
Rational Rose 2000e
Using Rose
Visual C++

Copyright © 1993-2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023319-000
Revision 7.0, February 2000, (Software Release 2000e)

This document is subject to change without notice.

A Reader’s Comments form is included at the end of this book. Please complete
this form to assist Rational in preparing future documentation.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, and Rational Rose are trademarks or registered
trademarks of Rational Software Corporation in the United States and in other
countries. All other names are used for identification purposes only and are
trademarks or registered trademarks of their respective companies.
ii Rational Rose 2000e, Using Rose Visual C++

Contents

Contents iii

List of Figures ix

List of Tables xi

Preface xiii

How this Guide is Organized xiv

Related Documentation xiv
References xv

File Names xv

Chapter 1 Introduction 1

Main Features of Rose Visual C++ 1
Model Assistant Tool 2
Component Assignment Tool 2
Round-Trip Engineering 3
Code Generation 3
Reverse Engineering 3
MFC and COM Support 4

Support for Model-Driven Software Development 4

Support for an Iterative Lifecycle 5
Rational Rose 2000e, Using Rose Visual C++ iii

Contents
The Design Process 5
Conceptual Design with Scenario Analysis 5
Logical Design with Object-Oriented Analysis 6
Physical Design with Object-Oriented Design 6

Chapter 2 Object Modeling and Visual C++ 7

Code Generation Mapping Rules 7
Components and Visual C++ 7
Generated Visual C++ Items 8
Stereotypes, Code Templates and Model Properties 8
COM Objects 8
Documenting Model Elements 9
CodeName Support 9

Special CodeName Considerations 10
Code Generation Name Conversion 11
CodeName and Type Expressions 13
Display Parameters 14
Class CodeNames 14
Operation CodeNames 15
Operation Argument CodeNames 15
Attribute CodeNames 15
Role CodeNames 15
Package CodeNames 16
CodeName and Instantiated Classes 16

Logical View to Visual C++ Mapping 17
Classes 18

Code Generated for Classes 18
Class Stereotypes 20
Code Templates 21
Interfaces 22
COM CoClasses 23
Parameterized Classes 23

Class Utilities 23
Code Generated for Class Utilities 23

Operations 24
Operation Definitions 25
Code Generated for an Operation 25
Operation Stereotypes 26
iv Rational Rose 2000e, Using Rose Visual C++

Operation Semantics 27
Operation Parameter Passing 27
Accessor Get and Set Functions 28

Attributes 28
Code Generated for Attributes 28

Association Relationships 29
Code Generated for an Association 30
Adding a Type Specification to a Role 31

Aggregation Relationships 32
Code Generated for an Aggregate Relationship 32

Dependency Relationships 33
Generalization Relationships 33
Advanced Relationship Mappings 34

Navigability 34
Containment 35
Multiplicity 35
Collection Classes 35

Pointers, Arrays, and References in Visual C++ 36
As Class Attributes 36
As Association Relationships 36

Packages 38

Component View to Visual C++ Mapping 38
Component Stereotypes 40

Deployment View to Visual C++ Mapping 40

Reverse Engineering Mapping Rules 40
Visual C++ Project Mapping 41
Class Mapping 41
MFC Mapping 41
COM Object Mapping 42

Creating New COM Objects 44
ATL Object Name Derivation 45
Adding IDL Attributes to <<interface>> Method Arguments 47

Code Comments Mapping 47
Aggregation Relationships 48

The Three-Tiered Model 48
Rational Rose 2000e, Using Rose Visual C++ v

Contents
Chapter 3 Round-Trip Engineering 49

Round-Trip Engineering a Visual C++ Project 51

Synchronizing Model and Code 53
Deleting Elements 53

Evolving the Generated Code 54

Round-Trip Engineering, Starting with a Visual C++ Project 54

Creating a New Model 56
Contents of a New Model 56

Logical View 57
Component View 57
Deployment View 57
Use-Case View 58

Chapter 4 Code Generation 59

The Generated Code 59
Generated Additional Information 60

Component Assignments 60

Generating a New Visual C++ Project from a Model 61

Updating a Visual C++ Project from Changes in a Model 63

Previewing Code 64

Controlling Code Generation 64
Using Model Properties Other than the Default Set 64
Selecting the Class Stereotype 66

Reviewing the Generated Code 66
After Code Generation 66
Viewing the Code Generated for a Class 67
vi Rational Rose 2000e, Using Rose Visual C++

Chapter 5 Reverse Engineering 69

Creating a New Model from a Visual C++ Project 70

Updating an Existing Model 71

Adding Code from Other Projects into Your Model 71

Adding External Components to a Model 72
Importing MFC Classes 73
Importing COM Objects 73

Packaging and Diagramming Reverse-Engineered Classes 74
Diagramming Reverse-Engineered Projects 74

Dropping Classes into a Diagram 74
The Add Classes Dialog Box 74

Adding Reverse-Engineered Classes to Packages 75

Appendix A Model Properties Reference 77

Model Properties for Attributes 77

Model Properties for Classes 77

Model Properties for Components 78

Model Properties for Operations 78

COM Model Properties 79

Appendix B Rational Rose Visual C++ Tools 81

The Code Update Tool 81
Using the Code Update Tool 82

Welcome Page 82
Select Components and Classes Page 82
Finish Page 85
Progress Page 85
Synchronize Page 85
Summary Page 86
Rational Rose 2000e, Using Rose Visual C++ vii

Contents
The Component Assignment Tool 86
Using the Component Assignment Tool 86

Creating a New Component 87
Assigning Classes to a Component 87
Associating a Component with a Visual C++ Project 88

The Model Assistant Tool 88
Using the Model Assistant Tool 89

The General Tab 89
The MFC Tab 90
Search Box 91
Information Tabs 92

The Model Update Tool 92
Using the Model Update Tool 92

Welcome Page 93
Select Components and Classes Page 93
Finish Page 94
Progress Page 94
Synchronize Page 94
Summary Page 95

The Visual C++ Options Window 95
Code Update Tab 95
Model Update Tab 96
Containers Tab 96
Class Operations Tab 97
Accessors Tab 97

The Options VC++ Tab 98

Index 99
viii Rational Rose 2000e, Using Rose Visual C++

List of Figures

Figure 1 Example of a Class 19
Figure 2 Example of a Class Utility 24
Figure 3 Class Containing Operations 25
Figure 4 Example of Operation Parameter Passing 27
Figure 5 Example of Association Relationships 30
Figure 6 Example of Assigned Role Names 30
Figure 7 Another Example of Association Relationships 31
Figure 8 Example of Specifying Implementation in the Role Name 31
Figure 9 A Second Example of Specifying Implementation in the Role Name 32
Figure 10 Example of an Aggregate Relationship 32
Figure 11 Example of a Generalization Relationship 34
Figure 12 Example of ByValue Containment Adornment 35
Figure 13 Example of ByReference Containment Adornment 35
Figure 14 Example of Using the MFC CPtrArray Collection Class 35
Figure 15 Example of Using the MFC CArray Template Collection Class 36
Figure 16 Example of Reverse-Engineered COM Components 39
Figure 17 The Round-Trip Engineering Process 50
Figure 18 VC++ Tab of a Class Specification 65
Figure 19 Browsing a Visual C++ Header File 67
Figure 20 Code Update Tool—Select Components and Classes Page 83
Figure 21 Select Components and Classes Page—Assignment Messages 84
Figure 22 The Component Assignment Tool 87
Figure 23 The Model Assistant Class Folders 89
Figure 24 The Model Assistant MFC Class Folders 90
Figure 25 Model Update Tool—Select Components and Classes Page 93
Rational Rose 2000e, Using Rose Visual C++ ix

List of Tables

Table 1 Visual C++ Class Stereotypes 20
Table 2 Visual C++ Operation Stereotypes 26
Table 3 Visual C++ Component Stereotypes 40
Table 4 Mapping Visual C++ Projects to Components 41
Table 5 Mapping Visual C++ Project Items to Model Elements 41
Table 6 Model Assistant—Folder Content Mapping 89
Table 7 Model Assistant—Folder Content Mapping 91
Rational Rose 2000e, Using Rose Visual C++ xi

Preface

Rational Software corporation’s Rational Rose® provides easy-to-use
support for object-oriented analysis and design, and for controlled
iterative development of applications. Rational Rose Visual C++
provides the interface between the Rational Rose modeling
environment and Microsoft Visual C++.

This guide is intended for the experienced Visual C++ developer.
Familiarity with Rational Rose modeling tools is strongly advised.

This guide is a companion to Rational Rose 2000e, Using Rose, which
provides the conceptual and reference information needed to use the
Rational Rose modeling tools.

Using Rose Visual C++ explains how to:

� Generate Visual C++ source code from a Rational Rose model

� Reverse engineer Visual C++ source code into a Rational Rose
model

� Update a Rational Rose model to reflect changes in the
corresponding Visual C++ source code

� Apply round-trip engineering processes to a modeled Visual C++
application
Rational Rose 2000e, Using Rose Visual C++ xiii

Preface
How this Guide is Organized

Chapter 1 introduces the features of the Rational Rose Visual C++
add-in, and the basic concepts needed to use it.

Chapter 2 explains the mapping between Rational Rose model
elements and Visual C++ source code elements. It discusses mappings
for both model-to-code and code-to-model.

Chapter 3 explains the Rational Rose round-trip engineering process
as it applies to Visual C++.

Chapter 4 discusses the code generation processes Rational Rose
Visual C++ uses and how it controls these processes.

Chapter 5 explains how to reverse engineer a Visual C++ source code
project into a Rational Rose model.

Appendix A lists the model properties included with Rational Rose
Visual C++, and how they control Visual C++ code generation.

Appendix B discusses the Rational Rose Visual C++ tools.

Related Documentation

The following documents are included with Rational Rose Visual C++.

� Comprehensive on-line help with hypertext links and a two-level
search index. To activate on-line help, go to the Help menu on the
Rational Rose menu bar.

� Online user manuals. Please refer to the README.txt file, found in
the Rational Rose installation directory, for more information.

� Release Notes, a Windows help file containing additional
information about Rational Rose Visual C++. You access this file
from the Windows Start menu by clicking Programs > Rational Rose
2000e > Release Notes.

� A README.txt file, containing last-minute information about
Rational Rose Visual C++. You access this plain-text file from the
Windows Start menu by clicking Programs > Rational Rose 2000e >
ReadMe.
xiv Rational Rose 2000e, Using Rose Visual C++

File Names
References

The following books are excellent references to the concepts,
semantics, and process of object-oriented analysis and design, and the
Unified Modeling Language (UML):

� Visual Modeling with Rational Rose and UML by Terry Quatrani,
Addison Wesley, 1998, available from Rational Software Corp.

� Object-Oriented Development, by Grady Booch and Jim Rumbaugh,
available from Rational Software Corp.

� UML Notation: Unified Modeling Language by James Rumbaugh,
Grady Booch, and Ivar Jacobson, available from
http://www.rational.com

� Booch Notation: Object-Oriented Analysis and Design with
Applications (second edition) by Grady Booch, Benjamin-
Cummings Pub. Co., Redwood City, California, 1993

� OMT Notation: Object-Oriented Modeling and Design, by J.
Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1991

File Names

Where file names appear in examples, Windows syntax is depicted. To
obtain a legal UNIX file name, eliminate any drive prefix and change the
backslashes to forward slashes:

c:\project\username

becomes

/project/username
Rational Rose 2000e, Using Rose Visual C++ xv

Chapter 1

Introduction

Rational Rose 2000e® is a team-based graphical software-engineering
tool that supports object-oriented analysis, design, and
implementation. Rational Rose Visual C++ allows a development team
to more effectively produce mission-critical Visual C++ applications.
This chapter provides an introduction to Rational Rose Visual C++.

Note: Unless otherwise stated, all comments made about the
Visual C++ environment apply to Microsoft Visual C++ 6.0. Also, all
comments about Rational Rose or Rational Rose Visual C++ refer to
Rational Rose 2000e with Visual C++ installed.

Main Features of Rose Visual C++

Rational Rose supports the notation and process of object-oriented
analysis and design. This allows you to focus on building the objects
that model your business data and functionality requirements. You
can easily visualize your existing code by reverse engineering it into a
Rational Rose model, and use the model to apply object-oriented
methods to the design of your Visual C++ applications.

The main features of Rational Rose Visual C++ include:

� A Model Assistant tool that provides a quick and easy way to
rapidly add common Visual C++ programming and modeling
constructs to modeled elements.

� A Component Assignment tool that provides a quick and easy way
to create a model component and perform all the necessary class
and language assignments.
Rational Rose 2000e, Using Rose Visual C++ 1

Chapter 1 Introduction
� A round-trip engineering process that seamlessly synchronizes
model and code during a complete code update and model update
cycle.

� A code generation process that automatically generates Visual C++
code from the Rational Rose design model, or updates the code to
reflect changes in the model. This includes the ability to apply code
patterns that pre-define the code generated for a class.

� A reverse engineering process that automatically creates a Rational
Rose model from existing Visual C++ code, or updates a model to
reflect changes in the code.

� COM support through ATL and MIDL, and MFC support through
the Model Assistant.

Model Assistant Tool

The Model Assistant tool provides a quick and easy way to rapidly add
common Visual C++ programming and modeling constructs to your
modeled elements. Using point-and-click, you can add or modify
constructors and destructors. Or you can add and modify get and set
functions to public attributes. In short, you can quickly take your
modeled elements to the next level of detail affecting Visual C++ code
implementation.

The Model Assistant fully supports MFC classes, allowing you to
quickly and easily:

� Override virtual MFC superclass operations (methods)

� Add Windows message handlers

� Add command handlers

See page 88 for more information about the Model Assistant tool.

Component Assignment Tool

As discussed at length in Chapters 2 and 4, the key to correctly linking
a model to the Visual C++ source code it represents is the model
component. The Component Assignment tool provides a quick and easy
way to perform all of the linking (or assignment) processes necessary
for accurate and complete code generation and round-trip engineering.

See page 86 for more information about the Component Assignment
tool.
2 Rational Rose 2000e, Using Rose Visual C++

Main Features of Rose Visual C++
Round-Trip Engineering

Round-trip engineering is a process that involves modeling, code
generation, code implementation, and reverse-engineering the code
back to the model. Rational Rose Visual C++ coordinates this process,
making it easy for you to keep both the design model and the source
code consistent and in synch.

In round-trip engineering, you use both Rational Rose Visual C++ and
Microsoft Visual C++ to model and evolve your code. This is nothing
more than the way you really work—making a quick model of an
application under development, implementing that model in code, and
then refining model and code based on your ever-increasing
understanding of the application’s implementation requirements.

Round-trip engineering is discussed in Chapter 3.

Code Generation

Code generation—also known as Code Update—is the process of
creating and updating the elements in the Visual C++ code that
correspond to new or changed elements in a model.

When generating code updates, the Code Update tool only updates
code corresponding to model elements that changed. For example, if
the name of an operation argument changes in the model, only the
argument name in the corresponding member function is changed—no
other code in the Visual C++ project is changed.

This means that your system model is no longer just documentation.
It is a dynamic base for your Visual C++ project’s source code. Its view
of the code is often more convenient to update than the code itself.

You can also apply code templates that help to define the code
generated for a class. See “Code Templates” on page 21 for more
information.

Code generation is covered in Chapter 4.

Reverse Engineering

Reverse engineering—also known as Model Update—lets you
automatically create a new design model from existing Visual C++
source code, or update an existing model to reflect changes made to its
Rational Rose 2000e, Using Rose Visual C++ 3

Chapter 1 Introduction
Visual C++ source code. This process allows you to keep the design
model consistent with any changes you make to the project’s
Visual C++ source code, and vice versa.

Reverse engineering is covered in Chapter 5.

MFC and COM Support

The MFC library is accessed through a quick-import feature (Tools >
Visual C++ > Quick Import MFC 6.0). See page 73 for more information.
Once the MFC library classes are in the model, further support is
provided by the Model Assistant (see pag e90).

Existing COM objects are accessed by simply dragging and dropping
the COM object file (.dll, .exe, .ocx, or .tlb) into your model (see
page 73). New COM objects are created from modeled classes or
interfaces by expanding them into ATL objects (see page 42).

Rational Rose Visual C++ can also reverse and forward engineer MIDL
(Microsoft interface definition language) files. That is, files of type .idl,
.odl, and .tlb. A project may contain multiple MIDL files.

Support for Model-Driven Software Development

By basing your application’s design process on a model, Rational Rose
Visual C++ makes it easy for you to create, enhance, and maintain its
Visual C++ implementation. This model-driven approach allows you to
view all (or any part of) the application architecture, and to visually
identify and resolve issues (omissions, unused elements, etc.).

Using Rational Rose Visual C++, all of the analysis, design, and basic
implementation of your application can be performed from within the
model. This allows you to focus your development efforts on the
application’s architecture without losing the link to its Visual C++
code.

Furthermore, Rational Rose Visual C++ applications are fully scalable.
Round-trip engineering’s iterative process of modeling, implementing,
and refining allows you to add, remove, or change application
components incrementally, and to expand or reduce the scope of the
application to suit changing business needs.
4 Rational Rose 2000e, Using Rose Visual C++

Support for an Iterative Lifecycle
Existing applications frequently contain code that is not represented in
a model, making it difficult to document, maintain, and extend.
Rational Rose Visual C++ provides the ability to reverse engineer
existing code into a design model, thus allowing it to be visualized in
relation to the rest of your application. This provides not only
meaningful design diagrams, but also the ability to continue your work
using round-trip engineering.

Support for an Iterative Lifecycle

By seamlessly integrating an application’s model and Visual C++ code
into a single development environment, Rational Rose Visual C++ gives
you the opportunity to iteratively design your application without the
usual communications problems. No more lost or misassociated
components, undocumented or unmodeled code, or “dropped balls.”

You can conceptualize, logically model, physically model, generate
basic code elements, modify and extend the code, then reflect the
implemented and debugged code back into the model. You do this all
from within a single environment and while maintaining complete
control over each iteration in your application development cycle.

You measure progress by assessing each iterative implementation,
then assessing and resolving critical risks before proceeding. Rational
Rose Visual C++ moves you from code reuse to design reuse, and it
documents your work as it goes.

The Design Process

Rational Rose Visual C++ assists you during each step of the design
phase. From conceptualizing the initial architecture, to the logical
design, to mapping a physical implementation in Visual C++, you can
fully document the set of classes, algorithms, forms, and modules
needed to support your design.

Conceptual Design with Scenario Analysis

Conceptual design supports the principle that business needs drive
application development. The conceptual design process is therefore
driven by developing usage scenarios. For a given business activity,
you develop a usage scenario for each variation relevant to the
business. Scenario (use-case) modeling captures and documents your
Rational Rose 2000e, Using Rose Visual C++ 5

Chapter 1 Introduction
application’s business objects. Rational Rose Visual C++ documents
usage scenarios with message trace diagrams, which provides a
capability for validating these scenarios with the users, and for further
validation against your enterprise architecture.

During this requirements-gathering phase, Rational Rose Visual C++
helps you communicate and articulate the results of your domain
analysis in business terms.

Logical Design with Object-Oriented Analysis

Logical design derives business objects and related services directly
from the usage scenarios. Rational Rose Visual C++ supports the
identification of services and their organization into business objects
that are then implemented as Visual C++ components or groups of
components. For each service and object, data and functionality are
defined, as well as relationships and dependencies with suppliers of
other services. Requirements are mapped to abstract business data
objects (such as customer lists or accounting ledgers) and services
(such as generating billing statements).

Physical Design with Object-Oriented Design

Physical design maps these business objects and services to physical
components and determines how the components will be distributed
across the network. Rational Rose Visual C++ allows you to translate
the logical design into a partitioned application of shared reusable
software components. The interaction of these components through
defined interfaces results in the desired behavior of the system as a
whole. By representing your analysis and design models as different
views on the same object model, Rational Rose Visual C++ keeps them
synchronized and propagates any change from one to the other. With
this unique support for model transformation, Rational Rose Visual
C++ makes it easy to incrementally refine your domain analysis into a
design architecture.
6 Rational Rose 2000e, Using Rose Visual C++

Chapter 2

Object Modeling and Visual C++

The relationship between an object modeled in Rational Rose and the
Visual C++ code produced by the Rational Rose Visual C++ code
generator is determined by the mapping properties assigned to the
object.

Code Generation Mapping Rules

A Rational Rose model contains the combined representation of a
system’s knowledge and behavior. The code generated from each
element in a model is determined by that element’s stereotype,
specification, and model properties. These combined descriptions
provide the language-specific information required to map a model into
Visual C++ code.

The model notations provided by Rational Rose are more abstract than
those in the Visual C++ programming language. Many of these
abstractions have no direct correspondences in Visual C++ (Actors, for
example), but they may result in several lines of Visual C++ code being
generated—usually as code comments.

Components and Visual C++

In Rational Rose Visual C++, a component maps directly to a Visual C++
project. A component, and its corresponding project are prerequisites
to Visual C++ code generation. To generate Visual C++ code for a class,
the class must be assigned to a component that uses Visual C++ as its
implementation language. To generate Visual C++ code for an
Rational Rose 2000e, Using Rose Visual C++ 7

Chapter 2 Object Modeling and Visual C++
interface, the interface must be assigned to an IDL component that
uses Visual C++ as its implementation language. For more
information, see “Component Assignments” on page 60.

Generated Visual C++ Items

For each class in a Rational Rose model, the code generator produces
a corresponding Visual C++ class. Class relationships are translated to
data members of the class.

For class operations in a model, the code generator produces skeletal
member functions that you can edit to add functionality. For more
information, see “Code Generated for Classes” on page 18.

Stereotypes, Code Templates and Model Properties

The stereotype and code template applied to a model element, along
with the element’s specification and model properties, control the
Visual C++ code that Rational Rose generates. There is a default
mapping for each model element type, but you can modify or extend
the generated code by changing the stereotype and model properties for
a particular model element or by applying a code template to it.

The predefined stereotypes for Rational Rose Visual C++ code
generation are listed in “Class Stereotypes” on page 20. For a complete
description of public model properties, please see Appendix A. Code
templates are discussed in “Code Templates” on page 21.

COM Objects

Code generated for COM objects depends on the object and how it is
related to and realized by the modeled elements. Interfaces and their
CoClasses are modeled as they should be expressed in their IDL file,
and are modeled separately from the Visual C++ objects that
implement them. For this reason, IDL objects are assigned to a
separate component from Visual C++ objects. A MIDL component has
a <<MIDL>> stereotype and its Type property is set to MIDL. The MIDL
component is typically created using the Code Update tool when MIDL
objects are forward engineered.

A project may contain multiple MIDL components, with each
component relating to a single MIDL file in the project.
8 Rational Rose 2000e, Using Rose Visual C++

Code Generation Mapping Rules
The Model Assistant allows you to add and remove methods and
properties to MIDL objects, and to remove interfaces from, and to select
the default interface for a CoClass.

For more information, see “COM Object Mapping” on page 42.

Documenting Model Elements

The Rational Rose Visual C++ code generator writes the contents of the
Documentation field of each model element’s specification into
comment lines in your code. You may find this information of value
when you start evolving the generated code.

The Documentation fields are generated in the following way:

� Class documentation code comments immediately precede the
corresponding class module.

� Attribute and role documentation code comments immediately
precede the corresponding data member.

� Operation documentation code comments immediately precede the
corresponding member function.

CodeName Support

Normally, the name of a Rose model element translates literally to the
name of its code elements. For example, a class model named "Foo"
corresponds to a Visual C++ class named foo that is defined and
implemented in foo.h and foo.cpp.

Situations arise where the element names in a model must be different
from their Visual C++ counterparts in code—most typically, when the
model is written in a language other than English (Japanese, for
example). Rational Rose Visual C++ supports this ability through the
CodeName process.

CodeName maps between a model-element name and the name of its
corresponding code-element. CodeName can be use on:

� Class names

� Operation names

� Operation argument names

� Attribute names

� Role names
Rational Rose 2000e, Using Rose Visual C++ 9

Chapter 2 Object Modeling and Visual C++
CodeName support is activated by the Support CodeName check box
on the Code Update tab of the Visual C++ Properties window (Tools >
Visual C++ > Properties). The default value is unchecked (off).

When CodeName is active, the Model Assistant displays a Code Name
text box on the model element's tab. The content of this box is the
CodeName value for the model element. See Display Parameters on
page 14 for more information.

When generating code for a model element, the Rose Visual C++ Code
Update tool uses the element's CodeName value in the generated code
in place of the element's model name. For example, a modeled class
named "%&#@" whose CodeName value is foo is generated in the
source code as class foo. Special concederations exist for type
expressions (page 13) and instantiated classes (page 16).

Special CodeName Considerations

The following considerations apply to CodeName use.

CodeName and Arrays

Rose Visual C++ expects array semantics to be part of the element's
model name, not its type. For example, the class attribute:

myArray[10] : int

The CodeName value must therefore contain the array expression. For
example, the CodeName value for a model class attribute name of
"£££[10]: int" would be Cost[10], not Cost.

CodeName and Containers, Class Operations, and Accessors

The $variables used in processing containers, class operations, and
accessors (such as, $TYPE and $NAME) are language keywords and
are not localized. All other text in container, class operation, and
accessor strings may contain localized characters.

Note: If "Apply Pattern on Code Generation" is enabled (Tools > Visual
C++ > Properties > Code Update tab), Code Update may insert new
model items containing illegal C++ names. These should be corrected
after the fact using the Model Assistant.
10 Rational Rose 2000e, Using Rose Visual C++

Code Generation Mapping Rules
CodeName and Include File Name Generation

When CodeName is enabled, file names for new classes generated into
the Visual C++ IDE for the first time are based on CodeName values
rather than the model name.

CodeName and MFC Classes

Classes in an MFC package should not have CodeName values
assigned.

CodeName and Stereotypes

Stereotypes are code keywords and are not localized. For example, to
declare a class operation as a friend operation, the stereotype "friend"
is applied, not the local language word for friend.

Compatibility Issues with Rose C++

Rose C++ allows dollar sign ($) expressions in a CodeName value. While
these are not directly supported in Rose Visual C++, the Rose Visual
C++ Model Converter performs appropriate conversions as part of its
conversion process. In this way, these expressions are converted to
Rose Visual C++ CodeName syntax.

Code Generation Name Conversion

Standard behavior during Code Update and Model Assistant
processing is to attempt to correct illegal characters in model-element
names. For example, a class named "@Customer@" contains
characters that are illegal as C++ identifier names. These illegal
characters are removed from the class name, resulting in a class name
of "Customer" in both the model and in the generated code.

Note: If no characters remain in the "legalized" name, an error is logged.

When CodeName is enabled, the same correction algorithm applies,
but only to the CodeName value—not to the model name. If a CodeName
value is corrected, the changed name becomes the CodeName value.
Other than creating names for blank roles, there is no case where a
model name is modified when Support CodeName is enabled.

Note: When CodeName is enabled and the model element has no
CodeName value, Code Update attempts to use the literal model name. If
the model name is determined to be bad, no source code is generated for
Rational Rose 2000e, Using Rose Visual C++ 11

Chapter 2 Object Modeling and Visual C++
the item. For example, if a class is encountered with a model name of
"FOO%^&BAR" and it has no CodeName value, the name is logged as
invalid and no source code is generated for it. This is different than
encountering the same class with CodeName disabled, where the class
name is changed to "FOOBAR" and source code is generated.

Type correction is also handled differently when CodeName is enabled.
When generating code for types in a model that does not have
CodeName enabled, invalid type-specification characters (for example,
the character "@") are removed from the type and the corrected type
name is changed in the model. When generating code for types in a
model that has CodeName enabled the model name is logged as invalid
and no code is generated for the item.

Illegal Characters in Model Names

The purpose of CodeName is to allow localized identifiers to be used as
model names, without interfering with the round-trip engineering
process. With CodeName active, Rose Visual C++ is not required to deal
with illegal characters in model names.

However, the use of illegal characters in model names is strongly
discouraged. If absolutely all model items have a valid code name, and
CodeName support is never turned off, illegal characters are not an
issue. But a model item name containing illegal characters and without
a code name may generate anomalous results.

In the interest of simple and reliable round-trip engineering, the
following CodeName restrictions should also be honored for model
names:

� A model name cannot contain blanks or tab characters.

� A model name cannot contain valid C++ punctuator characters:

! % ^ & * () – + = { } | ~ [] \ ; ' : " < > ? , . / #

Of course, such characters used to properly delimit Rose model-
element names are required and are not considered part of the element
code name. For example, the < and > in the instantiated class name:
"¥§£±<Å¢®µ, Å¢®µ&>"
12 Rational Rose 2000e, Using Rose Visual C++

Code Generation Mapping Rules
CodeName and Type Expressions

Some elements have a type expressed in their model (for example,
attributes, operations or operation arguments). While CodeName does
not directly support types, some types are represented elsewhere in the
model as Rose classes. When CodeName is enabled, the Visual C++
code generator substitutes the class’ CodeName value for the type
name wherever it appears in the code.

For a given type name, Rose Visual C++:

� Checks the model for a class whose class name matches the type
name, then if no match,

� Checks the model for a class whose CodeName value matches the
type name.

� When checking for CodeName during Model Update, it checks
classes realized by the target model component before looking at
the rest of the classes in the model.

Note: A type name conflict occurs when the model name of one class is
equal to the CodeName of another class, or when two classes have the
same CodeName. Rose Visual C++ cannot prevent the user from creating
these conflicts so it logs them during code generation.

The following example demonstrates how the CodeName for the type
"£" of the attribute Price was used to generate code.
Rational Rose 2000e, Using Rose Visual C++ 13

Chapter 2 Object Modeling and Visual C++
Display Parameters

When CodeName is enabled, all Rose Visual C++ dialogs generally use
model names when displaying model items and code names when
displaying code items. If the item has a CodeName value, that value is
used when displaying the code item.

Model Assistant

The Model Assistant is used to set and modify code names. In the
Model Assistant, the tree view on the left side displays model names.
When CodeName is enabled, the element tabs contain a Code Name
text field for entering and/or modifying the element's CodeName value.

Code Update Tool

In general, displayed in the Code Update tool are model names. The
exceptions are code preview strings and error messages.

Model Update Tool

In general, all element names displayed in the Model Update tool are
code names derived from the Visual C++ IDE. Model names are not
available to the Model Update tool.

Visual C++ Properties Dialog

In the Visual C++ Properties dialog (Tools > Visual C++ > Properties),
you can enter localized characters on the Containers, Class
Operations, and Assessors tabs.

Component Properties Dialog

In the Visual C++ Component Properties dialog (right-click component,
then Properties), you can enter localized characters on the Internal
Map and External Map tabs.

Class CodeNames

When CodeName is active, the Model Assistant displays a Code Name
text box on the model element's Class tab. The content of this box
becomes the name for the code elements of the class. For example, a
code name of foo results in the class being defined in foo.h and
implemented in foo.cpp.
14 Rational Rose 2000e, Using Rose Visual C++

Code Generation Mapping Rules
Operation CodeNames

When CodeName is active, the Model Assistant displays a Code Name
text box on the model element's Operation tab. The content of this box
becomes the name for the operation's code elements. For example, a
Code Name of foo results in the operation being defined and
implemented as foo();

Operation Argument CodeNames

When CodeName is active, the Model Assistant displays a Code Name
text box on the operation argument's Parameter tab. The content of
this box becomes the name for the argument's code elements. For
example, an operation with a code name of foo containing an
argument (parameter) with a code name of foo1 results in the
argument being defined and implemented as foo(foo1).

Attribute CodeNames

When CodeName is active, the Model Assistant displays a Code Name
text box on the model element's Attribute tab. The content of this box
becomes the name for the attribute's code elements. For example, a
code name of int i results in the attribute being defined and
implemented as int i.

Role CodeNames

When CodeName is active, the Model Assistant displays a Code Name
text box on the association's Role tab. The content of this box becomes
the name for the role's code elements. For example, a code name of
theRole results in the role being defined and implemented as
Role* theRole;

Rose Visual C++ also lets the user encode an implementation type for
a role in the role name itself. For example:

theFoo // simple role name
theFoo : CArray<Foo, Foo&> // Implement the role with a CArray

Note: When setting the CodeName property for a role, the property
replaces only the name component of a complex (name:implementation)
role name and not the implementation type part. In other words, a role
CodeName does not contain a :type expression. See CodeName and
Type Expressions on page 13 for more information.
Rational Rose 2000e, Using Rose Visual C++ 15

Chapter 2 Object Modeling and Visual C++
If the role is not named, and CodeName is enabled, the default role
name is the<SupplierName> unless the supplier class has a CodeName
value, in which case the CodeName value for the role becomes
the<SupplierCodeName>.

Package CodeNames

Packages are ignored by the Visual C++ Code Update tool. However,
any package in the code is preserved in the code. In addition, when
importing an external component into a model, a package may be
created to contain the imported model information. The CodeName
property for such a package is set to the package file name (for
example, import.dll).

Thus, when CodeName is active, the package CodeName property
(Tools > Options > VC++ > Class Category) preserves the package file
name, freeing the user to change the model name of the package
without affecting the code.

CodeName and Instantiated Classes

Instantiated classes contain embedded type information. For example,
a typical Rose attribute may be:

MyWidgets:Clist <Widget, Widget&>

When CodeName is enabled, Rose Visual C++ applies its type-matching
algorithm to each data type encountered in instantiated classes. For
example, in the following figure all portions of the instantiated class
"¥§£±<Å¢®µ, Å¢®µ&>" in the Rose model were replaced by the
appropriate CodeName values so the generated code becomes
16 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
CList<Button, Button&> MyButtons; . Also note that in this case, the
Rose attribute MyButtons does not have a code name, so the model
name was used to generate the code.

The CodeName for a parameterized class applies to all classes
instantiated from that class. For example, if the model contains a
parameterized class named "¥" with a CodeName of "Stack" then any
occurrence of the instantiated type "¥<SomeUserType>" in the model is
generated as Stack<SomeUserType> in the source.

Any types occurring in the arguments of the instantiation that are also
Rose class types, and that have a CodeName, will have that CodeName
substituted (see CodeName and Type Expressions on page 13).

Logical View to Visual C++ Mapping

The mapping schema between the Rational Rose logical model view—
in UML (Unified Modeling Language)—and Microsoft Visual C++
enables the Rational Rose Visual C++ add-in to fully coordinate the
modeling, code generation, and round-trip engineering of business
objects and application components. For reverse engineering mapping
rules, see “Reverse Engineering Mapping Rules” on page 40.

In the logical view, class diagrams illustrate the static relationships in
a modeled domain. Class diagram elements include:

� Classes
� Operations
� Attributes
� Relationships
� Packages
Rational Rose 2000e, Using Rose Visual C++ 17

Chapter 2 Object Modeling and Visual C++
Classes

A class is a description of a set of objects that share a common
structure (attributes and relationships) as well as a common behavior
(operations). The default mapping of a modeled class is to a Visual C++
class header and source file.

The stereotype of a modeled class defines the kind of Visual C++ code
generated for the class.

Visual C++ supports public, private, and protected access control
(scope). Therefore, each attribute, relationship, and operation in the
Class Specification map to the appropriate public, private, or protected
section in the generated class header.

Code Generated for Classes

For each modeled class, Rational Rose Visual C++ generates the
following code constructs, as required:

� #include directives derived from model attributes and
relationships.

� A class declaration, taken from the class name, type, and its
generalization relationships (inheritance).

� Data members, generated from the class attributes and
relationships.

� Member function declarations and skeletal member function
definitions for each operation defined for the class.

� Documentation for each generated class, data member, and
member function, extracted from the model item’s specification.

� An identifier, as a code comment, for each generated class, data
member, and member function, which identifies the corresponding
element in the model. For example:
//##ModelID=3237F8CE0053
18 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
Figure 1 shows an example class and the supporting Visual C++ class
declaration and definition.

Note: This example contains all of the comments, #includes, and Model
IDs that are generated as part of the Rational Rose code generation
process. Subsequent examples in this chapter omit them for clarity.

Figure 1 Example of a Class

The generated header file, GenericClass.h:

#if defined (_MSC_VER) && (_MSC_VER >= 1000)
#pragma once
#endif
#ifndef _INC_GENERICCLASS_3601E07E00B4_INCLUDED
#define _INC_GENERICCLASS_3601E07E00B4_INCLUDED

//Sample "class" documentation entered into the model.
//##ModelId=3601E07E00B4
class GenericClass
{

public:
//Sample model documentation for "get" accessor.
//##ModelId=3601E13A0050
long GetCode();

//Sample model documentation for "set" accessor.
//##ModelId=3601E140030C
long SetCode(long aCode);

private:
//Sample model documentation for the attribute.
//##ModelId=3601E0BD023A
long m_nKey;

};

#endif /* _INC_GENERICCLASS_3601E07E00B4_INCLUDED */
Rational Rose 2000e, Using Rose Visual C++ 19

Chapter 2 Object Modeling and Visual C++
The generated body file, GenericClass.cpp:

#include "GenericClass.h"

//##ModelId=3601E13A0050
long GenericClass::GetCode()
{

return (long)0;
}

//##ModelId=3601E140030C
long GenericClass::SetCode(long aCode)
{

return (long)0;
}

Class Stereotypes

The stereotype of a class helps to determine the Visual C++ code that
is generated for the class. You define the stereotype on the Class tab of
the Model Assistant.

If the stereotype value is empty or unknown to the Code Update tool
(that is, it matches none of the values in the table below), Rational Rose
generates a header (.h) and a body (.cpp) file for the class. If you want
to generate a class into some other type of Visual C++ element, you
must change the class stereotype.

Note: Once you generate code for a class, Visual C++ will not let you
alter its implementation type.

If the Generate check box in the Model Assistant tool is unchecked for
a class, Rational Rose generates no code for the class.

The following class stereotypes are used by Rational Rose when
generating or reverse engineering Visual C++ code:

Table 1 Visual C++ Class Stereotypes

Stereotype Visual C++ Mapping

No stereotype (Default) Represents an unstereotyped class module in
Visual C++.

struct Represents a struct data type in Visual C++.

union Represents a union data type in Visual C++.
20 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
You may specify a combination of these stereotypes with user-defined
stereotypes by separating each stereotype with a comma or semicolon.

Code Templates

A code template is a mechanism for predefining the code generated for
a class. It allows you to define the class structure, definition, body
code, member functions and member variables.

You apply and remove code templates from a class using the Code
Templates drop-down in the Model Assistant. You can also apply a code
template using the Class Specification. Entering a code template name
as the class stereotype does two things: it stereotypes the class with
that name; and it associates the same-name code template with the
class. The next time code is generated (or the Model Assistant invoked)
for the class, the code template is applied.

Code template contents are added to a class only once. If code is
modified for these elements, the code is not regressed by the code
template during subsequent code updates.

Note: Operation and attribute declarations are restored to their code
template definitions each time code is generated for a code templated
class. If you need to alter a declaration from that defined by the code
template, you must first remove the code template from that element.

Any given member in a code template may be set to default as checked
or unchecked for code generation as viewed in the Model Assistant
browser. Once the code template is applied to a class, you can still
select or deselect members applicable to the class by clicking the
member's check box as needed.

enum Not supported—no code is generated and an error is
logged.

typedef Not supported—no code is generated and an error is
logged.

interface IDL code is generated for the class. No other code is
generated for the class.

Table 1 Visual C++ Class Stereotypes

Stereotype Visual C++ Mapping
Rational Rose 2000e, Using Rose Visual C++ 21

Chapter 2 Object Modeling and Visual C++
Only one code template at a time may be assigned to a class. However,
you can simulate multiple code template assignment by assigning a
code template to a class, selecting available operations and attributes
for inclusion in the class, then removing the code template (without
removing the selected elements) to make way for assigning a
subsequent code template.

Code templates are stored as a set of plain-text code template files.
Each file-set is stored in a folder of the same name as the code
template, which is located under the ..\Rose2000\VC\templates
folder.

You create and modify code templates through the code template files.

For details on code template file construction and application, see the
Rational Rose Online Help.

Interfaces

An interface specifies the externally-visible declarations of a class
and/or IDL component in a project. Rational Rose Visual C++
generates the code for an interface and its CoClass into its assigned
IDL component—a component of Type MIDL and stereotype <<MIDL>>
that is associated with a project file of type IDL or ODL. See
“Component View to Visual C++ Mapping” on page 38 for more
information.

If the modeled interface is external to the modeled project and has no
implementation in the model, no code is generated for it. Modeled
relationships to an interface, however, will generate code for the client-
side roles.

Interfaces may be created in the model (see “Creating New COM
Objects” on page 44), reverse engineered into the model, or imported
via the TypeLib Importer (see “Importing COM Objects” on page 73).

Interfaces belong to the logical view, but they are displayed also on
component diagrams to represent the interface to an IDL component.
22 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
COM CoClasses

CoClasses have the stereotype <<coclass>>. If they are created by
importing a COM component or by the New ATL Object command, they
appear as colored boxes and without the attribute and operation
divisions common to a normal class model. Attributes and operations
should not be added to CoClasses.

Parameterized Classes

For a parameterized class in a Visual C++ model, Rational Rose Visual
C++ generates a Visual C++ template class.

Note: Rational Rose Visual C++ generates code for parameterized
classes only in the class' header file. This is because parameterized
classes must be instantiated in the source file that specifies its type
parameter. Should existing code contain a parameterized class
implementation with the declaration in the header file and the
implementation in the body file, Rational Rose Visual C++ correctly reads
the code into the model as a parameterized class. However, if you then
modify the class in your model and generate code, Rational Rose Visual
C++ only updates the header file: it will not update the body file.

Class Utilities

A class utility class type denotes a class that only provides static data
members and/or static member functions. A class utility can therefore
be used to collect a set of free operations. For example, consider a
collection of functions that manipulate the Windows registry. These
can be gathered together into a class utility (see Figure 2).

A class utility maps to a Visual C++ module. Its properties map as
public or private module variables, and the operations map as public
or private module member functions.

Code Generated for Class Utilities

For each class utility, Rational Rose Visual C++ generates the following
code constructs in its header file:

� The class definition, including the class name and base list

� Declarations for static member functions listed in the Class
Specification

� Declarations for static data members
Rational Rose 2000e, Using Rose Visual C++ 23

Chapter 2 Object Modeling and Visual C++
In addition, the code generator produces the following code constructs
in the class utility’s implementation file:

� Definitions for static data members

� Skeletal definitions for static member functions

The following example shows class utility mapping to Visual C++ code.

Figure 2 Example of a Class Utility

class Win32RegistryUtility
{
public:

 static long RegOpenKey(long hKey, LPCTSTR lpSubkey);
 static long RegCreateKey(long hKey, LPCTSTR lpSubkey);
 static long RegSetStringValue(long hKey, LPCTSTR lpName,

LPCTSTR lpData);
 static RegQueryStringValue(long hKey, LPCTSTR lpName,

LPCTSTR lpValue, long lpValLength);
 static long RegCloseKey(long hKey);

};

Operations

This section covers what you need to consider when generating code
(member functions) for modeled operations:

� Operation definitions

� Code generated for an operation

� Operation stereotypes

� Operation semantics

� Operation parameter passing

� Accessor Get and Set functions
24 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
Operation Definitions

The Rational Rose Visual C++ Operation Specification allows you to
specify the following aspects of an operation:

� The operation stereotype, which determines the basic code
generated for an operation. See “Operation Stereotypes” on page 26
for details on the available stereotypes.

� The Export Control field of the Operation Specification determines
whether the access level (scope) of the member function is public,
private, or protected. The implementation model access is mapped
to private.

� The operation name. Operation names can be overloaded in
Visual C++.

� Operation parameters (arguments), which are declared with a
unique name and argument type.

� Documentation, which is included in the generated code as code
comments.

Note: The Visual C++ code generator ignores the text on the
Preconditions, Postconditions, and Semantics tabs of an Operation
Specification.

Code Generated for an Operation

Rational Rose Visual C++ generates a modeled class operation as a
member function. The default is a member function whose type and
name are taken from the model Operation Specification.

Figure 3 Class Containing Operations
Rational Rose 2000e, Using Rose Visual C++ 25

Chapter 2 Object Modeling and Visual C++
In Toaster.h:

class Toaster
{
public:

void StartHeat();
void LowerToast();
void RaiseToast();

private:
ToasterState m_State;

};

In Toaster.cpp:

#include "Toaster.h"
void Toaster::StartHeat()
{
}
void Toaster::LowerToast()
{
}
void Toaster::RaiseToast()
{
}

Operation Stereotypes

The stereotype of an operation controls the Visual C++ code generated
for it. You define the stereotype on the General tab of the Operation
Specification.

Table 2 summarizes the possible values for the operation stereotype
when generating Visual C++ code. In this table, result indicates the
return type of the member function, fname is the name of the member
function, and params is the member function’s parameter list.

Table 2 Visual C++ Operation Stereotypes

Stereotype Visual C++ Mapping

No stereotype (Default) Represents a member function
declaration. For example:
result fname (params);

abstract Represents a pure virtual operation for which the
code generator produces a member function
declaration, but no definition. For example:
virtual result fname(params) = 0;
26 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
Operation Semantics

The operation semantics, as specified on the Semantics tab of the
Operation Specification, are ignored by the Visual C++ code
generator.

Operation Parameter Passing

You can define default initial values of operation arguments. These
values are directly mapped to default parameter values in the
Visual C++ code.

The following example shows the mapping of a member function,
MyFunc, with an optional argument, aSize, of the type int with the initial
value of MAX_SIZE.

Figure 4 Example of Operation Parameter Passing

In MyClass.h:

class MyClass
{
public:

int MyFunc(int aSize = MAX_SIZE);
};

const Represents an attribute const operation. For
example: result fname(params) const;

friend Represents an attribute friend operation, such as:
friend result fname(params);

static Represents an attribute static operation–the
member function's local variables are preserved
between calls. For example:
static result fname(params);

virtual Represents a virtual operation. For example:
virtual result fname(params);

Table 2 Visual C++ Operation Stereotypes

Stereotype Visual C++ Mapping
Rational Rose 2000e, Using Rose Visual C++ 27

Chapter 2 Object Modeling and Visual C++
Accessor Get and Set Functions

Rational Rose Visual C++ offers accessor Get and Set functions
through the Model Assistant tool. The Model Assistant treeview
automatically lists a Get and a Set function for each attribute and
association in the model.

However, an accessor function is not loaded into the model until it is
selected and the Apply button is clicked. You set accessor function
properties on the Accessor Get or Accessor Set tabs, as appropriate.

The attribute or association name is reflected in the default names of
their Get and Set functions. When you change the name of an attribute
or association, a dialog box prompts you to change the names of its Get
and Set functions as well.

Attributes

An attribute represents a data member in Visual C++. If an attribute is
an object, it should be modeled as an association to the corresponding
object class.

For each generated member, Rational Rose Visual C++ adds any
documentation from the Attribute Specification as code comments.

Note: You can use the Model Assistant tool to automatically create
accessor functions for attributes in the model. See “Accessor Get and Set
Functions” on page 28.

Code Generated for Attributes

By default, a class attribute is represented in code as a data member.
The generated default code is a data member whose type and name is
taken from the Attribute Specification in the model. By specifying
additional information in the attribute name and type, pointers,
arrays, and references can also be generated. See “Pointers, Arrays,
and References in Visual C++” on page 36.
28 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
Several factors affect the actual code that is generated for a class
attribute:

� The attribute type specified in the model.

� The attribute stereotype is ignored by the code generator.

� The static adornment, defined on the Detail tab of the specification,
generates a static keyword for the data member if true.

� The Export Control field of the Attribute Specification determines
whether the access level of the data member is public, private, or
protected.

For example, the AttributeDemo class:

would generate:

class AttributeDemo
{
private:

int scalar;
int vector[100];
int* pointer;
int& reference;

};

Association Relationships

An association is a relationship between two classes. The referenced (or
source) class is called the supplier, and the referring class is called the
client. Each end of an association, where it connects to a class, is called
a role. Each role is identified by a unique name. Default names are
assigned by the Code Update tool if no name is given by the user.

Rational Rose Visual C++ generates a Visual C++ data member for each
navigable role on the association. Therefore, for code to be written for
an association, it must be navigable in at least one direction.
Unidirectional associations generate code for the single navigable role.
Bidirectional associations generate code for both roles.
Rational Rose 2000e, Using Rose Visual C++ 29

Chapter 2 Object Modeling and Visual C++
Associations can be described in detail by assigning additional
adornments. See “Advanced Relationship Mappings” on page 34.

Note: Rational Rose Visual C++ only generates code for navigable
association relationships.

Code Generated for an Association

The following examples show the mapping between bidirectional
modeled associations and Visual C++ code.

Figure 5 Example of Association Relationships

In Left.h:

class Right;
class Left
{
public:

Right* theRight;
};

in Right.h:

class Left;
class Right
{
public:

Left* theLeft;
};

When you generated code for classes Left and Right, there were two
warnings indicating the two blank role names received assigned
names. The code reflects these names and the model is also changed
to reflect these names.

Figure 6 Example of Assigned Role Names
30 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
In a unidirectional association, only one role is named.

Figure 7 Another Example of Association Relationships

In Client.h:

class Supplier;
class Client
{
public:
 Supplier* theSupplier;
};

Adding a Type Specification to a Role

An important feature of Rational Rose Visual C++ is the ability to
specify the implementation of a role in its role name.

Figure 8 Example of Specifying Implementation in the Role Name

In CustomerList.h:

#include "Customer.h"
class CustomerList
{
public:

Customer m_Customers[50];
};
Rational Rose 2000e, Using Rose Visual C++ 31

Chapter 2 Object Modeling and Visual C++
Figure 9 A Second Example of Specifying Implementation in the Role
Name

In CustomerList.h:

#include "Customer.h"
class CustomerList
{
public:

CPtrArray m_Customers;
};

Aggregation Relationships

An aggregation relationship is a more refined association. It implies a
containment of the supplier class as a subobject. Thus, the default
implementation is an instance of the referenced class, not a pointer to
the class.

By default, a new aggregate relationship becomes navigable in one
direction, and a data member for the associated class is generated into
the aggregate class. To change the navigability for one of the directions,
right-click on that end of the relationship. Select or clear the Navigable
option on the shortcut menu.

Code Generated for an Aggregate Relationship

The following example illustrates the code generated for an aggregation
relationship. Note that a data member is generated only for the
navigable side of the relationship.

Figure 10 Example of an Aggregate Relationship
32 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
In CustomerList.h:

#include "Customer.h"
class CustomerList
{
public:

Customer m_pCustomers;
};

Dependency Relationships

The dependency relationship denotes a client/supplier relationship in
which the client object invokes an operation on the supplier. Typically,
this means that the client is dependent on the interface of the supplier,
but does not contain an instance of the supplier.

When the Rational Rose Visual C++ code generator produces a
definition for a class (the client) that depends on another class (the
supplier), a forward class declaration for the supplier class is inserted
into the header file of the client class.

Also, an #include directive referencing the supplier-class header file
is generated into the body file of the client class.

Generalization Relationships

A generalization relationship exists when one class, called the
superclass, shares its properties, operations, and relationships with
another class, called the subclass. This corresponds to inheritance in
Visual C++. The access of the generalization relationship, and whether
the inheritance is virtual, is determined by the generalization
relationship specification.

When generating code for the subclass, the code generator:

� Generates an #include referencing the supplier class header file.

� Inserts the name of the superclass into the base list of the subclass
definition.
Rational Rose 2000e, Using Rose Visual C++ 33

Chapter 2 Object Modeling and Visual C++
Figure 11 shows the class diagram and code generated for the class
Shape, which has a virtual inheritance relationship with class
Rectangle.

Figure 11 Example of a Generalization Relationship

In Rectangle.h:

#include "Shape.h"
class Rectangle
: public Shape
{
};

Advanced Relationship Mappings

Advanced relationship mappings include:

� Navigability

� Containment

� Multiplicity

� Collection classes

� Access control (see “Classes” on page 18)

� Association classes (see “Association Relationships” on page 29)

� Aggregation (see “Aggregation Relationships” on page 32)

� Role documentation (see “Documenting Model Elements” on
page 9).

Navigability

A data member is generated only on the navigable roles of an
association.

For examples, see the code generated for Figure 5 and Figure 7.
34 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
Containment

The Visual C++ code generator ignores ByValue and ByReference
containment adornments for roles unless you to encode these
semantics in the role name. For example:

Figure 12 Example of ByValue Containment Adornment

Figure 13 Example of ByReference Containment Adornment

Multiplicity

Multiplicity settings can capture analysis and high-level design
information in the model, but the Visual C++ code generator ignores
multiplicity adornments for roles. Use role implementations to specify
collection classes or to implement association cardinality. Use the
Model Assistant tool to assign collection classes to roles.

Collection Classes

Visual C++ does not provide collection classes, but the MFC library
does. By performing a Quick Import of the MFC classes, the classes in
your model can use these MFC collection classes. You can then use the
Model Assistant to map association roles to the collection classes.

Figure 14 Example of Using the MFC CPtrArray Collection Class
Rational Rose 2000e, Using Rose Visual C++ 35

Chapter 2 Object Modeling and Visual C++
In Order.h:

class CustomerList
{
public:

CPtrArray m_Customers;
};

Figure 15 Example of Using the MFC CArray Template Collection Class

Pointers, Arrays, and References in Visual C++

Pointers, arrays, and references can be modeled by using association
relationships or attributes. The chosen approach depends on the type
of the referenced item. Class attributes are used for pointers, arrays,
and references of built-in or low-level types, whereas association
relationships are used for pointers, arrays, and references to classes.

As Class Attributes

The type of a modeled pointer, array, or reference is given by the type
of the corresponding attribute in the model. For example:

int a[20]; // an array of 20 ints
Crect* pRect; // a pointer to a CRect
Foo& rfoo; // a Foo reference
void** ppvArr[MAX]; // an array of MAX pointers

// to pointer to void

As Association Relationships

The name of a role specifies the type of the generated pointer, array, or
reference. By default, Rational Rose Visual C++ generates a pointer for
each navigable role in the model, unless the role name specifies a
reference (as in Example 2). Thus, it is not necessary to explicitly
specify a pointer in the role name (see Example 1). If the role name
explicitly specifies a pointer, an array, or a variation (pointer to pointer,
array of pointers, etc.), the information in the role name is used
unchanged (see Examples 3 and 4).
36 Rational Rose 2000e, Using Rose Visual C++

Logical View to Visual C++ Mapping
Example 1: Pointers

Both of these example classes generate the same Visual C++
declaration in the Order class:

Customer *theCustomer;

Example 2: A Reference

This example generates the following Visual C++ declaration in the
Order class:

Customer &theCustomer;

Example 3: An Array of Pointers

This example generates the following Visual C++ declaration in the
Order class:

Customer *customers[25];

Example 4: A Pointer to a Pointer

This example generates the following Visual C++ declaration in the
Order class:

Customer **ppCust;
Rational Rose 2000e, Using Rose Visual C++ 37

Chapter 2 Object Modeling and Visual C++
Packages

A package is a logical collection of classes and/or other packages that
represents an architectural subsystem of the modeled application.
Each package declares its dependencies to other packages using a
dependency diagram. Packages have no direct mapping to Visual C++
code, so no code is generated for them.

Component View to Visual C++ Mapping

Components in the model represent the software projects that together
realize the modeled system. To generate Visual C++ code for a class,
that class must be assigned to one or more Visual C++ components.
The Component Specification defines the component’s implementation
language and its stereotype (executable, data link library, interface
definition language, etc.).

The physical instantiation of a component is the .exe, .dll, .tlb,
.idl, .odl, or .ocx file generated from the corresponding Visual C++
project. A component can only be related to one project, and the name
and path of that project file is stored in the component’s ProjectFile
model property.
38 Rational Rose 2000e, Using Rose Visual C++

Component View to Visual C++ Mapping
Components can also represent software modules external to the
modeled system. You can drag and drop any software module that
contains a Type Library (a COM file, for example) into a model to create
a component representing its interface. These interface elements are
then available for use in the model. See Figure 16.

Figure 16 Example of Reverse-Engineered COM Components

By establishing relationships between classes and interfaces, and
dependency relationships between components and interfaces, you
can show how classes and components depend on the interfaces of
other components.

A dependency relationship between a component and a COM
component in the model becomes a reference in the generated
Visual C++ project.

Using the Component Assignment tool to create a new component in
Rational Rose automatically creates a corresponding Visual C++
project and assigns the component to the project. If you create a
component without using the Component Assignment tool, you must
manually create the project using Microsoft Visual C++, then manually
assign the modeled component to the project.

See the Using Rational Rose manual for more information about the
Component View.
Rational Rose 2000e, Using Rose Visual C++ 39

Chapter 2 Object Modeling and Visual C++
Component Stereotypes

The component stereotype indicates the type of the component’s
Visual C++ project (.dll or .exe). The component stereotype setting on
the Component Specification is not used by the Visual C++ add-in,
however, it is correctly set as a consequence of assigning a project to
the component using the Component Assignment tool.

Deployment View to Visual C++ Mapping

Rational Rose Visual C++ does not currently support code generation
from the Deployment View.

See the Using Rational Rose manual for more information about the
Deployment View.

Reverse Engineering Mapping Rules

This section describes the mapping schema between a Microsoft
Visual C++ application and a Rational Rose model. This schema is used
during reverse engineering.

Note: If your Visual C++ project contains conditional compiler directives,
the reverse engineering applies only to those declarations that are visible
under the current conditions.

Table 3 Visual C++ Component Stereotypes

Stereotype Visual C++ Mapping

DLL Represents a Visual C++ project of the type
Win32 Dynamic-Link Library. DLL projects can
be both generated and reverse engineered.

EXE Represents a Visual C++ project of the type
Win32 Application. EXE projects can be both
generated and reverse engineered.
40 Rational Rose 2000e, Using Rose Visual C++

Reverse Engineering Mapping Rules
Visual C++ Project Mapping

When reverse engineering a Visual C++ project into a Rational Rose
model, the mapping rules listed in Table 4 apply.

Class Mapping

When reverse engineering Visual C++ project items of the type class,
the mapping rules listed in Table 5 apply.

MFC Mapping

Imported MFC classes are placed into an MFC component in the model
and are given no stereotype—they are treated as normal classes.

By default, imported MFC classes have their Generate model property
set to false, so no code is generated for imported MFC components
when you generate code from the model.

Table 4 Mapping Visual C++ Projects to Components

In Visual C++ Becomes in the model

EXE project A component with stereotype "EXE" and language
"Visual C++", and a component package.

COM DLL project A component with stereotype "DLL" and language
"Visual C++", and a component package.

Table 5 Mapping Visual C++ Project Items to Model Elements

In Visual C++ Becomes in the model

Class Class (stereotype = project_item_type).

Const Attribute with default value.

Member function Operation (stereotype = empty).

Data member Attribute of a fundamental type.

Association (navigable) to object type.
Rational Rose 2000e, Using Rose Visual C++ 41

Chapter 2 Object Modeling and Visual C++
COM Object Mapping

A COM object is modeled as a set of related ATL classes with specific
stereotypes and relationships. At minimum, an ATL object consists of
an <<atlobject>> class, a CoClass, and one or more interfaces. A
dependency relationship exists between the <<atlobject>> class and
the CoClass, and a realizes relationship exists between the CoClass
and the Interface.

To expand a class or an interface into an ATL object, simply right-click
on the class (or interface), click COM > New ATL Object, and follow the
process outlined in “Creating New COM Objects” on page 44.

For a modeled class, this command creates the <<coclass>>,
<<interface>>, and IDispatch and CCom classes in the model, along
with their relationships, and applies an <<atlobject>> stereotype to the
selected (implementation) class.

For a modeled <<interface>> class, this command creates the
<<coclass>> and implementation classes in the model, and relates
them to each other and to the selected <<interface>> class.

Note: CoClasses have the stereotype <<coclass>>. If they are created
by importing a COM component or by the New ATL Object command,
they appear as colored boxes and without the attribute and operation
divisions common to a normal class model. Attributes and operations
should not be added to CoClasses.

Within a modeled COM class structure, the <<interface>> class is the
reference. Methods and properties exposed by an interface are
therefore modeled in the <<interface>> class. But because only IDL
code is generated for an interface, these methods and properties are
also modeled as operations and attributes, respectively, in the
<<atlobject>> class, where they are implemented.

To maintain synchronization between the exposed interface methods
and their implemented operations, the Implement Interfaces command
(right-click on the <<interface>> class and click COM > Implement
Interfaces) reads the methods in the selected <<interface>> class and
implements them as operations in its <<atlobject>> class.

Note: The Implement Interfaces command is automatically performed
when you invoke the Code Update tool.
42 Rational Rose 2000e, Using Rose Visual C++

Reverse Engineering Mapping Rules
Operations and attributes that are not visible to the <<interface>>
class may be required for its implementation. For this reason,
operations and attributes that are modeled in the <<atlobject>>
(implementation) class, and changes made to them, are not copied to
the <<interface>> class by the Implement Interfaces command.

Rational Rose Visual C++ represents COM methods and properties as
operations in an <<interface>> class. Rational Rose requires that
arguments to these operations must be written using UML syntax.

The Attributes COM model properties allow you to include IDL attributes
in the arguments for these operations. For example, to the modeled
<<interface>> class operation:

Func (arg1:int, arg2:int*)

set the value of the arg1 Attributes property to in and set the value of
the arg2 Attributes property to out, retval to generate the following
IDL code for the operation:

Func ([in]int arg1, [out, retval] int* arg2)

When generating code, Rose Visual C++ encloses the Attributes values
in square brackets in conformance with COM syntax. for more
information on this process, see “Adding IDL Attributes to
<<interface>> Method Arguments” on page 47.

When reverse engineering a COM project (.dll, .exe, etc.), only the
interface classes listed in a Type Library or MIDL file are imported into
the model and placed into a component of the same name (one
component per MIDL file). These interface classes receive an
<<interface>> stereotype. The Full Import option also imports the
methods for each interface class, the Quick Import option does not.

Code generated for an <<atlobject>> class contains a reference to its
library. If an <<interface>> class is not assigned to a component, this
reference in a code preview is written as ##LIBRARY##. When the class
is assigned to a component, this reference is corrected.

Special help is available for ATL objects by right-clicking on the class
and clicking How Do I.
Rational Rose 2000e, Using Rose Visual C++ 43

Chapter 2 Object Modeling and Visual C++
Creating New COM Objects

Support for a COM client is provided by expanding a modeled class or
interface into a simple ATL object. Rose Visual C++ simplifies this
creation process with the New ATL Object command. The following
steps assume you are starting from an existing class. You could also
start from an interface, or create the complete object from scratch by
selecting Tools > Visual C++ > COM > New ATL Object and filling out the
New ATL Object dialog.

To create an ATL object from a modeled class:

1. Right-click on a class and click COM > New ATL Object.

The New ATL Object dialog box appears:

In this example, the class CFoo becomes an ATL object consisting
of the class CFoo (of type <<atlobject>>), the CoClass FOO, the
Interface class IFoo, the relationships between these classes, and
the ProgID of .Foo, indicating the <<atlobject>> class is not
assigned to a component.

Note: These class names, and the last half of the ProgID, are
automatically derived from the selected class’ name. This derivation
algorithm is discussed in “ATL Object Name Derivation” on page 45.

If the ATL or IDL components to which the classes should be
assigned exist in the model and are assigned to a Visual C++
project, select a project and component for each object (C++ and
COM) from the appropriate drop-down boxes.
44 Rational Rose 2000e, Using Rose Visual C++

Reverse Engineering Mapping Rules
Note: Unless the Visual C++ and IDL components exist and are
assigned to Visual C++ projects, you are encouraged to leave the
Component and Project fields blank at this time. Creating new
components and assigning classes and projects is best done through
the Model Update tool.

2. Click OK to create the ATL object and return to your model.

For information on how the object names are derived, see ATL Object
Name Derivation.

On the Attribute tab, Custom specifies that the object supports a
custom interface (its vtable has custom interface functions). A custom
interface can be faster than a dual interface, especially across process
boundaries. Dual specifies that the object supports a dual interface (its
vtable has custom interface functions plus late-binding iDispatch
methods). Dual allows both COM clients and Automation controllers to
access the object.

The Implement Interface command (right-click on an <<interface>>
class and click COM > Implement Interfaces) takes the methods in an
<<interface>> class and implements them in its <<atlobject>> class.

ATL Object Name Derivation

Object names on the Name tab of the ATL Object Properties dialog can
be edited to suit, but are normally derived using one of three methods:

1. Display the Name tab by clicking Tools > Visual C++ > COM > New
ATL Object (without selecting a class or interface), and all names
on the tab are blank. Names are derived from the Short Name you
enter, as follows:

❑ The Class name is the Short Name prefaced with the value of
AltClassPrefix. The default value is "C".

❑ The Interface name is the Short Name prefaced with the value of
AtlInterfacePrefix. The default value is "I".

❑ The CoClass name, the class name portion of the Type, and the
last half of the ProgID match the Short Name.

❑ The Type name equals the Class name, followed by a space,
followed by the value of AltTypeDescription. The default value is
"Class".
Rational Rose 2000e, Using Rose Visual C++ 45

Chapter 2 Object Modeling and Visual C++
❑ The ProgID is constructed as <C++componentname>.<classname>.
When you enter a Visual C++ component name in the C++
Component box, that name is automatically inserted into the
front half of the ProgID. If the C++ Component box is [none], the
ProgID is .<classname>.

Note: Any name (other than Short Name) you individually edit is
preserved—it is not modified by the derivation process.

2. Display the Name tab by right-clicking on a class, then clicking
COM > New ATL Object, and all other ATL object names derive from
that Class name, as follows:

❑ The Class name is the selected class' name. If the class name
includes the prefix indicated by the value of AltClassPrefix, that
prefix is ignored when deriving the other ATL object names. The
default prefix is "C".

❑ The CoClass name equals the Class name, minus the prefix.

❑ The Interface name equals the Class name, minus the prefix,
and prefaced with the value of AtlInterfacePrefix. The default
prefix is "I".

❑ The ProgID is constructed as <C++componentname>.<classname>.
If the selected class is assigned to a component, that component
name is automatically inserted into the front half of the ProgID.
If the class is not assigned to a component, the ProgID is
.<classname>.

❑ The default Short Name is blank. If you enter a value in this
box, all name values are derived as in method #1.

3. Display the Name tab by right-clicking an interface, then clicking
COM > New ATL Object, and all other ATL object names derive from
that Interface name, as follows:

❑ The Interface name is the selected interface's name. If the
Interface name includes the prefix indicated by the value of
AtlInterfacePrefix, that prefix is ignored when deriving the other
ATL object names. The default prefix is "I".

❑ The Class name is the selected interface's name, minus the
prefix and prefaced with the value of AltClassPrefix. The default
prefix is "C".

❑ All other names derive from the class name as in method #2.
46 Rational Rose 2000e, Using Rose Visual C++

Reverse Engineering Mapping Rules
Adding IDL Attributes to <<interface>> Method Arguments

Rational Rose Visual C++ represents COM methods and properties as
operations in an <<interface>> class. Rational Rose requires that
arguments to these operations must be written using UML syntax.

The Attributes COM model properties allow you to include IDL attributes
in the arguments for <<interface>> class operations, which represent
COM methods and properties in a model.

For example, to the modeled <<interface>> class operation:

Func (arg1:int, arg2:int*)

set the value of the arg1 Attributes property to in and set the value of
the arg2 Attributes property to out, retval to generate the following
IDL code for the operation:

Func ([in]int arg1, [out, retval] int* arg2)

When generating code, Rose Visual C++ encloses the Attributes values
in square brackets in conformance with COM syntax.

The COM attributes are found on the standard Rose Specification for
the item under the “COM” tab. The most important COM attributes are
named properties in Rose. The others are collected under the
attributes keyword.

Code Comments Mapping

Rational Rose Visual C++ reverse engineers code comments by
inserting them into the documentation fields for the corresponding
modeled objects.

For each declaration in the Visual C++ code, Rational Rose Visual C++
copies the directly preceding comment into the Documentation box in
the corresponding model specification. There cannot be more than one
empty space between the code comment and the body. Thus, you must
be careful where you place your comments so that they appear in the
correct model component.

Example:

/* This comment is inserted into the documentation field of
Purchaser. */
{Customer Purchaser();

 Purchaser = pPurchaser; }
Rational Rose 2000e, Using Rose Visual C++ 47

Chapter 2 Object Modeling and Visual C++
// This comment is not reverse engineered because there are two
// empty rows between the comment and the code.

{Customer Purchaser();
/* This comment is not reverse engineered
 because it follows its code. */

}

Aggregation Relationships

Unless otherwise specified, Rational Rose Visual C++ preserves default
implementations across code-generation and reverse engineering
cycles. That is, on code generation, simple roles are generated using
the default implementation. When reverse engineering the role, if the
code implementation is still the default implementation, then the role
is reverse-engineered using the default form. For example, if the code
contains:

 B theB; //modelID=uid of role in model

then the role is reversed as theB rather than theB : B.

The Three-Tiered Model

The Rational Rose Three-Tier Diagram option offers a structured
approach to facilitate the development of large, complex client/server
applications. This structure segregates the services provided by an
application into three tiers: user services, business services, and data
services. Each tier contains service packages defining the required
service behavior. Finally, classes and other objects, within each
package, model the required functionality.

From a Visual C++ programming language perspective, this three-
tiered structure is just another model. To properly implement an
application within a three-tiered environment, you must manually
segregate the modeled objects into multiple projects (components), and
then assign the relevant classes into these projects.
48 Rational Rose 2000e, Using Rose Visual C++

Chapter 3

Round-Trip Engineering

Round-trip engineering is the Rational Rose Visual C++ term for a
controlled, iterative, application development process. It allows you to
rapidly develop a model of an application, analyzing and refining it as
you increase your understanding of its operation, then automatically
generate the code elements of a complete Visual C++ application
framework based on that model.

You then evolve this generated code, using Visual C++, until you
achieve the required functionality for the iteration. Finally, Rose
Visual C++ facilitates reverse engineering your modified code
structures back into the model—keeping model and code fully
synchronized—to produce an updated version of the model.

The round-trip engineering tools in Rose Visual C++ are tightly
integrated with the Microsoft Visual C++ environment, allowing you to
seamlessly progress through the round-trip engineering process.
These tool include:

� The Code Update tool – generates and updates the Visual C++
source code from the information contained in a model.

� The Model Update tool – extracts design information from the
Visual C++ code and generates or updates a model representing the
system’s design.

� The Model Assistant gives a quick and easy way to add new classes
to your model or to change existing ones, or to add member
functions and data members to your classes. It also lets you add
Windows message handlers and MFC overrides to your MFC
classes.
Rational Rose 2000e, Using Rose Visual C++ 49

Chapter 3 Round-Trip Engineering
The recommended approach to application development is to use
Rational Rose Visual C++ to develop an object model of your system.
Then use the Model Assistant to detail class designs. Use the Code
Update tool to generate the skeleton header and source files for your
classes. Use Microsoft Visual C++ to code the implementation. And
finally, use the Model Update tool to incorporate the code modifications
into your model.

Figure 17 illustrates the overall Rational Rose model-centric process.

Figure 17 The Round-Trip Engineering Process

Because the real world frequently disallows ideal practices, many
application development tasks begin with an existing body of
Visual C++ code, which is then reverse engineered into a Rose
Visual C++ model. The round-trip engineering process is totally
compatible with this approach (see “Round-Trip Engineering, Starting
with a Visual C++ Project” on page 54).

It is critically important to remember that the model and the code must
remain synchronized for the reverse engineering process to be fully
effective.

For this reason, if you modify your application code using Visual C++,
do not modify your model without first running the Model Update tool.
Conversely, if you modify your model using Rational Rose, do not
modify the code without first running the Code Update tool. Modifying
both code and model without synchronizing the changes through the
appropriate update tool, especially if you rename or delete classes,
members, and methods, may cause you to lose some of your changes.
50 Rational Rose 2000e, Using Rose Visual C++

Round-Trip Engineering a Visual C++ Project
Round-Trip Engineering a Visual C++ Project

This process assumes you are creating a new application, but that you
are using some existing Visual C++ source code. The process includes:

� Creating a model, including:

❑ Importing MFC and other libraries into the model.

❑ Reverse-engineering your existing source code into the model.

� Evolving your code.

� Updating your model.

To Create and develop your model:

1. Create a new model. See “Creating a New Model” on page 56.

2. If your application uses Microsoft Foundation Classes, then add
them to your model (Tools > Visual C++ > Quick Import MFC 6.0).
This allows you to form subclasses and other relations to the MFC
classes.

3. If your application references DLLs or other executables containing
type libraries, add the interfaces to these externals to your model.
For more information, see the Type Library Importer chapter in the
Using Rose manual.

4. Incorporate your Visual C++ project into the model with the Model
Update tool (Tools > Visual C++ > Update Model). This wizard walks
you through the process of adding an existing Visual C++ project to
your model. When you are done, the model contains a component
that represents your Visual C++ project.

5. Use Rational Rose Visual C++ to elaborate the object design of your
system. Use the Model Assistant (Tools > Visual C++ > Model
Assistant, or right-click on a class and click Model Assistant) to add
new classes to your model or to change existing classes. Model
Assistant makes it easy to add member functions and data
members to your classes. It also lets you add Windows message
handlers and MFC overrides to your MFC classes. Another tip is to
take advantage of the Documentation field in the model—your
model documentation is automatically carried forward into your
code as code comments.

Note: Be careful when moving methods from one class to another in the
model, because the code generator regards moved methods as new
methods. That is, their method bodies are initially empty.
Rational Rose 2000e, Using Rose Visual C++ 51

Chapter 3 Round-Trip Engineering
To generate and evolve the code:

1. When you are ready to begin the coding phase, use the Code
Update tool (Tools > Visual C++ > Update Code) to generate the
skeleton header and implementation files for the classes in your
component. The wizard walks you through the process of selecting
model components and classes, and lets you preview the code
before it is generated. You can even invoke the Model Assistant
from the Code Update tool to make changes to your classes before
generating code.

2. Use Microsoft Visual C++ to do the detailed coding work. Use
Visual C++ to add new classes, member functions, and data
members—the next stage will bring all your code changes back into
the model. See “Evolving the Generated Code” on page 54 for more
information.

3. Compile the code prior to updating your model to make certain the
code is syntactically correct. If you generate code or reverse
engineer code with syntax errors, the result may not be as
expected.

To update the model:

� Use the Model Update tool (Tools > Visual C++ > Update Model) to
automatically bring your code changes back into the model.

You can repeat this process, as needed, to iterate through the design
and development process of your system. Just remember to generate
code or update your model before continuing your development with a
different tool. If you rename or delete classes, members, or member
functions in more than one tool without round-trip engineering, you
may loose some of your changes.

Moreover, be careful when moving member functions from one class to
another in the model because the code generator regards moved
member functions as new member functions. That is, their member
function bodies are initially empty.
52 Rational Rose 2000e, Using Rose Visual C++

Synchronizing Model and Code
Synchronizing Model and Code

The purpose of round-trip engineering is to maintain consistency
between the Rational Rose model and your Visual C++ source code. To
achieve this, both the Model Update and Code Update tools
automatically add or change destination elements to match any
changes in their sources, thus maintaining synchronization between
model and code.

Note: If a reference to a renamed or deleted class is used as an
argument in a member function, that reference is not updated.

When you delete a model or code element, however, Rational Rose has
no way of knowing whether you actually wanted to delete the element,
or simply wanted to hide it from the other side (for example, you don’t
want to clutter up the model with functional details, or you have
abstract model elements with no code equivalent). Therefore, both the
Code Update and Model Update tools allow you to control how they
delete elements.

When you perform a code or model update, the update tool checks both
the code and the model to see that they agree. If the Code Update tool
finds code with no corresponding model element, or if the Model
Update tool finds a model element with no corresponding code, the tool
displays a Synchronize window.

The Synchronize window allows you to delete or keep the listed
elements, thus synchronizing the model with the code. If you delete the
element from the Synchronize window, the code or model for that
element is removed. If you leave the element in its Deleted folder, it is
not removed.

Note: After changing your code or model, always update. This way, the
next iteration won’t flag those changes as candidates for deletion.

Deleting Elements

When the Code Update or Model Update tool identifies a code or model
element as a candidate for deletion, it stores the element’s name in a
Classes or a Members “Deletion folder,” as appropriate. These folders
are displayed beneath their project in the Synchronize window Project
browser.

Note: If a reference to a renamed or deleted class is used as an
argument in a member function, that reference is not updated.
Rational Rose 2000e, Using Rose Visual C++ 53

Chapter 3 Round-Trip Engineering
To delete a model element from the Synchronize window:

1. In the Project list, select the appropriate Deletable folder (Class or
Member) for your project. The contents of the folder appear in the
right-hand list, with all elements selected for deletion.

2. Deselect those elements you do not want deleted.

3. Click OK to delete all the selected elements.

Evolving the Generated Code

Evolve the generated Visual C++ source code by editing it to implement
the application’s new functionality for that iteration, and by changing
and adding code elements as needed.

Compile and test the edited project in the Visual C++ development
environment. Make certain the project compiles and contains no
syntax errors before generating or reverse engineering code again.

Note: For each generated project item, member, and method, Rational
Rose Visual C++ adds an identifier as a code comment (for example,
ModelID=3237F8CE0053), which identifies the corresponding class,
property, role, or method in the model. Do not edit those identifiers!

Round-Trip Engineering, Starting with a Visual C++ Project

As previously mentioned, the real world may ask you to develop your
application as an extension to an existing body of Visual C++ code.
Rose Visual C++ can easily “start in the middle” of the round-trip
engineering process.

This process assumes you are creating a new model to both model and
extend your existing application. The process includes:

� Creating a model, including:

❑ Reverse engineering your existing code base

❑ Importing MFC and other libraries into the model

� Evolving your code

� Updating your model
54 Rational Rose 2000e, Using Rose Visual C++

Round-Trip Engineering, Starting with a Visual C++ Project
To round-trip engineer a Visual C++ application starting with a project:

1. Create a new model. See “Creating a New Model” on page 56.

2. Incorporate your Visual C++ project into the model with the Model
Update tool (Tools > Visual C++ > Update Model). This wizard walks
you through the process of adding an existing Visual C++ project to
your model. When you are done, the model contains a component
that represents your Visual C++ project.

3. Model your system by creating logical packages, classes,
relationships, properties, and methods in the model, by illustrating
it with diagrams, and by evolving the model to suit the needs of
your application.

4. If your extended application uses Microsoft Foundation Classes,
then add them to your model (Tools > Visual C++ > Quick Import
MFC 6.0). This allows you to form subclasses and other relations to
the MFC classes.

5. If your application references additional DLLs or other executables
containing type libraries, add the interfaces to these externals to
your model. For more information, see the Type Library Importer
chapter in the Using Rose manual.

6. Use Rational Rose Visual C++ to elaborate the object design of your
system. Use the Model Assistant (Tools > Visual C++ > Model
Assistant, or right-click on a class and click Model Assistant) to add
new classes to your model or to change existing classes. Model
Assistant makes it easy to add member functions and data
members to your classes. It also lets you add Windows message
handlers and MFC overrides to your MFC classes. Another tip is to
take advantage of the Documentation field in the model—your
model documentation is automatically carried forward into your
code as code comments.

To evolve your code:

1. When you are ready to update your code with your model changes,
use the Code Update tool (Tools > Visual C++ > Update Code) to
generate the skeleton header and implementation files for the new
and modified classes in your component. The wizard walks you
through the process of selecting model components and classes,
and lets you preview the code before it is generated. You can even
invoke the Model Assistant from the Code Update tool to make
changes to your classes before generating code.
Rational Rose 2000e, Using Rose Visual C++ 55

Chapter 3 Round-Trip Engineering
2. Use Microsoft Visual C++ to do the detailed coding work. Use
Visual C++ to add new classes, member functions, and data
members—the next stage will bring all your code changes back into
the model. See “Evolving the Generated Code” on page 54 for more
information.

3. Compile the code prior to updating your model to make certain the
code is syntactically correct. If you generate code or reverse
engineer code with syntax errors, the result may not be as
expected.

To update the model:

� Use the Model Update tool (Tools > Visual C++ > Update Model) to
automatically bring your code changes back into the model.

You can repeat this process, as needed, to iterate through the design
and development process of your system. Just remember to generate
code or update your model before continuing your development with a
different tool. If you rename or delete classes, members, or member
functions in more than one tool without round-trip engineering, you
may loose some of your changes.

Moreover, be careful when moving member functions from one class to
another in the model because the code generator regards moved
member functions as new member functions. That is, their member
function bodies are initially empty.

Creating a New Model

To create a new model, perform the following steps:

1. Click File > New.

2. Click File > Save As, then provide a name for the new model.

Contents of a New Model

A new model contains a minimum of four views:

� Logical view

� Component view

� Deployment view

� Use case view
56 Rational Rose 2000e, Using Rose Visual C++

Creating a New Model
Logical View

The logical view describes the logical structure of the system—the
classes, packages, and their relationships. The specifications for these
classes determine the code generated by the Code Update tool. In turn,
this view is where the Model Update tool writes classes and their
specifications into the model.

If the display option is set to a Three-Tiered Diagram, the logical view
also contains:

� Three logical packages representing the fundamental layers of a
three-tiered model: User Services, Business Services, and Data
Services.

� A Three-Tiered Service Model class diagram that is divided into the
three service layers. This allows you to insert a new class or logical
package into this diagram in the tier representing the service layer
to which it belongs.

Note: For more information about three-tiered diagrams, package
overviews, user services, business services, and data services, see the
on-line help.

Component View

The component view describes the physical structure of the system—
how the system is divided into project and referenced files. By
associating classes to components, and components to Visual C++
projects, the component view specifies the Visual C++ project(s) that
implement the modeled classes.

Deployment View

The deployment view shows the connections between the system’s
processors and devices, and the allocation of its processes to
processors. It contains a Deployment Diagram. The deployment view
has no effect on Visual C++ code generation and no code is generated
for any deployment model element.
Rational Rose 2000e, Using Rose Visual C++ 57

Chapter 3 Round-Trip Engineering
Use Case View

The Use Case view specifies system behavior and environment in terms
of use cases and actors. It contains a Main use case diagram, which
provides an overview of the use case model. The use case view has no
effect on Visual C++ code generation and no code is generated for any
use case model element.
58 Rational Rose 2000e, Using Rose Visual C++

Chapter 4

Code Generation

This chapter discusses how Rational Rose generates Visual C++ code
for an application and how you control the code generation process.

The Rational Rose Visual C++ Code Update tool allows you to produce
and update Visual C++ source code from the information contained in
a model. In addition to its support for round-trip engineering, the
Rational Rose Visual C++ Code Update tool:

� Produces uniform-structured source code, promoting consistent
coding and commenting styles with minimal typing.

� Synchronizes the model and Visual C++ project.

To generate Visual C++ code for a class, the class must be assigned to
a component that uses Visual C++ as its implementation language.
Code is generated for selected (or for all) classes assigned to a selected
component, and is written to the corresponding Visual C++ project.

The Generated Code

The code generated for each selected model element is determined by
that element’s specification, stereotype, and model properties.

For each class in a Rational Rose model, the code generator produces
a corresponding Visual C++ class. Class relationships are translated to
data members.

For class operations in a model, the code generator produces member
functions. For all user-defined operations, it generates skeletal
member functions that you can edit to add functionality.
Rational Rose 2000e, Using Rose Visual C++ 59

Chapter 4 Code Generation
If you rename classes, attributes, relationships, or operations in the
model, Rational Rose Visual C++ renames the corresponding code
elements during code generation. If you remove model elements from
the model, the Code Update tool displays a synchronization window.
See “Synchronizing Model and Code” on page 53 for more information.

Generated Additional Information

A modeled element may contain information that has no
correspondence to Visual C++ code. Much of this information is placed
in the element’s generated source code as comments.

For example, the contents of the Documentation field in an operation’s
specification are inserted as a comment preceding the source code
declaration of its member function. As another example, abstract
model notations than cannot be expressed in Visual C++ are placed as
code comments in the generated source code to support round-trip
engineering.

Component Assignments

In Rational Rose Visual C++, there are three component assignment
processes:

� Assigning Visual C++ as the component’s implementation language
(set on the General tab of the Component Specification, or see
“Creating a New Component” on page 87).

� Mapping the component to a Visual C++ project—one component,
one project (see “Associating a Component with a Visual C++
Project” on page 88).

� Assigning the modeled classes to a component (see “Assigning
Classes to a Component” on page 87).

The order in which these processes are performed is not important, but
all three must be done before code can be generated for a class or
interface.

When forward engineering a model (generating code), the Code Update
tool leads you through component creation and assignment.
60 Rational Rose 2000e, Using Rose Visual C++

Generating a New Visual C++ Project from a Model
You can also use the Rational Rose Component Assignment tool to
create a component and map it to a Visual C++ project, to assign a
language to a component, and to assign modeled classes to a
component.

During reverse engineering, the Visual C++ source code project and its
classes are known, so Rational Rose Visual C++ automatically
generates a component, with the same name as the Visual C++ project,
assigns Visual C++ as the component’s language, and assigns all the
project’s classes to this component. If the project contains an IDL file,
an IDL component is also created for the project and all interfaces
belonging to that IDL file are assigned to it. If the project contains
multiple IDL files, a component is created for each file.

Generating a New Visual C++ Project from a Model

You use the Code Update tool to generate the Visual C++ code from a
model and write that code to a Visual C++ project. It takes you through
all the steps needed to generate Visual C++ source code and provides
a preview of the code generated for each class.

To generate a new Visual C++ project from a model:

1. Open the model.

2. Click Tools > Visual C++ > Update Code.

The Code Update tool appears.

3. Click Create a VC++ component and assign new classes to it.

The Select Visual C++ Project dialog appears.

4. Double-click on the Project icon, or single-click on the icon and
then click Add.

Rational Rose opens the Visual C++ IDE New Projects wizard.
Rational Rose 2000e, Using Rose Visual C++ 61

Chapter 4 Code Generation
5. Select the Visual C++ project type, give it a name (no file type) and
location, then click OK. Then complete the creation process. For
more information, see the Microsoft Visual C++ documentation.

The Visual C++ project is created and you are returned to the
Rational Rose Select Visual C++ Project dialog, where your newly
created project name and the full path name of its project
workspace file appear in the lower window.

6. Click OK.

You return to the Code Update tool. The newly created project is
checked and all previously unassigned classes in the model are
assigned to it and checked for code generation.
62 Rational Rose 2000e, Using Rose Visual C++

Updating a Visual C++ Project from Changes in a Model
In this example, the class www was previously assigned to the khm2
component, so it was not automatically assigned to the new abcd1
component.

To assign class www to the abcd1 component:

a. Right-click on the www class, and then select Assign.

b. Select the abcd1 component, and then click OK.

7. Click Next.

The Finish page presents a summary of the classes and
components to be updated.

8. Click Finish.

The Code Update tool generates the code for all classes in the
model and writes it into the source files (header and body) for the
Visual C++ project.

Review the generated source code (see “Reviewing the Generated Code”
on page 66) before you continue modeling and coding.

Updating a Visual C++ Project from Changes in a Model

To update a Visual C++ project from changes in the corresponding
model:

1. Open the model for which you want to update the code.

2. Right-click on the component corresponding to the Visual C++
project that you are updating, and then select Update Code.

The Code Update tool appears.

Note: If you are only updating selected classes in the project, select
those classes and then click Tools > Visual C++ > Update Code.

3. The Select Classes dialog box displays the model elements that are
assigned to the selected component.

If any of the selected classes are not assigned to the component
being updated, you must assign them before proceeding. See
“Assigning Classes to a Component” on page 87.

4. Click Finish to start code generation.

When the code generator finishes, the Summary log displays a
summary of the code generation results.

Review the generated source code (see “Reviewing the Generated Code”
on page 66) before you continue modeling and coding.
Rational Rose 2000e, Using Rose Visual C++ 63

Chapter 4 Code Generation
Previewing Code

The Model Assistant tool allows you to view the code that the Code
Update tool generates for a class, operation, attribute, or role. You can
view the code before or after code is generated.

Note: The class must be assigned to a component and that component
must have an implementation language assigned to it.

To preview a class or class element:

1. Right-click on the class, and then select Model Assistant.

2. Check the box for the class element you want to view.

The code appears in the Preview window.

Controlling Code Generation

This section describes how to generate code for some typical scenarios.

Using Model Properties Other than the Default Set

On the VC++ tab in an element’s specification, you can view the model
properties available for a class, class module (component), or
operation. You can also view and change their value. To access the tab,
select a model element and press F4.
64 Rational Rose 2000e, Using Rose Visual C++

Controlling Code Generation
A default set of property values is attached to a new model component.
On the VC++ tab you can change to another model property value set.

Figure 18 VC++ Tab of a Class Specification

If you want to know the meaning of a specific model property and its
possible values, see Appendix A, Model Properties Reference.
Rational Rose 2000e, Using Rose Visual C++ 65

Chapter 4 Code Generation
Selecting the Class Stereotype

By default, a new class corresponds to a class in Visual C++. The
stereotype of a new class is unspecified (blank), which means Rational
Rose Visual C++ produces a class description and definition for it.

To generate code for a modeled class as a struct or enum object, you
must change the class stereotype.

To change the class stereotype:

1. Open the specification for the class.

2. On the General tab, click the arrow in the Stereotype field to obtain
a list with the available stereotypes.

3. Select the stereotype that corresponds to the implementation type
of the class.

Reviewing the Generated Code

This section explains how to review the generated code.

After Code Generation
1. In the Code Update tool Summary dialog box, click the Log tab.

Check the error log for errors and warnings. You can also open the
log by selecting Window > Log.

2. Use Microsoft Visual C++ to compile the project. Make certain the
generated code contains no syntax errors.

3. Inspect the generated source code in your Microsoft Visual C++
environment by right-clicking on the class, and then selecting
Browse Source or Browse Header, as appropriate.

4. Based on your evaluation:

❑ Make the necessary changes to the model and/or to the model
properties, and regenerate the code.

❑ Or make the changes directly in the code and update your
model.

❑ Or, if necessary, revert to the previous version of the project by
clicking Tools > Visual C++ > Restore C++ Source Files.

5. When you are satisfied with the code, use Microsoft Visual C++ to
save it.
66 Rational Rose 2000e, Using Rose Visual C++

Reviewing the Generated Code
Viewing the Code Generated for a Class
1. Select the class in the browser or in a diagram in Rational Rose

Visual C++.

2. Click Tools > Visual C++ > Browse C++ Header. Rational Rose
opens Microsoft Visual C++ to display the header file for the
class selected in Step 1 (click Tools > Visual C++ > Browse C++
Source to display the body file for the selected class).

Figure 19 Browsing a Visual C++ Header File
Rational Rose 2000e, Using Rose Visual C++ 67

Chapter 5

Reverse Engineering

This chapter describes how to use Rational Rose Visual C++ to generate
or update model elements by reverse engineering a Visual C++ project,
class library, or COM object.

Reverse engineering (also called archeology) is the process of extracting
design information from a source- or binary-code project, then using
that information to generate or update a model representing the
project's logical structure.

The reverse engineering process allows you to:

� Create a new model from existing code (archeology).

� Update a model from changes in the code (the reverse engineering
portion of round-trip engineering).

� Add code elements from different Visual C++ projects to your model
(reusing code elements).

� Add external components to your model.

Once you have the components reverse engineered into your model,
you should package and diagram them. See “Packaging and
Diagramming Reverse-Engineered Classes” on page 74.

Note: A Visual C++ project corresponds to a component in the
component view of a model. Reverse engineering is performed between
the project file and the target model.

When reverse engineering source code generated by the Code Update
tool from an existing model, code elements that are removed from the
project have their corresponding model elements removed from the
model. You can choose to confirm or reject these deletions in the Model
Update tool’s Synchronize window.
Rational Rose 2000e, Using Rose Visual C++ 69

Chapter 5 Reverse Engineering
Creating a New Model from a Visual C++ Project

Note: Before proceeding with these steps, make certain the project you
want to reverse engineer compiles and contains no syntax errors.

To reverse engineer an existing Visual C++ project:

1. Open a new model in Rational Rose.

2. Click Tool > Visual C++ > Update Model from Code (if you see the
Welcome screen, click Next).

The Model Update tool appears.

3. In the Project Components window, right-click on Visual C++ and
select Add Component.

The Select Visual C++ Project dialog appears.

4. On the Existing tab, browse to the Visual C++ workspace file (.dsw)
containing the project to reverse engineer.

5. Select the file, and then click OK.

A dialog indicates a matching workspace file was found.

6. Click OK.

The Model Update tool’s Component window displays the selected
Visual C++ project.

7. Click Next to reverse engineer the entire project, or click on the
to list the class names in the project. Select the classes to reverse
engineer, and then click Next.

The Model Update tool lists the project and classes it will reverse
engineer.

8. Click Finish.

The Model Update tool Summary lists the components that were
reverse engineered.

9. Click Close.

The newly reverse engineered component is placed in a package
with the project name in the Reverse Engineered folder in both the
Component view and the Logical view.

10. Assign and diagram your reverse-engineered classes. See
“Packaging and Diagramming Reverse-Engineered Classes” on
page 74 for more information.
70 Rational Rose 2000e, Using Rose Visual C++

Updating an Existing Model
Updating an Existing Model

Note: Before proceeding with these steps, make certain the project you
want to reverse engineer compiles and contains no syntax errors.

To update an existing Visual C++ model:

1. Open the model in Rational Rose.

2. Click Tools > Visual C++ > Update Model from Code (if you see the
Welcome screen, click Next).

The Model Update tool appears with the project associated with the
model checked for reverse engineering.

3. Click Next to reverse engineer the entire project, or click on the
to list the class names in the project. Select the classes to reverse
engineer, and then click Next.

The Model Update tool lists the project and classes it is about to
reverse engineer.

4. Click Finish.

The Model Update tool Summary lists the components that were
reverse engineered.

5. Click Close.

The modeled elements are updated. If you have deleted classes in
the code that were previously created by the Code Update tool, the
Model Update tool displays a Synchronization window prompting
you to confirm the deletion of these classes from the model. See
“Synchronizing Model and Code” on page 53.

Adding Code from Other Projects into Your Model

Note: Before proceeding with these steps, make certain the project you
want to reverse engineer compiles and contains no syntax errors.

To add code from another project into your Visual C++ model:

1. Open the model in Rational Rose.

2. Click Tools > Visual C++ > Update Model from Code (if you see the
Welcome screen, click Next).

The Model Update tool appears and the project associated with the
model is checked for reverse engineering.
Rational Rose 2000e, Using Rose Visual C++ 71

Chapter 5 Reverse Engineering
3. In the Project Components window, right-click on Visual C++ and
select Add Component.

The Select Visual C++ Project dialog appears.

4. Enter the name of the Visual C++ workspace file (.dsw) containing
the project to reverse engineer, or click Browse to find the file. If the
workspace contains more than one project, select a project.

5. Click OK.

This adds the new Visual C++ project to the Model Update tool’s
Component window.

6. Deselect the existing model project(s).

7. Click Next to reverse engineer the entire project, or click on the
to list the class names in the project. Select the classes to reverse
engineer, and then click Next.

The Model Update tool lists the project and classes it will reverse
engineer.

8. Click Finish.

The Model Update tool Summary lists the components that were
reverse engineered.

9. Click Close.

The newly reverse engineered component is placed in a package
with the project name under the Reverse Engineered folder in both
the Component view and the Logical view.

10. Assign and diagram the reverse-engineered classes. See “Packaging
and Diagramming Reverse-Engineered Classes” on page 74 for
more information.

Adding External Components to a Model

External components are classes that are not implemented in your
application. Instead, they are referenced or are subclassed by model
classes and by code implemented in your application (for example,
Microsoft Foundation Classes [MFC] or COM objects).

Because they are not implemented in your application’s code, only
their interface and internal documentation are reverse engineered.
This limited form of reverse engineering is called importing.
72 Rational Rose 2000e, Using Rose Visual C++

Adding External Components to a Model
Importing MFC Classes

To access the Microsoft Foundation Class library from your model, you
simply import it: Click Tools > Visual C++ > Quick Import MFC 6.0.

This adds a logical package named MFC to your model, represented by
an MFC folder in the Logical view and an MFC component in the
Component view. This package contains the complete interface set for
all public MFC classes and their internal documentation, if any.

Imported MFC classes have their Generate flag set to false. You only
want to reference or subclass these, not generate code for them.

Importing COM Objects

To access COM objects from your model, simply drag and drop the
COM object file (.dll, .exe, .ocx, or .tlb) from the Windows Explorer
into an open component diagram, a component package, or a logical
package in the browser, then click Quick Import or Full Import (as
appropriate):

� If the drop target is a component package or one of its diagrams,
the new component belongs to that package. Otherwise, the new
component is added to the top-level of the Component view and to
the main component diagram.

� A logical package with the same name as the new component is
created in the Logical view. The new logical package contains the
interface elements provided by the corresponding software module.
The interface of the new component can now be used by the
classes in the model.

� If the drop target is a logical package or one of its diagrams, the
logical package for the new component is added to that package.

Two conditions must be met before you can drag-and-drop a COM
object into your model:

� The TypeLibImporter add-in must be loaded and activated.

� The selected COM object file must either be a properly registered
TypeLib (.tlb) or must contain a TypeLib.

If both of these conditions are not met, the drop into the model is
ignored.
Rational Rose 2000e, Using Rose Visual C++ 73

Chapter 5 Reverse Engineering
Note: This process should be restricted to components that are external
to the model, or that will be subclassed in the model. External classes
should have their Generate flag set to false.

Packaging and Diagramming Reverse-Engineered Classes

When Rational Rose reverse engineers or imports code information, it
assigns the resulting model data to a package (with the same name as
the project) under the Reverse Engineered package, or to an MFC
package, as appropriate. You are responsible for diagramming these
components or adding them to other packages.

Diagramming Reverse-Engineered Projects

Diagramming a model is a very subjective process. For this reason, the
reverse engineering process generates model data only. It does not
generate model diagrams.

You can add classes to a diagram in either of two ways:

� Drag-and-drop classes from the browser to an open diagram.

� Add one or more classes, by name, to the active diagram using the
Add Classes dialog box (click Query > Add Classes).

Arrange the diagrammed components to illustrate the architecture of
the system. Avoid crossed association lines by moving the classes in
the diagram. You can click Edit > Diagram Object Properties to control
the level of class details in a diagram.

Dropping Classes into a Diagram

To add a class to a diagram, open the diagram. Then simply drag and
drop the individual classes from the browser into the diagram.

The Add Classes Dialog Box

You can use the Add Classes dialog box to move classes from a package
to the active diagram:

1. Open the Class diagram where you want to add the classes. Make
certain it is the active diagram.

2. Click Query > Add Classes.
74 Rational Rose 2000e, Using Rose Visual C++

Packaging and Diagramming Reverse-Engineered Classes
3. In the Package list, select the package that currently holds your
classes.

4. From the Classes window, select the classes you want to move, and
transfer them to the Selected Classes window using the arrow
button.

5. Click OK.

The selected classes are added to the active diagram.

Arrange the added classes to best illustrate the architecture of the
system.

Adding Reverse-Engineered Classes to Packages

While you can leave your new classes in their reverse-engineered
project package, you can also move or copy them to other packages in
your system. There are several ways to do this:

� Drag-and-drop the class from the Reverse Engineered package to
another package.

� Open a class diagram that contains the destination package, then
drag-and-drop the class from the Reverse Engineered package to
another package.

� Create a new class in your package diagram with the same name
as the reverse-engineered one, and then select this new class. Click
Edit > Relocate to move the class.

� Cut or Copy, then Paste the class from the Reverse Engineered
package to another package.
Rational Rose 2000e, Using Rose Visual C++ 75

Appendix A

Model Properties Reference

This appendix provides a reference to the Rational Rose Visual C++
model properties. Controls on the user interface set most of these
properties, so values should not be set on the VC++ tab of the Rational
Rose Options dialog (Tools > Options).

These model properties, along with the information contained in a
model element's specification, control the code generation for that
element. The Visual C++ model properties are grouped as follows:

� Attribute Properties

� Class Properties

� Component Properties

� Operation Properties

� COM Properties

Model Properties for Attributes

Rational Rose Visual C++ controls almost all attribute model properties
internally, based on settings on the Attribute Specification. The one
exception is the Generate property, which determines whether to
generate code for the attribute. Default is True (to generate code).

Model Properties for Classes

Rational Rose Visual C++ controls all class model properties internally.
Do not set class model properties on the VC++ tab of the Rational Rose
Options dialog (Tools > Options).
Rational Rose 2000e, Using Rose Visual C++ 77

Appendix A Model Properties Reference
The Generate property, which specifies whether Rational Rose
Visual C++ creates code for the class, is set using the Generate Code
check box on the Class tab of the Model Assistant (right-click on the
class and click Model Assistant).

Note: If an existing model uses the HeaderFile property, replace it.
Specify header file names on the External Map or Internal Map tabs, as
appropriate, on the Component Properties dialog (right-click on the class'
component and click Properties).

Model Properties for Components

Rational Rose Visual C++ controls all component model properties
internally. They are set on the Component Properties dialog (right-click
on a component and click Properties).

Do not set component model properties (Module Specifications) on the
Visual C++ tab of the Rational Rose Options dialog (Tools > Options).

Note: The Rational Rose Options dialog (accessed from the Tools menu)
refers to these properties as Module Specifications.

Model Properties for Operations

Rational Rose Visual C++ controls almost all attribute model properties
internally. The one exception is the Generate property. Do not set other
operation model properties on the VC++ tab of the Rational Rose
Options dialog (Tools > Options).

The Generate property sets whether code is generated for the operation.
Values are True or False.

The DefaultBody property is set by Rational Rose Data Access (if
installed) and should not be set by the user.

The Inline property is set by the Inline check box on the Operation tab
of the Model Assistant (right-click on the class and click Model
Assistant).

For example, if Inline is checked, the code generator writes to
customer.h:

Class customer {
 public:
 inline get_name()
78 Rational Rose 2000e, Using Rose Visual C++

COM Model Properties
 ...
}
inline customer::get_name()
{
 return custName;
}

Extending the example to Inline not checked, the code generator writes
to customer.h and to customer.cpp:

In customer.h

Class customer {
 public:
 get_name();
 ...
}

In customer.cpp

customer::get_name()
 {
 return custName;
}

COM Model Properties

COM model properties only apply only to classes with the stereotype
<<interface>>. These properties capture the IDL attributes for COM
classes, methods, and method arguments.

COM model properties are documented in the Rational Rose online
Help for the TypeLib Importer. The “COM Model Properties — Quick
Reference” topic is a map to all of the COM properties.
Rational Rose 2000e, Using Rose Visual C++ 79

Appendix B

Rational Rose Visual C++ Tools

The Rational Rose Visual C++ add-in provides tools and option settings
that facilitate a quick and easy interface between a Rational Rose
model and Visual C++.

� The Code Update tool

� The Component Assignment tool

� The Model Assistant tool

� The Model Update tool

� The Visual C++ Options window

� A VC++ tab on the Rational Rose Options window

The Code Update Tool

The Code Update tool automates Visual C++ source code generation
from the information contained in a Rational Rose model. The Code
Update tool generates code from the components in your model into
their corresponding Visual C++ projects. Use the Code Update tool to:

� Generate and update several projects of different implementation
languages at the same time.

� Access the Model Assistant tool to further specify the mapping
between the classes in the model and the code.

� Keep the model and Visual C++ projects synchronized, as the Code
Update tool detects any project items that may have been added,
renamed, or deleted from the model.

� Access the Component Assignment tool to assign unassigned
classes.
Rational Rose 2000e, Using Rose Visual C++ 81

Appendix B Rational Rose Visual C++ Tools
Using the Code Update Tool

There are two ways to start the Code Update tool:

� Click Tools > Visual C++ > Update Code.

� Right-click on a component or class in the browser or in a diagram,
and then click Update Code.

Note: If the selected class is not assigned to a component, or if the
component is not assigned to a language, the Update Code selection
is not available.

The following Code Update tool pages lead you through the process of
updating a Visual C++ project from changes in a model:

� Welcome Page

� Select Components and Classes Page

Welcome Page

The Welcome page provides general information about the tool. You can
turn this page off by checking the Don’t show this page in the future
option.

Select Components and Classes Page

The Select Components and Classes page changes, depending on
whether all of the displayed elements are properly assigned.
82 Rational Rose 2000e, Using Rose Visual C++

The Code Update Tool
Opened with Proper Assignments

If you open the Code Update tool with no component or class selected,
or if all selected components and classes are properly assigned, the
Select Components and Classes page looks like:

Figure 20 Code Update Tool—Select Components and Classes Page

On this page, you select the components or classes from which you
want to generate code:

� To generate code for all classes in a component, check the box next
to that component.

� To generate code for one or more of the classes that are assigned to
a component, check the desired classes.

Note: Any components and classes that were selected in the current
Rational Rose diagram or browser when you opened the Code Update
tool are selected by default.

� To assign a class to a component, right-click on the component
and select Assign Classes to open the Component Assignment tool.
Rational Rose 2000e, Using Rose Visual C++ 83

Appendix B Rational Rose Visual C++ Tools
� To assign a project file to a component, right-click on the
component and select Properties. This opens the Visual C++
Component Properties dialog box for that component. See
“Associating a Component with a Visual C++ Project” on page 88.

Note: Any component marked with is either not associated with
a Visual C++ project file, or is associated with a project file that the
Code Update tool cannot find.

� To preview the code to be generated for a class, select the class in
the left-hand list. A list and preview of all its members appears in
the right-hand list.

� To customize the code to generate for a class or member, open the
Model Assistant tool. Right-click on the class or one of its
members, and then select Open.

Note: Classes marked with might generate incorrect code. You
should correct the code mapping for those classes before generating
code for them.

� To customize the Code Update tool, right-click on the VC++ icon
and select Properties from the shortcut menu. See “Code Update
Tab” on page 95.

Opened without Proper Assignments

If you open the Code Update tool with a selected component or class
that is not properly assigned, the Select Components and Classes page
displays one or more of the following messages:

Figure 21 Select Components and Classes Page—Assignment Messages
84 Rational Rose 2000e, Using Rose Visual C++

The Code Update Tool
� Assign new classes to the <name> component – clicking this line takes
you:

❑ To the Component Assignment tool, where you assign classes to
the indicated component,

❑ Then back to the Code Update tool to complete your code
generation.

Note: <name> is displayed because there is only one component
in this model. If there is a choice, <name> does not appear.

� Create a VC++ component and assign classes to it – clicking this line
takes you:

❑ To the Visual C++ IDE New Projects wizard, where you create a
new Visual C++ project and automatically create a new assigned
component of the same name,

❑ Then to the Component Assignment tool, where you assign
classes to your new component,

❑ Then back to the Code Update tool to complete your code
generation.

� Learn more about components – clicking this line presents Help
topics about components and the component assignment process.

Finish Page

This page displays a summary of the code to be generated. Click Finish
if you are satisfied, or click <Back if you want to change something.

Progress Page

This page displays the progress of the code generation.

Synchronize Page

This page appears when the Code Update tool detects code elements in
the Visual C++ project that have no corresponding elements in the
model. Here you can confirm the deletion of each such code element.
See “Synchronizing Model and Code” on page 53.
Rational Rose 2000e, Using Rose Visual C++ 85

Appendix B Rational Rose Visual C++ Tools
Summary Page

This page displays a summary of the code generation results. Right-
click anywhere in the Log window for a shortcut menu, where you can
choose whether to display warnings and errors in color and to use
timestamps.

The information on the Log tab is also available in the Rational Rose
Log window after exiting the Code Update tool (click Window > Log).

The Component Assignment Tool

The Component Assignment tool provides a quick and easy way to:

� Create new components

� Assign classes to components

� Associate a component with a Visual C++ project

� Assure that the components you create contain all the information
needed to generate Visual C++ code

Using the Component Assignment Tool

There are two ways to open the Component Assignment tool:

� Click Tools > Visual C++ > Component Assignment Tool.

� Right-click on an existing component in the Code Update tool, and
then click Assign classes.

The Component Assignment tool appears.
86 Rational Rose 2000e, Using Rose Visual C++

The Component Assignment Tool
Figure 22 The Component Assignment Tool

Creating a New Component

To create a new component and associate it to a Visual C++ project:

1. From the browser, right-click VC++, and then select New.

The Visual C++ IDE New Projects wizard appears.

2. Enter a name for the project (do not include a file type) and a
location, then click OK, and then complete the project creation
process. For more information, see your Microsoft Visual C++
documentation.

The project is created and you return to the Component
Assignment tool. Your new component, with the same name as the
Visual C++ project, appears in the browser.

Assigning Classes to a Component

The Component Assignment tool helps you assign classes to
components by finding all unassigned classes in your model, then
displaying these classes in an Unassigned Classes folder (see
Figure 22). From this folder, you assign the classes by dragging and
dropping them into the appropriate components in the browser.
Rational Rose 2000e, Using Rose Visual C++ 87

Appendix B Rational Rose Visual C++ Tools
Associating a Component with a Visual C++ Project

To associate an existing component with a Visual C++ project:

1. Right-click on the component, and then select Properties.

The Visual C++ Component Properties window appears.

2. In the Project File window, enter the full path and file name for the
Visual C++ project file (.dsp).

Optionally, you can enter the full path and file name for the
Visual C++ workspace file (.dsw) in the Workspace File window.

You can also use the browse buttons to find and enter your path
and file names.

3. Make certain the Generate Code box is checked, or no code will be
generated for this project or for the classes in it.

4. If you want to enter comments in the generated code about this
project, enter them in the Documentation window.

5. Click OK.

The Model Assistant Tool

The Model Assistant tool helps you correctly and accurately define
common and custom Visual C++ programming and modeling
constructs for modeled elements. Use the Model Assistant to:

� Create constants, Declare statements, Event handlers, Enum and
Type declarations, attributes, and operations.

� Create Get and Set procedures for class attributes and association
roles.

� Define and create a user-defined collection class for the class.

� Preview the code to be generated for the class and each of its
members.

� Specify implementation details about the class and its members.

� Apply code templates for code body generation.
88 Rational Rose 2000e, Using Rose Visual C++

The Model Assistant Tool
Using the Model Assistant Tool

There are three ways to open the Model Assistant for a class or
interface:

� Select a class or interface in a diagram, then click Tools > Visual
C++ > Model Assistant.

� In a diagram or in the browser, right-click on the class or interface,
and then select Model Assistant.

� On the Select Components and Classes page in the Code Update
tool, right-click on a class or interface, or one of its members, and
then select Open.

The General Tab

The Model Assistant maps the UML information about a class, which
defines its implementation in Visual C++, into class folders.

Figure 23 The Model Assistant Class Folders

Table 6 explains how the information is mapped into the folders.

Table 6 Model Assistant—Folder Content Mapping

Folder Contains the following model elements

Class Node Code-generation-specific semantics of the class.

Overrides The virtual operations available to the root class for
overriding. You can specify that an operation is
overridden (implemented) in the root class by checking
it. Operation and Parameters tabs allow you to define
the virtual operation’s properties.

Class
Operations

The class operation skeletons that can be created for
this class. You simply check the operations desired.
Operation and Parameters tabs allow you to define the
operation’s properties.
Rational Rose 2000e, Using Rose Visual C++ 89

Appendix B Rational Rose Visual C++ Tools
Note: A code template may add additional folders to the Model
Assistant browser.

For additional information about the tabs displayed for a class element
in one of these folders, select a tab and then click the Help button at
the bottom of the window.

The MFC Tab

Information about modeled MFC classes and MFC-derived classes is
presented on the MFC Class tab. This tab contains a treeview similar
to the regular Class tab. The treeview also maps the modeled
information about a class into folders:

Figure 24 The Model Assistant MFC Class Folders

Attributes The attributes for the root class. The Attribute tab
allows you to define the attribute’s properties. You can
also check accessor Get and Set functions for that
attribute.

Associations The association roles the root class has to other classes.
The Role tab allows you to define the role’s properties.
You can also check accessor Get and Set functions for
that role.

Operations The operations defined for the root class. Operation and
Parameters tabs allow you to define the operation.

CoClass Icon MIDL CoClasses implemented by the (root) class are
listed in the browser at the folder level.

Interface Icon MIDL Interfaces implemented by the (root) class are
listed in the browser either at the folder level, if they are
not associated with a CoClass, or under their associated
CoClass.

Table 6 Model Assistant—Folder Content Mapping

Folder Contains the following model elements
90 Rational Rose 2000e, Using Rose Visual C++

The Model Assistant Tool
Table 7 explains how the information is mapped into the folders.

For additional information about the tabs displayed for a class element
in one of these folders, select a tab and then click the Help button at
the bottom of the window.

Search Box

You use the Search box to find elements within the class by entering a
search string, and to navigate to other classes within the model. Use
the following shortcuts to navigate the Search box.

� CTRL-F (find), or the mouse cursor, moves the insertion point into
the Search box.

Enter a search string, then press ENTER to select the first
occurrence of the string in the MFC Treeview window, or use the
look-up and look-down buttons to navigate to the search-string
matches.

Table 7 Model Assistant—Folder Content Mapping

Folder Contains the following model elements

Class Node Code-generation-specific semantics of the class. An
MFC tab allows you to modify classes that derive from
an MFC class.

MFC Overrides The virtual operations available to the root class for
overriding. This applies only to MFC-derived classes.
You can specify that an operation is overridden
(implemented) in the root class by checking it.
Operation and Parameters tabs allow you to define the
virtual operation’s properties.

Windows
Messages

Lists the handlers for all the Windows messages the
class can receive. Checking an operation allows you to
modify its aspects on its Message Handler tab.

Command
Handlers

List all the command handlers defined for the base
class. Selecting an operation allows you to modify its
aspects on its Command Handler tab.

Notification
Handlers

Lists all the notification handlers defined for the base
class. Selecting an operation allows you to modify its
aspects on its Notification Handler tab.
Rational Rose 2000e, Using Rose Visual C++ 91

Appendix B Rational Rose Visual C++ Tools
� From the Search box, CTRL-ENTER loads all class names in the
model into the Search box drop-down menu. Selecting a class
name from the menu loads that class into the Model Assistant and
nulls the Search box.

Information Tabs

Selecting a model element presents one or more tabs containing
information about that model element. The nature of the element, and
how it is modeled, determines what information on the tab you can
change. To learn more about the information for a model element,
select a tab and then click the Help button at the bottom of the window.

The Model Update Tool

The Model Update tool automates creating and updating a Rational
Rose model from a Visual C++ source code project. Use the Model
Update tool to:

� Reverse engineer a Visual C++ project to create a new model based
on its code

� Update an existing model with changes made to the Visual C++
code

� Update several components of different implementation languages
at the same time

� Keep the model and source code projects synchronized—the Model
Update tool detects any model elements that may have been
deleted from the code

� Add new components to the model

Using the Model Update Tool

There are two ways to start the Model Update tool:

� Click Tools > Visual C++ > Update Model from Code.

� Right-click on a component, and then select Update Model from
Code.
92 Rational Rose 2000e, Using Rose Visual C++

The Model Update Tool
The Model Update tool leads you through the process of updating a
model from code on the following pages:

� Welcome Page

� Select Components and Classes Page

Welcome Page

The Welcome page provides general information about the tool. You can
turn this page off by checking the Don’t show this page in the future
option.

Select Components and Classes Page

This page allows you to select the components to update. Each
component (for example, test2 in Figure 25) corresponds to a
Visual C++ source code project, and its classes map to those in the
project.

Figure 25 Model Update Tool—Select Components and Classes Page

The Select Components and Classes page allows you to:

� Update all classes in a project by checking the desired component,
and then clicking Finish.

� Update or generate only some of the classes that are assigned to a
component by expanding the component, selecting the desired
code classes, and then clicking Finish.
Rational Rose 2000e, Using Rose Visual C++ 93

Appendix B Rational Rose Visual C++ Tools
Note: Classes marked with a star do not exist in the model.
When selecting such a class, the class will be created in the model.
Also, you can select several components. Each selected component is
then updated from the changes of its associated project.

� Assign an existing component with a project file by right-clicking
on the component, and then clicking Properties. This brings up the
component’s Visual C++ Component Properties dialog box.

� Customize general aspects of the Model Update tool by right-
clicking on VC++, and then clicking Properties. See “Model Update
Tab” on page 96.

To reverse engineer a project, the project must be represented in the
model by a component. If your project has no component:

1. Right-click on VC++, and then select Add Component.

The Visual C++ IDE New Projects wizard appears.

2. Enter a name for the project (do not include a file type) and a
location, then click OK, and then complete the project creation
process. For more information, see your Microsoft Visual C++
documentation.

The project is created and you return to the Model Update tool.
Your new component, with the same name as the Visual C++
project, appears in the browser.

Finish Page

This page presents a summary of what will be updated in the model.
Click Finish if you are satisfied, or <Back if you want to change
something.

Progress Page

This page displays the progress of the model update process.

Synchronize Page

This page appears if the Model Update tool detects any model elements
that have no corresponding elements in the Visual C++ project code.
Here you can confirm the deletion of each such model element. See
“Synchronizing Model and Code” on page 53.
94 Rational Rose 2000e, Using Rose Visual C++

The Visual C++ Options Window
Summary Page

This page displays a summary of the code generation results. Right-
click anywhere in the Log window for a shortcut menu, where you can
choose whether to display warnings and errors in color and to use
timestamps.

The information on the Log tab is also available in the Rational Rose
Log window after exiting the Code Update tool (click Window > Log).

The Visual C++ Options Window

The Visual C++ Options window controls how the Rational Rose
Visual C++ tools operate. The window is divided into five tabs:

� Code Update

� Model Update

� Containers

� Class Operations

� Accessors

Items on a list on any of these tabs can be added, deleted, or renamed,
by right-clicking and using the shortcut menu, or the names can be
changed by pressing F2.

Code Update Tab

The Code Update tab contains five switches that determine how the
Code Update tool operates:

� Generate Model IDs – when set, Model IDs are generated for classes
and member functions. When unset, Model IDs are not generated.

� Generate Documentation – when set, code comments are generated
for information contained in the Documentation field for a model
element. When unset, code comments are not generated.

� Generate #include Statements – when set, #include statements are
generated for a header file, as discussed in “Code Generated for
Classes” on page 18. When unset, #include statements are not
generated.

� Apply Pattern on Code Generation – when set, the prototypes that are
checked on the Class Operations and Accessors tabs are used
when generating code for a class.
Rational Rose 2000e, Using Rose Visual C++ 95

Appendix B Rational Rose Visual C++ Tools
Note: The information on the Class Operations and Accessors tabs is
used the first time code is generated for a class, and to preview code
in the Model Assistant tool.

Note: The following Debug switch is only available if the Apply
Pattern switch is checked.

❑ Generate Debug Operations for MFC Classes – generates DUMP and
AssertValid operations for classes derived from MFC class
CObject.

Model Update Tab

The Model Update tab contains one switch, an attribute-type list, and
Add and Delete buttons, which determine how the Model Update tool
operates.

� Reverse Engineer Documentation – when set, code comments found
in the reverse-engineered source code are written to the
Documentation field of the appropriate model elements. When
unset, code comments are ignored.

� Attribute Types – lists the Visual C++ types that indicate a data
member is an attribute and not a role. This list is used by the
Model Update tool during reverse engineering.

� The Add and Delete buttons allow you to add or delete types from
the list.

Containers Tab

The Containers tab lists the Visual C++ container classes that are
recognized for reverse engineering by the Model Update tool. The
default population for this list are the MFC container classes. User-
defined container classes may be added to this list.

The Add and Delete buttons allow you to add or delete container
classes from the list.

Container class definitions may contain the $TYPE variable, which
expands to any Visual C++ type.
96 Rational Rose 2000e, Using Rose Visual C++

The Visual C++ Options Window
Class Operations Tab

The Class Operations tab lists the class operations that can be
generated for each class. Any operation that is checked is generated,
but only if the Apply Pattern on Code Generation switch (on the Code
Update tab) is also checked. By default, two operations are checked for
code generation:

� $NAME() – generates the default constructor

� <<virtual>> ~$NAME() – generates a virtual destructor for the class

Note: The information on this tab is used the first time code is generated
for a class, and to preview code in the Model Assistant tool.

Accessors Tab

The Accessors tab controls whether accessor Get and Set code is
generated for a modeled role or attribute. The default is not to generate
Get and Set accessors.

Four accessor prototypes are defined for each Get and Set accessor.
The prototype used for code generation depends on the type of the role
or attribute being modeled:

� int – an intrinsic or fundamental data type. For example, integer,
double, char, etc.

� usr – a user-defined type

� ptr – a pointer

� ref – a reference

Accessor prototypes may contain the following variables:

� $NAME – expands to the attribute or role name as entered in the
model.

� $BASICNAME – expands to the attribute or role name as entered in
the model, unless the model name begins with an m_ prefix. If so,
the prefix is stripped to the first uppercase letter. For example, if
$BASICNAME represents a modeled attribute of m_strClassName,
the name generated for the class would be ClassName.

� $TYPE – expands to the attribute or role type.

Accessor definitions can be changed by right-clicking or pressing F2,
but they cannot be added or deleted.
Rational Rose 2000e, Using Rose Visual C++ 97

Appendix B Rational Rose Visual C++ Tools
Note: The information on this tab is used the first time code is generated
for a class, and to preview code in the Model Assistant tool.

The Options VC++ Tab

The VC++ tab on the Rational Rose Options window lists the public
model properties, and their current values, available for current model
elements. The property values on this page are the default values for
all applicable elements in the model. Specific values for individual
model elements are listed on the element’s Specification. Model
properties are listed for:

� Attributes

� Classes

� Components

� Generalizations

� Operations

� Packages

� Projects (note that these properties apply to the Rational Rose
model, not to the Visual C++ project)

� Roles

For descriptions of the individual model properties, right-click on the
property name to display the online Help.
98 Rational Rose 2000e, Using Rose Visual C++

Index
Symbols
#include, and model classes 18

A
abstract operation stereotype 26
access

class 18
operation 25
private 18
protected 18
public 18

accessor functions 28
accessor get 28
accessor set 28
aggregation relationships 32, 48
applying code templates to a class 21
arguments 25
assigning

classes to a component 87
component to a language 60
component to a project 88

association relationships 29
ATL

support 2, 4, 42
attributes

and code comments 28
documentation field 28
mapping to Visual C++ 28
Rational Rose 2000e, Using Rose Visual C++

previewing code for 64

B
Booch notation xv
browse code 67
business services 48, 57

C
cardinality 35
class

access 18
diagrams 17
scope, see access 18
stereotypes 18, 20, 66
utilities 23

class declarations, and model classes 18
class model properties

HeaderFile 78
classes

and #include 18
and class declarations 18
and code comments 18
and data members 18
and member function declarations 18
assigning to a component 87
mapping to Visual C++ 18
previewing code for 64

client/server design 48
99

Index
code comments 9
and attributes 28
and classes 18
and operations 25
mapping to model 47

code generation 3, 7, 59
and model IDs 18
Code Update Tool 81
controlling 64
from a model 61
of aggregation relationships 32
of association relationships 29
of attributes 64
of cardinalities 35
of class utilities 23
of classes 18
of collection classes 35
of components 38
of dependency relationships 33
of deployment view 40
of documentation field 9
of generalization relationships 33
of inherits relationships 33
of logical view 17
of multiplicities 35
of navigability adornments 34
of operation documentation field 25
of operation parameters 27
of operations 24, 25, 64
of packages 38
of roles 29, 64
of uses relationships 33
previewing classes 64
selecting implementation type 66

code template files 22
code templates 8

applying to a class 21
creating 22
modifying 22
removing from a class 21

Code Update tool 3
defined 81
100

see also code generation
collection classes 35
COM

objects 43
support 2, 4, 42

COM CoClasses 23
COM Objects 8
comments in source code 9
component 38

generating code for 38
mapping to Visual C++ 38
stereotypes 40

component assignment 60, 87, 88
Component Assignment tool 2

defined 86
component model properties 78
component view 57
conceptual design 5
const operation stereotype 27
contents of a model 56
creating a new model 56
creating a new model from code 70, 71
creating code templates 22

D
data link library 40, 73
data member mapping 28
data members

and model classes 18
data services 48, 57
dependency relationship 33
deployment view 57
deployment view mapping 40
DLL 40, 73
DLL project 40, 41
documentation field

and attributes 28
for classes 18
for model elements 9
for operations 25
Rational Rose 2000e, Using Rose Visual C++

Index
E
EXE 40, 73
EXE project 40, 41
external components

and packages 38
referencing 72

F
friend operation stereotype 27

G
generalization relationships 33
generate source code 61
generating code

Code Update tool 81

H
HeaderFile class property 78

I
IDL 22
inheritance 33
inherits relationships 33
interface classes 22
iterative lifecycle 5

L
logical design 6
logical packages 38
logical view 57
logical view mapping 17

M
mapping

accessor get/set to Visual C++ 28
Rational Rose 2000e, Using Rose Visual C++

aggregations to Visual C++ 32, 48
applying code templates to a class 21
associations to Visual C++ 29
attributes to Visual C++ 28
class utilities to Visual C++ 23
classes to Visual C++ 18, 41
code templates to Visual C++ 21
components to Visual C++ 38
dependencies to Visual C++ 33
generalizations to Visual C++ 33
MFC classes to model classes 41
operations to Visual C++ 24
removing code templates from a class

21
member function declarations

and model classes 18
member variable, see data member
method, see operation
MFC

classes 2, 4, 41
mapping to model classes 41

Microsoft IDL 22
Model Assistant tool 2

and accessor functions 28
and code generation 20
and collection classes 35
and get/set functions 28
and previewing code 64
defined 88

model ID in the code 18
model properties 8, 64, 77

for attributes 77
for classes 77
for components 78
for operations 78
HeaderFile 78

Model Update tool 3
defined 92
see also reverse engineering

modifying code templates 22
multiplicity 35
101

Index
N
name of an operation 25
navigability adornment 34

O
object modeling 7
OCX 73
OMT notation xv
operation

access 25
accessor functions 28
and code comments 25
code generated for 25
documentation field 25
mapping to Visual C++ 24
names 25
parameter passing 27
parameters 25
previewing code for 64
scope, see access 25
semantics 25
stereotypes 25

operation model properties 78
operation stereotypes 26

abstract 26
const 27
friend 27
static 27
virtual 27

P
packages 38

and external components 38
parameter passing 27
parameterized classes 23
parameters, operation 25
physical design 6
previewing code

for attributes 64
102

for classes 64
for operations 64
for roles 64

private access 18
project 41
Project Selection dialog 61, 62, 70, 72
project types 40
protected access 18
public access 18

R
referencing external components 72
removing code templates from a class 21
reverse engineering 3, 69

adding external components 72
code-to-model mappings 40
creating new model 70, 71
data members 41
of COM objects 43
of comments 47
of const declarations 41
of DLL, EXE, OCX, TLB files 73
of MFC objects 41
of projects 41
of Visual C++ projects 41

reverse engineering mapping rules 40
roles 29

previewing code for 64
round-trip engineering 3

defined 49
starting with code 55
the process 51

S
scenario analysis 5
Semantics tab 25
source code 66

mapping of comments 47
source code generation 54
static operation stereotype 27
Rational Rose 2000e, Using Rose Visual C++

Index
stereotypes 8, 18
of classes 20, 66
of components 40
of operations 26

synchronization 53

T
Three-Tiered architecture 48
Three-Tiered model 48
type library 73

U
UML xv, 17
unified modeling language, see UML
use-case view 58
user services 48, 57
uses relationships 33

V
viewing code

for attributes 64
for classes 64
for operations 64
for roles 64

virtual operation stereotype 27
Visual C++ mappings 17
Visual C++ project

generating 40
reverse engineering 41

Visual C++ to model mappings 40
Rational Rose 2000e, Using Rose Visual C++

103

	Rational Rose 2000e Using Rose Visual C++
	Contents
	List of Figures
	List of Tables
	Preface
	How this Guide is Organized
	Related Documentation
	References

	File Names

	Introduction
	Main Features of Rose Visual C++
	Model Assistant Tool
	Component Assignment Tool
	Round-Trip Engineering
	Code Generation
	Reverse Engineering
	MFC and COM Support

	Support for Model-Driven Software Development
	Support for an Iterative Lifecycle
	The Design Process
	Conceptual Design with Scenario Analysis
	Logical Design with Object-Oriented Analysis
	Physical Design with Object-Oriented Design

	Object Modeling and Visual C++
	Code Generation Mapping Rules
	Components and Visual C++
	Generated Visual C++ Items
	Stereotypes, Code Templates and Model Properties
	COM Objects
	Documenting Model Elements
	CodeName Support
	Special CodeName Considerations
	Code Generation Name Conversion
	CodeName and Type Expressions
	Display Parameters
	Class CodeNames
	Operation CodeNames
	Operation Argument CodeNames
	Attribute CodeNames
	Role CodeNames
	Package CodeNames
	CodeName and Instantiated Classes

	Logical View to Visual C++ Mapping
	Classes
	Code Generated for Classes
	Class Stereotypes
	Code Templates
	Interfaces
	COM CoClasses
	Parameterized Classes

	Class Utilities
	Code Generated for Class Utilities

	Operations
	Operation Definitions
	Code Generated for an Operation
	Operation Stereotypes
	Operation Semantics
	Operation Parameter Passing
	Accessor Get and Set Functions

	Attributes
	Code Generated for Attributes

	Association Relationships
	Code Generated for an Association
	Adding a Type Specification to a Role

	Aggregation Relationships
	Code Generated for an Aggregate Relationship

	Dependency Relationships
	Generalization Relationships
	Advanced Relationship Mappings
	Navigability
	Containment
	Multiplicity
	Collection Classes

	Pointers, Arrays, and References in Visual C++
	As Class Attributes
	As Association Relationships

	Packages

	Component View to Visual C++ Mapping
	Component Stereotypes

	Deployment View to Visual C++ Mapping
	Reverse Engineering Mapping Rules
	Visual C++ Project Mapping
	Class Mapping
	MFC Mapping
	COM Object Mapping
	Creating New COM Objects
	ATL Object Name Derivation
	Adding IDL Attributes to <<interface>> Method Arguments

	Code Comments Mapping
	Aggregation Relationships

	The Three-Tiered Model

	Round-Trip Engineering
	Round-Trip Engineering a Visual C++ Project
	Synchronizing Model and Code
	Deleting Elements

	Evolving the Generated Code
	Round-Trip Engineering, Starting with a Visual C++ Project
	Creating a New Model
	Contents of a New Model
	Logical View
	Component View
	Deployment View
	Use Case View

	Code Generation
	The Generated Code
	Generated Additional Information

	Component Assignments
	Generating a New Visual C++ Project from a Model
	Updating a Visual C++ Project from Changes in a Model
	Previewing Code
	Controlling Code Generation
	Using Model Properties Other than the Default Set
	Selecting the Class Stereotype

	Reviewing the Generated Code
	After Code Generation
	Viewing the Code Generated for a Class

	Reverse Engineering
	Creating a New Model from a Visual C++ Project
	Updating an Existing Model
	Adding Code from Other Projects into Your Model
	Adding External Components to a Model
	Importing MFC Classes
	Importing COM Objects

	Packaging and Diagramming Reverse-Engineered Classes
	Diagramming Reverse-Engineered Projects
	Dropping Classes into a Diagram
	The Add Classes Dialog Box

	Adding Reverse-Engineered Classes to Packages

	Model Properties Reference
	Model Properties for Attributes
	Model Properties for Classes
	Model Properties for Components
	Model Properties for Operations
	COM Model Properties

	Rational Rose Visual C++ Tools
	The Code Update Tool
	Using the Code Update Tool
	Welcome Page
	Select Components and Classes Page
	Finish Page
	Progress Page
	Synchronize Page
	Summary Page

	The Component Assignment Tool
	Using the Component Assignment Tool
	Creating a New Component
	Assigning Classes to a Component
	Associating a Component with a Visual C++ Project

	The Model Assistant Tool
	Using the Model Assistant Tool
	The General Tab
	The MFC Tab
	Search Box
	Information Tabs

	The Model Update Tool
	Using the Model Update Tool
	Welcome Page
	Select Components and Classes Page
	Finish Page
	Progress Page
	Synchronize Page
	Summary Page

	The Visual C++ Options Window
	Code Update Tab
	Model Update Tab
	Containers Tab
	Class Operations Tab
	Accessors Tab

	The Options VC++ Tab

	Index

