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Preface

The Conference on Security and Cryptography for Networks 2006 (SCN 2006)
was held in Maiori, Italy, on September 6-8, 2006. The conference was the fifth
in the SCN series, and this year marked a change in its name (the former name
was Security in Communication Networks). The name change meant to better
describe the scope of the conference while preserving the SCN acronym. This
year for the first time we had the proceedings volume ready at the conference.
We feel that the SCN conference has matured and that it has become a tradition
to hold it regularly in the beautiful setting of the Amalfitan coast as a biennial
event.

The conference brought together researchers in the fields of cryptography and
security in order to foster the extension of cooperation and exchange of ideas
among them, aiming at assuring safety and trustworthiness of communication
networks. The topics covered by the conference this year included: foundations
of distributed systems security, signatures schemes, block ciphers, anonymity,
e-commerce, public key encryption and key exchange, secret sharing, symmetric
and public key cryptanalysis, randomness, authentication.

The international Program Committee consisted of 24 members who are top
experts in the conference fields. We received 81 submissions amongst which 24
papers were selected for presentation at the conference. These proceedings in-
clude the extended abstract versions of the 24 accepted papers and the short
abstract of the invited talk by Ivan Damg̊ard.

The Program Committee selected papers on the basis of originality, quality
and relevance to the conference scope. Due to the high number of submissions,
paper selection was a difficult task and many good papers had to be rejected.
Each paper was refereed by three or four reviewers. We thank the members of
the Program Committee for their great efforts invested in the selection process.
We also gratefully acknowledge the help of the external reviewers who evaluated
submissions in their area of expertise. The names of these reviewers are listed
on page VII, and we apologize for any inadvertent omissions or mistakes.

We also wish to thank the local organizing committee for their support in
running the conference. Finally, we would like to thank the conference partici-
pants and the authors of all the submitted papers. It is the authors of all the
submitted papers that allow the program committee to choose papers and to
ultimately make this conference possible.

September 2006 R. De Prisco
M. Yung
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Program Committee

Giuseppe Ateniese JHU, USA
Carlo Blundo Università di Salerno, Italy
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Edge Eavesdropping Games

Amos Beimel1,� and Matthew Franklin2,��

1 Department of Computer Science, Ben-Gurion University
2 Department of Computer Science, University of California, Davis

Abstract. Motivated by the proactive security problem, we study the
question of maintaining secrecy against a mobile eavesdropper that can
eavesdrop to a bounded number of communication channels in each
round of the protocol. We characterize the networks in which secrecy
can be maintained against an adversary that can eavesdrop to t channels
in each round. Using this characterization, we analyze the number of
eavesdropped channels that complete graphs can withhold while main-
taining secrecy.

Keywords: unconditional security, passive adversary, mobile adversary,
graph search games.

1 Introduction

Many cryptographic protocols are secure if an unknown fixed set of processors
of bounded size is dishonest. Proactive security [13,9] considers a more realistic
scenario, where a mobile adversary can control a different set of processors of
bounded size in each period. Protocols in the proactive model have to cope with
a stronger adversary, which, for example, might have controlled every processor
by some point during the protocol execution. In protocols secure in the proactive
model, each processor has to “spread” the secret information it holds.

Franklin, Galil, and Yung [6] studied maintaining secrecy against a mobile
eavesdropper which can eavesdrop to a bounded number of processors in each
round of the protocol. Unfortunately, we discovered that the main characteriza-
tion given in [6] of maintaining secrecy against a mobile eavesdropper is incor-
rect. We describe the flaw in their proof and the correct characterization, see
Section 1.2. The main focus of this paper is a similar question, where a mobile
eavesdropper can eavesdrop to a bounded number of communication channels
in each round of the protocol. As eavesdropping to communication channels is
easier than eavesdropping to processors, this is a natural question. Although the
two problems are similar, there are differences between the two problems, for
example in the number of rounds that an adversary can learn the secret infor-
mation in a complete graph while eavesdropping to minimal number of vertices
or edges respectively.
� On sabbatical at the University of California, Davis, partially supported by the

Packard Foundation.
�� Partially supported by NSF and the Packard Foundation.

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 1–17, 2006.
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2 A. Beimel and M. Franklin

To model the question of maintaining the secrecy of a system against a mobile
adversary that can eavesdrop to communication channels, we consider the fol-
lowing abstract game, similar to [6], called the distributed database maintenance
game. There is a protocol trying to maintain the secrecy of one bit b in the sys-
tem. The first stage in the game is an initialization stage in which each edge gets
an initial value. (This abstracts an intermediate state of a more complex proto-
col.) In Round i, each vertex receives messages, and sends messages generated
based on the messages it received in the previous round and a “fresh” random
string. The secret bit b can be reconstructed in each round of the protocol from
the messages sent in the system in that round. The mobile adversary eavesdrops
to t channels of its choice in each round. We require that an unbounded adver-
sary cannot learn the secret from the messages it heard. The adversary can only
eavesdrop to channels; it cannot change, insert, or delete messages.

Following [6], because of the close connection with “graph search games [14,11],”
we refer to the eavesdropping to a channel as placing a “guard” on this edge, and
we say that a graph is “cleared” at the end of a “search” (finite sequence of subsets
of edges the adversary eavesdrops) if the adversary has collected enough informa-
tion to infer the secret bit b. A protocol maintaining privacy should prevent the
adversary from clearing the graph.

We consider two variants of the edge eavesdropping game, depending on
whether the underlying communication network is modeled as a directed or an
undirected graph. When the network is modeled as an undirected graph, each
edge is a full-duplex channel, and a single eavesdropper can monitor the message
flow in both directions. When the network is modeled as a directed graph, each
edge allows communication in one direction only, and a single eavesdropper can
monitor the message flow in that direction only. Note that a full-duplex channel
can be represented as a pair of directed edges, but then two eavesdroppers are
required to monitor the message flow in both directions.

To see some of the subtleties of edge eavesdropping games, consider the three
graphs described in Fig. 1. A single guard can clear these graphs, and thus
the distributed database maintenance game on these networks is defeated by
an adversary controlling a single mobile eavesdropper. An explanation of these
examples can be found in Example 1 in Section 3.1 and in Section 4.3.

1.1 Our Results

Our first result (Theorem 1) is a characterization of when a search clears a graph.
Given a directed or undirected graph G and given a search of length �, we construct
an undirected layered version of the graph where the number of layers is the length
of the search. In the layered graph there are � + 1 copies of each vertex, and there
is an edge between the ith copy of u to the (i + 1)th copy of w iff there is an edge
between u and v in G. We prove that a search clears a graph iff it cuts the first
layer from the last layer in the layered graph. That is, we prove that:

– If there is a search that cuts the first layer from the last layer in the layered
graph, then no protocol can maintain privacy against this search. This is
proved by a reduction to the impossibility of unconditional key exchange.
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v1
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Fig. 1. Three graphs that can be cleared with one guard

– If there is no search with t guards that cuts the first layer from the last
layer, then there is a simple protocol that can maintain privacy against any
adversary that can eavesdrop to t channels in each round.

Inspired by this characterization, we say that an undirected path in the layered
graph is contaminated if all edges in the path are unguarded; a vertex is con-
taminated after i rounds of the search if there is a contaminated path (through
any layers) from the first layer to the copy of the vertex in layer i. That is,
contamination “flows” both forwards and backwards in time.

We give a second characterization (Theorem 2) of when a search clears a graph
based on the sets of contaminated vertices in each round of the protocol. This
characterization is more useful for analyzing the possibility and impossibility of
clearing graphs. Based on this second characterization, we prove an upper bound
on the length of the search (Theorem 3): If an adversary can clear a graph while
eavesdropping to at most t edges in each round, then it can clear the graph in
at most 2n rounds while eavesdropping to at most t edges in each round. We do
not know if super-polynomial search length is sometimes necessary.

A search is “monotonic” if once a vertex is cleared, it will remain clear for the
entire search. We explore the usefulness and limitations of a generic monotonic
searches. On the positive side, we show that monotonic search is essentially
optimal for directed and undirected complete graphs. A complete directed graph
with n vertices can be cleared by n2/2 guards in two rounds when n is even (by
monotonic search). We prove that n2/2 guards are required to clear this graph
no matter how many rounds the adversary is allowed (by any search). For a
complete undirected graph with n vertices, we show that it can be cleared by
n2/4 + n/2 guards in O(

√
n) rounds (by monotonic search). Furthermore, we

prove that n2/4 + n/2 guards are required to clear this graph no matter how
many rounds the adversary is allowed (by any search), and Ω(

√
n) rounds are

required to clear the graph even if the adversary uses n2/4+O(n) guards (by any
search). In contrast, with 3n2/8 + n/4 guards, the complete undirected graph
can be cleared in two rounds (by monotonic search).
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1.2 Comparison to the Vertex Eavesdropping Game

The problem we consider is similar to the vertex eavesdropping games consid-
ered in [6]. In the vertex eavesdropping game, a mobile adversary eavesdrops to
processors – it monitors their internal state, the computations they perform, and
the messages they send and receive. A search is a finite sequence of subsets of
vertices; a search succeeds (“clears the graph”) if the adversary learns enough in-
formation to infer the secret bit b in the distributed database maintenance game.
Unfortunately, the main characterization given in [6] of successful searches is in-
correct. The correct characterization is similar to the edge eavesdropping games:
Given a directed or undirected graph, and given a search, construct the undi-
rected layered version of the graph where the number of layers is the length of
the search (and with all self-loops added, i.e., an edge from each node in each
non-final layer to the same node in the next layer). A search clears a graph iff it
cuts the first layer from the last layer in the undirected layered graph.

The mistake in [6] is that they considered the directed layered version of the
graph instead of the undirected case. In particular, the flaw is in the proof of
Lemma 4 of [6], i.e., Alice cannot simulate the behavior of every node in Vs by
herself. A graph demonstrating this problem is described in Appendix A. The
characterization of [6] is correct if we require that each vertex is deterministic
during the execution of the protocol.

Although, the vertex eavesdropping game and the edge eavesdropping game
seem similar, there are differences between them. For example, the search of com-
plete graphs is simple in the vertex eavesdropping game: the complete graph with
n vertices can be cleared with n guards in one round, and cannot be cleared by
fewer guards in any number of rounds. By contrast, the search of undirected com-
plete graphs in the edge eavesdropping game is more complicated as it requires
Ω(

√
n) rounds even if near optimal number of guards are used. See Sections 4

and 5 for a detailed treatment.
In [6] it was shown that for directed layered graphs, super-polynomial search

length is sometimes necessary: There exists a family of graphs {Gn} such that
each Gn has O(n2) vertices, however, clearing the directed layered graph of Gn

requires Ω(2n) rounds using the optimal number of guards. This should be con-
trasted with classic search games, in which linear number of rounds are sufficient
to clear a graph with optimal number of guards [12,2] (for background on search
games on graphs [14,11]). However, due to the problem in the characterization
of [6], the above sequence of graphs does not imply that in vertex eavesdropping
games super-polynomial search length is sometimes necessary. It is not known
if super-polynomial search length is ever necessary for the vertex eavesdropping
game or for the edge eavesdropping game.

1.3 Historical Background

Ostrovsky and Yung [13] considered mobile faults under the control of a Byzan-
tine adversary to achieve general secure distributed computation against virus-
like waves of attack. Defense against mobile Byzantine faults was subsequently
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called “proactive” security [9], and was considered in numerous papers. The clas-
sic problem of Byzantine Agreement was studied in the mobile Byzantine fault
setting by Garay [7] and Buhrman et al. [3]. The distributed database game was
analyzed for the vertex eavesdropping game by Franklin et al. [6]. A more elab-
orate and fully functional distributed storage, with all operations secure against
a mobile Byzantine adversary, was treated by Garay et al. [8].

All the above works consider faults of processors, while we consider eavesdrop-
ping to communication channels. In [4,10,5], the problem of using a multicast
network coding to transmit information securely in the presence of an adversary
which can eavesdrop to a fixed set of edges of bounded size was studied.

2 Preliminaries

We consider a network described either by an undirected graph or by a directed
graph. In the directed case we assume, for technical reasons, that the out-degree,
|OUT(v)|, and in-degree, |IN(v)|, of each node v is at least 1. The network is
synchronous, and protocols in the network proceed in rounds. In Round i, each
vertex v does the following: (1) receives the messages sent by neighboring vertices
in Round i − 1, (2) chooses a random string ri

v for Round i, (3) computes new
messages based on the messages sent to it in Round i− 1 and the random string
ri
v, and (4) sends the messages it computes in Round i.

We consider the distributed database maintenance game (database game for
short). There is a protocol trying to maintain the secrecy of one bit b. The
first stage in the game is an initialization stage in which each edge gets an initial
value; there is a initialization function I(b) = 〈m0

u,v〉〈u,v〉∈E that generates initial
messages for the edges as a randomized function of the secret bit b. In Round i,
where i ≥ 1, the state of each vertex v is 〈mi−1

u,v 〉u∈IN(v), r
i
v, that is, the messages

it received in the previous round and a random string for the current round.
Vertex v computes messages mi

v = 〈mi
v,w〉w∈OUT(v), where mi

v is a function
of the vertex state,1 and sends mi

v,w to w. The secret can be reconstructed
in each round of the protocol; there is a reconstruction function φ such that
φ(〈mi

u,v〉〈u,v〉∈E , i) = b.
In the model we define, the messages that a vertex sends in Round i depend

only on the messages sent to it in Round i − 1, and on a “fresh” random string
for the round, thus, effectively each vertex forgets all information from previous
rounds. The reason for this requirement is that otherwise the secrecy in the
database game can be maintained in the local memory of some vertex. If we want
to allow local memory, that is, remembering the history, then the adversary must
be able to read it. Technically, this is done by adding self-loops in the graph.
Thus, depending on the graph, we allow or disallow each vertex to remember
its history. However, the adversary cannot eavesdrop to the local memory of a
vertex during the momentary period of receiving the messages, computing the
new messages, and sending them.
1 In the undirected case, 〈u, v〉 and 〈v, u〉 are the same edge. However, mu,v and mv,u

denote different messages.
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A mobile adversary is trying to learn the bit b. The adversary eavesdrops to a
possibly different subset of edges in each round. In a directed graph, an adversary
that eavesdrops to an edge 〈u, v〉 in Round i, learns the message sent by u to
v in Round i. In an undirected graph, an adversary that eavesdrops to an edge
〈u, v〉 in Round i, learns two messages sent in Round i: the message sent by u to
v and the message sent by v to u. The adversary cannot change, insert, or delete
messages. A search – a behavior of an adversary – is a sequence of subsets of
edges W1, W2, . . . , W�, where in Round i the adversary eavesdrops to the edges
in Wi and learns no additional information on the messages exchanged on other
edges. Similarly to other search games, if the adversary eavesdrops to an edge
in Round i, then we say that it guards the edge in Round i.

The adversary is adaptive, it decides on Wi – the communication channels it
eavesdrops in Round i – based on the messages it heard on W1, W2, . . . , Wi−1 in
previous rounds and on its random string r. The view of the adversary, after an
execution, is its random input, the search W1, . . . , W� it chose to eavesdrop, and
the messages it heard in this search. An unbounded adversary has not gained
information on the secret bit b, if its view is equally distributed when the bit is
0 and when the bit is 1.

Definition 1. The adversary does not gain information on the secret bit b in
Protocol P if for every possible view h:

Pr[ The view of the adversary is h | The secret bit is 0]
= Pr[ The view of the adversary is h | The secret bit is 1],

where the probability is taken over
{
ri
v : v ∈ V, 1 ≤ i ≤ �

}
, the random strings of

the vertices, and over the random string used by the initialization function I(b).

An adversary uses t guards if, for every search W1, W2, . . . , W� that it can use,
|Wi| ≤ t for every 1 ≤ i ≤ �.

Definition 2. A system can maintain its secrecy in a graph G against t guards
if there is a protocol P for the vertices in G such that every adversary that uses
t guards does not gain information on the secret bit. Otherwise, we say that t
guards can clear G.

We next describe a simple protocol, considered in [6], for the database game. In
each round of the protocol we maintain the following property

b =
⊕

〈u,v〉∈E

mi
u,v. (1)

This describes the reconstruction function of the protocol. The basic step in the
protocol is the simple sharing of a bit b, generating k bits b1, . . . , bk by randomly
choosing the first k − 1 bits independently such that each bit is uniformly dis-
tributed, and setting bk ← b ⊕

⊕
1≤i≤k−1 bi. In the initialization stage, Protocol

Pxor generates the messages 〈m0
u,v〉〈u,v〉∈E as the sharing of the secret bit b. In
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Round i of Protocol Pxor, each vertex computes the bit bi
v ←

⊕
u∈IN(v) mi−1

u,v ,
and shares bi

v generating the bits 〈mi
v,w〉w∈OUT(v), that is,

⊕

u∈IN(v)

mi−1
u,v = bi

v =
⊕

w∈OUT(v)

mi
v,w. (2)

As we assume that each vertex has at least one in-going edge and at least one out-
going edge, this process is possible. Clearly, the reconstruction described in (1)
is correct in the initialization stage. A simple calculation shows, using induction,
that the reconstruction described in (1) is correct in each round of the protocol.
In the next section we show that this simple protocol is “universal”: if there
exists a protocol that can maintain secrecy against t guards, then Protocol Pxor
can maintain secrecy against t guards.

3 Characterization Theorems for Clearing Graphs

We give two theorems that characterize graphs that can be cleared with t guards.
To understand the evolution of the clearing process throughout the rounds of the
protocol, we define a layered graph version of the communication graph. In this
graph there are two vertices Source and Target that are added for technical
reasons.

Definition 3. Given a directed or an undirected graph G = 〈V, E〉 and an index
�, we construct an undirected layered graph L(G, �) = 〈V �, E�〉 as follows. The
vertices of L(G, �) are V � def= (V × {1, . . . , � + 1}) ∪ {Source,Target} . The
edges of L(G, �) are

E� def= {〈(u, i), (v, i + 1)〉 : 〈u, v〉 ∈ E, 1 ≤ i ≤ �}
∪ {〈Source, (v, 1)〉 : v ∈ V } ∪ {〈(v, � + 1),Target〉 : v ∈ V } .

Given a search W1, W2, . . . , W�, we say that an edge 〈(u, i), (v, i + 1)〉 in L(G, �)
is guarded when G is a directed graph if 〈u, v〉 ∈ Wi. We say that an edge
〈(u, i), (v, i + 1)〉 in L(G, �) is guarded when G is an undirected graph if 〈u, v〉 ∈
Wi or 〈v, u〉 ∈ Wi. If an edge is not guarded, then we say that the edge is
unguarded. An undirected path in L(G, �) is contaminated if all edges in the
path are unguarded. Note that this path can go forwards and backwards in the
layers. A search W1, W2, . . . , W� of length � cuts the undirected layered graph
L(G, �) if there is no contaminated path in L(G, �) from Source to Target.

3.1 First Characterization Theorem

Theorem 1 (First Characterization Theorem). Let G be a graph. A system
can maintain its secrecy in the graph G against t guards iff for every � ∈ N, every
search W1, W2, . . . , W� with t guards does not cut L(G, �).

In light of Theorem 1, if a search cuts the undirected layered graph L(G, �), we
may say that the search clears G. The theorem is implied by the following two
lemmas.
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Lemma 1. Let G be a graph, and W1, W2, . . . , W� be a search that cuts L(G, �).
Then, for every protocol P, the adversary that eavesdrops to Wi in Round i, for
1 ≤ i ≤ �, learns the secret after at most � rounds.

Proof. Fix any protocol P . We assume, for sake of contradiction, that the adver-
sary that eavesdrops to Wi in Round i, for 1 ≤ i ≤ �, does not learn the secret
in the first � rounds, and construct an information-theoretic secure protocol in
which two parties, Alice and Bob, can exchange a secret key on a public channel
(without any prior secret information), which is impossible by the fundamental
result of Shannon [15].

We next define two sets with respect to W1, W2, . . . , W�.

R
def= {Source}∪{(v, i) : there is a contaminated path from Source to (v, i)} ,

and B
def= V � \ R. Notice that the only edges that connect vertices from R to B

are guarded edges.
Informally, to exchange a key Alice and Bob execute P , where Alice simulates

the vertices in R and Bob simulates the vertices in B, and the messages that
should be sent on guarded edges, that is, the messages the adversary hears,
are broadcasted on the public channel. Formally, to transmit a bit b, Alice uses
the initialization function I(b) to generate messages 〈m0

u,v〉〈u,v〉∈E . Now, Alice
and Bob simulate P round by round. In the ith round, Alice simulates the
vertices in Ri

def= {v ∈ V : (v, i) ∈ R} and Bob simulates all other vertices, namely
Bi

def= V \Ri. We will show that the simulation maintains the following property:

Property 1. Each party knows all messages sent in Round i − 1 to the vertices
that it simulates in Round i.

Now, Alice (respectively, Bob) chooses random strings ri
v for every v ∈ Ri (re-

spectively, v ∈ Bi), computes the messages v sends in P , broadcasts on the
public channel all the message that are sent on guarded edges, and remembers
all other messages.

Property 1 is maintained for Alice (respectively, for Bob), as all edges from
Bi−1 to Ri (respectively, all edges from Ri−1 to Bi) are guarded, and, therefore,
the messages sent on them are broadcasted on the public channel. This implies
that the key-exchange protocol can proceed. On one hand, there is no contami-
nated path in L(G, �), and after the �th round of the simulation all vertices in G
are in B�+1. So, Bob can compute the reconstruction function φ(〈m�

u,v〉〈u,v〉∈E , �)
and learn the message sent by Alice. On the other hand, the view of Eve after
the key exchange protocol is exactly the view of the adversary that eavesdrops
to W1, W2, . . . , W� in P , so Eve learns nothing about b. This is a contradiction to
the fundamental result of Shannon [15] that there no unconditionally secure key
exchange protocol that only uses a public channel. Thus, in the original protocol
P , the adversary can learn the secret. ��

Notice that in Lemma 1 the adversary is deterministic and non-adaptive as it
deterministically chooses the search it uses before the execution of the protocol.
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Lemma 2. Let Pxor be the XOR protocol, and assume that for some � there is
no search with t guards that cuts L(G, �). Then, any adversary that uses t guards
does not gain information on the secret in the first � rounds of Pxor.

Proof. To understand the idea of the proof, first consider a deterministic adver-
sary which chooses a search W1, W2, . . . , W� with t guards before the execution
of the protocol (that is, its choice of Wi does not depend on the messages it
heard in previous rounds). Since the search does not clear the graph, there is
a contaminated path in the layered graph from Source to Target. This ad-
versary cannot learn the secret bit b, since the value of the secret bit b can be
flipped by flipping the values of the messages sent on a contaminated path. This
is a valid execution of the protocol in which the adversary sees the same view.

To consider a randomized, adaptive adversary, fix any view h for the adversary,
that is, fix a random string r of the adversary, a search W1, W2, . . . , W� with t
guards, and the messages sent on the edges of the search. To prove the lemma,
we show that there is a one-to-one and onto function from possible executions
of Pxor when the view is h and the secret bit is 0 to possible executions of Pxor
when the view is h and the secret bit is 1. Thus, the number of these executions
is the same for both values of the secret, and, as every possible execution of
protocol Pxor has the same probability, the probability of the view is the same
for both values of the secret.

Consider any execution of Pxor when the view is h and the secret bit is 0. There
must be a contaminated path from Source to Target in L(G, �) with respect to
W1, W2, . . . , W�. Consider the lexicographically first simple contaminated path
in L(G, �). We map the execution with secret 0 to the following execution of the
protocol Pxor with the secret 1: We flip the values sent of the path as follows.

– For 〈Source, (v, 1)〉, the first edge in the path, flip the initial value m0
u,v for

the first u ∈ IN(v).
– For every “forward” edge 〈(u, i), (v, i + 1)〉 in the path, flip the message sent

by u to v in Round i.
– For every “backward” edge 〈(u, i), (v, i − 1)〉 in the path, flip the message

sent by v to u in Round i − 1.

We claim that this is a legal execution of Pxor, that is, for every v and every
i, Equation (2) holds – the exclusive-or of the messages v receives in Round i−1
is equal to the exclusive-or of the messages v sends in Round i. This is true since
the path is simple, and, therefore, the mapping flipped the values of two edges
for every vertex in the path (and changed no messages sent on edges not in the
path). Since the mapping flipped the value of exactly one initial message, the
value of the secret in the new execution has changed to 1, thus, this is indeed
an execution with secret 1.

As the mapping flipped the values only on unguarded edges, in each round of
the protocol, the adversary sees the same messages, thus, it cannot notice this
change, and it continues to eavesdrop to the same search. Finally, this transfor-
mation is one-to-one and onto since if we apply this transformation twice, then
the result is the original execution. ��
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Example 1. Consider Graph G1 described in Fig. 1 in the Introduction. The
search that guards the edge 〈v1, v2〉 for three rounds does not clear the graph as
Source, (v2, 1), (v3, 2), (v1, 3), (v2, 2), (v3, 3), (v1, 4), Target is a contaminated
path from Source to Target in L(G1, 3). Notice that this path goes forwards
and backwards in the layer graph. There is no contaminated path in L(G1, 3) that
only goes forward; this search illustrates the importance of “backward” edges
in the layered graph. Nevertheless, this graph can be cleared with one guard in
4 rounds as follows: In Round 1 guard 〈v2, v3〉, in Round 2 guard 〈v2, v1〉, in
Round 3 guard 〈v2, v3〉, and in Round 4 guard 〈v1, v2〉.

3.2 Second Characterization Theorem

Recall that a cut in an undirected graph H = 〈V, E〉 is a set of edges defined by
a set R ⊂ V containing all edges between R and R. Theorem 1 implies that a
search clears a graph G iff it induces a cut in L(G, �) such that all edges in the
cut are guarded. That is, there is a search that clears a graph iff there is a cut
in the graph L(G, �) that, for every i, contains at most t edges between layer i
and layer i + 1. This is formalized in the next theorem, and illustrated in Fig. 2.

Ri+1

Ri

Ri

Ri+1

Fig. 2. A description of the ith layer of the cut in L(G, �) for a search. The sets Ri

and Ri+1 are the sets of the vertices reachable by an unguarded paths in layers i and
i + 1, respectively. The edges in the cut are the edges between Ri and Ri+1 and the
edges between Ri and Ri+1.

Theorem 2 (Second Characterization Theorem). Let G be a graph. The
graph G can by cleared by t guards iff there is some � ∈ N and a sequence of
subsets of vertices R1, . . . , R�+1 (that is, Ri ⊆ V for 1 ≤ i ≤ � + 1) such that

1. R1 = V , R�+1 = ∅, and
2. for every 1 ≤ i ≤ � the set

(
Ri × Ri+1

) ⋃ (
Ri × Ri+1

)
contains at most t

edges of G.

Proof. By Theorem 1 it suffices to prove that such sequence of sets R1, . . . , R�+1
exists iff there exists a search with t guards that cuts L(G, �).

First, we assume that such sequence of sets R1, . . . , R�+1 exists. We define
the search W1, . . . , W� with t guards, where Wi contains the edges in E that are
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in
(
Ri × Ri+1

) ⋃ (
Ri × Ri+1

)
. We claim that this search cuts L(G, �), that is,

every path from Source to Target in L(G, �) contains a guarded edge. Define

R
def= {Source} ∪ {(v, i) : 1 ≤ i ≤ �, v ∈ Ri} .

The edges in the cut between R and V � \ R in L(G, �) are exactly the edges
guarded by our search. Every path from Source to Target in L(G, �) passes
through this cut, thus, the path contains a guarded edge and is not contaminated.

Now assume that there is a search W1, . . . , W� with t guards that cuts L(G, �).
For every i, where 1 ≤ i ≤ � + 1, define

Ri
def= {v : there exists a contaminated path from Source to (v, i) in L(G, �)} .

We say that Ri is the set of contaminated vertices in Round i. First, R1 = V ,
since all edges from Source to the first layer are unguarded. Second, R�+1 = ∅,
since all edges from the last layer to Target are unguarded and there is no
contaminated path from Source to Target. We need to prove that, for every
i, the set

(
Ri × Ri+1

) ⋃ (
Ri × Ri+1

)
contains at most t edges of G. Recall that

in each round of the protocol, at most t edges are guarded, thus, it suffices to
prove that the edges of E in

(
Ri × Ri+1

)⋃ (
Ri × Ri+1

)
must be guarded in

Round i:

– For every v ∈ Ri and w ∈ Ri+1, the edge 〈v, w〉 (if exists) must be guarded
in Round i, otherwise the contaminated path ending at (v, i) together with
〈(v, i), (w, i + 1)〉 is a contaminated path ending at (w, i + 1).

– For every v ∈ Ri and w ∈ Ri+1, the edge 〈v, w〉 (if exists) must be guarded
in Round i, otherwise the contaminated path ending at (w, i + 1) together
with 〈(w, i + 1), (v, i)〉 is a contaminated path ending at (v, i).

To conclude the second direction, given a search with t guards that cuts L(G, �),
we showed that the sets of contaminated vertices satisfy the condition of the
theorem. ��

Example 2. Consider a directed cycle with n vertices, i.e., the graph G = 〈V, E〉
where V = {v0, . . . , vn−1} and E =

{
〈vi, v(i+1) mod n〉 : 0 ≤ i ≤ n − 1

}
. This

graph can be cleared by one guard sitting on the same edge for n − 1 rounds.
For concreteness, assume that Wi = {〈vn−1, v0〉} for i = 1, . . . , n. Define Ri =
{vi−1, . . . , vn−1}, for 1 ≤ i ≤ n + 1. Clearly, R1 = V and Rn+1 = ∅. For
1 ≤ i ≤ n − 1, the only edge from the set Ri = {vi−1, . . . , vn−1} to the
set Ri+1 = {v0, . . . , vi−1} is 〈vn−1, v0〉 and there are no edges from Ri =
{v0, . . . , vi−2} to Ri+1 = {vi, . . . , vn−1}. Furthermore, 〈vn−1, v0〉 is the only edge
in

(
Rn × Rn+1

) ⋃ (
Rn × Rn+1

)
. It can be checked that the sets R1, . . . , Rn+1

are exactly the sets of contaminated vertices in the above search.

As a consequence, we prove that 2n rounds are sufficient to clear a graph with
minimal number of guards.

Theorem 3. If a graph G can be cleared with t guards, then it can be cleared
with t guards in at most 2n rounds.
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Proof. By Theorem 2, there is a sequence of subsets R1, . . . , R�+1 such that R1 =
V , R�+1 = ∅, and

(
Ri × Ri+1

) ⋃ (
Ri × Ri+1

)
contains at most t edges from E.

Consider a shortest sequence satisfying these conditions. We claim that there
are no indices i1 < i2 such that Ri1 = Ri2 , otherwise, Ri1−1 ×Ri2 = Ri1−1 ×Ri1

and Ri1−1 × Ri2 = Ri1−1 × Ri1 , and thus their union contains at most t edges
in E and R1, . . . , Ri1−1, Ri2 , . . . , R�+1 is a shorter sequence which satisfies the
above conditions. Therefore, each set Ri can appear at most once in the search,
and the length of the search is at most 2n. ��

4 A Monotonic Search Strategy for Clearing Graphs

In this section we consider a special case of searches that clear a graph. By The-
orem 2, to specify a strategy for the adversary, we can specify the contaminated
vertices in each round. We say that a search is monotonic if R� ⊂ R�−1 ⊂ · · · ⊂
R2 ⊂ R1, that is, once a vertex is cleared, it will not become contaminated later.
In Fig. 3, we formally describe monotonic searches. The advantage of monotonic
searches is that they are short; there can be at most n rounds until the adversary
clears the graph. However, they are not necessarily optimal, as they can require
more guards than general searches (see Section 4.3). In this section we present
examples of a monotonic searches that clear directed and undirected complete
graphs. As complete graphs are symmetric, it suffices to specify the size of the
each set Ri without specifying the exact set of vertices.

A Monotonic Search

R1 ← V ; i ← 1
While Ri �= ∅ do:

Choose a set Ai ⊆ Ri and set Ri+1 ← Ri \ Ai

Guard the following set of edges Wi:
Wi =

�
〈u, v〉 : u ∈ Ri, v ∈ Ri+1

�
∪
�
〈u, v〉 : u ∈ Ri, v ∈ Ri+1

�

i ← i + 1.

Fig. 3. A monotonic search strategy for clearing a graph.

4.1 Monotonic Search in Complete Directed Graphs

A complete directed graph, denoted Cn, is a graph with all the possible n2 edges
(including self loops). We show that, when n is even, n2/2 guards can clear Cn

in two rounds. To clear the graph, partition the n vertices in Cn to two disjoint
sets V1 and V2 of size n/2 each. In the first round, guard all the n2/2 edges from
V to V1. In the second round, guard all the n2/2 edges from V2 to V . In this
case, R1 = V , R2 = V2, and R3 = ∅.

When n is odd, (n2 + 1)/2 guards can clear Cn in three rounds. To clear the
graph, partition the n vertices in Cn to three disjoint sets: V1 and V2 of size
(n−1)/2 each, and a single vertex v. In the first round, guard all the edges from
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V to V1. There are n|V1| = n(n − 1)/2 < (n2 + 1)/2 such edges. In the second
round, guard all edges from V1 to V2 and all edges from V2 ∪ {v} to V1 ∪ {v}.
There are (n − 1)2/4 + (n + 1)2/4 = (n2 + 1)/2 such edges. In the third round,
guard all the edges from V2 to V . There are n|V2| = n(n − 1)/2 < (n2 + 1)/2
such edges. In this case, R1 = V , R2 = V2 ∪ {v}, R3 = V2, and R4 = ∅.

4.2 Monotonic Search in Complete Undirected Graphs

A complete undirected graph, denoted Un, is a graph with all the possible
(
n+1

2

)

edges (including self loops). To simplify calculations, in this section n is even.
We first show that 3n2/8 + n/4 guards can clear Un in two rounds. To clear the
graph, partition the n vertices in Un to two disjoint sets V1 and V2 of size n/2
each. In the first round, guard all the edges with at least one endpoint in V1.
There are

(
n/2+1

2

)
+ n2/4 = 3n2/8+n/4 such edges. In the second round, guard

all the edges with at least one endpoint in V2. Again, there are 3n2/8+n/4 such
edges.

We next describe a search of length n in Un using n2/4 + n/2 guards. Let
V = {v1, . . . , vn} be the vertices of the graph. In the ith round of the search we
choose Ri \ Ri+1

def= Ai = {vi} and Ri = {vi, . . . , vn}. The guarded edges are

{〈vi, vj〉 : 1 ≤ j ≤ n} ∪ {〈vj , vk〉 : 1 ≤ j ≤ i − 1, i + 1 ≤ k ≤ n} .

The number of guarded edges in Round i is, thus, n+(i−1)(n− i) = i(n− i+1).
The expression is maximized when i = n/2, and is n2/4 + n/2. Thus, n2/4 +
n/2 guards are sufficient to clear a complete undirected graph in n rounds. In
Section 5, we show that this is optimal by showing a matching lower bound.

We next show that, with the same number of guards as in the previous search,
the adversary can clear the complete undirected graph in O(

√
n) rounds. (In the

full version of this paper [1], we show that if the adversary uses n2/4 + O(n)
guards, then Ω(

√
n) rounds are necessary to clear the graph.) The idea to reduce

the number of rounds is that when |Ri| is small or big, the adversary can take
bigger sets Ai than the singletons considered in the previous search.

Let R1, . . . , R�+1 be sets defining a monotonic search of Un, let Ai
def= Ri\Ri+1,

and Si
def= Ri. Notice that Ri = Ri+1∪Ai, Si+1 = Si∪Ai, and Si∪Ai∪Ri+1 = V .

The edges guarded in Round i of the monotonic search are

{〈u, v〉 : u ∈ Ri, v ∈ Si+1} ∪ {〈u, v〉 : u ∈ Si, v ∈ Ri+1}
= {〈u, v〉 : u ∈ (Ri+1 ∪ Ai), v ∈ (Si ∪ Ai)} ∪ {〈u, v〉 : v ∈ Si, u ∈ Ri+1}
= {〈u, v〉 : u ∈ Ai, v ∈ V } ∪ {〈u, v〉 : v ∈ Si, u ∈ Ri+1} .

Thus, the number of edges guarded in Round i is bounded by

|Ai||V | + |Si||Ri+1| = |Ai|n + |Si|(n − |Si| − |Ai|). (3)

In each round, we want to choose the largest set Ai such that the number of guards,
as bounded in (3), does not exceed n2/4+n/2. In the first round, |S1| = 0, thus, the
requirement is |A1|n ≤ n2/4+n/2, that is, we can take |A1| ≈ n/4. In the second
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round |S1| ≈ n/4, thus, the requirement is |A2|n + n
4 (3n

4 − |A2|) ≤ n2/4 + n/2,
that is, we can take |A2| ≈ n

12 . Similar calculations show that in the ith round we
can take |Ai| ≈ n

2i(i+1) , and, in this case, |Ri| ≈ n
2 (1 + 1

i ). After O(
√

n) rounds,
|Ri| ≈ n

2 −
√

n. Then, with choosing Ai as a singleton for O(
√

n) additional rounds,
the adversary gets |Ri| = n/2. Finally, by (3), with additional O(

√
n) rounds the

adversary can get |Ri| = 0, by using a “reverse” search strategy. That is, if the
adversary used sets Ai of size a1, a2, . . . , aO(

√
n) to clear the first n/2 vertices, then

by using sets Ai of size aO(
√

n), . . . , a2, a1 the adversary clears the last n/2 vertices.
As |Ai| has to be an integer, there are some technical details to consider. The exact
details are omitted for lack of space.

4.3 Monotonic Searches are Not Optimal

We show that monotonic searches can require more guards than non-monotonic
searches. This phenomenon is also true for the vertex eavesdropping game [6],
but not for the classic search games on graphs [12,2].

In Fig. 4 we describe an example of a simple directed graph, Graph G0 =
〈V0, E0〉 where V0 = {v1, v2} and E0 = {〈v1, v2〉, 〈v2, v1〉, 〈v2, v2〉}, that can be
cleared with one guard using a non monotonic search:

– Guard 〈v2, v1〉 in the first round,
– Guard 〈v2, v2〉 in the second round,
– Guard 〈v1, v2〉 in the third round.

In Fig. 4 we describe the layered graph L(G0, 3) and the above search. This
is a non-monotonic search since v1 is cleared in the first round and becomes
contaminated in the second round.

We next claim that every monotonic search that clears G0 uses at least two
guards. In every search that clears G0 with one guard, the first vertex that must
be cleared is v1. The only way to keep v1 clear with one guard is to keep the
guard on the edge 〈v2, v1〉, thus, not clearing the vertex v2 and not clearing G0.

We next describe how to clear Graphs G2 and G3, described in Fig. 1 in the
Introduction, with one guard using non-monotonic searches. To clear Graph G2,
guard 〈v2, v3〉 for two rounds, guard 〈v1, v1〉 in the 3rd round, guard 〈v2, v2〉 in
the 4th round, and guard 〈v4, v1〉 for the last two rounds.

v2 v1
v2

v1

The layered graph L(G0, 3)The Graph G0

Fig. 4. The graph G0 and its layer graph. The guarded edges in the layer graph are
the dashed edges, and the contaminated vertices are the black vertices in the layered
graph.
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Notice that G3 contains the graph G2 and, in addition, a path with seven
edges. To clear Graph G3, guard 〈v2, v5〉 for six rounds (this clears the path),
then, in six rounds, clear the G2 part of G3 using the search described in the
previous paragraph. In these rounds the path becomes contaminated, so we clear
it again by guarding 〈v10, v1〉 for 6 rounds. It can be checked that this search
clears G3.

5 Lower Bounds on Clearing a Complete graph

We show that
⌈
n2/2

⌉
guards are necessary to clear Cn (no matter how many

rounds the adversary uses to clear the graph). Furthermore, we show that n2/4+
n/2 guards are necessary to clear a complete undirected graph and Ω(

√
n) rounds

are necessary to clear this graph with n2/4 + O(n) guards.

Theorem 4. An adversary needs at least
⌈
n2/2

⌉
guards to clear a complete

directed graph.

Proof. Assume that there is a search that clears the graph Cn with t guards.
We claim that t ≥ n2/2. Let R1, . . . , R�+1 be a sequence satisfying the con-
ditions of Theorem 2. In particular, |R1| = n and |R�+1| = 0. Let i be the
minimal index such that |Ri+1| < n/2. Thus, |Ri| ≥ n/2. We claim that the
number of edges guarded in Round i is at least n2/2. In Cn, all edges in(
Ri × Ri+1

) ⋃ (
Ri × Ri+1

)
exist, and the sets Ri × Ri+1 and Ri × Ri+1 are

disjoint. Thus, the number of edges is exactly

|Ri||Ri+1| + |Ri||Ri+1| = |Ri|(n − |Ri+1|) + |Ri+1|(n − |Ri|) (4)

Since |Ri+1| < n/2, this expression is an increasing function of |Ri|, thus, since
|Ri| ≥ n/2, it is at least n/2(n − 2|Ri+1|) + |Ri+1|n = n2/2. As the number of
guards is an integer, the theorem follows. ��

The following theorems provide lower bounds on the number of guards and
rounds needed to clear complete undirected graphs; their proofs appear in the
full version of this paper [1].

Theorem 5. An adversary needs at least n2/4+n/2 guards to clear a complete
undirected graph.

Theorem 6. Every search clearing a complete undirected graph using at most
n2/4 + γn guards, for some γ ≥ 1/2, must use at least Ω(

√
n/γ) rounds.
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A An Example of the Problem in the Proof of [6]

We next describe an example in which the characterization in [6] is incorrect.
Consider the graph G4, described in Fig. 5, from the family of graphs {Gn} used

y1

x4 y4

x2 y2

u

v

w

x1
x3 y3

Fig. 5. The graph G4
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in the proof of Theorem 3 in [6]. The graph G4 consists of a left clique (complete
graph) with vertices {x1, x2, x3, x4}, a right clique with vertices {y1, y2, y3, y4},
a middle clique (M2) consisting of vertices {x2, y2}, a middle clique (M3) con-
sisting of vertices {x3, y3, u}, and a middle clique (M4) consisting of vertices
{x4, y4, v, w}.

The following vertex search (suggested by the proof of Theorem 3 in [6]) cuts
the directed layered graph, but fails to cut the undirected layered graph:

Round Guarded set
1 {x1, x2, x3, x4}
2 {y2, x2, x3, x4}
3 {u, y3, x3, x4}
4 {y2, x2, y3, x4}
5 {v, w, y4, x4}

Round Guarded set
6 {y2, x2, y3, y4}
7 {u, y3, x3, y4}
8 {y2, x2, y3, y4}
9 {y1, y2, y3, y4}

One unguarded path in the undirected layered graph goes from y4 in the first
layer, to y1 in the second layer, to y4 in the third layer, to y1 in the fourth layer,
to y3 in the fifth layer, back to u in the fourth layer, to x3 in the fifth layer, to
x1 in the sixth layer, to x2 in the seventh layer, to x1 in the eight layer, to x2
in the ninth layer. With respect to Lemma 4 in [6], note that Alice is unable to
simulate the behavior of y3 in the fifth layer, even though this node is in the set
Vs, since the set Vr includes u in the fourth layer.

In fact, the proof of Theorem 3 in [6] implies that the only search that clears
the directed layered graph with 4 guards is basically the search described above.
Since every search that clears the undirected layered graph clears the directed
layered graph, and the above search does not clear the undirected layered graph,
every search that cuts the undirected layered graph, uses at least 5 guards.
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Abstract. Simultaneous Broadcast protocols allow different parties to
broadcast values in parallel while guaranteeing mutual independence of
the broadcast values. The problem of simultaneous broadcast was sug-
gested by Chor et al. (FOCS 1985) who proposed a linear-round solution,
and later improved by Chor and Rabin (PODC 1987) and Gennaro (IEEE
Trans. on Parallel and Distributed Systems 2000). The most efficient solu-
tion, in terms of round complexity, is the one due to Gennaro, which is in
the common random string model. This construction has constant round
complexity but is not very practical, as it requires generic zero-knowledge
proofs, non-interactive zero-knowledge proofs of knowledge, and commit-
ment schemes. All the mentioned solutions were proven secure under secu-
rity definitions with weak or no composition guarantees – only sequential
composition for the initial construction by Chor et al.

In this work, we explore the problem of Simultaneous Broadcast un-
der Universally Composable (UC) security (Canetti 2001). We give a
definition of Simultaneous Broadcast in this framework, which is shown
to imply all past definitions. We also show this notion can be achieved
by a computationally efficient, constant-round construction (building on
the verifiable secret sharing scheme of Cramer et al. at Eurocrypt 1999),
which is secure under an honest majority. Our results rely on (and bene-
fit from) capturing synchronous communication as a functionality within
the UC model, as suggested by Canetti (IACR eprint 2005). Indeed, we
show that this approach of modeling synchronous communication can
lead to better understanding of where synchronicity is needed, and also
simpler constructions and proofs.

1 Introduction

Broadcast channels allow one or more senders to efficiently transmit messages
to be received by all parties connected to a (physical or virtual) communication
network. As a communication primitive, broadcast is fundamental both in the
design of network communication protocols, and in the area of secure multiparty
computation. The main security property characterizing broadcast communica-
tion is consistency: the messages received by all players as a result of a broadcast
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transmission operation are guaranteed to be the same. The problem of achieving
consistency when implementing broadcast on top of a point-to-point network
(commonly known as Byzantine agreement) is central not only in cryptography,
but also to the area of fault-tolerant distributed computation. It has received
enormous attention (e.g., [25,18,11,7] among many others).

In secure multiparty computation, it is often desirable that the broadcast
channel satisfies some additional properties, besides consistency. For example,
in applications where multiple senders must broadcast messages at the same
time1 (e.g., when running in parallel many copies of a broadcast protocol with
different senders), it is often important to enforce the simultaneous transmission
of the messages. The goal is that no sender can decide its broadcast message
based on the values broadcast by the other players. Achieving this property,
also called independence, is not as straightforward as it may seem. In general,
naive parallel execution of broadcast protocols does not suffice, nor the more
sophisticated round efficient approaches presented in [4,27]. Indeed, a common
conservative assumption in settings where (multisender) broadcast channels are
provided is to assume rushing adversaries – adversaries that, at each round,
may see the messages sent by the honest parties before sending out the mes-
sages for the corrupted parties for the same round [5]. Nonetheless, this in-
dependence property does play a fundamental role in the secure multiparty
computation protocol of [12] as well as in many important applications (like
contract bidding, coin flipping, and electronic voting schemes, as exemplified
in [13,17,19]) where this type of broadcast enormously simplifies the design of
protocols.

The concept of simultaneous broadcast was introduced by Chor et al. in [12],
along with a simulated-based definition. In [12], Chor et al. presented protocols
that securely implement simultaneous broadcast on top of a network which al-
lows regular broadcast transmission operations, not necessarily satisfying the si-
multaneity property. For each simultaneous broadcast operation, their protocols
require a number of rounds that is linear in the number of parties. Subsequent
works [13,19] focused on reducing the round complexity, obtaining simultane-
ous broadcast protocols with logarithmic [13] or even constant [19] number of
rounds (the latter result achieved in the common random string model.) Even
as the round-efficiency of the solutions increased, the definitions of security did
not remain the same, and they actually became increasingly restricted, as it was
pointed out by Hevia and Micciancio [22]. In particular, there it was shown that
the protocol of [19], the most round efficient protocol so far, is secure under a
definition of security strictly weaker than the original simulation-based definition
[12].2 Nonetheless, the round efficiency of Gennaro’s protocol made attractive

1 Also called interactive consistency in [31,4] and parallel broadcast in [22]. To avoid
confusions, we adopt the term multisender broadcast to refer to the operation of
multiple senders broadcasting messages at the same time.

2 Indeed, the definition of simultaneous broadcast proposed in [19] may not exclude
protocols that fail to achieve the intuitive notion of independence captured by the
simulation-based definition of [12].
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the search for either a proof that such protocol achieves a stronger notion of
simultaneous broadcast (e.g. [12]), or for a variant of that protocol that does it.

Concurrent Execution and Universal Composability: The develop-
ment of increasingly complex computing environments brought the concern that
previously secure protocols (proven as stand-alone primitives) might not remain
secure under stronger adversarial conditions, like parallel or concurrent execu-
tion with many (possibly different) other protocols [17], or if invoked by other
(possibly unknown) protocols. It was in such context that several security frame-
works were developed (see [32,8] for a good survey). In [8], Canetti presented
the Universally Composable (UC) Security framework, which allows modular
description and analysis of protocols under concurrent execution and provides
strong composability guarantees. Indeed, the security of UC secure protocols is
maintained under general composition with an unbounded number of instances
of arbitrary protocols running concurrently. Thus, given the benefits of the UC
framework, the security of many cryptographic primitives has been revisited to
explore whether these stronger UC guarantees can be achieved, and if so, at what
cost (in terms of efficiency or assumptions). As we will see in the next section,
simultaneous broadcast can be achieved under UC security not only at no cost,
but also with gains in terms of efficiency.

1.1 Our Contributions

In this work, we present an communication and round efficient solution for
the simultaneous broadcast problem. Our solution is based on verifiable secret
sharing (VSS) [12] and does not uses zero-knowledge proofs, zero-knowledge
proofs of knowledge, not commitments schemes as previous constructions [13,19].
Moreover, our construction is provably secure in the Universally Composable
framework against computationally-unbounded adaptive adversaries assuming
an honest majority and private channels, with some negligible error probabil-
ity.3 To achieve this, we introduce a natural definition of Simultaneous Broadcast
in the UC framework which implies all previous definitions. Our simultaneous
broadcast construction is very efficient: we run one VSS per party in paral-
lel. While the construction is technically simple, proving UC security present
some subtleties, like dealing with rushing adversaries or parties simply “copy-
ing” someone else’s sharing. We overcome some of the problems by defining a
synchronous variant of verifiable secret sharing, which we call Terminating VSS
(TVSS), and building our simultaneous broadcast protocol invoking such TVSS
functionality. We then show that, when formalized as UC functionality, TVSS
is intrinsically synchronous. A benefit of this approach is that our simultaneous
broadcast protocol does not explicitly requires global synchronous communica-
tion since all the synchronicity is provided by the Terminating VSS functionality.
Our construction and proof exemplifies the approach, first suggested by Canetti

3 Most of the properties of our solution – namely communication and round complex-
ity, reliability and negligible error probability – are inherited from the VSS used as
building block [14].



Universally Composable Simultaneous Broadcast 21

in [8], of abstracting synchronous communication as a functionality rather than
embedding it in the execution model [30,24]. We believe this approach leads to
modular analysis, simple protocol design and simpler proofs.

1.2 Related Work

Simultaneous Broadcast: As mentioned above, the simultaneous broadcast
problem was put forward by Chor et al. [12] who proposed a simulation-based
definition and a linear-round protocol. This protocol essentially executed n se-
quential VSS protocols, where n is the number of communicating parties. The
sequential execution was needed to prevent corrupted parties from broadcasting
the same value as an honest party, for instance by reusing (copying) the VSS
data sent out by the honest party. Then, Chor and Rabin in [13] showed how
to reduce the round complexity to O(log(n)) rounds. Their protocol requires,
among other things, that each party first broadcast a commitment of her input
and then proves knowledge of the broadcasted value. The reduction in rounds
comes from using a clever scheduling technique for doing the proofs – for any two
players, there is a step in the protocol where one player acts as prover and the
other one acts as verifier of the proof of knowledge. Such a scheduling prevents
“copying” the proofs. Finally, Gennaro in [19], working in the common random
string model, put forward a protocol that greatly simplifies the one in [13] by
showing how to run the proofs of knowledge in parallel, essentially employing
non-interactive proofs of knowledge [34].

In terms of the previous definitional work for simultaneous broadcast problem,
it turns out that each result in [12,13,19] presents a different definition. Hevia
and Micciancio [22] show that these definitions form a strict hierarchy when
considered in terms of input distributions. They point out that the strongest
definition (in a well-defined sense, see [22]) is the simulation-based notion of [12],
which preserves security under sequential composition. The notions in [13,19]
targeted stand-alone execution and thus provide no composition guarantees.

Verifiable Secret Sharing: The notion of Verifiable Secret Sharing (VSS)
was first proposed by Chor et al. [12] inspired by the need of adding robustness
to standard secret sharing (eg. Shamir’s [35]) The problem has been extensively
studied both in the synchronous setting (e.g. [18,5,20,33,14,1]) and in the asyn-
chronous setting [3,6,11,7]. In the information-theoretic model with adaptive
adversaries, Rabin and Ben-Or [33] proposed a VSS secure under an honest
majority, by allowing negligible failure probability. Subsequently, in the same
model, Cramer et al. [14] improved the information checking protocols of [33]
and presented a very efficient constant-round VSS protocol. By instantiating
the Terminating VSS required in our construction with the scheme in [14] we
obtain our constant-round solution.

Related Protocols and Generic Solutions: The simultaneous broadcast
problem is related to the idea of common-coin protocols [18,29], where several
parties want to generate one or more unbiased coins in a distributed way. Indeed,
the constructions proposed in [18,29] involve executing VSS protocols in parallel,
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in a similar approach to ours. We remark, however, that the goals are different:
while for common-coin generation it suffices that the broadcast value of a single
(uncorrupted) value is not correlated to the output of corrupted parties,4 in the
simultaneous broadcast problem we seek to guarantee that every single compo-
nent of the output vector of the broadcast values remains “uninfluenced” by the
other values in the same vector. In addition, our construction must guarantee
security under general (UC) composition.

A related, although orthogonal issue, is the problem of simultaneous termi-
nation, which has been studied by Lindell et al. [27]. The problem arises in the
context of parallel composition of multiparty protocols in synchronous networks,
where certain protocols (including broadcast protocols) may not terminate in
the same round when composed in parallel, thus complicating their sequential
composition with other protocols. (We note that, in [27], the term simultane-
ous broadcast is used but with a different meaning than ours, as they refer to
what we call multisender broadcast.) The methods in [27] do not attempt to
achieve independence (in fact, they do not) since their concern is not adding
new functional properties to the resulting parallel protocol, but ensuring that
it can be safely composed sequentially with other protocols while preserving
round efficiency. Also in the context of composition of broadcast protocols, Lin-
dell et al. discussed some pitfalls in the composition of Authenticated Byzantine
Agreement [26]. They show that, unless session identifiers are available, no paral-
lel or concurrent composition of Authenticated Byzantine Agreement is secure if
more than one third of the parties are faulty. In our work, we do assume the avail-
ability of broadcast channels (in the form of the broadcast functionality FBC)
but we put no restrictions on how they are implemented. For example, session
identifiers for the broadcast protocols could be initialized using the techniques
of Barak et al. [2], or by standard techniques under setup assumptions [10].

Lastly, there are powerful UC constructions for secure multiparty computa-
tion of generic protocols (e.g. [10,15]) which could certainly be used to provide
a solution to the simultaneous broadcast problem. Indeed, techniques of [10]
do provide such a solution tolerating any number of corrupted parties in the
common random string model. However, as done in many other examples of
multiparty secure computation (eg. threshold signatures, key-exchange, voting),
our goal is to look for more specialized, and therefore more efficient, solutions
for the simultaneous broadcast problem.

Comparison with previous solutions: In terms of efficiency, the number
of rounds required in our construction is equal to the number of rounds of the
terminating VSS construction we use, which is the one proposed by Cramer
et al. [14]. Similarly, the computational complexity of our construction is n times
that of the terminating VSS in [14]. Concretely, our solution requires O((k +
log n)n4) bits of communication, and only 14 rounds (or 12 if no faults occur).
If the model is extended so parties can use digital signatures, the protocol takes
only 7 rounds, although security holds only against computationally-bounded

4 In all fairness, in general the mentioned protocols do achieve more than that.



Universally Composable Simultaneous Broadcast 23

adversaries. In comparison, the previous constant round solution [19] uses at
comparable number of rounds (seven for the VSS protocol [5], plus six for the
computational zero-knowledge proof [20], plus three rounds) but requires the
communication of a large number of bits (n copies of a non-interactive zero-
knowledge proof of knowledge for a generic NP statement [34], plus n times
the communication complexity of the VSS protocol of [20], a total that in most
implementations is often orders of magnitude larger than O((k + log n)n4) ).

In terms of the adversary tolerated our solution is similar to Gennaro’s. The
construction of [19] works over public channels under computationally-bounded
static adversaries and can be made secure under adaptive adversaries using the
compiler of [9]. In comparison, assuming secure channels, our solution toler-
ates computationally unbounded adaptive adversaries, and security in the pub-
lic channels (and computationally-bounded adversaries) setting can be obtained
by standard techniques, like non-committing encryption [9,16]. In terms of re-
silience, our construction tolerates at most t < n/2 corrupted parties as Gen-
naro’s solution. The constructions of Chor et al. [12] and Chor and Rabin [13]
tolerate t < n/4 and t < n/2 respectively.

Organization of the paper: In the next section, we briefly describe the UC
framework. Then, in Sect. 3, we describe and justify our formalization of the
notion of Terminating VSS (denoted UC-TVSS), our synchronous variant of
VSS, and we mention how it can be efficiently implemented. Sect. 4.1 presents
our notion of security for simultaneous broadcast (denoted UC-SB), and shows
how to implement it from UC-TVSS. We conclude in Sect. 5 by discussing how to
extend our results to the public channel model, and how to model simultaneous
broadcast under purely asynchronous communication.

2 Preliminaries

Model: Our results are in the Universally Composable framework of Canetti as
described in [8]. We briefly and informally outline it here. In the UC framework,
the desired properties of cryptographic protocols are defined in terms of tasks
or functionalities. A functionality is a “trusted third party” that first obtains
inputs directly from the parties, performs certain instructions on these inputs,
and provides the parties with the appropriate outputs. A protocol securely im-
plements a given cryptographic task, if executing the protocol against a realistic
(i.e. real-life) adversary “emulates” the execution of an ideal process. In the ideal
process, the task is computed by the functionality directly interacting with the
parties against a very limited adversary (called the ideal-adversary). The notion
of “emulation” involves a distinguisher Z which, by providing the parties with
inputs and seeing their outputs, and by interacting with the adversary, attempts
to tell whether it is interacting with a real protocol and the real-life adversary, or
with the functionality and the ideal-adversary. Good emulation means no such
environment is successful. See details and proofs in [8].

In this paper, we consider a network of n parties, P1, . . . , Pn, connected by
perfectly private authenticated channels and a broadcast channel. In the UC
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terminology, this translates to working in the (FSMT , FBC)-hybrid model, where
FSMT is the secure message transmission functionality [8] and FBC is the broad-
cast channel functionality, which does not satisfy any “fairness” property (i.e. it
allows rushing). There is a computationally unbounded adversary that can ac-
tively corrupt up to t < n/2 parties. We consider adaptive corruptions, where
the decision to corrupt a party is made during the execution of the protocol,
depending on the data gathered so far. Our protocols allow an error probability
negligible in the security parameter k. In terms of notation, we let [n] denote
the set {1, . . . , n} and P[n] denote the set of all parties {P1, . . . , Pn}.

3 Terminating VSS

Motivation: One inconvenience of the definition of standard VSS schemes (as in
[18] or even the UC variant of [1,8]) for our purposes is that it does not guarantee
the protocol terminates if the dealer is corrupted. Nonetheless, all synchronous
VSS protocols in the literature (e.g. [5,20,33,18,14,1]) seem to satisfy some form
of terminating condition: there is a round in the execution in which all parties
agree that the sharing phase has “time-out” and the secret is fixed. To capture
this property while preserving the possibility that the VSS protocol being used
from higher-level asynchronous protocols, we define the notion of Terminating
VSS (TVSS).

TVSS protocols are guaranteed to conclude independently of the dealer’s ac-
tions. We characterize TVSS as a functionality in the UC framework, FTV SS ,
which is shown in Fig. 1. Intuitively, FTV SS extends the VSS functionality so
that even if a corrupted dealer D fails to call the functionality, a fixed value is
eventually associated to D. In fact, honest parties can “force” the functional-
ity to fix a value for D by sending EndSharing messages. Our formulation of
FTV SS , is inspired on the UC VSS variant of Abe and Fehr [1], which includes
the concept of “spooling” the secret, a syntactic technique that allows the dealer
to announce to the adversary – via a Spool message – that a new functionality is
being called. The adversary is thus able to adaptively corrupt the dealer before
the dealer commits to a value.5 We say a protocol π achieves UC-TVSS if π
UC-realizes functionality FTV SS .

The name Terminating VSS reflects that a protocol that UC-realizes FTV SS

concludes (terminates) as long as the adversary delivers all sent messages. The
adversary can still delay or block some messages forever – but nothing more. In
particular, the protocol does not stall even if the corrupted dealer is irresponsive.
This adversarial behavior is a concern in protocols that depend on the termi-
nation of a VSS subprotocol, even in the authenticated transmission model, as
the parties waiting for a successful completion of the VSS functionality may not

5 A similar technique appears in the formalization of VSS in [8], albeit implicitly in the
way the functionality reacts to the corruption messages from the adversary. Another
purely syntactic choice is allowing the adversary to trigger the end of the sharing
phase – alternative but equivalent formulations are possible (see [21]).
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Functionality FTV SS

FTV SS expects its SID to be of the form sid = (sid′, D, P), where P is a list of
parties among which sharing is to be performed. It proceeds as follows.
(1) At first activation, initialize s as ⊥.
(2) Upon receiving input (Spool, sid, s) from party D ∈ P , set s ← s and send

(SpoolRcvd, sid, D) to adversary A. (Any subsequent input Spool is ignored.)
(3) Upon receiving input (Share, sid, s′) from party D ∈ P , set s ← s′ and send

(ShareRcvd, sid, D) to adversary A. (Any subsequent input Share is ignored.)
(4) Upon receiving input (EndSharing, sid) from uncorrupted party P ∈ P ,

record (EndSharing, P ) and send (EndSharingRcvd, sid, P ) to adversary A.
(5) Upon receiving message (Corrupt, sid, P ) from the adversary, do: If P = D

then send s to the adversary. Otherwise, delete record (EndSharing, P ), if
exists. In both cases, send (Corrupt, sid) message to P .

(6) Upon receiving message (DoEndSharing, sid) from the adversary do: If there
is at least one record of the form (EndSharing, sid, P ), and
– D is honest and a message (Share, sid, u) from D has been received, or
– D is corrupted,

then send (Shared, sid) to each party in P and A. (Any subsequent input
Share or message DoEndSharing is ignored.) Otherwise, ignore the message.

(7) Upon receiving input (Open, sid) from uncorrupted party P , output
(Opened, sid, s) to P and the adversary A.

Fig. 1. The Terminating VSS (with Spooling) functionality, FTV SS

have access to synchronous communication or any “time-out” mechanism.6 In
this context, termination means that, once honest parties are instructed to start
executing the TVSS protocol, then no matter the actions of the dealer, π con-
cludes with some output (possibly empty) if the adversary delivers all messages.
Discussion: One may argue that termination issue seems to disappear if one
considers a synchronous version of the UC model (as done in [30,24]). While
synchronous communication among all parties certainly allows to implements
time-outs (and thus have default sharings if the dealer does not participate), we
believe that “encapsulating” synchronicity inside the primitive that requires it is
useful as higher-level protocols do not need to be aware of it. Concretely, TVSS
not only captures a form of synchronous VSS but also keeps the dependence on
synchronous communication modularized, as any reliance on it is explicitly and
independently handled inside the TVSS functionality. In particular, even though
it is possible to show that any implementation of TVSS requires synchronous
communication (at least twice) among the parties running it,7 a higher-level
protocol ρ using the TVSS functionality can run in an asynchronous way. In
practice, this means that ρ could be implemented in an asynchronous network

6 We remark that, in some applications, the parties “waiting” for the completion of a
VSS subprotocol may not be the same as the ones executing the VSS protocol.

7 This is implied by Claim 4.1 where TVSS is shown to be equivalent to functionality
FSYN , synchronous communication with guaranteed delivery [8].
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where only limited synchronicity is available (say only within certain subsets
of the parties, or when synchronous communication can only be provided very
infrequently) as long as the subprotocol that realizes the TVSS functionality has
“enough” access to the synchronization capability. For example, applications in
cluster networks [36] may exploit the advantage of implementing TVSS locally
in each cluster (where synchronization is easier) while the inter-cluster proto-
col ρ can run asynchronously. Even our concrete application of TVSS, building
simultaneous broadcast, where each TVSS involves all the parties, may bene-
fit from this modular approach: dealers in different TVSS subprotocols could
start the execution at different rounds (because of lack of network connectivity,
for example) and still be able to achieve simultaneous broadcast. Furthermore,
the simplicity of our construction for simultaneous broadcast shows that this
approach may also simplify protocol design and security proofs.

3.1 Instantiating TVSS

In this section, we revisit the very efficient VSS protocol presented by Cramer
et al. in [14] in a synchronous model of computation with some negligible error
probability. The scheme is based on the bivariate solution of Feldman [18,5]
and builds on the information checking techniques of Rabin and Ben-Or [33].
The construction is very efficient: the sharing phase takes fourteen rounds and
reconstruction takes two rounds, while the total communication cost is O((k +
log n)n3) bits for an error probability of 2−k+O(log n). This construction πTV SS

is detailed in [14,21].
In [14], Cramer et al. prove their construction information-theoretically secure

against adaptive corruptions under the classical definition of security [18]. The
next proposition shows that their protocol can be proven a secure Terminating
VSS in the UC hybrid model we consider here if the model includes the synchro-
nous communication (with guaranteed delivery) functionality FSYN proposed in
[8]. Due to space constraints, the proof is omitted (see [21]).

Proposition 1. Protocol πTV SS UC-securely realizes functionality FTV SS in
the (FBC , FSMT , FSYN )-hybrid model for n > 2t.

4 UC Simultaneous Broadcast (UC-SB)

In this section, we generalize the simulation-based definition of Simultaneous
Broadcast put forward by Chor et al. [12] to the UC framework. We achieve
this by providing a simultaneous broadcast functionality FSB (Fig. 2) which
is a variant of the synchronous communication functionality [8] that provides
“fairness”, in the sense that the adversary is not allowed rushing. We say a
protocol π achieves UC-SB if π UC-securely implements functionality FSB.

Intuitively, the definition of FSB guarantees independence as the adversary
cannot access any honest party’s input until the broadcast is authorized to pro-
ceed, when it is “too late”. Notice also that the functionality guarantees output
delivery. In some applications, it may be useful to relax this condition.
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Functionality FSB

FSB expects its SID to be of the form sid = (sid′, P), where P is a list of parties
among which broadcast is to be performed. It proceeds as follows.
(1) Upon receiving input (Broadcast, sid, m) from party P ∈ P , record (P, m)

and output (sid, P ) to the adversary. (If P later becomes corrupted then the
record (P, m) is deleted.)

(2) Upon receiving message (Proceed, sid, N) from the adversary, do: If there
exist uncorrupted parties P ∈ P for which no record (P, m) exists then
ignore the message. Else:
1. Interpret N as the list of messages sent by corrupted parties. That is,

N = {(Si, mi)} where each Si ∈ P is corrupted, and mi is a message.
2. Prepare a vector m = (mi)i∈P of messages sent by all parties in P , both

corrupted and honest.
(3) Send (Broadcast, sid,m) to the adversary.
(4) Upon receiving input (Receive, sid) from a party P ∈ P , output

(Received, sid,m) to P .

Fig. 2. The simultaneous broadcast functionality, FSB

UC-SB and previous simultaneous broadcast definitions: It is not hard
to see that UC-SB implies the (stand-alone) simulation-based definition of si-
multaneous broadcast in [12]. This is immediate since UC security implies stand-
alone security [8]. Then, by the results of [22], it holds that UC-SB implies all
the other notions of Simultaneous Broadcast [13,19].

4.1 A Generic Construction of UC-SB from UC-TVSS

In this section, we present our main construction. We show how to implement
simultaneous broadcast (UC-SB) using Terminating VSS (UC-TVSS). The con-
struction is simple: each party first runs the share phase of the TVSS in parallel;
once all sharings have concluded (terminated), each party starts the reconstruc-
tion phase, gather all other parties’ secrets and output the vector of values. (see
Fig. 3). Moreover, the construction works for any t; the final condition of honest
majority comes from instantiating FTV SS with πTV SS (Prop. 1).

Theorem 1. Protocol πSB UC-securely realizes FSB in the FTV SS-hybrid model.

Proof. Let A be a real-life adversary for πSB . Note that A expects to interact
with n parties running πSB with access to n copies of functionality FTV SS . Given
A, the ideal adversary S simulates the execution of protocol πSB for adversary
A by simulating the parties and functionalities as follows. Let P1, . . . , Pn denote
the simulated parties, P̃1, . . . , P̃n the ideal-world parties. Let sid∗ be the session
identifier under which each (simulated) party is first invoked (by the environment
Z), and F1

TV SS , . . . , Fn
TV SS be the (simulated) n copies of functionality FTV SS ,

where Fk
TV SS denotes the functionality invoked by Pk with session identifier
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Protocol πSB

Private Inputs: Each Pi holds xi ∈ X
Public Input: session identifier sid∗

Private Outputs: a vector yi ∈ (X ∪ {⊥})n for each Pi

Each party Pi ∈ P runs sequentially the following steps:
(1) For each j ∈ P[n], set sidj ← (sid∗, Pj , P[n]).
(2) Send (Spool, sidi, xi) to FTV SS.
(3) Send (Share, sidi, xi) to FTV SS.
(4) For each j ∈ P[n], send (EndSharing, sidj) to FTV SS.
(5) Upon receiving (Shared, sidj) from FTV SS, record (Shared, sidj). Repeat this

step until there is a record (Shared, sidj) for each j ∈ [n]
(6) For each j ∈ P[n], send (Open, sidj) to FTV SS.
(7) Upon receiving (Opened, sidj , vj) from FTV SS, record (sidj , yj). Once a

record (sidj , yj) for each j ∈ [n] exists, output vector yi = (yj)j∈[n] and
halt.

Fig. 3. Simultaneous Broadcast protocol in the FTV SS-hybrid model

sidk = (sid∗, Pk, P[n]).8 Adversary S maintains a set N with the corrupted
parties and their inputs, initially N ← ∅, and proceeds as follows. If A corrupts
any party Pi before the party has submitted a Share message to F i

TV SS then
S corrupts ideal-world party P̃i, obtains its input xi, and pass it to A. If A
instructs corrupted party Pi to submit (Share, x′

i) to F i
TV SS , then S simulates

the operation, and adds (P̃i, x
′
i) to N . For all uncorrupted parties Pk, S sets

Pk’s input to an arbitrary value (eg. x′
k ← ⊥) and simulates Pk’s interaction

with Fk
TV SS by simulating both, party and functionality. Notice that S can do

such simulation without the real Pk’s input because adversary A’s view of the
interaction between Pk and Fk

TV SS during the share phase of TVSS (steps (1)-(6)
of Fig. 1) is independent of Pk’s input. Indeed, consider the event Ek defined as
“Fk

TV SS has at least one record (EndSharing, P ) and then it receives a message
DoEndSharing from A”. As long as Pk is corrupted anytime before Ek is true,
S can proceed as before, that is, S obtains xk from corrupting P̃k and pass it to
A. Notice, however, that adversary A must corrupt a party Pi before Pi sends
out message Share to F i

TV SS if A wants to change the value submitted by Pi.
At some point in the simulation, A may send a DoEndSharing message to

some TVSS functionality. Then, S partitions the simulated parties in four sets.
These sets are dynamic in the sense that S may move parties from one set to
another depending on the subsequent instructions of A. The corrupted parties
are partitioned into BSh and its complement, where BSh is the set of parties
which have submitted a message Share to FTV SS . (Notice that for all Pi ∈
BSh, N contains an entry (P̃i, x

′
i).) Similarly, any honest party Pi is either in

GSh or its complement, where GSh is the set of parties that have submitted
a message Shared to its F i

TV SS . Notice that if Pi ∈ GSh, then Pi has sent
8 Notice that, such functionality may also be invoked (and instantiated) by some other

party Pj on message EndSharing if Pk is not activated by Z.
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or is about to send a EndSharing message. Let Bend (resp. Gend) be the set of
corrupted (resp. uncorrupted) parties whose corresponding TVSS functionalities
have at least one record of the form (EndSharing, Pj). Assume A sends a message
DoEndSharing to functionality Fk

TV SS . Then,

(1) If Pk �∈ Bend∪Gend, that is, Fk
TV SS has no EndSharing records, then S does

nothing (since those messages are ignored by the TVSS functionality).
(2) If Pk ∈ Gend but Pk �∈ GSh, that is, Fk

TV SS has one or more EndSharing
records but Pk has yet to submit a Share request to Fk

TV SS , then S does
nothing (since those messages are ignored by the TVSS functionality).

(3) If Pk ∈ Bend ∩ BSh or if Pk ∈ Gend ∩ GSh, then S simulates Fk
TV SS ’s

execution by having the functionality send messages (Shared, sidk) to all
parties Pi and the adversary A. If Pk ∈ Bend ∩ BSh, then S does the same
but also adds (Pk, ⊥) into set N .

(4) If A instructs a corrupted party Pi to send a message Open to some Fk
TV SS ,

then S honestly simulates the functionality.

We also let J ⊆ (Gend ∩ GSh) ∪ Bend be the set of parties to whose functionality
A has sent a message DoEndSharing. S continues the simulation following the
above rules (possibly moving parties into GSh, BSh, Gend, Bend, and J as new
messages are delivered by A) until J = [n]. Assume this happens when A sends
a message DoEndSharing to Fk

TV SS . Before applying rule 3 from above, S sends
(Proceed, sid∗, N) to ideal functionality FSB, and obtains (Broadcast, sid∗,m).
S uses m to set the secret in each simulated (uncorrupted) F i

TV SS to si = mi,
where m = (m1, . . . , mn). Only then S applies rule 3 from above for party Pk.
¿From then on, S honestly simulates the execution of πSB for A.

We claim that the simulation is perfect. Indeed, observe that adversary A’s
view before set J becomes equal to [n] is independent of the input of the sim-
ulated parties, as it consists of the corrupted parties’ inputs, and messages
(SpoolRcvd, sidi, Pi), (ShareRcvd, sidi, Pi), (EndSharingRcvd, sidi, Pi), and
(Shared, sidj, Pi) for one or more party Pi ∈ (Gend ∩ GSh) ∪ Bend. The crucial
observation is that no uncorrupted party Pk issues an Open message unless Pk has
received Sharedmessages for all parties. This only happens if DoEndSharingmes-
sages have been received by each functionality F j

TV SS , Pj ∈ J , which only
happens after J is set to [n]. At that point, the ideal adversary S has ob-
tained the inputs for all parties, so the adversary’s view from then on is iden-
tical to the real-world experiment. Notice also that once adversary A sends
DoEndSharing messages to each functionality F j

TV SS , Pj ∈ J = [n], A cannot
issue a Share message for any (corrupted) party Pi. This is because Pi must also
be in J ⊆ (Gend∩GSh)∪Bend which implies Pi is either in Gend∪Bend, and there-
fore functionality F i

TV SS has successfully executed step (6) where (Shared, sidi)
was sent out to all parties; after this step, no new Share orDoEndSharinginput
is accepted by F i

TV SS . This concludes the proof.

On the Synchronicity of Simultaneous Broadcast and TVSS: We con-
clude this section showing that Simultaneous Broadcast is essentially as strong
as synchronous communication, namely FSYN . One direction is provided by the
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reduction to UC-TVSS described above, which says that any solution for UC-
TVSS can be used to achieve UC-SB. Notice also that FSYN implies UC-TVSS
by Prop. 1. The other direction holds because UC-SB can be used to implement
FSYN as follows: first parties (non-simultaneously) broadcast their values, and
then use simultaneous broadcast to transmit the same values (i.e. those broad-
casted non-simultaneously before). Thus, the following claim holds.

Claim. Let π be a protocol that UC-securely realizes FSB in the FSMT -hybrid
model. Then, there exists a protocol that UC-securely realizes FSYN in the
(FSB, FSMT )-hybrid model.

5 Extensions

Removing secure channels: Our protocol for simultaneous broadcast is only
secure in the secure channel model. To obtain a protocol secure in the pub-
lic channel model (i.e. authenticated channels), we can use known techniques,
like those proposed by Lysyanskaya [28] which require secure erasures, or non-
committing encryption [9,16]. For the case of static corruption is much simpler,
as encrypting the messages with a semantic secure encryption scheme suffices.

Functionality FASB

FSB expects its SID to be of the form sid = (sid′, P , t), where P is a list of parties
among which broadcast may potentially be performed, and t < n is an integer,
where n

def= |P|. It proceeds as follows.
(1) Upon receiving input (Broadcast, sid, m) from party P ∈ P , record (P, m)

and output (sid, P ) to the adversary. (If P later becomes corrupted then the
record (P, m) is deleted.)

(2) Upon receiving a message (Proceed, sid, N, W ) from the adversary, do: If W
is a subset of parties in P of size at least n− t, and there exist honest parties
P ∈ W for which no record (P, m) exists then ignore the message. Else:
1. Interpret N as the list of messages sent by corrupted parties. That is,

N = {(Si, mi)} where Si ∈ W and Si is corrupted, and mi is a message.
2. Prepare a vector m = (mi)i∈W of messages sent by all parties in W ,

both corrupted and honest.
(3) Send (Broadcast, sid,m) to the adversary.
(4) Upon receiving input (Receive, sid) from a party P ∈ P , send

(Received, sid,m) as delayed output to P .

Fig. 4. The asynchronous simultaneous broadcast functionality, FASB

Asynchronous Simultaneous Broadcast (UC-ASB): It is well known that
in an asynchronous network, no functionality that depends on all the inputs can
be computed [31]. This is because it is impossible to distinguish between failed
processes (those instructed to not send messages) and very slow processes. There-
fore, no process can afford to wait for messages coming from more than n − t
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distinct other processes. In this section, we adapt the functionality of Simulta-
neous Broadcast to comply with this restriction, at the cost of weakening the
guarantee that all players can participate in the broadcast (which is unavoid-
able). We remark that, nonetheless, the modified functionality FASB (Fig. 4)
still preserves the intuitive notion of independence, as long as parties that do
not participate in the broadcast are not allowed to contribute later with their
inputs. We say a protocol π achieves UC-ASB if π UC-securely realizes FASB .

We claim (without proof) that there exists a simple construction that achieves
UC-ASB for the case n > 3t. It suffices to run first the initial phase of the se-
cure multiparty computation of Ben-Or et al. [6]. Spelled out, first, parties run
n parallel copies of the ultimate secret sharing protocol; then the protocol for
agreement on a common subset is run. (Both protocols are described in [6].) In
this way, all parties agree on the set W of parties that have properly shared their
input. The reconstruction protocol is executed next, where the secrets of all par-
ties in W is reconstructed. For computationally bounded adversaries, a similar
approach can be obtained using the initialization phase of the computationally
efficient construction of [23]. It is an open problem whether more communication
efficient solutions exist.
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Abstract. In this paper, we conduct a thorough study among various
notions of security of undeniable signature schemes and establish some
relationships among them. We focus on two adversarial goals which are
unforgeability and invisibility and two attacks which are chosen message
attack and full attack. In particular,we show that unforgeability against
chosen message attack is equivalent to unforgeability against full attack,
and invisibility against chosen message attack is equivalent to invisibil-
ity against full attack. We also present an undeniable signature scheme
whose unforgeability is based on the factoring assumption and whose in-
visibility is based on the composite decision Diffie-Hellman assumption.

Keywords: Undeniable signature, security notions, factoring assump-
tion, composite decision Diffie-Hellman assumption.

1 Introduction

The concept of undeniable signatures was introduced by Chaum and van Antwer-
pen in 1989 [10]. As opposed to the ordinary digital signatures which are uni-
versally verifiable, the validity and invalidity of undeniable signatures can be
verified only by executing with the signer or the designated confirmer through
a confirmation protocol and a disavowal protocol respectively. Various vari-
ants of undeniable signature schemes which possess variable degrees of security
and additional features have emerged in the literature over the past 16 years.
While it is impossible to list them all, we note some important papers such as
[7,5,11,9,8,20,12,16,6,15,14,23,24,25,26,21]. Most of these schemes are discrete
logarithm based, with the exception of a few RSA-based schemes [16,15,14], a
pairing-based (identity-based) scheme [23] and some other schemes [24,25].

Meanwhile, Bellare et al. showed relations among security notions for public-
key encryption schemes [2]. Due to the importance of the above studies, recently
we can see an increasing effort in the studying of relations among various security
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notions of cryptographic schemes [3,1,13]. Indeed, by knowing the relationships
between the various security notions, one can save much effort to prove the indi-
vidual security notion since it is sufficient to prove the simpler security notion if
it also implies that the scheme fulfills other more complicated notions of security.

In this paper, we conduct a thorough study among various notions of unde-
niable signature schemes and show some relationships among them. We focus
on the notions of unforgeability and invisibility. The first security notion is sim-
ilar to the one for ordinary digital signatures, which is the notion of existential
unforgeability against adaptive chosen message attack [19]. However, for unde-
niable signatures, the approach to adapt the previous security by allowing the
confirmation/disavowal oracle access has been first considered in [12]. The second
security notion is essentially the inability to determine whether a given message-
signature pair is valid or not. This notion was first introduced by Chaum, van
Heijst and Pfitzmann [11] and further enhanced in [6] and [14].

For each of unforgeability (UF) and invisibility (IV), we consider two different
attacks, chosen message attack (CMA) and full attack (FULL). By chosen mes-
sage attack, we mean that the adversary is only allowed to access to the signing
oracle, which is similar to the basic chosen message attack considered in [19]. By
full attack, we mean that besides the signing oracle access, the adversary is also
allowed to access to the confirmation/disavowal oracle. No effort has been put
in previously to study the above notions of security and we note that the results
we obtain are somewhat surprising.

By combining the above two adversarial goals and two attacks, we can classify
them under four notions of security, namely UF-CMA, UF-FULL, IV-CMA and
IV-FULL. The rigorous definitions of the respective notions will be provided in
Section 3. In particular, we establish an equivalent result between UF-CMA and
UF-FULL, and an equivalence between IV-CMA and IV-FULL if the underlying
signature scheme is UF-CMA. We also show that IV-CMA implies UF-CMA if
the signing algorithm is deterministic. (We assume that the confirmation proto-
col and the disavowal protocol are perfect auxiliary-input zero-knowledge.)

More precisely, the relationships among various notions of security that we
obtain can be shown as follows:

UF-CMA ⇐⇒ UF-FULL

⇑

IV-CMA ⇐⇒ IV-FULL

We remark that the related study on the relationships between two notions of
unforgeability of message authentication has been recently conducted by Bellare,
Goldreich and Mityagin [3], i.e. they explored the unforgeability of message au-
thentication by considering a single verification attempt and multiple verification
attempts respectively by the adversary. They also commented that the multi-
ple verification version of the definition of ordinary digital signatures is clearly
equivalent to the standard definition in [19] since verification takes place under
a key that is public and which is available to the adversary. However, obviously
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this is not the case for undeniable signatures since without the consent of the
signer or designated confirmer, it is impossible that the adversary can verify the
validity or invalidity of a message-signature pair.

The first RSA-based undeniable signature scheme was proposed by Gennaro,
Krawczyk and Rabin [16] where they employed the RSA moduli which is a
product of safe primes. An extension of the above scheme to allow the use of
general RSA moduli was made possible by Galbraith, Mao and Paterson [15].
However, both the above schemes do not have invisibility. Galbraith and Mao
[14] showed an improved version which possesses the property of unforgeability
and invisibility in the case of RSA moduli which is a product of safe primes.

In this paper, we also present an undeniable signature scheme such that its
unforgeability is based on the factoring assumption and its invisibility is based
on the composite decision Diffie-Hellman (CDDH) assumption. In the proposed
scheme, the size of the signatures is much shorter than the scheme by Galbraith
and Mao [14]. Its security can be easily proven by using the relationships we
described earlier.

1.1 Organization

The remainder of this paper is organized as follows. In Section 2, we recall
the definition of undeniable signatures. In Section 3, we provide the rigorous
definitions for the four notions of security: UF-CMA, UF-FULL, IV-CMA and
IV-FULL. In Section 4, we conduct a thorough study on the various notions
of security of undeniable signatures and establish some important relationships
among them. All the related security analyses are given accordingly. In Section
5, we present a new undeniable signature scheme whose unforgeability is based
on the factoring assumption and whose invisibility is based on the composite
decision Diffie-Hellman assumption. Finally, we conclude this paper in Section 6.

2 Undeniable Signatures

Throughout this paper, k denotes the security parameter and a PPT algorithm
denotes a probabilistic polynomial-time algorithm.

An undeniable signature scheme consists of a key generation algorithm Gsign,
a signing algorithm Sign , a confirmation protocol and a disavowal protocol. We
consider undeniable signature schemes such that the confirmation protocol and
the disavowal protocol are perfect zero-knowledge in the auxiliary-input model.
Hence, we denote an undeniable signature scheme by Σ = (Gsign, Sign). Gsign

is a PPT algorithm which generates (vk, sk), where vk is a verification key and
sk is the signing key. Sign is a PPT algorithm which generates a signature σ on
input a message m and the signing key sk. We say that (m, σ) is valid if σ is an
output of Sign(sk, m).

An undeniable signature scheme must satisfy unforgeability and invisibility.
Invisibility means that for a message m, the receiver cannot tell if σ is a valid
signature or a random string. This implies that the receiver cannot verify the
validity of (m, σ) by himself. Instead, the cooperation of the signer is needed to
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prove the validity and invalidity of (m, σ) by running a confirmation protocol
and a disavowal protocol with the receiver respectively.

Zero-knowledgeness means that the verifier can generate the communication
transcript of the protocol by himself. Hence he cannot prove to the third party
that (m, σ) is valid by showing the transcript of the ZK confirmation protocol.
This is the central requirement for undeniable signature schemes.

We describe the formal definition of perfect auxiliary-input zero-knowledge
below:

Definition 1. [18,17] A proof system (P, V ) is perfect auxiliary-input zero-
knowledge on a language L if, for every PPT verifier V ∗ and every polynomial
p, there exists a PPT algorithm M∗ such that

{(P, V ∗(y))(x)}x∈L,y∈{0,1}p(|x|) ≡ {M∗(x, y)}x∈L,y∈{0,1}p(|x|)

where the first distribution ensemble denotes the output of V ∗ when having
auxiliary-input y and interacting with prover P on common input x ∈ L; and
the second distribution ensemble denotes the output of M∗ on inputs x ∈ L and
y ∈ {0, 1}p(|x|).

An alternative definition is to require M∗ to simulate the history of V ∗’s inter-
action with P [17, Remark 3.2].

As shown in [17], auxiliary-input zero-knowledge is preserved under sequential
composition. Almost all known zero-knowledge proofs are in fact auxiliary-input
zero-knowledge.

3 Definitions of Security

For each of unforgeability (UF) and invisibility (IV), we consider two different
attacks, chosen message attack (CMA) and full attack (FULL). By combining
two adversarial goals and two attacks, we have the following four notions of
security, namely, UF-CMA, UF-FULL, IV-CMA and IV-FULL.

In each attack game, we say that a message-signature pair (m, σ) is unfresh
if the adversary A has already queried m to the signing oracle and received σ.
Otherwise, we say that (m, σ) is fresh.

3.1 Unforgeability

The unforgeability against CMA (UF-CMA) is defined as follows. Consider the
following game between a challenger and an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. For i = 1, . . . , q, A queries a message mi to the signing oracle adaptively and
receives a signature σi.

3. Eventually, A outputs a forgery (m∗, σ∗).

A wins the game if (m∗, σ∗) is valid and fresh.
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Definition 2. We say that Σ is unforgeable against CMA (UF-CMA) if
Pr(A wins) is negligible for any PPT adversary A in the above game.

To define the unforgeability against the full attack (UF-FULL), we modify the
game against CMA as follows. We allow the adversary A to query (m, σ) to the
confirmation/disavowal oracle adaptively at step 2. The confirmation/disavowal
oracle responds as follows.

– If (m, σ) is a valid pair, then the oracle returns a bit μ = 1 and proceeds
with the execution of the confirmation protocol with A.

– Otherwise, the oracle returns a bit μ = 0 and executes the disavowal protocol
with A accordingly.

A wins the game if A outputs a valid and fresh pair (m∗, σ∗) or it queries a
valid and fresh pair (m∗, σ∗) to the confirmation/disavowal oracle.

Definition 3. We say that Σ is unforgeable against the full attack (UF-FULL)
if Pr[A wins] is negligible for any PPT adversary A in the above game.

Remark 1. If the signing algorithm is probabilistic, there are many signatures
σ for a fixed message m. In this case, we can consider weak forgery and strong
forgery. In the weak forgery, an adversary wins if she can forge (m∗, σ∗) such
that m∗ has never been queried to the signing oracle by the adversary. In the
strong forgery, an adversary wins if she can forge (m∗, σ∗) such that σ∗ has never
been returned by the signing oracle for a query m∗.

In the above definitions, we consider strong forgery. Note that strongly un-
forgeable undeniable signature schemes are more secure than weakly unforgeable
ones.

If the signing algorithm is deterministic, the two types of forgery coincide.

3.2 Invisibility

The invisibility against CMA (IV-CMA) is defined by using the following game
between a challenger and an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. A is permitted to issue a series of signing queries to the signing oracle adap-
tively and receives a signature σi.

3. At some point, A chooses a message m∗ and sends it to the challenger.
4. The challenger chooses a random bit b. If b = 1, then he computes a signature

σ∗ on m∗. Otherwise, he chooses σ∗ randomly from the signature space S.
He then returns σ∗ to A.

5. A performs some signing queries again1.
6. At the end of this attack game, A outputs a guess b′.

1 If the signing algorithm is deterministic, then A is not allowed to query m∗ to the
signing oracle.



Relations Among Security Notions for Undeniable Signature Schemes 39

Definition 4. We say that Σ is invisible against CMA (IV-CMA) if | Pr[b =
b′] − 1/2| is negligible for any PPT adversary A in the above game.

Finally, to define the invisibility against full attack (IV-FULL), we modify the
previous game (IV-CMA) as follows. We allow the adversary A to query (m, σ)
to the confirmation/disavowal oracle adaptively at step 2 and at step 5, where
A is not allowed to query the challenge (m∗, σ∗) to the confirmation/disavowal
oracle at step 5. The confirmation/disavowal oracle responds as follows.

– If (m, σ) is a valid pair, then the oracle returns a bit μ = 1 and proceeds
with the execution of the confirmation protocol with A.

– Otherwise, the oracle returns a bit μ = 0 and executes the disavowal protocol
with A accordingly.

Definition 5. We say that Σ is invisible against the full attack (IV-FULL) if
| Pr[b = b′] − 1/2| is negligible for any PPT adversary A in the above game.

We now say that

– Σ is CMA-secure if it is unforgeable against CMA attack (UF-CMA) and
invisible against CMA attack (IV-CMA).

– Σ is fully secure if it is unforgeable against the full attack (UF-FULL) and
invisible against the full attack (IV-FULL).

4 Relations Among Security Notions

We use the following notation.

– X =⇒ Y : Any undeniable signature scheme Σ meets the security notion of
Y if it meets the security notion of X . In this case, we say that X implies
Y .

– X ⇐⇒ Y : Any undeniable signature scheme Σ meets the security notion of
Y if and only if it meets the security notion of X . In this case, we say that
X and Y are equivalent.

We first show that UF-CMA and UF-FULL are equivalent. That is,

UF-CMA ⇐⇒ UF-FULL.

Theorem 1. UF-CMA and UF-FULL are equivalent if the confirmation proto-
col and the disavowal protocol are perfect auxiliary-input zero-knowledge.2

Proof. It is clear that UF-FULL =⇒ UF-CMA. Therefore, we will show that
UF-CMA =⇒ UF-FULL. Suppose that there exists an adversary A which breaks
UF-FULL. We will construct an adversary A′ which breaks UF-CMA by using
A as a subroutine.
2 We consider strong unforgeability as mentioned in Remark 1 of Section 3.1.
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On input a verification key vk, A′ starts running A by feeding A with vk. If
A makes a signing query for a message mi, then A′ queries mi to her signing
oracle. A′ receives a signature σi from the signing oracle, and returns σi to A.

Next, we consider the case when A makes a confirmation/disavowal query. Let
qv be the number of queries that A issues to the confirmation/disavowal oracle.
For convenience, we consider that the final output of A is the (qv + 1)-th query.
We say that (mi, σ

′
i) is special if it is a valid and fresh message-signature pair

queried by A to the confirmation/disavowal oracle. A′ guesses the first special
query. More precisely, A′ guesses the first i such that the i-th query (mi, σ

′
i) is

special. So, at the beginning, A′ chooses Guess ∈ {1, 2, · · · , qv + 1} randomly.
There are two cases to be considered here, namely, i < Guess and i = Guess.
First suppose that i < Guess.

– If A has never made a signing query for mi, then A′ returns μ = 0 and runs
the disavowal protocol with A.

– Otherwise, A has already made a signing query for mi, and A′ answered
with a valid signature σi. If σi = σ′

i then A′ returns μ = 1 and runs the
confirmation protocol with A. Otherwise, A′ returns μ = 0 and runs the
disavowal protocol with A.

Notice that since the confirmation protocol and the disavowal protocol are per-
fect auxiliary-input zero-knowledge from our assumption, A′ can simulate the
confirmation/disavowal oracle perfectly (by using the proof technique of [17,
Theorem 3.3]).

Now suppose that i = Guess. Let (m∗, σ∗) be the i-th query. If A has queried
m∗ to the signing oracle, then A′ aborts. Otherwise, A outputs (m∗, σ∗) as a
forgery.

A′ guesses the first special query with probability 1/(qv + 1). Therefore, if
A wins the game of UF-FULL with non-negligible probability, then A′ wins the
game of UF-CMA with non-negligible probability too because qv is polynomially
bounded. This completes our proof. ��

We next show that IV-CMA and IV-FULL are equivalent if Σ is UF-CMA. That
is,

IV-CMA ⇐⇒ IV-FULL

as long as Σ is UF-CMA.

Theorem 2. Suppose that an undeniable signature scheme Σ is UF-CMA. Then
IV-CMA and IV-FULL are equivalent if the confirmation protocol and the dis-
avowal protocol are perfect auxiliary-input zero-knowledge.

Proof. It is clear that IV-FULL =⇒ IV-CMA. Therefore, we will show that IV-
CMA =⇒ IV-FULL. Suppose that there exists an adversary A which breaks
IV-FULL. We will construct an adversary A′ which breaks IV-CMA by using A
as a subroutine.

On input a verification key vk, A′ starts running A by feeding A with the vk.
If A makes a signing query for a message mi, then A′ queries mi to her signing
oracle. A′ receives a signature σi from the signing oracle, and returns σi to A.



Relations Among Security Notions for Undeniable Signature Schemes 41

Next, we consider the case when A makes a confirmation/disavowal query
(mi, σ

′
i). We say that (mi, σ

′
i) is special if it is a valid and fresh message-signature

pair queried by A to the confirmation/disavowal oracle.
Suppose that A makes a special confirmation/disavowal query (mi, σ

′
i). with

non-negligible probability. Then A wins the game of UF-FULL. However, this
is against our assumption because UF-FULL and UF-CMA are equivalent from
Theorem 1.

Therefore, A makes a special confirmation/disavowal query (mi, σ
′
i) only with

negligible probability. Hence A′ behaves as follows.

– If A has never made a signing query for mi, then A′ returns μ = 0 and runs
the disavowal protocol with A.

– Otherwise, A has already made a signing query for mi, and A′ answered
with a valid signature σi. If σi = σ′

i then A′ returns μ = 1 and runs the
confirmation protocol with A. Otherwise, A′ returns μ = 0 and runs the
disavowal protocol with A.

Notice that since the confirmation protocol and the disavowal protocol are perfect
auxiliary-input zero-knowledge from our assumption, A′ can simulate the confir-
mation/disavowal oracle (by using the proof technique of [17, Theorem 3.3]).

At some point, A chooses a message m∗ which has never been queried, and
sends it to A′. A′ queries m∗ to its challenger, and receives σ∗ from the challenger.
A′ then returns σ∗ to A.

At the end of the attack game, A outputs a guess b′. Then A′ outputs b′′ = b′.
Now it is clear that | Pr[b = b′] − Pr[b = b′′]| is negligible, where b is the hidden
bit chosen by the challenger. Hence M can break IV-CMA. ��

We finally show that IV-CMA implies UF-CMA if the signing algorithm is de-
terministic. Note that UF-CMA does not imply IV-CMA: A digital signature
scheme which is UF-CMA is not IV-CMA. Hence we cannot prove more than
the following figure.

UF-CMA ⇐⇒ UF-FULL

⇑

IV-CMA ⇐⇒ IV-FULL

Theorem 3. IV-CMA implies UF-CMA if the signing algorithm is deterministic.

Proof. Suppose that there exists an adversary A which breaks UF-CMA. We will
construct an adversary A′ which breaks IV-CMA by using A as a subroutine.

On input a verification key vk, A′ starts running A by feeding A with vk. If
A makes a signing query for a message mi, then A queries mi to her signing
oracle. A′ receives a signature σi from the signing oracle, and returns σi to A.

Eventually, A outputs a forgery (m∗, σ∗). Then A′ sends m∗ to her challenger.
The challenger chooses a random bit b. If b = 1, then he computes a signature
σ′ on m∗. Otherwise, he chooses σ′ randomly from the signature space S. The
challenger returns σ′.
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Finally, if σ′ = σ∗, then A′ outputs b′ = 1. Otherwise, A′ outputs a random
bit b′. Suppose that (m∗, σ∗) is valid with probability ε. Then

Pr[b = b′] = ε + (1/2)(1 − ε) = (1/2) + ε/2

because the signing algorithm is deterministic. Hence if A outputs a valid forgery
with non-negligible probability, then A′ wins the game of IV-CMA with non-
negligible probability too. ��

Remark 2. The above proof shows that weak IV-CMA implies UF-CMA, where
weak IV-CMA is exactly the IV-CMA except the step 5 in Section 3.2. Now we
have IV-CMA → weak IV-CMA → IV-FULL.

5 Application to Factoring-Based Undeniable Signatures

Galbraith and Mao showed a factoring-based undeniable signature scheme [14]
and proved its security for non-interactive, designated verifier version of confir-
mation/disavowal protocols [14, page 89, line -7].

Now by using our results, we can prove its security for the 4-move version of
confirmation/disavowal protocols due to Chaum [7]. In this section, we present
a better factoring-based undeniable signature scheme and prove its security by
using our results.

5.1 Proposed Scheme

Galbraith and Mao used PSS-Rabin signature scheme [4]. Instead, we use a
Rabin-type signature scheme presented in [22] which has much shorter signature
size. Hence the size of our undeniable signatures is much shorter than that of [14].

The details of this new undeniable signature scheme are described as follows.

Definition 6. Let N = pq, where p and q are primes. For x ∈ Z∗
N , let

u =
(

x

p

)
, v =

(
x

q

)
.

Define

type(x)
�
=

⎧⎪⎪⎨
⎪⎪⎩

0 if u = v = 1
1 if u = 1, v = −1
2 if u = −1, v = 1
3 if u = v = −1

(1)

It is easy to see that xy ∈ QRN if and only if type(x) = type(y).

Key Generation. On input 1k, the system is set up by the signer as follows.
Choose two k-bit safe primes p and q such that p′ = (p − 1)/2 and q′ =
(q − 1)/2 are also primes. Then set N = pq and select an element e ∈ Z∗

p′q′

such that e > 1.
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Choose g ∈ Z∗
N to be a generator of Z∗

p and Z∗
q , and compute β = g2 mod N

and w = βe mod N .
Next, choose α1 and α2 such that type(α1) = 1 and type(α2) = 2. Also, let

α0
�
= 1 and α3

�
= α1α2 mod N . Note that type(αi) = i for i = 0, 1, 2, 3.

Let H : {0, 1}∗ → Z∗
N be a hash function.

Finally, set the verification key as (N, β, w, H, α0, α1, α2, α3) and the signing
key as (p, q).

Notice that β is a generator of QRN because ordp(β) = (p − 1)/2 = p′ and
ordq(β) = (q − 1)/2 = q′, thus ordN (β) = lcm(p′, q′) = p′q′ = |QRN |.

Signing. On input the verification key (N, β, w, H, α0, α1, α2, α3), the signing
key (p, q) and a message m , the signer executes the following steps.
Step 1: Compute i such that type(H(m)) = i.
Step 2: For this i, compute σ such that 0 < σ < N/2 and

αiH(m) = σ2e mod N (2)

The signature is σ.

We say that (m, σ) is valid if 0 < σ < N/2 and equation (2) is satisfied.

Definition 7. We say that (β, βx, βy, βxy) ∈ (QRN )4 is a composite Diffie-
Hellman (CDH) tuple, where (x, y) ∈ Z2

p′q′ .

In each of the confirmation/disavowal protocols, given a message-signature pair
(m, σ), the verifier checks if 0 < σ < N/2. If not, he rejects immediately. if so,
he runs the following protocols with the signer.

Confirmation Protocol. The signer first sends i such that type(H(m)) = i.
The signer next proves that (β, w, σ2, αiH(m)) is a CDH-tuple in zero-
knowledge.

Disavowal Protocol. The signer first sends i such that type(H(m)) = i. Next
the signer proves that (β, w, σ2, αiH(m)) is not a CDH-tuple in zero-
knowledge.

For the confirmation and disavowal protocols, we can use the 4-move protocol
due to Chaum [7]. Alternatively, we can use designated verifier proofs which
are non-interactive zero-knowledge [20]. They are perfect zero-knowledge in the
auxiliary-input model.

Remark 3. 1. It is not necessarily the case that H(m) ∈ QRN . Therefore, we
use the technique of [22]. That is, we have to include (α0, α1, α2, α3) in the
verification key so that αiH(m) in QRN for some i.

2. Since the order of β is p′q′, Chaum’s ZKIP protocols works well on the
CDH-tuples and the non CDH-tuples in the group QRN .
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5.2 Security Analysis

Theorem 4. The above undeniable signature scheme satisfies UF-CMA under
the factoring assumption in the random oracle model.

Proof. Let A be an adversary which breaks UF-CMA with non-negligible proba-
bility ε. Then we will construct the factoring algorithm M which factors N with
non-negligible probability ε′ by running A as a subroutine. The input of M is
N(= pq), where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

M constructs the verification key for A as follows. M chooses a random integer
e ∈ {2, · · · , 
N/4�}. Next, M chooses a random g ∈ Z∗

N and defines β = g2 mod
N and w = βe mod N . It is easy to see that e is co-prime to p′q′ and β is a
generator of QRN with overwhelming probability because N is a product of two
safe primes. M also chooses α1, α2 randomly in such a way that(α1

N

)
=

(α2

N

)
= −1.

With probability 1/4, it holds that type(α1) = 1 and type(α2) = 2. M sets
α0 = 1 and α3 = α1α2 mod N

M then feeds A with the verification key (N, β, w, H, α0, α1, α2, α3) where H
is a random oracle that will be simulated by M . We assume that when A requests
a signature on a message mj , it has already made the corresponding H-query
on mj .

The factoring algorithm M must answer all the queries by itself. When A
makes a H-query for a message mj , A chooses rj ∈ Z∗

N and i ∈ {0, 1, 2, 3}
randomly, and returns H(mj) = rj

2e/αi mod N . M will maintain a H-query
list (mj , rj , i).

Suppose that A makes a signing query for a message mj . Since we have as-
sumed that A has already made the corresponding H-query on mj , then the
H-query list includes (mj , rj , i) for some (rj , i). M then returns σj = rj mod N
as the corresponding signature. Notice that σj is a valid signature since

αiH(mj) = r2e
j mod N.

Now suppose that A forges (m∗, σ∗). Then

αiH(m∗) = (σ∗)2e mod N. (3)

Since we assumed that A has made the H-query on m∗, so m∗ = mj for some j
in the H-query list. Therefore, M can find the triple (m∗, r∗, i) from the H-query
list where

αiH(m∗) = (r∗)2e mod N. (4)

From equation (3) and equation (4),

((r∗)2)e = ((σ∗)2)e mod N.

Since gcd(e, p′q′)) = 1 with overwhelming probability, it holds that

(r∗)2 = (σ∗)2 mod N

with overwhelming probability.
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Case 1. Suppose that m∗ has never been queried to the signing oracle. In this
case, gcd(r∗ − σ∗, N) = p or q with probability 1/2 because r∗ is randomly
chosen. Hence M can factor N with probability almost 1/2 × 1/4 = 1/8.

Case 2. Suppose that m∗ has been queried to the signing oracle which returned
σ̃. In this case, we can see that gcd(σ∗−σ̃, N) = p or q because 0 < σ < N/2.
Hence M can factor N with probability almost 1/4.

In any case, M can factor N with significant probability. ��

Corollary 1. The above undeniable signature scheme satisfies UF-FULL under
the factoring assumption in the random oracle model.

Proof. From Theorem 4 and Theorem 1. ��

Next we prove the invisibility. It relies on the composite decision Diffie-Hellman
(CDDH) assumption which is defined as follows.

We denote 〈g1, . . . , gm〉 for the subgroup generated by g1, . . . , gm. Let N be a
product of two safe primes p and q such that p′ = (p − 1)/2 and q′ = (q − 1)/2
are also primes. Consider the two sets

T = {(N, g, w, u, v, α1, α2) : type(α1) = 1, type(α2) = 2,

ordN (g) = ordN (u) = 2p′q′, 〈g, u〉 = Z∗
N , (w, v) ∈ (QRN)2}

and
TCDDH = {(N, g, w, u, v, α1, α2) ∈ T : w = g2e mod N,

v = u2e mod N for some e ∈ Zp′q′}
with the uniform distribution on each. The CDDH problem is to distinguish
these two distributions.

Theorem 5. The above undeniable signature scheme satisfies IV-CMA under
the CDDH assumption in the random oracle model.

Proof. Let A be an adversary which breaks IV-CMA with non-negligible prob-
ability ε. Then we will construct a composite decision Diffie-Hellman algorithm
M with non-negligible probability ε′ by running A as a subroutine.

Let (N, g, w, u, v, α1, α2) be the challenge CDDH problem input to M . M first
computes β = g2 mod N . Let α0 = 1 and α3 = α1α2 mod N . M runs A by feeding
A with the verification key (N, β, w, H, α0, α1, α2, α3) where H is a random oracle
that will be simulated by M . We assume that when A requests a signature on a
message mj, it has already made the corresponding H-query on mj .

When A makes a H-query for a message mj , M chooses xj , yj ∈ {1, 2, · · · ,

N/2�} randomly and i ∈ {0, 1, 2, 3} randomly, and returns H(mj) =
(wxj vyj )2/αi mod N . M will maintain a H-query list (mj , xj , yj , i).

When A makes a signing query for a message mj, since we have assumed
that A has already made the corresponding H-query on mj , then H(mj) =
(wxj uyj)2/αi mod N . M then computes σj = gxjuyj mod N and returns σj as
the corresponding signature.
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Eventually, A outputs a message m∗. M then chooses a hidden bit b. If b = 1,
M generates σ∗ using the above signing process and returns σ∗ as the signature.
If b = 0, M chooses σ∗ ∈ Z∗

N randomly and returns σ∗ as the signature.
Next, A performs some H queries and signing queries again with the restric-

tion that no signing queries on m∗ is allowed. Finally, A outputs a bit b′ which
it thinks is equal to the hidden bit b. If b′ = b then M outputs 1 as the answer
and if b′ �= b then M outputs 0 as the answer.

Notice that if (N, g, w, u, v, α1, α2) ∈ TCDDH , then the signing oracle behaves
perfectly and the simulation is identical to a real attack. Thus we have

Pr[M outputs 1] = Pr[b′ = b] =
1
2

+ ε,

where ε is the advantage of algorithm A.
On the other hand, when the input is a random tuple of T , the signatures gen-

erated by the signing oracle are with high probability invalid. The simulation is
therefore not indistinguishable from a real attack. However, we can show as in [14,
Appendix B] that the hidden bit b is independent of the simulation. That is,

Pr[M outputs 1] = Pr[b′ = b] =
1
2
.

It follows that the advantage of algorithm M

ε′ =
1
2

+ ε − 1
2

= ε

which is non-negligible. ��

Corollary 2. The above undeniable signature scheme satisfies IV-FULL.

Proof. From Theorem 5, Theorem 4 and Theorem 2 ��

6 Conclusion

We have studied on the relationships among various notions of security of unde-
niable signature schemes, namely, UF-CMA, UF-FULL, IV-CMA and IV-FULL
and shown some important relationships among them. We also proposed an
undeniable signature scheme where its unforgeability is based on the factoring
assumption and its invisibility is based on the CDDH assumption.
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Abstract. We present a blind signature scheme that is efficient and
provably secure without random oracles under concurrent attacks uti-
lizing only four moves of short communication. The scheme is based on
elliptic curve groups for which a bilinear map exists and on extractable
and equivocal commitments. The unforgeability of the employed signa-
ture scheme is guaranteed by the LRSW assumption while the blindness
property of our scheme is guaranteed by the Decisional Linear Diffie-
Hellman assumption. We prove our construction secure under the above
assumptions as well as Paillier’s DCR assumption in the concurrent at-
tack model of Juels, Luby and Ostrovsky from Crypto ’97 using a com-
mon reference string. Our construction is the first efficient construction
for blind signatures in such a concurrent model without random oracles.
We present two variants of our basic protocol: first, a blind signature
scheme where blindness still holds even if the public-key generation is
maliciously controlled; second, a blind signature scheme that incorpo-
rates a “public-tagging” mechanism. This latter variant of our scheme
gives rise to a partially blind signature with essentially the same effi-
ciency and security properties as our basic scheme.

1 Introduction

Blind signatures were introduced by Chaum in [11] and proved to be a most
useful cryptographic scheme that has been the basis of many complex crypto-
graphic constructions including e-cash systems and e-voting schemes. Informally,
a blind signature is a signature scheme that incorporates a signing protocol that
allows the signer to sign a document submitted by a user blindly, i.e., without
obtaining any information about the document itself.

It was observed early on (at least as early as [13], see also [27]) that blind
signatures contain an instance of a secure function evaluation protocol in the fol-
lowing sense: the user possesses a private input m and a public-input pk which
is the verification key of a digital signature algorithm, and the signer possesses a
private input sk which is the signing-key; with this setup the user and the signer
should execute a probabilistic secure function evaluation protocol that will allow
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the user to compute σ, a signature on m under pk, without revealing m to the
signer and without the signer revealing sk to the user. Given the complexity of
general secure function evaluation though, [31,16], in early work on blind signa-
tures this paradigm was not very motivating. A more motivating paradigm was
found in divertible zero-knowledge proofs [24,22,12] and many blind signatures
were subsequently designed in this line of reasoning [29,30,28,4,3,1] as well as the
first attempt to give provably secure constructions (in the random oracle model)
was due to [29], where blind signatures with three moves were proven secure
in the random oracle model under the discrete-logarithm assumption assuming
only logarithmically many messages were transmitted by the user. This result
was later improved to polynomially many messages but five moves [28] and the
round complexity was finally decreased to three moves and polynomially many
messages in [3,1]. A two move protocol was presented in [5] assuming the RSA
inversion oracle assumption. We stress that all these results were proven secure
in the random oracle model.

Concurrency in the context of blind signatures was put forth by Juels, Luby
and Ostrovsky [17] who presented the first security model for blind signatures
that takes into account that the adversary may launch many concurrent sessions
of the blind signing protocol (operating as either the user or the signer). Concur-
rency is particularly important since in implementations of blind signatures in
e-voting and e-cash schemes, see e.g., [11,15,19], the signer is a multi-threaded
server that accepts many concurrent sessions of users that are executing the
signing protocol. Thus, it is of crucial importance to consider the security of
blind signatures, when (1) a malicious signer attempts to defeat the blindness of
many concurrently joining users, and (2) a coalition of malicious users attempts
to extract information about the signing key of the multi-threaded signer server.
Still, the design of schemes that satisfied such stronger models proved elusive.
In fact, Lindell [20] showed that unbounded concurrent security for blind sig-
natures modelled using black-box simulation is unattainable in the plain model
(i.e., without any setup assumption). On the other hand, in the CRS model,
Canetti et al. [10] gave a generic construction for multi-party secure function
evaluation that achieves an even stronger notion of security than concurrency
(universal composition) and can be used to solve (generically) the blind signa-
ture problem using a CRS. Note that this construction would not result in a
practical scheme. Recently, Camenisch et al. [8] using a weaker model than that
of [17] that only allowed sequential attacks presented a blind signature scheme
based on the Strong-RSA assumption leaving as open problem the possibility of
achieving concurrent security in an efficient scheme. Okamoto [23] presented an
efficient blind signature scheme using a stronger variant of the SDH assumption
[6]; based on the techniques we put forth in our work (which appeared originally
in [18]) he also extended his blind signature scheme to handle concurrent attacks
as well.

Our Contribution. In this paper, we give the first efficient construction for
blind signatures to achieve concurrent security in the sense of [17] assuming
a common reference string. The four-move interactions between the user and
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the signer in the signing protocol requires overall communication not exceed-
ing 2 Kbytes (about 10.2 Kbits to be precise) for a full signature generation.
Achieving this level of efficiency while simultaneously maintaining provability
in a concurrency model required the careful composition of a number of cryp-
tographic primitives. As our underlying digital signature scheme (i.e., the type
of signature that is obtained by users) we use the elliptic curve based signature
scheme of Camenisch and Lysyanskaya [9] (henceforth called a CL signature).
We also employ a variant of Linear Encryption, an encryption scheme that was
originally introduced in the context of group signatures by Boneh, Boyen and
Shacham [7]. Here we find a novel use of this primitive in the context of blind
signatures. In addition to these primitives, our construction makes essential use
of discrete-logarithm equivocal commitments based on Pedersen commitments
[26] and extractable commitments based on Paillier encryption [25].

The central idea of our construction is to use a variant of Linear Encryption
to produce a very efficient secure function evaluation protocol for CL signatures
that proceeds roughly as follows: the user selects on the fly a key for the en-
cryption scheme and encrypts her message with it. The signer upon receiving
this encryption takes advantage of the homomorphic properties of the encryp-
tion to blindly transform the ciphertext into a randomized encryption of a CL
signature and then transmits the resulting rerandomized ciphertext back to the
user. We make an essential use of the homomorphic properties of the underlying
encryption in the efficient generation of non-adversarial randomness between the
mutually distrustful players. In order to prove security under concurrent attacks
a number of provisions have to be taken in the blind signature protocol design.
Most importantly, in our signing protocol, both sides will be required to prove
statements about their local computations. As a result, performing the whole
protocol in four moves is one of the most delicate parts of our construction. The
homomorphic encryption based interaction that is used for the secure signature
computation needs to be paired with an extractable commitment. Moreover,
an equivocal commitment is used for ensuring that no information leakage oc-
curs from the user to the signer or vice versa. Finally, the signer, proves to the
user that he is following the protocol specifications and is applying his signing
key to the user’s ciphertext whereas the user has to prove that he is consistent
across his commitments. The construction is proven to satisfy the two proper-
ties of the [17] model as follows: the blindness property is ensured under the
Decisional Composite Residuosity assumption of [25] and the Decision Linear
Diffie-Hellman assumption of [7]. The unforgeability property is proven under
the LRSW assumption of [21]. Note that the resulting signature from the signing
protocol is about half the size of an RSA based Chaum blind signature.

We also present two variants of our basic protocol. (i) We consider a stronger
adversarial model for blindness where the public-key is adversarially controlled;
we show how it is possible to modify our basic protocol in a straightforward
way to achieve this stronger blindness property. (ii) We provide an extension of
our scheme that allows the public-tagging of blindly signed messages, i.e., all
messages that are obtained by the users also contain a publicly known tag that



52 A. Kiayias and H.-S. Zhou

is decided prior to the signing protocol execution. This extension is essentially
equivalent to a partially blind signature construction, a notion that was formal-
ized in [2]. Due to lack of space these protocols are omitted; please refer to the
full version [18] for more details.

2 Preliminaries

Bilinear Groups. Let G = 〈g〉 be a cyclic group of prime order p such that
e : G × G → GT is a bilinear map, i.e., for all t, v ∈ G and a, b ∈ Z, it holds that
e(ta, vb) = e(t, v)ab and e is non-trivial, i.e., e(g, g) �= 1.

Camenisch-Lysyanskaya Signature. Camenisch and Lysyanskaya [9] pro-
posed a digital signature scheme (we call it CL-signature for short) that was
adaptively chosen message secure in the standard model. Our blind signature
will be based on this signature scheme: (1) key generation algorithm genCL:
generate the bilinear group parameter (p, G, GT , g, e); then choose x, y

r← Z∗
p,

and compute X = gx and Y = gy; set secret key as sk = (x, y) and pub-
lic key as pk = (p, G, GT , g, e; X, Y ). (2) signing algorithm signCL: on input
message m, secret key sk = (x, y), and public key pk = (p, G, GT , g, e; X, Y ),
choose a random a ∈ G, and output the signature σ = (a, ay, ax+mxy). (3)
verification algorithm verifyCL: on input public key pk = (p, G, GT , g, e; X, Y ),
message m, and signature σ = (a, b, c), check whether the verification equations
e(a, Y ) = e(g, b) and e(X, a)e(X, b)m = e(g, c) hold.

The underlying assumption of CL-signatures is called the LRSW assumption,
which was introduced by Lysyanskaya et al. [21].

Assumption 1 (LRSW Assumption). Given the bilinear group parameters
(p, g, G, GT , e). Let X, Y ∈ G, X = gx, Y = gy and define OX,Y () to be an oracle
that, on input a value m ∈ Zp, it outputs a triple (a, b, c) such that b = ay, and
c = ax+mxy where a

r← G. Then, for all probabilistic polynomial time adversaries
A,

Pr
[
x, y ∈ Zp; X = gx; Y = gy; (m, a, b, c) ← AOX,Y :

m /∈ Q ∧ m ∈ Zp ∧ m �= 0 ∧ a ∈ G ∧ b = ay ∧ c = ax+mxy

]
≤ ε

where ε is a negligible function in security parameter λ, and Q is the set of
queries that A made to OX,Y ().

Linear Encryption. We give a description of Linear Encryption [7]. We call it
LE for short. (1) genLE : the public key pk is a triple of generators t, v, w ∈ G

and the secret key sk is the exponents x, y ∈ Z∗
p such that tx = vy = w. (2)

encLE : to encrypt a message m ∈ G, choose random a, b ∈ Zp, and output the
triple (ta, vb, m · wa+b). (3) decLE : given an encryption (T, V, W ), we recover
the plaintext m as follows m = decLE (T, V, W ) = W

T x·V y .
The Linear encryption is based on the Decision Linear Diffie-Hellman assump-

tion, which was introduced by Boneh et al. [7]. With g ∈ G, along with arbitrary
generators t, v, w ∈ G, consider the following problem:
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Definition 1 (Decision Linear Diffie-Hellman Problem in G). Given
t, v, w, tα, vβ , wγ ∈ G as input, output 1 if α + β = γ and 0 otherwise.

Now we define the advantage of an algorithm A in deciding the DLDH problem
in G as

AdvADLDH =
∣∣∣∣Pr[1 ← A(t, v, w, tα, vβ, wα+β) : t, v, w ∈ G, α, β ∈ Zp]

− Pr[1 ← A(t, v, w, tα, vβ , χ) : t, v, w, χ,∈ G, α, β ∈ Zp]

∣∣∣∣

Assumption 2 (Decision Linear Diffie-Hellman Assumption). We say
that the Decision Linear Diffie-Hellman assumption holds in G if for all PPT
algorithms A it holds that AdvADLDH is negligible in the security parameter λ.

Paillier-Encryption. Here we describe Paillier encryption [25]: (1) genPai : let
p and q be random primes,p �= q, |p| = |q| and gcd(pq, (p − 1)(q − 1)) = 1;
let n = pq, π = lcm(p − 1, q − 1), and g = (1 + n); the key pair are pk =
(n, g) and sk = (p, q). (2) encPai : the plaintext set is Zn; given a plaintext
m, choose a random ζ ∈ Z∗

n , and let the ciphertext be Em = encPai(m, ζ) =
gmζn mod n2. (3) decPai : given a ciphertext Em, let K = π−1 mod n, then
m = ((Em)πK mod n2)−1

n mod n.
The cryptosystem above has been proven semantically secure if and only if the

Decisional Composite Residuosity (DCR) assumption [25] is true. The advantage
of an algorithm A in deciding the DCR problem is defined as follows:

AdvADCR =
∣∣Pr[1 ← A(z) : z ∈ Z∗

n2 ] − Pr[1 ← A(z) : z ∈ HRn
n2 ]

∣∣
where HRn

n2 is the subgroup of n-th residues modulo n2.

Assumption 3 (Decisional Composite Residuosity Assumption). We
say that the DCR assumption holds in G if for all PPT algorithms A it holds
that AdvADCR is negligible in the security parameter λ.

Commitment Schemes. A commitment scheme is a protocol with two stages,
the commit stage and the decommit stage, between two parties, the committer
and the receiver. A commitment scheme consists of a key generation algorithm
gen which can be used to produce a public key pk, a commitment algorithm
com which is used by the committer to produce a commitment to the message
m and the decommitment information ζ, i.e., (c, ζ) ← compk(m), and a decom-
mitment verification algorithm dec which can be used by the receiver to verify
the decommitment information ζ and the message m with respect to the com-
mitment c, i.e., dec(c, m, ζ) ∈ {0, 1}. Frequently the decommitment information
ζ is the random coins used by the commitment algorithm and we will write
c ← compk(m, ζ).

A commitment scheme satisfies two properties: hiding, the receiver can not
obtain any information about m given compk(m, ζ); and binding, the committer
cannot change his mind about m later. In an extractable commitment, there
is a trapdoor information xk associated to each public key pk that allows the
trapdoor owner to compute m from any compk(m, ζ). In an equivocal commitment
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on the other hand, there is a trapdoor information ek associated to each public
key pk that allows a trapdoor owner to open c into any m.
Common Reference String Model. In the common reference string (CRS)
model, we assume that each player can access a common string that is guaranteed
to come from a prescribed distribution. Furthermore, no players (including the
adversaries) will know the trapdoor information related to the procedure of
choosing the string. The trapdoor will be known to the simulator in the proof
of security. In practice, a trusted third party can generate the CRS by running
the CRS generator K, i.e. (crs, τ) ← K(1λ), and discarding the trapdoor τ . The
string crs is published, and all parties receive it as additional input.

3 Formal Model for Blind Signatures

We revisit the formal model for blind signatures as introduced in [17] and we
reformulate it to use a common reference string (CRS).

Definition 2 (Blind Signature Scheme). A blind digital signature scheme
consists of two interactive Turing machines (S, U) and two algorithms
(gen,verify). Here S denotes the signer, and U the user.

- gen(1λ) is a PPT key-generation algorithm which takes as an input a
security parameter 1λ and outputs a pair (pk, sk) of public and secret
keys.

- S(pk, sk) and U(pk, m) is a pair of PPT interactive Turing machines,
where both machines have the following tapes: read-only input tape, write-
only output tape, a read/write work tape, a read-only random tape, and
two communication tapes, a read-only and a write-only tape. They are
both given on their input tapes as a common input a pk produced by the
key generation algorithm. Additionally S is given on his input tape the
corresponding secret key sk and U is given on his input tape a message m,
where the length of all inputs must be polynomial in the security parameter
1λ. Both U and S engage in an interactive protocol for some polynomial in
λ number of moves. At the end of this protocol S outputs either completed
or not-completed and U outputs either σ or ⊥.

- verify(m, σ, pk) is a deterministic polynomial time algorithm, which out-
puts 1 or 0.

The correctness requirement for the above is that for any message m, and for
all random choices of the key generation algorithm, if both S and U follow the
protocol then S always outputs completed, and if the output of the user is σ then
verify(m, σ, pk) = 1.

Note that in the CRS model, both S, U receive as additional input the crs string.
The security properties for blind signatures defined in [17] are blindness and
unforgeability. Below we revisit their modelling and we give detailed definitions
for these properties in the CRS model.

Definition 3 (Blindness). Assume (crs, τ) ← K(1λ), (pk, sk) ← gen(1λ). We
define an oracle Iφ with public input (1λ, crs, pk) which simulates two user in-
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stantiations UL and UR, where φ ∈ {0, 1}. The adversary A will be communicat-
ing with this oracle trying to predict φ given input (1λ, crs, pk, sk). The oracle
Iφ operates as follows:

- Given 〈challenge, m0, m1〉, the oracle Iφ simulates two user instanti-
ations UL and UR with input pk and the messages mφ and m1−φ re-
spectively. The oracle Iφ keeps a database with the state of each user
instantiation; the state includes all coin tosses of the user instantiation
and the contents of all tapes. The oracle uses stL (resp. stR) to record
the state of UL (resp. UR).

- Given 〈advance, ρ,msg〉, where ρ ∈ {L, R}, the oracle Iφ recovers the
state of stρ, and simulates the user instantiation Uρ with msg till Uρ

either terminates or returns a response to the signer. If Uρ returns a
response, then Iφ returns this to A. The oracle will record the current
state st, i.e. stρ = stρ||st. Note that this kind of query can be executed
several times depending on the number of moves of the blind signature
protocol.

- Given 〈terminate,msgL,msgR〉, the oracle Iφ recovers the state stL

(resp. stR), and simulates the user instantiation UL (resp. UR) with msgL

(resp. msgR) till UL (resp. UR) terminates or fails. If both user instanti-
ations terminate successfully and output two signatures, then the oracle
returns these signatures to A, otherwise returns (⊥, ⊥).

Given any PPT A, we define its advantage against blindness as:

AdvAblind(λ) =

∣∣∣∣∣Pr

[
φ ← AIφ(1λ,crs,pk)(1λ, crs, pk, sk) :
φ

r← {0, 1}, (crs, τ) ← K(1λ), (pk, sk) ← gen(1λ)

]
− 1

2

∣∣∣∣∣
and say that the scheme satisfies the blindness property if AdvAblind(λ) is negligible
in λ.

Definition 4 (Unforgeability). We define an oracle I that is simulating con-
currently an arbitrary number of signer instantiations. The oracle accepts two
types of queries defined as follows:

- 〈start,msg〉. The oracle I selects a session identifier sid, and simulates
the signer instantiation S with msg till S either terminates or returns a
response. If the signer instance returns a response to the user, I returns
this with the sid as an answer to the oracle query. I keeps a database
with the state of S for the sid; the state includes all coin tosses of S, and
the contents of all tapes.

- 〈advance, sid,msg〉. The oracle I looks up the table of sessions and re-
covers the state of S for the session with sid (if sid exists). Subsequently,
I writes msg in the communication tape of S and simulates it till it either
terminates or returns a response to the user. If it returns a message to
the user, I returns this as an answer to the oracle query. If no session
sid exists the oracle returns “fail.”

The oracle I maintains a counter � that counts the number of times that the or-
acle has successfully terminated a signer session. Each time that I successfully
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terminates a signer session it increases the counter � by 1. A “one-more forgery”
adversary against the blind signature is a PPT machine A that is given as in-
put (1λ, crs, pk) where (crs, τ) ← K(1λ) and (pk, sk) ← gen(1λ). The adver-
sary A interacts with I(crs, pk, sk) and terminates by returning a sequence of
(m1, σ1), ..., (m	′ , σ	′) where mi �= mj for all i, j : 1 ≤ i �= j ≤ �′. We define
the advantage of A in the above attack by

AdvAunforge(λ) = Pr[∧	′

i=1(1 ← verify(pk, mi, σi)) ∧ (�′ > �)]

and say that the scheme is unforgeable if AdvAunforge(λ) is negligible in λ.

4 The Proposed Scheme

We start the description of our construction by describing the setup definition
as well as the way that the involved parties, the user and the signer generate
their keys.

Public Parameters. The public parameter pub contains general information
about all protocol executions as well as a specific bilinear group parameter
(p, G, GT , g, e) appropriately selected.

Common Reference String. The common reference string crs includes two
parts, crs1 and crs2. First, we generate parameters for a Pedersen-like [26]
commitment scheme over an elliptic curve group: let G = 〈g〉 be a cyclic elliptic
curve group of prime order Q; select r

r← Z∗
Q and compute h = gr; set crs1 =

〈Q,g,h,G, H〉, where H : {0, 1}∗ → ZQ is a collision resistant hash function
and set the trapdoor to be τ1 = r. Then we generate parameters for the Paillier
encryption: let p and q be random primes, p �= q, |p| = |q| and gcd(pq, (p −
1)(q − 1)) = 1; let n = pq, and g = (1 + n); set crs2 = 〈n, g〉 and the trapdoor
τ2 = 〈p, q〉. Now we have crs = (crs1, crs2); the two trapdoors τ1, τ2 as well as
any random coins used for the generation of crs are discarded.

Signer Parameters. The signer S uses gen to generate his public and secret
parameters based on pub: select x, y

r← Z∗
p and compute X = gx, Y = gy; set

PKS = 〈X, Y 〉 and SKS = 〈x, y〉 as his key pair. We note that the parameters
selected above will be used for many executions of the signing protocol, while
the user has no such long-lived parameters. Still, as part of each signing protocol
the user will select some public and secret key that will have the lifetime of one
signing protocol execution. We stress that this is not a necessity and each user
may also keep his public-key parameters the same across signing protocol execu-
tions; in fact these parameters can be part of a PKI that all users are members
of. This will make the protocol’s time-complexity somewhat more efficient on
the side of the user (but will have the cost of maintaining a user PKI).

User Parameters. Each user U generates his key pair on the fly: select w
r←

G\{1}, δ, ξ
r← Z∗

p, and set t, v ∈ G such that tδ = vξ = w; set PKU = 〈t, v, w〉
and SKU = 〈δ, ξ〉 as his key-pair.
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Choice of Parameter Lengths. The length of each parameter p, n, Q is νp, νn,
νQ respectively and should be selected so that the following are satisfied: (i) The
DLDH assumption holds over the bilinear group parameter (p, G, GT , g, e), (ii)
The LSRW assumption holds over the bilinear group parameter (p, G, GT , g, e),
(iii) The discrete-logarithm (DLOG) assumption holds over the elliptic curve
cyclic group G, (iv) The DCR assumption holds over Z

∗
n2 . Based on the present

state of the art with respect to the solvability of the above problems, a possible
choice of the parameters is for example νp = 171 bits, νn = 1024 bits, νQ =
171 bits.

Signing Protocol. We give a high-level description of our protocol before pre-
senting it in detail. (1) First, both the user and the signer obtain the public
inputs pub, crs, and PKS, the signer gets the private input SKS, and the user
gets the private input message m. (2) Then the user generates his key pair
(PKU, SKU) for Linear Encryption, and keeps SKU secret; the user generates
a Paillier ciphertext for message m which is used as an extractable commit-
ment; the user generates a special Linear Encryption ciphertext for m which
will be signed by the signer. (3) To guarantee that the Linear Encryption ci-
phertext and the Paillier ciphertext are consistent, the user interleaves within
the protocol execution a 3-move Σ-protocol that shows the consistency of the
commitment and the encryption. This protocol employs an equivocal Pedersen
commitment scheme to allow zero-knowledge in the concurrent setting (cf. [14]).
When the signer successfully verifies the 3-move protocol which was initialized by
the user, he will transform the Linear Encryption ciphertext by using his signing
key SKS and appropriately rerandomize it. This will result in the encryption of
a CL-signature which will be recovered by the user using his secret key SKU.
(4) To guarantee that the signer follows the protocol specifications, the signer is
required to interleave a 3-move Σ-protocol as well in order to show that he is
applying his secret-key appropriately on the Linear Encryption ciphertext that
is provided by the user. Again we employ an equivocal Pedersen commitment
to allow for concurrent zero-knowledge. (5) When the user verifies successfully
the final step of the signing protocol computation, he decrypts the CL-signature
from the signer’s ciphertext using his secret-key SKU and obtains a CL-signature
for the message m. Then he refreshes the randomness of the signature taking
advantage of the homomorphic property of CL-signatures.

Σ-protocols and Round-complexity. In our signing protocol we employ two
Σ-protocols from both sides of the interaction. Both these protocols have the
form 〈commitment; challenge; response, decommitment〉. A subtle difficulty in
the design of our protocol is that if the two Σ-protocols are executed sequentially
they will result in an overall round complexity of six moves. In order to maintain
the four-move protocol complexity we want to “start” the Σ-protocol for the
signer side before the user side Σ-protocol terminates. Nevertheless this will
violate the security property of our scheme. So, in order to allow an early start
of the signer side Σ-protocol we have the signer commit to the value he will
prove a statement about and open the commitment only in case the user’s side
Σ-protocol verifies.
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U S

(PKU, SKU) ← genLE (1λ)
Em ← encPai(m)
Use encLE (·) and m to pro-
duce an appropriate cipher-
text 〈T, V, W 〉
Compute the first move of
the user side Σ-proof and

Use the homomorphic proper-
ties of Linear Encryption and

commit it into commitmentU
PKU,Em,〈T,V,W〉

−−−−−−−−−−−−−−−−→
commitmentU

of CL-signature and transform
T, V, W into an encryption ψ
of a CL-signature σ′ on the
message m. Compute the first
move of the signer side Σ-
proof and commit it with ψ

challengeU←−−−−−−−−−−−−−−−−
commitmentS

into commitmentS.

responseU,decommitmentU
−−−−−−−−−−−−−−−−→

challengeS

Verify the 3-move Σ-protocol

〈commitmentU; challengeU;
responseU, decommitmentU〉,

Verify the Σ-protocol
〈commitmentS; challengeS;
responseS, decommitmentS〉,
get ψ from decommitmentS

and decrypt it to obtain the
signature.

responseS,decommitmentS
←−−−−−−−−−−−−−−−−

Fig. 1. Overview of our blind signature generation protocol

We outline the high-level description of our signing protocol in figure 1. In
the first step, the user U prepares two different encryptions of his private in-
put m, called Em and 〈T, V, W 〉. Moreover, it computes the first move of a
Σ-protocol that shows the consistency of the two encryptions and commits to
it into commitmentU. In the second step, the signer prepares an encryption ψ
that can be decrypted by the user into a CL-signature but does not transmit
yet this value to the user. Instead, it prepares the first move of a Σ-protocol
that shows that he computed ψ correctly and commits to ψ as well as the first
move into commitmentS. In the third step, the user, given the challenge of the
signer, completes the Σ-protocol that shows he computed the two encryptions
Em and 〈T, V, W 〉 in a consistent way and transmits to the signer the decommit-
ment information necessary to verify the consistency of the ciphertexts. In the
fourth step, the signer verifies the Σ-protocol of the user and if it is accepted,
the signer completes his Σ-protocol and transmits to the user the encryption ψ
as well as the decommitment information necessary to verify the claim that ψ
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Fig. 2. Blind signature generation protocol
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is correctly computed based on the signer’s public-key. Finally the user verifies
the Σ-protocol and if accepted it outputs the computed blind signature. The de-
tailed description of the protocol is shown in figure 2. Note that d1 < p, d2 < p,
i.e. λ1 < νp, λ2 < νp. For example λ0 = λ1 = λ2 = 80 bits.

Signature Verification. Given a message-signature pair (m; σ), where σ =
〈a, b, c〉 , the verification algorithm is based on the two verification equations
below: e(a, Y ) = e(g, b) and e(X, a)e(X, b)m = e(g, c).

Correctness and Security. The correctness and security of our scheme is
captured by Theorem 4 (refer to the full version [18] for proof details).

Theorem 4. If both the signer and the user follow the signing protocol, the
resulting signature satisfies the verification with probability 1; under the LRSW
assumption, the proposed scheme is unforgeable; under the DLDH assumption,
the proposed scheme is blind.
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Abstract. Universal designated verifier signatures (UDVS) were intro-
duced in 2003 by Steinfeld et al. to allow signature holders to monitor
the verification of a given signature in the sense that any plain signature
can be publicly turned into a signature which is only verifiable by some
specific designated verifier. Privacy issues, like non-dissemination of digi-
tal certificates, are the main motivations to study such primitives. In this
paper, we propose two fairly efficient UDVS schemes which are secure
(in terms of unforgeability and anonymity) in the standard model (i.e.
without random oracles). Their security relies on algorithmic assump-
tions which are much more classical than assumptions involved in the
two only known UDVS schemes in standard model to date. The latter
schemes, put forth by Zhang et al. in 2005 and Vergnaud in 2006, rely on
the Strong Diffie-Hellman assumption and the strange-looking knowledge
of exponent assumption (KEA). Our schemes are obtained from Waters’s
signature and they do not need the KEA assumption. They are also the
first random oracle-free constructions with the anonymity property.

1 Introduction

Many electronic applications have a crucial need for privacy which has been of
central interest in the cryptographic community since the early eighties with
the introduction of “special-purpose signatures”. In 2003, Steinfeld et al. [31]
suggested the idea of transforming a digital signature into a certain special sig-
nature (designated verifier). This notion is very useful in the design of sensitive
e-applications with privacy issues. In this paper, we make a step forward in this
area by designing efficient schemes which are secure without random oracles un-
der more classical assumptions than the previous secure schemes that are secure
in a standard model of computation.

Designated Verifier Signatures. Designated verifier proofs were introduced in
1996 by Jakobsson, Sako and Impagliazzo [19] in order to serve during confir-
mation and denial procedures of undeniable signatures [11] with the motivation
to face blackmailing or mafia attacks. Designated verifier signatures (DVS) were
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built using designated verifier proofs to convince a unique verifier chosen by the
signer so that the verifier cannot transfer his conviction regarding the correctness
of the signature. Roughly speaking, DVS schemes were obtained from Jakobsson
et al.’s designated verifier proofs via the Fiat-Shamir heuristic [15].

Several years after the seminal paper of Jakobsson et al. [19], many new
schemes appeared in the literature, but not always with a precise formaliza-
tion of security requirements. The first “modern” scheme, proposed by Saeednia
et al. in 2003 [28], was based on Schnorr’s signature [30] but it still was not
supported by a formal security model. At Asiacrypt’03, Steinfeld, Bull, Wang
and Pieprzyk [31] gave a new proper definition of unforgeability. Laguillaumie
and Vergnaud [22] subsequently adapted the notion of anonymity for undeni-
able signatures to the context of DVS schemes: they defined the privacy signer’s
identity, which protects the anonymity of the signer and captures the notion of
strong DVS introduced in [19]. The notion of DVS schemes was then extended
in [23] to allow the designation of several verifiers. More recently, Bender, Katz
and Morselli [6] described 2-user ring signatures that immediately give rise to
designated verifier signatures in the standard model.

Universal Designated Verifier Signature. Along with a formal security model for
DVS schemes, Steinfeld et al. [31] defined a new useful property for traditional
signatures. Basically, anyone holding a valid digital signature should be able
to transform it so that only a specific user is able to ascertain the correctness
of the signature. This transformation removes the self-authenticating property
of signatures, and the resulting process was called universal designated verifier
signatures (UDVS). At PKC’04, Steinfeld, Wang and Pierpzyk [32] proposed
UDVS extensions of Schnorr and RSA signatures. A further extension termed
“universal multi-designated verifier signatures” was considered in [26].

Except [6], all aforementioned works conduct security analyzes in the random
oracle model [5] where hash functions are viewed as idealized random functions.
As security in this model does not [10] imply the security in the real world,
an important effort is currently achieved to avoid it and obtain security results
in the standard model. A pairing-based random oracle-free signature algorithm
due to Boneh and Boyen [7] is often used in the design of special-purpose signa-
tures such as UDVS schemes put forth by Zhang et al. [35] and Vergnaud [33].
Nonetheless, the computational assumption (called Strong Diffie-Hellman as-
sumption or SDH for short) underlying the Boneh-Boyen scheme is ad-hoc and
non-standard. Besides, security proofs of schemes in [35, 33] additionally need
an even stronger and odd assumption known as the knowledge-of-exponent as-
sumption1 (KEA) [13, 18, 4] which is non-black box in that security reductions
from this assumption entail some kind of access to the internal state of the
adversary.

1 Intuitively, this assumption states that, given (g, h = ga) in a cyclic group G = 〈g〉,
the only way to generate pairs (y1, y2) ∈ G × G s.t. y2 = ya

1 without knowing a is
to set y1 = gr and y2 = hr for a randomly chosen r. Any adversary A producing
such a pair (y1, y2) necessarily “knows” the exponent r that could be extracted by
accessing A’s memory.
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Our contributions. Avoiding random oracles in security proofs often leads to use
strong and ad-hoc assumptions. Hence, actual security benefits of this break-
through are not always clear. The only secure UDVS schemes in the standard
model [35, 33] rely on the combined SDH and KEA assumptions. The former
was recently reconsidered [12] and the latter is non-black box and so odd that it
is generally disliked and avoided whenever possible although it holds in generic
groups [14]. It was shown in [33] that the KEA may be avoided in [35, 33], but
both constructions then have a security resting on a very exotic assumption.

In this work, we aim at obtaining UDVS schemes satisfying strong security
notions in the standard model and under more classical assumptions. We start
from Waters’s signature [34] which is (not strongly) existentially unforgeable un-
der the Diffie-Hellman assumption in groups equipped with bilinear maps. We
turn it into a UDVS scheme which is unforgeable under an alleviated version
of the Gap Bilinear Diffie-Hellman assumption and protects the anonymity of
signers under the Decisional Bilinear Diffie-Hellman assumption.

In a second step, we use a technique due to Boneh, Shen and Waters [9] to
make our scheme strongly unforgeable. The main motivation to consider such
an enhanced unforgeability is two-fold. First, it allows for a security resting
on the weaker Bilinear Diffie-Hellman assumption (in other words, we bypass
the use of a fancy decision oracle in the proof) at the expense of a loss of
“tightness” in the reduction. Yet, the security of this variant relies on an as-
sumption whose strength is totally independent of the number of adversarial
queries (unlike [35, 33]). Underlying assumptions aside, our second scheme fea-
tures a provable anonymity in a stronger sense (i.e. in a game where verification
queries are allowed to adversaries). Our constructions turn out to be the only
random oracle-free UDVS that meet an anonymity property in the “find-then-
guess” sense following [22]. Indeed, solutions given in [35, 33] are provably not
anonymous in this sense.

2 Ingredients

2.1 Universal Designated Verifier Signatures

Definition 1 (UDVS schemes). A universal designated verifier signature
scheme UDVS is a 5-tuple UDVS = (Σ, Register, VKeyGen, Designate, DVerify)
of algorithms parameterized by a security parameter k.

– Σ = (Setup, KeyGen, Sign, Verify) is a traditional digital signature scheme;
– UDVS.Register is a protocol between a “key registration authority” (KRA)

and a user, both taking as input public parameters and the verifier’s public
key pkv. The outcome is a notification decision from the KRA2;

– UDVS.VKeyGen is a probabilistic algorithm which takes public parameters as
input, and produces a pair of keys (skV , pkV ) for the designated verifier;

2 The protocol typically consists in having the KRA check that users know their
private key.
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– UDVS.Designate is a (possibly probabilistic) algorithm which takes as inputs
public parameters, a public key pkS, a message m, a putative signature σ
on m with respect to the public key pkS, and the public key of a designated
verifier pkV , and produces a designated verifier signature σ̃;

– UDVS.DVerify is a deterministic algorithm which takes as inputs public para-
meters, a message m, a putative designated verifier signature σ̃, a public key
pkS, a pair of keys (skV , pkV ). The output is 1 if the signature σ̃ is accepted
and 0 otherwise.

The usual correctness requirement imposes that correctly formed plain or desig-
nated signatures are always accepted by the relevant verification algorithm.

In terms of security, an UDVS scheme must fit a natural variant of the stan-
dard notion of existential unforgeability under chosen-message attacks [17]. It
should also achieve two anonymity properties: (1) the notion of (unconditional)
source hiding which is the ambiguity about whom among the signer and the
designated verifier a signature emanates from; (2) the signer’s privacy, which is
analogous to the notion of anonymity for undeniable signatures.

Source hiding. An UDVS scheme is source hiding if there exists an algorithm that
takes as input only the secret key of the designated verifier and which produces
bit strings which are perfectly indistinguishable (even knowing all secret keys)
from the distribution of actual designated verifier signatures.

Unforgeability. We consider the notion of unforgeability introduced in [32] which
is an extension of the chosen-message security introduced in [17]. Informally
speaking, an attacker is given a signer’s public key pkS , a designated verifier’s
public key pkV and access to a signing oracle and a verification oracle. He should
be unable to produce a signature on a new message.

Definition 2. An UDVS scheme is said (not strongly) existentially unforgeable
if no PPT adversary F has a non-negligible advantage in the following game.

1. The challenger C takes as input a security parameter k and executes params ←
UDVS.Σ.Setup(k), (sk�

S , pk�
S) ← UDVS.Σ.KeyGen(k, params), (sk�

V , pk�
V ) ←

UDVS.VKeyGen(k, params). It gives pk�
S and pk�

V to the forger F and keeps sk�
S

and sk�
V to itself.

2. The forger F can issue the following queries:
i) a registration query for a public key pk; the attacker engages in the

registration protocol with the KRA;
ii) a signing query for some message m; the challenger C executes σ ←

UDVS.Σ.Sign(k, params, m, sk�
S) and hands σ to F ;

iii) a verification query for pairs (m, σ̃) of his choice; C returns to F the
value UDVS.DVerify(k, params, m, σ̃, pk, (sk�

V , pk�
V ));

3. F outputs a V -designated verifier signature σ̃� for a new message m�.

The adversary F succeeds if UDVS.DVerify
(
k, params, pk�

S , (sk�
V , pk�

V )
)

= 1 and
m� has not been asked by F in a signing query in step 2 of the game. An at-
tacker F is said to (τ, qs, qv, ε)-break the unforgeability of the UDVS scheme if he
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succeeds in the game within running time τ and with probability ε after having
made qs signing queries and qv verification queries.

Strong Unforgeability. Definition 2 only captures the standard level of unforge-
ability. In the strengthened notion of strong unforgeability [1], the forger is al-
lowed to output a fake designated signature σ̃ on a previously signed message
m�. Here, we impose that σ̃ must differ from designated signatures obtained
by applying the (deterministic) designation algorithm to all outputs of signing
queries with input m� during the game. We emphasize that this model only
makes sense for schemes using a deterministic designation algorithm3.

Privacy of signer’s identity/Anonymity. Privacy of signer’s identity was for-
mally defined for designated verifier signatures by Laguillaumie and Vergnaud
[22]. It captures the strong anonymity property introduced by Jakobsson et al.
in [19]. Although designated verifier signatures are signer ambiguous regarding
the signer and the designated verifier, it might remain possible to distinguish
the actual issuer of a given signature between two potential signers. The next
definition captures that it should be (computationally) infeasible. It is analogous
to the notion of anonymity for undeniable signatures [16].

Definition 3. An UDVS has the signer-privacy property if no PPT distin-
guisher D has a non-negligible advantage in the next game.

1. The challenger C takes as input a security parameter k and executes params ←
UDVS.Σ.Setup(k), (sk�

S,0, pk�
S,0), (sk

�
S,1, pk�

S,1)←UDVS.Σ.KeyGen(k, params),
(sk�

V , pk�
V ) ← UDVS.VKeyGen(k, params). It hands public keys pk�

S,0, pk�
S,1 and

pk�
V to D and keeps sk�

S,0, sk
�
S,1, sk

�
V to itself.

2. The distinguisher D issues a number of queries exactly as in the game mod-
eling the unforgeability property. Those queries may pertain to both of the
challenge public keys pk�

S,0, pk�
S,1.

3. D produces a message m� of her choosing. The challenger C then flips a
fair coin b� R← {0, 1}, generates a signature in the name of one of the sign-
ers σ ← UDVS.Σ.Sign(k, params, m�, sk�

S,b�) and designates it into σ̃� ←
UDVS.Designate(k, params, pk�

S,b� , m, σ, pk�
V ) which is sent to D.

4. D issues new queries with the restriction of not querying σ̃� for verification.
5. Eventually, D outputs a bit b and wins if b = b�.

3 Defining strong unforgeability for schemes with probabilistic designation is more
subtle. A reasonable option is the following. We still forbid plain signature queries
for the message m�. Instead, F is equipped with a designated signing oracle taking
as input a message m and some registered verifier’s public key pkB . The latter may
differ from the target verifier’s public key pk�

V as long as it was registered and F
proved her knowledge of the matching secret skB . The designated signing oracle first
generates a plain signature σ ← UDVS.Σ.Sign(k, params, m, sk�

S) and designates it
into σ̃ ← UDVS.Designate(k, params, pk, m, σ, pkB) which is given to F . The latter
has to come up with a pair (m�, σ̃�) designated to the target verifier pk�

V and (m�, σ̃�)
may not result from a designated signing query with pk�

V as a verifier’s public key.
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If D has advantage ε = |Pr[b = b�]−1/2| when making at most qs and qv signing
and verification queries within running time τ , then we say that he (τ, qs, qv, ε)-
breaks the anonymity of the UDVS scheme.

2.2 Bilinear Maps

We now recall basics about bilinear maps which are the main algebraic tool to
design our new UDVS construction.

Definition 4. Let (G, +) and (H, ·) be groups of prime order q and P ∈ G. A
symmetric admissible bilinear map e : G × G → H has the following properties:

1. bilinearity: e(aP, bQ) = e(P, Q)ab for any (P, Q) ∈ G × G and a, b ∈ Z;
2. efficient computability for any possible input pair;
3. non-degeneracy: e(P, P ) generates H whenever P generates G.

Definition 5. A BDH-parameter-generator is a probabilistic algorithm that
takes a security parameter λ as input and outputs a 5-tuple (q, P, G, H, e) where
q is a λ-bit prime number, (G, +) and (H, ·) are groups of order q, P ∈ G is a
generator, and e : G × G → H is an admissible bilinear map.

Complexity assumptions. Let (q, P, G, H, e) be the output of a prime-order-BDH-
parameter-generator for a security parameter k. Basically,

1. the (computational) Bilinear Diffie-Hellman Problem (BDH) [20, 8] is
to compute e(P, P )abc ∈ H given (P, aP, bP, cP ) ∈ G4;

2. the Decisional Bilinear Diffie-Hellman Problem (DBDH) is to distin-
guish the distribution of BDH tuples (aP, bP, cP, e(P, P )abc) from the distri-
bution of random tuples (aP, bP, cP, e(P, P )z). We say that an algorithm B
solving the DBDH problem has advantage ε if

∣
∣Pr[B(P, aP, bP, cP, e(P, P )abc) = 1|a, b, c R← Z

∗
q ]

− Pr[B(P, aP, bP, cP, e(P, P )z) = 1|a, b, c, z R← Z
∗
q ]

∣∣ ≥ ε;

3. the Gap Bilinear Diffie-Hellman Problem (GBDH) consists in solving
the BDH problem (P, aP, bP, cP ) with the help of an oracle deciding whether
tuples (P, xP, yP, zP, h) ∈ G4 × H satisfy h = e(P, P )xyz ;

4. the weak Gap Bilinear Diffie-Hellman Problem (wGDBH) is to solve a
BDH instance (P, aP, bP, cP ) ∈ G4 using a restricted decision oracle deciding
whether pairs (zP, h) ∈ G × H satisfy h = e(P, P )abz .

The last problem is not easier than the GBDH problem in that fewer degrees of
freedom are allowed when using the decision oracle. We call weak Gap Bilinear
Diffie-Hellman assumption its intractability for any PPT algorithm.

The security of our scheme relies on the wGBDH assumption which, although
non-standard, is a black box assumption (see [27] for the historical definition
of a gap problem). In section 5, we shall explain how to get rid of interactive
assumptions and modify our scheme to end up with a security resting on the
softer Bilinear Diffie-Hellman assumption.
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3 Our UDVS Scheme

We present in this section the design of our new universal designated verifier
signatures. It is based on Waters’ signature scheme [34].

In our notation, hashed messages m are always represented as n-bit vectors
(m1, . . . , mn) with mi ∈ {0, 1} for all i ∈ {1, . . . , n}.

– UDVS.Σ.Setup: public parameters include the output (q, P, G, H, e) of a BDH-
parameter-generator as well as an integer n, a collision-resistant hash function
h : {0, 1}∗ → {0, 1}n, random elements P ′, U ′ ∈ G and a random n-tuple
(U1, . . . , Un) ∈ Gn. We call F : {0, 1}n → G the application mapping strings
m onto F (m) = U ′ +

∑n
i=1 miUi.

params := {n, q, G, H, e, P, P ′, U ′, U1, . . . , Un, F, h}.

– UDVS.Σ.KeyGen: a signer’s private key is a randomly chosen αS
R← Z∗

q ; his
public key consists of a group element PS = αSP .

– UDVS.Σ.Sign: given a message M ∈ {0, 1}∗, the signer computes m = h(M)
and picks r R← Z∗

q . The signature is σ = (σ1, σ2) = (αSP ′ + rF (m), rP ) .

– UDVS.Register: a public key is registered by letting the user prove the knowl-
edge of its secret key to the KRA.

– UDVS.Σ.Verify: a plain signature σ = (σ1, σ2) on M is accepted if e(σ1, P ) =
e(PS , P ′)e(σ2, F (m)) where m = h(M).

– UDVS.VKeyGen : a designated verifier’s private key is a random element
αV

R← Z∗
q ; the matching public key is PV = αV P ∈ G.

– UDVS.Designate: the holder of a signature σ = (σ1, σ2), who chooses V as
designated verifier produces the designated verifier signature σ̃ = (σ̃1, σ2)
with σ̃1 = e(σ1, PV ).

– UDVS.DVerify: given a purported signature (σ̃1, σ2), the designated verifier
checks whether σ̃1 = e(PS , P ′)αV e(σ2, F (m))αV where m = h(M).

4 Security

Correctness and unconditional source hiding are straightforward.

4.1 Unforgeability

The proof of the next theorem follows the same strategy as the security proof of
Waters’s identity based encryption scheme [34].

Theorem 1. Assuming that a forger F is able to (t, qs, qv, ε)-break the scheme,
there is an algorithm B that (t′, ε′)-breaks the wGBDH assumption where

ε′ ≥ ε

4qs(n + 1)
t′ ≤ t + O((qs + qv)τm + qvτp)

and τm, τp respectively denote the cost of a scalar multiplication in G and the
time complexity of a pairing calculation.
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Proof. Algorithm B is given a group G together with a generator P , elements
(aP, bP, cP ) ∈ G3 and an oracle ODBDH(., bP, cP, .) deciding whether tuples of
the shape (aP, bP, cP, h) ∈ G3 × H satisfy h = e(P, P )abc. It uses F to extract
e(P, P )abc. The attack environment is simulated as follows.

Setup and key generation: B randomly chooses k ∈ {0, . . . , n} and defines
� = 2qs. We assume4 that �(n + 1) < q which implies 0 ≤ k� < q. The
simulator B randomly selects x′ R← Z� and a vector (x1, . . . , xn) of elements
with xi ∈ Z� for all i. It also chooses at random an integer y′ R← Zq and a
vector (y1, . . . , yn) with yj ∈ Zq for all j. For ease of explanation, we shall
consider two functions

J(m) = x′ +
n∑

i=1

mixi − k� and K(m) = y′ +
n∑

i=1

miyi.

System-wide parameters are then chosen as P ′ = cP and

U ′ = (x′ − k�)P ′ + y′P Ui = xiP
′ + yiP for 1 ≤ i ≤ n

which means that, for any string m ∈ {0, 1}n, we have

F (m) = U ′ +
n∑

i=1

miUi = J(m)P ′ + K(m)P.

Besides, signer and verifier’s public keys are set to PS = aP and PV = bP .

Queries: once F is started with public parameters and public keys PS , PV as
input, two kinds of queries may occur.

Signing queries: let m = h(M) be a message for which F requests a sig-
nature. If J(m) = 0 mod q, B aborts. Otherwise, it can construct a
signature by picking r R← Zq and computing

σ = (σ1, σ2) =
(

−K(m)
J(m)

PS + rF (m), − 1
J(m)

PS + rP

)
.

If we define r̃ = r − a/J(m), σ is a valid signature as

σ1 = −K(m)
J(m)

PS + rF (m)

= −K(m)
J(m)

PS + r̃F (m) +
a

J(m)
(J(m)P ′ + K(m)P )

= aP ′ + r̃F (m)

and σ2 = (r−a/J(m))P = r̃P . The plain signature σ is then transformed
using the public designation algorithm.

4 This is a realistic requirement as parameters should be chosen s.t. n ≥ 160, q > 2160

and it is common to suppose qs < 230.
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Verification queries: at any time, F may enquire for the (in)validity of a
designated signature σ̃ = (σ̃1, σ2) on a message m = h(M) and expects
B to (in)validate it using the (unknown) private key αV = b. To answer
such a query, B evaluates J(m) and K(m), invokes the decision oracle
on the tuple (PS + J(m)σ2, PV , P ′, σ̃1/e(K(m)σ2, PV )) and returns 1
(meaning that σ̃ is a valid designated signature) if ODBDH(.) deems it
as a valid tuple. Otherwise, it returns 0 and declares σ̃ as invalid. We
observe that, whenever σ̃ is correct, we have σ2 = rP and

σ̃1 = e (aP ′ + r(J(m)P ′ + K(m)P ), bP )
= e (aP ′ + rJ(m)P ′, bP ) e (K(m)rP, bP )
= e (acP + J(m)rcP, bP ) e (K(m)rP, bP )
= e(P, P )(a+J(m)r)bce (K(m)σ2, bP )

for some r ∈ Z
∗
q and σ̃1/e(K(m)σ2, PV ) is the solution of the bilinear

Diffie-Hellman instance

((a + rJ(m))P, bP, cP ) = (PS + J(m)σ2, PV , P ′) .

If F ever issues such a verification query where J(m) = 0 and ODBDH(.)
returns 1, B immediately halts and outputs σ̃1/e(K(m)σ2, PV ).

Forgery: if B did not abort, F is expected to come with a fake designated
signature σ̃� = (σ̃1

�, σ2) on some new message m� = h(M�). At that point,
B reports “failure” if J(m�) �= 0 mod q. Otherwise, F (m�) = K(m�)P and,
given that σ̃� is a valid designated signature, we have

σ̃1
� = e(aP ′ + rK(m�)P, bP ) = e(P, P )abce(K(m�)σ�

2 , bP )

and σ�
2 = rP for some r ∈ Z∗

q , wherefrom e(P, P )abc = σ̃1
�/e(K(m�)σ�

2 , bP )
is extractable by B.

The simulator B’s probability of success remains to be assessed. We remark that
it terminates without aborting if, J(m) �= 0 mod q for all messages m submitted
in a signing query. As 0 ≤ k� < q and x′ +

∑n
i=1 mixi < �(n + 1) < q, we

note that J(m) = 0 mod q implies J(m) = 0 mod � (and thus J(m) �= 0 mod �
implies J(m) �= 0 mod q). Hence, to simplify the analysis, we may force B to
abort whenever J(m) = 0 mod � in a signing query. Besides, B is successful if
the target message happens to satisfy J(m�) = 0 mod q.

More formally, if m1, . . . ,mqs are messages appearing in some signing query
and if we define the events Ai : J(mi) �= 0 mod � and A� : J(m�) = 0 mod q,

the probability that B does not fail is Pr[¬abort] ≥ Pr[
qs∧

i=1

Ai ∧ A∗]. Given that

J(m�) = 0 mod q implies J(m�) = 0 mod � and that, if J(m�) = 0 mod �,
there is a unique value k ∈ {0, . . . , n} that yields J(m�) = 0 mod q, we have

Pr[A�] = Pr[J(m�) = 0 mod �]Pr[J(m∗) mod q|J(m�) = 0 mod �] =
1
�

1
n + 1

.
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Moreover, Pr[
qs∧

i=1

Ai|A�] = 1 −
qs∑

i=1

Pr[¬Ai|A�] = 1 − qs

�
, where the rightmost

equality stems from the fact that Ai is independent of A� for any i (hence
Pr[¬Ai|A�] = 1/�). Putting the above together, we find that

Pr[¬abort] = Pr[A�]Pr[
qs∧

i=1

Ai|A∗] =
1

�(n + 1)

(
1 − qs

�

)
=

1
4qs(n + 1)

thanks to the choice of � = 2qs. 	


4.2 Anonymity

The following theorem states the signer’s privacy in a weaker sense than def-
inition 3: verification queries are indeed disallowed throughout the game. The
proof follows ideas from [34] and is detailed in the full version of the paper.

Theorem 2. If an attacker D is able to (t, qs, 0, ε)-break the anonymity, there
is an algorithm B that (t′, ε′)-breaks the DBDH assumption where

ε′ ≥ ε

32qs(n + 1)
t′ ≤ t + O(qsτm + ε−2 ln(ε−1)μ−1 ln(μ−1))

where τm denotes the cost of a scalar multiplication in G.

The next section shows a variant of our scheme where the anonymity property
holds in the strong sense of definition 3.

Remark 1. In [24], Lipmaa, Wang and Bao identified a new security requirement
for designated verifier signatures: the non-delegability. This means that neither
the signer nor the designated verifier should be able to produce a “meta-key”
which allows to generate new signatures without revealing their secret. Even if
this requirement is debatable, our scheme is delegatable (for instance the verifier
can publish αV P ′). As suggested in [33], delegability is inherent to all UDVS.

5 Strong Unforgeability Under the BDH assumption

In this section, we modify our scheme to obtain a variant which is strongly un-
forgeable under a weaker assumption. This version is obtained using the generic
construction of Boneh, Shen and Waters [9] that makes strongly unforgeable any
weakly unforgeable signature of some particular kind.

As in [9], we assume that group elements have unique encoding as the scheme
would not be strongly unforgeable otherwise.

– UDVS.Σ.Setup is as in section 3 except that it additionally selects a generator
Q R← G. Hash function h is also replaced by a collision-resistant family [H ]κ of
hash functions Hκ : {0, 1}∗ → {0, 1}n indexed by keys κ ∈ K. Public parame-
ters consist of params := {n, q, G, H, e, P, P ′, Q, U ′, U1, . . . , Un, F, [H ]κ, K}.
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– UDVS.Σ.KeyGen: a signer’s private key is a random αS
R← Z∗

q ; his public key
is made of a group element PS = αSP and a key κ ∈ K.

– UDVS.Σ.Sign: given a message M ∈ {0, 1}∗,
1. Pick at random r, s R← Z∗

q and set σ2 = rP ∈ G.
2. Compute t = Hκ(M ||σ2) ∈ {0, 1}n and view it as an element of Zq.
3. Compute m = Hκ(tP + sQ) ∈ {0, 1}n.
4. Compute σ1 = αSP ′ + rF (m) ∈ G.

The signature is σ = (σ1, σ2, s) = (αSP ′ + rF (m), rP, s)
– UDVS.Register is as in section 3.
– UDVS.Σ.Verify: given an ordinary signature σ = (σ1, σ2, s) on M ,

1. Set t = Hκ(M ||σ2) ∈ {0, 1}n and view it as an element of Zq.
2. Compute m = Hκ(tP + sQ) ∈ {0, 1}n and accept if and only if

e(σ1, P ) = e(PS , P ′)e(σ2, F (m))

– UDVS.VKeyGen is as in section 3.
– UDVS.Designate: to designate a signature σ = (σ1, σ2, s) for a verifier V , a

signature holder turns it into σ̃ = (σ̃1, σ2, s) with σ̃1 = e(σ1, PV ).
– UDVS.DVerify: given a purported signature (σ̃1, σ2, s) on M , the verifier

computes t = Hκ(M ||σ2) (which is viewed as an element of Zq), m =
Hκ(tP + sQ) ∈ {0, 1}n and checks whether σ̃1 = e(PS , P ′)αV e(σ2, F (m))αV

5.1 Security

The present construction has a security proof under the Bilinear Diffie-Hellman
assumption which is deemed reasonable by now. However, its strength does not
depend on how many signing or verification requests are allowed to adversaries
whatsoever. This is a noticeable improvement over [35, 33] and the scheme of
section 3. The proof uses a technique which goes back to Ogata et al. [21] who
showed how to avoid gap assumptions in the security proof [27] of a variant of
the Chaum-van Antwerpen undeniable signature [11].

Theorem 3. If a forger F can (t, qs, qv, ε)-break the strong unforgeability, there
exits an algorithm B that (t′, ε′)-breaks the BDH assumption where

ε′ ≥ ε

12(qs + qds)(n + 1)(qv + 1)
t′ ≤ t + O((qs + qds + qv)τm + qvτp)

and τm, τp stand for the same quantity as in theorem 1.

The key idea is that, unless the scheme is not strongly existentially unforgeable,
all verification queries necessarily involve signatures that were obtained from
signing oracles or that are invalid. The simulator’s strategy is to guess which
verification query involves a forged signature and reject signatures involved in
all other queries. Such a proof strategy does not apply to our first UDVS scheme
where signatures obtained from a signing oracle may be publicly turned into
other signatures on the same messages.
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Proof. Algorithm B combines the technique of [9] with a strategy introduced
in [21] to prove the security of a variant of the Chaum-van Antwerpen [11]
undeniable signature under the CDH assumption. In the simulation, B maintains
a history LS of all signing queries and their outputs. Whenever F asks for a plain
signature, B also computes and stores in LS the unique (recall that designation
is deterministic) matching designated signature for the target verifier PV � .

As in theorem 1 of [9], the forger makes her signing queries on messages
M1, . . . , Mqs that result in a list of triples ( ˜σi,1, σi,2, si) for i = 1, . . . , n. Let
ti = Hκ(Mi||σ2,i) and wi = tiP + siQ. Let also 〈M�, (σ̃1

�, σ�
2 , s�)〉 be the fake

designated signature produced by F and t� = Hκ(M�||σ�
2), w� = t�P + s�Q.

Just like the proof of theorem 1 in [9], we distinguish three kinds of forgeries:

Type I: a forgery with w� = wi and t� = ti for some i ∈ {1, . . . , qs + qds}.
Type II: a forgery with w� = wi and t� �= ti for some i ∈ {1, . . . , qs + qds}.
Type III: a forgery for a new element w� �= wi for any i ∈ {1, . . . , qs + qds}.

A successful forger comes with a forgery of Type I, Type II or Type III and B
has to guess which kind of forger F will be at the outset of the simulation.

In all cases, F is allowed making up to qv verification queries on triples σ̃j =
( ˜σj,1, σj,2, s) which are likely to be designated signatures intended to the target
verifier V � and bearing the name of the target signer S�. The main difficulty
for B is to deal with those queries without resorting to a decision oracle. For
convenience, F ’s forgery is viewed as her qv +1th query to the verification oracle.
A verification request (Mj , σ̃j), with j ∈ {1, . . . , qv + 1}, is called special if σ̃j is
a valid signature on Mj for signer S� and designated verifier V � and if it does
not appear in B’s history LS of signing queries. Clearly, a special verification
query is a breach (which is assumed to occur at least once in a real attack) in
the strong unforgeability property. Before the simulation starts, B has to guess
the index j� ∈ {1, . . . , qv + 1} of the first special query.

Upon reception of a verification query (Mj , σ̃j), B distinguishes two cases

- if j < j�, B declares the signature as ‘invalid’ if (Mj , σ̃j) does not appear in
the history LS. Otherwise, it returns ‘valid’.

- if j = j�, B aborts if (Mj� , σ̃j�) appears in LS (which means that B failed to
guess the index of the first special query). Otherwise, B halts and bets that
(Mj� , σ̃j�) is indeed an existential forgery of either Type I, Type II or Type
III . In this desired event, the BDH solution is extracted as explained below.

If signing queries are correctly answered, a sufficient condition for B to perfectly
simulate the verification oracle is to correctly guess the index j� of the first
special verification request. This obviously happens with probability 1/(qv + 1).

We now explain how B solves a BDH instance (aP, bP, cP ) using F . It first
chooses cmode ∈ {1, 2, 3} in an attempt to foresee which kind of forger F will be.

- If cmode = 1, B bets on a Type I forgery which is easily seen to break
the collision-resistance of [H ]κ. A random key k ∈ K is chosen by B that
generates the remaining public key components following the specification
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of the protocol. All queries are dealt with using the relevant private ele-
ments. When F outputs a forgery 〈M�, σ̃� = (σ̃�

1 , σ�
2 , s�)〉, we have t� =

Hκ(M�||σ�
2) = Hκ(Mi||σi,2) = ti and w� = t�P + s�Q = tiP + siQ = wi for

some i ∈ {1, . . . , qs + qds}. Hence, we must also have s� = si. Assuming that
M�||σ�

2 = Mi||σi,2, we should have σ̃�
1 �= σ�

i,1 (as σ̃� would not be a forgery
otherwise) which is impossible as σ̃1

� is uniquely determined by t�, σ�
2 and

s� if σ̃� is valid. Therefore, we have a collision Hκ(M�||σ�
2) = Hκ(Mi||σi,2)

with M�||σ�
2 �= Mi||σi,2.

- If cmode = 2, B expects a Type II forgery and prepares public parameters
with Q = aP being part of the input of its BDH instance. The other public
parameters and public key components are generated following the protocol.
All adversarial queries are answered using the relevant private keys. As F
comes with her forgery 〈M�, σ̃� = (σ̃�

1 , σ�
2 , s�)〉, we have w� = t�P + s�Q =

tiP + siQ = wi with t� = Hκ(M�||σ�
2) �= Hκ(Mi||σi,2) = ti. This allows B

to extract a = (ti − t�)/(s� − si) and thereby solve the BDH problem by
computing e(bP, cP )a.

- If cmode = 3, B expects a forgery on a new “message” w� and proceeds in
the same way as the simulator of theorem 1.

When assessing B’s advantage, we already observed that it correctly guesses
the index of the first special verification query with probability 1/(qv + 1). As
it succeeds in foresee the right kind of forgery with probability 1/3, the lower
bound on its advantage easily follows from theorem 1. 	


Strong unforgeability also implies a provable anonymity in the strict sense of
definition 3. The proof of the following theorem is very similar to the one of
theorem 2. By virtue of strong unforgeability, all verification queries pertain
to designated signatures that are either invalid or that result from a signing
query. Hence, for each verification query, the simulator just has to compare the
candidate signature to those it returned when dealing with signing queries.

Theorem 4. If an attacker D can (t, qs, qv, ε)-break the anonymity, there is an
algorithm B that (t′, ε′)-breaks the DBDH assumption where

ε′ ≥ ε

32qs(n + 1)
t′ ≤ t + O((qs + qds)τm + qdsτp + ε−2 ln(ε−1)μ−1 ln(μ−1))

where τm, τp denote the same quantity as in theorem 1.

6 Conclusion

We proposed the first UDVS schemes which are secure under reasonable com-
plexity assumptions in the standard model where our constructions are also the
only ones to achieve anonymity in the sense of [22].

The next table compares various existing systems. Our new scheme appears to
be competitive with other constructions in the standard model. Its main draw-
back remains the size of public parameters. We leave open the problem of finding
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UDVS schemes that are secure under mild assumptions in the standard model
without using large public parameters. A trick independently suggested in [25]
and [29] allows for a step towards this purpose.

Scheme DVSBMH [22] ZFI [35] UDVS-BB [33] ours
Model ROM standard standard standard

Assumptions GBDH q-SDH + KEA q-SDH + KEA GBDH
Sign 1 expG 1 expG 1 expG 1 multi-expG

Verify 2 P. 1 P. + 2 expG 1 P. + 2 expG 2 P.†

Designate 1 P. 1 P. + 2 expG 3 expG 1 P.
DVerify 1 P. 2 P. + 2 expG 4 P. + 2 expG 1 P. + 1 expG

†

Designated size 160 1366� 684 342�

(†) In both of our schemes, we assume that e(PS , P ′) is stored as part of the signer’s public key.

(�) These sizes can be obtained using asymmetric pairings and curves of [3] with compression [2].
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In Section 3, we extend and correct the analysis of the differential properties
of the multiplicative inverse in GF(2n) given in [9]. In Section 4 we introduce the
concept of bundles, which are classes of related characteristics contributing to
the same differential. In Section 5 we study the conditions characteristics must
satisfy to have a non-zero EDP. In Section 6 and Section 7 we study the EDP
of bundles, which leads in Section 8 to results on the EDP of differentials. We
discuss the maximum EDP value of [4] in the light of our results in Section 9
and conclude in Section 10. But first we briefly introduce some new terminology
and define notations.

2 AES and Differential Cryptanalysis Basics

2.1 Differentials, Characteristics and Trails

We denote a differential over an arbitrary map by (a, b) and assume that it is
clear from the context which map we mean. We call a the input difference and
b the output difference. The probability of a differential is denoted by DP(a, b).
We define the expected differential probability (EDP) of a differential over a
keyed map as the average of the differential probability DP(a, b) over all keys.
Let B[k] denote a keyed function consisting of a sequence of R transformations
ρi[k]:

B[k](x) = (ρR[k] ◦ · · · ◦ ρ2[k] ◦ ρ1[k])(x), (1)

Then we define a differential trail as follows:

Definition 1. A differential trail through B is a sequence of differences a, b, c,
. . . , z such that there are pairs {x, x ⊕ a} and keys such that

ρ1[k](x) + ρ1[k](x + a) = b

(ρ2[k] ◦ ρ1[k])(x) + (ρ2[k] ◦ ρ1[k])(x + a) = c

. . .

B[k](x) + B[k](x + a) = z.

Hence, a differential trail Q is a characteristic with non-zero expected differential
probability: EDP(Q) > 0. For Markov ciphers, the EDP of a trail Q is the
product of the DP of its S-boxes [6]. A trail Q = (a, b, . . . , e) is in a differential
(f, g) if a = f and e = g. We denote the number of trails in a differential (a, e)
by Nt(a, e). The EDP of a differential is the sum of the the EDP values of all
the trails in that differential

EDP(a, e) =
∑

Q in (a,e)

EDP(Q) . (2)

2.2 The AES Super Box

The AES S-box operates on GF(28) and can be described as

S[x] = L−1(x−1) + q, (3)
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Here x−1 denotes the multiplicative inverse of x in GF(28), extended with 0 being
mapped to 0. L is a linear transformation over GF(2) and q a constant. Note
that L is not linear over GF(28) and can be expressed as a so-called linearized
polynomial [7]. The additive group of the finite field GF(28) forms a vector
space. In the remainder of this paper, we will sometimes tacitly switch from one
representation to another.

For reasons of clarity, we introduce the structure of the (AES) super box (our
notation). The differential probabilities over this structure are equivalent to those
over 2 AES rounds. The AES super box maps a 4-byte array a = [a0, a1, a2, a3]
to a 4-byte array e and takes a 4-byte key k. It consists of the sequence of four
transformations:

SubBytes bi = S[ai] with S the AES S-box
MixColumns c = Mcb with Mc a 4 × 4 matrix
AddRoundKey d = c ⊕ k with k the round key
SubBytes ei = S[di]

If we consider two AES rounds, swap the steps ShiftRows and SubBytes in the
first round, and remove the linear transformations before the first SubBytes
transformation and after the second SubBytes transformation, then we obtain a
map that can also be described as 4 parallel instances of the AES super box.

We can partition the set of 4-byte vectors by considering truncated differences
[5]. All vectors in a given equivalence class have zeroes in the same byte positions
and non-zero values in the other byte positions. An equivalence class is charac-
terized by an activity pattern. The activity pattern has a single bit for each byte
position indicating whether its value must be 0 (passive) or not (active). The
activity pattern of a differential (a, e) is the couple of the activity patterns of a
and e. We say that two differences are compatible if they have the same activity
pattern. Due to the diffusion properties of Mc, activity patterns of differentials
must have a minimum of 5 active positions. In total there are 93 such activity
patterns.

A characteristic through the AES super box consists of a sequence of 5 differ-
ences: a, b, c, d and e. Since the AES S-box is invertible, EDP(a, b) over SubBytes
can be non-zero only if a and b are compatible. Other necessary conditions to
have EDP > 0 are c = d, d = Mcb, and d has to be compatible with e. In
the remaining of this paper we only consider characteristics that satisfy these
conditions (and we will omit c from the notation). Such a characteristic is fully
determined by the differential (a, e) it is in and the intermediate difference b. We
call bi and di corresponding with active S-boxes the inner differences of a char-
acteristic. We make the distinction between trails and characteristics because
the number of trails in a differential is closely related to its EDP.

3 The Multiplicative Inverse in GF(2n)

In this section we discuss the differential properties of the single component
in AES that is non-linear over GF(2): the multiplicative inverse in GF(2n),
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extended with 0 being mapped to 0. In fact this is the operation of raising to
the power 2n − 2. For readability we use the notation x−1 rather than x2n−2.
Hence we adopt the convention that 0−1 = 0. Differential properties of this map
were previously already studied in [9]. In the following, a and b denote arbitrary
non-zero differences. We need the trace map defined over a finite field GF(pn)
with respect to GF(p), denoted by Tr(x):

Tr(x) =
n−1∑

i=0

xpi

(4)

Note that the trace map is linear over GF(p) and that Tr(xpi

) = Tr(x) for
any value of i. The differential (a, b) over the multiplicative inverse map has
DP(a, b) > 0 if and only if the equation

(x + a)−1 + x−1 = b (5)

has solutions. If x = a or x = 0 is a solution of (5), we have b = a−1 and both
are solutions. Otherwise, x = a or x = 0 is not a solution, we can transform (5)
by multiplying with b−1x(x + a) yielding:

x2 + ax + ab−1 = 0,

if we substitute x by a−1y, this becomes:

y2 + y + (ab)−1 = 0, (6)

To investigate the condition for this equation to have solutions we have the
following lemma:

Lemma 1 ([7, Theorem 2.25]). Tr(t) = 0 iff t = zp−z for some z ∈ GF(pn).

If we take p = 2, from this follows easily that:

Lemma 2. For b �= a−1, equation (5) has 2 solutions if Tr((ab)−1) = 0, and
zero solutions otherwise.

Consider now the case b = a−1. Let ν and ν2 denote the elements of GF(2n)
of order 3. Then ν2 + ν = 1 and GF(22) = {0, 1, ν, ν2}. We present now the
following new result:

Lemma 3. For even n, the solutions of

(x + a)−1 + x−1 = a−1 (7)

form the set Ta = {0, a, νa, ν2a}.

Proof. x = a and x = 0 are solutions of (7). Assume there are other solutions.
We can write such a solution as a product of a with an element z different from
0 or 1. We have

(za + a)−1 + (za)−1 = a−1 . (8)
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Or, equivalently,
(z + 1)−1 + z−1 = 1 . (9)

Multiplication with z(z + 1) yields:

z2 + z + 1 = 0 . (10)

According to Lemma 1, Equation (10) has two solutions iff Tr(1) = 0 and none
otherwise. Tr(1) = 0 iff n is even. Since a solution of (10) satisfies z3 = 1, its
solutions are the two elements of GF(2n) of order three. ��
Note that the description of the solutions given in [9]: Ta = {0, a, a1+d, a1+2d}
with d = (2n − 1)/3 is only correct if ad �= 1, i.e. if the order of a does not divide
(2n − 1)/3. From these lemmas follow several corollaries.

Corollary 1 ([9]). For odd n,

(x + a)−1 + x−1 = a−1

has two solutions: 0 and a.

Corollary 2. For even n, the possible output differences b for a given input
difference a are those with Tr((ab)−1) = 0 except b = 0. For odd n, the possible
output differences b for a given input difference a are those with Tr((ab)−1) = 0
except b = 0 and extended with b = a−1.

Together with the fact that (5) has 4 solutions only if b = a−1, this leads to the
following corollary:

Corollary 3. For all non-zero c ∈ GF(2n) and for all positive integers t:

DP(a, b) = DP(b, a) = DP(ca, bc−1) = DP(a2t

, b2t

),

4 Bundles

For the EDP of a differential over the AES super box, we have:

EDP(a, e) =
∑

EDP(a, b,Mce) =
∑

b

EDPS(a, b)EDPS(Mcb, e) . (11)

with EDPS(x, y) the EDP of a differential (x, y) over SubBytes. In order to
compute the EDP of a differential, we first determine the number of trails in the
differential. The number of trails is determined by means of bundles, which we
define below. We start with an example.

Example 1. Consider the characteristics in a differential (a, e) with a =
[a0, 0, 0, 0]. Then clearly we must have b = [b0, 0, 0, 0] and thanks to MixColumns
we have d0 = 2b0, d1 = b0, d2 = b0 and d3 = 3b0, or equivalently d = b0[2, 1, 1, 3],
where b0[2, 1, 1, 3] denotes the scalar multiplication of the vector [2, 1, 1, 3] with
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the (non-zero) scalar b0. There are 255 characteristics in the differential, one for
each nonzero value of b0.

This can be generalized to any AES super box differential with 5 active S-
boxes. If Q = (a, b, d, e) and Q′ = (a, b′, d′, e) are two trails of the same differen-
tial with 5 active S-boxes, then there exists a γ such that bi = γb′i, and di = γd′i,
and b, b′.

We define a bundle as follows.

Definition 2. The bundle B(ub) associated with the vector ub, is the set of 255
vectors defined as follows:

B(ub) = {γub|γ ∈ GF(28) and γ �= 0} .

Scalar multiplication doesn’t change the activity pattern of a vector. Further-
more, the linearity of MixColumns over GF(28) implies that Mc(γb) = γ(Mcb).
Hence also the activity pattern of ud = Mcu

b is the same for all vectors ub of
a bundle. If (a, ub, ud, e) is a characteristic through the AES super box, then
(a, b, Mcb, e) is a characteristic through the AES super box ∀b ∈ B(ub). Hence,
the set of characteristics in (a, e) can be partitioned into a number of classes.
Each class contains the 255 characteristics (a, b, Mcb, e) defined by keeping a, e
constant and varying b over all the values of a bundle B(ub). In the following, we
use ‘bundle’ also to refer to such a class of characteristics. A characteristic in the
bundle B(ub) of the differential (a, e) is uniquely identified by the value of γ.

We can count the number of trails in (a, e) by counting the number of trails
in each bundle and adding the results. In the following, we will explain how
the number of trails in a bundle can be counted. As explained in Example 1,
a differential with 5 active S-boxes only has a single bundle of characteristics.
Table 1 lists the activity patterns with 5 active S-boxes and the corresponding

Table 1. Activity patterns with 5 active S-boxes and the corresponding values of
(ub, ud) (in hexadecimal notation)

Activity Pattern ub ud

(1000;1111) [1,0,0,0] [2,1,1,3]
(1100;1110) [1,3,0,0] [7,7,2,0]
(1100;1101) [1,1,0,0] [1,3,0,2]
(1100;1011) [2,1,0,0] [7,0,3,7]
(1100;0111) [3,2,0,0] [0,7,1,7]
(1010;1110) [1,0,3,0] [1,4,7,0]
(1010;0111) [1,0,2,0] [0,7,5,1]
(1110;1010) [1,4,7,0] [9,0,B,0]
(0111;1010) [0,7,5,1] [D,0,E,0]
(1110;1100) [3,7,2,0] [D,B,0,0]
(1101;1100) [1,7,0,2] [9,D,0,0]
(1011;1100) [1,0,1,1] [2,3,0,0]
(0111;1100) [0,7,1,3] [B,E,0,0]
(1111;1000) [E,9,D,B] [1,0,0,0]
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values of (ub, ud). In total there are 56 patterns. They can be derived by rotation
of the 14 patterns listed.

For the bundles of a differential with 6 active positions, the ub values can be
found by taking (almost) all possible combinations of two ub values of bundles
with 5 active positions. For example, for activity pattern (1110; 1110) we combine
the bundles for (1010; 1110) and (0110; 1110) as given by Table 1. This gives
ub = [1, 0, 3, 0] + z[0, 1, 1, 0] = [1, z, 3 + z, 0] and ud = [1, 4, 7, 0] + z[2, 1, 3, 0] =
[1 + 2z, 4 + z, 7 + 3z, 0].

This results in 255 different bundles, one for each nonzero value of z. However,
for ub, ud to have activity pattern (1110; 1110) the value of z must be different
from 3, 1/2, 4 and 7/3, where x/y denotes x.y−1 in GF(28). Hence, a differential
with 6 active S-boxes has 251 bundles. We derive the number of bundles for
differentials with 7 or 8 active S-boxes in Appendix A.

5 Differentials over SubBytes with EDP > 0

A characteristic (a, b, Mcb, e) is a trail if both differentials (a, b) and (Mcb, e) are
differentials with EDP > 0. We will now study the conditions this imposes on
the trails within a bundle.

5.1 Sharp Conditions

Consider differentials over four parallel applications of the multiplicative inverse
in GF(28). We have from Corollary 2:

EDP(x, y) > 0 ⇔
{

Tr((xiyi)−1) = 0
xi �= 0 iff yi �= 0 , 0 ≤ i < 4, (12)

Since the trace map is linear over GF(2), the solution space of Tr(y−1
0 v) = 0

is a vector space of dimension 7 over GF(2). The intersection of Tr(y−1
0 v) = 0

and Tr(y−1
1 v) = 0 is a vector space of dimension 6 or 7. If the dimension is 7,

this implies y0 = y1. In general, the dimension of the intersection of a system of
equations Tr(y−1

j v) = 0 is equal to 8 minus the dimension of the vector space
generated by the elements y−1

j . For example, the solution space of Tr(y−1
0 v) =

Tr(y−1
1 v) = Tr(y−1

2 v) = 0 with y0 �= y1 �= y2 �= y0 has dimension 6 if y2 = y0 +y1
and dimension 5 otherwise.

Consider now a bundle B(u) with u compatible with y. The number of vectors
x in B with EDP(x, y) > 0 equals the number of non-zero values γ for which

Tr((γuiyi)−1) = 0 , 0 ≤ i < 4 . (13)

This can also be written as:

Tr((uiyi)−1γ−1) = 0 , 0 ≤ i < 4 . (14)

The γ−1 values satisfying these four conditions form the vector space orthogonal
to the vector space generated by the set

Vi = {(u0y0)−1, (u1y1)−1, (u2y2)−1, (u3y3)−1} . (15)



Understanding Two-Round Differentials in AES 85

The number of non-zero solutions equals 28−α − 1, where α is the dimension
of Vi. Hence, in one bundle, there can be 127, 63, 31 or 15 vectors x with
EDP(x, y) > 0. Exactly the same analysis can be performed when x is fixed and
we want to determine the number of y values in a bundle with EDP(x, y) > 0.
We call (14) the sharp conditions on trails.

5.2 Blurred Conditions

If we consider differentials over SubBytes then we have to take into account the
effect of the linear transformation L in the AES S-box. In order to determine
the number of input differences x compatible to a fixed output difference y, it
suffices to replace Vi by

Va = {(u0L(y0))−1, (u1L(y1))−1, (u2L(y2))−1, (u3L(y3))−1} . (16)

However, when determining the number of output differences y compatible with
a fixed input difference x, (13) becomes:

Tr((xiL(γui))−1) = 0 , 0 ≤ i < 4 , (17)

which can’t be easily reworked and are harder to analyse. Therefore we call these
conditions the blurred conditions.

6 Number of Trails in a Bundle

The number of trails in a bundle B(ub) for a given differential (a, e) is now
the number of γ values that satisfy the sharp conditions due to (γud, e) over
SubBytes and the blurred conditions due to (a, γub) over SubBytes. In this
section we first derive formulas to estimate the number of trails in B(ub) for the
special case of a differential with one active S-box in the first round followed by
formulas and a discussion for the general case.

6.1 Bundles with One Active S-Box in the First Round

Consider a differential (a, e) with activity pattern (1000; 1111). There is a single
bundle B(ub) with ub = [1, 0, 0, 0] and ud = [2, 1, 1, 3]. The sharp conditions
become:

Tr((2L(e0))−1γ−1) = 0
Tr((L(e1))−1γ−1) = 0
Tr((L(e2))−1γ−1) = 0

Tr((3L(e3))−1γ−1) = 0 .

If e = [L−1(z/2), L−1(z), L−1(z), L−1(z/3)] for any nonzero value z, then Va =
{z−1} resulting in α = 1 and hence there are 127 trails satisfying the sharp
conditions.



86 J. Daemen and V. Rijmen

The effect of the blurred condition can be modeled as a sampling process.
The space sampled are the 255 vectors of B(u). 127 out of the 255 vectors may
satisfy the blurred condition. These are called the good ones, the 128 others the
bad ones. The joint sharp conditions take a sample with size 28−α − 1. This
gives rise to a hypergeometric distribution H(Nt; n, m, N) [8] with the following
parameters:

– Number of ways for a good selection n = 127.
– Number of ways for a bad selection m = 255 − 127 = 128.
– Sample size N : 28−α − 1.

Denoting the event that one vector is compatible (the outcome of a single sam-
pling) by xi, we obtain E [xi] = n/(m + n). Since Nt =

∑
i xi,

E [Nt] =
n

m + n
N =

127
255

(28−α − 1).

This gives formula (18). For the variance, we obtain:

σ2(Nt) =
mnN(m + n − N)

(m + n)2(m + n − 1)
=

128 × 127(28−α − 1)(256 − 28−α)
2552254

,

which corresponds to (19). The exact distributions of the number of trails per
differential for all four values of α are given in Appendix C.

6.2 Any Bundle

Every differential (a, e) imposes on γ a number of sharp conditions, determined
by e and ud, and a number of blurred conditions, determined by a and ub.
Following (16), the sharp conditions state that γ−1 has to be orthogonal to

Va = {v0, v1, v2, v3},

with v−1
i = ud

iL(ei). The parameter α is defined as the dimension of Va. Hence
γ−1 is in a vector space of dimension 8 − α ranging from 4 to 7.

The number of blurred conditions is denoted by β, and given by the number
of different non-zero elements in the following set of couples:

{(a0, u
b
0), (a1, u

b
1), (a2, u

b
2), (a3, u

b
3)}.

For the vast majority of differentials, β equals the number of active S-boxes in
a. β is smaller only when two ai values are the same and the corresponding ui

in the bundle are also equal. Hence a reduction of β occurs much less often than
a reduction of α. Both α and β range from 1 to 4 limited by α + β ≤ 5.

The number of trails in the bundle B(ub) can be described as a stochastic
variable with the expected value and variance given by:

E [Nt] =
(

127
255

)β

(28−α − 1) , (18)
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σ2(Nt) = E [Nt] ×
[
1 −

(
127
255

)β

+ (28−α − 2)

((
63
127

)β

−
(

127
255

)β
)]

. (19)

We give a derivation for (18) and (19) in Appendix B. The numerical values
computed with these formulae are given in Table 2. We have conducted a large
number of experiments that confirm the mean and variance predicted by (18)
and (19) for any combination of α and β.

Table 2. Mean (left) and variance (right) of the number of trails for a differential given
α and β

α, β 1 2 3 4
1 63.25 31.50 15.69 7.81
2 31.38 15.63 7.78 3.88
3 15.44 7.69 3.83 1.91
4 7.47 3.72 1.85 0.92

α, β 1 2 3 4
1 16.00 15.89 10.86 6.38
2 11.91 9.85 6.11 3.40
3 6.83 5.33 3.19 1.73
4 3.54 2.70 1.59 0.85

7 EDP of a Bundle

The distributions for the number of trails in a bundle can be converted to distri-
butions of the EDP of a bundle by taking into account the EDP of the trails. The
EDP of a trail is the product of the DP values of its active S-box differentials. If
we apply Section 3 to the AES S-box, we see that for an S-box differential with
given input (output) difference, there are 126 output (input) differences with DP
= 2−7 and a single output (input) difference with DP = 2−6 = 2 × 2−7. We call
the latter double differentials. It follows that the EDP of a trail is 2i2−7ν with
ν the number of active S-boxes and i the number of double S-box differentials.
One could say that the presence of i double S-box differentials multiplies the
EDP of the trail by a factor 2i.

Let (a, b, d, e) be a characteristic in a bundle B(ub) of a differential (a, b),
determined by γ. A characteristic has a double S-box differential in the i-th
S-box of the first round if and only if

bi = L−1(ai
−1) ⇔ γ = (ub

i)
−1

L−1(ai
−1). (20)

The condition for a double S-box differential in the second round is:

dj = L(ej)
−1 ⇔ γ = (ud

jL(ej))
−1

. (21)

Hence each double S-box differential occurs in exactly one characteristic of the
bundle. Two observations can be made here.

Multiple solutions: If a solution of the equations in (20) and (21) is a mul-
tiple solution, then the corresponding characteristic (potentially) has a higher
EDP. Consider for example a differential with 5 active S-boxes. There are seven
different cases, of which the two extremes are:
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‘Poker’: the double differentials are all in the same characteristic,
‘No Pair’: the double differentials occur in 5 different characteristics,

The other five cases are ‘One Pair’, ‘Two Pairs’, ‘Three of a Kind’, ‘Full House’
and ‘Four of a Kind’. The occurrence of these cases is related to the values of α
and β. The number of different solutions for (21) equals the number of different
elements in Va. If α is 1 or 4, this number is equal to α. If α is 2 or 3 and the
number of active S-boxes in e is higher than α, the number of solutions can also
be α + 1. The number of solutions for (21) usually equals β, but it can also be
smaller. For a given input difference a there can be at most one output difference
e for which all double S-box differentials are in the same trail.

Occurrence in trails: The solutions of (20) and (21) still have to satisfy the
remaining sharp conditions and blurred conditions in order to have an EDP > 0.
Clearly, the expected number of characteristics satisfying the remaining condi-
tions decreases when there are more conditions, i.e. when α and β increase.
A ‘Poker’ characteristic, i.e. one in which the S-box differentials of all active
S-boxes are double differentials, is always a trail.

7.1 How L Can Make a Difference

If we remove L from the S-box, the set of blurred conditions is replaced by a
second set of sharp conditions. The number of trails in a bundle is then given
by 28−α − 1, with 1 ≤ α < 8. The maximum EDP occurs for differentials with
5 active S-boxes and α = 1. There are 56 × 255 such differentials in the super
box. For these, the double S-box differentials are in the same trail and hence the
EDP is equal to 25 × 2−35 + 126 × 2−35 = 19.75 × 2−32, where for AES this is
13.25 × 2−32 [4].

8 Nt and EDP of a Differential

Differentials with 5 active S-boxes contain only a single bundle, hence they are
covered by the previous sections. For differentials with more active S-boxes,
there are more bundles. Given a differential (a, e), we can compute for each of
its bundles the value of (α, β). With α and β we can compute the mean number of
trails in the bundle and the variance. The mean number of trails in a differential
is the sum of the mean number of trails in these bundles. For the variance of the
number of trails, the sum of the variances in the bundles gives a good idea.

The value of the differences a and e determine the distribution of α and β over
the different bundles in the differential (a, e). As the number of active S-boxes
grows, the analysis becomes more and more involved. Therefore we start with
an example.

8.1 Differentials with Activity Pattern (1110; 1110)

There are in total 251 bundles with activity pattern (1110; 1110). The distribu-
tion of α over the 251 bundles in (a, e) is completely determined by e, or more
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Table 3. Distribution of α for differentials with activity pattern (1110; 1110)

α distribution # couples mean standard deviation
α = 3 α = 2 α = 1 (L(e1)/L(e0), L(e2)/L(e0)) theory exp.
250 1 0 21 965.2 28.42 25.65
249 2 0 1501 969.1 28.47 25.14
248 3 0 31170 973.1 28.53 25.15
247 4 0 2175 977.0 28.58 25.16
246 5 0 29907 981.0 28.63 25.23
250 0 1 3 973.1 28.42 23.28
249 1 1 248 977.0 28.47 25.01

specifically, by the couple (L(e1)/L(e0), L(e2)/L(e0)). Table 3 lists the seven
distributions that are possible and gives for each of them the number of output
differences e for which they occur.

The distribution of β depends on the values of a0, a1 and a2. If they are
three different values, then β is always equal to 3. For this case, Table 3 gives
the theoretical mean and standard deviation of the number of trails (assuming
independence between the bundles). If two of the values a0, a1 and a2 are equal,
then β will be 2 for at most one bundle and 3 for all other bundles. If they are
all three equal, then either β will be 2 for at most three bundles, or β will be 1
for at most one bundle and 3 for all the other bundles.

In principle, the distributions for α and β combine to a two-dimensional dis-
tribution. In the worst case, the small values of β occur in bundles with a small
value of α. All in all, there are only few bundles where β is smaller than 3, hence
we can approximate by working with β = 3 for all bundles.

We have experimentally verified this theory by computing the number of trails
for a large set of differentials with 6, 7 and 8 active S-boxes. The measured mean
values coincide with the theoretically predicted values. The measured standard
deviations, also listed in Table 3 are systematically smaller than the theoretical
ones, implying that the number of trails in the bundles of a differential are not
independent.

8.2 A Bound on the Multiplicity

In Section 4 we have shown that the bundles with activity pattern (1110; 1110)
can be enumerated by ub = [1, z, 3 + z, 0] and ud = [1 + 2z, 4 + z, 7 + 3z, 0] with
z different from 0, 3, 1/2, 4 and 7/3.

Lemma 4. If two double S-box differentials occur in the same characteristic
of one bundle with activity pattern (1110; 1110), then they occur in different
characteristics for the 250 other bundles with the same activity pattern.

Proof. Assume we have a bundle where the double differential in the first and
the second S-box of the second round occur in the same characteristic. Then we
have from (21):

((1 + 2z)L(e1))−1 = ((4 + 7z)L(e2))−1 .
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This equation is linear in z and has at most one solution. Hence the double
differentials can’t be in the same characteristic for any other bundle. The same
holds for any other pair of active S-box positions. ��

The expected contribution of the double S-box differentials to the EDP of a
differential is maximum when there is a bundle in which they are all 6 in the same
trail. This trail contributes 64 × 2−42 to the EDP of the differential. Lemma 4
implies that in the remaining 250 bundles, there can be no trails with more
than one double S-box differential. Hence each of these bundles will contribute
at most (Nt + min(6, Nt))2−42 to the EDP of the differential. On the average
the presence of the double S-box differentials makes the contribution of these
trails only rise from Nt2−42 for the hypothetical case where no double S-box
differentials exist to (132/127)Nt2−42.

We conclude that for this type of differential, the distribution of the EDP
values is much more centered around its mean value than is the case for differen-
tials with 5 active S-boxes. This is mainly due to the fact that the distribution
of the EDP of the differential is the convolution of the distributions of many
bundles. Moreover, Lemma 4 implies that the different bundles compensate for
one another.

The same phenomena can be observed for the other types of differentials with
6 active S-boxes. For differentials with 7 or 8 active S-boxes the average numbers
of trails are even much higher and the EDP values much smaller. Furthermore,
the individual trails have all very small EDP values. This all makes that the
EDP values of differentials with 6 or more active S-boxes have a very narrow
distribution.

9 Differentials with the Maximum EDP Value

The maximum EDP value obtained in [4] occurs for exactly 12 differentials over
the AES super box. Due to the rotational symmetry of the AES super box,
they come in 3 sets, where the differentials in a set are just rotated versions of
each other. It is no surprise that they are differentials with 5 active S-boxes,
where the deviations from the average value 2−32 are largest. Moreover, they
have α = 1 and β = 1 for which the expected number of trails is the highest over
all differentials with 5 active S-boxes, as is clear from Figure 1 in Appendix C.
The differentials are the following:

(
[x, 0, 0, 0], [L−1(y/2), L−1(y), L−1(y), L−1(y/3)]

)
,(

[x, x, 0, 0], [L−1(y), L−1(y/3), 0, L−1(y/2)]
)
,(

[x, x, x, 0], [0, 0, L−1(y/2), L−1(y/3)]
)
,

with x = 75x and y = 41x. For these differentials, the number of trails is 75: 74
trails with EDP 2−35 and one with EDP 2−30, resulting in EDP value 2−30 +
74 × 2−35 = 13.25 × 2−32. Clearly all five double S-box differentials are in the
same trail. Note that there are differentials with 5 active S-boxes that have 82
trails (see Appendix C) but these have a lower EDP value due to the fact that
the double S-box differentials are not in the same trail.
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To prove the correctness of the maximum EDP value, [4] uses so-called 5-lists,
a concept similar to, but different from, the bundles defined in this paper. Both
bundles and 5-lists group sets of 255 b-differences. Bundles with 5 active S-boxes
correspond with the 5-lists of type 1. In bundles with more than 5 active S-boxes
the ratios between the inner differences are fixed, while in 5-lists of type 2, a
number of inner differences are fixed. Their goal is also different: the concept of
5-lists helps in efficiently finding bounds, while bundles help to gain insight in
the distribution of trails in differentials.

10 Conclusions and Future Work

The AES super box can be compared with an idealized keyed 32-bit map which is
constructed as a family of 232 randomly selected permutations (one permutation
for each value of the key). In this idealized model, the distribution of the EDP
over all differentials (a, b) with both a and b different from zero has a normal
distribution with expected value 2−32 and standard deviation 2−47.5.

The AES super box differentials deviate from the idealized model: differentials
with 4 or less active S-boxes have EDP = 0, and differentials with 5 active S-
boxes can have EDP values as large as 13.25×2−32 [4]. Our results on differentials
with 6 active S-boxes indicate that for differentials with 6 or more active S-boxes
the distribution of the EDP is very narrowly centered around 2−32. Further
analysis can lead to strict bounds.

It is a well known fact that the linear transformation L in the AES S-box
doesn’t influence the EDP of S-box differentials and the bounds on the EDP of
trails as proven in [2]. Our results explain how the presence of L influences the
EDP of two-round differentials.

Bounds on the EDP of two-round differentials can be used to derive bounds on
the EDP of four-round differentials [3]. The results of our paper allow to describe
the full distribution of the EDP of two-round differentials. We expect that this
information can be used to derive sharper bounds on the EDP of four-round
differentials.
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A Number of Bundles per Differential

The total number of nonzero vectors of 4 bytes is 232 − 1. Each bundle groups
255 such vectors, so the total number of bundles is

232 − 1
28 − 1

= 224 + 216 + 28 + 1 .

The number of bundles with a given activity pattern is determined by the number
of active S-boxes in the activity pattern. If we denote the number of bundles for
an activity pattern with x active S-boxes by BN(x), we have:

BN(5) = 1
BN(6) = 255 − 4BN(5) = 251
BN(7) = 2552 − 4BN(6) − 6BN(5) = 64015
BN(8) = 2553 − 4BN(7) − 6BN(6) − 4BN(5) = 16323805

The number of trails with i active S-boxes is
(

8
i

)
255BN(i)127i .

The total number of trails is 2.8 × 1026.

B Derivation of (18) and (19)

Assuming that the blurred conditions are independent, we can generalize the
sampling model introduced in Section 6.1. The space sampled is now the set of
β-component vectors where each of the components can take any nonzero value
in GF(28). There are 255β such vectors. A good selection is one in which the
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first component satisfies the first condition, the second component satisfies the
second condition and so on. There are 127β such vectors. Denoting by xit the
event that characteristic i satisfies condition t, we obtain:

E [Nt] =
N∑

i=1

E [xi] =
N∑

i=1

E [xi1] E [xi2] · · · E [xiβ ] = N

(
n

n + m

)β

The variance satisfies

σ2(Nt) =
N∑

i=1

σ2(xi) +
N∑

i=1

N∑

j=1
j�=i

Cov(xi, xj).

Since xi takes only the values 0, 1, it is a Bernoulli variable, and

σ2(xi) = E [xi] (1 − E [xi]) (22)
Cov(xi, xj) = E [xixj ] − E [xi] E [xj ] (23)

E [xi] =
(

n

n + m

)β

. (24)

Since two trails of the same bundle differ in the value of each of their components,
we have:

E [xixj ] =
(

n(n − 1)
(n + m)(n + m − 1)

)β

. (25)

Putting everything together results in (19).

C Distributions of the Number of Trails per Differential

We have experimentally verified the distributions of the number of trails per
differential for all 16 combinations of α and β. For the combination of (α, β)
equal to (1, 1), (2, 1), (3, 1), (4, 1) and (1, 2) we were able to do this exhaustively,
covering all possible cases. As a side result we found for these values of (α, β) the
minimum and maximum values for the number of trails per differential, listed in
Table 4.

Table 4. Minimum and maximum number of trails in differentials with 5 active S-boxes
given (α, β)

(α, β) minimum maximum
(1, 1) 48 82
(2, 1) 14 48
(3, 1) 3 29
(4, 1) 0 15
(1, 2) 10 56
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For the other values of (α, β), the number of combinations becomes too large
to compute exhaustively. Still, our sampling experiments confirm the shape pre-
dicted by formulas (18) and (19). As α and β grow, the mean and variance of the
distributions shrink. Clearly, the majority of differentials with 5 active S-boxes
and α = 1 and β = 1 have more trails than any differential with 5 active S-boxes
where α+β has a higher value. Figure 1 depicts the four distributions for β = 1
on a logarithmic scale. The distributions appear as slightly skewed parabolas,
which is the typical shape of hypergeometric distributions.
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Fig. 1. Distributions of the number of trails per differential for β = 1 and for α ranging
from 4 (leftmost) to 1 (rightmost)
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applications that require a small amount of data to be encrypted with frequently
changed user keys, such as IPsec. To achieve high network speeds in such ap-
plications, these ciphers usually use agile key schedules as well as simple data
transformation structures. As a result, although the proposers have considered
their security against conventional cryptanalysis such as differential cryptanaly-
sis [1] and linear cryptanalysis [17], most of them have been shown vulnerable to
related-key [2] based cryptanalytic attacks [13,14,15,16]; however, Cobra-F64a
and Cobra-F64b [8] are two exceptions. Although their names are similar, they
are quite different ciphers.

The existing cryptanalytic results on Cobra-F64a and Cobra-F64b are due
to Lee et al. [15], who mounted a related-key differential attack on the first 11
rounds of Cobra-F64a after exploiting a 11-round related-key differential with
probability 2−48, and mounted a related-key differential attack on the first 18
rounds of Cobra-F64b after exploiting a 18-round related-key differential with
probability 2−56.

In this paper, we find that there exist some shorter related-key differentials
with much higher probabilities in Cobra-F64a. We construct a 15-round related-
key rectangle distinguisher with probability 2−123.62 in Cobra-F64a, which can
be used to mount a related-key rectangle attack on the full-round Cobra-F64a.
For Cobra-F64b, we exploit a 19.5-round related-key differential with probability
2−57, which can be used to mount a related-key differential attack on the full-
round Cobra-F64b.

Like the amplified boomerang attack [11] and the rectangle attack [3], the
related-key rectangle attack [4,9,12] is a variant of the boomerang attack [21].
Thus, it shares the same basic idea of using two short differentials with larger
probabilities instead of a long differential with a smaller probability, but requires
an additional assumption that the attacker knows the specific differences between
two pairs of unknown keys. This additional assumption makes it difficult or even
infeasible to conduct in many cryptographic applications; however, as demon-
strated in [10], certain current real-world applications may allow for practical
related-key attacks, including key-exchange protocols and hash functions.

The rest of this paper is organised as follows. In the next section, we briefly
describe the DDP-Boxes, the Cobra-F64a and Cobra-F64b ciphers and related-
key rectangle attacks. In Section 3, we introduce several properties of Cobra-F64a
and Cobra-F64b. In Sections 4 and 5, we present our related-key attacks on the
full-round Cobra-F64a and Cobra-F64b, respectively. Section 6 concludes this
paper.

2 Preliminaries

2.1 DDP-Boxes

Definition 1. The two-variable function F : {0, 1}n × {0, 1}m → {0, 1}n is
called a DDP-Box if, for each fixed m-bit control vector V , F (·, V ) is a bijective
mapping.
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The n × m DDP-Box F , denoted by Pn/m below, uses the 2 × 1 DDP-Box P2/1
as its elementary components. See Figure 2 in Appendix A. If x = (x1, x2), then
P2/1(x, v) = (x1+v , x2−v). That is, it swaps the two input bits if v = 1; otherwise,
doesn’t.

Figure 3 in Appendix A depicts the DDP-Boxes P32/96 and P−1
32/96 used in

Cobra-F64a and Cobra-F64b. Because of their symmetric structure, the mutual
inverses of P32/96 and P−1

32/96 differ only in the distribution of the controlling bits
over the DDP-boxes P2/1; specifically, P32/96(·, V ) and P−1

32/96(·, V ′) are mutually
inverse when V = (V1, V2, · · · , V6) and V ′ = (V6, V5, · · · , V1).

2.2 The Cobra-F64a and Cobra-F64b Ciphers

The N -round encryption procedure of Cobra-F64a (N=16) or Cobra-F64b
(N=20) can be described as follows.

1. The 64-bit plaintext P is divided into two 32-bit words (A0, B0).
2. For i = 1 to N :

if i ≤ N − 1,
(Ai, Bi) := Crypt(e)(Ai−1, Bi−1, Q

(1,e)
i , Q

(2,e)
i ),

(Ai, Bi) := (Bi, Ai).
else

(Ai, Bi) := Crypt(e)(Ai−1, Bi−1, Q
(1,e)
i , Q

(2,e)
i ).

3. Perform final transformation:
• For Cobra-F64a: the ciphertext (Cl, Cr) := (AN � Q

(1,e)
N+1, BN � Q

(2,e)
N+1).

• For Cobra-F64b: the ciphertext (Cl, Cr) := (AN ⊕ Q
(1,e)
N+1, BN ⊕ Q

(2,e)
N+1).

4. The 64-bit ciphertext C is (Cl, Cr),

where Crypt(e) is the round function, (Q(1,e)
i , Q

(2,e)
i ) is the 64-bit i-th round

subkey, (Q(1,e)
N+1, Q

(2,e)
N+1) is the 64-bit subkey used in the final transformation,

�/� denote addition/subtraction modulo 232, respectively, ⊕ denotes the bit-
wise logical exclusive OR (XOR) operation, and e ∈ {0, 1}, with 0/1 denoting
encryption/decryption, respectively. Figure 4 in Appendix A depicts Crypt(e),
where >>> i denotes right cyclic rotation by i bit positions. In addition, we
assume that in an n-bit word P = (p1, p2, · · · , pn), p1 is the most significant bit
and pn is the least significant bit.

As shown in Figure 5(b), Crypt(e) is composed of an extension transforma-
tion E, a simple transposition P

(e)
96/1 and the DDP-Box P32/96. Given an in-

put L = (l1, · · · , l32), the extension E outputs V = (V1, V2, V3, V4, V5, V6) =
(Ll, L

>>>6
l , L>>>12

l , Lr, L
>>>6
r , L>>>12

r ), where Ll = (l1, · · · , l16) and Lr =
(l17, · · · , l32). As shown in Figure 5(a), the transposition P

(e)
96/1 consists of a se-

ries of DDPs P
(e)
2/1 controlled with the same bit e.

Both Cobra-F64a and Cobra-F64b use a 128-bit user key K that is divided
into four 32-bit words K = (K1, K2, K3, K4). The round subkeys (Q(1,e)

i , Q
(2,e)
i ),

as well as the final subkey (Q(1,e)
N+1, Q

(2,e)
N+1), are generated as shown in Table 1.
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Table 1. The key schedules of Cobra-F64a and Cobra-F64b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Q
(1,0)
i K1 K2 K3 K4 K2 K1 K4 K3 K1 K2 K4 K3 K1 K4 K2 K3 K2 K4 K3 K1 K2

Q
(2,0)
i K4 K3 K1 K2 K3 K2 K1 K4 K2 K3 K1 K2 K3 K1 K3 K4 K3 K1 K4 K2 K3

2.3 Related-Key Rectangle Attacks

Related-key rectangle attacks treat a block cipher E : {0, 1}n×{0, 1}k → {0, 1}n

as a cascade of two sub-ciphers E = E1 ◦ E0. They assume that there exist a
related-key differential α → β with probability pβ for E0 (i.e. PrK,X [E0

K(X) ⊕
E0

K⊕ΔK0
(X ′) = β|X ⊕ X ′ = α] = pβ), and a related-key differential γ → δ with

probability qγ for E1 (i.e. PrK,X [E1
K(X)⊕E1

K⊕ΔK1
(X ′) = δ|X ⊕X ′ = γ] = qγ),

where ΔK0 and ΔK1 are two known key differences.
Two pairs of plaintexts (P1, P2 = P1 ⊕ α) and (P3, P4 = P3 ⊕ α) are called a

right quartet if the following three conditions hold:

C1: E0
KA

(P1) ⊕ E0
KB

(P2) = E0
KC

(P3) ⊕ E0
KD

(P4) = β,
C2: E0

KA
(P1) ⊕ E0

KC
(P3) = E0

KB
(P2) ⊕ E0

KD
(P4) = γ,

C3: E1
KA

(E0
KA

(P1))⊕E1
KC

(E0
KC

(P3)) = E1
KB

(E0
KB

(P2))⊕E1
KD

(E0
KD

(P4)) = δ,

where the four unknown keys KA, KB, KC and KD satisfy KB = KA ⊕ ΔK0,
KC = KA ⊕ ΔK1 and KD = KC ⊕ ΔK0. Assuming that the intermediate val-
ues after E0 distribute uniformly over all possible values, we get E0

KA
(P1) ⊕

E0
KC

(P3) = γ with probability 2−n. Once this occurs, by C1 we know that
E0

KB
(P2) ⊕ E0

KD
(P4) = γ holds with probability 1, for E0

KB
(P2) ⊕ E0

KD
(P4) =

(E0
KA

(P1) ⊕ E0
KB

(P2)) ⊕ (E0
KC

(P3) ⊕ E0
KD

(P4)) ⊕ (E0
KA

(P1) ⊕ E0
KC

(P3)) =
β ⊕ β ⊕ γ = γ. As a result, the probability of satisfying C3 is approximately
∑

β,γ (pβ)2 · 2−n · (qγ)2 = 2−n · (p̂ · q̂)2, where p̂ =
√∑

β Pr2(α → β) and

q̂ =
√∑

γ Pr2(γ → δ).

On the other hand, for a random cipher, this probability is about 2−2n. There-
fore, if p̂ · q̂ > 2−n/2, the related-key rectangle distinguisher can distinguish
between E and a random cipher. Please refer to [4,9,12] for illustrations.

Note that when one of the three cases ΔK1 �= ΔK0 = 0, ΔK0 �= ΔK1 = 0
and ΔK0 = ΔK1 �= 0 occurs, the number of required related keys will decrease
from 4 to 2. In our attacks, we use the third case ΔK0 = ΔK1 �= 0 in which two
keys KA and KB = KA ⊕ ΔK0 are used (note KC = KB and KD = KA). If we
use N pairs of plaintexts (Pi, P

′
i = Pi ⊕ α), where all Pi and P ′

i are encrypted
under the key KA and the key KB, respectively, then about N2/2 quartets are
considered for the above rectangle test. Thus, the expected number of right
quartets is about N2 · 2−n−1 · (p̂ · q̂)2.

3 Properties of Cobra-F64a and Cobra-F64b

In [13,14], Ko et al. showed the following three properties of the DDP-Boxes
P2/1, P8/12 and Pn/m, respectively:
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Property 1. Let Δx be the difference between two inputs x and x′ of P2/1,
Δv be the difference between two control vectors v and v′ of P2/1, and Δy be the
difference between the two outputs P2/1(x, v) and P2/1(x′, v′), respectively. Then,
a) P2/1(x, v = 0) = P2/1(x, v = 1) holds if and only if the two bits of the input

x are equal, i.e. it holds with probability 2−1.
b) Prob.{Δy = 10|Δx = 10/01, Δv = 0} =Prob.{Δy = 01|Δx = 10/01, Δv =

0} = 1
2 .

c) Prob.{Δy = 10|Δx = 10/01, Δv = 1} =Prob.{Δy = 01|Δx = 10/01, Δv =
1} = 1

2 .
d) Prob.{Δy = 11|Δx = 00, Δv = 1} =Prob.{Δy = 00|Δx = 00, Δv = 1} = 1

2 .

Property 2. Let X ⊕ X ′ = ei, then P8/12(X, V ) ⊕ P8/12(X ′, V ) = ej, for some
j, where ei denotes a n-bit word with zeros in all positions but bit i (1 ≤ i, j ≤ n).
Besides, if i and j are fixed, then the trace (i.e. path) from i to j is also fixed.

Property 3. Let X and X ′ be two inputs of Pn/m, and V and V ′(= V ⊕ ei)
(1 ≤ i ≤ m) be two control vectors of Pn/m. Then,
a) Pn/m(X, V ) = Pn/m(X, V ′) holds with probability 2−1.
b) Hw(X ⊕ X ′) = Hw(Pn/m(X, V ) ⊕ Pn/m(X ′, V )), where Hw(·) denotes the

hamming weight function.

In [15], Lee et al. showed two properties of the DDP-Boxes P32/96 and P32/32 in
Cobra-F64a and Cobra-F64b; we now describe these two properties, correcting
some errors in the versions described in [15]:

Property 4. Let ΔX and ΔV be the input difference and the control vector
difference of P32/96, respectively. Then,

a) P32/96(ΔV = 0)(ΔX = 0) = 0 holds with probability 1.
b) P32/96(ΔV = e1)(ΔX = 0) = 0 holds with probability 2−1.
c) P32/96(ΔV = 0)(ΔX = e1) = e1 holds with probability 2−5.
d) P32/96(ΔV = e1)(ΔX = e1) = e1 holds with probability 2−5.

Property 5. Let ΔX and ΔL be input difference and control vector difference
of P32/32, respectively. Then,
a) P32/32(ΔL = 0)(ΔX = 0) = 0 holds with probability 1.
b) P32/32(ΔL = e1)(ΔX = 0) = 0 holds with probability 2−3.
c) P32/32(ΔL = 0)(ΔX = e1) = e1 holds with probability 2−5.
d) P32/32(ΔL = e1)(ΔX = e1) = e1 holds with probability 2−7.
e) P32/32(ΔL = e9)(ΔX = e1) = e1 holds with probability 2−8.
f) P32/32(ΔL = e1,9)(ΔX = e1) = e1 holds with probability 2−10.

4 Related-Key Rectangle Attack on Cobra-F64a

Let Ef ◦ E0 ◦ E1 be the full-round Cobra-F64a, where Ef denotes Round 1,
E0 denotes Rounds 2 to 9, and E1 denotes Rounds 10 to 16 including the fi-
nal transformation. Note that our full-round attack presented in this section
works through the decryption process of Cobra-F64a, but for clarification, we
describe our 15-round related-key rectangle distinguisher in terms of the encryp-
tion process.
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4.1 A 15-Round Related-Key Rectangle Distinguisher

As shown in Table 2, the first related-key differential we exploit for this 15-
round distinguisher is the 8-round related-key differential α → β with probability
p = 2−18 for Rounds 2 to 9 (E0): (e1, 0) → (0, e1), where the key difference is
KA⊕KB = KC ⊕KD = (e1, 0, 0, 0), and the second related-key differential is the
7-round related-key differential γ → δ with probability q = 2−12 for Rounds 10
to 16, and the final transformation (E1): (e1, 0) → (0, 0), where the key difference
is KA ⊕ KC = KB ⊕ KD = (e1, 0, 0, 0). Note that ΔK0 = ΔK1 = (e1, 0, 0, 0) in
this distinguisher, so KC = KB and KD = KA.

Table 2. The two related-key differentials in the 15-round distinguisher in Cobra-F64a

Round(i) (ΔAi, ΔBi) (ΔQ
(1,0)
i , ΔQ

(2,0)
i ) Probability

2 (e1, 0) (0, 0) 2−6

3 (0, e1) (0, e1) 1
4 (0, 0) (0, 0) 1
5 (0, 0) (0, 0) 1
6 (0, 0) (e1, 0) 2−6

7 (0, e1) (0, e1) 1
8 (0, 0) (0, 0) 1
9 (0, 0) (e1, 0) 2−6

output (0, e1) / /

10 (e1, 0) (0, 0) 2−6

11 (0, e1) (0, e1) 1
12 (0, 0) (0, 0) 1
13 (0, 0) (e1, 0) 2−6

14 (0, e1) (0, e1) 1
15 (0, 0) (0, 0) 1
16 (0, 0) (0, 0) 1
FT (0, 0) (0, 0) 1

output (0, 0) / /

To compute p̂ (defined in Section 2.3) in our attack, we need to sum the square
of the probability of all differentials α → β∗ with the same input difference α
through E0, which is computationally infeasible. Instead, we just count those
8-round related-key differentials α → β∗ in each of which only the difference
propagation of the second PA,e

32/32 in Round 9 is different from the 8-round related-
key differential α → β in Table 2, that is, the input difference and the controlling
vector difference of the second PA,e

32/32 in Round 9 is 0 and e1, respectively, and its
32-bit output difference t has a hamming weight of 2 with one bit difference in
the first byte and the other bit in the second byte (Case A) or one bit difference
in the first two bytes and the other bit in the last two bytes (Case B). The
contributions of the remaining 8-round related-key differentials are negligible.
We now analyze the probabilities corresponding to these two cases. Consider the
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P8/12

P8/12-1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P8/12-1

0

jie ,

11
'V

133
'V

72
'V

Fig. 1. The P32/96 in P32/32(ΔX = 0, ΔV = e1)

second P
(A,e)
32/32 in Round 9, where the controlling vector difference is e1 and the

input difference is 0. The controlling vector difference e1 is propagated to V ′
11

,
V ′

27
and V ′

313
after the extension E and the transposition P

(e)
96/1 in this P

(A,e)
32/32.

See Figure 1.

– For Case A, there exist only the following two possible sources:
1. The DDP-Box P2/1 corresponding to V ′

313
produces a difference 11, and

the other two DDP-Boxes P2/1 corresponding to V ′
11

and V ′
27

produce a
difference 00. From Property 1-d, this holds with a probability of 2−1 ·
2−1 · 2−1 = 2−3. Then, to get any specific difference in Case A, we have
a probability of 2−3 · 2−3 = 2−6, as there are three layers of DDP-Boxes
to reach each one-bit difference. As a result, the probability of getting
any specific difference in Case A from this source is 2−3 · 2−6 = 2−9.

2. The DDP-Box P2/1 corresponding to V ′
11

produces a difference 11, and
the other two DDP-Boxes P2/1 corresponding to V ′

27
and V ′

313
produce

a difference 00. Again, we can learn from Property 1-d that this holds
with a probability of 2−3. Then, since there are two traces to reach any
specific difference in Case A and there are five layers of DDP-Boxes to
reach each one-bit difference, we have a probability of 2 ·2−5 ·2−5 = 2−9.
As a result, the probability of getting any specific difference in Case A
from this source is 2−3 · 2−9 = 2−12.
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Finally, we can conclude from the above analysis that the probability of
getting any specific difference in Case A is 2−9 + 2−12.

– For Case B, there also exist only the following two possible sources:
1. The DDP-Box P2/1 corresponding to V ′

27
produces a difference 11, and

the other two DDP-Boxes P2/1 corresponding to V ′
11

and V ′
313

produce a
difference 00, which holds with a probability of 2−1·2−1·2−1 = 2−3. Then,
as there are four layers of DDP-Boxes to reach each one-bit difference of
any specific difference in Case B, we have a probability of 2−4 ·2−4 = 2−8.
As a result, the probability of getting any specific difference in Case B
from this source is 2−3 · 2−8 = 2−11.

2. The DDP-Box P2/1 corresponding to V ′
11

produces a difference 11, and
the other two DDP-Boxes P2/1 corresponding to V ′

27
and V ′

313
produce

a difference 00, which holds with a probability of 2−3. Then, since there
are two traces to reach any specific difference in Case B and there are
five layers of DDP-Boxes to reach each one-bit difference, we have a
probability of 2 · 2−5 · 2−5 = 2−9. As a result, the probability of getting
any specific difference in Case B from this source is 2−3 · 2−9 = 2−12.

Finally, we can conclude from the above analysis that the probability of
getting any specific difference in Case B is 2−11 + 2−12.

Therefore, after considering the probability 2−3 incurred in the first P
(A,e)
32/32 in

Round 9, we can compute a lower bound p̂ = {1 · (2−18)2 +
(8
1

)
·
(8
1

)
· [2−12 · 2−3 ·

(2−9 + 2−12)]2 +
(16

1

)
·
(16

1

)
· [2−12 · 2−3(2−11 + 2−12)]2} 1

2 ≈ 2−17.98 for the 321
possible 8-round related-key differentials (e1, 0) → (t, e1), where t ∈ {0, Case A,
Case B}.

To compute q̂ (defined in Section 2.3), we need to sum the square of the
probability of all differentials γ∗ → δ with the same output difference δ through
E1, which is also computationally infeasible. Alternatively, we just count those
7-round related-key differentials γ∗ → δ in each of which only the difference prop-
agation of the first PA,e

32/32 in Round 10 is different from the 7-round related-key
differential γ → δ in Table 2, that is, the output difference and the controlling
vector difference of the first PA,e

32/32 in Round 10 (through the encryption direc-
tion) is 0 and e1, respectively, and its 32-bit input difference s has a hamming
weight of 2. After noting that the two one-bit differences of such a differential
can only distribute in the input to one of the three DDP-Boxes P2/1 corre-
sponding to V ′

11
, V ′

27
and V ′

313
, we can similarly compute a loose lower bound

q̂ = [1 · (2−12)2 + 1 · (2−13)2 +
(2
1

)
·
(2
1

)
· (2−16)2 +

(4
1

)
·
(4
1

)
· (2−18)2]

1
2 ≈ 2−11.83

for the 22 possible 7-round related-key differentials γ∗ → δ. As a result, the
distinguisher holds probability 2−123.62(= 2−64 · (2−17.98 · 2−11.83)2) for a right
pair, while it holds probability 2−128 for a wrong pair.

Consequently, we can apply this distinguisher to a chosen ciphertext related-
key rectangle attack on the full-round Cobra-F64a. Our attack procedure is as
follows.
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4.2 Attack Procedure

1. Choose 263.81 ciphertext pairs (Ci,C∗
i ), i = 1, · · · , 263.81 such that Ci = C∗

i .
Then, with a chosen ciphertext related-key attack, decrypt all Ci and C∗

i

with the user keys KA and KB to get the corresponding plaintexts Pi and
P ∗

i , respectively, where KA ⊕ KB = (e1, 0, 0, 0).
2. Guess two 32-bit subkeys (K1, K4) for Round 1 in Ef , do the following:

2.1 Partially encrypt all the plaintexts Pi with (K1, K4) to get their inter-
mediate values just after Round 1: we denote these encrypted values
by Ti. Again, partially encrypt all the plaintexts P ∗

i with (K1⊕e1, K4)
to get their intermediate values just after Round 1: we denote these
encrypted values by T ∗

i . Then, store all the values Ti and T ∗
i into

a hash table. Finally, check if Ti1 ⊕ T ∗
i2

= T ∗
i1

⊕ Ti2 = (e1, 0), for
1 ≤ i1 < i2 ≤ 263.81.

2.2 If the number of the quartets passing Step 2.1 is greater than or equal
to 6, then record (K1, K4) and all the qualified (Ti1 , T

∗
i1

, Ti2 , T
∗
i2

); oth-
erwise, repeat Step 2 with another 64-bit key (K1, K4).

2.3 Guess two 32-bit subkeys (K2, K3) for Round 2 in E0, do the following:
(a) Partially encrypt all remaining quartets (Ti1 , T

∗
i1 , Ti2 , T

∗
i2) with (K2,

K3) to get their intermediate values just after Round 2: we de-
note these encrypted values by (T i1 , T

∗
i1 , T i2 , T

∗
i2). Finally, check if

T i1 ⊕ T
∗
i2 = T

∗
i1 ⊕ T i2 = (0, e1) for each quartet.

(b) If the number of the quartets passing Step 2.3-(a) is greater than
or equal to 6, then record (K1, K2, K3, K4); otherwise, repeat Step
2.3 with other two 32-bit subkeys (K2, K3) (if all the 264 possible
(K2, K3) are tested, repeat Step 2 with other two 32-bit subkeys
(K1, K4)).

3. For a suggested (K1, K2, K3, K4), do a trial encryption with one known
plaintext/ciphertext pair. If one is suggested, output it as the user key of
Cobra-F64a; otherwise, go to Step 2.

The data complexity of this attack is 264.81 related-key chosen ciphertexts.
The required memory for this attack is dominated by the encrypted plaintext
pairs (Step 2.1), which is approximately 264.81 · 8 = 267.81 memory bytes.

The time complexity of Step 1 is 264.81 encryptions. The time complexity
of Step 2.1 is about 264 · 264.81 · 1

2 · 1
16 ≈ 2123.81 encryptions, where 1

2 means
the average fraction of 64-bit key pairs that are tested in Step 2.1. In Step
2.2, the probability that the number of the quartets for a wrong subkey is no
less than 6 is approximately

∑t
i=6(

(
t
i

)
· (2−64×2)i · (1 − 2−64×2)t−i) ≈ 2−17.77,

where t = 2126.62 representing the number of the possible quartets. Thus, about
264 · 2−17.77 · 1

2 ≈ 245.23 subkeys on average pass through Step 2.2, resulting
in about 2108.65(= 245.23 · 264 · 6 · 4 · 1

16 ) full-round encryptions in Step 2.3-(a).
In Step 2.3-(b), probability 2−6 is required to satisfy the one-round differential
characteristic for Round 2, and the number of the quartets to be tested in this
step is at least 6, therefore, the probability that a wrong subkey pair (K2, K3)
passes Step 2.3-(b) is about 2−96(= (2−6)6×2). As a result, the expected number
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of the suggested 128-bit subkeys (K1, K2, K3, K4) in Step 2.3-(b) is 213.23(=
245.23 ·264 ·2−96). The time complexity for Step 3 is 213.23. Therefore, this attack
requires a total time complexity of 2123.81(≈ 264.81 + 2123.81 + 2108.65 + 213.23)
encryptions.

Since the probability that a wrong 128-bit key is suggested in Step 3 is ap-
proximately 2−64, the expected number of suggested wrong 128-bit keys is about
2−64 · 213.23 ≈ 2−50.77, which is quite low. Due to the probability p̂ · q̂ = 2−29.81

in our attack, the expected number of quartets for the right key pair is 8
(≈ 2126.62 · 2−64 · (2−29.81)2) and the probability that the number of the quar-
tets for the right subkey is no less than 6 is approximately

∑t
i=6(

(
t
i

)
· (2−64 ·

2−29.81×2)i · (1 − 2−64 · 2−29.81×2)t−i) ≈ 0.8. Therefore, with a success probabil-
ity of 0.8, our related-key rectangle attack can break Cobra-F64a.

5 Related-Key Differential Attack on Cobra-F64b

5.1 A 19.5-Round Related-Key Differential Characteristic

As shown in Table 3, we exploit a 19.5-round related-key differential char-
acteristic (0, e1) → (e1, 0) with probability 2−57, where the key difference is
(e1, e1, e1, e1). It is derived from the full-round related-key differential charac-
teristic presented in [15].

Table 3. The 19.5-round related-key differential characteristic in Cobra-F64b

Round(i) (ΔAi, ΔBi) (ΔQ
(1,0)
i , ΔQ

(2,0)
i ) Probability

1 (0, e1) (e1, e1) 2−3

2 (0, e1) (e1, e1) 2−3

3 (0, e1) (e1, e1) 2−3

...
...

...
...

18 (0, e1) (e1, e1) 2−3

19 (0, e1) (e1, e1) 2−3

20(half) (0, e1) (e1, e1) 1†

output (e1, 0) / /

†: This probability is just for the difference between the
intermediate values XORed with the 20-th round subkey

In order to reduce the time complexity of our attack, we use the following
filtering property: some possible differences between a pair of ciphertexts can be
partially determined from the output difference (e1, 0) of the 19.5-round related-
key differential, for those ciphertext pairs that do not meet these differences
can be discarded immediately. More precisely, as the input difference and the
controlling vector difference of the DDP-Box P

(A,e)
32/32 in Round 20 are 0 and

e1, respectively, the output difference of this P
(A,e)
32/32 should have a hamming

weight of 0, 2, 4 or 6, which is caused by the three inherent DDP-Boxes P2/1
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corresponding to V ′
11

, V ′
27

and V ′
313

. After an analysis on the P
(A,e)
32/32, we conclude

that there are at most
(32

2

)
·
(16

1

)
·
(16

1

)
·
(8
1

)
·
(8
1

)
= 31 · 218 possible values for

those that have a hamming weight of 6, at most
(32

2

)
·
(16

1

)
·
(16

1

)
+

(32
2

)
·
(8
1

)
·

(8
1

)
+

(16
1

)
·
(16

1

)
·
(8
1

)
·
(8
1

)
= 31 · 212 + 31 · 210 + 214 possible values for those

that have a hamming weight of 4, at most
(32

2

)
= 31 · 24 possible values for

those that have a hamming weight of 2, and only 1 with a hamming weight of
0. Therefore, the number of possible output differences of the P

(A,e)
32/32 is totally

31·218+31·212+31·210+214+31·24+1 = 8302065. After XORed with the subkey
difference ΔK3 = e1 in the final transformation, these 8302065 possible output
differences of the P

(A,e)
32/32 incur 8302065 possible output differences between the

right halve of the pair of ciphertexts. We denote the resultant 8302065 possible
output differences by the set S. We will not count the possible number for the
left halve, for it seems infeasible due to the right rotation and addition modulo
232 operations in Round 20.

Consequently, we can conduct the following related-key differential attack to
break the full-round Cobra-F64b.

5.2 Attack Procedure

1. Choose 260 pairs of plaintexts (Pi, P
∗
i ) with Pi ⊕P ∗

i = (0, e1), i = 1, · · · , 260.
Then, with a related-key chosen plaintext attack, encrypt all Pi with the
user key KA to get the respective ciphertexts Ci, and encrypt P ∗

i with the
related user key KB to get the respective ciphertexts C∗

i , where KA ⊕KB =
(e1, e1, e1, e1). Finally, check if the right halve of the difference Ci ⊕ C∗

i

belongs to the set S defined above. If not, discard (Ci, C
∗
i ).

2. Guess two 32-bit keys K2 and K3 for the final transformation, do the fol-
lowing:
2.1 Partially decrypt all the remaining ciphertexts Ci with (K2, K3) to

get their respective intermediate values just after the data (A19, B19)
XORed with the 20-th round subkey (Q(1,0)

20 , Q
(2,0)
20 ) in Round 20 (i.e.,

just after the last 0.5 round in Round 20 through the backward direc-
tion): we denote the decrypted values by Ti. Again, partially decrypt
all the remaining ciphertexts C∗

i with (K2 ⊕ e1, K3 ⊕ e1) to get their
respective intermediate values just after the last 0.5 round in Round
20 through the backward direction: we denote the decrypted values by
T ∗

i . Then, check if Ti ⊕ T ∗
i = (e1, 0).

2.2 If the number of the pairs (Ti, T
∗
i ) passing Step 2.1 is greater than or

equal to 6, then record K2, K3 and all the qualified (Ti, T
∗
i ); otherwise,

repeat Step 2 with other two 32-bit subkeys K2 and K3.
2.3 Guess a 32-bit key K1, do the following:

(a) For each remaining pair (Ti, T
∗
i ), partially decrypt Ti with (K1, K2)

to get its intermediate value just after the data (A18, B18) XORed
with the 19-th round subkey (Q(1,0)

19 , Q
(2,0)
19 ) in Round 19 (i.e., just

after the last 1.5 round in Rounds 20 and 19 through the backward
direction): we denote the decrypted values by T i. Again, partially
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decrypt T ∗
i with (K1⊕e1, K2⊕e1) to get its intermediate value just

after the last 1.5 round in Rounds 20 and 19 through the backward
direction: we denote the decrypted values by T

∗
i . Then, check if

T i ⊕ T
∗
i = (e1, 0).

(b) If the number of the pairs passing Step 2.3-(a) is greater than or
equal to 6, then output K1, K2 and K3; otherwise, repeat Step 2.3
with another 32-bit subkey K1 (if all the 232 possible K1 are tested,
repeat Step 2 with other two 32-bit subkeys K2 and K3.

3. For a suggested K1, K2 and K3, do an exhaustive search for the remaining
32-bit subkey K4 using trial encryption. Two known plaintext/ciphertext
pairs are enough for this trial process. If a 128-bit key is suggested, output
it as the user key of the full-round Cobra-F64b; otherwise, go to Step 2.

This attack requires 261 related-key chosen plaintexts. The required memory
for this attack is dominated by the ciphertext pairs, which is approximately
261 · 8 = 264 memory bytes.

The time complexity of Step 1 is 261 full-round Cobra-F64b encryptions. Due
to the filtering condition in Step 1, there are only 260 · 8302065

232 ≈ 250.99 remaining
pairs. So the time complexity of Step 2.1 is about 264 · 251.99 · 1

2 · 1
20 ≈ 2110.67

full-round Cobra-F64b encryptions, where 1
2 means the average fraction of 64-

bit key pairs that are tested in Step 2.1. In Step 2.2, the expected number of
pairs recorded for each guessed key is about 2−41.01 · 250.99 = 29.98, for the
probability that each decrypted pair passes the test of Step 2.1 is about 2−64 ·
8302065 = 2−41.01, which is due to the fact that the filtering step holds 8302065 =
222.99 ciphertext differences. It follows that Step 2.3-(a) requires about 29.98 · 2 ·
296 1

2 · 1
20 ≈ 2101.66 full-round Cobra-F64b encryptions on average. Moreover,

in Step 2.3-(a), probability 2−3 is required to satisfy the one-round differential
characteristic for Round 19 (refer to Table 3), and the probability that a wrong
subkey (K1, K2, K3) passes Step 2.3-(b) is about

∑t
i=6(

(
t
i

)
·(2−3)i·(1−2−3)t−i) ≈

2−53, where t = 29.98 representing the expected number of the remaining pairs.
The time complexity for Step 3 is 274(= 232 · 296 · 2−53 · 1

2 ). Therefore, this
attack requires a total time complexity of 2110.67(≈ 261 + 2110.67 + 2101.66 + 274)
encryptions.

Since the probability that a wrong 128-bit key is suggested in Step 3 is approx-
imately 2−128, the expected number of suggested wrong 128-bit keys is about
2−128 · 274 ≈ 2−54, which is extremely low. One the other hand, the expected
number of text pairs for the right key pair is 8 (≈ 260 · 2−57) and the probability
that the number of the pairs for the right subkey is no less than 6 is approx-
imately

∑260

i=6(
(260

i

)
· (2−57)i · (1 − 2−57)2

60−i) ≈ 0.8. Therefore, with a success
probability of 0.8, our related-key differential attack can break the full-round
Cobra-F64b.

6 Conclusions

In this paper, we mount related-key attacks on the two DDP-based block ciphers
Cobra-F64a and Cobra-F64b. The related-key rectangle attack on the full-round
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Cobra-F64a requires 264.81 related-key chosen ciphertexts and a time complexity
of 2123.81 Cobra-F64a encryptions, while the related-key differential attack on
the full-round Cobra-F64b requires 261 related-key chosen plaintexts and a time
complexity of 2110.67 Cobra-F64b encryptions.
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A Components of Cobra-F64a and Cobra-F64b
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Abstract. k-times anonymous authentication (k-TAA) schemes allow
members of a group to be authenticated anonymously by application
providers for a bounded number of times. Dynamic k-TAA allows appli-
cation providers to independently grant or revoke users from their own
access group so as to provide better control over their clients. In terms of
time and space complexity, existing dynamic k-TAA schemes are of com-
plexities O(k), where k is the allowed number of authentication. In this
paper, we construct a dynamic k-TAA scheme with space and time com-
plexities of O(log(k)). We also outline how to construct dynamic k-TAA
scheme with a constant proving effort. Public key size of this variant,
however, is O(k).

We then construct an ordinary k-TAA scheme from the dynamic
scheme. We also describe a trade-off between efficiency and setup freeness
of AP, in which AP does not need to hold any secret while maintaining
control over their clients.

To build our system, we modify the short group signature scheme into
a signature scheme and provide efficient protocols that allow one to prove
in zero-knowledge the knowledge of a signature and to obtain a signature
on a committed block of messages. We prove that the signature scheme
is secure in the standard model under the q-SDH assumption.

Finally, we show that our dynamic k-TAA scheme, constructed from
bilinear pairing, is secure in the random oracle model.

Keywords: k-TAA, dynamic k-TAA.

1 Introduction

Teranisi et al. [18] proposed k-times anonymous authentication (k-TAA) so
that users of a group can access applications anonymously while application
providers (AP) can decide the number of times users can access their applica-
tions. In k-TAA, there are three entities, namely, group manager (GM), applica-
tion providers (AP) and users. Users first register to GM and each AP announce
independently the allowable number of access to its application. A registered
user can then authenticate himself to the AP’s anonymously, up to the allowed
number of times. Anyone can trace a dishonest user who tries to access an ap-
plication for more than the allowable number of times.
� This work is partially supported by ARC Linkage Project Grant LP0667899.
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In k-TAA, AP’s have no control over the group of users accessing their appli-
cations. In actual scenarios, AP’s may wish to select their own group of users.
Dynamic k-TAA, proposed by Nguyen et al. [15], has added this flexibility over
ordinary k-TAA systems. In a dynamic k-TAA, the role of AP’s is more active
and they can select their user groups, granting and revoking access of registered
users independently.

Many existing k-TAA schemes (and dynamic k-TAA schemes) [18,15] are quite
efficient, with time and space complexities independent of the total number of
users. However, size of the public key of AP’s, together with the communication
cost between users and AP’s, are both of order O(k). The computational cost
of the user for an authentication protocol is also of order O(k). In this paper,
we construct k-TAA and dynamic k-TAA scheme with complexity of O(log(k)).
We also outline how to reduce the proving cost to O(1) at the cost of public key
size of AP.

In constructing our scheme, we modify the short group signature from Boneh
et al. [2] into a signature scheme, which we shall referred to as BBS+ signature,
with two protocols, similar to [8,10] (referred to as CL, CL+ respectively here-
after). We do not claim originality of this modification as it has been outlined in
[10]. However, we supply the details of the modification, together with the pro-
tocols and analyze its security. In particular, the protocol of showing possession
of a signature is different from [2] in which the modified protocol achieve per-
fect zero-knowledge while the original protocol is computational. We prove that
BBS+ signature is secure in the standard model under the q-SDH assumption.
This BBS+ signature could be used as building blocks for other cryptographic
systems. It has similar properties to CL (based on Strong RSA) and CL+ sig-
natures (based on LRSW). To sign a block of messages, the signature scheme
outperforms the existings schemes in the literature (signature size of CL+ is
linear to number of messages in the block to be signed, CL is 1346 bits while
BBS+ is only 511 bits).

The recently proposed group signature from [5] can also be modified into
signature scheme with efficient protocol secured in the stand model. However,
the signing of a message have to be done in a bit-by-bit manner.

1.1 Related Works

Very recently, Teranishi and Sako [19] proposed an ordinary k-TAA scheme with
constant proving cost. We shall refer to it as TS06 hereafter. Our ordinary k-
TAA scheme, constructed from the dynamic one following the outline of [15],
is very similar to TS06. Our construction can be thought of as an extension
of TS06 to dynamic k-TAA to give AP more control over their clients. This
is achieved by the use of dynamic accumulator and the idea of using dynamic
accumulator for access control was introduced in [9]. Finally, as pointed out in
[19], k-TAA shares certain similarities with compact e-cash schemes, introduced
in [7]. The main difference being in k-TAA schemes, each provider may chooses
its only k and a user could authenticated himself k1 times to provider-1, k2
times to provider-2, etc., while in a compact e-cash scheme, the user can only
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spend his wallet a total of k times to all the shops combined. Nevertheless, the
techniques used in our scheme is very similar to the compact e-cash scheme
[7]. The main difference being we show how to incorporate the provider’s name
into the pseudo-random function such that authentication to different providers
cannot be linked together.

Finally, the BBS+ signature we analyzed can be regarded as an extension of
a digital signature scheme very recently proposed by [16] to support signing of
block of committed messages.

Our Contributions

– we construct efficient dynamic k-TAA, k-TAA scheme.
– we reduce the security of our scheme to well-known intractable assumptions

in the random oracle model.
– we analyze an modification of the BBS group signature, provide efficient

protocols, and show its security in the standard model.

Organization. The rest of the paper is as follows. Preliminaries are presented
in Section 2. We then briefly review the security notions in section 3. Our con-
struction is shown in Section 4, followed by its variants in Section 5. Complexity
and security analysis are given in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

2.1 Notations

Let e be a bilinear map such that e : G1 × G2 → GT .

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
– (Non-degenerate)e(g0, h0) �= 1.

G1 and G2 can be same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2, the isomorphism ψ and
the bilinear mapping e are all efficiently computable.

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follow: On input a quadruple (g, ga, gb, gc) ∈
G

4, output 1 if c = ab and 0 otherwise. We say that the (t, ε)-DDH assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the DDH problem in G.
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Definition 2 (q-Strong Diffie-Hellman). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1, G2) is defined as follow: On input a (q + 2)-tuple (g0, h0,

hx
0 , hx2

0 , · · · , hxq

0 ) ∈ G1 × G
q+1
2 , output a pair (A, c) such that A(x+c) = g0 where

c ∈ Z∗
p. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time

algorithm has advantage at least ε in solving the q-SDH problem in (G1, G2).

The q-SDH assumption is shown to be true in the generic group model [1].

Definition 3 (y-Decisional Diffie-Hellman Inversion Assumption). The
y-Decisional Diffie-Hellman Inversion problem (y-DDHI) in prime order group
G is defined as follow: On input a (y + 2)-tuple g, gx, gx2

, · · · , gxy

, gc ∈ Gy+2,
output 1 if c = 1/x and 0 otherwise. We say that the (y, t, ε)-DDHI assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the y-DDHI problem in G.

2.3 Building Blocks

Verifiable Random Function. Our constant-size dynamic k-TAA make use
of verifiable random function (VRF), introduced in [13]. Informally speaking, a
VRF is a pseudo-random function with non-interactive proof of correctness of its
output. The VRF used in our paper is due to Dodis et al. [11] and is described as
follows. The pseudo-random function f is defined by a tuple (Gp, p, g, s), where
GT is a cyclic group of prime order p, g a generator of Gp and s is a seed in Zp. On
input x, fGp,p,g,s(x) = g

1
s+x+1 . Efficient proof such that the output is correctly

formed (with respect to s and x in some commitment scheme such as Pedersen
Commitment [17]) exists and the output of f is indistinguishable from random
elements in Gp if the y-DDHI assumption in Gp holds. The verifiable random
function in [11] uses a stronger bilinear version of the y-DDHI assumption, see
[7] for details.

Accumulator. Our construction is built based on the accumulator with one-
way domain due to [14]. Rougly speaking, an accumulator is an algorithm to
combine a large set of values ({xi}) into a short value v. For each value xj ∈ {xi},
a witness wj exists and with wj , it can be proved that x is indeed accumulated
into v. An accumulator is dynamic if it allows values to be added or deleted
dynamically.

Signature Scheme with Efficient Protocols. In this paper, a signature
scheme with efficient protocols refers to signature scheme with two protocols:
(1) a protocol between a user and a signer with keys (pk, sk). Both user and
signer agreed on a commitment scheme such as Pedersen commitment. The user
input is a block of messages (m1, · · · , mL) and a random value r such that
C=PedersenCommit(m1, · · · , mL, r). After executing the protocol, user obtains
a signature on (m1, · · · , mL) from the signer while the signer learns nothing
about the block of messages. (2) a protocol to proof the knowledge of a signa-
ture. This allows the user to prove to a verifier that he is in possession of a
signature. Examples include CL signature, CL+ signature [8,10]. In this paper,
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we analyze another signature scheme with efficient protocols which is a modifi-
cation of the short group signature from Boneh et al.[2], that we referred to as
BBS+ signature.

3 Security Model

3.1 Syntax

We follow the model of dynamic k-TAA in [15] and briefly review them. A dy-
namic k-times anonymous authentication is a tuple (GMSetup, Join, APSetup,
GrantingAccess, RevokeingAccess, Authentication, PublicTracing) of six polynomial
time algorithms between three entities GM, APs, users. The following enumer-
ates the syntax.

– GMSetup. On input a unary string 1λ, where λ is a security parameter,
the algorithm outputs GM secret key gsk and group public key gpk. All
algorithms below have implicitly gpk as one of their inputs.

– Join Protocol. This protocol allows a user to join the group and obtain a
member public/secret key pair (mpk, msk) from GM. The GM also add the
user’s identification and member public key to an identification list.

– APSetup. An AP publishes its identity ID and announces the number of
times k a group member can access its application. It may also generate
certain public and private key for the AP.

– GrantingAccess. Each AP manages its own access group AG which is initially
empty. This procedure allows the AP to give selected group members the
permission to access his application.

– RevokingAccess. It allows the AP to remove a member from his access group
and stop a member from accessing his application.

– Authentication Protocol. The user authenticated himself to an AP under this
protocol. The user is authenticated only if it is in the access group of the
AP and the number of accesses have not exceeded the allowed number k.
AP records the transcripts of authentication in an authentication log.

– PublicTracing. Anyone can execute this procedure using public information
and the authentication log. The outputs are user i’s identity, GM or NO-ONE
which indicates “user i tries to access more than k times”, “the GM cheated”
and “there is no malicious entity in this authentication log” respectively.

A dynamic k-times anonymous authentication must possess Correctness which
means that an honest member who is in the access group of an honest AP, and
has not authenticate himself for more than the allowed number of times, must
be authenticated by the AP.

3.2 Security Notions

We briefly recall security requirements, for formal definition please refer to
[15,18].
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– D-Detectability. Roughly speaking, it means that a subset of colluded users
cannot perform the authentication procedure with the same honest AP for
more than the allowed number of times, or they must be detected by the
PublicTracing algorithm.

– D-Anonymity. It is required that no collusion of AP, users and GM can
distinguish between authentication executions of two honest group members
who are in the access group of the AP.

– D-Exculpability. It is required that an honest user cannot be accused of hav-
ing performed the authentication procedure with the same honest AP for
more than the allowed number of time. It is also required that the Public-
Tracing algorithm shall not output GM if the GM is honest even though the
AP and the users colludes.

4 Our Construction

Our dynamic k-TAA is built from the q-SDH based accumulator due to Nguyen
[14] and a modification of the BBS group signature [2], that we call BBS+
signature, which is a signature scheme with efficient protocols. BBS+ signature
is unforgeable against adaptive chosen message attack in the standard model
under the q-SDH assumption and we also propose two protocols:(1) for issuing
a signature on a committed value (so the signer has no information about the
signed value), and (2) for proving knowledge of a signature on a committed
value. We first describe the global common parameters, followed by descriptions
of BBS+ signature and finally our dynamic k-TAA scheme.

4.1 Global Common Parameters

Let λ be the security parameter. Let (G1, G2) be a bilinear group pair with
computable isomorphism ψ as discussed such that |G1| = |G2| = p for some
prime p of λ bits. Assume Gp be a group of order p where DDH is intractable.
Let H : {0, 1}∗ → Zp, Hevt{0, 1}∗ → Gp be cryptographic hash functions. Let
g0, g1, g2, g3 be generators of G1, h0, h1, h2, h3 be generators of group G2 such
that ψ(hi) = gi and u0, u1, u2, u3 be generators of Gp such that relative discrete
logarithm of the generators are unknown. One possible way is to make use of
some hash functions f : {0, 1}∗ → G1, g : {0, 1}∗ → Gp and set hi = f(seed, i),
gi = ψ(hi), ui = g(seed, i) for some publicly known seed.

Remarks: the generation of this common parameters can be done by GM or some
trusted third parties.

4.2 BBS+ Signature

The idea of modifying the BBS group signature into a signature with efficient
protocols is stated in [10]. We supply the details, provide efficient protocols and
prove its security.

KenGen. Randomly choose γ ∈R Z∗
p and compute w = h0

γ . The secret key is γ
and the public key is w.
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Signing block of messages. On input (m1, · · · , mL) ∈ ZL
p , choose e and a random

number s, compute A = [g0g
s
1g

m1
2 gm2

3 · · · gmL

L+1]
1

e+γ . Signature on (m1, · · · , mL)
is (A, e, s).

Signature Verification. To verify a signature (A, e, s) on (m1, · · · , mL) , check if
e(A, whe

0) = e(g0g
s
1g

m1
2 gm2

3 · · · gmL

L+1, h0).
Regarding security of BBS+ signature whose proof shall appear in the full

version of the paper.

Theorem 1. BBS+ signature is unforgeable against adaptively chosen message
attack under the q-SDH assumption.

Protocol for Signing Committed Block of Messages. The user computes a Pedersen
Commitment on the block of messages to be signed by Cm = gs′

1 gm1
2 gm2

3 · · · gmL

L+1.
The user also needs to prove to the signer that Cm is correctly formed by the
following PK: PK{(s′, m1, · · · , mL) : Cm = gs′

1 gm1
2 gm2

3 · · · gmL

L+1}. The signer
then chooses s′′, e, computes A = [g0g

s′′

1 Cm]
1

e+γ and sends back (A, e, s′′) back
to the user. The user computes s = s′ + s′′ and the signature on the block of
messages is (A, e, s). For whatever block of messages (m1, · · · , mL), there exists
an s′ such that Cm = gs′

1 gm1
2 gm2

3 · · · gmL

L+1 and s′ completely hides the information
about the block of messages. Thus, the signer learns nothing about the block of
messages to be signed.

Proof of Knowledge of A Signature. We give a zero-knowledge proof of knowl-
edge protocol for showing possession of a signature. Using any protocol for
proving relations among components of a discrete-logarithm representations of
a group element [6], it can be used to demonstrate relations among compo-
nents of a signed block of messages. A user possessing a signature (A, e, s) on
the block of message (m1, · · · , mL) can compute SPK{(A, e, s, m1, · · · , mL) :
Ae+γ = g0g

s
1g

m1
2 gm2

3 · · · gmL

L+1}(M) by first computing the following quantities:
A1 = gr1

1 gr2
2 , A2 = Agr1

2 for some randomly generated r1, r2 ∈R Z∗
p. Then it

computes the following SPK Π5.

Π5 : SPK

{
(r1, r2, e, δ1, δ2, e, s, m1, · · · , mL) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧ e(A2,w)

e(g0,h0)
=

e(A2, h0)−ee(g2, w)r1e(g2, h0)δ1e(g1, h0)se(g2, h0)m1 · · · e(gL+1, h0)mL

}
(M)

where δ1 = r1e and δ2 = r2e.

Regarding SPK Π5, we have the following theorem which is straight forward
and the proof is thus omitted.

Theorem 2. Π5 is an non-interactive honest-verifier zero-knowledge proof-of-
knowledge protocol with special soundness.

Remarks: this protocol is a different from the protocol in [2], where the HVZK is
computational (under the DLDH assumption) while Π5 is perfect. One possible
reason is that the SDH protocol in [2] is used for group signature scheme where
certain user information in ‘verifiably encrypted’ within the protocol for GM to
revoke identity of the signer.
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4.3 Overview of Our Construction

Join. The GM is in possession of the public/secret key pair of BBS+ signature.
User randomly generates x ∈ Z∗

p and ux
0 is the identity of the user. A membership

certificate of a user is a BBS+ signature (of the form (A, e) ) on the set of values
(s, t, x), where s and t are also random elements in Zp∗. Finally, (ux

0 , e) are placed
on an identification list.

GrantingAccess/RevokeAccess. Each AP generates its own accumulator due to
Nguyen [14]. It accumulates the value e into the accumulator and gives the
witness wAP to the user. To revoke access, the AP removes the value e from the
accumulator.

In the variant of our scheme (to be shown in the next section), AP only
publishes the access group and let the users work with the accumulator itself.
This makes it possible to remove the interactive granting access/revoke access
protocol. The cost is that user has to perform O(|AccessGroup|) operations to
obtain his own witness.

Authentication. The idea is to have the users prove to the AP that it is in pos-
session of a BBS+ signature (A, e, s) from the GM on the values (t, x), and that
e is inside the accumulator of the AP. To restrict the user from authenticating
himself for more than k times, pseudo-random function(PRF) due to Dodis and
Yampolskiy [11] is used as follow. Let uAP be a random element in a cyclic

group equal to hash of identity of the AP. The user computes S = u
1

s+JAP +1

AP and
proves that S is correctly formed with respect to the BBS+ signature component
s. Also, user needs to prove that 1 ≤ JAP ≤ k. In this way, for a particular AP ,
the user can only generate k valid S, which we called serial number. If he at-
tempts to authenticate himself for more than k times, duplicated serial number
has to be used and can thus be detected.

Finally, to allow revocation of identity of user attempting to authenticate him-

self for more than k times, another component T = ux
0u

R
t+JAP +1

AP is added, where
R is a random nonce chosen by the AP during each authentication attempt. User
needs to prove that T is correctly formed. In case the user attempts to use the same
serial number to authenticate twice, due to R being different, the two T ’s shall be
different. With different T ’s, identity of the cheater, ux

0 , can be computed.

Remarks: it is obvious that other signature schemes with efficient protocol such
as CL, CL+ could also be used for our scheme. However, in our case, BBS+
is most suitable for two reasons: (1) it is most efficient in our context and (2)
the accumulator we used is based on the q-SDH assumption for which security
of BBS+ signature also relies on.

4.4 Details of Our Construction

GMSetup. The GM randomly selects γ ∈R Z∗
p and computes w = h0

γ . The GM
also manages an identification list which is a tuple (i, Ui, ei) where i refers to
user i and Ui is an entry for identification of user and ei is called the membership
public key of user i. See Join for a more detailed description of this item.
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APSetup. Each AP publishes his identity ID and a number k, much smaller than
2λ. In addition, each AP selects hAP ∈ G2, qAP ∈ Z∗

p. The public and secret
keys for the AP are hAP , pAP = hqAP

AP and qAP respectively. The AP maintains
an authentication log, an accumulated value, which is published and updated af-
ter granting or revoking access of a member, and a public archive ARC which is
describe as follows. The ARC is a 3-tuple (arc1, arc2, arc3) where arc1 is a com-
ponent of the membership public key of a user, arc2 is a single bit 0/1 indicating if
the member was granted (1) or revoked (0). Finally, arc3 is the accumulated value
after granting or revoking the member. Initially, the authentication log and ARC
are empty while the accumulated value is set to hAP .

Join. User i obtains his membership secret key from GM through the following
interactive protocol.

1. User i randomly selects s′, t, x ∈R Z∗
p and sends C′ = gs′

1 gt
2g

x
3 , along with

the proof Π0 = PK{(s′, t, x) : C′ = gs′

1 gt
2g

x
3} to GM.

2. GM verifies that Π0 is valid and randomly selects s′′ ∈R Z∗
p. It sends s′′ to

the user.
3. User computes s = s′ + s′′ and add an entry (i, Ui) = (i, ux

0) to the identifi-
cation list and send a proof Π1 = PK{(s, t, x) : Ui = ux

0 ∧C = gs
1g

t
2g

x
3 ∧C =

C′gs′′

1 }.
4. GM computes C = C′gs′′

1 , check that Π1 is valid , and selects e ∈R Z∗
p.

It then computes A = (g0C)
1

e+γ and sends (A, e, s′′) to the user. GM also
appends e to the entry (i, Ui) to make it (i, Ui, e)

5. User checks if e(A, whe
0) = e(g0g

s
1g

t
2g

x
3 , h0). It then stores (A, e, s, t, x). User’s

membership public key is e and membership secret key is (A, s, t, x).

GrantingAccess. An AP grants access to user i with membership public key e and
secret key (A, s, t, x) as follows. Suppose there are j tuples in the AP’s ARC and
the current accumulated value is vj . The AP computes a new accumulated value
vj+1 = ve+qAP

j . Then the AP adds (e, 1, vj+1) to the ARC. The user keeps w = vj

as his witness that his public key has been accumulated in the accumulated
value. Existing members in the access group update their own witness by the
information of ARC as follows. User with membership key ek and witness we

such that wek+qAP
e = vj computes wnew = vjw

e−ek
e . In this case wek+qAP

new = vj+1
and wnew serves as a new witness for user ek.

RevokingAccess. An AP revokes access from user i with membership public
key e, such that (e, 1, v) is a tuple in the ARC, as follows. Suppose there are
j tuples in the AP’s ARC and the current accumulated value is vj . The AP

computes vj+1 = v
1

e+qAP

j . It then adds (e, 0, vj+1) to ARC. Similar to the case of
GrantingAccess, existing members in the access group update their own witness
by the information of ARC, which is shown as follows. Suppose user ek possesses
witness such that wek+qAP

e = vj , it computes wnew = (we/vj+1)
1

e−ek such that

wek+qAP
new = [ vj

v
qAP +ek
j+1

]
1

e−ek = [
v

qAP +e

j+1

v
qAP +ek
j+1

]
1

e−ek = vj+1.
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Authentication. The user manages a set of counters, one for each AP , JAP ,
such that it did not attempt to sign more than k times for each AP. User with
membership public key e and secret key (A, s, t, x), having granted access from
the AP and thus possesses a witness wAP such that we+qAP

AP = vAP where vAP is
the current accumulated value of the AP authenticates himself by the following
interactive protocol. For simplicity we drop the subscript AP for qAP and vAP .

– AP sends a random seed ∈ {0, 1}∗ to user. In practice, seed can be some ran-
dom number or information about the current session. Both parties compute
R = H(seed) locally.

– User computes uAP = Hevt(IDAP ) where IDAD is the identity of the AP.

User then computes S = u
1

JAP +s+1

AP , T = ux
0u

R
JAP +t+1

AP and proves in zero-
knowledge manner (1) - (5):
1. Ae+γ = g0g

s
1g

t
2g

x
3 .

2. we+q
AP = v.

3. S = u
1

JAP +s+1

AP .

4. T = ux
0u

R
JAP +t+1

AP .
5. 1 ≤ JAP ≤ k

– The above can be abstracted as

Π2 : SPK

{
(A, e, s, t, x, w, JAP ) :

Ae+γ = g0g
s
1g

t
2g

x
3 ∧ we+q = v ∧ S = u

1
JAP +s+1

AP ∧
T = ux

0u
R

JAP +t+1

AP ∧ 1 ≤ JAP ≤ k

}
(M)

– AP then verifies that the SPK is correct. If yes, then accept and saves S, T ,
R into database.

– User then increases its counter, JAP , by one.

Instantiation of Π2. Upon receiving seed, the user computes the following
quantities: A1 = gr1

1 gr2
2 gr3

3 , A2 = Agr1
2 , A3 = wAP gr2

3 , A4 = gJAP
1 gt

2g
r4
3 , S =

u
1

JAP +s+1

AP ,T = ux
0u

R
JAP +t+1

AP , R = H(seed) and computes the following SPK Π3.

Π3 : SPK

{
(r1, r2, r3, r4, δ1, δ2, δ3, δ4, δJ , δt, e, s, t, x, JAP ) :

A1 = gr1
1 gr2

2 gr3
3 ∧ Ae

1 = gδ1
1 gδ2

2 gδ3
3 ∧

e(A3,PAP )
e(v,hAP ) = e(g3, hAP )δ2e(g3, pAP )r2e(A3, hAP )−e ∧

e(A2,w)
e(g0,h0)

= e(g1, h0)se(g2, h0)te(g3, h0)xe(g3, h0)δ1e(g3, w)r1e(A2, h0)−e ∧
uAP

S = SJAP Ss ∧ A4 = gJAP
1 gt

2g
r4
3 ∧ Ax

4 = gδJ
1 gδt

2 gδ4
3 ∧

uR
AP

T = T JAP T tu−δJ
0 u−δt

0 ux
0 ∧ 1 ≤ JAP ≤ k

}
(M)

where δ1 = r1e, δ2 = r2e, δ3 = r3e, δJ = JAP x, δt = tx, δ4 = r4x.

For a more detail protocol for the range check of JAP , please refer to the
appendix A.
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PublicTracing. For two entries (SPK, S, T, R) and (SPK ′, S′, T ′, R′), if S �= S′,
then the underlying user of both authentications has not exceeded its prescribed
usage k or they are from different user.

If S = S′, then everyone can compute ux
0 = (T R′

T ′R )((R
′−R)−1). From ux

0 and
the identification list, output i as the cheating user. Now if ux

0 does exist, it can
be concluded that GM has deleted some data from the identification list and
output GM.

5 Variants of Our Scheme

5.1 Trading Computation Efficiency for Setup-Freeness

We propose a variant of our scheme where the AP enjoys a high degree of setup-
freeness. That is, the AP only needs to publish its access group, identity ID and
bound k. In this new scheme, interactive GrantingAccess and RevokingAccess
are no longer needed and there is no need for the AP to keep the ARC, too. The
price is that user will have to compute the witness for the AP by himself with a
procedure of O(n) steps, where n is the size of the access group. Moreover, each
time the access group changes, user need to perform this O(n) steps to compute
a new witness again.

We highlight the changes as follow. In the init phase, a common accumulator
is initialized for all AP’s by randomly selecting q ∈R Z∗

p and computing qi = h0
qi

for i = 1, · · · , tmax, where tmax is the maximum number of users in an access
group. This procedure can be done by the GM or a trusted third party.

In APSetup, the AP only needs to publish is identity and bound k. It also
needs to maintain a list of users allowed to access its application. Interactive
grating access and revoking access are removed. The AP simply needs to change
the content of the list of users in its access group.

Finally, users in the access group have to compute their own witness as follow.
Retrieve the list of membership public key {ej} of the AP’s access group. User
with membership public key ei ∈ {ej} first accumulates the set {ej} into a value

v by computing v = h
�k=|{ej}|

k=1 (ek+q)
0 . This quantity could be computed without

knowledge of q using the qi. Note that both user and AP can compute v locally.

The user also computes the witness w by h
�k=|{ej}|

k=1,k�=i (ek+q)
0 such that v

(q+ei)
w = v.

The rest of the protocol follows the original scheme, and same SPK Π3 is
used.

5.2 Trading Key-Size for Constant Proving Effort

Motivated by [19], we outline how to a construct dynamic k-TAA with constant
proving effort. Each AP has to publish k signatures Sig(1), · · · , Sig(k). In the
proof, instead of proving 1 ≤ JAP ≤ k (which has complexity O(log(k))), the
user proves possession of signature on JAP (which has complexity O(1)). This
indirectly proves that JAP is within the range. The price to pay is that, the
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public key size of the AP is now linear in k, and user colluding with AP can
be untraceable (since the malicious AP can issue several Sig(JAP ) for the user.
BBS+ signature is a natural candidate for the signature scheme used by the AP.

5.3 A New k-TAA Scheme

Our scheme can be further modified into an ordinary k-TAA scheme following
the outline in [15]. It should be noted that the scheme constructed this way is
very similar to the TS06 scheme. The modification is shown in appendix B.

6 Security and Efficiency Analysis

6.1 Efficiency Analysis

Following the parameters suggested by Boneh et al.[3,2], we can take p = 170
bits and each group element in G1, G2 can be represented by 171 bits. The
authentication protocol will then consists of AP sending a 160-bit seed to the
prover, while SPK Π3 consists of 16 elements in Z∗

p, 4 elements in G1 and 2
elements in Gp. Assume elements in Gp is represented by 171 bits (using another
elliptic curve group where pairing is not available[12]). Range proof of JAP could
be efficiently done if we set k = 2κ for some integer κ, using the protocol in
appendix A, bits transmitted is ((5 + 3κ) ∗ 170 + 171κ).

Then Π3 consists of 574.5 + 85 log(k) bytes. On the other hand, if we im-
plement the tradeoff described in Section 5, the range proof is replaced by the
possession of a BBS+ signature, which is of size 213 bytes. The following ta-
ble summarizes the communication cost of most (dynamic) k-TAA schemes in
the literature. Security parameters of all schemes are set such that they have
comparable security with standard 1024-bit RSA signature (though it should be
noted that, the parameters are in slight favor towards NS05 [15], since they use
group of orders of a 160-bit prime which result in a slightly weaker security than
the 1024-bit RSA signature). The first 3 entries of the table are taken from [15].
Note that k is the allowable number of authentication.

Bytes sent by AP Bytes sent by User Dynamic
TFS04 scheme 40 60k + 1617 No
NS05 ordinary 20 60k + 224 No
NS05 dynamic 20 60k + 304 Yes

Our dynamic scheme 20 700 or 574 + 85 log(k) Yes
TS06 scheme 20 500 or 300 + 85 log(k) No

In TS06[19], full details of the proof of knowledge protocol is not given and
thus the figure is just an estimation. We assume same proof of knowledge on
range is used. TS06 makes use of a group signature scheme [12](referred to as FI
scheme hereafter) as we use the BBS+ signature scheme for the join protocol.
Assume TS06 uses the signature protocol of the FI scheme for proving knowledge
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of a membership certificate, which is 1711 bits(very similar to BBS+). A point to
note is that if used this way, the zero-knowledge of the protocol is computational
(under the DDH assumption).

6.2 Security Analysis

Regarding the security of our dynamic k-TAA, we have the following theorem
whose proof shall appear in the full version of the paper.

Theorem 3. Our scheme possesses D-Detectability, D-Anonymity and D-Ex-
culpability under the y-DDHI assumptions in the random oracle model.

7 Conclusion

We constructed a constant-size dynamic k-TAA scheme, modified it to an ordi-
nary k-TAA scheme, and proved its security. We also analyzed the efficiency of
our system and compare it with existing (dynamic) k-TAA schemes. Our scheme
outperforms any existing dynamic k-TAA schemes in the literature. Finally, the
BBS+ signature we analyze could be useful for other cryptographic systems.
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A Range Proof for JAP

Secure and efficient exact proof of range is possible in groups of unknown order
under factorization assumption [4]. Here, we make use of the fact that if we set
k = 2t for some integer t, efficient range check for JAP could be achieved as
follows.

Let g, h be two generators of a cyclic group G of order p whose relative discrete
logarithm is unknown. To prove knowledge of a number J such that 0 < J ≤ k
in a commitment CJ = gJhr, let Ji be the i-th bit of J for i = 1, · · · t. Compute
Ci = gJihri for some ri ∈R Z∗

p for i = 1, · · · , t. Compute the following SPK.

Πrange : SPK

{
(J, a, b, r, ri) :

CJ = gJhr ∧ CJ/g = gahr ∧
∏t

j=1 (Cj)2
j

= gJhb ∧

[Ci = hri ∨ Ci/g = hri ]i=t
i=1

}
(M)

where a = J − 1, b =
∏t

j=1 rj2j .

The total protocol consists of 4+ t elements in Zp, 2t+1 challenges also in Zp

and t Ci’s in G. In our protocol, total size of the range proof is (5 + 3t) ∗ 170 +
t ∗ 171 bits.

B A New k-TAA Scheme

We show how to modify our dynamic k-TAA scheme to an ordinary k-TAA
scheme. It turns out to be very similar to TS06. As mentioned in [15], a user in
dynamic k-TAA needs to prove to an AP three conditions:

1. he has been registered as a group member;
2. he is in the access group of the AP;
3. he has not accessed the AP for more than the allowable number of times.
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For ordinary k-TAA, a user just need to prove condition (1) and (3). The modi-
fication is outline as follow. The setup of the accumulator is removed and there
are no GrantingAccess and RevokingAccess. In the authentication procedure,
the following SPK is carried out.

SPK

{
(A, e, s, t, x, JAP ) :

Ae+γ = g0g
s
1g

t
2g

x
3 ∧ S = u

1
JAP +s+1

AP ∧

T = us
0u

R
JAP +t+1

AP ∧ 1 ≤ JAP ≤ k

}
(M)

The above can be instantiated as the following SPK Π4. Upon receiving seed,
the user compute the following quantities: A1 = gr1

1 gr2
2 , A2 = Agr1

2 , A3 =

gJAP
1 gt

2g
r3
3 , S = u

1
JAP +s+1

AP ,T = ux
0u

R
JAP +t+1

AP , R = H(seed) and compute the
following SPK.

Π4 : SPK

{
(r1, r2, r3, δ1, δ2, δ3, δJ , δt, e, s, t, x, JAP ) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧

e(A2,w)
e(g0,h0)

= e(g1, h0)se(g2, h0)te(g3, h0)xe(g2, h0)δ1e(g2, w)r1e(A2, h0)−e ∧
uAP

S = SJAP Ss ∧ A3 = gJAP
1 gt

2g
r3
3 ∧ Ax

3 = gδJ
1 gδt

2 gδ3
3 ∧

uR
AP

T = T JAP T tu−δJ
0 u−δt

0 ux
0 ∧ 0 ≤ JAP ≤ k

}
(M)

where δ1 = r1e, δ2 = r2e, δJ = JAP x, δt = tx, δ3 = r3x.
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Abstract. We present specifications and provably-secure protocol, for
fully automated resolution of disputes between a provider of digital goods
and services, and its customers. Disputes may involve the timely receipt
of orders and goods, due to communication failures and malicious faults,
as well as disputes on the fitness of the goods to the order. Our design
is a part of a layered architecture for secure e-commerce applications [1],
with precise yet general-purpose interfaces, agreements and validation
functions (e.g. automatically resolving disputes on quality or fitness of
goods). The modular design of the protocol and specifications, allows
usage as an underlying service to different e-commerce, e-banking and
other distributed systems. Our protocol operates efficiently, reliably and
securely under realistic failure and delay conditions.

1 Introduction

Modern commerce allows clients to securely place orders at providers, and re-
ceive goods or services in timely manner. Clients and providers can use different
mechanisms to resolve disputes on the delivery of the orders and of the goods,
and on the quality or fitness of the goods (for the given order).

Obviously, the efficiency and security of the dispute resolution process are
critical - and especially for digital transactions (electronic commerce). Indeed,
there are many works on avoiding disputes and/or on enabling dispute resolution
for secure e-commerce; specifically, this is of the main applications of digital
signatures.

However, surprisingly, existing works do not provide fully automated resolu-
tion of disputes on the timely provision of appropriate goods/services, to satisfy
a given order. There are many works on avoiding specific disputes, e.g. ensuring
atomic contract-signing or fair exchange; however these apply only to specific
interactions, and not to general orders. Other works deal with dispute resolu-
tion via evidences (‘non-repudiation’), however without rigor specifications and
proofs, and without clear interfaces allowing modular design. As a result, existing
electronic commerce lack appropriate automated dispute-resolution processes,
and depend on manual resolution - or simply on customers accepting the records
of the service providers (e.g., broker). Considering that communication systems
are subject to failures, and that computer systems are subject to attacks by third
parties, we find the current situation of e-commerce (e.g. e-banking) rather dis-
turbing.

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 126–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this work, we present specifications and provably-secure protocol, for fully
automated resolution of disputes between a provider of digital goods and services,
and its customers. The protocol is extremely efficient and quite simple; however,
the definition of appropriate, flexible, extensible yet well-defined specifications
is non-trivial. The specifications allow resolving of disputes involving the timely
receipt of orders and goods, due to communication failures and malicious faults,
as well as disputes on the fitness of the goods to the order.

The design we present is flexible, and supports any type of e-commerce orders
or transactions, allowing its use as underlying layer for many secure commerce
protocols. In our layered architecture design [1] each network principal employs
secure e-commerce application layers, including payment layers, the order layer
(in this paper) and an attestation layer, as a bottom layer; see Figure 1.

One aspect of the flexibility of our design, unlike typical fair-exchange or
contract signing protocols, is the support for arbitrary trade validation function
for orders, provided as a ‘black box’ function to e-commerce protocols. The trade
function is defined as part of an agreement between the order client and order
server. Additional aspect in the architecture [1] is that each layer provides its
own evidences for upper layers. For instance, the attestation layer, which is used
by our protocol, issues to the sender evidences of message delivery (EOD) or of
failure to submit message (EOFS) (see 1); these become part of the evidences
(e.g. of goods delivery) produced by the order layer.

We present concrete specifications of liveness and correctness for our protocol.
For example, we specify a formal experiment of failed goods delivery, where for
a non adversarial client and notary, connected by non-faulty channel, a server
cannot obtain an evidence of failed delivery of goods, if no such delivery was
actually made (see Section 4, Experiment 4). We provide the mechanisms to
build protocols with concrete security proofs, on top of our protocol.

Related Work. Many payment models and schemes have been developed over
the years. Many of these protocols focused on aspects of the payment process,
where the widely-used credit card system is not satisfactory. The two main di-
rections here are micropayments [2,3,4] and digital (anonymous) cash [5]. An
important exception is iKP, the i-Key-Protocol [6], a family of protocols for se-
cure credit-card payments, which was adopted by MasterCard and Visa for the
SET standard (which seems to have been abandoned). Another important ex-
ception is the NetBill [7] protocol, which is a distributed transactional payment
protocol featuring atomic delivery, where payment proceeds only if the customer
had received the goods. Additional, notable layered architecture, though lacking
automated resolution process, is SEMPER [8], which aimed to create a global,
decentralized and secure marketplace. The literature also includes vast research
regarding non-repudiation and fair exchange [9,10,11] along with dispute resolu-
tion [12] for different levels of a trusted third party involvement [13]; for survey
see [14]. The mentioned works lack the proofs to match between orders and is-
sued goods, or don’t handle failed submission of orders, payments or payment
option deposits, which makes them unsuitable as underlying infrastructure for
secure e-commerce services.
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Contribution of this work. Our main contribution is the specifications for e-
commerce order layer as a fully-automated service, underlying secure e-commerce
protocols and applications. Another contribution is in presenting an efficient,
practical e-commerce protocol, along with solid, reduction-based proof of secu-
rity; this is the first application of the framework of [15]. A final contribution
is our validation constructions, where every e-commerce layer defines its valida-
tion functions for automated dispute resolution, which is efficient and fair to all
parties.

Fig. 1. Secure E-commerce layers vs. Internet layers

Table 1. Attestation evidence structure

Evidence Field Description
type Evidences of origin, delivery and failed submission,

EOO, EOD, EOFS, respectively.
agr Attestation agreement.
msg The message sent.
ci Creation time interval.
σ Signature over evidence fields.

Organization. The rest of the paper is as follows. In the next section we describe
the lower layers (model) assumed by our specifications and protocol; specifically,
attestation layer, as well as basic communication and digital signatures. In Sec-
tion 3 we describe the order layer and protocol implementation. We present the
formal specifications only in Section 4, and then, in Section 5, we present analy-
sis of the protocol and prove that it meets the specifications. The last section
concludes.
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Table 2. Attestation agreement

Agreement Field Description
Δatt Bound on attestation layer answer, for message delivery.
Client, Server, Notary The identities of the principals participating in the

agreement. Principal’s identity is an (addr, vk) tuple,
of principal’s address and public validation key,
respectively.

2 Lower Layers: Attestation, Communication and
Signatures

2.1 Attestation Layer

The Attestation layer is the lowest secure e-commerce layer. Attestation layer
is based on top of a transport layer, such as, for example, TCP/IP, TLS/SSL,
working on top of socket or SSL API, respectively, and provides additional certi-
fication services. Attestation layer has three parties: client, server, and a notary
(trusted third party), which acts as time-stamping and certification (attestation)
provider. For specification and analysis see [16].

An attestation evidence (Table 1) is a time-stamped and signed statement,
regarding the delivery of messages. Attestation layer provides three evidences:

Evidence of delivery (EOD) , is a proof for the message sender, that the in-
tended message receipient received the message (during given time interval).
EOD is signed by the recipient (and used by the sender).

Evidence of origin (EOO) , is proof that that the message originated from
the claimed sender (during given time interval). EOO is signed by the sender
(and used by the recipient).

Evidence of failure and submission (EOFS) , allows the sender to prove
sending the message in question (during given time interval), even if the mes-
sage wasn’t received due to communication faults, or if the recipient failed
to acknowledge receiving it. The attestation layer doesn’t try to re-deliver a
message; reliability service should be provided by layers below attestation,
e.g., TCP. EOD is signed by the notary (and used by the sender).

Attestation Agreement. An attestation channel requires the parties to agree
on an attestation agreement, specified in Table 2. The agreement specifies identi-
ties (by address and public key), for sender, recipient and notary. The agreement
also includes Δatt, a bound on the time required for the attestation service to
return an evidence, EOD or EOFS, for a sent message.

Validation. The validation functionality is not related to any particular in-
stance of attestation module, and could be invoked by any third party, which
had obtained the attested communication agreement and the evidence in ques-
tion. Validate(e) is an efficient predicate that returns whether the evidence e is
valid.
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Attestation interface. The interface between payment and attestation layers
is described in Table 3, and consists of initialization interface and an interface
to send and receive message along with their respective evidences.

Table 3. Attestation layer interface

Method Direction Description
Init(1k) in Initializes layer, with a security parameter.
InitResult(vk,addr) out Returns generated validation key vk of the

initializer, and the principal’s address addr
in the payment network.

OpenChannel(AttAgr,ρ) in Establishes an attested channel for the role
ρ ∈ {C, S, N}, client, server and notary,
respectively.

OpenChannelResult(success) out Notifies the principal on attestation channel
establishment.

CloseChannel() in Closes an attested communication channel.
Send(AttAgr,m) in Sends a message m on an open channel.
SendResult(e) out Returns an attestation evidence, Table 1,

for the sent message.
Receive(e) out Delivery of evidence of origin, Table 1,

which also includes the message, e.msg.

Initialization. Attestation initialization is two phased, where in Init, the attes-
tation layer generates secret and validation key pair, keeps the secret key and in
InitResult returns the validation key, along with the (communication) address of
the attested instance. These values, address and validation key, compose princi-
pal’s identity, for the above layer, e.g., payment or application layers, and would
be used to sign evidences, as specified in Table 1.

2.2 Communication Layer and Signature Scheme

Communication Layer. We can use any basic communication mechanism for
direct communication between the notary and the client/server. We only need
two methods: Comm.Send(ρ,m), Comm.Receive(ρ,m), for sending or respec-
tively receiving a message m to or from a party ρ. We assume communication
delay is bounded by Δ < Δatt. For brevity, when we present the protocol in
Section 3 we assume ρ is mapped to the address of the ρ party in the context of
attestation agreement used to open an attestation channel.

Signature Scheme. We also assume typical signature scheme construction
of PKS=(PKS.KG,PKS.Sign,PKS.ValidateSig) for key generation, signing and
signature validation services, respectively. Where vk=PKS.KG(1k) receives an
unary security parameter, returns a validation key, and keeps the signing key.
The Sign(m) algorithm digitally signs a message m, and returns (m,σ) tuple,
where σ is the signature, and ValidateSig(m,σ,vk) validates signature σ for the
message m, using supplied validation key vk.
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3 Order Layer

The order layer encapsulates operations (“orders”) related to goods and ser-
vices. The layer provides the service for placing an order for goods or services by
a client, and validating that the server returned order result adhere to an order
agreement between the principals.

Order Agreement. We define an order agreement between trading parties as
specified in Table 4. An order agreement is used to generate attestation agree-
ments between order client and server, and a trade validation function, Validate-
Trade(order,goods). Abandoning generality in sake of brevity, we would assume
that the order layer notary is the the same notary as for attestation. Therefore,
we only use attestation layer between client and server, and ordinary communi-
cation between notary and client/server.

The ValidateTrade function provides versatility of trade by allowing the client
and the server to agree on arbitrary goods and services similarly to traditional
trade agreements. The function should should have BadOrder, BadGoods, Or-
derOk, GoodsOk return values. The BadOrder return value is issued for an order
which is invalid under the agreement, regardless of the value of goods. The sec-
ond, BadGoods return value, is issued for goods which do not match the order
(which should also include the amount), the OrderOk returned for valid order,
without goods; and the GoodsOk status is returned when the corresponding
goods match the order, in the context of the agreement.

Table 4. Order agreement

Agreement Field Description
Δorder Bound on order layer answer for an order request.
ValidateTrade(order,goods) Trade validation function. Validates that issued
returns status; goods match the order.
C,S,N Order layer participating principals. A (C)lient,

(S)erver and a (N)otary, (addr, vk) identities.
N.vk Order layer notary validation key, for signing

order evidences.
AttAgr{C,S},AttAgr{S,C} Encapsulated attestation agreements, see Table 2.

Order interface. The interface between the application and order layer, Ta-
ble 5, defines the initialization, ordering goods or services, and validation of
order results. In the first, Init phase, each order layer machine establishes its
own identity, as returned by attestation layer. Using this information a principal
may establish order agreements with other network principals.

When an order channel is established, order transaction are invoked with
Order event, supplying client specified order information which defines the de-
posited option or type of goods to acquire, the payment amount, and possibly
other relevant information (e.g., original merchant offer). We then expect an
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Table 5. Order layer interface

Method Direction Description
Init(k) in Initializes the order layer, with security

parameter k.
InitResult(vk,addr) out Returns initializer’s address addr, and

validation key(s) vk.
OpenChannel(OrderAgr,ρ) in Opens an order channel with the principals

specified by OrderAgr agreement using role ρ.
OpenChannelResult(status) out Notifies the application of the order channel

establishment success.
CloseChannel() in Closes an order channel.
OrderResult(e) out Returns CommFail or order evidence e result.
Client
Order(order) in Instructs the order layer to issue an order,

described by order, over an established
order channel.

Server
VendRequest(order) out Instructs the application layer to issue goods,

described by order, and implicitly by the
order agreement, in the order context.

VendRequestResult(goods) in Returns goods vended by upper layer.

OrderResult event within finite time, as governed by Δatt, specified in the order
agreement.

On the server side, we assume an application (or upper) level functionality to
issue goods or services, using VendRequest interface. The goods and services are
issued in the context of the order agreement specified for the open order channel,
and are verifiable by order agreement’s ValidateTrade.

Table 6. Order layer evidences structure

Order Evidence Field Description
type Evidences of placed order, failed order, goods delivery,

or failed goods delivery, EOGR, EOFO, EOGD, EOFGD,
respectively.

OrderAgr Order layer agreement.
order The order specified by the evidence.
goods The corresponding goods.
σ Order layer proof, for the above evidence.

Order Evidences. The structure of order layer evidences is shown in Table 6.
The evidences include various trade related evidences, as specified below, and
evidence’s e proof e.σ consists of lower, attestation layer evidences.

- EOGR. The order layer Evidence of Goods and Receipt, is client’s (buyer)
proof that the corresponding order had reached the server (seller), and that
goods had been obtained for the order.
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- EOGD. The order layer Evidence of Goods Delivery, is server’s (seller)
proof that the goods issued for client’s order had reached the client.

- EOFO. The order layer Evidence of Failed Order, is client’s proof that the
order process had failed. It could either be the case that the order message itself
wasn’t acknowledged by the server, or if it was acknowledged but the server
didn’t issue goods.

- EOFGD. The order layer Evidence of Failed Goods Delivery, is server’s
proof that the goods delivry process had failed, since the goods message wasn’t
acknowledged by the client.

Notation. We use the dot notation to refer to elements of records or tuples,
e.g., for an attestation evidence e, e.type denotes the evidence type, as specified
in Table 1.

1 Order.Init(1k, ρ) : (vk, addr) = Att.Init(1k)
2 : if ρ = N
3 : N.vk = PKS.KG(1k)
4 : Order.InitResult((vk,N.vk), addr)
5 : else Order.InitResult(vk, addr)
6 Order.OpenChannel( : OrderAgr = OrderAgr’
7 OrderAgr′, ρ) : AttAgr{C,S} = OrderAgr.AttAgr{C,S}

8 : AttAgr{S,C} = OrderAgr.AttAgr{S,C}

9 : if ρ ∈ {C, S}
10 : success = Att.OpenChannel(AttAgr{C,S} ,C) ∧
11 : Att.OpenChannel(AttAgr{S,C} ,S)
12 : Order.OpenChannelResult(success)

Fig. 2. Initialization protocol for order layer parties, ρ ∈ {C, S, N}, saves OrderAgr
and included agreements as principal’s state

1 on Receive(e={EOO,AttAgr{C,S},order,ci,σ}) :
2 : if ValidateTrade(order,⊥) = OrderOk
3 : goods = VendRequest(order)
4 : se = Send(AttAgr{S,C} ,goods)
5 : if (se.type = EOD) OrderResult({EOGD,OrderAgr,order,goods,{e,se}})
6 : if (se.type = EOFS) OrderResult({EOFGD,OrderAgr,order,goods,{e,se}})
7 : if (se=CommFail) OrderResult(CommFail)
8 on Comm.Receive(N,e={EOD,AttAgr{C,S},order,ci,σ}) :
9 : if Att.Validate(e)
10 : Comm.Send(N,se)

Fig. 3. Order layer protocol for the Server. For conciseness the protocol is for a single,
unique, order; extension for multiple orders is trivial.
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1 on Comm.Receive(C,e={EOD,AttAgr{C,S},order,ci,σ}) :
2 : if Att.Validate(e) ∧ ValidateTrade(order,⊥) = OrderOk
3 : set timer for AttAgr{S,C}.Δatt

4 : Comm.Send(S,e)
5 on Comm.Receive(S,e={EOFS||EOD,AttAgr{S,C},goods,ci,σ}) :
6 : if timer set ∧ Att.Validate(e)
7 : cancel timer
8 : if ValidateTrade(order,goods) = GoodsOk
9 : if e.type = EOD return //client is cheating, server did deliver
10 : else Comm.Send(C,e)
11 : else goto 13
12 on timer :
13 : Comm.Send(C,PKS.Sign({EOFO,OrderAgr,order,⊥}))

Fig. 4. Order layer protocol for the Notary. For conciseness the protocol is for a single,
unique, order; extension for multiple orders is trivial.

1 on Order(order) :
2 : se = Send(AttAgr{C,S},order)
3 : if (se = EOFS) OrderResult({EOFO,OrderAgr,order,⊥,{se}})
4 : if (se = EOD) set timer1 for AttAgr{S,C}.Δatt

5 on timer1 : set timer2 for AttAgr{C,S}.Δatt + AttAgr{S,C}.Δatt

6 : Comm.Send(N,se)
7 on Comm.Receive(N,e={EOFO,OrderAgr,order,⊥,σ,σe}) :
8 : if PKS.ValidateSig(e,N.vk)
9 : OrderResult(e)
10 on Comm.Receive(N,e={EOFS,AttAgr{S,C},goods,ci,σ}) :
11 : if Att.Validate(e) = true goto 13
12 on Receive(e={EOO,AttAgr{S,C} ,goods,ci,σ}) :
13 : if ValidateTrade(order,goods) = GoodsOk
14 : OrderResult({EOGR,OrderAgr,order,goods,{e,se}})
15 on timer2 : OrderResult(CommFail)

Fig. 5. Order layer protocol for the Client. For conciseness the protocol is for a single,
unique, order; extension for multiple orders is trivial. The protocol terminates for the
order and cancels timers after OrderResult.

Order Layer Protocol. We show the order layer protocol in Figures 2, 3, 4, 5,
for common initialization, server-side, notary-side and client-side, respectively.
In initialization, the attested channels are opened between each pair of roles
specified in the order agreement (Table 4), namely, client, server and notary.
The protocol implementation describes how each party acts upon receiving a
messages, both attested and non-attested. The presented protocol is optimistic.
The client tries first to send the order over an attested channel to the server.
When the client obtains evidence of delivery for the order, it sets a timer for
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delivery of goods. If the optimistic approach fails, and the goods haven’t been
delivered, the client forwards the order EOD to the notary. The notary, validates
the EOD and in turn, forwards the EOD to the server. If the goods aren’t re-
ceived the notary issues an EOFO to the client. Upon receiving order EOD, the
server already aware of the order (the client did obtain EOD) should send the
notary the corresponding goods EOD or EOFS.

Validation. The validation functionality, Validate(e), Figure 6, is common to
all parties. That is, an automatic dispute resolution system, or an arbiter, upon
dispute, would instantiate the order layer, and supply the relevant order agree-
ment along with the the protocol-specific order evidence e. The aforementioned
evidences typically composed of pairs of relevant attestation evidences.

Non-Notarized Communication Failures. Recovery from non-notarized
communication failures is possible for honest parties. Consider the case where a
client (or similarly a server) issuing an order request, receives in return a commu-
nication failure (instead of an EOD). The client could not possibly know whether
the channel had failed, before the request had been delivered (and server had
obtained an EOO), or afterwards, and the failure had prevented the client from
receiving an EOD (or EOFS). For recovery from the former, honest parties could
include with the next order or goods response the received EOOs, or indication
of such. Thus, the state of order which had experience communication failure
would be unknown only until the next successful one.

Order.Validate(e):
1 if PKS.ValidateSig(e,e.OrderAgr.N.vk) ∧ e.type=EOFO return true
2 eatt0 = e.σ[0], eatt1 = e.σ[1]
3 if e.type=EOFO
4 return Att.Validate(eatt0 ) ∧ e.order = eatt0 .msg
5 ∧ ValidateTrade(e.order,⊥)=OrderOk ∧ eatt0 .type = EOFS
6 if e.type=EOGR
7 return Att.Validate(eatt0 ) ∧ Att.Validate(eatt1 ) ∧
8 ∧ ValidateTrade(e.order,e.goods)=GoodsOk ∧ eatt0 .type = EOO||EOFS ∧
9 ∧ eatt1 .type = EOD ∧ eatt0 .msg = e.goods ∧ eatt1 .msg = e.order
10 if e.type=EOFGD
11 return Att.Validate(eatt0 ) ∧ Att.Validate(eatt1 ) ∧
12 ∧ ValidateTrade(e.order,e.goods)=GoodsOk ∧ eatt0 .type = EOO ∧
13 ∧ eatt1 .type = EOFS ∧ eatt0 .msg = e.order ∧ eatt1 .msg = e.goods
14 if e.type=EOGD
15 return Att.Validate(eatt0 ) ∧ Att.Validate(eatt1 ) ∧
16 ∧ ValidateTrade(e.order,e.goods)=GoodsOk ∧ eatt0 .type = EOO ∧
17 ∧ eatt1 .type = EOD ∧ eatt0 .msg = e.order ∧ eatt1 .msg = e.goods

Fig. 6. Implementation of order layer Validate efficient algorithm for order evidence
validation. In the algorithm, for brevity and simplicity, we assume that the notary N,
is also the notary of the order agreement attestation channels.
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4 Specifications

For the protocol analysis we adapt a new layered adversarial specifications frame-
work method. While full details may be obtained in [15], intuitively, having con-
crete and well-defined specifications for both the layer below the analyzed layer
and the analyzed layer itself, we would like to relate the two specifications and
show that given an adversary which ‘breaks’ the analyzed layer specifications,
we could use this adversary to ‘break’ the lower-layer specifications.

In our simplified model the protocol flow is ‘single threaded’, with a single
thread (or queue) of instantaneous events for each machine. For simplicity we
assume reliable clock services, though we believe the model could be easily ex-
tended to support bounded clock drifts.

We define execution as a deterministic function of the protocol machines initial
states and random tapes (which could be supplied to the protocol machines
during initialization).

Definition 1. An execution, X, is a set of protocol machine events, ordered by
time. Given an execution X, let X.time be the execution running time and let
view(X, u), the u-view of X, be the sequence of events, subset of X, applied to
protocol machine u only.

We now define a V R : {X} × {OrderAgr} × {ρ} → {true, false} predicate, to
specify parties which were properly initialized in executions. For simplicity, we
don’t specify special inputs for adversarial takeover in the middle of execution,
therefore we consider as adversarial, parties which weren’t properly initialized.

Notation. We use <u,Method,params> to denote an event, an interface method
Method invocation of a protocol role (or machine) u, invoked with arguments
params. To shorthand, we write retval = <u,Method,params> to denote the
output of a subsequent event <u,MethodResult,retval>.

Definition 2. A role ρ of agreement OrderAgr, in execution X is properly ini-
tialized, V R(X, OrderAgr, ρ) if view(X, ρ) contains one and only one (addr, vk)
=< ρ, ‘Init’, 1k > and true =< ρ, ‘OpenChannel’, OrderAgr >.

Experiment 1. Forging Evidence of Goods and Receipt. An execution X

is won, i.e., X.winEOGR = true, if adversary outputs e = {EOGR, OrderAgr,
order, goods, σ}, s.t.,

1. V alidate(e) = true, and
2. V R(X, e.OrderAgr, N) = true, and
3. V R(X, e.OrderAgr, S) = true, and
4. X doesn’t contain <S, ‘VendRequestResult’, e.goods>

Experiment 2. Forging Evidence of Goods Delivery. An execution X is
won, i.e., X.winEOGD = true, if adversary outputs e = {EOGD, OrderAgr,
order, goods, σ}, s.t.,
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1. V alidate(e) = true, and
2. V R(X, e.OrderAgr, C) = true, and
3. either,

(a) X doesn’t contain <C, ‘Order’, e.order>.
(b) X doesn’t contain <C, ‘OrderResult’, {EOGR, OrderAgr, order, e.goods,

σ}>.

Experiment 3. Forging Evidence of Failed Order. An execution X is won,
i.e., X.winEOFO = true, if adversary outputs e = {EOFO, OrderAgr, order, ⊥,
σ}, s.t.,

1. V alidate(e) = true, and
2. V R(X, e.OrderAgr, N) = true, and
3. V R(X, e.OrderAgr, S) = true, and
4. adversary returns goods = <S, ‘VendRequest’, order>, s.t., ValidateTrade

(order,goods) = GoodsOk, whenever ValidateTrade(order,⊥) = OrderOk.
5. no faults specified by adversary for communication between N and S.

Experiment 4. Forging Evidence of Failed Goods Delivery. An execu-
tion X is won, i.e., X.winEOFGD = true, if adversary outputs
e = {EOFGD, OrderAgr, order, ⊥, σ}, s.t.,

1. V alidate(e) = true, and
2. V R(X, e.OrderAgr, N) = true, and
3. V R(X, e.OrderAgr, C) = true, and
4. no faults specified by adversary for communication between N and C.

We now define additional specifications [15], for the attestation and order e-
commerce layers.

Definition 3. Let EX(A, π, r) be execution of protocol π with adversary A and
random tapes r. Attestation implementation πATT is ε(t, n)-secure if for suffi-
ciently large n and adversary A running up to time t, it holds that:

PrX=EX(A,πAT T ,r)[(X.winEOO ∨ X.winEOD

∨X.winEOFS)∧ ∧ |X| < n ∧ X.time < t] < ε(t, n)

Definition 4. Let EX(A, πHIGH , πLOW , r) be execution of protocol πHIGH on
top of protocol πLOW with adversary A and random tapes r. Order protocol
implementation πORDER is ε(t, n)-secure, if for sufficiently large n and adversary
A running up to time t, it holds that:

PrX=EX(A,πORDER,πA−AT T ,r)[(X.winEOGR ∨ X.winEOFO ∨ X.winEOGD

∨ X.winEOFGD) ∧ |X|<n∧X.time < t] < ε(t, n)

Liveness 1. Δ-CN-Liveness for honest Client, Notary and non-faulty
communication. For an o1 =< C, ‘Order’, order > event, in the interval [t −
Δ, t], the protocol ensures o2 =< C, ‘OrderResult’, e >,in the interval [t, t +
Δ], where e.order=order, e.type=EOGR or e.type=EOFO and Validate(e)=true
whenever:
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1. V R(X, e.OrderAgr, N) = true, and
2. V R(X, e.OrderAgr, C) = true, and
3. no faults specified by adversary for communication between N and C.

Liveness 2. Δ-SN-Liveness for honest Server, Notary and non-faulty
communication. For an o1 =< S, ‘VendRequestResult’, goods > event, in the
interval [t − Δ, t], the protocol ensures o2 =< S, ‘OrderResult’, e >, in the in-
terval [t, t + Δ], where e.goods=goods, e.type=EOGD or e.type=EOFGD and
Validate(e)=true whenever:

1. V R(X, e.OrderAgr, N) = true, and
2. V R(X, e.OrderAgr, S) = true, and
3. no faults specified by adversary for communication between N and S.

5 Analysis

In this section we present a short analysis for our protocol implementation pro-
vided the specifications in previous Section 4.

Theorem 1. If adversarial attestation layer protocol πA−ATT is ε(t, n)-secure
(Definition 3), then order protocol implementation πORDER is ε(t, n)-secure (De-
finition 4).

Due to space considerations we show only a sketch of proof for EOGD forgery
experiment part (Experiment 2).

Proof. Suppose some adversary, A, breaks πorder by having X.winEOGR = true,
with probability ε′ > ε(t, n). We use πorder and A to show that the execution is
X.winEOO = true, i.e., a πA−ATT forgery of EOO. In πorder, the server, S, party
will never invoke Send(AttAgr{S,C},goods), Figure 3 line 4, since Figure 3 line 3
didn’t happen, and server is properly initialized (not controlled by adversary);
however, A was able to output a valid EOGR evidence e, which contains an
attestation EOD for the order, and, w.l.o.g, attestation EOO for the origin of
goods. Therefore X.winEOO = true, because Order.Validate(e)=true implies
Att.Validate(e.σ[0])=true, where e.σ[0] is EOO for the goods.

Theorem 2. The protocol πORDER upholds
2 · max{OrderAgr.AttAgr{{ρ,ρ′}| ρ,ρ′∈{C,S}}.Δatt}-CN/SN-liveness.

Due to space considerations we show only a sketch of proof for Δ-CN-Liveness
property.

Proof. Let Δ = 2 · max{OrderAgr.AttAgr{{ρ,ρ′}| ρ,ρ′∈{C,S}}.Δatt}. By the pro-
tocol, Figure 5 line 2, client immediately invokes Send(AttAgr{C,S},order) and
upon EOD for the order, sets a timer for the answer. Consider the more com-
plex case where no goods had been received from the server. On timer wakeup,
Figure 5 line 5, the order EOD is sent to the notary, and since the communication
doesn’t fail during [t−Δ, t+Δ], the notary would proceed by forwarding the or-
der EOD to the server, Figure 4 line 4, setting a timer to bound server’s response
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time. In the case of goods delivery by the server, verified with ValidateTrade,
the goods EOFS would be forwarded back to the client on the channel, formerly
guaranteed to be non-faulty, causing an EOGR, or upon notary’s timer expira-
tion, the client will receive an explicit EOFO, since the server didn’t provide the
required evidence of sent goods, in time.

6 Conclusions

We have introduced a simple yet versatile trade protocol, with arbitrable trans-
actions and concrete, well-defined specifications, which allow provable security
and resolution of disputes with arbitrary validation of goods to order fitness
in presence of malicious faults or communication failures. An interested reader
may refer to [1] regarding how to use the protocol for further construction of
final and conditional final payments between principals, or how to conduct trade
when a PSP is a trusted party. Our design is practical, layered, and attains
automatic dispute resolution, based on precise agreements and relatively simple
cryptographic constructions assumed.
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Abstract. In an electronic cash (e-cash) system, a user can withdraw
coins from the bank, and then spend each coin anonymously and un-
linkably. For some applications, it is desirable to set a limit on the dol-
lar amounts of anonymous transactions. For example, governments re-
quire that large transactions be reported for tax purposes. In this work,
we present the first e-cash system that makes this possible without a
trusted party. In our system, a user’s anonymity is guaranteed so long as
she does not: (1) double-spend a coin, or (2) exceed the publicly-known
spending limit with any merchant. The spending limit may vary with
the merchant. Violation of either condition can be detected, and can
(optionally) lead to identification of the user and discovery of her other
activities. While it is possible to balance accountability and privacy this
way using e-cash, this is impossible to do using regular cash.

Our scheme is based on our recent compact e-cash system. It is secure
under the same complexity assumptions in the random-oracle model.
We inherit its efficiency: 2� coins can be stored in O(� + k) bits and the
complexity of the withdrawal and spend protocols is O(� + k), where k
is the security parameter.

1 Introduction

Electronic cash (e-cash) was invented by David Chaum [18,19]. Its main goal
is to match the untraceability properties of physical coins: the same bank is
responsible for dispensing e-cash to users, and for later accepting it for deposit
from merchants, and yet it cannot trace how users spent their money.

An important difference between electronic cash and physical cash, is that
electronic cash is represented by data. Data is easy to duplicate, while physi-
cal coins may be made of precious metals so the cost to minting them is high.
Therefore, an e-cash scheme must incorporate a way to ensure that an electronic
coin (e-coin) cannot be spent more than once (double-spent). Typically [20] this
is done by ensuring that, even though spending a coin once does not leak any in-
formation about a user’s identity, spending it twice leaks information that leads
to identification. An e-cash scheme with such a mechanism is a good illustra-
tion of how one can balance anonymity with accountability: a user can remain
� Part of work performed at the Massachusetts Institute of Technology.
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anonymous unless she performs a forbidden action. The system is designed in a
way that prevents this type of anonymity abuse.

In this paper we consider what other actions may be forbidden, and how to
realize e-cash schemes that would hold users accountable should they perform
such actions. At the same time, we protect the anonymity of those users who
obey the rules.

We introduce the bounded-anonymity business model. In this model, associated
with each merchant there is a publicly-known limit to the number of e-coins that
a user may anonymously give to this merchant. This limit cannot be exceeded
even if the user and the merchant collude. Should any user attempt to exceed
the limit with any merchant, and should this merchant attempt to submit the
resulting e-coins for deposit to the bank, the user’s identity will be discovered,
and further penalties may be imposed.

In the real world, this corresponds to restrictions that governments set on
unreported transactions. For example, in the U.S., banks are required by law
to log and report all transactions over $10,000. These restrictions are set up to
ensure proper taxation and to prevent money laundering and other monetary
frauds. Another example application is an anonymous pass with usage limita-
tions. For example, consider the following amusement park pass: “This pass is
good to enter any Disney park up to four times, with the restriction that the
Magic Kingdom can be entered at most twice.” Until now, it was not known
how to realize such passes anonymously.

Interestingly, in the real world it is impossible to set such restrictions on cash
transactions. A merchant may be required by law to report that he received a
lot of money in cash, but he may choose not to obey the law! In contrast, we
show that with e-cash, it is possible to enforce the bounded-anonymity business
model. The cost for achieving this is roughly double the cost of achieving regular
anonymous e-cash.

There have been several previous attempts to solve this problem, but until
now it remained an elusive open problem in electronic cash, as well as one of
the arguments why the financial community resisted any serious deployment of
e-cash, due money laundering regulations.

Some of the past efforts suggested using a trusted third party to mitigate
this problem [40,9,31]. This TTP could trace transactions to particular users.
The TTP approach is undesirable. First of all, the whole idea of electronic cash
is to ensure that no one can trace e-cash transactions. Secondly, in these past
solutions, the only way that a TTP can discover money laundering or other
violations of the bounded-anonymity model is by tracing each transaction, which
is very expensive. In a variant that reduces the trust assumption about the TTP,
Kügler and Vogt [30] propose an e-cash scheme where the bank has the ability
to trace coins by specially marking them during the withdrawal protocol. This
tracing is auditable, i.e., a user can later find out whether or not his coins were
traced (this involves an additional trusted judge). Still, this system does not allow
to discover money laundering, unless it involves the marked coins, and the user
must still trust the judge and bank for her anonymity. Another variant [35,29]
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prevents money laundering by offering users only a limited form of anonymity.
Users’ coins are anonymous, but linkable, i.e., coins from the same user can be
identified as such. Here it is easy to detect if a user exceeds the spending limit
with some merchant. However, this weak form of anonymity is not suitable for
all applications, and goes against the principle of e-cash.

Another set of papers [41,34] addressed a related problem of allowing a user
to show a credential anonymously and unlinkably to any given verifier up to
k times. They give a nice solution, but it is not clear how it can be applied
to off-line electronic cash as opposed to on-line anonymous authentication. I.e.,
showing an anonymous credential in their scheme more than k times allows a
verifier to link the k + 1 st show to a previous transaction, but does not lead
to the identification of the misbehaving user. In contrast, in our scheme, any
such violation leads to identification of the user even if the verifier (merchant)
colludes with the user.

Finally, Sander and Ta-Shma [37] propose to limit money laundering by di-
viding time into short time periods and issuing at most k coins to a user per
time period (a user can deposit his unspent coins back into his account). This
way, a user cannot spend more than k coins in a single transactions because he
has at most k coins at any given time.

Our contribution. We present the first e-cash scheme in the bounded-anonymity
business model. A user may withdraw, and anonymously and unlinkably spend
an unlimited number of coins, so long as she does not: (1) double-spend a coin,
or (2) exceed the spending limit with any merchant. Our scheme allows to effi-
ciently detect either of these violations. We also show how to augment it so as
to allow to reveal the identity of the misbehaving user. Finally, in addition to
identifying a misbehaving user, one is also able to trace all of the user’s previous
e-coins.

Our construction takes as a starting point the e-cash system of Camenisch,
Hohenberger, and Lysyanskaya (CHL) [11], which is the most efficient known.
The cost of our resulting withdrawal and spend protocols is roughly double that
of CHL. The size of the coin storage remains the same, but we also require the
user to store a counter for each merchant with whom the user does business,
which appears to be optimal. Thus we maintain CHL’s asymptotic complexity:
2� coins can be stored in O(�+k) bits and the complexity of the withdrawal and
spend protocols is O(� + k), where k is the security parameter.

2 Definition of Security

We now generalize the definition of CHL [11] to handle violations beyond double-
spending. Our offline e-cash scenario consists of the three usual players: the
user, the bank, and the merchant; together with the algorithms BKeygen,
UKeygen, Withdraw, Spend, Deposit, {DetectViolation(i), IdentifyViolator(i),
VerifyViolation(i)}, Trace, and VerifyOwnership. Informally, the key generation
algorithms BKeygen and UKeygen are for the bank and the user, respectively.
A user interacts with the bank during Withdraw to obtain a wallet of 2� coins;
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the bank stores optional tracing information in database D. In Spend, a user
spends one coin from his wallet with a merchant; as a result the merchant ob-
tains the serial number S of the coin, the merchant record locator V of the coin,
and a proof of validity π. In Deposit, whenever an honest merchant accepted
a coin C = (S, V, π) from a user, there is a guarantee that the bank will ac-
cept this coin for deposit. The bank stores C = (S, V, π) in database L. At this
point, however, the bank needs to determine if C violates any of the system
conditions.

For each violation i, a tuple of algorithms {DetectViolation(i), IdentifyViolator(i),
VerifyViolation(i)} is defined. Here, we have two violations.

Violation 1: Double-spending. In DetectViolation(1), the bank tests if two coins,
C1 = (S1, V1, π1) and C2 = (S2, V2, π2), in L have the same serial number
S1 = S2. If so, the bank runs the IdentifyViolator(1) algorithm on (C1, C2) and
obtains the public key pk of the violator and a proof of guilt Π . Anyone can run
VerifyViolation(1) on (pk, S1, V1, Π) to be convinced that the user with public key
pk double-spent the coin with serial number S1.

Violation 2: Money-laundering. In DetectViolation(2), the bank tests if two
coins, C1 = (S1, V1, π1) and C2 = (S2, V2, π2), in L have the same merchant
record locator V1 = V2. If so, the bank runs the IdentifyViolator(2) algorithm on
(C1, C2) and obtains the public key pk of the violator and a proof of guilt Π .
Anyone can run VerifyViolation(2) on (pk, S1, V1, Π) to be convinced that the
user with public key pk exceeded the bounded-anonymity business limit with
the coin with merchant record locator V1.

Optionally, after any violation, the bank may also run the Trace algorithm on
a valid proof of guilt Π to obtain a list of all serial numbers Si ever spent by the
cheating user, with public key pk, along with a proof of ownership Γ . Anyone
can run VerifyOwnership on (pk, Si, Γ ) to be convinced that the user with public
key pk was the owner of the coin with serial number Si.

Security. We generalize the security definition of CHL for e-cash [11]. Their for-
malizations of correctness, balance, and anonymity of users remain unchanged.
Roughly, balance guarantees that an honest bank will never have to accept
for deposit more coins than users withdrew, while anonymity of users assures
users that they remain completely anonymous unless they violate one of the
known system conditions. We now informally describe three additional prop-
erties. These properties are generalizations of CHL’s identification and tracing
of double-spenders, and their exculpability, to apply to any specified violation,
in particular those above. Let params be the global parameters, including the
number of coins per wallet, 2�, and a (possibly unique) spending limit for each
merchant. (Recall that each merchant may have a different spending limit, but
that a merchant’s limit will apply uniformly for all of its customers.)

Identification of violators. Suppose two coins C1 = (S1, V1, π1) and C2 =
(S2, V2, π2) are the output of an honest merchant (or possibly merchants)
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running two Spend protocols with the adversary or they are two coins that an
honest bank accepted for deposit. This property guarantees that, with high prob-
ability, if, for some i, the algorithm DetectViolation(i)(params , C1, C2) accepts,
then IdentifyViolator(i)(params , C1, C2) outputs a key pk and a proof Π such that
VerifyViolation(i)(params , pk, S1, V1, Π) accepts.

Tracing of violators. Suppose VerifyViolation(i)(params , pk, S, V, Π) accepts
for some violation i derived from coins C1, C2. This property guarantees that,
with high probability, Trace(params , pk, C1, C2, Π, D) outputs the serial numbers
S1, . . . , Sm of all coins belonging to the user of pk along with proofs of ownership
Γ1, . . . , Γm such that for all j, we have that VerifyOwnership(params , pk, Sj , Γj)
accepts.

Exculpability. Suppose an adversary participates any number of times in the
Withdraw protocol with an honest user with key pk, and subsequently to that,
in any number of non-violation Spend protocols with the same user. The ad-
versary then outputs an integer i, a coin serial number S, and a purported
proof Γ that the user with key pk committed violation i and owns coin S. The
weak exculpability property states that, for all adversaries, the probability that
VerifyOwnership(params , pk, S, Γ ) accepts is negligible.

Furthermore, the adversary may continue to engage the user in Spend proto-
cols, forcing her to violate the system conditions. The adversary then outputs
(i, S, V, Π). The strong exculpability property states that, for all adversaries: (1)
when S is a coin serial number not belonging to the user of pk, weak exculpabil-
ity holds, and (2) when the user of pk did not commit violation i, the probability
that VerifyViolation(i)(params , pk, S, V, Π) accepts is negligible.

The formal definitions follow in a straight-forward manner by applying the
above intuition to the CHL definitions [11].

3 Technical Preliminaries

Our e-cash system use a variety of known protocols as building blocks, which we
now briefly review. Many of these protocols can be shown secure under several
different complexity assumptions, a flexibility that will extend to our e-cash
systems. Notation: we write G = 〈g〉 to denote that g generates the group G.

3.1 Bilinear Maps

Let Bilinear Setup be an algorithm that, on input the security parameter 1k,
outputs the parameters for a bilinear mapping as γ = (q, g1, h1, G1, g2, h2, G2,
GT , e) [6]. Each group G1 = 〈g1〉 = 〈h1〉, G2 = 〈g2〉 = 〈h2〉, and GT are of prime
order q = Θ(2k). The efficiently computable mapping e : G1 ×G2 → GT is both:
(Bilinear) for all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zq, e(ga

1 , gb
2) = e(g1, g2)ab; and

(Non-degenerate) if g1 is a generator of G1 and g2 is a generator of G2, then
e(g1, g2) generates GT .
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3.2 Complexity Assumptions

The security of our scheme relies on the same assumptions as CHL, which are:
Strong RSA Assumption [3,27]: Given an RSA modulus n and a random
element g ∈ Z∗

n, it is hard to compute h ∈ Z∗
n and integer e > 1 such that he ≡ g

mod n. The modulus n is of a special form pq, where p = 2p′ +1 and q = 2q′ +1
are safe primes.

y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [4,25]:
Given a random generator g ∈ G, where G has prime order q, the values
(g, gx, . . . , g(xy)) for a random x ∈ Zq, and a value R ∈ G, it is hard to de-
cide if R = g1/x or not.
External Diffie-Hellman Assumption (XDH) [28,39,32,5,2]: Suppose
Bilinear Setup(1k) produces the parameters for a bilinear mapping e : G1×G2 →
GT . The XDH assumption states that the Decisional Diffie-Hellman (DDH) prob-
lem is hard in G1. This implies that there does not exist an efficiently computable
isomorphism ψ′ : G1 → G2.
Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [24]: Sup-
pose that g ∈ G is a random generator of order q. Let L be any polynomial func-
tion of |q|. Let Oa(·) be an oracle that, on input a subset I ⊆ {1, . . . , L}, outputs
the value gβI

1 where βI =
∏

i∈I ai for some a = (a1, . . . , aL) ∈ ZL
q . Further, let

R be a predicate such that R(J, I1, . . . , It) = 1 if and only if J ⊆ {1, . . . , L} is
DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with a
one in position j if and only if j ∈ Ii and zero otherwise, then there are no three
sets Ia, Ib, Ic such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise
over the integers). Then, for all probabilistic polynomial time adversaries A(·),

Pr[a = (a1, . . . , aL) ← ZL
q ; (J, α) ← AOa(1|q|); y0 = g

�
i∈J ai ; y1 ← G;

b ← {0, 1}; b′ ← AOa(1|q|, yb, α) : b = b′ ∧ R(J, Q) = 1] < 1/2 + 1/poly(|q|),

where Q is the set of queries that A made to Oa(·).

3.3 Key Building Blocks

Known Discrete-Logarithm-Based, Zero-Knowledge Proofs. In the common pa-
rameters model, we use several previously known results for proving statements
about discrete logarithms, such as (1) proof of knowledge of a discrete logarithm
modulo a prime [38] or a composite [27,23], (2) proof of knowledge of equality
of representation modulo two (possibly different) prime [21] or composite [15]
moduli, (3) proof that a commitment opens to the product of two other com-
mitted values [14,16,8], (4) proof that a committed value lies in a given integer
interval [17,14,7], and also (5) proof of the disjunction or conjunction of any
two of the previous [22]. These protocols modulo a composite are secure under
the strong RSA assumption and modulo a prime under the discrete logarithm
assumption. We can apply the Fiat-Shamir heuristic [26] to turn such proofs of
knowledge into signature proofs of knowledge on some message m.
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DY Pseudorandom Function (PRF). Let G = 〈g〉 be a group of prime order q.
Let s be a random element of Zq. Dodis and Yampolskiy [25] recently proposed a
pseudorandom function fDY

g,s (x) = g1/(s+x) for inputs x ∈ Z∗
q . This construction

is secure under the y-DDHI. 1

Pedersen Commitments. Pedersen proposed a perfectly-hiding, computationally-
binding commitment scheme [36] based on the discrete logarithm assumption,
in which the public parameters are a group of prime order q, and generators
(g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈ Zq

m, pick a ran-
dom r ∈ Zq and set C = PedCom(v1, . . . , vm; r) = gr

0
∏m

i=1 gvi

i . Fujisaki and
Okamoto [27] showed how to expand this scheme to composite order groups.

CL Signatures. Camenisch and Lysyanskaya [12] came up with a secure signature
scheme based on the Strong RSA assumption with two protocols: (1) An efficient
protocol between a user and a signer with keys (pkS , skS). The common input
consists of pkS and C, a Pedersen commitment. The user’s secret input is the set
of values (v1, . . . , v�, r) such that C = PedCom(v1, . . . , v�; r). As a result of the
protocol, the user obtains a signature σpkS (v1, . . . , v�) on his committed values,
while the signer does not learn anything about them. The signature has size
O(� · log q). (2) An efficient proof of knowledge of a signature protocol between
a user and a verifier. The common inputs are pkS and a commitment C. The
user’s private inputs are the values (v1, . . . , v�, r), and σpkS (v1, . . . , v�) such that
C = PedCom(v1, . . . , v�; r). These signatures are secure under the strong RSA
assumption. For our current purposes, it does not matter how CL signatures
actually work, all that matters are the facts stated above.

Verifiable Encryption. We use a technique by Camenisch and Damg̊ard [10] for
turning any semantically-secure encryption scheme into a verifiable encryption
scheme. A verifiable encryption scheme is a two-party protocol between a prover
and encryptor P and a verifier and receiver V . Roughly, their common inputs
are a public encryption key pk and a commitment A. As a result of the protocol,
V either rejects or obtains the encryption c of the opening of A. The protocol
ensures that V accepts an incorrect encryption only with negligible probability
and that V learns nothing meaningful about the opening of A. Together with the
corresponding secret key sk, transcript c contains enough information to recover
the opening of A efficiently. We hide some details here and refer to Camenisch
and Damg̊ard [10] for the full discussion.

Bilinear Elgamal Encryption. In particular, we apply the verifiable encryption
techniques above to a bilinear variant of the Elgamal cryptosystem [6,1], which is
semantically secure under an assumption implied by either y-DDHI or Sum-Free
DDH. What we will need is a cryptosystem where gx is sufficient for decryption
and then the public key is f(gx) for some function f .

1 It is possible to eliminate the y-DDHI assumption from our e-cash system by re-
placing the DY PRF with a DDH-based PRF such as the one due to Naor and
Reingold [33]. However, this approach would enlarge our wallets from O(� + k) bits
to O(� · k) bits. Thus, we present only the most optimal building blocks.
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Assume we run Bilinear Setup on 1k to obtain γ = (q, g1, h1, G1, g2, h2, G2,
GT , e), where we have bilinear map e : G1 × G2 → GT . In bilinear Elgamal [1],
a public-secret keypair is of the form (e(gu

1 , g2), gu
1 ) for a random u ∈ Zq. Thus,

we can think of f(·) := e(·, g2) where the value gu
1 is enough to decrypt.

4 Compact E-Cash in the Bounded-Anonymity Model

Overview of our construction. As in the CHL compact e-cash scheme, a user
withdraws a wallet of 2� coins from the bank and spends them one by one. Also,
as in the CHL scheme, we use a pseudorandom function F(·)(·) whose range is
some group G of large prime order q.

At a high level, a user forms a wallet of 2� = N coins by picking five values,
(x, s, t, v, w) from an appropriate domain to be explained later, and running an
appropriate secure protocol with the Bank to obtain the Bank’s signature σ on
these values.

Suppose that the user wants to spend coin number i by buying goods from
merchant M . Suppose that only up to K transactions with this merchant may
be anonymous. Let’s say that this is the user’s j-th transaction with M , j ≤
K. Associated with the i-th coin in the wallet is its serial number S = Fs(i).
Associated with the j-th transaction with the merchant M is the merchant’s
record locator V = Fv(M, j).

The first idea is that in the Spend protocol, the user should give to the mer-
chant the values (S, V ), together with a (non-interactive zero-knowledge) proof
that these values are computed as a function of (s, i, v, M, j), where 1 ≤ i ≤ N ,
1 ≤ j ≤ K, and (s, v) correspond to a wallet signed by the Bank. Note that S
and V are pseudorandom, and therefore computationally leak no information;
and the proof leaks no information because it is zero-knowledge.

Suppose that a user spends more than N coins. Then he must have used some
serial number more than once, since there are only N possible values S of the
form Fs(i) where 1 ≤ i ≤ N . (This is the CHL observation.) Similarly, suppose
that a user made more than K transactions with M . Then he must have used
some merchant record locator more than once, since for a fixed M , there are
only K different values V = Fv(M, j), 1 ≤ j ≤ K. Therefore it is easy to see
that double-spending and violations of the bounded-anonymity business model
can be detected.

Now we need to explain how to make sure that using any S or V more than
once leads to identification. Remember that besides s and v, the wallet also con-
tains x, t and w. The value x ∈ Zq is such that gx is a value that can be publicly
linked to the user’s identity. (Where g is a generator of the group G.) For exam-
ple, for some computable function f , f(gx) can be the user’s public key. Suppose
that as part of the transaction the merchant contributes a random value r �= 0,
and the user reveals T = gxFt(i)r and W = gxFw(M, j)r, together with a proof
that T and W are computed appropriately as a function of (r, x, t, i, w, M, j)
corresponding to the very same wallet and the same i and j. Again, T and W
are pseudorandom and therefore do not leak any information.
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If a user uses the same serial number S = Fs(i) twice, and q is appropriately
large, then with high probability in two different transactions she will receive
different r’s, call them r1 and r2, and so will have to respond with T1 = gxFt(i)r1 ,
T2 = gxFt(i)r2 . It is easy to see that the value gx can then be computed as
follows: gx = T1/(T1/T2)r1/(r1−r2). This was discovered by CHL building on the
original ideas of offline e-cash [20].

We show that it is also the case that if the user uses the same merchant’s
record locator number V twice, then gx can be found in exactly the same fashion.
Suppose that in the two transactions the merchant used the same r. In that case,
the Bank can simply refuse to deposit this e-coin (since it is the same merchant,
he is responsible for his own lack of appropriate randomization). So suppose that
the merchant used two different r’s, r1 and r2, giving rise to W1 and W2. It is
easy to see that gx = W1/(W1/W2)r1/(r1−r2).

Thus, a double-spending or a violation of the bounded-business model leads to
identification. The only remaining question is how this can be adapted to trace
other transactions of the same user. Note that gx is not necessarily a public value,
it may also be the case that only f(gx) is public, while knowledge of gx gives one
the ability to decrypt a ciphertext which was formed by verifiably encrypting s
(for example, Boneh and Franklin’s cryptosystem [6] has the property that gx is
sufficient for decryption). When withdrawing a wallet, the user must give such a
ciphertext to the bank. In turn, knowledge of s allows to discover serial numbers
of all coins from this wallet and see how they were spent.

Finally, note that the values (x, v, w) should be tied to a user’s identity and
not to a particular wallet. This way, even if a user tries to spend too much money
with a particular merchant from different wallets, it will still lead to detection
and identification.

4.1 Our Protocols

Recall our building blocks from Section 3: the Dodis-Yampolskiy pseudo-random
function [25], i.e., fDY

(g,s)(x) = g1/(s+x), where g is the generator of a suitable
group; CL-signatures [12] and the related protocols to issue signatures and prove
knowledge of signatures; and the Bilinear Elgamal cryptosystem [6,1] used with
the Camenisch-Damg̊ard [10] verifiable encryption techniques.

Notation: Let F(g,s)(x) = fDY
(g,s)(x), and when H is a hash function whose

range is an appropriate group, let GH
s (M, x) = fDY

(H(M),s)(x).
We are now describing the protocols of our system: Setup, Withdraw, Spend,

and Deposit (including the protocols in response to violations).

Setup: Let k be the security parameter. The common system parameters are
the bilinear map parameters Bilinear Setup(1k) → (q, g1, G1, g2, h2, G2, GT , e), a
wallet size �, and two hash functions H1 : {0, 1}∗ → GT and H2 : {0, 1}∗ → G1.
The bank generates CL signing keys (pkB, skB) as before.

Each user generates a key pair of the form skU = (x, v, w) and pkU =
(e(g1, h2)x, e(g1, h2)v, e(g1, h2)w), where x, v, and w are chosen randomly from
Zq. Each user also generates a signing keypair for any secure signature scheme.
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Each merchant publishes a unique identity string idM. Also, an upper-bound
NM for the number of coins each user can spend with merchant idM is fixed.

Withdraw: A user U withdraws 2� coins from the bank B as follows. The user
and the bank engage in an interactive protocol, and if neither report an error,
then at the end:

1. U obtains (s, t, σ), where s, t are random values in Zq, and σ is the bank’s
signature on (skU , s, t), i.e., (x, v, w, s, t).

2. B obtains a verifiable encryption of s under e(g1, h2)x, i.e., the first element
from the user’s public key pkU , together with the user’s signature on this
encryption.

3. B does not learn anything about skU , s, or t.

Step one can be efficiently realized using the Camenisch-Lysyanskaya signa-
tures and the related protocols [13]. Step two can be realized by applying the
Camenisch-Damg̊ard [10] verifiable encryption techniques to the Bilinear Elga-
mal cryptosystem [6,1]. Step three follows from the other two. All these steps
are essentially the same as in the CHL e-cash scheme, the exception being the
secret key signed which now also includes v and w besides x.

Spend: A user U spends one coin with a merchant M with a spending limit of
NM coins as follows. As in CHL, the user keeps a private counter i from 1 to
2� for the number of coins spent in her wallet. Additionally, the user now also
keeps a counter jM for each merchant M representing the number of coins she
has spent with that merchant.

1. U checks that she is under her spending limit with merchant M; that is,
that jM < NM. If not, she aborts.

2. M sends random r1, r2 ∈ Z∗
q to U .

3. U sends M the i-th coin in her wallet on her jM-th transaction with M.
Recall that skU = (x, v, w). This coin consists of a serial number S and a
wallet check T , where

S = F(e(g1,h2),s)(i) = e(g1, h2)1/(s+i) , T = gx
1 (F(g1,t)(i))r1 = g

x+r1/(t+i)
1

and two money laundering check values V and W , where

V = GH1
v (idM, jM) = H1(idM)1/(v+jM) ,

W = gx
1 (GH2

w (idM, jM))r2 = gx
1H2(idM)r2/(w+jM)

and a zero-knowledge, proof of knowledge (ZKPOK) π of (i, jM, skU =
(x, v, w), s, t, σ) such that
(a) 1 ≤ i ≤ 2�;
(b) 1 ≤ jM ≤ NM;
(c) S = F(e(g1,h2),s)(i), i.e., S = e(g1, h2)1/(s+i);
(d) T = gx

1 (F(g1,t)(i))r1 , i.e., T = g
x+r1/(t+i)
1 ;
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(e) V = GH1
v (idM, jM), i.e., V = H1(idM)1/(v+jM);

(f) W = gx
1 (GH2

w (idM, jM))r2 , i.e., W = gx
1H2(idM)r2/(w+jM) ; and

(g) VerifySig(pkB, (skU = (x, v, w), s, t), σ)=true.
The proof π can be made non-interactive using the Fiat-Shamir heuristic [26].

4. If π verifies and the value Vj was never seen by M before, then M accepts
and saves the coin (r1, r2, S, T, V, W, π). If the value Vj was previously seen
before in a coin (r′1, r

′
2, S

′, T ′, V, W ′, π′), then M runs Open(W ′, W, r′2, r2).
Let us define the Open(·, ·, ·, ·) algorithm as:

Open(A, B, C, D) :=
A

(A/B)C/(C−D) .

If M executed the Spend protocols honestly (i.e., chose fresh random val-
ues at the start of each protocol), then with high probability r2 �= r′2, and
Open(W ′, W, r′2, r2) = gx

1 . Thus, the merchant can identify the user by com-
puting e(gx

1 , h2), which is part of U ’s public key. This allows an honest mer-
chant to protect itself from customers who try to overspend with it. (If the
merchant is dishonest, the bank will catch the overspending at deposit time.)

Steps 3(a,c,d) are the same as in the CHL scheme whereas Steps 3(b,e,f) are
new, and Step 3(g) needs to be adapted properly. Consequently, Steps 3(a) and
3(b) can be done efficiently using standard techniques [17,14,7]. Steps 3(c) to
3(f) can be done efficiently using techniques of Camenisch, Hohenberger, and
Lysyanskaya [11]. Step 3(g) can be done efficiently using the Camenisch and
Lysyanskaya signatures [13].

Deposit: A merchant M deposits a coin with bank B by submitting the coin
(r1, r2, S, T, V, W, π). The bank checks the proof π; it if does not verify, the bank
rejects immediately. Now, the bank must make two additional checks.

First, B checks that the spender of the coin has not overspent her wallet;
that is, the bank searches for any previously accepted coin with the same serial
number S. Suppose such a coin (r′1, r

′
2, S, T ′, V ′, W ′, π′) is found. If r1 = r′1, B

refuses to accept the coin. Otherwise, B accepts the coin from the merchant, but
now must punish the user who double spent.

1. B executes Open(T ′, T, r′1, r1) = gx
1 .

2. B identifies user as person with public key containing e(gx
1 , h2).

3. B uses gx
1 to decrypt the encryption of s left with the bank during the

withdraw protocol. Next, B uses s to compute the serial numbers Sj =
F(e(g1,h2),s)(j) for each coin j = 1 to 2� of all coins in the user’s wallet. (In
fact, the bank can use gx

1 to decrypt the secret of all the user’s wallets and
trace those transactions in the same way.)

Second, B checks that the spender of the coin has not exceeded her spend-
ing limit with merchant M. That is, the bank searches for any previously ac-
cepted coin with the same money-laundering check value Vj . Suppose such a
coin (r′1, r′2, S′, T ′, V, W ′, π′) is found. The bank immediately refuses to accept
the deposit and punishes the merchant. The bank now must also determine if
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the spender is to blame. If r2 = r′2, B punishes the merchant alone. Otherwise,
B must also punish the user who attempted to money launder.

1. B executes Open(W ′, W, r′2, r2) = gx
1 .

2. B identifies user as person with public key containing e(gx
1 , h2).

3. B uses gx
1 to decrypt the encryption of s left with the bank during the

withdraw protocol. Next, B uses s to compute the serial numbers Sj =
F(e(g1,h2),s)(j) for each coin j = 1 to 2� of all coins in the user’s wallet. (In
fact, the bank can use gx

1 to decrypt the secret of all the user’s wallets and
trace those transactions in the same way.)

If all checks pass, B accepts the coin for deposit in M’s account.
The deposit protocol is again very similar to the deposit protocol of the CHL

scheme, i.e., instead of only checking for double spending, the bank now also
checks for money laundery. Thus, if the user was honest, the bank needs now to
perform two database lookup’s instead of one before.

For completeness, we point out explicitly how the violation-related protocols
work. Let C1 = (r1, r2, S, T, V, W, π) and C2 = (r′1, r

′
2, S

′, T ′, V ′, W ′, π′) be one
existing and one newly deposited coin. Detecting double-spending or money-
laundering involves checking S1 = S2 or V1 = V2, respectively. The identification
algorithm runs Open on the appropriate inputs, and the resulting proof of guilt
is Π = (C1, C2). Verifying the violation entails successfully checking the validity
of the coins, detecting the claimed violation, running Open to obtain gx

1 , and
checking its relation to pk. (Recall that knowledge of x, not just gx

1 , is required
to create a valid coin. Thus the leakage of one violation cannot be used to
spend the user’s coins or fake another violation.) The trace algorithm involves
recovering s, from the encryption E signed by the user during Withdraw, and
computing all serial numbers. The proof of ownership Γ = (E, σ, gx

1 ), where σ is
the user’s signature on E. Verifying ownership for some serial number S involves
verifying the signature σ, checking that e(gx

1 , h2) = pk, decrypting E to recover
s, computing all serial numbers Si, and testing if, for any i, S = Si.

Theorem 1. In the bounded-anonymity business model, our scheme achieves
correctness, balance, anonymity of users, identification of violators, tracing of
violators, and strong exculpability under the Strong RSA, y-DDHI, and either
the XDH or Sum-Free DDH assumptions in the random oracle model.

Due to space limitations, we refer to the full version of this paper for the proof
of Theorem 1. We briefly provide some informal intuition.

Balance. For each wallet, s deterministically defines exactly 2� values that can
be valid serial numbers for coins. To overspend a wallet, a user must either use
one serial number twice, in which case she is identifiable, or she must forge a CL
signature or fake a proof of validity.

Anonymity of users. A coin is comprised of four values (S, T, V, W ), which
are pseudorandom and thus leak no information about the user, together with a
non-interactive, zero-knowledge proof of validity, which since it is zero-knowledge
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also leaks nothing. The only abnormality here is that, when computing V and
W , the base used for the PRF is the hash of the merchant’s identity (as opposed
to the fixed bases used to compute S and T ). Treating hash H as a random
oracle, we see that given GH

v (idM, j), the output of GH
v (·, ·) on any other input,

in particular GH
v (id ′

M, j) for idM �= id ′
M, is indistinguishable from random.

Specifically, if an adversary given GH
v (idM, j) = fDY

(H(idM),v)(j) = H(idM)1/(v+j)

can distinguish H(id ′
M)1/(v+j) from random for some random, fixed H(idM) and

H(id ′
M), then it is solving DDH.

Exculpability. First, an honest user cannot be proven guilty of a crime he
didn’t commit, because the proof of guilt includes the user’s secret value gx

1 . If a
user is honest, only he knows this value. Second, even a cheating user cannot be
proven guilty of a crime he didn’t commit— e.g., double-spending one coin does
not enable a false proof of money-laundering twenty coins —because: (1) guilt is
publicly verifiable from the coins themselves, and (2) knowledge of x is required
to create coins. The value gx

1 , which is leaked by a violation, is not enough to
spend a coin from that user’s wallet.

4.2 Scaling Back the Punishment for System Violators

When tracing is deemed too harsh a punishment or simply to make the system
more efficient when tracing is not needed, two other options are available:

Option (1): violation is detected and user’s identity is revealed. This system
operates as the above except that during the Withdraw protocol the user does
not give the bank verifiable encryptions of her wallet secret s. Then later during
the Deposit protocol, the bank may still detect the violation and identify the
user, but will not be able to compute the serial numbers of other transactions
involving this user.

Option (2): violation is detected. This system operates as the Option (1)
system, except that during Spend, the user does not provide the merchant with
either values T or W . Then later during the Deposit protocol, the bank may still
detect a violation, but will not be able to run Open and identify the user.

4.3 Efficiency Considerations

We give the detailed protocols in the full version of the paper (they are rather
similar to the detailed ones of the CHL scheme [11] and require slightly less than
double the work of the participants). As indication of the protocols efficiency let
us state some numbers here. One can construct Spend such that a user must com-
pute fourteen multi-base exponentiations to build the commitments and twenty
more for the proof. The merchant and bank need to do twenty multi-base expo-
nentiations to check that the coin is valid. The protocols require two rounds of
communication between the user and the merchant and one round between the
bank and the merchant. If one takes Option (2) above, then it is thirteen multi-
base exponentiations to build the commitments and eighteen more for the proof.
Verification by bank and merchant takes eighteen multi-base exponentiations.
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Abstract. The main application of cryptography is the establishment of
secure channels. The most classical way to achieve this goal is definitely
the use of variants of the signed Diffie-Hellman protocol. It applies a sig-
nature algorithm on the flows of the basic Diffie-Hellman key exchange,
in order to achieve authentication. However, signature-less authenticated
key exchange have numerous advantages, and namely from the efficiency
point of view. They are thus well-suited for some constrained environ-
ments. On the other hand, this efficiency comes at the cost of some
uncertainty about the actual security.

This paper focuses on the two most famous signature-less authenticated
key exchange protocols, MTI/C0 and MQV. While the formal security of
MTI/C0 has never been studied, results for the plain MQV protocol are
still debated. We point out algorithmic assumptions on which some se-
curity proofs can be built in the random oracle model. The stress is put
on implementation aspects that must be properly dealt with in order to
obtain the expected security.

Some formalizations about authenticated key exchange, and the generic
model, are of independent interest.

Keywords: Key Exchange, MTI, MQV, Diffie-Hellman, Security Proof.

1 Introduction

Since the introduction of the Diffie-Hellman protocol in the seminal paper [13],
key exchange has played a prominent role in public-key cryptography. It provides
two entities communicating on an insecure channel with a common secret value,
which can thereafter be used to setup a secure channel. The plain Diffie-Hellman
protocol does not provide entity authentication and is therefore vulnerable to
“man-in-the-middle” attacks. A classical way to overcome this weakness is to
authenticate the flows with strong authentication mechanisms, such as message
authentication codes (MAC) or signature schemes (as for instance in the Station-
To-Station protocol [14]).

A few proposals apply weaker authentication techniques, which are specific
to the key agreement method. Whereas they are signature-less, they provide
both strong authentication (the so-called “mutual authentication”) and strong
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secrecy (the so-called “forward-secrecy”). Furthermore, since no signature com-
putations/verifications are needed, they are quite efficient.

This paper focuses on some of these “signature-less protocols”. The most well-
known algorithms in that category are the MTI family [19,21] and MQV [20,27].
More specifically, among the MTI family, we focus on MTI/C0, which is the
only variant of the MTI family that can be expected to provide the forward-
secrecy. MQV was proposed as a solution to overcome some security weaknesses
of MTI/C0. However, one can remark that attacks against the “basic MTI/C0”
protocol can be easily prevented when proper and classical safeguards (eg. key
confirmation rounds) are added.

As a conclusion, we show that when properly set-up, that is, in a suitably
chosen group and with a proper key derivation mechanism, both MTI/C0 and
MQV are secure authenticated key exchange protocols, and even achieve forward-
secrecy. We focus on the 3-pass variants of these protocols because no two-pass
protocol achieves mutual authentication: the first message can always be replayed
by an active attacker. Some two-pass protocols are analyzed in [15,18].

Related work. Key exchange is closely related to authentication, as illustrated
by the “man-in-the-middle attacks”. A very general model for these two prob-
lems was introduced by Bellare and Rogaway [7]. Bellare, Canetti and Kraw-
czyk [3] followed a different path, by providing a general tool to transform a
protocol secure when communications are authenticated into a new protocol se-
cure against an active adversary (able to alter messages). Among other applica-
tions, this framework can be applied to the “authenticated key exchange” (AKE)
problem.

An extensive comparison of the security properties of some signature-less AKE
protocols can be found in [9]; however, no security proof is provided. On the
other hand, [8] provides security analyzes of several authenticated variants of
the Diffie-Hellman scheme. For such studies, a formal security model is required.
We thus review the strongest one, based on the seminal work of Bellare and
Rogaway [7], and various extensions from [1,2,8].

The security of MQV was recently analyzed and a “hashed” variant, HMQV,
was proved [17]. We focus on the plain MQV protocol, and show that proper
key derivation is enough to overcome its security weaknesses, like the Unknown
Key Share attack of Kaliski [16]. As for MTI/C0, no formal security result was
available to our knowledge.

Security Model. Informally, we want to model resistance of a key exchange
protocol against active and adaptive attackers. The required security properties
are:

– Semantic security. If an execution of the protocol successfully terminates
between a user A and its intended correspondent B, no one but A and B
should possess any information about the key agreed upon;

– Mutual authentication. A user A engaged in a key exchange session ac-
cepts (actually gets a session key) with B only if it is indeed speaking to B;
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– Forward secrecy. The disclosure of some user’s private keys does not com-
promise (the semantic security of) previously negotiated keys.

By “active and adaptive attackers”, as in [7], we mean that the attacker E
has entire control of the communication network, and thus controls all flows
between users. Therefore, there is no canonical definition of the partner of some
user that runs the protocol. Partnership is defined with the help of views of the
exchanged messages between two users. Since we consider forward-secrecy, E is
also allowed to (adaptively) corrupt users, which then provide her with their
long-term private keys.

More formally, the attacker plays a real-or-random game with a simulator, in
which it succeeds if it distinguishes between true negotiated keys and random
values. This game models the semantic security (and even the forward-secrecy,
if the corruption of players is allowed). Strictly speaking, not mutual authenti-
cation, but only implicit authentication is guaranteed: when A negotiates a key
with B, only A and B can compute the key, however from the point of view of A,
there is no guarantee that B did compute the key or even that B was involved in
the exchange at all. Key confirmation rounds are however well-known to enhance
semantic security into mutual authentication [5,11].

Note that the classical definition of the semantic security involves a find-
then-guess game [7,4]. In this paper, we use a real-or-random game, which is
both stronger [2] and simpler to handle.

Contributions. Proofs are performed in the random oracle model [6] and rely
on custom variants of the Diffie-Hellman problem: f -RCDH for MQV and 2-3-
CDH for MTI/C0. f -RCDH is a rather non-standard problem, and might well
be weaker than plain CDH; however we show that the f -RCDH intractability
hypothesis is equivalent to the semantic security of MQV, which gives a strong
motivation to introduce this new algorithmic problem (while the reduction of
f -RCDH to MQV is performed in the random oracle model, the reduction of
MQV to f -RCDH is in the standard model) . On the other hand, 2-3-CDH is a
rather natural extension of CDH, but we only show that 2-3-CDH intractability
hypothesis is at least as strong as the semantic security of MTI/C0.

Since new assumptions are always questionable, besides the security analysis,
a large part of the paper is devoted to study the two new problems 2-3-CDH and
f -RCDH. In particular, we build on generic group results to provide arguments
towards the actual hardness of both problems: they are hard in the generic
sense. Moreover, f -RCDH is shown to be equivalent to the classical CDH, under
the additional assumption that the truncation function f used in MQV can be
modeled as a random oracle. This motivates the replacement of this function of
MQV by a proper hash function, as performed in [17].

For this analysis, we construct a simple and new tool of independent inter-
est that allows one to check whether a particular variant of the Diffie-Hellman
problem is hard in the generic sense or not.
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Organization. The paper is organized as follows. Section 2 introduces a com-
mon framework for signature-less authenticated key exchange protocols. Many
different protocols, among which MTI variants and MQV, can be plugged into
that framework. MTI/C0 and MQV are presented in section 3, together with
the corresponding algorithmic hypotheses, 2-3-CDH and f -RCDH. A sketch of
the security proof is presented in section 4. Next, in section 5, the new algorith-
mic assumptions are analyzed. Finally, we sum up in section 6 the key design
choices that help make a signature-less key exchange protocol secure. The secu-
rity model, which is the classical one, is reviewed in appendix A.

The proof is omitted from this extended abstract and is available in the full
version of the paper.

2 A Framework for Signature-Less Authenticated Key
Exchange

We describe a general framework, in order to deal with signature-less authen-
ticated key exchange protocols. Users are assumed to own public/private key
pairs, and the public keys are supposed to be authentic and known to any party
of the system.

First, we need some description of the view that a user (A or B) has of the
messages exchanged during a session, since this will define the partnership rela-
tion.

Session Flow, Partners. We denote by Flow(U, i) the bit-string encoding
the messages seen by user U ∈ {A, B} during session i, up to the key material
agreement. It is assumed that

Flow(A, i) = Flow(B, i) ⇐⇒
{

no message between A and B was
altered in any way during session i

}

A and B are said to be partners in a session i if Flow(A, i) = Flow(B, i). Informally,
if A and B are partners in session i, they share the same key at the end of the
session, and the converse should hold except with negligible probability.

Key Material Agreement. Let us now describe a key agreement between two
users A and B. In a preliminary phase, one of the users asks the other party to
initiate a key negotiation. From the cryptographic standpoint, the only interest
of this phase is that the messages exchanged ends up in the session flow like the
rest of the exchange: as a consequence, we can assume that the identities of A
and B are contained in the session flows.

This phase of the protocol allows A and B to agree on common secret key
material from which both the session key and key confirmations are derived:

– A chooses at random an element rA in some space R. Some function ϕ of rA is
sent to B. The function ϕ might additionally take as input A’s private/public
key, and B’s public key. We name MA all this long term key material available
to A.
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– B performs the same operation towards A.
– A and B both derive some key material KM through another operation ψ

satisfying1 a kind of commutativity property

KM = ψ(ϕ(rA, MA), rB, MB) = ψ(ϕ(rB, MB), rA, MA).

Key Confirmation. When a user U ∈ {A, B} has computed KM, it can compute
the common key K ∈ K and the key confirmations KC(U’) for any partners U’
(and himself) by

K = H(KM‖0‖Flow(U)) KC(U’) = H(KM‖1‖IDU’‖Flow(U))).

In this relation, the flows consist of the messages up to and including the ex-
change of random elements, H is a h-bit hash function (assumed to behave like
a random oracle). Both A and B can compute the two key confirmations KC(A)
and KC(B). But A sends KC(A) to B, while B sends KC(B) to A. Each user checks
the value sent by the other and rejects the key if this value is incorrect.

3 Formalization of MTI/C0 and MQV

For both MTI/C0 and MQV, G is a cyclic group of prime order p, and g is a
generator of G. All random elements are drawn uniformly in the sets mentioned.

3.1 MTI/C0

The private key su of a user U is a random element in Z
�
p and the corresponding

public key equals Ku = gsu .

Key Material Agreement. A (resp. B) draws a random element ra (resp.
rb) in Z

�
p. A then computes Ra = Kb

ra and sends it to B, while A computes
Rb = Ka

rb and sends it to A. The key material KM is then computed by each
user according to the relation

KM = grarb = Ra
rb/sb = Rb

ra/sa

Note that if one of the received values (Ra or Rb) is equal to 1, the recipient
aborts the protocol. Thus, using the framework of section 2, we have

ϕ(ra, Ma = (sa, Ka, Kb)) = Ra = Kra

b

and ψ(Ra, rb, Mb = (sb, Ka, Kb)) =
{
abort if Ra = 1
R

rb/sb
a otherwise

1 ψ might reject some values of its first input: the relation holds only when neither
ϕ(rA, MA) nor ϕ(rB, MB) is rejected.
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2-out-of-3 Computational Diffie-Hellman Problem. In order to prove the
security of MTI/C0, we clearly need to make the assumption that the Com-
putational Diffie-Hellman problem is intractable: given gx and gy, it is hard to
compute gxy for random elements x, y ∈ Zp. In order to deal with active attacks,
we also need another computational hardness hypothesis that is an extension of
the above CDH:

2-out-of-3 Computational Diffie-Hellman.

Given X = gx and Y = gy, for random x, y ∈ Zp, compute a pair
(Z, T ) of elements in G, where Z �= 1 and T is the CDH value of X ,
Y and Z: T = Zxy.

First, it is clear that 2-3-CDH is at most as difficult as CDH. Indeed, if an
adversary manages to compute h = gxy, (gz, hz) is a correct 2-3-CDH answer
for any choice of z ∈ Z

�
p. Moreover, it is not more difficult than the inverse-

DH because by setting Z = g1/y where Y = gy, (Z, X) is a correct answer.
As a consequence, a tight reduction from 2-3-CDH to CDH would imply a tight
reduction from Inv-CDH to CDH.

In a cyclic group of composite order, the probability in breaking 2-3-CDH is
not smaller than 1/ω, where ω is the size of the smallest non-trivial subgroup of
G. Indeed, an attacker can always choose at random two elements (Z, T ) of order
ω and then, since the order of T ′ = CDH(X, Y, Z) divides ω, and since there is
only one subgroup of order ω in the cyclic group G, T = T ′ with probability
1/ω.

In groups of prime order where the discrete logarithm is hard, which our
analysis focuses on, it seems reasonable to expect that no adversary can break
2-3-CDH in polynomial time and with a non-negligible probability. Let us de-
note by SuccCDH(t) and Succ 2-3-CDH(t), for the maximum winning probability
of an attacker running in time t against CDH and 2-out-of-3 Computational
Diffie-Hellman in G, respectively. The probability is averaged over all possible
challenges (X, Y ) and over the randomness of the attacker.

2-3-CDH and Active Attacks. In the next section, we show that the intractabil-
ity of 2-3-CDH is enough to guarantee the security of MTI/C0. Conversely, solving
2-3-CDH does not seem to be enough for an attacker to impersonate a user in a
MTI/C0 session.

3.2 MQV

In the specification of MQV, we have a function f from G → Zp. In the actual
description of MQV [20,27], G is a prime order subgroup of an elliptic curve
group over a finite field Fq, where q is a n-bit prime; for P = (x, y) ∈ G,
x, y ∈ [0, q − 1], f(P ) = x mod 2�n/2� + 2�n/2�.

In the following, we use the multiplicative notation for the group G.
The private key su of a user U is a random element in Zp and the correspond-

ing public key equals Ku = gsu .
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Key Material Agreement. A (resp. B) draws a random element ra (resp. rb)
in Zp. Then A computes Ra = gra and sends it to B. Similarly, B computes
Rb = grb and sends it to A. The key material KM is then computed by each
person according to the relation

KM = g(ra+f(gra )sa)(rb+f(grb )sb) =
(
Ra × Ka

f(Ra)
)(rb+f(Rb)sb)

=
(
Rb × Kb

f(Rb)
)(ra+f(Ra)sa)

.

Therefore ϕ(ra, MA = (sa, Ka, Kb)) = gra = Ra

and ψ(Ra, rb, MB = (sb, Ka, Kb)) =
(
Ra × Ka

f(Ra)
)(rb+f(grb )sb)

.

f-Randomized Computational Diffie-Hellman Problem. As for MTI/C0,
we need a new assumption, derived from CDH, for proving the security of MQV.
It depends on the function f , hence the notation f -RCDH. As shown below,
f -RCDH must be hard for MQV to withstand active attacks. We also show in
section 5.1 that the intractability of RCDH can be reduced to the one of CDH
under some additional assumptions on f .

f -RCDH

Given X = gx and Y = gy, for randomly chosen x, y ∈ Zp, find
R, Z ∈ G such that Z = Rx × gf(R) x y.

With r = logg R (which the attacker does not need to know), the above
relation rewrites Z = gx(r+f(R)y).

As for any computational problem, Succ f -RCDH(t) is the maximum winning
probability of an adversary running in time t against f -RCDH in G, averaged
over X , Y and the random tape of the adversary.

Note that f -RCDH is not more difficult than CDH, because knowing h =
gxy = CDH(X, Y ), one can answer a valid pair (Z, R), by choosing R = gr and
Z = Xrhf(R).

f-RCDH and Active Attacks. Solving f -RCDH allows to impersonate the
responder (denoted by B in our description) in a MQV session: given the pub-
lic keys KA, KB of A and B and the random value RA sent by A, B can be
impersonated to A using a correct f -RCDH answer (RB, KM) to the challenge
(X = RA × K

f(RA)
A , Y = KB). Indeed, if RB is used as the random value sent to

A, then the resulting key material is KM. Note that no random oracle hypothesis
is used here.
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4 Sketch of Proof

As explained in the introduction, we follow the real-or-random model, as de-
scribed in appendix A. In this scenario, the attacker E plays against a simulator
S and has complete control of the exchanges between user instances. The sim-
ulator S draws a random bit b at the beginning of the game and E’s goal is
to guess this bit b. The attacker E can perform Test and Corrupt queries to
obtain respectively session keys and long-term private keys of users. Before any
Corrupt query occurs, the answers of Test queries depend on b: they are either
the real keys (if b = 1) or random values (if b = 0). In both cases, the answers to
two queries asked to partners in a session are the same. After a Corrupt query
occurs, Test queries are answered by the real keys only. After getting long-term
private keys, the adversary is indeed able to compute the session keys itself. Fur-
thermore, forward-secrecy only considers the semantic security of keys agreed
before any corruption.

Note that Test queries can only be asked to users who actually hold a session
key, and thus after reception of a correct key confirmation at the end of the
protocol run, so that they are “convinced” that they actually share a session key
with their intended partner.

The proof is performed with the now classical game technique [25,26]. The first
game is the real game in which we want to upper bound the success probability
of E.

First, session flow collisions are ruled out. This is easy, because not all the
randomness of the exchanged values in a protocol run is controlled by the at-
tacker: at least one of the two values exchanged at the beginning of a run is
properly drawn in G by S, and the collision probability between two sessions is
therefore upper-bounded by 1/p. Informally, in the remaining game executions,
session keys are uncorrelated because of the random oracle hypothesis and the
inclusion of the session flow in key derivations.

Next, the attacker key confirmations that are correct “by chance”, i.e. al-
though the right query was not made to the random oracle, are refused. There
are not too many of them if the output size of H , h, is large enough.

Active attacks before Corrupt queries are then artificially blocked. This is
performed by refusing key confirmations not originating from the simulator.

Because correct key confirmations produced with incorrect oracle inputs are
already forbidden, E sees the difference between this new game and the previous
one only if it manages to produce a correct oracle input for a key confirmation.
To show that this happens with negligible probability, an instance of a custom
problem is introduced in the public keys of two users, such that the oracle input
corresponding to a key confirmation is the answer to this challenge.

After this crucial step, we are in a game where no active attack can be per-
formed in sessions before Corrupt queries. A CDH challenge is finally introduced
in one of these sessions; key confirmations and the final key are simulated by ran-
dom values. Again because of the random oracle hypothesis, E has to solve the
CDH problem to be able to ask a relevant question to the oracle, in order to gain
some advantage in guessing b or observing inconsistencies in key confirmations.
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We could use the Diffie-Hellman random self-reducibility to introduce a CDH
challenge in all sessions before a Corrupt query, thereby gaining a factor qs in
the security reduction. However, in a concurrent model, many sessions can be
“pending” when the first Corrupt query occurs; these sessions require a special
simulation. The simulator would therefore have to guess correctly the set of
pending sessions, leading to a loss factor 2qs . This is why the challenge is only
introduced in one session.

For simplicity, we limited the scope of the model (appendices A) to a two-user
setting. However, since the identities of both parties are included in the session
flows and in all key derivations, the generalization of the proof to a n-user setting
is straightforward.

Finally, we prove that E’s advantage in distinguishing real keys from random
ones within time t in a prime-order group G having p elements is bounded by

2qH × (SuccP(t, G) + qsSuccCDH(t, G)) +
q2
s

p
+ qs2−h.

where SuccP = Succ 2-3-CDH for MTI/C0 and SuccP = Succ f -RCDH for MQV.

5 Intractability Results

5.1 f-RCDH and CDH are Equivalent for a Random Oracle f

In this section, we prove that if the function f of f -RCDH can be modeled
by a random oracle, f -RCDH is equivalent to CDH. We already know that f -
RCDH reduces to CDH without any special assumption (see section 3.2). For
the converse implication, we suppose E is an attacker against f -RCDH that has
advantage Adv (t, qf ), where qf is the number of E’s f -queries. Given a CDH
challenge (X, Y ), we get it as a f -RCDH challenge and assume that E returns
(R, Z) such that

Z = CDH(X, R × Y f(R)) = CDH(X, Y )f(R) × CDH(X, R).

Then we can replay part of that successful run and change the function f
at the crucial query R to induce the attacker into producing another correct
answer (Z ′, R) to the challenge, with a different value f ′(R). Then Z ′/Z =
CDH(X, Y )f ′(R)−f(R), which easily leads to CDH(X, Y ).

To compute a lower-bound for the success probability of this technique, we
need the following splitting lemma [22]:

Lemma 1 (Splitting Lemma). Let P a probability on a product space X × Y
and Q ⊂ X × Y .

Define Q′ =
{

(x, y) ∈ Q

∣∣∣∣ P
y′∈Y

[(x, y′) ∈ A] ≥ P[Q]/2
}

Then P[Q′|Q] ≥ 1/2
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Let pc be the collision probability of f and pmax be the guessing probability
of f mod p, i.e. the maximum probability of any output value of f mod p, with
#G = p. If the output of f is a random uniform h-bit string with 2h < p,
pc = pmax = 2−h.

We suppose without loss of generality that each query is submitted at most
once by the attacker. With probability less than 2/p, X or Y is equal to 1. In
the other cases, CDH(X, Y ) is a generator of G. Then, if R is not among the
f -queries submitted by the attacker, its probability of success is bounded by
pmax because of the term CDH(X, Y )f(R) in the f -RCDH relation. Overall, with
probability Adv′ ≥ Adv − 2/p − pmax, the attacker produces a correct output
(R, Z) and makes the query f(R). Now, let Qi be the event “E produces a correct
output (Z, R), the i-th f -query of E being f(R)”. Let Adv′i be the probability
of Qi. Then ∑

i≤qf

Adv′i = Adv′.

Let us fix i. The whole behavior of the attacker only depends on its random
tape and on the oracle answers. Let us split these inputs into the ones occurring
before the ith oracle answer (x ∈ X) and the ones after and including that answer
(y ∈ Y ). Let us now apply the splitting lemma 1 with Q = Qi. It states that,
given u = (x, y) ∈R Qi, with probability 1/2, we have

P[Qi,x] ≥ Adv′i/2 with Qi,x = {y′ ∈ Y |(x, y′) ∈ Qi}.

Therefore, we can perform two executions of E as follows. The first execution
is random. With probability greater than Adv′, it yields a correct answer (R, Z),
and f(R) is queried on some query of index i. Let x (resp. y) the inputs of E before
(resp. after) the ith query. We run again the same execution with inputs x before
query i, but y′ after query i. With probability 1/2, inputs x of the attacker before
query i are such that P[Qi,x] ≥ Adv′i/2. In that case, with probability Adv′i/2, E
produces again a correct output (Z ′, R′) and f(R′) is queried on query i. Since
inputs before query i are equal in both executions, R = R′. Finally, except with
probability 1−pc, answers f1 and f2 for f(R) are different in both executions. If
all these conditions are met, CDH(X, Y ) can be easily extracted. Overall, since
the probability to be in case i is qi = Adv′i/Adv′, the attacker breaks CDH with
probability

SuccCDH ≥ Adv′/2
∑

i

[
qi Adv′i/2

]
− pc = 1/4

∑
i

[
Adv′i

2
]

− pc ≥ Adv′2

4qf
− pc

because of the Cauchy-Schwarz inequality. Finally, if E runs in time t the attacker
against CDH runs in time 2t and succeeds with probability not less than

SuccCDH(2t) ≥ [Succ f -RCDH(t, qf ) − 2/p − pmax]2

4qf
− pc.

This proof of equivalence between f -RCDH and CDH shows that replacing the
function f of MQV by a cryptographic hash function can improve the security of
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MQV, while not much impairing its performance. This is a case for HMQV [12],
where each term f(R)sA + R in the key material is replaced by H(R||B)sA + R
with H a hash function modeled by a random oracle.

5.2 Generic Group Model

Generic groups were introduced in [24]: a generic group is a group (G, +) whose
elements are represented randomly. Thus an algorithm E working in a generic
group G does not perform group computations itself, but rather makes queries
to oracles that answer with representations, in some set I, of the results. Two
representations are equal if and only if the corresponding elements are equal. In
the sequel, G = Zp and I = [0, p − 1]. Through the group oracle, E can multiply
existing elements, and introduce new random elements.

Elements of G represent logarithms, and the representation of some x corre-
sponds to gx. In a generic group, nothing can be learned from gx, except log
equality: if gx = gy, x = y.

We define a Generic group problem that enables to study variants of the com-
putational Diffie-Hellman problem in that model. An adversary E plays against a
generic group. Some multivariate polynomial ϕ(X1, . . . , Xk, Y1, . . . , Y�) is fixed.
Some coefficients of ϕ might depend in an arbitrary way of E’s behavior. For
values of x1, . . . , xk chosen by the simulator, and knowing gx1, . . . , gxk , the goal
of E is to compute Y1 = gy1 , . . . , Y� = gy� such that ϕ(x1, . . . , xk, y1, . . . , y�) = 0.

All elements manipulated by E are linear polynomials in x1, . . . , xk and some
new random elements xk+1, . . . introduced through the group oracle. Let us call
Pi the polynomial corresponding to yi. Pi is a random variable. Then we have
the following

Theorem 1. Let d = deg(ϕ) and Pm be an upper bound for the probability

Pm = P[ϕ(X1, . . . , Xk, P1(X1, . . . , Xk), . . . , P�(X1, . . . , Xk)) = 0]

Then the probability that E wins after qG queries satisfies

Succ (qG) ≤ Pm +
(3qG + k + 2)2

2p
+

d

p

For example, the plain CDH problem corresponds to ϕ(x1, x2, y1) = x1x2 −y1; in
that case, Pm = 0 because for any linear expression y1 in x1 and x2, and possibly
other variables, ϕ �= 0.

Proof. We define a game corresponding to the challenge of E.

Generic Group Game 0. A simulator S chooses x1, . . . , xk randomly in Gk,
outputs the corresponding representations r1, . . . , rk to E. E has access to an
oracle σ that, on input (a, b, r, r′) ∈ Z

2 × I2, answers with the representation
of ax + bx′, where r is the representation of x and r′ the representation of
x′. The connection between representations and elements of G is managed by



About the Security of MTI/C0 and MQV 167

the simulator through a list L of pairs (x, r) associating an element with its
representation. A representation r in a σ-query input does not need to correspond
to an element of G in L; if it does, the corresponding element is used, otherwise a
random element x is drawn by the simulator in G and bound to r, that is, (x, r)
is added to L. The same rule applies for the answer to the query: if ax+bx′ = x′′

with (x′′, r′′) ∈ L, r′′ is answered. Otherwise, a random representation r′′, not
yet bound to any element of G, is chosen in G, (x′′, r′′) is added to L, and the
answer to the σ query is r′′. Overall, each σ-query adds at most 3 pairs to L.

Initially, L = {(0, rz), (1, re), (x1, r1), . . . , (xk, rk)}; E is given rz, re, r1, . . . , rk.
E’s goal is to output r′1, . . . , r

′
� corresponding to y1, . . . , y� in G that, together

with the xi’s, cancel ϕ. The last � queries of E are assumed to be of the form
σ(1, 0, r′i, ). E has won if ϕ(x1, . . . , xk, y1, . . . , y�) = 0 where (yi, r

′
i) ∈ L.

Generic Group Game 1. In Game 1, random values in G are replaced by
unknowns Xi. Representations of elements correspond to linear combinations of
these unknowns with coefficients in Zp, or polynomials in Zp[X1, . . . , Xn, . . .], as
follows.

Initially, L={(0, rz), (1, re), (X1, r1), . . . , (Xk, rk)}; E is given rz, re, r1, . . . , rk.
When E performs a σ-query using a representation r not yet bound to any element
of G, instead of choosing a new random element in G, the simulator introduces
a new unknown Xi. In a query (a, b, r, r′), if r represents a polynomial F and r′

represents F ′ (F and F ′ are either new unknowns or polynomials coming from L),
the simulator first computes F ′′ = aF + bF ′. As before, if (F ′′, r′′) is in L, r′′ is
answered, and otherwise a random representation is chosen among the ones not
yet appearing in L. All polynomials in L are affine.

Before stopping the game, E outputs r′1, . . . , r
′
� through σ-queries as in game

0. E wins if ϕ(X1, . . . , Xk, P1, . . . , P�) = 0 where (Pi, r
′
i) ∈ L.

Difference between E’s success probabilities in game 0 and game 1. In
game 1, representations of different polynomials P1, P2 always differ, while in
game 0 they differ if and only if P1(x1, . . . , xk) �= P2(x1, . . . , xk).

Let F1 = 0, F2 = 1, F3 = X1, . . . , Fn be the polynomials of L at the end of
the game: n is bounded by 3qG + k + 2. Note that Δi,j = Fi − Fj �= 0 for i �= j.
We need the following lemma from [23]:

Lemma 2. Let p be a prime and F a m-variable polynomial with coefficients in
Zp, of total degree d. Then the probability that a random value of Z

m
p is a root

of R is at most d/p.

The probability that one of the Δi,j cancels at some specific value x=(x1, . . . , xk)
is therefore bounded by n2/2p.

Assuming no Δi,j cancels in x, game 2 perfectly simulates game 1. However,
the success criterion in game 2 is stricter than in game 1. The probability that
ψ(X1, . . . , Xk) = ϕ(X1, . . . , Xk, P1, . . . , P�) �= 0 but ψ(x) = 0 for the polyno-
mials P1 = Fi1 . . . , P� = Fi�

chosen by E among L is bounded by d/p. Indeed,
if ψ �= 0, it is of degree ≤ d because the Pi are linear, and vanishes in x with
probability ≤ d/p.
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Overall,

|Succ 1 − Succ 0| ≤ (3qG + k + 2)2

2p
+

d

p
.

Finally, in game 1, E wins if and only if ϕ(X1, . . . , Xk, P1, . . . , P�) = 0. This
happens with probability Pm. �

5.3 2-3-CDH and the Generic Group Model

Our 2-3-CDH problem corresponds to the polynomial ϕ(x1, x2, y1, y2) = x1x2y1−
y2. Indeed, the answer (Z, T ) to the 2-3-CDH challenge (X = gx, Y = gy) is
supposed to satisfy T = Zxy. This is equivalent to the above equation provided
X = gx1 , Y = gx2, Z = gy1 and T = gy2 . Since Z �= 1, a valid answer of the
adversary is such that y1 is a non-zero affine polynomial and ϕ �= 0, therefore
Pm = 0. Therefore, using k = 2 and d = 2, theorem 1 yields

Succ 2-3-CDH(qG) ≤ (3qG + 4)2

2p
+

2
p

= 9 × q2
G

2p
+ 12 × qG

p
+

10
p

.

5.4 f-RCDH and the Generic Group Model

For our f -RCDH problem, ϕ(x1, x2, y1, y2) = x1(f(r)x2 +y1)−y2, where r is the
representation of y1. This case is a little bit more complicated than for 2-3-CDH,
because ϕ depends on E’s answers through the term f(r).

Let ψ(X1, X2, . . .) = X1(f(r)X2 + P1(X1, X2, . . .)) − P2(X1, X2, . . .) where
the Pi are the polynomial representations of the Yi. Unknowns Xi for i > 2
represent random values in the group introduced by E. We want an upper bound
on P[ψ = 0] at the end of the game.

We know that deg(ψ) ≥ 2 as soon as f(r)X2 + P1 is not constant. Either
r was chosen by the adversary and P1 = Xi with i > 2, or P1 is an affine
polynomial chosen by the adversary through some sequence of computations
and r is random. In the first case f(r)X2 + P1 is not constant. In the second
case, r is a random uniform value in I\I ′, where I ′ = {r1, . . . , rn} and the ri

are the other representations already in L at the time of the query producing r.
The best E can do is to set P1 to −u X2 where u is the most likely output of f
for a random input x in I\I ′.

Let pmax(I
′) = maxi∈I\I′ P[f(x) = i|f(x) /∈ I ′]: f(r)X2 + P1 is constant with

probability less than pmax(I ′). Overall if pmax(n) is a uniform bound over I ′ of
pmax(I ′) for #I ′ ≤ n, Pm ≤ npmax(n) and theorem 1 yields with n = 3qG + 4

Succ f -RCDH(qG) ≤ n pmax(n) +
n2

2p
+

2
p

Discussions about the Maximum Probability pmax. In the specification
of MQV [27], f is the truncation of the � = �log2(p)/2�+1 LSBs of its input. Let
α =

⌈
p/2�

⌉
. Then every element in [0, 2�−1] is the image of at most α elements in



About the Security of MTI/C0 and MQV 169

I, therefore pmax(0) ≤ α/p. If n elements are removed in I, pmax(n) ≤ α/(p−n),
and therefore if n ≤ p/2,

pmax(n) ≤ p/2� + 1
p − n

≤ 2
p/2� + 1

p
= 2

(
2−� +

1
p

)
≤ 2

(
1

√
p

+
1
p

)
.

Overall, with MQV, the winning probability of E against f -RCDH satisfies

Succ f -RCDH(qG) ≤ 9 q2
G

2p
+

18 qG

p
+

18
p

+
6 qG√

p
+

8
√

p

As long as n = 3 qG + 4 ≤ p/2, this last hypothesis being perfectly sensible
for cryptographic purposes.

6 Key Exchange Implementation Choices

Our security proof highlights the importance of several implementation choices
when working with Diffie-Hellman-like key exchange algorithms:

– Work in a prime order group G. In our case, the computational problem
related to MTI/C0, 2-3-CDH, has a security that depends on the size of the
smallest non-trivial subgroup of G. As for f -RCDH, if G has non-trivial
subgroups, trade-offs can be devised to force the common key to belong to
some subgroup of G; the proof of hardness of f -RCDH in a composite-order
generic group would yield a bound depending on the size of the largest prime
order subgroup of G.

– Use the session flow, including parties identities, to derive keys.
This “freezes” active attacks by de-correlating keys between users and ses-
sions. Note that this is not specific to the signature-less case: an unknown
key-share attack can be devised against STS because it does not follow this
principle [10]. Including the user identities is of course crucial in a setting
with more than two users.

– Confirm the keys. Without key confirmations, an adversary against a
signature-less protocols can impersonate a user during the key negotiation,
and then wait for a long-term key leakage to compute the session key. On
the contrary, a key confirmation prevents the other party to output material
enciphered with the session key before it is sure that its partner actually
knows the key.
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A Security Model

The security requirements are formalized in a Real-or-Random game between
an attacker E and a simulator S simulating two users A and B. H is modeled by
a random oracle. However, we do not use the random oracle programmability;
therefore it is only assumed that H is “black-box”. H can be seen as a random
oracle that is outside the attacker but also outside the simulator. Each time E
“presses the button” to get a hash value of some message, S gets the input
message together with the hash value chosen by the oracle. The image space of
H is K, the key space.

At the beginning of the game between S and E, S draws a random bit b
uniformly; b decides whether random values or actual keys will be shown to E.
The goal of E is to correctly guess the value of b.

Simulation and Attacker’s Queries. E can issue the following queries to S
to control sessions and messages exchanged by A and B:

– j = Initiate : initiate a new session. The attacker receives a string that is
a session ID used in Test and Send queries.

– Send(U, M, j): send message M to user U for session j.

Messages that are supposed to be sent by A or B in the real protocol are
actually given by S to the attacker E, along with the index of the session which
the messages belong to.

Additionally, E can perform the following queries:

– Test(U, j): obtain the session key negotiated after session j from user U (U
= A or B);

– Corrupt(U): obtain the long-term private key of U = A or B.

Each of the Send, Test, and Corrupt queries models a different attack: Send
queries allow E to perform Man-in-the-Middle attacks by altering, deleting or
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inserting messages between A and B, Test queries model session key material
leakage, while Corrupt queries model long-term key material leakage.

A Test(U, j) query is answered as follows: if U did not accept the key negoti-
ation of session j (see “Accepted keys” below), an error is returned. Otherwise,
U has computed a key k and E gets the following answer:

– if a Corrupt query was issued before the Test query, the key k is returned;
– if no Corrupt query has been issued so far, the answer depends on b: if b = 1,

k is returned; if b = 0, a random value H ′(Flow(U, i)) ∈ K is returned, for
some private random oracle H ′ simulated by the simulator.

Notice that the answer to Corrupt queries in the random case (b = 0) does not
depend on the user on which the query was performed if A and B are partners
for the session, as in the real case.

E wins the game if at some point it outputs its answer b′ with b′ = b. E’s
advantage is then

Adv = |Pb=1[b′ = 1] − Pb=0[b′ = 1]| .

We are looking for an upper bound for Adv , depending on its running time t,
its number of H-queries qH and its number of Initiate queries qs.

Accepted keys. Suppose A and B negotiate a key. If the agreement succeeds,
at some point, A will start using the key, which might then leak (this is modeled
by Test queries). A should not use the key before it is convinced that it actually
shares the key with B and B only. To capture this notion, we say that A (or
B) accepts (the key negotiation) when it is convinced of the authenticity of the
computed key, and authorize Test query only on accepted keys.
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Abstract. We describe the first identity-based key encapsulation mech-
anism with threshold key delegation and decapsulation that is secure
in the standard model against chosen-ciphertext (CCA2) attacks. Our
scheme is unconditionally consistent and proved secure under the Bilin-
ear Decisional Diffie-Hellman assumption.

1 Introduction

Identity-Based Encryption and Key Encapsulation. An Identity-Based
Encryption (IBE) scheme is a public-key encryption scheme where any string is
a valid public key. In particular, email addresses and dates can be public keys.
The ability to use identities as public keys avoids the need to distribute public
key certificates. IBE encryption is performed in such a way that only the owner
of an identity (the receiver) can decrypt ciphertexts encrypted with respect to
his identity. In order to perform decryption the receiver gets a “user secret key”
associated to his identity. Creating this user secret is called key-delegation and
it is usually done by a master knowing a master secret key.

After Shamir proposed the concept of IBE in 1984 [19] it remained an open
problem for almost two decades to come up with a satisfying construction for
it. In 2001, Boneh and Franklin [8] proposed formal security notions for IBE
systems and designed a fully functional secure IBE scheme using bilinear maps.
Independently, in 2000, Sakai, Ohgishi, and Kasahara [18] already gave an in-
formal description of an IBE scheme. These schemes and the tools developed in
their design have been successfully applied in numerous cryptographic settings,
transcending by far the identity based cryptography framework.

Instead of providing the full functionality of an IBE scheme, in many applica-
tions it is sufficient to let sender and receiver agree on a common random session
key. This can be accomplished with an identity-based key encapsulation mech-
anism (IB-KEM) as formalized in [5]. Here an encapsulation algorithm creates
a random session key and encapsulates it into a ciphertext with respect to the
receiver’s identity. Given the ciphertext and the user secret key associated to his
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identity, the receiver can successfully decapsulate the ciphertext to recover the
encapsulated session key.

This common random session key may now be fed into any symmetric primi-
tive, for instance into a symmetric encryption scheme.

Threshold Identity-Based Key Encapsulation. Threshold techniques are
applied to cryptographic protocols whenever one wants to decentralize crucial
cryptographic operations that need some additional secret input. The idea is to
share this secret input among a number of independent players and only if a suf-
ficiently large fraction of players (determined by a threshold bound) interact (in
an honest way), the cryptographic operation can be successfully accomplished.
No useful information should be leaked otherwise.

In Identity-Based Key Encapsulation there are many operations to which
one can possibly apply threshold techniques. Here we consider making key de-
capsulation and key delegation threshold. We will call such schemes threshold
identity-based key encapsulation mechanisms, or threshold IB-KEM for short.

Threshold key delegation means that the user secret key (with respect to some
identity) is shared among many players. Sufficiently many players are needed to
reconstruct the full user secret key that enables to decapsulate any ciphertext
received by the identity.

Threshold decapsulation means that a ciphertext is shared among many play-
ers into ciphertext shares. Again, sufficiently many ciphertext shares are needed
to combine the shares into the original encapsulated session key. Note that no
(shares of the) user secret key is needed to perform the reconstruction of the
encapsulated key from its shares. Threshold decapsulation in the context of IBE
was first introduced in [2], whereas threshold key delegation was first informally
introduced in [9].

For several reasons, the notion of chosen-ciphertext security has emerged as
the “right” notion of security for standard public-key encryption/key encapsu-
lation [3]. In this work we also consider this form of attacks against the security
of our threshold scheme. In such a chosen-ciphertext attack, the adversary is
given access to an oracle that allows him to obtain partial decapsulation shares
of ciphertexts and partial user secret key shares of identities of his choosing.
Intuitively, security in this setting means that an adversary obtains (effectively)
no information about an encapsulated session key, provided he did not receive
sufficiently many partial decapsulation/user secret key shares.

Additionally every threshold IB-KEM has to fulfill some “consistency require-
ments”. That is, roughly, it should be impossibly to “abuse” a set of valid shares
(i.e. shares that pass their respective consistency tests) to make the scheme in-
consistent, which means (for instance) that the same ciphertext is decapsulated
into distinct session keys.

1.1 Our Contributions

Our two main contributions can be summarized as follows.

A rigorous security model for threshold IB-KEM. Extending [20,2,7]
we introduce the concept identity-based key encapsulation with threshold key-
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delegation and decapsulation (or short “threshold IB-KEM”) and provide full
security definitions to model chosen-ciphertext attacks and consistency require-
ments. To the best of our knowledge we are the first to define a rigorous model
for threshold IB-KEM – all previously proposed models either did not consider
consistency requirements [2] or were only defined for a weaker threshold func-
tionality (i.e., [12,7] only consider threshold key-delegation and not threshold
decryption).1

A threshold IB-KEM. We give a new construction of a threshold IB-KEM
in the above sense. Our scheme is unconditionally consistent and can be proved
chosen-ciphertext secure under the BDDH assumption in the standard model.
To the best of our knowledge, it is the first threshold IB-KEM proved secure in
the standard model.

1.2 Related Work

Baek and Zheng [2] give an IBE scheme with threshold decryption. The drawback
of this scheme is that generic proofs of knowledge (POK) of the equality of two
discrete logarithms are used and therefore it inherently relies on random oracles
to make the POK non-interactive. The random oracle model [4] is an idealized
world where all parties magically get black-box access to a truly random function.
Unfortunately a proof in the random oracle model can only serve as a heuristic
argument and has proved to possibly lead to insecure schemes when the random
oracles are implemented in the standard model (see, e.g., [11]).

Our threshold IB-KEM is the first such scheme that is provably secure in
the standard model. Our construction is direct and avoids any form of generic
POK. We remark that an existing “threshold IBE” in the standard model [12] is
based on a much weaker security model that in particular avoids all difficulties
encountered in [2] that would made POK necessary. More concretely, the scheme
in [12] does not deal with chosen ciphertext attacks. In [7] it was shown how
to transform any IBE scheme with threshold key delegation into a threshold
(standard) encryption scheme. A special instance of that transformation was
already worked out in [10]. We stress that, however, in order to obtain a full
threshold IB-KEM, different techniques than used in [7,10] seem to be necessary
to make the decapsulation algorithm threshold (and at the same time secure
against chosen-ciphertext attacks).

Our threshold IB-KEM construction is based on our recent IB-KEM from [14]
(which itself is a chosen-ciphertext variant of Waters’ original chosen-plaintext
secure IBE scheme [21]). The proof of security of our scheme is inspired by
the original proof from Waters [21] and the game-based proof of the IB-KEM
from [14]. However, there are important differences reflecting the nature of the
threshold scheme that have to be taken care off. A full version of this paper
including all proofs is available on eprint [17].

1 Here we don’t claim that the scheme from [2] does not fulfill the necessary consistency
requirements. We further remark that the security model from [7] is sufficient for
their purpose.
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2 Definitions

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s

$← S
denotes the operation of picking an element s of S uniformly at random. We
write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and by
z

$← A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate that A is
an algorithm with inputs x, y, . . . and access to oracles O1, O2, . . . and by z

$←
AO1,O2,...(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and access to oracles O1, O2, . . ., and letting z be the output.

2.2 Parameter Generation Algorithms for Bilinear Groups

All pairing based schemes will be parameterized by a pairing parameter gener-
ator. This is a PTA (probabilistic polynomial-time algorithm) G that on input
1k returns the description of an multiplicative cyclic group G1 of prime order p,
where 2k < p < 2k+1, the description of a multiplicative cyclic group GT of the
same order, and a non-degenerate bilinear pairing ê: G1 × G1 → GT . See [9] for
a description of the properties of such pairings. We use G

∗
1 to denote G1 \ {0},

i.e. the set of all group elements except the neutral element. Throughout the
paper we use PG = (G1, GT , p, ê) as shorthand for the description of bilinear
groups.

2.3 The BDDH Assumption

Let PG be the description of pairing groups. Consider the following problem
first considered by Joux [16] and later formalized by Boneh and Franklin [9]:
Given (g, ga, gb, gc, W ) ∈ G

4
1 × GT as input, output yes if W = ê(g, g)abc and no

otherwise. More formally, to a parameter generation algorithm for pairing-groups
G and an adversary B we associate the following experiment.

Experiment Expbddh
G,B (k)

PG $← G(1k)
a, b, c, w

$← Z
∗
p

β
$← {0, 1}

If β = 1 then W ← ê(g, g)abc else W ← ê(g, g)w

β′ $← B(1k, PG , g, ga, gb, gc, W )
If β �= β′ then return 0 else return 1

We define the advantage of B in the above experiment as

Advbddh
G,B (k) =

∣
∣
∣
∣
Pr

[

Expbddh
G,B (k) = 1

]

− 1
2

∣
∣
∣
∣

.
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We say that the Bilinear Decision Diffie-Hellman (BDDH) assumption relative
to generator G holds if Advbddh

G,B is a negligible function in k for all PTAs B. The
BDDH assumption was shown to hold in the generic group model in [6].

3 Definitions for IB-KEM with Threshold Key-Delegation
and Decapsulation

We start with some history and motivation. Threshold key-delegation for IBE
was introduced in [8,7]. The idea is that the master key msk is distributed among
different secret key generation players. Given a master-key share sk i, each player
can compute a partial secret key sk [id]i for the user with identity id . Finally, a
sufficiently large fraction of partial user secret keys is needed to reconstruct the
user secret key sk [id].

In contrast, in the model given in [2] the master key is not shared but only the
user secret key sk [id]. Then partial user secret key shares sk [id]i are distributed
among a number of decryption players. Given the share sk [id ]i, the i-th decryp-
tion player can compute a partial decryption share Ci of a given an ciphertext
C . A sufficiently large fraction of correctly generated ciphertext shares is needed
to finally reconstruct the message. No information about the message should be
leaked otherwise.

Our model of threshold IB-KEM is aimed at capturing the functionalities of
both threshold key-delegation IBE and threshold decryption IBE. That is, in a
threshold IB-KEM the players can act at the same time as private key generation
players and decapsulation players, so that they can choose which role they want
to assume depending on the application. Therefore, an encapsulation C sent to
user id can be decapsulated either by reconstructing the user secret key sk [id],
or by joining together a large enough fraction of decapsulation shares Ci.

We now give a formal definition of the functionality of a threshold IB-KEM.
A threshold IB-KEM TIBKEM = (Tkg, Tkey.Share, Tkey.Vfy, Tkey.Comb, Tenc,
Tdec, Tdec.Share, Tdec.Vfy, Tdec.Comb) with participating players 1, . . . , m con-
sists of nine polynomial-time algorithms. Via (pk , vk , sk) $← Tkg(1k , l, m) the
randomized key-generation algorithm produces a public key pk , a public ver-
ification key vk , and the m master-key shares sk = (sk i)1≤i≤m for security
parameter k ∈ N and threshold parameter l; via (C , K) $← Tenc(pk , id) a sender
creates a random session key K and a corresponding ciphertext C with re-
spect to identity id ; via sk [id ]i

$← Tkey.Share(pk , i, id , sk i) the ith share sk [id ]i
of the user secret key sk [id ] is generated; via {accept, fail} ← Tkey.Vfy(vk ,
i, id , sk [id ]i) the validity of the ith user secret key share sk [id ]i is verified;
via {sk [id ], fail} ← Tkey.Comb(pk , vk , id , (sk [id ]i)i∈Ir ) sufficiently many valid
user secret key shares {(sk [id ]i}i∈Ir are combined to reconstruct the user se-
cret key sk [id ]. The set of players Ir is called the user secret key reconstruc-
tion set. Via {K, fail} ← Tdec(pk , sk [id ],C ) the possessor of the user secret
key sk [id ] decapsulates the ciphertext C ; via {(i, Ci), fail} ← Tdec.Share(pk ,
vk , id , i, sk [id ]i,C ) the possessor of the ith user secret key share sk [id ]i par-
tially decapsulates the ciphertext C encrypted with respect to id to get back
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the ith decapsulation share Ci; via {accept, fail} ← Tdec.Vfy(i, pk , vk , id,
Ci,C ) it can be publicly verified if the ith decapsulation share Ci is valid; via
{M, fail} ← Tdec.Comb(pk , vk , id , (Ci)i∈I′

r
,C ) sufficiently many valid decap-

sulation shares {Ci}i∈I′
r

are combined to reconstruct the session key K. The set
of players I ′r is called the session key reconstruction set (and may be distinct
from Ir).

Roughly speaking, for correctness we require that all correctly generated
shares pass their respective verification tests. Furthermore, any set of at least
l honest players holding shares of a common identity id should be able to cor-
rectly operate the threshold IB-KEM, i.e. they should be able to reconstruct the
user secret key sk[id], or alternatively to decapsulate any correctly generated
encapsulation sent to id . We say that a user secret key or decapsulation share is
correctly generated if it has been obtained by following the protocol specification.
Moreover, a user secret key or decapsulation share is said to be valid if it passes
the corresponding verification test.

Each threshold IB-KEM naturally has to fulfull security and consistency re-
quirements. In terms of security we have to extend the security models in [2,7] to
our setting, meaning that an adversary, in addition to the master-key shares for
corrupted players, gets access to oracles for user secret key and decapsulation
shares. Regarding consistency, we must recall that often one wants threshold
key-delegation (resp. threshold decryption) to be robust, namely if the recon-
struction of sk [id ] (resp. threshold decapsulation of a valid encapsulation C)
fails, it is useful to detect the players that supplied invalid partial user secret
keys (resp. invalid partial decapsulation shares). This also means that it should
be impossibly to “abuse” shares that passed their respective consistency tests
(i.e. shares that are valid) to make the scheme inconsistent, for instance by de-
capsulating the same encapsulation into distinct session keys. We will call this
property consistency of the threshold IB-KEM.

3.1 Security Requirements

Formally, we associate to a threshold IB-KEM TIBKEM and an adversary A the
experiment Exptibkem-cca

TIBKEM ,A as follows:

Experiment Exptibkem-cca
TIBKEM ,A (k)

(Ic, st0)
$← A(1k , init) //adversary outputs the set of corrupted users

(pk , sk , vk) $← Tkg(1k , l, m)
(id∗, st) $← AKeyShare(·,·),DecShare(·,·,·)(find, pk , vk , {sk i}i∈Ic , st0)
K∗

0
$← KeySp ; (C ∗, K∗

1 ) $← Tenc(pk , id)
δ

$← {0, 1} ; K∗ ← K∗
δ

δ′ $← AKeyShare(·,·),DecShare(·,·,·)(guess, K∗,C ∗, st)
If δ �= δ′ then return 0 else return 1

The set Ic ⊂ {1, . . . , m} is called the set of corrupted players and its cardinal-
ity, |Ic| must be upper bounded by l − 1. The oracle KeyShare(i, id) returns
sk i

$← Tkey.Share(pk , i, id , sk i) with the restriction that A is not allowed to query
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for id �= id∗ for non-corrupted players i �∈ Ic. The oracle DecShare(i, id ,C )
returns Ci

$← Tdec.Share(pk , vk , i, id , sk i,C ) (where the user secret key sk [id ]i
was generated using sk [id ]i

$← Tkey.Share(pk , i, id , sk i)) with the restriction that
A is not allowed to query for (i, id∗,C ∗) for non-corrupted players i �∈ Ic. We
define the advantage of A in the experiment as

Advtibkem-cca
TIBKEM ,A (k) =

∣
∣
∣
∣
Pr

[

Exptibkem-cca
IBKEM ,A (k) = 1

]

− 1
2

∣
∣
∣
∣

.

Definition 1. A threshold IB-KEM TIBKEM is said to be secure against
chosen-ciphertext attacks if for any l, m with 0 < l ≤ m, the advantage func-
tion Advtibkem-cca

TIBKEM ,A (k) is a negligible function in k for all polynomial-time adver-
saries A.

3.2 Consistency Requirements

Any threshold IB-KEM TIBKEM should satisfy two consistency requirements.
On the one hand, user secret key consistency requires that for any reconstructed
user secret key sk [id] (obtained from a set of l valid user secret key shares) the
same session key is obtained when decapsulating (via Tdec) a valid ciphertext
under the corresponding id . Secondly, decapsulation consistency requires that
reconstructing the session key via Tdec.Comb for the same ciphertext C and
identity id but for several different sets of l valid decapsulation shares results in
the same session key.

Following [20,7] we will formalize both consistency requirements using an
adversary “attacking” the consistency of the schemes. Here we refer to reader
to [1] for a general discussion on defining adveraries attacking consistency of
a cryptographic scheme. As usual, “adversary” refers to a PTA but we stress
that the consistency of our particular scheme can be proven with respect to
unbounded adversaries.

For secret key consistency, we associate to an adversary A the experiment

Experiment Exptibkem-key-consist
TIBKEM ,A (k)

(Ic, st0)
$← A(1k , init) //adversary outputs the set of corrupted users

(pk , sk , vk ) $← Tkg(1k , l, m)
(id , D, D′, C) $← AKeyShare(·,·),DecShare(·,·,·)(find, pk , vk , {sk i}i∈Ic , st0)
sk [id ] ← Tkey.Comb(pk , vk , id , D) ; K ← Tdec(pk , sk [id ], C)
sk [id ]′ ← Tkey.Comb(pk , vk , id , D′) ; K ′ ← Tdec(pk , sk [id ]′, C)
If fail �= sk [id ] �= sk [id ]′ �= fail and K �= K ′ then output 1 else output 0

The set Ic and the oracles KeyShare(i, id) and DecShare(i, id ,C ) are as
defined in the experiment Exptibkem-cca

TIBKEM ,A . The sets D = {D1, . . . , Dl} and D′ =
{D′

1, . . . , D
′
l} are two sets of valid key shares with respect to identity id . We

define the advantage of A in the experiment as

Advtibkem-key-consist
TIBKEM ,A (k) = Pr

[

Exptibkem-key-consist
TIBKEM ,A (k) = 1

]

.
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For decapsulation consistency we associate to an adversary A the following
experiment:

Experiment Exptibkem-dec-consist
TIBKEM ,A (k)

(Ic, st0)
$← A(1k , init) //adversary outputs the set of corrupted users

(pk , sk , vk) $← Tkg(1k , l, m)
(id , S, S′, C) $← AKeyShare(·,·),DecShare(·,·,·)(find, pk , vk , {sk i}i∈Ic , st0)
K ← Tdec.Comb(pk , vk , id , S,C )
K ′ ← Tdec.Comb(pk , vk , id , S′,C )
If fail �= K �= K ′ �= fail then return 1 else return 0

The set Ic and the oracles KeyShare(i, id) and DecShare(i, id ,C ) are as
defined in the experiment Exptibkem-cca

TIBKEM ,A . The sets S = {C1, . . . , Cl} and S′ =
{C′

1, . . . , C
′
l} are two sets of valid decapsulation shares with respect to (id, C).

We define the advantage of A in the experiment as

Advtibkem-dec-consist
TIBKEM ,A (k) = Pr

[

Exptibkem-dec-consist
TIBKEM ,A (k) = 1

]

.

The experiment Exptibkem-key-consist
TIBKEM ,A has already been considered in [7], while

the experiment Exptibkem-dec-consist
TIBKEM ,A is considered here for the first time. In par-

ticular, previous papers [2,12] did not consider decapsulation consistency.

Definition 2. A threshold IB-KEM TIBKEM is said to be consistent if for any
l, m with 0 < l ≤ m, and for any PTA adversaries A1 and A2 the two functions
Advtibkem-key-consist

TIBKEM ,A1
(k) and Advtibkem-dec-consist

TIBKEM ,A2
(k) are negligible.

3.3 Discussion and Difficulties

It is already known how to make the key derivation threshold [7]. The crucial
trick is to use bilinear pairings to explicitly check if a shared secret key sk [id ]i was
correctly generated. If not it can be rejected before the secret is reconstructed.

The difficulty for a full fledged threshold IB-KEM lies in the decapsulation
shares. A similar method as above for generating decapsulation shares does not
work since the session key K in an element from the target group GT and we
are not given a bilinear pairing from the group GT (which does not exist since
DDH in GT and hence BDDH would be easy otherwise). In existing solutions [2]
(based on the Boneh-Franklin IBE [9]) generic proofs of knowledge (POK) are
used instead to prove ciphertext consistency and random oracles are essential to
make the proofs non-interactive.

We propose a different technique that completely avoids generic POK. The
key idea is to make the decapsulation shares elements from G1. That makes
possible to use pairings to check for consistency of the decapsulation shares.
Our technique is reminiscent to the one proposed in [13] based on the 2-level
hierarchical IBE from Gentry and Silverberg [15]. However, chosen-ciphertext
security was not considered in [13]. In contrast to [13] our scheme does not add
any further information to the ciphertext, i.e. we basically get “threshold for
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free” from chosen-ciphertext properties of the original IB-KEM [14]. A crucial
property of the scheme from [14] we exploit in our threshold IB-KEM is the
“public verifiability” of ciphertexts which makes it possible to check if a given
ciphertext is valid without knowing the master/user secret key.

4 A New Threshold IB-KEM

In this section we present our new chosen-ciphertext secure threshold IB-KEM.
We will use the recent chosen-ciphertext secure IB-KEM from [14] as a basic
building block for the threshold IB-KEM. Indeed encapsulation and decapsula-
tion are exactly the same as in [14]. Hereby we benefit of the public-verifiability
property of the ciphertexts of this IB-KEM to check for consistency of a cipher-
text. In the context of a threshold IB-KEM that means that we can identify
a given encapsulation as malicious without having to decapsulate it. This par-
ticular feature is a key point to protect the scheme against chosen-ciphertext
attacks.

From now on let PG = (G1, GT , p, ê, g) be public system parameters obtained
by running the group parameter algorithm G(1k).

4.1 Waters’ Hash

We review the hash function H : {0, 1}n → G1 used in Waters’ identity based
encryption schemes [21]. On input of an integer n, the randomized hash key
generator HGen(G1) chooses n+1 random groups elements h0, . . . , hn ∈ G1 and
returns h = (h0, h1, . . . , hn) as the public description of the hash function. The
hash function H : {0, 1}n → G

∗
1 is evaluated on a string id = (id1, . . . , idn) ∈

{0, 1}n as the product

H(id) = h0

n∏

i=1

hidi

i .

4.2 The Scheme

For the user secret key reconstruction set Ir ⊆ {1, . . . , m} we define the La-
grange Coefficients λi (i ∈ Ir) as λi =

∏

j∈Ir\{i}
j

j−i ∈ Z
∗
p. For any polynomial

F ∈ Zp[X ] of degree at most |Ir | − 1 this entails
∑

i∈Ir
F (i)λi = F (0). The

coefficients λ′
i =

∏

j∈I′
r\{i}

j
j−i ∈ Z

∗
p are defined analogously for the session key

reconstruction set I ′r ⊆ {1, . . . , m}. We call a (user secret key/ciphertext) share
valid if it passes the respective consistency check. Let TCR : G1 → Zp be a target
collision restant hash function (i.e. given TCR(x) for a random and external x
it should be infeasible to find y ∈ G1 \ {x} such that TCR(x) = TCR(y); we
refer to [17] for a formal definition). Our threshold IB-KEM for identity space
{0, 1}n and threshold parameters m and l (l-out-of-m threshold scheme – at
least l honest players are needed to perform threshold operations) is described
by the following algorithms:
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Key generation Tkg(1k, l, m)
Choose u1, u2

$← G
∗
1 and b

$← Zp, and compute α = ub
1 and z ← ê(g, α).

Choose a random hash function H $← HGen(G1) and a parameters the the
target collision resistant hash function TCR. The public key is defined as
pk = (u1, u2, z, TCR, H).
Generate shared keys using l-out-of-m secret sharing by choosing Fi

$← Zp

for i = 1, . . . , l − 1 and defining F (X) = b +
∑l−1

i=1 Fi · X i. The verification
key is defined as vk = (vk1, . . . , vkm), where vk i = gF (i). The shared secret
key is defined as sk = (sk1, . . . , skm), where sk i = u

F (i)
1 .

Shared user secret key delegation Tkey.Share(pk , i, id , sk i)
Choose si

$← Zp and compute di,1 ← sk i ·H(id)si and di,2 ← gsi . The shared
user secret key for player i is defined as sk [id ]i = (di,1, di,2).

Shared user secret key verification Tkey.Vfy(pk , vk , i, id , sk [id ]i)
Parse sk [id ]i = (di,1, di,2) and check if ê(di,1, g) = ê(vk i, u1) · ê(di,2, H(id))

Shared user secret key combine Tkey.Comb(pk , vk , id , (sk [id ]i)i∈Ir )
If |Ir| < l or if one of the shares user secret keys sk [id ]i (i ∈ Ir) is not
valid return fail. Otherwise parse sk [id ]i = (di,1, di,2) and return sk [id ] =
(d1, d2) = (

∏

i∈Ir
dλi

i,1,
∏

i∈Ir
dλi

i,2).
Encapsulation Tenc(pk , id)

Choose r
$← Z

∗
p and compute the encapsulation C = (c1, c2, c3) ∈ G

3
1 as

(c1 = gr, c2 = H(id)r, c3 = (ut
1u2)r),

where t = TCR(c1). The corresponding session key is K = zr ∈ GT .
Decapsulation Tdec(pk , sk [id ],C )

Parse C as (c1, c2, c3) and sk [id ] as (d1, d2). Compute t = TCR(c1). We call
a encapsulation C consistent iff (g, c1, u

t
1u2, c3) and (g, c1, H(id), c2) are DH

tuples2. (Checking for a DH tuple can be done by computing the ration of
two pairings, i.e. (g, c1, u

t
1u2, c3) is a DH tuple if ê(g, c1) = ê(ut

1u2, c3).) If C
is not consistent then return fail. Otherwise reconstruct the session key as

K = ê(c1, d1)/ê(c2, d2) .

Shared decapsulation Tdec.Share(pk , vk , i, id , sk [id ]i,C )
Parse C as (c1, c2, c3) and compute t = TCR(c1). If C is not consistent the
return fail. Otherwise choose ri

$← Zp and return the shared decapsulation
for player i, Ci = (Ci,1, Ci,2, Ci,3) as

(Ci,1 = gri , Ci,2 = di,1 · (ut
1u2)ri , Ci,3 = di,2) .

Decapsulation share verification Tdec.Vfy(pk , vk , i, id , Ci,C )
If C is not consistent or if

ê(g, Ci,2) �= ê(vk i, u1) · ê(Ci,3, H(id)) · ê(Ci,1, u
t
1u2)

then return fail.
2 A tuple (g, ga, gb, gc) ∈ G

4
1 is said to be a Diffie-Hellman tuple (DH tuple) if ab =

c mod p.
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Combine decapsulation shares Tdec.Comb(pk , vk , id , (Ci)i∈I′
r
,C )

Parse C as (c1, c2, c3) and compute t = TCR(c1). If |I ′r | < l or if one of
the shares Ci is not valid then return fail. Otherwise compute the values
B1 =

∏

i∈I′
r
C

λ′
i

i,1, B2 =
∏

i∈I′
r
C

λ′
i

i,2, and B3 =
∏

i∈I′
r
C

λ′
i

i,3. Reconstruct the
session key as

K =
ê(c1, B2)

ê(c2, B3) · ê(ut
1u2, B1)

.

Correctness and Security. It is easy to verify that all verification checks
are passed for correctly generated keys/encapsulations.

We now show correctness of the reconstructed private key. Let Ir a set of
cardinality at least l. Assume the shares sk [id ]i are all correct, that is di,1 = sk i ·
H(id)si and di,2 = gsi . Let us define s =

∑

i∈Ir
siλi. Then d′2 =

∏

i∈Ir
dλi

i,2 = gs

and

d′1 =
∏

i∈Ir

dλi

i,1 =
∏

i∈Ir

sk [id ]i · H(id)siλi = H(id)s
∏

i∈Ir

u
F (i)
1 = ub

1H(id)s,

as in key derivation.
We now show correctness of the reconstructed session key. Let I ′r be a set

of cardinality at least l. Assume the shares Ci are all correct, i.e. Ci,1 = gr′
i ,

Ci,2 = di,1 · (ut
1u2)r′

i = sk i · H(id)si · (ut
1u2)r′

i , and Ci,3 = di,2 = gsi . We define
r′ =

∑

i∈I′
r
r′iλ

′
i and s =

∑

i∈I′
r
siλ

′
i. Then B1 =

∏

i∈I′
r
C

λ′
i

i,1 = gr′
and B3 =

∏

i∈I′
r
C

λ′
i

i,3 = gs. Furthermore,

B2 =
∏

i∈I′
r

C
λ′

i

i,2 =
∏

i∈I′
r

gF (i)·λ′
i · H(id)si·λ′

i · (ut
1u2)r′

i·λ′
i

= g
�

i∈I′
r

F (i)λ′
i · H(id)s · (ut

1u2)r′

= α · H(id)s · (ut
1u2)r′

The key is computed as

K = ê(c1, C
′
2)/(ê(c2, C

′
3) · ê(c3, C

′
1))

= ê(gr, α · H(id)s · (ut
1u2)r′

)/(ê(H(id)r, gs) · ê(urt
1 ur

2, g
r′

))

= ê(gr, α) · ê(gr, H(id)s)/ê(H(id)r, gs) · ê(gr, (ut
1u2)r′

)/ê(urt
1 ur

2, g
r′

))

= zr ,

as in encapsulation.

Theorem 3. Assume TCR is a target collision resistant hash function. Under
the Bilinear Decisional Diffie-Hellman (BDDH) assumption relative to gener-
ator G, our threshold IB-KEM is secure against chosen-ciphertext attacks. In
particular, we have

Advtibkem-cca
TIBKEM ,A = O

(

nq · (ε + q/p) + Advhash-tcr
TCR,H (k)

)

,
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for any adversary A running for time TimeA(k) = TimeB−Ω
(

ε−2 ·ln(ε−1)+q
)

,
where ε = Advbddh

G,B (k) and q is an upper bound on the number of key deriva-
tion/decapsulation share queries made by adversary A.

Theorem 4. Our threshold IB-KEM is consistent. In particular, we have

Advtibkem-key-consist
TIBKEM ,A1

(k) = Advtibkem-dec-consist
TIBKEM ,A2

(k) = 0 .

The above statement even holds for unbounded adversaries A1 and A2, i.e. we
have perfect consistency.

The proofs of the two theorems are given in the full version of this paper [17].
The proof of Theorem 4 is relatively straightforward given the correctness of
Shamir secret sharing.
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Abstract. Designing authenticated key exchange algorithms is a prob-
lem well understood in cryptography: there are established security mod-
els, and proposals proved secure in these models. However, models
currently used assume that a honest entity involved in a key exchange is
trusted as a whole. In many practical contexts, the entity is divided in
an authentication device storing a private key and having low computing
power, and a computing device, that performs part of the computations
required by protocol runs. The computing device might be a PC con-
nected to the Internet, and the authenticating device a smart card. In
that case as well in many others, a compromise of the computing de-
vice is to be expected. We therefore propose a variant of the MQV and
HMQV key exchange protocols secure in that context, unlike the original
protocols. The security claim is supported by a proof in a model derived
from the Canetti-Krawczyk one, which takes into account more general
rogue behaviours of the computing device.

1 Introduction

Key exchange, together with other basic primitives like encryption and signature,
constitutes a building block of modern cryptography. Key exchange algorithms
enable two parties communicating on an insecure channel to agree on a common
secret value. The Diffie-Hellman algorithm [7] was the first key-exchange algo-
rithm not requiring a pre-shared static secret between the parties. It does not
however enforce parties authentication, and is therefore vulnerable to man-in-
the-middle attacks. After that seminal paper, many authenticated key-exchange
(AKE) protocols were proposed, some of them with security proofs.

Current security models for key exchange [4,3,5,6] take into account active
attackers, and model the secrecy of session keys together with the mutual au-
thentication property, that is, the assurance for each participant of a protocol
run that it talks to whom it thinks it is talking to.

Our purpose is to motivate a new attack scenario that arises naturally when
implementing an AKE protocol. We thus define a security model including this
attack capability and then build a protocol secure given this new constraint. We
namely focus on situations where it is convenient to split an entity performing a

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 186–200, 2006.
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run of a key exchange protocol into an authentication device and an untrusted
computing device. The authenticating device enforces the confidentiality of the
authentication data while some computing operations required by the protocol
are carried out by the computing device. This allows to use an authentication
device with little computing power, and to make computing devices independent
from users.

In such a framework, an AKE protocol is expected to mitigate the conse-
quences of a computing device compromise. Specifically, an attacker that had
the opportunity to interact offline with some authentication devices should not
be able to authenticate itself in subsequent protocol runs.

Several applications might benefit from an AKE protocol able to cope with
a computing device. Mobile phones include smart cards which store the user
authentication data; the handsets themselves are the computing devices. PCs
equipped with a crypto token have a lot more computing power than the token
itself, but may be plagued by spyware or viruses. New designs can also be de-
vised. For example, using an AKE protocol secure in our model, one could build
authenticated and escrowable end-to-end encrypted communications in mobile
phone networks: the handsets act as the authentication devices and the mobile
phone base stations as the computing devices. Session keys are negotiated be-
tween two handsets when a communication is initiated. With such a setup, the
network operator knows session keys and can therefore decipher calls as required
by the law, but is still unable to fake the users authentication.

The security model we define takes into account the capacity for an attacker
to compromise a computing device, in the following strong sense: the attacker
performs itself the operations normally assumed by the computing device, and
therefore interacts with the authenticating device as a computing device would
do. In that situation, the attacker can compute session keys, but the the model
requires that after an arbitrary number of such interactions, the attacker is
unable to fake the identity of the authenticating device it interacted with. The
model is named the public computation model, because the attacker has both
passive and active access to the computation devices.

MQV, a well-known signature-less AKE protocol, is a good candidate to build
a protocol that is secure in the public computation model, although it was not
designed to take into account such threats. We show that MQV itself [15,23], or
its variant HMQV [11], are not secure if scalar multiplications are moved into
the computing device; however, only slight changes are required to make MQV
secure in that setting. We present a 4-pass variant of MQV that is provably secure
in our model. The security proof assumes the difficulty of the CDH problem and
lies in the random oracle model.

Related Work. The public computation model is analogous to the Canetti-
Krawczyk model [5]. In the latter, access to the computing device would have
been granted through ”Session State Queries”. We chose what seemed a sim-
pler path to remove the computing device altogether and allow the attacker to
interact freely with authentication devices. Instead of performing Session State
queries, the attacker therefore assumes the role the computing device itself. This
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allows not only access to values in an honest computing device, but also arbitrary
man-in-the-middle scenarios where the computing device behaves abnormally to
gain information about long-term secrets.

In [11], all variants of HMQV including the 3-pass variant HMQV-C are proved
secure in the CK model, assuming intermediate scalar values are stored in pro-
tected memory, that is, out of reach of Session State queries. This is not very
satisfactory as these values are inherently ephemeral. The protocol we propose
is designed to overcome this drawback. Our security proof result can therefore
be seen as an extension of what is proved in [11].

Contrary to [11], it is assumed that the protocol uses a prime-order group.
We do not pretend to eliminate the need for subgroup membership tests when
a non prime-order group is used. As shown in [14], these membership issues can
cause subtle errors in security proofs.

The access of the attacker to the authentication device is very much like the
Access queries of [22], which addresses a problem similar to ours for the Needham
and Shroeder protocol.

Overall, the model introduced is a very classical Real-or-Random one. It is
built around two natural notions for key exchange protocols, real partnership and
intended partnership: they designate respectively the relationship between users
really exchanging messages and intending to exchange messages. Real partners
are “peers” while intended partners are “assumed peers” in the CK model; the
“real partnership” relation comes from the “session IDs” of [4]. To slice proofs
into more palatable parts, properties relevant to un-authenticated key exchange
and authenticated key exchange are covered by two separate security games.
As a side effect, it is very simple to specialize the model to un-authenticated
protocols.

The introduction of a “computing device” in key exchange is analogous to
some works on “server-aided computations” aimed at improving the efficiency
of RSA signatures [12,2]. While the resulting protocols were proved insecure
[21,18,19], our protocol proposal uses a mix of external help (the computing
device) and use-and-throw coupons to avoid computing scalar multiplications.
Coupons are a well-known trick to improve the efficiency of discrete log based
signature schemes [17], which MQV is related to. We do not provide a general
solution for relying on an external device to compute scalar multiplications like
in [8], but rather provide an ad-hoc solution tailored to MQV. [8] could be used
to eliminate completely the need for coupons in our variant of MQV, however it
requires to independent computing units in the computing device, an hypothesis
which cannot be easily verified by the authenticating device.

Paper Outline. The paper is structured as follows. First, we review some
general concepts related to the security of key exchange protocols in section
2. In section 3, we introduce the public computation model. We then review
MQV in section 4.1 and explain why its natural implementation with both an
authentication device and a computing device cannot be secure in that model.
The variant of MQV in the public computation model, MQV-p, is presented in
paragraph 4.2. The algorithmic problems used in the proof and the proof results
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are summarized in section 5. A sketch of proof outlining the motivations of some
choices of proof techniques is then provided section 6. The proof itself is omitted
due to lack of space in this extended abstract. It is available in the full version
of the paper.

2 Security Goals and Related Concepts

We build the security notions for key exchange around the concepts of intended
partner and real partner. The real partner of a user U is the user who receives
(resp. sends) the messages sent (resp. received) by U; it is not necessarily known
by U. On the other hand, the intended partner of U, which is defined only in the
authenticated case, is the user U thinks it is talking to. The security of an unau-
thenticated key exchange protocol is then expressed as follows: the key resulting
from a key exchange must be secret for anybody except U and its real partner.
This is the semantic security property. An AKE protocol must further satisfy
the mutual authentication (MA) requirement: a protocol run should complete
successfully for some user U only if the intended partner of U matches its real
partner. In an AKE protocol, the combination of semantic security and mutual
authentication yields the property that a key computed after a protocol run
completed successfully is shared with the intended partner, and with it only.
To define rigorously these security goals, we need to take a closer look at some
general concepts related to authenticated key exchange.

2.1 Session Identifiers

Throughout the paper, we need to put labels on protocol runs. Formally, we could
use a “global” naming scheme, where each run is uniquely identified throughout
all runs performed by all users. This would not have a concrete meaning how-
ever, since users only know about the protocol runs they perform themselves.
Therefore we identify protocol runs by user - session index pairs. This way, we
can assume that each user U engaged in a session (U, s) knows about s.

2.2 Key Material, Session View, Real Partners

For any KE protocol, the moment when a user has enough information to com-
pute the session key can be defined. In the protocols we consider, we represent
this by a flag, KeyMaterialReceived, that is set to true when the session key can
be computed. The data exchanged required to compute the session key are called
the key material.

For some session (U, s), we denote by View(U, s) all the messages sent and
received by U during session s before KeyMaterialReceived = true, described in a
user-independent way. View(U, s) is only defined when U has set KeyMaterialRe-
ceived to true in session s. The session key is computed by U as a function of its
View and its private key. When View(U, s) = View(U’, s’), we say that sessions
(U, s) and (U’, s’) match, and that U and U’ are real partners for sessions s and s’.
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2.3 Intended Partners, Key Acceptance and Mutual Authentication

In an honest protocol run of an authenticated key exchange algorithm, each user
has an intended partner. The intended partner is defined in a protocol-dependent
way but it must be possible to express it as a function of the messages exchanged
during a session and of the public key of the user. This function might not be
easily computable; this happens for example in the case of a protocol including
some identity hiding functionality, like -I and -R variants of SIGMA [10]. When
the way to derive the intended partner identity is not obvious, it should be
clearly stated in a protocol description. Except in these special cases, it is usually
straightforward to define the identity of the intended partner in terms of the
messages exchanged during a protocol run.

During an AKE protocol run, a user acknowledges at some point that it is
talking to its intended partner. In the protocols we describe, this is again ma-
terialized by a flag, KeyAccepted. Therefore a user state in an AKE protocol is
defined by the Boolean values KeyMaterialReceived and KeyAccepted. The mu-
tual authentication property of an AKE protocol can now be easily defined: a
protocol has the MA property if whenever a session (U, s) completes successfully
(KeyAccepted = true), user U has a real partner U’ for session s, and it is equal
to its intended partner. Note that for U’ to be U’s real partner for some session
s’, View(U’, s’) must be defined, which implies that KeyMaterialReceived = true
for session (U’, s’).

3 Security Model

We define in this section our AKE security model. The security goals are formal-
ized into games between an attacker E and a simulator S running instances of an
AKE protocol between several users. In these games, E directs the users actions
regarding executions of the protocol, and has total control over the messages
exchanged between the users.

E’s capabilities correspond to queries that it can make to S. Queries are listed
in section 3.1. In particular, E can get the long-term private keys corresponding to
legitimate identities in two ways: it can obtain keys of existing users controlled by
S through Corrupt queries, or register its own users through Register queries. The
public computation model therefore allows the presence of users controlled by
the attacker alongside the ones controlled by S. In particular, attacks requiring
to dynamically register a public key, like the one of Kaliski on MQV [9], are
within the scope of the model.

S does not stop simulating a corrupted user. A user that was targeted by a
Corrupt query can therefore be simulated by S and impersonated by E. Therefore
a corrupted user might still be involved in honest protocol runs, managed by S.
We name them honest sessions and session views.

The new attack scenario that we take into account translates into two new
queries available to E, IniAuth and SendAuth, enabling it to interact freely with
the authentication device of any user.
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The model is composed of two games: a real-or-random game Gror modeling
the secrecy of the negotiated key, as explained in section 3.3; and a game Gma

where the goal of the attacker is to break mutual authentication, defined in
section 3.4.

Differences between the public computation model and the Canetti-Krawczyk
model [5] are as follows:

– Each user is split in two parts: an authentication device and a computing
device. This corresponds somewhat to the “protected” and “unprotected”
memory in the CK model, but is more flexible because the attacker can im-
personate a computing device in an arbitrary way instead of only be granted
access to the memory of honest computing devices.

– Security notions for un-authenticated and authenticated key exchange pro-
tocols are modelled by two separate security games.

– Key secrecy is modeled by a real-or-random game instead of the find-then-
guess game of [5,4]. The two corresponding security properties are equivalent,
but there is a loss factor linear in the number of sessions from the find-then-
guess game to the real-or-random game [1] in the security bounds obtained.

3.1 Simulation and Attacker’s Queries

E can issue different queries to S to control sessions and messages exchanged by
users. It is also given complete control over messages between users: messages
that are supposed to be sent by users in the real protocol are actually handed over
by S to E, along with the corresponding session identifier. E can send messages
to users through Send queries: Send(U, s, M) sends message M to user U as part
of session s.

New sessions are opened through Initiate queries: s = Initiate(IDU, IDU’) tells
user U to initiate a new session with user U’. U is therefore the initiating user
of the session. The attacker is answered a session identifier s that is later used
in Send queries. IDU and IDU’ must match registered identities of users either
simulated by S or created by E through Register queries as described below.

When some user U’ controlled by the simulator receives a message that does
not belong to an existing session, and that can be interpreted as the first message
of a new session, it creates a new session identifier s’ that is handed over to E.

E’s attack capabilities are modeled by the following queries:

– Corrupt(U): obtain the long-term private key of U.
– Register(k, IDV): register public key k for identity IDV. The public key may

have already been assigned to some user, however IDV must not match the
identity of an existing user. IDV is the identity of a new legitimate user V
controlled by the attacker. Remark that the model does not require the CA
to ask for proofs of knowledge of the private keys during identity registration.

– t = IniAuth(U) and SendAuth(t, M): these two queries mimic Initiate and
Send queries and model E’s access to authentication devices. An “authen-
tication session index” t is used to allow and to keep track of concurrent
authentication sessions.



192 S. Kunz-Jacques and D. Pointcheval

In a signed Diffie-Hellman protocol for instance, SendAuth(t, M) would sim-
ply return the signature of message M by user U if the authentication session
t has been opened for user U.

Corrupt queries model long-term key material leakage; Register queries model
users that are created by E, for example when E chooses a public key depending
on some observed data. IniAuth and SendAuth queries model the access to the
authentication device.

3.2 Common Framework for Security Games

In the two games Gma and Gror, S simulates real protocol sessions according to
the queries made by E as in section 3.1. The simulations used in these games
differ only by the value handed over to E when a session completes successfully
(KeyAccepted ← true): in game Gma, nothing is given to E whereas in game Gror,
a “real-or-random” value is revealed.

3.3 Semantic Security Game Gror

The real-or-random game Gror models the key secrecy in front of passive attacks.
E wins that game if it manages to distinguish real session keys from random
values.

In that game, S first draws a global random bit b. This bit decides whether
real session keys or random values are to be revealed to E, whose goal is to guess
b correctly. If b = 1, a simulation SReal is used: the real session key is revealed
to E after a session completes successfully. If b = 0, the simulation SRandom

is performed as follows: first, S sets up a private random oracle H0. Next, S
simulates protocol runs as in SReal. When a session (U, s) completes successfully
with at least one honest matching session (U’, s’), the value revealed to E is equal
to H0(View(U, s)) (remember that a honest session is a session simulated by S,
irrespectively of whether the corresponding user was corrupted or not.) If the
session completes successfully without a honest matching session, the real key
is revealed, as E might be in a position to compute it, for example because it
impersonated U’s real partner for session s.

Let b′ be E’s answer. E’s advantage in game Gror is

Adv ror = |Pb=1[b′ = 1] − Pb=0[b′ = 1]| .

3.4 Mutual Authentication Game Gma

Game Gma models the mutual authentication property of the protocol which,
together with the key secrecy property from game Gror, guarantees the resistance
to active attacks of an AKE protocol. In game Gma, E’s goal is to get some
user U to end successfully some session s (KeyAccepted(U, s) = true) while its
real partner differs from its intended partner U’ (including while U has no real
partner for that session.) The targeted session is called the attacked session.
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To succeed, E must additionally not perform

– a SendAuth query targeted at the authenticating device of U’ (that is, a
SendAuth query on an authentication session t opened with IniAuth(U’))

– a Corrupt query on U or U’

between the beginning of the attacked session and the moment when U set
KeyAccepted to true in the attacked session.

Since Corrupt queries on the user involved in the attacked session and its in-
tended partner are banned, the model does not take into account key-compromise
impersonation attacks.

3.5 The Public Computation Model in the Un-authenticated
Setting

Our model can be adapted very simply to the un-authenticated setting. In that
context, only key secrecy can be expected. In an un-authenticated protocol a
key is accepted as soon as it can be computed; in our formalism, KeyAccepted
is by definition equal to KeyMaterialReceived. Key secrecy is then modelled by
game Gror alone.

4 MQV Revisited with Public Computations in Sight:
MQV-p

The MQV protocol with key confirmation is a well-known authenticated key-
exchange algorithm that is forward-secure and that does not use signatures.
It can be compared with some variants of the MTI protocols [13,16]. One of
the distinctive features of MQV is however to allow for an efficient split of its
implementation between an authentication device and a computing device, as
described in the introduction.

Key Confirmation. We consider the MQV variant that includes a key con-
firmation round: a key is used only if a value proving that the other party has
managed to compute the session key, the confirmation key, has been received
from the other party. With the conventions of paragraph 2.3, KeyAccepted is set
to true only when the correct key confirmation has been received.

Key Derivation Function. In our protocol descriptions, KDF is a key deriva-
tion function: KDF(i, S) derives a key ki from some secret s. It can classi-
cally be constructed from PRFs and universal hash functions (this is folklore;
see for example [20].) In the proofs, KDF is modeled as a random oracle H1:
KDF(i, s) = H1(i||s).

4.1 The MQV Protocol

Let G be a large subgroup of an elliptic curve group over a finite field. G is
assumed to be of prime order p, and P is a generator of G. The private key skU

of a user U is an element of Zp and the corresponding public key pkU is skUP .
For Q ∈ G, T (Q) is the lower half of the x-coordinate of Q. The MQV protocol
is depicted on figure 1.
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Alice Bob

KeyMaterialReceived ← false
KeyAccepted ← false

r
R← Zq

R = rP
IDA, R−−−−−−−−−−−−−→ KeyMaterialReceived ← false

KeyAccepted ← false

r′ R← Zq

R′ = r′P
sB = r′ + T (R′)skB

KMB = sB(R + T (R)pkA)
KCB = KDF(1, KMB)

sA = r + T (R)skA
R′, KCB←−−−−−−−−−−−−− KeyMaterialReceived ← true

KMA = sA(R′ + T (R′)pkB)
If KCB �= KDF(1, KMA) Stop

KCA = KDF(0, KMA)
KeyMaterialReceived ← true KCA−−−−−−−−−−−−−→ If KCA �= KDF(0, KMB) Stop

KSA = KDF(2, KMA) KSB = KDF(2, KMB)
KeyAccepted ← true KeyAccepted ← true

Fig. 1. An honest execution of the plain MQV protocol

Intended Partner Definition. The initiator of a session, Alice, knows who it
intends to talk to before starting a protocol run; therefore the intended partner
of Alice is fixed before the session starts. The intended partner of the responder
Bob is set to the identity received in the first message.

MQV with Public Computations. The natural way to split authentication
data storage and computations in MQV is as follows (see figure 2):

– The authentication device for user U computes pairs (rP, r + T (rP )sU) for
random r ∈ Zp;

– For each protocol run, the computing device requests such a pair (R, s),
sends R to the other party, receives R′, and computes the key material
KM = s(R′ + T (R′)PU’).

In this description, it seems that the authentication device has to perform the
scalar multiplication r → rP which is a costly operation. However, this can be
practically avoided by pre-computing and storing in the authentication device
pairs (r, rP ) or even the authentication pairs (rP, r + T (rP )sU) themselves.

This approach however has one major security shortcoming: if a corrupted
computing device stores a valid authentication pair (rP, r + T (rP )sU), it can
authenticate as user U indefinitely without interacting with the authentication
device anymore. This is clearly not desired and is a violation of the mutual
authentication property in our security model; see section 3.4.
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Alice auth. device Alice comp. device

KeyMaterialReceived ← false

r
R← Zq

Start(0)
←−−−−−−−− KeyAccepted ← false

Bob

R = rP
IDA, R−−−−−−−−→ − − − − − − − − − − −→ IDA, R−−−−−−−−→

XA = R′ + T (R′)pkB

R′, KCB←−−−−−−−−
sA = r + T (R)skA

sA−−−−−−−−→ KMA = sAXA

KeyMaterialReceived ← true
Check KCB

KCA = KDF(0, FlowA||KMA) KCA−−−−−−−−→
KSA = KDF(2, FlowA||KMA)
KeyAccepted ← true

Fig. 2. Plain MQV honest execution with an authentication token, point of view of
Alice

HMQV. The same difficulty arises with HMQV which uses H(R||IDU’) instead
of T (R), where U’ is the intended partner of U. In any case, the authentication
information is static and can be reused indefinitely.

4.2 MQV-p

The main idea to enhance MQV is to introduce some variability that cannot be
controlled by the user in authentication tokens. This is performed by making
them depend on the random point of the partner. In MQV-p, the truncation
function T (·) is therefore replaced by a hash function H whose input consists
in the identities of both users and the two exchanged random points. Unfortu-
nately, applying this simple change to MQV leads to a three-pass protocol whose
proof seems difficult even in the random oracle model; indeed, in this three-pass
protocol, the adversary has partial control on input values of the oracle whose
output we need to program. Because of this, we are unable to simulate sessions
correctly when some private keys are replaced by challenges. There are several
ways to overcome this issue, either using a random value revealed later in the
protocol, or making the responding user commit its random point first. These
two techniques lead to a 4-pass protocol. Using a random value, one obtains the
scheme described figure 3. In MQV-p, intended partner identities are derived as
in the MQV protocol.

5 Algorithmic Hypotheses and Security Results

5.1 CDH Problem

On input (xP, yP ) ∈R G2, output xyP in G. Succ CDH(t, G) is the maximum
success rate of an attacker against CDH running in time t in group G.
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Alice Bob

KeyMaterialReceived ← false
KeyAccepted ← false

z
R← {0, 1}u

r
R← Zq

R = rP
IDA, R−−−−−−−−−−→ KeyMaterialReceived ← false

KeyAccepted ← false

r′ R← Zq

FlowA = {IDA, R, IDB, R′} R′
←−−−−−−−−−− R′ = r′P

sA = r + H(0||z||FlowA)skA

KMA = sA(R′ + H(1||FlowA)pkB)
KCA = KDF(0, FlowA||KMA)
KeyMaterialReceived ← true

z, KCA−−−−−−−−−−→ FlowB = {IDA, R, IDB , R′}
sB = r′ + H(1||FlowB)skB

KMB = sB(R + H(0||z||FlowB)pkA)
If KCA �= KDF(0, FlowB ||KMB) Stop
KeyMaterialReceived ← true

If KCB �= KDF(1, FlowA||KMA) Stop
KCB←−−−−−−−−−− KCB = KDF(1, FlowB ||KMB)

KSA = KDF(2, FlowA||KMA) KSB = KDF(2, FlowB ||KMB)
KeyAccepted ← true KeyAccepted ← true

Fig. 3. An honest execution of 4-pass MQV-p

5.2 HCDH problem

HCDH depends on a random oracle H′ having a h-bit output size. On input
(X = xP, Y ) ∈R G2, an answer to this HCDH instance is a pair

(R′, x(R′ + H′(R′)Y )) ∈ G2. (1)

SuccHCDH(t, G, qH′) is the maximum success rate of an attacker against HCDH
running in time t in group G, and making at most qH′ H′- queries.

An adversary against HCDH can be transformed into one against CDH by a
classical splitting lemma argument, yielding the following inequality:

[SuccHCDH(2t, G, qH′) − 2/p − 2−h]2

4qH′
− 2−h ≤ SuccCDH(t, G). (2)

Due to lack of space, the proof is omitted from this extended abstract.

5.3 Security Bounds for Game Gror and Gma

In the two next theorems, h is the bit-size of the output of H, k is the one of
KDF, u is the bit size of z, nu is the maximal number of users simulated, p is
the (prime) order of G, and texp is the scalar multiplication computation time1.
1 The time to compute a sum of k scalar multiplications, a1, P1, . . . , ak, Pk →

�
aiPi

is assumed to be equal to texp if k is small. This is the case if Shamir’s trick is used.
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Theorem 1. If H is modeled as a random oracle, an adversary against the
privacy of the session key of MQV-p in a group G, running in time t and making
at most qKDF KDF-queries, and qs Initiate-queries, has advantage at most

Adv ror(t, G, qKDF, qs) ≤ qKDF qs

[
SuccCDH(t + (2qs + 1)texp, G) +

2q2
s

p

]
.

Theorem 2. If H is modeled as a random oracle, an adversary against the
mutual authentication of MQV-p in a group G, running in time t and making
at most qH H-queries, qKDF KDF queries, and qs Initiate-queries, has advantage
at most

Succma(t, G, qH, qKDF, qs) − 2−k ≤ (2 qs n2
u β + qKDF) SuccHCDH(t + 2qstexp, G)

with β = [(1 − qKDF2−k)(1 − qH/p)(1 − qH max{2−u, 1/p})]−1.

6 MQV-p Security: Sketch of Proof

We are looking for an upper bound for E’s advantage in game Gror and E’s success
rate in game Gma. H and KDF are modeled as random oracles.

6.1 Game Gror

We want to bound |PSReal [b′ = 1] − PSRandom [b′ = 1]|, where b′ is E’s answer, in the
context of a passive attack

The idea is to modify SReal and SRandom by inserting a CDH challenge in the
random points exchanged during some selected sessions.

Suppose some user U successfully completes a session s. Because real keys are
revealed both in simulations SReal and SRandom whenever (U, s) has no honest
matching session, E must rely on successful sessions where there is at least one
honest matching session to distinguish between the two simulations. Because
KDF is modeled by a random oracle,

– either E makes at least one KDF-query containing a correct key material for
some pair of honest matching sessions (event QH)

– or it has advantage 0 in distinguishing between simulations SReal and SRandom.

We therefore only need to bound P(QH), in simulation SReal or SRandom. To this
end, transform these simulations as follows: S guesses a session index (U, s) for
which QH occurs and U is the session initiator, and introduces a CDH challenge in
the random points of U for this session, and of one of its honest matching session
(U’, s’). Because U is the session initiator, it sends its random point first, and any
real partner of U receives it before sending its own. Therefore S does not need to
guess (U’, s’) in advance. Key confirmations cannot be properly computed by S;
however, random values can be used as placeholders. Once again, because of the
random oracle model used for KDF, E does not see the change before it performs
the right KDF-query.
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To extract a CDH answer, S processes all KDF-queries relevant to the target
session, and chooses at random one of the corresponding candidates.

This proof yields a loss factor between P(QH) and the probability of S to
break CDH equal to qsqKDF, because S guesses a target session and chooses a
CDH answer candidate.

It would be tempting to use the CDH random self-reducibility to introduce the
challenge in all simulated sessions and eliminate the factor qs. The problem with
this approach is that it does not allow S to simulate correctly sessions between
a user U and a user U’ impersonated by E. In such a case, S cannot compute
the resulting session key, but E can; in particular, S is not able to decide if a
confirmation key output by E is correct or not2.

6.2 Game Gma

To bound E’s success probability in game Gma, we tie it to the probability of the
simulator of solving the HCDH problem, which itself reduces to CDH (section 5.)

Introducing the HCDH challenge in the simulation of game Gma requires to
guess the first session (U, s) where mutual authentication is defeated, and the
intended correspondent U’ of U for this session. The HCDH challenge is then
introduced in the public keys corresponding to these identities. This translates
into the final security bound into a loss factor depending on the number of users
simulated and the number of sessions.

The difficulty with this simulation is to deal with sessions involving U or U’:
since S does not know the private keys of these users, it heavily relies on random
oracle programmability to make consistent simulations.

As for game Gror, it seems a better approach would be to try to extract
a HCDH answer from any session (U, s’) with intended correspondent U’ in-
stead of focusing on (U, s): this would save the term qs in the final security
reduction. There is however an issue with that idea: in “target” sessions where
S tries to extract a HCDH answer, S is unable to emit correct key confirma-
tions or to check key confirmations sent by E. Therefore with several target
sessions, E could use some of them to test the behavior of the simulator w.r.t.
incorrect key confirmations, thereby distinguishing with arbitrary high proba-
bility between unmodified game Gma and the game with the HCDH challenge
introduced.
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Abstract. One of the main open problems in secret sharing is the char-
acterization of the access structures of ideal secret sharing schemes. As a
consequence of the results by Brickell and Davenport, every one of those
access structures is related in a certain way to a unique matroid. We
study this open problem for access structures with rank three, that is,
structures whose minimal qualified subsets have at most three partici-
pants. We prove that all access structures with rank three that are related
to matroids with rank greater than three are ideal. After the results in
this paper, the only open problem in the characterization of the ideal
access structures with rank three is to characterize the matroids with
rank three that can be represented by an ideal secret sharing scheme.

Keywords: Secret sharing, Ideal secret sharing schemes, Ideal access
structures, Secret sharing representable matroids, Information rate.

1 Introduction

1.1 The Characterization of Ideal Access Structures

A secret sharing scheme is a method to distribute a secret value into shares in
such a way that only some qualified subsets of participants are able to recover the
secret from their shares. Secret sharing schemes were independently introduced
by Shamir [24] and Blakley [3]. Only unconditionally secure perfect secret sharing
schemes will be considered in this paper. That is, the shares of the participants
in a non-qualified subset must not contain any information (in the information-
theoretic sense) about the secret value. The family of the qualified subsets is the
access structure of the scheme, which is supposed to be monotone increasing,
that is, every subset containing a qualified subset must be qualified. Then, the
access structure is determined by its minimal qualified subsets.

The complexity of a secret sharing scheme can be measured by the length
of the shares. In all secret sharing schemes, the length of every share is greater
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than or equal to the length of the secret [11]. A secret sharing scheme is said to
be ideal if all shares have the same length as the secret.

The characterization of the ideal access structures, that is, the access struc-
tures of ideal secret sharing schemes, is one of the main open problems in secret
sharing. Brickell and Davenport [7] discovered important connections of this
problem with Matroid Theory. Specifically, they proved that every ideal secret
sharing scheme on a set of participants P defines a unique matroid M on the
set Q = P ∪ {D}, where D /∈ P is a special participant, usually called dealer .
The access structure of the scheme is determined by the matroid M, because
A ⊂ P is a minimal qualified subset if and only if A ∪ {D} is a circuit of M.
In this case, we say that the access structure is matroid-related . Actually, if Γ
is an ideal access structure, the family of the minimal qualified subsets of Γ is a
matroid port , a combinatorial object introduced by Lehman [12] in 1964, before
the invention of secret sharing.

The matroids that are obtained from ideal secret sharing schemes are generally
called secret sharing matroids , but we prefer to call them secret sharing repre-
sentable matroids or ss-representable matroids . This is due to the fact that the
ideal secret sharing scheme can be seen as a representation of its associated ma-
troid. Actually, this is a generalization of the linear representation of matroids,
because the vector space secret sharing schemes introduced by Brickell [6] corre-
spond exactly to the linear representations and, hence, their associated matroids
are precisely the representable ones. The access structures that are related to
representable matroids are called vector space access structures . Secret shar-
ing representable matroids have been studied under different points of view by
Simonis and Ashikhmin [25] and by Matúš [18], and are known under different
names: almost affinely representable matroids in [25], and partition representable
matroids in [18].

The results by Brickell and Davenport [7] reduce the open problem of char-
acterizing the access structures of ideal secret sharing schemes to the charac-
terization of matroid-related access structures and secret sharing representable
matroids.

A more general open problem is to determine the complexity of the best
secret sharing scheme for any given access structure. For instance, we can try to
maximize the information rate which is the ratio between the length in bits of
the secret and the maximum length of the shares. The optimal information rate
of an access structure Γ , which is denoted by ρ(Γ ), is defined as the supremum
of the information rates of all secret sharing schemes with access structure Γ .
Clearly, 0 < ρ(Γ ) ≤ 1 and ρ(Γ ) = 1 if Γ is ideal.

1.2 Related Work

As a sequel of the results by Brickell and Davenport [7], there is a number
of works dealing with the characterization of ss-representable matroids. The
Vamos matroid was the first matroid that was proved to be non-ss-representable.
This was done by Seymour [23] and a shorter proof was given later by Simonis
and Ashikhmin [25]. All representable matroids are ss-representable. The first
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example of a ss-representable matroid that is not representable, the non-Pappus
matroid, was presented in [25]. This matroid can be represented by an ideal
linear secret sharing scheme. The matroids with this property are said to be
multilinearly representable, a class that includes the representable matroids. The
existence of ss-representable matroids that are not multilinearly representable is
an open question.

A number of important results and interesting ideas for future research on
the characterization of ss-representable matroids can be found in the works
by Simonis and Ashikhmin [25] and Matúš [18]. The first one deals with the
geometric structure that lies behind ss-representations of matroids. The sec-
ond one analyzes the algebraic properties that the matroid induces in all its
ss-representations. These properties make it possible to find some restrictions
on the ss-representations of a given matroid and, in some cases, to exclude the
existence of such representations. By using these tools, Matúš [18] presented an
infinite family of non-ss-representable matroids with rank three.

Seymour [22] presented in 1976 a forbidden minor characterization of matroid
ports, that improves a previous characterization by Lehman [13]. Of course, this
gives a characterization of matroid-related access structures. Nevertheless, the
results by Lehman and Seymour have not been noticed until recently by the
researchers working on secret sharing. By combining Seymour’s characterization
with the techniques to find bounds on the optimal information rate from [4,9,20],
a new characterization of matroid-related access structures is given in a recent
work [17]. As a consequence of the results in [17], a generalization of the result
by Brickell and Davenport [7] is obtained. Namely, every access structure with
optimal information rate greater than 2/3 is matroid-related.

Very little is known about the optimal information rate of the matroid-related
access structures that are not ideal. Several bounds on the length of the shares
in secret sharing schemes for the access structures related to the Vamos and the
non-Desargues matroids have been presented recently in [1,17].

Due to the difficulty of finding general results on the characterization of ideal
access structures, this problem has been studied in several particular classes
of access structures: the ones on sets of four [26] and five [10] participants,
those defined by graphs [5,7,8], the bipartite access structures [20], the structures
with three or four minimal qualified subsets [15], the ones with intersection
number equal to one [16], and the weighted threshold acess structures [2]. Even
though this is no stated in all those works, a common procedure is followed in
all them. First, the matroid-related access structures in the studied family are
characterized and described. Second, the corresponding matroids are proved to
be representable and, hence, the matroid-related access structures in every one
of those families coincide with the ideal ones. Finally, in most of those works,
one proves that the optimal information rate of the non-ideal structures in the
corresponding families is at most 2/3. Therefore, there is no structure Γ in
those families with information rate 2/3 < ρ(Γ ) < 1. Actually, this last fact is
a consequence of a more general result in [17]: the optimal information rate of
every non-matroid-related access structure is at most 2/3.
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A natural question that arises at this point is to determine to which extent
these results can be generalized to other families. The rank of an access structure
is the maximum number of participants in a minimal qualified subset. The access
structures with rank two are precisely those defined by graphs. The structures
with rank three have been previously studied by several authors. Lower bounds
on their optimal information rate were given in [21,27]. A particular class of
structures with rank three was studied in [14] and it appeared to have the same
properties as the aforementioned families. Nevertheless, those properties do not
apply to the class of all access structures with rank 3 because, as a consequence
of the results in [18,25], there exist in that family ideal access structures that
are not vector space, and matroid-related structures that are not ideal.

1.3 Our Results

We present in this paper some new results on the characterization of the ideal
access structures with rank three. Namely, we present a characterization of the
matroid-related access structures in that family.

We describe in Propositions 14, 15 and 16 the access structures with rank
three that are related to matroids with rank greater than three and we prove
that they are vector space structures. We present in Proposition 6 a character-
ization of the structures that are related to matroids with rank three. Some of
them are not ideal because there exist matroids with rank three that are not
ss-representable [18].

After our results, the only open problem in the characterization of the ideal
access structures with rank three is to determine which matroids with rank three
are ss-representable. This appears to be a very difficult problem that should be
attacked by following the algebraic methods proposed by Matúš [18].

The paper is organized as follows. The basic concepts and results about ma-
troids and secret sharing are recalled in Section 2. A survey of some recent
results about the characterization of matroid-related access structures, as well
as some facts about different ways to compose matroids and access strcutures
are presented in Section 3. Our main results are proved in Section 4.

2 Secret Sharing Schemes and Matroids

2.1 Matroid Theory Definitions

Matroids are combinatorial objects that generalize the properties of linear de-
pendence among a finite set of vectors. There exist many different equivalent
definitions of matroid. The one we present here is based on the concept of rank .
The reader is referred to [19,29] for general references on Matroid Theory. We
notate P(Q) for the power set of the set Q.

A matroid M is a pair (Q, r), where Q is a finite set and r is a mapping
r : P(Q) → N such that:
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1. 0 ≤ r(X) ≤ |X | for every X ⊂ Q, and
2. if X ⊂ Y ⊂ Q, then r(X) ≤ r(Y ), and
3. if X, Y ⊂ Q, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

The set Q and the mapping r are called, respectively, the set of points and
the rank function of the matroid M. The value r(X) is called the rank of the
subset X while the rank of the matroid M is defined to be r(M) = r(Q).

A subset X ⊂ Q is said to be independent if r(X) = |X |. The dependent
subsets are those that are not independent. A circuit is a minimally dependent
subset while a basis is a maximally independent subset. All bases have the same
number of elements, which coincide with the rank of the matroid.

A matroid M is said to be connected if, for every two different points p, q ∈ Q,
there exists a circuit C with p, q ∈ C. We say that X ⊂ Q is a flat of the matroid
M if r(X ∪{p}) > r(X) for every p /∈ X . The flat 〈X〉 = {p ∈ Q : r(X ∪{p}) =
r(X)} is called the flat spanned by X . If X is a flat, any maximally independent
subset B ⊂ X is called a basis of the flat X . The matroid M \ T , where T ⊂ Q,
is the matroid on the set of points Q − T whose rank function is the restriction
of the rank function of M to P(Q − T ).

Let K be a finite field and let M be a r0 × n matrix with entries in K . If
|Q| = n and the points in Q are put in a one-to-one correspondence with the
columns of M , then a matroid M on the set Q is obtained by considering that the
rank of a subset X = {i1, . . . , i�} ⊂ Q is equal to the rank of the corresponding
columns of M . In this situation, the matrix M is said to be a K -representation
of the matroid M. The matroids that can be defined in this way are called
representable.

2.2 Basics on Secret Sharing Schemes

Let Q be a finite set of participants and D ∈ Q a special participant called
dealer . Consider a finite set E with a probability distribution on it. For every
i ∈ Q, consider a finite set Ei and a surjective mapping πi : E → Ei. Those
mappings induce random variables on the sets Ei. We notate H(Ei) for the
Shannon entropy of those random variables. For a subset A = {i1, . . . , ir} ⊂ Q,
we write H(A) for the joint entropy H(Ei1 . . . Eir ), and a similar convention is
used for conditional entropies: for instance, H(Ej |A) = H(Ej |Ei1 . . . Eir ).

The mappings πi define a secret sharing scheme Σ on the set of participants
P = Q − {D} with access structure Γ ⊂ P(P ) if H(ED) > 0 and H(ED|A) = 0
if A ∈ Γ while H(ED|A) = H(ED) if A /∈ Γ . In that situation, every random
choice of an element x ∈ E, according to the given probability distribution,
results in a distribution of shares ((si)i∈P , s), where si = πi(x) ∈ Ei is the share
of the participant i ∈ P and s = πD(x) ∈ ED is the shared secret value.

The rank of an access structure Γ , denoted by rankΓ , is the maximum car-
dinality of its minimal qualified subsets. From now on, we are going to suppose
that every participant in P is at least in a minimal qualified subset, that is, that
the access structure is connected .

The ratio ρ(Σ) = H(ED)/(maxi∈P H(Ei)) is called the information rate of
the scheme Σ, and the optimal information rate ρ(Γ ) of the access structure



206 J. Mart́ı-Farré and C. Padró

Γ is the supremum of the information rates of all secret sharing schemes with
access structure Γ . It is not difficult to check that H(Ei) ≥ H(ED) for every
i ∈ P and, hence, ρ(Σ) ≤ 1. Secret sharing schemes with ρ(Σ) = 1 are said to
be ideal and their access structures are called ideal as well. Of course, ρ(Γ ) = 1
for every ideal access structure Γ .

If the sets E and Ei are vector spaces over some finite field K , the mappings
πi are linear mappings, and the uniform probability distribution is considered
in E, then Σ is said to be a K -linear secret sharing scheme. We say that Σ is
a K -vector space secret sharing scheme if, in addition, Ei = K for every i ∈ Q.
These latter schemes are ideal and their access structures are called K -vector
space access structures .

2.3 Ideal Secret Sharing Schemes and Matroids

Related to a matroid M = (Q, r), we consider the access structure on the set
P = Q − {D} defined by ΓD(M) = {A ⊂ P : r(A ∪ {D}) = r(A)}. The
structures in this form are called matroid-related . Observe that A ⊂ P is a
minimal qualified subset of ΓD(M) if and only if A ∪ {D} is a circuit of M.

Given a secret sharing scheme Σ on a set of participants P = Q − {D},
we consider the mapping r : P(Q) → R defined by r(A) = H(A)/H(ED). As a
consequence of the results in [7], if Σ is ideal, this mapping is the rank function of
a matroid M(Σ) = (Q, r). Moreover, the access structure Γ of the ideal scheme
Σ is Γ = ΓD(M). Therefore, the following result is obtained.

Theorem 1. (Brickell and Davenport, 1991). If Γ is an ideal access structure,
then Γ is matroid-related.

If Γ is a matroid-related connected access structure, then there exists a unique
connected matroid M with Γ = ΓD(M). This is a consequence of the following
two facts. First, by [19, Proposition 4.1.2], the matroid M is connected if and
only if the access structure ΓD(M) is connected. Second, a connected matroid
is determined by the circuits that contain some given point [19, Theorem 4.3.2].

A matroid M is said to be secret sharing representable, or ss-representable
for short, if M = M(Σ) for some ideal secret sharing scheme Σ. Finally, it is
interesting to notice that a matroid M is K -representable if and only if there
exists a K-vector space secret sharing scheme Σ with M = M(Σ). Therefore,
all representable matroids are ss-representable. Moreover, vector space access
structures are precisely those related to representable matroids.

3 Matroid-Related Access Structures

3.1 Two Characterizations of Matroid-Related Access Structures

The characterization of matroid ports by forbidden minors due to Seymour [22]
and the consequences of that result presented in [17] provide two characteriza-
tions of matroid-related access structures (Theorems 2 and 3) that are discussed
in this section.
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The port of the matroid M = (Q, r) at the point D ∈ Q is the family of subsets
of P = Q − {D} defined by Λ(M) = {A ⊂ P : A ∪ {D} is a circuit of M}. Ob-
serve that neither A ⊂ B nor B ⊂ A for every two different subsets A, B ∈
Λ(M), that is, Λ(M) is a clutter on P . Matroid ports were introduced by
Lehman [12] in 1964 to solve a problem in Game Theory: the Shannon switching
game. Seymour [22] presented a characterization of matroid ports by excluded
minors that is based on a previous characterization by Lehman [13].

Clearly, Λ(M) coincides with the family of the minimal qualified subsets of
the access structure ΓD(M). Nevertheless, researchers on secret sharing have
not been aware of the results by Lehman and Seymour for many years.

The forbidden minor characterization of matroid ports by Seymour [22] is
stated in Theorem 2 in our terminology. Several definitions are needed before
doing that. Let Γ be an access structure on a set P and let Z ⊂ P . We define the
access structures Γ \Z and Γ/Z on the set P−Z by Γ \Z = {A ⊂ P−Z : A ∈ Γ}
and Γ/Z = {A ⊂ P − Z : A ∪ Z ∈ Γ}. Every access structure that can be
obtained from Γ by repeatedly applying the operations \ and / is called a minor
of the access structure Γ . The set of participants of the structures Φ, ̂Φ and ̂Φ∗

is P = {p1, p2, p3, p4}. The minimal qualified subsets of Φ are {p1, p2}, {p2, p3}
and {p3, p4}, while the minimal qualified subsets ̂Φ are {p1, p2}, {p2, p3}, {p2, p4}
and {p3, p4}, whereas the minimal qualified subsets of ̂Φ∗ are {p1, p3, p4}, {p2, p3}
and {p2, p4}. For every s ≥ 3, the set of participants of the access structure Ψs

is P = {p1, . . . , ps, ps+1} and its minimal qualified subsets are {p1, . . . , ps} and
{pi, ps+1} for every i = 1, . . . , s.

Theorem 2. (Seymour, 1976). An access structure Γ is matroid-related if and
only if Γ has no minor isomorphic to Φ, ̂Φ, ̂Φ∗ or Ψs with s ≥ 3.

In a recent work [17], an interesting generalization of Theorem 1 is obtained by
combining Theorem 2 with the techniques from [4,9,20] to find bounds on the
optimal information rate. Specifically, we use the independent sequence method .
Let Γ be an access structure on a set of participants P . Consider A ⊂ P and an
increasing sequence of subsets B1 ⊂ · · · ⊂ Bm ⊂ P . We say that (B1, . . . , Bm | A)
is an independent sequence in Γ with length m and size s if |A| = s and, for
every i = 1, . . . , m, there exists Xi ⊂ A such that Bi ∪ Xi ∈ Γ , while Bm /∈ Γ
and, if i ≥ 2, Bi−1 ∪ Xi /∈ Γ .

Theorem 3. (Mart́ı-Farré and Padró, 2006). An access structure Γ is matroid-
related if and only if there does not exist in Γ any independent sequence with
length m = 3 and size s = 2. As a consequence, every access structure Γ with
optimal information rate ρ(Γ ) > 2/3 is matroid-related.

3.2 Composing Matroids and Matroid-Related Access Structures

The study of the problems we are considering here can be simplified by taking
into account that some access structures can be expressed as combinations of
smaller ones, that is, by using Proposition 5. The different ways of combining
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access structures we discuss in the following are related to well-known operations
on matroids: the parallel connection and the 2-sum.

Let M1 and M2 be connected matroids on the set of points Q1 and Q2,
respectively. Let ri : P(Qi) → N, where i = 1, 2, be their rank functions. Suppose
that Q1 ∩ Q2 = {p}. The parallel connection of the matroids M1 and M2 with
basepoint p is the matroid M = M1 ⊕p M2 on the set of points Q = Q1 ∪ Q2
whose rank function r : P(Q) → N is defined by r(A) = r1(A ∩ Q1) + r2(A ∩
Q2) − δ, where, δ = 1 if ri(A ∩ Qi) = ri((A ∩ Qi) ∪ {p}) for every i = 1, 2 and
δ = 0 otherwise. We define also the 2-sum of the matroids M1 and M2 with
basepoint p as M1 ̂⊕pM2 = (M1 ⊕p M2) \ {p}. Proofs for the properties of
those operations that are going to be used in the following can be found in [19,
Chapter 7].

Since we are assuming that both M1 and M2 are connected, the same holds
for the matroids M1 ⊕p M2 and M1 ̂⊕pM2. In addition, the parallel connection
and the 2-sum of two K -representable matroids are equally K -representable.

Those operations on matroids are related to two different ways to compose
access structures. If Γ is an access structure on a set P and B ⊂ P , we define
the access structure Γ (B) = {A ⊂ B : A ∈ Γ}. We notate Γ \ B = Γ (P − B).
The family of the minimal qualified subsets of Γ will be denoted by minΓ .

Let Γ1 and Γ2 be connected access structures on the sets of participants P1
and P2, where P1 ∩P2 = ∅, and let p ∈ P1. The qualified subsets in the composed
access structure Γ = Γ1[Γ2; p] on the set of participants P = P1 ∪ P2 are the
subsets A ⊂ P with A ∩ P1 ∈ Γ1, or A ∩ P2 ∈ Γ2 and (A ∩ P1) ∪ {p} ∈ Γ1. We
define also Γ1[Γ2; p̂] = Γ1[Γ2; p] \ {p}.

The disjoint union of those access structures, Γ = Γ1  Γ2 is the structure
on the set of participants P1 ∪ P2 whose minimal qualified subsets are min Γ =
min Γ1 ∪ min Γ2. We say that Γ is strongly connected if it is not the disjoint
union of two smaller structures. For every connected structure Γ , there exists
a unique partition of the set of participants, P = P1 ∪ · · · ∪ Pr such that Γ =
Γ (P1)  · · ·  Γ (Pr), being the induced substructures Γ (Pi) strongly connected.
Those substructures are called the strongly connected components of Γ .

The relation between these operations on access structures and the previously
defined operations on matroids is given in the next Proposition 4, whose proof is
straightforward. As a consequence, in Proposition 5, we see that the properties
considered in this paper can be independently analyzed in every component if
the access structure is the composition of smaller structures.

Proposition 4. Let M1 and M2 be matroids on the sets Q1 and Q2, respec-
tively, where Q1 ∩ Q2 = {p}. Consider the access structures Γ1 = Γp(M1) and
Γ2 = Γp(M2), and the matroids M = M1 ⊕p M2 and ̂M = M1 ̂⊕pM2. The
following statements describe the access structures related to those matroids.

1. Γp(M) = Γ1  Γ2.
2. If p1 ∈ Q1−{p} and Γ ′

1 = Γp1(M1), then Γp1(M) = Γ ′
1[Γ2; p] and Γp1( ̂M) =

Γ ′
1[Γ2; p̂].
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Proposition 5. Let Γ1 and Γ2 be connected access structures on the sets of
participants P1 and P2, where P1 ∩ P2 = ∅. Then Γ1  Γ2 is matroid-related (or
K -vector space) if and only if both Γ1 and Γ2 are matroid-related (or K -vector
space). The same applies to the structures Γ1[Γ2; p] and Γ1[Γ2; p̂].

4 Matroid-Related Access Structures with Rank Three

The aim of this section is to characterize and classify the matroid-related access
structures with rank three, that is, whose minimal qualified subsets have at
most three participants. First, we provide in Proposition 6 a characterization
of the access structures that are related to matroids with rank three. If Γ is
a strongly connected access structure such that Γ = ΓD(M) for some matroid
M with r(M) = 3, then rankΓ = 3. Afterwards, we completely describe in
Propositions 14, 15 and 16 the structures with rank three that are in the form
ΓD(M), where M is a matroid with r(M) ≥ 4. We prove that all them are
vector space and, hence, the corresponding matroids are representable.

By using the results is Section 3.2, several assumptions can be made when
studying the problems we are considering here. First of all, observe that we
can remove the participants x ∈ P such that {x} ∈ Γ . In addition, since we
are considering only connected access structures, all matroids are supposed to
be connected as well. Moreover, we can assume that the access structures are
strongly connected. Two participants a1, a2 ∈ P are said to be equivalent in Γ
if there does not exist any minimal qualified subset A ∈ min Γ with a1, a2 ∈ A
and, if A ∈ min Γ is such that a1 ∈ A, then (A − {a1}) ∪ {a2} ∈ min Γ . In this
situation, Γ ∼= Γ1[Γ2; â1], where Γ1 = Γ \ {a2} amd Γ2 is the access structure
related to the uniform matroid U2,3. Then, Γ is matroid-related if and only if Γ1
is so. Moreover, two equivalent participants can receive the same share in every
secret sharing scheme for Γ . If Γ = ΓD(M), every pair of equivalent participants
in Γ correspond to a circuit of M with two points. From now on, we are going to
suppose that the access structures do not have any pair of equivalent participants
and that the circuits in all matroids have at least three points.

The next proposition characterizes the access structures with rank three that
are related to a matroid with rank three.

Proposition 6. Let Γ be an access structure on the set P with rank three and
Let D1 = D1(Γ ) be the family of the maximally unqualified subsets. Consider the
family D2 = D2(Γ ) of subsets of Q = P ∪ {D} such that G ∈ D2 if and only if

– D ∈ G and |G| ≥ 3, and
– if A ⊂ G ∩ P and |A| = 2, then A ∈ Γ , and
– if x ∈ P is such that {x, y} ∈ Γ for every y ∈ G − {x, D}, then x ∈ G.

Then, there exists a matroid M with r(M) = 3 and Γ = ΓD(M) if and only if
|G1 ∩ G2| ≤ 1 for every two different subsets G1, G2 ∈ D1 and G1 ∩ G2 = {D}
for every two different subsets G1, G2 ∈ D2.
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Proof. From the definition of the families D1 and D2, it is clear that |G1∩G2| ≤ 1
if G1 ∈ D1 and G2 ∈ D2.

If there exists a matroid M with r(M) = 3 and Γ = ΓD(M), then every
G ∈ D1 ∪ D2 is a flat with r(G) = 2. Since we are assuming that every two
points are independent in M, every two of those flats intersect in at most one
point.

We prove now the converse. A matroid is determined by its family of cir-
cuits [19]. Consider the family of subsets C ⊂ P(Q) such that C ∈ C if and only
if |C| = 3 and C ⊂ G for some G ∈ D1 ∪ D2 or |C| = 4 and |C ∩ G| ≤ 2 for
every G ∈ D1 ∪ D2. We are going to prove now that C is the family of circuits
of a matroid M. Clearly, ∅ /∈ C and C1 = C2 if C1, C2 ∈ C and C1 ⊂ C2. Then,
according to [19, Corollary 1.1.5], we only have to prove that, for every pair of
different subsets C1, C2 ∈ C and for every x ∈ C1 ∩ C2, there exists C3 ∈ C with
C3 ⊂ (C1 ∪ C2) − {x}. Observe that, for every subset B ⊂ Q with |B| ≥ 4,
there exists C ⊂ B with C ∈ C. Consider two different subsets C1, C2 ∈ C. The
existence of C3 is clear if |C1 ∪ C2| ≥ 5. If |C1 ∪ C2| ≤ 4, then |C1| = |C2| = 3
and |C1 ∩ C2| = 2. In this case, there exists G ∈ D1 ∪ D2 such that C1, C2 ⊂ G.
Therefore, (C1 ∪ C2) − {x} ∈ C for every x ∈ C1 ∩ C2. It is not difficult to check
that r(M) = 3 and Γ = ΓD(M) if M is the matroid determined by the family
of circuits C. �

In the following we completely describe the matroids M with r(M) ≥ 4 such
that the access structure Γ = ΓD(M) has rank 3. We prove that these matroids
are representable and, hence, the related access structures are vector space access
structures. This is done in Propositions 14, 15 and 16. A number of Lemmas are
needed.

Let M be a matroid on the set Q such that Γ = ΓD(M) has rank 3. For every
minimal qualified subset A, the flat 〈A〉, whose rank is equal to |A|, contains the
point D. Consider the family F = F(M, D) = {〈A〉 : A ∈ min Γ, |A| = 3}.

Lemma 7. Let A1, A2 ∈ min Γ be minimal qualified subsets. Consider the flats
Fi = 〈Ai〉, where i = 1, 2. Then,

1. If |A1| = 2 and A1 ∩ F2 �= ∅, then F1 ⊂ F2.
2. If |A1| = |A2| = 3 and |A1 ∩ F2| ≥ 2, then F1 = F2.
3. If |A1| = 2 and |A2| = 3, then |F1 ∩ A2| ≤ 1.

Proof. If A1 = {x, y} and x ∈ F2, then F1 = 〈x, D〉 ⊂ F2. If |A1| = |A2| = 3 and
x, y ∈ A1 ∩ F2, then F1 = F2 = 〈x, y, D〉. Finally, we prove the third statement.
Suppose that there are two different points x, y ∈ F1 ∩ A2. Since r(F1) = 2, we
have D ∈ 〈x, y〉 and, hence, {x, y} ∈ Γ , a contradiction with A2 ∈ min Γ . �

Lemma 8. Let A ∈ min Γ with |A| = 2 and the flat G = 〈A〉. Then, G ⊂ F for
some F ∈ F = F(M, D).

Proof. Suppose that G �⊂ F for every F ∈ F = F(M, D). If A′ ∈ min Γ is such
that |A′| = 3 or |A′| = 2 and A′ �⊂ G, then A′ ∩ G = ∅. Therefore, Γ is not
strongly connected, a contradiction. �
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Observe that r(M) = 3 if and only if |F| = 1. This case has been studied
in Proposition 6. From now on, we suppose that |F| ≥ 2. We introduce in
Proposition 13 an equivalence relation in F = F(M, D). Several lemmas are
needed to prove that result. Consider F1, F2 ∈ F such that r(F1 ∪ F2) = 4. Let
A1 = {a1, b1, c1} ⊂ P and A2 = {a2, b2, c2} ⊂ P be minimal qualified subsets
such that Fi = 〈Ai〉. From Lemma 7, |A1 ∩ F2| ≤ 1 and |A2 ∩ F1| ≤ 1. Then, we
can suppose that a1, b1 /∈ F2 and a2, b2 /∈ F1.

Lemma 9. In that situation, {a1, b1, a2, b2} /∈ Γ .

Proof. Suppose that, on the contrary, there exists a minimal qualified subset
A ⊂ {a1, b1, a2, b2}. If |A| = 2 and, for instance, A ∩ F1 �= ∅, then A ⊂ F1, a
contradiction with Lemma 7. If |A| = 3 and |A ∩ F1| = 2, then 〈A〉 = F1, a
contradiction again. �

Lemma 10. If there exists a minimal qualified subset A3 = {x, y} ⊂ F1 ∪ F2,
then A3 ⊂ F1 ∩ F2.

Proof. By Lemma 7, y ∈ F1 if x ∈ F1. Then, we can suppose that A3 ⊂ F1.
Suppose that A3 �⊂ F1 ∩ F2. In that case, A3 ∩ F2 = ∅. We notate F3 = 〈A3〉.
Applying Lemma 7 again, |A1 ∩ F3| ≤ 1. Therefore, we can suppose that a1 /∈
F3 ∪ F2. Then, neither {a1, x} nor {a1, y} can be qualified. Consider now the
sets B1 = {a1, x, a2, b2} and B2 = {a1, y, a2, b2} and the flat H = 〈a1, a2, b2〉.
Clearly, r(H) = 3 and H �= F1. If r(Bi) = 4, then 〈Bi〉 = 〈F1 ∪ F2〉 and,
hence, Bi ∈ Γ . Suppose that B1, B2 /∈ Γ . In this case, 〈B1〉 = 〈B2〉 = H and
{a1, x, y} ⊂ H ∩ F1. But that is impossible because r(H ∩ F1) ≤ 2 and a1 /∈ F3.
Therefore, we can suppose that B1 ∈ Γ . Let A ⊂ B1 be a minimal qualified
subset. Clearly, |A| = 3 and, hence, |A ∩ F1| = 2 or |A ∩ F2| = 2, that is,
〈A〉 = F1 or 〈A〉 = F2, a contradiction because A �⊂ F1 and A �⊂ F2. �

Lemma 11. c1, c2 ∈ F1 ∩ F2 and r(F1 ∩ F2) = 2.

Proof. Suppose that c1 /∈ F2. Then at least one of the sets B1 = {a1, c1, a2, b2}
and B2 = {b1, c1, a2, b2} is qualified. Suppose that, on the contrary, B1, B2 /∈ Γ .
In this case, r(Bi) = 3 and, since c1 /∈ F2, we have that 〈B1〉 = 〈B2〉 =
〈c1, a2, b2〉. Then a1, b1 ∈ 〈c1, a2, b2〉 and {c1, a2, b2} is qualified, a contradic-
tion. Therefore, we can suppose that B1 ∈ Γ . Let A ⊂ B1 be a minimal qualified
subset. From Lemma 10, |A| = 3 and, hence, 〈A〉 = F1 or 〈A〉 = F2, a contra-
diction that implies c1 ∈ F2. Symmetrically, c2 ∈ F1. Finally, F1 ∩ F2 = 〈c1, D〉
and, hence, r(F1 ∩ F2) = 2. �

Lemma 12. Consider B = (F1 ∪ F2) − (F1 ∩ F2). Then r(B) = 3 and B /∈ Γ .

Proof. The result is proved by checking that 〈B〉 = 〈a1, b1, a2, b2〉. In any other
case, there must exist c ∈ B with c /∈ 〈a1, b1, a2, b2〉. We can suppose that c ∈ F1.
Then, A = {a1, b1, c} is a minimal qualified subset and 〈A〉 = F1. Observe that
Lemma 11 can be applied to the sets A, A2 and the flats F1, F2 and, hence,
c ∈ F1 ∩ F2, a contradiction. �
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Proposition 13. Let M be a matroid on the set Q = P ∪ {D} such that the
access structure Γ = ΓD(M) has rank three. Then, the relation on F = F(M, D)
defined by F1 ∼ F2 if and only if r(F1 ∪ F2) ≤ 4 is an equivalence relation.

Proof. We only have to prove the transitivity. Let F1, F2, F3 ∈ F be three dif-
ferent flats with F1 ∼ F2 and F2 ∼ F3. Then, r(F1 ∩ F2) = r(F2 ∩ F3) = 2. For
every i = 1, 2, 3, we consider a minimal qualified subset Ai = {ai, bi, ci} ⊂ P
such that Fi = 〈Ai〉. Suppose, without loss of generality, that c1, c2 ∈ F1 ∩ F2,
and a1, b1 /∈ F2 and a2, b2 /∈ F1.

If F1 ∩ F2 = F2 ∩ F3, then r(F1 ∩ F3) = 2 and, hence, F1 ∼ F3. If c1 �= c2, we
have that {c1, c2} is a minimal qualified subset. Applying Lemma 10 to the flats
F2 and F3, we get {c1, c2} ⊂ F2 ∩ F3 and, hence, F1 ∩ F2 = F2 ∩ F3.

Suppose that F1 ∩ F2 �= F2 ∩ F3. In this case, c1 = c2 and F1 ∩ F2 ∩ F3 =
{D}. Moreover, |A| = 3 for every minimal qualified subset A ⊂ F1 ∪ F2 ∪ F3.
Clearly, c1 /∈ F3. We can suppose that a2, a3 ∈ F2 ∩ F3, and b2, c2 /∈ F3 and
b3, c3 /∈ F2. That implies a2 = a3. Consider the set B = {a1, b1, b2, b3, c3}. From
Lemma 12, the subsets {a1, b1, a2, b2} and {b2, c2, b3, c3} are not qualified and
have rank three. Then, a2, c2 ∈ 〈B〉 and, hence, B ∈ Γ . Let A4 ⊂ B be a minimal
qualified subset. Clearly, A4 �= {a1, b1, b2}, {b2, b2, c3}. If A4 = {a1, b1, b3}, then
〈A4〉 = F1 and, hence, A4 ∩ F2 �= ∅, a contradiction. Therefore, |A4 ∩ Ai| ≤ 1
for every i = 1, 2, 3 and we can suppose that A4 = {a1, b2, c3}. Consider the
flat F4 = 〈A4〉 ∈ F . Observe that {a1, b2, D} ⊂ F4 ∩ (F1 ∪ F2) and, hence,
F4 ⊂ F1 ∪ F2. Therefore, {a3, c3, D} ⊂ F3 ∩ (F1 ∪ F2) and F3 ⊂ F1 ∪ F2, which
implies r(F1 ∪ F3) = 4. �

Consider the partition F = E1 ∪ · · · ∪ Er given by the equivalence classes of the
relation defined in Proposition 13. This induces a partition P = P1 ∪ · · · ∪ Pr of
the set P , where Pj =

⋃

F∈Ej
(F ∩P ). This is due to the fact that F1 ∩F2 = {D}

for every F1, F2 ∈ F with F1 �∼ F2. In addition, Γ = Γ (P1)· · ·Γ (Pr). Since we
are supposing that the access structure Γ is strongly connected, there is only one
equivalence class in F = F(M, D), that is, r(F1 ∪ F2) ≤ 4 for every F1, F2 ∈ F .

Proposition 14. Let M be a matroid on the set Q = P ∪ {D} such that
the access structure Γ = ΓD(M) has rank three. Consider F = F(M, D) =
{F1, . . . , F�}. Suppose that there exists a flat G of M such that r(G) = 2 and
G = Fi ∩ Fj for every two different flats Fi, Fj ∈ F . Take n0 = |G| + 1 and
ni = |Fi − G| + 1, where i = 1, . . . , 
. Then,

– M ∼= U2,n0
̂⊕p(U2,n1 ⊕p · · · ⊕p U2,n�

), or
– M ∼= U2,n0−1 ⊕p U2,n1 ⊕p · · · ⊕p U2,n�

.

In particular, r(M) = 
 + 2. Besides, M and ΓD(M) are, respectively, a K -
representable matroid and a K -vector space access structure for every finite field
K with |K | ≥ max0≤i≤� ni.

Proof. Clearly, a subset A ⊂ P with |A| = 2 is qualified if and only if A ⊂
G. Consider now a minimal qualified subset A ∈ min Γ with |A| = 3. Then
〈A〉 ∈ F(M, D) and, hence, 〈A〉 = Fi for some i = 1, . . . , 
. From Lemma 11,
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|A ∩ G| = 1. Therefore, B = P − G is not qualified. Consider the flat H = 〈B〉.
Since B /∈ Γ , we get that r(H ∩G) ≤ 1 and, hence, |H ∩G| ≤ 1. Let G0 = H ∩G.
The proof is concluded by checking that the minimal qualified subsets of Γ are
precisely all subsets {x, y} ⊂ G and all subsets {a, b, x}, with a, b ∈ Fi − G and
x ∈ G − G0. As we said before, subset A ⊂ P with |A| = 2 is qualified if and
only if A ⊂ G. In addition, if A ∈ min Γ and |A| = 3, then A = {a, b, x}, with
a, b ∈ Fi−G and x ∈ G. Suppose now that there exist a subset A = {a, b, p} /∈ Γ ,
with a, b ∈ Fi−G and p ∈ G, and let H ′ = 〈A〉. Since H ′

� Fi, we get r(H ′) = 2.
Then, H ′ ⊂ B and p ∈ G0. �

Let P be the set of the points of the Fano Plane, the projective plane over the
finite field Z2, that is, P = Z

3
2 − {(0, 0, 0)}. We can put P = {1, 2, . . . , 7} by

considering the points as the binary representations of those integers. Let Υ be
the access structure on the set P whose minimal qualified subsets are precisely
the lines of the Fano Plane: A1 = {2, 4, 6}, A2 = {1, 4, 5}, A3 = {3, 4, 7}, A4 =
{1, 2, 3}, A5 = {2, 5, 7}, A6 = {1, 6, 7}, A7 = {3, 5, 6}. Let K be a finite field
with characteristic 2, consider Q = P ∪ {8}, and let M1 be the matroid on Q
that is represented over K by the matrix

⎛

⎜

⎜

⎝

1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0

⎞

⎟

⎟

⎠

.

Then, Υ = Γ8(M1) and, hence, Υ is a K -vector space access structure. Consider
the matroid M2 = M1 \ {7} and the access structure Υ ′ = Γ8(M2) = Υ \ {7},
which are, respectively, a K-representable matroid and a K -vector space access
structure.

Proposition 15. Let M be a matroid on the set Q = P ∪{D} such that the ac-
cess structure Γ = ΓD(M) has rank three. Consider F = F(M, D) and suppose
that |F| ≥ 3 and F1∩F2∩F3 = {D} for every three different flats F1, F2, F3 ∈ F .
Then, M ∼= M2 and Γ ∼= Υ ′.

Proof. Take three different flats F1, F2, F3 ∈ F . Since F1 ∩ F2 �= F2 ∩ F3, this is
the same situation as in the last part of the proof of Proposition 13. Therefore, all
minimal qualified subsets have three elements. Then, by Lemma 11, if A, A′ ⊂ P
are minimal qualified subsets with 〈A〉 �= 〈A′〉, then A ∩ A′ �= ∅.

If we consider minimal qualified subsets Ai = {ai, bi, ci} such that Fi = 〈Ai〉
for i = 1, 2, 3, we can suppose that c1 = c2 and a2 = a3 and that A4 = {a1, b2, c3}
is a minimal qualified subset. Observe that F4 = 〈A4〉 ∈ F . Moreover, by taking
into account that A1 ∩ A3 �= ∅ and the positions of the other points and flats,
we get that b3 = b1.

We claim that Fi = Ai ∪{D} for every i = 1, . . . , 4. If this is not true and, for
instance, there exists a ∈ F1 − (A1 ∪ {D}), we can suppose that A = {a, b1, c1}
is a basis of F1. Then A is a minimal qualified subset and a ∈ A ∩ A4 because
A ∩ A4 �= ∅ and b1, c1 /∈ F4. Since a1 ∈ A ∩ A4, we get that a, a1 ∈ F1 ∩ F4 and
a = a1, a contradiction.
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The proof is concluded by checking that A1, . . . , A4 are all the minimal qual-
ified subsets of Γ because this implies Γ ∼= Υ ′. If there were another mini-
mal qualified subset A5, the flat F5 = 〈A5〉 would be different from the flats
F1, . . . , F4. Then, A ∩ A1 �= ∅. If, for instance, A ∩ A1 = {a1}, we get that
F1 ∩F5 = 〈a1, D〉 = F1 ∩F4 and, hence, r(F1 ∩F4 ∩F5) = 2, a contradiction. �

Proposition 16. Let M be a matroid on the set Q = P ∪{D} such that the ac-
cess structure Γ = ΓD(M) has rank three. Consider F = F(M, D) and suppose
that there exist three different flats F1, F2, F3 ∈ F such that F1 ∩ F2 ∩ F3 = {D}
and there exists a flat F ∈ F − {F1, F2, F3} such that F1 ∩ F2 = F1 ∩ F . Then,
M ∼= M1 and Γ ∼= Υ .

Proof. If we consider minimal qualified subsets Ai = {ai, bi, ci}, where i = 1, 2, 3,
such that Fi = 〈Ai〉, we can suppose, as in the proof of Proposition 15, that
c1 = c2, a2 = a3 and b3 = b1 and that A4 = {a1, b2, c3} is a minimal qualified
subset. Consider F4 = 〈A4〉 ∈ F . Observe that Fi ∩ Fj ∩ F4 = {D} whenever
1 ≤ i < j ≤ 3.

Besides, by applying again the arguments in the proof of Proposition 15, all
minimal qualified subsets of Γ have three elements and |A∩A′| = 1 if A, A′ ⊂ P
are minimal qualified subsets with 〈A〉 �= 〈A′〉. Besides, Fi = Ai ∪ {D} for every
i = 1, . . . , 4.

Let A5 be a minimal qualified subset such that F1 ∩ F5 = F1 ∩ F2 = 〈c1, D〉,
where F5 = 〈A5〉. Then, A5 ∩ A1 = A5 ∩ A2 = {c1}. Observe that both A5 ∩ A3
and A5 ∩A4 must be equal to {c3}. It is easy to check that A5 = {c1, c3, d} with
d /∈ {a1, b1, c1, a2, b2, c3}.

Since F1 ∩F3 ∩F5 = {D}, we use the arguments in the proof of Proposition 13
and we get that A6 = {a1, a2, d} is a minimal qualified subset. Equally, A7 =
{b1, b2, d} is also a minimal qualified subset because F2∩F3 ∩F5 = {D}. Besides,
in the same way as in the proof of Proposition 15, we can check that Fi = Ai∪{D}
for every i = 5, 6, 7. Finally, observe that the minimal qualified subsets of Γ must
be precisely A1, . . . , A7, because it is not possible to find a set with three elements
such that |A ∩ Ai| = 1 for every i = 1, . . . , 7. �
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Abstract. Cheating in secret sharing has been considered in several pa-
pers. Recently cheating in visual cryptography has been considered in [10],
where (2, n)-threshold visual cryptography schemes are provided. In this
paper we provide new (2, n)-threshold visual cryptography schemes. Our
model is different from the one considered in [10]; in particular we aim at
constructing cheating immune schemes without the use of extra informa-
tion, like additional shares or images as done in [10]. We have provided
a formal definition of cheating which requires that a group of cheaters be
able to deterministically force a honest participant to reconstruct a wrong
secret. The (2, n)-threshold schemes that we provide do not allow such
cheating, regardless of the number of cheaters.

1 Introduction

A secret sharing scheme is a cryptographic protocol which allows the participants
to share a secret in such a way that only certain qualified subset of participants
can reconstruct the secret. Visual secret sharing (or visual cryptography) is a
particular form of secret sharing where the secret is an image and the shares
are printed transparencies allowing the reconstruction of the secret by means of
shares superposition. Secret sharing was introduced independently by Blakey [1]
and Shamir [15]. Visual secret sharing was introduced by Naor and Shamir [13].

The goal of a secret sharing scheme (visual or not) is that of sharing a secret
so that only qualified subsets of participants are able to reconstruct the secret.
Other (non-qualified) subsets of participants should not be able to gain any
information about the secret. When the qualified sets consist of all the subsets
of at least k out of the n participants the secret sharing scheme is called a
(k, n)-threshold scheme. In a secret sharing scheme each participant receives
a share, that is a piece of information related to the secret. Combining the
shares of a qualified subsets of participants the secret is revealed while any other
combination of shares gives no information on the secret. However in some cases
if some participants misbehave they could be able to gain information about
the secret or the secret itself even if they are not qualified. For example in the
� This author is also a member of the Akamai Faculty Group, Akamai Technologies,

8 Cambridge Center, Cambridge, MA 02142, USA.

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 216–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Cheating Immune (2, n)-Threshold Visual Secret Sharing 217

secret sharing scheme of Shamir [15] (and in all linear secret sharing schemes),
a dishonest participant can submit a fake share eliciting a wrong reconstruction
of the secret from which the dishonest participant can infer the real secret,
while the other participants are left with the wrong secret. Tompa and Woll [18]
show how to modify Shamir scheme to avoid such an attack by a dishonest
participant. In the above context, dishonest participants, that try to fool other
participants, are called cheaters. Constructing schemes that are robust against
cheaters is clearly desirable. The robustness against cheaters depends on the
model considered. Some papers that have considered such a problem are, for
example, [4,5,8,11,12,19].

With visual secret sharing there are inherent constraints on the form of the
share and the reconstruction process. Hence the results about cheating for gen-
eral secret sharing might not hold for visual secret sharing. In a recent paper
Horng et al. [10] considered the problem of constructing cheating-immune visual
secret sharing schemes. They propose two methods to fight cheating in visual
cryptography. The first one uses additional shares and a confidential image for
each participant; such additional information is used before the reconstruction
process to verify the integrity of the share that will be used to reconstruct the se-
cret. The second one uses a (2, n+d)-threshold scheme, for some d > 0, and takes
only n out of the n + d shares; however such an approach prevents the cheaters
from fooling honest participants when the secret is black but the cheaters can
fool honest participants when the secret is white. As pointed out in [10], the use
of a complementary secret image (where white and black are swapped) solves
the problem.

In this paper we aim at constructing cheating immune visual cryptography
schemes without the use of additional information, like additional shares or other
images. We focus on (2, n)-threshold visual cryptography schemes. First we pro-
vide a formal definition of cheating, which requires a group of cheaters to be able
to deterministically fool a honest participant. Then we provide (2, n)-threshold
visual cryptography schemes that are immune to cheating, in the sense of the
above definition. Compared to [10] our schemes do not suffer of the problem of
protecting only black secret pixels and thus they do not require the use of a
complementary image; moreover we don’t need to produce additional shares.

2 The Model

A secret image, consisting of black and white pixels, has to be shared among a
set P = {1, . . . , n} of participants. A trusted party, which is called the dealer
and is not a participant, knows the secret image. The dealer has to distribute
shares to the n participants in the form of printed transparencies. The subsets
of P consisting of at least k participants are called qualified sets. Participants
in a qualified subset have to be able to “visually” recover the secret image,
by stacking together their shares (transparencies) and holding the stacked set
of transparencies to the light. All other subsets, that is, those which have less
than k participants, are called forbidden sets. Participants in a forbidden set
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should not be able to get any information on the secret image from their shares,
neither by stacking together the transparencies nor by any other computation.
Schemes where the forbidden and qualified sets are defined as above are called
(k, n)-threshold schemes.

From now on we concentrate on how to deal with just one pixel of the image.
In order to share the entire image it is enough to repeat the sharing process for
each pixel of the image.

Each secret pixel is divided into m subpixels. This implies a loss of resolution:
the pixels of the reconstructed image will be m times bigger compared to the
ones of the original image. A share is a “version” of the secret pixel consisting
of a particular assignment of black and white to the m subpixels. When super-
imposing two or more shares the participants need to align the shares so that
the (sub)pixels corresponding to a given pixel are superimposed to each other.
The resulting image will have a black pixel whenever there is a share with a
black pixel and a white pixel only when all the shares have white pixels. In other
words the human eye performs, for each subpixel of the overall picture, an or
operation among the superimposed pixels

Given a matrix M and a set X of natural numbers, which represent partic-
ipants, we denote by M |X the matrix consisting of only the rows of M corre-
sponding to the integers in X , if they exists in M . For example, assuming that M
has at least 6 rows, if X = {2, 3, 6}, then M |X is the submatrix of M consisting
of the second, the third and the sixth row of M .

The weight of a binary vector is denoted with w(·) and is the number of 1s in
the vector.

Next we provide the definition of a visual cryptography scheme.

Definition 1. Fix k and n, with 2 ≤ k ≤ n. Fix �, h and m such that 0 ≤ � <
h ≤ m. A (k, n)-threshold visual cryptography scheme consists of 2 n×m binary
matrices B0, B1, satisfying:

1. Given a qualified set X, |X | = k, it holds that w(or(B1|X)) = h and
w(or(B0|X)) = �.

2. Given a forbidden set X, |X | < k, the 2 matrices of dimension |X | × m,
Bi|X, i = 0, 1, are equal up to a permutation of the columns.

The matrices B0 and B1 are called base matrices of the scheme.
White pixels are represented with a “0” and black pixels are represented with

a “1”. In the rest of the paper we will often use “0” and “white” as synonymous
and also “1” and “black” as synonymous. B0 is the white base matrix and B1

is the black base matrix.
In order to distribute the shares the dealer chooses a random permutation of

the columns of the base matrix corresponding to the secret pixel and gives to
each participant a row of the permuted base matrix.

The first property is called the contrast property and requires the correct
reconstruction of the secret pixel. In particular if the secret pixel is white then
the reconstructed pixel must have exactly � black subpixels and if the secret pixel
is black then the reconstructed pixel must have exactly h black subpixels. The



Cheating Immune (2, n)-Threshold Visual Secret Sharing 219

second property is called the safety property and requires that any non qualified
subset of participants has no information about the secret pixel.

Notice that the above definition requires that a white secret pixel be recon-
structed with exactly � black subpixels and a black secret pixel be reconstructed
with exactly h black subpixels. This can be used to detect a cheating attempt.
Indeed if a reconstruction gives a number of black subpixels that is different from
both � and h it means that some shares have been forged.

2.1 Definition of Cheating

A group of c < n participants can cheat by forming a coalition and producing
fake shares in order to fool honest participants. In this paper we focus on (2, n)-
threshold schemes, hence we provide a definition of cheating against a single
honest participant.

Given a (2, n)-threshold scheme with parameters � and h, a group of c < n
participants are called “cheaters” when they get together, construct a fake share
and present such a share to a honest participant with the intention of forcing
the honest participant to reconstruct a wrong secret.

Since the cheaters have to build a fake share they can potentially choose any
possible share (i.e. any possible combination of the m subpixels). However the
honest participant can actually perform a validity check on the share that he
receives. Such a validity check consists in checking that the share appears in the
distribution matrices of the scheme. Hence the cheaters are bound to choose as
a fake share only the shares that appear in the rows of the base matrices, or
that are permutations of the rows of the base matrices. We call such shares valid
and we use the word fake to indicate a share which has been constructed by the
group of cheaters. Hence the goal of the cheaters is to create a fake but valid
share that induces the honest participant to reconstruct the wrong color.

For example, consider the following (2, 3) scheme defined by the base matrices

B0 =

⎡
⎣

1 0 0
1 0 0
1 0 0

⎤
⎦

B1 =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

In this scheme m = 3, � = 1 and h = 2 and all and only the binary strings with
exactly 1 one and 2 zeroes are valid shares. A white secret pixel is reconstructed
with exactly 1 black subpixel out of the 3 subpixels and a black secret pixel is
reconstructed with 2 black subpixels. Assume that participants corresponding
to the first two rows are cheaters and the participant corresponding to the third
row is a honest one.

If the secret pixel is white, when the cheaters collude they can reconstruct
the secret and also know the share of the honest participant (it will have a 1
exactly in the same place where the shares of the two cheaters have a 1). With
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such information the two cheaters can build a forged share having a 1 in any of
the position where the honest participant has a 0. When presented with such a
share the honest participant will reconstruct a black secret pixel.

Similarly if the secret pixel is black the two cheaters know that the share of
the honest participant will have a 1 in the position where both their shares have
a 0 and thus to force the honest participant to reconstruct a wrong secret they
will forge a share with a 1 in the same position where the share of the honest
participant has a 1.

Notice that in the above example the cheaters have been able to cheat with
probability 1 because they were able to know exactly the share of the honest
participant.

Recall that by the safety property we have that a share of a honest participant
is present, up to a permutation of the columns, in both base matrices.

Definition 2. In a (2, n)-threshold secret sharing scheme with parameters � and
h, a group of c < n cheaters cheats if given a secret pixel of color white (resp.
black) the c cheaters are able to construct a valid share of the black (resp. white)
base matrix such that the weight of the or of such a share and that of the honest
participant is h (resp. �).

Notice that the definition of cheating requires that the cheaters be able to con-
struct a fake share which will surely (i.e. with probability 1) induce the honest
participant to reconstruct a wrong secret.

3 A (2, n)-Threshold Cheating Immune Scheme

In this section we provide the (2, n)-threshold cheating immune scheme.

Construction 1 Fix n, n ≥ 3. The base matrices of the scheme have dimension
n × (2n + n + 1). The white base matrix Wn has the following columns: all the
possible 2n binary column-vectors of length n, one additional column with all
ones and n additional columns with all zeroes. The black base matrix Bn has
the following columns: all the possible 2n binary column-vectors of length n,
one additional column with all zeroes the n columns of the identity matrix of
dimension n × n.

Example for n = 3.

W3 =

⎡
⎣

0 1 0 1 0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1 0 1 0 0

⎤
⎦

B3 =

⎡
⎣

0 1 0 1 0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 1

⎤
⎦
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Example for n = 4.

W4 =

⎡
⎢⎢⎣

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0

⎤
⎥⎥⎦

B4 =

⎡
⎢⎢⎣

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1

⎤
⎥⎥⎦

Each row has exactly 2n−1 + 1 black pixels (ones).
A qualified set of 2 participants reconstructs a white secret pixel with exactly

3 · 2n−2 + 1 black subpixels and a black secret pixels with exactly 3 · 2n−2 + 2
black subpixels.

The pixel expansion is m = 2n + n + 1.
Before proving that Construction 1 gives a scheme that does not allow cheaters

to cheat with probability 1, let us consider the (2, 3)-threshold scheme and see
why the scheme is cheating immune. Assume that participants 1 and 2 are
cheaters and participant 3 is honest. Assume also that the secret is white. Then
when the cheaters collude they know that the secret is white but do not have
an exact knowledge of the share of the honest participant. Indeed using their 2
shares the cheaters can infer the following information:

– in the columns for which the cheaters see 2 zeroes, which are exactly 5 (in
general they are 2+n – see below), the honest share has 4 zeroes and 1 one.
However since the dealer can choose any permutation of the base matrix,
the cheaters cannot tell where the black subpixel will be placed, i.e., the 1
can be placed in correspondence of any of the 5 double-zero columns seen
by the cheaters.

– in the columns for which the cheaters see a 0 over a 1, which are exactly 2,
the honest share has a 1 and a 0, but the cheaters cannot tell where the 1
and 0 of the honest share are placed

– in the columns for which the cheaters see a 1 over a 0, which are exactly 2,
the honest share has a 1 and a 0, but the cheaters cannot tell where the 1
and 0 of the honest share are placed

– in the columns for which the cheaters see 2 ones, which are exactly 3 the
honest share has 1 zero and 2 ones. Again they cannot tell where the honest
share has the 0 and the 2 ones.

The uncertainty that results from this partial information does not allow the
cheaters to deterministically construct a share that will fool the honest partici-
pants. As we will argue more formally in the rest of the section, the only cases
where the cheaters can compute the number of black supixels of the reconstruc-
tion provided by their fake share and the share of the honest participant are cases
where the honest participant is not fooled. This means that the cheaters cannot
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fool the honest participant with probability 1. Formally we have the following
theorem.

Theorem 2. For any c, c < n, any group of c participants cannot cheat with
probability 1.

From now on we assume that c = n − 1. It is obvious that if a group of n − 1
cheaters cannot cheat with probability 1 then also any smaller group of cheaters
cannot cheat with probability 1.

Fix the n − 1 cheaters and consider their shares, and in particular look at the
columns formed by the n − 1 shares and partition them into blocks of identical
columns. There will be one block for each possible binary column-vector of length
n − 1. The number of identical columns in each block depends on the block and
on the secret pixel.

Let us first consider the case when the secret pixel is white. So the shares of
the n − 1 cheaters are taken from Wn.

A simple combinatorial argument is sufficient to identify the cardinality of
each block. The block of columns with n−1 zeroes has cardinality 2+n. Indeed
2 columns with all zeroes in the n − 1 shares of the cheaters come from the
portion of the base matrix that contains all possible binary vectors of length n
while n come from the additional n all-zeroes columns.

Similarly the block of columns with n − 1 ones has cardinality 3. Any other
block has cardinality 2.

Now we classify the blocks into four groups:

A: block of the (n − 1)-zero columns (one block)
B: blocks with columns with 1 one and n − 2 zeroes (exactly n − 1 blocks)
C: blocks with columns with at least 2 ones and at most n−2 ones (2n−1−n−1

blocks)
D: block of the (n − 1)-one columns (one block)

Notice that the columns within each block are indistinguishable by the cheaters,
in the sense that the cheaters cannot tell whether a 0 or a 1 will appear in the
honest share for each of the column, but only the total number of 0s and 1s. In
particular the cheaters know that the block of the (n − 1)-zero columns (group
A) correspond to exactly n + 1 zeroes and 1 one in the honest share. However the
cheaters cannot tell where the 0s and 1s will appear since the honest participant
can have a share for any possible placement of 0s and 1s within the block.

Similarly for each block of columns in group B, a honest share has exactly 1
zero and 1 one, and again they can be placed in any possible position.

For blocks in group C it happens the same: the corresponding portion of the
honest share has exactly 1 zero and 1 one that can be placed in any possible
position.

Finally, the block with all-one columns correspond to a portion of a honest
share having exactly 1 zero and 2 ones, and they can be placed in any possible
position.

The following table summarizes what the group of n−1 cheaters knows about
the share of the honest participant:
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Group of n − 1 cheaters with a white secret.
Group: A B C D

Type:

⎡
⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
1
...
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎦

Number of blocks: 1 n − 1 2n−1 − n − 1 1

Columns in each block: 2 + n 2 2 3

0s in remaining share: n + 1 1 1 1

1s in remaining share: 1 1 1 2

The group of n−1 cheaters needs to make up a share to present to the honest
participant. The share must have exactly 2n−1 +1 ones, otherwise the share can
be identified as a fake one. Moreover the cheaters want to have a reconstructed
pixel that is black, which means the reconstruction has to yield a pixel with
exactly 3 · 2n−2 + 2 black subpixels.

Given that the knowledge about the honest share is only partial, there are
many strategies for which the number of black subpixels in the reconstruction is
a random variable. There are few strategies that the cheaters can follow in order
to obtain a certain number of black subpixels in the reconstructed secret pixel
with probability 1. We will call such strategies exact. Exact strategies are those
for which the made up share places all ones covering exactly all the columns in
one or more blocks (with no block covered only partially). Indeed placing the 1s
as described above, the number of black subpixels is independent of the honest
share and can be computed exactly (with no uncertainty). All other strategies
will inevitably lead to some uncertainty on the total number of black subpixels
in the reconstructed share and thus any such strategy will not be exact. Recall
that in our definition of cheating we require that the cheaters be able to fool the
honest participant with probability 1. Hence we want to show that any exact
strategy will not allow the cheaters to cheat with probability 1.

In order to analyze all the exact strategies let us denote with α, β, γ and δ be,
respectively, the number of blocks from groups A, B, C and D that the cheaters
choose to place the ones in the fake share. Such numbers are constrained by α ≤ 1,
β ≤ n − 1, γ ≤ 2n−1 − n − 1 and δ ≤ 1. Since a valid share has exactly 2n−1 + 1
black subpixels the cheaters must choose values for α, β, γ and δ such that

(2 + n)α + 2β + 2γ + 3δ = 2n−1 + 1. (1)

We distinguish 4 possible cases and show that in each of them the cheaters
cannot cheat with probability 1. Before examining each case we observe that the
number of black subpixels in the share reconstructed from the fake share and
the honest one is given by
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(2+n)α+(1−α)+2β+(n−1−β)+2γ+(2n−1 −n−1−γ)+3δ+2(1−δ). (2)

Indeed when α = 1 the block of group A contributes for (2 + n) black subpixels
while when α = 0 the block of group A contributes only for the 1s in the honest
share. Similarly each of the β blocks chosen by the cheaters will contribute
to the number of black subpixels with 2 black subpixels while the remaining
(n − 1 − β) blocks will contribute each for 1 subpixel. For the blocks of group C
we have γ of them that contribute for 2 black subpixels each, while the remaining
2n−1 − n − 1 − γ contribute with only 1 black subpixels. Finally when δ = 1 the
block of group D contributes for 3 black subpixels while when δ = 0 the same
block contributes for 2 black subpixels. Equation 2 can be simplified to

2n−1 + 1 + (n + 1)α + β + γ + δ. (3)

We now consider the four possible cases:

case 1: α = 0, δ = 0. Equation (1) becomes 2β + 2γ = 2n−1 + 1 which has no
solution for β and γ integers.

case 2: α = 0, δ = 1. Equation (1) becomes 2β + 2γ + 3 = 2n−1 + 1 which is
equivalent to β + γ = 2n−2 − 1.
Hence, the number of ones in the reconstructed secret pixel, given by
Equation (3) is:

2n−1 + 1 + 2n−2 − 1 + 1 = 3 · 2n−2 + 1.

This means that the reconstructed pixel is a white pixel (the honest
participant is not fooled).

case 3: α = 1, δ = 0. Equation (1) becomes 2 + n + 2β + 2γ = 2n−1 + 1 which is
equivalent to 2β + 2γ = 2n−1 − n − 1. This has no solutions for n even
but for n odd the cheaters can choose β + γ = 2n−2 − n+1

2 . With such
a choice the number of black subpixels in the reconstructed secret pixel,
given by Equation (3), is:

2n−1 + 1 + 2n−2 − n

2
− 1

2
= 3 · 2n−2 + 1/2 + 3n/2.

The above number is always strictly greater than 3 ·2n−2+2 which is the
number of black subpixels in the reconstructed pixel. Hence the honest
participant can detect an anomaly in the reconstructed share.

case 4: α = 1, δ = 1. Equation (1) becomes 2 + n + 2β + 2γ + 3 = 2n−1 + 1
which is equivalent to 2β +2γ = 2n−1 −n−4. This has no solution for n
odd but for n even the cheaters can choose β + γ = 2n−2 − n

2 − 2. With
such a choice the number of black subpixels in the reconstructed secret
pixels, given by Equation (3), is:

2n−1 + 1 + 2n−2 − n

2
− 2 + 1 = 3 · 2n−2 + 1 + n/2

which is always strictly greater than 3 · 2n−2 + 2 (for all even n ≥ 3).
Hence also in this case the honest participant can detect an anomaly in
the reconstructed share.
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Thus we can conclude that no exact strategy can fool the honest participant
when the secret pixel is white.

With a similar reasoning we can analyze the case when the secret pixel is
black.

Again the exact strategies are those for which the cheaters choose α, β, γ and
δ blocks from, respectively, blocks from groups A, B, C and D and place ones
in such blocks. Such numbers are again constrained by α = 0, 1, β ≤ n − 1,
γ ≤ 2n−1 − n − 1 and δ = 0, 1. The following table summarizes the information
that the cheaters have about the remaining share.

Group of n − 1 cheaters with a black secret.
Group: A B C D

Blocks: 1 n − 1 2n−1 − n − 1 1

Columns (each block): 4 3 2 2

Type:

⎡
⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
1
...
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎦

0 in remaining share: 2 1 1 1

1 in remaining share: 2 1 1 1

With a black secret pixel the constraint on the total number of ones in the
fake share becomes

4α + 3β + 2γ + 2δ = 2n−1 + 1. (4)

For a given exact strategy the number of black subpixels in the reconstructed
secret pixel is given by:

4α + 2(1 − α) + 3β + (n − 1 − β) + 2γ + (2n−1 − n − 1 − γ) + 2δ + (1 − δ). (5)

Again the above is due to the fact that the cheaters have filled with 1s α blocks
of type A, β blocks of type B, γ blocks of type C and δ blocks of type D. When a
block has been filled with 1 by the cheaters its contribution to the total number
of black subpixels in the reconstructed pixel is given by the width of the block,
while for the other blocks (filled with 0 by the cheaters) the contribution to the
total number of black subpixels is given by the number of 1s in the honest share.

Equation (5) can be simplified to

2n−1 + 1 + 2α + 2β + γ + δ. (6)
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As for the white secret, we distinguish 4 possible cases and for each of them
we show that any exact strategy does not allow the cheaters to cheat with prob-
ability 1.

case 1: α = 0, δ = 0. Equation (4) becomes 3β+2γ = 2n−1+1. This is impossible
for β even but for β odd the cheaters can get an exact strategy by
choosing γ = 2n−2 − 3β−1

2 . The number of ones in the reconstructed
secret pixel, given by Equation (6), is:

2n−1 + 1 + 2β + 2n−2 − 3
2
β +

1
2

= 3 · 2n−2 +
3
2

+
β

2

which is always strictly greater than 3 · 2n−2 + 1 and thus the recon-
structed pixel cannot be classified as white (i.e. the honest participant
cannot be fooled).

case 2: α = 0, δ = 1. Equation (4) becomes 3β + 2γ + 2 = 2n−1 + 1 which is
equivalent to 3β + 2γ = 2n−1 − 1. This is impossible for β even but for
β odd the cheaters can choose γ = 2n−2 − 3β+1

2 . The number of ones in
the reconstructed secret pixel, given by Equation (6), is:

2n−1 + 1 + 2β + 2n−2 − 3
2
β − 1

2
+ 1 = 3 · 2n−2 +

3
2

+
β

2

which is always strictly greater than 3 · 2n−2 + 1 and thus the recon-
structed pixel cannot be classified as white (i.e. the honest participant
cannot be fooled).

case 3: α = 1, δ = 0. Equation (4) becomes 4 + 3β + 2γ = 2n−1 + 1 which is
equivalent to 3β + 2γ = 2n−1 − 3. This is impossible for β even but for
β odd the cheaters can choose γ = 2n−2 − 3β+3

2 . The number of ones in
the reconstructed secret pixel, given by Equation (6), is:

2n−1 + 1 + 2 + 2β + 2n−2 − 3
2
β − 3

2
= 3 · 2n−2 +

3
2

+
β

2

which is always strictly greater than 3 · 2n−2 + 1 and thus the recon-
structed pixel cannot be classified as white (i.e. the honest participant
cannot be fooled).

case 4: α = 1, δ = 1. Equation (4) becomes 4 + 3β + 2γ + 2 = 2n−1 + 1 which is
equivalent to 3β + 2γ = 2n−1 − 5. This is impossible for β even but for
β odd the cheaters can choose γ = 2n−2 − 3β+5

2 . The number of ones in
the reconstructed secret pixel, given by Equation (6), is:

2n−1 + 1 + 2 + 2β + 2n−2 − 3
2
β − 5

2
+ 1 = 3 · 2n−2 +

3
2

+
β

2

which is always strictly greater than 3 · 2n−2 + 1 and thus the recon-
structed pixel cannot be classified as white (i.e. the honest participant
cannot be fooled).

Thus we can conclude that no exact strategy can fool the honest participant
also when the secret pixel is black.
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4 Conclusions

We have considered the problem of cheating in visual cryptography. We have
provided a formal definition of cheating and (2, n)-threshold schemes which are
robust against cheaters. To our knowledge the problem of cheating in visual
cryptography has been considered only in this paper and in [10]; many open
problems remain. For example one can provide (k, n)-threshold cheating-immune
visual cryptography schemes for any k; or one could study the minimal pixel
expansion or the best contrast of cheating immune schemes. Another interesting
question is the difference between the power of a group of cheaters that is able
to reconstruct the secret and the power of a group of cheaters that is not able
to reconstruct the secret. In this paper, since we considered (2, n)-threshold
schemes, any coalition of cheaters is a qualified set and thus is able to reconstruct
the secret.
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Abstract. We consider the problem of secret sharing among n rational
players. This problem was introduced by Halpern and Teague (STOC
2004), who claim that a solution is impossible for n = 2 but show a
solution for the case n ≥ 3. Contrary to their claim, we show a protocol
for rational secret sharing among n = 2 players; our protocol extends to
the case n ≥ 3, where it is simpler than the Halpern-Teague solution and
also offers a number of other advantages. We also show how to avoid the
continual involvement of the dealer, in either our own protocol or that
of Halpern and Teague.

Our techniques extend to the case of rational players trying to securely
compute an arbitrary function, under certain assumptions on the utilities
of the players.

1 Introduction

The classical problem of t-out-of-n secret sharing [13,2] involves a “dealer” D
who wishes to entrust a secret s to a group of n players P1, . . . , Pn so that (1) any
group of t or more players can reconstruct the secret without further intervention
of the dealer, yet (2) any group of fewer than t players has no information about
the secret. As an example, consider the scheme due to Shamir [13]: assume the
secret s lies in a finite field F, with |F| > n. The dealer chooses a random
polynomial f(x) of degree at most t − 1 subject to the constraint f(0) = s,
and gives the “share” f(i) to player Pi (for i = 1, . . . , n). Any set of t players
can recover f(x) (and hence s) by broadcasting their shares and interpolating
the polynomial; furthermore, no set of fewer than t players can deduce any
information about s.

The implicit assumption above is that at least t players are willing to cooperate
and pool their shares1 when it is time to recover the secret; equivalently, at least
t players are honest but up to n−t players may be arbitrarily malicious. Halpern
and Teague [7] consider a scenario in which players are neither completely honest
nor arbitrarily malicious, but instead all players are assumed to be rational
(however, up to n − t players may be unavailable at the time the secret is to be
� This research was supported by NSF Trusted Computing grants #0310499

and #0310751; NSF CAREER award #0447075; and US-Israel Binational Science
Foundation grant #2004240.

1 We assume adversarial behavior is limited to refusal to cooperate, and ignore the
case that a player reports an incorrect share. In the present context, reporting an
incorrect share is easily prevented by having the dealer sign the shares.
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recovered). Depending on the utility functions of the players, Shamir’s protocol
may no longer succeed in this scenario [7]. Specifically, assume that all players
prefer to learn the secret above all else, but otherwise prefer that the fewest
number of other players learn the secret. (We will treat the utilities of the players
more precisely later in the paper.) Given these utility functions, no player has
any incentive to reveal their share. Consider P1: if strictly fewer than t−1 other
players reveal their shares to the rest of the group, then no one learns the secret
regardless of whether P1 reveals his share or not. If more than t − 1 players
reveal their shares, then everyone learns the secret and P1’s actions again have
no effect. On the other hand, if exactly t − 1 other players reveal their shares,
then P1 learns the secret (using his share) but P1 can prevent other players from
learning the secret by not publicly revealing his share.

Let t, n be as above, and let t∗ ≥ t denote the number of players present
when the secret is to be reconstructed. Given the above discussion, we can thus
conclude the following about the game-theoretic equilibria of “standard” Shamir
secret sharing in the above situation (definitions of Nash equilibria and weakly
dominating strategies are given in Section 2):

– For any t, n, t∗, it is a Nash equilibrium for no one to reveal their share.
– If t∗ > t, it is a Nash equilibrium for all t∗ participating players to reveal

their shares. However, as discussed above, it is a weakly dominating strategy
for each player not to reveal his share; thus, the Nash equilibrium likely to
be reached is the one mentioned earlier in which no one reveals their share.

– If t∗ = t, then having all t∗ participating players reveal their shares is not
even a Nash equilibrium, since each player can profitably deviate by not
revealing his share.

Thus, Shamir’s protocol with the trivial reconstruction procedure does not
suffice in the presence of rational players. Does there exist any protocol for
reconstructing the secret in which it is in rational players’ best interests to
follow the protocol? Generalizing the argument above, Halpern and Teague rule
out any protocol terminating in a fixed number of rounds. (Essentially, the above
argument is applied to the last round and then backwards induction is used.)
This leaves open the possibility of probabilistic protocols without a fixed upper
bound on their round complexity, and indeed Halpern and Teague show the
existence of such protocols for t, n ≥ 3. In contrast, they claim a solution is
impossible for n = 2 even if probabilistic protocols are allowed.

1.1 Our Results

We revisit the question of rational secret sharing, in the model of Halpern and
Teague [7]. As perhaps our most surprising result, we show a simple, probabilis-
tic protocol for n = 2 parties to reconstruct a shared secret, thus disproving the
claim of Halpern and Teague mentioned earlier. Interestingly, the proof given
by Halpern and Teague appears to be correct; the problem is that their assump-
tions regarding the types of protocols that might be used are too restrictive
(and are not implied by the model). By relaxing their assumptions in a manner
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consistent with the model of rational secret sharing they introduce, we are able
to circumvent their impossibility result.

Our protocol generalizes in a straightforward way to the case of n ≥ 3 and
arbitrary t. Although Halpern and Teague also claim a general solution of this
sort, our solution is much simpler. Furthermore, for n > 3 our solution has
a number of advantages as compared with the solution offered by Halpern and
Teague; perhaps most importantly, our solution eliminates a second (undesirable)
equilibrium that is present in the Halpern-Teague protocol. Other advantages of
our approach are summarized in Section 3.3.

Both the Halpern-Teague protocol and our protocol (as initially described)
require the continual, periodic involvement of the dealer. At best, this is incon-
venient; at worst, this calls into question the motivation for the problem in the
first place. We show in Section 4 an intuitively simple way to avoid the involve-
ment of the dealer (after the initial share distribution phase) that applies in all
scenarios considered here.

As in [7], our techniques extend to the more general case of rational players
trying to securely compute an arbitrary function of their inputs, under certain
assumptions on the utilities of the players. See Section 5 for further details.

1.2 Related Work

There has been much interest of late in bridging cryptography (in which guaran-
tees are provided in the face of worst-case adversarial behavior) and game theory
(which concerns itself only with rational deviations). A point to bear in mind is
that neither the cryptographic or the game-theoretic model is strictly stronger
than the other: typical cryptographic protocols tolerate arbitrary malicious be-
havior under the assumption that some fraction of the players will follow the
protocol exactly as specified; game-theoretic protocols are designed to tolerate
“only” rational behavior but do not assume any completely honest players.

Besides the work of Halpern and Teague, the most relevant prior work is
the recent sequence of papers by Lepinski, et al. [9,10] and Izmalkov, et al. [8].
Lepinski, Micali, Peikert, and Shelat [9] show a protocol for completely fair se-
cure function evaluation (SFE), in which all players receive output if any player
receives output, even if up to n−1 players are malicious. In “standard” commu-
nication networks this is known to be impossible [3], and therefore Lepinski, et
al. rely on the physical assumption of “secure envelopes” (see the discussion in [9]
for the exact properties these should satisfy) to achieve their result. They then
show how to use any protocol for completely fair SFE to implement cheap talk
in the presence of malicious coalitions; basically, this enables players to reach a
correlated equilibrium without having to rely on any external trusted party.

The work of Lepinski, Micali, and Shelat [10] and Izmalkov, Micali, and Lep-
inski [8] deals (directly or indirectly) with mechanisms for preventing coalitions
in the first place. More specifically, these works are concerned with eliminating
covert (e.g., steganographic) channels in the secure computation protocol itself
so as to prevent signaling between players. Again, they achieve this by relying
on physical assumptions (secure envelopes and, in the case of [8], ballot boxes)
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in addition to standard communication channels. A consequence of the work of
Izmalkov, et al. (indeed, the main motivation for their work) is a protocol Π for
securely implementing any mediated game Γ such that (informally) any equilib-
rium in Γ corresponds to an equilibrium in Π , and vice versa.

Comparison to our work. The work of Lepinski, et al. [9] as well as that of
Izmalkov, et al. [8] both offer different solutions to the problems we consider
here. Specifically:

– Completely fair SFE [9] guarantees (roughly speaking) that all players learn
the output if any player learns the output. This clearly implies a solution
for rational secret sharing (even in the presence of collusion), and can also
be used to solve the problem of rational SFE2 under certain assumptions on
player utilities.

– Since rational secret sharing can be implemented as a mediated game, the
work of [8] gives a solution to the problem (without any mediator). Their
work is in fact much more general, as it implies a protocol for rational SFE
for arbitrary player utilities and even in the presence of coalitions.

The main difference in our work is that we give intuitively-simple and/or very
efficient protocols at the expense of providing weaker guarantees. Specifically,
we focus only on single-player deviations (and do not handle collusion), and also
make specific assumptions regarding the utilities of the players. Under these
assumptions, our protocol for general secure function evaluation in Section 5
can be viewed as either a weak form of rational SFE, or completely fair SFE in
the presence of rational (rather than arbitrarily malicious) parties.

An additional important difference between our work and that of [9,10,8] is that
we rely on weaker assumptions with respect to the model of communication. In-
stead of relying on “secure envelopes” and “ballot boxes” as in [9,10,8] — which
seem to be difficult primitives to realize unless parties are physically co-located —
our solutions rely on standard communication channels with the exception that, as
in [7], we assume simultaneous broadcast whereby each party broadcasts a mes-
sage at the same time. (Equivalently, we do not allow “rushing.”) Whether one
finds the assumption of simultaneous broadcast realistic or not, we note that it is
a strictly weaker assumption than secure envelopes or ballot boxes since simulta-
neous broadcast can be constructed from either of the latter but not vice versa.

Concurrent work. Concurrently and independently of our own work, Abra-
ham, et al. [1] and Lysyanskaya and Triandopoulos [11] consider problems related
to those considered here. Abraham, et al. define a notion of resistance to coali-
tions of rational players and show a coalition-resistant protocol; we note that our
protocols are resistant to coalitions as well. Lysyanskaya and Triandopoulos ex-
amine the case of “mixed” security when both arbitrarily malicious and rational
players might be present. Both papers also show, under certain conditions, how
protocols can be designed without exact knowledge of players’ utilities (though

2 There are numerous definitions of rational SFE, and so everything we say in this
section is somewhat informal.
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utilities are still assumed to have a certain form). Interestingly (and somewhat
serendipitously!), both those works as well as our own all rely on essentially the
same underlying techniques.

2 Definitions for Rational Secret Sharing

We briefly review the model of rational secret sharing we assume in this paper.
Our model is intended to match the model used by Halpern and Teague, though
there are many details they do not make explicit.

As discussed earlier, we have a dealer D holding a secret s, and n players
P1, . . . , Pn. There is also a threshold t ≤ n, known to all players, which is fixed
at the outset. A protocol proceeds in a sequence of iterations, where each iter-
ation may consist of multiple communication rounds. At the beginning of each
iteration, D distributes some information (privately) to each of the n players;
at this point, no subset of fewer than t players should have any information
about s. During an iteration, the dealer does not take part in the protocol. In-
stead, some set of t∗ ≥ t players, all of whom are assumed to be rational, run
the protocol amongst themselves by simultaneously broadcasting messages in a
series of rounds. (Halpern and Teague additionally allow private communication
between the players but we do not need this.) For simplicity, we assume the same
set of t∗ players runs the protocol in every iteration. At the end of an iteration,
the protocol either terminates or proceeds to the next iteration. We assume the
dealer is honest, and follows the protocol as specified. To rule out trivial proto-
cols, we require that if t∗ ≥ t players follow the protocol in each iteration, then
the secret is eventually reconstructed (with probability 1).

We stress that broadcast in a given round is assumed to occur simultaneously
for all players; that is, we do not allow “rushing” as in the standard literature
on secure multi-party computation. Rational secret sharing is easily seen to be
impossible if rushing is allowed: all players will simply wait to see what other
players do, and no one will ever broadcast anything.

In the above description, as in [7], the dealer is assumed to be involved at
the beginning of each iteration. In Section 4, we show that it is possible for the
dealer to be involved only once at the beginning of the protocol.

We let σi denote the (possibly randomized) strategy employed by player Pi,
and let σ = (σ1, . . . , σn) denote the vector of players’ strategies. Following stan-
dard game-theoretic notation, we let (σ′

i, σ−i)
def= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn);

that is, (σ′
i, σ−i) denotes the strategy vector σ with Pi’s strategy changed to σ′

i.
Let μi(o) denote the utility of player Pi for the outcome o. For a particular

outcome o of the protocol, we let δi(o) be a bit denoting whether or not Pi

learns the secret, and let num(o) =
∑

i δi(o); i.e., num(o) is simply the number
of players who learn the secret. Following [7], we make the following assumptions
about the utility functions of the players:

– δi(o) > δi(o′) ⇒ μi(o) > μi(o′).
– If δi(o) = δi(o′), then num(o) < num(o′) ⇒ μi(o) > μi(o′).
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That is, player Pi first prefers outcomes in which he learns the secret; as long
as δi remains constant, player Pi prefers strategies in which the fewest number
of other players learn the secret. We let Ui(σ) denote the expected value of the
utility of Pi under strategy vector σ, and assume that rational players wish to
maximize this value.

Our notion of a protocol corresponds to a game along with a prescribed strat-
egy vector σ. As in [7], we are interested in protocols whose prescribed strategy
vector σ corresponds to a Nash equilibrium that survives iterated deletion of
weakly dominated strategies. We review these definitions briefly, and refer the
reader to [12,7] for more extensive discussion.

Definition 1. A vector of strategies σ is a Nash equilibrium if the following
holds for all i: for any σ′

i �= σi, we have Ui(σ′
i, σ−i) ≤ Ui(σ).

That is, given that all other players are following σ−i, there is no incentive for
Pi to deviate and follow any strategy other than σi.

In general, multiple Nash equilibria may exist. An inherently “unstable” Nash
equilibrium (i.e., one unlikely to be reached) is one in which any of the players’
strategies are weakly dominated by other strategies. Informally, a strategy σi

of player Pi is weakly dominated by another strategy σ′
i if (1) Pi is sometimes

better off playing σ′
i than playing σi, and (2) Pi is never worse off playing σ′

i than
playing σi. Recalling the example from the introduction, say a secret is shared
using t-out-of-n secret sharing (with t < n) and consider the strategy vector in
which all n players reveal their shares. This is a Nash equilibrium: the secret
is reconstructed even if any single player deviates. On the other hand, for each
player Pi, revealing the share is weakly dominated by not revealing the share:
if fewer than t − 1 other players or more than t − 1 other players reveal their
shares, then nothing changes; if exactly t − 1 other player reveal their shares
then Pi learns the secret but no one else does. Formal definitions follow.

Definition 2. Let Si denote a set of strategies for Pi, and let S−i
def= S1 × · · ·×

Si−1 ×Si+1 · · ·×Sn. A strategy σi ∈ Si is weakly dominated by a strategy σ′
i ∈ Si

with respect to S−i if (1) there exists a σ−i ∈ S−i such that Ui(σi, σ−i) <
Ui(σ′

i, σ−i) and (2) for all σ−i ∈ S−i, it holds that Ui(σi, σ−i) ≤ Ui(σ′
i, σ−i).

Strategy σi is weakly dominated with respect to S−i if there exists a σ′
i ∈ Si

such that σi is weakly dominated by σ′
i with respect to S−i.

Definition 3. Let DOMi(S1 × · · · × Sn) denote the set of strategies in Si that
are weakly dominated with respect to S−i. Let S0

i denote the initial set of al-
lowable strategies of Pi. For all k ≥ 1, define Sk

i inductively as Sk
i

def= Sk−1
i \

DOMi(Sk−1
1 × · · · × Sk−1

n ). Let S∞
i

def= ∩kSk
i .

We say σi survives iterated deletion of weakly dominated strategies if σi ∈ S∞
i .

3 Protocols for Rational Secret Sharing

We review the Halpern-Teague solution, and then describe our protocol. We
conclude with some discussion of the relative merits of our approach.
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3.1 The Halpern-Teague Solution

We provide a high-level overview of the solution of Halpern and Teague for 3-
out-of-3 secret sharing. We later discuss how they propose to generalize their
solution for n > 3 and t ≥ 3.

The Halpern-Teague protocol in the 3-out-of-3 case proceeds as follows: at
the beginning of each iteration, the dealer runs a fresh invocation of the Shamir
secret-sharing scheme and sends the appropriate shares to each player. (Ac-
tually, a simpler additive secret-sharing scheme could also be used.) During an
iteration, each player Pi flips a biased coin ci which is equal to 1 with some prob-
ability α. The players then run what is essentially an information-theoretically
secure multi-party computation protocol to compute the value c∗ =

⊕
ci. (Here

is where Halpern and Teague need to assume the existence of private channels
between the players.) In particular, it is impossible for any player to cheat (ex-
cept for aborting the protocol; see below), or to learn information about the {ci}
values of the other parties that is not implied by c∗. If c∗ = ci = 1, player Pi

broadcasts his share. If all shares are revealed, the secret is reconstructed and
the protocol ends. If c∗ = 1 and either no shares or exactly two shares are re-
vealed, or if the secure computation of c∗ was aborted, then all players refuse to
run the protocol from then on (and so, effectively, the protocol is terminated).
In any other case, players proceed to the next iteration.

Note that the secret is only reconstructed if c1 = c2 = c3 = 1. Thus, assum-
ing players act honestly, the expected number of iterations until the protocol
terminates is α−3.

To see intuitively why the above gives a Nash equilibrium, assume P1, P2 follow
the protocol and consider whether P3 should deviate. First note that there is no
incentive for P3 to bias c3 to be 0 with higher probability, since when c3 = 0 at
least one of P1, P2 will not broadcast their shares in that iteration. There is also
no incentive for P3 to bias c3 to be 1 with higher probability, either: although
this may cause the secret to be reconstructed sooner, it will have no effect on
P3’s utility. It is also easy to see that, given c∗ = 0 or c3 = 0, there is no incentive
for P3 to deviate from the protocol. Finally, when c∗ = c3 = 1, player P3 does
not know whether c1 = c2 = 1 (which occurs with probability α2

α2+(1−α)2 ) or
c1 = c2 = 0 (which occurs with the remaining probability). Thus, if P3 does
not broadcast its share it runs the risk of having the protocol terminate without
ever learning the secret. If α is set appropriately based on P3’s utility function,
it can be shown that it is not in P3’s best interest to deviate.

For n > 3 and t ≥ 3, Halpern and Teague suggest the following: of the t∗ ≥ t
players who are present, t players are designated. Players are split into 3 groups,
such that there is at least one designated player in each group. One designated
player in each group is chosen as a leader. The designated players send their
shares to the leader of their group, and then the leaders run essentially the 3-
out-of-3 solution described above. (When the leaders are supposed to broadcast,
they broadcast the shares of all the players in their group in such a way that all
t∗ players can hear.)
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Halpern and Teague also describe a solution for 2-out-of-n secret sharing for
n ≥ 3, but in this case they require that the number of participating players t∗

is strictly greater than 2 (and so this solution does not satisfy the model as we
have described it here).

3.2 Our Solution

Recall that Halpern and Teague claim that rational secret sharing is impossible
when n = 2. In their impossibility proof, however, they implicitly assume that
the dealer is limited to sending valid shares of the secret to the players at the
beginning of each iteration. They therefore focus only on possible actions of the
players during an iteration. We see no reason to impose any such restriction on
the dealer’s actions; note that the model, as described earlier, does not impose
any such restriction. As we show in this section, once this assumption is removed
a solution is possible even when n = 2, and things become simpler in the case
of general t, n.

Specifically, consider the following protocol: say the dealer holds a secret s
which lies in a strict subset S of a finite field F (if s lies in some field F

′, this
is easy to achieve by taking a larger field F containing F

′ as a subfield). We
assume players know S. At the beginning of each iteration, with probability β
the dealer generates a random Shamir sharing of s, and with probability 1 − β
the dealer generates a random Shamir sharing of an arbitrary element ŝ ∈ F \S;
we describe how β is chosen below. These shares are distributed to the players.
Note that no player can tell from their share whether the players were given a
share of ŝ or the true secret s.

During an iteration, the players simply broadcast their shares. If in any it-
eration some player does not broadcast his share, the other players all refuse
to participate in all subsequent iterations (and, effectively, the protocol is ter-
minated). Otherwise, all shares were broadcast and the players can reconstruct
some value s′. If s′ ∈ S then the players know that this is the true secret, and
can terminate the protocol successfully. If s′ ∈ F \ S, the players know this is an
invalid secret and proceed to the next iteration.

Theorem 1. For appropriate choice of β, the above protocol constitutes a Nash
equilibrium for t-out-of-n secret sharing that survives iterated deletion of weakly
dominated strategies.

Proof. We first consider the case of t = n = 2, and then discuss how to generalize
the proof for arbitrary t, n. It is not hard to see that the protocol is a Nash
equilibrium for appropriate choice of β: Say P2 acts according to the protocol
and consider whether P1 has any incentive to deviate. Without loss of generality,
consider a deviation in the first iteration. The only possible deviation is for P1
to refuse to broadcast his share. In this case, he learns the secret (while P2 does
not) with probability β, but with probability 1−β he will never learn the secret.

Say P1’s utility is U+ if he learns the secret but P2 does not; U if both players
learn the secret; and U− if neither player learns the secret, where U+ > U > U−.
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If P1 follows the protocol, his expected utility is U . If P1 deviates, his expected
utility is β · U+ + (1 − β) · U−. So as long as

U > β · U+ + (1 − β) · U− ,

it is in P1’s best interest to follow the protocol. For appropriate β ∈ (0, 1),
then, the strategy profile in which both parties follow the protocol is a Nash
equilibrium.

It is immediate that the same analysis holds for general t, n, regardless of the
number of participating players t∗.

We next prove that our protocol survives iterated deletion of weakly domi-
nated strategies by showing that no strategies are weakly dominated. We again
begin with the case t = n = 2. We show that for all deterministic strategies
σ, σ′ of P1, there exist strategies τ, τ ′ of P2 such that U1(σ, τ) > U1(σ′, τ) but
U1(σ, τ ′) < U1(σ′, τ ′). This proves that all deterministic strategies of P1 are in-
comparable, and so none are ever deleted (and thus no randomized strategies
are deleted either).

Let hi(σ, τ) denote the history of actions (by both players) through iteration i
given the indicated strategies σ and τ , with h0(σ, τ) denoting the empty (start-
ing) history. Let Ai(σ, τ) denote the action taken by P1 in iteration i, again for
the indicated strategies. We say a player cooperates in some iteration if they
reveal their share, and defects if they do not.

Now take arbitrary deterministic strategies σ �= σ′ for P1. Let τ0 be a strategy
of P2 and i ≥ 1 be an integer such that

hi−1(σ, τ0) = hi−1(σ′, τ0) (1)

but
Ai(σ, τ0) �= Ai(σ′, τ0); (2)

i.e., iteration i is the first iteration in which the actions of P1 differ. (Note that
some such τ0, i must exist or else σ = σ′.) Without loss of generality, assume
Ai(σ, τ0) is to defect and Ai(σ′, τ0) is to cooperate.

Consider the following strategy τ of P2: (1) act identically to τ0 through
iteration i − 1; (2) in iteration i, defect; (3) in all subsequent iterations: if P1
defected in iteration i, then cooperate; if P1 cooperated in iteration i, defect.
Since Ai(σ, τ) = Ai(σ, τ0) = “defect,” it is fairly immediate that U1(σ, τ) >
U1(σ′, τ).

Next consider the following strategy τ ′: (1) act identically to τ0 through it-
eration i − 1; (2) in iteration i, cooperate; (3) in all subsequent iterations: if P1
defected in iteration i, then defect; if P1 cooperated in iteration i, cooperate.
Exactly as when we argued earlier that our protocol was a Nash equilibrium, we
have U1(σ, τ ′) < U1(σ′, τ ′).

The same argument extends to the case of general t, n, regardless of the num-
ber of participating players t∗. We simply replace τ0 with a strategy profile of
n − 1 strategies such that Equations (1) and (2) above are still valid, and then
define τ and τ ′ as above, but modifying the strategies of all other players.
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We remark that when t∗ = t our protocol has no additional Nash equilibrium
which is preferred, by any player, to the prescribed equilibrium.

3.3 Discussion

Our approach has a number of advantages as compared to [7]:

– Most obvious, we circumvent their impossibility result for the case n = 2.
We also show an admissible solution for the 2-out-of-n case.

– Our protocol is (in our opinion) much simpler than the Halpern-Teague
protocol. This is true for all settings of t, n, but is especially true for the
case of n > 3, t ≥ 3 where the Halpern-Teague protocol requires players to
somehow delegate specific roles and select group leaders.

– Our protocol requires only a broadcast channel, in contrast to the Halpern-
Teague protocol which relies on private channels in addition to broadcast.

– At least for the case t∗ = t (which is always the case when t = n), our proto-
col has no “undesirable” Nash equilibria. This is in contrast to the Halpern-
Teague solution for general n, where there is the undesirable equilibrium in
which the three “group leaders” pool the shares they receive from all the
designated players and reconstruct the secret only amongst themselves.

4 Removing the Dealer

A drawback of both our protocol (as described in the previous section) as well
as that of Halpern and Teague is that the dealer must be involved at the be-
ginning of every iteration. It would be much nicer to have a solution that works
exactly like standard secret sharing, where the dealer is involved only once at
the beginning of the protocol.

We sketch here a conceptually simple (though inefficient) way to avoid con-
tinual involvement of the dealer while still ensuring that parties eventually re-
construct the secret with probability 1. Our idea applies both to our protocol
and that of Halpern and Teague, but for simplicity we describe it in the context
of our protocol only. The protocol proceeds as follows:

Setup: To share a secret s, the dealer prepares a valid t-out-of-n Shamir sharing
{si} of s. The dealer also generates a signature σi on each share si with respect
to a publicly-known verification key PK (alternately, PK can simply be sent to
each player). The dealer sends (si, σi) to player Pi.

The protocol: At the beginning of each iteration, the players proceed as follows:

1. The t∗ participating parties run a secure computation protocol [15,6,5] secure
against one malicious player. The protocol computes the following probabilis-
tic functionality:
– Each party inputs the values (si, σi) received from the dealer. The func-

tionality checks that each σi is a valid signature on si (with respect to
the dealer’s public key PK), and aborts if this is not the case.
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– The t∗ ≥ t input shares define a secret s. With probability β, the func-
tionality generates a fresh t-out-of-n Shamir sharing {s′i} of s, and each
player Pi receives output s′i.

– With probability 1 − β, the functionality generates a fresh t-out-of-n
Shamir sharing {s′i} of a bogus secret ŝ ∈ F \ S, and each player Pi

receives output s′i.
2. If cheating is detected in the secure computation protocol above (i.e., the

secure computation protocol is aborted), then parties terminate the overall
protocol without ever reconstructing the secret.

3. Next, parties proceed as in the previous section; specifically, each player Pi

broadcasts the output s′i they received from the secure computation proto-
col.3 If this enables reconstruction of a secret s ∈ S, the protocol terminates
and the true secret has been reconstructed. If some player refused to broad-
cast their output share, then parties terminate the protocol without recon-
structing the secret. In any other case, players erase the {s′i} and proceed to
the next iteration (using (si, σi) as before).

A subtlety (which applies also in the following section) is the question of
whether security of the secure computation protocol used above should hold
information-theoretically or computationally. In the former case, an argument
similar to that used in the previous section shows that — under appropriate
conditions on β — the above protocol is a Nash equilibrium surviving iterated
domination of weakly dominated strategies. To implement such a solution, how-
ever, we need the additional assumption of private channels between the players.

If a computationally-secure protocol is used, one way to proceed is to work
in a concrete setting: that is, assume all players are limited to running for at
most t steps (in some fixed computational model); assume the protocol is secure
(defined appropriately) except with some (small) probability ε against adver-
saries running in time t; and then modify the analysis appropriately. Rigorously
formalizing this is left for future work. See [11] for a slightly different approach.

5 General Secure Function Evaluation

The techniques outlined above generalize to the case of the secure computation
of an arbitrary function f . In this sense, they yield a protocol for a weak notion of
completely fair SFE [9] requiring that (1) all players are rational; and (2) players’
utility functions are such that they all prefer to learn the output. (In contrast,
the work of [9] shows a protocol for completely fair SFE tolerating malicious

3 Actually, to prevent players from broadcasting a modified value for s′
i, it is necessary

to have the functionality authenticate the {s′
i} in some way. There are many ways

to do this. Perhaps the conceptually-simplest solution is to have the dealer also
distribute shares of his secret signing key in a t-out-of-n manner among the players.
Then the functionality can also generate valid dealer signatures on the {s′

i} (the
iteration number should also be signed to prevent replay of an earlier output value).
We omit any further details for simplicity.
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players, but under a stronger assumption on the available communication. See
Section 1.2.) We also assume (as in [7,1,11]) that players prefer that their own
inputs remain private (other than what is leaked by evaluation of f).

To compute the (possibly randomized) single-output function f :

1. Let f ′ be the following (multi-output, randomized) function: on inputs x1,
. . ., xn, compute y ← f(x1, . . . , xn). Then generate a random t-out-of-n
Shamir sharing (s1, . . . , sn) of the result y, and give output si to player Pi.

2. Players run a secure computation protocol for f ′, and obtain outputs s1, . . .,
sn. If this protocol is aborted, all players terminate the entire protocol and
the output is never reconstructed.

3. As in the previous section, players compute a functionality that takes as in-
put4 (s1, . . . , sn) and, with probability β computes a random Shamir sharing
{s′i} of the value y these shares define, and with probability 1 − β computes
a random Shamir sharing {s′i} of some default value not in the range of f .
Each player Pi receives output s′i. If this protocol is aborted, all players
terminate the entire protocol and the output is never reconstructed.

4. Players simultaneously broadcast the s′i and reconstruct the value s′ these
shares define. If some player did not broadcast a (valid) share, then all players
terminate the protocol and do not participate in any future iterations. If s′

is in the range of f then y = s′ is the desired output and the protocol is
done; in any other case, players proceed to the next iteration.

The protocol can be suitably generalized for the case where f outputs a vector
of values, one for each player.

We remark that, as in standard formulations of secure multi-party compu-
tation, players who choose not to follow the protocol may change their “true”
inputs to an arbitrary other value. (I.e., a player Pi with “true” input xi may
cause f(x1, . . . , x

′
i, . . . , xn) to be evaluated for arbitrary x′

i.) For rational play-
ers, this may occur if a player would prefer to change his input value even if a
completely incorruptible third party were to evaluate f based on inputs given
to it by the players. Shoham and Tennenholtz [14] define the class of NCC func-
tions and argue that if f is an NCC function then no rational player has any
incentive to modify their inputs. It seems to us, however, that there are some
subtle problems with the way NCC functions are defined there. We leave further
exploration of this issue for future study.

6 Conclusions

We have provided a new approach to rational secret sharing and secure compu-
tation that improves, in many respects, on an earlier solution of Halpern and
Teague. Our work also offers an alternate approach to the generic (and more
powerful) solutions of [9,8]: our protocols are simpler, and rely on weaker as-
sumptions regarding the communication between players.
4 As before, there is the issue of authenticating the shares s1, . . . , sn provided as input

to this functionality. This can be handled in a similar manner as before.
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Abstract. HMAC is a widely used message authentication code and a
pseudorandom function generator based on cryptographic hash functions
such as MD5 and SHA-1. It has been standardized by ANSI, IETF, ISO
and NIST. HMAC is proved to be secure as long as the compression
function of the underlying hash function is a pseudorandom function. In
this paper we devise two new distinguishers of the structure of HMAC,
called differential and rectangle distinguishers, and use them to discuss
the security of HMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-
1. We show how to distinguish HMAC with reduced or full versions
of these cryptographic hash functions from a random function or from
HMAC with a random function. We also show how to use our differential
distinguisher to devise a forgery attack on HMAC. Our distinguishing
and forgery attacks can also be mounted on NMAC based on HAVAL,
MD4, MD5, SHA-0 and SHA-1.

1 Introduction

HMAC, which was designed by Bellare, Canetti and Krawczyk, is a standard-
ized hash-based MAC algorithm that is widely used as a MAC algorithm and as
a pseudorandom function generator [2]. HMAC takes a message of an arbitrary
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bit-length and hashes it with one secret key. For the same length of the message it
calls the compression function of the underlying hash function additionally three
more times than the iterated hash construction, i.e., the MD construction. For
long messages, its efficiency is thus almost the same as the MD construction. Fur-
thermore, cryptographic hash functions such as MD5 and SHA-1 can be used in
HMAC, which are more efficient in software than block ciphers, and thus HMAC
is typically faster than block cipher based MACs. HMAC is proved to be a pseudo-
random function under the assumption that the compression function of the un-
derlying hash function is a pseudorandom function [1] (note that the security proof
of pseudorandomness provides the MAC security [3]). However, this does not guar-
antee the security of HMAC if it is instantiated with a specific cryptographic hash
function such as MD5 or SHA-1. The recent attacks of Wang et al. [14,15,16,17,18]
and Biham et al. [5,6] have undermined the confidence in the most popular col-
lision resistant hash functions such as MD5 and SHA-1. However, it is widely as-
sumed that these attacks have no impact on the security of MAC algorithms based
on these hash functions such as HMAC since they use a keyed initial value.

This paper is the first work which presents a detailed analysis of distinguish-
ing and forgery attacks on HMAC based on MD5, SHA-1 and other MDx-type
hash functions. Our results allow to quantify to which extent the vulnerabilities
of these hash functions carry over to the HMAC construction. This is achieved by
the introduction of two novel distinguishers of the general structure of HMAC. We
use a message pair which induces a collision in its corresponding MAC pair for de-
signing a differential distinguisher of HMAC and also use a message quartet which
induces two collisions in its corresponding MAC quartet for designing a rectangle
distinguisher of HMAC. With these two distinguishers we discuss the security of
HMAC based on HAVAL [19], MD4 [12], MD5 [13], SHA-0 [20] and SHA-1 [21].

First, we construct new differentials of the full 3-pass HAVAL and reduced MD5
to form rectangle distinguishers of HMAC, and we use them to distinguish HMAC
with the full 3-pass HAVAL and reduced MD5 from HMAC with a random func-
tion. Second, we investigate how effectively the differentials of MD4, SHA-0 and
SHA-1 found by Wang et al. [14,15,16,17,18] and Biham et al. [5,6] are applied to
our differential and rectangle distinguishers in HMAC. After converting their dif-
ferentials into our differential and rectangle distinguishers, we devise distinguish-
ing and forgery attacks on HMAC based on reduced or full versions of MD4, SHA-0
and SHA-1. In particular, we show how to distinguish HMAC with the full SHA-0
and MD4 from HMAC with a random function and present a forgery attack on
HMAC with the full MD4. See for details of the results Table 2 in Sect. 6 (the
function h2 and the probabilities p̂ and q in Table 2 will be defined in the follow-
ing sections). Our distinguishing and forgery attacks can be mounted on NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1 with the same complexity.

2 Description of HMAC

HMAC [2] applies in both its inner and outer parts the iterated MD con-
struction of a hash function H given a compression function h, H(IV, M) =
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h(· · · h(h(IV, M1), M2) · · · , Mn), where IV is a l-bit fixed initial value and M is
an arbitrary-length message which is padded to a multiple of b-bit and divided
into n b-bit blocks M1||M2|| · · · ||Mn (note that the outputs of functions h and
H are l-bit strings).

HMAC(K, M) = H(IV, (K ⊕ opad)||H(IV, (K ⊕ ipad)||M))
= h(h(IV, (K ⊕ opad)), H(h(IV, (K ⊕ ipad)), M)) , (1)

where K is the secret key, opad, ipad are constants and |K⊕opad| = |K⊕ipad| =
b. If HMAC takes a one-block message M , it can be expressed as

HMAC(K, M) = h(h(IV, (K ⊕ opad)), h(h(IV, (K ⊕ ipad)), M)) . (2)

In order to facilitate the description of our analysis of HMAC we denote the four
compression functions h in (2) by h1, h2, h3 and h4, and the four functions in
(1) by h1, H2, h3 and h4. See Fig. 1 for a schematic description of HMAC with
this notation. Note that the outputs of H2 and h2 are padded to a b-bit string
to be inserted into h4.

Fig. 1. A schematic description of HMAC

In practice the function h can be replaced by the compression function of
cryptographic hash functions such as HAVAL [19], MD4 [12], MD5 [13], SHA-0
[20], SHA-1 [21] and so on.

3 Some General Attacks on HMAC

Using the birthday paradox we can induce a general distinguishing attack on
HMAC as follows [11]:

1. Collect 2l/2 randomly chosen messages with a b-bit length, denoted Mi, and
ask for their MAC values, denoted Ci.
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2. Find message pairs Mj and Mk such that Cj = Ck.
3. For each of (Mj , Mk) pairs such that Cj = Ck, ask for a MAC pair of Mj ||P

and Mk||P , where P is some non-empty string. If there is at least one MAC
pair that collides in this step, output the MAC algorithm = HMAC.

This attack requires about 2l/2 messages and works with a probability of 0.63
by the birthday paradox when the MAC algorithm is HMAC (this is due to the
fact that if there exists at least one message pair (Mj , Mk) such that their outputs
of h2 or H2 are same, this attack always works). This attack can also easily be
converted into a general forgery attack on HMAC. Once we get a MAC pair
that collides in Step 3, we again ask for the corresponding MAC of Mj||P ||P ′,
denoted C, where P ′ is some non-empty string. We can then construct a forgery,
i.e., a new message Mk||P ||P ′ with a valid MAC, i.e., C with the same success
rate.

These general attacks make distinguishing and forgery attacks on HMAC
which require more than 2l/2 message queries have not much advantage. We
thus consider attacks of distinguishing HMAC from a random function, and
forgery attacks on HMAC which work with a data complexity of less than 2l/2

messages. In addition to these two kinds of attacks, we also consider attacks
of distinguishing instantiated HMAC (by existing hash functions) from HMAC
with a random function. In these attacks it does not matter whether or not
they require more than 2l/2 message queries, since there does not exist a gen-
eral attack based on the birthday paradox which can distinguish HMAC with
existing hash functions from HMAC with a random function. For the clarifica-
tion we denote the first and second distinguishing attacks by distinguishing-R
and distinguishing-H attacks, respectively. The distinguishing-R attack is useful
when the cryptanalyst wants to check whether output strings are produced from
HMAC (in this case, the cryptanalyst does not know whether the output pro-
ducing algorithm is HMAC), while the distinguishing-H attack is useful when
the cryptanalyst wants to check which cryptographic hash function is embedded
in HMAC (in this case, the cryptanalyst somehow already knew that the output
producing algorithm is HMAC, for instance, by the distinguishing-R attack, but
does not know the underlying hash function in HMAC).

4 Distinguishers of HMAC

In this section we present two distinguishers of the general structure of HMAC,
which can lead to distinguishing or forgery attacks if HMAC is instantiated
with some cryptographic hash function with a low difference propagation. These
two distinguishers, called differential and rectangle distinguishers, are both built
based on internal collisions. We focus on HMAC with one-block messages, which
is the main target in our attacks.

4.1 Differential Distinguisher of HMAC

By using MAC collisions we construct a differential distinguisher of HMAC. It
works as follows:
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– Choose a message Mi at random and compute another message M ′
i = Mi⊕α,

where Mi has the same length as α (�= 0).
– With a chosen message attack, obtain the MAC values Ci = HMAC(K, Mi)

and C′
i = HMAC(K, M ′

i).
– Check if Ci ⊕ C′

i = 0.

Assuming that the values h1(IV, K⊕ipad) are uniformly distributed for a given
key K, the last test holds with a probability1 of approximately q, where q =
PrX,I [h2(I, X)⊕ h2(I, X ⊕ α) = 0]. On the other hand, for a random function or
HMAC with a random function2, the last test holds with a probability of approx-
imately 2−l. Hence, we have the following differential distinguisher of HMAC.

Proposition 1. [A Differential Distinguisher of HMAC] Assume that the out-
put values of the function h1 are distributed uniformly at random. Then HMAC
can be distinguished from a random function and from HMAC with a random
function if q > 2−l, where q = PrX,I [h2(I, X) ⊕ h2(I, X ⊕ α) = 0].

In order for this differential distinguisher to be used in distinguishing-R and
forgery attacks, the probability q should be larger than 2−l/2, which makes pos-
sible for those attacks to work with less than 2l/2 message queries (details are
described in Sect. 6).

4.2 Rectangle Distinguisher of HMAC

The rectangle distinguisher of HMAC can be built by the rectangle attack which
is widely used in analyzing block ciphers [4]. In block ciphers the rectangle attack
can be mounted based on their bijectivity. However, in MACs it can exploit
the non-bijectivity, i.e., two different messages may correspond to a same MAC
value or a same intermediate value (an internal collision). We use this non-
bijective property to devise our rectangle distinguisher of HMAC. Our rectangle
distinguisher of HMAC works as follows (refer to Fig. 2):

– Choose two messages Mi and Mj at random and compute two other messages
M ′

i = Mi ⊕ α and M ′
j = Mj ⊕ α, where Mi and Mj both have the same

length as α (�= 0).
– With a chosen message attack, obtain the MAC values Ci = HMAC(K, Mi),

C′
i = HMAC(K, M ′

i), Cj = HMAC(K, Mj) and C′
j = HMAC(K, M ′

j).
– Check if Ci ⊕ Cj = C′

i ⊕ C′
j = 0 or Ci ⊕ C′

j = C′
i ⊕ Cj = 0.

We denote by Xi, X ′
i, Xj and X ′

j the outputs of h2 ◦ h1 for the messages
Mi, M ′

i , Mj and M ′
j, respectively (see Fig. 2). Note that in Fig. 2 K ⊕ ipad

and K ⊕ opad are inserted into the message parts of the functions h1 and h3,
1 In fact, the last test holds with a probability of approximately q + (1 − q) · 2−l.

Because even if the Mi and M ′
i do not cause a collision after the function h2, their

MAC values can still have a same value. However, in the computation of a probability
for our differential distinguisher we do not consider this case.

2 From [1] we know that HMAC with a random function behaves like a random func-
tion.
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Fig. 2. A Rectangle Distinguisher of HMAC (Mi ⊕ M ′
i = Mj ⊕ M ′

j = α)

respectively. In order to compute the probability to satisfy the last test we should
consider the following probabilities: p = PrX,I [h2(I, X)⊕h2(I, X ⊕α) = β] and

p̂ =
√∑

β(p2).

Assuming that the values h1(IV, K ⊕ ipad) are uniformly distributed for a
given key K, we get Xi ⊕ X ′

i = Xj ⊕ X ′
j = β with probability p2. Since the

function h2 is not a permutation (here, the domain of h2 is the message space
and its co-domain is the space of hash values), we expect Xi ⊕ Xj = 0 with
probability 2−l under the assumption that the output values of h2 are distributed
uniformly at random. Once we get Xi ⊕ X ′

i = Xj ⊕ X ′
j = β and Xi ⊕ Xj = 0,

we have the following equation:

X ′
i ⊕ X ′

j = (Xi ⊕ β) ⊕ (Xj ⊕ β) = Xi ⊕ Xj = 0

These equations allow us to get Ci ⊕Cj = C′
i ⊕C′

j = 0 and thus the probability3

of satisfying Ci ⊕ Cj = C′
i ⊕ C′

j = 0 is approximately

3 Note that the probability of satisfying Ci ⊕ Cj = C′
i ⊕ C′

j = 0 is slightly larger
than p̂2 · 2−l. Because even if the Xi and Xj (or the X ′

i and X ′
j) are not the same,

still there is a chance to have Ci ⊕ Cj = C′
i ⊕ C′

j = 0. However, we believe that
a simplified analysis is sufficient for the computation of the probability for our
rectangle distinguisher.
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∑
β

p2 · 2−l = p̂2 · 2−l .

Similarly, we get Xi ⊕ X ′
j = 0 with a probability of 2−l and thus Ci ⊕ C′

j =
C′

i ⊕ Cj = 0 holds with the same probability p̂2 · 2−l.
On the other hand, for a random function or HMAC with a random function,

Ci ⊕ Cj = C′
i ⊕ C′

j = 0 and Ci ⊕ C′
j = C′

i ⊕ Cj = 0 hold with a probability
of approximately 2−2l, respectively, since each requires a 2l-bit restriction to be
satisfied. Hence, we have the following rectangle distinguisher of HMAC.

Proposition 2. [A Rectangle Distinguisher of HMAC] Assume that the output
values of the functions h1 and H2 are distributed uniformly at random. Then
HMAC can be distinguished from a random function and from HMAC with a
random function if p̂2 · 2−l > 2−2l, i.e., p̂ > 2−l/2, where p̂ =

√∑
β(p2) and

p = PrX,I [h2(I, X) ⊕ h2(I, X ⊕ α) = β].

Our rectangle distinguisher cannot be used in distinguishing-R and forgery at-
tacks, since its required data complexity is always larger than 2l/2 messages
(details are described in Sect. 6). This is due to the fact that the rectangle
probability is always less than or equal to 2−l.

Unlike the differential distinguisher of HMAC, the rectangle distinguisher uses
a number of differentials without any restriction for output differences, while its
requirement to work is more expensive than that of the differential distinguisher,
i.e., it uses probability 2−l/2 instead of 2−l for its comparison. If it is easy to get
some nonzero output difference from the compression function of the underlying
hash function, but it is difficult to get a zero output difference, i.e., a collision,
then this rectangle distinguisher would be useful.

The success of our two distinguishers for HMAC depends significantly on the
strength of h2, which means the distinguishers do not depend strongly on the
properties of h1, h3 and h4. Even if h1, h3 and h4 employs cryptographically
strong compression functions (even iterated hash functions), our distinguishers
can still work if h2 has a low difference propagation.

5 Differentials on HAVAL, MD4, MD5, SHA-0, SHA-1

First, we check how many rounds of the compression functions of HAVAL, MD4,
MD5, SHA-0 and SHA-1 can be used for h2 in our rectangle distinguisher, i.e.,
we investigate for how many rounds of each compression function p̂ > 2−l/2

holds. Second, we present differential distinguishers of MD4, SHA-0 and SHA-1
with probabilities q such that q > 2−l or q > 2−l/2. Here, we do not take into
account multi-block differentials, for they are inferior to one-block differentials
in HMAC. See the full version of this paper [9] for more details of multi-block
differentials.
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5.1 Differentials for Rectangle Distinguishers

In order to compute the number of rounds for each compression function such
that p̂ > 2−l/2, we investigate a differential with probability p from which the
probability p̂ can be estimated. We first consider the compression function of
3-pass HAVAL.

In the compression function of HAVAL we insert a one-bit difference to two
message words to produce a collision after the first pass with a high probability.
This enables us to get probability-one differentials through many rounds in the
first and second passes. In more detail, if we denote by r1, r2, r3, r4, r5 and
r6 the round numbers involved in two such message words in the three passes
where r1 < r2 < · · · < r6, we can construct a 96-round differential with the
following probability: for the rounds 0 ∼ r1 probability 1, for each of the rounds
(r1 + 1) ∼ r2 probability 2−1, for the rounds (r2 + 1) ∼ (r3 − 1) probabil-
ity 1, for each of the rounds r3 ∼ r4 probability 2−1, for each of the rounds
(r4 + 1) ∼ (r5 − 1) probability 2−2, for each of the rounds r5 ∼ r6 probability
2−3 and for each of the rounds (r6 +1) ∼ 95 probability 2−4 (this can be done by
the computation of differential probabilities derived from the differential distri-
butions of Boolean functions and the use of both XOR and modular additions).
These probabilities may be slightly different according to in which message word
between the two a difference 0x80000000 is given. But the total probability is
the same: 2−(r2−r1+r4−r3+1+2(r5−r4−1)+3(r6−r5+1)+4(95−r6)).

As a result of an exhaustive search4, inserting a one-bit difference to the
third and eleventh message words provides the best probability p = 2−102. See
Table 1 for more details. In Table 1 ei represents a 32-bit word that has 0′s in
all bit positions except for bit i and ei1,···,ik

represents ei1 ⊕ · · · ⊕ eik
(in our

notation the leftmost bit is referred to as the 31-th bit, i.e., the most significant
bit). Note that we use the XOR difference as the measure of difference and in
the computation of the probability p in Table 1 the modular additions of the
unknown initial value and the last output value are considered. In our analysis
we take into account the probability that the last output difference is preserved
through the final modular additions.

In order to calculate p̂ we should sum the square of the probability of all
differentials with message difference α. However, it is computationally infeasible
and thus we have carried out experiments on the last three rounds (rounds 93 ∼
95) to estimate a lower bound for p̂ (our simulation is based on the assumption
that chosen message pairs follow the first 93-round differential in Table 1). For
this work, we have randomly chosen a number of IV s with 228 message pairs
Mi, M∗

i and 228 input pairs of round 93 Ii, I∗i each and computed M
′

i = Mi⊕α,
M∗′

i = M∗
i ⊕α and I

′

i = Ii⊕δ and I∗
′

i = I∗i ⊕δ, where α is the message difference
and δ is the input difference of round 93 in Table 1. We have then encrypted
through rounds 93 ∼ 95 Ii, I

′

i , I∗i and I∗
′

i with Mi, M
′

i , M∗
i and M∗′

i to obtain
outputs Oi, O

′

i, O∗
i and O∗′

i . Finally, we have checked if (Oi +IV )⊕(O
′

i +IV ) =

4 The exhaustive search has experimentally been done by considering all possible
r1, r2, r3, r4, r5 and r6 which can produce a collision after the first pass.
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Table 1. A Differential of HAVAL
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(O∗
i + IV ) ⊕ (O∗′

i + IV ). In our experiments we have observed that the number
of such quartets was ranging 320 ∼ 2130 for each IV . This simulation result
suggests that the square of the probability p̂ for rounds 93 ∼ 95 is approximately
2−18.2 and thus we can estimate the probability p̂ ≈ 2−9.1 · 2−90 = 2−99.1 since
the differential probability for rounds 0 ∼ 92 in Table 1 is 2−90. Furthermore, we
can extend this differential up to 101 rounds such that p̂ > 2−128. See Table 1
for this extension. We have also performed a series of simulations on the last two
rounds and from the simulation result we can estimate p̂ ≈ 2−124.4 for rounds
0 ∼ 101.

Similarly, we have investigated differentials on the compression function of
MD5 with high probabilities by inserting a one-bit difference in two or three
message words to produce a collision after the first pass. As a result, we can
construct a 33-round differential on MD5 with probability 2−69, which can be
used to construct differentials with probability p̂. See [9] for details of our reduced
MD5 differential. Our investigations on HAVAL and MD5 have started from the
assumption that low-weight differentials work out best when we can not use
neutral bits and message modifications. However, still there is a possibility that
HAVAL and MD5 have stronger differentials which can be derived by other
methods.

For MD4, SHA-0 and SHA-1, we have used the previous differentials in our
distinguishers, i.e., a 48-round differential on MD4 with probability 2−56 in [18],
a 65-round differential on SHA-0 with probability 2−78 in [5,6] and a 43-round
differential on SHA-1 with probability 2−80 in [6]. The 43-round differential on
SHA-1 is an extended one for the 34-round differential described in [6], and the
computations of differential probabilities on SHA-0 and SHA-1 are recomputed5.
See [9] for the recomputed differentials of SHA-0 and SHA-1. We have also carried
out the same experiments on the last few rounds to estimate each p̂ and from
our simulations we can estimate p̂ ≈ 2−56, 2−60.6, 2−78 and 2−73.4 for 48-round
MD4, 33-round MD5, 65-round SHA-0 and 43-round SHA-1, respectively.

5.2 Differentials for Differential Distinguishers

As stated above, our differential distinguisher works based on a differential which
causes a zero difference, i.e., a collision, after the function h2. We use the forego-
ing differentials or the previously known differentials on MD4, SHA-0 and SHA-1
in our distinguishing and forgery attacks:

– For SHA-0, the 65-round differential with probability 2−78 of Table 5 in [9]
can be extended into a 82-round differential with probability 2−98 (≈ q),
which causes a collision (this extended differential has appeared in [5], but
the differential probability is lower than that in [5] since we cannot use
neutral bits.)

5 The main difference of the computations of differential probabilities between [5,6]
and this paper is the use of neutral bits. In the SHA-0 and SHA-1 initial values are
known, which enables us to use neutral bits on message pairs to improve differential
probabilities. However, in our analysis of HMAC initial values are determined by a
secret key K, which implies they are unknown.
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– For SHA-1, the first 34-round differential with probability 2−52 of Table 6
in [9] can be used as our differential distinguisher.

– For the full MD4, there exists a differential with probability 2−56 (≈ q),
which causes a zero output difference from an unknown initial value [18].

– For the full SHA-0, there exists a differential with probability 2−107 (≈ q),
which causes a zero output difference from an unknown initial value [15,17].

6 Distinguishing and Forgery Attacks on HMAC

We use the probabilities p̂ and q to show two distinguishing and a forgery attacks
on the HMAC construction, and apply these attacks to HMAC based on HAVAL,
MD4, MD5, SHA-0 and SHA-1.

Our first distinguishing attack on HMAC using p̂ and a rectangle distinguisher
is described as follows:

1. Collect 2(l+1)/2 · p̂−1 message pairs (Mi, M
′
i) with difference α, where all the

Mi and M ′
i have the same bit-length t.

2. With a chosen message attack scenario, ask for MAC pairs of all the (Mi, M
′
i).

We denote the corresponding MAC pairs by (Ci, C
′
i). (We assume that the

MAC algorithm is either an instantiated HMAC or a random function (or
HMAC with a random function) which maps from t bits to l bits.)

3. Check if Ci ⊕Cj = C′
i ⊕C′

j = 0 or Ci⊕C′
j = C′

i ⊕Cj = 0 for all i, j such that
1 ≤ i < j ≤ 2(l+1)/2 · p̂−1. If there is at least one MAC quartet that satisfies
this test, output the MAC algorithm = HMAC, otherwise, output the MAC
algorithm = a random function (or HMAC with a random function).

The data complexity of this attack is 21+((l+1)/2) · p̂−1 chosen messages and
this attack requires a memory of 21+(l+1)/2 · p̂−1 l-bit blocks for storing all the
MAC values. The time complexity of this attack is dominated by Step 1 (the
data collection time) and Step 3, which seeks colliding MAC quartets. Since it
can be done efficiently by sorting the MAC pairs (Ci, C

′
i)’s by Ci’s, the time

complexity of this attack is thus a fraction of the time required to compute the
MAC values for the chosen messages (Step 1).

We now analyze the success rate of this attack. In Step 1 the 2(l+1)/2 · p̂−1

message pairs form 2l · p̂−2 message quartets ((Mi, M
′
i),(Mj , M

′
j)) corresponding

to MAC quartets ((Ci, C
′
i),(Cj , C

′
j)) for 1 ≤ i < j ≤ 2(l+1)/2 · p̂−1. Since for

HMAC Ci ⊕Cj = C′
i ⊕C′

j = 0 holds with a probability of 2−l · p̂2, and Ci ⊕C′
j =

C′
i ⊕ Cj = 0 also holds with the same probability (this probability has been

computed in Sect. 4), the expected number of MAC quartets satisfying the last
test is 2 (= (2l · p̂−2) · (2−l · p̂2) + (2l · p̂−2) · (2−l · p̂2)). On the other hand, for
a random function (or HMAC with a random function), Ci ⊕ Cj = C′

i ⊕ C′
j = 0

holds with a probability of 2−2l, and Ci ⊕ C′
j = C′

i ⊕ Cj = 0 also holds with the
same probability and thus the expectation of satisfying the test is 2−l+1 ·(p̂−2)(=
2−2l · (2l · p̂−2) + 2−2l · (2l · p̂−2)). Hence, the success rate of this attack is

1 − (1 − 2−l · p̂2)2
l+1·p̂−2

2
+

(1 − 2−2l)2
l+1·p̂−2

2
≈ 1 − e−2

2
+

e−2−l+1·p̂−2

2
.
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Table 2. Distinguishing and forgery attacks on HMAC with HAVAL, MD4, MD5,
SHA-0 and SHA-1

Hash Type of Type of h2 Probability of Data Success
Function Distinguisher Attack #R Distinguisher Complexity Rate

3-pass HAVAL R† Distinguishing 96 p̂ = 2−99.1 2228.6 0.93
(96 rounds)

4-pass HAVAL R Distinguishing 102 p̂ = 2−124.4 2253.9 0.93
(128 rounds)

MD4 R† Distinguishing 48 p̂ = 2−56 2121.5 0.93
(48 rounds) D† Forgery 48 q = 2−56 258 0.93

MD5 R Distinguishing 33 p̂ = 2−60.6 2126.1 0.92
(64 rounds)

SHA-0 R Distinguishing 65 p̂ = 2−78 2159.5 0.87
D† Distinguishing 82 q = 2−98 2100 0.93
D† Distinguishing 80 q = 2−107 2109 0.93
D Forgery 54 q = 2−61 263 0.93

(80 rounds) D Forgery 65 q = 2−78 280 0.93

SHA-1 R Distinguishing 43 p̂ = 2−73.4 2154.9 0.93
(80 rounds) D Forgery 34 q = 2−51 253 0.93

†: the attacks can work on HMAC based on full-round (or extended-round) hash functions.
R: Rectangle, D: Differential, #R: the number of rounds
Data complexity is the amount of chosen messages
In the rectangle attacks, memory complexity is the same as data complexity
Distinguishing attack is to distinguish instantiated HMAC from HMAC with a random function

Here, the first term is approximately 0.43. Our second distinguishing attack
on HMAC using q and a differential distinguisher is described as follows:

1. Collect 2 · q−1 message pairs (Mi, M
′
i) with difference α, where all the Mi

and M ′
i have the same bit-length t.

2. With a chosen message attack scenario, ask for MAC pairs of all the (Mi, M
′
i).

We denote the corresponding MAC pairs by (Ci, C
′
i). We assume that the

MAC algorithm is either an instantiated HMAC or a random function (or
HMAC with a random function) which maps t bits to l bits.

3. Check if Ci ⊕C′
i = 0. If there is at least one MAC pair that satisfies this test,

output the MAC algorithm = HMAC, otherwise, output the MAC algorithm
= a random function (or HMAC with a random function).

The data complexity of this attack is 22 · q−1 chosen messages and this attack
does not require any storage, and the time complexity of this attack itself is a
fraction of the time required to compute the MAC values for the chosen messages.
Similarly, the success rate of this attack is computed as follows:

1 − (1 − q)2·q
−1

2
+

(1 − 2−l)2·q
−1

2
≈ 1 − e−2

2
+

e−2−l+1·q−1

2
.

Finally, our forgery attack on HMAC using q and a differential distinguisher
is described as follows:



254 J. Kim et al.

1. Run Step 1 in the second distinguishing attack.
2. Run Step 2 in the second distinguishing attack, but we assume that the

MAC algorithm is an instantiated HMAC.
3. Check if Ci ⊕ C′

i = 0 and ask for the MAC pair of Mi||P and M ′
i ||P , where

Mi and M ′
i have a same MAC value and P is some non-empty string. If

the obtained MAC pair collides, again ask for the MAC value of Mi||P ||P ′,
where P ′ is some non-empty string. We denote this obtained MAC value by
C. Output C as the MAC value of M ′

i ||P ||P ′. Otherwise, restart this step
until we check all MAC pairs (Ci, C

′
i).

It is easy to see that this forgery attack works with (almost) the same data
complexity and the same success rate as our second distinguishing attack.

We can easily apply these three attacks to HMAC based on HAVAL, MD4,
MD5, SHA-0 and SHA-1 by using their probabilities p̂ and q. Table 2 shows the
results of distinguishing and forgery attacks on those instantiations of HMAC6.
In Table 2 forgery attacks also imply distinguishing-R and distinguishing-H
attacks.

Note: Our distinguishing and forgery attacks are also applicable to HMAC
in which the four components h1, h2, h3, h4 are instantiated with different
compression functions (see for example the pseudorandom functions of SSL 3.0).
For example, if HMAC employs full-round MD-5, full-round MD-4, full-round
MD5 and full-round MD5 for h1, h2, h3 and h4, respectively, it can be forged
with a data complexity of 258 chosen messages. This is due to the fact that our
distinguishing and forgery attacks depend only on the function h2. Furthermore,
the distinguishing and forgery attacks in Table 2 also work on NMAC based on
HAVAL, MD4, MD5, SHA-0 and SHA-1.

7 Conclusions

We have presented differential and rectangle distinguishers on HMAC, which are
derived from its structural property. They allow to present distinguishing and
forgery attacks on HMAC that can be mounted when HMAC employs hash func-
tions with slow difference propagations. With these distinguishing and forgery at-
tacks we have shown that HMAC with the full versions of 3-pass HAVAL and SHA-
0 can be distinguished from HMAC with a random function, and HMAC with the
full version of MD4 can be forged. These distinguishing and forgery attacks have
also been applied to HMAC based on reduced versions of MD5 and SHA-1. We
have also shown that our distinguishing and forgery attacks can be mounted on
NMAC (which is a generalized version of HMAC) with the same complexity. Fur-
thermore, we have shown that our differential and rectangle distinguishers can
lead to second-preimage attacks on HMAC and NMAC. All these attacks do not
6 These attacks are mounted under the assumption that the output values of the

functions h1 and h2 distribute uniformly over all possible values when K and Mi

are chosen uniformly at random (differential distinguishers are independent of the
distributions of the output values of the functions h2 and H2).
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contradict the security proof of HMAC, but they improve our understanding of
the security of HMAC based on existing cryptographic hash functions.

Our differential distinguisher on HMAC works only if the underlying hash
function has a differential with a zero output difference with probability larger
than 2−|hash value|. Our rectangle distinguisher on HMAC works only if the
underlying hash function has differentials such that the sum of the square of their
probabilities is larger than 2−|hash value|. Unlike the previous attacks on hash
functions, our analysis on the hash function embedded in HMAC should be done
under an unknown fixed initial value (which is determined by a secret key). This
fact makes difficult to use the recently proposed message modification technique
(Wang et al.’s attacks) and neutral-bit technique (Biham et al.’s attacks) in
analyzing HMAC based on specific cryptographic hash functions. However, it is
interesting to investigate if their methods can be applied to HMAC with some
new other techniques when HMAC is instantiated with a specific cryptographic
hash function. We expect that the method developed in this paper would be
useful for the further analysis of HMAC.
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Abstract. This paper presents a new type of distinguisher for the shrink-
ing generator and the alternating-step generator with known feedback
polynomial and for the multiplexor generator. For the former the distin-
guisher is more efficient than existing ones and for the latter it results in
a complete breakdown of security. The distinguisher is conceptually very
simple and lends itself to theoretical analysis leading to reliable predic-
tions of its probability of success.

1 Introduction

In this paper we present efficient distinguishers for a class of stream ciphers. This
class can be characterized as irregularly sampled linear feedback shift registers
(LFSR). These stream ciphers have the following in common:

– A set of source registers, each of which generates a source sequence.
– The source sequences are sampled in an irregular fashion to form an out-

put sequence. In most cases, the sampling is governed by an independent
sequence generator, typically just another LFSR. The latter is called the
sampling sequence or sampling LFSR.

Examples of this type of stream ciphers are the shrinking generator [2,17], the
alternating-step generator [12,17] and some variants of the multiplexor generator
[13,17]. The bits in an LFSR source sequence satisfy a linear recurrence that can
be very easily detected. Clearly, as each bit in the output sequence corresponds
to a bit in a source sequence, the bits in the output sequence may also satisfy a
linear recurrence. The irregularity of the sampling process is supposed to make
this hard to exploit. This paper now presents distinguishers for the shrinking
and alternating-step generators exploiting all remainders of linear recurrence
in the output sequence. To build such a distinguisher requires knowledge of
the feedback polynomial of the source sequence, i.e., the generator has fixed
connections. It also presents very powerful distinguishers for the multiplexor
generator exploiting the weakness that a single bit in the source stream may
appear multiple times in the output stream. We call the distinguishers presented
in this paper convolutional filters as they make use of convolution as their main
operation.
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Correlation attacks on the shrinking generator were already described in [4],
analyzed in [18] and later improved in [14]. Detectable statistical weaknesses in
the output stream were shown in [5] and [6] if the feedback polynomial has very
low weight or moderate degree. More recent work includes another correlation
analysis of the shrinking generator in [8] and of the alternating-step generator in
[9] and [11]. A draft paper [10] saw the light describing a statistical distinguisher
for the shrinking generator.

The work that lead to this paper was triggered by an efficient attack on the
shrinking generator described in [3] and can be considered as an improvement
and extension of the latter. It improves the attacks in [3] in that convolutional
filters require less output stream for the same probability of success. As op-
posed to the distinguisher proposed in [3], convolutional filters are conceptually
very simple: they return a real number and require no decision rules (hard or
soft) in the computation thereof. As such, they require no parameter trade-offs
or fine-tuning, their probability of success is easy to compute analytically and
there is no discrepancy between the theory and the simulation results. Finally,
while [3] describe attacks for the shrinking generator only, this paper presents
distinguishers for the shrinking generator, the alternating-step generator and
the multiplexor generator. In the rest of this paper we first provide a number of
definitions, then the distinguishers for the shrinking and alternating-step gener-
ators, the distinguishers for multiplexor generators and finally a description of
our simulation results.

2 Definitions

2.1 Sequences

We denote sequences by lowercase letters such as a and b and their individual
components with notation at and bt, where the indices start from 1. We define
the product of two sequences c = a × b as the sequence with ct = atbt and the
convolution of a sequence a with a function f , c = a ⊗ f as the sequence with
ct =

∑
i f(i)at−i. sequences

2.2 Linear Feedback Shift Registers

Linear feedback shift registers (LFSR) come in two types. In the Fibonacci con-
figuration the feedback is from a number of stages to the first stage while in a
Galois configuration, the feedback is from the last stages to a number of stages.
Both configurations are governed by a feedback polynomial that determines the
positions of the stages involved in the feedback. The output bits of a linear
feedback shift register (LFSR) satisfy a recurrence relation determined by its
feedback polynomial:

ai ⊕ ai−G1 ⊕ ai−G2 ⊕ · · · ⊕ ai−Gw−1 = 0. (1)

We call w the weight of the feedback polynomial and define the w − 1 gaps
as g1 = G1, g2 = G2 − G1, . . . , gw−1 = Gw−1 − Gw−2. The output bits of an
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LFSR satisfy many recurrence relations, one for every multiple of the feedback
polynomial. For some distinguishers, the efficiency tends to decrease with the
weight of the polynomial and it is advantageous to find multiples of the feedback
polynomial with low weight. Techniques for doing so are described in [1,7,15,20].

2.3 Index Maps

We define the index map S(j) associated with a (sampling) sequence s as:

S(j) = min{k|
k∑

i=1

si = j}, (2)

where the bits si are interpreted as integers 0 and 1. Having S(j) = k requires
that sk = 1 and that the interval [s1 . . . sk−1] contains j−1 ones. Clearly, S(j) is
an increasing function. Given a random binary sequence s, S(j) is a stochastic
variable with probability distribution:

Pr[S(j) = k] = 2−k

(
k − 1
j − 1

)

if k ≥ j and 0 otherwise. (3)

More generally, having S(j+h)−S(j)=g requires the interval [sS(j) . . . sS(j)+g−1]
to contain h − 1 ones and sS(j+h) = 1:

Pr[S(j + h) − S(j) = g] = 2−g

(
g − 1
h − 1

)

if g ≥ h and 0 otherwise. (4)

We denote Pr[S(j + h) − S(j) = g] by S(g, h) as it is independent of j. This
function satisfies:

∞∑

g=h

S(g, h) = 1 and
g∑

h=1

S(g, h) = 1/2. (5)

For a given g, S(g, h) has a maximum in h = (g + 1)/2 for g odd and in h =
(g + 1 ± 1)/2 for g even. We denote the mean value of a stochastic variable x
by 〈x〉 and its variance by σ2. Unless g is very small or h is very far from g/2,
S(g, h) is closely approximated by a (scaled) normal distribution:

S(g, h) ≈ 1
2

1
σ
√

2π
e

−(h−〈h〉)2

2σ2 , (6)

with 〈h〉 = (g + 1)/2 and σ2 = (g − 1)/4. For a given h, the shape of S(g, h) is
slightly skewed with respect to a normal distribution. It reaches its maximum
value in both g = 2h − 2 and g = 2h − 1 and has 〈g〉 = 2h and σ2 = 2h.

2.4 The Shrinking Generator

A shrinking generator (SG) is a stream cipher with a single source LFSR and a
sampling LFSR. During an iteration both registers are clocked. If the sampling
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bit is 1, the source bit is presented at the output of the generator. Otherwise,
no output bit is generated. On the average the SG requires two iterations per
bit generated. Its output bits satisfy:

zi = aS(i), (7)

with a the source sequence and S(i) the index map of the sampling sequence.

2.5 The Alternating-Step Generator

An alternating-step generator (ASG) is a stream cipher with two source LF-
SRs generating sequences a and b and a sampling LFSR generating sequence
s. During an iteration the sampling LFSR and only one of the two source LF-
SRs is clocked. Which one of the two source LFSRs is clocked depends on the
output bit of the sampling LFSR. The output bit y of the ASG is the XOR
of the two output bits of the source LFSR. The difference of two subsequent
output bits zt = yt ⊕ yt−1 of an ASG is either the XOR of two output bits
ai ⊕ ai−1 of one source LFSR or bj ⊕ bj−1 of the other source LFSR. Note
that if a sequence a satisfies a recurrence relation, this is also the case for a
sequence c with ci = ai⊕ai−1. In the following, we will deal with the sequences z,
c and d and not the sequences y, a and b. The bits of c map to bits in
z by

ci = zS(i). (8)

The bits of d with di = bi ⊕ bi−1 map to bits in z in a similar way:

di = zS′(i), with S′(i) = min{k|
k∑

j=1

(1 − sj) = i}. (9)

2.6 Multiplexor Generators

We consider multiplexor generators with a single source LFSR and a single
sampling LFSR. During an iteration both registers are clocked. A multiplexor
taking as input a number n of stages in the sampling LFSR selects a stage in
the source LFSR whose contents is presented as output bit. The input to the
multiplexor can be modeled as a sampling sequence S of integers in the range
[0, 2n − 1] and the stages selected as a function of St as an array M with 2n

stage positions. We call M the selection position table.
If the source LFSR has a Fibonacci configuration, the multiplexor generator

can be modeled as a binary source sequence a sampled by a sampling sequence
S in the following way:

zt = at+M [St] . (10)

If the source LFSR has a Galois configuration, this model does not apply.
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3 A Basic Distinguisher for SG and ASG

If we select a number w output bits, they may correspond to w source bits
that satisfy the recurrence relation. We denote the selected output bits by
zt, zt−H1 , zt−H2 , . . . , zt−Hw−1 and the gaps of this selection as H = (h1, h2, . . . ,
hw−1). Given H and the gaps G = (g1, g2, . . . , gw−1) of the recurrence rela-
tion, we can compute the probability that the selected output bits correspond to
source bits that satisfy the recurrence relation. This probability is independent
of t and only depends on G and H . We denote it by P (G|H). Given a sequence
z, we define xt as:

xt = (−1)zt⊕zt+H1⊕···⊕zt+Hw−1 . (11)

Using the convention z̄i = (−1)zi , this becomes xt = z̄tz̄t+H1 · · · z̄t+Hw−1 . We can
model the probability distribution of xt as the combination of two distributions:

– If the output bits correspond to source bits that satisfy the linear recurrence,
the distribution of xt has a peak equal to 1 at 1. For an SG or ASG, this
happens with probability P (G|H).

– Otherwise, the distribution of xt has equal peaks of value 1/2 both at posi-
tions 1 and −1. For an SG or ASG, this happens with probability 1−P (G|H).

Hence, for an SG or ASG, xt has a distribution with mean 〈xt〉 = P (G|H) and
variance is 1−P (G|H)2 ≈ 1. For a truly random sequence z, xt has mean 0 and
variance 1.

The basic distinguisher now consists of the following. Given a stream z, com-
pute xt for a large range of t values and take the average value X:

X =
1
L

L∑

t=1

xt. (12)

If we consider the different xt as independent, X is the average of a large number
of independent stochastic variables all with variance 1 and so has a normal
distribution with standard deviation 1/

√
L. If z is the output of an SG or ASG,

〈X〉 = P (G|H) and if z is a random sequence 〈X〉 = 0.
If X > P (G|H)/2 we decide z is the output of an SG (or ASG). If L =

P (G|H)−2, the probability of error is about 31%. To obtain a probability of
error below 1%, we must take L ≈ 22P (G|H)−2. For a given probability of
success, the amount P (G|H)−2 determines the length of the output sequence
required with a given distinguisher. We denote P (G|H)−2 by Ld.

3.1 The Shrinking Generator

The probability that a gap h in the output sequence maps to a gap g in the
input sequence is given by Pr[S(j + h) − S(j) = g] = S(g, h). The w − 1 gaps of
H are mapped to w − 1 gaps in G in an independent way. Therefore it follows
that:

Ps(G|H) =
w−1∏

i=1

S(gi, hi). (13)
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Choosing the gaps hi = (gi + 1)/2 such that Ps(G|H) is maximized and using
the Gaussian approximation yields:

Ps(G|H) ≈
w−1∏

i=1

1
√

2π(gi − 1)
and Ld = (2π)w−1

w−1∏

i=1

(gi − 1). (14)

3.2 The Alternating-Step Generator

The probability that a gap h in the output sequence maps to a gap g in the
source sequences c is given by Pr[S(j + g) − S(j) = h] = S(h, g). The w − 1
gaps of H are mapped to w − 1 gaps in G in an independent way. However, we
require that the bits come from source sequence c and not d, which happens
with probability 1/2. Therefore it follows that:

Pa(G|H) =
1
2

w−1∏

i=1

S(hi, gi). (15)

Choosing the gaps hi = 2gi − 1 such that Pa(G|H) is maximized and using the
Gaussian approximation yields:

Pa(G|H) ≈ 1
2

w−1∏

i=1

1
2
√

π(gi − 1)
and Ld = 4(4π)w−1

w−1∏

i=1

(gi − 1). (16)

4 A Convolutional Filter for SG and ASG

Instead of just considering combinations of bits of the output sequence for which
P (G|H) is optimum, we introduce a more sophisticated distinguisher that con-
siders all combinations of w bits of z for which P (G|H) is different from 0. We
compute a function Y as:

Y =
1
L

∑

t

yt with yt =
∑

H

CH z̄tz̄t+H1 · · · z̄t+Hw−1 . (17)

Here the CH are weighing factors as the optimum result is not necessarily ob-
tained by just adding all combinations. Each yt is the sum of a number of in-
dependent expressions CH z̄tz̄t+H1 · · · z̄t+Hw−1 . Such an expression has variance
C2

H and mean CHP (G|H). If we want yt to have a variance equal to 1, we must
choose the CH values such that

∑
H C2

H = 1. In other words, the CH values can
be seen as the coordinates of a vector of length 1. The mean value of yt is:

〈yt〉 =
∑

H

CHP (G|H). (18)

The latter can be seen as the inner product between two vectors, the C-vector
and the P (G|H)-vector. The mean value 〈yt〉 for a truly random sequence being
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zero, we wish to maximize this inner product so as to best distinguish SG or
ASG from other generators. We must thus choose the vector C equal to the
vector P (G|H) divided by its norm, hence:

CH =
P (G|H)

√∑
H P (G|H)2

. (19)

For this choice of CH , we obtain:

〈yt〉 =
√∑

H

P (G|H)2 and Ld =
1

∑
H P (G|H)2

. (20)

4.1 The Shrinking Generator

We can now compute the value of Ld for an SG given the feedback polynomial
G of its source register:

Ld
−1 =

∑

h1

∑

h2

· · ·
∑

hw−1

w−1∏

i=1

S(gi, hi)
2 (21)

=
∑

h1

S(g1, h1)
2
∑

h2

S(g2, h2)
2 · · ·

∑

hw−1

S(gw−1, hw−1)
2
. (22)

Introducing following notation

ρg(h) =
S(g, h)

√∑
h S(g, h)2

(23)

results in:

Ld
−1 =

w−1∏

i=1

∑

hi

S(gi, hi)
2 and CH =

w−1∏

i=1

ρgi(hi) . (24)

Using the Gaussian approximation yields
∑

h S(g, h)2 ≈ 1/4
√

π(g − 1) and

Ld = (4
√

π)w−1
√∏

i

(gi − 1). (25)

In the following theorem we prove that the stream y can be computed itera-
tively by taking w − 1 convolutions and w − 1 stream multiplications.

Theorem 1. The computation of yt = v
(0)
t for an SG is given as

v(w−2) = z̄ × (z̄ ⊗ ρgw−1), . . .

v(i) = z̄ × (v(i+1) ⊗ ρgi+1), . . .

v(0) = z̄ × (v(1) ⊗ ρg1).
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Proof. We have:

v
(0)
t =

∑

h1

ρg1(h1)z̄tv
(1)
t−h1

=
∑

h1

ρg1(h1)

(
∑

h2

z̄t−h1ρg2(h2)v
(2)
t−(h1+h2)

)

z̄t

=
∑

h1

ρg1(h1)
∑

h2

ρg2(h2)v
(2)
t−H2

z̄t−H1 z̄t

=
∑

h1

∑

h2

ρg1(h1)ρg2(h2)v
(2)
t−H2

z̄tz̄t−H1

= . . .

=
∑

h1

. . .
∑

hw−1

w−1∏

i=1

ρgi(hi)z̄tz̄t−H1 · · · z̄t−Hw−1

=
∑

H

(
w−1∏

i=1

ρgi(hi)

)

z̄tz̄t−H1 · · · z̄t−Hw−1 .

We thus correctly obtain

yt = v
(0)
t =

∑

H

CH z̄tz̄t−H1 · · · z̄t−Hw−1 with CH =
w−1∏

i=1

ρgi(hi). (26)

	


4.2 The Alternating-Step Generator

We can now compute the values of Ld and CH for an ASG given the gaps G of
a feedback polynomial of one of its source registers:

Ld
−1 =

∑

h1

∑

h2

· · ·
∑

hw−1

1
4

w−1∏

i=1

S(hi, gi)
2 (27)

=
1
4

∑

h1

S(h1, g1)
2
∑

h2

S(h2, g2)
2 · · ·

∑

hw−1

S(hw−1, gw−1)
2
. (28)

Introducing following notation:

μg(h) =
S(h, g)

√∑
h S(h, g)2

(29)

results in:

Ld =
4

∏w−1
i=1

∑
hi

S(hi, gi)
2 and CH =

w−1∏

i=1

μgi(hi). (30)
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The expression
∑

h S(h, g)2 appears to be very closely approximated by
1/2

√
2π(g − 1), yielding

Ld = 4(2
√

2π)w−1
√∏

i

(gi − 1). (31)

Theorem 2. The computation of yt = v
(0)
t for an ASG is given as

v(w−2) = z̄ × (z̄ ⊗ μgw−1), . . .

v(i) = z̄ × (v(i+1) ⊗ μgi+1), . . .

y = z̄ × (v(1) ⊗ μg1).

The proof is very similar to that of Theorem 1.

4.3 Usage of Multiple Recursion Relations

In the ASG, we can conduct the same attack using the feedback polynomial of
source sequence b. Moreover, we can conduct the attack for any polynomial that
is a multiple of a feedback polynomial of (one of) the source registers. In general,
given any number of independent distinguishers with mean 〈y(i)〉, the optimum
distinguisher is formed by

yt =
∑

i〈y(i)〉y(i)
t√

∑
i 〈y(i)〉2

yielding Ld =
1

∑
i〈y(i)〉2 =

1
∑

i
1

Ld(i)

. (32)

5 Distinguishers for Multiplexor Generators

We construct distinguishers exploiting the fact that source stream bits may
appear multiple times in the output stream. Whereas the distinguishers for the
SG and ASG reveal weaknesses in the source sequences, here the distinguishers
work independently from the nature of the source stream and reveals weaknesses
due to the sampling process itself.

5.1 Fibonacci Configuration

The probability that two bits in the output stream separated by a gap h originate
from the same bit in the source stream is:

Pr[t + h + M [St−h] = t + M [St]] = Pr[M [s] − M [s′] = h], (33)

for independent random variables s and s′ following the same distribution as S.
We define the distribution function of the selection position table, PM (i), as

PM (i) = Pr[M [a] = i] = 2−n
∑

j

δiM [j] , (34)
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with δ the Kronecker delta. If we now define QM as the convolution of PM with
itself, QM = PM ⊗ PM , we have:

Pr(M [s] − M [s′] = h) = QM(h). (35)

So QM (h) gives the probability that two output bits separated by a gap h orig-
inate from the same bit in the source stream.

A basic distinguisher consists of the following. Find the gap hm for which
QM (h) is maximum and compute X =

∑
t xt/

√
L with xt = z̄tz̄t−hm . Clearly

[xt] = QM(hm), yielding Ld = QM (hm)−2. We can build a convolutional filter
that exploits the probabilities QM (h) for all gaps h:

Y =
1
L

∑

t,h>0

Chz̄tz̄t−h or Y =
1
L

∑

t

yt with yt = z̄t

∑

h>0

Chz̄t−h . (36)

The restriction h > 0 is there to ensure that every expression of type ytyt+h

appears only once. With a similar argument as in Section 4, the optimum values
for Ch are given by Ch = qM(h) with

qM(h) =
QM (h)

√∑
h>0 QM (h)2

if h > 0 and 0 otherwise. (37)

This yields:

Ld =
1

∑
h>0 QM (h)2

and Ch = qM (h), (38)

resulting in:
y = z̄ × (z̄ ⊗ qM ) . (39)

Hence the distinguisher takes one convolution and one stream multiplication.
Both for the basic distinguisher and the convolutional filter Ld depends strongly
on QM determined by the table M . In the worst case (for the attacker), M has
been chosen such that for any gap h, QM (h) = 2−2n or zero. For example if
M = (0, 1, 3, 7), the resulting QM is 2−4 for h ∈ {1, 2, 3, 4, 6, 7}. For this kind of
M , the simple distinguisher has Ld = 24n and the convolutional filter has

Ld = 1/2n−1(2n − 1)2−4n ≈ 22n+1 . (40)

As there are (2n − 1)(2n − 2)/2 differences among 2n entries, the choice of such
an M is only possible if the length of the source register is in the order of
22n−1, so Ld is only a factor 4 longer than the source register. For example for
a multiplexor choosing from 64 positions the source register must have a length
in the order of 2000 bits and Ld is only 8000.

Another interesting case is when M [i] = i, i.e., the selection positions are
subsequent. For h �= 0 we have QM (h) = (2n − h)2−2n. The best simple distin-
guisher has hm = 1 and yields Ld = 24n/(2n − 1)2 ≈ 22n. For the convolutional
filter this gives:

Ld
−1 =

2n−1∑

i=1

i2

24n
= 2−4n

2n−1∑

i=1

i2, (41)
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resulting in

Ld = 24n 6
(2n − 1)(2(22n−1 + 1)(2n)

≈ 3 · 2n. (42)

Hence for a multiplexor selecting from 64 positions this yields Ld ≈ 192, again
only a small factor larger than the minimum size of the source register. Both
cases show that for a multiplexor generator with a Fibonacci source register
we can construct distinguishers with Ld in the same order of magnitude as the
source register.

5.2 Galois Configuration

If the source register has a Galois configuration the output sequence cannot be
modeled as a simple sampling of the source sequence and the analysis above does
not apply. The value of Ld depends on interaction between the selection position
table and the feedback polynomial of the source LFSR. Given the weight of the
feedback polynomial and characteristics of the selection position table upper
bounds for Ld can be formulated. For example, for a 64-bit multiplexor and a
source register with an LFSR of weight 17 a distinguisher similar to the one in
Equation (39) can be built with Ld below 215/7 ≈ 4700.

6 Simulation Results

We have experimentally verified the correctness of the values Ld for all dis-
tinguishers presented in this paper. As Ld = 〈Y 〉−2, it suffices to apply the
distinguisher to sequences with length much larger than Ld and see whether Y
converges to 〈yt〉 in case it matches the generator and to 0 in case of a ran-
dom sequence. All our experimentally obtained data confirmed the theoretical
values.

The function ρg(h) used for the simulation is based on the Gaussian ap-
proximation for S(g, h). To avoid the infinite domain of Gaussian variables, it
is truncated beyond 5 times the standard deviation below and above the av-
erage 〈h〉. The same truncation is done for S(h, g), which is used to compute
μg(h). With the roles of g and h reversed for μg(h), this results in a asym-
metry in the truncation below and above 〈h〉 in order to preserve the actual
shape of μg(h). For the multiplexor generators the exact expression of QM (h) is
used.

We illustrate our simulation results for a convolutional filter adapted to an
SG with a source LFSR governed by the polynomial p(x) = x300 +x219 +x131 +
x73 + 1 taken from [3]. For this polynomial, [3] gives a theoretical estimation of
a parameter N = 230.3 where N plays the same role as Ld with N = 4Ld. It
reports an experiment with 48 successes out of 50 sequences each of length 229,
i.e. a failure rate of 4 %. Our convolutional filter has 〈Y 〉 ≈ 0.000272 resulting
in Ld ≈ 1.35 × 107. This is a factor 24 smaller than the equivalent in [3]. For
sequences of length 229 the expected failure rate of our convolutional filter is
below 0.1 %.
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For a sequence of L the standard deviation of Y is equal to 1/
√

L. Relating
that to 〈Y 〉 of the convolutional filter yields σ(Y ) =

√
Ld/L〈Y 〉. Figure 1 shows

the convergence of Y to 〈Y 〉 for an output sequence of the target SG and to 0 for
the output of a pseudo-random generator based on SHA-1. Figure 2 compares
the distribution of the value of Y over a set of 100 sequences of length Ld of the
SG with the distributions predicted by the theory.
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Fig. 1. Convergence of Y as a function of L

The experimental implementation uses explicit convolutions and component-
wise multiplications. The complexity of the attack is dominated by the convolu-
tions. For the SG and ASG, the convolution kernels have width of the order of√

gi. The complexity of the attack is thus O(Ld ×
∑

i

√
gi). For the multiplexor

generator with M [i] = i, the width of QM (h) is of order 2n. The complexity
of this attack is thus O(L2

d). In this last case, we could make the convolution
in the frequency domain using a fast Fourier transform (FFT), decreasing the
complexity down to O(Ld log Ld).

Note that the convolution in our problem is very close to a convolution with a
Gaussian, which in turn can be closely approximated by the iterated convolution
with a rectangular kernel. The convolution with a rectangular kernel can be very
efficiently implemented as a sliding window [3].
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7 Conclusions and Further Work

Convolutional filters are a new type of distinguisher applicable to shrinking gen-
erators, alternating-step generators and multiplexor generators. They are more
powerful than existing distinguishers for those generators and their conceptual
simplicity allows to predict their probability of success accurately.

The results of this paper can be extended by applying them to other stream
cipher, such as the self-shrinking generator [16] and those of the LILI family [19].

References

1. A. Canteaut, M. Trabbia, “Improved Fast Correlation Attacks Using Parity-Check
Equations of Weight 4 and 5”, Advances in Cryptology – Eurocrypt 2000, LNCS
1807, Springer-Verlag, 2000, pp. 573-588.

2. D. Coppersmith, H. Krawczyk, Y. Mansour, “The Shrinking Generator”, Advances
in Cryptology – Crypto ’93, LNCS 773, Springer-Verlag, 1994, pp. 22-39.

3. P. Ekdahl, W. Meier, T. Johansson, “Predicting the Shrinking Generator with
Fixed Connections”, Advances in Cryptology – Eurocrypt 2003, LNCS 2656,
Springer-Verlag, 2003, pp. 330-344.
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8. J. Dj. Golić, “Correlation analysis of the Shrinking Generator”, Advances in Cryp-
tology – CRYPTO 2001, LNCS 2139, Springer-Verlag, 2001, pp. 440-457.
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Abstract. Maurer’s test is nowadays a basic statistical tool for test-
ing physical random number generators in cryptographic applications.
Based on a statistical analysis of this test we propose simple and effec-
tive methods for its improvement. These methods are related to the m -
spacing technique common in goodness-of-fit problems and the L - leave
out method used for a noise reduction in the final Maurer test statistic.
We also show that the spacing distribution test represents a serious com-
petitor for Maurer’s test in the case when the random number generator
is governed by a Markov chain with a long memory.

1 Introduction

1.1 Cryptographic Applications of Statistical Tests

Generating random numbers is not only a key issue in cryptographic applica-
tions, but also in counter measures against side-channel attacks on secure tokens
like Smartcards (see [5] and [13] for some instances). The cornerstone character
of these problems have brought institutional organizations, like the NIST in the
USA and the BSI (Bundersamt für Sicherheit der Informationstechnik) in Ger-
many, to develop standards to define Random Number Generators (RNGs), to
classify them regarding their intended use and to analyze the confidence that
one can have in claimed properties of RNGs.

The first approach developed in [9] and [10] was to qualify RNG using sta-
tistical tests. Canonical statistical tests include for instance the frequency test
aimed to check uniformity of the outputs of the RNG and the long run test that
verifies whether the RNG is not stuck at a given value during a defined period.

In the meantime, under the concern of completing security evaluation crite-
ria of ITSEC or Common Criteria concerning random supply, RNG have been
classified in two categories by the BSI:

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 271–287, 2006.
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– Pseudo Random Number Generators (PRNG) that apply iterative numerical
algorithms to an initial seed,

– True Random Number Generators (TRNG) that apply a numerical process-
ing merged to a noise that come from the ”real world”, like thermal noise.

Typically, in testing of PRNGs, classical statistical tests are combined with
thorough theoretical analysis of the cryptographic properties of the underlying
algorithm [11]. On the other hand, TRNGs are more tricky to evaluate. So, the
standard AIS 31 [12] has defined a way to qualify the expected quality of TRNG.

It classifies TRNG in two classes P1 and P2 regarding their intended use:

– P1 is the class of TRNG that will be used as nonce generators for authenti-
cation protocols,

– P2 embodies the class of “strong” TRNG that might be used as key gener-
ators

Notice that in contrast to testing of TRNG within the class P1, where statistical
tests may be applied directly to the output of the generator, for strong TRNG,
AIS 31 requires extra tests of the noise source. Testing the noise source aims
at evaluating its intrinsic entropy, namely the degree of uncertainty that relies
in the underlying physical phenomenon. The entropy of the noise source is a
very delicate notion and nowadays there are still vast discussions regarding the
best way to quantify and qualify it (see [16] for detail). In [8] Ueli Maurer has
proposed the famous test based on a statistic asymptotically related to the source
entropy. Roughly speaking, this test consists in counting the distances between
patterns in the output data stream. In [2], J-S Coron and D. Naccache have
proposed to modify this test in order to fit more precisely the source entropy
(see also [3] for the latest version of this test which is now part of [12]). For
industrial applications related to building new noise sources, failing the Maurer’s
test means failing AIS 31 certification. This means that applications and markets
requiring AIS 31 certification are no longer accessible for suppliers whose devices
did not succeed in this certification scheme.

In this paper, we will see how Maurer’s test and its counterparts behave in
the presence of specific statistical defects in the random source, how Maurer’s
test can be defeated and last but not least how it can be improved. We would
like to stress in this context that essential applications of statistical tests are
related to testing of physical random number generators.

1.2 Statistical Backgrounds of RNG Testing

From the mathematical viewpoint, the problem of testing of a random bit gener-
ator can be easily stated. Let B

n be the set of all n-bit vectors b = (b1, . . . , bn).
The distribution of a random vector b ∈ B

n is described by a discrete distribu-
tion p(·) on B

n

p(x) = P
(
b1 = x1, . . . , bn = xn

)
. (1)
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Recall that the random vector b is said uniformly distributed if p(·) equals the
uniform distribution

p(x) = μ(x) def=
(

1
2

)n

, x ∈ B
n. (2)

With these notations, the problem of testing of a random bit generator can be
formulated as follows. Suppose we are given a random bit vector b distributed
according an unknown law p. Then on the basis of b we want to test the null
hypothesis

H0 : p(x) = μ(x) for all x ∈ B
n

against the composite alternative

H1 : p(x) �= μ(x) for some x ∈ B
n.

In other words, we want to decide whether b is uniformly distributed on B
n or

not. Our decision can be viewed as a measurable function ϕ(b) (called critical
function) taking two values {0, 1}. If ϕ(b) = 0, then H0 is accepted, otherwise
H1 is accepted. Usually the quality of testing is measured by two types of error
probabilities: the probability of the first kind error

α(ϕ) def= P0(ϕ(b) = 1),

where P0(·) is the probability measure corresponding to the uniform measure μ,
and the probability of the second kind error

β(ϕ,P) def= P(ϕ(b) = 0).

Here P(·) is any probability measure different from the uniform distribution.
The value 1 − β(ϕ,P) is called power of test. Statistical sense of α(ϕ) is very
transparent, since this is the probability to reject a good RNG. In contrast to
classical statistical testing, where α(ϕ) varies typically from 0.01 to 0.05, in cryp-
tographic applications, we deal with smaller probabilities of the first kind error
residing in the range (10−7, 10−3). Usually this error probability is fixed regard-
ing the losses which we shall have rejecting H0. For instance, in nature, there
exist chaotic processes such as thermal, Flicker or shot noises in a transistor,
and it is a difficult engineering task to design an electronic circuit that exploits
this randomness. So, rejection of a good generator might be very expensive. On
the other hand, with very small α(ϕ) we can accept bad generators. Therefore
a reasonable choice of the probability of the first kind error is a delicate issue
(compare [9] and [10]).

From mathematics viewpoint, fixing α, we define the set of statistical tests

Φα = {ϕ : α(ϕ) ≤ α}.

and the main goal of statistical testing is to find the most powerful test ϕ∗ within
the class Φα. In other words, we are looking for the test ϕ∗ such that

β(ϕ∗,P) ≤ β(ϕ,P) for all ϕ ∈ Φα and for all P �= P0.
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It is easy to see that when the alternative contains all probability distributions,
the most powerful test doesn’t exist and any attempt to use directly maximum
likelihood or Bayesian tests will immediately fail. This happens because we can-
not recover the underlying probability distribution on the basis of the data at
hand when the set of alternative is too rich. Therefore the basic idea to over-
come this difficulty is to consider a smaller alternative family P satisfying the
following properties

– the probability distributions within P can be recovered with a sufficiently
high accuracy for large n

– the maximum likelihood test

ϕML(b, P) = 1
{

max
P∈P

p(b)
μ(b)

> tα

}
(3)

is feasible from numerical complexity viewpoint.

Recall that the critical value tα is defined by

tα = inf
{

t > 0 : P0

(
max
P∈P

p(b)
μ(b)

> t

)
≤ α

}
.

In order to shed some light on typical problems related to this approach,
let us look at the classical frequency test. To construct this test, assume that
a RNG generates independent identically distributed blocks Bi = (b1i, . . . , bdi)
containing d bits. Our goal is to check whether Bi are uniformly distributed in
B

d or not. If we associate with the block Bi the integer

xi =
d∑

k=1

2k−1bki,

our problem is reduced to the simplest goodness of fit testing: based on the
sample x = (x1, . . . , xN ) of i.i.d. random variables to test the null hypothesis

H0 : P
(
xi = l

)
= 2−d for all l ∈ {0, . . . , 2d − 1}

against the alternative

H1 : P
(
xi = l

)
�= 2−d for some l ∈ {0, . . . , 2d − 1}.

It is easy to check with a simple algebra, that the maximum likelihood test has
the following form

ϕd
ML(x) = 1

{
N

2d−1∑
s=0

p̂s(x) log
p̂s(x)
2−d

> tα

}
, (4)

where

p̂s =
1
N

N∑
i=1

1(xi = s)

is the empirical distribution.
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At the first glance everything goes smoothly with this test, but our approach
has a serious drawback related to the fact that a priori it was assumed that the
RNG generates independent blocks of length d. In fact, there is no reasonable
argument justifying this hypothesis. For instance a RNG may work according
to a Markov model. In this case, simple simulations reveal that the power of
the test depends strongly on d and on the underlying Markov model, and fitting
d, we can improve significantly the performance of the test. Since the statistical
model of the RNG is hardly known in practice, we should choose the block length
based on the data at hand.

In this paper, we are interested in the question ”how could statistical tests
be improved with the proper choice of the generating alternative family P” (see
(3)). In particular, we will discuss simple methods for improving Maurer’s test
and finally we will compare numerically this test with a test based on distribution
of 1 - spacings in the data flow.

2 Maurer’s Test

2.1 Uniformity Tests

Standard motivations of Maurer’s test are related to the notion of entropy of
ergodic bit flow (see [8]). In this paper, we present a slightly different viewpoint
based on classical uniformity tests. This new interpretation will help us to un-
derstand why Maurer’s test could be improved. Testing of uniformity means the
following. Let μ(x) = 1, x ∈ [0, 1] be the uniform probability density on the
interval [0, 1]. Suppose we observe n i.i.d. random variables Xn = (X1, . . . , Xn)
with an unknown probability density p(x), x ∈ [0, 1]. The goal of the uniformity
testing is to test on the basis of Xn the null hypothesis

H0 : p(x) = μ(x) for all x ∈ [0, 1]

against the composite alternative

H1 : p(x) �= μ(x) for some x ∈ [0, 1].

In statistics, the most powerful tests are usually constructed with the help
of the maximum likelihood principle which can be motivated by the famous
Neyman-Pearson lemma. In order to explain how this principle works in our
setting, let us assume for a moment that H1 is a simple alternative, say
H1 : p(x) = p1(x), where p1(x) is a known smooth probability density on [0, 1].
In this case, in view of the Neyman-Pearson lemma the maximum likelihood test
defined by

ϕ(Xn) = 1
{
L(Xn) ≥ hα

}
,

where

L(Xn) =
n∑

i=1

log p1(Xi), (5)
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is the most powerful test. Recall also that the critical value of the test hα is
computed as a root of the equation P0

(
ϕ(Xn) = 1

)
= α.

Let’s now return back to the composite alternative when the density p is
unknown. A simple heuristic idea to overcome this difficulty is to construct a
non parametric density estimator p̂(x,Xn) and then to plug-in it in (5). Thus
we arrive at the following test statistics

S(Xn) =
n∑

i=1

log p̂(Xi,Xn)

and the principal issue is to find a reasonable density estimator. Standard meth-
ods of nonparametric density estimation are motivated by the definition of prob-
ability density

p(x) = lim
h→0

P{X1 ∈ [x, x + h]}
h

.

Roughly speaking, the above formula says that for all sufficiently small h

p(x) ≈ P{X1 ∈ [x, x + h]}
h

.

Estimating P{X1 ∈ [x, x + h] in the above display by the empirical probability
n−1 ∑n

i=1 1{Xi ∈ [x, x + h]}, we get the classical kernel density estimator

p̂h(Xj ,Xn) =
1

nh

n∑
i=1

1{Xi ∈ [Xj, Xj + h]} =
#{Xi ∈ [Xj , Xj + h]}

nh
.

Our final step is based on the fact that the bandwidth h in this formula might
be data-dependent h = h(Xj ,Xn). For instance, one can take

h = h(X(j),Xn) = X(j+m) − X(j),

where X(k) stay for the order statistics X(1) ≤, . . . , ≤ X(n). The increments
X(j+m)−X(j), j = 1, . . . , n−m are called m-spacings. Thus we get the following
m-spacing density estimator

p̂m(X(j),Xn) =
m

n[X(j+m) − X(j)]

or equivalently, the test statistic

Sm(Xn) =
n∑

i=1

log
m

n[X(j+m) − X(j)]
.

Certainly, the idea to use this statistics is well known and widely used in
goodness of fit testing (see e. g. [15], [4], [17]). In order to shed some light
on statistical properties of Sm(Xn), it is very instructive to look at its limit
distribution under the alternative. The simplest way to do this is to apply the
famous Pyke’s theorem [14] about the distribution of order statistics.
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Theorem 1. Let U1, . . . , Un be i.i.d. uniformly distributed on [0, 1] and e1, . . . , en

be i.i.d. standard exponentially distributed random variables. Then

{
U(k+1) − U(k), 1 ≤ k ≤ n − 1

}
D=

{
ek

/ n∑
s=1

es, 1 ≤ k ≤ n − 1
}

. (6)

With this theorem, one can find the limit distribution of Sm(Xn). Unfor-
tunately, the rigorous argument involve a lot of technical details, therefore we
provide here only a simple heuristic motivation. Since F (Xk) = Uk, where F is
the distribution function of X1, we have by the Taylor formula

U(j+m) − U(j) = F [X(j+m)] − F [X(j)] ≈ p(X(j))[X(j+m) − X(j)].

This yields the following asymptotic (n → ∞) formula for the test statistics

Sm(Xn) ≈
n∑

i=1

log p(Xi) −
n∑

i=1

log
n[U(j+m) − U(j)]

m

= − nH(p) +
√

n
1√
n

n∑
i=1

[log p(Xi) − Ep log p(Xi)]

+ nC(m) +
√

n
1√
n

n∑
i=1

[
log

(
1
m

m−1∑
l=0

ei+l

)
− C(m)

]

+ n log
[
1 +

1
n

n∑
i=1

(ei − 1)
]
,

(7)

where H(p) is the entropy

H(p) = −
∫ 1

0
p(x) log p(x) dx and C(m) = E log

(
1
m

m∑
i=1

ei

)
.

Notice also that the last term at the right-hand side of (7) can be simplified by
the Taylor formula

n log
[
1 +

1
n

n∑
i=1

(ei − 1)
]

≈
√

n
1√
n

n∑
i=1

(ei − 1).

Even a quick look at (7) shows that

lim
n→∞

Sm(Xn)
n

a.s.= −H(p) + C(m).

Moreover, it is also well known (see e.g. [7]) that if p(x) is strictly bounded for
below on [0, 1], then Sm(Xn) is asymptotically Gaussian

lim
n→∞

Sm(Xn) − nH(p) − nC(m)√
n

D= N
(
0, σ2(p) + σ2

m

)
,
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where the asymptotic variance of this Gaussian law is defined by (see also [1])

σ2
m(p) =

∫ 1

0
[log p(x) + H(p)]2p(x) dx, σ2

m = (2m2 − 2m + 1)ψ′(m) − 2m + 1,

with

ψ′(m) =
π2

6
−

m−1∑
j=1

1
j2 .

From the plot of σ2
m shown on Figure 1, we see that this function vanishes very

rapidly. It means that with moderate m we could improve the performance of
testing. In order to explain this phenomenon, notice that under the hypothesis,
for large n

Sm(Xn) ∼ N (nC(m), nσ2
m).

Therefore, for a sufficiently small α, the critical value can be computed by

hα ≈ nC(m) +
√

2nσ2
m log(1/α)

and if the entropy is large enough

H(p) �
√

2σ2
1 log(1/α)

n
,

then the probability of the second kind error is given by

logP
(
Sm(Xn) ≤ hα

)
≈ −

[√
nH(p) +

√
2σ2

m log(1/α)
]2

2[σ2(p) + σ2
m]

. (8)

It is easy to check that the right-hand side in (8) is monotone in σ2
m. Therefore the

probability of the second kind error reaches its minimum when m = ∞. However,
since σ2

m vanishes rapidly, we can get almost the minimal error probability with
a relatively small m. In fact, the optimal choice of m should be data-driven.

2.2 Maurer’s Test

This test has the standard form ϕma(b) = 1
(
T (b) ≥ tα

)
, where T (b) is com-

puted as follows:

1. Transform the input bit sequence b = (b1, . . . , bn) into the sequence of inte-
gers x = (x1, . . . , xs), s = �n/d taking values in A

d = {0, . . . , 2d − 1}

xk =
d∑

i=1

2i−1b(k−1)d+i

2. For each motif q ∈ A
d compute its positions in x:

N q = {k : xk = q}.
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3. For each motif q ∈ A
d compute the intermediate statistics

Sq(b) = −
∑

i

log(N q
i+1 − N q

i ).

4. Compute the final test’s statistic

T (b) =
∑
q∈Ad

Sq(b).

In order to describe completely the test, remember that the critical value tα is
defined as a root of the equation

P0
(
ϕma(b) = 1

)
= α. (9)

There are two standard ways to compute tα

– compute the empirical distribution function of T (b) by the Monte-Carlo
method and solve the empirical counterpart of (9)

– use the fact that asymptotically (n → ∞) the distribution of T (b) is
Gaussian.

We intentionally decomposed Maurer’s test into 4 steps in order to stress
its relations with the uniformity testing. From the viewpoint of the uniformity
testing, the underlying ideas of Maurer’s test are related to steps 3 and 4 that
clearly show what does the test do: it checks whether the positions of patterns
are uniformly distributed in the bit stream. Mathematically, this principal idea
is based on the assumption that all xk are independent (see [8], [3]). In other
words, this means that d should be large. This hypothesis immediately entails
that
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– N q
i+1 − N q

i are almost independent and follow an exponential law under the
null hypothesis and under the alternative (step 3)

– under the null hypothesis and under the alternative, the covariance matrix

rpq = cov(Sq(b), Sp(b)), 0 ≤ p, q ≤ 2d − 1

has always the form

rpq ≈
{

1, p = q
c, p �= q,

where c is a constant (step 4).

Under the null hypothesis all these assumptions hold true, but unfortunately,
they may fail for alternatives related to stationary ergodic processes. The rea-
son is that we cannot take d very large, since there is a natural upper bound
d ≤ log2(n/10) (see [8]). Therefore in practical applications, the cornerstone hy-
pothesis that d is really large, is not well justified. It is surprising that this fact
opens some perspectives for significant improvements of Maurer’s test.

In order to illustrate numerically statistical phenomena in this paper, we shall
use two statistical models for random bit generators. The first one called Markov
chain model (see also [16]) works as follows. Let ξi be i.i.d. bits such that P(ξ =
0) = p, then the random bits are generated as follows

bi =
{

bi−m if ξi = 0
1 − bi−m otherwise,

where m ≥ 1 is called memory of the chain and p ∈ [0, 1] is called transition
probability. In all our numerical experiments, the length of the bit vector is
n = 20000 and the probability of the first kind error is 0.001. We use these basic
simulation parameters from now on.

Another statistical mechanism for random bit generation is called season drift
model. In this case the bits bi are independent but not identically distributed.
Namely, it is assumed that

P
(
bi = 0

)
= (0.5 + A) cos

(
2πi

τ

)
,

where A ∈ [0.5, 1] is called the amplitude and τ is called season period.
First of all let us look at the covariance matrix of the intermediate test’s sta-

tistic. Figure 2 illustrates the fact that this covariance matrix may substantially
differ under the null hypothesis and the alternative. The left panel of this figure
shows the covariance matrix under the null hypothesis whereas the right panel
shows this matrix under an alternative. As an alternative we used the Markov
chain with memory 5 and transition probability 0.7.

We start to analyze Maurer’s test with the question whether the log-function
in log(N q

i+1 − N q
i ) is good. At the first glance the answer is negative since log

results from the hypothesis that N q
i+1 − N q

i are exponentially distributed. In
fact, under the null hypothesis, these random variables follow a geometric law.
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Fig. 2. The covariance matrix under the hypothesis and the alternative

It means that if the only one intermediate test’s statistic, say S0, was used,
then log(x) should be replaced by l(x) = x log(x)− (x− 1) log(x− 1). This fact
doesn’t mean that l(x) is optimal in the case when we are dealing with the sum
of Sq. This curious phenomenon can be explained by the correlation between
statistics Sq, q ∈ Ad. Moreover, log(x) is not optimal too and we illustrate this
fact in the following statistical experiment. On Figure 3 we plotted the proba-
bility of the second kind error as function of the transition probability for stan-
dard Maurer’s test (dotted line) and for Maurer’s test with log(N q

i+1−N q
i +10)

(solid line) for 6-tuples (d = 6) partition. The bit vectors were generated by
the Markov chain model with memory 1. As we see that there is a slight im-
provement of Maurer’s test. In other numerical simulation the authors looked
at, the function log(x+10) always improves the power of the test but it seems
to us that improvements are not very significant and therefore in practical ap-
plications log(x) may be considered as a reasonable choice. Another idea to
use

∑x−1
i=1 i−1 instead of log(x), was proposed in [3] and [2]. Unfortunately in

our simulation study, this method doesn’t result in visible improvements of the
test’s power. Typical behavior of Coron’s test and Maurer’s test are shown on
Figure 4. Here we used the statistical model for the random bit source from
the previous example.

Let us discuss another problem related to the step 3. Namely, the optimality
of the first order spacings N q

i+1 − N q
i . For the uniformity testing problem, we

have seen that m-spacings may improve the test power. Similar effect takes place
for Maurer’s test, it turns out that using m-spacings N q

i+m − N q
i with m > 1 it

is possible to improve the power of this test.
The next natural question related to the final step 4 is: whether the sum

of Sq(b) is a good idea for testing or not? This statistics would be optimal if
the covariance matrix of the vector

(
S1(b), . . . , S2d

(b)
)

doesn’t change its form
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Fig. 3. Maurer’s test with log(x + 10) Fig. 4. Coron’s modification

under the alternative. Unfortunately, we have seen see that it isn’t true. This
phenomenon opens another way to improve Maurer’s test.

3 Motif Uniformity Test

The term Motif Uniformity (MU) test is refereed to Maurer’s test with the
following modifications:

– in place of Sq(b) computed at the step 3, we use m-spacing statistics

Sq,m(b) = −
∑

i

log(N q
i+m − N q

i )

– the final test statistics
∑

q∈Ad Sq(b) computed at the step 4 is replaced by
a special non-linear transform based on p-leave out method.
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3.1 m-Spacing Method

In this section, we present two examples showing that m − spacing technique
improves the power of Maurer’s test. Figure 5 shows the power of Maurer’s test
(dotted line) and the power of its modification based on 4-spacings (solid line) as
function of the transition probability. We see that the improvement is clear. The
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Fig. 5. The MU test with 4-spacings Fig. 6. The MU test with 100-spacings

next example demonstrates a more significant improvement of Maurer’s test.
In this example, we deal with the season drift model with T = 3000 and plot
the power of the tests as function of amplitude A. For this random bit model
Maurer’s test with d = 1 is, in some sense, optimal. Since pk is a very smooth
function of k, m-spacings with large m may improve substantially the test power.
Figure 6 distinctly illustrates this fact.
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3.2 L-Leave Out Method

We have seen that the covariance matrix of Maurer’s test statistics Sq(b), q ∈ Ad

may change substantially under the alternative and now we use this phenomenon
to improve the performance of this test. The underlying idea is very simple. We
order the test statistics

(
S1(b), . . . , S2d

(b)
)

such that

S(1)(b) ≥ S(2)(b) ≥ . . . ≥ S(2d)(b)

and compute the final test statistics

T L(b) =
2d−L∑
i=1

S(i)(b).

Figure 7 illustrates improvements in the test power based on 4 - leave out
technique. Here we plotted the probability of the second kind error as function
of transition probability for 1-memory Markov chain.
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Fig. 7. Performance of Maurer’s test with 4 leave out statistics

4 Spacings Distribution Test

In contrast to Maurer’s test which checks whether the positions of motifs in the
input vector are uniformly distributed or not, the goal in the Spacing Distri-
bution (SD) test is to compare the empirical distribution of 1-spacings with a
geometric distribution. For typical alternatives, the distribution of N q

i+1 − N q
i

may be very far from geometric thus providing an additional and significant sta-
tistical information about RNG. From the statistical viewpoint, we can retrieve
this information testing the hypothesis that the law of N q

i+1 − N q
i is geometric.
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In this section, we propose to use the maximum likelihood method to test this
hypothesis.

Remember that under the null hypothesis 1-spacing follows a geometric law

P0

(
N q

i+1 − N q
i = k

)
= p0(k) =

1
2d − 1

(
1 − 2−d

)k
.

We define the SD test as the maximum likelihood test assuming that for a given
q the spacings N q

i+1 − N q
i are i.i.d. This test consists in the following steps

– For all motifs q compute the empirical distribution of N q
i+1 − N q

i

p̂ q(k) =
1

#N q

#Nq∑
i=1

1
(
N q

i+1 − N q
i = k

)

and compute the intermediate test statistics

Sq(b) =
#Nq∑
i=1

log
p̂ q(N q

i+1 − N q
i )

p0(N
q
i+1 − N q

i )
.

– Compute the critical function

ϕSD(b) = 1
(2d−1∑

q=0

Sq(b) ≥ hα

)
.

In some sense, the SD test can be viewed as a very good complementary of
Maurer’s test since this test is very stable and powerful for the Markov chains
alternatives. Figure 8 illustrates this fact. In this numerical experiment we try
to find out how the powers of Maurer’s test and the SD test depend on the
parameters of the Markov chain alternative. On left panel we plotted the power
of Maurer’s test with d = 7 as function of the memory of the chain varying
from 1 to 20 and the transition probability belonging to [0.5, 0.8]. The left panel
represents the power of SD test for the same alternatives.

This figure distinctly shows the principle differences Maurer’s and SD test.
First of all, Maurer’s test detects very badly alternatives with memories greater
than d. This is the principle drawback of the test since the block length d cannot
be large. We have already mentioned that d ≤ log2(n/10), where n is the length
of the bit flow at hand, otherwise the test statistics Sq(b) may have no sense.
On the other hand, Maurer’s test with large d may detect badly the Markov
alternatives with short memories. Therefore, it seems to us that Maurer’s test
with a priory fixed large d is not good for practical implementations. The only
way to overcome this difficulty of Maurer’s test is to use data driven methods
for choosing this parameter.

Fortunately, these drawbacks are not inherent to SD test. Even with small d
this test can detect the Markov chains with large memories. However, we would
like to stress that the SD test should not be used as an universal test. It not
surprising for instance that its power may be low for season drift models. In this
case, the 1-spacing follows a geometric law and from the viewpoint of the SD
test, there is no big difference between the hypothesis and the alternative.
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Fig. 8. Statistical performance of Maurer’s and SD tests

5 Concluding Remarks

The motivation of Maurer’s entropy test is based on the idea that the block
length d should be large. Unfortunately, there are two natural limitations on d.
The first one is related to the fact that it cannot exceed the log of the length
of the bit vector at hand, since otherwise the test has no sense. The second one
is that the numerical complexity of Maurer’s test increases exponentially with
d. So, in practice, we deal only with moderate block lengths, and the present
paper is focused on possible improvements of the Maurer test in this situation.
We propose a new interpretation of Maurer’s test which is based on nonpara-
metric maximum likelihood uniformity tests. This approach explains why and
how Maurer’s test can be improved. By the way, we provide three methods to
improve it

– using m-spacing technique
– L-leave out correction of the test statistics
– spacing distribution test

In numerical examples, we demonstrate that all these methods improve sig-
nificantly the test’s power. On the other hand, from a numerical complexity
viewpoint these modifications and Maurer’s are equivalent.
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Abstract. We present Lightweight Email Signatures (LES), a simple
cryptographic architecture for authenticating email. LES is an extension
of DKIM, the recent IETF effort to standardize domain-based email
signatures. LES shares DKIM’s ease of deployment: they both use the
DNS to distribute a single public key for each domain. Importantly, LES
supports common uses of email that DKIM jeopardizes: multiple email
personalities, firewalled ISPs, incoming-only email forwarding services,
and other common uses that often require sending email via a third-
party SMTP server. In addition, LES does not require DKIM’s implied
intra-domain mechanism for authenticating users when they send email.

LES provides these features using identity-based signatures. Each do-
main authority generates a master keypair, publishes the public com-
ponent in the DNS, and stores the private component securely. Using
this private component, the authority delivers to each of its users, via
email, an individual secret key whose identity string corresponds to the
user’s email address. A sender then signs messages using this individual
secret key. A recipient verifies such a signature by querying the appropri-
ate master public key from the DNS, computing the sender’s public key,
and verifying the signature accordingly. As an added bonus, the wide-
spread availability of user-level public keys enables deniable authentica-
tion, such as ring signatures. Thus, LES provides email authentication
with optional repudiability.

We built a LES prototype to determine its practicality. Basic user tests
show that the system is relatively easy to use, and that cryptographic
performance, even when using deniable authentication, is well within
acceptable range.

1 Introduction

1.1 The State of Email and DKIM

Email has become a highly polluted medium. More than 75% of email volume is
spam [27], and phishing attacks – spoofed emails that trick users into revealing
private information – are on the rise, both in volume [3] and sophistication [20].
Email users are repeatedly warned that an email’s From: field cannot be trusted
[35], and that links distributed by email should not be followed [2,29]. Still, studies
show that users remain highly vulnerable, even to low-tech phishing attempts [11].
� Research performed while at the Massachusetts Institute of Technology.
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Domain Keys & Identified Mail (DKIM) is a promising proposal for providing
a foundation to solve the phishing problem: domains are made cryptographically
responsible for the email they send. Roughly, bob@foo.com sends emails via
outgoing.foo.com, which properly identifies Bob and signs the email content.
The public key is distributed via a DNS TXT record for domainkeys.foo.com.
The details of how DKIM should handle mailing lists, message canonicalization,
message forwarding, and other thorny issues, are being resolved in the context
of a recently-formed IETF Working Group [18].

1.2 Lightweight Email Signatures

We propose Lightweight Email Signatures, abbreviated LES, as an extension to
DKIM. We show how LES preserves all of the major architectural advantages of
DKIM, while offering three significant improvements:

1. Automatic Intra-Domain Authentication: DKIM assumes that server
outgoing.foo.com can tell its users bob@foo.com and carol@foo.comapart,
which is not a safe assumption in a number of settings – e.g. university cam-
puses or ISPs that authenticate only the sending IP address. By contrast, LES
authenticates users without requiring additional authentication infrastruc-
ture within foo.com.

2. Flexible Use of Email (Better End-to-End): LES allows Bob to send
email via any outgoing mail server, not just the official outgoing.foo.com
mandated by DKIM. This is particularly important when supporting ex-
isting use cases. Bob may want to alternate between using bob@foo.com
and bob@bar.com, while his ISP might only allow SMTP connections to its
outgoing mail server outgoing.isp.com. Bob may also use his university’s
alumni forwarding services to send email from bob@alum.univ.edu, though
his university might not provide outgoing mail service.

3. A Privacy Option: LES enables the use of repudiable signatures to help
protect users’ privacy. Bellovin [6] and other security experts [32,7] warn
that digitally signed emails entail serious privacy consequences. We believe
the option for repudiable signatures can alleviate these concerns.

In a nutshell, LES provides more implementation flexibility for each participating
domain – in particular flexibility that addresses existing legitimate uses of email
–, without complicating the domain’s public interface. A LES domain exposes
a single public key in the DNS, just like DKIM. A LES domain can implement
DKIM-style, server-based signatures and verifications, or user-based signatures
and verifications where each user has her own signing key.

1.3 The LES Architecture

We now describe the LES architecture as diagrammed in figure 1.

The DKIM Baseline. A LES-signed email contains an extra SMTP header,
X-LES-Signature, which encodes a signature of a canonicalized version of the
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Fig. 1. LES: (1) The domain keyservers for Alice and Bob publish their MPKs in
the DNS (2) Alice’s domain sends Alice her secret key SKA, via email (3) Alice ob-
tains the MPK for Bob’s domain, foo.com (4) Alice computes Bob’s public key PKB

(5) Alice signs her email with a ring signature and sends it to Bob (6) Bob obtains
the MPK for Alice’s domain, from the DNS (7) Bob extracts the From: field value,
alice@wonderland.com, from the email (8) Bob computes Alice’s public key PKA, us-
ing the claimed identity string “alice@wonderland.com” (9) Bob verifies the signature
against the message and PKA

message. We leave to the DKIM Working Group the details of this canonical-
ization – which includes the From: field, the subject and body of the message,
and a timestamp –, as they do not impact the specifics of LES. Verification of
a LES-signed email is also quite similar to the DKIM solution: the recipient re-
trieves the sender domain’s public key from a specially crafted DNS record, and
uses it to verify the claimed signature on the canonicalized message.

Limitations of DKIM. A DKIM domain uses a single key to sign all of its
emails. This simple architecture is what makes DKIM so appealing and easy
to deploy. Not surprisingly, it is also the source of DKIM’s limitations: users
must send email via their approved outgoing mail server, and this outgoing mail
server must have some internal method of robustly distinguishing one user from
another to prevent bob@foo.com from spoofing carol@foo.com. LES aims to
overcome these limitations while retaining DKIM’s deployment simplicity.

User Secret Keys with Identity-Based Signatures. LES assigns an indi-
vidual secret key to each user, so that bob@foo.com can sign his own emails. This
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means Bob can use any outgoing server he chooses, and outgoing.foo.com does
not need to authenticate individual users (though it may, of course, continue to
use any mechanism it chooses to curb abusive mail relaying.)

To maintain a single domain-level key in the DNS, LES uses identity-based sig-
natures, a type of scheme first conceptualized and implemented in 1984 by Shamir
[36]. A LES domain publishes (in the DNS) a master public key MPK and retains
the counterpart master secret key MSK. Bob’s public key, PKBob, can be com-
puted using MPK and an identification string for Bob, usually his email address
“bob@foo.com”. The corresponding secret key, SKBob, is computed by Bob’s do-
main using MSK and the same identification string. Note that, contrary to certain
widespread misconceptions, identity-based signatures are well tested and efficient.
Shamir and Guillou-Quisquater signatures, for example, rely on the widely-used
RSA assumption and are roughly as efficient as normal RSA signatures.

One might argue that a typical hierarchical certificate mechanism, where the
domain certifies user-generated keypairs, would be just as appropriate here.
There are some problems with this approach. First, a user’s public-key certifi-
cate would need to be sent along with every signed message and would require
verifying a chain of two signatures, where the identity-based solution requires
only one signature and one verification operation. Second, with user-generated
keypairs, it is much more difficult to use ring signatures (or any of the known
deniable authentication methods) between a sender and a receiver who has not
yet generated his public key. The identity-based solution ensures the availability
of any user’s public key.

Distributing User Secret Keys via Email. LES delivers the secret key
SKBob by sending it via email to bob@foo.com [14], using SMTP/TLS [17] where
available. Thus, quite naturally, only someone with the credentials to read Bob’s
email can send signed emails with bob@foo.com as From address. Most impor-
tantly, as every domain already has some mechanism for authenticating access
to incoming email inboxes, this secret-key delivery mechanism requires no addi-
tional infrastructure or protocol.

Privacy with Deniable Signatures. Privacy advocates have long noted that
digital signatures present a double-edged sword [6,32,7]: signatures may make
a private conversation publicly-verifiable. The LES framework supports many
forms of deniable authentication [8] through its use of identity-based keys: Alice
can create a deniable signature using her secret key SKAlice and Bob’s public
key PKBob. Only Bob can meaningfully verify such a signature. We note that
this approach does not provide anonymity beyond that of a normal, unsigned
email. However, unlike DKIM and other signature proposals, LES does not make
the signature publicly-verifiable: only the email recipient will be convinced.

1.4 A Prototype Implementation

To determine the practical feasibility of deploying LES, we built a basic proto-
type, including a key server and a plugin to the Apple Mail client. We deployed
a real MPK in the DNS for csail.mit.edu, using the Guillou-Quisquater
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identity-based scheme [15] for its simplicity, and ring signatures for deniabil-
ity. We then conducted a small test with nine users. Though our test was too
small to provide complete, statistically significant usability results, we note that
most participants were able to quickly install and use the plugin with no user-
noticeable effect on performance.

Detailed performance numbers, in section 6, show that basic ring signature
and verification operations perform well within acceptable limits – under 40ms on
an average desktop computer –, even before serious cryptographic optimizations.
A small keyserver can easily compute and distribute keys for more than 50,000
users, even when configured to renew keys on a daily basis.

The complete prototype’s source code is available for download at
http://crypto.csail.mit.edu/projects/antiphishing/.

1.5 Previous and Related Work

The email authentication problem has motivated a large number of proposed
solutions. End-to-end digital signatures for email have repeatedly been proposed
[4,39] as a mechanism for making email more trustworthy and thereby preventing
spoofing attacks such as phishing. One proposal suggests labeling email content
and digitally signing the label [16]. Apart from DKIM, all of these past proposals
require some form of Public-Key Infrastructure, e.g. X.509 [13], although the idea
of using the DNS for identity-based master key distribution has appeared once
before in the context of email encryption and IPSEC [37]. Alternatively, path-
based verification has been proposed in a plethora of initiatives. Those which
rely on DNS-based verification of host IP addresses were reviewed by the IETF
MARID working group [19,24,23]. The latest proposal in this line of work is
SIDF [30].

A number of spam-related solutions have been suggested to fight phishing.
Blacklists of phishing mail servers are sometimes used [38,25], as is content filter-
ing, where statistical machine learning methods are used to detect likely attacks
[34,26,28]. Collaborative methods [12] that enable users to help one another have
also been proposed. LES can help complement these approaches.

1.6 This Paper

In section 2, we review the necessary cryptographic and systems building blocks.
In section 3, we detail the LES system based on these building blocks, specifically
the identity-based key distribution infrastructure and the repudiability option.
We then briefly explore the issue of technology adoption in section 4, discuss the
threats model for LES in section 5, and describe our prototype and performance
results in section 6. More detailed comments on these three issues appear in the
appendix. Finally, we conclude in section 7.

2 Cryptographic and System Preliminaries

We now review and present new extensions to cryptographic and system building
blocks involved in LES.
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2.1 Identity-Based Signatures

In 1984, Shamir proposed the concept of identity-based signatures (IBS) [36].
Since then over a dozen schemes have been realized based on factoring, RSA,
discrete logarithm, and pairings. (See [5] for an overview, plus a few more in
[1].) Most IBS signatures can be computed roughly as fast as RSA signatures,
and those based on pairings can be 200 bits long for the equivalent security of a
1024 bit RSA signature.

IBS schemes were introduced to help simplify the key management problem.
Here, a single master authority publishes a master public key MPK and stores
the corresponding master secret key MSK. Users are identified by a character
string id string, which is typically the user’s email address. A user’s public key
PK can be publicly computed from MPK and id string , while a user’s secret
key SK is computed by the master authority using MSK and the same id string ,
then delivered to the user.

2.2 Ring Signatures from Any Keypairs

Ring signatures [9,33] allow an individual to sign on behalf of a group of indi-
viduals without requiring any prior group setup or coordination. Although rings
can be of any size, consider the two party case. Suppose Alice and Bob have
keypairs (PKAlice, SKAlice) and (PKBob, SKBob) respectively. Alice can sign on
behalf of the group “Alice or Bob” using her secret key SKAlice and Bob’s public
key PKBob. Anyone can verify this signature using both of their public keys. We
require the property of signer-ambiguity [1]; that is, even if Alice and Bob reveal
their secret keys, no one can distinguish the actual signer.

In the full version of this paper, we describe a compiler for creating signer-
ambiguous ring signatures using keypairs of almost any type. That is, Alice may
have a PGP RSA-based keypair and Bob may have a pairing-based identity-
based keypair, yet Alice can still create a ring signature from these keys! For
our purposes here, it does not matter how this compiler works. It is enough to
know that: (1) the security of the resulting ring signature is equivalent to the
security of the weakest scheme involved, and (2) the time to sign (or verify) a
ring signature produced by our compiler is roughly the sum of the time to sign
(or verify) individually for each key involved, plus an additional hash. See [1] for
the technical details.

Using ring signatures for deniable authentication is not a new concept [33,7].
The idea is that, if Bob receives an email signed by “Alice or Bob,” he knows
Alice must have created it. However, Bob cannot prove this fact to anyone, since
he could have created the signature himself. In section 3.4, we describe how ring
signatures are used to protect a user’s privacy in LES.

2.3 Email Secret-Key Distribution

Web password reminders, mailing list subscription confirmations, and e-commerce
notifications all use email as a semi-trusted messaging mechanism. This approach,
called Email-Based Identity and Authentication [14], delivers semi-sensitive data
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to a user by simply sending the user an email. The user gains access to this data
by authenticating to his incoming mail server in the usual way, via account login
to an access-controlled filesystem, webmail, POP3 [31], or IMAP4 [10]. For added
security, one can use SMTP/TLS [17] for the transmission.

3 Lightweight Email Signatures

We now present the complete design of LES, as previously illustrated in Figure 1.

3.1 Email Domain Setup

Each email domain is responsible for establishing the cryptographic keys to au-
thenticate the email of its users. The setup procedure for that master authority
run by wonderland.com is defined as follows:

1. select one of the identity-based signatures (IBS) discussed in section 2.1.
(For our section 6 experiment, we chose the RSA-based Guillou-Quisquater
IBS [15] because of its speed and simplicity.)

2. generate a master keypair (MPKwonderland, MSKwonderland) for this scheme.
3. define key issuance policy Policy , which defines if and how emails from this

domain should be signed. (Details of this policy are defined in the full version
of this paper.)

4. publish MPKwonderland and Policy in the DNS as defined by the DKIM
specifications.

3.2 User Identities

Per the identity-based construction, a user’s public key PK can be derived from
any character string id string that represents the user’s identity. We propose a
standard format for id string.

Master Domain. In most cases, bob@foo.com obtains a secret key derived
from a master keypair whose public component is found in the DNS record for
the expected domain, foo.com. However, in cases related to bootstrapping (see
section 4), Bob might obtain a secret key from a domain other than foo.com.

For this purpose, we build a issuing domain parameter into the user identity
character string. Note that foo.com should always refuse to issue secret keys for
identity strings whose issuing domain is not foo.com. However, foo.com may
choose to issue a key for alice@wonderland.com, as long as the issuing domain
within the identity string is foo.com. We provide a clarifying example shortly.

Key Types. The LES infrastructure may be expanded to other applications in
the future, such as encryption. To ensure that a key is used only for its intended
purpose, we include type information in id string. Consider type, a character
string composed only of lowercase ASCII characters. This type becomes part of
the overall identity string. For the purposes of our application, we define a single
type: lightsig.
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Key Expiration. In order to provide key revocation capabilities, the user iden-
tity string includes expiration information. Specifically, id string includes the
last date on which the key is valid: expiration date, a character string formatted
according to ISO-8601, which include an indication for the timezone. For now,
we default to UTC for timezone disambiguation.

Constructing Identity Character Strings. An id string is thus constructed
as: 〈issuing domain〉, 〈email 〉, 〈expiration date〉, 〈type〉. For example, a 2006 LES
identity string for email address bob@foo.com would be: foo.com,bob@foo.com,
2006-12-31,lightsig.

If Bob obtains his secret key from a master authority different than his do-
main, e.g. lightsig.org, his public key would necessarily be derived from a
different id string: lightsig.org,bob@foo.com,2006-12-31,lightsig. Here
lightsig.org happily issues a secret key for Bob, even though his email ad-
dress is not within the lightsig.org domain. This is legitimate, as long as the
issuing domain in the id string matches the issuing keyserver.

3.3 Delivering User Secret Keys

Each domain keyserver will choose its own interval for regular user secret key
issuance, possibly daily, weekly or monthly. These secret keys are delivered by
email, with a well-defined format – e.g. XML with base64-encoded key, including
a special mail header – that the mail client will recognize. The most recent key-
delivery email is kept in the user’s inbox for all mail clients to access, in case the
user checks his email from different computers. The mail client may check the
correctness of the secret key it receives against its domain’s master public key,
either using an algorithm specific to the chosen IBS scheme (most schemes have
such an algorithm), or by attempting to sign a few messages with the new key
and then verifying those results. (For more details, see section 2.3.)

3.4 The Repudiability Option

The downside of signing email is that it makes a large portion of digital com-
munication undeniable [6,32,7]. An off-the-record opinion confided over email
to a once-trusted friend may turn into a publicly verifiable message on a blog!
We believe that repudiable signatures should be the default to protect a user’s
privacy as much as possible, and that non-repudiable signatures should be an
option for the user to choose.

Numerous approaches exist for realizing repudiable authentication: designated-
verifier signatures [21], chameleon signatures [22], ring signatures [33], and more
(see [8] for an overview of deniable authentication with RSA). In theory, any of
these approaches can be used. We chose the ring signature approach for two rea-
sons: (1) it fits seamlessly into our identity-based framework without creating new
key management problems, and (2) our ring signature compiler can create ring
signatures using keys from different schemes, as discussed in section 2.2. Thus, no
domain is obligated to use a single (perhaps patented) IBS scheme.
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Let us explore why ring signatures are an ideal choice for adding repudiability
to LES. Most repudiation options require the sender to know something about
the recipient; in ring signatures, the sender need only know the receiver’s public
key. In an identity-based setting, the sender Alice can easily derive Bob’s public
key using the MPKfoo.com for foo.com in the DNS and Bob’s id string . Setting
the issuing domain to foo.com, the type to lightsig, and the email field to
bob@foo.com for Bob’s id string is straight-forward. For expiration date, Alice
simply selects the current date. We then require that domains be willing to
distribute back-dated secret keys (to match the incoming public key) on request
to any of their members. Few users will take this opportunity, but the fact that
they could yields repudiability. Such requests for back-dated keys can simply be
handled by signed email to the keyserver.

This “Alice or Bob” authentication is valid: if Bob is confident that he did
not create it, then Alice must have. However, this signature is also repudiable,
because Bob cannot convince a third party that he did not, in fact, create it. In
the full version of this paper, we discuss what Alice should do if foo.com does
not yet support LES, and in section 4, we discuss methods for achieving more
repudiability.

3.5 Signing and Verifying Messages

Consider Alice, alice@wonderland.com, and Bob, bob@foo.com. On 2006-09-06,
Alice wants to send an email to Bob with subject 〈subject〉 and body 〈body〉.
When Alice clicks “send,” her email client performs the following actions:

1. prepare a message M to sign, using the DKIM canonicalization (which in-
cludes the From:, To:, and Subject: fields, as well as a timestamp and the
message body).

2. if Alice desires repudiability, she needs to obtain Bob’s public key:
(a) obtain MPKfoo.com, the master public key for Bob’s domain foo.com,

using DNS lookup.
(b) assemble id stringBob, an identity string for Bob using 2006-09-06 as the

expiration date: foo.com,bob@foo.com,2006-09-06,lightsig
(c) compute PKBob from MPKfoo.com and id stringBob. (We assume that

PKBob contains a cryptosystem identifier, which determines which IBS
algorithm is used here.)

3. sign the message M using SKAlice, MPKwonderland.com. Optionally, for repu-
diability, also use PKBob and MPKfoo.com with the section 2.2 compiler. The
computed signature is σ.

4. using the DKIM format for SMTP header signatures, add X-LES-Signature
containing σ, id stringAlice, and id stringBob.

Upon receipt, Bob needs to verify the signature:

1. obtain the sender’s email address, alice@wonderland.com, and the corre-
sponding domain name, wonderland.com, from the email’s From field.

2. obtain MPKwonderland.com, using DNS lookup (as specified by DKIM).
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3. ensure that PKAlice is correctly computed from the claimed id stringAlice
and corresponding issuing domain MPKwonderland.com, and that this id string
is properly formed (includes Alice’s email address exactly as indicated in the
From field, a valid expiration date, a valid type).

4. recreate the canonical message M that was signed, using the declared From,
To, and Subject fields, the email body, and the timestamp.

5. If Alice applied an ordinary, non-repudiable signature, verify M, σ, PKAlice,
MPKwonderland.com to check that Alice’s signature is valid.

6. If Alice applied a repudiable signature, Bob must check that this signature
verifies against both Alice’s and his own public key following the proper ring
verification algorithm [1]:
(a) ensure that PKBob is correctly computed from the claimed id stringBob

and the DNS-advertised MPKfoo.com, and that this id string is properly
formed (includes Bob’s email address, a valid expiration date and type).

(b) verify M, σ, PKAlice, MPKwonderland.com, PKBob, MPKfoo.com to check
that this is a valid ring signature for “Alice or Bob.”

If all verifications succeed, Bob can be certain that this message came from
someone who is authorized to use the address alice@wonderland.com. If the
wonderland.com keyserver is behaving correctly, that person is Alice.

3.6 LES vs. Other Approaches

The LES architecture provides a number of benefits over alternative approaches
to email authentication. We consider three main competitors: SIDF [30] and
similar path-based verification mechanisms, S/MIME [40] and similar certificate-
based signature schemes, and DKIM, the system upon which LES improves. A
comparison chart is provided in table 1, with detailed explanations as follows:

Table 1. LES compared to other approaches for authenticating email. ‡: PGP and
S/MIME can be adjusted to issue keys from the server, somewhat improving scalability.

Property SIDF S/MIME DKIM LES

Logistical Scalability No No‡ No Yes
Deployable with Client Update Only No Yes No Yes
Deployable with Server Update Only Yes No‡ Yes Yes
Support for Third-Party SMTP Servers No Yes No Yes
Easy Support for Privacy Yes No No Yes
Email Alias Forwarding No Yes Yes Yes
Support for Mailing Lists that Modify Content Good Poor Fair Fair

1. Logistical Scalability: When a large organization deploys and maintains
an architecture for signing emails, it must consider the logistics of such a
deployment, in particular how well the plan scales. With SIDF or DKIM,
domain administrators must maintain an inventory of outgoing mail servers
and ensure that each is properly configured. This includes having outgoing
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mail servers properly authenticate individual users to prevent intra-domain
spoofing. Meanwhile, with certificate-based signature schemes, domain ad-
ministrators must provide a mechanism to issue user certificates. By contrast,
LES does not require any management of outgoing mail servers or any addi-
tional authentication mechanism. LES only requires domains to keep track
of which internal email addresses are legitimate, a task that each domain
already performs when a user’s inbox is created. Thus, LES imposes only a
small logistical burden, while DKIM, SIDF, and S/MIME all require some
new logistical tasks and potentially new authentication mechanisms. Note
that it is technically possible to use PGP in a way similar to LES, with
email-delivered certificates, though the PGP keyserver then needs to keep
track of individual user keys where LES does not.

2. Deployment Flexibility: SIDF and DKIM can only be deployed via server-
side upgrades, which means individual users must wait for their domain to
adopt the technology before their emails become authentic. PGP can only be
deployed via client-side upgrades, though one should note that many clients
already have PGP or S/MIME support built in. LES can be implemented
either at the server, like DKIM, or at the client, like PGP.

3. Support for Third-Party SMTP Servers: SIDF and DKIM mandate
the use of pre-defined outgoing mail servers. A user connected via a strict
ISP may not be able to use all of his email personalities. Incoming-mail
forwarding services – e.g. alumni address forwarding – may not be usable if
they do not also provide outgoing mail service. PGP and LES, on the other
hand, provide true end-to-end functionality for the sender: each user has
a signing key and can send email via any outgoing mail server it chooses,
regardless of the From email address.

4. Privacy: LES takes special care to enable deniable authentication for pri-
vacy purposes. SIDF, since it does not provide a cryptographic signature, is
also privacy-preserving. DKIM and S/MIME provide non-repudiable signa-
tures which may adversely affect the nature of privacy in email conversations.
(Note that is is not valid to claim that DKIM signatures are repudiable be-
cause the server signs messages instead of the user; either the server is trust-
worthy or it isn’t.) Even a hypothetical LES-S/MIME hybrid, which might
use certificates in the place of identity-based signatures, would not provide
adequate privacy, as the recipient’s current public key would often not be
available to the sender without a PKI.

5. Various Features of Email: SIDF does not support simple email alias
forwarding, while S/MIME, DKIM, and LES all support it easily. SIDF
supports mailing lists and other mechanisms that modify the email body, as
long as mailing list servers support SIDF, too. On the other hand, S/MIME,
DKIM, and LES must specify precise behavior for mailing lists: if the content
or From address changes, then the mailing list must re-sign the email, and the
recipient must trust the mailing list authority to properly identify the original
author of the message. This is particularly difficult for S/MIME, which must
assume that the mailing list has an S/MIME identity, too, that recipients
trust (this is related to the PKI requirement of S/MIME-like solutions).
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LES provides a combination of advantages that is difficult to obtain from other
approaches. Of course, these features come at a certain price: new security
threats. We explore these LES-specific threats in section 5.

4 Technology Adoption

The most challenging aspect of cryptographic solutions is their path to adoption
and deployment. The deployment features of LES resembles those of DKIM: each
domain can adopt it independently, and those who have not yet implemented it
will simply not notice the additional header information. Like DKIM, LES allows
each domain to express a DNS-based policy about its use of signatures, letting
certain high-risk organizations – e.g. financial institutions – simply declare that
all emails should be LES-signed, while other organizations – e.g. small ISPs –
may allow both signed and unsigned emails.

LES offers two distinct advantages over DKIM in technology adoption. LES
can be deployed either at the mail server or client without altering the DNS LES
record. LES can also be deployed using alternate domain authorities to let users
adopt LES individually before their email domain has adopted it. Once again,
this can be done without changes to the DNS records.

Details about these deployment extensions are in the full version of this pa-
per, including mechanisms for deployment of the repudiability option when the
recipient hasn’t yet deployed LES or when the recipient is a mailing list.

5 Threats

LES shares enough in architectural design with DKIM that both systems face
a number of common threats. For example, both solutions can be compromised
by DNS spoofing, domain key compromise, zombie user machines, and user con-
fusion. Fortunately, the unique properties of LES help to mitigate some DKIM-
specific threats, such as the ability to keep the domain secret key offline and
allowing for recovery from user key compromise without a DNS update.

Of course, the unique properties of LES also cause certain unique threats to
emerge, such as potentially increasing user confusion and allowing for new denial
of service attacks. We examine all these threats in detail in the full version.

6 Experimental Results

We implemented a complete LES environment using Guillou-Quisquater identity-
based signatures [15] based on the RSA assumption. Ring signatures were formed
using a CDS proof of partial knowledge construction [1]. Our implementation in-
cludes a web-based key distribution server and a plugin to the Apple Mail client
that implements key storage, message signing with repudiability, and signature
verification. We used Python for the server-side components, and Objective C
with the GNU Multi-Precision Library for the client-side Apple Mail plugin.
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Table 2. Performance estimates for an average of 1000 runs. Time is in milliseconds.
The sizes are in bytes and do not include encoding overhead. The symbol ∗ indicates
the number includes an estimated 50 bytes for the identity string of the user.

1024-bit modulus 2048-bit modulus
Operation Machine Time Size Time Size
Master Keypair Generation server 143 200 1440 300
User Secret Key Computation server 167 178∗ 1209 316∗

User Public Key Computation client 0.03 178∗ 0.03 316∗

Ring Signature of 100K msg client 37 575∗ 210 1134∗

Ring Verification of 100K msg client 37 N/A 211 N/A

For space reasons, the details of this implementation are provided in the full
versionof this paper with a summary here. Briefly, our implementation shows
that performance of the LES architecture is quite reasonable for transparent
deployment. A small server can manage keys for tens of thousands of users, and
the average desktop computer takes only 37ms to sign or verify a message. (Even
with 2048-bit keys, signing/verification take only 210ms, before optimizations).

Experimental Setup. We ran server benchmarks on a single-processor, 3.2Ghz
Intel Pentium 4 with 2 Gigs of RAM and 512MB of L2 cache, running Fedora
Core Linux with kernel v2.6.9. We used Python v2.3.3. We instrumented the
Python code using the standard, built-in timeit module, running each opera-
tion 1000 times to obtain an average performance rating. We did not make any
overzealous attempts to cut down the number of standard background processes.

We ran client benchmarks on a 1.5Ghz Apple Powerbook G4 with 1.5Gigs of
RAM, running Mac OS X 10.4.4. We instrumented the Objective C code using the
built-in Cocoa call to Microseconds(),which returns the number of microseconds
since CPU boot. We ran each operation 1000 times to obtain an average running
time. Though we were not actively using other applications on the Powerbookdur-
ing the test, we also made no attempt to reduce the typically running background
processes and other applications running in a normal Mac OS X session.

7 Conclusion

We proposed Lightweight Email Signatures (LES), an extension to DKIM which
conserves its deployment properties while addressing a number of its limitations.
LES allows users to sign their own emails and, thus, to use any outgoing mail
server they choose. This helps to preserve a number of current uses of email
that DKIM would jeopardize: choosing from multiple email personalities with
a single outgoing mail server because of ISP restrictions, or using special mail
forwarding services, e.g. university alumni email forwarding, that do not provide
an outgoing mail server.

LES also offers better privacy protection for users. Each individual email
address is associated with a public key, which anyone can compute using only
the domain’s master public key available via DNS. With the recipient’s public



Lightweight Email Signatures 301

key available, any number of deniable authentication mechanisms can be used,
in particular the ring signature scheme we propose.

Our prototype implementation shows that LES is practical. It can be quickly
implemented using well-understood cryptographic algorithms that rely on the
same hardness assumptions as typical RSA signatures.

We are hopeful that proposals like DKIM and LES can provide the basic
authentication foundation for email that is so sorely lacking today. These cryp-
tographic proposals are not complete solutions, however, much like viewing an
SSL-enabled web site is not a reason to fully trust the site. Reputation systems
and “smart” user interfaces will likely be built on the foundation that DKIM and
LES provide. Without DKIM or LES, however, such reputation systems would
be nearly impossible.
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Abstract. The EPCglobal Class-1 Generation-2 UHF tag standard is
certain to become the de facto worldwide specification for inexpensive
RFID tags. Because of its sharp focus on simple “license plate” tags, it
supports only the most rudimentary of security and privacy features, and
essentially none of the cryptographic techniques that underpin authenti-
cation and privacy-protection in higher-powered computational devices.
To support more-sophisticated applications, the drafters of this stan-
dard envisioned the re-use of the basic air interface and command set
in higher-class standards. We propose ways to incorporate mainstream
cryptographic functionality into the Class-1 Gen-2 standard. Our tech-
niques circumvene the intended modes of operation of the standard, but
adhere closely enough to preserve formal compliance. For this reason, we
use the term shoehorning to describe our layering of new security func-
tionality on the standard.

Keywords: authentication, cloning, counterfeiting, EPC, PIN, RFID.

1 Introduction

Radio Frequency IDentification (RFID) tags promise in the near future to be-
come the most numerous computational devices in the world. Their impending
pervasiveness owes much to the power and flexibility that they achieve through
starkly minimalist design. In their most basic form, RFID tags are little more
than wireless barcodes that facilitate the tracking of objects in supply chains –
at present, generally bulk containers like crates.

Many industries are embracing a recently ratified standard for RFID tags
called the EPCglobal Class-1 Generation-2 UHF tag standard [12]. EPC tags, as
the tags compliant with this standard are called, seem certain to become the de
facto standard for low-cost RFID. It is projected that Class-1 Gen-2 EPC tags
will soon cost in the neighborhood of five cents apiece, and will number in the
billions. Their basic purpose is to improve supply-chain visibility, meaning that
they will furnish highly accurate real-time data on the whereabouts of objects.
In contrast to barcodes, which are difficult to scan without precise object posi-
tioning and thus human intermediation, RFID tags transmit data automatically.

It seems natural to appeal to RFID to improve infrastructural security. Indeed,
the United States Food and Drug Administration is promoting the use of EPC
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tags to facilitate the compilation of item pedigrees in the pharmaceutical supply
chain in an effort to combat counterfeit and gray-market products. It is to be
expected that other industries will likewise explicitly or implicitly draw on EPC
tags as a security tool.

EPC tags per se, however, are poorly endowed as security devices. Apart from
some rudimentary protocols that reduce over-the-air information leakage, they
have only two basic security features:

1. The “kill” command: The EPC standard envisions that tags will even-
tually track individual consumer items in the supply chain. In order to pro-
tect consumer privacy, the standard provides for tags to be disabled at the
point of sale in retail environments. When a reader transmits a special “kill”
command to an EPC tag, along with a tag-specific, 32-bit PIN, the tag self-
destructs; that is, it never again responds to reader interrogation. (Dead
tags, of course, offer nearly impeccable RFID privacy.)

2. Read/write access: An optional feature in the EPC standard provides for
access-controlled memory in EPC tags. In order to read and write to certain
memory locations, an EPC reader must furnish a tag-specific PIN.

These two forms of PIN-based access control reduce the risk of certain types of
attack, like malicious killing of tags, and unauthorized access to the contents of
tag memory. EPC tags, however, are vulnerable to a range of other, elementary
attacks. EPC tags emit static, unique identifiers, as well as data like that tradi-
tionally found in a printed barcode, namely a manufacturer name and product
type. Thanks to their identifiers, EPC tags are subject to clandestine tracking;
with a network of readers, an entity can correlate sightings of an individual tag
– and thus potentially track its bearer. The product information on tags creates
a risk of surreptitious inventorying; a reader can in principle determine what
items a person is carrying with her. Such risks have been a flashpoint of concern
for civil libertarians.1

The vulnerability of RFID tags to cloning has received somewhat less atten-
tion. EPC tags, in particular, release their identifiers and product information
– known as EPC codes – in a promiscuous manner. Any reader may scan any
EPC tag; no access control exists on EPC codes. Consequently, having scanned
a target EPC tag once, a reader can harvest all of the information needed to
duplicate that tag in its essentials. It is unclear whether field-programmable, i.e.,
blank EPC tags, will be a regular commercial offering, although it is not incon-
ceivable. An attacker could easily imprint such a tag to create a counterfeit, i.e.,
duplicate EPC tag.2 Even without blank tags, however, it is an elementary mat-
ter to create wireless devices that may not have the same physical appearance
as EPC tags, but perfectly simulate their output.
1 As noted above, EPC tags are unlikely to see widespread use on consumer products

for some years. Consumers regularly carry other types of RFID tags on their persons,
however, such as payment devices and proximity cards, i.e., RFID devices that unlock
doors.

2 It is even possible that the pre-programmed data in an EPC tag could be directly
modified.
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The drafters of the EPC standard were aware of these privacy and security
concerns. They rejected potential countermeasures, like cryptographic function-
ality, in favor of low cost. Rather than incorporate security technologies into
Class-1 tags, EPCglobal instead imagined a hierarchy of tags [12], each succes-
sive level adding functionality while incorporating all the features of lower-class
tags. In this way, higher-class tags could build on the existing infrastructure
without the need to develop a new air interface for each. By way of analogy,
consider the long sequence of standards under the IEEE 802.11 banner. A com-
mon command set has been extended multiple times and adapted to different air
interfaces, all while leveraging past investment and (when possible) maintaining
backward compatibility and coexistence.

1. Class-1: Identity Tags Passive-backscatter tags offering only basic fea-
tures like a fixed EPC identifier, a tag identifier, kill function, and optional
password-protected access control

2. Class-2: Higher-Functionality Tags Passive tags with all of Class-1’s
features and extended tag identifier and user memory, as well as authenticated
access control

3. Class-3: Semi-Passive Tags with all of Class-2’s features as well as sensors
and on-tag power sources like batteries

4. Class-4: Active Tags with all of Class-3’s features as well as tag-to-tag
communications and ad-hoc networking

In contrast to established HF RFID standards like ISO 14443 and ISO 15693,
where security protocols have already been deployed, the Class-1 Gen-2 UHF air
interface is designed to offer longer range, better handling of dense tag and reader
environments, and lower cost. These factors will draw security applications to
this standard just as they have driven its success in supply chains – as well as
the tremendous expected economies of scale.

Our work. In this paper, we consider various ways in which it is possible
to create RFID tags that perform cryptographic functionality while remaining
compliant with both the Class-1 Gen-2 standard and conformance specification
[13] and while extending the command set. Our techniques could serve as an
alternative to the creation of a Class-2 EPC standard – or as the basis for such
a standard.

Our key idea is to take an expansive view of EPC tag memory. Rather than
treating this memory merely as a form of storage, we consider its use as an
input/output medium capable of interfacing with a cryptographic module within
the tag. Read and write commands to the tag, therefore, may be commandeered
to carry cryptographic values. We focus on protocols for tag authentication,
rather than privacy-enhancing protocols.3

3 As an example of a privacy-enhancing protocol consonant with the principles we
enunciate here, see [16], which proposes a system of cryptographically changing EPC
codes.
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Organization
We survey authentication in the appendix, and review related work on RFID
security in section 2. We explore the scope of the Class-1 Gen-2 EPC standard
in section 3, and in section 4, propose an example cryptographic command set
that may be fit into the standard. We conclude in section 5 with a brief summary.

2 Related Work

Privacy has been perhaps the major security focus in the RFID literature and
in press coverage as well. A number of approaches have been proposed, includ-
ing simple RF shielding (e.g., aluminum foil), distance detection [8], interference
with RFID singulation [20] (i.e., the standard process by which readers estab-
lish one-to-one communication with tags), rotating pseudonyms [16], physical
disablement [23], proxying [28,21], trusted computing [24], and cryptographic
protocols, e.g., [3,9,25,26]. Cryptographic approaches to user privacy based on
symmetric-key primitives tend to be unsatisfactory from a practical standpoint.
They rely on readers performing intensive searches over databases of tag keys,
or else sharing of secrets across tags that can weaken their security guarantees.
Public-key-based protocols are expensive. (See [19] for an overview.) For these
reasons, we focus here on the more tractable problem of authentication.

Several researchers have proposed new, lightweight cryptographic primitives
aiming at RFID authentication [17,22,31]. A European project [1] aims to iden-
tify new stream ciphers; some of these are potentially lightweight enough for
inclusion in low-cost devices. It is as yet unclear whether any of these recently
proposed primitives are both strong enough and agile enough for use in low-cost
RFID tags, but they represent an important continuing area of inquiry. Feld-
hofer et al. [7] have described an AES implementation designed specifically for
RFID devices. This implementation requires security resources exceeding those
presently possible in EPC tags, but perhaps suitable for some of the enhance-
ments we describe here.

Some current RFID tags do employ cryptographic primitives for authentica-
tion. Today, these tags tend to be more expensive than EPC tags, and therefore
address niche applications like defense logistics. They also demonstrate that de-
sign of good cryptographic protocols for RFID requires careful attention [4].

The Auto-ID Lab, the research arm of EPCglobal, operates a special interest
group devoted to use of RFID to combat counterfeiting. Researchers there have
proposed uses of EPC to combat counterfeiting of consumer items [29]. They
suggest that track-and-trace technologies, i.e., supply-chain monitoring based
on current EPC tags, can yield good improvements over existing security. They
also discuss the benefits of challenge-response protocols for tag authentication,
and review extensions to existing EPC architecture for this purpose. They do not
investigate incorporation of cryptography into Class-1 Gen-2 EPC tags. Instead,
they propose support in future, higher-class EPC standards.

Juels proposes ways to leverage the PIN-controls for killing and read/write
access to achieve ad hoc authentication in Class-1 Gen-2 EPC tags [18]. The re-
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sulting protocols are cryptographically weak, e.g., they are vulnerable to eaves-
dropping attacks, but they permit authentication of EPC tags that would oth-
erwise not be possible. That work is similar to our proposals here in that it aims
to leverage the existing standard to achieve stronger security functionality.

Of course, it is common practice to repurpose or co-opt communication-
protocol standards as we propose here. As seen in the past, the broad deploy-
ment of a communications standard yields many uses beyond the imagination of
its original designers. Perhaps the most notable example in recent times is the
TCP/IP suite of networking protocols. Originally designed for communication
among mainframe and minicomputers housed in government labs, it is now sup-
porting transmission of video clips to cell phones and replacing the traditional
public switched telephone and cable-television networks.

What is unusual about our work here is the very constrained nature of the
protocol set that we propose to co-opt. The EPC standard specifies an artifact,
i.e., a device with a fixed command set specified down to the bit level, and
virtually no margin for extensions and no underlying intention to support them.
Yet our goal is to achieve general, extensible security services within the EPC
standard. We require a large shoehorn indeed – but thankfully one of essentially
simple design.

3 Shoehorning

The huge economies of scale will drive down the cost of tags, readers, and their
components. The low cost of components will lead to their inclusion in many
devices beyond the simple “license plate” item-identification application. The
extension of the Class-1 Gen-2 standard to meet these needs, including anti-
counterfeiting, requires a slightly different view of the specification. Instead of
implying the characteristics of an artifact that implements the protocol, we can
view it simply as a communication protocol. With this approach, Class-1 Gen-2
offers a logical and physical layer protocol which can be used to carry bulk data,
including that of higher-layer protocols.

To implement the security services needed especially in pharmaceutical appli-
cations, we could develop new customized extensions to the logical layer, similar
to the 802.11i [11] effort. But as experience has shown, this is not a trivial task.
Simply taking an otherwise secure cipher and using it to encrypt data can lead
to an insecure protocol [2]. Moreover, doing so presents a difficult choice: either
select a single set of algorithms all implementors must use, or provide a nego-
tiation scheme. Fortunately, several standard interfaces have been devised for
secure communications with simple devices. Given their broad deployment, they
have been thoroughly implemented and analyzed, and can be applied here.

3.1 A Simple Protocol for Entity Authentication

The Class-1 Gen-2 protocol already has a limited protocol for entity authentica-
tion: in order to access protected memory or privileged commands like kill, the
reader must present a static password. In principle, to authenticate itself to the
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reader, the tag could do the same: we could imagine a new command that would
request a password from a tag. But we observe that having the tag present static
data like a password provides no additional security services than providing the
EPC. Presumably, an attacker who is able to clone an EPC could just clone the
password as well.

With this observation in hand, we provide a motivating example of the flex-
ibility of our approach. Challenge-response protocols prevent an eavesdropping
attacker from obtaining a static password and simply reusing it. In such a proto-
col depicted below, the tag computes a 32- or 64-bit response RT = H(KTS , CR)
where H() is a cryptographic function like a block cipher, KTS is some secret
key known to the tag and the reader (or server), and CR, is a unique challenge.
Of course, RT could be chosen to have a length longer than 64 bits if conditions
warrant. In an application where an attacker could feasibly try such a large num-
ber of interactive queries with the reader, a longer RT value would be a good
choice, but 64 bits is appropriate for many applications given the relatively short
range of Class-1 Gen-2. To address off-line attacks, one can choose KTS to be
much longer – such as 128 bits – without increasing the number of bits sent over
the air. We have seen several implementation reports of block ciphers like AES
adapted to the severe constraints of passive RFID [7] which could serve as our
function H().

An extraordinary number of challenge-response protocols have been devel-
oped to suit various needs and resist various attackers. This one is presented as
an example because of simplicity and a particular quirk of the Class-1 Gen-2
standard: tags do not have a method to obtain the identity of a reader. For its
part, the Electronic Product Code carried by the tag is denoted IDT .

1. Reader → Tag : CR

2. Tag → Reader : IDT , RT

There are several types of challenge-response protocols classified by how the
value CR is chosen. Perhaps the most familiar method is for the value CR to
be chosen by the reader and explicitly sent to the tag, which we’ll explore in
much more detail below. In a special case called a time-synchronous one-time
password, however, if the tag has a real-time clock, then it can use the time of day
as an implicit challenge. This approach eliminates the need for a special message
from the reader carrying CR. To ensure a password is not being replayed, one
can choose a time interval for CR short enough to preclude replay attacks and
the reader can store the last correct password value received from the tag.

Given this capability, our two-message protocol above can be collapsed into a
single message: when asked for its EPC in Read, ACK, or any other command,
the tag responds with its EPC concatenated with its one-time password.

1. Tag → Reader : IDT , RT

Since according to Section 6.3.2.10.2.4, the transmitted EPC data field may
be up to 512 bits, using 32 or 64 of these for a one-time password still leaves
a tremendous number of available identifiers. No modifications to the spec are
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required, save perhaps a general agreement on the placement of the one-time
password RT within a transmitted EPC field. In this way, the tag provides
additional evidence of its identity which the reader may check or not. For high
throughput applications, the reader can simply ignore the one-time password
value, only checking the password when it wants to gain assurance that the tag
has not been cloned.

If our application requires more robust reader authentication, we could addi-
tionally require the reader to respond to a challenge. The Class-1 Gen-2 standard
already provides data fields for the reader to transmit 16-bit passwords. Nothing
prevents us from using a one-time password instead, verifying the provided value
on the tag. In practice, the tag needs either a real-time clock or a way to deliver
a challenge to the reader. In addition, given the fact that different applications
need different security services and/or algorithms, we need a way for the tag and
reader to negotiate a common set of features as in an SSL cipher suite [6]. Fixing
a single algorithm for all applications for all time seems short-sighted since we
know algorithms - even those trusted by governments and large financial institu-
tions - get broken from time to time. We can of course define frame formats for
all these things, but we quickly find that we are creating a complete customized
security layer, when there are robust tools already in existence that can help.

3.2 Protocol Convergence

In contrast to typical communication protocols, Class-1 Gen-2 lacks a command
to simply send bulk data over the air. In fact, most data payload fields in the
protocol are limited to sixteen bits in length. This design choice is guided by the
challenging environment faced by tags applied to fast-moving consumer goods.
Many use cases involve hundreds or thousands of tags arranged on pallets and
speeding toward a dock door. The uncertainties of antenna orientation together
with the sheer number of tags make the short data frames a wise choice for
this application. But in other settings, such as checking the authenticity of high-
value goods like pharmaceuticals, we can have the luxury of communicating with
fewer tags at a time, for longer durations. This fact means we can appeal to the
commands in Class-1 Gen-2 with variable-length data payload. To implement a
security protocol, we will have to reuse commands designed for another purpose,
or define custom or new commands.

This task of defining the use of one protocol to carry the protocol data units
of another is often called protocol convergence. See [10], for instance, which ex-
plicitly defines a physical-layer convergence protocol. To refer to data units con-
sumed by a protocol entity not contained in the Class-1 Gen-2 spec, we will use
the phrase application protocol data units, or APDUs.

Section 6.3.2.1 of the standard specifies four banks of memory which may be
read or written by a reader: reserved, EPC, TID, and User. The User bank offers
the most flexibility, allowing user-defined organization of arbitrary amounts of
memory arranged in 16-bit words. Subject to some conditions possibly involv-
ing the presentation of a fixed password, the tag is obliged to obey Read or
BlockWrite commands. But the contents of memory need not be fixed: neither
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the standard nor the conformance document [13] prohibit the manipulation of
memory by logic in the tag. In fact, we could view the situation as interprocess
communication implemented by shared memory. The reader writes data to a
particular memory location in the tag. Logic in the tag reads from this location,
processes the data frame, and writes its response to that (or a different but com-
monly agreed-upon) memory location. The reader obtains its result by reading
from this memory location.

As a concrete example, consider a tag that has been singulated by a reader
so that they may engage in a one-to-one communication. This task is accom-
plished by the tag successfully responding to a sequence of Query, ACK, and
Req RN commands to arrive in the Access state [12]. Now the reader and tag
can participate in a security protocol. We use a special block of shared mem-
ory in the User memory bank, starting with word zero to transfer the security
protocol’s APDUs between the reader and logic in the tag. Since the Class-1
Gen-2 protocol follows a reader-talks-first paradigm, the exchange begins with
a BlockWrite command which writes the contents of the APDU to the shared
memory, as shown in Table 9, found in the appendix along with all other frame
formats referenced in this paper.

The tag’s Class-1 Gen-2 interface writes the data to the appropriate location,
and then transmits its normal reply to indicate success. We observe at this point
that because protocol APDUs are meant for immediate consumption, rather
than long-term storage, the contents of the shared memory can be stored in
RAM instead of EEPROM. This allows the tag to use the time and power
ordinarily used for writing nonvolatile storage for interpretation of, and response
to, the APDU. As usual following command transmission, the reader broadcasts
a continuous wave (CW) for up to 20 msec to power the tag and allow it to
complete its operation. Additional logic in the tag uses this power and time to
interpret the APDU, compute a response if necessary, and write its response to
the same - or another previously agreed-upon - memory location. Once this is
done, the tag sends its usual reply frame, which in this case indicates the tag
has interpreted the APDU and a response is available. If processing a command
takes longer than 20 msec, the response APDU prepared by the tag can indicate
that processing has not yet completed.

The reader can now obtain its response by issuing a Read command. As before,
we will assume that the special block of shared memory is located in the User
memory bank and starts at word zero. This command frame is illustrated in
Table 10.

Using this message sequence in principle allows us to implement virtually
any protocol. Rather than overloading the Read and BlockWrite commands, we
could define new commands with the same intent: a WriteGenericAPDU and
ReadGenericAPDU could be assigned their own command identifiers without
changing the basic approach. Of course, since the underlying logical layer fol-
lows a reader-talks-first paradigm, some protocols will work better than others.
In order to handle APDUs originated by the tag, one could have the reader pe-
riodically use a read command to check if the contents of shared memory have
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changed. But this polling-based approach is unwieldy, so we instead look for
existing protocols that fit nicely with the tools at hand.

4 A Natural Command Set: ISO 7816-4

This problem of authenticating a severely constrained device is not unique to
supply chain applications: smart cards have long been used for authentication.
Given the protocol convergence ideas articulated above, our enhanced tag looks
more like a contactless smartcard and less like a traditional “license plate” RFID
tag. So we aim to draw on the collective design and widespread implementation
experience available in the smartcard arena to address our need for authentica-
tion and security feature negotiation. An ideal protocol would allow for extreme
optimization of the most commonly used security features while also allowing
other security operations possibly involving long APDUs fragmented into sev-
eral data frames, and feature negotiation among cards and readers from different
vendors.

We find such a protocol in part of ISO 7816 [15], a series of international
standards that forms the basis for millions of smart cards worldwide includ-
ing pay-TV and GSM SIM cards. As with many standards for communicating
systems, the several documents in the ISO 7816 series are each devoted to a
particular layer in a stack of protocols. This layered approach allows particular
standards in the series to be applied to different environments. For instance, the
ISO 14443 [14] series of standards for contactless proximity cards explicitly al-
lows for the use of ISO 7816-4 APDUs to be carried over its logical and physical
layers. From the perspective of a lower layer protocol, an ISO 7816-4 APDU
would simply be seen as a data payload.

ISO 7816-4 offers a set of APDUs arranged in command-response pairs to au-
thenticate and securely access data stored on a card. The specification declines
to specify algorithms, physical interface technology, or the internal implementa-
tion within the card. Fortunately, most of its features are designed for systems
where the reader talks first, nicely complementing the logical layer features in
Class-1 Gen-2.

ISO 7816-4 defines general command and response frames, depicted in Table 1
and Table 2, respectively. It further specifies instantiations of these to perform
tasks like entity authentication of tag, reader, or both as well as transfer of
encrypted or integrity-protected data. To make things concrete, we’ll focus on
one command called Internal Authenticate, while our techniques extend to other
commands as well.

With this set of headers, data lengths, and trailers, the reader can unam-
biguously specify precisely which command is desired along with details on al-
gorithms, protocols, parameters, key identifiers, and of course, command data.
The tag can reply with status bytes indicating success, reasons for failure, or the
fact that processing has not yet completed.

Given the rich feature set of ISO 7816-4, one can address a great number of
applications. But we observe that in this environment, tags may specialize on
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Table 1. ISO 7816-4 Command

Field Description Number of bytes
Command header Class byte denoted CLA 1
Command header Instruction byte denoted INS 1
Command header Parameter bytes denoted P1-P2 2

Command data-length Lc Absent if Nc = 0, otherwise equal to Nc 0, 1, or 3
Command data Absent if Nc = 0, otherwise a string of Nc bytes Nc

Maximum response length Absent if Ne = 0, otherwise equal to Ne 0, 1, or 3

Table 2. ISO 7816-4 Response

Field Description Number of bytes
Response data Absent if Nr = 0, otherwise a string of Nr bytes Nr

Response trailer Status bytes SW1 and SW2 2

one or two security services such as authentication of a tag to a reader to prevent
counterfeiting. In the rest of this paper, we focus on heavily optimizing a tag’s
most-used feature while still allowing the richness of the 7816-4 command set.

From the tables one can see there is some overhead associated with this com-
mand set: a typical command would see six bytes overhead, while a response
would see two. Since communication bandwidth is at a premium in this environ-
ment, we must explore some examples to determine if the cost is acceptable and
consider ways to reduce it.

4.1 Tag Authentication

In Section 3.1, we outlined a simple tag authentication protocol using challenge-
response and one-time passwords. Using the techniques outlined in Section 3.2,
we can go beyond this approach to support virtually any entity authentication
protocol from simple passwords to robust cryptography. Let us consider the use
of the ISO 7816 command set to achieve entity authentication of the tag.

Of course, we must choose some algorithm to achieve this goal. When it comes
to cryptographic functions, we face an embarrassment of riches. Such a broad
set of protocols, algorithms, and associated modes of operation has been devised
that it seems shortsighted to attempt to fix one choice for all secure applications.
Like the various options offered in the Class-1 Gen-2 physical layer, each of these
cryptographic primitives conducts a careful trade off among attributes. In this
case, the attributes are computational complexity, communication complexity,
security services offered, and resistance to various types of attackers. We are
forced then to choose one algorithm or devise some sort of negotiation scheme
for a tag and reader to agree on a protocol, algorithms, and modes.

This service is precisely what ISO 7816 provides: security protocol messages
tagged to reference an algorithm and any associated reference data such as a key
identifier. By way of example, in Table 3, let us consider the Internal Authenti-
cate command to implement our protocol. The value CR will be provided by the
reader in the protocol. Values postfixed by ”h” indicate hexadecimal notation.

Table 3 shows the reader providing an eight-byte challenge value to the tag.
Note that the class and command parameter bytes are set to zero. Tables 2 and
3 in [15] define the semantics of the class byte. A reader can indicate if this
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Table 3. Internal Authenticate Command from Reader

Field Description Number of bytes
Command Class Byte 0h 1

Command Instruction Byte 88h 1
Command Parameters 0h 2
Command data-length 8h 1

Command data CR 8
Maximum response length 8h 1

Table 4. ISO 7816-4 Response

Field Description Number of bytes
Response data RT 8
Status bytes 6100h 2

command frame is a fragment of a longer command and if any encryption or
integrity protection has been applied. In our case, neither of these conditions is
true and therefore these bytes are set to zero. The command parameter identifies
the algorithm, protocol, and modes, but ISO 7816 allows these bytes to be set
to zero if their values are implicitly known. For reasons of cost and efficiency,
many tags may support only one set of these values.

When these APDUs are carried by Read or BlockWrite commands, we can
calculate the total number of bytes sent over the air before our compression
techniques in Section 4.2. By way of comparison, we also consider the case when
the challenge, CR, is implicitly known by the tag such as in time-synchronous
onetime passwords.

Table 5. Frame sizes for shoehorned Internal Authenticate

Frame Type Bytes Bits
BlockWrite Carrying Internal Authenticate with Challenge 22 169

BlockWrite Carrying Internal Authenticate with Implicit Challenge 13 97
Read Carrying Response 18 137

4.2 Compressing ISO 7816-4

Clearly, these commands are larger than we would like. Our goal is to optimize
the most common usage while allowing flexibility. Our working assumption is
that most tags will support a small number of security methods and generally
their usage will be implicit. This means in general that the class and parameter
bytes - and sometimes the instruction byte - will be redundant. So we can elim-
inate these, but we need some way to signal to the tag which fields are present
in a received data frame.

As above, we have two options: we can carry on using the Read and BlockWrite
commands and specify a wrapper with a bit field to indicate which ISO 7816 fields
are present. In essence, this wrapper becomes our security sublayer and allows
the tag unambiguously reconstruct the original ISO 7816 APDU, if desired. As
an alternative to Read and BlockWrite,we can define custom commands for this
purpose. Both new and custom commands are considered below.
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Security Sublayer. Continuing our use of the Read and BlockWrite com-
mands, we can prepend all ISO 7816-4 APDUs with a header to indicate which
fields are present as shown in Table 6.

Table 6. Security Sublayer Header

Command Class Byte Command Instruction Byte Command Parameters
Number of bits 1 1 1

Then in Table 11, we specify a complete BlockWrite data frame to send an ISO
7816-4 APDU for an entity authentication protocol as above; here we compute
the 64-bit value RT given the 64-bit value CR provided by the reader; we obtain
a savings of 29 bits compared with Table 5. As noted above, these parameters
are provided as an example and many other combinations are possible, including
an implied CR value and a 32-bit password returned as in Table 12. Observe that
ISO 7816-4 already allows the DataLen and Data fields to be omitted entirely
if their values are implied, relieving us of the need to explicitly signal their
presence. This result leaves us with a data frame of only 68 bits, 32 of which
are the handle and CRC. Response frames are unchanged and remain as above.
A summary of over-the-air complexity is in Table 7. But further reductions are
possible if we turn to specialized commands.

Table 7. Frame sizes for Compressed Internal Authenticate using BlockWrite

Frame Type Bytes Bits
Compressed BlockWrite Carrying Internal Authenticate with Challenge 18 140

Compressed BlockWrite Carrying Internal Authenticate with Implicit Challenge 9 68
Read Carrying Response 18 137

New Commands. To save even more bits over the air, we can turn to new
commands. The standard defines command identifiers using up to 8 bits each
for base commands, and 16 bits each for custom or proprietary commands. We
observe that in our use of the Read and BlockWrite commands, quite a few bits
are devoted to specifying a memory location and data length. A new or custom
command’s identifier would directly imply the memory location, saving some
bits. In addition, the ISO 7816 APDU either specifies its own length explicitly
in the DataLen field, or – like other parameters – it is previously known by
both parties, allowing us to optionally dispense with the WordCount field. By
defining a new command we can save a total of 17 bits by using an unreserved
8-bit identifier, of which there are 22 currently available. Of course, we could
define a custom command instead, but then we would only save 9 bits since an
additional 8 bits are required to specify a custom command. The command and
response versions are illustrated in Tables 13-16.

Using this approach, we can compare the size of the data frames in each of
these scenarios when used with our example cryptographic protocol in Table 8.
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Table 8. Sizes of New or Custom Commands

Frame Type Bytes Bits
New EPC-layer Command for ISO 7816 APDU Command with Challenge 15 123

New EPC-layer Command for ISO 7816 APDU Command with Implicit Challenge 6 51
Custom EPC-layer Command for ISO 7816 APDU Command with Challenge 16 131

Custom EPC-layer Command for ISO 7816 APDU Command with Implicit Challenge 8 59
EPC-layer Tag Reply to Response APDU 15 113

Authentication of a Group of Tags. We have focused on commands that
require a tag to be fully singulated before a cryptographic protocol takes place.
Recalling our example security function RT = H(KTS , CR), we observe that if
each tag has a unique key KTS , then the value CR need not be unique to each
tag. This is common practice in the application of one-time passwords for user
login, as CR will often be either the time of day or a counter. Performing entity
authentication of a group of tags can be greatly optimized by delivering CR to
all tags and allowing them to respond individually. Toward this end, we propose
QuerySecure and ACKSecure commands which perform these functions using
the protocol convergence ideas outlined above. Essentially, QuerySecure extends
Query by appending the Header, DataLen, Data, RespLen, and 7816 APDU
fields and replacing the CRC-5 with a CRC-16. The resulting data frame weighs
in at 101 bits, but in contrast to the commands listed above, only needs to be sent
once to a population of tags. The ACKSecure command likewise simply appends
the Response Data and Status Bytes fields to the existing ACK command, which
then scrolls back its EPC followed by the RT value it computed.

5 Conclusion

The optimizations we have presented here are driven by the desire to optimize
one commonly used cryptographic operation for each tag, while allowing the
flexibility of a fully extensible, broadly supported, and internationally recognized
protocol to handle issues of feature negotiation.

This is the motivation behind our fusing the EPC standard with ISO 7816-4.
In the case of tag authentication using a block cipher, the resulting optimized
data frames are shorter than many Electronic Product Codes. An implementor is
not restricted to our example cryptographic protocol, or even to the ISO 7816-4
Internal Authenticate command. By either inspecting or knowing the tag’s TID,
the reader can use whichever 7816-4 command and associated parameters for
which the tag is optimized. To access other commands, the reader can explicitly
specify the desired command and parameters. We have shown three different
ways to add this functionality to the Class-1 Gen-2 standard while maintaining
backward compatibility: by using the BlockWrite and Read commands, by defin-
ing custom commands, and by defining new commands. An implementor could
choose whichever of these methods is most suited to a particular deployment.

In summary, our proposed techniques permit the creation of RFID tags that
are compliant with the Class-1 Gen-2 EPC standard, but offer the broad and
widely supported cryptographic functionality of standards like ISO 7816-4. We
hope that the simplicity and ready extensibility of our techniques will pave the
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way for the penetration of EPC into a broader array of security applications.
EPCglobal has expressed the intention to create a Class-2 standard that specifies
higher-functionality, higher-security, next generation EPC tags. Our approach
could make this a much easier job, and allow also a broad spectrum of new
devices to benefit from the infrastructure of today’s EPC standard.
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A Security Services

A.1 Device Authentication

EPC tags and other low-cost RFID devices are often referred to as “license
plates:” They carry and broadcast fixed identifiers. In consequence, such de-
vices are easy to clone. An attacker can read an identifier and write it to a
new, programmable RFID tag or simulate it in a different type of RF device.
Mitigating the risk of tag cloning is an essential security goal in an RFID sys-
tem. Tags that possess secret keys and execute well-designed cryptographic pro-
tocols to authenticate themselves to readers can resist cloning in the face of
over-the-air attack. Conversely, it may also be desirable for tags to be able to
authenticate readers to prevent the release of sensitive tag data to unauthorized
readers.

Of course, cryptographic protocols are effective only in logical-layer defense.
An attacker that physically probes an RFID tag and extracts keys can clone it.
While the cryptographic services that we propose here cannot directly forestall
such attacks, they can support tamper-resistance mechanisms, like PUFs and
POWFs [30,27], that rely on a blend of logical and physical countermeasures.

A.2 Device-Binding Authentication

A valid, un-cloned tag applied to the wrong item will furnish erroneous infor-
mation. So it is important to establish the correctness of the physical context
for an RFID tag. Toward this end, for example, shipping containers have been
designed that contain internal RFID devices whose state changes in response to
the opening of the container [5]. PUFs [30] and POWFs [27] are physical objects
– silicon and glass-and-plastic respectively – whose state changes in response to
physical stresses, and can help in the detection of RFID-tag removal. (Of course,
good adhesives can also help.) Various chemical fingerprinting and watermarking
techniques combat counterfeiting, and complement RFID devices.

A.3 Data-Origin Authentication

An RFID tag can also as a carrier of ancillary data, e.g., information about
goods in a pallet. Data-origin authentication can support the physical integrity
of the tag itself, as when an RFID tag stores information about the state of
physical tamper-detection objects like PUFs or POWFs or chemical markers.
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As a cryptographic service, data-origin authentication binds the production of
a block of data to a particular entity by means of a digital signature (or message-
authentication code (MAC)). It also attests that the data have not been modified
since their original encoding. An RFID tag can carry data digitally signed by
an external entity or dynamically produce its own signature. In the former case,
the tag serves as a data carrier, and need not itself perform the cryptographic
operation of signing.

B Frame Formats

Table 9. Using BlockWrite command to carry an APDU

Command MemBank WordPtr WordCount Data Handle CRC-16
Number of bits 8 2 EBV 8 Variable 16 16

Description 11000111 11 0000000 Number of APDU handle
words to write

Table 10. Using Read command to carry an APDU

Command MemBank WordPtr WordCount Handle CRC-16
Number of bits 8 2 EBV 8 16 16

Description 11000010 11 0000000 Number of handle
words to read

Table 11. Using BlockWrite command with explicit challenge value

EPC Layer Cmd Bank Ptr Count Data Handle CRC
Security Layer Header DataLen Data RespLen
Number of bits 8 2 EBV 8 3 8 64 8 16 16

Description 11000111 11 0000000 00000110 000 00001000 CR 00001000 handle

Table 12. Using BlockWrite command with implicit challenge value

EPC Layer Cmd Bank Ptr Count Data Handle CRC
Security Layer Header DataLen Data RespLen
Number of bits 8 2 EBV 8 3 0 0 8 16 16

Description 11000111 11 0000000 00000110 000 00000100 handle

Table 13. New EPC-layer Command for ISO 7816 Command APDU

Command Header Compressed 7816 APDU Handle CRC-16
Number of bits 8 3 Variable 16 16

Description 11001001 CR handle

Table 14. EPC-layer Tag Reply to ISO 7816 Command APDU

Header Handle CRC-16
Number of bits 1 16 16

Description 0 handle
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Table 15. New EPC-layer Command for ISO 7816 Response APDU

Command Handle CRC-16
Number of bits 8 16 16

Description 11001010 handle

Table 16. EPC-layer Tag Reply for ISO 7816 Response APDU

Header Response Data Status Bytes Handle CRC-16
Number of bits 1 Variable 16 16 16

Description 0 RT



Proof-Carrying Proxy Certificates

Walid Bagga, Stefano Crosta, and Refik Molva

Institut Eurécom
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Abstract. The term proxy certificate is used to describe a certificate that is is-
sued by an end user for the purpose of delegating responsibility to another user
so that the latter can perform certain actions on behalf of the former. Such cer-
tificates have been suggested for use in a number of applications, particularly
in distributed computing environments where delegation of rights is common. In
this paper, we present a new concept called proof-carrying proxy certificates. Our
approach allows to combine the verification of the validity of the proxy certifi-
cate and the authorization decision making in an elegant way that enhances the
privacy of the end user. In contrast with standard proxy certificates that are gener-
ated using standard (public-key) signature schemes, the proposed certificates are
generated using a signature scheme for which the validity of a generated signature
proves the compliance of the signer with a credential-based policy. We present a
concrete realization of our approach using bilinear pairings over elliptic curves
and we prove its security under adapted attack models.

Keywords: Proxy Certificates, Credentials, Authorization, Bilinear Pairings,
Data Minimization.

1 Introduction

The concept of proxy certificates, first formalized in [16], allows an end user to delegate
some responsibility to another user, called agent, so that the latter can perform certain
actions on behalf of the former. A proxy certificate is a certificate that, in contrast with
the public-key certificates issued by trusted certification authorities (such as X.509 cer-
tificates), is generated by an end user. It represents the signature of the end user on a
message that typically contains the identity of the end user himself, the public key of the
agent and a set of statements defining the terms of the delegation. It allows the agent
to authenticate with other users as if he was the end user when performing the dele-
gated actions. Proxy certification has been suggested for use in a number of applications
particularly in distributed computing environments where delegation of rights is quite
common. Examples include grid computing [6], mobile agents for e-commerce [8], and
mobile communication [7]. More recently, an X.509 certificate profile for proxy certifi-
cates was proposed in [19].

Whenever an agent wants to perform an action on behalf of an end user, he must
prove that he is authorized by the end user to perform the action on his behalf. This is
achieved by providing a valid proxy certificate and proving the possession of the private
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key corresponding to the agent’s public key specified by the certificate. Furthermore, the
agent has to prove that the end user is compliant with the authorization policy associated
to the action he wants to perform. An increasingly popular approach for authorization
in large-scale open environments like the Internet consists in using policies fulfilled
by digital credentials. Basically, a digital credential is composed of a set of statements
about certain user and the signature of this set by a trusted entity (called credential
issuer). In this context, a commonly taken approach consists in that the agent provides
a set of end user’s credentials fulfilling the authorization policy (called a qualified set
of credentials for the policy). The entity that is in charge of making the authorization
decision is called the verifier. On one hand, the verifier has to check the validity of each
of the received credentials. On the other hand, he has to check that the received set of
credentials fulfills the authorization policy associated to the requested action.

The standard approach is not satisfactory for three reasons: first, verifying the valid-
ity of the proxy certificate and the validity of the different credentials separately is a
burden for the verifier. Second, we believe that managing the end user’s credentials and
proving his compliance with an authorization policy should not be the role of the agent.
Third, proving the compliance with a credential-based policy through the disclosure of a
qualified set of credentials is not optimal from a privacy point of view. More precisely, it
is not compliant with the privacy principle of data minimization (called the data quality
principle in OECD guidelines [10]) that states that only strictly necessary information
should be collected for a given purpose. For instance, assume that the authorization
policy requires the possession of at least one credential belonging to a set of multiple
credentials. Then, according to the data minimization principle, the verifier should not
know more than the fact that the end user is compliant with the policy. In other words,
the verifier should not know which specific credential fulfilling the authorization policy
is held by the end user.

In this paper, we introduce a novel form of proxy certificates called proof-carrying
proxy certificates. In contrast with standard proxy certificates that are generated using
standard (public-key) signature schemes, the proposed certificates are generated using a
signature scheme for which the validity of a generated signature proves the compliance
of the signer with a credential-based policy. Using this special form of proxy certifi-
cates, the end user does not disclose any of his credentials. He uses them to generate a
proof of compliance with the verifier’s authorization policy. Besides, the agent does not
have to deal with the end user’s credentials. He just provides his proof-carrying proxy
certificate (in addition to proving the possession of the private key corresponding to
the agent’s public key specified by the certificate). Finally, the verifier will just need to
verify the validity of the received proxy certificate with respect to his policy i.e. the ver-
ification of the validity of the proxy certificate and the authorization decision making
are performed in a logically single step.

The signature scheme used for the generation of proof-carrying proxy certificates
should be unforgeable as for standard signature schemes. Furthermore, the scheme has
to fulfill a privacy property called credential ambiguity in order to fulfill the data min-
imization principle i.e. the validity of a the signature on the proof-carrying proxy cer-
tificate proves that the end user is compliant with the authorization policy. However, if
multiple qualified sets of credentials can fulfill the policy, the verifier should not know
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which specific one is held by the end user. In the following, an application scenario is
described as an illustration of our approach.

Application Scenario. Consider the following scenario: a researcher (end user) wants
to perform some operations on various hosts on a scientific computation oriented grid
environment. The operations can be executed independently, can depend on each other,
or can be executed only at specific periods of time. From his laptop the researcher
wants to submit a number of requests to the destination hosts and have the operations
executed while he is doing other things including being offline. For each request, an au-
thenticated connection needs to be established with the corresponding destination host.
An authorization policy is associated to the operations and the researcher has to prove
his compliance with the policy in order for the operations to be authorized to be exe-
cuted. The researcher delegates the management of the different operations to one or
more agents.

Currently, authorization in grid environments is identity-based. The researcher whose
public/private key pair is denoted (pku,sku) holds an X.509 certificate binding his global
identity to his public key. In order to make the agent act on his behalf, he generates for
the agent a random pair of keys denoted (pka,ska). Then, he issues an X.509 proxy
certificate [19] associated to the generated key pair. The certificate contains in addition
to the agent’s public key pka, a set of statements indicating the valid operations that the
agent is allowed to perform on behalf of the researcher, as well as a restricted validity
period. The authentication of the agent is therefore based on its key pair, the proxy
certificate generated by the researcher and the public-key certificate of the researcher.
Authorization to perform a specific task is based on the identity of the researcher (taken
from his X.509 certificate) as well as on the statements within the proxy certificate.

As explained in [6], an identity-based approach to authorization and authentication
for large grids ”will not provide the scalability, flexibility, and ease of management
that a large grid needs to control access to its sensitive resources”, while a property-
based approach where properties are carried by digital credentials is more appropriate.
In scientific grids for instance, properties may include whether the requesting agent
is acting on behalf of a professor, a student or an administrator; whether the agent is
acting on behalf of a member of a particular research project whose membership list
is not maintained locally; whether the agent is acting on behalf of a researcher from
academy or industry; etc.

In the credential-based approach, the agent needs to prove that its owner (the re-
searcher) is compliant with a specific credential-based authorization policy in order for
the operations to be executed. Using standard credential systems such as X.509 attribute
certificates, the agent needs to have access to the credentials of its owner to provide the
necessary authorization arguments. For example, assume that a policy requires the re-
searcher to be either a research staff member of company X or company Y . Suppose
that the researcher is employed by company X , therefore he has been issued a creden-
tial credu

X (associated to his public key pku). In addition to the proxy certificate, the re-
searcher gives to the agent the credential credu

X . During authentication and authorization
phase, the agent submits in addition to its proxy certificate, the researcher’s credential
credu

X . The remote host where the operation needs to be executed does the following:
(1) check the validity of the proxy certificate using the public key pku, (2) check the
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validity of credu
X using the public key of the ’trusted’ credential issuer, (3) check whether

the provided credential fulfills the authorization policy for the requested operations. If
all the validity checks are successful, the task is executed. Otherwise, an error message
is returned.

Using proof-carrying proxy certificates allows to combine the verification of the
validity of the proxy certificate and the authorization decision making in a way that
improves the privacy of the researcher. In fact, instead of using a standard signature
scheme, the researcher generates the agent’s proxy certificate by running an advanced
signature algorithm on input of his private key sku, his credential credu

X and the
credential-based policy ‘credu

X or credu
Y ’. The new proxy certificate carries in addition

to delegation rights, the authorization arguments necessary for the execution of the op-
erations. Hence, instead of performing three validity checks, the remote host needs just
to verify the validity of the proxy certificate with respect to the policy ‘credu

X or credu
Y ’

using the researcher’s public key pku. Furthermore, thanks to the credential ambigu-
ity property, the remote host will not know whether the agent is acting on behalf of a
company X or company Y .

Contributions and Organization of the Paper. In this paper, we present the concept of
proof-carrying proxy certificates that allows to combine the verification of the validity
of the proxy certificate and the authorization decision making in a way that enhances
the privacy of the end user. After discussing the related work in Section 2, we pro-
vide a comprehensive overview of the proof-carrying proxy certification mechanism in
Section 3. In Section 4, we provide precise definitions for the algorithms specifying a
proof-carrying proxy certification scheme. Then, we define the related security models,
namely unforgeability and credential ambiguity. In Section 5, we describe a provably
secure construction of proof-carrying proxy certification scheme based on bilinear pair-
ings over elliptic curves. In Section 6, we summarize the paper and discuss current and
future research work.

2 Related Work

The intuition behind the concept of proof-carrying proxy certificates comes originally
from proof-carrying codes [15]. The latter is a technique that can be used for safe exe-
cution of untrusted code. In a typical scenario, a code receiver establishes a set of safety
rules that guarantee safe behavior of programs, and the code producer creates a formal
safety proof that proves, for the untrusted code, adherence to the safety rules. Then,
the receiver is able to use a proof validator to check that the proof is valid and hence
the untrusted code is safe to execute. By analogy with proof-carrying codes, a proof-
carrying authentication mechanism based on higher-order logic was presented in [1]:
the client desiring access must construct a proof using his attribute certificates, and the
server will simply check the validity of the proof. The logic-based approach leads to a
simple and efficient solution that integrates different authentication frameworks includ-
ing X.509 and SPKI/SDSI. However, it cannot be used in the context of proof-carrying
proxy certification because it does not provide a signature scheme fulfilling the required
properties.
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Providing a privacy preserving proof of compliance with a credential-based policy is
a problem that has been studied in recent literature. In [2], the authors exploit crypto-
graphic zero-knowledge proofs to allow requesting users to prove their adherence with a
credential-based policy. The proposed solution provides better privacy guarantees than
our concrete implementation of proof-carrying proxy certificates as the users may prove
their compliance while preserving their anonymity. However, as the described protocol
requires interaction between the credentials holder (end user) and the verifier, it can not
be directly used to implement proof-carrying proxy certificates. An interesting line for
future research would be to exploit the Fiat-Shamir heuristic [9] to transform their inter-
active protocols into a signature scheme that could be used to implement proof-carrying
proxy certificates.

The concept of self-certified signatures presented in [13] shares with proof-carrying
proxy certificates the idea of combining signature’s validity verification with certifi-
cation information verification: the signer (end user) first generates a temporary sign-
ing key (analog to the agent’s private key) using his long-term signing key and his
public-key certification information together. Then, he signs a message and certifica-
tion information using this temporary signing key. In the verification stage both the
signature on the message and certification are checked together. Self-certified signa-
ture was extended to multi-certification signature in which multiple certificates are ver-
ified together with the signature. The multi-certification signature scheme described
in [13] could be used to construct proof-carrying proxy certificates for which poli-
cies are restricted to conjunctions of credentials. However, they cannot support dis-
junctions of credentials while respecting the credential ambiguity property. Thus, the
signature scheme used in proof-carrying proxy certification could be seen as a gen-
eralization of self-certified signatures that supports both disjunctive and conjunctive
authorization structures.

Our pairing-based signature scheme for proof-carrying proxy certificates is based
on the policy-based signature scheme proposed in [4]. The latter allows to generate a
signature on a message so that the signature is valid if and only if the signer is compliant
with a credential-based policy written in standard normal form. However, it cannot be
used to implement proof-carrying proxy certificates as it suffers from collusion attacks.
In fact, in addition to the legitimate signer, any collusion of credential issuers or end
users who are able to collect a qualified set of credentials for the policy according
to which the message is signed can generate a valid signature. Besides, the scheme
is not satisfactory as it is not supported by formal security arguments. In this paper,
we propose a scheme that solves the collusion problem and provides a formal security
analysis based on reductionist proofs, thus fulfilling the security requirements of proof-
carrying proxy certificates.

3 Proof-Carrying Proxy Certification

In this section, we provide a general description of our approach as well as the notations
used along the paper. We define the different components of a proof-carrying proxy
certification scheme, including our policy model. Then, we describe how the proof-
carrying proxy certificates are created and used.
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3.1 Setting the Context

The setting for proof-carrying proxy certification comprises four types of players: end
users, credential issuers, agents and verifiers (service providers). We consider a public
key infrastructure where each end user holds a pair of keys (pku,sku). An end user
is identified by his public key pku. The public key does not has to be bound to the
end user’s name/identity (through public-key certification) as for standard PKI systems
such as X.509. In fact, in large-scale open environments, the identity of an end user is
rarely of interest to determining whether the end user could be trusted or authorized
to conduct some sensitive transactions. Instead statements about the end user such as
attributes, properties, capabilities and/or privileges are more relevant. The validity of
such statements is checked and certified by trusted entities called credential issuers.

We consider a set of credential issuers I = {I1, . . . , IN}, where the public key of Iκ,
for κ ∈ {1, . . . ,N}, is denoted Rκ while the corresponding master key is denoted sκ.
We assume that a trustworthy value of the public key of each of the credential issuers
is known by the end users. Any credential issuer Iκ ∈ I may be asked by an end user
to issue a credential corresponding to a set of statements. The requested credential is
basically the digital signature of the credential issuer on an assertion denoted Apku . The
assertion contains, in addition to the set of statements, the end user’s public key pku

as well as a set of additional information such as the validity period of the credential.
As the representation of assertions is out of the scope of this paper, they will sim-
ply be encoded as binary strings. Upon receiving a request for generating a credential
on assertion Apku , a credential issuer Iκ first checks the validity of the assertion. If it
is valid, then Iκ executes a credential generation algorithm and returns a credential de-
noted ς(Rκ,Apku). Otherwise, Iκ returns an error message. Upon receiving the credential
ς(Rκ,Apku), the end user may check its integrity using Iκ’s public key Rκ. The process
of checking the validity of a set of statements about a certain entity is out of the scope
of this paper.

Each service provider defines an authorization policy for each action on a sensitive
resource he controls. We consider credential-based policies formalized as monotone
boolean expressions involving conjunctions (AND/∧) and disjunctions (OR/∨) of
credential-based conditions. A credential-based condition is defined through a pair
〈Iκ,Apku〉 specifying an assertion Apku ∈ {0,1}∗ (about an end user whose public key
is pku) and a credential issuer Iκ ∈ I that is trusted to check and certify the validity of
Apku . An end user whose public key is pku fulfills the condition 〈Iκ,Apku〉 if and only
if the end user has been issued the credential ς(Rκ,Apku). We consider policies written
in standard normal forms, i.e. written either in conjunctive normal form (CNF) or in
disjunctive normal form (DNF). In order to address the two standard normal forms, we
use the conjunctive-disjunctive normal form (CDNF) introduced in [18]. Thus, a policy
denoted Polpku is written as follows:

Polpku = ∧m
i=1[∨

mi
j=1[∧

mi, j
k=1〈Iκi, j,k ,A

pku
i, j,k〉]], where Iκi, j,k ∈ I and Apku

i, j,k ∈ {0,1}∗

Under the CDNF notation, policies written in CNF correspond to the case where mi, j =1,
for all i, j, while policies written in DNF correspond to the case where m = 1.
Let ς j1,..., jm(Polpku) denote the set of credentials {{ς(Rκi, ji,k

,Apku
i, ji,k

)}mi, ji
k=1 }m

i=1, for some

{ ji ∈ {1, . . . ,mi}}m
i=1. Then, ς j1 ,..., jm(Polpku) is a qualified set of credentials for Polpku .
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3.2 Creating and Using Proof-Carrying Proxy Certificates

When an end user wants to interact with a service provider (verifier) through an agent,
he first generates a pair of keys (pka,ska) for the agent. Then, he specifies the content
of the proxy certificate - a message, denoted M, containing the end user’s public key
pku, the public key of the agent pka and the delegation constraints. Finally, the end user
generates a signature on the content of the proxy certificate using a dedicated signature
algorithm. The latter takes as input the message to be signed, the private key of the end
user sku, the policy of the service provider Polpku with respect to the end user’s public
key pku, and a qualified set of credentials for the policy ς j1,..., jm(Polpku).

When the agent decides to interact with the verifier, he provides his proof-carrying
proxy certificate along with a proof of possession of the private key ska corresponding
to the public key pku contained in the proxy certificate. The verifier first checks the
delegation constraints specified by the proxy certificate to be sure that the agent is al-
lowed by the end user to perform the requested action on his behalf. Then, he checks the
validity of the signature on the content of the proxy certificate using the adequate verifi-
cation algorithm. This algorithm takes as input the proof-carrying proxy certificate, the
end user’s public key pku, and the authorization policy Polpku . At the end, the verifier
obtains a proof that the agent whose public key is pka is allowed by an end user whose
public key is pku to perform the action on his behalf and that the end user is compliant
with the authorization policy specified by the verifier.

The signature and verification algorithms used for the creation and verification of
proof-carrying proxy certificates must fulfill two security requirements:

– Unforgeability: the signature on a proof-carrying proxy certificate must not be valid
with respect to policy Polpku if the signer does not use the private key sku or a
qualified set of credentials for policy Polpku . In other words, the agent cannot obtain
a valid proof-carrying proxy certificate with respect to policy Polpku from a user that
does not have access to the private key sku, and the end user cannot generate a valid
proof-carrying proxy certificate with respect to policy Polpku if he does not have
access to a qualified set of credentials for the policy.

– Credential ambiguity: in the case where there exists multiple qualified sets of cre-
dentials for policy Polpku , a valid proxy-carrying proxy certificate must not reveal
which specific set of credentials has been used to generate the certificate.

4 Definitions

Following the functional description provided in Section 3, we give in this section pre-
cise definitions for the algorithms used during the proof-carrying proxy certification
process. In addition, we formally define the corresponding security models.

4.1 Algorithms

A proof-carrying proxy certification scheme (in short PCPC) is specified by six algo-
rithms: System-Setup, Issuer-Setup, User-Setup, CredGen, Sign and Verify.



328 W. Bagga, S. Crosta, and R. Molva

System-Setup. On input of a security parameter k, this algorithm generates the system
public parameters P including the different spaces, groups and public functions that
will be referenced by subsequent algorithms.

Issuer-Setup. This algorithm generates a random master key sκ and the corresponding
public key Rκ for credential issuer Iκ ∈ I .

User-Setup. This algorithm generates a random private key sku and the corresponding
public key pku.

CredGen. On input of the public key Rκ of a credential issuer Iκ ∈ I and an assertion
Apku ∈ {0,1}∗, this algorithm generates the credential ς(Rκ,Apku) using the master key
sκ associated to Rκ.

Sign. On input of a message M, a pair of keys (pku,sku), a policy Polpku and a qualified
set of credentials ς j1,..., jm(Polpku), this algorithm returns a signature σ.

Verify. On input of a message M, a signature σ, a public key pku and a policy Polpku ,
this algorithm returns 	 (for true) if σ is a valid signature on M according to policy
Polpku . Otherwise, it returns ⊥ (for false).

The algorithms described above have to satisfy the standard consistency constraint i.e.

σ =Sign(M, pku,sku,Polpku ,ς j1,..., jm(Polpku)) ⇒ Verify(M,σ, pku,Polpku) = 	

4.2 Security Models

A PCPC scheme has to fulfill the security requirement of unforgeability and the privacy
requirement of credential ambiguity.

Unforgeability. The standard acceptable notion of security for standard signature
schemes is existential unforgeability against chosen message attacks [11]. Therefore,
we require the same security notion for proof-carrying proxy certification schemes.
The definition of existential unforgeability should naturally be adapted to the advanced
form of signature used by proof-carrying proxy certificates.

Existential unforgeability for PCPC schemes is defined in terms of an interactive game,
played between a challenger and an adversary. The game consists of three stages: Setup,
Queries and Forge which we describe below.

– Setup. On input of a security parameter k, the challenger does the following:
(1) Run algorithm System-Setup to obtain the system public parameters P , (2) Run
algorithm Issuer-Setup once or multiple times to obtain a set of credential issuers
I = {I1, . . . , IN}, (3) Run algorithm User-Setup to obtain a public/private key pair
(pkf,skf), (4) Give to the adversary the parameters P , the public key pkf and the
public keys of the different credential issuers included in I .

– Queries. The adversary performs adaptively a polynomial number of oracle queries
which we define below. By ”adaptively”, we mean that each query may depend on
the challenger’s replies to the previously performed queries.

– Forge. Once the adversary decides that Queries is over, it outputs a message Mf, a
policy Polpkf

f , a signature σf, and wins the game if Verify(Mf,σf, pkf,Polpkf
f ) = 	.
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During the Queries stage, the adversary may perform queries to two oracles controlled
by the challenger. On one hand, a credential generation oracle denoted CredGen-O. On
the other hand, a signature oracle denoted Sign-O. While the oracles are executed by
the challenger, their input is specified by the adversary. The oracles are defined below:

– CredGen-O. On input of a credential issuer Iκ ∈ I and an assertion Apku ∈ {0,1}∗

(associated to a key pair (pku,sku) chosen by the adversary), run algorithm Cred-
Gen on input of the tuple (Iκ,Apku) and return the resulting credential ς(Rκ,Apku).

– Sign-O. On input of a message M and a policy Polpkf , first run algorithm CredGen
once or multiple times to obtain a qualified set of credentials ς j1,..., jm(Polpkf) for
Polpkf , then run algorithm Sign on input of (M, pkf,skf,Polpkf ,ς j1,..., jm(Polpkf)) (for
some ji ∈ {1, . . . ,mi} for i = 1, . . . ,mi) and return the resulting output.

The oracle queries made by the adversary during Queries are subject to some restric-
tions depending on the type of adversary. In fact, we distinguish two types of attackers:

– Insider: the adversary is given, in addition to the parameters provided by the chal-
lenger during Setup, the private key skf. An adversary of this type is not allowed
to obtain (through queries to oracle CredGen-O) a qualified set of credentials for
the forgery policy Polpkf

f . This type of attackers corresponds to entities that are not
compliant with a policy and that try to generate a valid signature w.r.t the policy.

– Outsider: the adversary is given, in addition to the parameters provided by the chal-
lenger during Setup, the master keys of the different credential issuers included in
I . An adversary of this type does not have access to the private key skf and do not
need to perform queries to oracle CredGen-O. This type of attackers corresponds
to entities that might have access to a qualified set of credentials for the policy but
do not have access to the corresponding public key.

Obviously, an adversary, be it insider or outsider, is not allowed to perform a query to
oracle Sign-O on the tuple (Mf,Polpkf

f ).

The game described above is denoted EUF-PCPC-CMAX, where X = I for insider ad-
versaries and X = O for outsider adversaries. A formal definition of existential unforge-
ability against chosen message attacks for PCPC schemes is given below. As usual, a
real function g is said to be negligible if g(k) ≤ 1

f (k) for any polynomial f .

Definition 1. The advantage of an adversary AX in the EUF-PCPC-CMAX game is de-
fined to be the quantity AdvAX = Pr[AX wins]. A PCPC scheme is EUF-PCPC-CMAX

secure if no probabilistic polynomial time adversary has a non-negligible advantage in
the EUF-PCPC-CMAX game.

Credential Ambiguity. We define credential ambiguity against chosen message attacks
for PCPC schemes in terms of an interactive game (denoted CrA-PCPC-CMA), played
between a challenger and an adversary. The game consists of three stages: Setup, Chal-
lenge and Guess which we describe below.

– Setup. On input of a security parameter k, the challenger does the following:
(1) Run algorithm Setup to obtain the system public parameters P , (2) Run al-
gorithm Issuer-Setup once or multiple times to obtain a set of credential issuers
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I = {I1, . . . , IN}, (3) Give to the adversary the parameters P as well as the public
and master keys of the different credential issuers included in I .

– Challenge. The adversary chooses a message Mch, a pair of keys (pkch,skch) and a
policy Polpkch

ch on which he wishes to be challenged. The challenger does the follow-
ing: (1) For i = 1, . . . ,m, pick at random jch

i ∈ {1, . . . ,mi}, (2) Run algorithm Cred-

Gen m times to obtain the qualified set of credentials ς jch
1 ,..., jch

m
(Polpkch

ch ), (3) Run

algorithm Sign on input the tuple (Mch, pkch,skch,Polch,ς jch
1 ,..., jch

m
(Polpkch

ch )) and re-
turn the resulting output to the adversary.

– Guess. The adversary outputs a tuple ( j1, . . . , jm), and wins the game if the equality
( jch

1 , . . . , jch
m ) = ( j1, . . . , jm) holds.

Definition 2. The advantage of an adversary A in the CrA-PCPC-CMA game is defined
to be the quantity AdvA = Maxi{|Pr[ ji = jch

i ]− 1
mi

|}, where the parameters mi are those

defined by the challenge policy Polpkch
ch . A PCPC scheme is CrA-PCPC-CMA secure if

no probabilistic polynomial time adversary has a non-negligible advantage in the CrA-
PCPC-CMA game.

5 Concrete Implementation

In this section, we describe a concrete implementation of proof-based proxy certificates.
Our implementation is based on bilinear pairings over elliptic curves. Our scheme owes
much to the work on pairing-based signature and ring signatures presented in [14,20,21].
After describing our concrete algorithms, we analyze their consistency and efficiency.
Then, we prove their security in the random oracle model.

5.1 Description

Before describing the algorithms defining our PCPC scheme, we define algorithm BDH-
Setup as follows:

BDH-Setup. Given a security parameter k, generate a tuple (q,G1,G2,e,P) where the
map e : G1 ×G1 → G2 is a bilinear pairing, (G1,+) and (G2,∗) are two groups of the
same order q, and P is a random generator of G1. The generated parameters are such
that the following mathematical problem are hard to solve:

– Computational Diffie-Hellman Problem (CDHP): given a tuple (P,a · P,b · P) for
randomly chosen a,b ∈ Z∗

q, compute the value ab ·P.

– (k + 1)-Exponent Problem (k + 1EP): given the tuple (P,a · P,a2 · P, . . . ,ak · P) for
a ∈ Z∗

q, compute ak+1 ·P.

Note. We recall that a bilinear pairing satisfies the following three properties: (1) Bilin-
ear: for Q,Q′ ∈ G1 and for a,b ∈ Z∗

q, e(a · Q,b · Q′) = e(Q,Q′)ab, (2) Non-degenerate:
e(P,P) �= 1 and therefore it is a generator of G2, (3) Computable: there exists an efficient
algorithm to compute e(Q,Q′) for all Q,Q′ ∈ G1. �
Our PCPC scheme consists of the algorithms described below.
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System-Setup. On input of a security parameter k, do the following:

1. Run algorithm BDH-Setup on input k to generate output (q,G1,G2,e,P)
2. Define three hash functions: H0 : {0,1}∗ → G1, H1 : {0,1}∗ → Z∗

q and H2 : G1 → Z∗
q

3. Let P = (q,G1,G2,e,P,H0,H1,H2).

Issuer-Setup. Let I = {I1, . . . , IN} be a set of credential issuers. Each credential issuer
Iκ ∈ I picks at random a secret master key sκ ∈ Z∗

q and publishes the corresponding
public key Rκ = sκ ·P.

User-Setup. This algorithm picks at random a private key sku ∈ Z∗
q and computes the

corresponding public key pku = sku ·P.

CredGen. On input of the public key Rκ of issuer Iκ ∈ I and assertion Apku ∈ {0,1}∗,
this algorithm outputs ς(Rκ,Apku) = sκ ·H0(Apku).

Sign. On input of a message M, a pair of keys (pku,sku), a policy Polpku and a qualified
set of credentials ς j1,..., jm(Polpku), do the following:

1. For i = 1, . . . ,m, do the following:
(a) Pick at random Yi ∈ G1, then compute xi, ji+1 = e(P,Yi)
(b) For l = ji + 1, . . . ,mi,1, . . . , ji − 1 mod(mi + 1), do the following:

i. Compute τi,l = ∏
mi,l
k=1 e(Rκi,l,k ,H0(A

pku
i,l,k))

ii. Pick at random Yi,l ∈ G1, then compute xi,l+1 = e(P,Yi,l)∗ τH1(M‖xi,l‖m‖i‖l)
i,l

(c) Compute Yi, ji = Yi − H1(M‖xi, ji‖m‖i‖ ji) · (∑
mi, ji
k=1 ς(Rκi, ji,k

,Apku
i, ji,k

))
2. Compute Y = ∑m

i=1 ∑mi
j=1 Yi, j, then compute Z = (sku + H2(Y ))−1 ·P

3. Return σ = ([[xi, j]
mi
j=1]

m
i=1,Y,Z)

Verify. Let σ = ([[xi, j]
mi
j=1]

m
i=1,Y,Z) be a signature on message M according to policy

Polpku and public key pku. To check the validity of σ, do the following:

1. Compute τi, j = ∏
mi, j
k=1 e(Rκi, j,k ,H0(A

pku
i, j,k)) (for j = 1, . . . ,mi and i = 1, . . . ,m)

2. Compute α0 = e(pku + H2(Y ) ·P,Z)
3. Compute α1 = ∏m

i=1[∏
mi
j=1 xi, j] and α2 = e(P,Y )∗ ∏m

i=1 ∏mi
j=1 τH1(M‖xi, j‖m‖ j‖i)

i, j

4. If α0 = e(P,P) and α1 = α2, then return 	, otherwise return ⊥

The intuition behind our signature algorithm is as follows: each conjunction of con-
ditions ∧mi, j

k=1〈Iκi, j,k ,A
pku
i, j,k〉 is associated to a tag τi, j . For each index i, the set of tags

{τi, j}mi
j=1 is equivalent to a set of ring members. The signature key of the ring mem-

ber corresponding to the tag τi, j consists of the credentials {ς(Rκi, j,k ,A
pku
i, j,k)}

mi, j
k=1. Thus,

the generated signature corresponds to a set of ring signatures which validity can be
checked using the global ’glue’ value Y . The latter can be computed only by a user hav-
ing access to a qualified set of credentials for policy Polpku. The element Z represents
the [21] short signature on Y using the private key sku. Therefore, σ proves that the
entity whose public key is pku is compliant with policy Polpku . Note that we can use
any standard signature scheme to generate the value Z.



332 W. Bagga, S. Crosta, and R. Molva

5.2 Consistency and Efficiency

Our PCPC scheme satisfies the standard consistency constraint thanks to the following
statements:

α0 = e(pku + H2(Y ) ·P,Z) = e((sku + H2(Y )) ·P,(sku + H2(Y ))−1 ·P) = e(P,P) (1)

τH1(M‖xi, j‖m‖i‖ j)
i, j = xi, j+1 ∗ e(P,Yi, j)−1(wherexi,mi+1 = xi,1) (2)

α2 = λ ∗
m

∏
i=1

[
mi

∏
j=1

τH1(M‖xi, j‖m‖i‖ j)
i, j ] (where λ = e(P,Y ))

= λ ∗
m

∏
i=1

[
mi−1

∏
j=1

xi, j+1 ∗ e(P,Yi, j)−1 ∗ xi,1 ∗ e(P,Yi,mi)
−1]

= λ ∗
m

∏
i=1

[
mi

∏
j=1

xi, j ∗
mi

∏
j=1

e(P,Yi, j)−1]

= λ ∗ [
m

∏
i=1

mi

∏
j=1

xi, j]∗ [e(P,
m

∑
i=1

mi

∑
j=1

Yi, j)]−1 = λ ∗ α1 ∗ λ−1 (3)

The essential operation in pairing-based cryptography is pairing computations. Our
signature algorithm requires a total of ∑m

i=1 mi + ∑m
i=1 ∑ j�= ji mi, j pairing computations.

Note that the values τi,l does not depend on the signed message M. Thus, they can be
pre-computed by the end user, cached and used in subsequent signatures involving the
corresponding credential-based conditions i.e. 〈Rκi,l,k ,A

pku
i,l,k〉. On the other hand, our ver-

ification algorithm requires a total of 3+∑m
i=1 ∑mi

j=1 mi, j pairing computations. Although
pairing computations could be optimized as explained in [5], the performance of our
signature and verification algorithms still need to be improved. This is the main focus
of our current research work.

Let li denote the bit-length of the bilinear representation of an element of group Gi

(i = 1,2). Then, the bit-length of a signature produced by our PCPC scheme is equal to
(∑m

i=1 mi).l2 + 2.l1. Note that the signature’s length does not depend on the values mi, j.

5.3 Security

In the following, we provide the security results related to our PCPC scheme.

Notation. Given the notation used in Section 3, the maximum values that the quantities
m, mi and mi, j can take are denoted, respectively, m∨∧ ≥ 1,m∨ ≥ 1 and m∧ ≥ 1. We
assume that these upper-bounds are specified during system setup. �

Theorem 1. Our PCPC scheme is EUF-PCPC-CMAI secure in the random oracle model
under the assumption that CDHP is hard. In fact, let A◦ be an EUF-PCPC-CMAI ad-
versary with advantage AdvA◦ ≥ ε when attacking our PCPC scheme. Assume that ad-
versary A◦ has running time tA◦ and makes at most qc queries to oracle CredGen-O,
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qs queries to oracle Sign-O, q0 queries to oracle H0 and q1 queries to oracle H1. Then,
there exists an adversary A• the advantage of which, when attacking CDHP, is such
that

AdvA• ≥ 9/(100qm∨∧m∨
0 ∑m∨

l=1 l!
(m∨

l

)
)

For q ≥ Max{2m∨∧m∨,2m∨∧qsq1} and ε ≤ 32(q1 + 1 − m∨∧m∨)/q, its running time is
tA• ≤ (32q1 + 4)tA◦/ε.

Proof. Proof of Theorem 1 follows the method described in [12], which is based on
the oracle replay technique [17]. Informally, by a polynomial replay of the attack with
different random oracles, we allow the attacker to forge two signatures that are related so
that the attacker is able to solve the underlying hard problem (CDHP). The details of our
proof are given in [3]. Note that our security reduction does not depend on the parameter
m∧. On the other hand, it depends exponentially on the parameters m∨∧ and m∨ which
needs further improvement. Finally, note that the ID-based ring signature presented
in [21] is not supported by any security arguments. Our proof could be easily adapted to
realize the missing proofs. In fact, the ID-based ring signature of [21] is almost similar
to our signature algorithm applied in the particular case where the policies are such that
m∨∧ = m∧ = 1. �

Theorem 2. Our PCPC scheme is EUF-PCPC-CMAO secure in the random oracle
model under the assumption that k + 1EP is hard.

Proof. The security of our scheme PCPC in the EUF-PCPC-CMAO game is equivalent
to the security of the short signature scheme presented in [21]. In fact, the outsider
adversary succeeds in forging a proof-carrying proxy certification if and only if it suc-
ceeds in generating a valid Z corresponding to a valid ([[xi, j]

mi
j=1]

m
i=1,Y ) associated to the

pair of keys (pkf,skf). As the adversary has access to the master keys of the different
credential issuers, its is able to generate a valid tuple ([[xi, j]

mi
j=1]

m
i=1,Y ) corresponding

to any policy associated to pkf. Therefore, the adversary needs to be able to generate a
[21] short signature on Y using the protected private key skf. The short signature of [21]
is proved to be secure in the random oracle model under the assumption that the k+1EP
problem is hard. �

Theorem 3. Our PCPC scheme is CrA-PCPC-CMA secure in the random oracle model.

Proof. Let Mch be the message and σch = ([xch
i, j]

mi
j=1]

m
i=1,Y

ch,Zch) be the signature which
the adversary is challenged on in the CrA-PCPC-CMA game. Our PCPC scheme is such
that the following holds

1. xch
i, j = e(P,Yi, j−1)∗ τ

H1(Mch‖xch
i, j−1‖m‖i‖ j−1)

i, j−1 for j �= jch
i + 1 and xch

i, jch
i +1

= e(P,Yi)

2. Y ch = ∑m
i=1[∑ j�= jch Yi, j +Yi − H1(Mch‖xch

i, jch
i

‖m‖i‖ jch
i ) · (∑

m
i, jch

i
k=1 ς(Rκ

i, jch
i ,k

,Ai, jch
i ,k))]

Since Yi and Yi, j−1 are chosen at random from G1, and H1 is assumed to be a random
oracle, we have that xch

i, j and Y ch are uniformly distributed in G2 and G1 respectively. If
( j1, . . . , jm) is the tuple output by the adversary in the CrA-PCPC-CMA game, then we
have Pr[ ji = jch

i ], for i = 1, . . . ,m. �
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6 Conclusion

In this paper, we presented the concept of proof-carrying proxy certificates. The idea is
to generate the proxy certificate using a special signature scheme for which the validity
of the generated signature proves the compliance of the signer with a credential-based
policy. The proof adheres to the privacy principle of data minimization i.e. in the case
where there exists multiple qualified sets of credentials for a policy, the proof does not
reveal which specific set has been used to generate the signature. To implement our ap-
proach, we developed a concrete proof-carrying proxy certification scheme using bilin-
ear pairings over elliptic curves. We defined formal security models for proof-carrying
proxy certification schemes and proved the security of our construction under the de-
fined models in the random oracle model. We are currently developing an experimental
implementation framework for proof-carrying proxy certificates in the context of grid
computing. The integration of well established credential standards (e.g. SPKI, SAML)
is one of our goals. We are also working on improving the performance of our construc-
tion in terms of both computational and bandwidth consumption costs, and preparing
and in-depth analysis of such costs. As discussed in the related work, an interesting
line for future would be the construction of a proof-carrying proxy certification scheme
based on the well known zero-knowledge proof of knowledge protocols.
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Abstract. Rainbow is a fast asymmetric multivariate signature algo-
rithm proposed by J. Ding and D. Schmidt in [5]. This paper presents
a cryptanalysis of Rainbow which enables an attacker provided with the
public key to recover an equivalent representation of the secret key, thus
allowing her to efficiently forge a signature of any message. For the set
of parameter values recommended by the authors of Rainbow in order
to achieve a security level strictly higher than 280, the complexity of our
attack is less than 271 operations. This is 240 times less than the com-
plexity of the best known attack used by the authors to dimension their
system.

Keywords: Public Key Cryptography, Multivariate Cryptography,
Rainbow, UOV (Unblanced Oil and Vinegar), Signature Schemes.

1 Introduction

Rainbow [5] is an asymmetric signature scheme proposed by Jintai Ding and
Dieter Schmidt in 2005. It belongs to the family of multivariate asymmetric
schemes, a promising sub-area of public key cryptography which development
was motivated by the search to alternatives to RSA and initiated by the seminal
work of T. Matsumoto and H. Imai [6,9] and J. Patarin [10]. Instead of using the
difficulty of solving a single variable equation over a large finite ring as is the
case for RSA and discrete logarithm based systems such as DSA, multivariate
schemes exploit the difficulty of solving a multivariate system of equations over
a small finite field.

Numerous multivariate encryption, signature, or public key authentication
schemes have been proposed over the past years. Though many of them (C∗ [6],
the balanced Oil and Vinegar [12], and HFE [11]) turned out to be weak, sev-
eral multivariate signature schemes have successfully resisted cryptanalysis so
far and allow for efficient implementations. Two of these unbkroken signature
schemes seem particularly attractive since they are better suited than RSA for
implementation in low cost smart cards: UOV (Unbalanced Oil and Vinegar) [7]
and SFLASHv2 [1] which is one of the three digital signature algorithms selected
in 2002 by the European project NESSIE.
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Rainbow is built upon the UOV scheme and uses several instances of the Oil
and Vinegar construction organized in a set of embedded layers. This allows
Rainbow to improve on the efficiency of the original UOV scheme. The authors
of Rainbow propose in [5] a fully instantiated version of their scheme, which is
shown to outperform SFLASHv2 in terms of running time–it is claimed to be
twice as fast, and in terms of public key length–it is about 16 KB instead of
112 kB for SFLASHv2. It is conjectured by the authors of [5] that no attack of
complexity less than 280 can be found against Rainbow.

In this paper we present a cryptanalysis of Rainbow which complexity is sub-
stantially lower than the one of the best attack considered in the security analysis
of [5]. The attack provides the adversary with an equivalent representation of
the private (signature) function, thus allowing an attacker to forge a signature
of any message. For the set of parameter values recommended by the authors
of Rainbow [5], the complexity of our attack is about q7 · 273 < 271 operations
(where q = 256 is the field size) instead of q12 · 273 > 2110 for the best attack
described in [5].

2 UOV and Rainbow Multivariate Signature Schemes

In this section, we first outline those features of UOV which are useful to the
understanding of Rainbow and then provide a general description of the Rain-
bow signature scheme together with the parameters choice recommended by its
authors.

2.1 Outline of UOV

UOV is a digital signature scheme proposed by A. Kipnis, J. Patarin, and
L. Goubin in [7]. It uses the same trapdoor technique as the previously pro-
posed oil and vinegar system cryptanalyzed in 1997 by A. Shamir and A. Kipnis
in [13], but other parameters preventing this cryptanalysis as well as all known
attack techniques.

The public key consists of a system F̄ of m multivariate quadratic equations
in n unknowns over a finite field GF(q), with n > m. To ease the exposition,
we hereafter assume q > 2. Signing a message M of GF(q)m consists in finding
a preimage of M by F̄ in GF(q)n. The secret key lies in the knowledge of
a bijective GF(q)-linear change of variable L1 and a set F of m multivariate
quadratic equations in n unknowns of a special type so that the composition
F ◦ L1 is the public key: F̄ = F ◦ L1. Equations of the quadratic system F in
n unknowns x1, . . . , xn have the following property. The set of variables being
partitioned in two sets {xi}i∈V and {xi}i∈O where V = {1, . . . , n−m} is the set
of vinegar indices and O = {n−m+1, . . . , n} the set of oil indices, the quadratic
part Qk of the kth-polynomial of F has the specific form:

Qk(x1, . . . , xn) =
∑

(i,j)∈V ×V |i≤j

α
(k)
i,j xixj +

∑

(i,j)∈V ×O

β
(k)
i,j xixj . (1)
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After the secret change of variables (x1, . . . , xn) = L1(z1, . . . , zn) this specific
form disappears as the expression of the quadratic part of the public key’s poly-
nomials now have the general form:

Q̄k(z1, . . . , zn) =
∑

1≤i≤j≤n

γ
(k)
i,j zizj.

We further note that there is no need for a secret linear output mixing layer in
this scheme as it would not change the look of the public key.

vinegar (m − n) oil (m)

output (m)

vinegar (m − n) oil (m)

vi
ne

ga
r

(m
−

n
)

oi
l
(m

)

Fig. 1. The figure on the left is a visual representation of the mapping F of UOV while
the figure on the right shows the special structure of the symmetric matrix associated
to the quadratic part Qk of any polynomial of the hidden transformation F of UOV

As a consequence of this very special structure, the equations of induced
by Eqs. 1 when fixing the vinegar variables to constant values are linear in
the remaining (oil) variables. This provides an efficient method for inverting
system F with a high probability–the linear system in the oil variables we obtain
is invertible with high probability. In order to find a preimage through F̄ of a
tuple (y1, · · · , ym) of GF(q)m, the signer just has to randomly draw values for
the vinegar variables and solve the induced linear system in m remaining oil
variables. (This procedure has to be repeated until a solvable system (e.g. a full
rank system) is obtained.) Thus in order to sign a message M , the owner of
the secret key can use her secret representation of F̄ to consecutively invert F
and L1 and thus find a preimage of M by F̄ . On the opposite, it appears to be
difficult for an adversary who only knows F̄ to derive a similar representation
from the public key, and more generally to invert F̄ .

The authors of UOV recommend in [7] to choose parameter values such that
n > 3m in order to thwart generalizations of A. Kipnis and A. Shamir’s at-
tack [13], where v = n − m is the number of vinegar variables and o = m is
the number of oil variables. (This generalization of A. Kipnis and A. Shamir’s
attack presented in [7] has a complexity of qv−o−1o4.)

2.2 General Description of Rainbow

The public key of Rainbow consists of a set of m multivariate quadratic polyno-
mials F̄1, . . . , F̄m in n unknowns over a finite field GF(q). The general problem
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of solving such a set of multivariate polynomials being hard, those polynomials
are constructed in a special way using the UOV contruction several times in an
embedded manner to insert a trapdoor.

To construct a Rainbow signature scheme with l layers, let us consider a set
of l + 1 integers vi verifying 0 < v1 < v2 < · · · < vl+1 = n as well as the set Pk

of polynomials of the special form:
∑

vk<i≤vk+1
1≤j≤vk

αi,j xixj +
∑

1≤i,j≤vk

βi,j xixj +
∑

1≤i≤vk+1

γi xi + η.

Such polynomials are Oil and Vinegar polynomials since no monomial of degree
two have both variables coming from the set Ok = {xvk+1, xvk+2, . . . , xvk+1},
whereas there are monomials of degree two where both variables come from the
set Vk = {x1, . . . , xvk

}. Hence, variables from the set Ok are called oil variables
of layer k, and variables from the set Vk are called vinegar variables of layer k.

Now, for every 1 ≤ k ≤ l, the kth layer of Rainbow is built as a list
(Fvk−v1+1, . . . , Fvk+1−v1) of ok = (vk+1 − vk) polynomials randomly drawn from
the set Pk.

Therefore, the l layers of Rainbow are made of a total of m = n − v1 polyno-
mials which results in the following map:

F : GF(q)n −→ GF(q)m,
(x1, . . . , xn) �−→

(
F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)).

Then, in order to hide the very specific structure of each layer, the key
generation process randomly choses a bijective linear input transformation L1
of GF(q)n as well as a bijective linear output transformation L2 of GF(q)m

which are applied to F so as to produce the public key F̄ as follows:

F̄(z1, . . . , zn) = L2 ◦ F ◦ L1(z1, . . . , zn).

2.3 Recommended Values for Rainbow

The authors of Rainbow proposed the following typical set of parameters. The
number of layers is set to four, and v1 = 6, o1 = 6, v2 = 12, o2 = 5, v3 =
17, o3 = 5, v4 = 22, o4 = 11, and v5 = 33. Thus, the public key F̄ consists
of m = 27 polynomials F̄1, . . . , F̄27. Figure 2 further describes each of the
internal polynomial Fi depending of the layer it belongs to by displaying the
structure of its corresponding symmetric matrix.

3 Cryptanalysis of Rainbow

We now describe our cryptanalysis of the Rainbow signature scheme. The de-
scription of the cryptanalysis is done in three steps. First of all, we describe the
well known rank attack suggested by N. Courtois and L. Goubin in [4], since it is
an essential tool in our attack. Then we show how to extract the first layer of Oil
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v1 = 6 o1 = 6 o2 = 5 o3 = 5 o4 = 11

first layer

6 6 5 5 11

6

6

5

5

11

second layer

6 6 5 5 11

6

6

5

5

11

third layer

6 6 5 5 11

6

6

5

5

11

fourth layer

6 6 5 5 11

6

6

5

5

11

Fig. 2. On top, the four layers of Rainbow together with the recommended parameters
values. Below, the pictures show the four different types of quadratic forms used in the
internal transformation F . The greyed areas represent the entries which are possibly
non-zero, while blank areas denote the null entries. The small numbers show the size
of the vector spaces involved.

and Vinegar out of the whole Rainbow description which allows to peal off every
layer one by one. Finally, we show how to recover an isomorphic representation
of each of the set of layered vinegar variables which obviously allows an attacker
to sign in place of the legitimate user.

3.1 The Classical Rank Attack

One way of attacking an Oil and Vinegar style cryptosystem is to look for a
combination of the m public multivariate polynomials that exhibits a very low
rank. In the special case of the Rainbow cryptosystem, this would amount to
searching for a linear combination of the public quadratic polynomials having a
rank of at most 12. Such a polynomial would actually be a linear combination of
the six polynomials belonging to the first layer of Oil and Vinegar. One standard
way of representing a quadratic multivariate polynomial is by its associated
symmetric matrix. (Over fields of even characteristic, one has to consider the
symmetric matrix Q associated to the multivariate quadratic polynomial g in the
n unknowns x1, . . . , xn over a finite field GF(q) where the entries Qi,j = Qi,j

for 1 ≤ i < j ≤ n are defined as the coefficients of the monomial xixj in
the expression of g(x); we recall that the diagonal entries are set to zero as
they correspond to terms that are essentially linear.) This problem, which is a
special instance of the so-called MinRank problem [3], can thus be stated as
follows: Given a set of n × n matrices Q1, . . . , Qm, find a linear combination
M =

∑m
k=1 λkQk of these matrices which has rank r.

In the paper [4], a powerful algorithm was suggested to solve this problem
when a solution exists and the rank r is low enough. The idea underlying this
algorithm is to search for a vector lying in the kernel of the desired linear com-
bination M . Since M has rank r, there are exactly 1

qr chances that a randomly
drawn vector lies in the kernel of M . Moreover, any vector w lying in the kernel
of M verifies equation:
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( m∑

k=1

λkQk

)
w = 0,

which is linear in the m unknowns λ1, . . . , λm. This vectorial equation is nothing
but a system of n = |w| linear equations. Thus, as m < n, if the randomly chosen
vector w lies in the kernel of M , linear algebra allows to recover a solution
(λ1, . . . , λm) and the average cost of finding a solution is qrm3.

Refering to this state of the art attack, the designers of Rainbow claimed
that: “From the MinRank method [3] we know that the complexity to find such
a matrix is q12 ×273, which is much larger than 2100.” We show in the following,
that this security level was highly overestimated, since we demonstrate an attack
against Rainbow with time complexity q7273. In particular, we show that the
set of parameters recommended in [5] are insecure.

3.2 Extracting the First Layer of Rainbow

In this section, we show that the first layer of Rainbow can be extracted from
the public key. This is the starting point of our cryptanalysis and this initial
step allows an attacker to peal off each Oil and Vinegar layer of Rainbow one
by one and inside out.

Recall that the first layer of Rainbow is a balanced Oil and Vinegar with
6 oil variables and 6 vinegar variables. Thus, there exist six linearly independent
linear combinations defined by M (i) =

∑27
k=1 λ

(i)
k Qk where 1 ≤ i ≤ 6 of the

27 matrices Q1, . . . , Q27 corresponding to the public quadratic polynomials of
Rainbow which are of small rank 12 and any linear combination of the M (i) has
rank at most 12. We make use of this additional property exhibited by Rainbow
to improve the complexity of the MinRank resolution algorithm presented in
Section 3.1. Based on a heuristic assumption, we make the following:

Proposition 1. Given the six matrices F1, . . . , F6 of the first type

6 6 5 5 11

6

6

5

5

11

and a vector w randomly chosen of the form
6 27

(that is, such that
every entry takes a value randomly chosen in GF(q) except for the six first
entries which are requested to be zero), with probability greater than 1

q , there
exists a (non trivial) linear combination M of matrices F1, . . . , F6 such that the
vector w lies in the kernel of M .

Proof. Because of the very specific form of matrices F1, . . . , F6, all the vectors
defined by w1 = F1w, . . . , w6 = F6w have at most six non-zero entries, which are
located at position 1, . . . , 6. Assuming that these vectors w1, . . . , w6 are uniformly
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distributed, the probability that they are linearly independent is equal to:

5∏

i=0

(
1 − qi

q6

)
<

(
1 − 1

q

)
.

Hence, given a vector w randomly chosen among those having their six first
entries equal to zero, there is a probability greater than 1

q that it lies in the
kernel of a non-trivial linear combination of the matrices F1, . . . , F6. ��

Corollary 1. An attacker is able to extract a representation of the first layer
of Rainbow with a time complexity less than 6 · q7 · 273 � 272.

Proof. The attacker does not have access to the secret change of base L2 operated
before applying matrices F1, . . . , F6. However, this does not change the fact that
a randomly chosen vector v has probability 1

q6 that its image through L2 has the
form required by Assumption 1. Hence, applying Assumption 1 together with
an exhaustive search on v, one sees that an attacker has more than 1

q7 chances
to find a vector v0 lying in the kernel of an unknown linear combination

M =
27∑

k=1

λkQk

of the 27 matrices Qk corresponding to the public quadratic polynomials. The
attacker is then in the situation of applying the strategy described in the previous
section: The matricial equation

27∑

k=1

λk

(
Qkv0

)

indeed gives 33 linear equations in the 27 unknowns λ1, . . . , λ27. Solving this
system then gives a linear combination of the 27 public quadratic polynomials
that has rank 12. Since solving the linear system has a complexity of 273, the
overall complexity to recover the linear combination is upper bounded by q7 ·273.

However, this step has to be repeated about six times to recover a total of six
linearly independent linear combinations of the polynomials of the first layer of
Rainbow. ��

Appendix A contains a very simple MAGMA source file implementing this step,
which was run for several different parameters. The program indeed took less
than q7 in average trials in order to find a linear combination of the public
polynomials having rank 12.

3.3 Recovering the Other Layers

The previous section showed how to recover the first layer of Rainbow. There
are now various ways to end the cryptanalysis. The interested reader may find
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further information about this in [14,15]. We sketch here a strategy which ad-
ditional complexity is negligible compared to the complexity of the previous
step. It enables us to peal off every layer of Rainbow one by one. First of all,
let us recall a fundamental result in the theory of quadratic forms over a finite
field:

Theorem 1 (See [8], p.287). Let GF(q) be a finite field of even characteristic.
For any quadratic form f ∈ GF(q)[x1, . . . , xn] of rank r, there exists a matrix B
of rank r that maps x1, . . . , xn to z1, . . . , zr such that

f(x1, . . . , xn) = g ◦ B(x1, . . . , xn),

where g(z1, . . . , zr) is defined by one of the canonical forms

z1z2 + · · · + zr−2zr−1 + z2
r , if r is odd,

z1z2 + · · · + zr−1zr + b
(
z2

r−1 + az2
r

)
, b ∈ {0, 1} if r is even.

The matrix B can be computed by a deterministic algorithm of complexity lower
than n3.

This result can be combined with the result of the previous Section as follows.
We are given a set of six quadratic polynomials which are known to have rank 12
and the set of independent variables involved in those six polynomials are the
same. Hence, the process of putting any of the quadratic polynomials into its
canonical form uncovers part of the change of base L1 and gives the value of the
preimage through L1 of the vector space spanned by the twelve first elements of
the canonical base of GF(q)n. This gives an attacker an isomorphic knowledge
of the set of inner variables x1, . . . , x12, that is an equivalent representation of
the first twelve rows of the secret change of variables.

The attacker is now left with 21 matrices to which she can once again apply the
strategy presented in the previous Section to discover the second layer. However,
she does not have to perform the exhaustive search step this time. Indeed, using
its knowledge of the preimage L−1

1 (V2) through L1 of the vector space V2 spanned
by the first twelve inner variables, she can make the input vector v0 directly lie
into the kernel of the seeked linear combination. The cost of pealing the second
layer thus boils down to the cost of solving a linear system of 33 equations in
21 unknowns, repeated five times, once for each polynomial of the layer. Since,
this second layer contains five polynomials having rank 17, putting one of these
polynomials into its into its canonical form allows the attacker to recovers the
preimage through L1 of the vector space spanned by the next set of variables V3.

The same process goes for extracting the third layer and for recovering the
preimage through L4 of the vector space V4.

Note that the complexity of each of these steps is bounded above by 11 · 333

and thus negligible compared to the complexity of attacking the first layer. The
overall complexity of our attack is thus 6 · q7 · 273.
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3.4 Spoofing a Signature

The attacker now have separated all four layers of Rainbow. It remains for her
to show that she is now able to sign in place of the legitimate user. Since the
attacker was able to separate all four layers of Rainbow, the process is identical
to the signature process followed by the legitimate user except for the first layer.

However, the first layer is just a very small balanced oil and vinegar scheme
which can be easily broken as shown in [13] with a polynomial time complexity
in the number of variables–twelve in the case of Rainbow. More precisely, this
allows an attacker to find a set of v2 = v1 + o1 variables that evaluates through
the set of the six polynomials of the first layer to the requested value, which is
exactly what a legitimate user was requested to do.

The end of the signature process goes exactly the same as for the legitme
user as every additional layer is linear in the new set of variables and hence just
requires to incrementally solve three square linear systems of size 5, 5, and 11
respectively over GF(q).

4 Discussion and Conclusion

The complexity of the attack presented in this paper is qv1+1 × m3 instead of
the expected complexity of qv1+o1 × m3 resulting from the direct application of
the Minrank solving method exposed in [3], which was taken as a reference by
the authors of Rainbow to dimension their system.

In order to prevent our attack, the number v1 of vinegar variables involved in
the first layer of Rainbow must be increased as to ensure qv1+1 × m3 > 280, or
even better qv1 > 280. Preventing our attack thus has some negative impact upon
the scheme’s bit efficiency and overall performance. We do not preclude that it
might be possible to produce a patched variant of Rainbow (say Rainbow v2)
which would still outperform SFLASHv2 in terms of performance and public
key length. However, our attack illustrates the fact that the embedded trapdoor
structure of Rainbow results in so numerous potential lines of attack that it is
quite difficult to get a reasonable confidence that Rainbow is as secure as the
UOV signature scheme it is based upon.
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A Magma Program for Corollary 1

We first define the number of variables n, the number of public polynomials m,
as well as the ground field FF= GF(q).

1 n := 33;
2 m := 27;
3 q := 8;
4 FF:= GF(q) ;

The following is an auxiliary function generating a random invertible N ×N ma-
trix B over GF(q).

5 genRandInvMat := function(N )
6 repeat B := MATRIX(N, N , [ RANDOM(FF) : i in [1. . N 2] ]) ;
7 until (RANK(B) eq N ) ;
8 return B ;
9 end function ;

Now the procedure genMatrix generates m matrices corresponding to the m
quadratic polynomials of the internal transformation F .

10 procedure genMatrix (r , k , ∼M )
11 for j := 1 to k do
12 L := [ RANDOM(FF) : i in [1. . FLOOR(r∗(r +1)/2)] ] ;
13 Z := ZEROMATRIX(FF, n, n) ;
14 MJ:= INSERTBLOCK(Z , SYMMETRICMATRIX(L), 1, 1) ;
15 Z := ZEROMATRIX(FF, k , k ) ;
16 MJ := INSERTBLOCK(MJ, Z , r −k +1, r −k +1) ;
17 M := M cat [MJ] ;
18 end for ;
19 end procedure ;

We generate the first layer of Rainbow and store it into SYS:

20 SYS:= [] ;
21 genMatrix (12, 6, ∼SYS) ;

and then the second, third, and fourth layer of Rainbow:

22 genMatrix (17, 5, ∼SYS) ;
23 genMatrix (22, 5, ∼SYS) ;
24 genMatrix (33, 11, ∼SYS) ;

We apply a randomly chosen change of base L1 to each matrix SYS[j ] correspond-
ing to a polynomial Fj of the internal transformation and store the resulting
matrix into SYSL1[j ] which corresponds to the polynomial Fj ◦ L1.

25 L1 := genRandInvMat (33) ;
26 SYSL1:= [] ;
27 for j :=1 to m do
28 SYSL1[j ] := L1 ∗ SYS[j ] ∗ TRANSPOSE(L1) ;
29 end for ;
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Finally, we apply the output mixing layer L2 to obtain the m public polynomials.
Thus, L2SysL1[j ] stores the matrix corresponding to the public polynomial F̄j

where F̄ = L2 ◦ F ◦ L1.

30 L2 := genRandInvMat (27) ;
31 L2SysL1:= [] ;
32 Z := ZEROMATRIX(FF, n, n) ;
33 for j :=1 to m do
34 L2SysL1[j ] := Z ;
35 for i :=1 to m do
36 L2SysL1[j ] := L2SysL1[j ] + L2[j , i ] ∗ SYSL1[i ] ;
37 end for ;
38 end for ;

The following loop draws a randomly chosen vector v and check if it lies in the
kernel of a non-trivial linear combination of the matrices L2SysL1. (Variable k
keeps track of the number of trials in order to verify the complexity.)

39 l := 0; k := 0;
40 repeat
41 ok := false;
42 v := VECTOR([ RANDOM(FF) : i in [1. . n] ]) ;
43 QV:= MATRIX([ v ∗ L2SysL1[j ] : j in [1. . m] ]) ;
44 k := k +1; if k ge q l then l := l+1; end if ;
45 r := RANK(QV) ;
46 if ((r lt m) and (r gt 1)) then
47 KER := KERNEL(QV) ;
48 CL := ZEROMATRIX(FF, n, n) ;
49 for i in [1. . m] do CL := CL+(KER.1)[i ]∗L2SysL1[i ] ; end for ;
50 ok := RANK(CL) lt 13;
51 end if ;
52 until ( ok ) ;

We output the complexity of our algoritm:

53 “complexity is q ˆ”, l ;

The corresponding linear combination of the public polynomials having rank at
most 12 is represented by the matrix CL. Thus we can make sure it actually lies
in the vector space spanned by the first layer of Rainbow:

54 L1
−1 ∗ CL ∗ TRANSPOSE(L1

−1) ;
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Abstract. HB+ is a shared-key authentication protocol, proposed by
Juels and Weis at Crypto 2005, using prior work of Hopper and Blum.
Its very low computational cost makes it attractive for low-cost devices
such as radio-frequency identification(RFID) tags. Juels and Weis gave a
security proof, relying on the hardness of the “learning parity with noise”
(LPN) problem. Here, we improve the previous best known algorithm
proposed by Blum, Kalai, and Wasserman for solving the LPN problem.
This new algorithm yields an attack for HB+ in the detection-based
model with work factor 252.

1 Introduction

Providing lightweight and secure cryptographic protocols for radio-frequency
identification (RFID) tags is an area under quick development. The HB protocol
family is one of the most promising in this field and uses very few operations
and gates on the chip. The original protocol has been proposed by Hopper and
Blum [8].

All protocols in the HB family rely on the computational hardness of the LPN
problem.

The LPN Problem. In machine learning theory, this problem is described in
the uniform distribution model where the algorithm only has access to a source
of random samples. The LPN problem is the following:

Definition 1. (LPN Problem)

Let 〈·|·〉 denote the binary inner product. Let s be a random k-bit vector, let
ε ∈]0, 1/2[ be a constant noise parameter, let Berε be the Bernoulli distribution
with parameter ε (so if ν ← Berε then Pr[ν = 1] = ε and Pr[ν = 0] = 1 − ε),
and let As,ε be the distribution defined as

{
a ← {0, 1}k; ν ← Berε : (a, 〈s|a〉 ⊕ ν)

}

Let As,ε denote an oracle which outputs independent samples according to this
distribution. Algorithm M is said to (q, t, m, θ)-solve the LPNk,ε problem if

Pr[s ← {0, 1}k : MAs,ε(1k) = s] ≥ θ

and furthermore M runs in time at most t, memory at most m, and makes at
most q queries to its oracle.

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 348–359, 2006.
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This is the definition of Regev [13], and Katz et al. [10]. An alternative (and
equivalent) definition can be found for example in [9].

In the following, we define δ as δ = 1 − 2ε. This notation will be better to
analyze the complexity of the algorithms. For the classical parameters ε = 1/4
and 1/8, δ is equal to 1/2 and 3/4.

The LPN problem is an average-case version of the following problem: given a
set of equations over GF(2), find a vector s that maximally satisfies the equations.
The latter problem has been first studied as the decoding of a random linear code
and has been proved to be NP -hard by Berlekamp et al. in [1]. It has also be
shown to be hard to approximate even within a factor of two by Hastad in [7]: it is
hard to find a s that satisfies more than half of the optimum number of equations.
In the LPN problem, the instances (set of equations and values) maybe do not
represent the worst case of the problem, but studies of the average-case hardness
of this problem have been proposed in [8,11,2,3,13].

The HB Protocol. The Reader and the Tag share public values k, ε, u and
r, and a k-bit secret value s. To be authenticated by a Reader, the Tag and the
Reader repeat the following round many times:

Public parameters: k, ε, u, r
Secret key: s ∈ {0, 1}k

Tag Reader

a←−−−−−−−−−−−−−−− choose a in {0, 1}k

choose ν according to Berε

z = 〈a|s〉 ⊕ ν
z−−−−−−−−−−−−−−−→ check z

?= 〈a|s〉

Fig. 1. Round identification of HB scheme

The round is repeated r times so that the Reader has good confidence in the
answers of the Tag. To this end, the protocol has a parameter u so that if the
number of errors is less than r · u, then the authentication is successful. Typical
values of ε are 1/4 or 1/8. This value cannot be chosen too close to 1/2, otherwise
the probability of rejecting an honest Tag increases too much. If it is too close
to 0, then you can find k independent equations without errors easily.

A completeness error occurs when an honest Tag is rejected. We want the
probability of a completeness error, Pc to be less than 2−40.

A soundness error occurs when a Tag making random answers succeeds in
authenticating itself. We want the probability of a soundness error, Ps to be less
than 2−80.

Given ε, u, and r, we can compute the value of Pc and Ps. Let

g(x, y) =
(

x

y

)x (
1 − x

1 − y

)1−x

.
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The probabilities Pc and Ps can be expressed as sums of the tail of a binomial
distribution, and using Stirling’s formula, we obtain:

Pc ∼ g(u, ε)−r and Ps ∼ g(u, 1/2)−r.

For each ε, we compute the values of u and r such that r is as small as possible,
and the above conditions on Pc and Ps are true.

We gather the result in the following table:

ε 0.01 0.05 0.125 0.25 0.4 0.49
u 0.112 0.181 0.256 0.348 0.442 0.495
r 159 249 441 1164 7622 554360

Fig. 2. Values for r(ε)

In this protocol, secure only against passive attackers, an adversary gets pairs
of the form (a, 〈a|s〉 ⊕ ν) and must compute s.

There is a simple active attack against HB. Indeed, if an adversary can change
the challenge, it can send several times the same value a. Since the answer is
incorrect with probability ε 	 1/2, majority votes enable to recover 〈a|s〉. Then,
k scalar products with independent a, allow to entirely recover s.

The HB+ Protocol. Consequently, Juels and Weis in [9] have proposed HB+,
a protocol robust against active attacks in the detection-based model. The idea
is to use a blinding factor. The Tag and the Reader now share two k-bit secret
values s1 and s2. The protocol round is the following:

Public parameters: k, ε, u, r

Secret key: s1, s2 ∈ {0, 1}k

Tag Reader

choose b in {0, 1}k b−−−−−−−−−−−−−−−→
a←−−−−−−−−−−−−−−− choose a in {0, 1}k

choose ν according to Berε

z = 〈a|s1〉 ⊕ 〈b|s2〉 ⊕ ν
z−−−−−−−−−−−−−−−→ check z

?= 〈a|s1〉 ⊕ 〈b|s2〉

Fig. 3. Round identification of HB+ scheme

The security of this protocol relies on the LPN problem for s2. Indeed, an
active attacker can interact with the Tag in the first stage of his attack and then
tries to impersonate the Tag against a Reader. The attacker can choose a = 0k,
obtaining values of 〈b|s2〉 ⊕ ν. If he can solve a LPNk,ε problem, he can recover
s2. Then, once s2 is recovered, he must recover s1. This can be easily done since
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the attacker is now faced to a HB protocol that can be defeated by choosing the
same a many times to know 〈a|s1〉 with high confidence.

Remark 1. The length of s1 is used in HB+ proofs only to guarantee that the
attack that consists to guess s1 is not efficient. But |s1| = 80 is sufficient to
guarantee 80 bits security.

Related Works. Gilbert, Robshaw, and Sibert [5] found a man-in-the-middle
attack against HB+ when the adversary can interact with the Reader and the
Tag during the same round. Consequently, Bringer, Chabanne and Dottax [4]
proposed a new derived protocol, HB++, that is resistant to a generalization of
Gilbert et al. attack.

The security proof of HB+ of Juels and Weis has also been simplified and
improved by Katz and Sun Shin [10], using a recent result of Regev [13].

Our Work. The best algorithm to solve the LPN problem had been proposed by
Blum, Kalai and Wasserman in [3], hereafter denoted as the BKW algorithm. The
parameter security k of the HB protocols has therefore been estimated using the
complexity of this algorithm. But, Blum, et al. only give a high-level description
of the BKW algorithm and estimate the overall subexponential complexity of
order 2O(k/ log k). Juels and Weis in [9] propose practical parameters by giving
an effective estimate of the query and time complexity.

However, they have not seen that the BKW algorithm could be improved. In
this paper, we present in detail the BKW algorithm, analyze it precisely and
give its complexity. Then, we propose an improvement for the final stage of the
algorithm. Instead of throwing away almost all equations, we manage to use
every one. Therefore, we need much less queries. We also use a Walsh-Hadamard
transform to speed up this phase. Then, we give an heuristic improvement using
Wagner’s method to solve the Generalized Birthday Paradox of [14]. Finally, we
compare the performance of the BKW and our algorithm. Our algorithm yields
an attack in 252 for the actual key-length of HB+ as proposed by Juels and Weis
in Crypto ’05, instead of the conjectured 280.

The next section is a full analysis of BKW. In the third one, we describe
and prove an improved algoritm (LF1). In the fourth, we propose an heuristic
algorithm (LF2) that is more efficient in practice than LF1, as will be shown in
the last section, that is focused on implementation techniques and complexity
results.

2 The BKW Algorithm

The aim of this section is to describe the algorithm and the ideas behind. We
also make a detailed and precise analysis of the success probability, using explicit
Chernoff’s bounds that are recalled in appendix A. This part is not contained
in the previous papers.
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2.1 Description

In the following, we denote by a and b two different parameters from a and b.
We use those very close notations since the first come from Blum et al. in [3]
and the second come from [10,9].

To solve the learning parity with noise problem Blum, Kalai and Wasserman
in [3] use the following idea: by picking carefully a few well-chosen vectors in a
quite large set of samples and computing the xor of these vectors, we can find
basis vectors, i.e. ej where the jth bit is a one and all other coordinates are null.
First, we have to choose a parameter a. Typical values run from 4 to 6. The
main point is that we are able to find 2a = O(k/ log k) vectors such that

ai1 ⊕ · · · ⊕ ai2a = ej . (1)

Then, since the number (2a) of vectors is small, the bias of the equations
obtained is not too small. Consequently, if we have enough independent combi-
nations of vectors equals to ej , then a majority vote enables us to recover the
correct value of sj since 〈s|ai1 ⊕ · · · ⊕ ai2a 〉 = 〈s|ej〉 = sj.

We set b to be 
k
a�. From now on, we will assume for simplicity that k = a · b.

The algorithm has to search enough such independent combinations of the ai’s.
To this end, it splits the k bits of ai into a blocks of b bits. Then, according
to the last b bits, the algorithm computes 2b equivalent classes and classifies
the ai according to these bits. In each class, it chooses a vector at random,
performs the xor with all other vectors of the same class and finally throws
away this vector. Therefore, at the end of this step, in each equivalent class, the
last b bits are zeroes. This procedure is called recursively beginning at the last
block until the second block. Then, we keep only the equations that are of the
form 〈s|ej〉 = ν. If there are enough of such equations, the majority vote says
something meaningful about the value of sj with high probability. By applying
this algorithm for different j, we can recover all the bits of s.

2.2 Analysis

Now, we will analyse this algorithm. To this end, we present two lemmas that
will be helpful. The first lemma analyses the bias at the end of the recursion
steps, while the second lemma estimates the number of elements and is useful
to show an invariant of the algorithm.

Lemma 1. If (a1, ν1), . . . , (an, νn) are the result of n queries to As,ε, then the
probability that:

〈ai1 ⊕ . . . ⊕ ain |s〉 = νi1 ⊕ . . . ⊕ νin

is equal to 1+δn

2 .

This lemma is equivalent to lemma 3 of [3].
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Proof. For n = 1, the lemma is trivially true. By induction, and using the ai’s
independence, we have:

Pr[〈ai1 ⊕ . . . ⊕ ain |s〉 = νi1 ⊕ . . . ⊕ νin ] =
Pr[

〈
ai1 ⊕ . . . ⊕ ain−1 |s

〉
= νi1 ⊕ . . . ⊕ νin−1 ]Pr[〈ain |s〉 = νin ]

+Pr[
〈
ai1 ⊕ . . . ⊕ ain−1 |s

〉
�= νi1 ⊕ . . . ⊕ νin−1 ]Pr[〈ain |s〉 �= νin ]

=
1
2
(1 + δn−1)

1
2
(1 + δ) +

1
2
(1 − δn−1)

1
2
(1 − δ) =

1
2
(1 + δn).

�

The following definition and lemma are equivalent to definition 2 and lemma 4
in [3].

Definition 2. Let As,δ,i be the distribution defined as
{
a ← {0, 1}(a−i)b × {0}ib; ν ← Ber(1+δ)/2 : (a, 〈s|a〉 ⊕ ν)

}

Also, let As,δ,i denote an oracle which outputs independent samples according to
this distribution. We define an (s, δ, i)-set of size n as the result of n queries to
oracle As,δ,i.

Lemma 2. Assume we are given an (s, δ, i)-set of size n. We can in time O(n)
construct an (s, δ2, i + 1)-set of size n − 2b.

Proof. Let us call (a1, ν1), . . . (an, νn) the elements of the (s, δ, i)-set. Vectors
aj have their last ib coordinates equal to 0. We partition them with regard to
their value on the precedent b coordinates, obtaining a partition with at most
2b classes. In each class, we pick a vector at random and add it (modulo 2) to
all the others vectors in that class, and then discard it. Compiling the results
for each class, and using lemma 1, we obtain a (s, δ2, i + 1)-set of size (at least)
n − 2b. �

Consequently, according to lemma 1, at the end of the algorithm, the bias of the
equation 1 is δ−2a−1

where δ = (1 − 2ε).
The next lemma give the number of combinations of equations that must

xored to the vector ej in order to have a high probability of success.

Lemma 3. Let Asi,δ,a be the distribution defined as
{
ν ← Ber(1+δ2a−1 )/2 : si ⊕ ν)

}

Also, let Asi,δ,a denote an oracle which outputs independent samples according
to this distribution.

Then it is possible to guess the value of si with cδ−2a

calls to the oracle with
error probability bound by 2e−c/20.
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Proof. We define that a sample ai, ν is compatible with the i-th bit of s if si · ai

= ν.
The idea for guessing the ith bit is to compute for si = 0 and si = 1, the

number of compatible samples and predict that si = b according to the majority
number of compatible samples.

Therefore, in order to upper bound the probability of failure of the BKW
algorithm, we have to upper bound the following probability where xi = 1 − si:
Pr[xi has more compatible samples than si].

To this end, we upper bound the previous probability by the sum of two more
easily computable probabilities.

pr1 = Pr[xi is compatible with at least
1 + αδ2a−1

2
· N samples]

pr2 = Pr[si is compatible with at most
1 + αδ2a−1

2
· N samples]

If si is correct, then it is compatible with ai, ν with probability 1+δ2a−1

2 and
otherwise with probability 1/2. We will justify the last assertion later. Let us
denote by N the number of equations cδ−2a

. The random variable Xj for j = 1
to N , is equal to 1 if si is compatible with the jth sample, and 0 otherwise.

Bounding pr2. The expectation of Xj , E[Xj] = Pr[Xj = 1] = 1+δ2a−1

2 We
sum these random variables and denote by X their sum, X =

∑N
j=1 Xj , and so

E[X ] = N · E[Xj ] = N · 1+δ2a−1

2 .

pr2 is equal to Pr[X ≤ (1 + αδ2a−1
)(N/2)] which can be bounded using Cher-

noff bounds (cf. appendix A). To this end, we have (1−Δ)E[X ] = (1+α ·δ2a−1
) ·

(N/2).
To determine Δ, we divide the right-hand side by E[X ], and we get

1 − Δ =
1 + α · δ2a−1

1 + δ2a−1 ≈ 1 − (1 − α) · δ2a−1

and so Δ = (1 − α) · δ2a−1
.

pr2 ≤ e−(cδ−2a
/4)·(1+δ2a−1

)·(1−α)2δ2a−1·2 ≤ e−(c/4)(1−α)2(1+δ2a−1
)

≤ e−(c/4)(1−α)2

Bounding pr1. In order to upper bound pr1, we use the fact that for a bad
guess, the expectation E[X ] is equal to N

2 , and the theorem 3 in appendix A.
We have

pr1 ≤ Pr[X > (1 + Δ)μ] ≤ e−NΔ2/(3·2)

Here, Δ = α · δ2a−1
and as N = cδ−2a

, then NΔ2 = cα2 and

pr1 ≤ e−cα2/6
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Pr[xi · ai = ν|xi = 1 − si] = 1/2. It remains to justify that when si is not
correct, then si · ai = ν with probability 1/2. Let (a, ν) ← As,ε and xi = 1 − si.
We want to show that Pr[xi · ai = ν] = 1/2. To this end, we split the event into
two incompatible events:

Pr[xi · ai = si · ai] Pr[si · ai = ν] + Pr[xi · ai �= si · ai] Pr[si · ai �= ν]
= Pr[(xi ⊕ si) · ai = 0] Pr[si · ai = ν]

+ Pr[(xi ⊕ si) · ai �= 0] Pr[si · ai �= ν]
= (1/2) · (Pr[si · ai = ν] + Pr[si · ai �= ν])
= 1/2

since the first equation comes from the fact that ai and ν are independent and
second equation as since xi �= si and ai is taken uniformly, the probability that
ai = 0 is exactly 1/2.

Choosing α = 3 −
√

6 finishes the proof. �

The main ingredient of the algorithm is that with a small number of vectors,
a combination of such vectors yields a basis vector. If the number required is
too high, then the bias of equation (1) is too small and the number of queries
becomes very large.

We are now ready to prove the theorem that gives the complexity of the BKW
algorithm.

Theorem 1. For k = a · b, the BKW algorithm (q = 20 · ln(4k) · 2b · δ−2a

, t =
O(kaq), m = kq, θ = 1/2)-solves the LPNk,ε problem .

Proof. The original queries form a (s, δ, 0)-set of size q. Using lemma 2 (a − 1)
times, we obtain a (s, δ2a−1

, 0)-set of size q−(a−1)2b. Keeping only the equations
with one non-zero coordinate, then using lemma 3, we obtain one bit of s with
error probability at most 1/(2k). Repeating this for different bits of s, we find s
with probability at least 1/2. �

3 An Improved Algorithm: LF1

This algorithm is a variation of the BKW algorithm. In the BKW algorithm, the
last step wastes a lot of time and queries. The idea is to deal in the last step with
equations over b bits instead of one. Moreover, we will use the Walsh-Hadamard
transform to quickly find the best possibility over b bits.

This algorithm does not use any heuristics. This section is devoted to prove
the correctness and the performances of this algorithm. It needs lots of queries
(less than BKW, though).

We now state our main theorem:

Theorem 2. For k = a · b, there is an algorithm that
q = (8b + 200) · δ−2a

+ (a − 1)2b, t = O(kaq), m = kq + b2b, θ = 1/2
solves the LPNk,ε problem.
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Proof. For any b-bit vector x, we say that a sample ai, ν is x-compatible if
〈ai|x〉 = ν. The q inital queries constitues a (s, δ, 0)-set of size q. By iterating
lemma 2, we obtain an (s, δ2a−1

, a)-set S of size q − (a − 1) · 2b = N = (8b +
200)δ−2a

.
We now try every possibility for the first b bits and choose the one that is

compatible with the greatest number of examples. The naive time complexity is
22b, but using a fast Walsh-Hadamard transform reduces it to b2b.

Using the same analysis as for the BKW algorithm, except that we choose
α = 3/4, we get that the probability of failure is less than

e−200/64 + 2be−(8b+200)9/96 ≤ 1/(2a).

Repeating this a times allows us to recover all the bits of s with probability
at least 1/2. �

In this section, we have shown that we can lower the query complexity to q =
(a−1)2b +(8b+200)δ−2a

. Time and memory complexity remains comparatively
small.

4 A Heuristic Algorithm: Computing All Sums: LF2

Following [14], instead of picking a vector in each class (cf. proof of 2), we could
compute the sum of any couple of class elements. Unfortunately, we lose the
independence that is necessary to use Chernoff bounds. However, linear rela-
tions between equations are not numerous and our implementation confirms this
phenomenon has no visible effect on the success of the algorithm.

This also allows us to overcome a lack of queries: if there are only 2b′
(b′ > b/2)

queries available, the first partitioning is made according to the last b1 bits where
b1 = 2b′ − b − 1.5. And for all the subsequent phases, we will have 2b equations.
Bounding the number of requests was an easy and effective defence against BKW
and LF1, but it does not work against this new version.

For example, we succeed in breaking a LPN problem with k = 66, ε = 1/4
with 10000 queries (10 authentications) with 1 GB memory in 30 seconds.

5 Implementation

We want to do the partitioning, using only small additional memory and (almost)
linear time. First, we divide our memory in 2b/2 packs of size 3.2b/2. We begin
at the first equation in the first pack. Its last b/2 bits give the address of the
pack where we send it. Here, it takes the place of an other equation, which is
sent to the pack corresponding to its last b/2 bits, and so on. It could happen
that a pack is full. In this case, the equation is lost. But few equations are lost
in the process, and very few if the packs are a little bigger.

We now use an array of size 2b/2, each case being able to contain 10 equations.
We put the equations of the first pack in this array, according to the values of
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bits 2b/2 +1 to 2b(in reverse order). We could afford ten equations that have the
same value (the average being 3).

Then we compute the xor between the first and the others for LF1, or the xor
of all couples of equations in the same case for LF2, and put our new equations
back to the pack.

We make an implementation in C, and make it run on a Pentium 4, with a
CPU frequency of 3 GHz, and a little less than 1 GB of memory.

For ε = 1/4, using 1 GB of memory, our implementation breaks a LPN prob-
lem with k = 99 (we split the equations in four parts of sizes 24,24,27,24) with
LF2, instead of a theoretic k = 96 with LF1. But we were able to break only a
k = 92 with our implementation of LF1 because we need additional memory for
pointers to equations. In both cases, the computing time was around 30 seconds.

5.1 Accurate Complexity

The factor 8b + 200 in the complexity is a rough upper bound. It can often
be replaced by 25. On the other hand, reading and writing in a large memory
(1 GB for example) could take tens of cycle per 32-bit int. If one uses a hard
drive’s memory, it will be a lot worse, even if one programs very carefully to
make almost only sequential access to the drive.

5.2 Performances of Our Algorithm

First, we give a comparison between BKW and LF1.
For ε = 1/4, we have the following results:
The value given is the maximum value for k you could hope to break with the

given memory. The needed time is roughly the time for sorting the memory a
times.

Memory available BKW LF1
1 GB 39 96

252 bytes 104 225
280 bytes 180 426

The following tables contains a more exhaustive study of LF1. It should be
read in the following way: It takes 246 bytes of memory to solve a LPN problem
with k = 256 and ε = 1/8.

ε\k 64 128 256 512 768 1024
0.01 13 19 33 56 74 98
0.05 16 25 40 67 90 118
0.125 18 29 46 77 113 131
0.25 24 34 55 89 131 150
0.4 28 45 66 106 157 174
0.49 33 55 88 130 192 208
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We suggest to take a safety margin, in order to be able to resist to small
improvements like LF2. We have explored a variety of other improvements, but
none of them gave substantial results.

We recommend to use k = 512 to achieve 80 bits security for ε = 1/4. Choos-
ing the value of ε depends upon a compromise between the key size and the
computing time for an authentication. Using tables 2 and the above one should
help. The couple k = 768, ε = 0.05 with r = 249 seems quite good.

6 Conclusion

In this article, we give a better algorithm to solve the LPN problem, thus break-
ing the HB+ protocol with suggested size parameters. However, with a moderate
increase of the key length, our attack becomes infeasible. Our algorithm gives a
more precise idea of the complexity of the LPN problem.

On the other side, remark 1 allows to decrease the length of one of the secret
parameters.

So, summing everything, we have shown that to achieve 80 bits security, HB+

should be used with |s1| = 80 and |s2| = 512 instead of |s1| = |s2| = 224. The
overall complexity of this protocol remains almost unchanged.

Proving algorithm LF2 is in our opinion quite difficult although feasible.

Acknowledgment. We would like to thank Louis Granboulan for various dis-
cussions and suggestions about this work.
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A Chernoff’s Bounds

We need the following Chernoff’s bounds that have been proved in [12].

Theorem 3. Let X1, . . . , Xn be n independent Bernoulli trials such that Pr(Xi)
= p. Let X =

∑n
i=1 Xi and μ = E[X ] = n · p. Then, the following Chernoff

bounds hold:

1. for 0 < Δ ≤ 1, Pr(X ≥ (1 + Δ)μ) ≤ e−μΔ2/3

2. for 0 < Δ < 1, Pr(X ≤ (1 − Δ)μ) ≤ e−μΔ2/2
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1 Introduction

Multiparty computation (MPC) is an extremely general subject, and a protocol
enabling general secure multiparty computation is a very strong tool that can –
in principle – solve almost any cryptographic protocol problem.

In multiparty computation, we usually consider a number of players P1, ..., Pn,
who initially each possess some inputs x1, ..., xn, and we then want to securely
compute some function f on these inputs where f(x1, ..., xn) = (y1, ..., yn) such
that Pi learns yi but no other information.

This should be accomplished by some interactive protocol π that the players
execute. Intuitively, we want that executing π is equivalent to having a trusted
party T that receives privately xi from Pi, computes the function, and returns
yi to each Pi. We note that this “equivalence” is not only intuition – it can be
formalized using, for instance, Canetti’s Universal Composability framework[4].

What we have described here is actually secure function evaluation, and not
general secure MPC. The latter would correspond to the case where T has mem-
ory and can be called several times, perhaps computing a new function every
time it is invoked. In this case, T is in essence a secure general purpose computer.

Of course, we do not assume that all parties are honest, usually an adversary
is assumed who may corrupt some of the players. An adversary can be active
or passive, depending on whether he takes full control over corrupted players or
just observes their internal data and messages.

The protocol π is usually only required to be secure assuming the adversary is
limited in some way. For instance, a limitation is usually be put on the number of
players that can be corrupt, or in general we can specify an adversary structure,
which is a list of the sets that may be corrupted. We may also want to assume
that the adversary is limited to polynomial time computation.

2 The Classical Theory

The general theory of MPC was founded in the late 80-ties [12,2,6]. The theory
was later developed in several ways in many papers by different authors – see
for instance [15,14,7]. An overview of the theoretical results known can be found
in [5].

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 360–364, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Theory and Practice of Multiparty Computation 361

We will not give a complete account of the results proved here, since this is
not important for our main objective here. The essence is that if not too much
corruption is around, fully general and secure MPC is possible. Typically, if less
than n/2 (or in some cases n/3) of the players are corrupt, we are in business. If
we are willing to accept that the protocol may not terminate with an output to
all honest players (and if the adversary is polynomial time bounded) then up to
n − 1 players can be corrupt. On the other hand, if these bounds are violated,
then some functions cannot be computed securely.

This line of research was clearly oriented towards basic research - the objective
was to answer fundamental questions about what is possible and what is not.
There was not much interest in the efficiency of the protocols, beyond the fact
that they were polynomial time. Indeed, if one would implement the protocols
from the first papers mentioned, the result would not be practical at all. A
main reason for this is that to use these so called generic methods, the desired
computation must be written as a Boolean circuit, or as an arithmetic circuit
over some finite field. For most non-trivial computations, this will result in a
very large circuit and a correspondingly inefficient protocol.

3 Efficiency Improvements

It is only natural that many researchers have tried to improve the efficiency of
the first protocols. Examples can be found in [9,13,8]. What these works do, is
usually to set generic MPC as the goal, more specially, we assume we are given a
circuit (Boolean or arithmetic), and the goal is to compute this circuit securely
as efficiently as possible. This means that we do not address the loss of efficiency
that results from expressing the computation as a circuit in the first place. Of
course, the advantage, on the other hand, is that we get a fully general solution.

Other lines of research have followed a different path, namely to look for
efficient solutions to special cases of the MPC problem, hoping that special
properties of the particular kind of computation we are after can be exploited to
get better efficiency. Electronic voting is one example where this approach has
been successful to the extent that genuinely practical solutions are known today,
see for instance [3,10]. Of course, the downside of the “special-case” approach,
is that generality is lost.

4 Applications as the Driver

Recently, a different trend can be seen in various works, which is a sort of hybrid
between the generic and the special-case approaches. Examples of this are the
research projects SCET (Secure Computing, Economy and Trust) and SIMAP
(Secure Information Managing and Processing) that the author has been involved
in. The idea here is to look at a range of applications, identify the essential
operations one needs to do securely in all of the applications, and finally design
special-purpose implementations for precisely those operations. In this way we
can hope to have the best of both worlds: generality, because we consider a
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whole range of applications simultaneously, as well as efficiency, because we make
special purpose protocols for the most common elementary operations, rather
than reducing everything to, say, binary operations.

More concretely, SCET has considered the following types of problems

– Various types of auctions. This is not limited to only standard highest bid
auctions with sealed bids but also includes, for instance, variants with many
sellers and buyers, so called double auctions - essentially scenarios where one
wants to find a fair market price for a commodity given the existing supply
and demand in the market.

– Benchmarking, where several companies want to combine information on
how their businesses are running, in order to compare themselves to best
practice in the area. This of course has to be done while preserving confi-
dentiality of companies’ private data.

When looking at such applications, we found that the computation needed is
basically elementary arithmetic on integers. More concretely, quite a wide range
of the cases require only addition, multiplication and comparison of integers. The
known generic MPC protocols can usually handle addition and multiplication
very efficiently. What they really do is actually operations modulo some prime
p, because the protocols are based on secret sharing over Zp. So by choosing p
large enough compared to the input numbers, we can avoid modular reductions
and get integer addition and multiplication.

This is efficient because each number is shared “in one piece” using a linear
secret sharing scheme, so that secure addition, for instance, requires only one
local addition by each player. Unfortunately, this also implies that comparison
is much harder. A generic solution would express the comparison operation as
an arithmetic circuit over Zp, but this would be far too large to give a practical
solution, because the circuit would not have access to the binary representation
of the inputs. So instead we developed special purpose techniques for comparison.
This enables comparison in constant-round with unconditional security [11] and
also a logarithmic round solution that is more practical for the size of numbers
we are interested in. For more details on the applications and protocols, see
[1]. These techniques enable, for instance, truly practical double auctions with
several thousand participants.

The SIMAP project goes a step further and has as an additional goal to de-
velop a domain specific programming language smcl. This language allows you
to express the desired computation, and specify which information should be
available to which players at any given time. Such a program can then be com-
piled to code that will run on the players’ machines and execute the appropriate
protocols. We use a client/server model where clients supply inputs and receive
outputs, while servers are responsible for doing the computation. A single player
can play all roles, so this is just a generalization of the standard model. But
it also allows us to have cases where a large number of clients supply input to
a small committee of servers, which would be natural for a large auction. As
an example, we show the source code in the first version of our language for a
multiparty version of Yao’s millionaire’s problem: A set of billionaries want to
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know which among them is the richest. Each participant only relies on him self.
A server is co-located with an output client and an input client. The role of an
input client is to deliver the player’s personal net worth as a secret integer. The
role of an output client is to receive the answer. The servers must decide which
billionaire is the richest and send a boolean value of true to him and only him.
The rest should get a false. We show here only the code specifying the computa-
tion for the servers. Types with an “s” in front of their names are secret types,
where values should be secret shared or encrypted. The names BillionaireIn and
BillionaireOut refer to code written for the clients which we do not show here.

function void main(int[] args) {
Group of BillionaireIn billIn;
Group of BillionaireOut billOut;

sClient richest; //pointer to richest client
sint max = 0; //eventually holds networth of richest client

foreach (Client c in billIn) {
sint netWorth = c.netWorth.get(); //get input from client
sbool b = netWorth > max; //richer than current record?
max = b ? netWorth : max; //set max accordingly
richest = b ? c : richest; //set pointer to richest client

}

foreach (sClient c in billOut) {
c.tell(c == richest); //send output

}
}

For further information, see the home pages of the projects
http://sikkerhed.alexandra.dk/uk/projects/scet.htm and
http://sikkerhed.alexandra.dk/uk/projects/simap.htm.

We hope and believe that these new trends will lead to new practical uses of
MPC, as well further theoretical development.
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