtain
an even shorter distance from O to ∂P, which is impossible (alternatively, the
penetration distance is the smallest radius of a ball Br, centered at the origin,
that touches the boundary of P). Therefore, d(x, O) is attained as a shortest
distance between O and a plane that contains the corresponding facet of P. In
particular, we can compute the penetration distance by computing the distance
between the origin and all those planes.

Every facet of P is attained as a Minkowski sum of the form g ⊕ (−f), where
g is a facet, edge, or vertex of B and f is, respectively, a vertex, edge, or facet
of A. It is well known that there are only O(m + n) facets of P for which g is
a facet or a vertex of B (and f is a vertex or a facet of A), and they can all
be found in O((m + n) log(m + n)) time (see e.g. [5]). Hence, determining the
minimum distance from O to all these facets can be done in near-linear time.
The problem is to handle facets that are attained as Minkowski sums of pairs
of edges of the form e ⊕ (−e′) such that e is an edge of B and e′ is an edge of
A. In the worst case, there can be Ω(mn) such facets. However, not every such
pair necessarily generate a facet of P.

We partition the edges of A and B into a family of pairs of subsets of edges

F = {(A1, B1), . . . , (Au, Bu)}
such that the following five conditions hold.

(C1) Ai (resp. Bi) is a subset of the edges of A (resp. B).
(C2) Every pair (e′, e) ∈ Ai × Bi generates a facet of P.
(C3) Every pair of edges that generate a facet of P appears in some Aj × Bj .
(C4) For each i, the lines supporting the edges in Ai and those in Bi are vertically

separated. That is, either all lines supporting the edges of Ai lie above all
lines supporting the edges of Bi, or all of them lie below the lines supporting
the edges of Bi.

(C5) F can be partitioned into two subfamilies FA and FB such that
(i) for every 0 ≤ i ≤ blog2 mc, there are O((m/2i) log m) pairs (Ai, Bi) in

FA for which 2i ≤ |Ai| < 2i+1. Let FA
i denote the subset of these pairs.

Then
∑

(Aj ,Bj)∈FA
i

|Bj | = O(n log n); and
(ii) for every 0 ≤ i ≤ blog2 nc, there are O((n/2i) log n) pairs (Ai, Bi) in FB

for which 2i ≤ |Bi| < 2i+1. Let FB
i denote the subset of these pairs.

Then
∑

(Aj ,Bj)∈FB
i

|Aj | = O(m log m).

Suppose we have such a decomposition at our disposal. Then we can compute
π(A, B) as follows.

Algorithm: Penetration-Depth (A, B)

332 P.K. Agarwal et al.

1. For each pair (f, g) such that f is a vertex or facet of A and g is a facet or
vertex of B, and g ⊕ (−f) is a facet of P, compute the distance from the
origin to the plane containing g ⊕ (−f). Let ∆∗ be the minimum of these
distances.

2. For each pair (Ai, Bi) in the above decomposition, find the minimum distance
∆i from the origin to an element in the set of planes

Hi = {aff(e ⊕ (−e′)) | e ∈ Bi, e
′ ∈ Ai},

where aff(e ⊕ (−e′)) is the plane containing the facet of B ⊕ (−A) induced
by e and e′.

3. Return min{∆∗, mini{∆i}}.

The correctness of this algorithm is obvious. Step 1 considers all facets of P
induced by a vertex-facet pair of A and B. By Condition (C2), the algorithm
considers only those pairs of edges that generate facets of P, and by Condi-
tion (C3), the algorithm considers all such pairs. It thus suffices to show how to
compute ∆i, for each pair (Ai, Bi), and how to construct the family F .

Computing ∆i. Let (Ai, Bi) be a pair in F . Denote by Li and L′
i, respectively,

the sets of lines that contain the edges of Bi and Ai.

Lemma 2. For any pair (Ai, Bi) ∈ F , ∆i = d(Li, L
′
i).

Proof. Let e ∈ Bi and e′ ∈ Ai, and let ` and `′ be the lines that contain e and
e′, respectively. Consider the the plane h = ` ⊕ (−`′) = {x − y | x ∈ `, y ∈ `′}.
Note that for any two sets X and Y ,

d(O, X ⊕ (−Y)) = inf{||x − y|| | x ∈ X, y ∈ Y } = d(X, Y).

Therefore d(O, h) = d(O, ` ⊕ (−`′)) = d(`, `′). Thus,

∆i ≡ min
h∈Hi

d(O, h)

= min{d(O, ` ⊕ (−`′)) | ` ∈ Li, `
′ ∈ L′

i}
= min{d(`, `′) | ` ∈ Li, `

′ ∈ L′
i}

= d(Li, L
′
i).

By the above lemma, computing ∆i reduces to computing a closest bichro-
matic pair of lines in Li × L′

i. Recall that by Condition (C4) on F , the lines
in Li and L′

i are vertically separated. Agarwal and Sharir [2] showed that under
this condition, the closest pair in Li × L′

i can be computed in expected time
O(|Li|3/4+ε|L′

i|3/4+ε + |Li|1+ε + |L′
i|1+ε). Summing this bound over all pairs in

F and using property (C5), we can prove that the total time spent in computing
all ∆i’s is O(m3/4+εn3/4+ε + m1+ε + n1+ε), for any ε > 0.

Computing the Penetration Depth of Two Convex Polytopes in 3D 333

Computing F . Our decomposition is based on the following observation. Let M
denote the Gaussian diagram (or normal diagram) of B. M is a spherical map
on the unit sphere S

2. The vertices of M are points on S
2, each representing

the direction of the outward normal of a facet of B, the edges of M are great
circular arcs, each being the locus of the outward normal directions of all planes
supporting B at some fixed edge, and the faces of M are regions, each being the
locus of outward normal directions of all planes supporting B at a vertex. M
can be computed in linear time from B. Let M′ be the similarly-defined normal
diagram of −A. Consider the superposition of M and M′. Each intersection
point between an arc of M and an arc of M′, representing respectively an edge
e of B and an edge e′ of A, gives us a direction u which is orthogonal to the
plane containing the Minkowski sum e ⊕ (−e′). Furthermore, e ⊕ (−e′) is a real
facet of B ⊕ (−A). It follows that a pair of edges of A and B generates a face
of B ⊕ (−A) if and only if the corresponding arcs intersect in the overlapped
diagram. Note that the number of such arc intersections on this diagram can be
Ω(nm).

Our goal is thus to decompose all pairs of intersecting arcs of M and M′.
Without loss of generality, assume that no intersection point of M and M′ lies
on the equator. (We can either handle these intersections separately, or perform
a random simultaneous rotation on M and M′.) If an arc of M or M′ crosses the
equator, we split it into two by adding a vertex on the arc at the equator. Hence
each arc lies completely in the upper or the lower hemisphere. Let H denote the
upper hemisphere of S

2. We will describe how we decompose the set of edges
of A and B whose corresponding arcs intersect in H; the lower hemisphere is
handled similarly.

Note that the arcs in M (and in M′) are pairwise disjoint. We centrally
project the arcs of M and M′ that lie in H onto the plane h : z = 1. Since each
arc of M and M′ is a portion of a great circle, it projects to a segment (or a
ray) on h. Let E (resp. E′) be the set of projected segments of arcs in M (resp.
M′). By construction, the interiors of the segments in E (or E′) are pairwise
disjoint.

As described in [6], we decompose the set of intersecting pairs of segments in
E and E′ into a family F ′ = {(E1, E

′
1), . . . , (Eu, E′

u)} as follows. We construct
two segment trees TA and TB on the segments of E and E′, respectively. Each
node v of TA (resp. TB) corresponds to a vertical strip, with an associated subset
Ev ⊆ E (resp. E′

v ⊆ E′) that completely cross the strip. For each such subset,
we construct a balanced binary tree, sorted by the height of those segments
inside the strip (the segments are nonintersecting, and thus the ordering is well
defined). For each node w of this binary tree, we refer to the subset of segments
stored in the subtree rooted at w as a canonical subset.

For each segment e of E′ (resp. E), we find the nodes v of TA (resp. TB) such
that at least one endpoint of e lies inside the strip associated with the parent
of v; there is a logarithmic number of such nodes. We report all segments of Ev

(resp. Ev) intersected by the segment as the union of a logarithmic number of
canonical subsets. After repeating this step for all segments, for each canonical

334 P.K. Agarwal et al.

subset Ew of TA, we report the pair (Ew, E′
w), where E′

w is the subset of segments
for which the query procedure returned Ew as one of the canonical subsets. We
do the same for the canonical subsets of TB . It is shown in [5] that if segments
e ∈ E, e′ ∈ E′ intersect, then there is one such pair (Ez, E

′
z) such that e ∈ Ez

and e′ ∈ E′
z, and that the total time spent is O((m + n) log(m + n)). Finally,

for each pair (Ew, E′
w), let Aw (resp. Bw) be the set of corresponding edges of

A and B. We add the pair (Aw, Bw) to F . FA (resp. FB) is the subset of pairs
corresponding to the canonical subsets of TA (resp. TB). The argument in [5]
shows that F satisfies conditions (C1)–(C3) and (C5). Condition (C4) follows
from the following lemma.

Lemma 3. Let e be an edge of B and e′ an edge of A such that the corresponding
arcs intersect in H. Then the line supporting e lies above the line supporting e′.

Proof. Since the arcs corresponding to e and e′ intersect in H, the sum e⊕ (−e′)
is a facet of B ⊕ (−A) with an outward normal direction u that points upwards.
By construction of the diagrams, there are planes h, h′ orthogonal to u and
supporting, respectively, B at e and A at e′. Moreover, relative to the direction
u, B lies below h and A lies above h′. It follows that since A and B intersect,
the plane h is above the plane h′ relative to the direction u. Thus also the line
` containing e is above the line `′ containing e′ relative to the direction u. We
assume that the of vertices of A and B are in general position. In particular,
there is no four vertices lying in the same plane. Thus the lines ` and `′ are not
parallel. Let `0 be the unique upward-directed vertical line that passes through
` and `′. Since the angle between `0 and u is smaller that π/2, and a line in
direction u crosses h′ before h, it follows that `0 also crosses h′ (at a point on `′)
before it crosses h (at a point on `). Hence ` lies vertically above `′, as claimed.

Hence, we conclude the following.

Theorem 1. Given two convex polytopes A, B in R
3 with m and n vertices,

respectively, the penetration depth of A and B can be computed in (randomized
expected) time O(m3/4+εn3/4+ε + m1+ε + n1+ε), for any ε > 0; the constant of
proportionality depends on ε.

An output-sensitive bound. Let K denote the number of facets in P = B⊕(−A).
We derive a bound on the expected running time of the algorithm that depends
on K. Note that the pair (Ai, Bi) contributes |Ai| · |Bi| facets to P. The expected
running time of the algorithm is

u∑

i=1

O
(

(|Ai||Bi|)3/4+ε + |Ai|1+ε + |Bi|1+ε
)

= O

(
Kε

u∑

i=1

(|Ai||Bi|)3/4 + m1+ε + n1+ε

)
.

We obtain a bound on
∑

(Aj ,Bj)∈FA(|Aj ||Bj |)3/4. A similar argument bounds
the quantity for pairs in FB . Let Ki be the number of facets contributed by the

Computing the Penetration Depth of Two Convex Polytopes in 3D 335

pairs in FA
i . Recall that

∣∣FA
i

∣∣ = O(m/2i log m).

∑

(Aj ,Bj)∈FA

(|Aj | · |Bj |)3/4 =
log2 m∑

i=0

∑

(Aj ,Bj)∈FA
i

(|Aj | · |Bj |)3/4

≤
log2 m∑

i=0

23(i+1)/4

∑

(Aj ,Bj)∈FA
i

|Bj |

3/4
∣∣FA

i

∣∣1/4

≤
log2 m∑

i=0

23i/4O

((
Ki

2i

)3/4
)

·
(

m log m

2i

)1/4

≤ (m log m)1/4
log2 m∑

i=0

O

(
K

3/4
i

2i/4

)
,

where the second last inequality follow from the fact that

Ki =
∑

(Aj ,Bj)∈FA
i

|Aj ||Bj | ≥ 2i
∑

(Aj ,Bj)∈FA
i

|Bj |.

On the other hand, Ki ≤ 2i+1∑
(Aj ,Bj)∈FA

i
|Bj | ≤ c2in log n for a constant

c > 1. The term
∑

i K
3/4
i /2i/4 is therefore maximized when Ki = c2in log n for

0 ≤ i ≤ log2
K

cn log n and 0 otherwise. Hence,

log2 m∑

i=0

O

(
K

3/4
i

2i/4

)
=

log2
K

cn log n∑

i=0

O(2i/2(n log n)3/4) = O(
√

K(n log n)1/4).

Therefore
∑

(Aj ,Bj)∈FA

(|Aj | · |Bj |)3/4 = O(
√

K(mn log n)1/4), which implies the

following.

Theorem 2. Given two intersecting convex polytopes A, B in R
3 with m and

n vertices, respectively, such that B ⊕ (−A) has K facets, one can compute the
penetration depth of A and B in (randomized expected) time O

(
K1/2+εm1/4n1/4

+m1+ε + n1+ε
)

for any ε > 0.

An immediate corollary of the above theorem is the following.

Corollary 4 Given a convex polytope A in R
3 with n vertices such that A⊕(−A)

has K facets, one can compute the width of A in (randomized expected) time
O
(
K1/2+ε

√
n + n1+ε

)
for any ε > 0.

3 An Approximation Algorithm

We now present an efficient algorithm for approximating the penetration depth
of A and B. That is, for a given δ > 0, the algorithm computes a translation

336 P.K. Agarwal et al.

vector t such that A + t and B are disjoint and ‖t‖ ≤ (1 + δ)π(A, B). The
algorithm is as follows.

Algorithm: Approx-Separation (A, B)

1. Define on the unit sphere of directions a grid G of points in the following
manner: Divide the interval of angles [0, π] into

⌈
c1/

√
δ
⌉

subintervals of equal
length, delimited by the points 0 = p0, p1, · · · , pdc1/

√
δe = π, where c1 is a

constant independent of δ which will be specified later. Then the grid G is
defined as the set of points

G = {(pi, 2pj) | 0 ≤ i, j ≤
⌈
c1/

√
δ
⌉
},

where the points are given in spherical coordinates (ϕ, θ).
2. For each point p ∈ G apply the following procedure: Perform in the config-

uration space a ray-shooting query from the origin in the direction Op. Let
∆(p) be the Euclidean distance from O to the boundary of B ⊕ (−A) in this
direction. (We will explain below how the ray-shooting can be performed
efficiently without explicit computation of the Minkowski sum.)

3. Output ∆ = minp∈G{∆(p)} as an approximate solution.

Lemma 5. For any δ > 0, algorithm Approx-Separation computes correctly
a translation of length ∆ that separates A and B, such that ∆ ≤ (1 + δ)π(A, B).

Proof. See [1, Section 3].

The size of the grid built by the Approx-Separation algorithm is O(1/δ).
It was shown by Dobkin et al. [10], that after a linear-time preprocessing of A
and B into suitable data structures, the shortest separation of A and B along
any query direction u can be computed in time O(log2(m+n)). This operation is
equivalent to performing a ray shooting in the direction u from the origin towards
∂(P). Therefore, the total running time of the algorithm Approx-Separation
is O(m + n + (log2(m + n))/δ). We have thus shown:

Theorem 3. Given two convex polytopes A and B in R
3, with m and n facets,

respectively, and a parameter δ > 0, one can compute, in time O(m + n +
(log2(m + n))/δ), a separating translation for A and B whose length is at most
(1 + δ)π(A, B).

Applying Proposition 1, we also obtain the following corollary:

Corollary 6 For any δ > 0, a (1 + δ)-approximation of the width of a convex
polytope in R

3 with n facets can be computed in time O(n + (log2 n)/δ).

Computing the Penetration Depth of Two Convex Polytopes in 3D 337

Penetration depth under polyhedral metric. Another application of this technique
is to obtain a linear-time algorithm for computing the penetration depth of of
A and B under any polyhedral norm (whose unit ball is a polytope with O(1)
facets, such as the L1 or L∞ norms). Let Q be a centrally-symmetric convex
polytope with O(1) facets, and let || · ||Q denote the norm induced by Q. We
observe that the || · ||Q-distance from O to the boundary of P is equal to the
largest scaling factor λ such that λQ ⊆ P. As is easily seen, a vertex of λQ must
then touch ∂(P). Moreover, when λ varies, each vertex of λQ traces a ray from
the origin. Hence, to find the largest λ, we perform ray shootings from O in each
of the O(1) directions of the vertices of Q. For each of these ray shootings we
compute the scaling λ that corresponds to the hitting point of that ray with ∂P.
The smallest of these λ’s is the desired || · ||Q-length of the shortest separating
translation. We have thus shown:

Corollary 7 The shortest separating translation of two convex polytopes A and
B in R

3, with m and n facets, respectively, under any polyhedral norm (whose
unit ball has O(1) facets) can be computed in O(m + n) time.

Handling shallow penetrations. If the penetration of A into B is relatively small,
then one might expect that the following combinatorial property holds in prac-
tice. Let δ > 0 be a small parameter Then the number of facets of P = B⊕(−A)
whose distance from the origin is at most (1 + δ)π(A, B) is small, say Kδ. If this
is the case, then the following more efficient algorithm computes π(A, B).

Algorithm: Shallow-Penetration (A, B)

1. Construct the grid G as in Algorithm Approx-Separation.
2. Using Algorithm Approx-Separation, compute a real value ∆ such that

∆ ≤ (1 + δ/4)π(A, B).
3. Compute G′ = {u ∈ G | ∆(u) ≤ (1 + δ/4)∆}.
4. Let B be the ball of radius (1 + δ/2)∆ ≤ (1 + δ)π(A, B) centered at the

origin.
5. For each u ∈ G′, do the following:

(i) Compute the face f of P supported by the plane orthogonal to u.
(ii) By performing an implicit breadth-first search on ∂P, compute the con-

nected component Cu of (∂P) ∩ B that contains f . (If Cu = Cv for two
directions u 6= v, we compute the connected component Cu only once.)

(iii) Compute ∆u = minf∈Cu
d(O, f), where f is a facet of P in Cu.

6. Return minu∈G′ ∆u.

Steps (1)–(3) can be performed in O(m + n + (log2(m + n))/δ) time as de-
scribed in the algorithm Approx-Separation. For a given u ∈ G′, we can
compute Cu in O((1 + |Cu|) log(m + n)) time by locating u in M and M′ and
by traversing the two normal diagrams simultaneously. We omit the easy details
from this abstract. Computing ∆u takes O(|Cu|) time. Since we traverse each
connected component of (∂P) ∩B at most once, the total time spent in Step (5)
is O((Kδ + 1/δ) log(m + n)), where Kδ is the number of facets of P that lies

338 P.K. Agarwal et al.

within distance (1 + δ)π(A, B) from O. The same argument as in Lemma 5 can
be used to show that the above algorithm computes all those connected compo-
nents of (∂P) ∩ B that contain a facet within distance π(A, B) from O. Hence,
minu∈G′ ∆u = π(A, B). We thus obtain the following.

Theorem 4. Given two convex polytopes A and B in R
3, with m and n facets,

respectively, and a parameter δ > 0, one can compute π(A, B) in time O(m+n+
Kδ log(m+n) + (log2(m+n))/δ), where Kδ is the number of facets of B ⊕ (−A)
within distance (1 + δ)π(A, B) from the origin.

References

1. P.K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan. Approximate
shortest paths on a convex polytope in three dimensions. J. Assoc. Comput.
Mach., 44:567–584, 1997.

2. P. K. Agarwal and M. Sharir, Efficient randomized algorithms for some geometric
optimization problems, Discrete Comp. Geom. 16 (1996), 317–337.

3. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Ge-
ometry: Algorithms and Applications, Springer-Verlag, Berlin-Heidelberg, 1997,
pp. 29-33.

4. T. Chan, Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus, to appear in Proc. 16th ACM Sympos. Comput. Geom.,
2000.

5. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Algorithms for bichro-
matic line segment problems and polyhedral terrains, Algorithmica, 11 (1994),
116–132.

6. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir, Diameter, width,
closest line pair and parametric searching, Discrete Comput. Geom. 10 (1993),
183–196.

7. F. Chin and C.A. Wang, Optimal algorithms for the intersection and the mini-
mum distance problems between planar polygons, IEEE Trans. on Computers,
32 (1983), 1203–1207.

8. D. Dobkin and D. Kirkpatrick, A linear algorithm for determening the separation
of convex polyhedra, J. of Algorithms, 6 (1985), 381–392.

9. D. Dobkin and D. Kirkpatrick, Determining the separation of preprocessed
polyhedra–a unified approach, Proc. ICALP ’90, 400–413. Lecture Notes in Com-
puter Science, Vol. 443, Springer-Verlag, Berlin, 1990.

10. D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, Computing the
intersection-depth of polyhedra, Algorithmica 9 (1993), 518–533.

Compact Voronoi Diagrams
for Moving Convex Polygons?

Leonidas J. Guibas1, Jack Snoeyink2, and Li Zhang1

1 Department of Computer Science, Stanford University, Stanford, CA 94305, USA.
2 Department of Computer Science, University of North Carolina, Chapel Hill,

NC 27599, USA.

Abstract. We describe a kinetic data structure for maintaining a com-
pact Voronoi-like diagram of convex polygons moving around in the
plane. We use a compact diagram for the polygons, dual to the Voronoi,
first presented in [MKS96]. A key feature of this diagram is that its size
is only a function of the number of polygons and not of their complex-
ity. We demonstrate a local certifying property of that diagram, akin to
that of Delaunay triangulations of points. We then obtain a method for
maintaining this diagram that is output-sensitive and costs O(log n) per
update. Furthermore, we show that for a set of k polygons with a total
of n vertices moving along bounded degree algebraic motions, this dual
diagram, and thus their compact Voronoi diagram, changes combinatori-
ally Ω(n2) and O(kn2β(k)β(n)) times, where β(·) is an extremely slowly
growing function. This compact Voronoi diagram can be used for collision
detection or retraction motion planning among the moving polygons.

1 Introduction

Voronoi diagrams are fundamental data structures in computational geometry
and have been used in a wide variety of applications that require proximity infor-
mation among geometric objects. When a Voronoi diagram is defined on objects
that are not points, all features of these objects can contribute to the diagram’s
complexity. In this paper we will be concerned with the Voronoi diagram of k
convex polygons in the plane with a total of n vertices. Even though such a
diagram defines only k regions (one per object), its total geometric complexity
is Θ(n) — as all polygon vertices can contribute to the linear or parabolic bi-
sector segments defining the edges separating these regions. Many of the queries
we may want to use such a diagram for, however, (such as reporting the object
closest to a query point, or the closest pair among the given objects) refer only
to the objects themselves and not their individual features. In 1996, McAllister,
Kirkpatrick, and Snoeyink [MKS96] showed how to compute what they called
? Leo Guibas and Li Zhang were partially supported by NSF grant CCR–9623851 and

by US Army MURI grant 5–23542–A. Jack Snoeyink was formerly at the University
of British Columbia, where this work was partially supported by a research grant
from NSERC and the Institute of Robotics and Intelligent Systems.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 339–352, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

340 L.J. Guibas, J. Snoeyink, and L. Zhang

a compact Voronoi diagram, which is a simplified partition of the plane of size
Θ(k), but which can still be used to answer proximity queries (such as the above)
about the objects efficiently.

Voronoi-based methods have been successfully used to address proximity
queries in robotics applications, such as collision detection [LC91] or retraction
motion planning [Lat91]. In the robotics setting the convex polygons represent
obstacles to be avoided. When these obstacles move, we need to update their
Voronoi diagram accordingly. A natural framework for studying this is the ki-
netic data structures (KDS) framework, introduced by Basch, Guibas, and Her-
shberger in [BGH97]. In the KDS setting one maintains a geometric structure
under continuous motion of its defining elements through a set of certificates
proving its correctness. An event queue is maintained for the failure times of
these certificates and at each event the structure of interest, and its kinetic
proof, are appropriately updated. It turns out that maintaining kinetically the
Voronoi diagram of moving points is easy [GMR92], as a set of local conditions
(InCircle tests) certify the global correctness of the structure and local repairs
are always possible.

In this paper we study the kinetic maintenance of the compact Voronoi di-
agram for disjoint moving convex polygons in the plane. Though this diagram
contains much less detailed information than the full Voronoi diagram, it turns
out that it still has enough structure that it can be certified through a set of
topologically local certificates and thus maintained as the objects move. This
kinetic diagram can, for example, be used to track the closest pair among the
moving objects and therefore perform collision detection. Many collision detec-
tion algorithms for convex bodies rely on determining the closest pair of features
between two objects as the basic building block [LC91,Mir97]. To avoid consid-
ering all

(
k
2

)
pairs of objects, these algorithms invoke a so-called ‘broad-phase’

method to select which pairs of objects to test — usually an intersection test on
bounding boxes for the objects. The compact Voronoi diagram elegantly solves
the broad-phase problem and always provides us with a set of O(k) pairs of
objects (those whose regions are adjacent in the diagram) that is guaranteed to
contain the closest pair. As another example, the diagram can be used to solve
the retraction motion planning problem, with the help of an additional structure
that maintains the closest pair of features between two moving convex chains.

We introduce the basic notations and definitions we need in Section 2. A key
notion is that of junction triangles, which are dual to the degree-3 vertices of the
Voronoi diagram. If we remove the junction triangles from the free space around
the obstacles, the rest of the free space can be decomposed into a set of corridors,
each between two of the convex objects. This structure and the certification of
its correctness are introduced in Section 3. In Section 4 we study the number
of changes to the compact Voronoi diagram when the defining polygons move
pseudo-algebraically in the plane. Using lower envelope and other techniques, we
can show that the number of changes to the diagram is roughly O(kn2). Finally
in Section 5 we give applications to the collision detection and retraction motion
planning.

Compact Voronoi Diagrams for Moving Convex Polygons 341

2 Preliminaries

A distance function δ defined on points in IR2 can be generalized to points sets
S1 and S2 by setting δ(S1, S2) = infs1∈S1,s2∈S2 δ(s1, s2); when S1 contains only
one point s, we can simply write δ(s, S2). If S1, S2 are bounded closed sets, their
distance can be realized by a pair of points (s1, s2) where s1 ∈ S1 and s2 ∈ S2.
In what follows we will use δ to denote the usual Euclidean distance.

Consider now a set P of disjoint convex obstacles in the plane. Under the
above distance function between points and points sets, we can define a Voronoi
diagram for P, called the generalized Voronoi diagram of P, which is the partition
of the free space in the plane according to the nearest obstacle. We assume that
P is a set of k disjoint convex polygons with n vertices in total. The generalized
Voronoi diagram of P, denoted by V(P), has complexity O(n) and can be built
in time O(n log n). In [MKS96], a compact representation of V(P) is presented.
The proposed compact Voronoi diagram has size O(k) and can be computed
in O(k log n) time, assuming each object is represented by the sorted list of its
vertices in clockwise (or counterclockwise) order. Despite its compactness, this
new diagram is as powerful as the generalized Voronoi diagram with regards
to nearest-neighbor and other queries. Here, we will show how to maintain this
compact Voronoi diagram when the convex obstacles are in motion.

From this point on, when we refer to “an obstacle,” we mean a closed convex
polygon. An edge on a polygon is an open line segment; a feature of a polygon is
a vertex or an (open) edge; the size of a polygon is the number of vertices on it.
Two features are adjacent if their closures intersect. Three polygons are collinear
if there is a line tangent to them simultaneously. Four polygons are cocircular if
there is a circle tangent to them simultaneously, where a line is tangent to an
object if it intersects the object only at its boundary, and a circle is tangent to an
object if it intersects the object only at its boundary and its interior is disjoint
from the object. Normally in computational geometry we assume that objects
are in general position, and specifically in our setting that no two polygon edges
are parallel, no three objects are collinear, and no four objects are cocircular.
However, when objects can move, it is no longer legitimate to make the above
assumption. Actually, interesting events happen exactly at the time when such
a degeneracy occurs. For moving objects, by general position we mean that the
above events happen at distinct discrete times (never two at once).

For any point p outside a polygon P , there is a unique point q on P realizing
the distance δ(p, P). Equivalently, there is a unique circle that is centered at p
and tangent to P . Let us denote this circle by ω(p, P). The radius of ω(p, P)
clearly equals δ(p, P). The unique feature (edge or vertex) that contains q is
called the closest feature to p. For two disjoint convex polygons P and Q, if they
do not have parallel edges, there is a unique pair of points (p, q), where p ∈ P
and q ∈ Q, that realizes δ(P, Q). We denote by o(P, Q) the middle point of the
line segment pq. At the point o(P, Q), we can place a minimum circle that is
tangent to both P and Q.

For the polygon set P, denote the convex hull of the vertices of P by C(P).
Let F(P) = C(P)\P denote the free space outside the polygons but inside C(P).

342 L.J. Guibas, J. Snoeyink, and L. Zhang

For polygons P1 and P2 in P and points p ∈ P1 and q ∈ P2, the edge pq is called
a free edge if it does not intersect the interior of any polygon in P. Two non-
intersecting free edges pq and p′q′, where points p, p′ ∈ P1 and q, q′ ∈ P2, define
a corridor with respect to P if and only if the region bounded by pq, p′q′, and
the convex chains pp′ on P1 and qq′ on P2 contain no polygons of P . Sometimes
we will talk about the corridor of two polygons P1 and P2, which is the corridor
with respect to {P1, P2} defined by their outer common tangents.

For two disjoint convex polygons P1 and P2, the bisector between them is
defined to be the locus of points that are equidistant from them. It is well known
that the bisector is an unbounded Jordan curve that consists of O(|P1| + |P2|)
line segments and parabolic arcs. For presentation convenience, we also add an
orientation to the bisector. The oriented bisector π(P1, P2) (abbreviated π12)
is the bisector with the orientation so that P1 is to the left of π12. Since the
bisector is an oriented unbounded Jordan curve, we can define a linear ordering
≺ on the points on π12. For two points p, q ∈ π12, we say that p ≺ q if p is
encountered before q when traveling on π12 consistently with the orientation
of π12 (Figure 1 (a)). We can parameterize the bisector π12 as follows: for a
point p ∈ π12, if p ≺ o(P1, P2), then ζ12(p) = −(δ(p, P1) − δ(o, P1)); otherwise,
ζ12(p) = δ(p, P1) − δ(o, P1). When there is no degeneracy, the function ζ12 is an
one-to-one and onto mapping from π12 to IR ([MKS96]). Clearly, ζ12 = −ζ21.

For three convex polygons P1, P2 and P3 in general position, it is known that
the bisectors π12 and π13 intersect at most twice. For an intersection v between
π12 and π13, the circle ω(v, P1) is tangent to P1, P2 and P3. We say that v
is defined by the ordered triplet (P1, P2, P3) if P1, P2 and P3 are tangent to
ω(v, P1) in counterclockwise direction. Then there is at most one vertex defined
by (P1, P2, P3).

A point p ∈ π12 is said to be shaded by P3 if ω(p, P1) ∩ P3 6= ∅. Let S12,3
denote the set of the points on π12 shaded by P3. Consider the set of parameter
values represented by the shaded portion, {ζ12(p) | p ∈ S12,3}, which we denote
by S̃12,3. Since bisectors π12 and π13 intersect at most twice, the shaded set S̃12,3
must have the form ∅, (−∞, a], [b, +∞), (−∞, a]∪ [b, +∞), [a, b], or (−∞, +∞),
where a, b correspond to the parameter values of the Voronoi vertices defined by
P1, P2 and P3.

When S̃12,3 has the form (−∞, a] or (−∞, a] ∪ [b, +∞), we say that π12 is
half-shaded by P3 at a. Notice that if neither π12 nor π21 is half-shaded by P3,
then S̃12,3 must have the form ∅ or [a, b] where a < b. The following fact is useful
later in bounding the number of combinatorial changes.

Lemma 1. The shaded set S̃12,3 is of the form [a, b], where a < b, if and only
if P3 lies completely inside the corridor between P1 and P2.

The bisector π12 divides the plane into two regions that contain P1 and P2,
respectively. Let us denote τP1P2(or simply τ12) the region that contains P1. Each
point in τ12 is closer to P1 than to P2. For Pi ∈ P, the Voronoi region V (Pi) of
Pi is then defined to be

⋂
j 6=i τij — the set of points that are closer to Pi than

to any other polygon in P. Each Voronoi region is connected and bounded by
portions of bisectors. Therefore, the corresponding Voronoi diagram V(P) is a

Compact Voronoi Diagrams for Moving Convex Polygons 343

planar map (Figure 1 (b)). Two convex polygons are adjacent in V(P) if their
Voronoi regions share a boundary.

Lemma 2. A point p ∈ π12 is in V(P) if and only if ζ12(p) is not in the interior
of S̃12,i, for any i 6= 1, 2.

In V(P) there are two types of vertices, as illustrated in Figure 1 (b). Vertices
of degree three are junction vertices, corresponding to the intersections between
two bisectors. The remaining degree two vertices are interior vertices, lying along
a single bisector where the closest feature pair changes. At each junction vertex,
we can grow a circle that touches three polygons and is free of other polygons.
This circle is called a witness circle for that junction vertex.

u

oP1 P2p q
v

!
!!

!!

!
!

!
!

!!
!!

!
!!
!!

!!!
!!

!
!!

!

8

(a) (b) (c)

Fig. 1. (a) The oriented bisector π12 between P1 and P2. The pair (p, q) is the closest
pair of points between P1 and P2. According to the ordering, v ≺ o ≺ u. (b) The
generalized Voronoi diagram where the solid vertices are junction vertices and the
hollow ones are interior vertices. Not all hollow vertices are shown. (c) The compact
Voronoi diagram with only the junction vertices remaining. A point at ∞ is added to
compactify the diagram.

The junction vertices capture the topology of V(P). Furthermore, while the
total number of vertices in V(P) can be Θ(n), the number of junction vertices is
at most 2k − 4, where k is the number of polygons in P. The compact Voronoi
diagram is based on these junction vertices, plus an additional imaginary vertex
at ∞: we form an edge between two vertices if and only if there is a portion of
a bisector between them with no junction vertex in between (Figure 1 (c)). If
a portion of bisector extends to infinity, we connect the vertex to the node at
∞. We refer to this diagram as the compact Voronoi diagram of P. In [MKS96],
it is shown that the compact Voronoi diagram has many useful properties and
that it can be computed in O(k log n) time. In the following, we study how to
maintain the compact Voronoi diagram for moving polygons.

344 L.J. Guibas, J. Snoeyink, and L. Zhang

3 Maintaining the Compact Voronoi Diagram
for Moving Obstacles

Maintaining the traditional Voronoi diagram of moving points in the plane, usu-
ally represented via its dual Delaunay triangulation, is straightforward [GMR92].
This is because a local condition, the ‘empty circle’ property for triangulation
edges with pairs of adjacent triangles [PS90], implies the global correctness of
the diagram. When one of these conditions fails due to object motion, a local
transformation (the ‘edge-flip’) is sufficient to restore local, and therefore global,
correctness. The same principle was exploited to maintain the power diagrams
of moving balls in [GZ98].

To pursue this idea in our current context, we first define a dual ‘triangula-
tion’ of the (compact) Voronoi diagram. Recall that F(P) denotes the free space
inside the convex hull of P. A triangle is called a junction triangle if it is incident
to three objects in P. A corridor is a four-sided portion of the free space delim-
ited by two polygons on two opposite sides. With slight abuse of notations, we
call a cell decomposition with triangles and corridors as primitive cells a triangu-
lation. A triangulation T (P) of P is a cell decomposition of F(P) into junction
triangles and corridors with all the vertices of T on polygon boundaries. that
satisfy the following properties:

– All the (junction) triangles and corridors in T are interior disjoint,
– The vertices of triangles and corridors in T are on polygon boundaries,
– The triangles in T do not intersect the interior of any polygon P ∈ P, and
– The union of triangles and corridors in T covers F(P).

For a given polygon set P, the number of junction triangles in a triangulation
are specified by the following fact.

Lemma 3. For k disjoint convex polygons, if their convex hull contains h non-
polygon edges, then any triangulation of their free space contains exactly 2k−h−2
junction triangles.

We can form a triangulation of F(P) based on the compact Voronoi diagram
of P as follows. For each junction vertex in the Voronoi diagram, its witness
circle touches three polygons. We connect the three contact points to form a
junction triangle corresponding to each junction vertex. It is easy to prove that
the junction triangles thus formed do not intersect polygon interior and do not
interpenetrate each other.

If we remove these junction triangles from F(P), we will have a set of dis-
connected regions where each connected component is a corridor between two
convex polygons. The corridors and junction triangles together form a triangu-
lation that we will call the Delaunay triangulation of P and denote it by D(P)
(Figure 2). If a junction triangle ∆ is incident to three features f1, f2 and f3,
on different polygons, we say that the triplet (f1, f2, f3) defines ∆. When ob-
jects start to move, the Delaunay triangulation changes combinatorially if such
a triplet changes. In the following, we will show how to maintain D(P) when the
objects in P move. We assume that during the motion, all the objects remain
disjoint. As we will see later, we can use D(P) to detect collisions.

Compact Voronoi Diagrams for Moving Convex Polygons 345

Fig. 2. The Delaunay triangula-
tion of the compact Voronoi di-
agram. The free space between
two adjacent junction triangles
are corridors.

What is crucial for the maintenance of D(P)
is its local certification property. For any junc-
tion triangle ∆, if ∆’s circumcircle (denoted by
∆̃) does not intersect the interior of any P ∈ P,
∆ is called a Delaunay triangle. Clearly, a trian-
gulation is a Delaunay triangulation if and only
if all of its junction triangles are Delaunay tri-
angles. To state the local property we seek, we
define a local Delaunay condition for a junction
triangle. A corridor is said to be adjacent to
a junction triangle if they share an edge. Two
junction triangles are adjacent if they are ad-
jacent to the same corridor. Each junction tri-

angle ∆ then has up to three adjacent corridors and three adjacent triangles
(Figure 3 (a)). The neighboring polygons for ∆ are defined to be the polygons
incident to it or to one of its adjacent junction triangles. We say that a junction
triangle is locally Delaunay if its circumcircle does not intersect any of its neigh-
boring polygons. Clearly, all the junction triangles of D(P) are locally Delaunay.

CCCC
CCCC
CCCC
CCCC

!!!!
!!!!
!!!!
!!!!

!!
!!

!!
!!

D
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!

C
p

D

Dc

d

d

c
!

!
!!

!!

e

1

2

a

b

1

e2

(a) (b)

Fig. 3. (a) A junction triangle and its adjacent corridors and polygons. When ∆ is
locally Delaunay, ∆̃ is covered by the adjacent corridors and circumcircles of its adjacent
junction triangles, where the boundary of this region is thickened in the figure. (b) Proof
of the local property.

We will show that the other direction also holds, which is the counterpart of
the local certification property of the Delaunay triangulation for points.

Lemma 4 (Local Property). If all the junction triangles of a triangulation
T (P) are locally Delaunay, then T (P) is the Delaunay triangulation of P.

Proof. First, we observe that if a triangle ∆ is locally Delaunay, then ∆̃ is covered
by the union of ∆, ∆’s adjacent corridors, and the circumcircles of ∆’s adjacent
triangles (Figure 3 (a)).

Using the above fact, we will prove the local property by contradiction. As-
sume that T is not a Delaunay triangulation — then there must exist a point

346 L.J. Guibas, J. Snoeyink, and L. Zhang

p interior to one of the polygons in P and a junction triangle ∆1 ∈ T so that
p ∈ ∆̃1. For an edge e1 of ∆1, denote by ẽ the sector of ∆̃1 bounded by the
chord e1. By the definition of triangulation, ∆1 does not intersect any polygon
interior. Therefore, p ∈ ∆̃1 \ ∆1, i.e., p ∈ ãb for a unique edge ab of ∆1. Denote
the angle apb by θ(p, ∆1). We note that θ(p, ∆1) is the maximum angle p can
make with the endpoints of edges of ∆1. Among all the junction triangles whose
circumcircles contain p, let ∆1 be the one with the maximum θ(p, ∆1) and let
e1 be the edge of ∆1 so that p ∈ ẽ1.

Now consider the corridor C adjacent to ∆1 at e1. Let the other edge bound-
ing C to be e2 and the junction triangle incident to e2 be ∆2. Since the corridor
is the union of a set of triangles in T , it cannot contain p. Thus, p ∈ ẽ1 \C. This
implies that ẽ1 intersects the edge e2 since ∆̃1 does not intersect the polygons
incident to ∆1. By the local Delaunay property of ∆1, ∆̃1 is covered by the
union of corridors and the circumcircles of adjacent triangles, i.e., ẽ1 ⊂ ∆̃2 ∪ C,
or ẽ1 \ C ⊂ ∆̃2. Therefore, p ∈ ∆̃2. We can further conclude that p is not in
ẽ2 because ẽ1 ∩ ẽ2 ⊂ C. Suppose that the endpoints of e2 are c and d and that
e2 intersects the boundary of ∆̃1 at points c′ and d′. Then clearly the angle
θ(p, ∆2) > ∠cpd > ∠c′pd′ > ∠apb = θ(p, ∆1), contradicting the maximality of
θ(p, ∆1)(Figure 3 (b)).

By the above local property, to certify that a triangulation is the Delaunay
triangulation, it is sufficient to certify that all the junction triangles are locally
Delaunay, i.e., the circumcircle of each junction triangle does not intersect the
interior of any of its neighboring polygons. Among the (up to six) neighboring
polygons of a junction triangle ∆, three are incident to ∆ and the others are
incident to one of the adjacent junction triangles to ∆. We consider these two
cases separately. In the following, we assume that ∆ is defined by the triplet of
features (f1, f2, f3) where f1, f2, f3 are features on P1, P2 and P3, respectively.

To certify that ∆̃ does not intersect the interior of its incident polygons it
suffices, by convexity, to certify that ∆̃ does not intersect any features adjacent
to f1, f2 or f3. All these certificates can be written as algebraic conditions
in terms of the coordinates of (constant number of) polygon vertices. When a
certificate fails, say, when ∆̃ intersects the feature f ′

1, an adjacent feature of f1,
we then simply update the triplet of features from (f1, f2, f3) to (f ′

1, f2, f3). The
topological structure of D(P) is not affected by such events.

For those neighboring polygons that are not incident to ∆, suppose that
∆1 is a junction triangle adjacent to ∆ and it is incident to P1, P2 and P4.
To certify that ∆̃ does not intersect P4, it suffices to certify that ∆̃ does not
contain the point that is on ∆1 on P4 because ∆̃1 is disjoint from the interior
of P1, P2 and P4. When such a certificate fails, it must be the case that the
circumcircles of ∆ and ∆1 are coincident. In other words, this happens when
P1, P2, P3, P4 are cocircular. We call such events cocircularity events. We also
note the special case when the junction triangle is on the convex hull. In this case,
the corresponding event is when the polygons become collinear and the common
tangent line supports the convex hull of P or vice versa. Such event decreases or
increases the number of junction triangles by one. For such collinearity events,

Compact Voronoi Diagrams for Moving Convex Polygons 347

we can watch each junction triangle with an edge on the boundary of C(P) to
see when such a triangle degenerates and each pair of adjacent non-polygonal
convex hull edges to see when such a triangle emerges. In the following, we will
focus on the cocircularity events.

For ∆, ∆1 to have the same circumcircle, they must share an edge, say e1,
which is incident to P1 and P2 — otherwise, we would contradict the fact that
∆̃ and ∆̃1 do not intersect the interior of P1 and P2. After such a cocircularity
event happens, the triangulation is no longer a valid Delaunay triangulation. To
fix it, we simply delete the edge e1 and add the other diagonal of the quadrangle
formed by the union ∆ ∪ ∆1 (Figure 4).

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

Fig. 4. The cocircularity event and edge-flip
operation.

We shall see that the above al-
gorithm maintains a set of junction
triangles that satisfy local Delaunay
property. Further, note that only the
collinearity events may change the
number of junction triangles — we
decrease or increase the number of
junction triangles by one, depend-
ing on whether a convex hull edge

appears or disappears. The other types of events do not affect the number of
junction triangles. Therefore, we also maintain the right number of junction tri-
angles. By Lemma 3 and the local property, we can conclude that the above
algorithm correctly maintains D(P), and thus the compact Voronoi diagram.

We have shown above how the compact Voronoi diagram can be maintained.
Since the number of certificates is the sum of the number of junction triangles and
the non-polygonal convex hull edges, the above structure has O(k) certificates.
The processing time for each event is O(log k), dominated by the processing
cost of the event queue. However, the structure is not local as one polygon may
be involved in up to Θ(k) certificates, although on the average each polygon is
involved in O(1) certificates.As for the events processed, the above algorithm is
output-sensitive in the sense that every event changes either the features that
define a junction Voronoi vertex or the topology of the compact Voronoi diagram.
Thus, we have,

Theorem 1. The compact Voronoi diagram of P can be maintained by a kinetic
data structure in an output-sensitive manner. In the structure, the number of
certificates is O(k), and each event can be processed in O(log k) time.

According to [BGH97], the structure we described is compact, responsive,
and efficient. However, it is not local as one polygon may be involved up to Θ(k)
certificates. Although the algorithm maintains the compact Voronoi diagram in
an output-sensitive manner, we have not answered the question on how many
events the data structure may need to process for algebraic polygon motions.
To complete our analysis, in the next section, we will analyze the number of the
combinatorial changes of the compact Voronoi diagram.

348 L.J. Guibas, J. Snoeyink, and L. Zhang

4 Combinatorial Changes of the Compact Voronoi
Diagram

In this section, we will study the number of combinatorial changes of the compact
Voronoi diagram. For the analysis purpose, we assume that the polygons move
rigidly in pseudo-algebraic motion with constant degree. That is, each certificate
involving the same set of features can fail only constant number of times during
the entire motion process. This assumption is very general as it includes the
motions that can be represented in algebraic or rational functions with constant
degree.

Observe that an event happens when there are four features cocircular or
three collinear. This gives us an immediate upper bound of O(n4) for con-
stant degree pseudo-algebraic motion. However, we will show a significantly
smaller upper bound of O(kn2β(k)β(n)). Here, λ(n) is the maximum length
of a (n, s) Davenport-Schinzel sequence for some constant s, and β(n) = λ(n)/n
is an extremely slowly growing function and can be regarded as close to a con-
stant for all reasonable values of n. On the other hand, there are examples to
show an Ω(n2) lower bound. The lower bound can be realized by three convex
polygons, each with n/3 edges. In Figure 5 (a), when the polygon P moves hori-
zontally, the triplets of features that define the junction Voronoi vertices change
Ω(n2) times.

P
1

l!!!
!!!

!!!
!!!

!!!
!!!

PS2

2PS1

(a) (b)

Fig. 5. Lower bound constructions: (a) shows an example with Ω(n2) changes to the
compact Voronoi diagram. (b) shows an example with Ω(k2) changes to a pair of
objects.

Now, our main task is to prove the following theorem.

Theorem 2. Suppose that P is a set of k disjoint convex polygons with n ver-
tices in total. When all the polygons in P move algebraically and without col-
liding with each other, the compact Voronoi diagram changes O(nλ(n)λ(k)) =
O(kn2β(n)β(k)) times.

In [HKK92], a similar upper bound is proved for the number of changes of
the Voronoi diagram of k sets of points, each moving independently and rigidly.
We will use similar techniques to prove our upper bound. However, the presence
of edges adds complexity, and additional insights are required to complete the
proof.

We first give an example to show the difference from the points case. In the
proof of an O(k3β(k)) bound on the number of changes of the Voronoi diagram

Compact Voronoi Diagrams for Moving Convex Polygons 349

of k moving points, the key step is to bound the number of changes involving two
points by O(kβ(k)); this implies that the total number of changes is bounded
by O(k3β(k)). This fact, however, is no longer true for polygons. Consider the
example shown in Figure 5 (b). where P1 and P2 are two long, parallel line
segments and S1 and S2 are two group of points. Let ` be the bisector line of
P1 and P2. The set S1 consists of k points lying on ` so that their Voronoi
regions relative to P1 and P2 are mutually disjoint. The other group of points S2
lie slightly above ` and are spaced compactly so that they, together with their
Voronoi regions, can be accommodated between any two points of S1. Now,
imagine the second group of points moving from x = −∞ to x = +∞ on the
line `; there will be Θ(k2) changes of the Voronoi edges incident to P1 and P2.
As this example shows, we can no longer bound the number of changes related
to a pair of polygons by roughly O(k) as was done in the point case.However, as
we shall see later, still there is a way to charge each change to a carefully chosen
polygon pair so that no pair receives too many charges.

To proceed, we first consider how Voronoi vertices move when polygons move.
Consider three convex polygons, i.e., P = {P1, P2, P3}. We write that ni = |Pi|,
where 1 ≤ i ≤ 3, and n = n1 +n2 +n3. For three objects, a combinatorial change
can happen to D(P) only when the triplets of features that define the Voronoi
vertices change. For the number of combinatorial changes for constant degree
algebraic motion, we have the following bound.

Lemma 5. The compact Voronoi diagram of three convex polygons changes
O((n1n2 + n1n3 + n2n3)β(n)) times.

Proof. There are two types of events causing a combinatorial change.

1. The first type (type I) occurs when there is a common outer tangent line to
P1, P2 and P3. Such events cause a Voronoi vertex to appear or disappear.

2. The second type (type II) occurs when there is a circle touching four features,
i.e., when four features become cocircular, and this circle is free of the interior
of the polygons. Such events change the triplet of features that define a
particular Voronoi vertex.

It is easy to see that there can be at most O(n1n2 + n1n3 + n2n3) type I events.
For the type II events, among the four features that are cocircular, there must
be two, say f1 and f2, from the same polygon. By the convexity, they are an
edge and an endpoint of the edge. Therefore, when this event happens, the
circle must be tangent to an edge at its endpoint. Suppose that e is an edge
of P1 and p is an endpoint of e. We parameterize all the circles tangent to e
at p by their radii (we only consider those circles whose centers are outside of
the polygon), and denote this set by O. Then, for any feature f , we define a
function δf (t) to be the radius of the circle in O which touches f at time t.
When f moves algebraically, δf (t) is a rational function. Consider the family
of function Ξ(P2) = {δf (t) | f is a feature of P2}. Clearly, the lower envelope of
the arrangement of Ξ(P2) corresponds to the circles that touch P2. Similarly,
we can define Ξ(P3). Then, a type II event that involves e and p corresponds to
an intersection point between the lower envelopes of Ξ(P2) and Ξ(P3), whose

350 L.J. Guibas, J. Snoeyink, and L. Zhang

complexity is bounded by λ(n2)+λ(n3). Therefore, the number of type II events
that involve two features of P1 is bounded by O(n1(λ(n2)+λ(n3))) = O((n1n2 +
n1n3)β(n)). Repeating the above argument for P2 and P3 proves the lemma.

Because of the way that we parameterize the bisector, we also need the
following fact.

Lemma 6. The distance function δ(P1, P2) consists of O(n1n2) rational arcs
with constant degree when P1,P2 moves algebraically with constant degree.

For three polygons P1, P2 and P3, recall that S12,3 is the set of points that
are on π12 and shaded by P3. The parameters of this shaded set, S̃12,3, may
be of the forms ∅, (∞, a], [b, +∞), (−∞, a] ∪ [b, +∞), [a, b], or (−∞, +∞). We
define the function φ12,3(t) as follows. If at time t, π12 is half-shaded by P3 at a,
then φ12,3(t) is defined to be a. Otherwise, it is undefined. Since an endpoint of
S̃12,3 corresponds to the parameter value of a Voronoi vertex when considering
P1, P2 and P3 only, Lemma 5 and 6 say that φ12,3 consists of O((n1n2 + n1n3 +
n2n3)β(n)) pieces of rational arcs. Likely, we define the function φij,l for each
triplet i, j, l.

For a pair of polygons Pi and Pj , we have a family of functions Φij =
{φij,l | l 6= i, j}. Let Γ (Φ) denote the upper envelope of a set of functions Φ.
We first show that

Lemma 7. Each cocircular event can be charged to a break point on Γ (Φij) or
the overlay between Γ (Φij) and −Γ (Φji), for some i 6= j.

For the moment, let us assume that the above lemma is true and prove
Theorem 2.

Proof. (Theorem 2). As we have already discussed, there are two types of
events: type I, when the feature triplets defining Voronoi vertices change, and
type II, when four polygons become cocircular. By Lemma 5, the number of type
I of events is bounded by:∑

i,j,l(ninj + ninl + njnl)β(n) = O(kn2β(n)) .

For type II events, by Lemma 7, they can be charged to break points on the
lower or upper envelopes of Φij ’s or their overlay. Since each φij,l consists of
O((ninj + ninl + njnl)β(n)) pieces of rational arcs. The complexity of Γ (Φij) is
then bounded by:

β(k)
∑

l(ninj + (ni + nj)nl)β(n) = O((kninj + (ni + nj)n)β(n)β(k)) .

The overlay between two envelopes has the same order of complexity. Thus,
the number of cocircular events is bounded by∑

i,j(O((kninj + (ni + nj)n)β(n)β(k))) = O(kn2β(n)β(k)) .

Now, the only piece left is the proof of Lemma 7.

Proof. (Lemma 7). Suppose that at time t, a cocircularity event happens to
P1, P2, P3 and P4. We claim that among those four polygons, there always exist
two, say P1 and P2, so that S̃12,3 and S̃12,4 are not closed intervals with the form

Compact Voronoi Diagrams for Moving Convex Polygons 351

[a, b]. Now pick any two polygons, say P1 and P2. If neither of the shaded sets
S12,3 nor S12,4 is a bounded arc, then the pair of polygons P1, P2 are what we
want. Otherwise, suppose S12,3 is bounded. By Lemma 1, P3 is completely inside
the corridor between P1 and P2. Thus P2 is not inside the corridor between P1
and P3. If P4 is not inside the corridor between P1 and P3, then the pair P1, P3
satisfy the requirement. Otherwise, P4 is inside the corridor between P1 and P3.
In this case, P3, P4 are the desired pair. Let us rename the pair with the above
property P1, P2.

Suppose v is the coincident Voronoi vertex at time t. Let x = ζ12(v). By
Lemma 2, at time t, there cannot be any other Pi (i 6= 1, 2, 3, 4) so that x in
the interior of S̃12,i. Since S̃12,3 are not closed intervals, either φ12,3(t) = x or
φ21,3(t) = −x. The same argument applies to φ12,4(t) and φ21,4(t). The fact that
v is not shaded by any other Pi allows us to charge such an event either to a break
point on Γ (Φ12) or Γ (Φ21) or to an intersection between Γ (Φ12) and −Γ (Φ21).
Thus we have proved Lemma 7 and completed the proof of Theorem 2.

5 Applications

In this section, we briefly discuss some applications of the above data structure.
In the above presentation, one important issue left unspecified in our method is
the way to handle the corridors. We will present different structures dependent
on the application requirements.

5.1 Collision Detection

A major motivation to maintaining a decomposition of free space is to detect
collision for moving objects [EGSZ99,BEG+99]. If for each corridor, we add an
inner bi-tangent line between the two convex chains bounding the corridor, we
can detect collision between the objects involved (refer to [EGSZ99] for why
we prefer tangent based separation to the separation based on the closet pair).
In [EGSZ99], efficient hierarchical methods are developed to reduce the number
of events associated with tracking tangents. Those methods can be used in our
setting as well.

5.2 Retraction Motion Planning

The compact Voronoi diagram can be used to do retraction motion planning
(so that the robot finds a path that stays maximally far from the obstacles).
In retraction motion planning, we need to know the narrowest passage between
two convex polygons. For this purpose, we may maintain the closest pair of
features between two convex chains in a corridor. In [LC91,Mir97], there are
local conditions given to check if a pair of features is the closest pair. It is not
hard to see that such a condition can be used to certify and then maintain the
nearest pair.

352 L.J. Guibas, J. Snoeyink, and L. Zhang

6 Conclusion

We have shown how to maintain a partition of the free space outside k mov-
ing convex polygons in the plane into triangles and corridors. In each cell of this
partition the closest obstacle is one of the two or three polygons defining the cor-
ridor or triangle respectively. Our structure continuously maintains O(k) polygon
pairs among which must be the closest pair of polygons. With the addition of
a simple corridor collision test, as outlined above, the kinetic compact Voronoi
diagram subsumes both the broad and narrow phases as commonly defined in
the collision detection literature. Unlike more classical methods, our structure
can easily accommodate deforming obstacles, as long as they stay convex. An
extension of our structure to 3D would be interesting.

References

BEG+99. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic
collision detection for two simple polygons. In Proc. 9th ACM-SIAM Sym-
pos. Discrete Algorithms, pages 102–111, 1999.

BGH97. J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data.
In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 747–756, 1997.

EGSZ99. Jeff Erickson, L. J. Guibas, Jorge Stofi, and L. Zhang. Separation-sensitive
kinetic collision detection for convex objects. In Proc. 9th ACM-SIAM Sym-
pos. Discrete Algorithms, 1999.

GMR92. L. J. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi diagrams of moving
points in the plane. In G. Schmidt and R. Berghammer, editors, Proc. 17th
Internat. Workshop Graph-Theoret. Concepts Comput. Sci., volume 570 of
Lecture Notes Comput. Sci., pages 113–125. Springer-Verlag, 1992.

GZ98. L. Guibas and L. Zhang. Euclidean proximity and power diagram. In Proc.
10th Canadian Conference on Computatoinal Geometry, 1998.

HKK92. D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi di-
agrams and the minimum Hausdorff distance for point sets under Euclidean
motion in the plane. In Proc. 8th Annu. ACM Sympos. Comput. Geom.,
pages 110–119, 1992.

Lat91. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

LC91. M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance
computation. In Proc. IEEE Internat. Conf. Robot. Autom., volume 2, pages
1008–1014, 1991.

Mir97. B. Mirtich. V-Clip: fast and robust polyhedral collision detection. Technical
Report TR-97-05, Mitsubishi Electrical Research Laboratory, 1997.

MKS96. M. McAllister, D. Kirkpatrick, and J. Snoeyink. A compact piecewise-linear
Voronoi diagram for convex sites in the plane. Discrete Comput. Geom.,
15:73–105, 1996.

PS90. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, 3rd edition, October 1990.

Efficient Expected-Case Algorithms
for Planar Point Location

Sunil Arya1, Siu-Wing Cheng?,1, David M. Mount??,2, and H. Ramesh3

1 Department of Computer Science,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{arya, scheng}@cs.ust.hk

2 Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland

mount@cs.umd.edu
3 Department of Computer Science and Automation, Indian Institute of Science,

Bangalore, India
ramesh@csa.iisc.ernet.in

Abstract. Planar point location is among the most fundamental search
problems in computational geometry. Although this problem has been
heavily studied from the perspective of worst-case query time, there has
been surprisingly little theoretical work on expected-case query time.
We are given an n-vertex planar polygonal subdivision S satisfying some
weak assumptions (satisfied, for example, by all convex subdivisions).
We are to preprocess this into a data structure so that queries can be
answered efficiently. We assume that the two coordinates of each query
point are generated independently by a probability distribution also sat-
isfying some weak assumptions (satisfied, for example, by the uniform
distribution).
In the decision tree model of computation, it is well-known from informa-
tion theory that a lower bound on the expected number of comparisons
is entropy(S). We provide two data structures, one of size O(n2) that
can answer queries in 2 entropy(S) + O(1) expected number of com-
parisons, and another of size O(n) that can answer queries in (4 +
O(1/

√
log n)) entropy(S)+O(1) expected number of comparisons. These

structures can be built in O(n2) and O(n log n) time respectively. Our
results are based on a recent result due to Arya and Fu, which bounds
the entropy of overlaid subdivisions.

1 Introduction

Planar point location is certainly among the most fundamental search problems
in computational geometry. Given a polygonal subdivision S in the plane, the
problem is to construct a data structure so that given any query point q in the
? Research supported in part by RGC Grant HKUST 6088/99E.

?? Research supported in part by NSF Grant CCR–9712379.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 353–366, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

354 S. Arya et al.

plane, it is possible to determine efficiently which polygon of the subdivision con-
tains q. This problem has been heavily studied in computational geometry. (For
example, a search for “point location” found 77 papers in the computational ge-
ometry bibliography.) With only a few exceptions, previous work on this problem
has dealt with the worst-case complexity of this problem. When expected-case
complexity has been considered, it has been done under the assumption that
both the subdivision and the query points are selected subject to various as-
sumptions on distribution. Here, we consider search algorithms that are efficient
in the expected-case for queries, and in the worst-case for subdivisions.

The planar point location problem is a generalization of the well-known one-
dimensional search problem. In the one-dimensional case, we are given a set of
n keys, and told the probabilities of accessing each key and the n + 1 failure
probabilities of falling in the gaps between the keys. If we assume that the
probability of matching a key is zero, then this reduces to the expected-case
complexity of solving a point location problem for n + 1 disjoint subintervals of
the unit interval. Consider any binary search tree whose leaves correspond to
the intervals. It is easy to see that the expected number of comparisons is given
by the weighted external path length [14] of the tree, where the weight of a leaf
is the probability of the query point lying in the associated interval.

Let pi denote the probability of falling in the ith interval. A fundamental
information theoretic result due to Shannon implies that the weighted path
length of any binary tree (and hence the expected number of comparisons) is at
least the entropy of the probability distribution

∑

i

pi log
(

1
pi

)
.

(Unless otherwise stated, all logarithms are base 2.) Knuth [13] shows how to
construct an optimum binary search tree in O(n2) time using dynamic program-
ming. Hu and Tucker [11] presented a bottom-up construction of the tree, which
takes O(n log n) time, but is quite complex. Mehlhorn [17] gives a simple con-
struction of a binary search tree whose weighted path length is within a constant
additive factor of the entropy-based lower bound. It is eminently natural to ask
whether these results can be extended to planar subdivisions. To the best of
our knowledge, this is the first paper to address this obvious and fundamental
problem.

Consider a polygonal subdivision S. Given a region z in S, let pz denote the
probability that the query point lies inside region z. Define the entropy of S to
be

entropy(S) =
∑

z∈S

pz log
(

1
pz

)
.

The coordinates of the query points are assumed to be sampled independently
from probability distributions over bounded intervals of the x-axes and y-axes.
Both S and the probability distributions are assumed to satisfy some additional
weak assumptions (see Section 2 for formal definitions).

Efficient Expected-Case Algorithms for Planar Point Location 355

Shannon’s lower bound applies to the planar point location problem as well.
We present two algorithms for the planar point location problem. The first uses
quadratic space and can answer point location queries in 2 entropy(S) + O(1)
expected number of point-line comparisons (i.e., given a point and a directed
line, one has to determine whether the point lies to the left of, on, or to the right
of the line). The second uses O(n) space, and can answer point location queries
in nearly 4 entropy(S) + O(1) expected number of point-line comparisons.

The paper is organized as follows. In Section 2 we present definitions and
state our results formally. In Section 3 we present background on the planar
point location problem. In Section 4 we present our algorithms for the case of
uniformly distributed query points, and in Section 5 we generalize our results to
a wider class of probability distributions.

2 Definitions and Main Results

Let I and J be two arbitrary intervals of real numbers. In this paper, we only
work with planar subdivisions that partition an underlying rectangle I × J into
disjoint connected regions. We allow the underlying rectangle to be the infinite
plane, in which case I = J = (−∞,∞).

Given a query point q, let xq and yq denote its x and y coordinate. Through-
out this paper, we assume that xq and yq are two independent random variables.
We denote the probability distribution function for xq by P : I → [0, 1] and the
probability distribution function for yq by Q : J → [0, 1]. That is, P (x) is the
probability that the random variable xq is less than or equal to x, and Q(y) is the
probability that the random variable yq is less than or equal to y. We call (P, Q)
a well-behaved distribution if P and Q are continuous and strictly increasing.
For example, if I × J is the unit square, then picking xq and yq uniformly and
independently from [0, 1] yields a well-behaved distribution.

Let U be the unit square [0, 1]2. We define a mapping fPQ from I × J (call
this geometric space) to U (call this probability space) as follows:

fPQ(x, y) = (P (x), Q(y)).

If (P, Q) is well-behaved, then fPQ is a bijection as P and Q are strictly increas-
ing. We can also generalize fPQ in the obvious way for a set of points. Let A be
any set points in I × J . Then

fPQ(A) = {(P (x), Q(y)) : (x, y) ∈ A}.

In this paper, we assume that each evaluation of P , Q, P−1, and Q−1 takes
constant time.

We are now ready to state the main results of this paper.

Theorem 1. Let I and J be two intervals of real numbers. Let S be a planar
subdivision of I ×J of n vertices. Suppose that a well-behaved distribution (P, Q)
is given for the coordinates of the query point, and for each region z ∈ S, fPQ(z)
has at most a constant number of holes and the perimeter of fPQ(z) is bounded
by a constant. Then

356 S. Arya et al.

(i) Using O(n2) space and O(n2) preprocessing time, it is possible to answer
point location queries in 2 entropy(S) + O(1) expected number of point-line
comparisons.

(ii) Using O(n) space and O(n log n) preprocessing time, it is possible to answer
point location queries in (4+O(1/

√
log n)) entropy(S)+O(1) expected number

of point-line comparisons.

Clearly this theorem applies if I × J is the unit square U and xq and yq

are chosen uniformly and independently from [0, 1]. Thus we have the following
theorem, which is an interesting special case of Theorem 1:

Theorem 2. Let S be a planar subdivision of U of n vertices. Suppose that
the coordinates of the query point are chosen uniformly and independently from
[0, 1], and for each region z in S, z has at most a constant number of holes, and
the perimeter of z is bounded by a constant. Then

(i) Using O(n2) space and O(n2) preprocessing time, it is possible to answer
point location queries in 2 entropy(S) + O(1) expected number of point-line
comparisons.

(ii) Using O(n) space and O(n log n) preprocessing time, it is possible to answer
point location queries in (4+O(1/

√
log n)) entropy(S)+O(1) expected number

of point-line comparisons.

Remark: It is worth noting that any convex polygon in the geometric space is
mapped by fPQ to a region in the probability space that has bounded perimeter.
This follows from the fact that any monotonic increasing (resp. decreasing) curve
in the geometric space maps to a monotonic increasing (resp. decreasing) curve
in the probability space. And the length of any monotonic curve in the unit
square is bounded by 2. Thus Theorem 1 applies to any subdivision of the plane
into (bounded and unbounded) convex polygons.

3 Background

For the planar point location problem, let n denote the number of vertices in
the subdivision. The early work of Dobkin and Lipton [6] showed that a query
time of O(log n) and space O(n2) could be achieved. Lipton and Tarjan [15]
showed that the space requirement could be reduced to O(n), but their approach
was rather impractical. Since then a number of more practical methods have
been proposed. These include Kirkpatrick’s clever hierarchical method [12], the
separator method by Edelsbrunner et al. [8], the persistent search tree method by
Sarnak and Tarjan [21], and the randomized incremental method by Mulmuley
[20]. All of these are based on worst-case analyses. Recently Adamy and Seidel [1]
presented an O(n) space data structure that achieves a worst-case query time
of log n + 2

√
log n + O(log1/4 n) point-line comparisons, thus approaching the

worst-case information theoretic lower bound.

Efficient Expected-Case Algorithms for Planar Point Location 357

Existing work on expected case-performance has been based on the assump-
tion that both the subdivision and the queries satisfy certain probabilistic as-
sumptions. Edahiro et al. [7] proposed a practical algorithm for planar point
location based on bucketing techniques. Their method may use Θ(n2) space in
the worst case. Methods using kd-trees, quad-trees, and R-trees are also popular
in practice, but their analyses do not hold in the worst case. Mucke et al. [19] and
Devroye et al. [5] have analyzed methods based on walking through subdivisions.
For Delaunay triangulations of uniformly distributed data sets, these methods
take expected time close to O(n1/3) and O(n1/4) in two and three dimensions,
respectively.

Goodrich et al. [10] presented an interesting point location method, which
adapts to the query distribution. Intuitively, if a cell is accessed more frequently,
then the data structure is modified to ensure that the time for subsequent
accesses to the cell is reduced. They show that the amortized time complex-
ity for accessing cell i in a sequence of m queries is O(min{log n, log(t(i) +
1), log(m/f(i))}), where t(i) is the number of different queries between two ac-
cesses to cell i, and f(i) is the frequency of accesses to cell i. A limitation of their
approach is that the cells are not the regions in the given subdivision; instead
they are the trapezoids in the refined subdivision formed by passing a vertical
line through each segment endpoint. This can adversely affect the query time.

4 The Uniform Distribution Case

We first present our techniques in attacking the case when I × J is U and the
coordinates of the query point are chosen uniformly and independently from
[0, 1]. The techniques are based on certain box decompositions of the planar
subdivision S of U . In the case of general well-behaved distributions (P, Q),
the key insight is that the map fPQ transforms the problem in the geometric
space to a problem in the probability space, where we are to locate query points
in the subdivision fPQ(S) of U , and the coordinates of the query point are
chosen uniformly and independently from [0, 1]. Thus, for general well-behaved
distributions, it suffices to invoke the techniques for uniform distribution in the
probability space to organize a point location data structure. Given a query
point q, we use this data structure to locate the region z′ in fPQ(S) containing
fPQ(q), and the region in S containing z is then given by f−1

PQ(z′). These claims
will be proved formally in Section 5.

In the following, we focus on the uniform distribution case. We first present
an algorithm, which uses 2 entropy(S)+O(1) expected number of point-line com-
parisons. The data structure needs O(n2) space and can be built in O(n2) time.
Later we present another algorithm which reduces the space to O(n) and the pre-
processing time to O(n log n). The expected number of point-line comparisons
goes up to nearly 4 entropy(S) + O(1).

A lemma proved in [2] will be very useful. We state it in a form which is
applicable in two dimensions. The result concerns with overlaying two planar
subdivisions of U . One subdivision is the given planar subdivision S of U . The

358 S. Arya et al.

other subdivision is a decomposition of U into cells that enjoys the following
properties, for some constants ca and cn:

(A.1) Difference of Two Rectangles: A cell is the set-theoretic difference of two
axis-parallel rectangles, one enclosed within the other. We call these the
outer rectangle and inner rectangle of the cell. Note that the inner rectangle
need not be present. Given a cell u, we let uO and uI denote its outer and
inner rectangle, respectively. Also, we define the size of u, denoted by su, to
be the length of the longest side of uO.

(A.2) Bounded Aspect Ratio: The outer rectangle and inner rectangle (if present)
have aspect ratio (ratio of longest to shortest side) bounded by ca. (In this
case we say that the cell has aspect ratio at most ca.)

(A.3) Stickiness: If the cell has an inner rectangle, then for each dimension, the
separation between the corresponding faces of the inner and outer rectangle
is either 0 or at least the length of the inner rectangle along that dimension.

(A.4) Proximity to S: For each cell u, there is some edge or vertex in S within a
distance of cn · su from any point in uO.

(A.5) Disjointness: Given any two cells, either the outer rectangles of the two cells
are disjoint or the outer rectangle of one cell is contained within the inner
rectangle of the other.

We define a fragment to be a connected component in the intersection be-
tween a cell in the decomposition and a region in S. Let F be the set of all
fragments. Let area(x) denote the area of region x.

Lemma 1. Let S be a planar subdivision of U such that each region has at
most a constant number of holes and the total boundary length of each region is
bounded by a constant cs. Let D be a decomposition of U that satisfies properties
A.1, A.2, A.3, A.4, and A.5. Let F be the set of fragments in the overlay of S
and D. Then

∑

x∈F
area(x) log

1
area(x)

≤ 2
∑

z∈S
area(z) log

1
area(z)

+ O(1),

where the constant in the O-notation depends on ca, cs, and cn.

4.1 Quadratic Space Solution

We prove Theorem 2(i) in this subsection. Let S be the given planar subdivision
of U such that each region has at most a constant number of holes, and the
total boundary length of each region is bounded by a constant. We construct a
hierarchical decomposition of U by building a box-decomposition tree (BD-tree)
on the vertices of S [4, 22]. Initially, the BD-tree contains only one node which
is the root. Each node represents a cell and the root represents U . We keep
expanding the tree until some terminating condition is satisfied. The leaf cells
form the desired decomposition of U . We describe how to construct children for
a node u below. For convenience, we also use u to denote the cell it represents.

Efficient Expected-Case Algorithms for Planar Point Location 359

If u contains at most one vertex, then u is a leaf cell. Otherwise, it can be
guaranteed inductively that u is a rectangle and we recursively construct two
children of u as follows. Split u orthogonally at the midpoint of its longest side
to obtain two rectangles v and w. If both v and w contain some vertex, then we
make v and w children of u. This operation is called a midpoint split. Otherwise,
if v or w is empty, then we recursively apply the midpoint splitting rule to the
non-empty rectangle, until we obtain a rectangle v′ such that v′ will be split into
two non-empty rectangles. We make v′ and u \ v′ children of u. This operation
is called a shrink. Note that u \ v′ is a leaf cell and it contains no vertex.

To construct the tree efficiently, we use a standard trick due to Vaidya [22]
for partitioning the points. We store the data points contained in a cell in d sep-
arate lists, each sorted by one of the coordinates, that are cross-referenced with
each other. Instead of updating the lists after each split, we update them after a
sequence of splits is performed, until each of the resulting subsets contains fewer
than half the initial number of points. Also, assuming a model of of computation
in which exclusive-or, integer floor, powers of 2, and integer logarithm can be
computed on point coordinates, the shrink operation can be performed in O(d)
time. (For example, see Bern [3]). Straightforward modification of the argument
given by Vaidya leads to a construction time of O(n log n). (We mention that
we can achieve the same construction time without using non-algebraic opera-
tions by building the sliding-midpoint tree [16, 18] instead. It can be shown that
Lemma 1 holds for the fragments induced by the leaves of the sliding-midpoint
tree. The query algorithm and the rest of the analysis given in this section can
also be easily adapted.)

The cells associated with the leaves of the BD-tree satisfy properties A.1, A.2
(ca = 2), A.3, A.4 (cn = 2), and A.5. In addition, the BD-tree has the following
property, which is important for our analysis.

Lemma 2. Let T be a BD-tree constructed on some point set in U . For any
query point q, the number of point-line comparisons needed in traversing T to
locate the leaf cell y containing q is at most log 1

area(y) + O(1).

Proof. Suppose that we arrive at a node representing a cell u in traversing T
and we need to decide which of its child cells should be visited. Let v and w
be its child cells. If v and w are formed by a midpoint split, then one point-
line comparison is needed to determine whether v or w contains q. Note that
the area of v and w are both half the area of u. If v and w are formed by a
shrink, then one is a leaf cell, say v, and it encloses the other child cell, say w.
Let i, 1 ≤ i ≤ 4, denote the number of sides that the inner box of v does not
share with the boundary of u. Thus, it takes i point-line comparisons to decide
whether v or w contains the query point q. Note that the area of w is at most
1/2i times the area of u, for 2 ≤ i ≤ 4. Therefore, in both cases of midpoint
split or shrink, if we spend i point-line comparisons to decide the next child cell
to visit and this child cell is not a leaf cell, then the area of this child cell is
at most 1/2i times the area of its parent. The area of U is 1. Therefore, the
number of point-line comparisons needed to reach the leaf cell y containing q is

360 S. Arya et al.

at most log(1/area(y)) + O(1), where the O(1) additive term comes from the
last i point-line comparisons, 1 ≤ i ≤ 4, spent at the parent of y.

Let y denote any leaf cell of the BD-tree. Observe that y is either a rectangle
containing at most one vertex of S, or it is the set-theoretic difference of an
outer and inner rectangle, in which case it contains no vertex of S. In each case
we partition y into at most four rectangles whose interior contains no vertex of
S (we call them subcells). If y is a rectangle and contains no vertex of S in its
interior, then the subcell is y itself. Otherwise if it contains a vertex of S in its
interior, then we split it into two subcells by a vertical line passing through this
vertex. Otherwise it must be the set-theoretic difference of an outer and inner
rectangle. In this case we partition it into at most four subcells by passing lines
coinciding with the vertical sides of the inner rectangle.

Define a pseudo-fragment to be a connected component in the intersection of
any subcell with a region in S. Clearly each fragment is partitioned into at most
four pseudo-fragments. Let z be any subcell. Observe that z contains no vertex
of S and intersects O(n) edges of the subdivision S. Thus z is partitioned into
at most O(n) pseudo-fragments. Since the subdivision inside z is so simple, we
can locate the pseudo-fragment in z containing the query point by searching an
auxiliary structure associated with z.

If there is an edge that intersects two opposite sides of z, then let s be one
of the sides intersected. The edges intersecting s divide z into super-fragments
which can be linearly ordered along s. (See Figure 1.) Each super-fragment is
either a pseudo-fragment by itself, or it is further subdivided by other edges
into pseudo-fragments which can be linearly ordered within the super-fragment.
(There are at most two super-fragments which are further subdivided; these are
shown shaded in the figure.) Thus, we first organize a weighted search tree [17]
for the super-fragments with their area as weights. Each super-fragment points
to another weighted search tree storing the linearly ordered pseudo-fragments
within the super-fragment (the area of the pseudo-fragments are the weights in
this second level tree). If there is no edge that intersects two opposite sides of z,
we can do the above using any side s of z.

s

Fig. 1. Super-fragments inside a subcell.

A single query is now answered by first locating the leaf cell in the BD-
tree that contains the query point q. Then we determine which of the at most

Efficient Expected-Case Algorithms for Planar Point Location 361

four subcells associated with this leaf cell contains q. Then we query the auxil-
iary structure for the subcell to locate the pseudo-fragment containing q. Each
pseudo-fragment lies inside a region in S and hence we have the solution to the
query.

We analyze the time to answer a single query as follows. By Lemma 2, the
number of point-line comparisons needed to reach a leaf cell y of the BD-tree is
log(1/area(y)) + O(1). It takes O(1) point-line comparisons to find the subcell
z containing q. Then we query the auxiliary structure associated with z. It is
known [17] that querying a weighted search tree takes at most log(K/k) + 2
comparisons, where K is the total weight of all the items, and k is the weight
of the item being searched for. Therefore, querying the auxiliary structure takes
log(area(z)/area(z′)) + log(area(z′)/area(x)) + 4 point-line comparisons, where
z′ and x are the super-fragment and pseudo-fragment containing the query
point, respectively. Hence, the total number of point-line comparisons is at
most log(1/area(y)) + log(area(z)/area(z′)) + log(area(z′)/area(x)) + O(1) ≤
log(1/area(x)) + O(1).

The probability of the query point lying in a pseudo-fragment x is clearly
area(x). Thus, the expected number of point-line comparisons to answer a query
is at most

∑

x∈F ′
area(x)

(
log

1
area(x)

+ O(1)
)

= entropy(F ′) + O(1),

where F ′ is the set of pseudo-fragments. Since each fragment is partitioned into
at most four pseudo-fragments, it is easy to see that entropy(F ′) = entropy(F)+
O(1). Therefore, the expected number of point-line comparisons is at most
entropy(F) + O(1), which is at most 2 entropy(S) + O(1) by Lemma 1.

We analyze the space of the entire data structure. The space needed by
the BD-tree is O(n). Since there are O(1) subcells for each leaf cell, and O(n)
pseudo-fragments for each subcell, the auxiliary structure at each leaf cell also
takes O(n) space. Thus, the total space is O(n2). As mentioned earlier the BD-
tree can be contructed in O(n log n) time. A weighted search tree of m sorted
items can be constructed in O(m) time [17]. Thus, the auxiliary structure at each
leaf cell can be constructed in O(n) time which leads to a total preprocessing
time of O(n2). This completes the proof of Theorem 2(i).

4.2 Linear Space Solution

We prove Theorem 2(ii) in this subsection. First, we also build a decomposition
tree on the vertices of S, but it is different from the BD-tree in the quadratic
space solution. The cell at each node of the tree will be rectangles of bounded
aspect ratio. We will classify the leaf cells of the tree into two types, S-type and
L-type. The root of the tree represents the unit square U . Inductively suppose
that we are to construct the children of a cell u.

362 S. Arya et al.

1. If area(u) < 1/n, we label u an S-type leaf cell.
2. If area(u) ≥ 1/n and u intersects no edge of S, then u must be completely

contained in some region of S; we store the name of this region with u. In
addition, we label u an L-type leaf.

3. If area(u) ≥ 1/n, u intersects some edge of S, and each region in u ∩ S has
area less than 1/n, then we label u an S-type leaf cell

4. Otherwise, area(u) ≥ 1/n, u intersects some edge of S, and some region in
u ∩ S has area at least 1/n. We split u using a midpoint split into two cells
v and w, and make them children of u. Then we recursively construct the
descendants of v and w.

We denote this decomposition tree by T (S). The cells associated with the leaves
of the tree satisfy properties A.1, A.2 (ca = 2), A.3, A.4 (cn = 2), and A.5. We
also have the following result which is analogous to Lemma 2.

Lemma 3. For any query point q, the number of point-line comparisons needed
in traversing T (S) to locate the leaf cell y containing q is at most log 1

area(y) +
O(1).

The final step of preprocessing is to construct the worst-case planar point
location data structure for S invented by Adamy and Seidel [1]. This data struc-
ture uses O(n) space and can be constructed in O(n log n) time. A point location
query can be answered using log n+2

√
log n+O(log1/4 n) point-line comparisons.

Given a query point q, we first descend T (S) to find the leaf cell x containing
q. If x is an L-type leaf cell, then we report the region of S containing x and
terminate. Otherwise, x is an S-type leaf cell, and we simply resort to Adamy
and Seidel’s data structure to answer the point location query.

Space analysis. Each leaf cell of T (S) has area at least 1/2n and they partition
the unit square U . This implies that T (S) has O(n) leaves and hence O(n) nodes.
Adamy and Seidel’s data structure use O(n) space. Thus, the total space needed
is O(n).

Query time analysis. Recall that a fragment is a connected component of
the intersection of the leaf cells of T (S) and S. Let F denote the set of all
fragments. By Lemma 1, we have entropy(F) ≤ 2 entropy(S) + O(1). In the
following, we show that the expected number of point-line comparisons to an-
swer a query is (2 + O(1/

√
log n)) entropy(F) and so the desired bound of

(4 + O(1/
√

log n)) entropy(S) + O(1) follows.
We call a fragment large if its area is at least 1/n, and small otherwise. Let

F1 and F2 denote the set of large and small fragments, respectively. A large
fragments is exactly an L-type leaf cell and vice versa. Small fragments lie inside
S-type leaves.

We analyze the time to locate a query point q. Suppose that q lies in-
side a fragment x ∈ F . If x is large, then x is an L-type leaf, and the num-
ber of comparisons needed to reach x is log(1/area(x)) by Lemma 3. If x is

Efficient Expected-Case Algorithms for Planar Point Location 363

small, then the query procedure will first locate the leaf cell y containing x and
then query the worst-case data structure. By Lemma 3, the number of point-
line comparisons needed to reach y is log(1/area(y)). Since area(y) ≥ area(x),
log(1/area(y)) ≤ log(1/area(x)). Adding the number of point-line comparisons
needed for querying the worst-case data structure, the total number of compar-
isons is at most log(1/area(x)) + log n + 2

√
log n + O(log1/4 n). Since x is small,

area(x) < 1/n which implies that log(1/area(x)) > log n. So the total number
of comparisons is at most (2 + O(1/

√
log n)) log(1/area(x)).

The probability that q lies in a fragment x is clearly area(x). Thus, the
expected number of point-line comparisons to answer a query is bounded by

∑

x∈F1

area(x) log
1

area(x)
+

∑

x∈F2

(
2 + O

(
1√

log n

))
area(x) log

1
area(x)

≤
(

2 + O

(
1√

log n

))
entropy(F).

Preprocessing time. When we construct the child cells of a cell u during
preprocessing, the most time consuming part of the construction is to determine
whether each region in u ∩ S has area less than 1/n. We describe a method to
carry out this computation efficiently.

Define Lu to be the set of regions of area at least 1/n in u∩S. The observation
is that any region in Lv at a child v of u must be contained in some region in
Lu. Therefore, our strategy is to compute Lu for each node u inductively.

Let r be the root of T (S) and so r ∩ S = S. We simply traverse S in O(n)
time to collect all regions of area at least 1/n in Lr. Inductively, let v be the
child of u and we are to compute Lv. For each region z in Lu, we claim that we
can compute the intersection z ∩ v in time proportional to the size of z. (Note
that z ∩ v may consist of several connected components.)

This can be done by clipping z with four halfplanes successively. We de-
scribe the first clipping as follows. Let ` be the bounding line of a halfplane. For
convenience, denote the size of z by |z|. First, compute the O(|z|) intersections
between ` and the boundary of z in O(|z|) time by brute-force. Second, apply
Jordan sorting to sort these intersections in order of their appearance on `. This
can also be done in O(|z|) time [9]. Third, start a clockwise traversal from some
vertex of z within the halfplane. If we come to an intersection on `, then we
use the sorted list of intersections to jump to the next intersection along `. The
traversal stops when we come back to a visited vertex, and we have traversed
the boundary of one connected component of the clipped z. Then we repeat
the traversal from an unvisited vertex of z within the halfplane and so on until
no such vertex is left. This traverses all connected components in the clipped z.
Since each vertex of z and each intersection on ` is visited at most once, this also
takes O(|z|) time. This completes the first clipping. Each subsequent clipping
is done the same way. Since we have added at most O(|z|) new vertices after a
clipping and there are four clippings, we conclude that each clipping takes O(|z|)
time.

364 S. Arya et al.

After obtaining z ∩ v, we can then retain only the components in z ∩ v that
has area at least 1/n and include them in Lv. Repeating this for each region in
Lu yields Lv. The total time needed is then proportional to the sum of sizes of
regions in Lu. Let Ei denote the set of edges on the boundaries of regions in
Lu for all nodes u at level i of T (S). We claim that for any level i, the number
of edges in Ei is O(n). Since T (S) is constructed using midpoint split and each
leaf cell has area at least 1/2n, the number of levels in the tree is O(log n), and
it follows that the preprocessing time is O(n log n).

To see that there are O(n) edges in Ei, note that there are two categories of
edges in Ei. The first category consists of edges that lie on the sides of a cell,
and the second category consists of edges that lie on edges of S. Observe that
edges in the first category can be charged against edges in the second category,
so we only need to show that the number of edges in the second category is O(n).
The second category can be divided into two groups. The first group consists of
edges that are incident to a vertex of S inside a cell at level i, and the second
group consists of the remaining edges. It is clear that the number of edges of the
first group can be no more than the total degree of the vertices of S, which is
O(n). To count the number of edges of the second group, first observe that the
number of regions with area at least 1/n in cells at level i is at most n. Second,
each such region can have at most four boundary edges that are not incident to
a vertex of S inside a cell at level i. Thus the number of edges of the second
group is at most 4n. Hence the total number of edges in Ei is O(n), which is the
desired claim.

5 General Well-Behaved Distributions

Given a planar subdivision S and a well-behaved distribution (P, Q), our main
idea is that we can organize our point location data structure (the quadratic
space version or linear space version) in Theorem 2 in the probability space.
Then given a query point q, we locate the region z′ in fPQ(S) containing fPQ(q)
and then return f−1

PQ(z′).
For the above strategy to work, there are several requirements. First, the

x and y coordinates of fPQ(q) should be uniformly and independently chosen
from [0, 1]. Second, fPQ(S) is a planar subdivision, and each region has at most
a constant of holes and the perimeter of each region is bounded by a constant.
Third, if we were to apply Theorem 2 directly, we would require that fPQ(S) be
a polygonal planar subdivision, but this is usually untrue. Instead, we will map
back and forth between the geometric and probability spaces using fPQ and f−1

PQ

to construct and query our data structure in the probability space. We describe
below how these requirements are satisfied.

Let x′
q be the x-coordinate of fPQ(q). The probability prob(x′

q ≤ x′) that x′
q

is less than or equal to x′ for some 0 ≤ x′ ≤ 1 is equal to prob(P (xq) ≤ x′),
where xq is the x-coordinate of q. But prob(P (xq) ≤ x′) = prob(xq ≤ P−1(x′))
which is equal to P (P−1(x′)) = x′ by definition of P . So prob(x′

q ≤ x′) = x′ and

Efficient Expected-Case Algorithms for Planar Point Location 365

x′
q is uniformly picked from [0, 1]. Similarly, we can show that the y-coordinate

of fPQ(q) is uniformly picked in [0, 1].
Given two real numbers α, β ∈ I, since P is strictly increasing, α ≤ β iff

P (α) ≤ P (β) and equality holds exactly when α = β. Therefore, the left-right
ordering of points by x-coordinate in I × J is preserved in U after the mapping.
A similar reasoning about Q shows that the above-below ordering of points by
y-coordinate is also preserved. Also, a point p is on a line segment ξ in I × J
iff fPQ(p) is on fPQ(ξ) in U . Thus, incidence relations in S are preserved in
fPQ(S) and hence fPQ(S) is a planar subdivision of U . In Theorem 1, it is
already assumed that each region in fPQ(S) has at most a constant number of
holes, and the perimeter of each region is bounded by a constant.

We now deal with issue that fPQ(S) may not be a polygonal planar subdivi-
sion. In constructing our data structure in U , we need to perform two primitives.
The first primitive is to determine whether a vertex lies above, below, to the left,
or to the right of an orthogonal line. (This is needed in shrinking.) The second
primitive is to compute the intersection between an (possibly curvy) edge ξ′ and
an orthogonal line segment. (This is needed in midpoint split and shrinking.)
Since ordering and incidence relations are preserved, these two primitives can be
provided by first going back to the geometric space, perform the computation,
and map the result back to the probability space. Note that a vertical/horizontal
line segment is always mapped to a vertical/horizontal line segment and vice
versa. Also, for the second primitive, we would be intersecting f−1

PQ(ξ′), which
must be a line segment, with an orthogonal line segment in the geometric space.
This can be done in constant time in the geometric space, and then we map the
result using fPQ to the intersection desired in the probability space.

To see the correctness of our approach to answer a query, first observe that,
by continuity of P and Q, a closed curve in I × J is mapped by fPQ to a closed
curve in U . Since ordering and incidence relations are preserved, a point p lies
inside/on/outside a closed curve ξ in I × J iff fPQ(p) lies inside/on/outside
fPQ(ξ). Thus, given a query point q in the geometric space and a region z′ in
fPQ(S) containing fPQ(q), f−1

PQ(z′) is the region in S containing q. In searching
our data structure, we need to tell whether the query point fPQ(q) in U lies
above, below, to the left, or to the right of an orthogonal line or a curvy edge
ξ′. We have seen that this can be done for an orthogonal line. For a curvy edge
ξ′, we simply return the relation between q and f−1

PQ(ξ′), which must be a line
segment, in the geometric space. This establishes the correctness of our approach
to answer a query.

In all, Theorem 1 holds assuming that each evaluation of the functions P , Q,
P−1, and Q−1 takes constant time.

References

[1] U. Adamy and R. Seidel. Planar point location close to the information-theoretic
lower bound. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, 1998.

[2] S. Arya and H. Y. Fu. Expected-case complexity of approximate nearest neighbor
searching. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pages 379–388,

366 S. Arya et al.

2000. Extended version appears as HKUST Technical Report HKUST-TCSC-
2000-03, URL: http://www.cs.ust.hk/tcsc/RR.

[3] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and
quality triangulations. In Proc. 3rd Workshop Algorithms Data Struct., volume
709 of Lecture Notes in Computer Science, pages 188–199. Springer-Verlag, 1993.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point-
sets with applications to k-nearest-neighbors and n-body potential fields. In Proc.
24th Ann. ACM Sympos. Theory Comput., pages 546–556, 1992.

[5] L. Devroye, E. P. Mücke, and B. Zhu. A note on point location in Delaunay
triangulations of random points. Algorithmica, 22:477–482, 1998.

[6] D. P. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM J.
Comput., 5:181–186, 1976.

[7] M. Edahiro, I. Kokubo, and T. Asano. A new point-location algorithm and its
practical efficiency — Comparison with existing algorithms. ACM Trans. Graph.,
3(2):86–109, 1984.

[8] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone
subdivision. SIAM J. Comput., 15(2):317–340, 1986.

[9] K.Y. Fung, T.M. Nicholl, R.E. Tarjan, and C.J. Van Wyk. Simplified linear-time
jordan sorting and polygon clipping. Inform. Process. Lett., 35:85–92, 1990.

[10] M. T. Goodrich, M. Orletsky, and K. Ramaiyer. Methods for achieving fast query
times in point location data structures. In Proc. 8th ACM-SIAM Sympos. Discrete
Algorithms, pages 757–766, 1997.

[11] T. C. Hu and A. Tucker. Optimum computer search trees. SIAM J. of Applied
Math., 21:514–532, 1971.

[12] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput.,
12(1):28–35, 1983.

[13] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.
[14] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA, 1973.
[15] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM

J. Comput., 9:615–627, 1980.
[16] S. Maneewongvatana and D. M. Mount. Analysis of approximate nearest neighbor

searching with clustered point sets. In ALENEX, 1999.
[17] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295,

1975.
[18] D. M. Mount and S. Arya. ANN: A library for approximate nearest neigh-

bor searching. 2nd Annual CGC Workshop on Computational Geometry, URL:
http://www.cs.umd.edu/˜mount/ANN, 1997.

[19] E. P. Mücke, I. Saias, and B. Zhu. Fast randomized point location without pre-
processing in two- and three-dimensional Delaunay triangulations. In Proc. 12th
Annu. ACM Sympos. Comput. Geom., pages 274–283, 1996.

[20] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-
4):253–280, 1990.

[21] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Commun. ACM, 29(7):669–679, July 1986.

[22] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem.
Discrete Comput. Geom., 4:101–115, 1989.

A New Competitive Strategy
for Reaching the Kernel of an Unknown Polygon

Leonidas Palios

University of Ioannina, GR-45110 Ioannina, Greece
palios@cs.uoi.gr

Abstract. We consider the following motion planning problem for a
point robot inside a simple polygon P : starting from an arbitrary point
s of P , the robot aims at reaching the closest point t of P from where the
entire polygon P can be seen; the robot does not have complete knowl-
edge of P but is equipped with a 360-degree vision system that helps
it “see” its surrounding space. We are interested in a competitive path
planning algorithm, i.e., one that produces a path whose length does not
exceed a constant c times the length of the shortest off-line path (in this
case, c × distance(s, t)); the constant c is called the competitive factor.
In this paper, we present a new strategy that achieves a competitive
factor of ∼3.126, improving over a 4.14-competitive strategy of Icking
and Klein and a 3.829-competitive strategy of Lee et al. Our strategy
possesses two additional advantages: first, the first point reached from
where the entire polygon P is seen is precisely the closest such point to
the starting position s, and second, all the points of the path are directly
determined in terms of s and of polygon vertices, which implies that an
actual robot following the strategy is not expected to deviate much from
its course due to numerical error. The competitiveness analysis is based
on properties of the class of curves with increasing chords.

Keywords: Motion planning, competitive algorithm, kernel, simple
polygon, curve with increasing chords.

1 Introduction

The field of robot motion planning has received considerable attention during
the 1980s, but research intensified in the late 1980s when technological advances
allowed the autonomous function of robots. This, along with the need for au-
tonomous robots to undertake tasks that may be dangerous for humans (areas
polluted by chemicals, space exploration, etc.), led to a number of results pertain-
ing to motion planning problems in unknown or partially known environments
(see [4] for a survey). The general motion planning problem for an autonomous
robot involves devising a strategy which can help the robot to get to a destina-
tion point in an environment which is being “discovered” by means of a vision
system (or tactile sensing in some early work). Most motion planning problems
are being modeled as two-dimensional problems where the robot is a point mov-
ing inside or around polygonal shapes. This is not really restrictive, as real-world

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 367–382, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

368 L. Palios

problems can be reduced to this formulation by means of transformations of the
geometric boundaries of the objects in the robot’s world (Minkowski sum, etc).

Of course, one is interested in having strategies which guarantee that the
path traveled by the robot up to its destination is no more than a constant times
the length of the shortest path if the environment was completely known. Such
strategies are called competitive [14], and the ratio of the length of the actual path
traveled over the length of the shortest path is called the competitive factor. In
other words, the competitive strategies guarantee that the effort expended is not
far from the optimal. Research results have indicated that finding competitive
strategies for different motion planning problems exhibits varying degrees of
difficulty (from obtaining constant competitive solutions to proving that finding
a competitive solution is P-SPACE complete; see [1], [12]).

In this paper, we consider the problem of planning the path of a robot inside
a polygon from any given starting position to a point from where the entire
polygon can be seen; in fact, the closest such point to the starting position
is sought. The robot is equipped with a 360-degree vision system. This is the
problem of reaching the kernel of a polygon, and is what a mechanical guard
is called to solve in order to position itself so that it watches its territory. The
problem has been considered by Icking and Klein [5] who described a strategy to
reach the closest point of the kernel at a competitive factor of ∼5.48; a tighter
analysis by Lee and Chwa [8] showed that the strategy is ∼4.14-competitive.
Icking and Klein also showed that no competitive factor less than

√
2 can be

achieved. A different strategy with a competitive factor of ∼3.829 was later
described by Lee et al. [9], while López-Ortiz and Schuierer [10] improved the
lower bound to ∼1.48. López-Ortiz and Schuierer also noted that the competitive
factor of [5] is not guaranteed for negative instances (i.e., when the polygon has
empty kernel) and described a strategy that is guaranteed to work even in this
case at a competitive factor of ∼46.35.

Our work contributes a new strategy for reaching the kernel of an unknown
polygon P with nonempty kernel which achieves a competitive factor of ∼3.126.
The path consists of line segments and circular arcs whose total number is linear
in the size of P . Our strategy is designed so that the robot walks into the kernel
at precisely the point that is closest to the starting position; additionally, it
has the advantage that any point of the course is determined by the starting
position of the robot and vertices of P , and therefore an actual robot following
the strategy is not expected to deviate much from its course due to accumulated
numerical errors. The competitiveness analysis is based on properties of the
class of curves with increasing chords [13]. Experimental results suggest that
the strategy performs better than the theoretical competitive factor. (A similar
strategy has been used in [7] for motion planning in a street-polygon.)

The paper is structured as follows. In Section 2 we review the terminology
that we use throughout the paper, and in Section 3 we outline our strategy
and state some of the properties of the resulting path. In Section 4 we establish
the competitive factor of the strategy, and in Section 5 we conclude with final
remarks and open questions.

Competitive Kernel-Searching 369

2 Terminology

A simple polygon is the region enclosed by a single closed non-self-intersecting
polygonal line; thus, a simple polygon does not have “holes” in it. The set of all
points p of a simple polygon P such that the line segment that connects p with
any other point of P lies entirely in P is called the kernel of the polygon. If we
define the inner halfplane of an edge as the closed halfplane which is defined by
the edge and contains all the points of P in a sufficiently small neighborhood
of the edge’s midpoint, then the kernel of P is equal to the intersection of the
inner halfplanes of all the edges of P and is therefore convex.

We will follow the terminology of Icking and
Klein [5]; we briefly summarize it in this para-
graph. From its starting position s, the robot prob-
ably does not see parts of the polygon P in which it
stands; if the robot sees all of P , then s belongs to
the kernel and the robot need not move. The hid-
den portions of the polygon are called caves. Each
cave is adjacent to a reflex vertex of P , whose very
existence creates the cave; these reflex vertices are
called constraint vertices (Figure 1). A cave (asso-

s

v

u

w

P

kernel

Figure 1

ciated with a constraint vertex v) is characterized as either left if it lies to
the left of the directed line −→sv, or right otherwise. By extension, we say that
a vertex is a left constraint vertex if it is a constraint vertex associated with a
left cave, and similarly for a right constraint vertex. In Figure 1, the vertices
v and w are left constraint vertices, and the shaded regions next to them are
the associated caves; the vertex u is a right constraint vertex. For each of the
constraint vertices v, we define its inner halfplane with respect to the current
position p as the closed halfplane which is delimited by the line pv and does not
contain the corresponding cave.

From its starting position, the robot may detect zero or more left caves and
zero or more right caves. If the robot sees at least one left cave, the following
lemma holds (see [11] for a proof).

Lemma 1. Suppose that from its starting position s in a simple polygon P the
robot detects one or more left caves next to the constraint vertices l1, . . ., lk
(k ≥ 1). Suppose further that no left constraint vertex exists such that the closure
of the complement of its inner halfplane contains all the left constraint vertices.
Then, the kernel of P is empty.

A similar lemma holds for the right constraint vertices. Therefore, if the condi-
tions of Lemma 1 hold, we need do nothing, since the polygon has empty kernel.
Otherwise, there is a left constraint vertex such that the closure of the com-
plement of its inner halfplane contains all the left constraint vertices and it is
unique (if there are more than one vertices collinear with s then we choose the
one farthest away from s); we call this vertex maximal left constraint vertex. In
Figure 1, v is the maximal left constraint vertex. In a similar fashion, we have

370 L. Palios

the maximal right constraint vertex. It can be proven that in a polygon with
nonempty kernel, the left and right constraint vertices are not “intermixed” and
this is why in papers on this problem which assume polygons with nonempty
kernel, figures show the left and the right constraint vertices all gathered on the
left and on the right of the polygon boundary respectively.

Crucial in the analysis of our strategy is the notion of a curve with increasing
chords; a curve has increasing chords if |ad| ≥ |bc| for any four points a, b, c, d
lying on the curve in that order (|pq| denotes the length of the line segment
connecting p and q). For a plane curve with increasing chords, Rote proved that

Lemma 2. [13] The length of a plane curve with increasing chords connect-
ing two points a and b does not exceed 2π

3 times the length of the line segment
connecting a and b.

We close this section with a well known geometric fact and another lemma.

Fact 1. Consider a circle with diameter ab. Then, the angle âpb of the triangle
with vertices a, b, and p is less than, equal to, or greater than π/2 if p lies
outside, on the boundary, or inside the circle, respectively.

Lemma 3. Let C1 be a connected non-self-intersecting curve which does not
intersect the line segment connecting its endpoints a and b, and C2 a convex
polygonal line with the same endpoints which lies in the region enclosed by C1
and the line segment ab. Then, the length of C2 does not exceed the length of C1.

Angle Notation: Since three points define two angles (which sum up to 2π),
in the following, the notation âbc (where a, b, c are three non-collinear points)
is meant to indicate the smallest of the two corresponding angles.

3 The Strategy

The basic motivation behind our strategy stems from
the study of the simplest case, i.e., a single reflex ver-
tex v whose incident edges are not both visible from
the starting position s. Since the robot does not know
the direction of the invisible edge e incident upon v, it
does not know where the closest point t of the kernel
might be. However, in all cases, t belongs to the semi-
circle with diameter sv, assuming that the semicircle
lies in the polygon P (Figure 2). So, it seems a good
idea to follow this semicircle.

s

ve

t

P

kernel

Figure 2

Our strategy is based on this idea. Thus, the path of the robot consists of
circular arcs and line segments; each circular arc belongs to a circle with diameter
sp, where s is the starting position and p is a constraint vertex. This strategy
makes the robot reach the kernel at its closest point to s.1

1 It must be noted that this strategy is not optimal for the simple case of a single
reflex vertex; it yields a worst-case competitive factor of π/2 ' 1.57. See [6], for a
proof that the optimal competitive factor is ∼1.212, and for a strategy achieving it.

Competitive Kernel-Searching 371

We first consider the one-sided case, where there are only left or only right
caves; our strategy for the general case consists of applying the one-sided case
strategy twice, first for the left caves until we see them all, and then for the right
caves (if needed).

3.1 The One-Sided Case

Without loss of generality, we consider the case where there are only left caves
(the case where we have only right caves is similar). Until the robot sees all
the left caves, there exist left constraint vertices and among them a maximal
left constraint vertex, which may change as the robot moves. Initially, the robot
finds the maximal left constraint vertex v0 as seen from the starting position
s and starts following the semicircle with diameter sv0. The two fundamental
cases that characterize the robot’s path are:

1. A new maximal constraint vertex u is discovered. Then, the robot will start
following the semicircle with diameter su (Figure 3: point a). Interestingly,
the current location of the robot belongs to both semicircles.

2. The cave next to the currently maximal constraint vertex u becomes visible.
This implies that the second edge e incident upon u has become visible as
well. Then, the robot at its current position, say, b, finds the new maximal
constraint vertex. If no such vertex exists, then the entire polygon is visible
and the robot has achieved its goal. If such a vertex exists —let it be v—
and v is a constraint vertex just seen for the first time (for example, if v is
the other endpoint of e), then we execute the previous case. The remaining
possibility is if v is a constraint vertex that has already been seen, in which
case the robot walks along the line segment bu trying to reach (if possible)
the semicircle with diameter sv (Figure 3: points b and c).
Note that it may be the case that the robot has to reach the currently
maximal constraint vertex u in order to see the cave next to u. (This can
only happen if u is the maximal left constraint vertex v0 seen from s.) In
this case, if there exists a new maximal constraint vertex w, w has to be
a constraint vertex just discovered, for otherwise the polygon has empty
kernel. The robot at u lies on or outside the semicircle with diameter sw,
and it will try to walk along the line su away from s in an attempt to see
the cave next to w.

The above two cases do not take into account the fact that the robot may
take advantage of what it has seen. Clearly, the kernel of the polygon P is a
subset of the inner halfplanes of the edges of P and of the inner halfplanes
of the constraint vertices. Since the robot seeks to locate the kernel, it seems
reasonable that it should not leave the inner halfplane of any of the polygon
edges or constraint vertices which it sees or has seen. To be able to do that, the
robot maintains the free polygon which is the subset of P in which the robot
may walk. Initially, the free polygon is the intersection of the inner halfplanes of
the visible edges and the visible constraint vertices from the starting point s. As

372 L. Palios

sv

ue

a

b

c

P

sv

u w

a

b

c
d

ef
h

P

Figure 3 Figure 4

a new edge or a new constraint vertex becomes visible, the robot updates its free
polygon by intersecting it with the corresponding inner halfplane. By requiring
that the robot maintains the free polygon up to date and remains in it, we ensure
that the portion of the polygon seen by the robot never decreases; at the same
time, the free polygon keeps shrinking and when the robot reaches the kernel,
the free polygon is precisely the kernel of P . Additionally, a left (resp., right)
constraint vertex will remain so until both its incident edges become visible; it
will not turn into a right (resp., left) constraint vertex, which might happen if
the robot zig-zagged inside P .

At any time during its trip, the robot lies at a point, say, p, on the boundary
of the current free polygon and it can only walk in the free polygon, that is, in the
wedge delimited by the lines supporting the free polygon edges that are incident
upon p. Since the free polygon is defined as the intersection of halfplanes, the
opening angle of this wedge does not exceed π. Because the line supporting the
edge to the left of p (with respect to the robot’s motion towards the interior
of the free polygon) bounds the current free polygon from the left, we call it a
left-bounding line; similarly, the line supporting the edge to the right of p is a
right-bounding line.

The following two cases complete the path planning strategy of the robot.

3. The robot’s intended course leads or lies outside the free polygon. Then the
robot walks along the boundary of the free polygon as close to the intended
course as possible. In terms of left- and right-bounding lines, the robot walks
along the left-bounding (right-bounding, respectively) line of the current free
polygon if and only if the intended course leads to the left (right, respectively)
of the free polygon.

4. An edge that was not visible becomes visible. Then, the robot updates the
free polygon by intersecting it with the inner halfplane of that edge. Note
that this case has to be executed in case 2.

An example is shown in Figure 4. It is important to note that the ending point
h lies on the line supporting the edge which was seen last. Another important
observation pertains to the way the value of the angle p̂sv0 behaves, where p
denotes the current position of the robot on its way from s to h, and v0 is the
maximal left constraint vertex as observed from s. In the most general case,
the following behavior of the angle p̂sv0 is exhibited: it is initially π/2, then it

Competitive Kernel-Searching 373

decreases, potentially reaching 0 but not decreasing below 0 (sub-path from s
to f in Figure 4), and then it increases (sub-path from f to h). (Note that the
robot may walk along sv0.) However, two special cases may arise: first, the value
of p̂sv0 is always decreasing from s to h (for example, consider the case that the
caves of both v and w of Figure 4 were visible at f), and second, the value of
p̂sv0 is always non-decreasing. The latter case may occur if, due to clipping, the
left-bounding line of the free polygon is farther to the right from the semicircle
with diameter sv0; in this case, the robot will not follow any of the semicircles
defined by s and the maximal left constraint vertices.

Lemma 4. Suppose that the angle p̂sv0 decreases and then increases, reaching
its minimum value when the robot is at the point x. Then,
(i) x is either on or outside the corresponding semicircle,
(ii) the part of the robot’s path past x lies outside the semicircle defined by s and
the currently maximal constraint vertex.

3.2 The General Case

Our strategy for the general case consists of applying the one-sided strategy
twice, first for the left caves and then for the right caves. Suppose that the robot
is at point h, when it finally sees all the left caves. Then, the robot finds the
maximal right constraint vertex u and updates its free polygon by intersecting
it with the inner halfplane of u at h. The robot’s intention is to walk along the
semicircle Csu with diameter su; however, it has to reach Csu first. To do this,
the robot tries to walk along the line hu towards the semicircle; by walking in
this direction, the robot does neither gain nor lose visibility of the cave next
to u. Of course, this course is subject to clipping about the free polygon; so, if
the path along hu towards Csu leads outside the free polygon, the robot follows
left-bounding lines if h is inside Csu and right-bounding lines if h is outside Csu.

The final path consists of two sub-paths, one from s to h and the other from h
to the final point t, each similar to the path shown in Figure 4. That is, each one
of them consists of a number of clipped circular arcs and line segments (cases 1
and 2 of Section 3.1), potentially followed by one or more line segments that
result from clipping whenever the corresponding semicircles fall outside the free
polygon (Figures 5-7 show examples of paths). Our observation in Section 3.1
about the behavior of the values of the angle p̂sv0 (where p is the robot’s cur-
rent position and v0 is the maximal left constraint vertex as observed from s) is
extended and implies that, in the most general case, p̂sv0 is initially π/2, then
decreases, potentially reaching 0 but not decreasing below 0, then it starts in-
creasing assuming values up to ̂u0sv0 (where u0 is the maximal right constraint
vertex as observed from s), and then it may start decreasing again up to 0.

3.3 Simulating the Strategy

The obvious way to simulate a motion strategy involves starting at the prede-
termined starting position and executing small steps applying the rules of the

374 L. Palios

strategy. This method has the obvious disadvantage that a good approximation
of the robot’s path requires a large number of steps which may lead to increased
execution time and large errors resulting from accumulated numerical errors at
each step.

A second approach is to split the given polygon P into regions in each of
which the robot follows the same curve. Clearly, we will have to split P about
the lines supporting the polygon edges incident upon reflex vertices. Moreover,
we need to split P about lines that connect pairs of (left or right) constraint
vertices that consecutively become maximal. To do that, we find the tree of
shortest paths inside P from s to all the reflex vertices and we split P about
the lines supporting the edges of this tree as well. Then, the robot can traverse
any of the resulting regions in one computational step; the only computation
in each region involves finding the points of intersection of the path with the
region boundary. This method involves fewer steps compared to the previous
one but it requires computing the partition of the polygon about the above
mentioned lines; the total number of these lines is linear in the number n of
polygon vertices. Building the partition requires O(n2) space and it can be done
incrementally in O(n2) time in a fashion similar to the incremental construction
of an arrangement of lines; see [3] and [2]. The free polygon is maintained by
turning on or off a bit associated with each region.

3.4 Path Properties

It is interesting to observe that every point of the robot’s path belongs either to a
semicircle defined by the starting point and a vertex of the polygon P (a maximal
constraint vertex) or to the line supporting an edge of P . This guarantees that an
actual robot following our strategy is not expected to deviate from the intended
course, as opposed to other strategies where this is possible because the motion
of the robot is dependent on the current position. For example, in Icking and
Klein’s strategy, the robot follows the bisector of an angle with apex the current
position; but then, due to accumulated numerical error, the robot may deviate
substantially from the expected course.

Additionally, the following lemmata establish two important properties of
the robot’s path (proofs can be found in [11]).

Lemma 5. The path resulting from the application of the above described strat-
egy reaches the kernel of the polygon at the kernel’s point that is closest to the
starting point s.

Lemma 6. The path that the robot follows in accordance with our strategy con-
sists of O(n) line segments or circular arcs, where n is the number of vertices of
the polygon P .

Competitive Kernel-Searching 375

4 Competitiveness Analysis

In order to compute the competitive factor of our strategy, we need to compute
the worst-case ratio of the length of the path resulting from the application of
our strategy over the length of the line segment connecting the starting point s to
the ending point t. Obviously, the worst case scenario involves double application
of the one-sided case. Our analysis relies on computing the competitive factor of
an “augmented” path (we ignore (most of) the clipping) whose length is no less
than the length of the actual path traveled.

Before we describe the “augmentation” procedure, we review the important
stops in the robot’s path and define the l-path and r-path which will be used to
augment the path. The robot first applies the one-sided strategy trying to see
all the left caves; let h be the final point during this phase, that is, the point
from where all the left caves are visible. Then, the robot applies the one-sided
strategy again, for the right caves this time. As mentioned in Section 3.2, the
angle p̂sv0 (defined by the current position p of the robot, the starting position
s, and the maximal left constraint vertex v0 observed from s) decreases, then it
may increase and finally it may decrease again; let x and y be the turning points
where these changes of monotonicity occur (if the robot walks along the line sx
or sy, we let x and y be the closest such points to s). Note that x may coincide
with h or may be before or after h along the robot’s path; y may coincide with t,
although this is not true in the most general case. Moreover, as mentioned earlier,
the point h lies on the line supporting the polygon edge that just became visible
at h; let lh be that line. Then, lh is a right-bounding line of the free polygon
at h. Similarly, the ending point t lies on the line lt supporting the edge that
became visible last, and lt is a left-bounding line of the free polygon at t.

We define the l-path as the path that the robot would follow if it only applied
cases 1 and 2 of Section 3.1 from its starting position s until it either saw all
the left caves or reached the line sx, whichever came first; in the former case, we
extend the l-path by adding a line segment along the left-bounding line of the
free polygon from the l-path’s final point to the point of intersection with sx.
Because clipping is ignored, this left-bounding line supports a polygon edge next
to a maximal left constraint vertex; this edge is not necessarily the edge that
became visible last. As a summary, the l-path consists of a sequence of circular
arcs (arcs sa, bc of Figure 3) occasionally separated by a line segment along a
line supporting an initially invisible polygon edge (segment bc of Figure 3). We
define the r-path similarly: this is the path that the robot would follow if it only
applied cases 1 and 2 of Section 3.1 starting from s until it either saw all the
right caves or reached the line sy; again, if the robot has seen all the right caves
before it reached the line sy, we extend the r-path accordingly. We finally define
the l-region as the closed region bounded by the l-path and the line sx; similarly,
the r-region is the closed region bounded by the r-path and the line sy. We note
that:
Observation 1. The point h from which all the left caves are finally visible does
not belong to the interior of the l-region. Similarly, the final point t from which
the entire polygon is visible does not belong to the interior of the r-region.

376 L. Palios

The robot tries to follow the l-path and the r-path if possible, or otherwise
stay as close to them as possible. On its course from the starting point s to h (the
case is similar for the part from h to the ending point t), it follows (parts of) the
l-path, may move outside the l-region due to clipping about a left-bounding line
(when the l-path leads farther left than the left boundary of the free polygon), or
may move inside the l-region due to clipping about a right-bounding line (when
the l-path leads farther right than the right boundary of the free polygon). In
general, the robot may move in and out of the l-region several times; after it
has moved in, it may walk along several different right-bounding lines (tracing a
convex curve inside the l-region), whereas after it has moved out, it may follow
several different left-bounding lines (tracing a concave curve outside the l-region).
It is important to observe:

Observation 2. The robot never follows a left-bounding line right after a right-
bounding line (or vice versa) except at the point h where it sees all the left caves.

The observation follows from the fact that the robot tries to stay as close to the
corresponding semicircle as it can and if this is farther left (right, respectively)
than the left (right, respectively) boundary of the free polygon, the robot will
keep following the left (right, respectively) boundary of the free polygon until it
reaches it, if ever.

4.1 Augmenting the Robot’s Path

Now we are ready to see how the actual robot’s path is being augmented; we
will also define the points x′ and y′ which will be crucial in partitioning the
augmented path into curves with increasing chords. We concentrate on the most
general case in which x 6= s (i.e., the angle p̂sv0 starts by decreasing) and x 6= t;
the special cases where x = s or x = t yield smaller competitive factors (see
[11]). Note that y may or may not coincide with t.

1. the part of the robot’s path from s to x: We recall that x may be either
on the l-path or outside the l-region; in the latter case and if additionally
h coincides with or is reached after x, then the robot has been walking
along left-bounding lines from the last point of its course on the l-path
up to x. Recall also that h is either on the l-path or outside the l-region
(Observation 1); if it is outside the l-region, then again the robot has been
walking along left-bounding lines. In all cases where the robot walks along
left-bounding lines after it leaves the l-region (no matter whether h is reached
before or after x), the sub-path from s to x is augmented by considering the
entire l-path, followed by a line segment from the final point of the l-path to
x along sx (Figure 5); this includes as a special case the case where x belongs
to the l-path. It remains to consider the cases where the robot walks along
right-bounding lines. There are two cases to consider: first, h belongs to the
l-path, x is reached after h, and the robot walks along a right-bounding line
past h towards x, and second, h is outside the l-region, x is reached after
h, and the robot walks along a right-bounding line past h towards x; both
cases imply x = t and yield smaller competitive factors (see [11]).

Competitive Kernel-Searching 377

s

h
t

x

P

s

h

t

x

y w

x’

y’

l

P

t

s

h

x
x’

t=y=y’

l

l

P

h

t

Figure 5 Figure 6 Figure 7

2. the part of the robot’s path from x to y: We distinguish two cases depending
on whether the robot walks along left- or right-bounding lines past x.
(i) the robot walks along a left-bounding line past x. If the point h is before
x or coincides with x, then x must belong to the r-region for the robot to
follow a left-bounding line past x. We let x′ be the point of intersection of
sx with the r-path, and we augment the sub-path from x to y by consider-
ing the line segment xx′, followed by the r-path up to its intersection with
the line sy, followed by the line segment from that point to y (Figure 6).
If the point h is after x, then past h the robot may walk along a left- or a
right-bounding line depending on whether h belongs to the r-region or not.
Let q be the point of intersection of the lines sx and lh. If h is outside the
r-region, or if h belongs to the r-region but q does not, we set x′ = q and we
augment the path by considering the line segment xx′ (along sx), followed by
a line segment along lh from x′ to the point of intersection with the r-path,
followed by a line segment from that point to y along sy (Figure 7). If both
q and h belong to the r-region, then we let x′ be the point of intersection of
the line sx with the r-path, and the sub-path from x to y is augmented by
considering the line segment xx′ (along sx), followed by the r-path from x′

to its final point on the line sy, followed by the line segment from that point
to y (along sy); the situation is similar to the one depicted in Figure 6.
(ii) the robot walks along a right-bounding line past x. Then, h cannot be
before x, for, if h were reached before x, the robot must have been walking
along right-bounding lines from h to x; this implies that x = t, a contradic-
tion to the continuation of the path past x. Moreover, h cannot be after x
either; if h were reached after x, then h would be outside the l-region and
the robot would be walking along left-bounding lines from x to h. Therefore,
h = x, and we set x′ = h. Additionally, h lies outside the r-region (otherwise,
the robot would not be following a right-bounding line past x). Let q be the
point of intersection of lh with the r-path (if lh intersects a line segment of
the r-path, then q is the point of intersection of lh with the immediately

378 L. Palios

following semicircle); if the line lh does not intersect the r-path, we let q be
the point of intersection of lh and sy. Then, the sub-path from x to y is
augmented by considering the line segment xq along lh, potentially followed
by the r-path from q to its intersection with the line sy (if q does not belong
to the line sy), followed by the line segment from that point to y.

3. the part of the robot’s path from y to the final point t: If y = t, then we set
y′ = y = t. If y 6= t, then the path past y lies outside the corresponding semi-
circles (Lemma 4) and the robot on its way to t walks along right-bounding
lines only. So, this part of the actual path is augmented by considering the
polygonal line formed by the segments yy′ and y′t, where y′ is the point of
intersection of the lines sy and lt (Figure 6).

It is important to observe that the augmented path does not cross itself. More-
over, the augmented path proceeds along or to the left of the left-bounding lines
that the robot follows, and along or to the right of the right-bounding lines, thus
enclosing the actual robot’s path. Therefore, we have:

Observation 3. The path traveled by the robot and the augmented path have the
same endpoints.

Observation 4. The path traveled by the robot can be produced by clipping the
augmented path about the edges of a (shrinking) convex polygon.

4.2 The Competitive Factor

With respect to the points x′ and y′, the augmented path can be seen as the
concatenation of three sub-paths, one from s to x′, one from x′ to y′, and one
from y′ to the final point t. The sub-path from s to x′ consists of circular arcs
occasionally separated by a line segment along a line supporting an initially
invisible polygon edge (cases 1 and 2 of Section 3.1), potentially ending with a
line segment along the line sx. The sub-path from x′ to y′ consists mainly of arcs
and line segments (in accordance with cases 1 and 2 of Section 3.1) as well, but
may begin with a line segment along lh, and may end with a line segment along
the line sy; the sub-path may degenerate into a two-segment polygonal line, one
along lh and the other along sy. Finally, the sub-path from y′ to t is simply a
line segment. See Figures 6-7. More importantly, the following lemmata hold.

Lemma 7. The (counterclockwise) angle ŝx′y′ is at least equal to π/2.

Proof. The definition of the point x′ in the case 2 of the preceding section sug-
gests that we need to consider two cases. First, suppose x′ is the point of inter-
section of sx with the r-path (if x is inside or on the boundary of the r-region).
Then, x′ lies on the semicircle of the currently maximal right constraint ver-
tex (case 1 of Section 3.1), or on the line supporting an edge incident upon a
right-constraint vertex which was initially invisible and became visible (case 2
of Section 3.1); in the latter case, x′ lies inside the semicircle associated with the
right constraint vertex. In either case, if w is the right constraint vertex, then

Competitive Kernel-Searching 379

the angle ŝx′w is at least equal to π/2. Moreover, the point y and (a fortiori) the
point y′ lie on or to the left of the directed line

−−→
x′w (see Figure 6). Therefore,

ŝx′y′ ≥ ŝx′w, and the lemma follows.
Suppose now that x′ is the point of intersection of sx with lh: this case occurs

if h is reached after x, or x′ = h and h lies outside the r-region. In either case,
x′ coincides with or is farther away from s than x; since x is on the boundary
or outside the l-region (Lemma 4), x′ lies on or outside the semicircle of the last
maximal left-constraint vertex, say, v. Then, ŝx′v ≤ π/2 (Fact 1). The lemma
follows from the fact that y and (a fortiori) y′ belong to the inner halfplane of
lh and thus the angle ŝx′y′ is at least equal to π − ŝx′v (see Figure 7).

Similarly,

Lemma 8. If y 6= t, the (clockwise) angle ŝy′t is at least equal to π/2.

Lemma 9. The sub-path of the augmented path from s to x′ is a curve with
increasing chords.

Proof. For any point p (other than s), we define the quadrants Ap, Bp, Cp

and Dp at p as the four closed quadrants determined by the line sp and its
perpendicular at p: the quadrant Ap is the quadrant that contains s and lies to
the right of the directed line −→sp, while the other quadrants Bp, Cp and Dp follow
quadrant Ap in counterclockwise order around p. We first prove that for any
point p of this sub-path, the part of the augmented path from s to p belongs to
the closed quadrant Ap of p, while the part of the path from p to x′ belongs to
the closed quadrant Cp of p. One needs to consider the different cases for p: on
a circular arc, at the intersection of two arcs, at the intersection of an arc and
a line segment, on a line segment. This follows from the fact that for any point
q of a semicircle with diameter ab, the angle âqb is equal to π/2 (see Fact 1).
(Figure 8 gives some examples for illustration purposes; the crosses indicate the
lines delimiting the quadrants.) Next, we consider 4 points a, b, c and d in that
order along the augmented path. We draw the corresponding quadrants for the
points b and c and draw the two lines lb and lc perpendicular to bc that pass by
b and c respectively (Figure 9). Since c belongs to the quadrant Cb of b, lb lies in
the closure of the wedge defined by the quadrants Bb and Db of b. Similarly, since
b belongs to the quadrant Ac of c, lc lies in the closure of the wedge defined by
the quadrants Bc and Dc of c. Moreover, the point a lies in the quadrant Ab of
b, that is, to the left of lb. Similarly, the point d lies in the quadrant Cc of c, that
is, to the right of lc. Therefore, the length of ad is no less than the perpendicular
distance of lb and lc, which by construction is equal to bc.

In a similar fashion, although with a little more effort because the sub-path
of the augmented path between x′ and y′ may begin with a line segment, we can
prove:

Lemma 10. The sub-path of the augmented path from x′ to y′ is a curve with
increasing chords.

380 L. Palios

sv
u

P

s

a

b
c

d

p

ll
bc

Figure 8 Figure 9

From the above, we conclude

Theorem 1. Our strategy has a competitive factor of
√

2(2π/3)2 + 1 ' 3.126.

Proof. Clearly, the length of the actual path traveled by the robot is no more
than the length of the augmented path, as clipping with convex polygonal lines
or curves leads to reduced path length (Observation 4 and
Lemma 3). So, an upper bound on the ratio of the length
of the augmented path over the length of the line segment
st readily implies an upper bound on the competitive factor
that we seek. Figure 10 shows the skeleton of the augmented
path in the worst case; the angles α = ŝx′y′ and β = ŝy′t
are at least equal to π/2 (Lemmata 7 and 8). Let us denote
by |p̃q| the length of the path from p to q as opposed to |pq|
which denotes the length of the line segment pq. Then the
competitive factor r is

r =
|s̃x′| + |x̃′y′| + |y′t|

|st| ≤
2π
3 |sx′| + 2π

3 |x′y′| + |y′t|
|st| ,

s

x’

y’
t

a

b
g

d

Figure 10

since the augmented sub-paths from s to x′ and from x′ to y′ are curves with
increasing chords (Lemmata 9 and 10) and therefore their lengths are not more
than 2π/3 times the lengths of the line segments sx′ and x′y′ respectively
(Lemma 2). If we apply the law of sines in the triangles sx′y′ and sy′t, fac-
tor out the length |sy′|, and maximize using partial derivatives, we find

r ≤
2π
3

sinγ + sin(α+γ)
sinα

+ sin(β+δ)
sinδ

sinβ

sinδ

≤
2π
3

√
2 + sin(β+δ)

sinδ

sinβ

sinδ

≤
√

2(2π/3)2 + 1.

where π/2 ≤ α < π, π/2 ≤ β < π, 0 < γ < π − α and 0 < δ < π − β: the term
sinγ+sin(α+γ)

sinα
is decreasing as α increases and is thus maximized for α = π/2

and γ = π/4; similarly, the overall fraction is maximized for β = π/2.

5 Concluding Remarks – Open Problems

We presented a strategy which enables a point robot to reach the point t of the
kernel that is closest to the starting point s, and guarantees that the length of

Competitive Kernel-Searching 381

the path traveled is not longer than 3.126 times the length of the line segment
st (that is, 3.126 times the shortest possible off-line path). Our strategy has
the interesting feature that the robot reaches the kernel at precisely the closest
point t. We note that the above competitive factor cannot be guaranteed when
the polygon has empty kernel (in such cases, the competitive factor is defined
as the ratio of the length of the path that a strategy imposes over the length of
the shortest path which establishes that the kernel is empty), and this holds for
all strategies where a point of the polygon seen by the robot never ceases to be
in the robot’s visible region thereafter (enforced by means of the free polygon in
this work, and by means of the gaining and keeping wedges in [5] and [9]).

Experimental results seem to suggest that the actual competitive factor is
smaller than the theoretical competitive factor of 3.126. If true, it would be
interesting to come up with tighter theoretical bounds on the competitive factor
of our strategy. Of course, the ultimate open question is to invent strategies with
smaller competitive factors which will close the gap between the current upper
bound of ∼3.126 and the lower bound of ∼1.48. To this effect, perhaps ideas like
the ones in [6] may be of help.

Finally, better competitive solutions are needed for other motion planning
problems in unknown environments. López-Ortiz and Schuierer [10] have ad-
dressed two interesting problems in this class: finding out whether a given poly-
gon is star-shaped (i.e., it has non-empty kernel), and locating a target (to be
recognized when seen) in a polygon with non-empty kernel. The currently best
competitive factor for the first problem is 46.35. The currently best competitive
factor for the second problem is 12.72 and is coupled with a lower bound of 9.

Acknowledgements

I would like to thank Vassilios Karaiskos whose program (implementing our
strategy) helped to produce several of the included figures.

References

1. A. Blum, P. Raghavan, and B. Schieber, “Navigating in unfamiliar Geometric Ter-
rain,” Proc. 23th ACM Symposium on Theory of Computing (1991), 494–504.

2. H. Edelsbrunner and L.J. Guibas, “Topologically sweeping an arrangement,” Jour-
nal of Computer and Systems Science 38 (1989), 165–194. Corrigendum in 42 (1991),
249–251.

3. H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing arrangements of lines
and hyperplanes with applications,” SIAM Journal on Computing 15(2) (1986),
341–363.

4. Y.K. Hwang and N. Ahuja, “Gross Motion Planning – A Survey,” ACM Computing
Surveys, Vol. 24, No. 3 (1992), 219–291.

5. C. Icking and R. Klein, “Searching for the Kernel of a Polygon — A Competitive
Strategy,” Proc. 11th ACM Symp. on Computational Geometry (1995), 258–266.

6. C. Icking, R. Klein, and L. Ma, “An Optimal Competitive Strategy for Looking
around a Corner,” Proc. 5th Canadian Conference on Computational Geometry
(1993), 443–448.

382 L. Palios

7. C. Icking, A. Lopez-Ortiz, S. Schuierer, and I. Semrau, “Going Home through an
Unknown Street,” Technical Report 228, Dept of Computer Science, FernUniversität
Hagen, Germany, 1998.

8. J.-H. Lee and K.-Y. Chwa, “Tight Analysis of a Self-Approaching Strategy for the
online Kernel-Search Problem” Information Processing Letters 69 (1999), 1–52.

9. J.-H. Lee, C.-S. Shin, J.-H. Kim, S.Y. Shin, and K.-Y. Chwa, “New Competitive
Strategies for Searching in Unknown Star-Shaped Polygons,” Proc. 13th ACM Sym-
posium on Computational Geometry (1997), 427–429.

10. A. López-Ortiz and S. Schuierer, “Position-independent near optimal Searching
and on-line Recognition in Star Polygons,” Proc. 5th International Workshop on
Algorithms and Data Structures – WADS (1997), 284–296.

11. L. Palios, “A New Competitive Strategy for Reaching the Kernel of an Unknown
Polygon,” Technical Report (1999), Dept. of Computer Science, Univ. of Ioannina.

12. C. Papadimitriou and M. Yannakakis, “Shortest paths without a map,” Theoretical
Computer Science 84 (1991), 127–150.

13. G. Rote, “Curves with increasing chords,” Mathematical Proceedings of the Cam-
bridge Philosophical Society 115 (1994), 1–12.

14. D. Sleator and R.E. Tarjan, “Amortized efficiency of list update and paging rules,”
Communications of the ACM 28 (1985), 202–208.

The Enhanced Double Digest Problem
for DNA Physical Mapping

Ming-Yang Kao1 ?, Jared Samet1, and Wing-Kin Sung2 ??

1 Department of Computer Science, Yale University, New Haven, CT 06520, USA
kao-ming-yang@cs.yale.edu, jared.samet@yale.edu

2 E-business Technology Institute, University of Hong Kong, Hong Kong
wksung@eti.hku.hk

Abstract. The double digest problem is a common NP-hard approach
to constructing physical maps of DNA sequences. This paper presents a
new approach called the enhanced double digest problem. Although this
new problem is also NP-hard, it can be solved in linear time under a
certain restriction, which is satisfied reasonably frequently.

Key words. DNA physical mapping, fast algorithms, graph-theoretic
techniques, NP-hardness

1 Introduction

The physical mapping of DNA is a key problem in computational biology [4]. A
map of a DNA sequence consists of the locations of some given small sequences
like e.g. GAATTC. Biologists use such maps in a preparatory step to determine
the target DNA sequence [5].

A common technique of constructing maps uses restriction enzymes to cut a
DNA sequence at the positions where a particular short DNA sequence appears.
These positions are called restriction sites. One approach to modeling map con-
struction is the double digest (DD) problem. Given two restriction enzymes A
and B, this approach cuts a target DNA sequence using enzyme A, enzyme B,
and both enzymes, separately. It is a biology fact that the restriction sites for
enzymes A and B do not coincide. Throughout this paper, we make use of this
fact. Let A, B and C be the three multisets of the lengths of the fragments
formed after applying enzyme A, enzyme B and both enzymes to the target
DNA sequence, respectively. Given A, B and C, the DD problem asks for per-
mutations of the lengths in A and B such that if these sets of lengths are plotted
on top of one another, the lengths of all the resulting subintervals formed due
to overlapping match exactly the lengths in C. See Figure 1 for an example.

Many algorithms [6,7,8,10] have been proposed for the DD problem. Stefik
[9] gave the first algorithm using artificial intelligence. Fitch, Smith and Ralph
? Research supported in part by NSF Grant 9531028.

?? This work is developed at Yale University.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 383–392, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

384 M.-Y. Kao, J. Samet, and W.-K. Sung

151282917 3 6

46 38 6

17 37 12 15 9

(c)

(b)

(a)

Fig. 1. Stripes (a), (b) and (c) show the fragments resulting from the applications of
enzyme A, enzyme B and both enzymes, respectively. In strip (c), the subfragments
are created due to the overlapping between fragments in (a) and those in (b).

[1] reduced the DD problem to the set partition problem. Goldstein and Water-
man [3] approached this problem with a stochastic annealing heuristic for the
traveling salesman problem. They also showed that the DD problem is NP-hard
by reducing the set partition problem to it.

This paper suggests a new approach, called the enhanced double digest (EDD)
problem. The EDD problem uses A, B, C and some additional length informa-
tion; see Section 2 for the details of the approach. Although the EDD problem is
still NP-hard, we show that if the lengths in C are all distinct, it can be solved
in linear time. We also generalize the algorithm for the case where the number
of duplicates in C is bounded by a constant. The time complexity of this gener-
alized algorithm remains linear. Based on preliminary analysis, these constraints
on duplicates in C can be satisfied with a reasonable probability.

Section 2 details the new approach to define the EDD problem formally.
Section 3 gives the linear-time algorithm for the case where C is duplicate-free.
Also, it generalizes the algorithm to handle a small number of duplicate lengths.
Section 4 proves that the EDD problem is NP-hard. Section 5 concludes with
some directions for further work.

2 Problem Formulation

Consider a target DNA sequence and two restriction enzymes A and B.

– By applying enzyme A (respectively, B) to the target DNA sequence, we
obtain p (respectively, q) fragments. Let A = {a1, . . . , ap} (respectively,
B = {b1, . . . , bq}) be the multiset of the lengths of these p (respectively,
q) fragments.

– For i = 1, . . . , p, let âi be the fragment corresponding to ai. We apply enzyme
B to the fragment âi and obtain a set of subfragments. Let ABi be the
multiset of the lengths of these subfragments.

– For j = 1, . . . , q, let b̂j be the fragment corresponding to bj . We apply enzyme
A to the fragment b̂j and obtain a set of subfragments. Let BAj be the
multiset of the lengths of these subfragments.

The Enhanced Double Digest Problem for DNA Physical Mapping 385

For the example in Figure 1, the following length information is gathered:

• A = {a1 = 9, a2 = 12, a3 = 15, a4 = 17, a5 = 37};
B = {b1 = 6, b2 = 38, b3 = 46};

• AB1 = {3, 6}; AB2 = {12}; AB3 = {15}; AB4 = {17}; AB5 = {8, 29};
• BA1 = {6}; BA2 = {3, 8, 12, 15}; BA3 = {17, 29}.

It is easily verified that the data found in this way has the following properties:

Fact 1.

1. For i = 1, . . . , p, ai =
∑

c∈ABi
c. For j = 1, . . . , q, bj =

∑
c∈BAj

c.
2.
⋃

i ABi =
⋃

j BAj = C.
3. |C| = |A| + |B| − 1.

Proof. Straightforward.

Given A, B, AB1, . . . , ABp, BA1, . . . , BAq, the enhanced double digest prob-
lem P asks for a valid permutation (πA, πB) of the elements in A and B such
that the following can be achieved. When the fragments âi for ai ∈ A and b̂j

for bj ∈ B are plotted on the same line according to the order given by πA and
πB , a set of subfragments is formed due to overlapping. The multiset C of the
lengths of these subfragments is required to be equal to ∪p

i=1ABi = ∪q
j=1BAj .

In addition,

– for every ai ∈ A (respectively, bj ∈ B), ABi (respectively, BAj) is equal
to the multiset of the lengths of the subfragments which overlap with âi

(respectively, b̂j).

Note that an instance of this problem may have no solution or more than
one valid permutation. The algorithms given in Section 3 can recover all valid
permutations, if any exists.

3 An Efficient Algorithm

Unless otherwise stated, this section assumes that C has no duplicates. Let
n = |C|. This section shows that the EDD problem P can be solved in O(n)
time.

Section 3.1 formulates the EDD problem as a graph problem. Section 3.2
describes the linear-time algorithm. Section 3.3 discusses how to generalize this
linear-time algorithm to the case where C may contain a small number of dupli-
cates.

3.1 A Graph Representation

Given A, B, AB1, . . . , ABp, BA1, . . . , BAq, we construct an undirected graph G
as follows.

386 M.-Y. Kao, J. Samet, and W.-K. Sung

3 6 8 12 15 17 29C

3717159 12A

6 4638B

(a)

6
B

9
A

6
C

3
C

38
B

8
C

37
A

29
C

46
B

17
C

17
A

(b)

12
C

12
A

15
C

15
A

Fig. 2. The graph G in (a) is constructed from the example in Figure 1. G can be
redrawn into a spanning tree as shown in (b). The superscript A, B or C of each node
denotes whether the node belongs to A, B or C.

– The node set of G = A ∪ B ∪ C.
– For every ai ∈ A and every x ∈ C, (ai, x) ∈ G if x ∈ ABi.
– For every bj ∈ B and every x ∈ C, (bj , x) ∈ G if x ∈ BAj .

From the definition , we can observe that G satisfies the following lemma.

Lemma 1. G is connected. For each node in A ∪ B, its degree is at least 1 and
it is adjacent to nodes in C only. Also, every node in C connects to exactly one
node in A and one node in B.

Proof. Straightforward based on the assumption that C has no duplicates.

If P has a valid permutation, G has two more properties as stated in
Lemma 2. Figure 2 illustrates an example. A diameter of a tree is a path with
the largest number of edges. A dangler is a 2-node-long path. Given a tree T , a
subtree τ of T is said to be hanged on a path P in T if τ is a tree in the spanning
forest T − P .

Lemma 2. If P has a valid permutation, then the following statements hold.

1. G is a spanning tree.
2. For any diameter S of G, the subtrees hanged on S must be danglers.

The Enhanced Double Digest Problem for DNA Physical Mapping 387

Proof.
Statement 1. To prove by contradiction, suppose that G contains a cycle D.

By the construction of G, D must be of the form

ai1 , ck1 , bj1 , ck2 , ai2 , ck3 , bj2 , ck4 , . . . , ck2z
, aiz+1 ,

where i1 = iz+1; ai1 , . . . , aiz ∈ A; bj1 , . . . , bjz ∈ B; and ck1 , . . . , ck2z ∈ C.
By definition, if ai, ck, bj is a path in G, then âi and b̂j overlap by ĉk in any

valid permutation of P. Thus, for 1 ≤ ` ≤ z − 1, the existence of the subpath
ai`

, . . . , ai`+2 of D in G means that b̂i`
overlaps with âi`

and âi`+1 and b̂i`+1

overlaps with âi`+1 and âi`+2 . To enable both b̂i`
and b̂i`+1 overlap with âi`+1 ,

âi`+1 must be in the middle of âi`
and âi`+2 for 1 ≤ ` ≤ z − 1. Consequently, for

1 ≤ ` ≤ z − 1, âi`
is in the middle of âi1 and âiz+1 = âi1 , which is impossible.

Statement 2. For any diameter S of G, we show that every subtree τ hanged
on S must be a dangler. First, τ must be hanged on S at a node in A ∪ B.
Otherwise, if τ is hanged on S at a node c ∈ C, c has degree greater than 2,
contradicting Lemma 1. Then, τ has more than one node because the root of τ
is a node in C and must be of degree 2. If τ cannot have more than 2 nodes,
Statement 2 follows.

bai1
bbj1 bck2 bai2bck5

bbj2bai0bck4

bai3

bck6

bbj3

bck3

bck1

Fig. 3. In this example, all ai ∈ A, bj ∈ B and ck ∈ C.

To prove by contradiction, suppose that τ has more than two nodes. Without
lost of generality, assume that τ is hanged on S at a node ai0 ∈ A and the root
of τ is a node ck3 ∈ C. Note that ck3 has another neighbour, say bj3 , from B.
If τ contains more than two nodes, bj3 must has a child, say ck6 , from C and
ck6 must has a child, say ak3 , from A. Thus, τ must have a root-to-leaf path
of length more than 4. Then, the two paths from ai0 to both ends of S must
be of length more than 4. Otherwise, S cannot be a diameter of G. From those
observations, G has the pattern shown in Figure 3. According to the pattern,
b̂j1 , b̂j2 and b̂j3 overlap with âi0 . Therefore, in any valid permutation, one of

388 M.-Y. Kao, J. Samet, and W.-K. Sung

b̂j1 , b̂j2 and b̂j3 , say b̂j2 , must be in the middle of the other two fragments and
b̂j2 can only overlap with âi0 . However, according to the pattern in Figure 3, for
` = 1, 2, 3, b̂j`

overlaps with another fragment âi`
, reaching a contradiction.

Now, we know that if P has a valid permutation, G satisfies the two prop-
erties of Lemma 2. The remainder of this section show that the converse of this
statement is also true. Suppose that G is a spanning tree with a diameter S such
that all the subtrees hanged on S are danglers. We define πC to be a permutation
on C formed by a search defined below.

Dangler-first search: Traverse G starting from one end of S to the other end of
S; read off the nodes in C on S; whenever meet any node x with degree
greater than 2, read off the nodes in C in the danglers hanged on S at x in
any order and continue to traverse S.

Lemma 3. The elements in each ABi form a consecutive subsequence in πC .
Similarly, the elements in each BAj form a consecutive subsequence in πC .

Proof. For each i, if ABi contains only one element, then the lemma follows.
Otherwise, ai is of degree at least 2. Then, ai must be on the diameter S. Let
c and c′ be elements in ABi which are the two neighbours of ai on S. The
remaining nodes in ABi must be located in the danglers hanged on S at ai. By
dangler-first search, all the elements in ABi must form a consecutive subsequence
in πC . By symmetry, for each j, the elements in BAj must form a consecutive
subsequence in πC .

By Lemma 3, πC can be partitioned into p subintervals such that the rth
interval contains the elements in ABir

for r = 1, . . . , p. Let πA be the permu-
tation (ai1 , . . . , aip

). Similarly, πC can be partitioned into q intervals such that
the sth interval contains the elements in BAjs

for s = 1, . . . , q. Let πB be the
permutation (bj1 , . . . , bjq

). We call (πA, πB) the induced permutation of πC .

Lemma 4. The induced permutation (πA, πB) of πC is a valid permutation of
P.

Proof. Suppose the lengths from A, B and C are plotted on the same line ac-
cording to the order given by πA, πB and πC , respectively. Consider the stripes
formed from A and C. By Fact 1 and Lemma 3, for each i, âi overlaps with ĉ for
all c ∈ ABi. By symmetry, for each j, b̂j overlaps with ĉ for all c ∈ BAj . Then,
by the definition of the EDD problem, (πA, πB) is a valid permutation.

Theorem 1. Given the enhanced double digest problem P and its corresponding
graph G, P has a valid permutation if and only if G satisfies the two properties
in Lemma 2.

Proof. The only-if part follows from Lemma 2. The if part follows from Lemma 4.

The Enhanced Double Digest Problem for DNA Physical Mapping 389

3.2 A Linear-Time Algorithm for a Duplicate-Free C

This section describes how to compute a valid permutation of P in O(n) time.
The algorithm is as follows.

Algorithm Enhanced-Double-Digest

1. Construct the graph G corresponding to P.
2. If G does not satisfy the two properties in Lemma 2, then return “no valid

permutation”.
3. Find the permutation πC using dangler-first search.
4. Find the induced permutation (πA, πB) of πC .
5. Return (πA, πB).

Lemma 5. Algorithm Enhanced-Double-Digest can correctly find a valid per-
mutation in O(n) time.

Proof. First, by Lemma 4 and Theorem 1, Enhanced-Double-Digest is correct.
As for its time complexity, Step 1 requires O(n) time as G contains 2n edges
and we can find each edge in O(1) time. Step 2 checks whether G satisfies the
two properties in Lemma 2. For property 1, we can determine whether a graph
is a spanning tree in O(n) time. For property 2, we can compute a diameter
of a tree in linear time first, then, we verify whether G satisfies property 2
by detecting whether the subtrees hanged on the diameter are danglers. Thus,
Step 2 requires O(n) time. Step 3 finds πC using dangler-first search . Since the
search scans every node in G once, it runs in O(n) time. Step 4 finds the induced
permutation (πA, πB) of πC in O(n) time. In summary, a valid permutation of
P can be computed in O(n) time.

To get all valid permutations of P, we can modify the dangler-first search to
return all possible permutations πC in a straightforward manner. The induced
permutations (πA, πB) of all such πC are all valid permutations of P.

3.3 A General Algorithm for C with Few Duplicates

The algorithm Enhanced-Double-Digest in Section 3.2 can solve the EDD prob-
lem if C contains no duplicates. Here, we give an algorithm which works without
this assumption.

First, we consider the following example.

• A = {a1 = 18, a2 = 19}; B = {b1 = 4, b2 = 5, b3 = 7, b4 = 8, b5 = 13};
• AB1 = {5, 6, 7}; AB2 = {4, 7, 8};
• BA1 = {4}; BA2 = {5}; BA3 = {7}; BA4 = {8}; BA5 = {6, 7}.

In this example, there are two 7’s in C = ∪iABi = ∪jBAj . These two 7’s
in fact represent two different subfragments in the target DNA sequence. To
distinguish them, let the copy of 7 in AB1 be 71 and that in AB2 be 72. Since
7 also belongs to BA3 and BA5, there are two possible combinations, namely,

390 M.-Y. Kao, J. Samet, and W.-K. Sung

4 8 71 6 5 72

b3b2b5b4b1

a1 a2

4 8 71 72

b4b1

a1 a2

b3 b2 b5

65

(a) (b)

Fig. 4. (a) is the case where 71 ∈ BA5 and 72 ∈ BA3; (b) is the case where 71 ∈ BA3

and 72 ∈ BA5.

(a) 71 ∈ BA5 and 72 ∈ BA3 and (b) 71 ∈ BA3 and 72 ∈ BA5. Figure 4(a)
and 4(b) illustrate the graph G for both cases; from these two graphs G, we
can obtain a valid permutation from combination (a). Therefore, we can handle
duplicates in C by giving them different subscripts. Then, all the elements in
C are different and we can solve the enhanced double digest problem using the
algorithm Enhanced-Double-Digest in Section 3.2. More precisely, we have the
following algorithm.

1. If C contains duplicates, then we assign a unique subscript to each duplicate.
2. For each possible combinations of the subscripts in the duplicates, we execute

Enhanced-Double-Digest to compute a valid permutation.

Let ` be the number of duplicates in C. The above algorithm execute
Enhanced-Double-Digest for at most `! time. Therefore, a valid permutation can
be computed in O(`!n) time. Thus, if ` is constant, the generalized algorithm
still runs in linear time.

4 The Enhanced Double Digest Problem Is NP-hard

This section proves the NP-hardness of the enhanced double digest problem by
a reduction from the Hamiltonian Path problem [2].

Given an undirected graph H, we show that in polynomial time, we can
construct an EDD instance Q so that H contains a hamiltonian path if and only
if Q has a valid permutation. For ease of prove, we augment H with two new
nodes t and z. All nodes originally in H have edges to t. In addition, we add an
edge (t, z) to H. Note that the original H contains a hamiltonian path if and
only if the amended H has a hamiltonian path. Let ` be the number of nodes
in H. Assume that the nodes in H are labeled by {1, 2, . . . , `}. For each node v,
let κ(v) be the number of neighbours of v. Let v′ = v + `. The EDD instance Q
is given the following length information. Note that this length information can
be constructed from H in polynomial time.

The Enhanced Double Digest Problem for DNA Physical Mapping 391

– A = {av | v ∈ H} where az = t′, at = t +
∑

u∈H−{t,z} u′ and av = v +∑
(u,v)∈H u′ for v 6= z, t. Also, ABz = {t′}; ABt = {u′ | u ∈ H −{t, z}}∪{t};

and ABv = {u′ | (u, v) ∈ H} ∪ {v} for v 6= z.
– B = {bv, bv(1), . . . , bv(k(v)−1) | v ∈ H − {z}} where bv = v + v′ and bv(i) = v′

for all v ∈ H − {z} and all i ≤ κ(v) − 1. Also, BAv = {v, v′} and BAv(i) =
{v′}.

Lemma 6. H has a hamiltonian path if and only if there is a valid permutation
for Q.

Proof. The two directions are proved as follows.

au1 at az

t+ t
0

u2 + u
0

2�B

�A

fv0 j (v; u1) 2 H; v 6= sg

u1 + u
0

1

au2

fv0 j (v; t) 2 H; v 6= u`�2g

au`�2

u`�2 + u
0

`�2

fv0 j (v; u2) 2 H; v 6= u1g

Fig. 5. The permutations πA and πB of A and B, respectively.

(=⇒) Let u1, u2, . . . , u`−2, t, z be a hamiltonian path in H. Let πA and πB be
permutations of A and B as shown in Figure 5. It is easy to check that (πA, πB)
is a valid permutation to Q.

(⇐=) Let (πA, πB) be a valid permutation of Q. The remainder of this proof
shows that the ordering of the lengths in πA defines a hamiltonian path in H.

Assume the lengths from A are plotted on a line according to the order given
by πA and similarly, the lengths from B are also plotted on this line according
to πB . For each v ∈ H, the line fragment corresponds to av ∈ A is called âv. For
each v ∈ H − {z}, the line fragment corresponds to bv ∈ B, is called b̂v.

For every v ∈ H −{z}, since BAv = {v, v′}, b̂v overlaps with two consecutive
line fragments from A; in addition, the overlapping regions between b̂v and these
two line fragments must be of length v and v′, respectively. Observe that v ∈ ABv

and v 6∈ ABu for all u 6= v. One of these two fragments, which overlaps with b̂v,
must be âv. The other line fragment can be âu for any u ∈ H with v′ ∈ ABu,
i.e., (v, u) ∈ H.

Let πA = (au1 , . . . , aul
). From the above argument, we know that, for every

two consecutive line fragments âi and âi+1, there exists a fragment b̂v (where v is
either ui or ui+1) which overlaps with both âui

and âui+1 . The above argument
also implies that (ui, ui+1) ∈ H. Thus, u1, . . . , u` forms a path in H. As u1, . . . , u`

contains all the ` nodes of H, this path is a hamiltonian path.

392 M.-Y. Kao, J. Samet, and W.-K. Sung

5 Further Research Directions

This work can be extended in several directions. One direction is to design a series
of laboratory procedures that can actually produce the input length information
in the required form. While separating out DNA sequences by length seems
to be possible with current laboratory techniques, we still face the problem of
separating different DNA fragments having the same length. Another direction
is to consider the problem of more than 2 digesting enzymes. Using multiple
enzymes could help resolve the issue of multiple solutions that arise when there
are danglers or duplicate subfragment lengths. Also, the extra input may actually
make the problem solvable in a shorter period of time. The third direction is to
have a probabilistic analysis of the number of duplicates in C, when the length
of the target DNA sequence is given. Lastly, this paper does not address the
issue of noise in the length data. From the practical point of view, handling the
noise problem is quite important.

Acknowledgments

We thank the anonymous referees for helpful suggestions.

References

1. W. M. Fitch, T. F. Smith, and W. W. Ralph. Mapping the order of DNA restriction
fragments. Gene, 22:19–29, 1983.

2. M. Garey and D. Johnson. Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

3. L. Goldstein and M. S. Waterman. Mapping DNA by stochastic relaxation. Ad-
vances in Applied Mathematics, 8:194–207, 1987.

4. Richard M. Karp. Mapping the genome: Some combinatorial problems arising in
molecular biology. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
the Theory of Computing, pages 278–285, San Diego, California, 16–18 May 1993.

5. D. Nathans and H. O. Smith. Restriction endonuleases in the analysis and restruc-
turing of DNA molecules. Annual Review of Biochemistry, 44:273–293, 1975.

6. P. A. Pevzner. DNA physical mapping, flows in networks and minimum cycles mean
in graphs. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 8:99–112, 1992.

7. P. A. Pevzner. DNA physical mapping and alternating Eulerian cycles in colored
graphs. Algorithmica, 13:77–105, 1995.

8. W. Schmitt and M. S. Waterman. Multiple solutions of DNA restriction mapping
problems. Advances in Applied Mathematics, 12:412–427, 1991.

9. M. Stefik. Inferring DNA structure from segmentation data. Artificial Intelligence,
11:85–114, 1978.

10. M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bulletin of
Mathematical Biology, 48:189–195, 1986.

Generalization of a Suffix Tree
for RNA Structural Pattern Matching

Tetsuo Shibuya

IBM Tokyo Research Laboratory,
1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan.

tshibuya@trl.ibm.co.jp

Abstract. In molecular biology, it is said that two biological sequences
tend to have similar properties if they have similar 3-D structures. Hence,
it is very important to find not only similar sequences in the string sense,
but also structurally similar sequences from databases. In this paper, we
propose a new data structure that is a generalization of a parameter-
ized suffix tree (p-suffix tree for short) introduced by Baker. This data
structure can be used for finding structurally related patterns of RNA or
single-stranded DNA. Furthermore, we propose an O(n(log |Σ|+log |Π|))
on-line algorithm for constructing it, where n is the sequence length, |Σ|
is the size of the normal alphabet, and |Π| is that of the alphabet called
“parameter,” which is related to the structure of the sequence. Our al-
gorithm achieves a linear time when it is used to analyze RNA and
DNA sequences. Furthermore, as an algorithm for constructing the p-
suffix tree, it is the first on-line algorithm, though the computing bound
of our algorithm is same as that of Kosaraju’s best-known algorithm.
The results of computational experiments using actual RNA and DNA
sequences are also given to demonstrate our algorithm’s practicality.

1 Introduction

The 3-D structure of a biological sequence plays a major role in determining
its functions and properties, and sequences that have similar structures often
have similar functions, even if the sequences themselves are not similar. But
it is very difficult to predict the structure of a given sequence correctly and
efficiently. Hence it seems to be still harder to find structurally similar regions
among several biological sequences or to find a set of frequently appearing and
structurally similar regions in a given sequence. Thus molecular biologists often
search for only similar, or highly conserved regions from DNA, RNA or protein
sequences to find regions with similar functions, because similar sequences have
tendency of having the same structure. Though many such methods are very
fast, they do not detect regions that are structurally similar to each other but
not similar in the string sense.

RNA sequences consist of four kinds of bases: A (adenine), U (uracil), C (cy-
tosine), and G (guanine). Note that in DNA, T (thymine) is present instead of U.
A and U (T for DNA) are said to be complements of each other, and C and G are

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 393–406, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

394 T. Shibuya

also complementary bases. RNA and single-stranded DNA sequences often form
some structures by combining two complementary base pairs. It is known that
double-stranded DNA sequences sometimes form such structures by becoming
single-stranded locally. Note that a base sometimes combines with more than one
complementary base: The triplex structure is the famous example. Many compu-
tational studies have been done to predict RNA secondary structure, comparing
a new sequence with a known RNA structure, searching a known RNA or DNA
structures from large databases, and so on [2,10,12,13,16,17,19,20]. But there
has been no appropriate method that can mine an unknown important RNA
structure from a large data set efficiently in a linear time, which is the aim of
the algorithm presented in this paper.

Let us consider the two RNA sequences in Figure 1 (1). The two sequences are
not at all similar to each other: there are no identical bases in identical positions.
In sequence 1, A’s are located at the 1st, 3rd, 8th, and 15th positions. In sequence
2, C’s are located at the same position as A’s in sequence 1. Similarly, A’s, U’s, and
G’s in sequence 2 are located at the same positions as G’s, C’s, and U’s in sequence
1, respectively. Recall that A and U can combine with each other, and that C and
G can also combine with each other. We then notice the following fact: If two
bases in one of these sequences can combine with each other, then in the other
sequence, two bases at in same two positions are also able to combine with each
other. This implies that a structure that can be formed by one of the sequences
can also be formed by the other sequence. Thus there is a strong possibility that
these two sequences have the same structure, and consequently may have similar
properties. For example, Figure 1 (2) shows one of the structures that can be
formed by sequence 1. It is easy to see that it can also be formed by sequence 2.

In this paper, we first introduce suffix trees and p-suffix trees as prelimi-
naries. We also briefly describe Ukkonen’s algorithm, on which our algorithm
is based. We then propose a new data structure called an s-suffix tree by gen-
eralizing the p-suffix tree. We also discuss how to describe structural patterns
of RNA or DNA here. Using the s-suffix tree, we can efficiently find some set
of substrings in some given sequence that might be structurally simiar, query
substrings that might be structurally similar to another given string, and so
on. We also propose an efficient on-line algorithm for constructing an s-suffix
tree based on Ukkonen’s algorithm. Finally, we give the results of computational
experiments using several HIV RNA complete sequences and very large DNA
sequences of E. coli (Escherichia coli).

Sequence 1: AUAUCGUAUGGCCGAGCC
Sequence 2: CGCGUAGCGAAUUACAUU

base
complementary base pair

(1) Example sequences (2) Candidate structure

Fig. 1. Examples of sequences that have high possibility to have a same structure

Generalization of a Suffix Tree for RNA Structural Pattern Matching 395

2 Preliminaries

2.1 Suffix Trees and p-Suffix Trees

The suffix tree of a string S ∈ Σn is the compacted trie of all the suffixes of S$
($ /∈ Σ) [9,10,15,18,21]. This data structure is very useful for various problems
in sequence pattern matching. Using it, we can query a substring of length m
in O(m log |Σ|) time, we can find frequently appearing substrings in a given
sequence in linear time, we can find a common substring of many sequences,
also in linear time, and so on [10].

The tree has n + 1 leaves, and each internal node has more than one child.
Each edge is labeled with a non-empty substring of S$, and no two edges out of
a node can have labels that start with the same character. Each node is labeled
with the concatenated string of edge labels on the path from the root to the
node, and each leaf has a label that is a different suffix of S$. Because each
edge label is represented by the first and the last indices of the corresponding
substring in S$, the data structure can be stored in O(n) space.

This data structure was first proposed by Weiner [21], who gave an O(n|Σ|)
algorithm for constructing it, where n is the string length and |Σ| is the size of the
alphabet. McCreight [15] improved it by giving an O(n log |Σ|) algorithm. After
that, Ukkonen [18] proposed an on-line O(n log |Σ|) algorithm, which processes
a string character by character from left to right. Recently, Farach [9] proposed
an O(n) algorithm for an integer alphabet {1, . . . , n}.

A parameterized string, or a p-string for short, is a string over two alphabets
Σ and Π, where Σ is an ordinary alphabet and Π is a set of parameters. Two
p-strings are said to match if they are same except for a one-to-one correspon-
dence between the characters in Π occurring in them. For example, two p-strings
ACxBCyzyAzxC and ACyBCzxzAxyC match (Σ = {A, B, C} and Π = {x, y, z}).

As in [5], we define prev(S) for any p-string S as follows:

Definition 1. Let N be the set of nonnegative integers. For any parameter x ∈
Π in string S ∈ (Σ ∪ Π)∗, replace it by an integer in N that equals the number
of positions between it and the nearest x to the left, except for the leftmost x,
which is replaced by 0. We let the obtained string in (Σ ∪ N)∗ be prev(S).

For example, prev(ACxBCyzyAzxC) = AC0BC002A38C. The p-suffix tree of a
p-string S is the compacted trie for all prev(suffixi(S))) for all positions i, where
suffixi(S) denotes a suffix of S that starts at position i. Baker [3,5,6] proposed
this data structure and showed that it can be constructed in O(n(|Π|+ log |Σ|))
time. Kosaraju [14] improved the time by giving an O(n(log |Π| + log |Σ|)) al-
gorithm. Note that both of the algorithms are based on McCreight’s suffix tree
construction algorithm [15] and that neither supports on-line computation. This
paper will give an on-line algorithm for the same task, based on Ukkonen’s al-
gorithm [18].

In the following sections, we use the following definitions. In a suffix tree, let
parent(u) be the parent node of node u, let σu be the string label of node u, and
let node(α) be node u in the tree such that σu = α if it exists. The suffix link

396 T. Shibuya

of u is a link to a node with label α if u is not the root, and has a label of cα,
where c is a single character. It is known that a suffix link always exists for any
u except for the root in a suffix tree [10,15,18]. If u is the root we let its suffix
link be u itself. Let sl(u) be the suffix link of u.

2.2 Ukkonen’s Suffix Tree Construction Algorithm

In this section, we briefly describe Ukkonen’s suffix tree construction algorithm.
The implicit suffix tree of S is the compacted trie of all the suffixes of S, and

a label for an edge that ends at a leaf is represented by only the first index of the
label. Let prefixi(S) be a prefix of S whose length is i, let Ti denote the implicit
suffix tree of prefixi(S$), and let n = |S|. Ukkonen’s algorithm consists of n + 1
phases, and in the ith phase, we construct an implicit suffix tree Ti from Ti−1.

In the ith phase, we construct a new node u = node(suffixj(prefixi(S))) for
all 1 ≤ j ≤ i in this order if there is no locus for suffixj(prefixi(S)) in the tree.
When we construct u, if there is no node with a label of suffixj−1(prefixi(S)),
we must also construct a new internal node at the appropriate locus and let it
be the parent of u. We call this procedure for single j the jth extension of the
ith phase.

Notice that we do not have to construct node u = node(suffixj(prefixi(S))) if
v = node(suffixj(prefixi−1(S))) was a leaf in the previous phase, because of the
definition of the implicit suffix tree: σv is suffixj(prefixi(S)) in this phase. Thus,
if there is a leaf for each of node(suffixj(prefixi−1(S))) for all j < k in phase
i − 1, we can begin by constructing node(suffixj+1(prefixi(S))) in this phase.
Furthermore, if there is a locus for suffixj(prefixi(S)) for some j, it is easy to see
that there already exist loci for suffixk(prefixi(S)) (k > j) too, and that there is
no need to construct nodes for them in this phase.

Ukkonen’s algorithm, like McCreight’s algorithm, maintains at each node u of
the suffix tree a suffix link sl(u). In any phase, we construct nodes
uj = node(suffixj(prefixi(S))) for several consecutive j’s and u′

j =
node(suffixj(prefixi−1(S))) if necessary, in the manner described above. Notice
that uj+1 = sl(uj) and u′

j+1 = sl(u′
j) if they exists. For the last uj to be con-

structed in this phase, we will check the locus for suffixj+1(prefixi(S)), which
is sl(uj) in the next extension according to the algorithm. Thus we will know
within the phase the suffix links of all the constructed nodes in the same phase.
In this way, we can maintain the suffix links.

Using the suffix links, we can construct node uj = node(suffixj(prefixi(S)))
faster: It is easy to see that sl(parent(uj−1)) must be an ancestor of uj , and we
can find the locus of suffixj(prefixi−1(S)) by tracing edges from sl(parent(uj−1)).
We call tracing from the suffix link to the target locus “scanning.”

In this way, the algorithm achieves an O(n log |Σ|) time complexity. For more
details of the algorithm and the analysis of the computing time bound, see [10]
or [18].

Generalization of a Suffix Tree for RNA Structural Pattern Matching 397

3 Structural Suffix Tree

3.1 s-Strings and s-Suffix Trees

In this section we define s-strings and s-suffix trees, which are generalizations of
p-strings and p-suffix trees.

Definition 2. Let Σ and Π be disjoint finite alphabets. We call the characters
in Σ the “fixed symbols” and those in Π the “parameters.” Some of the char-
acters in Π have one-to-one correspondences to other characters in Π: No two
characters can be complements of one character, and two characters that corre-
spond to each other are called complementary characters. A string in (Σ ∪ Π)∗

is called a structural string, or s-string for short. Two s-strings S and S′ are
said to s-match if they satisfy the following two conditions: (1) there exists a
one-to-one mapping from Π to Π such that S becomes S′ as a result of applying
it, and (2) if x is mapped to y in the mapping, then the complement of x is also
mapped to the complement of y in the mapping.

For example, if Σ = {A,B}, Π = {x, y, z, w}, and x and y are complements of
z and w, respectively, then ABxByAzwz and ABwBxAyzy s-match, but ABxByAzwz
and ABwBxAzyz do not. Note that if there are no complementary pairs in Π, an
s-string is the same as a p-string. Note also that the complement of a given
character can be accessed in O(log |Π|) time if the information is stored in a
balanced tree data structure, which can be constructed in O(|Π| log |Π|) time. If
Π can be used as an index to a table, the complement can be obtained in O(1)
time.

The problem of the RNA (or DNA) structural matching described in section 1
is the problem of s-matching in the following situation: Σ = φ, Π = {A, U, C,
G}, and A and C are complementary characters of U and G, respectively. If two
RNA sequences s-match with each other, it can be said that there is a high
possibility that the two sequences have the same structure and that they may
have similar properties as a result. For example, the two sequences in Figure 1
(1) s-match.

The following two encodings are useful for determining s-matching of two
sequences. One is prev(S) that is already defined in Definition 1. The other is
compl(S) defined as follows:

Definition 3. Let N be the set of nonnegative integers (N /∈ Σ ∪ Π). For any
parameter x ∈ Π in string S ∈ (Σ∪Π)∗, replace it by an integer in N that equals
the number of positions between it and the nearest complementary character of
x to the left. If there is no complementary character to the left, replace it by 0.
Let compl(S) denote the obtained string in (Σ ∪ N)∗.

For example, compl(ABxByAzwz) = AB0B0A436 if Σ = {A,B}, Π = {x, y, z, w},
and x and y are complements of z and w, respectively. We can compute prev and
compl encodings for string S of size n in O(n ·min(log n, log |Σ|)) time and O(n)
space by means of a balanced tree structure, which can be computed on-line. If

398 T. Shibuya

Π is known and can be used as an index to a table of size |Π|, it is easy to see
that these encodings can be computed in O(n + |Π|) time and space.

These two encodings are related to finding s-matches as follows: s-strings
S and S′ are an s-match if and only if prev(S) = prev(S′) and compl(S) =
compl(S′). Furthermore, it is easy to see the following lemma. Let prev(S)[i]
and compl(S)[i] denote the ith characters of prev(S) and compl(S) respectively.

Lemma 1. Consider a situation in which prefixi(S) and prefixi(S′) are an s-
match. In this situation, if prev(S)[i+1] = prev(S′)[i+1] 6= 0, compl(S)[i+1] =
compl(S′)[i+1]. Similarly, if compl(S)[i+1] = compl(S′)[i+1] 6= 0, prev(S)[i+1]
= prev(S′)[i + 1].

This means that, when we check s-matches of strings, we do not have to
see the other encoding if one of the encodings encodes a character as a non-
zero number. Using this lemma, we can check s-matching by using the following
s-encoding:

Definition 4. For a given string S, compute prev(S) and compl(S). If prev(S)[i]
= 0, replace it with −compl(S)[i], which is a nonpositive value. We call this new
encoded string in (Σ ∪ I)∗ (I: integer) as a structural encoding of S, or an
s-encoding for short.

The structural suffix tree of string S, or the s-suffix tree of S for short,
is the compacted trie of the s-encoded strings of all the suffixes of S. Let
sencode(S) denote the s-encoding of S. The s-strings S and S′ are an s-match
if and only if sencode(S) = sencode(S′). Let ssuffixi(S) = sencode(suffixi(S)),
and let ssufixi(S)[j] be the jth character of ssuffixi(S). Notice that ssufixi(S)[j]
is sometimes different from sencode(S)[i + j − 1]: if |sencode(S)[i + j − 1]| > j,
ssufixi(S)[j] = 0 6= |sencode(S)[i + j − 1]| > j. Notice also that, if we have
prev(S) and compl(S), we can obtain the value of ssufixi(S)[j] for any i and j
in a constant time.

Using the s-suffix tree, we can find some set of substrings in some given
sequence that s-match each other in O(n) time or query a substring that matches
another given string in O(n log(|Σ| + |Π|)) time. We can also find common s-
substrings of given two sequences in a linear time.

3.2 Basic Algorithm

We first describe a basic method for constructing the s-suffix tree based on
Ukkonen’s algorithm.

The implicit s-suffix tree of S is the compacted trie of all the s-encoded
suffixes of S, and a label for an edge that ends at a leaf is represented by
only the first index of the label in it. Let Ti denote the implicit s-suffix tree
of prefixi(S$) for the given string S and an integer 0 < i ≤ n + 1 where n = |S|.
Let node(S) denote the node with label of s-encoded string of S in this section.
Like Ukkonen’s algorithm, our basic algorithm consists of n + 1 phases, and in
the ith phase, we construct an implicit s-suffix tree Ti from Ti−1.

Generalization of a Suffix Tree for RNA Structural Pattern Matching 399

As in Ukkonen’s algorithm, we construct a new node u =
node(suffixj(prefixi(S))) for all 1 ≤ j ≤ i in this order if there is no locus
for suffixj(prefixi(S)) in the tree in the ith phase. We call this procedure for
single j the jth extension as in the description of Ukkonen’s algorithm. Ukko-
nen’s algorithm speeds up each phase by ignoring unnecessary extensions. In
this s-suffix tree case, the unnecessary extensions are all the same as Ukkonen’s
case.

The major problem in constructing s-suffix trees by applying Ukkonen’s al-
gorithm is that, as in Baker’s p-suffix tree construction algorithm, a node of an
s-suffix tree does not always have explicit suffix links to another node. Consider
a node u = node(cα) in an s-suffix tree, where c is a single character and α is
some s-encoded s-string. It is possible that the locus for α is not a node but a
point on an edge. In this case, we let u’s suffix link sl(u) be this edge and call
such a link an implicit suffix link.

The implicit suffix links causes two problems. One is how to keep these im-
plicit suffix links correct thorough the algorithm: the implicit suffix links must be
updated if the corresponding edge is split. The other is how to analyze the num-
ber of scanned nodes in the algorithm. First, we deal with the former problem,
and after that we discuss the latter problem.

It is easy to see the following lemma related to implicit suffix links:

Lemma 2. Let u be a node with an implicit suffix link and d = |σu|. Then the
first s-encoded character of the label of any of the outgoing edges from u must be
one of d, 0, and −d. Furthermore, if it is d, its corresponding compl value must
be 0.

We use the term ‘zero-node’ for a node with more than one outgoing edge that
has a label starting with either of d, 0, or −d, where d is the label length of
the node, regardless of whether its suffix link is implicit or not. We also call
edges the first s-encoded character of whose labels are d, 0 and −d, a “positive
zero-edge”, a “normal zero-edge” and a “negative zero-edge,” respectively.

The following lemmas related to zero-nodes and zero-edges can be easily seen:

Lemma 3. On a path from the root to a leaf, there are at most |Π| zero-nodes.

Lemma 4. A positive zero-edge cannot be an ancestor of another positive zero-
edge. Similarly, a negative zero-edge cannot be an ancestor of another negative
zero-edge.

It is easy to find the implicit suffix links of newly constructed nodes in the
algorithm, as in Ukkonen’s algorithm. Consider the situation in the jth exten-
sion of the ith phase of the algorithm, when uj = node(suffixj(prefixi(S))) is
constructed. Note that u′

j = node(suffixj(prefixi−1(S))) may be constructed at
the same time if necessary. As in the case of constructing an ordinary suffix tree,
we will check the locus of suffixj+1(prefixi−1(S)) in the next extension in the
same phase, so we will soon find the suffix links of uj and u′

j . Hence we can

400 T. Shibuya

conclude that every node other than the last leaf inserted and its parent has
either an ordinary suffix link or an implicit suffix link. The problem is how to
maintain these implicit suffix links. In the algorithm, we often split edges to add
a new node. Thus we have to update each implicit link if the edge it links to is
split into two edges by inserting a new node. We call a set of nodes a zero-chain
if the nodes form a chain in the tree and all the edges between them are the
same kind zero-edges (i.e., if one edge is a positive zero-edge, then the others
are also positive zero-edges, for example).

We obtain the following theorem related to implicit suffix links:

Theorem 1. For any edge e, the set of nodes having implicit suffix links to e
forms at most 2|Π| + 1 zero-chains in the tree. Furthermore, the length of each
zero-chain is at most |Π|.
Proof. Let v and v′ be two nodes with implicit suffix links to the same edge. If
v is an ancestor of v′ and there is a node u between v and v′, it is obvious that
sl(u) is also between sl(v) and sl(v′).

If neither of these two nodes is an ancestor of the other, let w be the lowest
common ancestor of v and v′ in the suffix tree. Note that w is not the root,
because both of the first s-encoded characters of the labels of v and v′ must be
0. Since one of the s-encoded strings of suffix2(σv) and suffix2(σv′) must be a
prefix of the other, the outgoing edges to v and v′ must be zero-edges. Thus w
must be a zero-node.

Lemma 4 implies that, under the negative or positive zero-edge out of w,
there is only one zero-chain formed by the set of nodes having implicit suffix
links to e. Furthermore, a normal zero-edge can have at most |Π| − 1 normal
zero-edges on a path to some leaf from it, according to Lemma 3. Thus we can
conclude that there are at most 2|Π|+1 zero-chains. Also according to Lemma 3,
it is obvious that the lengths of the zero-chains are at most |Π|.

Note that, in the case of the p-suffix tree (i.e., when there are no comple-
mentary character pairs), such nodes form only one zero-chain. According to this
theorem, there are at most 2|Π|2 + |Π| implicit suffix links to one edge. Hence
when we split an edge, it takes O(|Π|2) time to update all the corresponding
implicit suffix links if we do it naively. If |Π| is constant, the bound is O(n), but
if |Π| is large, it causes a problem. From now on, we consider how to reduce the
time to O(log |Π|).

Consider O(n) sets of nodes which are empty at first. We perform two types
of procedures for the sets. One is inserting a node into one of the sets, and the
other is splitting one of the sets into two sets according to the label lengths of the
nodes in the set, as follows: One of the two sets newly constructed by splitting is
the set of nodes whose label lengths are larger than a specified length, and the
other is the set of nodes whose label lengths are smaller than the same specified
length. Consider that the upper bound of the size of a set is p, and that the
total number of nodes inserted is O(n). A balanced data structure can achieve
the following time bounds for these two procedures:

Generalization of a Suffix Tree for RNA Structural Pattern Matching 401

1. A new item can be inserted into a set in O(log p) time.
2. S can be split into two sets as above in a time linear to the size of the smaller

set of them.

It is easy to see that the total time taken by procedure 1 is O(n log p), and
that the total time taken by procedure 2 is also O(n log p). We can maintain the
implicit suffix links by this procedure. In this case, p = O(|Π|2); thus the total
time required for maintaining them is O(n log |Π|).

From now on, we discuss the number of nodes scanned in the algorithm.
Note that it is O(n) in Ukkonen’s algorithm [10,18]. Note also that the analysis
for it is almost the same as that of the number of rescanned nodes in Baker’s
algorithm for p-suffix trees [5,6].

Theorem 2. The number of scanned edges that are not normal zero-edges is at
most n.

Proof. In constructing the s-suffix tree of a string S, consider that an edge
(u, v) that is not a normal zero-edge is scanned when we search for the lo-
cus of suffixj(prefixi(S)) in the jth extension of the (i + 1)th phase. Let u =
node(suffixj(prefixk−1(S)))).

Consider the locus of suffixj′(prefixk−1(S)))) for any j′ < j. Note that we
do not perform the j′′th (j′′ ≥ j) extension in the i′th phase (i′ < i) of the
algorithm. If there exists a node (w) for the locus, then it must have an explicit
suffix link to some node, because suffixj′(prefixk(S))[k − j′ + 1] is not 0. This
means that w cannot be scanned in the algorithm. Accordingly, we conclude that
the number of such edges is at most n.

According to Lemma 3, the number of normal zero-edges that are scanned in
a single phase is at most |Π|. Thus the total number of nodes that have implicit
suffix links and are scanned in the algorithm is at most n|Π|. Note that the
outgoing normal zero-edge from a node can be accessed in O(1) time. Thus the
total scanning time will be O(n(|Π| + log |Σ|)).

Thus we conclude that the total computing time of our algorithm is O(n(|Π|+
log |Σ|)). If |Π| and |Σ| are constant, it is O(n). In fact, in the problem of
RNA/DNA structural matching (|Σ| = 0 and |Π| = 4), this basic algorithm is
efficient enough.

3.3 Faster Algorithm when |Σ| = 2

In this section, we will improve the algorithm given in the previous section to
O(n log |Π|) when |Σ| = 2. The technique used in this section is almost the
same as Kosaraju’s technique [14] for improving of the rescanning procedure of
Baker’s algorithm.

In each extension, if we insert a new node into an edge (u, v), we will scan
from sl(u) to find the locus of the suffix link of the new node. We want to reduce
the number of zero-edges encountered in this scanning. Let Zuv be the set of

402 T. Shibuya

normal zero-edges whose starting node is encountered in scanning from sl(u) to
sl(v). Note that |Zuv| ≤ |Π|.

For each edge, we maintain a concatenable queue [1,14], or c-queue for short.
Each c-queue for (u, v) contains a set of edges in Zuv arranged in the order of
their depth. We maintain the c-queues lazily; that is, we put edges into c-queues
only when we first encounter the edges in scanning. Thus the c-queue for edge
(u, v) does not contain all of the edges in Zuv. The same edge can appear only
in 2 c-queues because |Σ| = 2.

The time taken to insert an edge into a c-queue is O(log |Π|). In scanning
for the locus of depth d, we begin from the deepest edge in the corresponding
c-queue whose starting depth is shallower than d. Such an edge can be found in
O(log |Π|) time. Furthermore, we must split the c-queue when the edge is split,
and this can be done in O(log |Π|) time.

In this way, we can achieve an O(n log |Π|) time algorithm if |Σ| is a small
constant. Note that the space complexity is O(n). From now on, we consider
how to achieve O(n(log |Π| + log |Σ|)) time.

3.4 Faster Algorithm for Arbitrary Σ

In this section, we will improve the algorithm given in the previous sections
to O(n(log |Σ| + log |Π|)), which is far more efficient for larger alphabets. The
technique used in this section is also almost the same as Kosaraju’s technique
[14] for improving the rescanning procedure of Baker’s algorithm, except that
our algorithm is on-line.

For any given string S, we can construct two strings S1 and S2 as follows:
S1 is S with every parameter replaced by integer 0. S2 is S with every fixed
symbol replaced by a single fixed symbol. We can construct the implicit suffix
tree of prefixi(S1) by Ukkonen’s algorithm and the s-suffix tree of prefixi(S2) by
the above algorithm while constructing the implicit s-suffix tree for prefixi(S2).
Note that the construction of the suffix tree of S1 takes O(n log |Σ|) time and
that of the s-suffix tree of S2 takes O(n log |Π|) time.

In any phase i, we can compute the length of the common prefix of s-encoded
strings of suffixj(prefixi(S)) and suffixk(prefixi(S)) for any k < i and j < i as
follows: According to [8], we can compute the lowest common ancestor of two
nodes of a suffix tree in a constant time even while we are constructing the
tree. Thus we can compute in a constant time the length of the common prefix
of suffixj(prefixi(S1)) and suffixk(prefixi(S1)) for any k < i and j < i. We
can also compute in a constant time the length of the common prefix of the
s-encoded suffixj(prefixi(S2)) and suffixk(prefixi(S2)) for any k < i and j < i.
The length of the common prefix of s-encoded strings of suffixj(prefixi(S)) and
suffixk(prefixi(S)) for any k < i and j < i is the smaller of these two values.

By maintaining a set of edges that forms a zero-chain in a c-queue, we can
speed up the scanning as follows: Consider a situation in which we encounter a
zero-chain while scanning. First we find a leaf w that is a child of the deepest
node in the zero-chain and is not a child of the target locus. Next, we compute
the length of the common prefix length of the s-encoded strings of the the target

Generalization of a Suffix Tree for RNA Structural Pattern Matching 403

string and σw. Then we can find the deepest edge in the zero-chain that is an
ancestor of the locus in O(log |Π|) time. An normal zero-edge from a node can be
accessed in a constant time. In this way, we can achieve an O(n(log |Σ|+log |Π|))
computation time. For more details of this speeding-up technique, see [14].

4 Computational Experiments

Using the s-suffix tree of a string we can perform tasks such as the following:

– Given a long sequence of length n and some constant l and r, we can find a
set of more than r substrings that s-match with each other and are longer
than l in an O(n(log |Σ|+log |Π|)+Toutput) time, where Toutput is the output
size.

– Given more than one sequence, we can find the longest common s-encoded
pattern of these sequences in O(n(log |Σ| + log |Π|) + Toutput) time, where
Toutput is the output size and n is the sum of the lengths of the input se-
quences.

Note that, if the size of the alphabet is constant, both of these tasks can be
completed in a linear time. In this section, we describe experiments on RNA and
DNA sequences, in which we constructed the s-suffix tree of DNA sequences,
where Σ = φ, Π = {A,U,G,C}, A is the complement of U and G is the complement
of C. (In DNA sequences, T is present instead of U.)

We conducted experiments on three HIV (human immunodeficiency virus)
RNA complete sequences: (A) a sequence of length 9719 (accession number:
K03455), (B) a sequence of length 9748 (accession number: X01762) and (C) a
sequence of length 8981 (accession number: AF067156). We also use four very
long DNA sequences of E. coli, each of which has the same length, 1 Mbp =
1, 000, 000 bp. The length of the full genome sequence of E. coli is about 4.64
Mbp, and these four sequences are the following regions of the sequence: (D) 1
bp–1, 000, 000 bp, (E) 1, 000, 001 bp–2, 000, 000 bp (F) 2, 000, 001 bp–3, 000, 000
bp, and (G) 3, 000, 001 bp–4, 000, 000 bp.

First, we compare the size of the s-suffix tree with that of the normal suffix
tree of the same sequences. Table 1 shows the numbers of nodes in the suffix
trees and the s-suffix trees of the seven sequences. According to the table, the
sizes of the s-suffix trees are slightly smaller than those of the normal suffix trees
in all cases, but the numbers of nodes in them are almost the same regardless of
the length of the sequence. For any sequence, both the number of nodes in the
suffix tree and that of the s-suffix tree are about 1.6 to 1.7 times the length of
the sequence. Thus we can say that the s-suffix trees are very compact and that
it is as reasonable to build them as to build the normal suffix trees.

Consider that a structural pattern α of length l appears r times, but any
pattern that is constructed by extending it to the right, such as αc (c ∈ (Σ ∪
Π)) appears less than r times. We call such a pattern α a “maximal structural
pattern.” We now give the experimental results of an experiment to find maximal
structural patterns which are longer than l and repeated more than r times for

404 T. Shibuya

Table 1. Number of nodes in suffix trees and s-suffix trees

Sequence (A) (B) (C) (D) (E) (F) (G)
Length 9719 9748 8981 1000000 1000000 1000000 1000000

Suffix Tree 16135 16217 14710 1640492 1635995 1638043 1638008
s-Suffix Tree 16033 16132 14666 1631525 1628821 1630104 1628923

Table 2. Examples of maximal structural pattern

(1) (2)
Position Sequence
646095 CCCGCTTCGGCTTCA
703617 GGGCGTTGCCGTTGA
779110 TTTATGGTAATGGTC
888469 TTTATCCTAATCCTG

Position Sequence
371484 ACTGCGCCATGAAGATGAC
884639 GACTATAAGCTGGTGCTGA

some given l and r. Table 2 shows two examples of maximal structural patterns
found in E. coli sequence (D): (1) is a set of patterns of length 15 that appears
four times, and (2) is a set of patterns of length 19 that appears 2 times in
the sequence. Every sequence is different from the others, but these sequences
s-match with each other.

Table 3 shows the number of maximal patterns whose lengths (l’s) are larger
than some given length. In the table, a “normal pattern” means an ordinary
string pattern that can be found with an ordinary suffix tree. Notice that the
structural patterns includes the normal patterns. According to the table, we can
see interesting facts such as that the proportion of normal patterns increases
with the lengths of the patterns.

5 Concluding Remarks

We have proposed a new data structure called the structural suffix tree, or s-suffix
tree for short. We also proposed an on-line O(n(log |Σ| + log |Π|)) algorithm for
constructing it, where Σ is an alphabet of fixed symbols and Π is an alphabet of
parameters. This data structure enables an efficient search for frequent patterns
of structures of RNA sequences or single-stranded DNA sequences. It also enables
a common structure pattern to be efficiently found in more than one sequence.
We also showed the practicality of our data structure and our algorithm by
reporting computational experiments for finding structural patterns from RNA
sequences of HIV and DNA sequences of E. coli using the s-suffix tree.

Several tasks remain for the future. Two sequences can have the same struc-
ture even if they do not have the same s-encoded string patterns. Furthermore,
it is difficult to apply our algorithm to the problem of proteins, where the combi-
nations are far more complicated. Thus we should strive to create more general

Generalization of a Suffix Tree for RNA Structural Pattern Matching 405

Table 3. Number of structural/normal patterns

(1) HIV RNA sequences (2) E. coli sequences
l Pattern (A) (B) (C)

≥ 5 Structural 5329 5061 4887
Normal 1381 1147 1000

≥ 10 Structural 670 451 282
Normal 479 363 126

≥ 15 Structural 336 123 4
Normal 336 123 3

l Pattern (D) (E) (F) (G)

≥ 10 Structural 495371 499205 498728 497701
Normal 90968 85899 88681 90298

≥ 15 Structural 4723 4140 4466 4529
Normal 2402 1728 2095 2147

≥ 20 Structural 330 106 192 192
Normal 330 103 192 190

data structures and algorithms for structural pattern matching of biological se-
quences. Recently, Farach [9] introduced a linear-time suffix tree construction
algorithm for strings of an integer alphabet {1, . . . , n}. It is an open problem
whether or not such a linear time algorithm exists for constructing s-suffix trees
or p-suffix trees.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “Design and Analysis of Algorithms,”
Addison Wesley Publishing Co., Reading, Mass., 1974.

2. V. R. Akmaev, S. T. Kelley, and G. D. Stormo, “A Phylogenetic Approach to RNA
Structure Prediction,” Proc. 7th International Conference on Intelligent Systems
for Molecular Biology (ISMB ’99), 1999, pp. 10-17.

3. B. S. Baker, “A Program for Identifying Duplicated Code,” Computing Science
and Statistics, Interface Foundation of North America, 1992, pp. 49-57.

4. B. S. Baker, “Parameterized Pattern Matching by Boyer-Moore-type Algorithms,”
Proc. 6th Annual ACM-SIAM Symp. Discrete Algorithms (SODA ’95), 1995, pp.
541-550.

5. B. S. Baker, “Parameterized Pattern Matching: Algorithms and Applications,” J.
Comp. Syst. Sci., Vol. 52, No. 1, 1996, pp. 28-42.

6. B. S. Baker, “ Parameterized Duplication in Strings: Algorithms and Application
to Software Maintenance,” SIAM J. Comput., Vol. 26, No. 5, 1997, pp. 1343-1362.

7. B. S. Baker, “Parameterized Diff,” Proc. 10th ACM-SIAM Symp. Discrete Algo-
rithms (SODA ’99), 1999, pp. 854-855.

8. R. Cole and R. Hariharan, “Dynamic LCA Queries on Trees,” Proc. 10th ACM-
SIAM Symp. Discrete Algorithms (SODA ’99), 1999, pp. 235-244.

9. M. Farach, “Optimal Suffix Tree Construction with Large Alphabets,” Proc. 38th
IEEE Symp. Foundations of Computer Science (FOCS ’97), 1997, pp. 137-143.

10. D. Gusfield, “Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology,” Cambridge University Press, 1997.

11. D. Harel and R. R. Tarjan, “Fast Algorithms for Finding Nearest Common Ances-
tors,” SIAM J. Computing, Vol. 13, 1984, pp. 338-355.

12. H. P. Lenhof, K. Reinert, and M. Vingron, “A Polyhedral Approach to RNA Se-
quence Structure Alignment,” Proc. 2nd Annual International Conference on Com-
putational Molecular Biology (RECOMB ’98), 1998, pp. 153-162.

406 T. Shibuya

13. R. B. Lyngso, M. Zuker, and C. N. S. Pedersen, “Internal Loops in RNA Secondary
Structure Prediction,” Proc. 3nd Annual International Conference on Computa-
tional Molecular Biology (RECOMB ’99), 1999, pp. 260-267.

14. S. R. Kosaraju, “Faster Algorithms for the Construction of Parameterized Suffix
Trees,” Proc. 36th IEEE Symp. Foundations of Computer Science (FOCS ’95),
1995, pp. 631-637.

15. E. M. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” J.
ACM, Vol. 23, 1976, pp. 262-272.

16. J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, PWS
Pub. Co., Boston, 1997.

17. D. H. Turner, N. Sugimoto, and S. M. Freier, “RNA Structure Prediction,” Ann.
Rev. Biophys. Chem., Vol. 17, 1988, pp. 167-192.

18. E. Ukkonen, “On-Line Construction of Suffix-Trees,” Algorithmica, Vol. 14, 1995,
pp. 249-60.

19. Z. Wang and K. Zhang, “Finding Common RNA Secondary Structures from RNA
Sequences,” Proc. 4th Symposium on Combinatorial Pattern Matching, Springer-
Verlag LNCS 1645, 1999, pp. 258-269.

20. M. S. Waterman, Introduction to Computational Biology, Capman & Hall, London,
1995.

21. P. Weiner, “Linear Pattern Matching Algorithms,” Proc. 14th Symposium on
Switching and Automata Theory, 1973, pp. 1-11.

Efficient Computation
of All Longest Common Subsequences

Claus Rick

Institut für Informatik IV, Universität Bonn,
Römerstr. 164, 53117 Bonn, GERMANY

rick@cs.uni-bonn.de

Abstract. Many efficient algorithms have been developed to compute
the length of a longest common subsequence (LCS) between two strings.
In general, an LCS is not unique but current methods only recover a
single LCS. We investigate the problem of finding all longest common
subsequences. A simple extension of the reconstruction method used by
existing algorithms would seriously harm their time complexities. We
present observations on a symmetry of the LCS problem which allow us
to develop a general method to obtain a representation of all longest
common subsequences while preserving the favorable time bounds of
known algorithms.

1 Introduction

The problem of determining the similarity of two sequences A = a1a2 . . . am and
B = b1b2 . . . bn, m ≤ n over some finite alphabet Σ arises in many different areas
of application, including one in the study of the evolution of long molecules. A
widely accepted measure of similarity is the Levenshtein distance which can be
evaluated by a dynamic programming algorithm in time Θ(mn) [17]. A common
subsequence is any sequence which can be obtained from both strings A and
B by deleting zero or more (not necessarily adjacent) symbols. The length p of
a longest common subsequence is closely related to the Levenshtein distance.
In fact, it can be viewed as special case and thus a variation of the dynamic
programming algorithm can be used to compute this value.

It was observed early that efficiency could be improved for typical applica-
tions by exploiting some structural properties of the LCS problem [9, 12]. The
time complexities of such algorithms are parameterized by variables other than
the sizes of the two input strings (for surveys see [3, 10]). For example, there
are algorithms which perform well when the length of an LCS is short (O(pm)
[1]) while preference would be given to an O(n(m − p)) algorithm [13] when
the length of an LCS is long. In Section 2 we will shortly review the paradigm
underlying most of these algorithms. The primary goal of these methods is to
calculate the length of an LCS as quick as possible.

In some applications, e.g. when building an alignment of two DNA sequences,
one is also interested to see in which places the two sequences differ and where

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 407–418, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

408 C. Rick

they match. Alternatively, an edit script may be required which transforms A
into B by insertions and deletions. All methods can easily be extended to recover
a single longest common subsequence and this does not affect the asymptotic
time complexity of the algorithms. However, a longest common subsequence
is not unique and the (arbitrary) LCS reconstructed is primarily due to the
implementation of an particular algorithm. Thus it may not reveal an expected
relationship between the two sequences which another LCS would be able to
indicate. Therefore it is of interest to compute a representation which highlights
the structure of all longest common subsequences and from which each single
LCS may be recovered easily. So far, this may only be achieved by the dynamic
programming algorithm and (partially) by the construction proposed in [2].

As we will argue in Section 3, simple extension of the classical method (trace
back) to recover an LCS used by all the efficient algorithms will seriously harm
their time complexities. In Section 4 we give a characterization of LCSs which is
based on a symmetry of the LCS problem and in Section 5 we show how to use
it to maintain the original time complexities of the algorithms while computing
a suitable representation of all longest common subsequences.

2 Matches and Contours

It is common to describe the LCS problem in the following way. An ordered pair
(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n is called a match if ai = bj . The set M of all
matches can be represented by a matching matrix of size m × n in which each
match is identified by a circle. Two matches (i, j) and (i′, j′) may be part of the
same common subsequence if and only if i < i′ ∧ j < j′ or i′ < i ∧ j′ < j. A
sequence S ⊆ M of matches that is strictly increasing in both components is
called a chain. The LCS problem can now be viewed as finding a longest chain.
It is solved by employing a technique called sparse dynamic programming [7]
which rests on some structural properties of the LCS problem.

Let |LCS(A, B)| denote the length of an LCS between strings A and B and
let Ai = a1 . . . ai, 0 ≤ i ≤ m denote the length i prefix of A. For a match (i, j)
we say that it is of rank k if the length of a longest chain ending at (i, j) is k.
We can collect matches of the same rank k in classes

Ck = {(i, j) ∈ M : |LCS(Ai, Bj)| = k}.

Thus, M can be partitioned into classes C1, C2, . . . , Cp, each class containing
matches of the same rank. It is well known that these classes exhibit a special
structure in the matching matrix. If sorted in increasing order with respect to the
first component and in decreasing order with respect to the second component,
matches belonging to the same class shift from right to left, and they form so-
called contours when connected by lines as shown in Figure 1(a). Contours of
different classes may never cross or touch, and the contour of each class divides
the matrix into a top/left part and a bottom/right part. Each contour can be
completely specified by dominant matches, i.e. those matches (i, j) in a class for
which there is no other match (i′, j′) in the same class with i′ = i ∧ j′ < j or

Efficient Computation of All Longest Common Subsequences 409

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

(a)

a

b

c

c

b

a

c

b

a

ab b b a c a c

1

2

3

4

5

1 1

1

1

1

2

2

2

2

3

33

3

3

4

4

4

55

a

b

c

c

b

a

c

b

a

ab b b a c a c

1

2

3

4

5

1

2

33

4

4

55

(b)

2

Fig. 1. Matches and Contours (a), LCSs-graph (b).

i′ < i∧j′ = j. We use Dk ⊆ Ck to denote the dominant matches of rank k. They
are located in the top/left corners of a contour and they are indicated by bold
circles in Figure 1(a). On the other hand each match in Ck \Dk is dominated by
some match in Dk. Thus there will always be an LCS consisting only of dominant
matches. For more background on this see for example [14].

Speedup was gained for many algorithms by concentrating on the computa-
tion of dominant matches and by exploiting the above properties in clever ways
[13, 11, 1, 6, 15]. For example, the algorithm introduced in [15] has time com-
plexity O(n|Σ|+min{pm, p(n−p)}) where time O(n|Σ|) is used for some prepro-
cessing (solving the so-called string identification problem) and time O(min{pm,
p(n−p)}) is used to determine the dominant matches. Our goal will be to main-
tain such favorable time complexities while computing a representation of all
LCSs. To this end it is important to note that the time complexity of the main
processing stage is an upper bound on the number of dominant matches since
each dominant match is touched at least once by these algorithms [14]. On the
other hand it is known that p ≤ d ≤ r ≤ mn. In particular there is no fixed
correlation between the total number of matches, r, and the number of dominant
matches, d. There are instances where the latter can be very small while the for-
mer essentially remains quadratic. E.g., consider strings over a small alphabet
where each symbol occurs the same number of times and which have an LCS
close to the string length.

3 Representing All LCSs

A single LCS may be recovered by storing a pointer with each dominant match
which points to one of his direct predecessors in a chain. Starting with any
dominant match of highest rank we can trace an LCS in time O(p) by simply
following these pointers. This is the classical way to reconstruct an optimal

410 C. Rick

solution in dynamic programming methods. But in general an LCS is not unique.
Consider the two strings A = abacbcba and B = cbabbacac. Their structure is
shown in Figure 1(a). There are five different character sequences which all form
an LCS, namely abacc, abaca, abbca, babca, and babba. Further, for each character
sequence there may exist different embeddings, i.e. positions in the two strings to
which the characters of an LCS map. E.g., the sequence abacc may correspond to
the sequence of matches (1, 3), (2, 4), (3, 6), (4, 7), (6, 9) or to (1, 3), (2, 5), (3, 6),
(4, 7), (6, 9). A canonical embedding of a fixed LCS is an embedding where each
character, starting from the beginning of the LCS, is assigned matching positions
in both sequences as small as possible. So the first sequence of matches above is
a canonical embedding while the second is not.

In [2] a directed acyclic subsequence graph (DASG) is defined as a finite
automaton recognizing all subsequences of a string. The generalization for two
strings is a representation of the canonical embeddings of all LCSs and can be
built in time O(n log n + r). The only representation which includes all embed-
dings of all LCSs is the dynamic programming matrix augmented with appro-
priate back-pointers which takes time and space Θ(mn) to construct.

For each match (i, j) define CS(i, j) to be the maximum length of a common
subsequence of A and B containing (i, j), i.e.

CS(i, j) := max{|S| : S is a chain and (i, j) ∈ S}.

We will now define the LCSs-Graph which seems to be the most appropriate
structure to represent all LCSs, including different embeddings.

Definition 1 (LCSs-Graph). The LCSs-Graph of two Sequences A and B
which have LCSs of length p is the directed acyclic Graph G = (V, E), where

1. V = V1∪̇V2∪̇ . . . ∪̇Vp,
2. Vk = {(i, j) | (i, j) ∈ Ck ∧ CS(i, j) = p},
3. E = {[(i, j), (i′, j′)] | (i, j) ∈ Vk, (i′, j′) ∈ Vk+1, i < i′, j < j′}.

The LCSs-graph for our example of Figure 1(a) is given in Figure 1(b). Note that
edges are easily derived from the nodes and so they need not be given explicitly.
Thus, our primary concern will be the efficient computation of nodes. The goal
is to construct G in time O(T + |G|) where T is the time of any algorithm which
determines the dominant matches.

An important fact to note is that in general dominant matches are not suffi-
cient to represent all LCSs. It is easily checked that the LCS abbca, indicated by
back-arrows in Figure 1(a), can not be represented solely by dominant matches.
On the other hand we don’t (yet) have a criterion to decide which non-dominant
matches are necessary for the construction of some LCS and which are not.

Therefore, if we decide to reconstruct all LCSs using the classical back-
pointer-approach there seems to be no way to avoid the creation of a separate
node for every match. Further, with each match we may have to store several
back-pointers. So this method will take time Ω(r). Such a time bound is disas-
trous for all algorithms concentrating on the computation of dominant matches.
Their time complexity usually gives an upper bound on the number of dominant
matches but not on the total number of matches (see Section 2).

Efficient Computation of All Longest Common Subsequences 411

4 A Characterization Based on Structural Symmetries

Our goal in this section is to establish a characterization of the nodes of the LCSs-
graph which allows us to keep our attention restricted to dominant matches. This
will support the development of an efficient construction to be given in the next
section.

We exploit a symmetry of the LCS-problem which already has been used
fruitfully in connection with linear space computations [8]. Usually, the input
strings are considered in the typical reading direction from left to right (or front
to rear). This, however, is an arbitrary decision and in fact any algorithm can
be easily modified to work in the opposite direction (equivalently, the original
algorithm may be applied to the reversed input strings). We will note some
general facts on the relationship of contours computed in the usual way, called
forward contours, and those computed by considering the strings in the opposite
direction, called backward contours. Although the number of contours is identical
we note that forward contours and backward contours might look very different
(see Fig. 1(a) and Fig. 2(a)). In particular dominant matches on forward con-
tours need not be dominant matches on backward contours and vice versa. Since
contours partition the set of matches there is a unique forward contour and a
unique backward contour for each match. As before we use Ck and Dk to de-
note matches and dominant matches on the k-th forward contour, respectively.
Likewise

Ĉk = {(i, j) ∈ M : |LCS(Ai, Bj)| = k}
is the set of matches on backward contour k where Ai = ai . . . am, 1 ≤ i ≤ m+1
denotes the length m − i + 1 suffix of A. The set D̂k ⊆ Ĉk of dominant matches
on backward contour k is formally defined by

D̂k := {(i, j) ∈ Ĉk | 6 ∃(i′, j′) ∈ Ĉk : (i′ = i ∧ j′ > j) ∨ (i′ > i ∧ j′ = j)}.

The fundamental observation, which forms the basis of our approach, is that the
value CS(i, j) may be calculated very easily from the unique forward contour
and the unique backward contour a match (i, j) belongs to.

Lemma 1. For each match (i, j) the following holds:

(i, j) ∈ Ck ∩ Ĉk′ =⇒ CS(i, j) = k + k′ − 1.

Proof. Since (i, j) ∈ Ck there is a chain of length k ending at (i, j) and from
(i, j) ∈ Ĉk′ we can conclude that there exists a chain of length k′ starting at
(i, j). Joining these chains at (i, j) gives a chain of length k + k′ − 1.

Assume there is a common subsequence of length > k + k′ − 1 containing
(i, j). Then there would be a chain of length > k ending at (i, j) or there would
be a chain of length > k′ starting at (i, j). But this would contradict (i, j) ∈ Ck

or (i, j) ∈ Ĉk′ , respectively. ut
This fact immediately implies the following characterization of the nodes V =
V1∪̇V2∪̇ . . . ∪̇Vp of our LCSs-graph G = (V, E).

412 C. Rick

ab b b a c a cc

a

b

c

c

b

a

b

a

a c b a e f d

b

c

a

a

d

a

f

e

1 2 3 4 5 6 7 8 9

(a)

1

2

3

4

5

6

7

81

3

4

5

2

(b)

Fig. 2. Backward contours (a) and essential non-dominant matches (b).

Corollary 1. Let p be the length of an LCS of two input sequences A and B.
Then

(i, j) ∈ Vk ⇐⇒ (i, j) ∈ Ck ∩ Ĉk′ , k′ = p − k + 1.

We call a forward contour and a backward contour complementary if their ranks
add up to p + 1. The major drawback of Corollary 1 is that the given charac-
terization still relies on all matches on the various contours. With regard to the
efficient LCS-algorithms it would be helpful to have a characterization solely in
terms of dominant matches. On the other hand, as can be seen by the example
given in Figure 2(b), there may be essential matches for the LCSs-graph which
are neither dominant on a forward contour (solid lines) nor dominant on a back-
ward contour (dashed lines). The LCS aad may not be generated without using
the non-dominant match (4, 4).

Our initial observation is that two complementary contours may touch but
never cross each other. Further, the forward contour is to the bottom/right of
the backward contour and both contours have a least one match in common.

Lemma 2. Let Ck and Ĉk′ be two complementary contours, i.e. p = k + k′ − 1
where p is the length of a LCS. Then it holds that

1. 6 ∃((i, j) ∈ Ck ∧ (i′, j′) ∈ Ĉk′) : i < i′ ∧ j < j′,
2. ∃(i, j) ∈ Ck ∩ Ĉk′ .

Proof. Assume there are matches (i, j) ∈ Ck and (i′, j′) ∈ Ĉk′ such that i < i′

and j < j′. Then (i′, j′) ∈ Cl, l > k (and (i, j) ∈ Ĉl′ , l′ > k′). So we could form
a chain of length l + k′ − 1 > k + k′ − 1 = p. A contradiction. If there would
be no match (i, j) ∈ Ck ∩ Ĉk′ then, by Corollary 1, Vk = ∅ and thus no LCS of
length p could exist. ut

Efficient Computation of All Longest Common Subsequences 413

(a)

backward contour

forward contour

(c)(b)

Fig. 3. The shape of common parts of complementary contours.

We can now give the desired characterization. Informally, it states that common
parts of complementary contours can be completely specified by means of pairs
of dominant matches on both contours.

Lemma 3. Let Ck be a forward contour and let Ĉk′ , k′ = p − k + 1, be a
complementary backward contour. Then it holds:

(i, j) ∈ Vk ⇐⇒ ∃(x, y) ∈ Dk,∃(x′, y′) ∈ D̂k′ :
(x = i = x′ ∧ y ≤ j ≤ y′) ∨ (x ≤ i ≤ x′ ∧ y = j = y′).

Proof. First we prove that a match (i, j) according to the given characterization
in fact belongs to Vk. We show that (i, j) ∈ Ck ∩ Ĉk′ . Consider the case x ≤
i ≤ x′ ∧ y = j = y′ (the case x = i = x′ ∧ y ≤ j ≤ y′ is symmetric). We claim
that these prerequisites imply (x′, y′) ∈ Ck, and therefore (i, j) ∈ Ck. Assume
(x′, y′) /∈ Ck. Since y = y′, contour Ck would then have to take a left turn before
reaching row x′. But this means there has to be a dominant match (x′′, y′′) ∈ Dk

such that x′′ < x′ ∧ y′′ < y′, contradicting Lemma 2. A similar argument shows
that (x, y) ∈ Ĉk′ and hence (i, j) ∈ Ĉk′ .

In order to prove the other direction we have to show that each match (i, j) ∈
Vk can be characterized in the claimed way. To this end we will show that
all common parts of two complementary contours, containing all matches in
Ck ∩ Ĉk′ , can be split into horizontal and vertical pieces such that each piece
will be bordered by a dominant match (x, y) ∈ Dk and by a dominant match
(x′, y′) ∈ D̂k′ . From Lemma 2 we know that complementary contours may only
touch but never cross each other and that the backward contour is to the top/left
of the forward contour. Now follow both complementary contours from top/right
to bottom/left up to the first common point (i, j).

The main observation is that (i, j) ∈ Dk ∨ (i, j) ∈ D̂k′ . There is only one
possibility how both contours may join, namely when a vertical piece of the
backward contour meets a horizontal piece of the forward contour. Since the
contours may not cross each other there must be a bend in this point. If the
bend is on the backward contour (i, j) ∈ D̂k′ (see Fig. 3 (a)) and if the bend
is on the forward contour (i, j) ∈ Dk (see Fig. 3 (b)). If there is a bend on
both contours (i, j) ∈ Dk ∩ D̂k′ and the contours only touch in this point. In the
former cases both contours may have some path in common. If this path includes

414 C. Rick

several bends (see Fig. 3 (c)) there must be a dominant match at each corner of
these bends alternately from forward and backward contours. Finally, in some
point the contours may spread apart again and there is a dominant match at
this point too for reasons of symmetry.

Thus, each common horizontal piece is bordered by dominant matches (x, y) ∈
Dk and (x′, y′) ∈ D̂k′ such that x ≤ x′ ∧ y = y′ and each common vertical piece
is similarly bordered by dominant matches such that x = x′ ∧ y ≤ y′. ut
Note that this characterization allows us to give a compact description of the
possibly much greater LCSs-graph. For each pair of complementary contours we
only have to record pairs of dominant matches which sandwich common parts
of both contours. I.e., it is sufficient to compute the sets V ′

k ⊆ Vk where

V ′
k := (Dk ∩ Ĉk′) ∪ (D̂k′ ∩ Ck), k = 1, . . . , p and k′ = p + 1 − k.

Let V ′ = ∪p
k=1V

′
k. Such a compact description may be helpful, if

– we need a space-efficient way to store all optimal solutions which allows the
recovery of an explicit representation quickly if needed (see below);

– further computations are to be done on all optimal solutions. It may be more
efficient to do such computations on the compact representation [4].

We can also use the sets V ′
k to specify two distinguished LCSs. Consider the

match rk ∈ V ′
k which is to the top/right of any other match in V ′

k and similarly
let sk ∈ V ′

k denote the match which is to the bottom/left of any other match
in V ′

k. Then, figurally speaking, all LCSs will be located somewhere between
the two outer LCSs R = r1r2 . . . rp and S = s1s2 . . . sp. This kind of information
might be useful in a learning algorithm for the LCS-problem presented lately [5].
It can also be combined with a recent proposal for linear-space implementations
[16] to devise a space-saving variation of the following method to construct the
LCSs-graph.

5 An Efficient Construction

Based on Lemma 3 we can now develop a general method to determine the nodes
of the LCSs-graph. In a first step, simply compute the forward contours as well
as the backward contours by any method of your choice. Then, for each pair of
complementary contours, find the matches belonging to both contours. In order
to perform this second step efficiently we assume that contours are given by
linked lists, one for each forward contour and one for each backward contour,
containing the (dominant) matches on the respective contours in sorted order,
i.e. from top/right to bottom/left. Such lists may easily be generated by any
algorithm during the first step of the computation.

Let L and L̂ be two such lists corresponding to complementary contours. If
these lists would contain all matches then our task would be to find identical
matches occurring on both lists. In view of Lemma 2 this could be done by a

Efficient Computation of All Longest Common Subsequences 415

simple appropriate scan which takes time proportional to the length of the two
lists. For reasons of efficiency, however, we may only assume that the given lists
contain the dominant matches of the respective contours. Lemma 3 showed that
knowing those dominant matches on complementary contours which belong to
both contours is sufficient to specify all nodes of the LCSs-graph G = (V, E).
Since a dominant match on a forward contour need not be a dominant match
on the complementary backward contour, and vice versa, we can no longer use a
simple scan looking for identical matches on two complementary lists. But from
Lemma 3 we know that if a dominant match actually belongs to V then there
must exist a dominant match on the complementary contour located in the same
row or column. Using this fact our desired dominant matches can still be found
in time proportional to the length of the two involved complementary lists by
scanning them as shown by the procedure “LCS-Merge” given in Figure 4. We
assume that the two input lists are sorted and that the end of the lists will be
marked by a sentinel (∞,∞). In order to avoid duplicates in the output list we
assume that a match is only appended to the list by the operator · if it is not
identical to the current last element of the list.

Procedure LCS-Merge
Input: L, a sorted list of dominant matches on a forward contour.

L̂, a sorted list of dominant matches on a complementary back-
ward contour.

Output: LG, a sorted list of those dominant matches from the two input
lists which may be part of an LCS.

Method:
1. (x, y)← L.first
2. (x′, y′)← L̂.first
3. while (x, y) 6= (∞,∞) and (x′, y′) 6= (∞,∞) do
4. case
5. y′ < y : (x, y)← L.next
6. x′ < x : (x′, y′)← L̂.next
7. x′ = x ∧ y′ ≥ y : LG ← LG · (x′, y′) · (x, y); (x′, y′)← L̂.next
8. x′ ≥ x ∧ y′ = y : LG ← LG · (x, y) · (x′, y′); (x, y)← L.next
9. end

Fig. 4. Procedure identifying dominant matches on complementary contours.

Theorem 1. A compact representation of all LCSs, i.e. the node set V ′ ⊆ V ,
can be computed in time O(T) and space O(S) where T and S is the time and
space, respectively, of any algorithm creating all dominant matches.

416 C. Rick

Proof. The chosen algorithm will be invoked two times to determine the dom-
inant matches on forward contours and backward contours, respectively. Using
the procedure “LCS-Merge” to identify common parts of complementary con-
tours takes time proportional to the total number of dominant matches which is
upper bounded by T .

O(d) space will be occupied by the lists of dominant matches where d is the
total number of dominant matches on forward contours and backward contours.
Depending on the chosen algorithm we may need some additional space to store
information gained in a preprocessing stage solving the so-called string identifi-
cation problem. ut

If needed the LCSs-graph can be constructed explicitly from our lists of dominant
matches V ′

k in time proportional to the size of the graph. In order to determine
the non-dominant matches still missing we just have to consider two succeeding
dominant matches on these sorted lists. If they have a common component they
are the endpoints of an interval which may contain additional matches to be
included. Using two standard lookup-tables which contain the next occurrence of
a symbol σ ∈ Σ to the right of a given position in strings A and B, respectively,
we can identify each such match in constant time. These tables, which take
O(|Σ| ·n) time and space to construct, are required anyway by many algorithms
computing dominant matches. There is also an O(n) time and space variation of
these tables which provides the desired information in O(log |Σ|) time per query
[1].

Edges can be determined according to the definition of the LCSs-graph by
scanning sorted neighboring node lists Vk and Vk+1 as follows. We consider each
match on Vk in succession. Let (x, y) be the first match on Vk. Scanning Vk+1,
we find the first match (x′, y′) such that x < x′ ∧ y < y′. A pointer P to this
position on Vk+1 is saved and we insert the edge ([x, y], [x′, y′]). Proceeding on
Vk+1, we continue to insert edges leaving (x, y) as long as x < x′ ∧ y < y′ holds.
Then we consider the next match on Vk, starting the scan on Vk+1 at the position
indicated by P . Note that in general matches on Vk+1 will be considered several
times. We distinguish two cases depending on whether an edge is inserted when
considering a match on Vk+1 or not. In the former case we can assign the cost
to the the edge inserted. There are two cases which do not lead to the insertion
of an edge:

1. searching for the first match on Vk+1 which is the endpoint of an edge leaving
the current match on Vk: in this case the pointer P ensures that this occurs
at most once for each match on Vk+1.

2. reaching the first match on Vk+1 which no longer is an endpoint of an edge
leaving the current match on Vk: this happens at most once for each match
on Vk.

Thus, we have shown the following theorem.

Theorem 2. The LCSs-graph G = (V, E) can be constructed explicitly in time
and space O(n|Σ| + |V | + |E|) from the compact representation V ′.

Efficient Computation of All Longest Common Subsequences 417

If one is not interested in different embeddings of the same character sequence
of an LCS we can also construct a reduced graph G̃ = (Ṽ , Ẽ) from G which only
contains a single (canonical) embedding for each possible character sequence of
an LCS. This is done in time O(|G|) via an appropriate breadth first search on
G which eliminates all edges and nodes not suitable for a canonical embedding.

6 Conclusion

Using a symmetry of the LCS problem we gave an exact characterization of
all matches possibly occurring on an LCS. From this we developed a general
method to compute a compact representation of all LCSs while maintaining the
favorable time complexities of known efficient algorithms for determining the
length of an LCS. A more suitable representation, the LCSs-graph G, can be
constructed from the compact representation in time proportional to the size of
G.

It would be interesting to see whether a characterization similar to Lemma
3 could be given for more than two input sequences. Another open question
concerns the number d of dominant matches on forward contours and the number
d̂ of dominant matches on backward contours. Does the structure of the LCS
problem allow to establish an upper bound on |d − d̂| which shows that these
two values may not differ very much?

References

[1] A. Apostolico and C. Guerra. The longest common subsequence problem revisited.
Algorithmica, 2:315–336, 1987.

[2] R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science,
78(2):363–376, January 1991.

[3] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms (extended abstract). Technical report, Dept. of Computer Science,
University of Turku, Finland, April 2000. manuscript.

[4] N. Blum. Speeding up dynamic programming without omitting any optimal solu-
tion and some applications in molecular biology. Journal of Algorithms, to appear,
2000.

[5] E. Breimer, M. Goldberg, and D. Lim. A learning algorithm for the longest
common subsequence problem. In Proceedings of the 2nd Algorithm Engineering
and Experiments, pages 147–156, San Francisco, CA, 2000.

[6] Francis Y. L. Chin and C. K. Poon. A fast algorithm for computing longest
common subsequences of small alphabet size. Journal of Information Processing.,
13(4):463–469, 1990.

[7] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse
dynamic programming I: Linear cost functions. Journal of the ACM, 39(3):519–
545, July 1992.

[8] D. S. Hirschberg. A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM, 18(6):341–343, June 1975.

[9] D. S. Hirschberg. Algorithms for the longest common subsequence problem. Jrnl.
A.C.M., 24(4):664–675, 1977.

418 C. Rick

[10] D. S. Hirschberg. Serial computations of Levenshtein distances. In A. Apostolico
and Z. Galil, editors, Pattern matching algorithms, chapter 4, pages 123–141.
Oxford University Press, 1997.

[11] W. J Hsu and M. W. Du. New algorithms for the LCS problem. Journal of
Computer and System Sciences, 29:133–152, 1984.

[12] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing
longest common subsequences. Communications of the ACM, 20(5):350–353, May
1977.

[13] N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subsequence
algorithm suitable for similar text strings. Acta Informatica, 18:171–179, 1982.

[14] Claus Rick. A new flexible algorithm for the longest common subsequence prob-
lem. Nordic Journal of Computing, 2(4):444–461, Winter 1995.

[15] Claus Rick. A new flexible algorithm for the longest common subsequence prob-
lem. In Zvi Galil and Esko Ukkonen, editors, Combinatorial Pattern Matching,
6th Annual Symposium, volume 937 of Lecture Notes in Computer Science, pages
340–351, Espoo, Finland, 5-7 July 1995. Springer.

[16] Claus Rick. Simple and fast linear space computation of longest common subse-
quences. submitted for publication, 2000.

[17] Robert A. Wagner and Michael J. Fischer. The string-to-string correction prob-
lem. Journal of the ACM, 21(1):168–173, January 1974.

A Blocked All-Pairs Shortest-Paths Algorithm

Gayathri Venkataraman, Sartaj Sahni, and Srabani Mukhopadhyaya

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611
{gvenkata, sahni, srabani}@cise.ufl.edu

Abstract. We propose a blocked version of Floyd’s all-pairs shortest-
paths algorithm. The blocked algorithm makes better utilization of cache
than does Floyd’s original algorithm. Experiments indicate that the
blocked algorithm delivers a speedup (relative to the unblocked Floyd’s
algorithm) between 1.6 and 1.9 on a Sun Ultra Enterprise 4000/5000 for
graphs that have between 480 and 3200 vertices. The measured speedup
on an SGI O2 for graphs with between 240 and 1200 vertices is between
1.6 and 2.

Keywords: All pairs shortest paths, blocking, cache, speedup.

1 Introduction

Traditionally, algorithms are developed, analyzed, and optimized for the RAM
computer model in which a computer has a single uniformly accessible memory
[11]. Contemporary computers, however, have multiple levels of memory and
the memory access time varies significantly from one memory level to the next.
For example, contemporary Sun and SGI workstations have an L1 cache, an L2
cache, and a main memory. The L1 cache in a Sun Ultra Enterprise 4000/5000
is 16 KB, the L2 cache is 4 MB, and main memory is in excess of 100 MB.
Additionally, a contemporary computer has a limited number of registers—ten
to twenty. Typically, it takes 1 cycle to access data from L1 cache. When the
desired data is not in L1 cache, we experience an L1 miss and the data is brought
from L2 cache to L1 cache using 6 to 10 cycles. If the desired data is not in L2
cache either, then we experience an L2 miss and data is fetched from main
memory into L2 cache at a cost of (say) 50 cycles, and from there to L1 cache.
We can reduce run time by organizing our computations so as to minimize the
number of L1 and L2 cache misses.

Although several theoretical models for computers with multiple-level mem-
ories have been proposed [3,2,7], these models have not found wide application,
and most of the work in the area of performance enhancement via cache opti-
mization has been experimentally oriented. Trace driven simulators have been
used to study the cache performance of a specific program running on a specific
computer, determine the portions of the code or the data structures that result
in a large fraction of the cache misses, and then optimize these code segments
and/or data structures. Trace driven simulations have also been used to develop

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 419–432, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

420 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

analytical models of cache behavior. See [4,15,19,22,23,24], for example, for some
ways in which trace driven simulators have been used in cache performance en-
hancement studies.

La Marca and Ladner [13] develop a model for a single-level direct-mapped
cache. They use this model to analyze the performance of binary heaps and
cache-aligned d-heaps. LaMarca and Ladner [14] optimize the cache performance
of several sorting methods. Their cache optimized heapsort and mergesort codes
achieve a speedup of 1.85 and 1.38, respectively, when sorting 1,000,000 uni-
formly distributed integers on a Sprac 10 processor. Lam, Rothberg, and Wolf
[12] have considered the cache performance of a blocked matrix multiply code
relative to a traditional matrix multiply code. They report a speedup of 4.3 for
their blocked matrix multiply code for a matrix of size 300. Sulatycke and Ghose
[21] and Stewart [20] have also studied the cache performance of various ma-
trix multilication algorithms. Stewart [20] reports that the best way to muliply
the matrices A and B is to first transpose B and then use the classical three
loop algorithm on A and BT . He further reports that by simply reordering the
loops from the traditional ijk order to an ikj order (i.e., interchange the second
and third for loops in the traditional code) the code performance is about the
same as when square blocks (as used in [12] are used); row blocks yield superior
speedup than column blocks and ikj ordering. Note that the transpose method,
ikj ordering, square blocking, and row blocking deliver speedup relative to the
traditional ijk code by reducing cache misses. Stewart [20] reports a speedup of
2.7 for the transpose method relative to the ijk code; both codes were written
in C and compiled using maximum compiler optimization; the matrix size was
1200, and the code was run on a SUN Ultra Enterprise 4000/5000 computer.

Al-Furaih and Ranka [5,6] have studied cache optimization methods for sort-
ing and unstructured iterative computations.

In this paper we propose a blocked formulation of Floyd’s dynamic pro-
gramming algorithm to find the lengths of the shortest paths between all pairs
of vertices in a graph [11]. Blocked (or tiled) computation methods have been
used before (for example, [16,10,25,12,9,1]). Our blocked algorithm provides a
speedup (relative to the unblocked algorithm) between 1.6 and 1.9 on a Sun
Ultra Enterprise 4000/5000 for graphs that have between 480 and 3200 vertices.
The measured speedup on an SGI O2 for graphs with between 240 and 1200
vertices is between 1.6 and 2. These speedups are comparable to the speedups
cited above for cache-optimized sorting and matrix multiplication codes on Sun
platforms.

In Section 2 we give Floyd’s all-pairs shortest-paths algorithm. Section 3 ana-
lyzes the potential speedup benefits from reorganizing Floyd’s algorithm to make
better use of cache. This analysis uses data gathered using the cache simulation
tool Shade [17]. Our blocked version of Floyd’s algorithm and a correctness proof
are given in Section 4. Section 5 gives measured speedup results for our blocked
algorithm.

A Blocked All-Pairs Shortest-Paths Algorithm 421

2 Floyd’s All-Pairs Shortest-Paths Algorithm

LetG = (V,E) be a directed graph with n vertices. Let cost be the cost adjacency
matrix for G. So cost(i, i) = 0, 1 ≤ i ≤ n; cost(i, j) is the length (or cost) of
edge (i, j) if (i, j) ∈ E(G) and cost(i, j) = ∞ if i 6= j and (i, j) /∈ E(G).

In the all-pairs shortest-paths problem we are to determine a matrix A such
that A(i, j) is the length of a shortest path from i to j. When G has no cycle
whose length (cost) is less than 0, the matrix A may be computed using dynamic
programming [11]. Let Ak(i, j) be the length of a shortest path from i to j under
the constraint that the path contain no intermediate vertex whose index is more
than k. It is easy to see that A(i, j) = An(i, j). When G has no cycle with
negative length, the following dynamic programming recurrence is valid:

A0(i, j) = cost(i, j) (1)

Ak(i, j) = min{Ak−1(i, j), Ak−1(i, k) +Ak−1(k, j)}, k ≥ 1 (2)

Equations 1 and 2 lead to the algorithm of Figure 1 to compute A. This
algorithm is known as Floyd’s algorithm. It may be shown [11] that AllPairs
computes Ak(i, j) = A[i][j] in iteration k of the outermost for loop.

function AllPairs(int A, int n)
{// A[i][j] = cost(i,j) initially
// A[i][j] equals length of shortest
// i to j path on termination
for (k = 1; k <= n; k++)

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)

A[i][j] = min(A[i][j],
A[i][k] + A[k][j]);

}

Fig. 1. Floyd’s shortest-paths algorithm

3 Upper Bound on Attainable Speedup

We compute an upper bound on the maximum speedup attainable by rearranging
the computation of Figure 1 so as to optimize cache useage. In computing this
bound we assume that any rearrangement of the computation will not decrease
the number of accesses made to the elements of the array A.

We first obtain an equation to estimate the execution/run time of Floyd’s
algorithm of Figure 1. The execution time of a program is given by the following

422 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

equation [18]:

execution time = (CPU clock cycles+
memory stall cycles)
×clock cycle time (3)

where memory stall cycles is the number of cycles the CPU spends waiting for
a memory reference to complete. The following equations are also from [18].

CPU clock cycles = CPI × IC (4)

memory stall cycles = number of L1 misses×
L1 miss penalty (5)

number of L1 misses = IC ∗ L1 misses per instruction (6)

L1 misses per instruction = memory references

per instruction

×L1 miss rate (7)

where IC is the instruction count, CPI is the clock cycles per instruction,
L1 miss penalty is the number of cycles the CPU waits when there is an L1
cache miss, and L1 miss rate is the number of L1 misses per memory reference.

From these equations we obtain:

execution time = (CPI × IC +
IC × L1 misses per instruction
×L1 miss penalty)
×clock cycle time (8)

We also see that

L1 miss penalty = L2 hit time+ L2 miss rate×
L2 miss penalty (9)

where L2 hit time is the number of cycles to load an L1 cache line from L2
cache and L2 miss penalty = memory hit time is the number of cycles needed
to load an L2 cache line from main memory.

We use Equations 8 and 9 to estimate the run time of Floyd’s algorithm.
Since the L2 hit time and L2 miss penalty are architecture dependent and not
available to us, we use typical numbers for these—the L2 hit time is assumed to
be between 6 and 10 cycles and the L2 miss penalty is assumed to be 50 cycles.
For the L1 misses per instruction and the L2 miss rate we use data obtained by
using the cache simulator Shade on Floyd’s algorithm. Table 1 gives this data.

A Blocked All-Pairs Shortest-Paths Algorithm 423

Table 1. Cache simulator data for algorithm of Figure 1

Matrix size L1 misses L2 miss
per instruction (%) rate (%)

480 3.950 18.42
800 4.106 19.17
1600 4.133 19.42
2400 4.826 19.64
3200 5.553 20.07

Now we obtain a lower bound on the run time of a cache optimized version
of Floyd’s algorithm. Substituting Equation 7 into Equation 8 and making the
reasonable assumption that cache optimization will not decrease the total num-
ber of memory references (i.e., the number of memory references for the cache
optimized code is at least IC ∗memory references per instruction where IC
and memory references per instruction are for AllPairs) yields

execution time ≥ (CPI × IC +
IC ×memory references per

instruction

×L1 miss rate×
L1 miss penalty)
×clock cycle time (10)

The cache simulator gives 0.35 as the memory references per instruction for
AllPairs. Substituting 0.35 for the number of memory references per instruction
and the right side of Equation 9 for the L1 miss penalty into Equation 10, we
get

execution time ≥ (CPI × IC + 0.35 × IC ×
L1 miss rate× (L2 hit time+
L2 miss rate× L2 miss penalty))
×clock cycle time (11)

We may obtain a lower bound for the L1 and L2 miss rate by determining the
minimum number of L1 and L2 misses that every reorganized version of Figure 1
must make. Since we intend to declare i, j, k, and n as register variables [8],
references to these variables do not access cache and so do not cause any cache
misses. Therefore, we focus on cache misses attributable to the array A. For our
analysis we use the cache characteristics of the Sun Enterprise 4000/5000 that
are shown in Table 2. By direct mapped we mean that each byte of main memory
has exactly one byte of cache to which it may be mapped. The line size of a cache

424 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

Table 2. Cache characteristics of the Sun Enterprise 4000/5000

Cache Associativity Cache size Line size
L1 Direct mapped 16KB 32 bytes
L2 Direct mapped 4MB 64 bytes

gives the unit of memory transfer. So in the Sun Enterprise 4000/5000 an L1
cache miss results in a 32-byte block of data being transferred from L2 cache
into L1 cache. The transferred block is one-half of an L2 line.

For the analysis we assume that A is an integer array and that each integer
is 4 bytes. Since Floyd’s algorithm accesses each of the n2 elements of A, all n2

elements of A must get to L1 cache at some time. Each L1 cache miss brings
in exactly 32 bytes of data (i.e., 8 elements of A). Therefore, the number of L1
cache misses is at least n2/8. By a similar reasoning, the number of L2 cache
misses is at least n2/16. Further, Floyd’s algorithm makes 3n3 read accesses to
A (i.e., in the right side of the min statement of Figure 1) and n3 write accesses
(the left side of the min statement). We note that when the min statement of
Figure 1 is coded as an if statement, write accesses are made only when the
new a[i][j] value is smaller than the old one. In this case the number of write
accesses ranges from 0 to n3. To keep the analysis simple, we use n3 as the
write access count. The total number of accesses to A (read and write) is 4n3.
Therefore,

L1 miss rate = L1 misses per A reference
≥ n2/8/(4n3) = 1/(32n) (12)

L2 miss rate = L2 misses per A reference
≥ n2/16/(4n3) = 1/(64n) (13)

The equality between the miss rate and the misses per A reference follows
from our assumption that variables other than A will be register variables and
so all memory references are to elements of A. Since we assume that cache
optimization does not reduce the number of A references, these bounds apply to
all cache optimized versions of AllPairs.

Substituting the bounds of Equations 12 and 13 into Equation 11, we get the
following lower bound on the run time of a cache optimized version of Floyd’s
algorithm.

execution time ≥ (CPI × IC +
0.35 × IC × 1/(32n) ×
(L2 hit time+
1/(64n) × L2 miss penalty)
×clock cycle time (14)

A Blocked All-Pairs Shortest-Paths Algorithm 425

Dividing Equation 8 by Equation 14 yields an upper bound on the speedup
obtainable by optimizing cache utilization. Figure 2 plots this upper bound when
CPI ranges between 1 and 2, L2 hit time ranges from 6 to 10 cycles, and L2
miss penalty is 50 cycles. The L1 misses per instruction and the L2 miss rate
are taken from Table 1. Figure 2 gives the maximum speedup we can get by
optimizing the cache usage of Floyd’s algorithm on typical computers that have
a two-level cache.

500 1000 1500 2000 2500 3000
1.2

1.4

1.6

1.8

2

2.2

Matrix Size

M
a
xi

m
u
m

 a
ch

ie
va

b
le

 s
p
e
e
d
u
p

Fig. 2. Maximum achievable speedup for different matrix sizes

4 Blocked Version of Floyd’s Algorithm

4.1 The Algorithm

We partition the cost adjacency matrix into submatrices of size B × B. B is called
the blocking factor. Although this is not necessary, we assume, for simplicity, that
B divides n. Our blocked version of Floyd’s algorithm (Figure 1) will perform
B iterations of the outermost loop of Figure 1 on each B ×B block of A before
advancing to the next B iterations. It is convenient to think of each set of B
iterations as divided into three phases. (Note that our implementation does not
actually preform the computation in the three phase order described below.)
For example, in phase 1 of the first set of B iterations, Equation 2 is used to
compute Dk = Ak, 1 ≤ k ≤ B for the elements in the top left block, block (1,1).
Since these B iterations access only the A elements within block (1,1), we say
that block (1,1) is a self-dependent block in the first B iterations.

In phase 2 of the first B iterations a modified Equation 2 is used to compute
Dk, 1 ≤ k ≤ B for the remaining blocks (1, ∗) and (∗, 1) that are on the same

426 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

��
��
��
��

Phase-1 Phase- 2 Phase-3

Computation over

Computations to be done

Currently computing

(a) Phases when (1,1) is the self-dependent
block

����
����
����

����
����
���� ����

����
����

����
����
����

���
���
���

���
���
���

��
��
��
��

���
���
���

���
���
���

����
����
����

����
����
��������

����
����

����
����
��������
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

Phase-1 Phase- 2 Phase-3

Computation over

Computations to be done

Currently computing

(b) Phases when block (t, t) is the self-
dependent block

Fig. 3. Blocks computed in each phase

row or column as the self-dependent block. For the remaining (1,*) blocks the
modified Equation 2 is

Dk(i, j) = min{Dk−1(i, j), DB(i, k) +Dk−1(k, j)}, k ≥ 1 (15)

where D0(i, j) = A0(i, j). For the remaining (*,1) blocks the modified Equation 2
is

Dk(i, j) = min{Dk−1(i, j), Dk−1(i, k) +DB(k, j)}, k ≥ 1 (16)

In phase 3 Dk, 1 ≤ k ≤ B is computed for the remaining blocks (i.e., for
blocks that are not on the same row or column as the self-dependent block).
This computation is done using Equation 17.

Dk(i, j) = min{Dk−1(i, j), DB(i, k) +DB(k, j)}, k ≥ 1 (17)

A Blocked All-Pairs Shortest-Paths Algorithm 427

Phase 3 is followed by the next round of B iterations. These are also done in
three phases. This time block (2,2) is the self-dependent block. Dk, B < k ≤ 2B
are computed for the self-dependent block in phase 1 using the equation

Dk(i, j) = min{Dk−1(i, j), Dk−1(i, k) +Dk−1(k, j)} (18)

In phase 2 Dk, B < k ≤ 2B are computed for the remaining blocks that
are on the same row or column as the self-dependent block and in phase 3 Dk,
B < k ≤ 2B is computed for the blocks that are not on the same row or column
as the self-dependent block. The phase 2 computation uses the following equation
for the (2,*) blocks

Dk(i, j) = min{Dk−1(i, j), D2B(i, k) +Dk−1(k, j)} (19)

The (*,2) blocks use the following equation

Dk(i, j) = min{Dk−1(i, j), Dk−1(i, k) +D2B(k, j)} (20)

and the phase 3 blocks use the equation

Dk(i, j) = min{Dk−1(i, j), D2B(i, k) +D2B(k, j)} (21)

The following equations are used to compute the (t, ∗), (∗, t), and phase 3
blocks, respectively.

Dk(i, j) = min{Dk−1(i, j), DtB(i, k) +Dk−1(k, j)} (22)

Dk(i, j) = min{Dk−1(i, j), Dk−1(i, k) +DtB(k, j)} (23)

Dk(i, j) = min{Dk−1(i, j), DtB(i, k) +DtB(k, j)} (24)

4.2 Correctness of Blocked Algorithm

The Dk(i, j) values computed by the blocked algorithm are not necessarily the
same as the Ak(i, j) values computed by the unblocked algorithm. For example,
whenB = 4, the unblocked algorithm computesA1(4, 7) = min{A0(4, 7), A0(4, 1)
+A0(1, 7)}, whereas the blocked algorithm computes D1(4, 7) = min{D0(4, 7),
D4(4, 1)+D0(1, 7)}=min{A0(4, 7), D4(4, 1)+A0(1, 7)}. Since D4(4, 1)=A4(4, 1)
is ≤ A0(4, 1), D1(4, 7) ≤ A1(4, 7).

To establish the correctness of the blocked algorithm we must show that
Dn(i, j) = An(i, j) for all i and j. That is, even though Dk(i, j) and Ak(i, j)
may not be equal for k < n, the values agree in the end when k = n. Actually
we will show that A and D agree at the end of each set of B iterations That
is, Dk(i, j) = Ak(i, j) for all i and j whenever k is a multiple of B. Hence
Dn(i, j) = An(i, j) for all i and j.

Let k = qB. The proof is by induction on q. We may show that Dk(i, j) =
Ak(i, j) for all i and j for 0 ≤ q ≤ n/B. The proof is omitted from this version
of the paper.

428 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

4.3 Optimal Blocking Factor

When computing the D values in a block during any round (i.e., an iteration
of the outermost loop) of function BoundedAllPairs, at most three blocks are
active. The computation for the self-dependent block accesses elements only in
the self-dependent block. So during the self-dependent block computation only
1 block is active. The computation for a block R that is on the same row or
column as the self-dependent block acceses elements in R as well as elements in
the self-dependent block. Therefore, 2 blocks are active during the computation
for R. For a block R that is not on the same row or column as the self dependent
block, BlockedAllPairs accesses elements from 3 blocks—block R, the block
that is in the same row as the self-dependent block and the same column as R,
and the block that is in the same column as the self-dependent block and in the
same row as R. Therefore, L1 cache misses are minimized by choosing the largest
block size B such that 3 block loads of the array D fit into L1 cache. Suppose
that the elements of D are 4-byte integers and that our L1 cache capacity is C
bytes and that each L1 cache line is S bytes. We must choose B to be the largest
integer such that 3B2 ∗4 ≤ C (equivalently, B ≤√C/12) and B is a multiple of
S/4. The second requirement is necessary as the smallest unit of data brought
into L1 cache is S bytes and these S bytes are contiguous bytes of memory.

For the Sun Ultra Enterprise 4000/5000 C = 16K and S = 32. Therefore,
the blocking factor should be the largest integer that is ≤√C/12 = 37 and is a
multiple of 32/4 = 8. That is, we should use B = 32 as the blocking factor. For
the SGI O2 C = 32K and S = 32. The optimal blocking factor for the SGI O2
is the largest integer that is ≤√C/12 = 52 and is a multiple of 32/4 = 8. This
optimal blocking factor is 48.

5 Experimental Results

The speedup of our blocked shortest paths algorithm relative to the standard
unblocked algorithm was measured by programming the two algorithms in C++
(the g++ compiler with optimization option o5 was used) and running the two
programs on on a Sun Ultra Enterprise 4000/5000 and an SGI O2. Both programs
were compiled using the highest-level of compiler optimization possible.

We first present the results for the SUN Ultra Enterprise. Figure 4 gives the
measured speedups for different blocking factors and different n. As predicted
by our analysis, the otimal blocking factor is 32 for all n.

Figure 5 compares the speedup obtained by BlockedAllPairs and the max-
imum speedup possible by optimizing cache utilization. The curve for maximum
possible speedup is that of Figure 2.

The speedup obtained by BlockedAllPairs is fairly close to the maximum
possible. One reason we do not achieve the predicted maximum speedup is that
the total instruction count for BlockedAllPairs is more than that for AllPairs.
Recall that in determining the maximum speedup curve of Figure 2 we assumed
that the instruction count for the cache optimized algorithm is the same as that
of AllPairs.

A Blocked All-Pairs Shortest-Paths Algorithm 429

8 16 24 32 40 48
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Blocking factor

S
p

e
e

d
u

p

n = 480
n = 800
n = 1600
n = 2400
n = 3200

Fig. 4. Speedup of BlockedAllPairs on a Sun Ultra Enterprise

500 1000 1500 2000 2500 3000
1.2

1.4

1.6

1.8

2

2.2

Matrix Size

S
p
e
e
d
u
p

Max possible speedup
Measured speedup B=32

Fig. 5. Measured and maximum possible speedup

Figure 6 gives the L1 misses per instruction for the unblocked and blocked
versions of Floyd’s algorithm. The data for this figure were obtained using the
cache simulator Shade. As expected the blocked code shows better cache utiliza-
tion.

Table 3 shows the cache details for the SGI O2 computer and Figure 7 shows
the speedup obtained by the blocked algorithm on an SGI O2. Except for one
anomaly, maximum speedup is obtained when the blocking factor is the predicted
optimal factor of 48.

430 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

500 1000 1500 2000 2500 3000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Matrix Size

M
is

se
s

p
e
r

in
st

ru
ct

io
n
 in

 %

Blocked algorithm at B = 32
Original algorithm

Fig. 6. Misses per instruction for unblocked and blocked algorithms

Table 3. Cache configuration of SGI

Cache type Cache size
L1 32KB
L2 1MB

8 16 24 32 40 48 56
1

1.2

1.4

1.6

1.8

2

2.2

Blocking factor

S
pe

ed
up

n = 240
n = 320
n = 480
n = 640
n = 720
n = 960
n = 1200

Fig. 7. Speedup obtained by BlockedAllPairs on an SGI O2

A Blocked All-Pairs Shortest-Paths Algorithm 431

6 Conclusion

We have developed a blocked version of Floyd’s all-pairs shortest-paths algo-
rithm. Experimental results show that the blocked version obtains speedups close
to the maximum possible for a cache optimized version of Floyd’s algorithm.

References

1. W. AbuSufah, D. J. Kuck, and D. H. Lawrie. Automatic program transformation
for virtual memory computers. In Proc. of the 1979 National Computer Conference,
pages 969–974, New York, 1979.

2. A. Aggarwal, K. Chandra, and M. Snir. A model for hierarchical memory. In The
19th Annual ACM Symposium on Theory of Computing, pages 305–314, NewYork,
1987.

3. A. Aggarwal, K. Chandra, and M. Snir. Hierarchical memory with block transfer.
In The 28th Annual IEEE Symposium on Foundations of Computer Science, pages
204–216, LosAngeles, CA, 1987.

4. A. Aggarwal, M. Horowitz, and Hennessey. An analytical cache model. The ACM
Transactions on Computer Systems, 7(2):184–215, 1989.

5. I. Al-Furaih and S. Ranka, Memory hierarchy management for iterative graph
structures. Proc. 12th International Parallel Processing Symposium ’98. (IPPS98),
Orlando, Florida.

6. I. Al-Furaih and S. Ranka, Ibraheem Al-Furaih and Sanjay Ranka, “ Practical Algo-
rithms for Internal and External Sorting”, Proc. the Second International Confer-
ence on Parallel and Distributed Computing and Networks (PDCN’98), Brisbane,
Australia, 14-16 December 1998.

7. B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model
of computation. Algorithmica, 12(2-3):72–109, 1994.

8. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted
variables. In In Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation, White Plains, New York, 1990.

9. D. Gannon and W. Jalby. The influence of memory hierarchy on algorithm orga-
nization: Programming FFTs on a vector multiprocessor. In The Characteristics
of Parallel Algorithms, MIT Press, Cambridge, 1987.

10. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 1989.

11. E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms. Computer
Science Press, New York, 1998.

12. M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and opti-
mizations of blocked algorithms. ACM, 26:63–74, 1991.

13. A. LaMarca and R. E. Ladner. The influences of caches on the performance of
heaps. The ACM Journal of Experimental Algorithms, 1(4), 1996.

14. A. LaMarca and R. E. Ladner. The influences of caches on the performance of
sorting. In The ACM-SIAM Symposium on Discrete Algortihms, pages 370–379,
New Orleans, Louisiana, 5-7 January, 1997.

15. M. Martonosi, A. Gupta, and T. Anderson. Memspy: analyzing memory system
bottlenecks in programs. In Proceedings of the 1992 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems, pages 1–12, Newport,
Rhode Island, 1992.

432 G. Venkataraman, S. Sahni, and S. Mukhopadhyaya

16. A. C. McKeller and E. G. Coffman. The organization of matrices and matrix
operations in a paged multiprogramming environment. CACM, 12(3):153–165,
1969.

17. Sun Microsytems. Introduction to Shade. Manual, Sun Microsytems, Mountain
View, CA, 1998.

18. D. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Analysis.
Morgan Kaufmann, San Mateo, CA, 1996.

19. J. P. Singh, H. S. Stone, and D. F. Thiebaut. A model of workloads and its use in
miss-rate prediction for fully assocaitive caches. IEEE Transactions on Computers,
41(7):811–825, 1992.

20. Larry Stewart. Programming to Optimize Cache Memory on the SUN Ultrasparc-
IIi Processor. Master’s thesis, University of Florida, Gainesville, FL, April 1999.

21. P. Sulatycke and K. Ghose, Caching-efficient multithreaded fast multiplication of
sparse matrices. Proceedings 12the International Parallel Processing Symposium,
117–123, 1998.

22. O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In Proceedings
of the 1994 ACM SIGMETRICS: Conference on Measurement and Modelling of
Computer Systems, pages 261–271, Nashville, Tennessee, 1994.

23. O. Temam, C. Fricker, and W. Jalby. Influence of cross-interference on blocked
loops: A case study with matrix-vector multiply . The ACM Transactions on
Programming Languages and Systems, 17(4):561–575, 1994.

24. H. Wen and J. L. Baer. Efficient trace driven simulation methods for cache per-
formance analysis. The ACM Transactions on Computer Systems, 9(3):222–241,
1991.

25. M. E. Wolf and M. S. Lam. A data locality optimizing. In In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation,
pages 30–44, Toronto, Ontario, Canada, 1991.

On External-Memory MST, SSSP,
and Multi-way Planar Graph Separation

(Extended Abstract)

Lars Arge1,?, Gerth Stølting Brodal2,??, and Laura Toma1,? ? ?

1 Duke University, Durham, NC 27708–0129, USA
2 University of Aarhus, DK-8000 Århus C, Denmark

Abstract. Recently external memory graph algorithms have received
considerable attention because massive graphs arise naturally in many
applications involving massive data sets. Even though a large number of
I/O-efficient graph algorithms have been developed, a number of funda-
mental problems still remain open. In this paper we develop an improved
algorithm for the problem of computing a minimum spanning tree of a
general graph, as well as new algorithms for the single source shortest
paths and the multi-way graph separation problems on planar graphs.

1 Introduction

Recently external memory graph algorithms have received considerable attention
because massive graphs arise naturally in many applications involving massive
data sets. One example of a massive graph is AT&T’s 20TB phone-call data
graph [11]. Other examples of massive graphs arise in Geographic Information
Systems (GIS). For instance, GIS terrains are often represented using planar
graphs and many common GIS problems can be formulated as standard graph
problems (Arc/Info [4], the most commonly used GIS package, contains functions
that correspond to computing depth-first, breadth-first, and minimum spanning
trees, as well as shortest paths and connected components). When working with
such massive graphs the I/O-communication, and not the internal memory com-
putation time, is often the bottleneck. Designing efficient external memory algo-
rithms for such problems can thus lead to considerable runtime improvements,
as for example illustrated in our previous work [7].

Even though a large number of I/O-efficient graph algorithms have been
developed in recent years, a number of important problems still remain open. For
? Supported in part by the National Science Foundation through ESS grant

EIA–9870734, RI grant EIA-9972879 and CAREER grant EIA-9984099. E-mail:
large@cs.duke.edu.

?? BRICS (Basic Research in Computer Science, Center of Danish National Research
Foundation). Supported in part by the IST Programme of the EU under contract
number IST-1999-14186 (ALCOM-FT). E-mail: gerth@brics.dk.

? ? ? Supported in part by the National Science Foundation through ESS grant EIA–
9870734 and RI grant EIA-9972879. E-mail: laura@cs.duke.edu.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 433–447, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

434 L. Arge, G.S. Brodal, L. Toma

example, developing efficient algorithms for basic problems such as breadth-first
search and depth-first search remain open. In this paper we develop I/O-efficient
algorithms for the minimum spanning tree (MST) and single source shortest
paths (SSSP) problems, as well as for multi-way planar graph separation.

1.1 Problem Statement

MST and SSSP are well-known problems on a weighted graph G = (V, E): MST
is the problem of finding a spanning tree for G of minimum weight and SSSP is
the problem of finding the shortest paths from a given source vertex in G to all
other vertices in G (the length of a path is the sum of the weights of the edges
on the path).

Consider an undirected graph G = (V, E).1 An f(V)-separator of G is a
subset S of the vertices of G of size f(V) such that the removal of S disconnects G
into two subgraphs G1 and G2, each of size at most 2V

3 . Lipton and Tarjan [23]
proved that any planar graph has an O(

√
V)-separator and gave a linear time

algorithm for finding such a separator. Using this result recursively, a planar
graph can be decomposed into Θ(V

R) subgraphs Gi with O(R) vertices each and
O(V√

R
) separator vertices, such that there is no edge between a vertex in Gi

and a vertex in Gj for i 6= j. We call such a decomposition a multi-way planar
graph separation of G. Graph separation is often used in the design of divide-
and-conquer algorithms.

Throughout this paper we assume that the input graph G is given in edge-list
representation. If G is planar we assume it is embedded in the plane. We also
assume without loss of generality that G is connected and that no two edges
have the same weight. In some of our algorithms we will assume that a breadth-
first-search tree T of G is given. In such cases we assume that T is represented
implicitly by storing with each vertex u in G its parent in T and marking every
edge of G as either a tree or a non-tree edge.

1.2 Previous Results on I/O-Efficient Graph Algorithms

We work in the standard two-level I/O model with one (logical) disk [3,20]. The
model defines the following parameters:

N = V + E,

M = number of vertices/edges that can fit into internal memory,

B = number of vertices/edges per disk block,

where M < N and 1 ≤ B ≤ M1/(2+ε), for some ε > 0.2 An Input/Output (or
simply I/O) involves reading (or writing) a block from disk into (from) internal
1 For convenience we will use the name of a set to denote both the actual set and its

cardinality.
2 Often it is only assumed that B ≤ M/2 but sometimes, as in this paper, the very

realistic assumption that the main memory is capable of holding B2 elements is
made (or as here, B2+ε for some ε > 0).

External Memory MST, SSSP, and Planar Graph Separation 435

memory. Our measure of performance of an algorithm is the number of I/Os
it performs. The number of I/Os needed to read N contiguous items from disk
is scan(N) = Θ(N

B) (the scanning bound), and the number of I/Os required to
sort N items is sort(N) = Θ(N

B logM/B
N
B) [3] (the sorting bound). In practice

the difference between an algorithm doing N I/Os and one doing scan(N) or
sort(N) I/Os can be significant [7].

Table 1. Best known upper bounds for basic graph theoretic problems.

Problem General undirected graphs

DFS O
(

V
M

E
B

+ V
)

[12]
O

(
(V + scan(E)) · log V

B
+ sort(E)

)
[22]

BFS O(V + E
V
· sort(V)) [25]

CC O
(
sort(E) · log log V B

E

)
[25]

MST O
(
sort(E) · log V

M

)
[12]

O (sort(E) · log B + scan(E) · log V) [22]
SSSP O

(
V + E

B
· log V

B

)
[22]

I/O-efficient graph algorithms have been considered by a number of au-
thors [1,2,5,6,10,12,16,19,22,24,25,26,29]. Table 1 reviews the best known algo-
rithms for basic graph theoretic problems on general undirected graphs. For
directed graphs the best known algorithm for breadth-first search (BFS) and
depth-first search (DFS) use O

(
(V + scan(E)) · log V

B + sort(E)
)

I/Os [10].
Lower bound results were proved in [6,12,25]. Note that no O(sort(E)) (de-
terministic) algorithm is known for any of the problems, and that the best
known algorithms for DFS, BFS and SSSP require Ω(V) I/Os. MST and con-
nected components (CC) can be solved in O(sort(E)) I/Os with randomized
algorithms [12,1].

Improved algorithms have been developed for several special classes of graphs.
For trees, O(sort(N)) algorithms are known for BFS and DFS numbering, Eu-
ler tour computation, expression tree evaluation, topological sorting, as well as
several other problems [10,12]. For planar graphs, O(sort(N)) algorithms are
known for CC and MST [12]. For grid graphs O(sort(N)) algorithms are known
for BFS and SSSP, and an O(scan(N)) algorithm for CC [7]. See [30] for a
complete reference.

Given that even very basic graph problems seem hard to externalize, it is
natural to try to reduce the problems to one another. A first step in this direction
was taken by Hutchinson et al. [19] who considered the problem of computing
an O(

√
N)-separator of a planar graph I/O-efficiently. Given a BFS tree they

showed how to compute a separator in O(sort(N)) I/Os. Given this algorithm,
it is straightforward to solve the multi-way planar graph separation problem in
O(log N

R · sort(N))) I/Os, simply by applying the algorithm recursively.

436 L. Arge, G.S. Brodal, L. Toma

1.3 Our Results

In Section 2, we give an O(sort(E)·log log V B
E) = O(sort(E)·log log B) algorithm

for the MST problem on general undirected weighted graphs, improving the
previous bound of O (sort(E) · log B + scan(E) · log V) [22]. The algorithm uses
the same general idea as the CC algorithm by Munagala and Ranade [25] and
consists of two phases: first a vertex contraction algorithm is used to reduce the
number of vertices to O(E

B), and then an O(V +sort(E)) MST algorithm is used
on the reduced graph. The new contraction algorithm uses ideas similar to the
ones used in [8,14,25], as well as a simplified version of the basic contraction
step used in previous MST algorithms [8,12,13,14,22,25,28]. The new O(V +
sort(E)) MST algorithm is a modified version of Prim’s algorithm. It remains a
challenging open problem to develop an O(sort(E)) MST algorithm.

In Section 3 and 4, we show that the multi-way planar graph separation prob-
lem and the SSSP problem can be reduced to the BFS problem in O(sort(N))
I/Os: In Section 3, we give an O(sort(N)) algorithm for the multi-way pla-
nar graph separation problem given a BFS tree. The algorithm improves the
straightforward bound of O(log N

R · sort(N)) I/Os and uses a divide-and-conquer
algorithm based on ideas from [18]. In Section 4, we show how to use this result
to solve the SSSP problem in O(sort(N)) I/Os. The algorithm is a generaliza-
tion of our SSSP algorithm on grid graphs [7] and uses ideas similar to the ones
utilized by Frederickson [17]. We believe that our O(sort(N)) graph separation
algorithm might prove helpful in reducing other problems on planar graphs to
the BFS problem. It remains a challenging problem to develop an O(sort(E))
BFS algorithm. Another interesting open problem is if it is possible to develop
an O(sort(E)) BFS algorithm for a planar graph given a multi-way separation
of the graph.

2 Minimum Spanning Tree on General Graphs

In this section we describe our MST algorithm on general undirected weighted
graphs. The basic idea is to reduce the number of vertices to E

B using an
O(sort(E)) vertex reduction algorithm O(log log V B

E) times, and then use an
O(V + sort(E)) MST algorithm on the resulting graph. The overall I/O com-
plexity will thus be O(sort(E)·log log V B

E + E
B +sort(E)) = O(sort(E)·log log V B

E)
I/Os. In Section 2.1 we first describe the O(V + sort(E)) MST algorithm, and
in Section 2.2 we then describe the reduction algorithm. The MST result is
summarized in the following theorem.

Theorem 1. The MST of an undirected weighted graph can be found in
O(sort(E) · log log V B

E) I/Os.

2.1 An O(V + sort(E)) MST Algorithm

Our algorithm is a modified version of Prim’s internal memory algorithm [15].
The idea of Prim’s algorithm is to grow the MST iteratively from a source node

External Memory MST, SSSP, and Planar Graph Separation 437

while maintaining a priority queue on the vertices not included in the MST so
far; the priority of a vertex is the weight of the minimum edge connecting it to the
current MST. The algorithm repeatedly extracts the minimum priority vertex
v, adds it to the MST, and updates the priority of the vertices u adjacent to v.
Specifically, the weight w of edge (v, u) is compared with the priority of vertex u
in the priority queue, and an update is performed if w is smaller than the current
priority. Prim’s algorithm cannot be implemented efficiently in external memory,
the main reason being that the current priority of a given vertex cannot in general
be obtained without doing one I/O. A direct implementation would thus lead to
an O(E) I/O bound. Previously known algorithms [12,22] rely instead on vertex
contraction methods [8,13,14].

Our modification of Prim’s algorithm consists of storing edges in the priority
queue instead of vertices. During the algorithm the priority queue contains (at
least) all edges connecting vertices in the current MST with vertices not in the
tree. The queue can also contain edges between two vertices in the MST. The
algorithm works as follows: Repeatedly perform extract min to extract the min-
imum weight edge (u, v) from the priority queue. If v is already in the MST the
edge is discarded. Otherwise v is included in the MST and all edges incident to
v, except (v, u), are inserted in the priority queue. The key to the I/O-efficiency
of the algorithm is that because we store edges in the priority queue we have a
simple way of checking whether a vertex is already included in MST — as all
edges incident to v are inserted in the priority queue when v is included in the
MST, it follows that if both u and v are in the MST when processing an edge
e = (u, v), the edge e must appear in the priority queue twice. Thus we can check
if v is already included in the MST simply by performing one more extract min
and checking if it returns the same edge e (recall that we assume that no two
edges have the same weight).

The algorithm performs at least one I/O for each vertex which is included in
the MST in order to read its adjacent vertices (traverse its adjacency lists). Thus
processing all vertices and edges takes V + E

B I/Os. It also performs O(E) insert ’s
and extract min’s on the priority queue. Using an external priority queue [5,9]
supporting these operations in O(1

B logM/B
N
B) I/Os amortized we obtain:

Lemma 1. The MST of an undirected weighted graph can be computed in O(V +
sort(E)) I/Os.

2.2 MST Vertex-Reduction Algorithm

Our MST vertex reduction algorithm is obtained using ideas from the connected-
component algorithm of Munagala and Ranade [25] and the notion of “blocking
values”. The standard MST algorithm based on vertex contraction proceeds in
dlog V e phases [12,22]. In each phase the minimum cost edge adjacent to every
vertex v is selected and output as part of the MST and the vertices connected by
the selected edges are contracted to supervertices. Let the size of a supervertex
be the number of vertices it contains from the original graph. After the ith phase
the size of every supervertex is at least 2i. Since one contraction phase can be

438 L. Arge, G.S. Brodal, L. Toma

performed in O(sort(E)) I/Os [12] this results in an O(sort(E) · log V) algorithm.
The algorithm in [22] utilizes that a contraction step can be performed more
efficiently after O(log B) phases and obtains an O(sort(E)·log B+scan(E)·log V)
algorithm.

Our algorithm runs for dlog V B
E e phases after which the number of super-

vertices is at most E
B . Furthermore we reduce the number of I/Os used in the

process by dividing the dlog V B
E e phases into superphases requiring O(sort(E))

I/Os each: Let Ni = 2(3/2)i

, i.e. Ni+1 = Ni

√
Ni. Superphase i, for i ≥ 0, consists

of dlog
√

Nie phases. In a preprocessing step we run the basic vertex contrac-
tion algorithm once to insure that the number of vertices before superphase 0
is V0 ≤ V

N0
= V

2 . We will maintain the invariant that before superphase i the
number of supervertices is at most V

Ni
. To reduce the number of vertices to at

most E
B it is therefore sufficient to perform 3+dlog3/2dlog V B

E ee superphases and
we obtain the O(sort(E) · log log V B

E) algorithm.
The phases in each superphase only work on a subset of the (remaining)

edges. The edge subsets are chosen in order to allow each supervertex to grow
by a factor of

√
Ni in superphase i. Let Gi = (Vi, Ei) be the graph just prior to

superphase i. We construct a graph G′
i = (Vi, E

′
i), where E′

i is a subset of Ei.
For each vertex v, E′

i contains the d√Nie lightest edges adjacent to v. Heavier
edges e = (v, u) adjacent to v are only included in E′

i if e is among the d√Nie
lightest edges adjacent to u. We define the blocking value of v to be the weight
of the (d√Nie + 1)-th lightest edge adjacent to v. The set E′

i and blocking
values can be computed using O(sort(Ei)) I/Os. If we guarantee that Vi ≤ V

Ni

as stated above, it follows that E′
i ≤ 2Vid

√
Nie < 4 V√

Ni
. As each contraction

phase in superphase i can be performed in O(sort(E′
i)) I/Os, it follows that

superphase i requires O(sort(Ei)+sort(E′
i)·log(

√
Ni)) = O(sort(E)+sort(V√

Ni
)·

log(
√

Ni)) = O(sort(E)) I/Os. After performing all the phases of superphase i
the edges Ei − E′

i, i.e. the heavy edges which were not included in the sample,
need to be re-incorporated in Ei+1. This can be easily be done as in [25] using
O(sort(E)) I/Os in total. Details will appear in the full paper.

The only thing that remains to be described is how the individual phases in
superphase i are performed such that after superphase i the number of superver-
tices is at most V

Ni+1
and such that only edges that actually belong to the MST

are included. A phase is performed as in the basic vertex reduction algorithm:
For each vertex v consider the adjacent edge e with minimum weight in E′

i. If
the weight of e is smaller than the blocking value of v, then we select e for con-
traction. If the weight of e is larger than the blocking value, no edges is selected
for v, since there might be a lighter edge adjacent to v in Ei − E′

i. The selected
edges are contracted in O(sort(E′

i)) I/Os (using the algorithm in [12,22,25] or
a simpler algorithm which we will include in the full version). After the con-
traction, the blocking value of a supervertex is set to be the minimum of the
blocking values of the contracted vertices. The algorithm is correct as a simple
induction argument can be be used to show that for every supervertex v the
(contracted) edge sample contains all edges adjacent to v with weight smaller

External Memory MST, SSSP, and Planar Graph Separation 439

than the blocking value of v (i.e. the edges selected in the next phase belong
to the MST). If in superphase i the blocking value of a supervertex v prevents
us from selecting an edge for v to be included in the MST, then v must be the
contraction of at least

√
Ni vertices from Vi. This follows from the fact that the

blocking value of v corresponds to the blocking value of some vertex u in Vi and
v must span the d√Nie vertices adjacent to u in E′

i. If no blocking value prevents
us from selecting an edges for v, then after dlog

√
Nie phases v must have size at

least 2log
√

Ni =
√

Ni. It follows that superphase i reduces the number of vertices
by a factor of at least

√
Ni, i.e. the number of vertices after superphase i is at

most Vi√
Ni

≤ V
Ni

√
Ni

= V
Ni+1

as claimed by the invariant.

Lemma 2. Let G = (V, E) be an undirected weighted graph. The MST problem
on G can be reduced to the MST problem on a graph with at most E

B vertices in
O(sort(E) · log log V B

E) I/Os.

3 Multi-way Planar Graph Separation

In this section, we show how to separate a planar graph G into Θ(N
R) sub-

graphs with O(R) vertices each and a set of O(sort(N)) separator vertices using
O(sort(N)) I/Os.

Given a BFS tree T of G, Hutchinson et al. [19] showed how to compute a
O(

√
N)-separator for G in O(sort(N)) I/Os. Their algorithm closely follows the

algorithm by Lipton and Tarjan [23]: The BFS tree T has the property that no
edge crosses two or more levels, and hence every level in T is a separator in G.
The basic idea is to use the “middle” level `1 in T (the level containing the
vertex with number N/2 in the BFS numbering) as the separator. Level `1 has
the property that the total number of vertices on levels above `1, as well as in
levels below `1, is less than N/2. The problem is that `1 might contain more than
O(

√
N) vertices. However, there exists a level `0 above `1 and a level `2 below

`1 with O(
√

N) vertices each, such that `2 − `0 ≤ √
N (that is, `0 and `2 are not

too far away from `1). Levels `0 and `2 divide G into three subgraphs G0, G1 and
G2 consisting of the vertices on the levels above `0, between `0 and `2 and below
`2 respectively, with the property that G0 and G2 contain less than N/2 vertices
and G1 has a spanning tree of bounded height

√
N . Refer to Fig. 1 (a). It is easy

to see that in order to find a separator for G it is enough to find a separator
in G1 [23]. Such a separator can be found using properties of the dual graph
of G1. The dual graph G? = (V ?, E?) of a planar graph G is a planar graph with
a vertex for each face of G whose edges are in one-to-one correspondence with
the edges of G. The dual graph G? is obtained by placing a vertex in each face
of G and connecting two faces fi and fj adjacent to a common edge e = (u, v)
of G with an edge (fi, fj) in E?. The edge (fi, fj) in G? is called the dual edge
of (u, v) in G. Let E′ ⊆ E be a subset of edges in G. It is well known that
(V, E′) is a spanning tree of G if and only if (V ?, (E − E′)?) is a spanning tree
in G? [21]. Thus the edges in (E − T)? form a spanning tree in G? which we
denote T †. An example is shown in Fig. 2(a). If T has bounded height

√
N

440 L. Arge, G.S. Brodal, L. Toma

then every edge in (E − T) (and therefore the corresponding edge in (E − T)?)
determines a cycle in T with at most 2

√
N vertices. Assuming (without loss

of generality) that G is triangulated, Lipton and Tarjan [23] proved that there
exists an edge e ∈ (E − T) such that the number of vertices inside and outside
the cycle defined by e is ≤ 2N/3, and showed how it can be computed efficiently
using a bottom-up traversal of the dual tree T †. Hutchinson et al. [19] showed
how to perform all these operations using O(sort(N)) I/Os.

As discussed in the introduction, the O(sort(N)) separator algorithm [19] can
be used to develop a recursive O(log N

R · sort(N)) multi-way separator algorithm
in a straightforward way. The idea in our new O(sort(N)) algorithm is to obtain
O(logM/B

N
R) recursion depth by increasing the fan-out of the separation from 2

to M
B and implement each step in O(N

B) I/Os. In order to divide the graph in M
B

subgraphs we use ideas similar to the ones used by Goodrich [18]. The general
idea is the following: Instead of finding only one level cutting the graph in two
halves, we find (roughly) M

B levels which cut the graph in O(N
M/B)-sized chunks.

We then use these levels to find a set of levels with few vertices which divide
G into subgraphs such that each subgraph is either of size O(N

M/B) or has a
spanning tree of bounded height O(

√
R). We then subdivide the subgraphs with

bounded height into graphs of size O(R) using properties of the dual graph. In
Section 3.2 we show how this can be done I/O-efficiently and prove the following
lemma:

Lemma 3. A graph G with a spanning tree T of height H can be divided into
Θ(N

R) subgraphs of size O(R) each and O(N
R H) separator vertices in total using

O(sort(N)) I/Os.

After subdividing the bounded height subgraphs we recursively subdivide the
subgraphs of size O(N

M/B). In Section 3.1 we give the details in our algorithm
and prove the following:

Theorem 2. Let G = (V, E) be a planar graph and T a breadth-first search tree
for G. Furthermore assume ∃ ε > 0 such that M > B2+ε. For any R = Ω(M),
G can be partitioned into Θ(N

R) subgraphs Gi of size O(R) each and a set of
separator vertices S of size O(sort(N)) using O(sort(N)) I/Os.

3.1 Separating Planar Graphs

In this section we prove Theorem 2 using Lemma 3. Let L(i) be the total number
of vertices on levels 0 through i of T and define the starter levels to be the levels
i such that the interval (L(i), L(i + 1)] contains a multiple of dN

X e, for some
0 < X < N . There are at most X starter levels and the number of vertices
between consecutive starter levels is smaller than dN

X e.
Just like the `1 level in Lipton and Tarjan’s algorithm [23], the starter levels

divide G in subgraphs of “small” size. However, as previously, the starter levels
can contain too many vertices. Therefore we consider the first level above each
starter level, as well as the first level below each starter level containing at most
Y vertices, for some 0 < Y < N . We call these levels the cutter levels. The cutter

External Memory MST, SSSP, and Planar Graph Separation 441

levels divide G into O(X) subgraphs Gi, consisting of the vertices between two
consecutive cutter levels, with the property that if the two cutter levels defining
Gi are within two (consecutive) starter levels then Gi has size O(N

X). If the two
cutters defining Gi are not within two consecutive starter levels then Gi has a
spanning tree of depth O(N

Y). Refer to Fig. 1 (b).

As mentioned, the ideastarter levels

cutter levels: < Y vertices

<N/Y

<N/Y

N

����������
����������
����������

����������
����������
����������

����
����
����
����
����

����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

(a) (b)
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

0

1

2

<N/2

<N/2

l

l

l

<N/X

Fig. 1. (a) Illustration of the planar separator algo-
rithm [23]; (b) Starter and cutter levels in T

in our algorithm is to ap-
ply Lemma 3 to the sub-
graphs of bounded height
O(N

Y) and recursively sep-
arate the subgraphs of size
O(N

X). By choosing Y =
N√
R

each bounded height
subgraph Gi of size Ni has
height

√
R, and it can thus

be separated into Θ(Ni

R)
subgraphs of size O(R)
and O(Ni

R · √R) = O(N√
R

) separator vertices using O(sort(Ni)) I/Os. Note that
as we are not recursing on Gi (that is, we are not touching Gi again), the total
cost of separating all such subgraphs over all levels of the recursion adds up to
O(sort(N)) in total. The separator vertices are the vertices of the O(X) cutter
levels (each cutter level has at most Y = N√

R
vertices), the separator vertices

resulting from applying Lemma 3 to the subgraphs of bounded height and the
separator vertices resulted from the recursive calls. Thus the total number of
separator vertices is given by S(N) ≤ X N√

R
+ N√

R
+ X · S(N

X). If we choose

X = (M
B2)1/4 and assume M > B2+ε, for some ε > 0, it can be shown that

X N√
R

= O(N
B) and logX

N
R = O(logM/B

N
B), so that S(N) = O(sort(N)).

The only thing remaining to discuss is how to represent a subgraph Gi be-
tween two cutter levels ci and ci+1 in the format needed in order to apply
Lemma 3 or perform the recursive call. Both these steps require that a BFS tree
is given along with the subgraph. The part of T included in Gi is not connected
and thus it is not a BFS tree for Gi. However, we can easily produce such a
tree by introducing a “fake” root vi and connecting it with “fake” edges to all
vertices on level ci+1. Note that if T is given level-by-level this can easily be done
for all the subgraphs in O(N

B) I/Os. The fake vertices and edges are marked so
that they can be removed at the end of the algorithm. Details will appear in the
full paper.

That our algorithm uses O(sort(N)) I/Os can be seen as follows. The pre-
processing step of computing the BFS level for each vertex in T and sorting the
edges of G by level can easily be performed in O(sort(N)) I/Os using standard
techniques (such as list ranking and Euler tours) [12]. If we do not count the
I/Os used to separate the subgraphs with bounded height, one recursion step
can be performed in O(N

B) I/Os, and the recurrence for the number of I/Os used
becomes T (N) ≤ N

B +X ·T (N
X). Thus T (N) = O(sort(N)). As the total number

442 L. Arge, G.S. Brodal, L. Toma

of I/Os used to separate the subgraphs of bounded height is O(sort(N)), we
have shown that our algorithm uses O(sort(N)) I/Os in total. This concludes
the proof of Theorem 2.

So far we have only discussed the case R = Ω(M). If R is o(M) then we
can use Theorem 2 to separate G in subgraphs of size O(M), then load each
subgraph into main memory one at a time and apply Lipton and Tarjan pla-
nar separator algorithm [23] until all subgraphs have size O(R). This results
in O(N√

R
) separator vertices. In some applications of the graph separation it

is necessary to bound not only the total number of separators S, but also the
number of separator vertices adjacent to any subgraph. This can be done as
follows: For each subgraph which has Ω(S

N/R) adjacent separator vertices mark
the inner vertices as inactive and apply Theorem 2 until the resulting subgraphs
have O(S

N/R) (active) vertices. Fredrickson [17] proves that this maintains the
same bounds for the number of subgraphs and separators given that the graph
has bounded degree. Details will appear in the full paper.

Corollary 1. Let G = (V, E) be a planar graph and T a breadth-first search tree
for G. Furthermore assume ∃ ε > 0 such that M > B2+ε. Then G can be sepa-
rated in Θ(N

R) subgraphs of O(R) vertices each and a set S of O(sort(N) + N√
R

)
separator vertices using O(sort(N)) I/Os.

If G has bounded degree then the separation can be constructed such that each
subgraph Gi is adjacent to O(SR

N) separator vertices.

3.2 Separating Planar Graphs of Bounded Height Spanning Tree

In this section describe how we can separate in O(sort(N)) I/Os a planar graph
G = (V, E) with a spanning tree T of height H into Θ(N

R) subgraphs of size
O(R) each and O(N

R H) separator vertices.
Assume for simplicity that G is triangulated. (If this is not the case, we can

triangulate it using O(sort(N)) I/Os [19] and mark the added edges so that they
can be removed at the end of the separation. Note that T remains a spanning
tree after the triangulation). Let G? be the dual of G and let T † = (E − T)? be
the spanning tree in G?. The spanning tree T † can be computed from G and T
in O(sort(N)) I/Os using a face finding algorithm as in [19] and a few sorting
steps. Each edge in T † is the dual of an edge e = (u, v) in (E − T) and there
exists a unique path from u to v in T ; this path and e forms a cycle in G, and
since T has bounded height H, the cycle contains at most 2H − 1 vertices. Thus
each edge in T † determines a cycle of size O(H) in G which separates G into
the vertices inside the cycle and vertices outside the cycle. Refer to Fig. 2 (a).
It can be shown that if e is the centroid edge of T †, then the number of vertices
inside and outside the cycle is roughly the same [18].

The main idea in our algorithm is to find O(N
R) cycles which partition G

into subgraphs of roughly equal size O(R). In order to do so, we first discuss
how to find O(N

R) edges in T † such that their removal divides T † into subtrees
of roughly equal size O(R). Then we show that the duals of these edges define
O(N

R) cycles in G with the desired properties.

External Memory MST, SSSP, and Planar Graph Separation 443

(a)

1

2 1

4

5

1

2

8

9

11 11

24

23

10 10

1

2

3

4

5

1

2 1

4

(b) (c)

Fig. 2. (a) A triangulated graph G (solid lines), T (solid thick lines) and T † (dot-
ted lines). (b) The decomposition of T † into its 10-bridges; square vertices are the
attachments. (c) Subtree of T † and the induced cycle in G.

The decomposition of a tree into independent subtrees of approximately equal
size was studied by Gazit et al. [27] in the context of parallel R-contractions.
We review briefly their notations and results. Let D = (V, E) be a tree with
N vertices. The weight W (v) of a vertex v in D is the number of vertices in
the subtree rooted at v. A vertex v is called R-critical if v is not a leaf and
dW (v)

R e > dW (v′)
R e for all children v′ of v. Let C ⊂ V . Two edges e and e′ of G

are C-equivalent if there exists a path from e to e′ that avoids the vertices C. The
graphs induced by the equivalence classes of the C-equivalent edges are called the
bridges of C. The attachments of a bridge I are the vertices of I that are also in
C. The R-bridges of a tree D are the bridges of C, where C is the set of R-critical
vertices of D. An example of the decomposition of a tree into its R-bridges is
shown in Fig. 2 (b). Gazit et al. [27] prove the following: (1) The number of
R-critical vertices in a tree of size N is at most 2N

R − 1. (2) The number of
R-bridges in a tree with bounded degree d is at most d(2N

R −1). (3) The number
of vertices of an R-bridge is at most R + 1. (4) If I is an R-bridge, then I can
have at most two attachments.

As the basic step in the computation of the R-bridges of D is the computa-
tion of the weight of each vertex, it is easy to show how standard I/O-efficient
algorithms can be used to compute the R-bridges in O(sort(N)) I/Os. If G is a
triangulated graph, T † is a binary tree, and thus it has at most 4N

R R-bridges.
Each R-bridge defines two cycles in G determined by the two edges incident
to the two attachments. One of these cycles will be inside the other and there
are at most R + 1 faces inside the outer cycle but outside the inner cycle (the
faces corresponding to the vertices in the R-bridge). Thus the R-bridges of T †

determine a separation of G into 4N
R subgraphs of at most R vertices adjacent

to O(N
R H) separator vertices in total. Given the R-bridges, the decomposition

of G can be easily computed in O(sort(N)) I/Os and Lemma 3 follows.

444 L. Arge, G.S. Brodal, L. Toma

4 Single Source Shortest Paths on Planar Graphs

In this section we show how to use our graph separation result to obtain an
efficient SSSP algorithm for planar graphs with bounded degree.3

Consider separating a planar graph

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��
��
��

��
��
��

�
�
�
� ��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

(b)(a)

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�
��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
��

�
�

�
�
�

�
�
�
�

Fig. 3. (a) Separation of a graph into sub-
graphs (boxed) and separators (black); (b)
a subgraph in the partition, its boundary
vertices and boundary sets.

G into Θ(N
R) subgraphs Gi = (Vi, Ei)

of O(R) vertices each and a set S
of separator vertices, such that each
subgraph is adjacent to O(SR

N) sepa-
rator vertices. We call the separator
vertices adjacent to Gi the boundary
vertices of Gi. Our algorithm relies on
the following observation: Consider a
shortest path δ(s, t) between two ver-
tices s and t in G and let {s0, s1, ...}
denote its intersection with S. The
portion of δ(s, t) between si and si+1
is completely within some subgraph
Gj and it must be the shortest path between si and si+1 within Gj .

The main idea in our algorithm is to construct a new graph GR by re-
placing each subgraph Gi with a complete graph on its boundary vertices. If
the source vertex s is not a separator vertex, we also include s in GR and
connect it to the boundary vertices of the subgraph containing it. The graph
GR has S vertices and O(N

R · (SR
N)

2
) = O(S2R

N) edges. The weight of an edge
in GR is the length of the shortest path in Gi between the corresponding
two boundary vertices. If R = O(M) these weights can be computed as fol-
lows: We load each subgraph Gi into main memory together with its boundary
vertices and use an internal memory all-pair-shortest-paths algorithm to com-
pute the weights of the new edges between the boundary vertices of Gi, and
write these edges to the disk. Since each separator vertex is a boundary vertex
for at most O(1) subgraphs (because of the bounded degree), we use at most
(N

B + S) I/Os to load all the subgraphs and their boundary vertices. As we use
O(scan(S2R

N)) I/Os to write the new edges, it follows that GR can be computed
in O(S + scan(S2R

N)) I/Os in total. Using S = O(sort(N) + N√
R

) (Corollary 1)
and choosing R = N2

sort2(N) = B2

log2
M/B

N/B
< M , this is O(sort(N)) I/Os.

Now assume we know how to compute the shortest paths from s to all sep-
arator vertices in O(sort(N)) I/Os. Using the observation mentioned above, we
know that these paths are identical to the shortest paths in the original graph
G. We can then compute the shortest paths from s to all the remaining vertices
in G by loading each subgraph Gi and its boundary vertices in main memory,
and using an internal memory algorithm to compute the shortest path from s to
each vertex t in Vi using the formula δ(s, t) = minv{δ(s, v) + δGi

(v, t)}, where v
ranges over all boundary vertices of Gi. This takes O(S + scan(N)) I/Os, so the
total number of I/Os used is O(sort(N)).
3 Note that any graph can be transformed into a graph with each vertex having degree

at most 3 using a simple transformation [17].

External Memory MST, SSSP, and Planar Graph Separation 445

All that remains is to show how to solve the SSSP problem on the graph GR

with S = O(sort(N)) vertices and O(S2R
N) = O(N) edges in O(sort(N)) I/Os.

To do so we use a slightly modified version of Dijkstra’s algorithm which avoids
the use of a decrease key priority queue operation. We want to avoid such an
operation since the I/O bound of the best known external data structure with
this operation is O(log2 N

B) [22], while priority queues with O(
logM/B N/B

B) I/O
bound are known if this operation is not supported [5,9]. During the algorithm
we maintain a list L of pairs of vertices of GR and their distances. Initially all
distances are ∞. We maintain the invariant that the distance of a vertex in
L is identical to the distances stored in the priority queue controlling the algo-
rithm. The algorithm repeatedly performs a delete min operation on the priority
queue to obtain the next vertex v to process; then the O(SR

N) = O(B
logM/B N/B)

edges incident to v are loaded using O(1) I/Os and the O(SR
N) = O(B

logM/B N/B)
boundary vertices adjacent to v are determined. These vertices (and their cur-
rent distances) are loaded from L using O(B

logM/B N/B) I/Os, and, without further
I/Os we then compute which vertices need to have their distances updated. Fi-
nally, the new distances are written back to L and the corresponding updates
are performed on the priority queue. Note that as we know the current distance
of a vertex which needs to have its distance updated, we can perform the update
in O(

logM/B N/B

B) I/Os using a delete and an insert operation.
Our algorithm performs O(N) operations on the priority queue using

O(sort(N)) I/Os in total. It also uses O(S) = O(sort(N)) I/Os in total to load
the neighbors of each vertex. Thus the I/O use is dominated by the O(B

logM/B N/B)
I/Os used for each vertex to load its adjacent vertices from L. Since there are
O(sort(N)) vertices, this sums up to O(B

logM/B N/B) · O(sort(N)) = O(N) I/Os
in total.

In order to improve the I/O bound to O(sort(N)) we modify the algorithm,
taking into account that there is some implicit adjacency between the boundary
vertices. Let a boundary set be a maximal subset of boundary vertices such that
all boundary vertices in the subset are adjacent to exactly the same subgraphs.
An example is shown in Fig. 3 (b). Fredrickson [17] showed that the number of
boundary sets is equal to the number of subgraphs O(N

R). We therefore modify
our algorithm such that the vertices in the same boundary sets are stored con-
secutively in L. Otherwise the algorithm remains unmodified. When a vertex v is
processed, the relevant boundary sets are determined and loaded from L as be-
fore. However, now we can think of the accesses as involving full boundary sets,
as opposed to boundary vertices. Each boundary set is accessed O(B

logM/B
N
B

)
times (once by each of its adjacent boundary vertices), and as there are
O(N

R) boundary sets we use O(B
logM/B

N
B

· N
R) = O(sort(N)) I/Os in total.

Theorem 3. Let G be a bounded degree planar graph and T a BFS tree for G.
Furthermore assume ∃ ε > 0 such that M > B2+ε. The SSSP problem on G can
be solved in O(sort(N)) I/Os.

446 L. Arge, G.S. Brodal, L. Toma

References

1. J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to
external graph algorithms. In Proc. Annual European Symposium on Algorithms,
LNCS 1461, pages 332–343, 1998.

2. P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter. I/O-
efficient algorithms for contour line extraction and planar graph blocking. In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 117–126, 1998.

3. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

4. ARC/INFO. Understanding GIS—the ARC/INFO method. ARC/INFO, 1993.
Rev. 6 for workstations.

5. L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc.
Workshop on Algorithms and Data Structures, LNCS 955, pages 334–345, 1995.
A complete version appears as BRICS technical report RS-96-28, University of
Aarhus.

6. L. Arge. The I/O-complexity of ordered binary-decision diagram manipulation.
In Proc. Int. Symp. on Algorithms and Computation, LNCS 1004, pages 82–91,
1995. A complete version appears as BRICS technical report RS-96-29, University
of Aarhus.

7. L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-
based terrains. In Proc. Workshop on Algorithm Engineering and Experiments,
2000.

8. O. Bor̊uvka. O jistém problému minimálńım. Práca Moravské Př́ırodovědecké
Společnosti, 3:37–58, 1926.

9. G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority
queues. In Proc. Scandinavian Workshop on Algorithms Theory, LNCS 1432, pages
107–118, 1998.

10. A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook.
On external memory graph traversal. In Proc. ACM-SIAM Symp. on Discrete
Algorithms, pages 859–860, 2000.

11. A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In
Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 566–575, 2000.

12. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and
J. S. Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Symp. on
Discrete Algorithms, pages 139–149, 1995.

13. F. Chin, J. Lam, and I. Chen. Efficient parallel algorithms for some graph problems.
Communications of ACM, 1982.

14. R. Cole and U. Vishkin. Approximate parallel scheduling. II. Applications to
logarithmic-time optimal parallel graph algorithms. Information and Computation,
92(1):1–47, May 1991.

15. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, Mass., 1990.

16. E. Feuerstein and A. Marchetti-Spaccamela. Memory paging for connectivity and
path problems in graphs. LNCS, 762:416–425, 1993.

17. G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM Journal of Computing, 16:1004–1022, 1987.

18. M. Goodrich. Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences, 51(3):374–389, 1995.

External Memory MST, SSSP, and Planar Graph Separation 447

19. D. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure
for shortest path queries. In Proc. 5th Annual Int. Conf. Computing and Combi-
natorics, number 1627 in LNCS. Springer-Verlag, July 1999.

20. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading MA, second edition, 1998.

21. D. Kozen. The Design and Analysis of Algorithms. Springer, Berlin, 1992.
22. V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-

ing graph problems in external memory. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 169–177, 1996.

23. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal of Applied Math., 36:177–189, 1979.

24. A. Maheshwari and N. Zeh. External memory algorithms for outerplanar graphs.
Manuscript, 1999.

25. K. Munagala and A. Ranade. I/O-complexity of graph algorithm. In Proc. ACM-
SIAM Symp. on Discrete Algorithms, pages 687–694, 1999.

26. M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph
searching. Algorithmica, 16(2):181–214, 1996.

27. J. H. Reif, editor. Synthesis of Parallel Algorithms, chapter 3, pages 115–194.
Morgan Kaufmann, 1993.

28. R. E. Tarjan. Data structures and network algorithms. SIAM, Philadelphia, 1983.
29. J. D. Ullman and M. Yannakakis. The input/output complexity of transitive clo-

sure. Annals of Mathematics and Artificial Intellegence, 3:331–360, 1991.
30. J. S. Vitter. External memory algorithms (invited tutorial). In Proc. of the 1998

ACM Symposium on Principles of Database Systems, pages 119–128, 1998.

I/O-Space Trade-Offs
(Extended Abstract)

Lars Arge?,1 and Jakob Pagter??,2

1 Department of Computer Science, Duke University, Durham, NC 27708, USA
2 BRICS? ? ?, University of Aarhus, DK-8000 Aarhus C, Denmark

Abstract. We define external memory (or I/O) models which capture
space complexity and develop a general technique for deriving I/O-space
trade-offs in these models from internal memory model time-space trade-
offs. Using this technique we show strong I/O-space product lower bounds
for Sorting and Element Distinctness. We also develop new space
efficient external memory Sorting algorithms.

1 Introduction

In internal memory models the time and space complexity, as well as trade-offs
between the two, are well studied for fundamental problems such as Sorting
and Element Distinctness. For example, Pagter and Rauhe [20] recently
proved an O(N2) upper bound on the time-space product for Sorting N ele-
ments, matching a lower bound of Beame [9]. Their algorithm can be used to
improve space usage of time-optimal internal memory Sorting by a factor of
Θ(log2 N) compared to classical algorithms like MergeSort and HeapSort.
Such an improvement would be of considerable practical interest when dealing
with massive data sets residing on external storage devices such as disks. For
example, if dealing with 50GB of data even a factor of log N would amount to a
space reduction of a factor of more than 30. Unfortunately, very little is known
about space complexity in external memory models where the main complexity
measure is the number of I/Os needed to solve a problem. For example, even
though several I/O-optimal external Sorting algorithms have been developed,
no algorithm using sub-linear disk space—not counting the (read only) space
holding the input—is known. One reason for this is that no external memory
model capturing sub-linear space complexity has been defined.

In this paper we define external memory models which capture space com-
plexity and use them to study I/O-space trade-offs for fundamental problems
such as Sorting and Element Distinctness.
? Supported in part by National Science Foundation ESS grant EIA–9870734, RI grant

EIA-997287, and CAREER grant EIA–9984099. E-mail: large@cs.duke.edu.
?? Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT). Parts of this work was done while the author was visiting
Duke University and while visiting University of Toronto. E-mail: pagter@brics.dk.

? ? ? Basic Research in Computer Science. Centre of the Danish National Research Foun-
dation.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 448–461, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

I/O-Space Trade-Offs 449

1.1 Related Work

The study of internal memory time-space trade-offs attempts to give formulae
that relate time T and space S for a given problem. A typical result is of the
form T · S = O(f(N)) for some problem and function f . Time-space trade-offs
for Sorting are well studied [9,10,12,13,19,20], and for time above (roughly)
N log2 N the exact complexity has been established to be T · S = Θ(N2) [9,20].
This means that if S = Ω(N/ log2 N) then we can sort in time O(N log2 N), and
this is the best possible. Similarly, if T = O(N3/2) then S = Θ(N1/2) is possible
and required. Time-space trade-offs for Element Distinctness have also been
studied extensively [3,11,15].

The standard model for studying external memory algorithms (or I/O-algo-
rithms) is the I/O-model of Aggarwal and Vitter [2]. In this model the internal
memory of size M is divided into m = M/B blocks of size B each. The external
memory is also divided into blocks of size B, and initially the N input data
elements reside in the first n = N/B blocks of external memory. An I/O is the
movement of one block of elements to or from external memory, and the goal is
to design algorithms that use as few I/Os as possible under the constraint that
computation can only be performed on elements in internal memory.

During the last decade, a large number of I/O-efficient algorithms have been
developed in the I/O-model—see e.g. recent surveys [5,23]. For example, it is
well known that (under some restrictions) Sorting requires Ω(n logm n) I/Os
and several O(n logm n) algorithms using O(n) extra space (disk blocks) have
been developed. However, no results are known about I/O-space trade-offs for
Sorting. Similarly for Element Distinctness, Arge et al. [6] showed that
the problem is as hard as Sorting in a comparison based model, and Arge
and Miltersen [7] gave an O(n) I/O (and space) randomized algorithm for the
problem, but nothing is known with respect to I/O-space trade-offs.

It should be mentioned that one reason no I/O-space trade-offs are known
in the I/O-model is that it allows for the input to be overwritten. Thus Ω(n)
space is always available for algorithms in the model and one cannot formally
express sub-linear space bounds. External memory models that capture space
complexity have been introduced in the area of straight-line computation mod-
els (i.e., models where branching or “if-then-else” statements are not allowed).
An example is the so-called red-blue pebble games—see e.g. [14,21]. However,
disallowing branching is too severe a restriction for our purposes.

1.2 Our Results

In Section 2 we introduce computational models which allow us to study I/O-
space trade-offs. We first introduce an extension of the Aggarwal and Vitter
model (or rather an I/O-version of the RAM-model equivalent to their model) in
which sub-linear space complexity can be expressed. This is the model we will use
when developing space-efficient I/O-algorithms. We next extend the branching
program model [10,12,21]—the model most commonly used for showing internal
memory time-space trade-offs—in order to capture I/O and space complexity

450 L. Arge and J. Pagter

simultaneously. We also prove that lower bounds in this model are valid in the
extended I/O-model.

In Section 3 we develop a technique for obtaining I/O-space trade-offs for
external memory computation from time-space trade-offs for internal memory
computation. More precisely, let T and S denote the time and space usage of an
internal memory algorithm solving a problem P over U = {1, . . . , R}. Similarly,
let T IO denote the number of I/Os and SIO the space usage of an external
memory algorithm solving P . We prove that if T = Ω(f(N, S)), then T IO =
Ω(f(N,SIO)

B).
Using the general result we prove I/O-space trade-offs for Sorting and El-

ement Distinctness. Combining the result with a result of Beame [9], we for
example show that for Sorting the I/O-space product is Ω(N2/B) = Ω(N ·n).
Using the internal memory algorithm of Pagter and Rauhe [20] in external mem-
ory shows that this bound is tight among algorithms using more than (roughly)
N log2 N I/Os. This is an interesting result, as it suggests that when disk space
is restricted, traditional internal memory approaches can lead to optimal exter-
nal memory algorithms. The results for Element Distinctness are obtained
by applying our results to the internal memory lower bounds of Ajtai [3] and
Yao [24].

Finally in Section 4 we discuss an external memory generalization of the
algorithm of Pagter and Rauhe which for certain choices of M and B obtains
the optimal I/O-space trade-off for Sorting down to the optimal number of I/Os
O(n logm n). In general however, we can only prove an O((N2/(B + m)) log2 m)
upper bound on the I/O-space product. We conjecture that our lower bound
for Sorting is tight for all values of M and B, that is, an algorithm achieving
O(N2/B) exists.

2 Models of Computation

In this section we introduce computational models which allows us to study
I/O-space trade-offs. In Section 2.1 we first consider upper bound models and
in Section 2.2 we then consider lower bound models. We discuss the relationship
between the models in Section 2.3.

One main difference between our models and the standard I/O-model is
that we assume input to be read-only. A natural question is whether this is
reasonable and we claim that it is. Consider for example the task of Sorting a
huge database by a secondary key: In such an example it might be important not
to overwrite the original database sorted by primary key. A typical example is the
customer database of a bank, which will normally be sorted by account numbers.
Occasionally the bank might want a phone book over its customers, requiring
the database to be sorted on customer names, but rarely will it be interested in
erasing the original database used for all standard business transactions. Other
examples occur when the input is stored on a medium which is physically read-
only, for example on a CD-ROM.

I/O-Space Trade-Offs 451

2.1 Upper Bound Models

In this section we define two external memory extensions of the unit cost RAM
model. The unit cost RAM model is a popular internal memory model for show-
ing upper bounds. In this model input consists of N words x1, . . . , xN from some
universe U = {0, 1}w, and it is a normal convention that each word in memory
can hold exactly w bits, corresponding to one input element. We use this con-
vention and define a parameter R = 2w (i.e. each input element can represent
one of R values). We will always assume that R ≥ N .

Definition 1 (External RAM) The external RAM consist of two parts: A
memory layout, and an instruction set:
Memory layout: Input is located on a read-only input medium consisting of
N words of log2 R bits, grouped into n = N/B consecutive blocks of B words.
Output is to be written to a separate write-only output medium. Furthermore, we
have an external memory consisting of blocks of B words of log2 R bits each, and
an internal memory consisting of M/B blocks of B words of log2 R bits each.
Instructions: The algorithm can execute the following instructions:
1 Read a block from the input into internal memory
2 Write a block from internal memory to the output
3 Swap a block from internal memory with one from external memory (both

may be “empty”)
4 Perform some unit-cost operation on two words in internal memory, writing

the result to one word in internal memory.

2

The number of I/Os T IO
R performed by an external RAM is the number of

times the algorithm executes instructions 1, 2 or 3, and we define space SIO
R to

be the number of bits occupied by the external memory. Note that we ignore
the M log2 R bits available in internal memory since we will always assume that
SIO

R ≥ M log2 R. Also note that we define space in terms of bits and not words
or blocks. One can of course easily translate our space measure into measures
based on words (SIO

R / log2 R) or blocks (SIO
R /(B log2 R)). In the introduction

the space bounds were expressed in terms of blocks.
It should be clear that the external RAM model is essentially a straightfor-

ward extension of the I/O-model of Aggarwal and Vitter—basically the input
has just been made read-only.

Definition 2 (Comparison external RAM) A comparison external RAM is
an external RAM, with instruction 4 replaced by
4a Compare input elements, or copies thereof, in two words in internal memory

using a binary comparison
4b Perform some unit-cost operation on two words in internal memory which

are not occupied by input elements, or copies thereof, writing the result to
one word in internal memory

2

452 L. Arge and J. Pagter

The number of I/Os T IO
C performed by a comparison external RAM is the

number of times the algorithm executes instructions 1, 2 or 3, and the space use
SIO

C is the number of bits occupied by the external memory.
Note that in a comparison external RAM one can only access words con-

taining input elements, or copies thereof, through comparisons. All other words
in internal memory can be manipulated freely. We think of each word contain-
ing (a copy of) an input element as being marked, and such marked words can
only be accessed via comparisons with another marked word. This somewhat
strange way of enforcing a comparison model is a result of the fact that in an
external memory model it is vital that we are allowed to make and move copies
of elements (since block movement is the main complexity measure). Another
standard way of enforcing a comparison model is to ensure that elements are in-
divisible and that new elements cannot be produced, that is, that each word in
memory is either empty or contains an input element (the so-called indivisibility
assumption [2,7]). However, there is evidence that the indivisibility assumption
drastically increases the complexity of certain problems [1,7], and furthermore,
we would like to be able to manipulate objects such as pointers in our algorithms.

It should be clear that the external RAM models can easily simulate algorithms
constructed for models where one is allowed to overwrite the input: Simply make
a copy of the input in the external memory and run the algorithm on this copy.
In particular, the I/O-optimal O(n logm n) Sorting algorithms of Aggarwal and
Vitter [2] may be implemented on the comparison external RAM. Note also that
the external RAM is at least as strong as the comparison external RAM.

2.2 Lower Bound Models

The models we will use for showing lower bounds (on I/O-space trade-offs) are
extensions of the branching program model. The branching program model is
a well established internal memory model for showing lower bounds on time-
space complexity, see e.g. [3,9,10,11,12,15,17,24]. Branching programs come in
two main variants: Comparison based branching programs, which were initially
studied in [22] according to which they were introduced by Pippenger, and R-way
branching programs introduced by Borodin and Cook [10]. Detailed discussions
of branching programs can be found in [12,21].

A comparison branching program is a directed acyclic graph (DAG) with one
root. Each non-leaf node is labeled (i : j) and has two outgoing arcs labeled xi <
xj and xi ≥ xj . A computation starts at the root and proceeds in the natural
way until a leaf is reached. If one is studying decision problems, each leaf will
be labeled 0 or 1 depending on whether the corresponding computation rejects
or accepts the input. For functions such as Sorting, each arc may be further
labeled with elements from the output domain. The output of the computation
is the ordered concatenation of the outputs encountered along the computation
path.

Time TC in the comparison branching program model is defined as the height
of the branching program, corresponding to the number of comparisons per-

I/O-Space Trade-Offs 453

formed in the worst case, and space SC is defined as log2 |V |, where V is the set
of vertices of the branching program. This is an adequate space measure since
it gives a lower bound on the number of bits required to distinguish between
the states of the program. We will discuss this in greater detail when comparing
RAM models and branching programs in Section 2.3.

An R-way branching program is a DAG with one root, where each non-leaf
(branching) node is labeled with an index i (1 ≤ i ≤ N) and has an outgoing arcs
for each element of U = {0, 1}w (recall that R = 2w). A computation proceeds
as before except that in a node labeled i the arc labeled l is followed if xi = l;
i.e., a branch is made according to the value of xi.

As previously, TR is defined as the height of the DAG, corresponding to the
number of times we read one of the elements from the input in the worst case.
Space SR is defined as for comparison branching programs. As we can simulate
a comparison using two R-way branches, R-way branching programs are asymp-
totically stronger than comparison branching programs (for R = NO(1)). From a
practical point of view, the R-way branching program model is an unrealistically
strong model of computation; given enough space to remember the value of all
the input elements—O(RN) nodes or space O(N log2 R)—one can decide any
problem after reading each element once, i.e., in linear time. On the other hand,
when restricting the space one can prove interesting and sometimes even tight
time-space trade-offs in the model. In the following we define external versions
of the branching program models.

Definition 3 (Comparison external branching program) A comparison
external branching program is a comparison branching program with two types of
nodes—comparison nodes and I/O-nodes: An I/O-node replaces any B elements
in the internal memory of size M with any B elements from the input. A com-
parison node can only compare two elements which are both in internal memory.
2

The number of I/Os T IO
C performed by a comparison external branching

program is defined as the maximum number of I/O-nodes encountered along
any root-leaf path. As previously, space SIO

C is defined as log2 |V |, where V is
the set of vertices of the branching program.

We emphasize the fact that one can read any B elements when making a
block transfer (I/O) from input to internal memory. This seems like a strong
and unrealistically powerful operation, but not only can we prove interesting—
in some cases even tight—lower bounds in this model, we also (as we will see)
need this strength in order to simulate comparison external RAM algorithms
(Theorem 1). Note also that the term “internal memory” is somewhat mislead-
ing, as the M elements are not physically present in any kind of memory. At
any point of the computation, the elements “in internal memory” are just the
M input elements (out of the N possible elements) the external branching pro-
gram is allowed to compare. Finally, note that comparison external branching
programs cannot make copies of elements, since they can only access input ele-
ments through comparisons.

454 L. Arge and J. Pagter

Definition 4 (R-way external branching programs) An R-way external
branching program is an R-way branching program with two types of nodes—
branching-nodes and I/O-nodes: An I/O-node replaces any B elements in the
internal memory of size M with any B elements from the input. A branching-
node performs a branch based on the value of one of the M input elements in
internal memory. 2

The number of I/Os T IO
R performed by an R-way external memory branch-

ing program, as well as the space use SIO
R , is defined as for the comparison

external branching program. For both R-way external branching programs and
comparison external branching programs we again use the natural assumption
that SIO ≥ M log2 R.

We call a (comparison or R-way) external branching program where all nodes
have in-degree at most 1 an external tree. Arge et al. [6] defined a model similar
to a comparison external tree called the I/O decision-tree, and Munagala and
Ranade [18] defined a model similar to an R-way external tree. In both models
one is only allowed to read contiguous input elements. However, unlike external
trees, both models contain a mechanism for rearranging (writing) the input ele-
ments.

A key property of (comparison or R-way) external branching programs is that
removing the I/O-nodes results in a standard branching program. In this sub-
section we will discuss two other properties of external branching programs.

A branching program is called leveled if the nodes of the program can be
partitioned into T classes V1, V2, . . . , VT such that arcs emanating from nodes in
Vi go to nodes in Vi+1. Pippenger proved that any standard branching programs
of height T using space S can be transformed into a leveled branching program
with height T + 1 and using space less than 2S—see e.g. Borodin et al. [12].
We say that an I/O-node w is the immediate I/O-successor of a node v, if w
is the first I/O-node encountered on one of the paths from v to a leaf of the
branching program. Note that v may have several immediate I/O-successors.
We say that an external branching program is I/O-leveled, if the I/O-nodes
can be partitioned into T IO classes V1, V2, . . . , VT IO such that all I/O-nodes in
Vi have their immediate I/O-successors in Vi+1. With a simple modification of
Pippenger’s proof we can show the following.

Lemma 1 Any (comparison or R-way) external branching program using T IO

I/Os and SIO space can be transformed into an I/O-leveled external branching
program solving the same problem using T IO +1 I/Os and space less than 2SIO.

The immediate I/O-ancestor of a node v can be defined analogously to im-
mediate I/O-successor. An external branching program is called I/O–separated
if all internal nodes other than I/O-nodes have only one immediate I/O-ancestor.

Lemma 2 Any I/O-leveled (comparison or R-way) external branching program
using T IO I/Os and SIO space can be transformed into an I/O-separated and
I/O-leveled external branching program solving the same problem using T IO I/Os
and less than 2SIO space.

I/O-Space Trade-Offs 455

Proof: The details of the proof appear in the full version of this paper [8]. 2

In the following, we will assume without loss of generality that all external
branching programs are I/O-leveled and I/O-separated.

2.3 External RAM’s vs. External Branching Programs

In this section we prove two theorems which allow us to prove lower bounds for
external RAM’s using the external branching program models.

Theorem 1 For any comparison external RAM algorithm solving a problem
P in T IO

C I/Os and space SIO
C ≥ M log2 R there exists a comparison external

branching program solving P in T IO
C I/Os and space at most 2SIO

C .

Proof: The basic idea of the proof is to construct a branching program with
a node for each state of the RAM algorithm and with arcs reflecting how the
computation proceeds. However, there seems to be one major problem with this
idea, namely that while the comparison external RAM can make copies of input
elements and move them around in memory, a comparison external branching
program can only compare input elements. However, as we will show below, this
problem can be overcome using the comparison external branching programs
(powerful) ability to move any B input elements into internal memory instead
of just contiguous ones. We also use the fact that comparison external RAM’s
can only access (copies of) input elements using comparisons.

As the comparison external RAM algorithm uses SIO
C bits in external memory

and have M log2 R bits in internal memory, is has at most 2SIO
C +M log2 R ≤ 22SIO

C

distinct states. We split these states into three types based on the operation
performed in a given state:
1. I/Os (instructions 1, 2, and 3).
2. Comparisons of (copies of) input elements (instruction 4a).
3. Other operations (on non-input elements) (instruction 4b).

After performing an operation in a given state the comparison external RAM
algorithm proceed to a new state: In a type 1 state the algorithm performs an
I/O and proceeds to one unique state. In a type 3 state the algorithm performs
some operation and proceeds to one unique state. Note that a sequence of type
3 states are “straight-line” in the sense that the computation performed in the
sequence only depends on the first state in the sequence. In a type 2 state the
algorithm proceeds to one out of two unique states, depending on the outcome
of the comparison.

We construct a comparison external branching program from the comparison
external RAM as follows: For each state in the comparison external RAM we
construct a node in the comparison external branching program, and we con-
nect these nodes according to how computation proceeds from state to state. A
comparison external branching program cannot contain nodes corresponding to
states of type 3, but as these perform straight-line computation we can remove
all such nodes/states by coalescing a node/state (or a sequence of them) into
their first successor of type 1 or 2. Nodes corresponding to type 2 states can be

456 L. Arge and J. Pagter

left unmodified, but nodes corresponding to type 1 states need to be modified
since I/O-nodes in a comparison external branching program always read B in-
put elements from input to internal memory, while much more complicated I/Os
can be performed in type 1 states. Nodes corresponding to type 1 states which
only read from the input we just leave unchanged. Nodes corresponding to type 1
states which write to output are removed and the arc between its predecessor and
successor is labeled with the appropriate output information. Nodes correspond-
ing to type 1 states which swap a block in internal memory with a block from
external memory are more complicated since we can only read input elements
in comparison external branching programs. Consider the block of B elements
swapped into internal memory in such a node/state. Some of these elements are
copies of the original input elements and some contain other information. The
latter can be disregarded since the same information is represented in the state
itself (recall that a state represent the content of the entire memory). We replace
the node with a node which read the relevant less than B elements from the in-
put. In general these input elements will not constitute a block of the input but
we utilize that external branching programs can read any B input elements in
one swap operation.

It should be clear that the comparison external branching program con-
structed in this way solves the problem P in T IO

C I/Os. The branching program
uses less than log2 22SIO

C = 2SIO
C space. 2

We can prove a similar theorem for external RAM algorithms and R-way
external branching programs. We omit the proof as it is very similar to the
proof of Theorem 1.

Theorem 2 For any external RAM algorithm solving a problem P in T IO
R I/Os

and space SIO
R ≥ M log2 R there exists a R-way external branching program

solving P in T IO
R I/Os and space at most 2SIO

R .

3 Lower Bounds

In this section we first present a general method for obtaining I/O-space trade-
offs in external branching program models from time-space trade-offs in normal
branching program models. Using this method we then obtain trade-offs for
Sorting and Element Distinctness.

3.1 General Lower Bound Method

In [6] Arge et al. describes a general technique for transforming an internal
memory decision tree lower bound into an I/O-decision tree I/O lower bound
(see also [7,18]). The main idea in their technique is a method for transforming
an I/O-decision tree algorithm into an internal decision tree algorithm, such that
the number of comparisons performed by the internal algorithm is bounded by
a function of the number of I/Os performed by the external algorithm. In this
section we apply the same idea to branching program models. We first consider
the comparison model.

I/O-Space Trade-Offs 457

Theorem 3 Suppose that for any comparison branching program solving a prob-
lem P in time TC and space SC we have TC ≥ f(N, SC). Then for any compar-
ison external branching program solving P

T IO
C = Ω

(
f(N, SIO

C)
B log2 M

)
.

Proof: As mentioned, the proof is based on the ideas used by Arge et al. [6]; we
will describe a general method for transforming a comparison external branching
program solving P using T IO

C I/Os and SIO
C space into a comparison branching

program solving P . The comparison branching program lower bound then results
in a comparison external branching program lower bound.

Consider an I/O-leveled and I/O-separated comparison external branching
program, and as previously let the sub-branching program rooted at an I/O-node
v consist of all nodes reachable from v without passing through another I/O-
node. Recall that as the comparison external branching program is I/O-leveled,
each comparison-node is contained in precisely one sub-branching program. Our
aim is to replace each sub-branching program with a new sub-branching program
that computes the total ordering of all the elements in internal memory; since we
only have comparison based access to the input, computing the total order means
that any question regarding the input answered by the old sub-branching pro-
gram can be answered by the new sub-branching program. We first transform
the comparison external branching program into another comparison external
branching program where we know the total order of the input elements in in-
ternal memory in each I/O-node. (Note that there are M ! different orderings of
the M elements in internal memory). In order to do so we first make M ! copies of
the original comparison external branching program—in our construction each
of these copies will be used to represent a unique total order of the elements in in-
ternal memory. Each copy of the comparison external branching program is now
transformed into another comparison external branching program I/O-level by
I/O-level, top-down (while maintaining the invariant that the internal memory
element order is know in I/O-nodes on already processed levels). We transform
the sub-branching program rooted in I/O-node v as follows: We replace the
sub-branching program with a sub-branching program which first computes the
total order of the B input elements loaded into internal memory by v (i.e. it sorts
them), and then finds the positions of the B elements among the sorted elements
already in internal memory (i.e. it merges the B “new” elements with the M −B
“old” elements). As shown in [6], the height of the new sub-branching program
can be bounded by O(B log2 B +B log2 m) = O(B log2 M), which in turn means
that it contains O(2B log2 M) nodes. Each leaf ln of the new sub-branching pro-
gram corresponds to a total order of the elements in internal memory. Thus
it also corresponds to a unique leaf lo in the original sub-branching program,
namely the leaf at which inputs with this particular total ordering would end
up. To guarantee that the transformed comparison external branching program
solves P , we want to connect ln to the same I/O-node vo on the next I/O-level
as lo is connected to. Note however, that several leaves (total orders) in the new

458 L. Arge and J. Pagter

sub-branching program could correspond to lo. In order not to lose information
about the order of the elements in internal memory, we therefore connect ln to
vo of the copy of the original program corresponding to the total order of the
elements in internal memory. After processing all I/O-nodes on the same level
as v, we go on and process the next I/O-level.

After the transformation we have a new comparison external branching pro-
gram with the same overall structure as the original comparison external branch-
ing program, specifically the new branching program has at least the same knowl-
edge about the input as the original branching program. Consequently the new
branching program can answer any question that the original branching program
answers and thus it solves problem P .

From the construction it should also be clear that the new comparison ex-
ternal branching program has the same I/O-height T IO

C as the original com-
parison external branching program. That the space use of the new compar-
ison external branching program is O(SIO

C) can be seen as follows: We have
M ! copies of the original program, each containing no more than |V | = 2SIO

C

I/O-nodes. For each I/O-node we have a sub-branching program of size less
than 2B log2 M . Thus in total the new comparison external branching program
use space O(log2(M ! · 2SIO

C · 2B log2 M) = O(M log2 M + SIO
C + B log2 M) =

O(M log2 R + SIO
C) = O(SIO

C).
Next we simply remove the I/O-nodes from the transformed comparison ex-

ternal branching program and obtain a (standard) comparison branching pro-
gram with height TC = O(T IO

C · B log2 M) using space SC = O(SIO
C). The

theorem follows since TC ≥ f(N, SC). 2

We can prove a similar theorem for R-way external branching programs.

Theorem 4 Suppose that for any R-way branching program solving a problem P
in time TR and space SR we have TR ≥ f(N, SR). Then for any R-way external
branching programs solving P

T IO
R = Ω

(
f(N, SIO

R)
B

)
.

Proof (sketch): We use the same proof technique (construction) as in the
comparison model (Theorem 3). The B log2 M factor in the comparison model
construction was a result of this being the height of the sub-branching program
used to obtain full information about the elements in internal memory after an
I/O. We will use the power of the R-way model to decrease this height and
thus obtain an improved bound. In the R-way model, having full information
about the elements in internal memory corresponds to knowing the value of all
the elements. Thus the main idea in the R-way construction is to replace each
sub-branching program with a sub-branching program which ”remembers” the
value of the B new elements in internal memory after an I/O. Since such a sub-
branching program has height B (we just read each element once) the theorem
follows. Details appear in the full version of this paper [8]. 2

I/O-Space Trade-Offs 459

Note the interesting and somewhat counterintuitive fact that by switching
to a stronger model (from Theorem 3 to Theorem 4) we obtain a better lower
bound.

3.2 Applications of the Lower Bound Method

In the R-way model, Beame [9] proved that TR ·SR = Ω(N2) for the problem of
Sorting elements in the universe U = {1, . . . , N2}. Using Theorem 4 we thus
obtain the following.

Corollary 1 Any R-way external memory branching program Sorting N num-
bers from a universe U = {1, . . . , N2} has T IO

R · SIO
R = Ω (N2

B).

Ajtai [3] proved that for Element Distinctness over U = {1, . . . , N2} we
have that if TR = O(N) then SR = Ω(N). Using Theorem 4 we obtain the
following.

Corollary 2 Any R-way external memory branching program solving the Ele-
ment Distinctness problem on N numbers from the universe U = {1, . . . , N2}
with T IO

R = O(n) uses space SIO
R = Ω(N).

Corollary 1 implies (among other things) that we must use Ω(N/(logm n))
space in order to sort N elements in the optimal O(n logm n) I/Os. This should
be compared to the N log2 R space use of the sorting algorithm of Aggarwal and
Vitter [2]. Corollary 2 means that in order to decide Element Distinctness
in a linear number of I/Os we must use at least linear extra space.

Yao [24] proved that any comparison branching program deciding Element
Distinctness on N numbers must have TC · SC = Ω(N2−ε(N)), where ε(N) =
5/

√
log2 N . Using Theorem 3 we thus obtain the following.

Corollary 3 Any comparison external branching program deciding Element
Distinctness on N numbers has T IO

C · SIO
C = Ω (N2−ε(N)

B log2 M).

4 Upper Bounds

In this section we briefly discuss our new upper bounds on the I/O-space product
for Sorting. Details appear in the full version of this paper [8].

Modifying the internal memory Sorting algorithm of Pagter and Rauhe [20]
in a straightforward way to make it work in external memory we can obtain the
following.

Theorem 5 There exists positive constants c1 and c2 so that there exists a com-
parison external RAM algorithm Sorting N numbers in c1N log2 N ≤ T IO

C ≤
c2N

2/(B log2 N) I/Os and space SIO
C such that T IO

C · SIO
C = O(N2

B).

It follows from Corollary 1 that Theorem 5 is optimal. Note that this means
that traditional internal memory approaches can lead to optimal external mem-
ory algorithms when disk space is restricted.

In the more important case where n logm n ≤ T IO
C ≤ N log2 N (roughly) we

can sometimes also obtain optimal bounds. In order to do so we need to make

460 L. Arge and J. Pagter

several modifications to the algorithm by Pagter and Rauhe. Their algorithm
is based on a complicated binary tree data structure similar to a tournament
tree (see e.g [16]). By designing a m-ary version of their data structure we first
reduce T IO

C to O(N2/(kB) + N log2 m · logm k) using space O(k log2 m)—i.e. we
obtain a data structure where we may vary I/O and space usage by varying
the parameter k. To improve this bound we utilize a variant of the buffering
technique of Arge [4], as well as the fact that one can sort M elements in internal
memory without performing any I/Os. Using these ideas we can further reduce
T IO

C to

O

N2

k(B+m) + N logm k

B

increasing the space use with a factor B to O(Bk log2 m). By choosing k appro-
priately we then obtain the following.

Theorem 6 There exists positive constants c1 and c2 so that there exists an
comparison external RAM algorithm Sorting N numbers in c1n logm n≤ T IO

C ≤
c2N log2 N I/Os and space SIO

C such that T IO
C · SIO

C = O(N2 log2 m
B+m).

Note that Theorem 6 means that if M ≥ B2 (a realistic and standard as-
sumption in the external memory literature) we can sort I/O-optimally (using
O(n logm n) I/Os) using (sub-optimal) space O((N log2 m)/ logm n). In compar-
ison, the Sorting algorithm of Aggarwal and Vitter [2] uses roughly a factor
log2 n more space O(N log2 N). If also log2 m ≤ logm n we achieve optimal space.
We conjecture that our lower bound for Sorting is tight for all values of M and
B, that is, an algorithm achieving a I/O-space product of O(N2/B) exists.

Acknowledgments

We would like to thank an anonymous referee for valuable comments on presen-
tation. The second author would like to thank Faith Fich.

References

1. M. Adler. New coding techniques for improved bandwidth utilization. In Proc. 37th
Annual Symposium on Foundations of Computer Science, pages 173–182, 1996.

2. A. Aggarwal and J. S. Vitter. The Input/Output Complexity of Sorting and
Related Problems. Communications of the ACM, 31(9):1116–1127, 1988.

3. M. Ajtai. Determinism versus Non-Determinism for Linear Time RAMs with Mem-
ory Restrictions. In Proc. Thirty-First ACM Symposium on Theory of Computing,
1999.

4. L. Arge. The Buffer Tree: A New Technique for Optimal I/O-Algorithms. In Proc.
Workshop on Algorithms and Data Structures, LNCS 955, pages 334–345, 1995.
A complete version appears as BRICS technical report RS-96-28, University of
Aarhus.

5. L. Arge. Efficient External-Memory Data Structures and Applications. PhD thesis,
University of Aarhus, 1996.

I/O-Space Trade-Offs 461

6. L. Arge, M. Knudsen, and K. Larsen. A General Lower Bound on the I/O-
Complexity of Comparison-based Algorithms. In Proc. of the Workshop on Al-
gorithms and Datastructures, LCNS 709, pages 83–94, 1993.

7. L. Arge and P. B. Miltersen. On showing lower bounds for external-memory com-
putational geometry problems. In J. Abello and J. S. Vitter, editors, External
Memory Algorithms and Visualization. AMS Press, 1999.

8. L. Arge and J. Pagter. I/O-Space Trade-Offs. Technical Report BRICS-RS-00-7,
BRICS, University of Aarhus, Denmark, April 2000. Available via www.brics.dk.

9. P. Beame. A General Sequential Time-Space Tradeoff for Finding Unique Ele-
ments. SIAM Journal on Computing, 20:270–277, 1991.

10. A. Borodin and S. Cook. A Time-Space Tradeoff for Sorting on a General Sequen-
tial Model of Computation. SIAM Journal on Computing, 11(2):287–297, 1982.

11. A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson.
A Time-Space Tradeoff for Element Distinctness. SIAM Journal on Computing,
16:97–99, 1987.

12. A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa. A Time-
Space Tradeoff for Sorting on Non-Oblivious Machines. Journal of Computer and
System Sciences, 22:351–364, 1981.

13. G. N. Frederickson. Upper Bounds for Time-Space Trade-offs in Sorting and Se-
lection. Journal of Computer and Systems Sciences, 34:19–26, 1987.

14. J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc.
ACM Symp. on Theory of Computation, pages 326–333, 1981.

15. M. Karchmer. Two Time-Space Tradeoffs for Element Distinctness. Theoretical
Computer Science, 47:237–246, 1986.

16. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, 2nd edition, 1998.

17. Y. Mansour, N. Nisan, and P. Tiwari. The Computational Complexity of Universal
Hashing. Theoretical Computer Science, (107):121–133, 1993.

18. K. Munagala and A. Ranade. I/O-complexity of graph algorithm. In Proc. Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 687–694, 1999.

19. J. I. Munro and M. S. Paterson. Selection and Sorting with Limited Storage.
Theoretical Computer Science, 12:315–323, 1980.

20. J. Pagter and T. Rauhe. Optimal Time-Space Trade-Offs for Sorting. In proc. 39th
Annual Symposium on Foundations of Computer Science, pages 264–268, 1998.

21. J. E. Savage. Models of Computation. Addison-Wesley, 1998.
22. M. Tompa. Time-Space Tradeoffs for Straight-Line and Branching Programs. Tech-

nical Report 122/78, Department of Computer Science, University of Toronto, July
1978. Ph.D. Thesis.

23. J. S. Vitter. External memory algorithms and data structures. In J. Abello and
J. S. Vitter, editors, External Memory Algorithms and Visualization. AMS Press,
1999.

24. A. C.-C. Yao. Near-optimal Time-Space Tradeoff for Element Distinctness. SIAM
Journal on Computing, 23:966–975, 1994.

Optimal Flow Aggregation

Subhash Suri ?, Tuomas Sandholm ??, and Priyank Ramesh Warkhede ? ? ?

Department of Computer Science
Washington University
St. Louis, MO 63130

{suri,sandholm,priyank}@cs.wustl.edu

Abstract. Current IP routers are stateless: they forward individual
packets based on the destination address contained in the packet header,
but maintain no information about the application or flow to which a
packet belongs. This stateless service model works well for best effort
datagram delivery, but is grossly inadequate for applications that require
quality of service guarantees, such as audio, video, or multimedia. Main-
taining state for each flow is expensive because the number of concurrent
flows at a router can be in the hundreds of thousands. Thus, stateful so-
lutions such as Intserv (integrated services) have not been adopted for
their lack of scalability. Motivated by this dilemma, we formulate and
solve the flow aggregation problem, where we give an efficient algorithm
for computing the smallest set of aggregated flows that encode the for-
warding state of individual flows. Such aggregation of state information
might increase the viability of Intserv-type protocols.

1 Introduction

Current IP networks provide one simple service: the best effort packet delivery,
in which no guarantee is made about when or if a packet will be delivered. This
simple model allows IP routers to be stateless: a router does not need to know
anything about the potentially large number of individual connections passing
through it; it simply forwards each IP packet based on the destination address
contained in the packet header. The routing table entries are highly aggregated—
a single entry like 10100∗ provides the next hop information for all destinations
that start with prefix 10100. When multiple entries match a packet’s destination,
the router uses the longest matching prefix rule to forward the packet [3,6,15].

The best-effort service model works well when there is no congestion in the
network and the end applications are relatively insensitive to delay (such as file
transfer). In reality, parts of the network are frequently and heavily congested,
? Subhash Suri’s research was supported by NSF under grants ANI 9813723 and

CCR-9901958.
?? Tuomas Sandholm’s research was supported by NSF under CAREER Award IRI-

9703122, Grant IRI-9610122, and Grant IIS-9800994.
? ? ? Priyank Ramesh Warkhede’s research was supported by NSF under grants ANI

9813723 and ANI 9628190.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 462–475, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Optimal Flow Aggregation 463

and a large number of emerging applications are real-time, meaning they are ex-
tremely sensitive to delay, such as audio, video, or IP telephony. During network
congestion, a router needs to give priority to real-time traffic over non-real-time
traffic, and thus adopt a “differentiated services” model. Such a differentiated
services model is also attractive to ISPs (Internet Service Providers), who need
better traffic management so they can offer different quality services to different
customers at different prices.

A differentiated service model can be implemented by maintaining per-flow
state in the routers, as proposed by protocols like RSVP in the Intserv model [2],
[13]. Stateful routers can provide more powerful and flexible services such as
bandwidth allocation, end-to-end latency bounds, protecting well-behaving flows
from misbehaving ones, and end-to-end congestion control [9]. Unfortunately,
maintaining per-flow state in routers can be prohibitively expensive because the
number of flows can be in the hundreds of thousands. Therefore stateful routers
do not scale to large sizes as well as the stateless routers. In this paper, we
formulate and solve a problem, called flow aggregation, which we hope can make
stateful routers more scalable. Before we describe flow aggregation, let us briefly
explain how current stateless routers forward packets.

In the IP address scheme, each network is assigned a network address, and
each host in that network uses the network address as its prefix. (The host ad-
dress is fixed length, 32 bits, while the network addresses are variable length pre-
fixes.) Each router maintains a routing table, containing a set of address prefixes;
associated with each prefix is a “next hop” label. Thus, an entry 〈10100∗, A〉
says that a packet whose destination address starts with 10100 should be for-
warded to router A; the router A will forward the packet closer to the packet’s
ultimate destination. (The symbol ‘∗’ is the wildcard character.)

Routing table entries are highly aggregated—while there are millions of IP
hosts, the largest backbone routers have about 50 thousand prefixes [11]. This
aggregation has several advantages—smaller table size reduces table memory,
improves search time, and it also reduces the routing update traffic. The aggre-
gation does have a cost—to look up a packet’s next hop, we need to find the
longest prefix matching the header, which is a more complicated operation than
a simple index into a table. For instance, suppose that a router has three prefixes
0∗, 010∗, and 0101∗, with corresponding next hops A,B and C. Then, a packet
with destination address 01011 matches all three but is sent to C, the longest of
the three matches. On the other hand, a packet with address 01101 is sent to A.

1.1 Flow-Based Routing

The simple stateless routing, which works well when the network has sufficient
capacity and no congestion, is grossly inadequate for real-time applications, such
as audio or video, that have stringest delay requirements. Stateful routers can
implement more sophisticated routing and packet scheduling by using not just
the destination address but additional packet header fields and by maintain-
ing information about flows and applications. For instance, an ISP can provide
guaranteed quality of service to a company by routing all traffic between two

464 S. Suri, T. Sandholm, and P.R. Warkhede

company sites along a high bandwidth channel, which requires the routers in the
ISP network to maintain state information over network address pairs (src,dest).
In this paper, we will use (src,dest) pairs to illustrate ideas, though all the results
carry over for any header field pair.

A flow is defined as a pair (src,dest), where src and dest are network address
prefixes, each at most w bits long; in IP version 4, these addresses are at most
32 bits. We define a flow routing entry to be a tuple 〈(src,dest), action〉, where
action is the routing action associated with the flow (src,dest). The routing
action typically is the address of the next hop router to which the packet should
be sent, but its exact semantics is irrelevant to our abstract framework; in some
applications, the action could also take the form of “do not forward the packet”
which is useful for access control [4,5].

We say that a flow routing entry (src,dest) matches a packet P if src is a pre-
fix of the packet’s source address, and dest is a prefix of the packet’s destination
address. Thus, a packet with header (0011, 1100) matches the flow (00∗, 1∗), but
not the flow (00∗, 10∗). Let D denote a table of N flow routing entries. Given
packet header P , it is possible that more than one flow entries of D match P ,
in which case we define the best matching flow, as follows. Suppose two flow
entries, F1 and F2, match P . We say that F1 is a better match than F2 if each
field of P has an equal or longer match with F1 than F2. The best matching
flow of P is the flow that is a better match than any other matching flow in D.
For instance, if we consider a packet header (0011, 1100), and two flow entries
F1 = (001∗, 110∗), and F2 = (00, 1∗). Then, F1 is the best matching flow for
the packet.

In order for the best matching flow to be well-defined, the flow entries must
be consistent , that is, there cannot be two flow entries that partially overlap
in the flow address space. We say that a flow routing table D is consistent if
for any two flow entries Fi and Fj either Fi and Fj are disjoint, or one is a
subset of the other. Because the primary motivation for flow-based routing is
to uniquely classify flows, we will be interested only in consistent flow routing
tables. A related work [1] shows how to transform a set of possibly inconsistent
classifiers into a consistent ones, by adding additional entries.

1.2 Flow Aggregation and Our Contribution

In a consistent flow routing table, each packet header has a unique best matching
flow. We say that two flow tables are equivalent if each possible packet header
receives the same routing action in both tables (using the best matching flow
rule). We can define the flow aggregation problem as follows: Given a flow rout-
ing table D, compute another table D′ that is equivalent to D and has the
smallest possible number of flow entries. As an example, consider a flow table
with the following four entries: 〈(00∗, 10∗), A〉, 〈(00∗, 11∗), A〉, 〈(01∗, 10∗), A〉,
〈(01∗, 11∗), B〉. The smallest equivalent table for this example has two entries:
〈(0∗, 1∗), A〉, 〈(01∗, 11∗), B〉.

Our main result is a fast algorithm for determining the optimal aggregation. If
the input table has N flow entries, and K distinct routing actions, and each field

Optimal Flow Aggregation 465

(source or destination) has at most w bits, then our algorithms runs in worst-
case time O(NKw2); using quadtree style path-compression [12], the worst-case
time can be improved to O(NK), assuming w word size.

A pragmatic question one can ask is this: how are flow entries generated,
and should one expect any significant aggregation to be achieved? Indeed, if
the flow routing entries were manually generated by a network manager, then
one would not expect any significant aggregation by running our algorithm.
Instead, we expect the flow entries to be generated automatically by various
algorithms that are being proposed for dynamic routing and traffic engineering.
These protocols can generate a large number of flow entries, and since the number
of distinct next hops at each router is much smaller (generally, tens or at most a
few hundred in very large backbone routers) than the number of flows, significant
aggregation may be achievable. There are also proposals for using packet traces
at ISP boundaries to build virtual-circuit paths, such as in multi-protocol label
switching (MPLS), which are basically flows routing entries. Like the IP prefix
aggregation in stateless routers, flow aggregation has the benefits of improved
lookup time and reduced memory. (Reducing memory also leads to improvement
in the lookup time, because a smaller data structure may fit entirely in the fast
cache [3].)

1.3 Previous Work

A lot of work has been done in the networking community on congestion con-
trol and end-to-end delay bounds assuming that routers maintain flow informa-
tion [2,8,9,13]. However, we have not seen any algorithmic work on aggregating
flow state.

The one-dimensional version of our algorithm solves the flow aggregation
problem when flows are defined simply by destination-address prefixes. This
turns out to be the prefix table aggregation problem, which was solved indepen-
dently by Daves et al. [7], preceding our work by a few months. The main focus
and result in [7] is prefix compaction, while our main motivation and contribu-
tion is flow aggregation, which is a two-dimensional problem. We do not believe
that the algorithm in [7] generalizes to flow aggregation, and we think our geo-
metric interpretation and resulting dynamic programming are central to solving
the flow problem. The flow aggregation problem is formulated as a geometric
compression problem in Section 2. We describe the one-dimensional version of
our dynamic program in Section 3 primarily to lay the groundwork for the two-
dimensional flow aggregation problem. In Section 4, we present our main result:
the flow aggregation algorithm. In Section 5, we present some extensions and
experimental results. Finally, we conclude in Section 6.

2 Flow Entries as Rectangles

We interpret each flow entry as a geometric rectangle in the two-dimensional
IP address space—the two axes are the source and the destination addresses.

466 S. Suri, T. Sandholm, and P.R. Warkhede

(b)(a)

D
es

t

Src Src

D
es

t

3 4

5

1

2

Fig. 1: (a) An example showing 5 consistent rectangles. The number at the
top-right corner of each rectangle gives its color (action). A point that lies
in both rectangles 1 and 3, receives the color 3, corresponding to the more
specific match. A point lying in rectangle 4 gets the color 4. (b) An example
of two inconsistent rectangles.

Since each address uses w bits, the domain is the integer line [0, 2w − 1] along
each axis. The source and destination fields are network address prefixes, and
each such prefix encodes a contiguous range of addresses. For instance, the prefix
101∗ corresponds to the closed interval [1010 · · · 0, 1011 · · · 1]. The prefix ranges
have the property that either two ranges are disjoint, or one contains the other.
The range of s1 contains the range of s2 precisely when s1 is a prefix of s2. For
instance, the range of 10∗ is a superset of the range of 10110∗, but the ranges
of 1010∗ and 110∗ are disjoint. A packet header has fully specified source and
destination addresses, and thus corresponds to a point in the two-dimensional
space.

A flow (s, d) corresponds to the rectangle whose projections are the ranges
of s and d in their respective dimensions. We denote this rectangle by R(s, d)—
the points of R(s, d) are precisely the packet headers that match the flow (s, d).
To emphasize that we are dealing with special rectangles, we will use the term
prefix rectangle. We say that two prefix rectangles are consistent if they are
either disjoint, or one contains the other. The flow table D is consistent if all its
flow entries are pairwise consistent. Figure 1 shows examples of consistent and
inconsistent rectangles.

Consider a flow routing table D with N flow entries. These flows map to
N prefix rectangles in the two-dimensional space [0, 2w − 1] × [0, 2w − 1]. We
let each distinct action, associated with our flows, to be represented by a color,
where colors are integers numbered from one to K. Thus, we can think of a
flow tuple 〈(s, d), actioni〉 as a prefix rectangle with color i. Since each packet
must be classified into some flow, we assume, without loss of generality, that the
prefix rectangles of D completely cover the two-dimensional space [0, 2w − 1] ×
[0, 2w − 1]. The flow classification induced by D is the mapping from packet
headers (points) to the set of colors. Using the best matching flow rule, each
packet header receives a unique color: the color assigned to a point is the color
of the smallest (most specific) rectangle containing the point. (Refer to Figure 1.)

Optimal Flow Aggregation 467

3

2

3

2

1

3
2

3
1

1

3 2

(i) (ii)

2

Fig. 2: An example of flow aggregation. Fig. (i) shows an input with 8 rectan-
gles, and Fig. (ii) shows an optimal solution using 5 rectangles.

We can now formulate the flow aggregation problem. Given N prefix rectan-
gles with colors in {1, 2, . . . ,K}, determine the smallest set of consistent prefix
rectangles and their colors that induce the same coloring as the input set. Fig-
ure 2 shows an example. We begin by considering the problem in one dimension
to help us develop the main idea for our algorithm.

3 Aggregation in One Dimension

Consider a set of N prefixes D = {s1, s2, . . . , sn}, where each si is a binary
bit string of length at most w, and the ith string is assigned color ci, with
ci ∈ {1, 2, . . . ,K}. Each string si corresponds to a contiguous interval on the
line [0, 2w − 1], which we call the prefix range of si, and denote by R(si).
The set of N prefix ranges partitions the line [0, 2w − 1] into at most 2N − 1
“elementary intervals,” where each elementary interval is the interval between
two consecutive range endpoints. Assign to each elementary interval the color of
the smallest range containing that interval. Under this coloring rule, the prefix
set D is a mapping from the points of the line [0, 2w − 1] to the color set
{1, 2, . . . ,K}. Given a point P , we let D(P) denote the color assigned to P by
the set D. Figure 3 shows an example, where a set of prefixes partition the line
into six elementary intervals. The colors assigned to these intervals, in left to
right order, are 2, 1, 2, 3, 2, 3.

We say that two prefix sets D and D′ are equivalent if they induce the same
coloring on the line [0, 2w − 1]. That is, D(P) = D′(P), for all P ∈ [0, 2w − 1].
The one-dimensional prefix aggregation problem can be formulated as follows:
Given a set of prefixes D, find the smallest prefix set D′ that is equivalent to D.
Figure 3 (ii) shows the optimal solution for the example in (i); the number next
to each prefix range is its color.

Our algorithm uses dynamic programming to compute the optimal set D′.
We divide a prefix range into two halves, and then try to combine their optimal
solutions. One difficulty with this obvious approach is that the combined cost
may depend on the actual subproblem solutions. Consider, for instance, the case
where we have four equal-length elementary intervals colored 1, 2, 3, 1. The left
half subproblem has an optimal solution {1, 2}; the right half subproblem has

468 S. Suri, T. Sandholm, and P.R. Warkhede

2

1 3

2

2

1 332 3

(ii)(i)

Fig. 3: An example of aggregation in one dimension. Fig. (i) shows an input
with 6 prefix ranges, and Fig. (ii) shows an optimal solution using 4 prefix
ranges.

an optimal solution {3, 1}. But adding them together does not give the optimal
solution, which has only three prefixes. With this motivation, let us introduce
the concept of a background prefix .

Consider a prefix s, and its range R(s) ⊆ [0, 2w − 1]. Suppose we just want
to solve the coloring subproblem for the range R(s). We say that a solution G
for R(s) contains a background prefix if s ∈ G; that is, one of the prefix ranges
in G is the whole interval R(s). The background color of G is the color of the
background prefix. Fig. 3 (ii) shows an example that has a background prefix
with color 2, while the set of prefixes in Fig. 3 (i) does not contain a background
prefix. Our dynamic programming algorithm will use the key observation that
it is sufficient to consider solutions in which background colors are well-defined.

Lemma 1. Every solution of the coloring problem for a prefix range R(s) can
be modified into a solution of equal cost with a background prefix.

Proof. Consider a solution without a background prefix. Pick a prefix p in this
solution such that the range R(p) is not contained in any other prefix’s range.
Replace p by s, and give it p’s color.

3.1 The Dynamic Programming Algorithm

We are given a set D = {s1, s2, . . . , sn} of N prefixes, where each si is a binary
bit string of maximum length w, and the ith string is assigned color ci, with
ci ∈ {1, 2, . . . ,K}. Consider the coloring induced by D on the line [0, 2w − 1]:
a point has the color of the smallest prefix range in which it lies. (Note that
fewer the bits in a prefix si, the longer the corresponding range R(si) is. The
null string ∗ corresponds to the whole range [0, 2w − 1], while a full w-bit string
maps to a point.) We start by building a partition of [0, 2w − 1] in which each
piece is monochromatic and each interval has length a binary power. That is, we
recursively divide the line [0, 2w − 1] into two equal halves until each piece is
monochromatic. Because D has N prefixes, and each prefix has at most w bits,
our final subdivision has size at most wN .

Let p1, p2, . . . , pM , where M ≤ wN , denote the prefixes that correspond
to the monochromatic intervals in the final subdivision. We call the R(pi)’s
monochromatic binary intervals. These intervals are the basic subproblems for
our dynamic program’s initialization. Given an arbitrary prefix range R(s) ⊆
[0, 2w − 1], and a color c ∈ {1, 2, . . . ,K}, let us define

Optimal Flow Aggregation 469

cost(s, c) = value of an optimal solution for the range R(s) with back-
ground color c.

We initialize this cost function for the monochromatic binary intervals R(pi),
as follows. Let c0(pi) be the color of the interval R(pi)—that is, c0(pi) is the color
induced on R(pi) by the input prefix set D. Then, for i = 1, 2, . . . ,M , we let
cost(pi, c) = 1 if c = c0(pi), and cost(pi, c) = ∞ otherwise. The following lemma
gives the general formula for this cost function. Given a prefix s, we use s0 and
s1 to denote strings obtained by appending to s a 0 and a 1, respectively.

Lemma 2. Let s be an arbitrary prefix. Then, for ci = 1, 2, . . . ,K,

cost(s, ci) = min

cost(s0, ci) + cost(s1, ci) − 1
cost(s0, ci) + cost(s1, cj) ci 6= cj
cost(s0, cj) + cost(s1, ci) ci 6= cj
cost(s0, cj) + cost(s1, cl) + 1 ci 6= cj , cl

Proof. Omitted from this extended abstract for lack of space.

If the input D has N prefixes, the number of colors is K, and the prefixes are
w bits long, then the dynamic program based on Lemma 2 takes O(NKw) time
and space. When we implemented our algorithm, we found that the worst-case
memory requirement for this algorithm was infeasibly large to be of practical
value. For instance, for the practical values of interest N = 50, 000, w = 32, and
K = 256, the dynamic program needs to construct a table of size 4 × 108. Even
assuming that each entry takes just 1 word of memory, the worst-case memory
requirement for this algorithm is 3200 MB of memory! This motivated us to look
for an improved algorithm, which we describe in the next section. Not only does
the new algorithm require significantly less memory in practice, but it is also
simpler and faster.

3.2 An Improved Dynamic Program

Intuitively, maintaining K distinct solutions, one for each background color, for
every subproblem seems like an overkill. (If we were only interested in the value
of the solution then, we could of course choose not to store the intermediate
solutions. However, they are needed for constructing the optimal prefix set.) But
as we saw earlier, keeping just one optimal solution does not work. However, we
show below that storing just the background colors that give the smallest cost
for each subproblem suffices. Let s be an arbitrary prefix, and let L(s) be the
list of background colors that give the minimum cost solutions for R(s). That is,

L(s) = {ci | cost(s, ci) ≤ cost(s, cj), 1 ≤ i, j ≤ k}
Again, we initialize these lists for the monochromatic binary intervals by

setting L(p) = {c0(p)}. The following lemma shows how to compute these lists
in a bottom-up merge. (Recall that s0 and s1 are prefixes obtained by appending
0 and 1 to the prefix s.)

470 S. Suri, T. Sandholm, and P.R. Warkhede

Lemma 3. Suppose s is an arbitrary prefix. Then,

L(s) =
{L(s0)

⋂ L(s1) if L(s0)
⋂ L(s1) 6= ∅

L(s0)
⋃ L(s1) otherwise.

Proof. We first consider the case L(s0) ∩ L(s1) 6= ∅. Since all colors in the
intersection set L(s0) ∩ L(s1) are equivalent, it would suffice to show that
cost(s, ci) < cost(s, c̄) whenever ci ∈ L(s0) ∩ L(s1) and c̄ 6∈ L(s0) ∩ L(s1).
It is easy to see that

cost(s, ci) = cost(s0, ci) + cost(s1, ci) − 1.

(That is, the minimum is achieved by the first term in the expression of Lemma 2.)
Assume, without loss of generality, that c̄ 6∈ L(s0). Then we must have cost(s0, c̄)
≥ 1 + cost(s0, ci), and cost(s1, c̄) ≥ cost(s1, ci); if c̄ 6∈ L(s1), the second in-
equality is strict. Now, it is easy to check that

cost(s, c̄) = min
{

cost(s0, c̄) + cost(s1, c̄) − 1
cost(s0, ci) + cost(s1, c̄)

Since cost(s0, c̄) ≥ 1 + cost(s0, ci), and cost(s1, c̄) ≥ cost(s1, ci), it follows
that cost(s, c̄) ≥ cost(s0, ci) + cost(s1, ci) > cost(s, ci), which proves the claim.

Next, consider the case L(s0)∩L(s1) = ∅. In this case we show that cost(s, ci)
< cost(s, c̄) whenever ci ∈ L(s0) ∪ L(s1) and c̄ 6∈ L(s0) ∪ L(s1). Let us assume
that ci ∈ L(s0), and thus ci 6∈ L(s1). Then,

cost(s, ci) = cost(s0, ci) + cost(s1, cj),

for any cj ∈ L(s1). Now, since c̄ 6∈ L(s0) ∪ L(s1), we have cost(s0, c̄) ≥ 1 +
cost(s0, ci), and cost(s1, c̄) ≥ 1 + cost(s1, cj). Since

cost(s, c̄) = min

cost(s0, c̄) + cost(s1, c̄) − 1
cost(s0, c̄) + cost(s1, cj)
cost(s0, ci) + cost(s1, c̄),

it follows that cost(s, c̄) ≥ 1 + cost(s0, ci) + cost(s1, cj) > cost(s, ci), which
completes the proof.

Lemma 3 gives a straightforward dynamic programming algorithm. Starting
from the initial color lists of the monochromatic binary intervals, the algorithm
computes the lists for increasing longer prefix ranges. When computing the list
for prefix s, we set L(s) = L(s0) ∩ L(s1) if L(s0) ∩ L(s1) 6= ∅; otherwise
L(s) = L(s0)∪L(s1). Once all the lists have been computed, we can determine
an optimal color assignment by a top-down traversal. (Details are presented in
the full paper.)

The worst-case complexity of the preceding algorithm is O(NKw), since
there are O(Nw) subproblems, and the size of a color list is at most K. Thus,

Optimal Flow Aggregation 471

from a worst-case point of view, the dynamic program based on Lemma 3 is not
much better than that of Lemma 2. However, in practice we found that the list
sizes were much smaller than the total number of colors, and thus the memory
requirement was substantially improved. We next describe our main result: the
dynamic programming algorithm for the flow aggregation.

4 Optimal Flow Aggregation

Consider a set D of N consistent flows. Each flow (s, d) corresponds to a rectangle
R(s, d) in the two-dimensional space [0, 2w −1]× [0, 2w −1]. The color of R(s, d)
is the color (action) associated with flow (s, d). Using the best matching flow rule,
the set D gives a mapping from the set of points [0, 2w − 1] × [0, 2w − 1] to the
set of colors. Let D(P) denote the color assigned to point P by D. Geometrically,
D(P) is the color of the smallest rectangle containing P . Our goal is to find the
smallest set of consistent flows D′ that realizes the same coloring map as D;
that is, D(P) = D′(P) for all points P . Our algorithm generalizes the dynamic
program of the preceding section.

We start with the observation that any solution can be modified to contain
a background flow. The background flow for a prefix rectangle R(s, d) is the flow
(s, d). We say that a solution G for the rectangle R(s, d) contains the background
flow if (s, d) ∈ G. The background color of G is the color assigned to the flow
(s, d). Fig. 2 (ii) shows an example that has a background flow of color 1; the set
of flows in Fig. 2 (i) does not contain a background flow. The following generalizes
the background prefix lemma; we omit its easy proof in this abstract.

Lemma 4. Every solution of the coloring problem for a prefix rectangle R(s, d)
can be modified into a solution of equal cost with a background flow.

Given a prefix rectangle R(s, d), and a color c ∈ {1, 2, . . . ,K}, define

cost(s, d, c) = value of an optimal solution for rectangle R(s, d) with
background color c.

The following lemma gives the general formula for this cost function. (Recall
that we use the notation x0 (resp. x1) to denote the bit string x with 0 (resp.
1) appended.)

Lemma 5. Given a prefix rectangle R(s, d), and a color ci ∈ {1, 2, . . . ,K}, we
have

cost(s, d, ci) = min

cost(s0, d, ci) + cost(s1, d, ci) − 1
cost(s0, d, ci) + cost(s1, d, cj) cj 6= ci
cost(s0, d, cj) + cost(s1, d, ci) cj 6= ci
cost(s, d0, ci) + cost(s, d1, ci) − 1
cost(s, d0, ci) + cost(s, d1, cj) cj 6= ci
cost(s, d0, cj) + cost(s, d1, ci) cj 6= ci

472 S. Suri, T. Sandholm, and P.R. Warkhede

s0

s

d

d1

d0

s1

F

G

Fig. 4: F spans R(s, d) along the s-axis; G spans it along the d-axis.

Proof. Omitted due to lack of space.

The key insight in the preceding dynamic program is the following geometric
fact: since we are computing consistent rectangles, an optimal solution cannot
have two prefix rectangles that cross each other. Thus, an optimal solution for
R(s, d) with background color c must be composed of either the optimal solutions
of the left and right half subproblems, or the top and bottom half subproblems.
More specifically, let us introduce the following definition.

We say that a prefix rectangle R′ = (s′, d′) spans R(s, d) along the s-axis
(resp. d-axis) if s = s′ and d is a prefix of d′ (resp. d = d′ and s is a prefix of s′).
Figure 4 illustrates this definition. Consistency implies that an optimal solution
of R(s, d), with any background color, cannot have rectangles spanning R(s, d)
along both axes. Absence of a rectangle spanning along s-axis (resp. d-axis)
allows combining left and right (resp. top and bottom) subproblem solutions.

4.1 An Improved Algorithm

As in the one-dimensional case, the dynamic program can be improved in practice
(though not in the worst case) by maintaining the list of only those background
colors that give optimal solutions. Let L(s, d) denote the list of colors that achieve
minimum cost for the coloring subproblem R(s, d). That is,

L(s, d) = {ci | cost(s, d, ci) ≤ cost(s, d, cj), 1 ≤ ci, cj ≤ K}
We use the notation cost(s, d) to denote the minimum cost of R(s, d) over all
colors; that is, cost(s, d) = mini cost(s, d, ci). In the following, we use the term
“input rectangle” to mean the prefix rectangle corresponding to a flow in the
input set D.

Flow-Aggregate (s, d)

1. If no input rectangle of D lies entirely inside R(s, d), then all points mapped
to the region R(s, d) receive the same color c. In this case, we set L(s, d) =
{c}, cost(s, d) = 1, and return.

Optimal Flow Aggregation 473

2. If no input rectangle of D spans R(s, d) along the s-axis, then do the follow-
ing:
if L(s0, d) ∩ L(s1, d) 6= ∅ then

costv(s, d) = cost(s0, d)+cost(s1, d)−1; Lv(s, d) = L(s0, d)∩L(s1, d)
else costv(s, d) = cost(s0, d) + cost(s1, d); Lv(s, d) = L(s0, d) ∪ L(s1, d)
Otherwise, set costv(s, d) = ∞.

3. If no input rectangle of D spans R(s, d) along the d-axis, then do the follow-
ing:
if L(s, d0) ∩ L(s, d1) 6= ∅ then

costh(s, d) = cost(s, d0)+cost(s, d1)−1; Lh(s, d) = L(s, d0)∩L(s, d1)
else costh(s, d) = cost(s, d0) + cost(s, d1); Lh(s, d) = L(s, d0) ∪ L(s, d1)
Otherwise, set costh(s, d) = ∞.

4. if costv(s, d) > costh(s, d) then
cost(s, d) = costh(s, d); L(s, d) = Lh(s, d)

else if costv(s, d) < costh(s, d) then
cost(s, d) = costv(s, d); L(s, d) = Lv(s, d)

else cost(s, d) = costv(s, d); L(s, d) = Lh(s, d) ∪ Lv(s, d)

The code above describes a generic call on an arbitrary prefix rectangle
R(s, d). The initial call is made on the subspace R(∗, ∗), corresponding to the
rectangle [0, 2w − 1] × [0, 2w − 1]. In the code, costh, costv,Lh and Lv are tem-
porary variables used for comparing the solutions obtained by either combining
the left and right halves of R(s, d), or the top and bottom halves. Due to lack
of space, we omit the proof of correctness of this algorithm.

In order to analyze the running time of this dynamic program, we observe
that a subproblem R(s, d) makes a recursive call only if R(s, d) contains at
least one input rectangle of D inside it. We can show that the total number of
subproblems is O(Nw), the cost of deciding if a rectangular region is spanned
by some filter is O(w), and the cost of maintaining color lists per subproblem is
O(K). Thus, the total time and space complexity of the algorithm is O(NKw2)
in the worst case.

Theorem 1. Given a set of N consistent flows, with K distinct colors and at
most w-bit prefixes, we can compute an optimal flow aggregation in O(NKw2)
worst case time.

5 Extensions and Experimental Results

5.1 Improving Time Complexity by Path Compression

The dynamic programs of Sections 3 and 4 can be improved to eliminate the
w factors, thus resulting in the worst-case running time and space O(NK).
The w factors arise due to long non-branching paths in the recursion tree. A
standard quadtree style path compression can eliminate such paths, by shrinking
the rectangle R(s, d) in each step to ensure that each recursive call separates two
input rectangles.

474 S. Suri, T. Sandholm, and P.R. Warkhede

Table 1: One dimensional prefix aggregation. When multiple next hops were
available for a prefix, we initialized the corresponding color list with all those
next hops. The input and output are the number of prefixes.

Database Input Output Reduction Memory Time
Mae-East 41455 23680 42.88% 3.8 MB 2.73 s
PacBell 24728 14168 42.70% 2.1 MB 1.85 s
Paix 7982 5888 26.23% 0.8 MB 0.72 s

Minimizing the Bit Complexity We have used the number of flows as our
complexity measure. Instead one could ask to minimize the total bit complex-
ity of the flow routing table. Algorithms that use tries or bit vectors for flow
classification [3,8,10,14] are sensitive to the total number of bits in the routing
database. Given a flow f = (s, d), let b(f) denote the bit length of s plus the bit
length of d. Then, the bit complexity of a flow routing table D = {f1, f2, . . . , fn}
is

∑n
i=1 b(fi). We could ask for a routing table of minimum bit complexity that

is equivalent to D. It turns out that our dynamic programs also minimizes the
bit complexity of the output table.

5.2 Experimental Results

We implemented our dynamic programming algorithms, for both one- and two-
dimensional aggregation. We do not have any publically available flow databases
to test our two-dimensional algorithm, since the stateful routers are still in their
infancy. On the other hand, prefix tables are widely available for large backbone
routers, so we were able to test our one-dimensional aggregation algorithm. We
ran our algorithm on three publically available routing tables, obtained from
the Mae-East Exchange Point [11]. The number of prefixes in these databases
varied from about 8000 (Paix) to about 41000 (Mae-East). The total number
of colors (distinct next hops) varied from 17 to 58. Table 1 below shows our
results. While one-dimensional results are no indication of the two dimensional
problem, it should be encouraging that our prefix aggregation algorithm achieves
compression of 30-40% even in these highly aggregated prefix tables. It therefore
appears likely that significant aggregation might be possible in the flow routing
tables, which are going to be automatically generated.

6 Concluding Remarks

We gave an efficient algorithm for computing an optimal flow aggregation for
reducing state information in IP routers. The algorithm is relatively simple,
and exploits some basic geometric properties of consistent prefix rectangles in
two dimensions. The basic dynamic progrmming algorithm runs in O(NKw2)
worst-case time, for N flows with K colors and w bit prefixes. While the im-
proved dynamic program does not reduce the worst-case complexity, it should

Optimal Flow Aggregation 475

be substantially better in practice. With path compression in the recursion tree,
the worst-case time can be reduced to O(NK).

The IP routers certainly need to move beyond the current best-effort service
model, if they are to be used for advanced services like audio, video, or IP
telephony. The past history has shown that highly stateful solutions like ATM
(asynchronous transfer mode) have failed to be widely adopted despite their
many ability to provide quality of service. Achieving similar capabilities in IP
routers with minimal per-flow state appears to be the most promising alternative.
Our hope is that algorithms like ours for flow aggregation will make stateful
routers more scalable, and thus more acceptable.

References

1. H. Adiseshu, S. Suri, and G. Parulkar. Detecting and resolving packet filter con-
flicts. In Proc. of IEEE INFOCOM, 2000.

2. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation
protocol (RSVP)–Version 1, functional specification. RFC 2205, September 1997.

3. A. Brodnik, S. Carlsson, M. Degermark, and S. Pink. Small forwarding table for
fast routing lookups. In Proc. of ACM SIGCOMM, 1997.

4. D.B. Chapman and E.D. Zwicky. Building Internet Firewalls. O-Reilly & Asso-
ciates, Inc., 1995.

5. W. Cheswick and S. Bellovin. Firewalls and Internet Security. Addison-Wesley,
1995.

6. G. Cheung and S. McCanne. Optimal routing table design for IP address lookups
under memory constraints. In Proc. of IEEE INFOCOM, 1999.

7. R. Daves, C. King, S. Venkatachary, and B. Zill. Constructing optimal IP routing
tables. In Proc. of IEEE INFOCOM, 1999.

8. D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A software
architecture for next generation routers. In Proc. of ACM SIGCOMM, 1998.

9. A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. Journal of Internetworking Research and Experience, pages 3–26, 1990.

10. T.V. Lakshman and D. Stidialis. High speed policy-based packet forwarding using
efficient multi-dimensional range matching. In Proc. of ACM SIGCOMM, 1998.

11. Inc. Merit. Routing table snapshot, 14 Jan ’99, Mae-East NAP.
ftp://ftp.merit.edu/statistics/ipma.

12. J. Mitchell, D. Mount, and S. Suri. Query-sensitive ray shooting. Int. Journal of
Computational Geometry & Applications, pages 317–347, 1997.

13. S. Shenker, R. Braden, and D. Clark. Integrated services in the Internet architech-
ture: an overview. RFC 1633, June 1994.

14. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast scalable level four
switching. In Proc. of ACM SIGCOMM, 1998.

15. M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed IP
routing lookups. In Proc. of ACM SIGCOMM, 1997.

On the Complexities of the Optimal Rounding
Problems of Sequences and Matrices

Tetsuo Asano1, Tomomi Matsui2, and Takeshi Tokuyama3

1 School of Information Science, Japan Advanced Institute of Science and
Technology, t-asano@jaist.ac.jp

2 Department of Information Engineering, University of Tokyo,
tomomi@misojiro.t.u-tokyo.ac.jp

3 Graduate School of Information Sciences, Tohoku University,
tokuyama@dais.is.tohoku.ac.jp

Abstract. In this paper, we discuss the problem of computing an opti-
mal rounding of a real sequence (resp. matrix) into an integral sequence
(resp. matrix). Our criterion of the optimality is to minimize the weighted
l∞ distance DistF,w

∞ (A, B) between an input sequence (resp. matrix) A
and the output B. The distance is dependent on a family F of inter-
vals (resp. rectangular regions) for the sequence rounding (resp. matrix
rounding) and positive valued weight function w on the family. We give
efficient polynomial time algorithms for the sequence-rounding problem,
one for the weighted l∞ distance, and the other for any weight function w,
for any family F of intervals. We give an algorithm that computes a ma-
trix rounding with an error at most 1.75 with respect to the unweighted
l∞ distance associated with the family W2 of all 2 × 2 square regions,
whereas we prove that it is NP-hard to compute an approximate solution
to the matrix-rounding problem with an approximate ratio smaller than
2 for the same distance.

1 Introduction

Given a real number α, its rounding is either bαc or dαe. Given a d-dimensional
n × n × · · · × n array (nd array) A = (ai1,i2,...,id

)1≤ij≤n of real numbers, its
rounding is an integral nd array B = (bi1,i2,...,id

)1≤ij≤n such that each entry
bi1,i2,...,id

is a rounding of ai1,i2,...,id
. Without loss of generality, we assume that

each entry of A is in the closed interval [0, 1]. Such an array is called a [0, 1]-
valued nd array. Thus, a rounding of A becomes a binary array.

Given an array A, there are 2nd

possible roundings, among which a “good-
quality” rounding is desired. In order to give a criterion to evaluate the quality
of a rounding, we define a distance in the space A of all [0, 1]-valued nd arrays.
An orthogonal region R in the d-dimensional integral grid [1, n]d is a Cartesian
product I1×I2×· · ·×Id of integral subintervals Ij of [1, n] for j = 1, 2, . . . , d. For
an element A ∈ A, let A(R) be the sum of entries of A located in the orthogonal
region R. Given a family F of orthogonal regions, the associated lp distance

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 476–489, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Optimal Rounding Problems of Sequences and Matrices 477

DistFp (A, A′) between two elements A and A′ in A is defined by

DistFp (A, A′) = [
∑

R∈F
|A(R) − A′(R)|p]1/p.

The l∞ distance with respect to F is defined by

DistF∞(A, A′) = lim
p→∞ DistFp (A, A′) = max

R∈F
|A(R) − A′(R)|.

More generally, we could consider a positive valued function w on F and define
the weighted l∞ distance

DistF,w
∞ (A, A′) = max

R∈F
|(A(R) − A′(R))w(R)|.

Let B be the set of all binary arrays in A. Given a [0, 1]−valued nd array
A, an optimal rounding of A is a binary nd array B in B that is closest to
A in the sense of the above-defined distance. The distance between A and its
optimal rounding is referred to as the optimal rounding error. In this paper, we
are mainly concerned with the weighted and unweighted l∞ distances.

The supremum supA∈A minB∈B DistF∞(A, B) of the optimal rounding error
is called the inhomogeneous discrepancy of A with respect to the family F or
with respect to the distance DistF∞. (See Beck and Sös [10]). We deal with the
following problems:

Problem 1 (Discrepancy problem). Give combinatorial upper and lower
bounds of the inhomogeneous discrepancy of A with respect to DistF∞.

Problem 2 (Optimization problem). How computationally hard is the
problem of computing an optimal rounding of a [0, 1]-valued nd array?

The discrepancy problem is a classical topic in combinatorics, and our main
focus is on the optimization problem. In particular, we consider two special cases
where d = 1 and d = 2, which are called the sequence-rounding problem and the
matrix-rounding problem, respectively. These problems are not only combinato-
rially interesting but also related to coding theory, data compression, computer
vision, operations research, and Monte Carlo simulation.

For the sequence-rounding problem, the inhomogeneous discrepancy with re-
spect to DistF∞ is at most 1 for any family F of intervals. On the other hand, it
can be 1 even if we consider the family of all intervals of length 2. Therefore, the
discrepancy problem is easily settled for the sequence-rounding. On the other
hand, to the authors’ knowledge, the optimization problem has not been ad-
dressed well in the literature. Viterbi [21] considered the l1 distance with respect
to the family of all intervals of length k in application to a decoding problem,
and proposed an O(2kn) time algorithm. Although a similar algorithm could be
applied to the l∞ distance, the time complexity would be exponential in general.
We show in this paper that an optimal rounding of any sequence with respect to
any weighted l∞ distance can be computed in O(

√
n|F| log2 n) time. The time

478 T. Asano, T. Matsui, and T. Tokuyama

complexity is polynomial since |F| = O(n2). We also give an O(k2n log n) time
algorithm if the maximal length of the intervals of F is k.

For the matrix-rounding problem, the inhomogeneous discrepancy with re-
spect to DistF∞ highly depends on the choice of the family F of regions: If F
is the set of all orthogonal regions, an O(log3 n) upper bound and an Ω(log n)
lower bound are known [10]. On the other hand, Baranyai [7] showed that the
inhomogeneous discrepancy is less than 1 if F consists of 2n + 1 regions cor-
responding to all rows, all columns and the whole matrix (see [2,8,10] for its
applications). Moreover, it is known that the inhomogeneous discrepancy is less
than 2 for a set F consisting of intervals in any two different scanning orderings
on the entries of the matrix [10].

In this paper, motivated from an application to digital halftoning, we would
like to consider the family Wk consisting of all k × k square regions for a
small k. An O(log3 k) upper bound and an Ω(log k) lower bound of the in-
homogeneous discrepancy can be easily obtained from the above mentioned
known results. Our main results for the matrix-rounding are on the family
W2. We give a nontrivial 1.75 upper bound for the inhomogeneous discrep-
ancy supA∈A minB∈B DistW2∞ (A, B), whereas we prove that it is NP-hard to
approximate the rounding error with respect to DistW2∞ within the factor 2. The
NP-hardness result is generalized for W2k for any natural number k.

Our motivation comes from digital halftoning, which is one of the most fun-
damental techniques in image processing. An intensity image can be considered
as a [0, 1]-valued n×n array A where each entry ai,j corresponds to a brightness
level (gray level) of the (i, j) pixel of the pixel grid. Its digital halftoning is a
binary n × n array B “approximating” A. The intention of this method is to
convert a given image which consists of several bits for brightness levels into
a binary image having only black and white pixels. This kind of technique is
indispensable to print an image on an output device that produces black dots
only, such as facsimiles and laser printers.

Up to now, a large number of algorithms for digital halftoning have been
proposed (see, e.g., [16,13,6,17,18]). A comprehensive summary of the results
obtained in the literature can be found in the Ph. D. Thesis by Ulichney [20].
However, there have been few studies discussing reasonable criteria for evalu-
ating the quality of an output image; maybe because the problem itself is very
practically oriented. Actually, the most common criterion on digital halftoning is
to judge the quality of output pictures by human eyes. It is desirable to establish
a good evaluation system of halftoning methods (instead of the “human eye’s
judgment”), and to handle the digital halftoning problem fully mathematically.
The idea of using discrepancy for measuring the smoothness of halftoning has
been given [10,19]; however, to the authors’ knowledge, the discrepancy with
respect to families of small regions and its computational aspect has not been
well studied before.

Imagine that we look at some pixel (i, j) of a gray-level image A. What
happens is, we actually perceive an average of gray levels of some small neigh-
borhood of that point. Using the same observation, the intensity around the

Optimal Rounding Problems of Sequences and Matrices 479

pixel (i, j) of a binary image is proportional to the number of white points in
the corresponding neighborhood. Therefore, density values should be roughly
equal around any pixel between an output binary image and the input image A.
The observation motivates us to consider the family Wk for a small k. Indeed,
a weighted l∞ distance for the family ∪k

i=1Wi seems to be a nice criterion for
the digital halftoning problem. If an optimal rounding with respect to the above
mentioned distance were computed in polynomial time, we could have designed
an ideal automatic digital halftoning system with a concrete mathematical cri-
terion. Unfortunately, our NP-hardness result implies that we need heuristics to
solve the digital halftoning problem formulated as a matrix-rounding problem.
One popular heuristic approach is to transform the digital halftoning problem
into a one-dimensional problem by using a space-filling curve generated in some-
what random manner [4], where we can apply our sequence-rounding algorithm
to solve the one-dimensional problem.

2 Sequence-Rounding Problem

2.1 Supremum of the Optimal Rounding Error

Let a = (a1, a2, . . . , an) be our input sequence such that 0 ≤ aj ≤ 1 for all
j ∈ {1, 2, . . . , n}.

A popular algorithm used in digital halftoning to round such a sequence a
is the error diffusion algorithm, which computes the binary sequence b from b1
to bn greedily in an incremental fashion. We always keep the difference Sj =∑j

i=1(ai − bi). If we have already computed b1 through bj , we determine bj+1
to be 1 if Sj + aj+1 > 0.5 and to be 0 otherwise. It can be easily seen that
−0.5 < Sj ≤ 0.5 always holds, and hence for any interval I = [s, t], |∑i∈I(ai −
bi)| = |St − Ss−1| < 1. Therefore, the supremum of the optimal rounding error
DistI∞(a, b) is at most 1 for any family I of intervals. On the other hand, there
is an example that the supremum becomes 1 even if each interval has length 2.

Proposition 1. If we consider the family I of all intervals of length 2, there
exists an input sequence a for which there is no binary sequence b attaining
DistI∞(a, b) < 1 − 1/(n − 1).

The proof is given in Appendix 1.

2.2 Finding an Optimal Rounding — Known Results

The error diffusion algorithm computes an optimal rounding of a with respect
to DistI∞ if I = {[1, i] : i = 1, 2, . . . , n}. However, it does not always find an
optimal rounding for a general l∞ distance. Moreover, we would like to deal with
weighted l∞ distances. If I consists of all intervals of length k for a constant k,
it is relatively easy to design a linear time algorithm with respect to n by using
Viterbi’s algorithm [21] based on dynamic programming (in precise, O(2kn) time
using O(2kn) space) to compute an optimal rounding of a. The space complexity

480 T. Asano, T. Matsui, and T. Tokuyama

can be reduced to O(2k
√

n+n) while keeping the time complexity [5] and it can
be further reduced to O(2k+n) if we spend O(2kn log n) time (a similar technique
is found in [3]). However, it is nontrivial to design an efficient algorithm which
is polynomial both in n and k.

2.3 Polynomial Time Algorithms

In this subsection, we give a polynomial time algorithm for computing an optimal
rounding of a sequence a with respect to the weighted l∞ distance DistI,w

∞ for a
general set I of intervals and any weight function w on I. Without loss of gener-
ality, we can assume that all entries of a are in the open interval (0, 1), since we
can ignore integral entries to solve the problem. Since we consider the weighted
l∞ distance, an optimal rounding of a is a binary sequence b = (b1, b2, . . . , bn)
which is the solution to the following integer programming problem, where z
corresponds to the optimal distance between a and b:

minimize z

subject to −z ≤ w(I)
∑

j∈I(aj − bj) ≤ z (∀I ∈ I), (1)
bj ∈ {0, 1} (∀j ∈ {1, 2, . . . , n}).

Recall that the weight function is always positive, i.e. w(I) > 0 for any I ∈ I.
Since the variables b1, . . . , bn are all 0-1 valued, we can replace the inequality
constraints (1) by

min{bw(I)−1z+
∑

j∈I ajc, n}≥∑j∈I bj≥max{d−w(I)−1z+
∑

j∈I aje, 0}(∀I ∈ I).

We introduce the variables x0, . . . , xn satisfying xi − x0 = b1 + · · · + bi for
i ∈ {1, 2, . . . , n}. For each interval I, the indices of its first entry and last entry
are denoted by s(I)+1 and t(I); In other words, I = [s(I)+1, t(I)] = (s(I), t(I)].

Then the above problem is transformed into the following problem

minimize z

subject to xt(I) − xs(I) ≤ min{bw(I)−1z +
∑

j∈I ajc, n} (∀I ∈ I), (2)

xs(I) − xt(I) ≤ − max{d−w(I)−1z +
∑

j∈I aje, 0} (∀I ∈ I), (3)
xj − xj−1 ≤ 1 (∀j ∈ {1, 2, . . . , n}), (4)
xj−1 − xj ≤ 0 (∀j ∈ {1, 2, . . . , n}), (5)
xj is an integer (∀j ∈ {0, 1, 2, . . . , n}).

For the time being, we are concentrated on the decision problem: checking
the existence of a vector (x0, x1, . . . , xn) satisfying the above constraints when
z is fixed. It is discussed later how to find the optimal value of z.

From the above integer programming formulation, The decision problem is
an integer programming on a system of difference constraints, and it is well-
known that the problem is transformed to that of detecting a negative cycle in a

Optimal Rounding Problems of Sequences and Matrices 481

graph [11]. In order to make the paper self-contained, we give the construction
of the graph:

Let H = (N, E) be a directed graph with a vertex set N = {0, 1, 2, . . . , n}
and an arc set E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(s(I), t(I)) : I ∈ I},
E2 = {(t(I), s(I)) : I ∈ I},
E3 = {(0, 1), (1, 2), . . . , (n − 1, n)},

E4 = {(1, 0), (2, 1), . . . , (n, n − 1)}.

The arc weight wij of an arc (i, j) ∈ E is defined by

wi,j =

min{bw(I)−1z +
∑

j∈I ajc, n} (for (i, j) = (s(I), t(I)) ∈ E1),
− max{d−w(I)−1z +

∑
j∈I aje, 0} (if (i, j) = (t(I), s(I)) ∈ E2),

1 (if (i, j) ∈ E3),
0 (if (i, j) ∈ E4),

where the variable z is fixed. The arc sets E1, E2, E3, E4 correspond to the
constraints (2), (3), (4), (5), respectively. Note that the graph has O(n + |I|)
arcs.

A negative cycle is an elementary directed cycle C satisfying that the total
sum of the arc weights in C is negative. The detection of a negative cycle in H can
be done in O(n0.5m log(nΓ)) time by using Gabow-Tarjan’s scaling algorithm for
assignment problem [14], where m is the number of edges and Γ is the maximum
weight. By definition, m = O(n + |I|) and log(nΓ) = O(log n) in our graph.

If there exists a negative cycle in H, then the inequality system (2), (3), (4),
(5) is infeasible. On the other hand, if the graph contains no negative cycle,
shortest path length x∗

i from the vertex i to n is well-defined and integer valued,
and the vector (x∗

i) i = 1, 2, . . . , n satisfies the inequalities (2), (3), (4), and (5).
The radix heap implementation of Dijkstra’s algorithm [1] finds the path lengths
in O(m + n log(nΓ)) = O(|I| + n log n) time.

Now, we discuss the method to find the optimal value of z (i.e., smallest z
causing no negative cycle). We employ the ordinary binary search technique.
Each edge weight is represented by a step function with respect to z. Thus,
we only need to consider the break points of the step functions. If we define
q(h, I) = w(I)(h + 0.5 +

∑
j∈I aj) for an interval I and an integer u, the set

Q = {q(h, I)|I ∈ I,−n ≤ h ≤ n} contains all the break points. By applying
binary search technique (with some care), we can find the optimal value of z by
executing the above negative cycle detecting algorithm O(log n|I|) = O(log n)
times with additional O((n + |I|) log n) time for each search process. Thus we
can find the optimal value of z in O(n0.5(n + |I|) log2 n) time in total. Hence,
we have the following theorem:

Theorem 1. An optimal rounding of a sequence with respect to the distance
DistI,w

∞ can be computed in O(n0.5(n + |I|) log2 n) time. The space requirement
is O(n + |I|).

482 T. Asano, T. Matsui, and T. Tokuyama

We can design a better algorithm if each interval is short.

Theorem 2. An optimal rounding of a sequence can be computed in O(k2n log n)
time using O(n + k2 + |I|) space if the family I is a set consisting of intervals
of length at most k.

Proof. First, we give an O(k2n) time algorithm for checking the existence of neg-
ative cycles of H. For each index p ∈ {0, 1, 2, . . . , n}, the subgraph of H induced
by the vertices {0, 1, . . . , p} is denoted by Hp. It is clear that Hp is strongly
connected. For each triplet of vertices (i, j, p) satisfying i, j ∈ {p − k, . . . , p} and
k ≤ p, d(i, j, p) denotes the shortest path length from i to j in the graph Hp

when Hp does not contain any negative cycle. We first find a negative cycle in
Hk, if it exists. If the graph Hk does not contain any negative cycle, we calcu-
late the values {d(i, j, k) | i, j ∈ {0, . . . , k}} by using an all-pairs shortest path
algorithm. Gabow-Tarjan’s algorithm for assignment problems solves the nega-
tive cycle detection problem in O(k0.5k2 log n) = O(k2n) time. If we transform
arc weights by using an optimal dual solution to the assignment problem ob-
tained by Gabow-Tarjan’s algorithm, we only need to solve an all-pairs shortest
path problem defined on a network with non-negative arc weights. By applying
the radix heap implementation of Dijkstra’s algorithm k times, the computa-
tional requirement is bounded by O(k(k + |I| + k log n)) = O(k2n) time, since
|I| = O(nk).

Suppose that Hp has no negative cycle, and we have already computed
{d(i, j, m) | i, j ∈ {0, . . . , m}} for all m ≤ p. If the graph Hp+1 has no negative
cycle. Then we can calculate the values {d(i, j, p+1) | i, j ∈ {p−k+1, . . . , p+1}}
from the values {d(i, j, p) | i, j ∈ {p − k, . . . , p}} easily. It is because, a shortest
path P from i to j in Hp+1 satisfies one of the following two conditions; (1) P
is contained in Hp, or (2) P is partitioned into a sequence of three subpaths
(P1, P2, P3) such that P1 and P3 are contained in Hp and P2 is a path con-
sisting of two arcs a1 and a2 where a1 and a2 shares the vertex p + 1. Since
both the in-degree and out-degree of each vertex are bounded by O(k), we can
calculate the values {d(i, j, p + 1) | i, j ∈ {p − k + 1, . . . , p + 1}} using the val-
ues {d(i, j, p) | i, j ∈ {p − k, . . . , p}} in O(k2) time if we maintain the values
{d(i, j, p) |, j ∈ {p − k, . . . , p}} by an (k + 1) × (k + 1) array.

On the other hand, if Hp+1 has a negative cycle C∗, C∗ must contain the
vertex p+1. Since we have the shortest path length in Hp between each (ordered)
pair of vertices in {p − k, p − k + 1, . . . , p} and each vertex adjacent to p + 1 in
Hp+1 must be in {p−k, p−k+1, . . . , p}, we can check the existence of a negative
cycle easily. Since the degree of each vertex is bounded by a constant, we can
check the existence of a negative cycle in constant time. The above observations
imply that we can check the existence of a negative cycle of H in O(k2n) time.

When the variable z is fixed and the graph H does not have any negative
cycle, we can find the shortest path lengths x∗

i for i = 1, 2, . . . , n − 1 in O(k2n)
time by using a similar argument. Replacing the O(n0.5(n + |I|) log n) time
algorithm for negative cycle detection with the above algorithm leads to an
O(k2n log n) time algorithm.

Optimal Rounding Problems of Sequences and Matrices 483

3 Matrix-Rounding Problem

3.1 Discrepancy Problem

The following theorem is well known [10]:

Theorem 3. The inhomogeneous discrepancy of a [0, 1]-valued n × n matrix
with respect to the family of all rectangular regions is O(log3 n) and Ω(log n).
The same bounds hold for the inhomogeneous discrepancy for the family of all
rectangular regions containing the left-upper corner entry of the matrix.

We are interested in the matrix-rounding with respect to the set Wk of all
k × k square regions. The following proposition is obtained in a straightforward
manner from the theorem above:

Proposition 2. The inhomogeneous discrepancy with respect to Wk is O(log3 k)
and Ω(log k). Indeed, these bounds also hold for the union ∪k

j=1Wj.

Proof. Without loss of generality, we assume that k divides n, and subdivide
the grid into (n/k)2 subgrids of size k × k. Then, each element of ∪k

j=1Wj is a
union of four rectangles in subgrids, and hence we have an O(log3 k) bound from
Theorem 3.

In order to show the lower bound, consider a 2k × 2k matrix A whose lower-
right quarter is an Ω(log k) instance for the discrepancy with respect to all
rectangular regions in the quarter containing the entry ak+1,k+1. The remaining
part of A is filled with zero entries. For any given rectangular region R containing
ak+1,k+1 in the lower-right quarter, there exists a region in Wk consisting of R
and zero entries. Hence we have the lower bound for Wk.

We remark that a polynomial time algorithm for computing a rounding with
an O(log4 k) discrepancy can be designed based on the proof of Theorem 6.13 in
[10]. This is theoretically better than the popular two-dimensional error diffusion
algorithm, for which the rounding error can become k (see Appendix 2).

For the family W2 consisting of all 2 × 2 square regions, there exists an
instance A that the discrepancy is exactly 1. However, the authors do not know
whether there exists an instance requiring DistW2∞ (A, B) > 1 or not. It is easy
to show that the inhomogeneous discrepancy with respect to W2 is at most 2;
indeed, the checkerboard binary matrix C satisfies DistW2∞ (A, B) ≤ 2 for any
input matrix A simultaneously. However, it is nontrivial to give a better upper
bound; We can prove the following result (the proof is involved, and omitted in
this version):

Theorem 4. For any [0, 1] valued matrix A, there exists a binary matrix B
satisfying that DistW2∞ (A, B) ≤ 1.75.

484 T. Asano, T. Matsui, and T. Tokuyama

3.2 NP-hardness of Computing an Optimal Matrix Rounding

In this subsection, we prove the following theorem:

Theorem 5. For any ε > 0, it is NP-hard to decide whether the optimal round-
ing error of a given matrix A is greater than 1 − ε or less than 1/2 + ε with
respect to the distance DistW2∞ .

For simplicity, we write Dist(A, B) for the distance DistW2∞ (A, B). Each en-
try of our hardness instance A has one of three values: 0, 1, and 1/2, where we
use a convention that we can round 0 to 1 and 1 to 0. To make the proof mathe-
matically formal, we should replace 0 and 1 with δ and 1−δ for an infinitesimally
small positive number δ satisfying δ < ε/4. This is the reason why ε appears in
the statement of the theorem. By using the above mentioned convention, we
ignore ε and δ in the proof.

We prepare some useful definitions and a lemma. A zero-entry of A is called
an absolute-zero entry if it is contained in a 2 × 2 square such that all of its
entries are zeros. A pair of two 1/2 entries is called a good pair if there exists
a 2 × 2 square region consisting of the pair and two absolute-zero entries. The
following lemma is immediate:

Lemma 1. If Dist(A, B) ≤ 1/2, each absolute-zero entry must become 0 in B.
Moreover, each good pair must become a pair of 0 and 1 in B.

We prove the theorem by using a reduction from the planar 3-SAT prob-
lem [15]. An instance of planar 3-SAT is a Boolean expression E = E1 ∧
E2 ∧ . . . ∧ Em where each clause Ej contains at most three literals which are
variables or their negations and a planar graph is defined by the vertex set
{E1, E2, . . . , Em, u1, u2, . . . , uq} and the edge set {(Ei, uj)|Ej contains uj or uj}.
The nodes Ei (i = 1, 2, . . . , m) are called the clause nodes, while the nodes uj

(j = 1, 2, . . . , q) are called the literal nodes. Then, the problem is to decide
whether there exists an assignment F ⊆ {u1, u1, u2, u2, . . . , uq, uq} making the
expression E true.

A polynomial time reduction from a planar 3-SAT problem to the corre-
sponding optimal halftoning is established as follows: Suppose that we are given
a Boolean expression E of the above form together with a planar graph defined
above. It is well-known that the planar graph representing the expression E can
be replaced with a graph G embedded in a pixel grid of size polynomial in the
total number of clauses and variables. Two pixels (i, j) and (i′, j′) in the grid is
called adjacent if |i − i′| ≤ 1 and |j − j′| ≤ 1. In other words, they are located
in a common region in W2. Each edge of the graph G is represented by a series
of adjacent pixels. There are three kinds of nodes of G, literal nodes, branching
nodes and clause nodes. We can assume that there is enough grid space between
each pair of nodes. In the following, we further modify the graph G such that
the SAT assignment information is represented by using a [0, 1]-valued matrix
A, such that E is satisfiable if the optimal rounding error of A is at most 1/2,
otherwise it is at least 1.

Optimal Rounding Problems of Sequences and Matrices 485

For each variable node (i, j) associated with us, we set ai,j = 1/2. If we assign
0 to the variable us, then bi,j = 0, else bi,j = 1. An edge between two nodes is
a path consisting of adjacent half-entries. Moreover, each pair of adjacent pixels
must form a good pair. Figure 1 shows our gadget representing an edge of G
between two nodes X and Y . For convenience’ sake, we omit to write zero-entries
in the figures, and also each half-entry is represented by an h (meaning ”half”).
The nodes X and Y also have values 1/2. Note that the direction of the edge
can be bent to any of four possible slopes if we have a sufficient open space.

From Lemma 1, if there exists an approximation B of A with distance (at
most) 1/2, there are only two possible assignments. One is shown in Figure 1,
and the other is its opposite. This means that the value of bY of B at Y is
uniquely determined by bX . In the case of Figure 1, bY = bX , However, we can
define another path shown in Figure 2 forcing bY = bX ; thus, it creates the
negation of a variable. Indeed, we can make both an odd-length path and an
even-length path between two nodes to control the assignment of the literal in
each clause. Our gadget representing a branching point node of G is illustrated

h h

h
h h

X

Y

h

h

0
1

11

1 1

0

0 0

Fig. 1. A gadget representing an edge of G which makes bX = bY .

h h
h

h h

X

Y
h

h

1
0
1

h

0 1

1 10 0 0

Fig. 2. A gadget representing an edge of G which makes bY to be the negation of bX .

in Figure 3. Note that all zero-entries of the input matrix (left-side drawing) are
absolute-zero entries. The rest to show is that we can simulate a clause node
in the planar 3-SAT instance. Let the clause be x ∨ y ∨ z, where x, y and z are
literals or their negations. First, we make a weaker gadget, which corresponds to
(x∨ y ∨ z) ∧ (x̄∨ ȳ ∨ z̄) (not-all-equal-3SAT clause). The left drawing of Figure 4

486 T. Asano, T. Matsui, and T. Tokuyama

h h

h
h h

X

Y

h

h

0
1

h

h 0
Zh h h h

 0

 0 0

 0 0 0

11

1 1 1

1 1

Fig. 3. A gadget for a branching node.

illustrates the assignment of 1/2 entries in the input matrix A. The values of
the matrix B at X, Y , and Z correspond to the Boolean values of x, y, and z,
respectively.

If dist(A, B) < 1, once we fix the values at X, Y , and Z in B, all values
except the h at the center crossing are uniquely determined. If X = Y = Z = 0,
the matrix B is the one illustrated in the right drawing of Figure 4. We will
show that there is no possible assignment at the pixel p with the ? mark if
dist(A, B) < 1 : Since the 2 × 2 matrix containing p as its south-east corner
has the entry sum 3/2 in A, its entry sum in B must be either 1 or 2. Hence,
the value at p must be 0 in B. However, the 2 × 2 matrix contains p as its
north-west corner also has the entry sum 3/2 in A, and hence the value at p
must be 1 in B. This is a contradiction. We can see that X = Y = Z = 1
is another impossible assignment to make dist(A, B) < 1; on the other hand,
for all other assignments of X, Y , and Z, we can find a rounding B satisfying
dist(A, B) = 1/2. Next, we modify the above gadget to the matrix in the left

0
1
0

 1

1
0

0
1

h h

h

h h

h
h

hh

h
h
 h

Y

 h

h

0

 0

Z

X

h
h

1
0
1

h
h 1

0

h
h

 h h h 00 11 10

0 01 1

?

Fig. 4. A gadget for a not-all-equal-3SAT clause node.

drawing of Figure 5. It is easy to see that if X = Y = Z = 0, there is no B
such that Dist(A, B) < 1. However, if X = Y = Z = 1, the right-hand side
drawing shows that it is possible to make Dist(A, B) = 1/2. A key difference
is that we have a one-entry in A, which is permitted to become 0 in B without
violating the distance condition. We have constructed all required gadgets, and

Optimal Rounding Problems of Sequences and Matrices 487

1
0
1

 0

0
1

1
0h h

h

h
h

h
h

hh

h
h
 h

Y

 h

h

1

 1

Z

X
 1 h
 h

0
1

h
h

0
1

0

h h

 h
 h

0
1

h h h 0 0 0

00 11

1 1 1 1
1

Fig. 5. A gadget for a clause node representing X ∨ Y ∨ Z.

thus proved that the planar 3SAT instance E is satisfiable if and only if there
exists a Boolean matrix B satisfying dist(A, B) ≤ 1/2. On the other hand, if E
is not satisfiable, then Dist(A, B) ≥ 1. Thus, we have proved the theorem.

Corollary 1. For any k ≥ 1, it is NP-hard to decide whether an optimal round-
ing B for an input A satisfies DistW2k∞ (A, B) ≥ 1−ε or DistW2k∞ (A, B) ≤ 1/2+ε.

Proof. Let A = (ai,j) be the instance of 2-approximate hardness for W2 con-
structed in the proof of Theorem 5. Then, we define a kn×kn matrix C = (ci,j)
as follows: We call an entry ci,j special if both of i and j are divisible by k. The
values of special entries are defined by csk,tk = as,t (1 ≤ s ≤ n, 1 ≤ t ≤ n). Other
entries are defined to be zero entries. For any W ∈ W2k, W contains exactly four
special entries, which correspond to entries of A located in a region in W2. It
can be seen that flipping a non-special entry to 1 forces the rounding error to
be at least 1 − ε. Therefore, we have the theorem.

4 Concluding Remarks

We have considered sequence-rounding and matrix-rounding problems. The se-
quence-rounding problem has been solved well; in particular, the optimization
problem can be solved in polynomial time for the weighted l∞ distance. As for
the matrix-rounding problem, many problems are left open. We especially want
to design a nice approximation algorithm for the matrix-rounding problem with
respect to DistWk∞ .

References

1. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan: “Faster algorithms for
the shortest path problems,” Journal of ACM, 37 (1990), pp. 213–223.

2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows, Theory Algorithms
and Applications, Princeton Hall, 1993.

3. T. Asano, D. Z. Chen, N. Katoh, and T. Tokuyama: “Polynomial-time solutions
to image segmentation,” Proc. of the 7th ACM-SIAM Symposium on Discrete Al-
gorithms (1996), pp. 104–113.

488 T. Asano, T. Matsui, and T. Tokuyama

4. T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama: “Convertibility among grid
filling curves,” Proc. ISAAC98, Springer LNCS 1533 (1998), pp. 307–316.

5. T. Asano, D. Ranjan and T. Roos: ”Digital halftoning algorithms based on opti-
mization criteria and their experimental evaluation,” IEICE Trans. Fundamentals,
Vol. E79-A (1996), No. 4, pp. 524-532.

6. B. E. Bayer: “An optimum method for two-level rendition of continuous-tone pic-
tures,” Conference Record, IEEE International Conference on Communications, 1
(1973), pp. (26-11)–(26-15).

7. Z. Baranyai, “On the factorization of the complete uniform hypergraphs”, in In-
finite and Finite Sets, eds. A. Hanaj, R. Rado and V. T. Sós, Colloq. Math. Soc.
J’anos Bolyai 10 (1974), pp.91-108.

8. B. Bollobás, Combinatorics, Cambridge University Press, 1986.
9. J. Beck and W. Chen, Irregularities of Distribution, Cambridge University Press,

Cambridge, 1987.
10. J. Beck and V. T. Sös, Discrepancy Theory, in Handbook of Combinatorics Volume

II, (ed. R.Graham, M. Grötschel, and L Lovász) 1995, Elsevier.
11. T. H. Cormen, C. E. Leiserson, R. L. Rivest: Introduction to Algorithms, MIT

Press, 1989.
12. Y. Crama, P. Hansen and B. Jaumard: “The basic algorithm for pseudo-Boolean

programming revisited,” Discrete Applied Mathematics, 29 (1990), pp. 171–185.
13. R. W. Floyd and L. Steinberg: “An adaptive algorithm for spatial gray scale,” SID

75 Digest, Society for Information Display (1975), pp. 36–37.
14. H. N. Gabow and R. E. Tarjan: “Faster scaling algorithms for network problems,”

SIAM J. Comp., 18 (1989), pp. 1013–1036.
15. M. R. Garey and D. S. Johnson: Computers and Intractability: A guide to theory

of NP hardness, Freeman and Company, 1979.
16. D. E. Knuth: “Digital halftones by dot diffusion,” ACM Trans. Graphics, 6-4

(1987), pp. 245–273.
17. J. O. Limb: “Design of dither waveforms for quantized visual signals,” Bell Syst.

Tech. J., 48-7 (1969), pp. 2555–2582.
18. B. Lippel and M. Kurland: “The effect of dither on luminance quantization of

pictures,” IEEE Trans. Commun. Tech., COM-19 (1971), pp.879-888.
19. V. Rödl and P. Winkler: “Concerning a matrix approximation problem”, Crux

Mathmaticorum, 1990, pp. 76–79.
20. R. Ulichney: Digital halftoning, MIT Press, 1987.
21. A. J. Viterbi: Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm IEEE Transactions on Information Theory Vol. IT-13 (1967),
pp.260–267.

Appendix 1. Proof of Proposition 1

Proof. Consider a sequence a = (ai), i = 1, 2, .., 2p, defined by 0, 1/(4p−1), (4p−
3)/(4p−1), 3/(4p−1), (4p−5)/(4p−1), . . . , (2p−2)/(4p−1), 2p/(4p−1), which
satisfies a2j + a2j+1 = (4p − 2)/(4p − 1) and a2j+1 + a2j+2 = 4p/(4p − 1) for
1 ≤ j ≤ p − 1. From the construction it is obvious that there is a unique b
approximating a with distance less than (4p−2)/(4p−1). Since we consider the
intervals of length 2, this means that |ai +ai+1 −bi −bi+1| < (4p−2)/(4p−1) for
i = 1, 2, .., 2p−1. Indeed, b = 0, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1, which is an alternating
sequence except the first two zeros.

Optimal Rounding Problems of Sequences and Matrices 489

Let a′ be the reversed sequence of a, and consider the concatenation of a and
a′. Naturally, the only possible approximation must be the concatenation of b
and its reverse b′. However, the sequences meet at the middle of the whole input
sequence so that 2p/(4p−1) and 2p/(4p−1) are adjacent, and the corresponding
outputs are 1 and 1. Thus, the difference of the entry sums in this neighborhood
is 2 − 4p/(4p − 1) = (4p − 2)/(4p − 1). Hence, it is impossible to approximate it
within the distance of (4p − 2)/(4p − 1), which proves the proposition.

Appendix 2. Performance of an Error Diffusion Algorithm.

A popular practical method in digital halftoning is the error diffusion algorithm
(we have already seen its one-dimensional version): Scan the matrix array A in
the scan-line order (i.e., scan row-wise from top row to bottom row, from left
to right in each row), and greedily round the entries of A into binary values
propagating the remaining error at each visited entry to its unvisited neighbor
entries. The outline of the algorithm is as follows: We use four parameters α, β, γ,
and δ satisfying α + β + γ + δ = 1. At first, error(i, j) is initialized as 0 for
each pixel (i, j) in the grid. When we visit the pixel (i, j), bi,j is obtained by
rounding ai,j + error(i, j) to the nearer binary value. Now, compute rem(i, j) =
ai,j + error(i, j) − bi,j , which is the error remaining at (i, j), and distribute the
error values to its unvisited neighbors with predetermined weights. Formally,
those errors are updated as follows: error(i, j+1) := error(i, j+1)+α rem(i, j),
error(i + 1, j) := error(i + 1, j) + β rem(i, j), error(i + 1, j + 1) := error(i +
1, j + 1) + γ rem(i, j), and error(i + 1, j − 1) := error(i + 1, j − 1) + δ rem(i, j).
We need some care for pixels near the boundary of G, but we ignore it here for
simplicity.

Proposition 3. Suppose that B is the output of the error diffusion algorithm for
an input A. Then, for the region family Wk, DistWk∞ (A, B) ≤ k + (k − 1)(γ + δ).
Moreover, there is an instance A such that the above distance exceeds k + (k −
1)(γ + δ) − ε for any ε > 0 if we apply the error diffusion algorithm.

Proof. It is observed that −0.5 ≤ rem(i, j) < 0.5 holds for 1 ≤ i ≤ n and
i ≤ j ≤ n. Fix a k × k square R in G. Let Sin be a set of entries outside R from
which error is directly propagated to some entry in R. Also, let Sout be a set of
entries in R from which error is directly propagated to some entry outside R.
Consider the total error propagated into R and also the total error propagated
out of R, we have |A(R) − B(R)| ≤ k + (k − 1)(γ + δ). On the other hand, we
can manage to create the input attaining rem(i, j) = −1/2 for each (i, j) ∈ Sin,
and rem(i′, j′) > 1/2 − ε/k for each (i′, j′) ∈ Sout. This gives the lower bound.

On the Complexity
of the Sub-permutation Problem

Shlomo Ahal1 and Yuri Rabinovich2

1 Math. Department, Ben-Gurion University of the Negev, Beer Sheva, Israel.
2 CS Dept., Haifa University, Haifa, Israel, yuri@cs.haifa.ac.il

Abstract. We study various computational aspects of the problem of
determining whether a given order contains a given sub-order. Formally,
given a permutation π on k elements, and a permutation σ on n > k ele-
ments, the goal is to determine whether there exists a strictly increasing
function f from [1..k] to [1..n] which is order preserving, i.e., f satisfies
σ(f(i)) > σ(f(j)) whenever π(i) > π(j). We call this decision problem
the Sub-Permutation Problem.
The study falls into two parts. In the first part we develop and analyze
an algorithm (or, rather, an algorithmic paradigm) for this problem. We
show that the complexity of this algorithm is at most O(n1+C(π)), where
C(π) is a naturally defined function of the permutation π.
In the second part we study C(π). In particular, we show that C(π) ≤
0.35k+o(k), implying that the complexity of the Sub-Permutation prob-
lem is O(ck +n0.35k+o(k)). On the other hand, we prove that for most π’s,
C(π) = Ω(k), establishing a lower bound for our algorithm. In addition,
we develop a fast polylogarithmic approximation algorithm for comput-
ing C(π), and bound the value of this parameter for some interesting
families of permutations.

1 Introduction

The question studied in this paper belongs to the vast family of questions deal-
ing with finding a specified substructure within a given (large) structure. Our
structures here are permutations, or, rather, order types of finite numerical se-
quences.

Definition 1. Let π be a permutation on k elements, and σ a permutation on n
elements, where n ≥ k. A function f : [1..k] 7→ [1..n] will be called an embedding
of π into σ if it is

1. Strictly increasing, i.e., f(i) > f(j) whenever i > j;
2. Order preserving, i.e., σ(f(i)) > σ(f(j)) whenever π(i) > π(j).

In other words, π is embeddable in σ if it has the same order type as a subse-
quence of σ obtained by erasing some of σ’s entries. In what follows, we shall
use the notions “π is embeddable in σ” and “π is a sub-permutation of σ” in-
terchangeably, and denote this by π ↪→ σ.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 490–503, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On the Complexity of the Sub-permutation Problem 491

Families of permutations with a fixed set of forbidden sub-permutations occur
naturally e.g., in the study of permutations obtainable by using a single stack,
or, more notably, in the well known open conjecture of Stanley-Wilf, claiming
that for a fixed π the size of the families Fn = {σ ∈ Sn | π 6↪→ σ }, grows at
most exponentially in n. Despite a considerable research effort, (see, e.g., [3],[1]),
the conjecture remains largely open. It seems that one of the main obstacles
towards proving it is the lack of convenient criterions for establishing whether
σ ∈ Fn or not. In particular, the problem of checking whether π ↪→ σ holds, is
computationally difficult: it was shown to be NP-complete in [4].

In this paper we concentrate on the following version of the latter question,
to be called the Sub-Permutation problem, (SP):

Let π ∈ Sk be fixed. Given an input σ ∈ Sn, determine whether the relation
π ↪→ σ holds.

To distinguish between π and σ, we shall call the former the structure per-
mutation, and the later the goal permutation.

The above problem is, of course, polynomially tractable, and the brute force
approach (checking all the sub-permutations of σ of size k) gives an O(k ·nk/k!)
upper bound. A closer look reveals that the difficulty of the SP problem crucially
depends on the structure permutation π, and while, for instance, π = (12...k)
leads to a problem of complexity O(kn), there is no obvious way to substantially
improve upon the brute-force upper bound for a random π ∈ Sk.

What is the correct complexity of a SP problem for a given π? To our best
knowledge, this question was not addressed so far in the literature. We develop
an algorithm, whose performance is bounded by O(ck + kn1+C(π)), where C(π)
is a naturally defined function of π. We prove a general 0.35k + o(k) upper
bound on C(π), but also, unfortunately, show that for most π ∈ Sk it holds
C(π) = Ω(k). This, however, is not always the case. We present a number of a
naturally defined classes of permutations π for which C(π) is O(

√
k) and less.

While the exact computation of C(π) appears to be computationally difficult
(and we do not know how to do it faster that in O(k2k)), we indicate how an
O(log2 k) approximation of C(π) can be obtained in time polynomial in k.

Thus, we make first steps in the study of the fascinating question of the
complexity of a SP problem as a function of the structure permutation π ∈ Sk.
The most interesting related open question remains: can the SP problem can
always be solved in time ckno(k) for π ∈ Sk?

2 The Generic Algorithm

We shall be mainly interested here in either finding a (single) embedding π ↪→
σ, or concluding that no such embedding exists. However, after describing the
procedure, we shall indicate how it can be modified in order to find all such
embeddings.

Our approach is basically that of dynamic programming. The structure per-
mutation π will be gradually exposed, and at each stage the corresponding tables
will be suitably refined.

492 S. Ahal and Y. Rabinovich

Consider (for the present, fixed) chain of subsetsets of [1..k], ∅ = A0 ⊂
A1 ⊂ ... ⊂ Ak = [1..k], such that each Ai\Ai−1 consists of a single element.
Setting τ(i) = Ai\Ai−1, we get a 1-1 function τ : [1..k] 7→ [1..k], which we
shall call the order of exposure corresponding to (and defining) the chain of
subsets. The restrictions πi’s of π to Ai’s form a chain of sub-permutations
∅ = π0↪→π1↪→ . . . ↪→πk = π. Rigorously speaking, each πi is a 1-1 function from
Ai to [1..k]; however, since we shall be interesting only in the order type of πi,
without a risk of confusion, we shall think of it as of permutation πi ∈ Si.

Roughly, our strategy is to create tables T0, T1, .., Tk, where Ti will store
embeddings fi : Ai 7→ [1..n] of πi into σ. In order to get Ti, we take Ti−1 and
extend, if possible, each embedding fi−1 ∈ Ti−1 to a set of embeddings fi.

How does one obtain legal extensions fi of fi−1? Since fi must agree with
fi−1 on Ai−1, the question is where the new element τ(i) can be mapped. The
restrictions on the value of fi(τ(i)) are:

Monotonicity: Let p−
i ∈ Ai−1 and p+

i ∈ Ai−1 be, respectively, the next
to the left and the next to the to right elements to τ(i) in Ai (we view Ai

as an ordered set). Then, in order to maintain monotonicity, it should hold

fi−1(p−
i) < fi(τ(i)) < fi−1(p+

i) .

Order Preservation: Let q−
i ∈ Ai−1 and q+

i ∈ Ai−1 be, respectively, the
elements satisfying πi(τ(i)) − πi(q−

i) = 1 and πi(q+
i) − πi(τ(i)) = 1. Then,

to maintain the order preservation property, it should hold

σ(fi−1(q−
i)) < σ(fi(τ(i))) < σ(fi−1(q+

i)) .

It is not hard to get convinced that the above restrictions on the value of fi(τ(i))
are necessary and sufficient.

Definition 2. In what follows, we call {p−
i , p+

i , q−
i , q+

i } ⊆ Ai−1 the significant
elements for the i-th stage. The set of all possible values {fi(τ(i))} in a legal
extension of a given fi−1 is completely determined by the values of fi−1 on the
set of the significant elements for the i-th stage. Note that this set may contain
less than four elements: e.g., for i = 1, it is empty.

Getting back to our strategy, it immediately becomes clear that saving in
Ti the entire set of possible embeddings fi : Ai 7→ [1..n] is infeasible: the size
of Ti can get as large as

(
n
i

)
, and we gain nothing compared to the brute force

algorithm. How, then, could the content of Ti be condensed without incurring
an information loss?

Let us first examine the situation in a particularly clear and simple case
when π = (12..k), and the exposure order τ is 1, 2, 3, ..., k (or, equivalently, Ai =
{1, 2, ..., i} for i = 1, ..., k). Clearly, the only information about any particular fi

which will be used in the subsequent extensions is the value of fi(i). Thus, storing
in Ti the values of fi(i) alone, we get tables of size just O(n) which hold all the
necessary information. The actual embedding can be reconstructed, if desired,
using back-pointers where each fi(i) points to one of its fathers fi−1(i − 1).

On the Complexity of the Sub-permutation Problem 493

For a better understanding of the nature of the gain in the above example,
let us define for each i = 0, 1, .., k−1 the set Ui ⊆ [1..k] of unforgettable elements:

Definition 3. Let Ui, the i-th set of unforgettable elements, be defined as the
union of all the significant elements for stages i + 1, ..., k. That is,
Ui = ∪k

j=i+1 {p−
j , p+

j , q−
j , q+

j }.
The definition of the significant elements immediately implies the following
proposition:

Proposition 1. For any embedding fi : Ai 7→ [1..k], the only elements of Ai

whose value will ever be significant for the subsequent extensions of fi, are Ui∩Ai.

Therefore, following the usual logic of dynamic programming, it suffices to store
in Ti only the values of f(i)’s on Ui ∩Ai. In fact, this is precisely what was done
in the above simple example, since in that case Ui ∩ Ai = {i}.

Before going on with the formal description of the emerging algorithm, let
us have a different, clearer look at the system of sets {Ui ∩ Ai}.

Definition 4. Let π ∈ Sk be a structure permutation. The incidence graph Gπ

is a undirected multi-graph on k vertices with two types of edges: blue ones and
red ones. Formally, V (Gπ) = [1..k] and E(Gπ) = Eblue(Gπ) ∪ Ered(Gπ), where

Eblue(Gπ) = { (i, j) | |i − j| = 1} ; Ered(Gπ) = { (i, j) | |π(i) − π(j)| = 1} .

The following proposition establishes a surprising connection between Ui ∩ Ai

and the boundary of Ai in Gπ:

Proposition 2. Define ∂πA, the boundary of a subset A of V (Gπ), as ∂πA =
{v ∈ A | Γ (v) 6⊆ A } , where Γ (v) is the set of neighbours of v in Gπ. Then

Ui ∩ Ai = ∂πAi .

Proof. Let v ∈ ∂πAi; this means that v possesses a neighbour u 6∈ Ai. Let j > i
be the stage when u is first exposed. It is readily checked that v is a significant
element for the j-th step, and therefore v ∈ Ui.

Conversely, let v ∈ Ui ∩ Ai. Assume v is significant for the j-th step, j > i
Then, clearly, v ∈ ∂πAj , and since Ai ⊆ Aj , this implies v ∈ ∂πAi.

We may now present an algorithm for the SP problem. The main data struc-
ture will be a sequence of tables {Ti}k

i=0. The rows of each Ti will contain a
numerical field per each element of ∂π(Ai), and an additional single field for a
pointer. Each row in Ti will correspond to some embedding fi : Ai 7→ [1..n] of πi

into σ. The numerical fields will carry the values of fi on ∂π(Ai) = Ui ∩Ai, while
the pointer will point to some fi−1 (a row of Ti−1) whose extension resulted in
fi. The rows of Ti must all be different with respect to the numerical fields.
Observe that Tk has a single row containing only the pointer, while while T0 is
in fact an empty table.

494 S. Ahal and Y. Rabinovich

ALG-SPπ,τ(σ) :
INPUT: σ ∈ Sn - a goal permutation ;

π ∈ Sk - a structure permutation; (* fixed *)
τ ∈ Sk - an exposure order (* currently fixed *)

OUTPUT: an embedding fk : [1..k] 7→ [1..n] of π in σ, or a message “NONE”;

set T0 =NULL;
for i = 1 to k do {

set Ti = ∅ ;
for each row of Ti−1 (* corresponding to some fi−1 *) do {
(* try to expand fi−1 to fi *)

for j = 1 to n do {
(* check whether j is legitimate value for fi(τ(i)) *)

check whether fi−1(p−
i) < j < fi−1(p+

i); (* Monotonicity *)
check whether σ(fi−1(q−

i)) < σ(j) < σ(fi−1(q+
i));

(* Order Preservation *)
if both checks succeeded, do {

create a new row of Ti;
fill the numerical fields suitably,

using data from the current row of Ti−1 and the value j;
direct the pointer to that row;
if the new row did not occur yet in Ti, add it to Ti;

} } } }
if Tk is empty return “NONE”;

else, using pointers, reproduce an actual embedding fk, and return it.

The correctness of the algorithm follows from the definition of the significant
elements, and Proposition 1. What is its time complexity? First, we need to
compute all {∂πAi}, which will take a time at most quadratic in k. Then, at
every stage i, O(n) operations are performed per each row of Ti−1. In addition,
one must take care not to create identical rows in Ti. This can be done, e.g., by
performing an on-line bucket sort, using a table of size O(n|∂πAi|). (Note that
|∂πAi| ≤ 1 + |∂πAi−1|.) Thus, the entire i-th stage can be implemented in time
O(n1+|∂πAi−1|). Finally, the reconstruction of the resulting fk may require an
additional time O(k). Altogether, we get

O(k2) + O

(
k∑

i=1

n1+|∂πAi−1 |
)

= O
(
k2 + kn1+maxi |∂πAi |

)
.

Remark: If our goal were to find all the embeddings π ↪→ σ, instead of back-
pointers we would use forward-pointers from fi−1 to all its extensions fi; notice
that are at most n such. The upper bound for the time it takes to fill up the
tables would change by at most a multiplicative constant. Then, using a standard
algorithm for DAG’s, we could find all the embeddings (corresponding to the
paths from T0 to Tk) in time proportional to that spent so far, plus k times the
total number of such embeddings.

On the Complexity of the Sub-permutation Problem 495

The parameter which governs the complexity of the algorithm is maxi |∂πAi|.
Let us give this parameter a name. For a structure permutation π ∈ Sk and an
exposure order τ ∈ Sk, define Cτ (π) = maxi∈[1..k] |∂πAi| . By the preceding
discussion, the complexity of ALG-SPπ,τ is bounded by O

(
k2 + kn1+Cτ (π)

)
.

Now, observe that the exposure order does not have to be fixed, and in fact it
makes a good sense to choose the best possible τ for the given π. Thus, we arrive
at the key definition of this section:

Definition 5. Define C(π), the complexity of a permutation π ∈ Sk, as

C(π) = min
τ

Cτ (π) .

Our discussion so far can be summarized by the following theorem:

Theorem 1. The SP problem for a structure permutation π ∈ Sk can be solved
in time

O
(
ck + kn1+C(π)

)
,

where ck is the time needed to compute the best τ .

Alternatively, if finding the best τ is too expensive, one can use a reasonably
good τ̃ and get time complexity O

(
c̃k + kn1+Cτ̃ (π)

)
where c̃k is the time need

to produce such τ̃ .
The remaining part of this paper is dedicated to the study of C(π). In par-

ticular, we shall see how to produce τ̃ such that C(π) ≤ Cτ̃ (π) = 0.35k + o(k),
indicate how a poly-log approximation of C(π) can be obtained in time polyno-
mial in k, and discuss a number of concrete examples of π’s.

3 Complexity of Permutations

The graph Gπ defined in the previous section provides a convenient way to ap-
proach many questions related to C(π). Observe that in fact Gπ is a multigraph
obtained by taking a union of two Hamiltonian paths, blue and red. Conversely,
any such multigraph corresponds to some π under the suitable labeling of vertices
(defined by the blue path). The maximum degree of Gπ is at most 4.

3.1 General Upper Bounds

The first natural question to ask is how well can a fixed exposure order τ perform.
The answer is given by the following proposition:

Proposition 3. Let π be a structure permutation in Sk, and let the exposure
order be Id, i.e., (1, 2, 3, .., k). Then, CId(π) ≤ 2/3 · k + 1 . Conversely,
for any fixed exposure order τ there exists a structure permutation π such that
Cτ (π) ≥ 2/3 · k .

496 S. Ahal and Y. Rabinovich

Proof. By the definition of Gπ, the boundary ∂πAi is in fact a union of two
boundaries: the blue one, created by the blue edges, and the red one, created by
the by red edges. In the case of exposure order Id , the blue boundary is always
of size 1. Let us show that the size of the red boundary of any set A ⊆ V (Gπ) is
at most 2/3 ·k . Since the red degree of any vertex v ∈ V (Gπ) is at most 2 and at
least 1, we conclude that |∂red

π A| ≤ 2|Ā|. Since |A| + |Ā| = k and |∂red
π A| ≤ |A|,

the conclusion follows, yielding the first part of the theorem.
For the second part, let us first show that it is true for τ = Id . It suffices

to construct a permutation π ∈ Sk such that the ∂red
π A2/3·k = A2/3·k. Here is

an interesting concrete example of such a permutation: Let k = 3m, and define
ρ : [0..k − 1] 7→ [0..k − 1] as a permutation which maps a number m in the
range to the number whose trinary representation (with leading zeroes) is the
reverse of the trinary representation of m. Since the image of [0..2/3 · k − 1]
consists of (all) numbers whose least significant digit is 0 or 1, while the image
of [2/3 · k..k − 1] consists of (all) numbers whose least significant digit is 2, and
we see that every m ∈ [0..2/3 · k − 1] has a red edge to [2/3 · k..k − 1]. Thus, ρ
has the desired property.

To complete the proof of the second part, observe that the structure permu-
tation π = ρ ◦ τ−1 with respect to the exposure order τ (which can be viewed
as a permutation of the range) has red boundaries isomorphic to those of ρ with
respect to Id .

Two remarks are due. First, we have treated so far τ as the exposure order,
which is of course a permutation of the range. We have refrained so far from
calling τ a permutation to avoid an unnecessary confusion. Second, as we shall see
later in Section 3.3, there exists an exposing order τ such that Cτ (ρ) = O(

√
k).

Thus, the identity permutation can be far off the best exposure order.
The next natural question is how well does a random exposure order behave.

Theorem 2. For any structure permutation π ∈ Sk, almost all exposure orders
τ satisfy Cτ (π) ≤ (0.54 + o(1))k.

Proof. The proving mechanism used here and in following theorems of this sec-
tion is:

1. Given a structure permutation π ∈ Sk, define a random process P which
produces the exposure order τ ∈ Sk by exposing [1..k] vertex by vertex. (Be-
tween the consecutive exposures there can be some non-exposing activity.)
The process P will be described by specifying the conditional distribution
according to which the next step is performed.

2. For each i ≤ k corresponding to the exposure of the i-th vertex, define the
random variable Xi = |∂π(Ai)|, compute its expectation E[Xi], and show
that Xi is well concentrated, i.e., that for some function g(k) = o(k) it holds

Pr [Xi − E[Xi] ≥ g(k)] ≤ o(1/k) .

On the Complexity of the Sub-permutation Problem 497

After having succeeded proving this property, we may conclude that a ran-
dom permutation τ drawn according to P almost surely satisfies Cτ (π) ≤
maxi E[Xi] + g(k) .

3. In order to prove the concentration property, the standard martingale tech-
nique is used (see, e.g., [2] and [6] for a detailed description of how the
martingales are used in Discrete Mathematics). For each i and t = 0, 1, .., k
we define a random variable Y t

i as the expected value of Xi after the exposure
of the first t vertices. Clearly, E[Xi] = Y 0

i , and {Y t
i }k

t=0 form a martingale.
I.e., E [Y t+1

i |Y t
i] = Y t

i . Then we establish the Bounded Differences Prop-
erty, i.e., that there exists a constant L such that |Y t+1

i − Y t
i | ≤ L for all i

and t, and conclude, by Azuma Inequality, that

Pr [Xi − E[Xi] ≥ 2L
√

k ln k] ≤ 1/k2 .

Let us see how the above strategy works for analyzing random uniformly chosen
τ ∈ Sk. We define P by saying that at each stage one of the unexposed vertices
is drawn uniformly at random.

Let us first estimate E[Xi]. What is the probability of vertex v ∈ V (G) to
belong to ∂πAi? A simple combinatorial argument shows that if v has degree 4
(counting multiple edges as a single edge), then

Pr [v ∈ ∂πAi] =
i

k

[
1 − i − 1

k − 1
· i − 2
k − 2

· i − 3
k − 3

· i − 4
k − 4

]
≤ h(i/k) + o(1) ,

where h is a real valued function h(x) = x(1 − x4). If the degree of v is less then
3, the above probability decreases. Thus, by linearity of expectation,

max
i

E[Xi] ≤ k max
x∈[0,1]

h(x) + o(k) ≤ 0.54 k + o(k) .

In order to complete the proof we have to verify that the exposure martingale
{Y t

i }k
i=0 has the Bounded Differences Property. But this is easy: since an expo-

sure of an additional vertex can influence at most 4 other vertices, we get at
once |Y t+1

i − Y t
i | ≤ 1 + 4 = 5.

How can the constant 0.54 of Theorem 2 be improved? On one hand, the
process P should be more “sensitive” to the current boundary, and attempt not
to increase it needlessly. On the other hand, if one wishes to follow the same
general strategy, P should be “stable” in the sense that the exposure of an extra
vertex could have only a limited influence on the future behaviour of P. Such
behaviour is required to ensure the Bounded Differences Property, needed for
the analysis of P.

A natural improvement on the previous random process would be to fill up
the “holes” (i.e., the unexposed vertices all of whose neighbours are exposed)
upon their creation. Clearly, such an operation can only be beneficial for the
size of the boundaries, and there is no gain in delaying it. We call the new
process P1.

498 S. Ahal and Y. Rabinovich

Theorem 3. Almost all exposure orders τ ∈ Sk produced by P1 satisfy Cτ (π) ≤
k(0.46 + o(1)) .

Proof. Sketch: We follow closely the proof of Theorem 2. Using a similar, but
much more involved technical analysis, we arrive at the conclusion that

Pr [v ∈ ∂πAi] ≤ h1(|Ai|/k) + o(1) ,

where Ai is the set of all exposed vertices after the exposion of the i-th truly
random (i.e., not forced by holes filling) vertex, and h1 is a real valued function
determined by the local structure of Gπ. It is found by a lengthy case analysis;
e.g., in the typical case when Gπ has (locally) degree 4, and no cycles of length

≤ 4, h(x) =
∑4

i=0

(
4
i

)
x5−i (1 − x)i (1 − x3i) . The maximum value of h1(x)

on [0, 1] is 0.46. Therefore, by linearity of expectation,

max
i

E[Xi] ≤ k

(
o(1) + max

x∈[0,1]
h(x)

)
≤ (0.46 + o(1)) k .

As before, in order to complete the proof it remains to check that the exposure
martingale {Y t

i } has the Bounded Differences Property. Although at the first
glance one might suspect that the holes filling process might have a cascading
effect, it actually cannot. It is not hard to get convinced that the exposure of an
extra vertex at any particular moment can influence at most 1 + 4 + 3 · 4 = 17
vertices (the vertex itself, its neighbours, and the neighbours’ neighbours), and
thus |Y t+1

i − Y t
i | ≤ 17 . We postpone a detailed explanation of this proof to the

full version of the paper.

The process P1 can be further improved with respect to the sizes of the
boundaries. Besides holes filling, there is one more beneficial operation: if an
exposure of a vertex does not increase the size of the current boundary, there is
definely no damage in exposing it. However, although we would like to perform
this operation whenever possible, it may cause a cascading effect, distabilazing
the process. In order to take care of this problem, for each d ≥ 1 we introduce
an “approximating” stable process Pd, defined as follows:

Every vertex will have a “hight” in [1..d],∞. The vertices with hight < ∞
will be precisely the exposed vertices. At each stage t, for each m = 1, ..., d, let
Am

t be the set of all vertices whose hight does not exceed m. As long as there
exist vertices v of hight > m + 1, whose addition to Am

t does not increase the
boundary of this set, pick randomly such a vertex v, and change its hight to
m + 1. If v was previously unexposed, it gets exposed during this operation.
Now, if there are no such vertices, we pick a random vertex in [1..k] and change
its hight to 1 (exposing it if it was unexposed).

It can be shown (the details are postponed to the full version) that Pd can
have but a limited cascading, and that any random step may influence at most 1+
4d+1 vertices. Furthermore, the analysis of the expected size of the boundary can
still be successfully carried out. (Although it becomes very messy). An analysis
of P3 yields the following theorem:

On the Complexity of the Sub-permutation Problem 499

Theorem 4. For every structure permutation π ∈ Sk, P3 produces with high
probability an exposure order τ such that Cτ (π) ≤ (0.35 + o(1)) k . Hence, the
complexity C(π) of π is at most (0.35 + o(1)) k.

Before concluding this section, we would like to mention an entirely different
approach for determining an exposure order τ for the given π. Take the Laplacian
matrix of the graph, find its eigenvector e1 corresponding to the first positive
eigenvalue, and expose the vertices in the increasing order of values of the entries
of e1. Numerical simulations seem to indicate that this method is superiour to
all other methods described in this section, leading to a constant about 0.22.
There is also a good intuition why it should work (see, e.g., [7] for a related
discussion). Unfortunately, we do not know how to prove this.

3.2 Approximation and a General Lower Bound

So far we have worked with the vertex boundary ∂A of the set A ∈ G. Let us
introduce also the edge boundary DA of A ∈ G, defined by

DA = { e ∈ E(G) | e ∈ E(A, Ā) }.

Since our G has degree bounded by 4, it holds

|∂πA| ≤ |DπA| ≤ 4|∂πA| . (1)

The edge boundary of a set is one of the basic terms of Graph Theory, and
its introduction permits to employ the existing machinery. Here is how it can be
used to efficiently compute an approximation of C(π):

Theorem 5. An exposure order τ for which Cτ (π) ≤ O(log2 k) C(π) can be
constructed in time polynomial in k.

Proof. Finding the order of vertex exposure τ of V (G) for an (arbitrary) input
graph G which minimizes the maximal DAi, is a well known classical problem
called the minimum cut linear arrangement problem. It is NP-complete. How-
ever, Leighton and Rao [5] have designed a polynomial O(log2 k) approximation
for this problem. Using their algorithm on our graph Gπ, and keeping in mind
(1), we get the desired approximation.

Next, we prove that there exist permutations such that C(π) = Ω(k). In fact,
almost all permutations have this property.

Theorem 6. Let π ∈ Sk be a random, uniformly chosen permutation. Then
there exists a universal constant c > 0 such that

Pr[C(π) ≤ ck] ≤ o(1) .

Proof. Assume for convenience that k is even. Call a graph G α-rich if any
bisection of G (i.e., partition of V (G) = [1..k] to two equal parts) defines an
edge-cut of size at least αk. By (1), it suffices to show that a random G obtained

500 S. Ahal and Y. Rabinovich

by taking a union of two randomly and independently chosen Hamiltonian paths
P1 and P2 on the vertex set [1..k] is α-rich for some constant α > 0.

Denote by P the uniform probability space over all the (multi-)graphs ob-
tained by taking a union of two random Hamiltonian paths. We shall prove that
there exist constants α, ε > 0 such that for every bisection (V1, V2) the proba-
bility that a P-random graph has a sparse (i.e, ≤ αk) edge-cut with respect to
(V1, V2), is less than 2−k(1+ε). That is, for every bisection (V1, V2), it holds

Pr
P

[|EG ∩ E(V1, V2)| ≤ αk] < 2−k(1+ε) . (2)

Since there are 2k−1 − 1 bisections of the vertices [1..k], the probability that
there exists a “meager” bisection (i.e., one yielding an edge-cut of size ≤ αk), is
less than 2k2−k(1+ε) = o(1). Thus, almost surely, a P-random graph is α-rich.

It remains to establish α, ε for which Inequality 2 is true. Let (V1, V2) be a
fixed bisection of [1..k]. Let us examine the distribution of the size of the edge
cut defined by this bisection for a random G ∈ P; we shall call this random
variable S.

For each path Pi, i = 1, 2, define the indicator binary random variables
{Xi,j}k

j=1, which indicate whether Pi(j) ∈ V1 or Pi(j) ∈ V2. We shall think of
the set of these indicators {Xi,j} as of binary string X of length 2k ordered in
the following way:

X = (X1,1, X1,2, . . . , X1,k; X2,1, X2,2, . . . , X2,k) .

Observe that the string X has a uniformly distribution over all binary strings
of length 2k with the property that both the first k bits and the last k bits are
balanced (i.e., they contain k/2 0’s and k/2 1’s). Observe also that,

S = S(X) =
∑

i=1,2; 1≤j<k

Xi,j ⊕ Xi,j+1 .

where ⊕ is the addition operation in Z2.
A simple calculation shows that even after dropping the balancedness re-

quirements, the number of binary strings Y of length 2k for which S(Y) ≤ αk
is

4
αk∑

t=0

(
2(k − 1)

t

)
≈ 2H(α/2) 2k+o(k) ,

were H(p) = −p log2 p − (1 − p) log2(1 − p) is the Entropy function, and the
standard approximation used is from e.g., [2]. Recalling that the string X is
uniformly distributed over strings of length 2k which are balanced with respect
to both k first and k last bits, we conclude that

Pr[S ≤ αk] ≤ 2H(α/2)·2k+o(k)

22k/Ω(k)
≤ 2−(1−H(α/2))·2k+o(k) .

Taking α such that H(α/2) < 0.5 yields Inequality 2, and completes the proof
of the theorem.

On the Complexity of the Sub-permutation Problem 501

3.3 Special Cases

In this section we consider two different types of “linear” permutations π ∈ Sk,
and show that both types have complexity at most O(

√
k). Throughout this

section, we think of permutations γ ∈ Sk as permutations of the set [0..k − 1],
and not of the usual set [1..k].

The “linear” permutation π of the first type comes from an invertible linear
transformation A : Zm

2 7→ Zm
2 . Let k = 2m. The value π(i) of a number i ∈

[0..k−1] is defined by taking the binary representation of i (with leading zeroes),
interpreting it as a vector v ∈ Zm

2 , applying A to v to get u = A(v), and
interpreting u as the binary presentation of another number in [0..k − 1].

For the second type, we consider invertible linear transformation of the ring
Zk to itself. Formally,

Definition 6. Let k = 2m for some positive integer m. A permutation π ∈
Sk is called a linear permutation of the first type if it is an invertible linear
transformation Aπ : (Z2)m 7→ (Z2)m, under identifying Zm

2 and [0..2m − 1] by
means of the binary representation.

A permutation π ∈ Sk is called a linear permutation of the second type if it
is a permutation of the ring Zk by an invertible linear transformation π(x) =
ax + b mod k .

Before starting with bounding the complexity of linear permutations, let us
state a useful property of the complexity function:

Proposition 4. Let π ∈ Sk be a structure permutation, and denote the identity
permutation by Id. Then, for every S ⊆ [0..k − 1], |∂π(S)| ≤ |∂Id(S)| +
|∂Id(π(S))| . Consequently, for any τ ∈ Sk, Cτ (π) ≤ Cτ (Id) + Cπ◦τ (Id) .

Proof. The inequality holds since the first term captures the blue boundary,
while the second term captures the red boundary. The consequence follows by
considering the sets Si = τ [0..i].

We start with showing that linear permutations of the first type have low
complexity. Doing so, we show first that for a special subfamily of such permu-
tations, the trivial exposure order τ = Id achieves the desired O(

√
k) bound.

Theorem 7. Let π ∈ Sk be a linear permutation of the first type, and let Aπ

be its matrix representation m × m. If (Aπ
−1)i,j = 0 for every (i, j)-th entry,

0 ≤ i, j < m, with 2j ≤ i, then CId(π) ≤ 24+dm
2 e .

Proof. Let e0, . . . , em−1 be the vectors of the standard normal base of Zm
2 . We

shall denote by Vr the linear subspace spanned by the vectors e0, . . . , er−1. The
addition operation in the Zk

2 vector space will be denoted by ⊕.
Assuming (Aπ

−1)i,j = 0 for every 2j ≤ i, we conclude that for every i ≥ 0 it
holds Vi ⊇ Aπ

−1Vb i
2c, and thus AπVi ⊇ Vb i

2c .

Interpreting the linear subspace Vi in terms of the original domain [0..2m−1],
we see that it is actually the subinterval [0..2i −1]. Thus, we have π([0..2i −1]) ⊇

502 S. Ahal and Y. Rabinovich

[0..2b i
2c−1]. Furthermore, since AπVi is a linear subspace of Zk

2 containing Vb i
2c,

every vector u which is obtained from a vector v ∈ AπVi by arbitrarily modifying
its first

⌊
i
2

⌋
coordinations also belongs to AπVi. This implies that π([2i]) is

composed of subintervals, each one of length at least 2b i
2c. Keeping in mind that

the blue boundary of a subinterval in GId contains at most two vertices, and
that the maximal possible number of such subintervals in π([0..2i − 1]) is 2d i

2e,
we conclude that

|∂π([0..2i−1])| ≤ |∂Id([0..2i−1])| + |∂Id(π([0..2i−1]))| ≤ 2 + 2×2d i
2e ≤ 2

i
2+2 .

In order to complete the proof we have to bound the size of the boundary
∂π([0..t − 1]) for every t < k (so far, we have taken care only of powers of two).
Using similar arguments, it is easy to show that |∂π([2ip..2ip+2i−1])| ≤ 2

i
2+2 .

(Note that if x, y ∈ [2ip, . . . , 2ip + 2i − 1] then x ⊕ y ∈ [2i] and thus (Aπ(x) ⊕
Aπ(y)) ∈ Vb i

2c). Now, every interval [0..t−1] can be represented as the union of at

most m subintervals of the form [2ip, . . . , 2ip+2i −1], where there is at most one
subinterval of a given length. Combining the boundaries of those subintervals,
we establish the bound |∂π([0..t − 1])| ≤ ∑m−1

i=0 2
i
2+2 ≤ 2

i
2+4 .

We are ready to prove now the bound on the complexity of a general linear
permutation of the first type.

Theorem 8. For a linear permutation π ∈ Sk of the first type it holds C(π) =
O(

√
k).

Proof. Keeping in mind that, by Proposition 4,

Cτ (π) ≤ Cτ (Id) + Cπ◦τ (Id) ,

it suffices (in view of the previous theorem) to find τ such that for every (i, j) with
2j ≤ i, the following requirements hold: (Aτ

−1)i,j = 0 and (Aπ◦τ
−1)i,j = 0 .

Equivalently, we need

(Aτ
−1)i ej = 0 and (Aτ

−1)i

(
Aπ

−1ej

)
= 0 (3)

where (Aτ
−1)i is the i-th row of Aτ

−1. For every i, Equation 3 forces 2 bi/2c ≤ i
linear restrictions on the vector (Aτ

−1)i. Thus, for every i there exist at least
2m−i vectors in (Z2)m which satisfy the restrictions of (3). Hence it possible to
construct the transformation Aτ

−1 in an inductive manner, starting with i =
m−1 and going down to i = 0, and calculating for each i the row (Aτ

−1)i. Note
that we have to come up with an invertible transformation, and thus at every
stage we must make sure that the new vector (Aτ

−1)i is linearly independent
of the already constructed rows. Since we have 2m−i candidates for (Aτ

−1)i

satisfying the restrictions of (3), and the number of different linear combinations
of previously constructed vectors is 2m−i−1, it is always possible to find a legal
candidate which is independent of the old vectors.

On the Complexity of the Sub-permutation Problem 503

We address now the linear permutations of the second type.

Theorem 9. Let π be a linear permutation of the second type. Then, for some
(expicitly conctructed) τ ∈ Sk, it hold Cτ (π) ≤ 4

√
k.

Proof. Assume for simplicity that k is a square of an integer; the proof of the
general case can be obtained along the similar lines.

Define the sequence {xi}k
√

k−1
i=0 by

xt
√

k+r = π−1(r) + t mod k ,

for every 0 ≤ t < k and 0 ≤ r <
√

k. Now, define the exposure order τ by
exposing the elements of Zk in the order they appear in the sequence {xi}. In
the case the same value appears many times in {xi}, we consider only the first
appearance.

Observe that for every i ≥ √
k there exists j < i such that τ(i) is a neighbour

of τ(j) in GId as xt
√

k+r − x(t−1)
√

k+r = 1. Therefore, it is possible to partition

Ai into disjoint chains of neighbours, each “rooted” in the interval [0..
√

k]. Thus,
Ai is composed of at most

√
k intervals. Therefore, Cτ (Id) ≤ 2

√
k.

Next, we aim to bound Cπ◦τ (Id). Notice that for every t ≥ 0 and 0 ≤ r <
√

k
the sequence π(xt

√
k), π(xt

√
k+1), . . . , π(xt

√
k+r−1) is a continuous interval, since

π(xt
√

k+r+1)−π(xt
√

k+r) = π(π−1(r+1)+t)−π(π−1(r)+t) = (r+1)−r = 1.

Thus, Aπ◦τ
i is also composed of at most

√
k intervals, which implies Cπ◦τ (Id) ≤

2
√

k. Consequently, by Proposition 4, Cτ (π) ≤ Cτ (Id) + Cπ◦τ (Id) ≤ 4
√

k .

References

1. Alon N., Friedgut E., On the number of permutations avoiding a given pattern.
JCTS, in press.

2. Alon N., Spencer J. H., Erdos P.,The Probabilistic Method, Wiley-Interscience, pp.
83-93, 1991.

3. Bona M., Exact enumeration of 1342-avoiding permutations; A close link with
labeled trees and planar maps, Journal of Combinatorial Theory, Series A, 80, pp.
257-272, 1997.

4. Bose P., Buss J. F., Lubiw A., Pattern matching for permutations, Proceeding of
the 3rd Workshop on Algorithms and Data Structures, 1993.

5. Leighton F.T., Rao S., An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In
Proceeding of 29-th FOCS, 1988, pp.422-431.

6. McDiarmid C., Concentration. In Probabilistic methods for Algorithms and Dis-
crete Mathematics, Ed. Habib et al., Springer 1998. pp. 195-248.

7. Spielman A. D., Teng S., Spectral partitioning works: planar graphs and finite
element meshes, Proceeding of the 37th Annual IEEE Conference on Foundations
of Computer Science, 1996.

Parallel Attribute-Efficient Learning
of Monotone Boolean Functions

Peter Damaschke

FernUniversität, Theoretische Informatik II
58084 Hagen, Germany

Peter.Damaschke@fernuni-hagen.de

Abstract. We consider exact learning of monotone Boolean functions
by membership queries, in the case that only r of the n variables are
relevant. The learner proceeds in a number of rounds. In each round
he submits to the function oracle a set of queries which may be chosen
depending on the results from previous rounds. In a STOC’98 paper we
proved that O(2r + r log n) queries in O(r) rounds are sufficient. While
the query bound is optimal for trivial information-theoretic reasons, it
was open whether parallelism can be improved without increasing the
amount of queries. In the present paper we prove a negative answer: Θ(r)
rounds are necessary in the worst case, even for learning a very special
type of monotone function. The proof is an adversary argument, based
on a distance inequality in binary codes. On the other hand, a Las Vegas
strategy based on another STOC’98 result can learn monotone functions
in 2 log2 r + O(1) rounds, without using significantly more queries. We
also study the constant factors in the deterministic case.

1 Introduction and Contributions

In the widely known model of exact learning by membership queries, a Boolean
function f on n variables is given as an oracle (“black box”), and a learner wants
to identify f . To this end he may ask queries of the following type: He chooses
an assignment (giving Boolean value 0 or 1 to each variable), and the oracle pro-
vides the value of f for this assignment. Trivially, all 2n possible queries must be
asked if nothing about f is known in advance. However, clever query strategies
can exist if it is promised to the learner that f belongs to some restricted class of
Boolean functions. There are trivial classes where still 2n queries are necessary,
e.g. the class of functions that have value 1 for exactly one assignment. Even
randomization cannot help in such cases. (Due to some recent fascinating results,
quantum computers can solve search problems by surprisingly few queries, sub-
ject to some error probability; see e.g. the survey article [19]. But in the present
paper we remain in the classical setting.)

Here we are concerned with a function class which can be efficiently learned
by membership queries, namely monotone Boolean function where at most r of
the n variables are relevant. A Boolean function f is monotone if ∀i : xi ≤ yi

implies f(x1, . . . , xn) ≤ f(y1, . . . yn). A variable is irrelevant if switching its value

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 504–512, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Parallel Learning of Monotone Boolean Functions 505

in arbitrary assignments does never change the function value. Otherwise it is a
relevant variable. In the literature, the term attribute-efficient learning refers to
learning strategies whose complexity is bounded by certain functions in both n
and r, usually by log n and a polynomial in the length of a representation (which
may be 2r).

We consider learning in rounds. In each round, the learner chooses a set
of queries (assignments), and sends all these queries in parallel to the oracle.
Then he may perform any computations with the obtained function values. In
particular, the choice of the query set for each round may depend on the results
obtained in previous rounds. In a randomized strategy, it may also depend on
random bits. Learning in one round is called nonadaptive learning.

Various aspects of attribute-efficient learning have been studied in [3,4,10],
[13,14,16,18,20,21]; this list is not exhaustive. An important special case of
attribute-efficient learning is group testing, i.e. function f is known to be the
disjunction of the relevant variables; see e.g. [7,8,9,12,15]. Group testing, as well
as attribute-efficient learning in general, has interesting applications in fields
like chemical and biological test series, error search in hardware and software,
an d pattern recognition; we refer to the several pointers in the above men-
tioned papers. Parallelity is essential to applications where the tests (queries)
are time-consuming but can be executed simultaneously [1,2,11].

In [5] we devised a strategy that learns monotone functions with r relevant
variables, using a total of O(2r +r log n) queries in O(r) rounds. It should be no-
ticed that the learner is not assumed to know r in advance. The query bound is
optimal for trivial information-theoretic reasons. In the present paper we prove
that the number of rounds is also optimal, in the following sense: For determin-
istic strategies, there is an exponential tradeoff between the number of rounds
and the coefficient of log2 n in the query number. Consequently, any strategy
that uses an optimum number of queries needs Θ(r) rounds in the worst case.
The result is even true for a specific monotone Boolean function whose struc-
ture may be told the learner; only the location of the relevant variables must be
kept secret. Our proof is an adversary argument, using an inequality for Ham-
ming distances in binary codes. Due to this lower bound result, it makes sense
to study the constant factors in nearly query-optimal strategies. Refining our
strategy from [5], we obtain some concrete constants.

On the other hand, we give a randomized strategy that learns monotone
functions by 2O(r) + O(r log n) expected queries in only 2 log2 r + O(1) expected
rounds. (In fact, this remains true for more general function classes.) It is based
on another result from [5] on nonadaptive attribute-efficient learning of arbi-
trary Boolean functions and uses standard ideas from hashing and the doubling
technique.

2 Lower Bound for Queries vs. Rounds

Recall that the Hamming distance of two bit vectors is the number of positions
where the vectors disagree. It is a straightforward exercise to prove that among

506 P. Damaschke

any three binary words of equal length there exist two words whose Hamming
distance is at most 2

3 the length. This already enables us to prove a weaker version
of Lemma 1 below. However, a stronger estimate on the minimum Hamming
distance d between n binary code words of length q is known, namely: n ≤ 2d

2d−q .
This is the Plotkin bound; see [17] or any textbook on error-correcting codes. It
follows d ≤ 1

2
n

n−1q.

Lemma 1. There exists an adversary strategy such that the learner can iden-
tify at most b log2 s relevant variables in each round of s log2 n queries, where
limn→∞ b = 1.

Proof. The adversary chooses the following monotone Boolean function f . The r
relevant variables of f are indexed x1, x2 . . . xr, and the DNF contains all terms
consisting of an xj , j odd, along with all xi, i < j, i even. That means, f can
be written as

x1 ∨ x2x3 ∨ x2x4x5 ∨ x2x4x6x7 ∨ x2x4x6x8x9 ∨ . . .

The adversary may even betray that the function is of this type, but he does
not tell the learner what are the relevant variables.

We discuss the crucial property of this function: x1 = x2 implies that f
has the same value as x1. Moreover, x1 = 1 implies f = 1. By the self-similar
structure of this function, this repeats with later variables: If j is odd, xi = 0
for all odd i < j, and xi = 1 for all even i < j, then xj = xj+1 implies that f
gets the same value as xj .

Assume that the learner asks s log2 n queries in the first round. The query
set can be considered as a binary code of length q = s log2 n, assigning a code
word to each variable. Exploiting the Plotkin bound, the adversary chooses two
words (i.e. variables) y, z which differ in at most s

2 log2 n bits, and settles that
{y, z} is the pair of variables {x1, x2}. (Actually, as seen above, the guaranteed
fraction is slightly larger than 1

2 , but the error tends to 0 with n → ∞. For
notational convenience we pretend henceforth that half of the bits are different.)
Next we describe how the adversary answers the queries of the round. For each
query where x1 and x2 get equal values, of course, the adversary outputs 1 if
both x1 and x2 are 1 there, and 0 otherwise. The point is that these queries
do not provide any information about the the remaining relevant variables: No
matter which variables are the xi, i ≥ 3, the adversary’s answers are consistent.
In other words, the learner can exploit at most the other s

2 log2 n queries, in order
to recognize further relevant variables. Moreover, the latter subset of queries can
be split in two subsets, one with y = 1, z = 0, and one with y = 0, z = 1. If the
former subset is the majority then the adversary will fix x1 = y, x2 = z, and vice
versa in the other case. Similarly as above, queries with x1 = 1 are answered
by 1 and provide no information about further relevant variables. Thus, even
worse, the learner can exploit at most s

4 log2 n queries (where x1 = 0, x2 = 1) to
recognize further relevant variables.

The adversary considers this subset of queries again as a (shorter) binary
code, and chooses two variables of minimum Hamming distance to be x3 and x4,

Parallel Learning of Monotone Boolean Functions 507

and so on. Then the above argument can be repeated. After log4 s steps, there
remains a code of length log2 n or less, hence the adversary may even choose two
of the n variables which have not been distinguished by the remaining queries.
We conclude that the learner can identify only the first 2 log4 s = log2 s relevant
variables in the first round, without having gained further information on the
other ones.

Clearly, this argument also applies to the following rounds, always starting
with the earliest xj not recognized yet. •

Now it is easy to derive the following lower bound.

Theorem 1. Any deterministic strategy that learns monotone Boolean func-
tions with r relevant variables in k rounds needs at least kcr/k log2 n queries in
the worst case, where limn→∞ c = 2.

Proof. Let ri be the number of relevant variables learned in the ith round, pro-
vided that the adversary observes the strategy of Lemma 1. Then we know that
the ith round consists of at least 2ri/b log2 n queries. Since

∑
i ri = r and 2t/b is a

convex function in t, the lower bound for the total query number
∑

i 2ri/b log2 n
is minimized if ri = r/k for all i. Thus the result follows with c = 21/b → 2. •

Corollary 1. Any deterministic strategy using (some constant factor within)
the optimum number of queries can be forced to spend Ω(r) rounds. •

Theorem 1 gives a lower bound for the queries vs. rounds tradeoff. It is an
open problem whether this bound is tight. In other words: Does there exist a
learning strategy for monotone Boolean functions which needs only kcr/k log2 n
queries, for any number k of rounds between 1 and Θ(r)? The difficulty is to
recognize some proper subset of relevant variables by a restricted number of
nonadaptive queries. The presence of further relevant variables and an unlucky
choice of queries may obscure their relevance, cf. [7,9].

3 Randomization Helps

In this section we show that a randomized strategy can achieve both coefficient
r in the query number and much less than r rounds. We have already applied a
similar technique in [6] for a different problem related to attribute-efficient learn-
ing. (See also [7] for a randomzied solution of a search problem which provably
does not allow an efficient deterministic strategy.)

As a preparation we recall the main result of [5], which has a proof of several
pages:

Theorem 2. Arbitrary Boolean functions with at most s relevant variables can
be learned by O(s22s + s2s log n) queries in one round, if s is known in advance.
•

508 P. Damaschke

Using this upper bound, we can prove a result which contrasts nicely to the
deterministic case. Before this, we explain the notion of coarsening of a Boolean
function f : Assume that the set of variables is partitioned into so-called bins.
The coarsening g of f with respect to this partition is defined as follows. The
variables of g are the bins, and for any assignment of Boolean values to the bins,
the value of g equals the value of f if each variable inherits the value assigned
to the bin it belongs to. In particular, an oracle for f can be used as an oracle
for g. Empty bins (containing no variables of f) are considered as irrelevant.

Note that, in the following strategy, the learner is not assumed to have prior
knowledge about r.

Theorem 3. There is a Las Vegas strategy for learning monotone Boolean func-
tions using 2O(r) +O(r log n) expected queries in 2 log2 r +O(1) expected rounds,
if r of the n variables are relevant.

Proof. For s = 1, 2, 4, 8, 16, . . . perform 3 rounds as described below, until the
termination criterion in (3) is fulfilled:

(1) Throw the n variables at random into 23s bins. Then consider the induced
coarsening g of f , and apply a strategy due to Theorem 2 to learn s relevant
bins by O(s22s) queries. Note that this step fails if still s < r and if g should
have more than s relevant bins.

(2) Search for one relevant variable in each relevant bin. If a bin contains
exactly one relevant variable, this can be done by log2 n queries in one round,
and for all such bins in parallel. (Details need some care, but are quite obvious.)
This is a total of at most s log2 n queries.

(3) Test whether all relevant variables have been found, otherwise double
s and repeat. For this termination test, try all possible assignments y on the
detected relevant variables and assign 0 to all remaining variables. Similarly,
assign 1 to all remaining varaibles. These are at most 2s+1 queries. Due to
monotonicity of f , no further relevant variables exist if and only if, for every y,
the all-0 and the all-1 assignment give the same function value.

Although the first rounds may fail, (3) ensures correctness of the final out-
come. Consider the triples of rounds when s ≥ r is already reached. These triples
are called trials in the following. As soon as the r relevant variables get into r
different bins in a trial, all relevant bins will now be found in (1), and all the
relevant variables will be found in (2), which is then verified in (3). Hence a fail-
ure in a trial appears only if the relevant variables are not thrown into r distinct
bins. The refore the failure probability is at most r2/23s.

The first trial needs 2O(r) queries in (1) and (3), and O(r log n) queries in (2).
Since s is always doubled, the query number in all previous rounds (with s < r)
is within these bounds. After a failure in a trial with parameter s, the next trial,
with parameter 2s, will ask O(4s222s) queries in (1) and (3), and 2s log2 n queries
in (3). However it is performed with probability less than r2/23s. (Actually, this
is a generous bound.) That means, the expected query number is bounded by
O(r2s2/2s +r2s(log n)/23s). The sum of these terms over all trials is convergent,

Parallel Learning of Monotone Boolean Functions 509

hence the first trial dominates the expected query number. The expected number
of rounds is obviously 2 log2 r + O(1). •

We conclude this section with a number of remarks.
(i) If r is known prior to learning then, obviously, the same query number

can be achieved in O(1) rounds. The only critical point is to guess r.
(ii) We have used 23s bins for ease of presentation only; a smaller number of

bins would be sufficient. Moreover we may simplify the strategy: If the prospec-
tive number of bins should exceeed n, we may consider f instead of a coarsening,
thus the failure probability is 0.

(iii) Note that monotonicity is not really exploited. We used it only in (3), to
test for the existence of further relevant variables. The same strategy is applicable
to either class of Boolean functions which has the following properties: The class
is closed under projection (i.e. fixing partial assignments), and it admits an O(1)
query test, deciding whether a function from the class is constant.

(iv) The use of Theorem 2 is essential to our strategy. We do not see how to
avoid it.

(v) Our proof in [5] shows that a family of O(s22s + s2s log n) random as-
signments is sufficient for identifying functions with at most s relevant variables,
with high probability. Since our strategy is highly random anyway, we may use
random assignments in (1), instead of explicitly constructed families (which is
apparently a very difficult matter).

(vi) Another important issue besides pure query complexity is the computa-
tional complexity, i.e. the amount of auxiliary computation to identify f from
the answers given by the oracle. The only problem lies in the application of Theo-
rem 2. For satisfactory solutions we refer to [6]. In particular, we can derive time
bounds like O(exp(r)+n log n), which resembles to the notion of fixed-parameter
tractability.

4 The Coefficients in Nearly Query-Optimal
Deterministic Strategies

In view of Corollary 1, it is now worthy to study the constant factors u, v, w in
deterministic strategies using u2r + vr log2 n queries in wr rounds.

First we observe u ≥ 2: Even if the learner gets the relevant variables for free,
2r+1 queries are necessary to verify that these are in fact the only relevant vari-
ables. Namely, for each assignment on the alleged relevant variables, two queries
must be asked, where all other variables are 0 or 1, respectively. On the other
hand, a total of 2r+1 queries during the whole learning process (that is u = 2)
are sufficient for testing whether all relevant variables have been found, due to a
simple a rgument: Even if some termination tests indicate further relevant vari-
ables, the learner does not have to repeat earlier queries of this type. Altogether,
u is the least interesting constant. For v we have the trivial information-theoretic
lower bound v ≥ 1. It arises the question how small v can be actually made.
The following strategy has v = 2 + o(1), w = 3, and u = 2. The skeleton of

510 P. Damaschke

this strategy has been given in [5], but there we did not worry about constant
factors, therefore some refinements of the strategy itself and of the analysis are
necessary.

We use some loose but convenient notion: An assignment x is identified with
the set W of variables having value 1 in x. Consequently, we write f(W) for
f(x), and to “query a set W” means to ask f(W).

Theorem 4. Monotone Boolean functions with at most r relevant variables can
be learned by 2r+1 + (2 + o(1))r log2 n queries in 3r rounds.

Proof. Let f be the given function and V its set of n Boolean variables. Assume
f(∅) = 0 and f(V) = 1, otherwise f is constant, and we are done.

We arrange the variables as a q-hypercube of dimension q = dlog2 ne, some
irrelevant dummy variables may be added if n is not a power of 2. This naturally
defines q pairs of (q−1)−hypercubes. In the first round we query q of these (q−1)-
hypercubes, exactly one from each pair. If W has been queried and f(W) = 0
then W becomes a so-called lower set, and V \W becomes an upper set. Similarly,
if f(W) = 1 then W is declared to be an upper set, and V \ W is a lower set.

There follow two rounds with q assignments formed in the following way (but
not all of them will be queried). Arrange the upper sets in arbitrary order. Then
the candidate sets to be queried are the intersections of the first i upper sets,
for i = 1, . . . , q. We partition this chain of nested sets into approximately

√
q

segments of length about
√

q. In the second round, we query the first set (con-
taining a single variable v) and the

√
q sets bounding the segments. If f({v}) = 1

then v is relevant. Hence we have found some relevant variable after 2 rounds
with q +

√
q queries.

Consider the other case f({v}) = 0. There must be a jump from f = 0 to
f = 1 in our chain. In the third round we query the

√
q sets of the segment

where this jump occured. Let W and W ∪ W ′ be those neighbored sets in our
chain with f(W) = 0 and f(W ∪ W ′) = 1. By construction, there is a unique
pair of (q − 1)-hypercubes H and H ′ such that: W ⊂ H, W ′ ⊂ H ′, H is an
upper set, and H ′ is a lower set.

We have two subcases. If f(H) = f(H ′) then one easily sees that both H and
H ′ contain at least one relevant variable. (Since f is monotone, this holds for any
complementary pair of sets.) If f(H) 6= f(H ′) then obviously f(H ′) = 0. Since
f is monotone, this implies f(W ′) = 0 = f(W). Together with f(W ∪ W ′) = 1,
we conclude as above that both W and W ′ contain relevant variables.

In order to distinguish these subcases, the learner has to query both H and
H ′. In the first round, only one of them has been queried. The second query
might be asked in a fourth round, but we can save this round by asking all these
partner queries in the interesting segment already in the third round. These are√

q additional queries. In summary, we have found two disjoint subsets containing
relevant variables, after 3 rounds with q + 3

√
q queries. This situation is called

a splitting .

The whole process described above is recursively applied on the mentioned
subsets, while the suitable assignment on the remaining variables is fixed. (De-

Parallel Learning of Monotone Boolean Functions 511

tails should be clear.) This yields a binary tree whose nodes are subsets of vari-
ables, and whose leaves contain one detected relevant variable each. If no further
splitting is made then the tree is ready, and we test whether all relevant vari-
ables already appear as leaves. This termination test was described prior to the
theorem, and we argued that 2r+1 queries are needed during the whole search. In
the negative case we find some non-constant “projection” of f and can continue
the process with a new tree.

Altogether we obtain a sequence of binary trees. The total number of inner
nodes is at most r − 1, and the sum of depths is at most r. An inner node
represents 3 rounds, a leaf represents 2 rounds, but the termination tests add a
further round to the deepest leaves in each tree. Hence every node represents 3
rounds, which gives w = 3 in the worst case. The number of queries (excluding
those of the temination tests) is bounded by

r(q +
√

q) + (r − 1)(q + 3
√

q) = (2r − 1)q + (4r − 3)
√

q = (2 + o(1))q.

(For log n > 16r2 we even have v ≤ 2.) •

Once more, there remain some open questions. First, we conjecture that
v = 2 is optimal. Furthermore, we do not know any positive constant lower
bound for w. We only have an alternative strategy with w = 2, but v = 6, and
u = r. (Here u is no longer constant, since we perform termination tests for many
variables which are only suspected to be relevant.) But it is not clear whether w
can be made arbitrarily small, at cost of large constant v. The same adversary
construction as in Lemma 1 gives some lower bound for the v −w−tradeoff, but
we have no strategy which achieves the corresponding upper bound. The problem
is of similar nature as that mentioned at the end of Section 2.

References

1. D.J. Balding, D.C. Torney: A comparative survey of non-adaptive pooling designs,
in: Genetic Mapping and DNA Sequencing (IMA Volumes in Mathematics and Its
Applications) (Springer 1995), 133-155

2. D.J. Balding, D.C. Torney: Optimal pooling designs with error detection, Journal
of Comb. Theory A 74 (1996), 131-140

3. A. Blum, L. Hellerstein, N. Littlestone: Learning in the presence of finitely or
infinitely many irrelevant attributes, Journal of Computer and System Sciences 50
(1995), 32-40

4. N.H. Bshouty, L. Hellerstein: Attribute-efficient learning in query and mistake-
bound models, 9th Conf. on Computational Lerning Theory COLT’96, 235-243

5. P. Damaschke: Adaptive versus nonadaptive attribute-efficient learning, 30th ACM
Symp. on Theory of Computing STOC’98, 590-596, accepted by Machine Learning

6. P. Damaschke: Computational aspects of parallel attribute-efficient learning, 9th
Int. Workshop on Algorithmic Learning Theory ALT’98, LNAI 1501, 103-111

7. P. Damaschke: Randomized group testing for mutually obscuring defectives, Info.
Proc. Letters 67 (1998), 131-135

512 P. Damaschke

8. A. De Bonis, L. Gargano, U. Vaccaro: Group testing with unreliable tests, Info.
Sci. 96 (1997), 1-14

9. A. De Bonis, U. Vaccaro: Improved algorithms for group testing with inhibitors,
Info. Proc. Letters 67 (1998), 57-64

10. A. Dhagat, L. Hellerstein: PAC learning with irrelevant attributes, 35th IEEE
Symp. on Foundations of Computer Science FOCS’94, 64-74

11. M. Farach, S. Kannan, E. Knill, S. Muthukrishnan: Group testing problems in
experimental molecular biology, Compression and Complexity of Sequences ’97,
357-367

12. P. Fischer, N. Klasner, I. Wegener: On the cut-off point for combinatorial group
testing, Discrete Applied Math. 91 (1999), 83-92

13. T. Hofmeister: An application of codes to attribute-efficient learning, 5th European
Conf. on Computational Learning Theory EuroCOLT’99, LNAI 1572 (1999), 101-
110

14. J. Kivinen, H. Mannila, E. Ukkonen: Learning hierarchical rule sets, 5th Conf. on
Computational Learning Theory COLT’92, 37-44

15. E. Knill: Lower bounds for identifying subset members with subset queries, 6th
ACM-SIAM Symp. on Discrete Algorithms SODA’95, 369-377

16. N. Littlestone: Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm, Machine Learning 2 (1988), 285-318

17. M. Plotkin: Binary codes with specified minimum distances, IEEE Trans. Info.
Theory 6 (1960), 445-450

18. R.A. Servedio: Computational sample complexity and attribute-efficient learning,
31st ACM Symp. on Theory of Computing STOC’99

19. A. Ta-Shma: Classical versus quantum communication complexity, SIGACT News
30(3) (1999), 25-34

20. R. Uehara, K. Tsuchida, I. Wegener: Optimal attribute-efficient learning of dis-
junction, parity, and threshold functions, 3rd European Conf. on Computational
Learning Theory EuroCOLT’97, LNAI 1208, 171-184

21. L.G. Valiant: Projection learning, 11th Conf. on Computational Learning Theory
COLT’98, 287-293

Max- and Min-Neighborhood Monopolies

Kazuhisa Makino1, Masafumi Yamashita2, and Tiko Kameda2

1 Division of Systems Science, Graduate School of Engineering Science, Osaka
University, Toyonaka, Osaka, 560-8531, Japan. makino@sys.es.osaka-u.ac.jp
2 Department of Computer Science and Communication Engineering, Kyushu

University, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
mak@csce.kyushu-u.ac.jp

3 School of Computing Science, Faculty of Applied Sciences, Simon Fraser University,
Burnaby, British Columbia, V5A 1S6 Canada. tiko@cs.sfu.ca

Abstract. Given a graph G = (V, E) and a set of vertices M ⊆ V ,
a vertex v ∈ V is said to be controlled by M if the majority of v’s
neighbors (including itself) belongs to M . M is called a monopoly if
every vertex v ∈ V is controlled by M . For a specified M and a range for
E (E1 ⊆ E ⊆ E2), we try to determine E such that M is a monopoly in
G = (V, E). We first present a polynomial algorithm for testing if such
an E exists, by formulating it as a network flow problem. Assuming that
a solution E does exist, we then show that a solution with the maximum
or minimum |E| can be found in polynomial time, by considering them
as weighted matching problems.
In case there is no solution E, we want to maximize the number of vertices
controlled by the given M . Unfortunately, this problem turns out to be
NP-hard. We therefore design a simple approximation algorithm which
guarantees an approximation ratio of 2.

1 Preliminary

Let G = (V, E) be an undirected graph, where V (resp., E) is the vertex (resp.,
edge) set. We assume that G is simple, i.e., G contains neither self-loops nor
parallel edges. For a vertex v ∈ V , let us define the neighborhood of v by NG(v) =
{v} ∪ {w | (w, v) ∈ E}. A vertex v ∈ V is said to be controlled by a vertex set
M ⊆ V if the majority of its neighbors is in M , i.e.,

|NG(v) ∩ M | ≥ |NG(v)|/2. (1)

Here we use a non-strict majority (including equality), however, all results ob-
tained in this paper hold for the strict majority as well. For a vertex set M ⊆ V ,
let Cont(G, M) denote the set of vertices of G controlled by M . We call M a
monopoly if it controls every vertex in the graph G, i.e., Cont(G, M) = V .

The notion of monopoly was introduced by N. Linial et al. [8] to understand
local majority voting in distributed computing. Local majority voting is mo-
tivated, for example, by agreement problems in agent systems (e.g., [2,14,15]).
Let us consider the problem for the agents to agree on a standard from among

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 513–526, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

514 K. Makino, M. Yamashita, and T. Kameda

some proposals [14]. Under the assumption that every agent knows who supports
which proposal, the agreement can be made simply by, for example, taking the
one that the majority of the agents supports. The agent system, however, could
be distributed too widely to admit of this solution, and this is why they sug-
gested heuristic algorithms based on partial information on the distribution of
the agents’ votes.

For simplicity, suppose that there are two proposals, 0 and 1, and that the
proposal that the majority of the agents supports is to be selected as the stan-
dard. Given, for each agent, the group of neighboring agents whose opinions
are available to it, a simple and natural heuristic to approximate the agreement
would be to take the majority of the opinions available to it, i.e., the opinions
of its neighbors and itself. This is called the deterministic local majority polling
system.

Peleg and his colleagues recently investigated such a system and determined
how many agents supporting, say 0, are necessary and sufficient for the agreement
to result in 0 [1,8,12]. They model the system by an undirected graph G = (V, E),
where V and E respectively represent the set of agents and the (symmetric)
neighborhood relation. Now, we can easily see that all agents decide on 0 if
and only if there is a monopoly M in G whose members all support 0. In the
deterministic local majority polling systems, ruling a monopoly M implies ruling
V (i.e., all agents), and therefore, monopolies play an important role in such
systems. Some other applications are discussed in [12].

Linial et al. [8] discussed the problems related to monopolies as packing and
covering problems on graphs. They showed that |M | is Ω(

√
n) and gave a graph

with a monopoly M of size O(
√

n), where n = |V |. As for computational com-
plexity, Peleg [12] showed that the problem of computing a minimum monopoly
is NP-hard, by reducing the minimum dominating set problem to it. Based on the
non-approximable results [3,9] on the set cover problem and its variants, includ-
ing the minimum dominating set problem, the following conjecture is plausible:
For any real ε > 0, the minimum monopoly problem has no (ln n − ε) approxi-
mation unless NP ⊆ Dtime(nlog log n). On the other hand, it is known [12] that a
greedy algorithm yields a (ln |E|+1) approximation for the minimum monopoly
problem. Bermond and Peleg [1] studied some of its modifications, “r-monopoly”
and “self-ignoring” monopoly. Repetitive versions of the local majority polling
system were also discussed by several authors [7,10,11,13].

As mentioned above, we can rule the whole system by ruling a small monopoly.
By this property, in some applications, a monopoly is a favorite concept, and
a (smart) way of monopolizing a given set by modifying the system topology
is looked for. Motivated by them, in this paper, we first consider the following
problem:

Max- and Min-Neighborhood Monopolies 515

Monopoly Verification

Input: Two graphs G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2,
and a vertex set M ⊆ V .

Question: Does there exist a graph G = (V, E) such that (1) E1 ⊆ E ⊆ E2
and (2) M is a monopoly in G ?

In case of YES, we want to compute a graph G with some additional property.
Among such properties, we consider the maximality and minimality.

Max-Neighborhood Monopoly

Input: Two graphs G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2,
and a vertex set M ⊆ V .

Output: A graph G = (V, E) such that (1) E1 ⊆ E ⊆ E2, (2) M is a
monopoly in G, and (3) M is not a monopoly in G′ = (V, E′) with
E1 ⊆ E′ ⊆ E2 and |E′| > |E|, if such an E′ exists; NO, otherwise.

Min-Neighborhood Monopoly

Input: Two graphs G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2,
and a vertex set M ⊆ V .

Output: A graph G = (V, E) such that (1) E1 ⊆ E ⊆ E2, (2) M is a
monopoly in G, and (3) M is not a monopoly in G′ = (V, E′) with
E1 ⊆ E′ ⊆ E2 and |E′| < |E|, if such an E′ exists; NO, otherwise.

Let us assume that the current system topology is represented by G2 = (V, E2)
(resp., G1 = (V, E1)). Then the members of M try to find the minimum-cost links
in E2 − E1 so that the topology obtained from G1 by removing (resp., adding)
such links secures the adoption of a proposal of M , if the members of M pay for
the cost of breaking (resp., establishing) links in E2 − E1. This corresponds to
the max-neighborhood monopoly (resp., min-neighborhood monopoly) problem.

We note that, if E1 = ∅, then the max-neighborhood monopoly problem
is a maximum subgraph problem (or a minimum edge-deletion problem). On
the other hand, if G2 is complete (i.e., G2 = Kn, where n = |V |), the min-
neighborhood monopoly problem is a minimum edge-augmentation problem.

Let us then consider the case in which the answer to the monopoly verification
problem is NO. In this case, we want to compute a graph G in which M controls
as many vertices in V as possible.

Max Controlled Set

Input: Two graphs G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2,
and a vertex set M ⊆ V .

Output: A graph G such that (1) E1 ⊆ E ⊆ E2 and (2) |Cont(G, M)| ≥
|Cont(G′, M)| holds for all G′ = (V, E′) with E1 ⊆ E′ ⊆ E2.

516 K. Makino, M. Yamashita, and T. Kameda

Section 2 studies the monopoly verification problem. We show that it is
polynomially solvable by reducing it to the network flow problem. In Sections 3
and 4, we consider the max- and min-neighborhood monopoly problems, respec-
tively. Although both problems are more general than the monopoly verification
problem, we show that they are also polynomially solvable. Finally Section 5
investigates the max controlled set problem. Contrary to the previous problems,
it turns out to be intractable, even if either G1 is empty or G2 is complete. We
finally present a simple approximation algorithm which guarantees the approxi-
mation ratio of 2.

For space reasons, proofs of some results are omitted.

2 Monopoly Verification Problem

For a graph G = (V, E) and A, B ⊆ V , let E(A, B) = (A × B) ∩ E = {(v, w) ∈
E | v ∈ A, w ∈ B}. If A = {v} (resp., B = {w}), then we simply write E(v, B)
(resp., E(A, w)) instead of E(A, B).

Suppose that M is a monopoly in a graph G = (V, E). Let U = V \ M and
D = E2\E1. We consider the following two modifications on E; (1) adding edges
in D(M, M) = (M × M) ∩ D to E and (2) deleting edges in D(U, U) from E.
Since these modifications do not affect the condition that M be a monopoly in
the graph G, we can assume in this section that the edge set E satisfies

E ⊇ E1 ∪ D(M, M), (2)
E ⊆ E1 ∪ D(M, M) ∪ D(U, M). (3)

For a vertex v ∈ U , let

deficit(v) = |NG1(v) ∩ U | − |NG1(v) ∩ M |. (4)

By definition, v is controlled by M in G1 if and only if deficit(v) ≤ 0. Let U>

and U≤ be the sets of vertices v ∈ U such that deficit(v) > 0 and deficit(v) ≤ 0,
respectively. Then v ∈ U≤ is controlled by M in any graph G with E (⊇ E1)
that satisfies property (3). Thus, we can restrict E to

E(U≤, M) = E1(U≤, M) (i.e., E ⊆ E1 ∪ D(M, M) ∪ D(U>, M)). (5)

Let G+ = (V, E1 ∪ D(M, M)). For a vertex v ∈ M , let

surplus(v) = |NG+(v) ∩ M | − |NG+(v) ∩ U |. (6)

By property (2), surplus(v) represents an upper bound on the number of
edges (v, w) ∈ D(v, U>) that can be added to G1. If surplus(v) < 0 holds for
some v, we can see that v is not controlled by M in any graph G = (V, E) with
E1 ⊆ E ⊆ E2. We thus assume that all vertices v ∈ M satisfy surplus(v) ≥ 0.

We now define a network N = (G∗ = (V ∗, E∗), c : E∗ 7→ IR+) by

V ∗ = U> ∪ M ∪ {s, t},

E∗ = Es ∪ Et ∪ D(U>, M),

Max- and Min-Neighborhood Monopolies 517

where Es = {(s, v) | v ∈ M} and Et = {(w, t) |w ∈ U>}, and a capacity function

c(e) =

surplus(v) if e = (s, v) ∈ Es,
deficit(w) if e = (w, t) ∈ Et,
1 if e = (v, w) ∈ D(U>, M),

For example, let us consider the problem instance given in Figure 1. We can
see that the corresponding network N is represented by Figure 2.

i
i
i

i
i
i

r

q

p

w

v

u

HHHHHHH

M U (= V \ M)

(a) G1

i
i
i

i
i
i

r

q

p

w

v

uHHHHHHH�������

HHHHHHH�������

�

�

M U (= V \ M)

(b) G2

Fig. 1. Two graphs G1 = (V, E1) and G2 = (V, E2) with E1 ⊆ E2, where V =
{p, q, r, u, v, w} and M = {p, q, r}.

3

2

2

1 1

1

1

1

2

2
i i

i
i
i

i
i

s t

r

q

p

v

u
�������

HHHHHHH

HHHHHHH

HHHHHHH�������

�������

Es Et

Fig. 2. The network N = (G∗ = (V ∗, E∗), c : E∗ 7→ IR+) associated with G1, G2 and
M in Figure 1.

The following lemma shows our problem can be reduced to a network flow
problem in G∗.

Lemma 1. There exists a graph G = (V, E) such that (1) E1 ⊆ E ⊆ E2 and (2)
M is a monopoly in G, if and only if the network N has a maximum s-t flow
whose size is

∑
w∈U>

deficit(w).

518 K. Makino, M. Yamashita, and T. Kameda

Proof. Since
∑

w∈V ∗ c(w, t) =
∑

w∈U>
deficit(w), no s-t flow has size greater

than
∑

w∈U>
deficit (w). Let us assume first that network N has a maximum s-t

flow whose size is
∑

w∈U>
deficit(w). Since c(e), e ∈ E∗, is an integer, N has an

integral maximum s-t flow f , i.e., for each e ∈ E∗, f(e) is an integer. Let

E = E1 ∪ D(M, M) ∪ {e ∈ D(U>, M) | f(e) = 1}.

Since f eliminates all deficits, we can see that M is a monopoly in the graph
G = (V, E).

On the other hand, let us assume that M is a monopoly in the graph G =
(V, E) with E1 ⊆ E ⊆ E2. For each w ∈ U>, we arbitrarily choose deficit(w)
edges from E(w, M) − E1(w, M), and let ∆(w) be the set of deficit(w) such
edges. Note that M is a monopoly in G′ = (V, E′), where E′ = E1 ∪D(M, M) ∪⋃

w∈U>
∆(w). We now assign nonnegative integers to each e ∈ E∗ = Es ∪ Et ∪

D(U>, M) as follows.

f(e) =

c∗(e) if e = (s, v) ∈ Es,
deficit(w) if e = (w, t) ∈ Et,
1 if e = (v, w) ∈ D(M, U>) ∩ ∆(w),
0 if e = (v, w) ∈ D(M, U>) \ ∆(w).

where c∗(e) = |{(v, w) ∈ ∆(w) | w ∈ U>}| for e = (s, v) ∈ Es. We can see that
this f is an s-t flow and its size is

∑
w∈U>

deficit(w). ut
For example, Figure 3 shows a maximum flow in the network N given in

Figure 2. This flow corresponds to the graph G in Figure 3.
Let us note that the size of the network N satisfies |V ∗| ≤ n+2, |E∗| ≤ n+m2

and max c(e) ≤ n, where n = |V | and m2 = |E2|. Since a maximum flow on such
a network can be computed in Õ(min{(n + m2)3/2, n2/3(n + m2)}) time [6]1, we
have the following result.

Theorem 1. The monopoly verification problem can be solved in Õ(min{(n +
m2)3/2, n2/3(n + m2)}) time. ut

3 Max-Neighborhood Monopoly Problem

In this section, we consider the max-neighborhood monopoly problem. This sec-
tion always assumes that the answer to the monopoly verification problem is
“Yes”, i.e., there exists a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and M is
a monopoly in G. We show that the max-neighborhood monopoly problem can
be solved in polynomial time by solving a maximum weighted matching in an
associated graph.

Recall the definitions, U = V \ M and D = E2 \ E1. Let G = (V, E) be a
solution to the max-neighborhood monopoly problem, where E = E1 ∪ ∆ with
1 Õ() notation is similar to usual O() notation except that Õ() ignores logarithmic

factors.

Max- and Min-Neighborhood Monopolies 519

2/3

2/2

0/2

1/1 1/1

1/1

1/1

0/1

2/2

2/2
i i

i
i
i

i
i

s t

r

q

p

v

u

HHHHHHH

�������

�������

HHHHHHH

HHHHHHH��������������

HHHHHHH

HHHHHHH�������

Es Et
flow value/capacity

(a) N = (G∗ = (V ∗, E∗), c : E∗ 7→ IR+)

i
i
i

i
i
i

r

q

p

w

v

uHHHHHHH�������

HHHHHHH

�

�

M U (= V \ M)

(b) G

Fig. 3. A maximum flow in the network N given in Figure 2 and the corresponding
graph G.

∆ ⊆ D. By the maximality of ∆, ∆ clearly contains D(M, M). Let U> and U≤
be as defined in the previous section. For a vertex v ∈ U (resp., v ∈ M), define
deficit(v) (resp., surplus(v)) by (4) (resp., (6)). Further, for each v ∈ M , we
define the “usable surplus,”

surplus∗(v) = min{surplus(v), |D(v, U)|}. (7)

By our assumption, surplus∗(v) ≥ 0 and |∆(v, U)| = surplus∗(v) holds for each
v ∈ M . For every maximum ∆, |∆(M, M ∪ U)| is of the same size, and hence a
maximum ∆ contains a maximum ∆(U, U).

We now associate a graph G∗ = (V ∗, E∗) with G1 = (V, E1), G2 = (V, E2)
and M ⊆ V :

V ∗ = V1 ∪ V2 ∪ V3 ∪ V4,

E∗ =
⋃

(v,w)∈D(M∪U,U)

E(v,w),

where

V1 = {v1, v2, . . . , vsurplus∗(v) | v ∈ M},

520 K. Makino, M. Yamashita, and T. Kameda

V2 = {v1, v2, . . . , v|deficit(v)| | v ∈ U},

V3 = {xe1, xe2, xe3, xe4 | e ∈ D(M, U)},

V4 = {z<v,w>, z<w,v> | (v, w) ∈ D(U, U)},

E(v,w) =

{(vi, xe1), (xe`, xe(`+1)), (xe2, wj) | vi ∈ V1, wj ∈ V2, ` = 1, 2, 3}
if e = (v, w) ∈ D(M, U>),

{(vi, xe1), (xe`, xe(`+1)) | vi ∈ V1, ` = 1, 2, 3} if e = (v, w) ∈ D(M, U≤),
{(xe4, z<v,w>), (z<v,w>, z<w,v>), (z<w,v>, xe′4) | e ∈ D(M, v), e′ ∈ D(M, w)}

if (v, w) ∈ D(U>, U>),
{(xe4, z<v,w>), (vi, z<v,w>), (z<v,w>, z<w,v>), (z<w,v>, xe′4) | e ∈ D(M, v),

e′ ∈ D(M, w), vi ∈ V2} if (v, w) ∈ D(U≤, U>),
{(xe4, z<v,w>), (vi, z<v,w>), (z<v,w>, z<w,v>), (z<w,v>, xe′4), (z<v,w>, wj)
| e ∈ D(M, v), e′ ∈ D(M, w), vi, wj ∈ V2} if (v, w) ∈ D(U≤, U≤).

Here we assume that z<v,w> 6= z<w,v>. Moreover, let us define a function weight :
E∗ 7→ IR+ by

weight(e∗) =

4L if e∗ = (xe1, xe2),
L if e∗ = (xe3, xe4),
3L if e∗ 6= (xe1, xe2), (xe3, xe4) and e∗ ∈ E(v,w): (v, w) ∈ D(M, U),
3 if e∗ = (z<v,w>, z<w,v>),
2 otherwise,

(8)

where

L >
∑

e∈D(U,U)

weight(Ee). (9)

Here weight(T) =
∑

e∗∈T weight(e∗) for a set T ⊆ E∗.
Note that every E(v,w) forms a tree, and satisfies E(v,w) ∩ E(v′,w′) = ∅ if

(v, w) 6= (v′, w′). By (8) and (9),

weight(e∗) >
∑

(v,w)∈D(U,U)

weight(E(v,w)) (10)

holds for each e∗ ∈ E(v,w) with (v, w) ∈ D(M, U).
We now show that a maximum weighted matching S in G∗ corresponds to a

desired graph G. Let Weight denote the weight of a maximum weighted matching
S, i.e., Weight = weight(S). Let Θ = Θ1 + Θ2, where

Θ1 = L
∑

v∈M

surplus∗(v) + L
∑

v∈U>

deficit(v) + 5L|D(M, U)| (11)

Θ2 = 3|D(U, U)| + |∆(U, U)|. (12)

(Recall that G = (V, E = E1 ∪ ∆) is a desired graph.)

Lemma 2. Weight ≥ Θ holds.

Max- and Min-Neighborhood Monopolies 521

Proof. Let us construct, from ∆, a matching T of G∗ with weight weight(T) = Θ.
We first introduce mappings α and β for each edge (v, w) ∈ ∆(M, U).

Let α be an arbitrary one-to-one mapping from ∆(M, U) to V1 such that
α(v, w) = vi for some i = 1, 2, . . . , surplus∗(v). Since every v ∈ M satisfies
|∆(v, U)| = surplus∗(v), α is well-defined. Let V ′ = {w1, w2, . . . , wdeficit(w) |w ∈
U>} and V ′′ = {xe3 | e ∈ D(M, U)}. Let β be an arbitrary injective mapping
from ∆(M, U) to V ′ ∪ V ′′ such that (i) either β(v, w) = wi or x(v,w)3 holds
for every (v, w) ∈ ∆(M, U), and (ii) for every wi ∈ V ′, there exists an edge
(v, w) ∈ ∆(M, U) such that β(v, w) = wi. Here a mapping χ is called injective if
χ(p) 6= χ(q) holds for p 6= q. Since M is a monopoly in G, β is also well-defined.
These α and β show how to allocate the surplus on M to the deficit on U , where
β(v, w) = x(v,w)3 means that (v, w) produces the surplus on w.

Similarly, for each w ∈ U , let γw be an injective mapping from ∆(w, U)
to {w1, w2, . . . , w−deficit(w)} ∪ {x(v,w)4 |β(v, w) = x(v,w)3}, where {w1, w2, . . . ,
w−deficit(w)} = ∅ if deficit(w) ≥ 0. Intuitively, γw(w, u) = wi means that the
surplus on w is used to add (w, u) to G1. On the other hand, γw(w, u) = x(v,w)4
means that the surplus on v which is transferred through the edge (v, w) to w
is used to add (w, u) to G1.

From these mappings, we define a matching T in G∗. For a vertex e = (v, w) ∈
D(M, U), define a set Te of edges in G∗ by

Te =

{ {(α(e), xe1), (xe2, β(e)), (xe3, xe4)} if e ∈ ∆(M, U) and β(e) = wi for some i,
{(α(e), xe1), (xe2, β(e))} if e ∈ ∆(M, U) and β(e) = xe3,
{(xe1, xe2), (xe3, xe4)} otherwise,

(13)

and for an edge e = (w, u) ∈ D(U, U), define a set Te of edges in G∗ by

Te =
{{(γw(e), z<w,u>), (γu(e), z<u,w>)} if e ∈ ∆(U, U),

{(z<w,u>), z<u,w>)} otherwise. (14)

Let T =
⋃

e∈D(M∪U,U) Te. We can see that T forms a matching in G∗. Note
that, for an edge e = (v, w) ∈ D(M, U), weight(Te) = 7L, 6L or 5L, which
respectively correspond to the first, second, and third cases in (13). Exactly∑

w∈U>
deficit(w) (resp.,

∑
v∈M surplus∗(v)−∑

w∈U>
deficit(w) and |D(M, U)|−∑

v∈M surplus∗(v)) edges belong to the first case (resp., the second and third
cases). Thus,

∑

e∈D(M,U)

weight(Te) = Θ1. (15)

For an edge e = (w, u) ∈ D(U, U), weight(Te) = 4 or 3, which respectively corre-
spond to the first and second cases in (14). Exactly |∆(U, U)| (resp., |D(U, U)|−
|∆(U, U)|) edges belong to the first case (resp., the second case). Thus,

∑

e∈D(U,U)

weight(Te) = Θ2, (16)

which together with (15) implies weight(T) = Θ. This completes the proof. ut
To show the opposite inequality, let us show the following lemma.

522 K. Makino, M. Yamashita, and T. Kameda

Lemma 3. Let T be a matching of G∗ such that weight(T) ≥ Θ1. Then (15)
holds.

Proof. For each edge e ∈ D(M, U), Ee forms a tree, and Te is a matching in
Ee, where Te = T ∩ Ee. The weight of a maximum matching in E(v,w) is 5L
when surplus∗(v) = 0. When surplus∗(v) > 0, the weight is 7L if deficit(w) >
0, and 6L, otherwise. However, since T is a matching, (1) among those with
surplus∗(v) > 0 and deficit(w) > 0, at most (

∑
w∈U>

deficit(w)T(v,w)) edges can
have weight 7L, and (2) among those with surplus∗(v) > 0, at most (

∑
v∈M

surplus∗(v)T(v,w)) edges can have weight at least 6L. Since the weight of Te is
at least 5L, we have

∑

e∈D(M,U)

weight(Te) ≤ L
∑

v∈M

surplus∗(v) + L
∑

v∈U>

deficit(v) + 5L|D(M, U)|. (17)

Moreover, if
∑

e∈D(M,U) weight(Te) < Θ1, then

∑

e∈D(M,U)

weight(Te) ≤ Θ1 − L. (18)

From (10), this implies (15). ut
Let T be a matching in G∗ such that weight(T) ≥ Θ1. Then the proof of

Lemma 3 also shows that
⋃

e∈D(M,U) Te gives a desirable ∆′ in the sense that
M is a monopoly in G = (V, E1 ∪ D(M, M) ∪ ∆′), where ∆′ is obtained by
reversing the construction of (13). Moreover, this implies that

⋃
e∈D(U,U) Te gives

a desirable ∆′′ (i.e., M is a monopoly in G = (V, E1∪D(M, M)∪∆′∪∆′′)), where
∆′′ is obtained by reversing the construction of (14). More precisely, e ∈ ∆′′ if
and only if weight(Te) = 4. We therefore have the following lemma:

Lemma 4. Weight ≤ Θ holds. ut

From Lemmas 2 and 4, we obtain an interesting characterization of the max-
neighborhood monopoly problem.

Corollary 1. Weight = Θ holds. ut

Let us note that the size of the graph G∗ satisfies |V ∗| = O(m2), |E∗| =
O(m2

2) and max weight(e∗) = O(m2
2), where m2 = |E2|. Since a maximum

weighted matching on such a graph can be computed in Õ(m5/2
2) time [4], we

have the following theorem.

Theorem 2. The max-neighborhood monopoly problem can be solved in Õ(m5/2
2)

time. ut

Max- and Min-Neighborhood Monopolies 523

4 Min-Neighborhood Monopoly Problem

In this section, we consider the min-neighborhood monopoly problem. As in
Section 3, we assume in this section that there exists a graph G = (V, E) such
that E1 ⊆ E ⊆ E2 and M is a monopoly in G.

Recall the definition, U = V \ M . For a vertex v ∈ V , let

surplus(v) = |NG1(v) ∩ M | − |NG1(v) ∩ U |, (19)

and let deficit(v) = −surplus(v). Note that these definitions are different from
those in the previous sections. By definition, v is controlled by M in G1 if and
only if surplus(v) ≥ 0 (i.e., deficit(v) ≤ 0). Let M−, M0 and M+ be the sets of
vertices v ∈ M such that surplus(v) < 0, surplus(v) = 0 and surplus(v) > 0,
respectively, and let U−, U0 and U+ be the sets of vertices v 6∈ M such that
surplus(v) < 0, surplus(v) = 0 and surplus(v) > 0, respectively. By definition,
M = M− ∪ M0 ∪ M+ and U = U− ∪ U0 ∪ U+.

Let G = (V, E) be a solution to the min-neighborhood monopoly problem,
and let E = E1 ∪ ∆, where ∆ ⊆ D = E2\E1. Since minimizing E is clearly
equivalent to minimizing ∆, we discuss properties of ∆ instead of those of E.
Based on discussions in Section 2, without loss of generality, we can assume

∆ ⊆ D(M, M) ∪ D(U−, M). (20)

The following lemma is easy to prove:

Lemma 5. For each v ∈ U−,

|∆(v, M)| = deficit(v). (21)

The following corollary is a direct consequence of the above lemma.

Corollary 2. |∆(U−, M)| =
∑

v∈U− deficit(v). ut

Corollary 2 implies that, for every minimum ∆, |∆(U−, M)| is of the same
size, and hence ∆ contains a minimum ∆(M, M).

We now associate a graph G∗ = (V ∗, E∗) with G1 = (V, E1), G2 = (V, E2)
and M ⊆ V as follows:

V ∗ = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5,

E∗ =
⋃

v∈U−,w∈M

E(v,w) ∪
⋃

v∈M−

Ev ∪ Ea,

where

V1 = {v1, v2, . . . , vdeficit(v) | v ∈ M−},

V2 = {v1, v2, . . . , vdeficit(v) | v ∈ U−},

V3 = {v1, v2, . . . , vsurplus(v) | v ∈ M+},

V4 = {x(v,w), y(v,w) | (v, w) ∈ D(U−, M)},

524 K. Makino, M. Yamashita, and T. Kameda

V5 = {z<v,w>, z<w,v> | (v, w) ∈ D(M, M)},

E(v,w) = {(vi, x(v,w)), (x(v,w), y(v,w)), (y(v,w), z<w,u>),

(y(v,w), wj) | vi ∈ V2, wj ∈ V3, z<w,u> ∈ V5} for (v, w) ∈ D(U−, M+),

E(v,w) = {(vi, x(v,w)), (x(v,w), y(v,w)), (y(v,w), z<w,u>) |
vi ∈ V2, z<w,u> ∈ V5} for (v, w) ∈ D(U−, M0 ∪ M−),

Ev = {(vi, z<v,w>) | vi ∈ V1, (v, w) ∈ D(v, M)} for v ∈ M−,

Ea = {(z<v,w>, z<w,v>) | z<v,w>, z<w,v> ∈ V5}.

Here we assume that s(v,w) = s(w,v) for s = x, y, and z<v,w> 6= z<w,v>. We also
define a function, weight : E∗ 7→ IR+ by

weight(e) =

1 if e ∈ Ea,
3L if e ∈ Eb,
2L otherwise,

where Eb = {(x(v,w), y(v,w)) |x(v,w), y(v,w) ∈ V4} and L is a number greater than
|Ea|.

Let S be a maximum weighted matching in G∗, and let Weight denote its
weight; i.e., Weight = weight(S), where weight(T) =

∑
e∈T weight(e) for a set

T ⊆ E∗.
Although the proof is skipped due to the space limitation, we can show that

computing a maximum weighted matching in G∗ is polynomially equivalent to
the min-neighborhood monopoly problem.

Lemma 6. Let Weight and L be as defined above, and let ∆ be a minimum edge
set added to G1 so that M is a monopoly in G = (V, E1 ∪ ∆). Then

Weight − Θ = |D(M, M)| − |∆(M, M)|
holds, where

Θ = 3L|D(U−, M)| + L
∑

v∈U−

deficit(v) + 2L
∑

v∈M−

deficit(v). (22)

Let us note that the size of the graph G∗ satisfies |V ∗| = O(m2), |E∗| =
O(m2

2) and max weight(e∗) = O(m2), where m2 = |E2|. Since a maximum
weighted matching on such a graph can be computed in Õ(m5/2

2) time [4], we
have the following theorem.

Theorem 3. The min-neighborhood monopoly problem can be solved in Õ(m5/2
2)

time. ut

5 Max Controlled Set Problem

Let us finally consider the max controlled set problem. Unfortunately, this prob-
lem is intractable, even if we restrict ourselves to the edge-augmentation and the
edge-deletion problems.

Max- and Min-Neighborhood Monopolies 525

Theorem 4. The max controlled set problem is NP-hard, even if G1 is empty
or even if G2 is a complete graph. ut

Since the max controlled set problem seems to be intractable, we consider an
approximation algorithm. We present a simple approximation algorithm which
guarantees an approximation ratio of 2.

For two graphs G1 = (V, E1) and G2 = (V, E2), and a set M ⊆ V , we
construct two graphs G+ = (V, E ∪ E+) and G++ = (V, E ∪ E++) for G1 and
G2 by

E+ = E1 ∪ D(M, M), and
E++ = E1 ∪ D(M, M) ∪ D(U, M),

respectively. Here U = V \ M . Let W+ and W++ be the sets of vertices in V
which are controlled by M in G+ and G++, respectively. The following lemma
is immediate from the definitions of G+ and G++.

Lemma 7. Let W+ and W++ be as defined above. Let W be a family of sets
W ⊆ V which are controllable by M in some graph G = (V, E) with E1 ⊆ E ⊆
E2. Then we have

|W+ ∩ M | = max
W∈W

|W ∩ M |,
|W++ ∩ U | = max

W∈W
|W ∩ U |.

Lemma 8. Let W+ and W++ be as defined above. Let W ∗ be the larger of the
two, i.e., |W ∗| = max{|W+|, |W++|}. Then W ∗ satisfies

|W ∗| ≥ 1/2 max
W∈W

|W |.

Proof. It follows from Lemma 7 that maxW∈W |W | ≤ |W+| + |W++| ≤ 2|W ∗|.
ut

Theorem 5. Given two graphs G1 = (V, E1), G2 = (V, E2), and a set M ⊆ V ,
we can compute in polynomial time a graph G = (V, E) with E1 ⊆ E ⊆ E2 such
that the size of the set controlled by M in G is at least half of that of a maximum
controlled set. ut

6 Conclusion

This paper discussed edge augmentation and deletion problems when the number
of vertices controlled by a given set M of vertices is held at maximum. These
problems were shown to be NP-complete in general, by a transformation from the
maximum independent set problem. However, it can be determined in polynomial
time if the addition (or deletion) of a set of edges can make M control all vertices,
by reducing it to a network flow problem.

526 K. Makino, M. Yamashita, and T. Kameda

One can easily extend the positive results in the following way. For a function
f on V , a vertex v ∈ V is called f-controlled if |NG(v)∩M |−|NG(v)\M | ≥ f(v).
Then the corresponding problems to monopoly verification, max-neighborhood
monopoly and min-neighborhood monopoly problems can be solved in poly-
nomial time by applying the network flow and matching arguments to them,
respectively, and the approximation argument also holds for the max f -cotrolled
set problem. However, the NP-hardness result does not hold for every function
f . For example, if f(v) = |V | for all v ∈ V , then the max f -cotrolled set problem
is polynomially solvable.

Some problems remain to be addressed in further work. One issue is the
search for faster or simpler algorithms for our problems. Another issue is to
consider max controlled set problem for special classes of graphs.

Acknowledgments. We thank the referees for their helpful suggestions.

References

1. J-C. Bermond and D. Peleg, The power of small coalitions in graphs, Proc.
SIROCCO’95, Olympia, Greece, Carleton Univ. Press, 173–184, 1995.

2. D. Fitoussi and M. Tennenholtz, Minimal social laws, Proc. AAAI’98, 26–31, 1998.
3. U. Feige, A threshold of ln n for approximating set cover, Proc. STOC’96, 314–318,

1996.
4. H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph match-

ing problems, Journal of the ACM, 38, 815-853, 1991.
5. M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, New York,

1979.
6. A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, Journal of the

ACM, 45, 783–797, 1998.
7. Y. Hassin and D. Peleg, Distributed probabilistic polling and applications to pro-

portionate agreement, Proc. ICALP’99, LNCS 1644, 402–411, 1999.
8. N. Linial, D. Peleg, Y. Rabinovich and M. Saks, Sphere packing and local majorities

in graphs, Proc. 2nd Israel Symposium on Theoretical Computer Science, IEEE
Computer Soc. Press, 141–149, 1993.

9. C. Lund and M. Yannakakis, On the hardness of approximating minimization prob-
lems, Proc. STOC’93, 286-293, 1993.

10. T. Nakata, H. Imahayashi, and M. Yamashita, Probabilistic Local Majority Voting
for the Agreement Problem on Finite Graphs, Proc. COCOON, LNCS 1627, 330–
338, 1999.

11. T. Nakata, H. Imahayashi, and M. Yamashita, A Probabilistic Local Majority
Polling Game on Weighted Directed Graphs with an Application to the Distributed
Agreement Problem, Networks (to appear).

12. D. Peleg, Local majority voting, small coalitions and controlling monopolies in
graphs: A review, Technical Report CS96-12, Weizmann Institute, 1996.

13. D. Peleg, Size bounds for dynamic monopolies, Discrete Applied Mathematics, 86,
263–273, 1998.

14. Y. Shoham and M. Tennenholtz, Emergent conventions in multi-agent systems:
initial experimental results and observations, Proc. KR’92, 225–231, 1992.

15. Y. Shoham and M. Tennenholtz, On the systhesis of useful social laws for artificial
agent societies, Proc. AAAI’92, 276–281, 1992.

Optimal Adaptive Fault Diagnosis of Hypercubes

Andreas Björklund

Department of Computer Science
Lund University

andreas@cs.lth.se

Abstract. System level fault diagnosis deals with the problem of iden-
tifying component failures in a multiprocessor system. Each processor is
either faulty or fault-free, and the objective is to find out the fault sta-
tus of each processor in the network by letting the processors test each
other. A test of a processor by another processor is possible if they are
connected in the system. If the tester itself is fault-free, it always reports
the fault status of the testee, but if the tester is faulty, the result of the
test cannot be trusted.
We show that for the hypercube multiprocessor system of dimension n,
in which at most n processors are faulty, adaptive diagnosis is possible
using at most 2n + n − 1 tests, which improves earlier bounds and is
optimal. We also present an algorithm which diagnoses the hypercube in
4 testing rounds, where each processor is scheduled for at most one test
of each round.

1 Introduction

In the fault diagnosis model of Preparata, Metze, and Chien [10], each processor
is either faulty or fault-free. The problem is to locate all faulty processors in the
system by letting the processors test each other. A test of a processor v (the
testee) by another processor u (the tester) denoted (u, v) is possible iff u and v
are connected in the system. The outcome of a test is 0(1) if the tester diagnosed
the testee as fault-free(faulty). If the tester itself is fault-free it always reports
the fault status of the testee, but if the tester is faulty, the result of the test
cannot be trusted. In adaptive diagnosis, you may choose what tests to be made
based on the outcomes of previous tests. Furthermore, it is assumed that the
fault-status of a processor does not change during the diagnosis.

We show that for the hypercube multiprocessor system of dimension n, in
which at most n processors are faulty, adaptive diagnosis is possible using at
most 2n + n − 1 tests, which is optimal. [8] shows the best previous bound of
2n + 3n

2 tests. We also present an algorithm which diagnoses the hypercube in
4 testing rounds, where each processor is scheduled for at most one test of each
round. This result improves on the 11 round algorithm in [8].

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 527–534, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

528 A. Björklund

2 Historical Notes

The problem of fault diagnosis of multiprocessor systems was originated by
Preparata, Metze and Chien [10]. They show that sometimes it is not possi-
ble to diagnose a multiprocessor system even though all possible tests are made.
Two necessary conditions for a system to be diagnosable is pointed out. The first
one is that a strict majority of the processors must be fault-free, and the second
one says that there may not be more faulty processors than the minimum degree
of the system. The degree of a processor is the number of processors connected
to it, and the minimum degree of a system is the minimum of the degrees of all
its processors.

The early research focused on non-adaptive diagnosis, i.e. you must decide
exactly which tests you will make prior to the diagnosis. Nakajima [9] is the first
to propose adaptive diagnosis, in which you may choose your tests depending
on the results of previous tests. This method increases the efficiency of fault
diagnosis drastically. [10] shows that a complete system on n processors, i.e. all
pairs of processors are connected, where at most k processors are faulty, requires
kn tests in the non-adaptive case. In contrast, Blecher [4] shows that n + k − 1
tests are necessary and sufficient for the adaptive diagnosis of the same system.
Note that this lower bound applies to all systems, since by removing connections
you will not add any testing possibilities. The question of whether this bound
is tight for some sparse systems as well is partially answered to the affirmative
in [7], in which some simple systems with at most a constant number of faulty
processors are considered.

Various kinds of fault diagnosis of the hypercube system are studied in [1],
[3], and [5]. The first results on adaptive diagnosis of the hypercube is obtained
by Feng et al. [6]. They present an algorithm using at most 2n(blog nc+2) tests,
embedded in at most n + 4 testing rounds. Kranakis and Pelc [8] shows that
2n + 3n

2 tests are sufficient, and that adaptive diagnosis can be carried out in
a constant number of rounds . We improve on their results by showing that
2n + n − 1 tests are always enough, and 4 testing rounds suffice. Our methods
differ from the ones in [8].

3 Preliminary Definitions

In the following the hypercube system of processors will be modelled by an undi-
rected graph in which the nodes represent processors, and the edges represent
connections between pairs of processors. Let P be the graph consisting of two
connected nodes, then the hypercube of dimension n, denoted Hn, is defined as
the cartesian product Hn = P × Hn−1, where H1 = P . From this definition, it
is clear that the hypercube Hn has 2n nodes and that it can be divided into two
identical hypercubes isomorphic to Hn−1, let us call them A and B, s.t. every
node in A is connected to exactly one node in B, and vice versa. We say that
(A, B) is a mirror decomposition of Hn for any such partitioning, and define the
corresponding mirror function A2B mapping every node of A to its neighbour in

Optimal Adaptive Fault Diagnosis of Hypercubes 529

B. Analogously, B2A is defined as the inverse function. For any set S of nodes,
we let ρ(S) be the number of faulty nodes contained in S. We know the correct-
ness of a set K of nodes, if for all nodes in K we know whether they are faulty
or not.

4 Adaptive Fault Diagnosis in 2n + n − 1 Tests

The lower bound of 2n + n − 1 tests in [4] for the complete graph on 2n nodes
with at most n faulty ones, applies to the hypercube Hn as well. We show that
this bound is tight for the hypercube.

4.1 Some Definitions and Lemmas

An honest trail T = (v1, v2, .., vm) in a graph is a multiple of distinct connected
nodes along with a collection of test results, (vi, vi+1) = 0 for all i = 1, 2, .., m−1.

Lemma 1. Let G = (V, E) be a graph with ρ(V) ≤ k, and T = (v1, v2, .., vm) be
an honest trail in G. If ρ(V \ T) = w, then all vi are fault-free for i > k − w.

Proof. The proof is by contradiction. Assume vj faulty, then vj−1 is faulty as
well, since the latter node has diagnosed vj as fault-free. Repeating the argument,
we conclude that all vl for l ≤ j are faulty, but we know that there is at most a
total of k faulty nodes in the graph, so j + w ≤ k. Thus, vi cannot be faulty for
i > k − w. ut

Corollary 1. The last node vk+1 of an honest trail T = (v1, v2, .., vk+1) in a
graph with at most k faulty nodes, is fault-free.

A vertex cut C of a connected graph G = (V, E) is a subset of V s.t. the graph
induced by removing C from G is no longer connected. The size of the smallest
vertex cut is called the connectivity of the graph. It is a well known fact that
the hypercube of dimension n ≥ 2 has connectivity n.

Lemma 2. Let G = (V, E) be a graph with connectivity k and ρ(V) ≤ k. Sup-
pose we know the correctness of a subset K of the nodes V , and at least one
of them is fault-free, and we also know an honest trail T = (v1, v2, .., vm), s.t.
T ∩ K = ∅, then
– In at most |V | − |K| − |T | + min(|T |, ρ(V \ K) + 1, k − ρ(K)) tests, we can

diagnose all of G.
– If in addition, we know a node w /∈ K ∪ T s.t. (vm, w) = 1, we can diagnose

all of G in at most |V | − |K| − |T | + min(|T |, ρ(V \ K), k − ρ(K) − 1) tests.

Proof. If |T | > k − ρ(K), then by lemma 1 we know that the last nodes on the
trail must be fault-free. Remove these from the trail and put them into K (since
they are correctly diagnosed). Thereby we have assured that |T | + ρ(K) ≤ k.
As long as K 6= V , we wish to extend the set K of diagnosed nodes. It can be

530 A. Björklund

accomplished by repeating the following procedure until the correctness of all
nodes are learned. If ρ(K) < k, we know that there must be a fault-free node u
in K adjacent to some node v in (V \ (K ∪ T)) ∪ {v1}. This is because the set
consisting of all nodes in T except v1 and the ρ(K) faulty nodes in K, cannot be
a vertex cut simply because its size is less than the connectivity of G. Make the
test (u, v) to diagnose v and put it into K. We distinguish between two cases.
If v = v1 and the outcome of the test was 1, we remove v1 from the trail T and
rename the remaining nodes of the trail so that the node formerly known as vi+1
now is called vi for 1 ≤ i ≤ m − 1. If v = v1 was found fault-free though, all
nodes in T are removed and put into K, since they all must be fault-free, leaving
an empty trail. In the second case, when v 6= v1, and if the result of the test was
1, and |T | + ρ(K) = k, the last node of the trail must be fault-free according
to lemma 1, and therefore it too is removed from T and put into K. If we ever
get ρ(K) = k, we immediately know that all nodes in V \ K must be fault-free.
Either way, eventually K = V , and we are done.

The tests made are easily counted, since every node not initially in K is
tested at most once, and the nodes on the original trail T are tested in order, i.e.
vi is tested before vj for i < j, and we stop testing the nodes on the trail either
when we find a fault-free one, or all turned out to be faulty. If only l < m of the
nodes on the original trail T are faulty, the last nodes vi for i > l + 1 are not
tested at all since they must be fault-free if vl+1 is. This also proves the small
improvement in the number of tests in the second statement of the lemma, since
in this case, when only l < m nodes on the trail are faulty, w must be faulty. On
the other hand, if w was diagnosed fault-free, then all vi ∈ T must be faulty. ut

4.2 The Main Result

Our proof that a hypercube graph of dimension n ≥ 3 with at most n faulty
nodes can be adaptively diagnosed in at most 2n +n−1 tests, is by induction. In
fact, we show that something slightly stronger holds. First, we show the result
for the hypercube of dimension 2.

Lemma 3. The hypercube of dimension 2 with at most 2 faulty nodes, either
cannot be diagnosed at all, and this can be established in 4 tests, or it is diagnosed
in 4 tests when no nodes are faulty, or at most 5 tests when some nodes are faulty.

Proof. The proof is by extensive case analysis. The hypercube of dimension 2
is a ring of four nodes. Call the nodes on the ring ri; 0 ≤ i < 4, where ri is
connected to ri+1 mod 4. Make all four tests along one direction of the ring, i.e.
(ri, ri+1 mod 4); 0 ≤ i < 4. If all four tests resulted in 1, the ring cannot be
diagnosed, since either r0 and r2 are faulty (r1 and r3 are fault-free) or r1 and
r3 are faulty (r0 and r2 are fault-free). Still, note that it is sufficient to establish
the correctness of just any one of the four nodes in order to diagnose all of them.
If all tests on the ring resulted in 0 though, all four nodes must be fault-free and
we are done. If exactly one test resulted in 1, assume w.l.o.g. (r0, r1) = 1 and
note that r0 and r3 are fault-free and r1 is faulty, so just use r3 to diagnose r2

Optimal Adaptive Fault Diagnosis of Hypercubes 531

and we are done. If exactly two tests resulted in 1, there are two cases. Either
two tests next to each other on the ring, or two node disjoint tests resulted in
1. Assume in the first case w.l.o.g. that (r0, r1) = (r1, r2) = 1 and note that r0
and r3 are fault-free and r1 is faulty, so just use r3 to diagnose r2 and we are
done. In the second case, assume w.l.o.g. (r0, r1) = (r2, r3) = 1 and note that r0
and r2 are fault-free, whereas r1 and r3 are faulty. Finally, if exactly three tests
resulted in 1, assume w.l.o.g. (r0, r1) = 0 and note that r1 is fault-free and r2 is
faulty. Make the test (r1, r0). If the result was 0, r0 is fault-free and r3 faulty,
otherwise r3 is fault-free and r0 is faulty. Either way, we are done. ut
The previous lemma provides the fundamental brick in our inductive proof.
Theorem 1. The hypercube Hn of dimension n ≥ 3 with at most n faulty nodes
can be adaptively diagnosed in at most 2n + n − 1 tests if precisely n nodes are
faulty, and in 2n + l tests if l < n nodes are faulty.

Proof. Let (A, B) be a mirror decomposition of Hn. Since the hypercube is
hamiltonian, it is possible to find a node disjoint path p = (v1, v2, .., vn+1) in A
when n ≥ 3. Make the tests (vi, vi+1) along the path for i = 1, 2, .. until either a
test resulted in 1, or all tests resulted in 0. In the first case, there is an m ≤ n
s.t. (vm, vm+1) = 1 and (vi, vi+1) = 0 for 1 ≤ i < m. Thus, there must be at
least one faulty node in A (one of vm and vm+1), and therefore, there are at
most n − 1 faulty nodes in B. Diagnose B, using the induction thesis, or lemma
3 in the event of n = 3. If B could not be diagnosed in the latter case, we
immediately know at least two fault-free nodes in A since B contains two faulty
nodes according to the proof of lemma 3. Use one of these to diagnose a node in
B and thereby gain complete knowledge of the correctness of all four nodes in
B. Finally, let a fault-free node in A test one of vm and vm+1 in order to find out
which of them is faulty. At most nine tests are made this way and three faults
are located, which is consistent with the theorem. If B can be diagnosed though,
the induction thesis for n > 3, and lemma 3 for n = 3, assures that at most
2n−1 + ρ(B) tests were made diagnosing B. If precisely n − 1 faulty nodes were
found in B, we once again only need to find out which one of the nodes vm and
vm+1 is faulty, which clearly can be made in less than 2n+n−1 tests for n ≥ 3. If
fewer than n−1 faults were found though, apply lemma 2 with T = (v1, v2, .., vm)
and K = B, and note that the assumptions of the second statement of lemma
2 are fulfilled since (vm, vm+1) = 1. Thus the number of tests made is at most
2n + ρ(V) when ρ(V) < n, and 2n + n − 1, when ρ(V) = n as claimed. One case
remains to be proven, namely when all the initial n tests along p returned 0.
But according to corollary 1, vn+1 in this case must be fault-free. Apply lemma
2 with T = (v1, v2, .., vn) and K = {vn+1}. The first statement of the lemma
assures that at most 2n + ρ(V) tests are made when ρ(V) < n, and 2n + n − 1
tests when ρ(V) = n. ut

5 Adaptive Fault Diagnosis in 4 Rounds

The efficiency of adaptive fault diagnosis can of course be measured counting
the number of tests needed as in the previous section. For practical purposes,

532 A. Björklund

this is a poor measurement though. A more adequate one, due to the parallel
implementation possibilities, is the number of testing rounds needed to diagnose
the graph. In each round, every node is allowed to participate in at most one
test, either as a tester or a testee. In [2], it was shown that the complete graph
with a majority of fault-free nodes, can be diagnosed in 10 rounds. [8] showed
that for the hypercube of dimension n, with at most n faulty nodes, 11 rounds
suffice. The best lower bound, to our knowledge, is that 2 rounds is not enough.
The number of tests made after 2 rounds is at most 2n, which violates the lower
bound of 2n + n − 1 tests for n > 1. However, we present a diagnosing scheme
in 4 rounds.

5.1 Some Definitions and a Lemma

Two arcs a = (u1, u2) and b = (u3, u4) are said to overlap if ui = uj for some
1 ≤ i ≤ 2, 3 ≤ j ≤ 4. A 3-round testing scheme of a graph G = (V, E) is a tuple
(T, R) where T = (V, A) is a directed subgraph of G, and R : A → {1..3} is
an arc colouring function s.t. for all distinct pairs of overlapping arcs a, b ∈ A,
R(a) 6= R(b). Define the ith round of (T, R) as Ai = {a|a ∈ A, R(a) = i}.
Let H = (V1, E1) be a subgraph of G, then T |H is the subgraph of T on V1
containing those arcs (u, v) ∈ A s.t. (u, v) ∈ E1. We say that a 3-round testing
scheme (Tn, R) for Hn is recursively hamiltonian for n ≥ 2 if

– Tn contains a hamiltonian cycle C ⊆ A for Hn.
– There are at least two distinct arcs a1, a2 ∈ A2 ∩ C s.t. no arc in A3 overlap

a1 or a2.
– If n > 2, there is a mirror decomposition (A, B) of Hn s.t. (Tn|A, R) and

(Tn|B, R) are recursively hamiltonian.

The first and third property ensure the existences of hamiltonian cycles which
we will use in our algorithm. The second property is merely added to show the
existence of a 3-round testing scheme having the other two.

Lemma 4. There is a recursively hamiltonian 3-round testing scheme (Tn, R)
for all hypercubes Hn for n ≥ 2.

Proof. For H2, we let T2 consist of a directed cycle of arcs a1, a2, a3, a4 on its 4
nodes. We define R(a1) = R(a3) = 1, and R(a2) = R(a4) = 2. It is easy to verify
that the three properties of the definition for recursively hamiltonian holds for
this construction. We proceed by induction on n. Assume there is a recursively
hamiltonian 3-round testing scheme Sn−1 = (Tn−1, R) for Hn−1, and construct
one Sn = (Tn, R) for Hn as follows. Let (A, B) be a mirror decomposition of Hn.
Use the description of Sn−1 to build recursively hamiltonian 3-round schemes
SA = (TA, R) for A, and SB = (TB , R) for B, s.t. if (u1, u2) is an arc in TA,
(A2B(u2), A2B(u1)) is an arc in TB . By the mirror symmetry, it is clear that
if (v1, v2) is an arc in TB , (B2A(v2), B2A(v1)) is an arc in TA. Furthermore,
choose the colouring function R so that R((u1, u2)) = R((A2B(u2), A2B(u1))),
for all arcs (u1, u2) in TA. In words, this means that we embed the recursively

Optimal Adaptive Fault Diagnosis of Hypercubes 533

hamiltonian 3-round scheme in A and B in opposite directions, but otherwise
identically. The second property of the definition for recursively hamiltonian
states that there are two arcs a1, a2 in TA on a hamiltonian cycle of A, whose
endpoints do not belong to any arcs a with R(a) = 3. Our embeddings TA and
TB ensure that for a1 = (u1, u2), b1 = (A2B(u2), A2B(u1)) belongs to TB , with
R(a1) = R(b1), and b1 is an arc having the second property in the definition of
recursively hamiltonian. Similarily, we can construct b2 from a2. Thus none of
the nodes u1, u2, A2B(u2), or A2B(u1) are part of an arc a with R(a) = 3, so
we may add the arcs x1 = (u1, A2B(u1)) and x2 = (A2B(u2), u2), and define
R(x1) = R(x2) = 3, to conclude that Tn = TA + TB + x1 + x2 is hamiltonian.
The arcs a2 and b2 obey the second property of recursively hamiltonian, and the
third one follows from our inductive construction. ut

5.2 The Main Result

Our algorithm to diagnose the hypercube in 4 rounds is partially static, since
the first three rounds are always the same. The tests of the fourth round though,
may be completely different depending on the outcomes of the tests scheduled
earlier.

Theorem 2. The hypercube Hn for n ≥ 3 can be adaptively diagnosed in 4
testing rounds.

Proof. Construct a recursively hamiltonian 3-round testing scheme Sn = (Tn, R)
for Hn from lemma 4. Divide the arcs ATn of Tn into its ith round components
ATn

i = {a|a ∈ ATn , R(a) = i} and make the tests corresponding to arcs in ATn
i

in round i. To put it more formally, if (u1, u2) ∈ ATn
i , then the test (u1, u2) is

made in the ith testing round. By the definition of a 3-round testing scheme,
no two tests in the same round use the same node. By the third property of the
definition of recursively hamiltonian, we know there is a mirror decomposition
(A, B) s.t. the tests made in A (B) form a recursively hamiltonian 3-round
testing scheme for A (B). Thus the first property of the definition for recursively
hamiltonian ensures that among the tests made, there are hamiltonian cycles of
tests CA in A, and CB in B. If all tests along CA (CB) resulted in 0, we know
from corollary 1 that all nodes along the cycle, i.e. all of A (B), are fault-free. In
this event, assume w.l.o.g that CA was fault-free, then we can schedule the tests
(a, A2B(a)) for all nodes a in A in the fourth round. Since all nodes in A are
fault-free, we know the correctness of both A and B after the fourth round. On
the other hand, if there were tests tA along CA, and tB along CB both resulting
in 1, we know there must be faulty nodes in both A and B. Hence there are at
most n − 1 faulty nodes in each of A and B, and we can use recursion on A and
B to find out which tests are to be carried out in round 4. The only problem left
is the bottom of the recursion when A and B are of dimension 2. A case analysis
very similar to the one in the proof of lemma 2, which is omitted, show us how
to overcome this obstacle. ut

534 A. Björklund

6 Conclusions

We have shown that locating faulty processors in a multiprocessor system of
2n processors, of which at most n are faulty, can be done as efficiently in the
hypercube system as in the complete system. Still, removal of any connection
between some pair of processors from the hypercube system leaves the system
undiagnosable. By undiagnosable we mean that it may be that even if you make
all possible tests in the system, there is some processor whose fault status you
cannot decide. This is because the two processors at the end of the removed con-
nection have lower degree than the number of possible faulty processors, which
violates the second necessary condition for diagnosability in [10], mentioned in
the historical notes section. In this sense, the hypercube structure is optimal for
the adaptive diagnosis problem.

We also showed that it is possible to schedule tests in just 4 testing rounds,
to adaptively diagnose the hypercube. For the complete system on 2n processors
of which at most n are faulty, this can be strengthend to 3 rounds. Simply let
the two first rounds constitute of a lot of cycles of length greater than n. Many
of these will be found fault-free and can be used in the third round to diagnose
the other cycles. It is still open whether 3 testing rounds is sufficient for the
hypercube system. It should be noted that the number of tests in our 4 round
testing scheme may be as many as 2n+1, whereas the 11 round construction in
[8] uses at most 2n + (n + 1)2 tests.

References

1. J. Armstrong and F. Gray, Fault diagnosis in a Boolean n-Cube array of micro-
processors, IEEE Transactions on Computers 30 (1981), 587-590.

2. R. Beigel, W. Hurwood and N. Kahele, Fault diagnosis in a flash, Proc. 36th Symp.
on Found. of Comp. Sci. (1995), 571-580.

3. P. Berman and A. Pelc, Distributed probabilistic fault diagnosis for multiprocessor
systems, Dig. 20th Int. Symp. Fault-Tolerant Computing, IEEE Computer Society
Press (1990), 340-346.

4. P. M. Blecher, On a logical problem, Disc. Math. 43 (1983), 107-110.
5. D.M. Blough, G.F. Sullivan and G.M. Masson, Efficient diagnosis of multiprocessor

systems under probabilistic models, IEEE Transactions on Computers 41 (1992),
1126-1136.

6. C. Feng, L.N. Bhuyan and F. Lombardi, Adaptive system-level diagnosis for hy-
percube multiprocessors, IEEE Transactions on Computers 45 (1996), 1157-1170.

7. E. Kranakis, A. Pelc and A. Spatharis, Optimal adaptive fault diagnosis for simple
multiprocessor systems, Networks 34 (1999), 206-214.

8. E. Kranakis and A. Pelc, Better Adaptive Diagnosis of Hypercubes, submitted.
9. K. Nakajima, A new approach to system diagnosis, Proc. 19th Allerton Conf.

Commun. Contr. and Computing (1981), 697-706.
10. F. Preparata, G. Metze and R. Chien, On the connection assignment problem of

diagnosable systems, IEEE Transactions on Electron. Computers 16 (1967), 848-
854.

Fibonacci Correction Networks?

Grzegorz Stachowiak

Institute of Computer Science, University of Wroc law,
Przesmyckiego 20, 51-151 Wroc law, Poland

gst@ii.uni.wroc.pl

Abstract. In this paper we construct sorting comparator networks
which correct a fixed number t of faults in a sorted sequence of length
N . We study two kinds of such networks. One construction yields a fault
tolerant unit that attached at the end of any comparator sorting network
makes the whole network a sorting one resistant to t passive faults. The
second network can be used to ‘repair’ a sorted sequence in which at most
t entries were changed (no fault tolerance is required). The new results of
this paper are constructions of comparator networks of depth 1.44 · log N
for these problems which is less than the depths of networks described by
previous authors [3],[4],[5]. The construction of the networks is practical
for small t. The numbers of comparators used by our networks are shown
to be reducible to values optimal up to a constant factor.

1 Introduction

Sorting is one of the most fundamental problems of computer science. A classical
approach to sort a sequence of keys is to apply a comparator network. Apart
from a long tradition, comparator networks are particularly interesting due to
potential hardware implementations. They can be also implementated as sorting
algorithms for parallel computers.

In our approach sorted elements are stored in registers r1, r2, . . . , rN . Regis-
ters can be indexed with integers or elements of other linearly ordered sets. In
this paper a convenient convention is indexing registers with sequences of inte-
gers x = (x1, x2, . . . , xk) ordered lexicographically. A set of all registers having
the same first coordinate x1 is called row labeled x1. A set of all registers having
the same all but first coordinates we call column labeled with the sequence of
fixed coordinates. The first coordinate of a register we call its level in the column.
We define operation ◦ on sequences of integers

(x1, . . . , xk) ◦ (y1, . . . , yl) = (x1, . . . , xk, y1, . . . , yl).

By |x| we denote the length of x.
A comparator [i : j] is a simple device connecting registers ri and rj(i < j).

It compares the numbers they contain and if the number in ri is bigger, it swaps
? Partially supported by KBN grant 8 T11C 032 15 and by University of Wroc law

grant 2320/W/IIn/99.

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 535–548, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

536 G. Stachowiak

them. The general problem is the following. At the beginning of the computations
the input sequence of keys is placed in the registers. Our task is to sort the
sequence of keys according to the linear order of register indexes applying a
sequence of comparators. The sequence of comparators is determined before the
computations. We assume that comparators connecting disjoint pairs of registers
can work in parallel. Thus we arrange this sequence of comparators into a series
of comparator layers which are sets of comparators connecting disjoint pairs
of registers. The total time needed by a comparator network to perform its
computations is proportional to the number of layers of the network called its
depth.

Much research concerning sorting networks have been done in the past. Their
main goals were to minimize the depth and the total number of comparators.
The most famous results are asymptotically optimal AKS [1] sorting network of
depth O(logN) and more ‘practical’ Batcher [2] network of depth ∼ 1

2 log2N (all
logarithms in this paper are of base 2). Another well known result we are going
to apply in this paper is Yao’s [6] construction of an almost optimal network
to select t smallest (or largest) entries of a given input of size N (t-selection
problem). His network has depth logN + (1 + o(1)) log t log logN and ∼ N log t
comparators which matches lower bounds for that problem (t � N).

In this paper we deal with two problems concerning comparator networks.
One of them is to construct a comparator network which is a unit correcting t
passive faults (see [7]) in any sorting network (some comparators are faulty and
do nothing). Such a unit can be attached to any sorting network e.g. AKS (as a
number if its last layers) so that the whole network is a sorting one resistant to
t faults. The unit has to correct all the faults present in the sorting network and
be resistant to all errors present in itself. Such a correcting unit we call t-fault-
tolerant network. The best result concerning such networks is that of Piotrów [4],
who constructed asymptotically optimal network of depth O(logN + t) having
O(Nt) comparators. The exact constants hidden behind these big O-h’s were not
determined, but since Piotrów uses network [5] the constant in front of logN in
O(logN + t) is at least 2.

The other problem is to sort an almost sorted sequence. Let us consider
for example a large sorted database with N entries. In some period of time
we change t entries and want to have it sorted back. We design a specialized
comparator network of a small depth to ‘repair’ the ordering and avoid using
costly general sorting networks. Such a network to sort back a sorted sequence
in which at most t changes were made we call t-correction network. The best
known general result here is network of Kik, Kuty lowski, Piotrów [3] of depth
4 logN +O(log2 t log logN).

The networks in [3] [4] are based on a nice construction by Schimmler and
Starke [5] of a 1-correction network of depth 2 logN having 3.5N comparators.
Our goal is to reduce the constant in front of logN in the depth, which is most
essential if t is small and N big. We present t-fault-tolerant and t-correction

Fibonacci Correction Networks 537

networks that for fixed t have depths ∼ α logN = log 1+
√

5
2

N, where

α =
1

log2
1+

√
5

2

= 1.44

This way our networks have smaller depths than any correction networks de-
scribed by previous authors.

For sorting networks the following useful lemma called Zero–One Principle
holds:

Lemma 1 ((zero–one principle)). A comparator network is a sorting net-
work if and only if it can sort any input consisting only of 0’s and 1’s.

This lemma is the reason, why from now on we only consider inputs consisting
only of 0’s and 1’s. Below we formulate analogous lemmas for fault tolerant and
correction networks.

We say 0 (1) is disturbed if it is changed to 1 (0). Resulting 1 (0) we call dis-
placed. A sequence of 0’s and 1’s produced from a sorted sequence by disturbing
t or less entries we call t-disturbed.

Lemma 2. A comparator network is a t-fault-tolerant network if and only if
for any x ≤ t it can sort any x-disturbed input if we remove any set of t − x
comparators.

Lemma 3. A comparator network is a t-correction network if and only if it can
sort any t-disturbed input.

We define dirty area for 0-1 sequences contained in the registers during com-
putations of a comparator network. Dirty area is the minimal set of subsequent
registers such that below these registers (in registers with lower indexes) there
are only 0’s and above there are only 1’s. A t-disturbed input in which only 0’s
are disturbed we call t-partially-disturbed. A comparator network that can re-
duce dirty area size to at most ∆ for any x-partially-disturbed input having t−x
faulty comparators we call (t,∆)-partial-fault-tolerant. Comparator network that
can reduce dirty area size to at most ∆ for any t-partially-disturbed input we call
(t,∆)-partial-correction. For both networks the output is t-partially-disturbed,
because a 1 can only increase the index of its register during computations. The
final size of dirty area ∆ = ∆(N, t) is some function of N and t.

2 One Disturbed Position

In this section we consider sorting of 1-disturbed inputs. For simplicity we assume
the input is 1-partially-disturbed, i.e. has a single disturbed 0. So we have one
displaced 1 at this position. We describe a comparator network FN correcting
any 1-partially-disturbed input of size N . Due to symmetry of the network the
case of displaced 0 follows directly from this case.

538 G. Stachowiak

First we recall the definition of Fibonacci numbers fk:

f0 = f1 = 1,

fk = fk−2 + fk−1.

We define the numbers ϕk, ψk and ϑk behaving similarly to fk:

ϕ0 = ϕ1 = ψ0 = ψ1 = 1,

ψk = ϕk−2 + ψk−1,

ϕk = the largest odd number smaller or equal ψk.

ϑk = 2ψk − ϕk

Let LG(n) be the smallest p such that ϕp ≥ n. Let r1, r2, . . . , rN be registers.
The network FN consists of d = LG(N) subsequent layers L1, L2, . . . , Ld such
that:

Lp = {[2i+ p : 2i+ p+ ϕd−p]|i ∈ Z}

The way we define Lp requires a few words of comment. From all comparators
in the definition of Lp only those exist whose end registers are well defined and
belong to the set of all registers. This convention is maintained for the rest of the
paper. Now we prove that the comparator network defined above is a 1-correction
network indeed and estimate how many layers it has asymptotically.

Fact 1 d = LG(N) ∼ log(1+
√

5)/2N = α logN

Proof. The Fact follows directly from inequalities fk−1 ≤ ϕk ≤ fk which can be
easily proven.

To see how the network works introduce first some definitions. The highest
register containing 0 of the input we call border. The distance between displaced 1
and the border is the difference between indexes of border and register containing
displaced 1. Our network proves to reduce this distance very efficiently. It ends
computations, when the distance is guaranteed to be 0. The fact the network
FN is really a 1-correction network follows directly from the following lemma
applied to layer d.

Lemma 4. After applying the first l layers of FN the distance between single
displaced 1 and the border is smaller than ψd−l+1. If this 1 is in a register ri for
which i = l mod 2, then this distance is smaller than ϕd−l.

Proof. We proceed by induction on l. For l = 0 the lemma is obvious, because
ϕd ≥ N . Assume that the lemma holds for l − 1 and prove it for l. Let i be
the index of the register containing displaced 1 just before we apply layer l. If
the displaced 1 is not moved by layer l, then two cases are possible. The first
is i 6= l mod 2 and from inductive hypothesis for l the distance is smaller than

Fibonacci Correction Networks 539

ϕd−l+1 which is not bigger than ψd−l+1. In the second case i = l mod 2 the fact
1 is not moved by layer l means that the distance is smaller than ϕd−l. If this
1 is moved then its distance is reduced by ϕd−l from some value smaller than
ψd−l+2. Thus after applying layer l this distance is smaller than

ψd−l+2 − ϕd−l = ψd−l+1.

As we see from the last lemma at any moment of computations of network
FN there is a set of registers below the border such that a single displaced 1
contained one of these registers is guaranteed to get to the border at the end of
the computations. After the first l layers this set contains all registers ri below
the border (in registers with lower indexes) and in the distance from the border
smaller than

– ψd−l+1 if i 6= l mod 2
– ϕd−l if i = l mod 2

We call this set the correction area. In later considerations we set the border
register somewhere below the highest 0. It is easy to see that in such case a
single displaced 1 in correction area also is guaranteed to get to the border or
to some higher register.

Obviously last lemma implies the following corollary since at the end of
computations of FN the distance is zero (and due to symmetry of the network):

Corollary 1. Comparator network FN is 1-correction network of depth α logN .

3 Partial Fault Tolerant Network

In this section we define a (t, t2 + t)-partial-fault-tolerant network T (s,N, t) of
a small depth. The network is constructed for a parameter s being an arbitrary
integer constant. Later in this paper we show how having this network we can
easily produce a t-fault-tolerant network of a similar depth.

The main idea of construction of T (·) is to apply a number of networks FN ′ .
As we proved FN ′ guarantees sorting any input with a single displaced 1. If the
number of displaced 1’s is bigger they can disturb each other to get to the border.
At least one of them gets to the border but others do not have to. We solve this
problem moving displaced 1’s that drop out of correction area to another FN ′

network slightly delayed in comparison to the previous one. This way 1’s that
lost their chance to get to the border in one FN ′ regain it in another FN ′ .

Now we describe the whole network in a more formal manner. Register in-
dexes are ordered pairs (i, j) for i ∈ {1, . . . , N/t}, j ∈ {1, . . . , t}. It is easy to see
that if we change all displaced 1’s to 0’s then in each column we have the highest
0 almost at the same level in its column (the levels can differ by 1). Network
T (s,N, t) consists of two parts. The first part is preprocessing consisting of the
sequence of layers:

P1, P2, . . . , P3t,

540 G. Stachowiak

where
Pq = {[(i, 2j + q) : (i, 2j + q + 1)]|i, j ∈ Z}.

Fact 2 After applying the first part of T (·) to x-partially-disturbed input all
displaced 1’s are pushed to registers with biggest possible coordinate j (if the
number of faults in is not bigger than t − x). In other words: r(i, j) contains
displaced 1 implies r(i, j + 1) also contains a displaced 1.

Let d = LG(N/t). The second part of the network does the main work and
is the sequence of layers:

L1, L2, . . . , Ls, Cs, Ls+1, . . . , L2s, C2s, L2s+1, . . . , L3s, C3s, L3s+1, . . .

where
Lp = {[(2i+ p, j) : (2i+ p+ ϕd−p+2s(t−j), j)]|i, j ∈ Z}

and

Cq = {[(2i+ q + 1, j) : (2i+ q + ϑd−q+2s(t−j)+1, j − 1)]|i, j ∈ Z}
From now on ϑk = 1 for k < 0. The second part of network T (s,N, t) has
altogether (1 + 1/s)LG(N) + 2(s+ 1)(t− 1) layers. As we see the layers Lp are
layers of FN/t inside columns, and layers Cq roughly speaking move displaced
1’s to the next delayed column when they are beyond correction areas in their
columns.

Now we analyze what happens to an x-partially-disturbed input in the net-
work T (·). We assign to each 1 during computations the property of being or not
being active. Just after the first part we switch each displaced 1 to be active and
each not displaced 1 not to be active. We define parameter b. At the beginning
b is the index of the level of register containing the highest 0 in column t if we
change all displaced 1’s to 0’s. An active 1 stops being active at the moment a
comparator moves it to level i ≥ b. At the same moment b is decreased by one. To
each displaced 1 we assign an integer value v. First we define destination column
index u of displaced 1 in a given moment of computations. To do it we change
all other active 1’s to 0’s, repair all faulty comparators in the network and fix
b as it is at this moment of computations. Then we continue computations of
the network. If the 1 gets to level i ≥ b, then destination column index u is the
index of the column from which comparator moves it to this level. If displaced
1 does not get to such level at all, then the index u is set to be 0. The current
value v of an active 1 is equal to the minimum of all values u assigned to this 1
till the considered moment of computations. When the 1 stops to be active, its
value remains unchanged till the end of computations. It is not hard to see from
the definition, that at the beginning of the second part each 1 has value equal
to the index of its column.

The following facts describe behavior of values assigned to 1’s:

Fact 3 If an active 1 is stopped by a passive fault, then its value decreases by 1
or does not change.

Fibonacci Correction Networks 541

Proof. We prove, that its destination column index does not change or decreases
by 1. We trace that stopped 1 for 2s+1 layers after stop repairing all the faults it
can encounter and changing all other active 1’s to 0’s. Even if destination column
index u of this 1 before it is stopped is equal to the label of its column, after it is
stopped the index is smaller. A single displaced 1 that has such smaller u, after
layer Lq is in register r2i+q+1 and treated by layer Cq moves to the next column
(having label smaller by 1). It is easy to see that during these computations this
displaced 1 goes to the next column into a register on higher level, than at the
moment it was stopped. The next column because of its delay, at the moment
considered 1 gets to it, is at the same or earlier phase of its computations, as
column in which the stop occurred was at the moment of stop. It proves that
the index u of 1 does not decrease by more than one.

Fact 4 Assume an active 1 is stopped by another active 1 and its value decreases.
In such a case its value becomes to be not smaller than the value of 1 causing
the delay decreased by 1.

Proof. There is no difference for displaced 1 between being stopped by a passive
fault and another displaced 1. Just before one active 1 stops another they must
have the same destination column index.

Lemma 5. Network T (s,N, t) reduces the dirty area of any x-partially-disturbed
input (x ≤ t) to at most t2 + t registers if it has at most t− x passive faults.

Proof. Putting together the facts one can see that at the end of computations
1’s that were displaced at the beginning of the second part of the network have
values v1, v2, . . . , vx. Without loss of generality we can assume that they form
a not increasing sequence. Because of the Facts the difference vi − vi+1 is not
bigger than the number of faults 1 with vi+1 encountered increased by one. Since
v1 = t, we have that vx ≥ 1 and 1 having value vx is not active at the end of the
second part. It gives dirty area of size not bigger than t2 + t since b is decreased
x times during the computations.

4 Partial Correction Network

Now we define a (t, ct(logN)cs log t)-partial-correction network C(s,N, t), where
s is an integer constant and cs depends on s. This network has depth α(1 +
1/s) logN + cs(1 + o(1)) log t log logN. We show later in this paper how from
this network we can obtain a t-correction network of almost the same depth. For
this section we change denotation ψi to ψ(i) (the same for ϕ and ϑ).

Before we begin to construct the network C(·) we prove a lemma about net-
work FN on which the construction is based. As we know network FN success-
fully corrects one displaced 1. The lemma describes its behavior if the number
of displaced 1’s is bigger.

542 G. Stachowiak

Lemma 6. Assume that in a given moment of computations not less than t
displaced 1’s are in the correction area of FN . In such a case after the next layer
of FN at least t/2 displaced 1’s are in the correction area. Consequently after s
layers at least t/2s displaced 1’s remain in the correction area.

Proof. The reason displaced 1 can drop off the correction area is that a compar-
ison between this 1 and another displaced 1 is made. In such case the other 1
remains in correction area.

The main idea of construction C(·) is to have a number of disjoint networks
FN ′ . At the beginning all displaced 1’s are moved to a few networks FN ′ (other
become free from displaced 1’s). Each s steps displaced 1’s that drop out from
correction area in one FN ′ are moved to another FN ′ not containing previously
any displaced 1’s. These moved 1’s are in correction area of their new network
FN ′ , because the new FN ′ is delayed by s+ 1 steps. In the delayed FN ′ there is
at most fraction 1 − 1/2s of displaced 1’s from the previous FN ′ . Thus the total
delay cannot grow very much because in the subsequent networks FN ′ maximal
numbers of displaced 1’s go down exponentially. In fact this idea is similar to that
applied in [3]. The changes consist in applying FN network and putting Cq layers
not every second step, but less frequently. The following simple combinatorial
fact says us, that in the our construction the number of networks FN ′ is small.

Fact 5 The number of nondecreasing sequences j1, j2, . . . , jk for 0 ≤ k ≤ K and
1 ≤ jl ≤ J is equal: (

J +K

K

)
= O(JK)

Proof. The number is the same as the number of nondecreasing sequences of
integers 0 ≤ jl ≤ J of length K which is the same as the number of increasing
sequences of integers 1 ≤ jl ≤ J +K.

Now we define network C(·) in a more formal way. Let K = − log1−1/2s t, J =
dLG(N)e+K. In the network C(s,N, t) indexes of registers have the form (n′)◦
j ◦ (J + τ). In this denotation τ ∈ {1, . . . , t}, j = (j1, . . . , jk) is a nondecreasing
sequence of integers jl ∈ {1, . . . , J} of length at most K and n′ ∈ {1, . . . , N ′},
where N ′ = N

(K+J
J)t

. As in the case of T (·), we can change all displaced 1’s into

0’s. There are at most two (differing by 1) levels of the highest 0’s in a column.
We treat the level just below these levels as the border between 0’s and 1’s for
the needs of this algorithm. We exclude from the considerations all displaced 1’s
which are moved to registers above the border level.

The network C(s,N, t) consists of two parts. The first part uses a selector
for the t largest entries [6] to each row of registers. After the first part, displaced
1’s in all rows below the border get to registers R(n′, τ + J). Indexes of these
registers are lexicographically biggest in each row. This first part has depth
∼ cs log t log logN . The constant cs grows as − 1

ln(1−1/2s) ∼ 2s.
Let d = LG(N ′). The second part consists of the sequence of layers

L1, L2, . . . , Ls, Cs, Ls, Ls+1, . . . , L2s, C2s, L2s+1, . . . , L3s, C3s, L3s+1, . . .

Fibonacci Correction Networks 543

where

Lp = {[(2i+ p) ◦ j ◦ (τ + J) : (2i+ p+ ϕ(d+ (s+ 1)|j| − p)) ◦ j ◦ (τ + J)]},
Cq = {[(2i+ q + 1) ◦ j ◦ (τ + J) :

(2i+ q + 1 + ϑ(d+ (s+ 1)|j| − q + 1)) ◦ j ◦
(q
s

− |j|, τ + J
)]}

∪ {[(2i+ q) ◦ j ◦ (τ + J) :

(2i+ q + ϕ(d+ (s+ 1)|j| − q)) ◦ j ◦
(q
s

− |j|, τ + J)
)]}

.

Altogether we have (1 + 1/s)(LG(N ′) +K) + (s+ 1)K layers in the second
part.

In this network again layers Lp represent layers of FN ′ inside the columns
(similarly to the T (·)). Layers Cq represent transfers of disturbed 1’s beyond
correction area to columns not containing displaced 1’s. From the way layers Cq

are defined we see that only one transfer to a given column can occur during
the whole time of computations. Displaced 1’s are transferred from column j ◦
(τ + J) to column j′ ◦ (τ + J) and |j′| = |j| + 1 (since j′ = j ◦ (q/s− |j|)). All
transferred 1’s after the transfer are on a level in the distance not bigger than
ϕ(d+ (s+ 1)|j′| − q− 1) from the border level. Thus they are in correction area
for their new column. At most fraction 1 − 1/2s of displaced 1’s is transferred.
Because of this in general we have the following fact:

Fact 6 A column with the index j◦(τ+J) contains not more than t·(1−1/2s)|j|

displaced 1’s.

The fact above is the reason, we do not need columns for |j| > K. Even if
they were present, no displaced 1’s would get to them. Because all displaced 1’s
are at the end of computations on or above border level also the following fact
holds:

Fact 7 The second part of the network reduces the dirty area to at most three
rows.

This way the network C(·) reduces dirty area to at most
3t

(
J+K

K

)
= ct(logN)cs log t registers. This proves the following lemma:

Lemma 7. Comparator network C(s,N, t) is a (t, ct(logN)cs log t)-partial-cor-
rection network for some constant cs depending on s. This network has depth

α

(
1 +

1
s

)
logN + cs(1 + o(1)) log t log logN

5 Fault Tolerant and Correction Networks

Now we show how having partial-fault-tolerant and partial-correction networks
we can obtain fault-tolerant and correction networks of almost the same depth.

544 G. Stachowiak

The solutions presented in this section are intended to be as simple as possible
and the author believes the reader can find solutions with a bit better constants.

The problem that is often encountered in construction of comparator net-
works is sorting inputs with dirty areas of small size. Assume we can reduce
dirty area of t-disturbed sequence of 0’s and 1’s to size ∆. The question is how
many layers and comparators a comparator network needs to ‘clean’ this dirty
area. We have two versions of this question. One if we require fault-tolerance the
other if we do not. This question is answered by easy to prove lemmas:

Lemma 8. Assume that there exists a t-fault-tolerant network XN that for input
size N has depth δ(N, t) and γ(N, t) comparators. Then there exists a comparator
network that sorts any x-disturbed input with a dirty area of size at most ∆ if
it has not more than t− x faulty comparators. This network has depth 2δ(2∆, t)
and N

∆γ(2∆, t) comparators.

Lemma 9. Assume that there exists a t-correction network XN , that for input of
size N has depth δ(N, t) and γ(N, t) comparators. Then there exists a comparator
network that sorts any t-disturbed input with a dirty area of size at most ∆. This
network has depth 2δ(2∆, t) and N

∆γ(2∆, t) comparators.

Proof of both lemmas. We index the registers with integers 1, . . . , N . The network
consists of two parts δ(2∆, t) layers each. The first part consists of networks X2∆

on each set of registers:

S2i = {r2i∆+1, r2i∆+2, . . . , r2i∆+2∆}.
The second part is are the networks X2∆ on each set of registers:

S2i+1 = {r(2i+1)∆+1, r(2i+1)∆+2, . . . , r(2i+1)∆+2∆}.
This network cleans the dirty area because this area is contained in at least one
Si.

Now having these cleaning networks we formulate the main result of this sec-
tion. We are going to prove is that to produce a good t-fault-tolerant(-correction)
network it is enough to construct (t,∆)-partial-fault-tolerant(-correction) net-
work YN having small depth and reasonably small function ∆ and t-fault-
tolerant(-correction) network XN of not too big depth and small number of
comparators. In such case we can construct t-fault-tolerant(-correction) network
of almost the same depth as YN and having roughly speaking twice as many com-
parators as XN has. We call these reductions Refinement Lemmas. We formulate
and prove them at once for fault-tolerant and correction networks.

Lemma 10 ((refinement lemma)). Assume we have a comparator network
YN which is (t,∆)-partial-fault-tolerant(-correction) network of depth δ′(N, t)
(∆ = ∆(N, t)). We have also a t-fault-tolerant(-correction) network XN of depth
δ(N, t) and having γ(N, t) comparators. Then for any M there exists a t-fault-
tolerant(-correction) network for any input size N of depth ∆ = ∆(Nt/M, t)

δ(M, t) + δ′
(
Nt

M
, t

)
+ 2δ

(
4M∆

t
+ 2M, t

)

Fibonacci Correction Networks 545

with the number of comparators not bigger than:

N

M
γ(M, t) +

Nt

M
δ′

(
Nt

M
, t

)
+

Nt

2M∆+Mt
γ

(
4M∆

t
+ 2M, t

)
.

Proof. Let indexes of registers be pairs (i, j)(i ∈ {1, . . . , N/M}, j ∈ {1, . . . ,M}).
Our network consists of three main parts.

In the first part we apply XM in each row separately. This requires δ(M, t)
layers and N

M γ(M, t) comparators. The result of this part is that displaced 0’s
are moved to the first t columns, and displaced 1’s are moved to last t columns
(except maybe one row).

In the second part we use two copies of YNt/M . The first copy is reversed
upside-down to deal with displaced 0’s and is applied to all registers of the first
t columns. The second copy is applied to all registers of last t columns to deal
with the displaced 1’s. This requires δ′ (Nt

M , t
)

layers and at most Nt
M δ′ (Nt

M , t
)

comparators. The result of this part is that the dirty area is reduced to at most
2M∆

t +M registers.
The third part is cleaning network (based on XN) for dirty area 2M∆

t + M

which requires 2δ
(4M∆

t + 2M, t
)

layers and Nt
2M∆+Mtγ

(4M∆
t + 2M, t

)
compara-

tors.

Now we show how we can use refinement lemmas to construct fault-tolerant
and correction networks of a small depth. In the construction of t-fault-tolerant
network we apply the Piotrów’s network [5].

Theorem 8. There exists a constant c such that for an arbitrary s there exists
a t-fault-tolerant network of depth:

α

(
1 +

1
s

)
logN + c log logN + (2s+ c)t

having O(Nt) comparators.

Proof. We defined (t, t2 + t)-partial-fault-tolerant network T (s,N, t), which has
depth α(1 + 1/s) logN + (2s + c′)t. Theorem follows from Refinement Lemma
applied to XN being Piotrów’s network, YN = T (N, s, t),M = t logN .

The above network is practical for small t. If we fix t and take s =
√

logN ,
then we get a t-fault-tolerant network of depth α logN +O(

√
logN).

Similarly as for fault tolerant networks we can now construct a t-correction
network applying Refinement Lemma.

Theorem 9. For any integer s there exists a t-correction network of depth

α

(
1 +

1
s

)
logN + c′s(log t log logN)2.

for some constant c′s depending on s.

546 G. Stachowiak

Proof. We apply Refinement Lemma taking YN = C(·), XN–Batcher network,
M = t logN .

This network has depth α(1+1/s) logN+o(logN) if t = o
(

2
√

log N/ log log N
)

.

We can take s = log log logN and since c′s = Ω(c2s) we obtain the following
corollary:

Corollary 2. For any t there exists a t-correction network of depth

α

(
1 +

1
log log logN

)
logN + c log2 t log log4N ∼ α logN.

We can also apply Refinement Lemma once again taking the network from
previous theorem for s = 1 as XN . We put YN = C(s,N, t),M = t logN and
get the following corollary.

Corollary 3. For any integers s, t there exists a t-correction network of depth

α

(
1 +

1
s

)
logN + c′′s log t log logN + o(log logN).

for some constant c′′s depending on s.

Unfortunately it is not clear if this corollary improves the bound on t for
which we can make a correction network of depth ∼ α(1 + 1/s) logN , because
the construction works well only for t � N .

6 Minimizing Number of Comparators

First we should know what the minimal numbers of comparators for t-fault-
tolerant and t-correction networks are. Any t-fault tolerant network has at least
t comparators going from any register different from the highest one to registers
with higher indexes (to make it impossible to have them all faulty for 1-disturbed
input). So it has at least (N − 1)t = Ω(Nt) comparators. Any t-correction
network has to be a t-selector which forces it to have Ω(N log t) comparators
[6]. These asymptotic lower bounds on the numbers of comparators in correction
networks prove to be achieved.

A t-fault-tolerant having asymptotically optimal number of comparators is t-
fault-tolerant network from the previous section. It has depth α(1+1/s) logN +
O(log logN + st).

An optimal t-correction network we construct using the Refinement Lemma.
Similar techniques to those we use in this section can be applied to reduce
numbers of comparators of practical correction networks but not to make this
paper too long we do not describe how to do it. The simplest way to make
these practical constructions is to use Batcher network instead of AKS in what
follows. Unfortunately we were not able to find a t-correction network with
asymptotically optimal number of comparators without using AKS network, so

Fibonacci Correction Networks 547

our further constructions are not practical. First we construct a network that is
asymptotically optimal in the sense of the number of comparators but is not in
the sense of depth.

Lemma 11. There exists a t-correction network that for some constant c and
any input size N has depth cN log t/t and at most cN log t comparators.

Proof. Let AKS denote a sorting network which has depth c
2 log t for input of

size 2t [1]. It has at most c
2 t log t comparators. We index registers with integers

1, . . . , N . We define sets of registers:

Si = {r(i−1)t+1, r(i−1)t+2, . . . , r(i−1)t+2t}.

Our network consists of 2N/t− 1 parts c log t layers each. Each part consists of
AKS networks on register sets Si. Thus we apply AKS subsequently to

S1, S2, . . . , SN/t, S(N/t)−1, . . . , S1.

It is easy to see that what we constructed is really a t-correction network.

When we have the t-correction network from the last lemma we can put it as
XN to Refinement Lemma taking M = t log N

log t . As YN we can use AKS which is
a (t, 0)-partial-correction network. This way we obtain the following corollary:

Corollary 4. There exists a t-correction network of depth O(logN) having
O(N log t) comparators.

Further on we can take correction network from the last lemma asXN , C(·) as
YN and M = t logN . As a result by Refinement Lemma we obtain the following
corollary:

Corollary 5. For any integer s there exists a t-correction network of depth

α(1 + 1/s) logN + c′s log t log logN

for some constant c′s depending on s which has O(N log t) comparators.

7 Conclusions

We constructed t-fault-tolerant and t-correction networks of depths ∼ α logN
for fixed t. This is less than depth of 1-correction network found by Schimmler
and Starke [5]. Network T (·) seems to be better for practical purposes although
it is worse than C(·) for combinations of N and t where N is big and t ≥ logN .
Some considerations we did not include in this paper seem to indicate that
the following conjecture is true. This conjecture was originally posed by Mirek
Kuty lowski – authors only contribution is the constant α.

548 G. Stachowiak

Conjecture 1. The lower bound for depth of 1-correction network is

α logN − c.

for some small constant c.

Because the author was unable to find 2-correction networks of depth asymp-
totically better than T (·), he dares to pose another conjecture concerning 2-
correction networks.

Conjecture 2. The lower bound for depth of 2-correction network is

α logN + c
√

logN

for some constant c > 0.

Acknowledgments

Author wishes to thank Mirek Kuty lowski, Krzysiek Loryś and Marek Piotrów
for presenting the problems, helpful discussions and their encouragement to write
this paper. Author also thanks Mirek Kuty lowski for many valuable remarks that
improved the presentation.

References

1. M. Ajtai, J. Komolós, E. Szemerédi, Sorting in c log n parallel steps, Combinatorica
3 (1983), 1-19.

2. K.E. Batcher, Sorting networks and their applications, in AFIPS Conf. Proc. 32
(1968), 307-314.

3. M. Kik, M. Kuty lowski, M. Piotrów, Correction Networks, in Proc. of 1999 ICPP,
40-47.

4. M. Piotrów, Depth Optimal Sorting Networks Resistant to k Passive Faults in Proc.
7th SIAM Symposium on Discrete Algorithms (1996), 242-251 (also accepted for
SIAM J. Comput.).

5. M. Schimmler, C. Starke, A Correction Network for N -Sorters, SIAM J. Comput.
18 (1989), 1179-1197.

6. A.C. Yao, Bounds on Selection Networks, SIAM J. Comput. 9 (1980), 566-582.
7. A.C. Yao, F.F. Yao, On Fault-Tolerant Networks for Sorting, SIAM J. Comput. 14

(1985), 120-128.

Least Adaptive Optimal Search
with Unreliable Tests

Ferdinando Cicalese1,?, Daniele Mundici2, and Ugo Vaccaro1

1 Dipartimento di Informatica ed Applicazioni, University of Salerno,
84081 Baronissi (SA), Italy

{cicalese,uv}@dia.unisa.it,
http://www.dia.unisa.it/{˜cicalese,˜uv}

2 Dipartimento Scienze Informazione, University of Milan,
Via Comelico 39-41, 20135 Milan, Italy

mundici@mailserver.unimi.it

Abstract. We consider the basic problem of searching for an unknown
m-bit number by asking the minimum possible number of yes-no ques-
tions, when up to a finite number e of the answers may be erroneous.
In case the (i + 1)th question is adaptively asked after receiving the an-
swer to the ith question, the problem was posed by Ulam and Rényi and
is strictly related to Berlekamp’s theory of error correcting communica-
tion with noiseless feedback. Conversely, in the fully non-adaptive model
when all questions are asked before knowing any answer, the problem
amounts to finding a shortest e-error correcting code. Let qe(m) be the
smallest integer q satisfying Berlekamp’s bound

∑e

i=0

(
q
i

)
≤ 2q−m. Then

at least qe(m) questions are necessary, in the adaptive, as well as in
the non-adaptive model. In the fully adaptive case, optimal searching
strategies using exactly qe(m) questions always exist up to finitely many
exceptional m’s. At the opposite non-adaptive case, searching strategies
with exactly qe(m) questions—or equivalently, perfect e-error correct-
ing codes with 2m codewords of length qe(m)—are rather the exception,
already for e = 2, and do not exist for e > 2. In this paper we show
that for any e > 1 and sufficiently large m, optimal—indeed, perfect—
strategies do exist using a first batch of m non-adaptive questions and
then, only depending on the answers to these m questions, a second
batch of qe(m) −m non-adaptive questions. Since even in the fully adap-
tive case, qe(m)−1 questions do not suffice to find the unknown number,
and qe(m) questions generally do not suffice in the non-adaptive case,
the results of our paper provide e-fault tolerant searching strategies with
minimum adaptiveness and minimum number of tests.

1 Introduction

We consider the following scenario: Two players, called Questioner and Respon-
der, first agree on fixing an integer m and a search space S = {0, . . . , 2m − 1}.
? Partially supported by ENEA

M.M. Halldórsson (Ed.): SWAT 2000, LNCS 1851, pp. 549–562, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

550 F. Cicalese, D. Mundici, and U. Vaccaro

Then the Responder thinks of a number x ∈ S and the Questioner must find
out x by asking questions to which the Responder can only answer yes or no.
It is agreed that the Responder is allowed to lie (or just to be inaccurate) at
most e times, where the integer e is fixed and known to the Questioner. We are
interested in the problem of determining the minimum number of questions the
Questioner has to ask in order to infallibly guess the number x.

When the questions are asked adaptively, i.e., the ith question is asked know-
ing the answer to the (i−1)th question, the problem is generally referred to as the
Ulam-Rényi game, [29, p. 281], [24, p. 47], and is strictly related to Berlekamp’s
theory of error correcting communication with noiseless feedback [6]. At the
other, non-adaptive extreme, when the totality of questions is asked at the out-
set, before knowing any answer, the problem amounts to finding a shortest e-error
correcting binary code with 2m codewords.

It is known that at least qe(m) questions are necessary in the adaptive and, a
fortiori, in the non-adaptive case—where qe(m) is the smallest integer q satisfying
Berlekamp’s bound

∑e
i=0

(
q
i

) ≤ 2q−m. In the fully adaptive case, an important
result of Spencer [26] shows that qe(m) questions are always sufficient, up to
finitely many exceptional m’s. Optimal searching strategies had been previously
exhibited by [22], [11], [21], respectively for the case e = 1, e = 2 and e = 3.
Thus, fully adaptive fault tolerant search can be performed in a very satisfactory
manner.

However, in many practical situations it is desirable to have searching strate-
gies with “small degree” of adaptiveness, that is, searching strategies in which
all questions (or at least, many of them) can be prepared in advance, and asked
in parallel. This is the case, e.g., when the Questioner and the Responder are far
away from each other and can interact only on a slow channel; or in all situations
when formulating the queries is a costly process, and therefore the Questioner
finds it more convenient and time-saving to prepare them in advance. We refer to
the monographs [3,13] for a discussion on the power of adaptive and non-adaptive
searching strategies and their possible uses in different contexts.

Unfortunately, in the totally non-adaptive case, a series of negative results
culminating in the celebrated paper by Tietäväinen [28] (also see [17]) shows
that searching strategies with exactly qe(m) questions—or equivalently, perfect
binary e-errors correcting codes with 2m codewords of length qe(m)—are spo-
radic exceptions already for e = 2, and do not exist for e > 2, except in trivial
cases. Thus, adaptiveness in Ulam-Rényi games can be completely eliminated
only by significantly increasing the number of questions in the solution strategy.1

Our purpose in this paper is to investigate the minimum amount of adaptiveness
required by all successful searching strategies with exactly qe(m) questions.

1 The situation is completely different in the case of no lies: here an optimal, totally
non-adaptive searching strategy with dlog |S|e questions simply amounts to asking
dlog |S|e queries about the locations of the bit 1 in the binary expansion of the
unknown number x ∈ S.

Least Adaptive Optimal Search with Unreliable Tests 551

1.1 Our Results

We exactly quantify the minimum amount of adaptiveness needed to solve the
Ulam-Rényi problem, while still constraining the total number of questions to
Berlekamp’s minimum qe(m). Our main result is that for each e, and for all suffi-
ciently large m, there exist searching strategies of shortest length (using exactly
the minimum number qe(m) of questions) in which questions can be submitted
to the Responder in only two rounds. Specifically, for the Questioner to infallibly
guess the Responder’s secret number x ∈ S it is sufficient to ask a first batch
of m non-adaptive questions, and then, only depending on the m-tuple of an-
swers, ask a second mini-batch of n non-adaptive questions. Our strategies are
perfect, in that m + n coincides with Berlekamp’s minimum qe(m), the number
of questions that are a priori necessary to accommodate all possible answering
strategies of the Responder—once he is allowed to lie up to e times. Since the
Questioner can adapt his strategy only once, our paper yields e-fault tolerant
search strategies with minimum adaptiveness and the least possible number of
tests. Our main tool is the discovery of a close relation between searching strate-
gies tolerating e lies and certain special families of error correcting codes, which
will be described in Section 3. In the last section we specialize our analysis to
the case e = 3; we shall give an explicit description of our searching strategies
for the Ulam-Rényi game, for all m ≥ 99.

1.2 Related Work

The general issue of coping with unreliable information (and/or unreliable com-
ponents) in computing is an important problem in computer science, and its
study goes back to the work of von Neumann [30]. The problem of dealing with
erroneous information in search strategies (what we call here Ulam-Rényi game)
has received considerable attention in the last decades, beginning with [25] (see
[2,4,5,9,11,12,20,22,26] and references therein). The survey paper [14] gives a
detailed account of the relevant literature on the subject. In the paper [15] the
Ulam-Rényi game is embedded in a broader context.

We have already mentioned the connections between Ulam-Rényi games and
Berlekamp’s theory of error correcting communication with noiseless feedback
[6]. Other interesting connections between Ulam-Rényi games and different areas
of computer science and logic have also been found (see for instance [8,18]). For
the sake of conciseness, we shall limit ourselves to mentioning here only those re-
sults which are directly related to our present issue of adaptive vs. non-adaptive
search. It is well known that for e = 1, Hamming codes yield non-adaptive search-
ing strategies (i.e., one round strategies) with the smallest possible number q1(m)
of questions—indeed, Pelc [23] showed that adaptiveness in this case is irrele-
vant even under the stronger assumption that repetition of the same question is
forbidden. The first significant case where the dichotomy between adaptive and
non-adaptive search makes its appearance is when e = 2. Two-round optimal
strategies for the case e = 2 were given in [10]. Our paper extends the result
of [10] to the case of an arbitrary number e of errors/lies. Other results related

552 F. Cicalese, D. Mundici, and U. Vaccaro

to the issue of fully adaptive vs. totally non-adaptive searching strategies, are
contained in [12,27].

2 The Ulam-Rényi Game

For some fixed integer m, let S = {0, 1, . . . , 2m − 1} be the search space. By
a yes-no question we simply mean an arbitrary subset T of S. If the answer
to the question T is “yes”, numbers in T are said to satisfy the answer, while
numbers in S \ T falsify it. A negative answer to question T has the same effect
as a positive answer to the opposite question S \ T. At any stage of the game, a
number y ∈ S must be rejected from consideration if, and only if, it falsifies more
than e answers. The remaining numbers of S still are possible candidates for the
unknown x. At any time the Questioner’s state of knowledge is represented by
an e-tuple σ = (A0, A1, A2, . . . , Ae) of pairwise disjoint subsets of S, where Ai

is the set of numbers falsifying exactly i answers, i = 0, 1, 2, . . . , e. The initial
state is naturally given by (S, ∅, ∅, . . . , ∅). A state (A0, A1, A2, . . . , Ae) is final
iff A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ae either has exactly one element, or is empty. In this
latter case, evidently, more than e lies have been told.

For any state σ = (A0, A1, A2, . . . , Ae) and question T ⊆ S, the two states
σyes and σno respectively resulting from a positive or a negative answer, are
given by

σyes = (Ayes
0 , Ayes

1 , . . . , Ayes
e) and σno = (Ano

0 , Ano
1 , . . . , Ano

e) (1)

where, for the sake of definiteness, we let A−1 = ∅, and

Ayes
i = (Ai ∩ T) ∪ (Ai−1 \ T) and Ano

i = (Ai \ T) ∪ (Ai−1 ∩ T) (2)

for each i = 0, 1, . . . , e. Given a state σ, suppose questions T1, . . . , Tt have been
asked and answers b = b1, . . . , bt have been received (with bi ∈ {yes, no}).
Iterated application of the above formulas yields a sequence of states

σ0 = σ, σ1 = σb1
0 , σ2 = σb2

1 , . . . , σt = σbt
t−1. (3)

By a strategy S with q questions we mean the binary tree of depth q, where
each node ν is mapped into a question Tν , and the two edges ηleft, ηright generated
by ν are respectively labelled yes and no. Let η = η1, . . . , ηq be a path in S, from
the root to a leaf, with respective labels b1, . . . , bq, generating nodes ν1, . . . , νq

and associated questions Tν1 , . . . , Tνq
. Fix an arbitrary state σ. Then, according

to (3), iterated application of (1)-(2) naturally transforms σ into ση (where the
dependence on the bj and Tj is understood). We say that strategy S is winning
for σ iff for every path η the state ση is final. A strategy is said to be non-
adaptive iff all nodes at the same depth of the tree are mapped into the same
question.

Let σ = (A0, A1, A2, . . . , Ae) be a state. For each i = 0, 1, 2, . . . , e let ai = |Ai|
be the number of elements of Ai. Then the e-tuple (a0, a1, a2, . . . , ae) is called

Least Adaptive Optimal Search with Unreliable Tests 553

the type of σ. The Berlekamp weight of σ before q questions, q = 0, 1, 2, . . . , is
given by

wq(σ) =
e∑

i=0

ai

e−i∑

j=0

(
q

j

)
. (4)

The character ch(σ) of a state σ is the smallest integer q ≥ 0 such that wq(σ) ≤
2q.

By abuse of notation, the weight of any state σ of type (a0, a1, a2, . . . , ae)
before q questions will be denoted wq(a0, a1, a2, . . . , ae). Similarly, its character
will also be denoted ch(a0, a1, a2, . . . , ae).

As an immediate consequence of the above definition we have the follow-
ing monotonicity properties: For any two states σ′ = (A′

0, A
′
1, A

′
2, . . . , A

′
e)

and σ′′ = (A′′
0 , A′′

1 , A′′
2 , . . . , A′′

e) respectively of type (a′
0, a

′
1, a

′
2, . . . , a

′
e) and

(a′′
0 , a′′

1 , a′′
2 , . . . , a′′

e), if a′
i ≤ a′′

i for all i = 0, 1, 2, . . . , e then

ch(σ′) ≤ ch(σ′′) and wq(σ′) ≤ wq(σ′′) (5)

for each q ≥ 0. Moreover, if there exists a winning strategy for σ′′ with q questions
then there exists also a winning strategy for σ′ with q questions [6]. Note that
ch(σ) = 0 iff σ is a final state.

Lemma 1. [6] Let σ be an arbitrary state, and T ⊆ S a question. Let σyes and
σno be as in (1)-(2).

(i) (Conservation Law). For any integer q ≥ 1 we have wq(σ) = wq−1(σyes)+
wq−1(σno).

(ii) (Berlekamp’s lower bound). If σ has a winning strategy with q questions then
q ≥ ch(σ). ut

In complete analogy with the notion of perfect error correcting code [17], we say
that a winning strategy for σ with q questions is perfect iff q = ch(σ). In agree-
ment with the above notation, we shall write qe(m) instead of ch(2m, 0, . . . , 0).

Let σ = (A0, A1, A2, . . . , Ae) be a state. Let T ⊆ S be a question. We say
that T is balanced for σ iff for each j = 0, 1, 2, . . . , e, we have |Aj ∩T | = |Aj \T |.
The following is easy to prove.

Lemma 2. Let T be a balanced question for a state σ = (A0, A1, A2, . . . , Ae).
Let n = ch(σ). Let σyes and σno be as in (1)-(2) above. Then

(i) wq(σyes) = wq(σno), for each integer q ≥ 0,
(ii) ch(σyes) = ch(σno) = n − 1.

3 Strategies vs. Codes

Let us first remind some notations from Coding Theory, for more see [17].

554 F. Cicalese, D. Mundici, and U. Vaccaro

Fix an integer n > 0 and let x,y ∈ {0, 1}n. The Hamming distance dH(x,y)
is defined by

dH(x,y) = |{i ∈ {1, . . . , n} | xi 6= yi}|,
where, as above, |A| denotes the number of elements of A, and xi (resp. yi)
denotes the ith components of x (resp. y).

The Hamming sphere Br(x) with radius r and center x is the set of elements
of {0, 1}n whose Hamming distance from x is at most r, in symbols,

Br(x) = {y ∈ {0, 1}n | dH(x,y) ≤ r}.

Notice that for any x ∈ {0, 1}n, and r ≥ 0, we have |Br(x)| =
∑r

i=0

(
n
i

)
. The

Hamming weight wH(x) of x is the number of non-zero digits of x. Throughout
this paper, by a code we shall mean a binary code, in the following sense:

Definition 1. A (binary) code C of length n is a non-empty subset of {0, 1}n.
Its elements are called codewords. The minimum distance of C is given by

δ(C) = min{dH(x,y) | x,y ∈ C,x 6= y}.

We say that C is an (n, m, d) code iff C has length n, |C| = m and δ(C) = d. The
minimum weight of C is the minimum of the Hamming weights of its codewords,
in symbols,

µ(C) = min{wH(x) | x ∈ C}.
Let C1 and C2 be two codes of length n. The minimum distance between C1 and
C2 is defined by

∆(C1, C2) = min{dH(x,y) | x ∈ C1,y ∈ C2}.

We now describe a correspondence between non-adaptive winning strategies
and certain special codes. This will be a key tool to prove the main results of
our paper.

Lemma 3. Let σ = (A0, A1, A2, . . . Ae) be a state of type (a0, a1, a2, . . . , ae).
Let n ≥ ch(σ). Then a non-adaptive winning strategy for σ with n questions
exists if and only if for all i = 0, 1, 2, . . . , e−1 there are integers di ≥ 2(e−i)+1,
together with an e-tuple of codes Γ = {C0, C1, C2, . . . , Ce−1}, such that each Ci is
an (n, ai, di) code, and ∆(Ci, Cj) ≥ 2e−(i+j)+1, (whenever 0 ≤ i < j ≤ e−1).

Proof. We first prove the implication strategy ⇒ codes.
Assume σ = (A0, A1, A2, . . . , Ae) to be a state of type (a0, a1, a2, . . . , ae)

having a non-adaptive winning strategy S with n questions T1, . . . , Tn, n ≥
ch(σ). Let the map

z ∈ A0 ∪ A1 ∪ A2 ∪ . . . ∪ Ae 7→ z S ∈ {0, 1}n

send each z ∈ A0 ∪ A1 ∪ A2 ∪ . . . ∪ Ae into the n-tuple of bits z S = z S
1 · · · z S

n

arising from the sequence of “true” answers to the questions “does z belong to
T1 ?”, “does z belong to T2 ?”, . . ., “does z belong to Tn ?”, via the identifications

Least Adaptive Optimal Search with Unreliable Tests 555

1 = yes, 0 = no. More precisely, for each j = 1, . . . , n, z S
j = 1 iff z ∈ Tj . Let

C ⊆ {0, 1}n be the range of the map z 7→ z S . We shall first prove that, for
every i = 0, . . . , e − 1, there exists an integer di ≥ 2(e − i) + 1 such that the set
Ci = {y S ∈ C | y ∈ Ai} is an (n, ai, di) code.

Since S is winning, the map z 7→ z S is one-to-one, whence in particular
|Ci| = ai, for any i = 0, 1, 2, . . . , e − 1. Moreover by definition, the Ci’s are
subsets of {0, 1}n.

Claim 1. δ(Ci) ≥ 2(e − i) + 1, for i = 0, . . . , e − 1.
For otherwise (absurdum hypothesis) assuming c and d to be two distinct

elements of Ai such that dH(cS ,dS) ≤ 2(e − i), we will prove that S is not a
winning strategy. We can safely assume cS

j = dS
j for each j = 1, . . . , n−2(e− i).

Suppose the answer to question Tj is “yes” or “no” according as cS
j = 1

or cS
j = 0, respectively. Then after n − 2(e − i) answers, the resulting state

has the form σ′ = (A′
0, . . . , A

′
i, . . . , A

′
e), with {c, d} ⊆ A′

i, whence the type
of σ′ is (a′

0, . . . , a
′
i, . . . , a

′
e) with a′

i ≥ 2. Since by [6, Lemma 2.5], ch(σ′) ≥
ch(0, 0, . . . , 0, 2, 0, . . . , 0) = 2(e− i)+1 then from Lemma 1(ii) it follows that the
remaining 2(e − i) questions/answers do not suffice to reach a final state, thus
contradicting the assumption that S is winning.

Claim 2. For any 0 ≤ i < j ≤ e − 1 and for each y ∈ Ai and h ∈ Aj we have the
inequality dH(y S ,hS) ≥ 2e − (i + j) + 1.

For otherwise (absurdum hypothesis) let y ∈ Ai, h ∈ Aj be a counterexample,
and dH(y S ,hS) ≤ 2e − (i + j). Writing y S = y S

1 . . . y S
n and hS = hS

1 . . . hS
n , it

is no loss of generality to assume hS
k = y S

k , for all k = 1, . . . , n − (2e − (i + j)).
Suppose that the answer to question Tk is “yes” or “no” according as hS

k = 1 or
hS

k = 0, respectively. Then the state resulting from these answers has the form
σ′′ = (A′′

0 , A′′
1 , A′′

2 , . . . , A′′
e), where y ∈ A′′

i and h ∈ A′′
j . Since by [6, Lemma 2.5],

ch(σ′′) ≥ ch(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) = 2e − (i + j) + 1, then Lemma 1(ii)
again shows that 2e − (i + j) additional questions will not suffice to find the
unknown number. This contradicts the assumption that S is a winning strategy.

In conclusion, for all i = 0, 1, . . . , e − 1, Ci is an (n, ai, di) code with di ≥
2(e − i) + 1 and for all j = 0, . . . , i − 1, i + 1, . . . , e − 1, we have the desired
inequality ∆(Ci, Cj) ≥ 2e − (i + j) + 1.

Now we prove the converse implication: strategy ⇐ codes.
Let Γ = {C0, C1, C2, . . . , Ce−1} be a family of codes satisfying the hypothesis.

Let

H =
e−1⋃

i=0

⋃

x∈Ci

Be−i(x).

By hypothesis, for any i, j ∈ {0, 1, . . . , e − 1} and x ∈ Ci,y ∈ Cj we have
dH(x,y) ≥ 2e−(i+j)+1. It follows that the Hamming spheres Be−i(x), Be−j(y)
are pairwise disjoint and hence

|H| =
e−1∑

i=0

ai

e−i∑

j=0

(
n

j

)
. (6)

556 F. Cicalese, D. Mundici, and U. Vaccaro

Let D = {0, 1}n \ H. Since n ≥ ch(a0, a1, a2, . . . , ae), by definition of character
we have 2n ≥ ∑e

i=0 ai

∑e−i
j=0

(
n
j

)
. From (6) it follows that

|D| = 2n −
e−1∑

i=0

ai

e−i∑

j=0

(
n

j

)
≥ ae. (7)

Let σ = (A0, A1, A2, . . . , Ae) be an arbitrary state of type (a0, a1, a2, . . . , ae). Let
us now fix, once and for all, e+1 one-one maps fi:Ai → Ci, for i = 0, 1, . . . , e−1
and fe:Ae → D. The existence of the map fi, for all i = 0, 1, . . . , e, is ensured
by our assumptions about Γ , together with (7).

Let the map f :A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ae → {0, 1}n be defined by cases as
follows:

f(y) =

f0(y), y ∈ A0
f1(y), y ∈ A1
...
fe(y), y ∈ Ae

(8)

Note that f is one-one. For each y ∈ A0 ∪A1 ∪A2 ∪ · · · ∪Ae and j = 1, . . . , n let
f(y)j be the jth bit of the binary vector corresponding to y via f. We can now
exhibit the questions Tj of our searching strategies:

For each j = 1, . . . , n let the set Tj ⊆ S be defined by Tj = {z ∈ ⋃e
i=0 Ai |

f(z)j = 1}. Intuitively, letting x∗ denote the unknown number, Tj asks “is the
jth bit of f(x∗) equal to one ?”

Again writing yes = 1 and no = 0, the answers to questions T1, . . . , Tn determine
an n-tuple of bits b = b1 · · · bn. We shall show that the sequence T1, . . . , Tn

yields an optimal non-adaptive winning strategy for σ. Let σ1 = σb1 , σ2 =
σb2

1 , . . . , σn = σbn
n−1. Arguing by cases we shall show that σn = (A∗

0, A
∗
1, . . . , A

∗
e)

is a final state.
By (1)-(2), for all i = 0, 1, . . . , e, any z ∈ Ae−i that falsifies > i answers does

not survive in σn—in the sense that z 6∈ A∗
0 ∪ A∗

1 ∪ · · · ∪ A∗
e.

Case 1. b 6∈ ⋃e
i=0

⋃
y∈Ai

Be−i(f(y)).
For all i = 0, 1, . . . , e, and for each y ∈ Ai we must have y 6∈ A∗

0∪A∗
1∪· · ·∪A∗

e.
Indeed, the assumption b 6∈ Be−i(f(y)) implies dH(f(y), b) > e − i, whence y
falsifies > e − i of the answers to T1, . . . , Tn, and y does not survive in σn. We
have proved that A∗

0 ∪ A∗
1 ∪ · · · ∪ A∗

e is empty, and σn is a final state.

Case 2. b ∈ Be−i(f(y)) for some i ∈ {0, 1, . . . , e} and y ∈ Ai.
Then y ∈ A∗

0 ∪ A∗
1 ∪ · · · ∪ A∗

e, because dH(f(y), b) ≤ e − i, whence y falsifies
≤ e− i answers. Our assumptions about Γ ensure that, for all j = 0, 1, . . . , e and
for all y′ ∈ Aj and y 6= y′, we have b 6∈ Be−j(f(y′)). Thus, dH(f(y′), b) > e − j
and y′ falsifies > e − j of the answers to T1, . . . , Tn, whence y′ does not survive
in σn. This shows that for any y′ 6= y, y′ 6∈ A∗

0 ∪ A∗
1 ∪ · · · ∪ A∗

e. Therefore,
A∗

0 ∪ A∗
1 ∪ · · · ∪ A∗

e only contains the element y, and σn is a final state.

Least Adaptive Optimal Search with Unreliable Tests 557

4 Optimal Strategies with Minimum Adaptiveness

4.1 The First Batch of Questions

Recall that qe(m) = ch(2m, 0, . . . , 0) is the smallest integer q ≥ 0 such that
2q ≥ 2m(

(
q
e

)
+

(
q

e−1

)
+ · · ·+(

q
2

)
+q+1). By Lemma 1(ii), at least qe(m) questions

are necessary to guess the unknown number x∗ ∈ S = {0, 1, . . . , 2m − 1}, if up
to e answers may be erroneous. The aim of the rest of this paper is to prove
that, conversely, for sufficiently large m, qe(m) questions are sufficient under
the following constraint: first we use a predetermined non-adaptive batch of m
questions D1, . . . , Dm, and then, only depending on the answers, we ask the
remaining qe(m) − m questions in a second non-adaptive batch. The first batch
of questions is easily described as follows:

For each i = 1, 2, . . . , m, let Di ⊆ S denote the question “Is the ith
binary digit of x∗ equal to 1?” Thus a number y ∈ S belongs to Di iff
the ith bit yi of its binary expansion y = y1 · · · ym is equal to 1.

Upon identifying 1 = yes and 0 = no, let bi ∈ {0, 1} be the answer to question
Di. Let b = b1 · · · bm. Repeated applications of (1)-(2) beginning with the initial
state σ = (S, ∅, . . . , ∅), shows that the resulting state as an effect of the answers
b1 · · · bm, is an (e + 1)-tuple σb = (A0, A1, . . . , Ae), where

Ai = {y ∈ S | dH(y, b) = i} for all i = 0, 1, . . . , e.

Direct verification yields

|A0| = 1, |A1| = m, . . . , |Ae| =
(

m

e

)
.

Thus σb has type (1, m,
(
m
2

)
, . . . ,

(
m
e

)
). As in (3), let σi be the state resulting after

the first i answers, beginning with σ0 = σ. Since each question Di is balanced
for σi−1, an easy induction using Lemma 2 yields ch(σb) = qe(m) − m.

For each m-tuple b ∈ {0, 1}m of possible answers, we shall construct a non-
adaptive strategy Sb with ch(1, m,

(
m
2

)
, . . . ,

(
m
e

)
) questions, which turns out to

be winning for the state σb. To this purpose, let us consider the values of
ch(1, m,

(
m
2

)
, . . . ,

(
m
e

)
) for m ≥ 1.

Definition 2. Let e ≥ 0 and n ≥ 2e be arbitrary integers. The critical index
mn,e is the largest integer m ≥ 0 such that ch(1, m,

(
m
2

)
, . . . ,

(
m
e

)
) = n.

Lemma 4. Let e ≥ 0 and n ≥ 2e be arbitrary integers. Then mn,e < e
√

e! 2
n
e +e.

Proof. Recall that mn,e = max
{
m | wn

(
1, m,

(
m
2

)
, . . . ,

(
m
e

)) ≤ 2n
}

. We now set
m∗ = e

√
e! 2

n
e +e. Then, the desired result now directly follows from the inequal-

ity wn

(
1, m∗,

(
m∗

2

)
, . . . ,

(
m∗

e

))
> 2n. Indeed, we have

558 F. Cicalese, D. Mundici, and U. Vaccaro

wn

(
1, m∗,

(
m∗

2

)
, . . . ,

(
m∗

e

))
> wn

(
0, 0, . . . , 0,

(
m∗

e

))

=
(

m∗

e

)
=

m∗(m∗ − 1) · · · (m∗ − e + 1)
e!

≥
(

e
√

e! 2n/e
)e

e!
= 2n.

4.2 The Second Batch of Questions

We now prove that for all sufficiently large m there exists a second batch of n =
qe(m) = ch(1, m,

(
m
2

)
, . . . ,

(
m
e

)
) non-adaptive questions allowing the Questioner

to infallibly guess the Responder’s secret number. We first need the following
lemma.

Lemma 5. For any fixed e and all sufficiently large n there exists a family
of codes Γ = {C0, C1, . . . , Ce−1} together with integers di ≥ 2(e − i) + 1
(i = 0, 1, . . . , e − 1) such that

(i) Each Ci is an (n,
(
mn,e

i

)
, di) code;

(ii) ∆(Ci, Cj) ≥ 2e − (i + j) + 1, (whenever 0 ≤ i < j ≤ e − 1.)

Proof. Let n′ = n − e2. First we prove the existence of an (n′,
(
mn,e

e−1

)
, d′) code,

with d′ = 2e + 1. From Lemma 4 together with the well known inequality e! ≤
(e+1)e

2e , it follows that, for all sufficiently large n

(
mn,e

e − 1

)
< (mn,e)e−1 < (e

√
e! 2

n
e + e)e−1

≤ (e 2
n
e)e−1 = ee−1 2n e−1

e

≤ 2n−e2

∑2e
j=0

(
n−e2

j

) .

The existence of the desired (n′,
(
mn,e

e−1

)
, d′) code now follows by the well known

Gilbert Bound [17].
We have proved that, for all sufficiently large n, there exists an (n−e2,

(
mn,e

e−1

)
, d′)

code C′ with d′ ≥ 2e+1. For any i = 0, 1, . . . , e−1 let the e2-tuple ai be defined
by

ai = 00 . . . 0︸ ︷︷ ︸
(i−1)e

11 . . . 1︸ ︷︷ ︸
e

0 . . . 0︸ ︷︷ ︸
e2−ie

.

Furthermore, let C′′
i be the code obtained by appending the suffix ai to the

codewords of C′, in symbols,
C′′

i = C′ ⊗ ai.

Least Adaptive Optimal Search with Unreliable Tests 559

Trivially, C′′
i is an (n,

(
mn,e

e−1

)
, 2e + 1) code for all i = 0, 1, . . . , e. Furthermore, we

have ∆(C′′
i , C′′

j) = 2e ≥ 2e − (i + j) + 1, whenever 0 ≤ i < j ≤ e − 1. For each
i = 0, 1, . . . , e − 1, pick a subcode Ci ⊆ C′′

i with |Ci| =
(
mn,e

i

)
. Then the new

family of codes Γ = {C0, C1, . . . , Ce−1} satisfies both conditions (i) and (ii) and
the proof is complete.

The following corollary implies the existence of minimum adaptiveness perfect
searching strategies.

Corollary 1. Fix an integer e ≥ 0. Then for all sufficiently large integers m and
for every state σ of type (1, m,

(
m
2

)
, . . . ,

(
m
e

)
) there exists a non-adaptive winning

strategy S such that the number of questions in S coincides with Berlekamp’s
lower bound ch(σ) = q2(m) − m.

Proof. Let n = ch(σ). By definition, n → ∞ as m → ∞. Lemmas 5 and 3
yield a non-adaptive winning strategy with n questions for any state of type
(1, mn,e,

(
mn,e

2

)
, . . . ,

(
mn,e

e

)
). By Definition 2, m ≤ mn, and a fortiori, for all

sufficiently large m, a non-adaptive winning strategy with n questions exists for
any state of type (1, m,

(
m
2

)
, . . . ,

(
m
e

)
).

5 Ulam-Rényi Game with Three Lies and Minimum
Adaptiveness

In this section we restrict to the particular case e = 3. We shall prove that for
all m ≥ 99 perfect (hence, a fortiori, optimal) searching strategies do exist to
find an unknown m-bit number x∗ with minimum adaptiveness and up to 3 lies
in the answers. States have now the form (A0, A1, A2, A3). Proceeding as in the
previous section, we may safely assume that after a first batch of m non-adaptive
questions asking for the binary expansion of x∗ (the bitwise batch), the resulting
state σ is of type (1, m,

(
m
2

)
,
(
m
3

)
) and character n = ch(σ) = q3(m) − m. We

shall show that a non-adaptive winning strategy for σ with n questions exists
for each m ≥ 99 (we will not try to optimize this constant in the present version
of this paper). We shall use the following preliminary lemma.

Lemma 6. Let n and m be arbitrary integers ≥ 1. For i = 1, 2, let Ci be an
(n, Mi, di) code with µ(Ci) ≥ gi, for some integers Mi ≥ (

m+i−1
i

)
, di ≥

7 − 2i, gi ≥ 7 − i. Let ∆(C1, C2) ≥ 4.

Then for all j = 1, 2, 3, . . . , there exists an (n + 3j, M ′, 5) code D(j)
1 with

M ′ ≥ 2jm, µ(D(j)
1) ≥ g1, together with an (n + 3j, M ′′, 3) code D(j)

2 such
that M ′′ ≥ (2jm

2

)
, µ(D(j)

2) ≥ g2 and ∆(D(j)
1 ,D(j)

2) ≥ 4.

Proof. Omitted.

Lemma 7. For all n ≥ 19 there is an (n, M1, d1) code Cn,1 and an
(n, M2, d2) code Cn,2 such that

560 F. Cicalese, D. Mundici, and U. Vaccaro

M1 ≥ mn,3, d1 ≥ 5, M2 ≥
(

mn,3

2

)
, d2 ≥ 3,

µ(Cn,1) ≥ 6, µ(Cn,2) ≥ 5, ∆(Cn,1, Cn,2) ≥ 4.

Proof. By direct inspection in [7, Table I-A, I-B], for n = 20, 21, 22, there exist
codes Dn,1,Dn,2,Dn,3 such that
(i) Dn,1 is an (n, Mn,1, 6) code and wH(x) = 6 for any x ∈ Dn,1,
(ii) Dn,2 is an (n, Mn,2, 4) code and wH(x) = 10 for any x ∈ Dn,2,
(iii) Dn,3 is an (n, Mn,3, 4) code and wH(x) = 13 for any x ∈ Dn,3.
Moreover,

Mn,1 >
3
√

6 2
n
3 + 3 ≥ mn,3

and

Mn,2 + Mn,3 >

(3
√

6 2
n
3 + 4
2

)
≥

(
mn,3 + 1

2

)
>

(
mn,3

2

)
.

It is apparent that ∆(Dn,2,Dn,3) ≥ 3. Define Cn,1 = Dn,1 and Cn,2 = Dn,2∪Dn,3.
Trivially, µ(Cn,1) ≥ 6 and µ(Cn,2) ≥ 5. Hence the claim holds for n = 20, 21, 22.

For any n ≥ 23, write n = n′ + 3j with n′ ∈ {20, 21, 22} and j ≥ 1. Then by
Lemma 6 there exist an (n, M ′, 5) code Cn,1 with

M ′ ≥ 2jmn′,3 > mn′+3j,3 = mn,3

and an (n, M ′′, 3) code Cn,2 with

M ′′ ≥
(

2jmn′,3

2

)
>

(
mn,3

2

)

such that µ(Cn,1) ≥ 6, µ(Cn,2) ≥ 5 and ∆(Cn,1, Cn,2) ≥ 4. Hence the desired
result holds for all n ≥ 20.

For the remaining case n = 19, direct inspection in [7, Table I-A, I-B] again
yields three codes Dn,i, (i = 1, 2, 3) as above, with Mn,1 = 172 > 127 = m19,3
and Mn,2 + Mn,3 = 8322 > 8001 =

(
m19,3

2

)
. This concludes the proof.

Corollary 2. Fix an integer m ≥ 99, and let σ be an arbitrary state of type
(1, m,

(
m
2

)
,
(
m
3

)
). Then there exists a perfect non-adaptive winning strategy S for

σ (in the sense that the number of questions in S coincides with Berlekamp’s
lower bound ch(σ) = q3(m) − m).

Proof. Let n = ch(σ). From the assumption m ≥ 99 by direct inspection, we get
n ≥ 19. Lemma 7 yields an (n, a1, d1) code D1 with a1 ≥ mn,3, µ(D1) ≥
6, d1 ≥ 5 together with an (n, a2, d2) code D2 with a2 ≥ (

mn,3
2

)
, µ(D2) ≥

5, d2 ≥ 3 satisfying the inequality ∆(D1,D2) ≥ 4. By definition, m ≤
mn,3. Pick subcodes C1 ⊆ D1 and C2 ⊆ D2 such that |C1| = m and
|C2| =

(
m
2

)
. Finally let the (n, 1, 7) code C0 be defined by C0 = {0 . . . 0}. Then

the desired conclusion directly follows by Lemma 3, using the family of codes
Γ = {C0, C1, C2}.

Least Adaptive Optimal Search with Unreliable Tests 561

6 Conclusions and Open Problems

For all sufficiently large search spaces we have proved the existence of perfect e-
error correcting search strategies where adaptiveness occurs only once. Our result
is optimal in that, by Tietäväinen theorem, [28], for all e > 1 adaptiveness cannot
be further reduced without loosing the property of perfectness. Our results also
suggest several interesting problems for future investigation.

The first problem is motivated by the asymmetric nature of the communica-
tion between Questioner and Responder. Indeed, in our scenario the Questioner-
to-Responder channel is noiseless, while the channel in the opposite direction is
noisy. In the cooperative model where Questioner and Responder have agreed on
the searching strategy, and lies are replaced by distortions, our results show that
error correction can be achieved by, first sending m bits via the noisy Responder-
to-Questioner channel, then sending via the noiseless channel the m-tuple of bits
actually received by the Questioner, and finally, sending to the Questioner a final
tip of qe(m) − m bits, again via the noisy channel. It seems reasonable to try to
limit the use of the noiseless channel, which in practice is the more costly chan-
nel. The following problem is especially worthy of investigation: To which extent
can one decrease the number of bits sent through the noiseless channel, while
still keeping to a minimum both the total number of questions and the number of
non-adaptive batches of questions? Trade-off results between the above parame-
ters are also of interest. For general recent results on asymmetric communication
channels see [1].

Following tradition, we have allowed questions to be arbitrary subsets of the
search space. However, interesting research problems arise once one restricts the
Questioner’s expressive power. For instance, can our perfect, minimum adap-
tiveness, strategies be achieved by only using comparison questions and their
like (as in [2,5,19,20]) ? On the other hand, which sorts of perfect minimally
adaptive strategies exist in the model where the Responder is allowed a greater
expressive power than mere binary answers (as, e.g., in [4,9])? It would also be
of interest to extend to e > 3 the non-asymptotic results of Section 5.

Finally, it would be interesting to extend our methods to other related prob-
lems in the area of computing with unreliable tests (e.g., [16]).

References

1. M. Adler and B. Maggs, Protocols for asymmetric communication channels, In:
Proc. of 39th IEEE FOCS, (1998).

2. J. A. Aslam and A. Dhagat, Searching in the presence of linearly bounded errors,
In: Proceedings of the 23rd ACM STOC (1991), 486-493.

3. M. Aigner, Combinatorial Search, Wiley–Teubner, New York–Stuttgart, 1988.
4. M. Aigner, Searching with lies, J. Comb. Theory, Ser. A, 74 (1995), 43-56.
5. R. S. Borgstrom and S. Rao Kosaraju, Comparison-based search in the presence

of errors, In: Proceedings of the 25th ACM STOC (1993), 130-136.
6. E. R. Berlekamp, Block coding for the binary symmetric channel with noiseless,

delayless feedback, In: Error-correcting Codes, H.B. Mann (Editor), Wiley, New
York (1968), 61-88.

562 F. Cicalese, D. Mundici, and U. Vaccaro

7. A. E. Brouwer, J. B. Shearer, N.J.A. Sloane, W. D. Smith, A New Table of
Constant Weight Codes, IEEE Transaction on Information Theory, 36 (1990),
1334-1380.

8. N. Cesa-Bianchi, Y. Freund, D. Helmbold, and M. K. Warmuth, On-line prediction
and conversion strategies, Machine Learning, 25 (1996), 71-110.

9. F. Cicalese, U. Vaccaro, Optimal strategies against a liar, Theoretical Computer
Science, 230 (2000), pp. 167-193.

10. F. Cicalese and D. Mundici, Optimal binary search with two unreliable tests and
minimum adaptiveness, In: Proc. of ESA99, LNCS vol. 1643, (1999), 257–266.

11. J. Czyzowicz, D. Mundici, A. Pelc, Ulam’s searching game with lies, J. Comb.
Theo., Ser. A, 52 (1989), 62-76.

12. A. Dhagat, P. Gacs, and P. Winkler, On Playing “Twenty Question” with a liar,
In: Proc. 3rd ACM-SIAM SODA (1992), 16-22.

13. D.Z. Du, F.K. Hwang, Combinatorial Group Testing and its Applications, World
Scientific, Singapore, 1993.

14. R. Hill, Searching with lies, In: Surveys in Combinatorics, Cambridge Univ. Press
(1995), 41–70.

15. R. Karp, ISIT’98 Plenary Lecture Report: Variations on the theme of ‘Twenty
Questions’, IEEE Information Theory Society Newsletter, vol. 49, No.1, March
1999.

16. C. Kenyon and A. C. Yao, On Evaluating Boolean Functions with Unreliable Tests,
International J. of Foundation of Computer Science, 1, (1990), 1-10.

17. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1977.

18. D. Mundici, Ulam’s Game, Lukasiewicz Logic and AF C∗-algebras, Fundamenta
Informaticæ, 18, 151-161, 1993.

19. D. Mundici, A. Trombetta, Optimal comparison strategies in Ulam’s searching
game with two errors, Theoretical Computer Science, 182, (1997), 217-232.

20. S. Muthukrishnan, On optimal strategies for searching in presence of errors, In:
Proc. of the 5th ACM-SIAM SODA (1994), 680-689.

21. A. Negro, M. Sereno, Ulam’s searching game with three lies, Adv. in Appl. Math.,
13 (1992), 404-428.

22. A. Pelc, Solution of Ulam’s problem on searching with a lie, J. Combin. Theory,
Ser. A, 44 (1987), 129-142.

23. A. Pelc, Searching with permanently faulty tests, Ars Combinatoria, 38 (1994),
65-76.

24. A. Rényi, Napló az információelméletről, Gondolat, Budapest, 1976. (English
translation: A Diary on Information Theory, J.Wiley and Sons, New York, 1984).

25. R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, J. Spencer, Coping with
errors in binary search procedures, Proc. of 10th ACM STOC (1978), 227-232.

26. J. Spencer, Ulam’s searching game with a fixed number of lies, Theoretical Comp.
Sci., 95 (1992), 307-321.

27. J. Spencer and P. Winkler, Three thresholds for a liar, Combinatorics, Prob. and
Comp., 1 (1992), 81-93.

28. A. Tietäväinen, On the nonexistence of perfect codes over finite fields, SIAM J.
Appl. Math., 24, (1973), 88-96.

29. S.M. Ulam, Adventures of a Mathematician, Scribner’s, New York, 1976.
30. J. von Neumann, Probabilistic Logics and the Synthesis of reliable Organisms

from Unreliable Components, in Automata Studies, Princeton University Press,
Princeton, NJ, (1956), 43–98.

Author Index

Agarwal, Pankaj K. 328
Ahal, Shlomo 490
Alber, Jochen 97
Aleksandrov, Lyudmil G. 71
Alstrup, Stephen 46
Arata, Kouji 300
Arge, Lars 433, 448
Arya, Sunil 353
Asano, Tetsuo 476
Azar, Yossi 164, 189, 200

Bender, Michael A. 83
Berman, Piotr 214
Berry, Anne 139
Björklund, Andreas 527
Bodlaender, Hans L. 97
Bordat, Jean-Paul 139
Boyar, Joan 200
Brodal, Gerth S. 57, 433

Cheng, Siu-Wing 353
Cicalese, Ferdinando 549

Damaschke, Peter 504
Dinitz, Yefim 272
Djidjev, Hristo N. 71
Doddi, Srinivas R. 237

Epstein, Leah 164, 189

Favrholdt, Lene M. 200
Feige, Uriel 10
Fernau, Henning 97
Fujishige, Satoru 300

Gudmundsson, Joachim 314
Guibas, Leonidas J. 328, 339
Gupta, Arvind 111

Har-Peled, Sariel 328
Hassin, Refael 231, 251
Heggernes, Pinar 139
Holm, Jacob 46

Iacono, John 32
Irving, Robert W. 259

Ishii, Toshimasa 286
Iwata, Satoru 300

Jacob, Riko 57

Kalyanasundaram, Bala 150
Kameda, Tiko 513
Kao, Ming-Yang 383
Karger, David R. 1

Larsen, Kim S. 200
Levcopoulos, Christos 314
Liberatore, Vincenzo 175

Makino, Kazuhisa 300, 513
Manlove, David F. 259
Marathe, Madhav V. 237
Matsui, Tomomi 476
Mount, David M. 353
Mukhopadhyaya, Srabani 419
Mundici, Daniele 549

Nagamochi, Hiroshi 286
Narasimhan, Giri 314
Niedermeier, Rolf 97
Nielsen, Morten N. 200
Nishimura, Naomi 111, 125
Noga, John 150
Nossenson, Ronit 272

Pagh, Rasmus 22
Pagter, Jakob 448
Palios, Leonidas 367
Peleg, David 220
Proskurowski, Andrzej 111
Pruhs, Kirk 150

Rabinovich, Yuri 490
Rabinovitch, Alexander 328
Ragde, Prabhakar 111, 125
Ramesh, H. 353
Ravi, S. S. 237
Rick, Claus 407
Rubinstein, Shlomi 231, 251

Sahni, Sartaj 419
Samet, Jared 383

564 Author Index

Sandholm, Tuomas 462
Scott, Sandy 259
Sethia, Saurabh 83
Sharir, Micha 328
Shibuya, Tetsuo 393
Skiena, Steven 83
Snoeyink, Jack 339
Stachowiak, Grzegorz 535
Stee, Rob van 189
Sung, Wing-Kin 383
Suri, Subhash 462

Taylor, David S. 237
Thilikos, Dimitrios M. 125
Thorup, Mikkel 1, 46

Tokuyama, Takeshi 476
Toma, Laura 433

Ukkonen, Esko 20

Vaccaro, Ugo 549
Venkataraman, Gayathri 419

Warkhede, Priyank Ramesh 462
Widmayer, Peter 237
Woeginger, Gerhard 150

Yamashita, Masafumi 513

Zhang, Li 339

	front-matter
	Algorithm Theory SWAT 2000
	Preface
	Program Committee
	Table of Contents

	fulltext
	Dynamic Graph Algorithms
	Applications
	Dynamic Connectivity and the Construction of Trees from Homeomorphic Subtrees
	Dynamic 2-Edge Connectivity and Matchings
	Dynamic MST, Tree Packing, and Edge Connectivity
	Dynamic Shortest Paths and Local Search for Routing on the Internet

	Tree Packings and Edge Connectivity
	Lagrangian Tree Packing
	Fully-Dynamic Packing with Small Cuts
	Larger Edge Connectivity

	fulltext_001
	Introduction
	Easy Special Cases
	Somewhat Efficient Algorithms
	Approximation Algorithms
	Heuristics
	Conclusions

	fulltext_002
	fulltext_003
	Introduction
	Related Work
	This Work

	Universe Reduction
	Error-Correcting Codes and Distinguishing Bits
	Multiple Set Universe Reduction

	Using the Predecessor Data Structure
	Time and Space

	Final Remarks
	Speedups
	Worst-Case Bounds

	Conclusion

	fulltext_004
	Introduction
	Pairing Heaps
	Constant Amortized Time Insert and Zero Amortized Time Meld in Pairing Heaps
	The Working Set Theorem
	The Working Set Theorem for Top Down Skew Heaps
	Populate Replace Heaps
	 ${$Pairing, Skew-Pairing, Top-Down Skew$}$ Heaps Merge Sorted Lists Optimally within a Constant Factor

	fulltext_005
	Introduction
	Top Trees
	Non-local Searching
	Dynamic Center
	Dynamic Median
	Non-local Search Implementation

	Methodological Remarks
	Concluding Remarks

	fulltext_006
	Introduction
	Semi-dynamic Data Structure
	Fully Dynamic Data Structure
	The Interfaces
	Dynamization
	Grouping
	The Interval Tree ${cal T}$ for Subenvelopes
	Analysis

	Other Queries
	Arbitrary Line Queries

	Applications

	fulltext_007
	Introduction
	Preliminaries and Algorithm Outline
	P--Tree Data Structure
	Update and Query Operations

	fulltext_008
	Introduction
	Basic Results: Deterministically Maintaining Set Partitions
	Randomized Data Structures for Maintaining Set Partitions
	Monte Carlo Algorithm
	Las Vegas Algorithm

	Estimating the Number of Partitions Separating Elements
	Maintaining Geometric Set Partitions
	Maintaining Sorted Strings under Character Insertion/Deletion

	fulltext_009
	Introduction
	Preliminaries
	Domination versus Treewidth
	Separators and Treewidth
	Tree Decomposition

	Variations of {sc dominating set/} and {sc disk dimension/}
	Conclusion

	fulltext_010
	Introduction
	Preliminaries
	Graphs, Treewidth, and Pathwidth
	Embeddings

	Track Layouts
	Topological Embedding Algorithm
	Minor Embedding Algorithm
	Extensions and Open Problems

	fulltext_011
	Introduction
	Preliminaries
	Trees and k-Leaf Powers

	Properties of Neighbourhoods
	Clique Graphs and Their Properties
	Clique Graphs
	General Clique Graphs and Clique Graph Partitioning

	Reconstructing the Underlying Tree of a 4-Leaf Power
	Conclusions and Further Work

	fulltext_012
	Introduction
	Preliminaries
	Connections between Triangulated and Weakly Triangulated Graphs
	Weakly Triangulated Graph Recognition
	Lekkerkerker and Boland's Algorithm for Triangulated Graph Rrecognition
	A Characterization of Weakly Triangulated Graphs by LB-Simplicial Edges
	Recognition Algorithm
	Complexity

	Conclusion

	fulltext_013
	Introduction
	Problem Statement and Motivation
	Our Results
	Related Results

	Foundational Results
	Bit Model
	Lower Bounds in the General Model
	Analysis of Landlord
	Slumlord
	Oblivious Algorithms for the Cost Model

	fulltext_014
	Introduction
	Scheduling on Related Machines
	Restricted Assignment with Consistent Precedence Constraints
	Restricted Assignment with General Precedence Constraints

	fulltext_015
	Introduction
	Preliminaries
	Competitive Analysis
	Randomized Algorithms
	Deterministic Algorithms
	Reduced Randomization

	Probabilistic Analysis
	Simulations

	fulltext_016
	Introduction
	Permanent Tasks
	Algorithm Buckets
	Lower Bounds
	An Optimal Preemptive Algorithm

	Temporary Tasks
	Conclusions

	fulltext_017
	Introduction
	General
	Accommodating Sequences and the Accommodating Function
	Results

	The Competitive Ratio
	First-Fit and Worst-Fit
	Algorithm Log
	An Upper Bound on the Competitive Ratio

	The Competitive Ratio on Accommodating Sequences
	An Upper Bound
	Unfair-First-Fit

	The Accommodating Function
	A Randomized Algorithm
	A Deterministic Algorithm

	fulltext_018
	Introduction
	Analysis of SquareImp

	fulltext_019
	Introduction
	Background
	The Problems Considered
	Previous Work
	Contributions

	An Approximation Algorithm for the Max-Rep Problem
	The Uniform Case
	The Nonuniform Case
	The Weighted Problem

	An Approximation Algorithm for the Red-Blue Set Cover Problem
	The Greedy Procedure
	The Main Procedure
	The Approximation Algorithm
	The Weighted Case

	fulltext_020
	Introduction
	Max Cut with Given Sizes of Sides
	Generalized Maximum Linear Arrangement
	Max k-Cut with Given Sizes of the Sides

	fulltext_021
	Introduction
	Motivation
	Problem Formulation and Previous Work
	Summary of Main Results
	Other Related Work

	Preliminaries
	A Simple Upper Bound on the Optimal Solution Value
	A Merging Lemma
	Transformation to Weighted Set Cover
	The Budgeted Maximum Coverage Problem

	Approximating unhbox voidb @x hbox {$unhbox voidb @x hbox Cmsd{Delta }
	Algorithm Overview
	Correctness of Algorithm
	An Approximation Algorithm for unhbox voidb @x hbox {$unhbox voidb @x hbox Cmsd{Delta } with Fixed k

	Non-approximability Results
	Non-approximability without Triangle Inequality
	A Non-approximability Result for unhbox voidb @x hbox {$unhbox voidb @x hbox Cmsd{Delta }

	Other Results

	fulltext_022
	Introduction
	Robust Independent Sets
	Robust Matchings
	Clustering

	fulltext_023
	Introduction
	Resident-Oriented Algorithm for HRT
	Hospital-Oriented Algorithm for HRT
	Existence of Super-stable Matchings
	Concluding Remarks

	fulltext_024
	Introduction
	Preliminaries and Notations
	Model Description
	Model Dynamics
	T-transformation
	General Example

	Implementation

	fulltext_025
	Introduction
	Main Theorem
	Outline of Algorithm
	s-Basal k-Connectivity
	Edge-Splitting Operation
	Entire Algorithm

	Correctness of Step I
	Structure of k-Connected Graphs
	Edge-Splitting Preserving k-Connectivity
	Edge-Splitting in (k-1)-Connected Graphs
	Edge-Splitting in an Arbitrary Graph

	Correctness of Step II
	Correctness of Step III
	Concluding Remarks

	fulltext_026
	Introduction
	Integer Programming Formulation
	The Uniform Cost Case
	A Greedy Algorithm
	An Efficient Implementation

	The Uniform Demand Case
	NP-hardness of General Case
	Conclusion

	fulltext_027
	Introduction
	The DN-Clustering Spanner Algorithm
	A Faster Spanner Algorithm

	An Improved Spanner Algorithm
	Integralization
	Clustering the Graph
	Answering Shortest Path Queries
	The Graph Produced by {sc Improved-Greedy} Is a t-Spanner.

	Conclusions and Acknowledgments

	fulltext_028
	Introduction
	Computing the Penetration Depth
	An Approximation Algorithm

	fulltext_029
	Introduction
	Preliminaries
	Maintaining the Compact Voronoi Diagram for Moving Obstacles
	Combinatorial Changes of the Compact Voronoi Diagram
	Applications
	Collision Detection
	Retraction Motion Planning

	Conclusion

	fulltext_030
	Introduction
	Definitions and Main Results
	Background
	The Uniform Distribution Case
	Quadratic Space Solution
	Linear Space Solution

	General Well-Behaved Distributions

	fulltext_031
	Introduction
	Terminology
	The Strategy
	The One-Sided Case
	The General Case
	Simulating the Strategy
	Path Properties

	Competitiveness Analysis
	Augmenting the Robot's Path
	The Competitive Factor

	Concluding Remarks -- Open Problems

	fulltext_032
	Introduction
	Problem Formulation
	An Efficient Algorithm
	A Graph Representation
	A Linear-Time Algorithm for a Duplicate-Free C
	A General Algorithm for C with Few Duplicates

	The Enhanced Double Digest Problem Is NP-hard
	Further Research Directions

	fulltext_033
	Introduction
	Preliminaries
	Suffix Trees and p-Suffix Trees
	Ukkonen's Suffix Tree Construction Algorithm

	Structural Suffix Tree
	s-Strings and s-Suffix Trees
	Basic Algorithm
	Faster Algorithm when $|Sigma | = 2$
	Faster Algorithm for Arbitrary $Sigma $

	Computational Experiments
	Concluding Remarks

	fulltext_034
	Introduction
	Matches and Contours
	Representing All LCSs
	A Characterization Based on Structural Symmetries
	An Efficient Construction
	Conclusion

	fulltext_035
	Introduction
	Floyd's All-Pairs Shortest-Paths Algorithm
	Upper Bound on Attainable Speedup
	Blocked Version of Floyd's Algorithm
	The Algorithm
	Correctness of Blocked Algorithm
	Optimal Blocking Factor

	Experimental Results
	Conclusion

	fulltext_036
	Introduction
	Problem Statement
	Previous Results on I/O-Efficient Graph Algorithms
	Our Results

	Minimum Spanning Tree on General Graphs
	An O(V+textrm {sort}(E)) MST Algorithm
	MST Vertex-Reduction Algorithm

	Multi-way Planar Graph Separation
	Separating Planar Graphs
	Separating Planar Graphs of Bounded Height Spanning Tree

	Single Source Shortest Paths on Planar Graphs

	fulltext_037
	Introduction
	Related Work
	Our Results

	Models of Computation
	Upper Bound Models
	Lower Bound Models
	External RAM's vs. External Branching Programs

	Lower Bounds
	General Lower Bound Method
	Applications of the Lower Bound Method

	Upper Bounds

	fulltext_038
	Introduction
	Flow-Based Routing
	Flow Aggregation and Our Contribution
	Previous Work

	Flow Entries as Rectangles
	Aggregation in One Dimension
	The Dynamic Programming Algorithm
	An Improved Dynamic Program

	Optimal Flow Aggregation
	An Improved Algorithm

	Extensions and Experimental Results
	Improving Time Complexity by Path Compression
	Experimental Results

	Concluding Remarks

	fulltext_039
	Introduction
	Sequence-Rounding Problem
	Supremum of the Optimal Rounding Error
	Finding an Optimal Rounding --- Known Results
	Polynomial Time Algorithms

	Matrix-Rounding Problem
	Discrepancy Problem
	NP-hardness of Computing an Optimal Matrix Rounding

	Concluding Remarks

	fulltext_040
	Introduction
	The Generic Algorithm
	Complexity of Permutations
	General Upper Bounds
	Approximation and a General Lower Bound
	Special Cases

	fulltext_041
	Introduction and Contributions
	Lower Bound for Queries vs. Rounds
	Randomization Helps
	The Coefficients in Nearly Query-Optimal Deterministic Strategies

	fulltext_042
	Preliminary
	Monopoly Verification Problem
	Max-Neighborhood Monopoly Problem
	Min-Neighborhood Monopoly Problem
	Max Controlled Set Problem
	Conclusion

	fulltext_043
	Introduction
	Historical Notes
	Preliminary Definitions
	Adaptive Fault Diagnosis in 2n + n-1 Tests
	Some Definitions and Lemmas
	The Main Result

	Adaptive Fault Diagnosis in 4 Rounds
	Some Definitions and a Lemma
	The Main Result

	Conclusions

	fulltext_044
	Introduction
	One Disturbed Position
	Partial Fault Tolerant Network
	Partial Correction Network
	Fault Tolerant and Correction Networks
	Minimizing Number of Comparators
	Conclusions

	fulltext_045
	Introduction
	Our Results
	Related Work

	The Ulam-Rényi Game
	Strategies vs. Codes
	Optimal Strategies with Minimum Adaptiveness
	The First Batch of Questions
	The Second Batch of Questions

	Ulam-Rényi Game with Three Lies and Minimum Adaptiveness
	Conclusions and Open Problems

	back-matter
	Author Index

