
MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 1

  

 For even more tricks and tips go to
 www.vbpj.com

Welcome to the 11th Edition of the
VBPJ Technical Tips Supplement!

These tips and tricks were submitted by profes-

sional developers using Visual Basic 3.0 through

6.0, Visual Basic for Applications (VBA), and Visual
Basic Script (VBS). The editors at Visual Basic

Programmer’s Journal compiled the tips. Instead of

typing the code published here, download the tips
for free from the VBPJ Web site at www.vbpj.com.

If you’d like to submit a tip to VBPJ, please send it

electronically to vbpjtips@fawcette.com. You can
also send it to User Tips, Fawcette Technical Publi-

cations, 209 Hamilton Ave., Palo Alto, California,

USA, 94301-2500; or fax it to 650-853-0230. Please
include a clear explanation of what the technique

does and why it’s useful, and indicate if it’s for VBA,

VBS, VB3, VB4 16- or 32-bit, VB5, or VB6. Please limit
code length to 20 lines. Don’t forget to include your

e-mail and mailing addresses, and let us know your

payment preference: $25 per published tip or ex-
tending your VBPJ subscription by one year.

VB4 32, VB5, VB6
Level: Intermediate

Retrieve File Version Information
Win32 file images can contain a file version resource that stores
product and version information about the file. The version num-
ber is actually four 16-bit values typically displayed using dot
notation (such as 4.0.9.4566). You can use this information when
determining whether one file is newer or older than another.

This code implements the GetVersionInfo procedure in a stan-
dard BAS module. Pass the name of a file to GetVersionInfo, and a
dot-formatted string of the version number returns, if available, or
“N/A” returns if the file does not contain a version resource:

Private Type VS_FIXEDFILEINFO
dwSignature As Long
dwStrucVersion As Long
dwFileVersionMSl As Integer
dwFileVersionMSh As Integer
dwFileVersionLSl As Integer
dwFileVersionLSh As Integer
dwProductVersionMSl As Integer
dwProductVersionMSh As Integer
dwProductVersionLSl As Integer
dwProductVersionLSh As Integer
dwFileFlagsMask As Long
dwFileFlags As Long
dwFileOS As Long
dwFileType As Long
dwFileSubtype As Long
dwFileDateMS As Long
dwFileDateLS As Long

End Type
Private Declare Function GetFileVersionInfo _

Lib "Version.dll" Alias _
"GetFileVersionInfoA" (ByVal lptstrFilename _

As String, ByVal dwHandle As Long, ByVal _
dwLen As Long, lpData As Any) As Long

Private Declare Function _
GetFileVersionInfoSize Lib "Version.dll" _
Alias "GetFileVersionInfoSizeA" (ByVal _
lptstrFilename As String, lpdwHandle As _
Long) As Long

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "RtlMoveMemory" (dest As Any, src As _
Long, ByVal length As Long)

Private Declare Function VerQueryValue Lib _
"Version.dll" Alias "VerQueryValueA" _
(pBlock As Any, ByVal lpSubBlock As String, _
lplpBuffer As Any, puLen As Long) As Long

Public Function GetVersionInfo(ByVal sFile As _
String) As String
Dim lDummy As Long
Dim sBuffer() As Byte
Dim lBufferLen As Long, lVerPointer As Long
Dim lVerBufferLen As Long
Dim udtVerBuffer As VS_FIXEDFILEINFO
' Default return value
GetVersionInfo = "N/A"
' Attempt to retrieve version resource
lBufferLen = GetFileVersionInfoSize(sFile, _

lDummy)
If lBufferLen > 0 Then

ReDim sBuffer(lBufferLen)
If GetFileVersionInfo(sFile, 0&, _

lBufferLen, sBuffer(0)) <> 0 Then
If VerQueryValue(sBuffer(0), _

"\", lVerPointer, lVerBufferLen) _
<> 0 Then
CopyMemory udtVerBuffer, ByVal _

lVerPointer, Len(udtVerBuffer)
With udtVerBuffer

GetVersionInfo = _
.dwFileVersionMSh & "." & _
.dwFileVersionMSl & "." & _
.dwFileVersionLSh & "." & _
.dwFileVersionLSl

End With
End If

End If
End If

End Function

—James D. Murray, Huntington Beach, California

VB5, VB6
Level: Beginning

Enforce Case With Enums
Enumerated constants are great, but they have a quirk that’s a bit
obnoxious: They don’t retain their capitalization in the Integrated
Development Environment (IDE), which a lot of folks use to provide
visual feedback that they haven’t misspelled the constant name.
You can fool the IDE into retaining the capitalization by also
declaring the Enums as public variables and surrounding the
declarations with “#If False...#End If” compiler directives so they
won’t be compiled:

Public Enum MyEnum
EnumOne=1
EnumTwo
EnumThree

End Enum
#If False Then

Public EnumOne
Public EnumTwo
Public EnumThree

#End If

—Barry Garvin, Georgetown, Massachusetts



  

2 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

101 TECH TIPS
For VB Developers

VB3 and up
Level: Intermediate

Tokenize Your Strings
I find the strtoken function in C quite powerful. This function strips
tokens off a string-based delimiter in the string. The function
returns the token and stripped string so that the next call to
strtoken returns the next token. This sequence continues until
there are no more tokens, when the string would be empty. Here’s
a function in VB that provides the same functionality:

Public Function StrGetToken(ByRef psString As _
String, ByVal psDelim As String) As String
Dim nPos As Long
Dim sToken As String
On Error GoTo ERROR_Handler
sToken = psString
' Check for empty string
If (Len(psString)) Then

' Check for position of delimeter
nPos = InStr(psString, psDelim)
' If delimeter is found, strip off token
If (nPos > 0) Then

sToken = Left$(psString, nPos - 1)
' Strip token and delimiter from
' string passed in
psString = Mid$(psString, nPos + Len(psDelim))

Else
' No delimiter found, set string
' passed into an empty string
psString = ""

End If
End If
StrGetToken = sToken
Exit Function

ERROR_Handler:
StrGetToken = ""

End Function

Here’s an example of how you might use this function:

Dim s As String
s = "Dim sToken As String"
Do While Len(s)

Debug.Print StrGetToken(s, " ")
Loop

—Joe Halfman, received by e-mail

VB4, VB5, VB6
Level: Beginning

Drag Files Into Project Window
Creating a new project in VB6 (and earlier versions) has always
been a pain when you have a large library of modules to add in. You
can do it a module at a time—the Add File dialog doesn’t support
multiple select—or you can edit the VBP file manually. Either way
is difficult.

But try this: Open VB, then open an Explorer window. Find and
highlight several BAS, FRM, or CLS modules, and simply drag them
into the Project window in VB. Voilà! No more single-select night-
mares. All the files are added to the project instantly.

—Darin Higgins, Fort Worth, Texas

VB6
Level: Beginning

Use StrReverse to Find Last Character Occurrence
When you need to determine the last occurrence of a character
within a larger string, you typically use a Mid$ or Instr in a loop.
VB6’s introduction of the new string reversal function, StrReverse,
offers an easier way. A fully qualified filespec might include
several backslashes, and you must find the last one to extract
only the filename. This routine uses StrReverse to quickly extract
only the information you need:

Public Function GetFileName(ByVal FileSpec As _
String) As String
Dim sRevName As String
If Len(FileSpec) Then

sRevName = StrReverse(FileSpec)
GetFileName = StrReverse(Left$( _

sRevName, InStr(1, sRevName, "\") - 1))
End If

End Function

Using the same logic, you can strip the filename from the path to
return the full path alone:

Public Function GetPath(ByVal FileSpec As _
String) As String
Dim sRevName As String
Dim sPathName As String
If Len(FileSpec) Then

sRevName = StrReverse(FileSpec)
sPathName = StrReverse(Right$(sRevName, _

Len(sRevName) - InStr(sRevName, "\")))
If Right$(sPathName, 1) = ":" Then

' Root directory, add backslash
sPathName = sPathName & "\"

End If
GetPath = sPathName

End If
End Function

—Balaraman M. Sriram, Richardson, Texas

VB3 and up
Level: Beginning

Clear Structure Data With One Assignment
User-defined types are useful when you need to store structured
data that has no specific behavior. (If you have associated behav-
ior, you should encapsulate the data in its own class.) Here’s a
quick way to clear user-defined type variables without setting
each subvariable:

' A user-defined type:
Private Type udtSomeType

SubVariableOne As Integer
SubVariableTwo As String
SubVariableThree As Long

End Type
' A couple of class-level user-defined
' type variables:
Private TypeVariableOne As udtSomeType
Private TypeVariableTwo As udtSomeType
' A method in the class:
Private Sub ResetData()

Dim CleanTypeVariable As udtSomeType
TypeVariableOne = CleanTypeVariable
TypeVariableTwo = CleanTypeVariable

End Sub

This method is especially convenient when the user-defined type
has numerous subvariables.

—Dave Doknjas, Surrey, British Columbia, Canada



Ad: Woll2Woll



  

4 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

101 TECH TIPS
For VB Developers

VB4 32, VB5, VB6
Level: Intermediate

Create Captionless MDI Forms
Sometimes you might want an MDI form without any captions or
buttons, such as in a game or acting as a background parent object.
You can create a captionless MDI form easily with a few API calls.
The system menu keys, such as Alt-F4 and Alt-Space, still work,
even though the system menu icon is invisible. If you don’t want
the system menu to pop up, then uncomment the Xor WS_SYSMENU
line below. Note that Alt-F4 still works, however:

Private Declare Function GetWindowLong Lib _
"user32" Alias "GetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Const GWL_STYLE = (-16)
Private Const WS_CAPTION = &HC00000
Private Const WS_SYSMENU = &H80000
Private Sub MDIForm_Load()

Dim lStyle As Long
lStyle = GetWindowLong(Me.hWnd, GWL_STYLE)
lStyle = lStyle Xor WS_CAPTION
' Uncomment to remove system menu access:
' lStyle = lStyle Xor WS_SYSMENU
Call SetWindowLong (Me.hWnd, GWL_STYLE, _

lStyle)
' *** Required by VB4 32, not VB5 or later:
' Form1.Show
' Unload Form1

End Sub

If you’re still using VB4, you must load a child form before the
caption bar will disappear. If you don’t want to show a child loaded
initially, then load and immediately unload a small MDI child form
in the MDI’s Form_Load( ) event.

—Matt Hart, Tulsa, Oklahoma

VB3 and up
Level: Beginning

Quick and Easy Queue
Listboxes provide suitable functionality to act as a quick queue.
Create a listbox named ListMyQueue. Use this code to add to
your Queue:

Public Sub Enqueue(StringToAdd As String)
If Len(String_to_Add) > 0 Then

ParentForm.ListMyQueue.AddItem _
StringToAdd

End If
End Sub

Use this code to retrieve from your Queue:

Public Function Dequeue() As Variant
If ParentForm.ListQueue.ListCount > 0 Then

Dequeue = ParentForm.ListQueue.List(0)
Parent_Form.ListQueue.RemoveItem (0)

Else
MsgBox "Queue is Empty"

End If
End Function

—Eric Robuck, Lyon Station, Pennsylvania

VB4 32, VB5, VB6
Level: Intermediate

Quick Recordset Copy to Excel Workbook
One of the most common things VB programmers do with Excel is
load data into an Excel worksheet from a Recordset object. The
method I see used most often to do this is looping through each
column and row of the recordset, placing the values individually
into the corresponding cells on the Excel worksheet. However, a
far faster and more efficient way takes advantage of the little-
known CopyFromRecordset method of the Excel Range object.

All you need to use this method is an object reference to the
top-left cell of the destination range. Then invoke the CopyFrom-
Recordset method for this Range object, passing it the Recordset
object you want to load into the worksheet.

Here’s a simple example, which requires that your project
reference the Data Access Objects (DAO) and Excel object libraries:

Sub Main()
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim xlApp As Excel.Application
Dim xlBook As Excel.Workbook
' Open the recordset.
Set db = DBEngine.Workspaces(0). _

OpenDatabase("D:\db1.mdb")
Set rs = db.OpenRecordset("SELECT _

* FROM MyTable")
' Open the destination Excel workbook.
Set xlApp = New Excel.Application
Set xlBook = xlApp.Workbooks. _

Open("D:\Book1.xls")
' This is all it takes to copy the contents
' of the recordset into the first worksheet
' of Book1.xls.

xlBook.Worksheets(1).Range("A1"). _
CopyFromRecordset rs
' Clean up everything.
xlBook.Save
xlBook.Close False
xlApp.Quit
rs.Close
db.Close
Set xlBook = Nothing
Set xlApp = Nothing
Set rs = Nothing
Set db = Nothing

End Sub

Excel 97 supports only plain vanilla DAO recordsets for this
operation (not including ODBCDirect recordsets). However, Excel
2000 has added support for all flavors of DAO and ActiveX Data
Objects (ADO) recordsets, making this a powerful tool for Office
2000 programming.

—Rob Bovey, Edmonds, Washington

VB3 and up
Level: Beginning

Return Fractional Part of a Number
No native VB function returns a fractional part of a decimal
number. However, by subtracting the whole portion, obtained
with Fix, from the original value, you can derive the fractional
portion easily. Return the absolute value of this calculation to
remove unwanted negatives:

Public Function Frac(ByVal Value As Double) _
As Double
Frac = Abs(Value - Fix(Value))

End Function

—William Powell Jr., Lanham, Maryland



Ad: Wintellect



6 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB5, VB6
Level: Advanced

Shorten Long Path to Fit Narrow Area
When you have to display a long file path in a limited amount of
space, you can use a Shell Light Weight API to do the job for you.
Create a form with two textboxes (txtShortPath and txtLongPath)
and a command button. This code demonstrates the call to
PathCompactPath, which is Unicode only:

Private Declare Function PathCompactPathW _
Lib "shlwapi.dll" (ByVal hDC As Long, _
ByVal lpszPath As Long, ByVal dx As Long) _
As Boolean

Private Declare Function GetDC Lib "user32" _
(ByVal hWnd As Long) As Long

Private Declare Function ReleaseDC Lib _
"user32" ByVal hWnd As Long, ByVal hDC As _
Long) As Long

Private Sub Command1_Click()
Dim hDC As Long
Dim sPath As String
Dim nWidth As Long
Const MAX_PATH As Long = 260
' txtLongPath should contain a long path
' to a file, txtShortPath should be narrow
' enough that it does not normally display
' the long path.
hDC = GetDC(txtShortPath.hWnd)
sPath = Left$(txtLongPath.Text & _

vbNullChar & Space$(MAX_PATH), MAX_PATH)
nWidth = Me.ScaleX(txtShortPath.Width, _

Me.ScaleMode, vbPixels)
If PathCompactPathW(hDC, StrPtr(sPath), _

nWidth) Then
txtShortPath.Text = Left(sPath, _

InStr(sPath, vbNullChar) - 1)
Else

' False means it could not be made
' that short or the call failed
txtShortPath.Text = "Error"

End If
ReleaseDC txtShortPath.hWnd, hDC

End Sub

You can also achieve similar functionality with a DrawText Win-
dows API call using the DT_PATH_ELLIPSIS and DT_MODIFYSTRING
constants. PathCompactPath requires shlwapi.dll version 4.71 or
higher, which ships with Internet Explorer 4. See http://msdn.
microsoft.com/library/psdk/shellcc/shell/versions.htm for
versioning details.

—Phil Fresle, Corfe Mullen, England

VB4, VB5, VB6
Level: Beginning

Iterate Control Arrays Without Error
Control arrays are odd beasts in that they can have missing ele-
ments. The simplest way to iterate a control array uses this method:

Dim i As Integer
For i = Text1.LBound To Text1.UBound ...

However, if you have holes in your array, that method tosses an
error. To avoid that eventuality, treat the array like a collection:

Dim txt As TextBox
For Each txt In Text1

txt.Text = "Hello, World!, My Index is " & txt.Index
Next txt

—Guy Dafny, Tel Aviv, Israel

VB5, VB6
Level: Advanced

Generate Relative Path Between Folders
You can use a Shell Light Weight API to generate a relative path by
using this code:

Private Declare Function PathRelativePathToW _
Lib "shlwapi.dll" (ByVal pszPath As Long, _
ByVal pszFrom As Long, ByVal dwAttrFrom As _
Long, ByVal pszTo As Long, ByVal dwAttrTo _
As Long) As Boolean

Private Function GetRelativePath( _
sRelativePath As String, ByVal sPathFrom _
As String, ByVal sPathTo As String) As _
Boolean
Dim bResult As Boolean
Const MAX_PATH As Long = 260
sRelativePath = Space(MAX_PATH)
' Set "dwAttr..." to vbDirectory for
' directories, 0 for files
bResult = PathRelativePathToW(StrPtr _

(sRelativePath), StrPtr(sPathFrom), _
vbDirectory, StrPtr(sPathTo), 0)

If bResult Then
sRelativePath = Left(sRelativePath, _

InStr(sRelativePath, vbNullChar) - 1)
Else

sRelativePath = ""
End If
GetRelativePath = bResult

End Function
Private Sub Command1_Click()

Dim sRelative As String
' txtFromPath should contain the directory
' path to go from, txtToPath should contain
' the file path to go to.
' txtRelativePath will contain the result
If GetRelativePath(sRelative, _

txtFromPath.Text, txtToPath.Text) Then
txtRelativePath.Text = sRelative

Else
txtRelativePath.Text = "Error"

End If
End Sub

PathRelativePathTo requires shlwapi.dll version 4.71 or higher,
which ships with Internet Explorer 4. See http://msdn.
microsoft.com/library/psdk/shellcc/shell/versions.htm for
versioning details.

—Phil Fresle, Corfe Mullen, England

VB3 and up
Level: Beginning

Obtain Regional Decimal Character Without API
Use this function to read a number decimal symbol from regional
settings:

Sub Form_Load()
Dim DecS   As String
DecS = ReadDecimalSymbol()

End Sub
Function ReadDecimalSymbol() As String

ReadDecimalSymbol = Mid$(CStr(1.1), 2, 1)
End Function

—Gianfranco Callino, Verona, Italy



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 7

  

 For even more tricks and tips go to
 www.vbpj.com

VB4 32, VB5, VB6
Level: Intermediate

Retrieve File Description
This routine takes a passed filename as an argument and generates
a description for it. It returns the same string as Windows Explorer
does when it has been set to Details view.

For example, if you pass the file c:\windows\win.com to the
routine, it returns the string “MS-DOS Application.” For files it can’t
describe, the routine returns a generic message of “{filetype} File.”
If the file passed doesn’t exist, it returns “Unknown File,” but you
can change this easily. This code is especially useful for telling
beginning users what type of file they’re dealing with:

Private Declare Function SHGetFileInfo Lib _
"shell32.dll" Alias "SHGetFileInfoA" _
(ByVal pszPath As String, ByVal _
dwFileAttributes As Long, psfi As _
SHFILEINFO, ByVal cbFileInfo As Long, _
ByVal uFlags As Long) As Long

Private Const SHGFI_TYPENAME = &H400
Private Const MAX_PATH = 260
Private Type SHFILEINFO

hIcon As Long
iIcon As Long
dwAttributes As Long
szDisplayName As String * MAX_PATH
szTypeName As String * 80

End Type
Public Function GetFileType(lpStrFile As _

String) As String
Dim sfi As SHFILEINFO
' Make API Call to fill structure with
' information
If SHGetFileInfo(lpStrFile, 0, sfi, _

Len(sfi), SHGFI_TYPENAME) Then
' Return filetype string
GetFileType = Left$(sfi.szTypeName, _

InStr(sfi.szTypeName, vbNullChar) - 1)
Else

' If failed then return "Unknown File"
GetFileType = "Unknown File"

End If
End Function

—Adam Lanzafame, Adelaide, South Australia, Australia

VB6
Level: Beginning

Employ Radio Buttons in a ListView
A simple piece of code can force the checkboxes in a ListView
control to behave like radio buttons. Set the ListView’s Check-
boxes property to True and place this code in its ItemCheck
event procedure:

Private Sub ListView1_ItemCheck(ByVal Item _
As MSComctlLib.ListItem)
Dim li As MSComctlLib.ListItem
For Each li In ListView1.ListItems

If li.Checked = True Then
If li <> Item Then li.Checked = False

End If
Next li

End Sub

Each time the user checks one list item, any that were checked
previously become unchecked.

—James D. Murray, Huntington Beach, California

VB4 32, VB5, VB6
Level: Intermediate

Authenticate Component Usage
Bundling functionality and program logic into an ActiveX DLL is an
excellent form of encapsulation. But even when you expose func-
tionality to your client application, you don’t need to allow unre-
stricted access to all of your public functions. Use this simple
mechanism to secure your proprietary functions from unautho-
rized access.

Create a private global variable, g_Authorized, of type Boolean
to hold the authorization state for your DLL. When the DLL loads,
g_Authorized is initialized to False. Each function (or sub) that you
wish to protect should first check the value of g_Authorized before
proceeding. If g_Authorized = False, then raise a runtime error
advising the user that the function call is not authorized. If
g_Authorized = True, then execute the function. For example, here
is a snippet from one of the encryption routines. You use encryp-
tion to keep the data private, so you want to protect the encyption
function itself from unauthorized access:

Public Function Encrypt(PlainText As String, _
CipherType As axCipherType, Optional _
ByVal Key As Long = 0) As String
Dim iX As Long
Dim iAscii As Integer
Dim CipherText As String
Dim StringLen As Long
If Not g_Authenticated Then

Err.Raise vbObjectError, "Encrypt", _
"Application is not authorized " & _
"to use this function"

End If

The client application must call this public function to set the state
of the DLL to Authorized (g_Authorized = True):

Public Sub Authenticate(Code As Variant)
If Code = "asd93d,ssd" Then

g_Authenticated = True
End If

End Sub

Passing the code parameter as a Variant makes it more secure
because a potential hacker would have no idea what sort of data
the expected authentication code is.

This is the basic methodology for DLL protection. Actually, you
could employ much more secure algorithms. You could derive the
code from any number of potential values, such as the current
system date/time, hard disk free space, or any other checkable
value. Only your own applications would know the correct algo-
rithm, so they would be the only applications on the client PC
capable of authenticating the DLL for their use. Such a code would
be more secure from a hack attack because it would actually
change from minute to minute or machine to machine.

—Joseph Geretz, Monsey, New York



8 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB4 32, VB5, VB6
Level: Beginning

Dump Resource Strings to Text File
The Resource Editor add-in is useful to add resource file text
entries, but it doesn’t provide any facility to print the current
contents. You can add this routine to a project module to generate
the desired documentation:

Public Sub DumpResStrings(Start As Long, _
Finish As Long, FileSpec As String)
Dim hFile As Long
Dim sText As String
Dim i As Long
On Error Resume Next
hFile = FreeFile
Open FileSpec For Output As #hFile
For i = Start To Finish

sText = LoadResString(i)
If Err.Number = 0 Then

Print #hFile, i & vbTab & sText
Else

Err.Clear
End If

Next i
Close #hFile

End Sub

To extract the desired range of resource file numbers into a text
file, open the Immediate window and call DumpResStrings, pass-
ing appropriate parameters:

call dumpresstrings(1,2999,"resdat.txt")

When resource file documentation is complete, set the function to
Private for standard application development.

—Trevor Marr, Chessington, Surrey, England

VB3 and up
Level: Intermediate

Short-Circuit Your Code
Be aware that VB doesn’t short-circuit Boolean expressions,
unlike programming languages such as C. Short-circuit evaluation
means to evaluate only as much of an expression as is absolutely
necessary to determine the Boolean value. For example, (A And B
And C) is certain to be False if A is False, so you can ignore B and
C. Similarly, (A Or B Or C) where B is True is certain to be True, so
you can ignore C. VB doesn’t behave this way—it evaluates the
entire expression. So this If statement results in a runtime error
if oItem has not been assigned a valid object value:

Dim oItem As Object
If Not (oItem Is Nothing) And (oItem.Text _

<> "") Then
' Do something

End If

Instead, write:

If Not (oItem Is Nothing) Then
If (oItem.Text <> "") Then

' Do something
End If

End If

This difference is especially important if the Boolean expression
includes side effects, such as a function modifying a local static
variable or module scope variable.

—John Calvert, Ottawa, Ontario, Canada

VB4 32, VB5, VB6
Level: Beginning

Convert Short Filename Into Long Filename
You can use the Dir( ) function to return a long filename, but the
return does not include path information. By parsing a given short
path/filename into its constituent directories, you can use the
Dir( ) function to build a long path/filename with 32-bit versions of
VB, without the assistance of APIs:

Public Function GetLongFilename(ByVal _
sShortName As String) As String
Dim sLongName As String
Dim sTemp As String
Dim iSlashPos As Integer
' Add \ to short name to prevent Instr from failing
sShortName = sShortName & "\"
' Start from 4 to ignore the "[Drive
' Letter]:\" characters
iSlashPos = InStr(4, sShortName, "\")
' Pull out each string between \ character for conversion
Do While iSlashPos

sTemp = Dir(Left$(sShortName, _
iSlashPos - 1), vbNormal Or vbHidden _
Or vbSystem Or vbDirectory)

If sTemp = "" Then
' Error 52 - Bad File Name or Number
GetLongFilename = ""
Exit Function

End If
sLongName = sLongName & "\" & sTemp
iSlashPos = InStr(iSlashPos + 1, sShortName, "\")

Loop
' Prefix with the drive letter
GetLongFilename = Left$(sShortName, 2) & sLongName

End Function
'From any place, add this line
GetLongFilename("C:\PROGRA~1\COMMON~1")

This function, as written, expects a standard fully qualified, drive-
based filespec.

—Alex Leyfman, Brooklyn, New York

VB5, VB6
Level: Intermediate

Use Shell Functions in Browser Control
When you’re playing with the Web browser control (Microsoft
Internet Controls), you can browse some of the objects that
come with it by pressing F2 and selecting the Shell object of
SHDocVwCtl. You’ll see many cool routines such as FindComputer,
FileRun, Explore, and ShutdownWindows, but the two most
fascinating are MinimizeAll and UndoMinimizeALL. To get the
code to work, open a VB project, open Components (Ctrl-T),
check Microsoft Internet Controls, put two command buttons on
your form, and include this code:

' Minimize All
Private Sub Command1_Click()

Dim IShell As New Shell
IShell.MinimizeAll

End Sub
' Undo Minimize All
Private Sub Command2_Click()

Dim IShell As New Shell
IShell.UndoMinimizeALL

End Sub

—Doug Weems, Locust Grove, Georgia



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 9

  

 For even more tricks and tips go to
 www.vbpj.com

VB5, VB6
Level: Advanced

Unhook Subclassing When Windows is Ready
Don’t unhook your Windows procedures from Form_Unload when
subclassing forms. When you subclass forms, the hook is often set
during Form_Load with code like this:

OriginalProc = SetWindowLong Me.hWnd, _
GWL_WNDPROC, AddressOf MyWindowProc

A common mistake is forgetting to put the corresponding unhook
call in your Form_Unload event:

SetWindowLong Me.hWnd, GWL_WNDPROC, _
AddressOf OriginalProc

If you forget to reinstate the old procedure in your Form_Unload
event, it’s bye-bye VB. Instead, add this code within your sub-
classing procedure:

Select Case Msg
Case WM_NCDESTROY

If OriginalProc <> 0 Then
Call SetWindowLong(hWnd, _

GWL_WNDPROC, OriginalProc)
OriginalProc=0

End If
Case ...

This code restores the original procedure automatically when the
window is destroyed. To make it even safer, place all your
subclassing code in a separate DLL and debug your subclassed
forms without worrying about the Integrated Development Envi-
ronment (IDE) crashing. You can always move the code back to
your EXE when it’s fully debugged.

—Simon Bryan, Newbury, Berkshire, England

VB4 32, VB5, VB6
Level: Beginning

Sort and Reverse-Sort a ListView
This routine performs the standard column sorting on a ListView
control found in many commercial applications, such as
Windows Explorer and Outlook. Using this routine, the ListView
sorts itself automatically  whenever the user clicks on a column.
Clicking on the same column toggles the sort order between
ascending and descending order. Call this routine from the
ListView control’s ColumnClick event procedure by passing both
a reference to the ListView and the ColumnHeader reference
passed to the original event:

Public Sub ListView_ColumnClick(ByRef _
MyListView As ListView, ByVal ColumnHeader _
As ColumnHeader)
With MyListView

.Sorted = False
If .SortKey <> ColumnHeader.Index - _

1 Then
.SortKey = ColumnHeader.Index - 1
.SortOrder = lvwAscending

Else
If .SortOrder = lvwAscending Then

.SortOrder = lvwDescending
Else

.SortOrder = lvwAscending
End If

End If
.Sorted = True

End With
End Sub

—Jim Pragit, Glen Ellyn, Illinois

VB4, VB5, VB6
Level: Beginning

Test for Alpha Characters Only
Although VB has an IsNumeric function, it has no IsAlpha function.
Use this routine whenever you want to determine whether a
character or string of characters is alphabetic (A-Z or a-z). Add
Case conditions for other characters you’re willing to allow, such
as hyphens, apostrophes, or whatever you consider legal:

Public Function IsAlpha(ByVal MyString As _
String) As Boolean
Dim i As Long
' Assume success
IsAlpha = True
' Check to be sure
For i = 1 To Len(MyString)

Select Case Asc(Mid$(MyString, i, 1))
Case vbKeyA To vbKeyZ
Case (vbKeyA + 32) To (vbKeyZ + 32)
Case vbKeySpace
' Add more tests to suit
Case Else

IsAlpha = False
Exit For

End Select
Next i

End Function

—Jim Pragit, Glen Ellyn, Illinois

VB3 and up
Level: Beginning

Test for Alpha Characters Only, Part II
I have a much simpler form for the IsAlphaNum function:

Public Function IsAlphaNum(ByVal sString _
As String) As Boolean
If Not sString Like "*[!0-9A-Za-z]*" _

Then IsAlphaNum = True
End Function

You can modify this function for other conditions. Simply put the
acceptable characters—such as a space, hyphen, or dot—into the
square brackets.

—Rick Rothstein, Trenton, New Jersey

VB3 and up
Level: Beginning

Test for Alpha Characters Only, Part III
Traditional testing for alphabetic characters—for example, to
restrict characters that can be entered in a textbox—uses the
ASCII value of the keypress:

If KeyAscii >=65 And KeyAscii < 113 Then

However, this test doesn’t allow for international code pages,
which might include characters with an ASCII code higher than
113. A more logical definition of an alphabetical character is one
that has a distinct upper and lowercase. To test whether some-
thing is alphabetic, use this code:

' International IsAlpha character test.
' Returns true if the input letter is
' alphabetical in any code page or language.
Public Function IsAlphaIntl(sChar As String) _

As Boolean
IsAlphaIntl = Not (UCase$(sChar) = LCase$(sChar))

End Function

—Duncan Jones, Caistor, Lincolnshire, England



10 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB3 and up
Level: Beginning

Float Buttons Over Tab Panels
When using the SSTab control to build a tabbed dialog, I often find
the design more pleasing when the OK/Cancel buttons or other
controls appear on every tab. It’s easy to place a similar control on
every tab page, but with more than a few tabs, this process can be
resource-consuming and potentially more difficult to debug.

A better way to do this is to use the natural Z-order of controls.
If you draw and size the controls you want to be “floating” outside
the SSTab control, then use the Bring to Front command on the
Format bar, or right-click on them and select Bring to Front. The
controls will appear above the tab control. Simply move them to
a position that’s empty in every tab, and you have a floating
control.

Lightweight controls, such as labels and image boxes, do not
draw above the tabs, so test the design carefully.

—Michael Lewis, Chiang Mai, Thailand

VB4, VB5, VB6, VBA
Level: Beginning

Perform String “Math” With Leading Zeroes
In an introduction to VB’s String datatype [CS 101, “The String’s
the Thing,” VBPJ  July 1999] by Ron Schwarz, the author uses this
example code:

Dim Foo As String
Dim Bar As String
Foo = "10"
Bar = "20"
Print Foo + Bar
Print Foo + Bar + 1
Print Foo + Bar & 1

The code produces this output:

1020
1021
10201

However, you could use this code:

Foo = "001"
Print Foo & 1
Print Foo + 1

that would produce this output:

0011
2

Would you expect the last result from the string datatype? Devel-
opers often deal with strings that start with single or multiple
zeroes, such as account or check numbers. The way VB treats
strings with leading zeroes appears more like a bug than an
advantage. Here’s a simple line of code that preserves the leading
zeroes:

Print Format$(Val(Foo) + 1, String$(Len(Foo), "0"))

Now you’ll see this:

002

—Edward Vakhler, Brooklyn, New York

VB3 and up
Level: Beginning

Restore Properties as They Were
If you don’t want the user to do something while other processes
are in progress, you can disable certain controls, especially if the
intermediate processing requires user interactions. I have often
seen this:

cmdButton.Enabled = False 'Don't let them do it
'Do stuff

cmdButton.Enabled = True 'Now it's OK

The problem is that perhaps you shouldn’t really enable cmdButton
because it might have been disabled before your routine was
called.

If you’re privy to all the requirements of when cmdButton is
enabled or disabled, you can centralize those and call the central-
ized routine when you’re ready. But if your section of the project
isn’t in charge of the button, the easiest and most polite thing to do
is set it back the way it was:

Dim blnWasEnabled As Boolean
blnWasEnabled = cmdButton.Enabled
frmParent.cmdButton.Enabled = False

'Don't let them do it
'Do stuff

frmParent.cmdButton.Enabled = blnWasEnabled
'Set it back

You can also use this logic to control visibility, AutoRedraw
properties, or anything else that might be set from multiple places
in the code. It works best within a single procedure and where you
aren’t calling other routines that also might affect the property
you’re setting in the meantime.

—Paul Backstrom, Kirkland, Washington

VB4 32, VB5, VB6
Level: Intermediate

Fill Combo With Available Drive Letters
To create a drop-down control with a list of used or unused drive
letters, place two ComboBox controls on a form, named Combo1
and Combo2, and include this code to initialize the lists:

Private Declare Function GetLogicalDrives Lib _
"kernel32" () As Long

Private Sub Form_Load()
FillCombo Combo1, True
FillCombo Combo2, False

End Sub
Private Sub FillCombo(cbo As ComboBox, _

ByVal bUsed As Boolean)
Dim DriveNum As Long
cbo.Clear
For DriveNum = 0 To 25

If CBool(GetLogicalDrives And (2 ^ _
DriveNum)) = bUsed Then
cbo.AddItem Chr$(Asc("A") + _

DriveNum) & ":"
End If

Next DriveNum
End Sub

—Brian Dial, Decatur, Alabama



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 11

  

 For even more tricks and tips go to
 www.vbpj.com

VB5, VB6
Level: Beginning

Open Your VB Projects With a Clean Slate
If you’re like me, you hate all the clutter of open form, class, and
module windows when you open your VB projects in the Integrated
Development Environment (IDE). Here’s a simple workaround to let
you start your project with a clean workspace.

Edit the accompanying VB Workspace file for your project. It
has the same name as your project file, but with a VBW file
extension. Delete all the lines in this file and save it. Now make this
file read-only by right-clicking on the file, choosing Properties,
then selecting the read-only checkbox.

Whenever you save your project from then on, VB won’t update
this file because it is read-only, and it won’t complain. Each time
you open your project, your workspace will start fresh with no
clutter. If for any reason you want to revert to the old way, simply
change the read-only flag back.

—Richard Edwards, Belleville, Ontario, Canada

VB5, VB6
Level: Advanced

Load a Bitmap Resource From a DLL
You can employ any DLL’s bitmap resources in VB using this Load-
Picture function. You need to set a reference to OLE Automation:

Private Type GUID
Data1 As Long
Data2 As Integer
Data3 As Integer
Data4(7) As Byte

End Type
Private Type PicBmp

Size As Long
Type As Long
hBmp As Long
hPal As Long
Reserved As Long

End Type
Private Declare Function _

OleCreatePictureIndirect Lib _
"olepro32.dll" (PicDesc As PicBmp, RefIID _
As GUID, ByVal fPictureOwnsHandle As Long, _
IPic As IPicture) As Long

Private Declare Function LoadBitmap Lib _
"user32" Alias "LoadBitmapA" (ByVal _
hInstance As Long, ByVal lpBitmapID As _
Long) As Long

Private Declare Function DeleteObject Lib _
"gdi32" (ByVal hObject As Long) As Long

Private Declare Function LoadLibrary Lib _
"kernel32" Alias "LoadLibraryA" (ByVal _
lpLibFileName As String) As Long

Private Declare Function FreeLibrary Lib _
"kernel32" (ByVal hLibModule As Long) _
As Long

Public Function LoadPicture(sResourceFileName _
As String, lResourceId As Long) As Picture
Dim hInst As Long
Dim hBmp As Long
Dim Pic As PicBmp

Dim IPic As IPicture
Dim IID_IDispatch As GUID
Dim lRC As Long
hInst = LoadLibrary(sResourceFileName)
If hInst <> 0 Then

hBmp = LoadBitmap(hInst, lResourceId)
If hBmp <> 0 Then

IID_IDispatch.Data1 = &H20400
IID_IDispatch.Data4(0) = &HC0
IID_IDispatch.Data4(7) = &H46

Pic.Size = Len(Pic)
Pic.Type = vbPicTypeBitmap
Pic.hBmp = hBmp
Pic.hPal = 0
lRC = OleCreatePictureIndirect(Pic, _

IID_IDispatch, 1, IPic)
If lRC = 0 Then

Set LoadPicture = IPic
Set IPic = Nothing

Else
Call DeleteObject(hBmp)

End If
End If
Call FreeLibrary(hInst)
hInst = 0

End If
End Function
Private Sub Form_Load()

' Try ID 130 in Win98, or 131 in NT
' to see the Windows logo...
Set Me.Picture = _

LoadPicture("shell32.dll", 130)
End Sub

—Michael Hill, Northridge, California

VB4 32, VB5, VB6
Level: Intermediate

Add Incremental Search to a Combo Box
As the user types into a drop-down combo box, he or she passes
keystrokes to the ComboIncrementalSearch routine, which then
searches the combo box’s data for the best match:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal hWnd _
As Long, ByVal wMsg As Long, ByVal wParam _
As Long, lParam As Any) As Long

Private Const CB_FINDSTRING = &H14C
Private Sub Combo1_KeyPress(KeyAscii _

As Integer)
Call ComboIncrementalSearch(Combo1, _

KeyAscii)
End Sub
Public Sub ComboIncrementalSearch(cbo As _

ComboBox, KeyAscii As Integer)
Static dTimerLast As Double
Static sSearch As String
Static hWndLast As Long
Dim nRet As Long
Const MAX_KEYPRESS_TIME = 0.5
' Weed out characters that are not scanned
If (KeyAscii < 32 Or KeyAscii > 127) _

Then Exit Sub
If (Timer - dTimerLast) < _

MAX_KEYPRESS_TIME And hWndLast = _
cbo.hWnd Then
sSearch = sSearch & Chr$(KeyAscii)

Else
sSearch = Chr$(KeyAscii)
hWndLast = cbo.hWnd

End If
' Search the combo box
nRet = SendMessage(cbo.hWnd, _

CB_FINDSTRING, -1, ByVal sSearch)
If nRet >= 0 Then

cbo.ListIndex = nRet
End If
KeyAscii = 0
dTimerLast = Timer

End Sub

—Michael Hill, Northridge, California

✰✰✰✰✰ Five Star Tip␣



12 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB3 and up
Level: Intermediate

Generate Normal Distributions of Random Numbers
Visual Basic’s Rnd function returns a pseudo-random number
between zero and one with uniform distribution. In other words,
all numbers between zero and one are equally likely. In many
situations, however, the normal distribution, with its familiar bell-
shaped curve, is a more suitable distribution.

Values from an approximately normal distribution are easy to
generate with this function, which returns a pseudo-random num-
ber based on the mean and standard deviation you specify:

Public Function RndNormal(sngMean As Single, _
sngStdDev As Single) As Single
RndNormal = sngMean + (sngStdDev * (Sqr(-2 _

* Log(Rnd)) * Cos(6.28 * Rnd)))
End Function

Because this function relies on the Rnd function, you can initialize
this function much as you would Rnd itself. That is, executing the
Randomize statement with a particular number before calling this
function generates the same set of normally distributed random
numbers each time—assuming Rnd is not called elsewhere. Ex-
ecuting Randomize with no argument generates a different set of
normal values each time.

Beware, however, that calling Rnd with an argument of zero
before calling this function does not cause this function to return
the previous normally distributed value because this function
calls Rnd twice. If you need the previous value, store it in a variable
for reuse.

—John Ricketts, Willowbrook, Illinois

VB3 and up
Level: Beginning

Force the Short-Circuit
To optimize the If construct, separating testing conditions (“And”
operator or “Or” operator) in different expressions can improve
the performance. For example, don’t use this sort of test:

If intNum1 > 10 And intNum2 > 20 Then
...
End If

Instead, break the individual parts into separate tests:

If intNum1 > 10 Then
If intNum2 > 20 Then

...
End If

End If

VB evaluates the logical result of all test conditions only after
performing each individual test. In the example, the And operator
requires both test conditions to be True. If intNum is not greater
than 10, why should VB waste time in testing the second expres-
sion? Similarly, in an Or case, if the first expression is True, you
don’t need to evaluate the second expression.

—Jasvinder Kakar, Des Moines, Iowa

VB3 and up
Level: Beginning

Calculate Finishing Time
If you ever wondered how some DOS applications, such as Norton
Utilities, can calculate the estimated finishing time for a long
process, here’s the formula:

Estimated = DateAdd("s", (DateDiff("s", _
StartTime, Time()) / PercentDone) * 100, StartTime)

To see how it works, add a form with three label controls and one
command button. Add this code in the Command button Click event:

Private Sub Command1_Click()
Dim Start As Double
Dim i As Long
Dim lMax As Long
lMax = 300000
Const fmt As String = "hh:mm:ss ampm"
Start = InitEstTime()
Label1.Caption = Format$(Start,fmt)
For i = 1 To lMax

Label2.Caption = Format$(UpdateEstTime( _
Start, (i / lMax) * 100), fmt)

DoEvents
Next i
Label3.Caption = Format$(Time, fmt)

End Sub

Include these two functions:

Public Function UpdateEstTime(ByVal StartTime _
As Double, ByVal PercentDone As Single)
' Avoid dividing by zero error
If PercentDone <= 0 Then PercentDone = _

0.000000001
UpdateEstTime = DateAdd("s", (DateDiff( _

"s", StartTime, Time()) / PercentDone) _
* 100, StartTime)

End Function
Public Function InitEstTime() As Double

InitEstTime = Time()
End Function

—Jacques Levy, Clearwater, Florida

VB5, VB6
Level: Beginning

Customize the IDE Toolbar
The VB Integrated Development Environment (IDE) contains many
toolbars and menu functions, and the functions you normally use
are usually on different toolbars and menus, so most program-
mers have several different toolbars showing. You can make your
life easier by creating your own toolbar and customizing it with all
the toolbar and menu functions you use normally. Then you have
only one toolbar showing with all the functions you use regularly.

Right-click on the toolbar area and choose Customize. Choose
New and name it My Toolbar. In the Toolbars box on the left, the
name of the new toolbar is checked. Uncheck it and check it again.
A small Toolbar pops up with nothing on it (look carefully). Now
click on the Command tab. You’ll see a Categories box and
Commands box. Click on the categories you want and the Com-
mands box will contain the functions you can choose from. Drag
items from the Commands box and drop them on the new toolbar
you created. When you’re finished, drag the toolbar to the toolbar
area. Again, right-click on the toolbar area and uncheck the other
toolbars. Now you have one toolbar with all the functions you
want, and not the ones you never use.

—David Bailey, Columbus, Ohio



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 13

  

 For even more tricks and tips go to
 www.vbpj.com

VB4 32, VB5, VB6
Level: Beginning

Operate on Array of Selected ListItems
The fast way to get multiple selected items from a ListBox control
is to send it a LB_GETSELITEMS window message. Here’s a simple
example that moves items from one ListBox to another ListBox. To
test this example, place two ListBox controls (lstFrom and lstTo)
and a Command button control (cmdMove) on a form, then copy
this code into the form’s code editing page:

Option Explicit
Private Declare Function SendMessage Lib _

"user32" Alias "SendMessageA" (ByVal hWnd _
As Long, ByVal wMsg As Long, ByVal wParam _
As Long, lParam As Any) As Long

Private Const LB_GETSELCOUNT = &H190
Private Const LB_GETSELITEMS = &H191
Private Sub Form_Load()

' Add some items into source list
lstFrom.AddItem "Matthew So"
lstFrom.AddItem "Join"
lstFrom.AddItem "Hello"
lstFrom.AddItem "Morning"
lstFrom.AddItem "Apple"

End Sub
Private Sub cmdMove_Click()

Dim nRet As Long
Dim nSel() As Long
Dim i As Long
nRet = SendMessage(lstFrom.hWnd, _

LB_GETSELCOUNT, 0, ByVal 0&)
Me.Caption = CStr(nRet)
If nRet > 0 Then

' Allocate enough memory for the array
ReDim nSel(0 To nRet - 1)
' Get an array of ListIndexes for the
' selected items
nRet = SendMessage(lstFrom.hWnd, _

LB_GETSELITEMS, lRet, nSel(0))
' Start from the end of list to avoid
' index change of the source list
For i = UBound(nSel) To LBound(nSel) _

Step -1
' Copy item from source list to
' destination list
lstTo.AddItem lstFrom.List(nSel(i))
' Remove selected item from source
' list
lstFrom.RemoveItem nSel(i)

Next i
End If

End Sub

The tricks here are to redimension the nSel array using the count
of selected items returned by LB_GETSELCOUNT, and to move the
selected items starting from the end of the origin ListBox. If you try
to move items from the beginning of the ListBox, the ListItems are
shifted downward and the saved array of item ListIndexes is no
longer valid.

—Matthew So, Hong Kong

VB6
Level: Beginning

Return Empty Arrays Too
With VB6 came the ability to return arrays from functions. Returning
an uninitialized array is a problem because there is no easy way—
other than error-trapping—to find whether an array has been
dimensioned. Also, ReDim myArr(-1) does not work. You can use the
Split function to return an empty array—one with no elements and
no data—and an LBound of 0 and an UBound of -1. This practice
simplifies code for looping through the returned array:

Private Function Foo(args...) As String()
Dim myArr() As String
' Initialize array dimensions as 0 to -1
myArr = Split("")
If Condition Then

ReDim myArr(n)
' further processing...

End If
Foo = myArr

End Function

Here, no additional checking is required to use Foo. But omitting
the call to Split can lead to a “Subscript out of range” error in a
routine that attempts to use Foo’s return; when you use Split to
establish an empty array, this loop is simply skipped over:

Dim i As Integer
Dim retArr() As String
retArr = Foo
For i = LBound(retArr) To _

UBound(retArr)
' Does not execute as LBound > UBound.

Next i

—Anand Likhite, Orlando, Florida

VB3 and up
Level: Beginning

Handle Errors Within Forms
When you load or show a form, errors don’t bubble up. That is,
even if the calling procedure has an error handler, and an error
occurs in Form_Load, Form_Initialize, or any other form event,
processing doesn’t transfer to the calling error handler. In this
code, Sub Main has an error handler. But when an error occurs in
the Form_Load, the error handler isn’t called:

' Code in a bas module
Sub Main()

On Error Resume Next
Load Form1
' further processing code ...

End Sub
' Code in Form1
Private Sub Form_Load()

Dim a As Integer
a = 1 / 0  ' error is fatal!

End Sub

If you check the call stack when the error occurs, you see an entry
'<Non-Basic Code>' before the Form_Load. Even though Sub Main
is loading Form1, Sub Main is not the direct caller of Form_Load,
and that results in this behavior.

—Ravindra Okade, Phoenix, Arizona



14 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB4 32, VB5
Level: Intermediate

Select a Whole Row in Any ListView
Only in VB6 do the common controls OCX files provide an option
to select a full line in a listview. In earlier versions, you can select
a ListItem only by clicking on the left-most column. This code
allows the user to click anywhere on the line to select and highlight
the ListItem:

Private Sub ListView1_MouseDown(Button As _
Integer, Shift As Integer, x As Single, y _
As Single)
Dim itm As ListItem
Dim i As Long
With ListView1

Set .DropHighlight = _
.HitTest(Screen.TwipsPerPixelX * 2, y)

Set itm = .HitTest(Screen. _
TwipsPerPixelX * 2, y)

Set .SelectedItem = itm
' Use the following if you have code
' to execute on a user click.
For i = 1 To .ListItems.Count Step 1

If .ListItems(i).Selected Then
Call ListView1_ItemClick _

(.ListItems(i))
Exit For

End If
Next i

End With
End Sub

—Alex Whyte, Sydney, Australia

VB5, VB6
Level: Beginning

Restrict Control Sizing
A few ActiveX controls, such as the Common Dialog Control, don’t
allow themselves to be resized at design time because they’re
typically invisible at run time. In these situations, you don’t want
users to resize the ActiveX controls you create. You can also save
some work for users by correctly sizing an ActiveX control when-
ever they instantiate it on a form. Add this code to the User-
Control_Paint event to size your control correctly:

Private Sub UserControl_Paint()
UserControl.Width = <width>
UserControl.Height = <height>

End Sub

The UserControl_Resize event is another option for controls that
are visible—and potentially painting frequently—at run time. But
code around the inevitable recursion if you choose this other
route:

Private Sub UserControl_Resize()
Static Busy As Boolean
' Restrict size to desired dimensions
If Not Busy Then

Busy = True
UserControl.Width = <width>
UserControl.Height = <height>
Busy = False

End If
End Sub

—Narasimhan Padmanabhan, Bellevue, Washington

VB3 and up
Level: Beginning

Provide Default Value for Null Fields
Be careful when reading field values of a recordset into variables.
If the field value is Null and you try to assign it to a variable, the
error message “Invalid use of Null” pops up. To prevent this from
happening, use this simple function:

Public Function CatchNull(vOldValue As _
Variant, vNewValue As Variant) as Variant
' Check for Null
If IsNull(vOldValue) Then

' If Null, use the new value
CatchNull = vNewValue

Else
' Otherwise, use the existing value
CatchNull = vOldValue

End If
End Function

Use the function in your recordset traversing loop:

' Check !EmpNum for Null
iEmployeeNumber = CatchNull(!EmpNum, 0)

If the field value is Null, put 0 for the iEmployeeNumber. You can
use this function for any kind of variable. The function is useful to
assign any default value for fields containing Null.

—Srinivasa R. Kella, received by e-mail

VB3 and up
Level: Beginning

Find the Error-Generating Line
After trapping an error in debug mode with the usual “On Error
Goto ErrorHandlingCode”, you might be frustrated that you can’t
tell exactly what line of code generated the error. If the code you’re
debugging is not read-only, you can slip in a Resume statement at
the beginning of the error handler, use Ctrl-F9 to make it the next
line to execute, and press F8 to single step. Then you’re positioned
at the instruction that caused the error. Don’t forget to remove the
Resume statement before saving the file.

However, if your code is read-only—which is often the case
when you have the code under source control—you cannot tem-
porarily add a Resume statement. In this case, it’s handy to modify
any error-handling code blocks that terminate with the End Func-
tion or End Sub statements by adding an explicit Exit Function or
Exit Sub followed by a Resume. This looks a little odd because
there is no way to execute the Resume statement, but that’s the
idea. During normal processing, the Resume statement is never
executed, but when you are debugging, it’s right there for you to
select with Ctrl-F9:

Private Sub SampleSub()
On Error Goto ErrorHandler1
SubroutineCall1
SubroutineCall2
SubroutineCall3
Exit Sub

ErrorHandler1:
...
<normal error-handling code>
...
Exit Sub
Resume

End Sub

—Stephen E. Coleman, Chantilly, Virginia



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 15

  

 For even more tricks and tips go to
 www.vbpj.com

VB3 and up
Level: Beginning

Assign Null Fields to Controls Without Error
Here’s a great way to assign Null values from a database to your VB
controls. Concatenating an empty string to Null produces an
empty string. Using the & operator, you can convert all nonstring
values to strings using little code:

txtName.Text = rs("Name") & ""

—Deborah Hammel, Sparks, Maryland

VB4, VB5, VB6
Level: Beginning

Use Objects Directly Within Collections
If you use collections in your apps, you’re probably familiar with
the For... Each loop to iterate through the collection. But when you
want to access only a single element of the collection to perform
some temporary calculations or modifications, you might be
tempted to do something like this:

Set Obj = coll.Item(KeyName)
Obj.Property = something
Call Obj.Method(parameter)

...<etc.>

Instead, you can simplify your code by using the Collection
object in place of Obj. Then you never have to dimension these
temporary holders for collection items:

coll(KeyName).Property = something
Call coll(KeyName).Method(parameter)
...<etc.>

Or you can use this:

With coll(KeyName)
.Property = something
Call .Method(parameter)
...<etc.>

End With

—Ian Fenton, Burlington, Ontario, Canada

VB3 and up
Level: Beginning

Use Safer International Conversions
I have problems developing applications for non-English–speaking
users because of the noninternational behavior of the Val function.
The functions CSng and CDbl provide internationally aware conver-
sions, but they don’t work correctly if the argument is empty or
contains alpha characters, as can often be the case when converting
from nonvalidated TextBox controls. I avoid the errors with this
simple function:

Private Function CTxtToSng(sInput As String) As Single
' CTxtToSng at beginning is worth 0 (zero)
' If CSng produces a conversion error, the
' value stays 0 (zero)
On Error Resume Next
CTxtToSng = CSng(sInput)

End Function

You can edit this sample to produce a Double return, if that’s more
desirable.

—Giovanni Buommino, Dreieich, Germany

VB6
Level: Intermediate

Store Multiple Values in Tag
It would often be convenient to store multiple values in the Tag
property. Here are two simple functions that help you do that. The
first function stores the value in the control’s Tag, tagging the new
value with a key value of your choice:

Public Function SetTag(ctl As Control, ByVal _
Key As String, NewValue As String) As String
Dim myArry() As String
Dim i As Integer, k As Integer
Dim yTag As String, yValue As String
k = -1
Key = UCase$(Key)
If ctl.Tag = "" Then

ctl.Tag = ctl.Tag & "|" & Key & "=" & _
NewValue

Else
myArry = Split(ctl.Tag, "|")
For i = LBound(myArry) To UBound(myArry)

If UCase$(Left$(myArry(i), _
Len(Key))) = Key Then k = i

Next
If k > -1 Then

myArry(k) = Key & "=" & NewValue
ctl.Tag = Join(myArry, "|")

Else
ctl.Tag = ctl.Tag & "|" & Key & "=" _

& NewValue
End If

End If
SetTag = ctl.Tag

End Function

You can store the Tag value easily using a statement like this:

Call SetTag(myCtrl, "ID", LoginID)

A complementary function allows you to retrieve the stored value:

Public Function GetTag(ctl As Control, Key As _
String) As String
Dim myArry() As String,
Dim i As Integer, k As Integer
Dim yPoze As String, yValue As String
k = -1
If ctl.Tag = "" Then

yValue = ""
Else

myArry = Split(ctl.Tag, "|")
For i = LBound(myArry) To UBound(myArry)

If UCase$(Left$(myArry(i), _
Len(Key))) = UCase$(Key) Then k = i

Next i
If k > -1 Then

yPoze = InStr(myArry(k), "=")
yValue = Mid$(myArry(k), yPoze + 1)

Else
yValue = ""

End If
End If
GetTag = yValue

End Function

You can retrieve the code using a statement like this:

LoginID = GetTag(myCtrl, "ID")

As written, these functions are case-insensitive with the key names.
If you want case-sensitive key values, remove all UCase calls.

—Enrico Di Cesare, Arese, Italy



  

16 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

101 TECH TIPS
For VB Developers

VB3 and up
Level: Beginning

Perform Strict Date Validity Check
If you use dates in your program frequently and you want them to
be in a particular format, you don’t get the desired result with VB’s
IsDate function. For example, if you want the date to be in MM/DD/
YYYY format, this statement returns True because it assumes the
string to be in DD/MM/YYYY format:

IsDate("23/03/1999")

This function checks whether the string passed to it is a valid date
in your chosen format:

' Input Parameters:
' strdate: String containing the Date
' to be validated.
' strDateFormat: The string containing the
' format for the above date.
' OutPut: Boolean Value indicating whether the
' Date was valid date and in the format
' specified in format string.
Public Function ValidDate(ByVal strDate As _

String, ByVal strDateFormat As String) _
As Boolean
Dim dtCurrDate As Date
Dim strModDate As String
On Error GoTo DateError
' Convert the Date string to the Given
' Format
strModDate = Format(strDate, strDateFormat)
' strModDate will contain the formated Date.
' There are three conditions here:
' 1. strDate is invalid Date: strModDate
' contains string same as strDate.
' 2. strDate is valid Date and in Format
' specified: strModDate will contain string
' same as strDate.
' 3. strDate is valid Date and in not Format
' specified: strModDate will contain strdate
' converted to the date format specified.
' Below if statement will Eliminate the 3rd
' condition.
If UCase$(strModDate) = _

UCase$(Trim$(strDate)) Then
' Next statement eliminates 1st
' condition.
' If strdate string is invalid date,
' execution pointer goes to first
' statement following DateError Label
dtCurrDate = Format$(strDate, _

strDateFormat)
ValidDate = IsDate(dtCurrDate)

Else
ValidDate = False

End If
Exit Function

DateError:
ValidDate = False

'ERROR HANDLING IF DESIRED
End Function

Executing this function in the Immediate window yields these
results:

?ValidDate("03/03/1999","MM/DD/YYYY")
True
?ValidDate("03/23/1999","MM/DD/YYYY")
True
?ValidDate("23/03/1999","MM/DD/YYYY")
False

—Madan S. Yadav, Niskayuna, New York

VB3 and up
Level: Beginning

Create a VB Error Message Reference List
Have you ever wanted to have a hard copy listing all the VB error
messages? Create a new standard EXE VB application and drop
this code into the Load event of the main form:

Private Sub Form_Load()
Dim i As Integer
For i = 0 To 32000

'Use this test in VB3:
'If Error$(i) <> _

"User-defined error" Then
'Use this test in VB4 and later:
If Error$(i) <> "Application-defined " _

& "or object-defined error" Then
Printer.Print i, Error$(i)

End If
Next iEnd Sub

This program prints all defined error descriptions. All undefined
error descriptions return “Application-defined or object-defined
error” (or “User-defined error” in VB3), so you check for these and
ignore them.

—Vince A. Sempronio, Rockville, Maryland

VB6
Level: Intermediate

Copy Listview Contents to Clipboard
This easy routine copies the contents of a listview, including
column headers, to the clipboard for pasting into Excel or other
applications:

Public Sub SendToClipboard(ByVal ListViewObj _
As MSComctlLib.ListView)
Dim ListItemObj As MSComctlLib.ListItem
Dim ListSubItemObj As MSComctlLib.ListSubItem
Dim ColumnHeaderObj As _

MSComctlLib.ColumnHeader
Dim ClipboardText As String
Dim ClipboardLine As String
Clipboard.Clear
For Each ColumnHeaderObj In _

ListViewObj.ColumnHeaders
Select Case ColumnHeaderObj.Index
Case 1

ClipboardText = ColumnHeaderObj.Text
Case Else

ClipboardText = ClipboardText & _
vbTab & ColumnHeaderObj.Text

End Select
Next ColumnHeaderObj
For Each ListItemObj In _

ListViewObj.ListItems
ClipboardLine = ListItemObj.Text
For Each ListSubItemObj In ListItemObj.ListSubItems

ClipboardLine = ClipboardLine & _
vbTab & ListSubItemObj.Text

Next ListSubItemObj
ClipboardText = ClipboardText & vbCrLf _

& ClipboardLine
Next ListItemObj
Clipboard.SetText ClipboardText

End Sub

—Chris Schneider, Newark, Delaware



Ad: Platform



18 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

✰✰✰✰✰ Five Star Tip␣
VB4, VB5, VB6
Level: Beginning

Modernize Your MDI Apps
The MDI look seems to have gone out of favor recently, judging from
the popularity of the Explorer and Outlook styles in modern apps.
Maybe that’s because of the inconvenience of all those windows
cluttering up the place, when only one is required at a time.

However, you can convert an MDI app to an Explorer-style app
quickly. First, add a header bar, which in effect replaces the title
bar of the child form. This can have your document name and
properties on it. To implement this, add a PictureBox to the MDI
form, and set its Align property to 1 - AlignTop.

Next, add a navigation bar. You typically place a TreeView or
similar control here to provide a more intuitive way to locate and
open views or items. This is also a PictureBox, but with its Align
property equal to 3 - Align Left (resize the PictureBox to an
acceptable width after doing this). Then, for each of your MDI child
forms, set these properties:

• Caption: "" (Empty string).
• ControlBox: False
• WindowState: 2 - Maximized

Now change your code so the forms are loaded from the
navigation bar instead of through the menus. Note that when MDI
child forms are loaded, they appear to fill the entire remaining
client space of the MDI form. However, without the control box,
minimize, restore, and close icons that would normally be just
below the title bar.

—Mark Bertenshaw, Kingston upon Thames, Surrey, England

VB3 and up
Level: Beginning

Standardize Error Reporting Messages
Who doesn’t get frustrated with VB’s error trapping? Short of
buying a commercial add-in, there’s not much you can do. But you
can keep from typing this over and over:

MsgBox "Error " & Err.Number & " - " & Err.Description

Instead, put the statement in a module as a Public sub:

Public Sub ErrMsg()
MsgBox "Error " & Err.Number & " - " & Err.Description

End Sub

Then you do your error trap like this:

Private Some Sub()
On Error GoTo err_here:
Exit Sub

err_here:
' You might want to trap for and handle a
' specific error here
ErrMsg

End Sub

—Mitch Mattek, Norman, Oklahoma

VB4 32, VB5, VB6
Level: Intermediate

Find the Associated Executable
Sometimes you might need to determine the full path name to a
Windows executable file associated with a given file extension.
The usual recourse is to use the FindExecutable API. However,
there’s one hitch: FindExecutable requires an actual file. So to
make use of this API, you first need to create a temporary file with
the proper extension. Passing the desired extension to this
GetAssociatedExecutable routine—for example, TXT or MDB—is
an easy way to do this:

Private Declare Function FindExecutable Lib _
"shell32.dll" Alias "FindExecutableA" _
(ByVal lpFile As String, ByVal lpDirectory _
As String, ByVal lpResult As String) As Long

Private Declare Function GetTempFileName Lib _
"kernel32" Alias "GetTempFileNameA" (ByVal _
lpszPath As String, ByVal lpPrefixString _
As String, ByVal wUnique As Long, ByVal _
lpTempFileName As String) As Long

Private Declare Function GetTempPath Lib _
"kernel32" Alias "GetTempPathA" (ByVal _
nBufferLength As Long, ByVal lpBuffer As _
String) As Long

' Usage: GetAssociatedExecutable("MDB")
Public Function GetAssociatedExecutable(ByVal _

Extension As String) As String
Dim Path As String
Dim FileName As String
Dim nRet As Long
Const MAX_PATH As Long = 260
' Create a tempfile
Path = String$(MAX_PATH, 0)
If GetTempPath(MAX_PATH, Path) Then

FileName = String$(MAX_PATH, 0)
If GetTempFileName(Path, "~", 0, _

FileName) Then
FileName = Left$(FileName, _

InStr(FileName, vbNullChar) - 1)
' Rename it to use supplied extension
Name FileName As Left$(FileName, _

InStr(FileName, ".")) & Extension
FileName = Left$(FileName, _

InStr(FileName, ".")) & Extension
' Get name of associated EXE
Path = String$(MAX_PATH, 0)
Call FindExecutable(FileName, _

vbNullString, Path)
GetAssociatedExecutable = Left$( _

Path, InStr(Path, vbNullChar) - 1)
' Clean up
Kill FileName

End If
End If

End Function

—Pier Minneci, Torino, Italy

VB6
Level: Intermediate

No More Blank Data Reports
When generating a data report based on an ADO recordset linked
to a remote database (such as Oracle or SQL Server), you can end
up with a blank report. Try setting the recordset’s CursorLocation
property to adUseClient. If the report is linked to a Command
object in a DataEnvironment, this property is set for you.

—Keith Walton, Sacramento, California



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 19

  

 For even more tricks and tips go to
 www.vbpj.com

✰✰✰✰✰ Five Star Tip␣

VB5, VB6
Level: Intermediate

Detect Change of Windows Locale
While designing multilingual applications, I had to make them
respond when a user changes the Windows locale setting—for
example, by loading a different language’s captions or text. Al-
though it’s possible to intercept a Windows message generated
and broadcast when the Windows locale changes, this requires
subclassing, which is not always desirable.

Another solution is to create an ActiveX control responsible for
detecting the change and raising an event. The UserControl object
raises a private AmbientChanged event when any of the
AmbientProperties change, and it passes the changed property’s
name to the event. The Ambient object provides a LocaleID
property, which you can pass to the client with a public custom
LocaleChanged event. Your ActiveX control might have no visual
interface, pretty much like a Timer control, and you can place it on
any form required to react to a change of Windows locale. You can
load the new language’s elements subsequently from a database
or a resource file:

Public Event LocaleChanged(ByVal LocaleID As Long)
Private Sub _

UserControl_AmbientChanged(PropertyName As String)
If PropertyName = "LocaleID" Then

RaiseEvent LocaleChanged(Ambient.LocaleID)
End Sub

—Brian Hunter, Brooklyn, New York

VB6
Level: Advanced

Clean Up the MonthView
If you’ve tried using the Microsoft MonthView control, part of the
Windows Common Controls 2 collection, you probably discarded
it after discovering the quirky spinner that pops up when you click
on the year. This is supposed to make it easy to change years.
Unfortunately, when you click on one of the spinner buttons, an
ugly border artifact appears to the right of the spinner. If you don’t
mind eliminating the spinners, you can still use the control. You
must subclass the MonthView control temporarily and destroy
the spinner button when it is created:

' Form code
Option Explicit
Private Declare Function SetWindowLong Lib _

"user32" Alias "SetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Const GWL_WNDPROC = (-4)
Private Sub MonthView1_MouseDown(Button As _

Integer, Shift As Integer, X As Single, Y _
As Single)
Dim d As Date
If MonthView1.HitTest(X, Y, d) = _

mvwTitleYear Then
lmvWndProc = _

SetWindowLong(MonthView1.hWnd, _
GWL_WNDPROC, AddressOf MVWndProc)

End If
End Sub
' Module code
Option Explicit
Private Declare Function CallWindowProc Lib _

"user32" Alias "CallWindowProcA" (ByVal _
lpPrevWndFunc As Long, ByVal hWnd As Long, _
ByVal msg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "RtlMoveMemory" (hpvDest As Any, _
hpvSource As Any, ByVal cbCopy As Long)

Private Declare Function DestroyWindow Lib _

"user32" (ByVal hWnd As Long) As Long
Private Declare Function SetWindowLong Lib _

"user32" Alias "SetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Const GWL_WNDPROC = (-4)
Private Const WM_CREATE = &H1
Private Const WM_PARENTNOTIFY = &H210
Public lmvWndProc As Long
Public Function MVWndProc(ByVal hWnd As Long, _

ByVal msg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long
Select Case msg

Case WM_PARENTNOTIFY
Select Case LoWord(wParam)

Case WM_CREATE
DestroyWindow lParam
SetWindowLong hWnd, _

GWL_WNDPROC, lmvWndProc
End Select

End Select
MVWndProc = CallWindowProc(lmvWndProc, _

hWnd, msg, wParam, lParam)
End Function
Public Function LoWord(lnum As Long) As Integer

CopyMemory LoWord, lnum, 2
End Function
Public Function HiWord(lnum As Long) As Integer

CopyMemory HiWord, ByVal VarPtr(lnum) + 2, 2
End Function

—Matt Hart, Tulsa, Oklahoma

VB5, VB6
Level: Advanced

Capture Reference to UserControl
Many programmers are familiar with declaring an object variable
in class modules and other places to capture events from a form
and handle them in a generic way:

Private WithEvents m_Form As Form

It might be useful to do this for user controls as well, but you need
a reference to the UserControl object. Getting this reference
proves harder than it should be. This code sets up the
m_UserControl variable:

' Declarations
Private WithEvents m_UserControl As UserControl
Private Declare Sub CopyMemory Lib "kernel32" _

Alias "RtlMoveMemory" (pDest As Any, _
pSource As Any, ByVal ByteLen As Long)

Private Sub UserControl_Initialize()
' Code to set up the m_UserControl variable
Dim UC As UserControl
CopyMemory UC, UserControl, 4
Set m_UserControl = UC
CopyMemory UC, 0&, 4

End Sub

Once this code has been executed, the m_UserControl events fire
as expected. Using this technique and sharing the created refer-
ence, you can sink the UserControl events in a class module,
allowing development of generic event handlers for your controls.

—Jeremy Adams, Tiverton, Devon, England



20 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB3 and up
Level: Intermediate

Convert Color to Grayscale
Whether you’re printing on a grayscale printer, changing a color
picture to grayscale, or just trying to decide whether white or
black is a better contrast over an arbitrary background color, you
need to know how “bright” some color is. This function returns a
number between 0 (black) and 255 (white) for any Long color value
you send it. It uses the standard algorithm found in everything
from color TVs to black-and-white laser printers:

Public Function GrayScale (ByVal Colr As _
Long) As Long
' Takes a long integer color value,
' returns an equivalent grayscale value
' between 0 and 255
Dim R As Long, G As Long, B As Long
' Break up long color into r, g, b
R = Colr Mod 256
Colr = Colr \ 256
G = Colr Mod 256
Colr = Colr \ 256
B = Colr Mod 256
' Find equivalent grayscale value
GrayScale = (77 * R + 150 * G + 28 * B) _

/ 255
End Function

—Jim Deutch, Syracuse, New York

VB5, VB6
Level: Intermediate

Design Extended Multiselect Listboxes
When you design a database in Access 2000, the most intuitive way
for your users to look at the data they want might be to let them use
extended multiselect listboxes to pick their information. Here’s a
function that converts users’ selections into a clause that appends
to a SQL WHERE statement, creating or modifying a query. You can
also use this function as a filter to open a form or report. Because
the values passed are always strings, and the first column of the
listboxes always contains unique values, you can build the column
number and delimiters into the function, where you can easily
replace them with optional variables. If the user selects nothing,
this function returns an empty string. Although I wrote this code
specifically for Access 2000, it should also work in Access 97, Excel
5.0 and higher, and Visual Basic:

Public Function WHEREFromListbox(lst As _
ListBox,strField As String) As String

' Returns a SQL WHERE Clause from a multiselect
' listbox. WHERE is not included so that this
' function can be used as a filter in Access.

For intLp = 0 To lst.ListCount
If lst.Selected(intLp) = True Then

If Len(strResult) > 1 Then
WHEREFromListbox = _

WHEREFromListbox & " OR "
End If

WHEREFromListbox = _
WHEREFromListbox & strField & _
" = '" & lst.Column(0, intLp) _
& "'"

End If
Next intLp

End Function

—Carolyn J. Howorth, Murrysville, Pennsylvania

VB3 and up
Level: Intermediate

Draw Arrows
If you’ve ever wanted to draw a flowchart, diagram, or clock face,
you’ve probably wanted to put arrowheads on some of your lines.
This is easy enough if the lines are all vertical or horizontal, but it’s
tough to do in the general case without the insight that line
directions are easily expressed in polar coordinates. This code
transforms x,y-space into r,theta-space and back to determine the
endpoints of the arrowhead lines:

Public Type PointAPI
X As Long
Y As Long

End Type
Public Sub DrawArrow(startpt As PointAPI, _

endpt As PointAPI, canvas As Object, colr _
As Long, Size As Long)
Dim x3 As Long, x4 As Long
Dim y3 As Long, y4 As Long
Dim xs As Long, ys As Long
Dim theta As Double 'arrow direction
Const pi = 3.14159
' Polar coords centered on EndPt:
xs = endpt.X - startpt.X
ys = endpt.Y - startpt.Y
' This is an embedded atan2() function:
If xs <> 0 Then

theta = Atn(ys / xs)
If xs < 0 Then

theta = theta + pi
End If

Else
If ys < 0 Then

theta = 3 * pi / 2 '90
Else

theta = pi / 2  '270
End If

End If
' Rotate direction
theta = theta - 0.8 * pi
'Find end of one side of arrow:
x3 = Size * Cos(theta) + endpt.X
y3 = Size * Sin(theta) + endpt.Y
' Rotate other way for other arrow line
theta = theta + 1.6 * pi
x4 = Size * Cos(theta) + endpt.X
y4 = Size * Sin(theta) + endpt.Y
' Draw the lines
canvas.Line (startpt.X, startpt.Y)- _

(endpt.X, endpt.Y), colr
canvas.Line (endpt.X, endpt.Y)-(x3, y3), _

colr
canvas.Line (endpt.X, endpt.Y)-(x4, y4), _

colr
End Sub

All units are those used by the drawing canvas—a form, picture
box, or user control.

—Jim Deutch, Syracuse, New York



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 21

  

 For even more tricks and tips go to
 www.vbpj.com

VB4 32, VB5, VB6
Level: Intermediate

Limit User Typing in Combo Box
The standard textbox has a MaxChars property that lets you limit
the number of characters a user can type into it. The drop-down
combo does not, but you can emulate this property setting with a
simple API call:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal hWnd _
As Long, ByVal msg As Long, ByVal wParam _
As Long, ByVal lParam As Long) As Long

Private Const CB_LIMITTEXT = &H141
Private Sub Form_Load()

Const Max_Char = 24
Call SendMessage(Combo1.hWnd, _

CB_LIMITTEXT, Max_Char, 0&)
End Sub

Editor’s Note: This tip works in 16-bit versions of VB as well, but
you’ll need to substitute the correct 16-bit declarations for
SendMessage and CB_LIMITTEXT.

—Jim Deutch, Syracuse, New York

VB3 and up
Level: Intermediate

Ask for Directions
In graphical applications, you often need to know the angle be-
tween two lines. You can move their intersection point to the
origin easily, so all you need to do is choose a point on each line
and find the angle between a line from the origin to that point and
the x-axis. The angle between the lines is the difference. The
arctangent of y/x is the mathematical function you need to find
these angles, but VB’s Atn( ) function only returns angles between
-PI/2 and PI/2 (-90 to +90 degrees). You lose half the circle! And it
fails completely if x = 0 (divide by zero error!).

Many languages provide an Atn2( ) function that extends Atn( )
to the entire circle, taking the x and y arguments separately to
avoid the divide error. Here’s a straightforward VB function that
treats all possible cases separately:

Function Atn2(ByVal x As Double, ByVal y _
As Double) As Double
Dim theta As Double
Const pi As Double = 3.14159265359
If x <> 0 Then

theta = Atn(y / x)
If x < 0 Then

theta = theta + pi
End If

Else
If y < 0 Then

theta = 3 * pi / 2  ' 90 deg
Else
theta = pi / 2  ' 270 deg
End If

End If
Atn2 = theta

End Function

—Jim Deutch, Syracuse, New York

VB3 and up
Level: Beginning

Center Your Logo on MDI Forms
You can display a logo in the middle of your MDI form. The logo
stays in the middle even when the MDI form is resized. After
creating your own MDI form, add a standard form to your project
and put an Image control named imgLogo on it. Instead of the
Image control, you can use a Label control or whatever you want.
The standard form (frmLogo) should have these properties set:

PROPERTIES of frmLogo:
MDIChild = True
BorderStyle = 0 - None

Then put this code in your MDI form Resize event:

Private Sub MDIForm_Resize()
' Now center the frmLogo form in your MDI form
frmLogo.Left = (Me.ScaleWidth - frmLogo.Width) / 2
frmLogo.Top = (Me.ScaleHeight - frmLogo.Height) / 2

End Sub

Put this code in the logo form’s Activate and Resize events:

Private Sub Form_Activate()
' Force logo to background
Me.ZOrder vbSendToBack

End Sub
Private Sub Form_Resize()

' Move logo to upper-left
imgLogo.Move 0, 0
' The next fragment makes frmLogo's
' Width and Height equal to imgLogo's
' Width and Height
Me.Width = imgLogo.Width
Me.Height = imgLogo.Height

End Sub

Load and show the logo form during the MDI form’s Load event:

Private Sub MDIForm_Load()
frmLogo.Show

End Sub

—Pavel Tsekov, Varna, Bulgaria

VB5, VB6
Level: Beginning

View Right Side of Truncated String
You see trailing ellipses (...) when VB truncates either the expres-
sion or data portion of a data tip (the mouse-hover watch value you
get while debugging). This is great if you want to see the left side
of a long string value, but not quite as compelling if you care about
the right side. Hold the control key down and rehover over the
expression to force VB to truncate on the left instead of the right.
VB truncates all instant watch strings at 251 characters, so you
won’t see the end of very long strings.

—Matt Curland, Redmond, Washington



22 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB4 32, VB5, VB6
Level: Beginning

Contain Tab Groupings Within a Frame
The best way to work with the tab control is to set up a different
frame for each tab. If you set the frames to be indexed, you can
quickly move and make the correct frame visible with this code:

' Move and resize the frames to the tabstrip
' control and make the first one visible.
' This should be called in the Form_Load event.
For i = 0 To fraTab.Count - 1

fraTab(i).Move TabStrip1.ClientLeft, _
TabStrip1.ClientTop, TabStrip1. _
ClientWidth, TabStrip1.ClientHeight

fraTab(i).Visible = (i = 0)
Next i
' To make the correct frame visible use the value
' SelectedItem.Index -1 as the index for the Frames.
' Put this code in the TabStrip1_Click event.
For i = 0 To fraTab.Count - 1

fraTab(i).Visible = (i = _
(TabStrip1.SelectedItem.Index - 1))

Next i

This approach works with any number of tabs on the TabStrip
control.

—Wayne Matheson, Elizabethtown, Kentucky

VB3 and up
Level: Beginning

Avoid Errors on Assigning Null Values
Whenever you read a database field, concatenate an empty string
to the field value before assigning it to a variable or control
property. This prevents the program from giving an error if a Null
value is read from the field. Here’s an example:

Dim Temp as String
Dim db as Database
Dim rst as Recordset
' Open the Database using DAO
Set db = OpenDatabase(App.Path & "\MyDB.MDB")
' Open the Recordset
Set rst = db.OpenRecordset("SELECT * FROM MyTbl")
Do While not rst.EOF

' Read the desired field from the recordset
Temp = rst.Fields("MyFld") & ""
List1.Additem Temp

Loop

If you don’t use the "" piece, the program gives an error if MyFld
contains a Null value.

—Kedar Sathe, Houston, Texas

VB3 and up
Level: Beginning

Use ScrollBar Instead of UpDown or Spin Controls
If you want the user to be able to select from a fixed range of numeric
values, you have a number of choices. In VB6, you can use the
UpDown control, part of Common Controls 2 (630K), or the Spin
control, part of the Forms 2.0 Object Library (more than 1 MB and
not redistributable). Instead of either of these controls, you can use
a standard vertical ScrollBar to provide the same functionality in
any VB version from VB3 through VB6, without any additional
baggage in your installation.

Place a TextBox (Text1) and a vertical ScrollBar (VScroll1) on
the form, with the ScrollBar touching the right edge of the TextBox.
Make sure that the ScrollBar is the same height as the TextBox, and
that the thumb is not visible. You do not want the user to be able
to change the TextBox value by entering a new value directly, so

you should set the TextBox Locked property to True.
You need to make the ScrollBar work the same way the other

controls do—that is, the value in the TextBox should increment
when the user clicks on the up arrow and decrement when the user
clicks on the down arrow. This is the reverse of normal ScrollBar
behavior, so you must reverse the assignment of the Minimum and
Maximum properties. Set the Minimum property to the highest
value you want the control to have, and set the Maximum property
to the lowest value. You also need to define an increment; the
TextBox value changes by this amount when the user clicks on the
up or down arrow:

Option Explicit
Const MIN_VALUE = 10
Const MAX_VALUE = 100
Const INCREMENT = 10
' Set ScrollBar to act as "up-down" control
Private Sub Form_Load()

With VScroll1
' max < min, so down arrow = decrement,
' up arrow = increment
.Max = MIN_VALUE
.Min = MAX_VALUE
.SmallChange = INCREMENT
' Start at LOWEST value
.Value = .Max

End With
End Sub

When the user changes the ScrollBar by clicking on the up or down
arrow, you need to update the value in the TextBox:

' Updates TextBox value when ScrollBar is changed
Private Sub VScroll1_Change()

Text1.Text = VScroll1.Value
If Me.Visible Then Text1.SetFocus

End Sub

If the input focus is on the ScrollBar, pressing the up and down
arrow keys works just like clicking on the corresponding arrow
button on the ScrollBar. If you want the arrow keys to work the
same way when the input focus is on the TextBox, use this code:

' Change ScrollBar value using up and down
' arrows when TextBox has the input focus
Private Sub Text1_KeyDown(KeyCode As Integer, _

Shift As Integer)
VScroll1.SetFocus
If KeyCode = vbKeyUp Then

SendKeys "{UP}"
ElseIf KeyCode = vbKeyDown Then

SendKeys "{DOWN}"
End If

End Sub

If you hold the arrow key down or keep the up/down button
pressed, the TextBox value continues to update until the upper or
lower limit is reached.

—Eric Schuyler, Snyder, New York



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 23

  

 For even more tricks and tips go to
 www.vbpj.com

VB3 and up
Level: Beginning

Pass ByVal to ByRef Parameters
By default, VB passes all arguments to a procedure by reference,
which means the procedure can change the values of the variables
you pass. However, there’s a simple way to override a ByRef
argument without changing the procedure’s ByRef behavior. Here’s
a typical procedure with ByRef arguments:

Private Sub ModifyByRef(sVar1 As String, _
sVar2 As String)
sVar1 = sVar1 & " has been modified."
sVar2 = sVar2 & " has been modified."

End Sub

Use this syntax before calling the procedure:

sVar1 = "Var1"
sVar2 = "Var2"
Call ModifyByRef(Var1,Var2)

Then you’ll get this result:

sVar1 contains "Var1 has been modified."
sVar2 contains "Var2 has been modified."

To override the ByRef for Var1, use VB’s expression evaluator and
place parentheses around the variable before calling the Modify-
ByRef( ) procedure:

' Note the parentheses around Var1.
Call ModifyByRef((Var1),Var2)

Then you’ll get this result:

sVar1 contains the original value "Var1"
sVar2 contains the changed value _

"Var2 has been modified."

Using the expression evaluator’s parentheses gives you control
over exactly how parameters are passed into a called procedure,
without having to resort to assigning temporary variables to
override the behavior of ByRef. By using parentheses, you have a
choice.

—David Tate Helene, Rockville, Maryland

VB5, VB6
Level: Beginning

Use Control/Space for VB IntelliSense
You can press Ctrl-Spacebar to make IntelliSense prompt you for
variables, methods, properties, or events at any point in a code
window.

For example, if you have a variable named myvariable, typing
myv, then pressing Ctrl-Spacebar autocompletes the variable
name. If more than one item matches what you type, IntelliSense
offers a list of matches.

—Doug Waterman, Appleton, Wisconsin

VB4 32, VB5, VB6
Level: Intermediate

Copy an Array Faster
Here’s an optimized method of copying one array to another.
Usually when copying an array to another array, the developer
iterates through each item of the source array, assigning the item
to the associated item of the destination array:

Private Declare Function timeGetTime Lib _
"winmm.dll" () As Long

Private Sub Copy()
Dim i
Dim startTime As Long
Dim endTime As Long
Dim intSrc(1 To 6000000) As Integer
Dim intDest(1 To 6000000) As Integer
startTime = timeGetTime

For i = LBound(intSrc) To UBound(intSrc)
intDest(i) = intSrc(i)

Next i
endTime = timeGetTime
Debug.Print "Copy took: " & endTime - _

startTime & " ms."
End Sub

Instead, use the Win32 API function CopyMemory to copy the
array from source to destination:

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "RtlMoveMemory" (Destination As Any, _
Source As Any, ByVal Length As Long)

Private Sub FastCopy()
Dim startTime As Long
Dim endTime As Long
Dim bytes As Long
Dim intSrc(1 To 6000000) As Integer
Dim intDest(1 To 6000000) As Integer
bytes = (UBound(intSrc) - LBound(intSrc) _

+ 1) * Len(intSrc(LBound(intSrc)))
startTime = timeGetTime

CopyMemory intDest(LBound(intDest)), _
intSrc(LBound(intSrc)), bytes

endTime = timeGetTime
Debug.Print "FastCopy took: " _

& endTime - startTime & " ms."
End Sub

When compiled to native code with all optimizations, this second
method averages up to 15 times faster, and a stunning 30 to 35
times faster when running as compiled p-code or in the Integrated
Development Environment (IDE). But be warned: You can also GPF
at blinding speeds if you miscalculate the number of bytes to copy,
use bad source or destination addresses, or if your destination
array isn’t sized sufficiently.

—Andrew Holliday, Phoenix, Arizona



24 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB3 and up
Level: Beginning

Allow Only Programmatic Input to Combo
Database applications often need to forbid user input to combo
boxes, which limits the user to a given set of choices. But just as
often, these apps need to assign values to the Text property.
Setting a combo’s Style property to “2 - Dropdown list” accom-
plishes the first goal, but prevents the second, throwing an error
if an assignment is made to the Text property.

The solution: Set the Style property to “0 - Dropdown combo”
at design time, and eat all keystrokes in the combo’s KeyPress
event (to prevent further processing of the keystrokes), allowing
programmatic assignment to the Text property but disallowing
user input:

Private Sub Combo1_KeyPress(KeyAscii As Integer)
KeyAscii = 0

End Sub

—Kishore Gnanananda, Dubai, United Arab Emirates

VB5, VB6
Level: Intermediate

Clear File Attributes From Entire
Directory Tree of Files
This function removes attributes from files in the folder you
specify in strFolder. It also can walk down all subfolders of this
folder recursively. This function was written mainly for removing
the read-only flag that all files have after you copy a bunch from a
CD (oldattribute = vbReadOnly), but you can use it with other
attributes as well. Look for the other constants for file attributes
in the object browser (subset scripting). To use this function, you
must first set a Reference to the “Microsoft Scripting Runtime”:

Option Explicit
Private fso As New Scripting.FileSystemObject
Public Function ClearAttribute(strFolder As _

String, fIncludeSubfolders As Boolean, _
oldAttribute As VbFileAttribute) As Long
Dim fld As Scripting.Folder
Dim subfld As Scripting.Folder
Dim file As Scripting.file
Dim lngCount As Long
Set fld = fso.GetFolder(strFolder)
For Each file In fld.Files

If file.Attributes And oldAttribute Then
file.Attributes = file.Attributes _

And Not oldAttribute
' Count the files
lngCount = lngCount + 1

End If
Next file
If fIncludeSubfolders Then

For Each subfld In fld.SubFolders
' Add total from this subfolder
' And its subfolders
lngCount = lngCount + _

ClearAttribute(subfld.Path, _
True, oldAttribute)

Next subfld
End If
' Number of total processed files
ClearAttribute = lngCount

End Function

—Hans Weichselbaumer, Passau, Germany

VB3 and up
Level: Intermediate

Validate Text Against a List of Values
I often find it necessary to check that a string is valid by ensuring
it exists in a list of strings. For instance, you might need to check
that a user-entered province/state code exists within a list of valid
province/state codes. You can do this quickly without looping
through the list each time you need to compare. Suppose you have
an array containing all valid province/state codes:

Private ValidCodes() As String

First, translate this array into a string of separated valid codes:

Private ValidList As String
Private Sub CreateValidList()

Dim i As Long, sT As String
For i = LBound(ValidCodes) To _

UBound(ValidCodes)
sT = "|" & ValidCodes(i)

Next i
sT = sT & "|"
ValidList = sT

End Sub

I separate the items in the string with vertical bars ("|") because
in this situation, bars don’t appear in the list of valid codes. You
might need to replace the bars with a more suitable character or
set of characters. Now, to validate a code, check to see if it’s in the
string of valid codes:

Public Function ValidateCode(sCode As String) _
As Boolean
ValidateCode = (InStr(ValidList, "|" & _

sCode & "|") <> 0)
End Function

—Andrew Sadavoy, Toronto, Ontario, Canada

VB5, VB6
Level: Advanced

Keep a MAP File
If the LINK environment variable is set to /MAP when VB launches,
then you get a MAP file whenever you Make EXE, even when you are
not generating debug symbols. Keeping a map file for all shipped
binary files is useful for decoding stack trace information. MAP files
are also indispensable when choosing DLL base addresses.

—Matt Curland, Redmond, Washington

VB4 32, VB5, VB6
Level: Intermediate

Avoid Regenerating Overlay Images
If you’re creating overlays with the ListImages.Overlay method,
always set the ImageList control’s BackColor property to the
MaskColor property before calling the OverLay method. Return
the BackColor to its previous value (probably vbWindow-
Background) after calling OverLay. If you generate overlay images
with MaskColor = BackColor, then the images don’t have to be
regenerated when the user changes system colors.

—Matt Curland, Redmond, Washington



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 25

  

 For even more tricks and tips go to
 www.vbpj.com

VB6
Level: Advanced

Don’t Use Default Properties When Working With
Hierarchical Recordsets
It’s common VB knowledge that you can omit the default property
of a control or an object. For example, statements such as Text1.Text
= "blah" and Text1 = "blah" are equivalent, with Text being a default
property of text control. Objects behave similarly.

When you have two tables, Orders and Items, in a parent-child
relationship by OrderNumber, you can build a hierarchical
recordset that stores Items’ data for a particular order within its
parent’s record in a column called chapter1 as specified in the
rsOrders.Open... statement.

To retrieve the Items for particular orders, you need to loop
through the parent recordset rsOrders, and assign the data stored
in column chapter1 to a child recordset rsItems. Use a statement
such as this:

Set rsItems = rsOrders("chapter1").Value

If you rely on Value being the default property of Column object
and you omit this property in code, you get a Type Mismatch error
if your rsItems variable is declared as ADODB.Recordset. Some
examples I found in the Microsoft help files would declare this
variable as Variant. In this case, you can pass the assignment Set
rsItems = rsOrders("chapter1") with no error generated, but later
on, if you try to loop through the child set of data, you get an Object
Required error referring to an .EOF property that does not exist on
a Variant.

None of these problems happen if you declare rsItems properly
as ADODB.Recordset and use the Value property of the Column
object explicitly. Strangely enough, when you omit .Columns
(which is a default property of Recordset object), nothing bad
happens. Here’s a code example that works:

Private Sub cmdGetRecords_Click()
Dim connstring As String
Dim cnn As ADODB.Connection
Dim rsOrders As ADODB.Recordset
Dim rsItems As ADODB.Recordset
Set rsOrders = New ADODB.Recordset
Set cnn = New ADODB.Connection
connstring = "Provider=MSDataShape.1;Data " & _

"Source=TestDatabase;Initial " & _
"Catalog=SalesOrderProcess; Connection " & _
"Timeout=15;DataProvider=SQLOLEDB; User " & _
"ID=sa; Password=pass"

cnn.Open connstring
rsOrders.Open "SHAPE {Select * From " & _

"Orders} APPEND ({Select * From Items} " & _
"as chapter1 RELATE OrderNumber TO " & _
"OrderNumber)", cnn

Do Until rsOrders.EOF
Set rsItems = rsOrders("chapter1").Value
Do Until rsItems.EOF

Debug.Print rsItems(0), rsItems(1), _
rsItems(2), rsItems(3)

rsItems.MoveNext
Loop
rsOrders.MoveNext

Loop
End Sub

—Brian Hunter, Brooklyn, New York

VB4, VB5
Level: Beginning

Duplicate the Join Function for VB4 and VB5
The native VB6 Split and Join functions have highlighted a number
of useful techniques, and now VB5 and VB4 programmers can use
this extended facility as well. This code emulates the Join function
of VB6 for use in earlier versions. This function takes in an array of
information and gives a String as output with delimiters per the
user request:

Public Function Join(arr As Variant, Optional _
ByVal delimiter) As String
Dim sRet As String
Dim i As Integer
If IsArray(arr) Then

If IsMissing(delimiter) Then
delimiter = " "

ElseIf Len(CStr(delimiter)) = 0 Then
delimiter = ""

Else
delimiter = CStr(delimiter)

End If
For i = LBound(arr) To UBound(arr)

sRet = sRet & arr(i) & delimiter
Next i

End If
Join = Left(sRet, Len(sRet) - Len(delimiter))

End Function

—G. Ajay Kumar, Chennai, India

VB3 and up
Level: Beginning

Store Primary Key in ItemData
Loading a combo/listbox is pretty easy, and determining what the
combo/listbox Text property selects is even easier. But if you load
a table that might contain duplicate values, you might run into a
problem—for example, many people might share the same last
name.

Here’s the solution. First, load your combo box with a table
from your database. A sub such as this works fine, by loading the
list with names and storing a lookup key in each item’s ItemData
property:

Public Sub FillComboBox(ctrControl As Control)
Set rs = db.OpenDatabse("Contact", _

dbReadOnly)
If Not rs.EOF Then

With ctrControl
Do Until rs.EOF

.AddItem rs("LastName")

.ItemData(.NewIndex) = rsTemp("ContactID")
rs.MoveNext

Loop
End With

End If
rs.Close
Set rs = Nothing

End Sub

You can now easily determine exactly which name is selected:

strSQL = "SELECT * FROM Contact Where " & _
"ContactID = " & cboMyComboBox.ItemData( _
cboMyComboBox.ListIndex)

—Ken Kilar, Los Angeles, California



26 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

✰✰✰✰✰ Five Star Tip␣

VB4 32, VB5, VB6
Level: Intermediate

Show Non-Modal Forms From ActiveX DLLs
If your VB ActiveX DLL includes a non-modal form, you can’t
summon it from a VC++ client if you call the native VB Show
method of the form from within the DLL:

Public Sub Show()
' Exposed method uses .Show
Dim frm As New frmMyForm
' Show can generate Error 406
frm.Show

End Sub

Instead, use this technique in your exposed interface:

Private Declare Function ShowWindow Lib _
"user32" Alias "ShowWindow" (ByVal hWnd As _
Long, ByVal nCmdShow As Long) As Long

Private Const SW_SHOW = 5
Public Sub Show()

' Exposed method uses API call
Dim frm As New frmMyForm
Call ShowWindow(frm.hWnd, SW_SHOW)

End Sub

—Alexander Meissel, Colorado Springs, Colorado

VB5, VB6
Level: Beginning

Retrieve Additional File Properties
Several new properties associated with files were not available
when the original VB file I/O statements and functions were
designed. To easily access these new properties—DateLast-
Accessed, Type, DateCreated, DateLastModified, Path, ShortPath,
ShortName, and ParentFolder—you need to set a project refer-
ence to the Microsoft Scripting Runtime. Set the reference by
selecting Project from the VB main menu, then select References
and check the Microsoft Scripting Runtime item. With the refer-
ence established, you can add this code to access and display the
new file properties:

Dim objFSO As New FileSystemObject
Dim objFileDetails as File
' Identify the file for which you want
' to display properties
Set objFileDetails = _

objFSO.GetFile("C:\config.sys")
' Move file properties associated with
' the above selected file into labels
' on your property form
lblFileType=objFileDetails.Type
lblDateCreated=objFileDetails.DateCreated
lblDateModified=objFileDetails.DateLastModified
lblDateAccessed=objFileDetails.DateLastAccessed

—January Smith, Houston, Texas

VB4, VB5, VB6
Level: Intermediate

Determine Control’s Membership in a Control Array
To determine whether a control is a member of a control array, you
can reference its Index property and handle the generated error
when the control is not in an array. Alternatively, you can use the
TypeName function, which returns “Object” for members of a
control array. The trick to using it is to reference the control array,
not just one of its members. You can do this using the Controls
collection, keying on the control’s name:

Public Function IsCntlArray(cntl As Control) _
As Boolean
IsCntlArray = _

(TypeName(cntl.Parent.Controls(cntl. _
Name)) = "Object")

End Function

—Bill McCarthy, Barongarook, Victoria, Australia

VB5, VB6
Level: Beginning

Ascertain OK or Cancel From InputBox
When the user presses Cancel on a VB InputBox, the string
returned is a vbNullString. If the user inputs a zero-length string
and presses OK, the return string is empty (""). Unfortunately, in
VB,  you can’t compare an empty string to vbNullString because VB
equates "" to be equal to vbNullString even though the two are
quite different.

However, you can use the undocumented StrPtr function to
determine whether the return string is indeed a vbNullString. A
vbNullString’s pointer is, by definition, zero:

Dim strReturn as String
strReturn = InputBox("Enter in a value")
If StrPtr(strReturn) = 0 Then

' User pressed Cancel
End If

—Bill McCarthy, Barongarook, Victoria, Australia

VB6
Level: Advanced

Avoid Copying Data
You can use the name of a Function or Property Get procedure as
a local variable anywhere in the procedure. If your procedure
returns a String or UDT type, writing directly to the function name
instead of a temporary variable saves you from making a full copy
of your data at the end of a function. Unfortunately, you can’t
leverage this technique if your function returns an array, because
VB interprets any parentheses after the function name as a call to
the function, not as an index into the array. The overloaded
parentheses force you to use a local variable and make an expen-
sive array copy at the end of the function. However, if the assign-
ment to the function name happens on the statement before an
[End|Exit] [Function|Property], then VB simply transfers owner-
ship of the local variable to the function name instead of copying
it. Any intervening statements (including End If) preclude the
compiler from making this optimization.

—Matt Curland, Redmond, Washington



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 27

  

 For even more tricks and tips go to
 www.vbpj.com

VB3 and up
Level: Beginning

Force Tri-State Checkbox Cycling
The CheckBox control in VB supports three positions: Checked,
Unchecked, and Grayed. Unfortunately, the default behavior for
the control is to cycle between Checked and Unchecked. To set it
to Grayed, you must do it programatically.

This code shows you how to cycle between the three positions
(the order is Checked->Unchecked->Grayed->Checked ...):

Private Sub Check1_Click()
Static iState As CheckBoxConstants
Static bUserClick As Boolean
' Trap if the user clicked on the control
' or if the event was fired because you
' changed the value below
bUserClick = (iState <> Check1.Value)
' Prevents you from entering an infinite
' loop and getting an Out of Stack Space error
If bUserClick Then

Select Case iState
Case vbChecked

iState = vbUnchecked
Case vbUnchecked

iState = vbGrayed
Case vbGrayed

iState = vbChecked
End Select
' This will raise another click event but
' your boolean check prevents you from looping
Check1.Value = iState

End If
End Sub

—Eric Litwin, Thousand Oaks, California

VB3 and up
Level: Intermediate

Use the Immediate Window to Write Repetitive Code
You can stop a program’s execution and use the debug window to
generate code you can paste into your program. For example, you
have a recordset called rs and you wish to manually move the
contents into controls on your form or into declared variables.
Place a breakpoint after you open the recordset, press Ctrl-G to
open the Immediate window, and type this:

for each x in rs.Fields : ?"= rs.Fields(""" & _
x.name & """)" : next

When you press Enter, you get one line per field. The output should
resemble this:

= rs.Fields("Edition")
= rs.Fields("Num")
= rs.Fields("Title")
= rs.Fields("ReaderName")
= rs.Fields("ReaderFrom")
= rs.Fields("Bits16")
= rs.Fields("Bits32")
= rs.Fields("Level")
= rs.Fields("Tip")

Copy and paste this output into your code. Now you only need to
enter the destination control or variable’s name on the left side of
the equal signs. If you have a recordset with a large number of
fields, this tip is worth its weight in gold. It prevents typing errors
and saves time because the field names are pulled right from the
recordset.

—Larry Johnson, Trenton, Georgia

VB5, VB6
Level: Beginning

Format Your Version Info
Many professional applications are required to display a version
number on all screens to indicate to users which version of the app
is currently running. This also helps with configuration manage-
ment. Here’s a function that appends the VB project’s version
number to a text description passed to the function as input. The
version information is embedded in a project by assigning major,
minor, and revision values on the Make tab of the Project Proper-
ties dialog. Then when you right-click on the resulting EXE file in
Windows, go to Properties, and click on the Version tab, the
version number matches those on your screens, providing a nice
consistency. Putting the function in a standard module—particu-
larly one made of generic reusable functions and subprocedures—
allows other developers to plug the module into their projects and
use the routine:

Public Function GetVersion(strApp As String) _
As String
' Pass in the application name you want
' displayed as part of the form's caption. A
' blank character and the version number are
' appended to the application name
' completing the caption.
GetVersion = strApp & " " & _

Format(App.Major, "#0") & "." & _
Format(App.Minor, "#00") & "." & _
Format(App.Revision, "0000")

End Function

Here’s a sample call to this function:

Dim strVersion As String
strVersion = "Application XYZ Version"
frmMain.Caption = GetVersion(strVersion)
' Set form's caption

—Michael T. Hutman, Germantown, Maryland

VB4 32, VB5, VB6
Level: Intermediate

Bind Option Buttons to Data Controls
The Option button is a convenient way to display multiple options
from which only one can be selected. One problem is that the
Option button cannot be bound to a data control. Here’s an easy
workaround: Create an array of Option buttons and also create a
hidden text field and bind it to your data control. Place this code
in your form:

Private Sub Option1_Click(Index As Integer)
Text1.Text = Index

End Sub
Private Sub Text1_Change

Option1(Val(Text1.Text)).Value = True
End Sub

Whenever the value in Text1 is changed by the data control, it
sets the Option button of the corresponding index value to True.
Whenever the Option button is changed, it stores the correspond-
ing Index in the textbox. Because the textbox is bound to the data
control, the value is saved in the database.

—Chris Schneider, Newark, Delaware



28 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

  

101 TECH TIPS
For VB Developers

VB4 32, VB5, VB6
Level: Beginning

Change Appearance Property at Run Time
Here’s a way of changing the “read-only at run time” Appearance
property for numerous types of controls. It works especially well
with the ListBox, TextBox, and PictureBox controls, without re-
creating the control.

Paste this code in a module and pass references to controls you
want to alter. By default, this routine changes the style from 3-D to
Flat, but you can change it back to 3-D by passing True for the
optional second parameter:

Option Explicit
Private Declare Function GetWindowLong Lib _

"user32" Alias "GetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Declare Function SetWindowPos Lib _
"user32" (ByVal hWnd As Long, ByVal _
hWndInsertAfter As Long, ByVal x As Long, _
ByVal y As Long, ByVal cx As Long, ByVal _
cy As Long, ByVal wFlags As Long) As Long

Private Const WS_BORDER = &H800000
Private Const WS_EX_CLIENTEDGE = &H200
Private Const GWL_STYLE = (-16)
Private Const GWL_EXSTYLE = (-20)
Private Const SWP_NOSIZE = &H1
Private Const SWP_NOMOVE = &H2
Private Const SWP_NOZORDER = &H4
Private Const SWP_NOACTIVATE = &H10
Private Const SWP_FRAMECHANGED = &H20
Public Sub ChangeStyle(ctrl As Control, _

Optional ByVal ThreeD As Boolean = False)
Dim nStyle As Long
Dim nStyleEx As Long
Const swpFlags = SWP_NOSIZE Or _

SWP_NOMOVE Or SWP_NOZORDER Or _
SWP_NOACTIVATE Or SWP_FRAMECHANGED

' Get current styles
nStyle = GetWindowLong(ctrl.hWnd, GWL_STYLE)
nStyleEx = GetWindowLong(ctrl.hWnd, _

GWL_EXSTYLE)
If ThreeD Then

' Turn Border off, ClientEdge on
nStyle = nStyle Or WS_BORDER
nStyleEx = nStyleEx And Not _

WS_EX_CLIENTEDGE
Else

' Turn Border on, ClientEdge off
nStyle = nStyle And Not WS_BORDER
nStyleEx = nStyleEx Or WS_EX_CLIENTEDGE

End If
' Set new styles and force redraw
Call SetWindowLong(ctrl.hWnd, GWL_STYLE, _

nStyle)
Call SetWindowLong(ctrl.hWnd, GWL_EXSTYLE, _

nStyleEx)
Call SetWindowPos(ctrl.hWnd, 0, 0, 0, 0, _

0, swpFlags)
End Sub

You might observe the control shrinking when you click on the
button several times. You can reproduce this behavior by repeat-
edly changing the Appearance property of the control from the
design-time Properties window. You can inhibit this resizing with
ListBox controls by setting IntegralHeight to False. With other
controls, you can consider a sizing correction after changing the
border style.

—Gilbert R. Rosal, Miami, Florida

VB3 and up
Level: Beginning

Use the Erl Function to Debug
When you’re faced with difficult debugging chores or when you
want to enhance the value of error logs produced by production
code, line numbers can help determine exactly where errors are
occurring. The Erl function, not documented since VB3, pinpoints
the problem. Here’s an example of how Erl returns the line number
of an error:

Public Sub DivideByZero()
On Error GoTo HandleError

10 Dim x As Long
20 Dim y As Long
30 y = 5
40 MsgBox y / x 'error

Exit Sub
HandleError:

Debug.Print "Error on line " & Erl
End Sub

—Aaron Crandall, Boise, Idaho

VB5, VB6
Level: Intermediate

Allow Interval Greater Than Timer Controls
When you need a timer for a larger interval than the Timer control
allows, insert this code into a BAS module. The procedure starts
when the timer interval has passed:

Dim lTimerId As Long
Private Declare Function SetTimer Lib "user32" _

(ByVal hWnd As Long, ByVal nIDEvent As _
Long, ByVal uElapse As Long, ByVal _
lpTimerFunc As Long) As Long

Private Declare Function KillTimer Lib _
"user32" (ByVal hWnd As Long, ByVal _
nIDEvent As Long) As Long

Private Sub TimerProc(ByVal lHwnd As Long, _
ByVal lMsg As Long, ByVal lTimerId As Long, _
ByVal lTime As Long)
Dim lResult As Long
lResult = StopTimer(lTimerId)
Call InsertYourProcessNameHere
'code to be executed after interval

End Sub

Public Sub StartTimer(lInterval As Long) _
'convert interval to milliseconds prior to
'passing
lTimerId = SetTimer(0, 0, lInterval, _

AddressOf TimerProc)
End Sub

Public Function StopTimer(lTimerId As Long) _
As Long
'must pass the TimerId returned by SetTimer
StopTimer = KillTimer(0, lTimerId)

End Function

This call executes the procedure:

Call StartTimer(5000) '5 seconds

You can stop the timer before the interval by calling the StopTimer
function.

—Alex Whyte, Como, Australia



MARCH 2001␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal 29

  

 For even more tricks and tips go to
 www.vbpj.com

VB4, VB5, VB6, DAO 3.x
Level: Intermediate

Execute Parametrized QueryDefs Simultaneously
in DAO
In Microsoft Access, you can execute a parameterized query that
uses other parameterized queries, as long as their parameter
names are the same. Save these queries in an Access database:

"QueryOne"
PARAMETERS MyDate DateTime;
SELECT Date1 FROM TableOne WHERE Date1>MyDate;
"QueryTwo"
PARAMETERS MyDate DateTime;
SELECT Date1 FROM TableTwo WHERE Date1>MyDate;
"QueryUnion"
PARAMETERS MyDate DateTime;
SELECT * FROM QueryOne
UNION
SELECT * FROM QueryTwo;

You can execute QueryUnion from VB code by passing the MyDate
parameter. This example is for DAO 3.5:

Sub ExecuteQuery()
Dim db As Database
Dim rs As Recordset
Dim qd As QueryDef
Set db = OpenDatabase("<database name>")
Set qd = db.QueryDefs("QueryUnion")
qd.Parameters(0).Value = CDate("3/1/00")
Set rs = qd.OpenRecordset(dbOpenSnapshot)
' <.....>
rs.Close
db.Close
End Sub

—Pavel Maksimuk, Brooklyn, New York

VB4, VB5, VB6
Level: Advanced

Save Expensive Heap Allocations
Fixed-size arrays in local variables use a stack-allocated descrip-
tor as expected, but all the data for an array is allocated on the
heap. However, fixed-size arrays embedded in structures are fully
stack-allocated. This means that you can save yourself expensive
heap allocations by defining a (Private) type with a single fixed-
size array element and using a UDT-typed variable in place of the
local fixed-size array. You can optimize the number of allocations
you need to load a standard module or create a class instance
using the same technique at module-level.

—Matt Curland, Redmond, Washington

VB5, VB6
Level: Intermediate

Allow Context-Sensitive Help for Disabled Controls
If you want a form to support context-sensitive help, set the
WhatsThisButton and WhatsThisHelp properties on the form to
True, and set the WhatsThisHelpID property to a corresponding
help-file topic ID for any control on that form for which you want
help to be displayed.

Unfortunately, the help isn’t shown if the control’s Enabled
property is set to False. To solve this problem, create a label under
the control with the same dimensions, and clear its caption to
make it invisible. Set the WhatsThisHelpID property to the same
value as the disabled control’s property.

—Frank Addati, Melbourne, Australia

VB4, VB5, VB6
Level: Intermediate

Use the ListIndex Property to Store Primary Keys
From a Recordset
Here’s an easy way to fill a listbox or combobox with names, then
retrieve the UserID of that name. This example loads names into a
listbox from a SQL Server stored procedure. When you click on a
name in the listbox, the Key value is stored in the lngUserID
variable. Then you can use the lngUserID variable in other parts of
the program to retrieve related information for the selected name.
The names are set up as character fields with the UserID being an
AutoNumber field and also the primary key. This tip is valid only
if you can translate the field value to a number:

Private Sub Form_Load()
Call LoadData(List1)

End Sub
Private Sub List1_Click()

If List1.ListIndex>=0 Then
lngUserID = _

List1.ItemData(List1.ListIndex)
End If

End Sub
Private Sub LoadData(ByRef obj As Object)
' Assumes the Object is either a ListBox or ComboBox

Dim com as ADODB.Command
Dim rs as ADODB.Recordset
Set com=CreateObject("ADODB.Command")
Set rs=CreateObject("ADODB.Recordset")
com.CommandText = "procGetData"
com.CommandType = adCmdStoredProc
com.ActiveConnection = strConnect
Set rs=com.Execute
obj.Clear
Do While Not rs.EOF

obj.AddItem rs!Name
obj.ItemData(obj.NewIndex) = rs!UserID
rs.MoveNext

Loop
rs.Close
set rs=Nothing
set com=Nothing

End Sub

—Steve Ramsey, Tyrone, Pennsylvania

VB5, VB6
Level: Intermediate

Use Bitwise Comparison in SQL Server Queries
The newsgroups offer a lot of discussion about bitwise compari-
son in SQL statements. VB supports true bitwise arithmetic with
And, but SQL supports only a logical AND and returns only TRUE
or FALSE. Here’s a quick way to test against a single bit in SQL:

SELECT MyField
FROM MyTable
WHERE (MyTable.MyField \ 2 ^ (MySingleBit - 1) _

MOD 2 = 1)

The \ operator specifies integer division, although you could have
used INT (MyTable.MyField / ... ) just as easily. MySingleBit is the
bit you want to test: 1,2,3,4,5, and so on. More complicated ways
of doing this—such as with table joins—might be faster, but this
is about as simple as it gets.

—Merv Pate, Houston, Texas



  

30 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

101 TECH TIPS
For VB Developers

VB4 32, VB5, VB6
Level: Intermediate

Convert Values for Collection
If you’re adding something to a collection, you might want to
convert it before adding it. This code adds a reference to the
recordset, not the value of the field returned by this syntax
normally:

' (col is a collection, rs is a recordset)
col.Add rs("Some Field")

When you try to get the value from the collection, you get an error
if the recordset is gone—not the best coding practice. If you want
a simple collection, you want to convert the value:

col.Add CStr(rs("Some Field"))

Here’s another way around the problem:

col.Add rs("Some Field").Value

The default property of a recordset is the .Value property, which
is why you see a value when you code things such as str = rs("Some
Field"). You should be coding with rs("Field").Value, but it’s more
work, so you don’t. The penalty for shortcutting the default
property comes when things don’t behave properly—for example,
with a collection reference. If you have other object values that
you want to put into a collection, be sure you know what you’re
referencing—the object or the value.

—Dan Kobelt, Abbotsford, British Columbia, Canada

VB5, VB6
Level: Intermediate

Use OLE Drag-and-Drop With a DBGrid Control
It’s easy to drag-and-drop from a DBGrid to Word or Excel, even
though DBGrids don’t support OLE Automation. Just add a rich
textbox to your form and make it invisible. Also set its OLEDragMode
to 0 - rtfOLEDragManual. Then in the DBGrid’s MouseMove  event,
add this code:

Private Sub DBGrid1_MouseMove(Button As _
Integer, Shift As Integer, X As _
Single, Y As Single)
' start the drag from here...
If Button = vbLeftButton Then

rtfDrag.OLEDrag
End If

End Sub

In the rich textbox’s OLEStartDrag event, set up the allowed format
and effect:

Private Sub rtfDrag_OLEStartDrag(Data As _
RichTextLib.DataObject, AllowedEffects As Long)
' valid formats and effects
Data.SetData , vbCFRTF
Data.SetData , vbCFText
AllowedEffects = vbDropEffectCopy

End Sub

In the OLESetData event for the rich textbox, you must generate
the data you want to export. You can include tabs, or you can
create a table in Word, select it, and drop it on the rich textbox to
see what code it generates.

—William Wensley, received by e-mail

VB4 32, VB5, VB6; SQL Server 6.5 and up; ADO 2.1 and up
Level: Intermediate

Updatable Join Recordset Using ADO and SQL Server
Contrary to popular thought, you can add new records to an ADO
2.1 Recordset object that is the result of a Join operation executed
on multiple-base tables. You must specify the UniqueTable, or the
name of the base table upon which updates, insertions, and
deletions are allowed. This example uses the SQLOLEDB.1 pro-
vider and a disconnected ADO recordset as a bonus:

Private Sub Form_Load()
' You could combine the following 5 steps in
' the .Open method
objRecordset.ActiveConnection = _

objConnection  'An ADO connection object
objRecordset.CursorLocation = adUseClient
' Must use client-side server with this
' property!
objRecordset.CursorType = adOpenStatic
' Must use this with client-sided server cursor
objRecordset.LockType = adLockBatchOptimistic
' Hooking this up to a bound grid in a
' disconnected mode using the Northwind
' database
objRecordset.Open "SELECT * " & _

"FROM Customers JOIN Orders ON " & _
"Customers.CustomerID = " & _
"Orders.CustomerID WHERE city = " & _
"'London' ORDER BY CustomerID"

objRecordset.Properties("Unique Table"). _
Value = "Orders"

objRecordset.Properties("Resync " & _
Command").Value = "SELECT * FROM " & _
"(SELECT * FROM Customers JOIN " & _
"Orders ON Customers.CustomerID = " & _
"Orders.CustomerID WHERE city = " & _
"'London' ORDER BY CustomerID) " & _
"WHERE Orders.OrderID = ?"

objRecordset.ActiveConnection = Nothing
' A disconnected ADO recordset
Set grdTest.Datasource = objRecordset

End Sub
Private Sub Save()

objRecordset.ActiveConnection = _
objConnection

' Reconnect for the purpose of saving only
objRecordset.UpdateBatch
' Don't forget to check the ADO errors
' collection!
objRecordset.ActiveConnection = Nothing
' Disconnect again

End Sub

It’s also imperative that you use the Resync command method to
instruct ADO how to uniquely identify all rows being refreshed. In
this method, you must supply the original Select statement and
append all primary keys of the UniqueTable in a Where clause with
open-ended ("?") tokens as R-values.

—Alexander Meissel, Colorado Springs, Colorado



House Ad



  

32 Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ MARCH 2001

101 TECH TIPS
For VB Developers

VB4 32, VB5, VB6
Level: Intermediate

Toggle Min/Max Buttons at Run Time
Here’s some code that toggles the MinButton and MaxButton
properties of a form at run time. To demonstrate, start a new
project, add two command buttons to the default form, and paste
this code into the form’s code window. One button toggles the
form’s MaxButton, and the other toggles the form’s MinButton.
The code works by flipping the WS_MAXIMIZEBOX and
WS_MINIMIZEBOX window-style bits back and forth. Make a final
call to SetWindowPos to force a redraw of the nonclient area. It will
be useful for Microsoft to drop the notion of “read-only at run time”
properties in VB:

Private Declare Function GetWindowLong Lib _
"user32" Alias "GetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal _
hWnd As Long, ByVal nIndex As Long, _
ByVal dwNewLong As Long) As Long

Private Declare Function SetWindowPos Lib _
"user32" (ByVal hWnd As Long, ByVal _
hWndInsertAfter As Long, ByVal x As Long, _
ByVal y As Long, ByVal cx As Long, ByVal _
cy As Long, ByVal wFlags As Long) As Long

Private Const WS_MINIMIZEBOX = &H20000
Private Const WS_MAXIMIZEBOX = &H10000
Private Const GWL_STYLE = (-16)
Private Const SWP_FRAMECHANGED = &H20
Private Const SWP_NOMOVE = &H2
Private Const SWP_NOZORDER = &H4
Private Const SWP_NOSIZE = &H1
Private Sub Command1_Click()

Dim nStyle As Long
nStyle = GetWindowLong(Me.hWnd, GWL_STYLE)
Call SetWindowLong(Me.hWnd, GWL_STYLE, _

nStyle Xor WS_MAXIMIZEBOX)
SetWindowPos Me.hWnd, 0, 0, 0, 0, 0, _

SWP_FRAMECHANGED Or SWP_NOMOVE Or SWP_NOSIZE
End Sub
Private Sub Command2_Click()

Dim nStyle As Long
nStyle = GetWindowLong(Me.hWnd, GWL_STYLE)
Call SetWindowLong(Me.hWnd, GWL_STYLE, _

nStyle Xor WS_MINIMIZEBOX)
SetWindowPos Me.hWnd, 0, 0, 0, 0, 0, _

SWP_FRAMECHANGED Or SWP_NOMOVE Or SWP_NOSIZE
End Sub

—S. Partha Sarathy, Chennai, India

VB5, VB6
Level: Advanced

Pass Error Message Throughout Nested Components
When you use components in your VB projects, sometimes it’s
hard to determine which component has an error when the
application stops running. You might especially have this prob-
lem with nested components.

Here’s a structure for developing your nested components that
lets you obtain detailed error information from your application.
You can determine which component and which method has the
error without having to work through your code.

Create your component using this structure:

'/
' Component1
'
Public Sub GetName(ByRef strName As String)
On Error GoTo EndOfSub
Dim objComponent2 As New Component2
'Create Component2

Dim strErrMsg As String
Dim lYourErrorNumber As Long
strErrMsg = ""
' Write your code to something else
' Record any error to strErrMsg and set lYourErrorNumber
' Get name from Component2
Call objCompnent2.GetName(strName)
If strErrMsg <> "" Then

' Use "GetName::Component1" as Err.Source
' here for any error that occurred inside this method
Err.Raise vbObjectError + lYourErrorNumber, _

"GetName::Component1", strErrMsg
End If

EndOfSub:
If Err.Number <> 0 Then

' raise error to component's client program
Err.Raise Err.Number, Err.Source, Err.Description

End If
End Sub
'/
'/
' Component2
'
Public Sub GetName(ByRef strName As String)
On Error GoTo EndOfSub

Dim strErrMsg As String
Dim lYourErrorNumber As Long
strErrMsg = ""
' Write your code to get name
' Record any error to strErrMsg and set lYourErrorNumber
If strErrMsg <> "" Then

' Raise error
Err.Raise vbObjectError + _

lYourErrorNumber, , strErrMsg
End If

EndOfSub:
If Err.Number <> 0 Then

' Raise error to component's client program
' Use "GetName::Component2" as Err.Source
' here for any error ocurred inside this method
Err.Raise Err.Number, _

"GetName::Component2", Err.Description
End If

End Sub
'/

Use this code in your application program:

'/
' Client program
'
Sub DoMyJob()
On Error GoTo EndOfSub

Dim objComponent1 As New Component1
'Create Component1
Dim strMyName As String
' Get name from Component1
Call objComponent1.GetName(strMyName)
' Write your code to do your job

EndOfSub:
If Err.Number <> 0 Then

' If any error occurred in the component1
' or component2, it can be catched here,
' including detail information about
' error number, source and description
Err.Raise Err.Number, Err.Source, Err.Description

End If
End Sub
'/

—Peter Luo, Calgary, Alberta, Canada


	正文
	Ad: Woll2Woll
	Ad: Wintellect
	House Ad

