
M
D

 D
A

L
IM

 862923 7/22/06 C
A

Y
N

 M
A

G
 Y

E
L

O
 B

L
A

C
K

Invisible Engines

Invisible Engines
How Software Platforms Drive Innovation
and Transform Industries

David S. Evans, Andrei Hagiu, and Richard Schmalensee

The MIT Press
Cambridge, Massachusetts
London, England

© 2006 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or informa-
tion storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or
sales promotional use. For information, please email special_sales@mitpress.mit.
edu or write to Special Sales Department, The MIT Press, 55 Hayward Street,
Cambridge, MA 02142.

This book was set in Sabon by SNP Best-set Typesetter Ltd., Hong Kong.
Printed and bound in the United States of America.

An electronic version of this book is available under a Creative Commons license.

Library of Congress Cataloging-in-Publication Data

Evans, David S. (David Sparks)
Invisible engines : how software platforms drive innovation and transform

industries / David S. Evans, Andrei Hagiu, and Richard Schmalensee.
p. cm.

Includes bibliographical references and index.
ISBN 0-262-05085-4 (alk. paper)
1. Application program interfaces (Computer software). 2. Industries—Data

processing. I. Hagiu, Andrei. II. Schmalensee, Richard. III. Title.
QA76.76.A63 E93 2006
005.3—dc22

2006046629

10 9 8 7 6 5 4 3 2 1

Contents

Preface vii
Acknowledgments xi

1 Invisible Engines 1

2 Speaking in Code 17

3 Both Sides Now 43

4 Dropouts and Evangelists 81

5 PONG 115

6 The Palm Economy 155

7 Ba-BA-Ba-BAAAAH 183

8 Dangerous Intersections 213

9 With a Little Help . . . 245

10 Some Lunches Are Free 275

11 When Bigger Is Better 303

12 Swept Away 337

Selected Bibiliography 367
Index 377

ADSMFG-MAC-CP03

Preface

If you have a RAZR mobile phone, a Windows personal computer (PC),
a TiVo Digital Video recorder, a French credit card, an Xbox, or a Palm
Pilot, you are using one. If you have bought anything on eBay or searched
on Google you have used one too. All these products have at their core
a software platform—a software program that makes services available
to other software programs through Application Programming Interfaces
(APIs). Those software platforms are at the heart of “economies” or
“ecosystems” that consist of mutually dependent communities of busi-
nesses and consumers that have a symbiotic relationship with the plat-
form. Software platforms are a general-purpose technology that first
made its economic mark in the 1970s. These “invisible engines” have
spawned many major industries—some directly, such as smart mobile
telephones, and others indirectly, such as ringtones. They are in the
process of transforming industries ranging from automobiles to home
entertainment. They are likely to create more industries—one need only
look at the applications that were quickly built with Google Maps soon
after its release to see the potential. And, finally, they are challenging
many long-established industries, some of which may not survive much
longer. The PC rather quickly killed the typewriter industry, and the
Internet may come close to finishing off the newspaper industry.

We speak loosely when we equate software platforms with the corre-
sponding industries. It is easy to equate Windows and the PC industry,
since Windows more or less defines that industry. It is harder to equate
the Symbian operating system and the mobile telephone industry,
however. The Symbian operating system is, in fact, only one element in
a complex structure that links mobile phone operators, handset makers,

application providers, and software platform makers. But the thesis of
this book is that the underlying software platform technology shapes
these industries, and the business strategies employed by firms in those
industries, in fundamental and important ways. By focusing on the soft-
ware platform we hope to offer the reader a perspective on the business
dynamics and strategies of industries, old and new, that have been
powered by these invisible engines.

Although two of us (Evans and Schmalensee) have worked on issues
related to a major software platform, Windows, since the early 1990s as
consultants for Microsoft in several prominent antitrust cases in the
United States and Europe, our interest in the power of software plat-
forms emanated from a totally different body of work. We have also
been working on and thinking about the payment card industry since the
early 1990s. An interesting aspect of that business is that successful
payment card systems have to get people to use cards and merchants to
accept them in order to even have a product. Two French economists,
Jean-Charles Rochet and Jean Tirole, realized in studying the economics
of the payment card industry that it shares this fundamental property
with many other businesses. Think singles clubs—they need men and
women and in the right proportions to even have a product. Similarly,
advertising-supported media need both eyeballs and advertisers. Any
type of exchange, such as Sotheby’s, Deutsche Börse, or eBay, needs both
buyers and sellers. These are all examples of two-sided platforms.

The two of us have been engaged in the study of two-sided industries
ever since our colleagues Rochet and Tirole made this basic observation
in 2001. We applied that framework in the second edition of an earlier
book, Paying with Plastic, to study the business strategies and dynam-
ics of the credit, debit, and charge card industry.

The third member of our team (Hagiu) decided to write his doctoral
dissertation at Princeton University on the economics of two-sided
markets during this same period. This document contains the first theo-
retical model designed specifically to study two-sided software platforms.

All of us quickly recognized that software platform businesses have at
least two sides. Software platforms consist of services that are often made
available to developers through APIs. They are also made available to
computer users, but those computer users typically avail themselves of

viii Preface

API-based services by buying applications that in turn use APIs. It is only
a slight exaggeration to say that all software platform makers all the time
invest in getting both developers and users to use their platforms. The
developers/users are like the men/women, cards/merchants, advertis-
ers/eyeballs, and buyers/sellers that we mentioned above. In fact,
software platforms sometimes appeal to more than two distinct groups—
including hardware makers and content providers.

The economics of two-sided platforms provides a number of insights
into pricing, design, organization, and governance of platform-based
businesses. We were interested in understanding how this new economic
learning could help shed light on the strategies followed by software plat-
forms. On the flip side, we were interested in understanding how a
diverse set of industries based on software platforms could be probed to
provide insights for students of this new economics.

This book is the result. It blends economics, history, and business
analysis. It is intended for anyone who wants to better understand the
business strategies that have been followed in industries based on soft-
ware platforms. We focus on pricing, product design, and integration
into downstream or upstream suppliers. Entrepreneurs and managers
should find insights that they can apply in their own businesses.

We hope that anyone who wants a concise business history of soft-
ware platforms will find our discussion useful. We present detailed
studies of the PC, video game console, personal digital assistant, smart
phone, and digital media software platform industries. We present
shorter discussions of auction-based and search engine–based software
platforms.

This book does not cover government policies that affect software
platforms. A serious treatment of that subject would require at least
another book. Microsoft alone has been the subject of intense antitrust
scrutiny since the late 1980s as a result of having more than a 90 percent
share of PC operating system sales and engaging in various business prac-
tices that some antitrust authorities and courts around the world have
questioned. There is also a vibrant policy debate over the extent to which
governments, especially in emerging economies, should promote open-
source software that is produced by cooperatives and made available for
free at the expense of proprietary software that is made by for-profit

Preface ix

firms and sold for profits. Google is increasingly at the center of a debate
over the fair use of copyrighted material on the Internet. What can it,
and similar services, copy and share with users? Does Google have to
share any of its profits with the content owners? Our focus, however,
is on what software platform businesses do and why they do it, and we
stay away from debates about whether they should do it.

The book is not written in the technical language of economics jour-
nals, but we believe that our economist colleagues will nonetheless find
that we have assembled factual material that both sheds light on the
theory of two-sided markets and provides a useful reality check on that
theory. We document several important regularities in software plat-
forms. As in many two-sided industries, one side generally gets a really
good deal. Developers get extremely valuable services for nominal cost
from almost all software platform makers in almost all industries, but
there is a notable exception. The size of software platforms expands
exponentially because most makers in most industries add features over
time. Less generally, the tendency is for software platforms to start as
part of a vertically integrated business that becomes more decentralized
over time as markets mature.

Software platforms, working closely with microprocessors in comput-
ing devices, have revolutionized many industries since they became
commercially important in the 1970s. Looking forward, Web-centric
software platforms that work on arrays of servers and that are connected
to the Internet are, we believe, likely to produce changes that dwarf the
revolution we have seen in the last quarter century. Our invisible engines
aren’t the whole story of the tectonic industrial shifts that are upon us.
But they are a central part of the story, to which we now turn.

David S. Evans
Andrei Hagiu
Richard Schmalensee

x Preface

Acknowledgments

This work could not have been completed without the help of many
people and companies, to which we are profoundly thankful.

Melissa DiBella, Laura Gee, and Miroslav Skovajsa of LECG, LLC,
along with Terry Xie of Market Platform Dynamics, helped enormously
with the economic, business, and technical research that underlies this
effort. Others who participated in this research effort at various times
include Howard Chang, Anne Layne Farrar, Susan Hotelling, Albert
Nichols, Brendan Reddy, Amy Stevenson, and Ori Stitelman. We also
thank Karen Webster of Market Platform Dynamics for helping to make
the book friendlier to business readers. Hagiu is also extremely grateful
to the Research Institute of Economy Trade and Industry in Tokyo,
where he was based during most of the writing and which provided
invaluable research support and the kindest hospitality.

We benefited from talking to a number of people in the industries dis-
cussed in the book. We list them alphabetically and without company
affiliations: J Allard, Raj Amin, Brian Arbogast, David Aronchick, Tim
Attinger, Robbie Bach, Gerald Cavanagh, David Cole, Christa Davis,
Michael Dearing, Suzanne DelBene, Alan Harper, James Healy, Carl
Atsushi Hirano, Nanako Kato, Randy Komisar, Larry Kramer, Mitchell
Kurtzman, Ed Lichty, Steve Lifflick, David Nagel, Takeshi Natsuno,
Craig Neumark, Will Poole, Ray Ozzie, and Dwight Witherspoon. We
are particularly grateful for these conversations because, even more than
providing factual information, they helped shape and test our thinking
about the issues discussed in this book. We wish we could have shared
with the reader all of the insights we obtained from talking to these extra-
ordinary individuals.

Much of the intellectual foundation for this book is based on work
we have been conducting since around 2001 on two-sided platforms. We
are grateful to Visa USA for funding our research efforts in that area and
for numerous conversations with Jean-Charles Rochet and Jean Tirole
on this area of economics. We are also grateful to Microsoft Corpora-
tion for funding much of the research that applies the theory of two-
sided markets to software platforms, and for partially funding our
writing in this area. We are especially grateful to Paul Allen, formerly
general counsel of Visa USA, and David Heiner, deputy general counsel
at Microsoft Corporation, for the value they have attached to stimulat-
ing academic research that sometimes seems quite distant from the issues
of the moment.

Jean Tirole and several anonymous reviewers provided detailed and
insightful comments on an earlier version of the manuscript that led to
significant improvements. We are most grateful for their valuable help.
Last, we thank our families for putting up with many late nights and
weekends of writing and research.

We, of course, speak only for ourselves in the following pages. No one
mentioned above necessarily agrees with us about anything. We retain
all rights to any sins, errors, or omissions in what follows.

David S. Evans
Andrei Hagiu
Richard Schmalensee

xii Acknowledgments

1
Invisible Engines

But what . . . is it good for?

—Anonymous engineer at the Advanced Computing Systems Division of IBM,
1968, commenting on the microchip.1

INSIDE THIS CHAPTER

• The definition and history of software platforms

• The businesses powered by software platforms

• The basic economics of software platforms

• The plan of the book

Many modern products run on software platforms. Car engines and nav-
igation systems have one, as do jumbo jets and the handheld devices we
use for emailing and organizing ourselves. Video game consoles from
Atari to Xbox are based on them. French debit cards have included them
for years; these “smart cards” may eventually replace the magnetic stripe
cards that are standard in the United States. Sophisticated mobile tele-
phone services such as i-mode in Japan are based on software platforms.
Personal music devices are as well. And, of course, all sorts of business
and home computers also have them.

Software platforms are based on computer code. The code tells the
microprocessors and other hardware components what to do. It is what

1. Caryn Yacowitz, Vittorio Zaccaria, Mariagiovanna Sami, Cristina Silvano,
and Donatella Sciuto, Power Estimation and Optimization Methodologies for
Vliw-Based Embedded Systems (Norwell, Mass.: Kluwer Academic Publishers,
2003).

makes your computer do calculations, or your personal music device play
songs. And it provides services to applications, such as accessing the
hardware or providing features that many applications would otherwise
have to include themselves. It is what makes handwriting recognition
possible on personal digital devices and enables your employer’s human
resources software to work on the company’s computer system.

Yet these remarkable software engines are invisible to most of us. Their
creators write them in a language that looks almost human. They then
use other code to translate what they have written into machine lan-
guage—combinations of 0 s and 1s that microprocessors understand.
Those digital data are then transferred to the physical memory or storage
in the device itself.

Some software platforms are famous. Linux, the Mac OS, and
Windows are household names. You cannot really see or touch these
products, but at least you can buy a CD and a hefty manual. Others are
known to many business users: z/OS, Solaris, and Unix, for instance.
Many are known only to a few, such as Symbian for mobile phones or
GeoWorks for handheld devices. Others, including the software plat-
forms that are the real brains behind devices such as the Sony PlaySta-
tion or Tivo’s digital video recorder, are truly anonymous.

Software platforms have generated great wealth. Windows has pro-
vided about 40 percent of Microsoft’s revenues in the last decade.2 It has
helped make Bill Gates the richest man in the world. Linus Torvalds has
become a modern icon as a result of writing the first version of the
famous open-source platform, Linux. And software platforms have been
partners in some of the most successful technological marriages of the
last quarter century: the Macintosh, iPod, PalmPilot, Sony PlayStation,
and Xbox are among the better known hardware-software platform
couples.

The computer revolution has been changing our lives now for fifty
years, at an accelerating rate, and much has been written about it. Many
of the companies, products, and entrepreneurs behind this revolution
have become household names. Stories of Steve Jobs and Steve Wozniak
building the first Apple computer in their garage and Bill Gates getting

2 Chapter 1

2. Microsoft 10-Ks, available from sec.gov.

the best of IBM are almost folklore at this point. Economists have written
a fair amount about the computer industry, and business writers have
scoured its history in search of the drivers of great success.

Yet little has been written about software platforms. This is not nec-
essarily remarkable. They are not well-defined products like toothpaste.
The software platform used in i-mode does not compete directly with
the software platform used in Web servers. And they are not compo-
nents, like the engines sold to automobile companies or even the chips
sold to computer device manufacturers. There is no software platform
industry defined in government statistics. Rather, software platforms are
a technology—though one based on a written language—that can be
deployed in a vast range of industries for a great multitude of purposes.

Many economic threads, however, tie diverse software platforms
together. The most critical of these ties is their potential for supporting
a multisided business—one in which value is created by bringing together
on the same platform multiple distinct groups of customers who need
each other in some way. Businesses that cater to the singles scene are one
example of this sort of business. Heterosexual nightclubs must get men
and women together in the same place. Shopping malls are also multi-
sided: their developers create platforms that attract both merchants and
consumers. Similarly, many software platforms provide services to appli-
cation developers and platform users. Like shopping malls, they also
provide a common meeting ground where one side can sell to the other
side.

Once the multisided potential of software platforms is recognized,
other similarities among businesses based on them become apparent, as
do some intriguing differences.

Many charge one customer group little or nothing for using the plat-
form. If you want to write applications for the Symbian operating system
that runs on mobile phones, you can get all the necessary tools and infor-
mation for very little money. The same is true for Apple, Microsoft, Palm,
and most other software platform vendors. They make their money
mainly from users. Manufacturers of video game consoles also have a
skewed pricing model, but they make their money mainly from devel-
opers. Consumers can buy Sony PlayStations, Xboxes, and other con-
soles for prices that sometimes do not even cover manufacturing costs.

Invisible Engines 3

Manufacturers make their money mainly from game developers, who
pay royalties to gain access to the information required to write games
for these consoles.

Most successful software platforms have exploited positive feedbacks
(or network effects) between applications and users: more applications
attract more users, and more users attract more applications. Nurturing
both sides of the market helped Microsoft garner thousands of applica-
tions and hundreds of millions of users for its Windows platform. The
same strategy worked for Sony PlayStation in games and Palm in per-
sonal digital devices. But some software platform vendors have invested
little in providing services to application developers. That was true for
IBM’s mainframe operating system for many years, and is still true for
many manufacturers that make software platforms for dedicated devices
such as ATM machines.

Software and hardware platforms have a symbiotic relationship.
Neither could perform without the other. Businesses have adopted
various ways of dealing with this relationship. Some have tightly inte-
grated their hardware and software platforms; video game console com-
panies are one example. Others have focused on the software platform
and treat much of the hardware side as they do applications. Microsoft
more so than most has operated a three-sided platform that tries to get
users, application developers, and hardware manufacturers on board.

The multisided potential of software platforms is not their only
common feature. They share all the characteristics of complex software.
They are designed, written, and debugged almost entirely by humans.
Much of this work is drudgery, but some of it requires solving difficult
puzzles and writing sophisticated mathematical algorithms. Once
created, a software program is cheaper to replicate and distribute than
a book. After it sells enough copies to cover the costs of creating it, it
becomes a money machine: each copy generates revenue at little extra
cost. But, as with books, recorded songs, movies, and other information
goods, this revenue is at risk from pirates, people who make copies for
free. The intellectual effort that went into the creation of the program is
also at risk. Most software businesses distribute their code only in almost
indecipherable machine language and secure legal protections such as
copyrights and patents to deter theft of their intellectual property.

4 Chapter 1

Some people object to selling software platforms (and other software),
and especially to keeping their code secret. They believe in what is known
around the world as software libre. In some ways, they long for the
earlier days of computing. Computer companies such as IBM used to
include software with their machines; buyers did not consider it some-
thing they paid for separately. For many years after the birth of modern
computing, software was shared among colleagues. The notion of selling
software, and especially software platforms, did not arise until the 1970s,
almost a quarter century after the sale of the first commercial computer.
The software industry started booming in the 1980s and has generated
over $500 billion in sales worldwide in the last three years (we leave all
currency figures in their original amounts and do not adjust for infla-
tion).3 The free software movement has tried to return to the more col-
legial approach of the industry’s youth. Its greatest success is Linux,
which is developed through a collaborative process among programmers
around the world working through the Internet and coordinated through
various committees. Linux is known as open source because you can read
the programming code in which it was written. It is available for free,
subject to some important restrictions we discuss later.

Most software platforms share another feature: they grow over time.
Version 9.0 of the Red Hat Linux OS, introduced in 2003, has 50 million
lines of code, compared with 9 million for Version 5.0, which came out
in 1997. The same is true for the Mac OS. It started with one-fifth of a
megabyte in 1984 and takes up more than a thousand megabytes today.4

Software platforms grow because they do more things—they provide
more features for application writers, end users, or both. In some cases,
they are just taking advantage of faster microprocessors and larger
memory. In others they are absorbing features that were once performed
by separate applications. As more people began wanting to connect to

Invisible Engines 5

3. Richard V. Heiman, Sally Hudson, Henry D. Morris, Albert Pang, and
Anthony C. Picardi, “Worldwide Software Forecast Summary, 2003–2007” (IDC
report no. 30099), September 2003; Richard V. Heiman and Anthony C. Picardi,
“Worldwide Software 2004–2008 Research Summary” (IDC report no. 31785),
August 2004.

4. http://applemuseum.bott.org/sections/os.html;
http://www.apple.com/macosx/techspecs/.

the Internet, for example, software platforms started including commu-
nication protocols that made that easier to do.

The following pages document patterns and anomalies across busi-
nesses based in whole or in part on software platforms. These regulari-
ties and irregularities are the source of insights that we hope will be
useful to entrepreneurs and investors as well as economists. The patterns
result from the underlying economics of software platforms. The skewed
pricing structures that appear for most software platforms are common
in other multisided platform businesses. Not surprisingly, the anomalies
are both more intriguing and harder to rationalize. Economics, however,
can narrow down the possible explanations. The differences between
software platforms for video game consoles and PCs could result from
path dependence (they started from different points, which determined
their futures) or fundamental differences in economics (the manufacturer
needs to make a market for game consoles to induce application devel-
opers to write, or consumer tastes for applications differ from those for
games).

The challenges faced by software platform businesses are encountered
by many other businesses that are multisided, or could be. Deciding
whether and when to rely on outsiders for crucial complementary
products is critical. Microsoft has built a software platform empire
through partnering with many other firms that produce complements for
it. But Apple’s iPod/iTunes music platform has found success by doing
everything from making the music device, designing the software, and
running the music store. Pricing is key as well: finding the right balance
between the various sides is one of the hardest problems faced by plat-
form businesses. 3DO’s innovative game platform died a quick death
when it priced its consoles too high and its royalties for game develop-
ers too low. An ill-chosen pricing strategy put Microsoft’s Xbox on the
brink of disaster but one that it averted in time. Other platform busi-
nesses could learn from how software platforms load features to get and
keep both sides on board. Whether you use Windows, Linux, or the Mac
OS, most of the code on your hard disk has no direct value to you. Much
of it is there for developers of applications, most of which you will never
use. Other portions are there to provide esoteric features that only a few
of us use.

6 Chapter 1

Making Computers Smaller

Products based on software platforms abound because of the micro-
processor revolution that began in the 1970s.

The first general-purpose electronic computer, ENIAC, was created
during World War II for calculations that helped aim artillery toward
targets. Based on 18,000 vacuum tubes, it was 100 feet long, 8.5 feet
high, and several feet wide. The development of the transistor, which
began in the late 1940s, led to the second generation of computers. The
transistor serves the same function as the vacuum tube but is much
smaller, requires much less power, and is much more reliable. Second-
generation computers were thus smaller and less expensive to run. Third-
generation computers were made possible with the invention of the
integrated circuit in 1959.

The integrated circuit, which combined several transistors and other
circuit elements into a single component, not only further reduced the
size and price of computers but also made them faster. Admiral Grace
Hopper, a pioneering software programmer, was famous for carrying
around a “nanosecond”—a footlong piece of telephone wire represent-
ing the maximum distance electricity can travel in one nanosecond. She
used it to illustrate that computers had to be small to be fast. And com-
puters did get smaller. The popular IBM System/360 Model 30, intro-
duced in 1964, took up about 106 cubic feet.5 Minicomputers were even
smaller. Digital Equipment Corporation’s PDP-8, introduced in 1965,
was only about 8 cubic feet. Minicomputers were small enough that
manufacturers could, for the first time, integrate computing power into
laboratory devices and other equipment.

The current generation of computers began with the development of
a microprocessor at Intel. The microprocessor packs the whole central
processing unit (CPU), which is often called the brains of the computer
and which involves many transistors, onto a single semiconductor chip.
This has made it possible to provide massive amounts of computing
power in small devices. Produced in 1971, the Intel 4004 was the first
microprocessor. It had 2,300 transistors on a silicon wafer the size of a

Invisible Engines 7

5. http://homepages.kcbbs.gen.nz/nbree/saga.html.

ladybug and could perform 60,000 instructions a second. Three years
later Intel introduced the Intel 8080, which had 4,500 transistors on
a silicon wafer of about the same size as the 4040 yet could perform
more than 500,000 instructions per second. It is considered the first
general-purpose microprocessor, and its release marked the birth of the
microprocessor industry. It soon spawned the first microcomputer, the
Altair 8800, and the first video game system, Midway’s Gun Fight arcade
game.

The computing power of microprocessors depends on the number of
transistors on the chip. Manufacturers have approximately doubled that
number about every 18 months since the 1970s (this regularity is known
as Moore’s Law).6 A computer science textbook published in 2002 notes
that “the highest-performance microprocessors of today outperform the
supercomputer of less than 10 years ago.”7 That microprocessor is the
size of a fingernail; the supercomputer filled a room.

The price of computing power has declined as well, in part because
microprocessor production allows for extensive scale economies. This
decline has been dramatic. For example, the number of integer opera-
tions per second per dollar grew more than 500-fold between 1990 and
2004.

Other hardware advances have helped miniaturize computing devices.
The most notable is the decrease in the size and cost of disk storage.
During this same time period, the amount of magnetic disk storage that
could be purchased with a fixed dollar budget increased by about 500
times, and the disk density or the number of megabytes per square inch
of disk surface increased by more than 1,200 times.

Advances in technology and computer design have provided ever
smaller and cheaper computers. A comparison of specifications makes
clear that a typical $1,000 computer bought around 2003 had greater
computational performance, main memory, and disk storage than a
$1,000,000 computer bought around 1980. Even more remarkable are
consumer products that are based on computing devices.

8 Chapter 1

6. Paul Freiberger and Michael Swaine, Fire in the Valley, 2nd ed. (New York:
McGraw-Hill, 2000), p. 377.

7. John L. Hennessy and David A. Patterson, Computer Architecture: A Quan-
titative Approach, 3rd ed. (New York: Elsevier, 2002), chap. 1.

At less than 4 cubic inches, the 2004 iPod mini can easily fit in a shirt
pocket. It has two 80-MHz microprocessors and can store more than
1,000 pop songs on its 6-gigabyte storage disk. At $249, it is several
times more powerful than the multi-million-dollar IBM System/370
available in 1970.

The Growing Family of Computer-Based Products

The microcomputer industry grew rapidly as a result of these favorable
technological and cost trends. In 1981, shortly after IBM added its
microcomputer to the ones already introduced by Apple and others in
the late 1970s, 344,000 microcomputers were sold in the United States.
By 2004 there were an estimated 822 million computers in use world-
wide. Almost every office worker in the United States now has one, and
56 percent of American households have at least one.8

The video game device was the first mass-produced good based on the
microprocessor that was not a traditional computer. The early devices,
introduced in the late 1970s, played a single game. Over time, video
game consoles were developed that rivaled the most sophisticated per-
sonal computers. These were able to play numerous games that were
compatible with their software and hardware. By 2002 the video game
industry had reached $21 billion of annual revenue from the sale of con-
soles and games, surpassing the movie industry’s $19 billion in annual
box office revenues that same year.9

The increasing power and decreasing size of microprocessors and other
hardware components made handheld computers feasible by the late
1980s. The Apple Newton was the first of these. The original Newton
was about the size of a VHS cassette and functioned basically as an elec-
tronic notepad. It was technically interesting but a commercial failure.
A few years later Palm introduced the PalmPilot, which had widespread
appeal and helped create the handheld industry. At first these products
were used mainly as sophisticated organizers; they competed with

Invisible Engines 9

8. Rex Crum, “Computer Industry Almanac Sees 1 Billion PCs by 2007,” CBS
Market Watch, March 9, 2005 (available from Lexis-Nexis); http://www.census.
gov/population/socdemo/computer/ppl-175/tab01A.pdf.

9. “Gaming’s New Frontier,” The Economist, October 2, 2003.

Filofax. Over time they added Internet browsing and wireless email. In
2004, more than 31 million handheld devices ranging from BlackBerries
to Treos were sold worldwide.10

Many, if not most, new mobile phones have calculators, games, and
other computer-based features, and it is often possible to access more
applications by downloading them directly from the Internet or down-
loading them to a PC and transferring them to a mobile phone. As wire-
less networks have gotten more sophisticated, wireless telephone
companies have turned their phones into Web portals through which
users can obtain various kinds of content and send email. Japan’s
DoCoMo was the pioneer here. Vodafone and other mobile networks
have followed. There were more than 1.5 billion mobile phones in use
worldwide in 2004.11

Digital music devices started becoming popular in the early 2000s.
Their roots go back to the PC. Starting in the early 1990s, PCs could
play CDs, and by the mid-1990s they could store and retrieve digital
music tracks on disks. Various formats were developed for transmitting
digital music over the Internet, including MP3, and several “media
players” became popular for playing and manipulating music on PCs.
Stand-alone MP3 players were introduced in the late 1990s. The indus-
try is now synonymous with the iPod, introduced in 2001. More than
32 million handheld music devices were sold in 2003, and this industry
is expected to expand dramatically with the increasing popularity of
downloading music.12

Microprocessor-based computing devices were incorporated into
many other products starting in the 1980s. ATMs are one example.
Intel 8086 microprocessors powered cash dispensers in the late 1970s.
Over time, ATMs have become PC-compatible devices that use stripped-
down versions of common PC software platforms such as Windows
or Linux. Cars are another example. Indeed, software gremlins are

10 Chapter 1

10. David Linsalata, Kevin Burden, Ramon T. Llamas, and Randy Giusto,
“Worldwide Smart Handheld Device 2005–2009 Forecast and Analysis: Passing
the Torch” (IDC report no. 33415), May 2005, table 1.

11. http://www.itfacts.biz/index.php?id=P2193.

12. Susan Hevorhian, “Worldwide Compressed Audio Player 2004–2008 Fore-
cast: MP3 Reaches Far and Wide” (IDC report no. 31811), August 2004, table 4.

behind a spate of complaints about windows going down on their own
and temperature control systems turning up the heat on hot summer
days.

The French payment card system started incorporating microproces-
sors into their debit cards in the late 1980s.13 These were used mainly
for verification. Cardholders entered their personal identification number
on a reader that verified it against the number contained in the chip.
These “smart cards” have gotten more capable and cheaper to produce.
The major card systems have worked on developing software and hard-
ware standards for these cards. Smart cards are being used at colleges to
keep track of meals, for social welfare programs, and for secure pur-
chasing over the Internet. Several card issuers in the United States have
introduced “contactless” chip cards that are simply waved at a device at
the point of sale. It is likely that within a decade, most of the cards used
for payment around the world will be smart cards and thus based on
small computers. (In 2003, there were already 220 million smart cards
involved in banking-related uses alone worldwide.14)

Software Platform Elements

A complete software platform does everything from telling the micro-
processor to turn switches on or off to providing a host of full-fledged
software features for application developers that save them the time of
writing those features themselves. Many software platforms, though, are
based on different software programs that provide different portions of
these services. The boundaries between these programs are not always
clear in practice and can change over time. To add to the confusion, these
programs have names that are sometimes used interchangeably even
though the programs do somewhat different things.

Moving from controlling the microprocessor to serving application
developers, it is useful to distinguish four kinds of platform-related
programs.

Invisible Engines 11

13. David Evans and Richard Schmalensee, Paying with Plastic, 2nd ed. (Cam-
bridge, Mass.: MIT Press, 2005), p. 302.

14. http://www.epaynews.com/statistics/scardstats.html#7.

Software platforms are often, but not always, operating systems. The
nucleus of a computer operating system is generally called the kernel. It
manages the processors, memory, input and output, and certain support
functions. It controls the hardware to calculate 2 + 2 and sends “4” to
an output device. This is the first thing Linus Torvalds wrote to get Linux
going.

The operating system generally also assists application programs
in other ways. For example, it may help programs display complex
graphics, such as a three-dimensional graphical depiction of 2 + 2 = 4,
on a mobile phone screen or computer monitor. PC operating systems
such as the Mac OS X are usually full-fledged software platforms; only
the operating system stands between the hardware and the applications.
In this case the terms operating system and software platform are syn-
onymous.

Middleware typically refers to software that specializes in providing
services to application developers. It does not have a kernel, and it relies
on the operating system to control the hardware. Some middleware sits
on top of an operating system kernel and does everything besides basic
hardware support. For example, the operating system for the Sony
PlayStation is little more than a kernel; game developers such as Elec-
tronic Arts write their own middleware, which provides support for
various PlayStation games they create. Other middleware leaves tasks to
an operating system that go beyond those generally performed by the
kernel. And some middleware sits on top of a software platform: it may
help applications run on many different software platforms, and it may
compete with the software platform for the attention of application
developers. That is the case with Sun’s Java technologies.

Another critical aspect of a software platform’s architecture is whether
it is open or closed. With an open platform, anyone with the right tech-
nical knowledge can obtain access to the services provided by the plat-
form or its underlying elements. Most PC platforms are open: one can
write applications for the Mac OS or Windows without getting permis-
sion from the manufacturers. With a closed platform, only those with
permission to use the platform can benefit from its services. Most game
and mobile telephone platforms are walled off. Programmers have to get
a “certificate” to get access to the operating system and hardware

12 Chapter 1

on these computing devices. Hacking is still possible, but much more
difficult.

The Plan of the Book

This book is organized into four major parts. The next two chapters
provide background. Chapter 2 describes software platforms from a
technological standpoint. What do they do? How do they do it? How
are they created? Chapter 3 considers their key economic aspects. It
introduces the economics of two-sided markets, which is critical for
understanding the nature of the demand for software platforms. It also
explores characteristics that software platforms share with other soft-
ware products and many information goods.

In the second part, Chapters 4 through 8 analyze important industries
in which software platforms have played a prominent role, either as a
standalone product or as an important component in a computer system
consisting of hardware and software. The chapters in this section
examine, in order, PCs, video games, handheld devices, mobile tele-
phones, and digital music players and devices. These chapters are not
intended to provide a complete history of these industries. After some
initial background discussion, each chapter focuses on the strategies that
companies pursued in these industries over time. In particular, we look
closely at efforts to get multiple customer groups on board the platform,
pricing, product design, and the organization of the supply chain and
ecosystem. To help the reader understand the evolution of these indus-
tries, we present a timeline of the events we focus on for each chapter.
(A historian of these industries would no doubt create a somewhat
different timeline of key events.)

The third part, Chapters 9 through 11, examines the similarities and
differences across these industries on several critical dimensions. Chapter
9 compares and contrasts business strategies for supplying software plat-
forms. The focus is on business integration among the various levels of
providing computer systems. Why have some companies chosen to
provide both the hardware and the software platform, while others in
the same segment have specialized in the software platform? How does
the decision to disintegrate vertically vary over time, and why? Chapter

Invisible Engines 13

10 looks at pricing. We show that all these industries charge one cus-
tomer side a “low” price. With the exception of video game consoles, all
provide software developers with inexpensive access to valuable features
in the platforms. What is the reason for the single exception? Chapter
11 examines the bundling of features. Like most information goods, soft-
ware platforms combine features that attract very different groups of cus-
tomers. What is extraordinary is the extent to which software platforms
grow through the accumulation of features.

The fourth part, which consists of just Chapter 12, focuses on the role
of software platforms in the process of creative destruction. Many soft-
ware platforms have marched from the narrow market in which they
were first introduced into other markets. PCs and video game consoles
are both trying hard to get into your living room. Mobile phones are
moving into digital cameras, personal music devices, personal digital
assistants, and payment cards. The boundaries between software plat-
forms and the industries they power are blurring. Many call this con-
vergence. But it is also a life-and-death struggle for the businesses
involved. As the iconic Pilot goes the way of the typewriter, the Palm OS
may evolve into a successful mobile phone software platform, or it may
just wither away. As some software platforms—and whole product cat-
egories—die, others are born.

Chapter 12 also looks at the role of two types of software platforms
that were born shortly after the start of the commercial Internet in 1995.
Both are Web-centric platforms. Both are designed to facilitate transac-
tions between buyers and sellers in the economy. The code sits on servers
that are connected to the Internet. One type is based on conducting auc-
tions, the other on conducting searches. As of 2006, eBay and Google
are the leaders in these respective categories.

Although these companies are not in the business mainly of providing
software services to users or developers, they have opened their software
code to developers and are providing services that facilitate developers
writing applications. These Web-centric platforms will be sustaining a
vast economy of developers, based on the experience of other software
platforms we have examined. The symbiotic relationship between and
among the platforms, developers, buyers, and sellers is expected to lead
to profound changes in the retail economy.

14 Chapter 1

INSIGHTS

• Software platforms are invisible engines based on written computer
code. Software platforms power, to varying degrees, many modern indus-
tries, including digital music, mobile phones, on-line auctions, personal
computers, video games, Web-based advertising, and online searches.

• Starting in 1970, the microprocessor revolution has stimulated the
development of software platforms for diverse computing devices,
enabled software platforms to migrate to smaller devices, and helped
software platforms do more over time everywhere they are used.

• Software platforms usually provide valuable services to people who use
computing devices, developers who write applications, and makers of
computing hardware.

• Most businesses based on software platforms follow multisided strate-
gies to get users, developers, and hardware makers on their platforms.
These strategies are critical for harnessing positive feedbacks. For
example, users value more applications, and applications developers
value more users.

Invisible Engines 15

2
Speaking in Code

I have traveled the length and breadth of this country and talked with the best
people, and I can assure you that data processing is a fad that won’t last out the
year.

—The editor in charge of business books for Prentice Hall, 19571

INSIDE THIS CHAPTER

• The birth and evolution of modern computing

• The development of operating systems and software platforms

• The role of APIs in reducing duplication of programming efforts

• The production of commercial and open-source software

Software platforms come in several varieties, depending on what the code
does and where among the various computing devices it resides.

Some have a single block of code that does everything from control-
ling the switches in the microprocessors to helping applications show
three-dimensional objects. When you play Doom 3 on your Apple PC,
the Mac OS X code is doing a lot of the work.

Others come in pieces. There is code on the device that controls the
microprocessor. Then there is another piece that provides services to pro-
grammers who are writing applications for the device. The Nokia Series
60 Platform is what mobile phone applications use for many software
services. The Nokia platform in turn relies on the Symbian OS to control
the phone hardware.

1. Allan Afuah, Innovation Management: Strategies, Implementation and Profits
(New York: Oxford University Press, 2003).

Still other software platforms are written so that they can work
on multiple devices with different microprocessors and operating systems
that control those microprocessors. The Java 2 Micro Edition provides
technologies that enable developers to write programs that can run
on consumer electronics devices with different chips and operating
systems.

These alternatives for building and providing software platforms have
key consequences for the structure of industries based on computer
devices and the dynamics of competition within these industries.

The Historical Foundations of Computers and Programming

A program tells a computer what to do.
A loom designed by Joseph Jacquard in 1801 was the first program-

mable computing device. The Jacquard loom used punch cards made of
stiff pasteboard to control the patterns of threading through the fabric.
It revolutionized the textile industry—after a rebellion of weavers who
feared it would eliminate their jobs was put down. Punch cards remained
the dominant method for transmitting programs to computing devices
until the late 1970s: “do not fold, spindle, or mutilate” was a famous
programmer admonition.2

The origins of modern computing lie in efforts to make performing
complex calculations easier. Charles Babbage developed the basic ideas
behind mechanical computing and programming in the early nineteenth
century out of frustration.3 As Babbage wrote in his memoirs,

. . . I was sitting in the rooms of the Analytical Society, at Cambridge, my head
leaning forward on the table in a kind of dreamy mood, with a table of loga-
rithms lying open before me. Another member, coming into the room, and seeing
me half asleep, called out, “Well, Babbage, what are you dreaming about?” to
which I replied “I am thinking that all these tables” (pointing to the logarithms)
“might be calculated by machinery.”

He invented mechanical methods (using a machine called the Difference
Engine) for calculating astronomical and mathematical tables, and

18 Chapter 2

2. http://ccat.sas.upenn.edu/slubar/fsm.html.

3. Charles Babbage, Passages from the Life of a Philosopher (London, 1864),
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Babbage.html.

reported them in an article published in 1822.4 He went on to describe
an “Analytical Engine” based on Jacquard’s punch cards that contained
many of the features of modern computers.

Though it was never actually built, Babbage’s Analytical Engine led to
a mathematical literature on how to write programs to solve problems
with it. Ada King, the countess of Lovelace and Lord Byron’s daughter,
is often credited, along with Babbage, with whom she collaborated
closely, with the first computer program—a set of instructions for cal-
culating a sequence of numbers (+1, −1/2, +1/6, . . .) known as Bernoulli
numbers. Although it is a matter of dispute whether she was an origi-
nator, interpreter, or popularizer, many of the ideas of contemporary pro-
gramming were presented in her 1843 annotated translation of
Menabrea’s Notions sur la machine analytique de Charles Babbage.

The British government withdrew funding for an advanced version of
Babbage’s Difference Engine, and the Analytical Engine was beyond the
technology available in the mid-nineteenth century. Further significant
advances were not made until the demands of World War II, combined
with technical progress, resulted in several breakthroughs, and until
mathematicians Alan Turing, Claude Shannon, and John von Neumann
laid the modern foundations of computer programming in the years
before and after the war.

In the late 1930s, Turing, who is famous for writing programs that
helped crack the Germans’ Enigma code during World War II, published
a paper that introduced what is now known as the Turing machine. It
described the features of a mathematical computational device using a
tape the machine can read and write on, and it defined a group of tasks
that could be computed using this device.5

Speaking in Code 19

4. http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Babbage.html.
The Difference Engine was “programmed” to evaluate a polynomial such as
y = a × x2 + b × x + c for successive values of x given the values of a, b,
and c.

5. A Turing Machine is a “state machine”: at any time it is in one of a finite
number of states. It has a head that can read and write symbols—a 0 or 1, for
example—onto an infinite tape. For every combination of a current state and the
symbol under the head, a new state and action are defined. The action can be
one of the following: change the symbol under the head, move the head one step
right, or move the head one step left. The machine halts if there is no action
defined for the current combination of a state and symbol under the head.

A program for this machine consists of a series of instructions:

20 Chapter 2

6. Shannon relied on a branch of mathematics known as Boolean algebra.

X ← Read the symbol under the head;
If there is a transition rule for the combination of X and the current state
N

Then write Y on the square under head or move the head one step left
or right

Then change state to M
If not halt
Repeat

All current computers and higher programming languages are mathe-
matically identical to a Turing machine, though much easier to use.
The concepts of if and then are important parts of the programming
idiom.

Claude Shannon recognized that 0s and 1s could be used to represent
whether relay and switching circuits were on or off. In his 1938 MIT
master’s thesis, he demonstrated that these circuits could be used to
perform complex calculations based on a series of 0s and 1s.6 A decade
later he coined the term bit—from binary digit—in a paper on signal pro-
cessing that founded modern information theory.

By the time of Shannon and Turing, hardware technology had pro-
gressed far enough that their ideas were soon put into action. Mechan-
ical computing machines had been around for many years, ranging from
the abacus for simple calculations to gear-shaft and cog systems that
could solve differential equations. The demands of World War II saw the
development of electronic computers in England, Germany, and the
United States. The ENIAC, mentioned in the introduction, is considered
the first fully operational electronic general-purpose computer. Unlike its
special-purpose mechanical predecessors, it had “conditional jumps”
(such as “if X go to instruction N”) and could do many different kinds
of calculations. Operators programmed it manually by setting switches
and plugging cables. Data for programs were entered and stored on
punch cards. This system was tedious.

John von Neumann helped devise what became the programming
architecture of modern computers. His key insights were that instruc-
tions could be reduced to binary values and that both instructions and
data could be stored efficiently in memory. This led to an architecture
consisting of five components: an input unit, a control unit, memory, a
calculating unit, and an output unit. The instructions are fetched and
executed one at a time—sequentially—by the central processing unit
(CPU). The CPU must have almost instantaneous access to memory for
this to work. Practically, that resulted in a hierarchy of memory based
on access speed, including what is now called random access memory
(RAM). The stored program computer became the mainstay of the com-
puter industry.

The Development of Programming Languages

A programming language has a vocabulary and grammatical rules that
permit humans to communicate instructions to computers.

From the introduction of the ENIAC, machines have only understood
a language consisting of 0s and 1s. That is called machine language. The
invention of a stored program permitted computer operators to convey
instructions through punch cards containing 0s and 1s rather than
manipulating cables and toggles. That tedious process was made simpler
by the invention of what is known as assembly language to convey these
instructions. Something like the use of “LOL” for “laughing out loud,”
“li $t0 8” instructs the computer to load the value 8 into register t0 in
the processor; this command replaces writing 001101 00000 01000
00000 00000 001000 in machine language.7 Short Code, invented in the
late 1940s, was the first programming language. The programmer used
its symbols to write out a program. When complete, she then had to
translate the symbols back into 0s and 1s. A few years later that tedious
process was eliminated with the development of a compiler that did this
translation automatically.

Higher-level languages were then developed that made “writing”
complex programs substantially easier because the programming is done

Speaking in Code 21

7. 34080008 in hexadecimal notation.

at a level that is intuitive to humans. The programmer can simply instruct
the computer to add two numbers, for instance, without keeping track
of where in the CPU they and their sum are stored. FORTRAN, devel-
oped at IBM for scientific computing and introduced in 1957, was the
first of these languages. Its vocabulary provides a sense of what it could
do: IF, THEN, GOTO, DO, END, TRUE, FALSE. It was especially
popular for scientific applications. Other languages were developed over
time, such as COBOL, which was used mainly for writing business appli-
cations. FORTRAN and COBOL were used to develop applications for
mainframe computers, large computers owned by enterprises. Today,
most of the code running on mainframe computers is in COBOL.

Another popular language was BASIC. It was introduced as a teach-
ing tool at Dartmouth College in 1963. It had a simple vocabulary and
grammar and was easy for beginners to use. It became the leading lan-
guage for the PCs introduced in the late 1970s in part because it required
little memory. Microsoft’s first product was a version of BASIC for the
Altair, the first PC. Soon after dropping out of Harvard, Microsoft
founder Bill Gates wrote a BASIC interpreter—which is similar to a com-
piler in the sense that it translates a higher-level language into something
the machine can understand—that fits into 4 kilobytes (kb) of memory
(about 10 percent of the memory on a smart credit card).8

The simple program in Figure 2.1 illustrates the role of a high-level lan-
guage. We start with an algorithm for calculating 2 multiplied by itself n
times (that is, 2 to the nth power), where the user can specify any n she
would like. We then write a program in BASIC that communicates this
algorithm to a computer. That program is then translated into 0s and 1s.
We represent the 0s and 1s in hexadecimal notation (each pair of hexa-
decimal digits corresponds to a unique combination of eight 0s and 1s).

Even in the early days of computing, programs designed for business
or technical applications might have had many thousands of lines of
high-level code. In order to write such large programs in a timely fashion
it was necessary to have many individuals working in parallel. Unfortu-
nately, changes to any one part of a large program may affect how other

22 Chapter 2

8. Smart cards have 24kb of ROM and 16kb of programmable ROM.
http://electronics.howstuffworks.com/question332.htm.

parts operate, so the more individuals there are working in parallel on
a single program, the more likely it is that they will create problems for
one another and thus slow the effort down.9

The solution to this problem has been to exploit the power of
modularity in software design.10 The basic idea is to move from the
specification of what a new program as a whole should do to the specifi-
cation of an architecture that describes the overall program as a set
of modules, specifies the functions that each module is to perform, and
specifies the interfaces that link them. In a program to handle payroll,
for instance, one module might be assigned the task of calculating each
employee’s Social Security contribution as a function of current law,
this period’s earnings, and past contributions—all supplied by other
modules. If the program’s architecture is sound, individuals or small

Speaking in Code 23

Get n from the user.
Let i = 0.
Let x = 1.

Add 1 to i.
Multiply x by 2.

Design

no

yes

Source Code Machine Code

Is i < n? Output x.

INPUT n
i = 0
x = 1

PRINT x
END

mark:
IF i < n THEN
 i = i + 1
 x = x * 2
 GOTO mark
END IF

.. 01 03 F0 3B C3 73 28

80 3D 04 74 07 2B 7D FD

8B F7 EB C1 89 36 76 00

F9 C3 8B 36 76 00 80 3C

01 75 07 8B 44 FD 3B C3

73 06 F9 C3 03 D8 EB 1A

74 18 2B C3 3D 06 00 72

F3 2B F3 C6 04 01 89 44

FD 2B F0 89 44 01 03 F0

03 F3 51 57 06 1E 07 8B

FE 2B FB 89 3E 76 00 ..

Figure 2.1
Simple program: from design to source code to machine code. The machine code
is written in hexadecimal notation (where numbers go up to 16 and A–F repre-
sent 11–16).

9. This is a general property of complex systems: changing the engine in a car,
for instance, may require making changes in its brakes, fuel tank, frame, and
many other components. The classic discussion in the context of software is Fred-
erick P. Brooks, The Mythical Man-Month: Essays in Software Engineering (New
York: Addison-Wesley, 1975).

10. This powerful idea is used in a wide variety of design contexts. See Carliss
Y. Baldwin and Kim B. Clark, Design Rules (Cambridge, Mass.: MIT Press,
2000).

teams can work in parallel in the various modules, and if the modules
meet their specifications, the program built by linking them together will
operate as intended.

The modular approach has numerous advantages. If a new program
(or other complex system) can be specified as N modules, N teams
can work in parallel. Moreover, individual modules can subsequently
be improved without touching other parts of the overall program, and
they can be used in other programs. On the other hand, specifying
an architecture in detail is complex, and unforeseen interdependencies
between modules often occur in development and have to be resolved.
Because of the complexity involved, innovation at the architectural
(as opposed to modular) level is difficult. Finally, an architecture that
facilitates program development (by having a large number of modules
and simple interfaces, say) may fail to optimize performance (by, in
effect, requiring excessive communication between modules, for
instance). There are trade-offs between and among modularity, design
costs, and efficiency.

Object-oriented programming is a recent innovation in high-level lan-
guages based on modularity. A program is written as a set of objects,
each of which corresponds to particular functions and data. The other
parts of the program can then use these objects to get access to the data
and functions they include. These objects make it easier to reuse code
for multiple purposes. The programmer can just take one of these com-
ponents off the shelf, so to speak, and deploy it when needed. The pro-
grammer can also decide to make any object off-limits to certain other
parts of the program in the interests of reliability.

Two high-level languages, C and Java, are widely used today for
writing much of the software discussed in the following pages.

C, along with its variants (including C+, C++, and C#), is the most
widely used programming language. It was developed at Bell Laborato-
ries in the 1970s. Though difficult to learn, it is one of the most power-
ful and flexible languages for writing efficient programs. It is especially
popular for writing system software such as the operating system. C++
added object-oriented programming to C.

Sun’s Java programming language is part of a set of programming tech-
nologies that are designed so that applications can run on many differ-

24 Chapter 2

ent operating systems and hardware configurations: “write once, run
everywhere” is its aspiration and mantra. It was originally developed for
handheld devices and has become widely used for writing small Web-
based applications. Similar to C++, Java is an object-oriented language.
Java programs go through a series of translations that enable them to be
run on different machines. The programs are first compiled into byte
code files, which can then be translated into machine-level instructions
by a Java Virtual Machine that is written specifically for an individual
operating system or hardware platform.

Evolution of Operating Systems

Modern operating systems are software programs. If you think about the
computer platform from the viewpoint of the microprocessor, the oper-
ating system is usually the only program from which the CPU receives
instructions. All other programs sit on top of the operating system and
interact with the CPU only through it. Today, most operating systems
are written in a high-level language such as C++ and are then translated
into machine language before being installed on the computer hardware.

There were no operating systems for the early computers. From the
late 1940s to the mid-1950s, a person ran the machine from a console
that had toggle switches and display lights. Programs in machine lan-
guage were submitted to the machine through a punch card reader.
Debugging programs required looking at lights for the processor regis-
ters and main memory to figure out the source of the errors. Moreover,
it was hard to schedule time with the expensive computing hardware.
Only one program could run at a time, and users had to schedule blocks
of time. They might finish early and leave the computer idle for a time,
or not get any results at all before their time ran out.

Batch operating systems were developed to maximize the utilization
of these expensive machines. General Motors created the first in the mid-
1950s for use on its IBM 701 computer.11 Other customers followed

Speaking in Code 25

11. Frank Hayes, “The Story So Far: Bell Labs, GM and MIT Played Major
Roles in the Development of Operating Systems,” Computerworld, 30, March
17, 2003.

suit. By the early 1960s, many computer manufacturers had developed
batch operating systems for their machines. These early systems had a
monitor. Although now synonymous with the screens many of us look
at for hours every day, the original monitor was a portion of the code
that acted as a sentry. That sentry controlled the sequencing of instruc-
tions to the processor, prevented user programs from altering memory
where the monitor program itself resided, reserved for itself certain priv-
ileged instructions such as input and output, and timed programs to
prevent them from using system resources for too long. Users could com-
municate with the monitor using job control language (JCL). In these
early days of computing, programmers put canned JCL instructions at
the beginning and end of their programs—all on punch cards.

In those days, inputting instructions and outputting results accounted
for most of the time it took to run a program. The CPU was mostly idle
while this was going on. Multiprogramming (or multitasking) was devel-
oped to make better use of the CPU. It required hardware that enabled
the processor to be interrupted when input and output operations were
completed and there was computing to be done. And it required memory
management that enabled several programs to be kept in the main
memory and that juggled the execution of these programs around while
input and output operations were being conducted. One of the first mul-
tiprogrammed, batch operating systems was the IBM OS/360 for the
System/360 in 1964.12

“As more and more features have been added to operating systems,
and as the underlying hardware has become more capable and versatile,”
William Stallings has observed, “the size and complexity of operating
systems has grown.”13 UNIVAC’s operating system for the 1107,

26 Chapter 2

12. A related development during the late 1960s and 1970s was time-sharing.
Programmers interacted directly with the computers during the very early years,
and, although it was inconvenient, they could see and debug errors in real time.
Batch processing cut the connection between the programmer and computer. The
programmer had to submit a job and get the results back from the computer
operator. Multiprogramming helped make it possible for multiple users to inter-
act with a machine. Users submitted commands at a terminal and got responses
back from the computer. Time-sharing systems traded increased processing use
for decreased response time for the user.

13. William Stallings, Operating Systems: Internals and Design Principles, 4th
ed. (Upper Saddle River, N.J.: Prentice Hall, 2001), p. 77.

announced in 1960, had 25,000 lines of code.14 IBM’s OS/360 had a
million lines when introduced in 1964. The Multics operating system,
developed by MIT and Bell Labs, had 20 million in 1975. Windows XP
has about 40 million.15 These are not apple-to-apple comparisons
because they are for different programs written for different systems.
Nonetheless, they highlight an important trend throughout the history
of operating systems.

Operating system designers have added features that make improved
use of the hardware or that control new hardware features. More impor-
tant for the evolution of industries based on software platforms, oper-
ating system designers have also added many features that save
programmers from having to write their own code. Just as object-
oriented programming helps programmers avoid reinventing the prover-
bial wheel—such as code for displaying data in three dimensions—
developing operating systems as rich sets of modules and making public
the interfaces that link them saves programmers of diverse applications
from having to write code for a wide variety of common tasks. Indeed,
this modularity has transformed operating systems into software plat-
forms. We explain how next.

Application Programming Interfaces

Operating systems provide services to applications through Application
Programming Interfaces (APIs). These services range from rudimentary
hardware services, such as moving a cursor on a monitor, to sophisti-
cated software services, such as drawing and rotating three-dimensional
objects. The APIs serve as interfaces between these services and applica-
tions. (As we discuss later, they may also serve as interfaces between
modules of the operating system itself.)

Applications obtain services by passing specific information to the
APIs and obtaining other information back. The API, which the pro-
grammer sees, calls on a black box (a system module), which the pro-
grammer does not see, to perform a specific task. The method is similar
to the mathematical functions included in high-level programs. Suppose

Speaking in Code 27

14. http://www.cc.gatech.edu/gvu/people/randy.carpenter/folklore/v1n3.html.

15. http://en.wikipedia.org/wiki/Source_lines_of_code.

you wanted a computer to multiply two numbers, X and Y. You could
write that program in machine language to get the microprocessor to do
that. But since multiplication is a common problem that people face,
high-level languages all have functions that do this for you. All you have
to do is give the value of the two numbers to a function in the program
and the function will return the result. In particular, you might write X
= 6, Y = 7, and Z = X∗Y; “*” is often the symbol that tells the high-
level language that it should insert X and Y as arguments in its multi-
plication algorithm. You will get the answer 42, although you will never
see the machine code that does the calculation.

The APIs for operating systems take “arguments” (like the 6 and 7 in
the example above) from the application program and call on “system
services” (like the machine code that calculates 6 times 7) to perform the
work desired by the application program. The Linux kernel has an API,
shown in Figure 2.2, that allocates memory for an object that the appli-
cation intends to use. The application has to specify the size of the object
in bytes and some parameter flags for the API. The Linux source code
then allocates the memory necessary for this object and returns a pointer
to enable the application to find the memory needed for the object. This
API is simple. It just enters information into the function (_cache_alloc)
that calls on the system services to do the work. There are at least 116
lines of source code in Linux that carry out the work required by this
seven-line API.16 As a result, the programmer can avoid writing more
than 100 lines of code by inserting the necessary data into this seven-
line API.

It is easy to see why application developers find the ability to access
system services through APIs appealing. Rather than every application
developer writing hundreds of lines of code to allocate memory to an
object, to take the example above, the operating system developer writes
116 lines of code and makes the system services this code provides avail-
able to all application developers through the API.

Some operating systems provide fairly minimal services to applica-
tions. Others devote large amounts of code to features that applications

28 Chapter 2

16. The 116 lines are part of methods one or two levels below the original API.
Going deeper into the kernel would raise this number significantly.

can use. The computer device itself influences this choice. Because a
mobile phone has limited memory, for instance, an operating system for
a mobile phone cannot do as much as an operating system for a PC. (Of
course, today’s mobile phone can do more than PCs could in the 1980s.)
An operating system for a single-purpose device such as the temperature
control system in a car need not cater to applications because at least
for now, there is no demand for applications to run on such a device.
The business model adopted by the operating system manufacturer also
determines the services it provides to applications. Some manufacturers
may decide to focus mainly on hardware and let others provide system
services. Sony provides significantly fewer services to game developers
on its PlayStation than Microsoft does on its Xbox, for instance.

Middleware also provides application services. These software pro-
grams leave most of the hardware interactions to the operating system
that they work with. They specialize in providing more advanced soft-
ware features on which application writers can rely.

Speaking in Code 29

void * __kmalloc (size_t size, int flags)

{

struct cache_sizes *csizep = malloc_sizes;

for (; csizep->cs_size; csizep++) {

if (size > csizep->cs_size)

continue;

return__cache_alloc(flags & GFP_DMA ?

 csizep->cs_dmacachep : csizep->cs_cachep,

flags);

 }

return NULL;

}

Figure 2.2
An example of a Linux API. (Source: Linux Kernel 2.6.10; File: slab.c.)

Some middleware complements the operating system in the sense that
there are few overlaps in services. That is true, for example, of the
Symbian OS and the Nokia Series 60 and 80 Developer Platform.

Other middleware competes with the operating system by providing
services that are also in the operating system. That is true of Java. It pro-
vides software services that programmers can use in place of the services
available in the operating systems with which Java works—Linux, Mac
OS, Windows, and a host of others. Then, on each hardware platform
on which Java runs, Java leaves the job of controlling the hardware to
the operating system running on that hardware.

Software Platforms

The software platform is the set of programs that stand between the
hardware and an application. A particular computing device may have
several possible software platforms for an application based on different
combinations of operating systems and middleware programs.

Mobile telephones provide an interesting example. Consider a mobile
telephone based on the Texas Instruments OMAP line of microproces-
sors; these are used in Nokia phones, for example. Possible software plat-
forms are shown in Figure 2.3. In the first three stacks the operating
system (Linux or Windows Mobile) provides APIs for mobile phone
applications. In the fourth stack, Symbian, which is partly owned by
Nokia, provides mainly hardware services and Nokia’s middleware pro-
vides application services.

Consider also a PC based on an Intel chip. Figure 2.4 shows some of
the possible software platform configurations. In this example there are
two alternative operating systems, Linux and Windows. Each provides

30 Chapter 2

Application

Nokia Series 60

Symbian OS

Hardware

Application

Java Micro Ed.

Windows Mobile

Hardware

Application

Windows Mobile

Hardware

Application

Linux

Hardware

Figure 2.3
Alternative mobile telephone platforms.

a rich set of application services through a series of APIs. However, either
can work with Java middleware as long as there is a Java Virtual
Machine running alongside the operating system. In addition, other
applications may use specialized services made available in other soft-
ware such as Office.

Three popular software platforms illustrate some of the diverse ways
of building platforms.

Windows XP
Windows XP descends from Windows NT, which Microsoft released
in 1993. Windows NT was written for processors that could handle
instructions and numbers represented with 32 bits (that is, 32 sequential
0s or 1s), compared with 16 bits for earlier versions of Windows.
Microsoft has upgraded (and renamed) Windows NT over time while
retaining the same basic architecture. With Windows XP, Microsoft
unified its lines of desktop operating systems for home (Windows 95,
98, and Me) and business (Windows NT and 2000). In addition,
Windows XP added new technology for keeping track of items across
computers on a network and other features that were appealing for inter-
connected computing.

Written mainly in C++, versions of Windows XP have been available
for client computers (the computers that sit on our desks or laps)
and server computers (the networked computers that focus on
such things as Web applications and corporate databases) using
Intel-compatible microprocessors. The operating systems for clients
and servers have much of their code and APIs in common, but the

Speaking in Code 31

Application

Java Libraries

Java Virtual Machine

Hardware

Windows

Application

Java Libraries

Java Virtual Machine

Hardware

Linux

Application

Windows

Hardware

Application

Linux

Hardware

Office

Application

Windows

Hardware

Figure 2.4
Alternative personal computer software platforms. Here, “Linux” includes both
Linux kernel and utilities.

server operating systems include various services for servers on networks
of computers.

Windows NT and its successors relied on the modular and object-
oriented design concepts mentioned earlier. One can think of this as using
the concept of APIs within the operating system code. A lower-
level object provides services to higher-level objects. For example,
in Microsoft Windows XP, Internet Explorer relies on a module called
the Microsoft XML Core Services, which is used to interpret XML
documents. The same Microsoft XML Core Services module is used by
other parts of the operating system, such as the part that handles playing
media.17

Windows XP also has an extensive set of application services that are
known as the Win32 API Set. Bill Gates put the number of APIs in the
initial version of Windows 2000 at more than 6,000.18 The next version
of the Windows operating system, Vista, will feature sophisticated
support for digital rights management (see Chapter 8), a new user inter-
face technology, and many new application services made available
through the WinFX API Set. It will have a total of more than 1,000 APIs
available to developers. (The number of APIs reported here is based on
the ones that Microsoft documents and manages.)

Unix and Linux
Linux is an operating system that is widely used on server computers
and is making headway in everything from embedded devices to mobile
telephones to client computers. It has descended from Unix. Unix in turn
is an operating system that was widely used for minicomputers and
workstations during the 1970s and 1980s and remains popular for
servers and other heavy-duty uses.

Computer scientists at Bell Labs developed the first versions of Unix.
It was first used on a minicomputer made by Digital Equipment Corpo-

32 Chapter 2

17. http://support.microsoft.com/?scid=kb;en-us;q272633; http://download.
microsoft.com/download/9/6/5/9657c01e-107f-409c-baac-7d249561629c/
MSXML4SP_RelNote.htm; http://www.microsoft.com/downloads/details.aspx?
FamilyID=3144b72b-b4f2-46da-b4b6-c5d7485f2b42&DisplayLang=en.

18. U.S. v. Microsoft, Civil Action No. 98–1233, Direct Testimony of Bill Gates,
¶56.

ration. Like most operating systems at the time, it was written in assem-
bly language; at the time, this was considered the best approach for
writing complex programs that were also efficient. In a major innova-
tion a few years after its introduction, it was rewritten in C, thereby
demonstrating the advantages of using a high-level language for writing
most operating system code. Bell Labs licensed the Unix source code to
universities and businesses. Several developers started modifying the
code. Since they did not do this in concert, the Unix code “forked,”
leading over time to multiple versions of the operating system, and pro-
grams written for one version could not necessarily run on another
version without modification. The most popular of these versions was
BSD Unix, created at the University of California, Berkeley.

What is normally considered the Unix operating system is a collection
of several components. These include the kernel, an interface that
permitted applications to call on the services of the kernel and therefore
the hardware, and a series of canned commands and libraries of
programs that users can rely on for calling on system services directly or
can use in applications written for Unix. Over time, the various versions
of Unix have improved the kernel. For example, Sun’s Solaris operating
system is based on a version of Unix (System V Release 4) that AT&T
and Sun Microsystems developed jointly. These partners completely
rewrote the kernel that was the basis for the standard version of Unix
at the time.

Linux is based on a variant of BSD Unix that can run on IBM-com-
patible personal computers. Linus Torvalds wrote the original Linux
kernel in C and posted an early version on the Web in 1991. He used
software tools that were developed by the Free Software Foundation.
Working over the Internet, programmers from around the world sug-
gested improvements and additions to the kernel as well as other utili-
ties. Torvalds incorporated these periodically into releases of Linux. Over
time, Torvalds secured the help of a number of individuals to help
manage the process of building and releasing successive versions of
Linux. (We discuss the Free Software Foundation and the production of
open-source programs in more detail in the next chapter.)

The Linux kernel was organized as a collection of modules. Each
module could be modified independently of the others, and new modules

Speaking in Code 33

could be added to the system. This facilitated improvements in Linux
and also made it possible for independent programmers to make
contributions.

Working versions of Linux consist of the Linux kernel, various appli-
cations, and specialized configuration and installation tools that together
form a Linux distribution such as Red Hat Linux. The Linux kernel is
the core of the operating system, managing things like memory and task
scheduling. The system is often modified to fit specialized tasks such as
deployment in specialized devices (mobile phones, set-top boxes, robots)
or in unique circumstances (security).

Java
Sun initially envisioned Java, first called Oak, as a programming lan-
guage for digital devices for television and other media. The idea was to
create a language that was useful for devices that lacked the processing
power and memory of larger computers. It was also aimed for use on
devices based on different microprocessors. Java’s programming team
first displayed Java’s potential prowess by creating a digital entertain-
ment device with an animated touch screen and Duke, Java’s mascot,
doing cartwheels on the screen.19 Over time, this new language has
evolved into a platform that can be used on many computing devices.
As of 2006, however, Java is most commonly used for small Web appli-
cations, in enterprises as a component of applications on servers, in set-
top boxes, and on portable devices.

The platform consists of three major components. First, Java is a pro-
gramming language. Second, the Java Virtual Machine is the middleware
layer that is at the core of Java’s operating system independence. Unlike
other programming languages, Java programs are not written for a par-
ticular operating system or device. Instead, they run on a Java Virtual
Machine that serves as an intermediary between the program and the
underlying operating system.

The Java Virtual Machine specific to a given operating system and
hardware environment then converts the byte codes into machine code.

34 Chapter 2

19. http://www.engin.umd.umich.edu/CIS/course.des/cis400/java/java.html;
http://newsletter.paragon-systems.com/articles/58/1/ja/8427.

Thus the same program, without modification, runs on every system for
which a Java Virtual Machine is available. However, the portability
comes with a price: performance. The Java Virtual Machine is essentially
another layer of instructions that sits between the application and the
hardware. Consequently, Java applications run slower and require more
memory than comparable applications written specifically for any given
operating system. As a result, Java is rarely used for complex or demand-
ing applications, and the applications are heavily optimized for specific
operating systems and processors when it is used. Such optimization
hurts portability.

Finally, Java also includes class libraries for each operating system. The
class libraries are the services provided by the APIs and form the back-
bone of Java. They are also a limitation on Java’s platform independence.
Even if a particular system has a Java Virtual Machine, a Java program
will run only if all the class libraries it relies on are available on that
system. That is seldom an issue for PCs, but smaller, more limited devices
such as mobile phones may not have room for the full class libraries.
The Java Virtual Machine and the class libraries are sometimes referred
to as the Java Runtime Environment.

The architecture of the Java technologies for an Audiovox SMT5600
mobile phone was shown in Figure 2.3.20 This device has a micro-
processor from Texas Instruments and uses the Windows Mobile 2003
operating system. The phone also supports the Java 2 platform. An appli-
cation developer can write his program in Java and rely on the Java class
libraries for the equivalent of APIs and underlying application services.
He can then compile this program into Java byte codes.

Operating System and Software Platform Production

Modern operating systems have tens of millions of lines of code. Ten
million lines of code have roughly the same information as the Ency-
clopædia Britannica. The many sections of this code—objects or
modules—are highly interdependent, much like the parts of a modern jet
aircraft. There is a further challenge. Users want their applications to

Speaking in Code 35

20. http://www.mobiletechreview.com/audiovox_SMT5600_smartphone.htm.

work with successive generations of the platform. Changes in the plat-
form must maintain “backward compatibility” as much as possible.

Anyone who has programmed knows that it is rarely easy to make a
complex program work properly with all possible inputs. One must typ-
ically write code, run it, watch it fail, find and remove the error or bug
that caused the failure, try again, and keep debugging until the program
does what it was intended to do. With long, complex programs written
by many people, this process becomes distinctly harder: not only does
each programmer have to make sure her module works correctly, but
those in charge of the program need to make sure that all of the modules
work properly when fit together. Debugging is easiest with single-purpose
programs. Operating systems and software platforms are harder because
they are designed to support many other programs that cause the many
elements of the operating system to interact in an enormously large
number of ways. They need to go through a testing process even after
they seem to run well in normal use. This process often continues to what
is known as alpha and beta testing by users.

There are important differences between the development process for
operating systems that are manufactured by companies—what is known
as proprietary software—and those that are produced through the open-
source process.

Proprietary Operating Systems
Sophisticated operating systems are developed over many months by
large teams of designers, programmers, and testers. New versions of an
operating system can take several years from conception to release. It
took Apple five years to develop the Mac OSX, and this involved a com-
plete redesign and rewriting of its earlier operating system. Microsoft
Windows NT, mentioned earlier, was developed over five years by a team
that grew to more than 200 designers, programmers and testers working
for Microsoft—in addition to the over 15,000 alpha and beta testers who
volunteered to try early versions of the program.21

The process of developing a new operating system begins with
its architecture that, like a building, will determine the constraints

36 Chapter 2

21. Internal Microsoft information, obtained by interview.

on remodeling efforts for years to come. Programming teams then
begin writing the code for each individual module of the operating
system. In Microsoft’s case, this involves working in parallel but
linking the pieces daily and debugging the resulting system.22 It
also entails constant testing. Microsoft employs roughly one tester
for every programmer.

This description makes it seem as if writing software was like
writing a newspaper—and in some ways it is. There are many people
working in loosely formed teams whose output is combined every
day into a single document. But the outputs of the software teams
must work together. And while journalism has its own complexities,
software developers have many hard mathematical problems to conquer
in the process of writing an operating system. For instance, software
manufacturers face complex mathematical problems in designing
and implementing systems for maintaining and updating directories
in networks. Between 1995 and 2004, IBM, Microsoft, Novell,
Sun Microsystems, and other companies were granted more than
290 patents for their programming methods. There is also a premium
on writing code that is efficient—that maximizes the performance of the
computer’s hardware.

Open-Source Software
Open-source communities face similar problems in dealing with large,
complex software programs, but solve them quite differently.

A program begins when one or more individuals conceive its architec-
ture. Often these individuals will write a first draft of the program, or a
significant segment, and then post the code and key elements of the overall
architecture on the Internet. They will form a self-perpetuating commit-
tee that will guide further development by accepting changes contributed
by others to current versions. Debugging and testing takes place mainly
through people—usually the information technology savvy, but in later
stages also interested members of the general public—identifying prob-
lems and reporting them to a site that is dedicated to the program. The

Speaking in Code 37

22. Michael A. Cusumano and Richard W. Selby, Microsoft Secrets (London:
HarperCollins, 1995), pp. 269–270.

open-source community prides itself on having “a thousand eyeballs”
look at and use program code and thereby steadily improve its quality.

Linux was developed more or less in this way. Torvalds and his lieu-
tenants have been coordinating its development ever since he released
the first kernel. For example, since mid-2001, approximately 4,000 pro-
grammers have made contributions to Linux.23 The code for the kernel
has expanded from about 2.5 million lines to more than 4 million lines
in the same period, and many utilities, libraries, and other software plat-
form-related modules have been written for it.

The Linux development process is much more organized than it might
seem. Many of the contributors are employed and paid by large corpo-
rations, such as IBM and Hewlett-Packard (HP). Patches and new ideas
for individual modules are conceived and started by individual develop-
ers or contributing enterprises. After that, the project begins a life of its
own, depending on the idea’s popularity within the Linux community.
These projects are posted on the Internet and are usually run under some
direction. The one below, taken from the Linux home page in February
2005, shows a project for creating a new sound API. The home page for
the project advertises for programmers to work on further development.

38 Chapter 2

23. Josh Lerner, Parag Pathak, and Jean Tirole, “The Dynamics of Open Source
Contributions,” American Economic Review Papers and Proceedings 96 (May
2006): forthcoming.

Name: Advanced Linux Sound Architecture (ALSA) Project
Website: http://www.alsa-project.org/
Contact: perex@suse.cz
Description: Primary goals are create modern sound driver for Linux
with new sound API which solves all OSS/Lite trouble and create good
libraries for sound applications.

The Website says: We need users to use, test and provide feedback, pro-
grammers to work on low level drivers, writers to extend and improve our
documentation, and application developers who choose to use ALSA as
the basis for their programs. If you are interested, please subscribe to a
mailing list. We welcome all constructive ideas, opinions and feedback!

The contact for the project was located at SuSE, a company that dis-
tributes open-source software, in the Czech Republic (SuSE is a German
company that is owned by Novell). We return to the open-source move-
ment and its origins in the next chapter.

Operating System, Software Platforms, and Computing Devices

Several computing devices are the focus of discussion in the remaining
chapters. Table 2.1 shows the main operating systems and software plat-
forms that are used for these devices. It also shows the different manu-
facturers that provide the hardware, the operating system, and the
middleware. There is great variety. The remainder of this book docu-
ments this heterogeneity and explores the business, economic, and his-
torical reasons behind it.

Two features of software platforms have wide ramifications. The pro-
vision of services through APIs makes them inherently two-sided plat-
forms that serve users and developers simultaneously. The fact that
software platforms are no more than written symbols means that, like
books, movies, patents, and other intellectual property, these platforms
often cost much to create and little to reproduce. The next chapter exam-
ines the economic implications of these and other characteristics of soft-
ware platforms.

INSIGHTS

• Software platforms were made possible by the development and
improvement of programming languages that enable humans to tell com-
puters what to do.

• The design of software platforms and the business models they serve
have important consequences for the structure of industries based on
computing devices.

• Most software platforms are composed of modules that provide soft-
ware services to other software programs. APIs provide application pro-
grammers access to these services. In effect, the programmer submits

Speaking in Code 39

40 Chapter 2

Table 2.1
Summary of Platforms

Operating
Platform, Examples Microprocessor System Middleware

PC
Microsoft Windows Intel, AMD Windows Windows, Java, more
Apple Macintosh POWERPC, Mac OS Mac OS, Java, more

Intel
Linux Intel, AMD, Linux Linux Utilities, Java,

POWERPC, kernel more
more

Game Consoles
Sony PlayStation 2 300MHz Sony Sony PS2 SDK

Emotion Engine proprietary (limited), sound and
graphics APIs

Microsoft Xbox 733MHz Intel Windows XDK, sound and
Pentium 3* 2000* graphics APIs

PDA
Palm OS Intel, TI, ARM, Palm OS Palm OS, Java

Motorola, more
Microsoft Windows Intel, TI, ARM, Windows Windows Mobile, Java
Mobile Motorola, more Mobile 2 Micro Edition,

Mophun
BlackBerry Intel, Motorola, RIM Java

more proprietary

Smart Phones
Symbian Intel, TI, ARM, Symbian Nokia Series 60/80,

Motorola, more Java 2 Micro Edition,
Mophun

Microsoft Windows Intel, TI, ARM, Windows Windows Mobile, Java
Mobile Motorola, more Mobile 2 Micro Edition,

Mophun
Linux Intel, TI, ARM, Linux Linux Utilities, Vendor

Motorola, more SDKs, Java 2 Micro
Edition

Digital Media
Microsoft Windows NA NA Windows Media
Media Player
RealNetworks NA NA RealPlayer
Apple QuickTime NA NA QuickTime
Apple iPod NA iPod OS

* Modified for the needs of the game console.

information to the API, and the software platform performs the service
requested.

• The use of APIs enables software platform developers to write code
that can be used by many applications vendors, thus reducing duplica-
tion of effort.

• Open-source software is built through a decentralized process
whereby an initial version of a program is posted on the worldwide
Web and anyone who is interested may propose additions or
corrections.

Speaking in Code 41

3
Both Sides Now

I’m basically a very lazy person who likes to take credit for things other people
actually do.

—Linus Torvalds1

INSIDE THIS CHAPTER

• Software platforms as information-goods and multisided platforms

• Economic and strategic characteristics of multisided platforms

• Economic aspects of open-source software

Two features of the technology we described in the last chapter shape
the economics of software platforms.

Software platforms are a written product of the mind. They are in
effect documents, usually written in a high-level computer language. The
code involved is malleable. It can be moved, altered, added to, and sub-
tracted from with great ease. It is created almost entirely by people—
“almost” because, like composers and writers, most programmers use
computers for help.

Software platforms are inherently multisided. They usually serve dis-
tinct groups of customers, who benefit from having each other on
the same platform. Application Programming Interfaces (APIs) forge the
crucial relationship between application developers and end users.
The developer can benefit from using APIs when she can sell the result-
ing software to users who have those APIs on their computing devices.

1. Eric Raymond, The Cathedral and the Bazaar (Sebastapol, Calif.: O’Reily
Press, 1999).

Although we examine both of these features in this chapter, the multi-
sided nature of software platforms is a main focus of the remainder of
the book and the economic aspect of these invisible engines from which
we will glean many insights. We conclude this chapter with a discussion
of another remarkable aspect of the software business: people working
collaboratively over the Internet, often without pay, produce software,
including software platforms, that compete with software produced by
for-profit firms.

Information Goods

Software is one of many information goods in modern economies. Books,
songs, screenplays, patents, and secret formulas are others. Of course,
there are differences among these products. Most books are a final
product read for enjoyment or knowledge. Musical scores instruct
musicians on what to do with their instruments. And software is
ultimately a series of instructions that directly or indirectly makes
computer hardware work. But these differences pale next to the
similarities.

Like all information goods, software has four major economic char-
acteristics. It is a creation of the human brain; it is made of pliable
symbols; the consumption of these symbols by one person does not
exclude consumption by another; and it is almost costless to reproduce
an exact replica of these symbols. A musical score has all these features.
A composer can use musical notes to make scores of infinite variety and
length. When an orchestra plays a particular score, it does not reduce
the value of the score to anyone else. And it is cheap to reproduce the
score, as well as any orchestra’s rendition of it.

These software features have consequences shared by other informa-
tion goods. Without intellectual property protection there is no obvious
way to make money. (The free software movement discussed at the end
of this chapter has found some unusual ways to motivate its partici-
pants.) There are extreme scale economies: fixed costs are high, marginal
costs quite low. The addition of features is relatively easy and an impor-
tant source of dynamic competition, incremental innovation, and
product differentiation.

44 Chapter 3

Software Characteristics

Produced by an Educated Workforce Software is designed and written
by a diverse set of individuals, but typically they are college graduates
who often have some training, and perhaps even a degree, in computer
science. Software programmers and related professionals who worked in
the U.S. software industry had an average of 15.3 years of education as
of 2000. That compares with 13.8 years for the workforce on average
and 14.7 years for professional service industries (including law, medi-
cine, accounting, and architecture).2

There were 1,194 degree programs in computer science in American
colleges and universities in 2006.3 These programs usually offer courses
in the design of operating systems. All of the top ten programs as ranked
by U.S. News and World Report did.4 There are a number of textbooks
on the design of computer operating systems and related topics.

Microsoft is notable for screening people for intelligence and problem-
solving skills. A 1995 study reported that Microsoft recruited from the
top fifty colleges and universities and hired less than 3 percent of the
people it initially interviewed. Microsoft is famous for asking job can-
didates to solve problems on the spot, such as estimating the number of
gas stations in the United States. As of 2004, over 95 percent of the archi-
tects, designers, and programmers working on Windows had a college
degree and 40 percent had computer science degrees. Ten years later
Google has developed a reputation as a company where only brainiacs
need apply.5 It advertises mainly in technical magazines and puts people
through numerous interviews that test intellectual skills before hiring one
out of the 200 candidates who send in a résumé.

Both Sides Now 45

2. http://www.bls.gov/oco/ocos110.htm.

3. http://www.usnews.com/usnews/edu/college/tools/brief/cosearch_advanced_
brief.php

4. “America’s Best Graduate Schools 2005 Edition,” U.S. News and World
Report, December 31, 2004.

5. Michael A. Cusumano and Richard W. Selby, Microsoft Secrets (London:
HarperCollins, 1996), pp. 92–93; Internal Microsoft information; John Battelle,
The Search: How Google and Its Rivals Rewrote the Rules of Business
and Transformed Our Culture (New York: Portfolio Press 2005);
http://www.cbsnews.com/stories/2004/12/30/60minutes/main664063.shtml.

Made of Malleable Code We have already seen that software programs,
including platforms, are a series of instructions usually written in a lan-
guage such as C++. Managing the creation of millions of lines of code that
work together as planned is no mean feat. But one reason these programs
have grown so large is that they have been designed to make it easy to add
to them. In some respects, doing so is like adding a paragraph to a chapter
of a book or another riff when playing jazz. The key difference is that
since the ultimate product is digital, users do not experience the addition
in the way that adding a chapter makes a book thicker.

Like the contents of a newspaper, the contours of a software program
can be changed readily. Just as newspapers have suburban or regional
editions that add coverage specific to a particular geographic area,
modern software programs may have versions targeted to particular
groups, such as Java for small devices. And just as newspapers can add
sections to bring in more readers, so software programs can add features
or functionality.

Many operating systems added features in the mid-1990s that helped
users communicate over networks such as the Internet. Apple’s Macin-
tosh included AppleTalk proprietary networking protocols in 1985 and
added protocols for communicating over the Internet in 1995.6

Easy to Reproduce All information goods are easy to copy. But soft-
ware programs, including platforms, are especially so because they are
necessarily digital. The easiest way to see this is with the open-source
operating system Linux. You can download this 5.7 million-line operat-
ing system over the Internet from numerous Web sites.7 With a cable
modem connection it takes a couple of minutes. Not surprisingly, piracy
is a major problem for software firms that sell their products.

Software platforms are often installed on computer hardware before
it is sold. The manufacturer does this itself when it makes both the soft-

46 Chapter 3

6. Jim Carlton, Apple: The Inside Story of Intrigue, Egomania, and Business
Blunders (New York: HarperCollins, 1997), p. 59; “Apple goes to the core;
Apple introduces Power Macintosh 9500 that uses TCP/IP and PCI bus archi-
tecture; Product Announcement; Brief Article,” LAN Magazine, October 1,
1995.

7. http://zdnet.com.com/2100-1104-864256.html.

ware and the hardware. Apple zaps its software right onto its iPods and
Apple computers. Or the software manufacturer may license the soft-
ware to other manufacturers that install it, often from a single master
CD. Distribution costs are higher when the software platform is
sold directly to users. Thus, Microsoft incurs some costs in reproducing
its Windows software on CDs and distributing it through retail chan-
nels. The same is true for Linux distributors such as Red Hat. But even
in these cases the per-unit costs are relatively low, as with other infor-
mation goods such as music CDs.

Inexhaustible Once created, there is an inexhaustible supply of soft-
ware such as platforms. Unlike most goods and services, but like all
information goods, consumption by one user does not reduce the amount
available for others. Indeed, software platforms are better than in-
exhaustible because consumption by one user is likely to increase the
value of the software to others.

Complementarities and Network Effects System components are
generally complements: adding another component to a system or
improving an existing component generally increases the value of
the other components. Moreover, in many cases, systems have what
economists call indirect network effects linked to the presence of
components.8 That is, an increase in the number of users of one
component often makes that component more valuable as a complement
to the other components. As Sony’s Internet–based game center for
the PlayStation 2 draws more users, for instance, more PlayStation
2 owners will want to buy games supported by the Internet service.
As its games become more popular, more consumers will prefer
PlayStation 2 consoles to competitors’ models. Likewise, an increase
in the variety of components (printers for PCs, for example) often
increases the value of other components to end users. In recent years

Both Sides Now 47

8. Michael Katz and Carl Shapiro, “Systems Competition and Network Effects,”
Journal of Economic Perspectives 8 (Spring 1994): 99. For a general discussion
of network effects and their business implications, see Carl Shapiro and Hal
Varian, Information Rules (Boston, Mass.: Harvard Business School Press,
1998).

economists have tended to apply the multisided platform framework to
these situations, as we discuss in the next section.

There also may be direct network effects. These arise when an increase
in the number of users of an application or platform directly makes that
application or platform more valuable to each user. Its value increases
because users can share information and work together more efficiently.
When WordStar was the leading PC word-processing program, many
people bought it at least in part because they could share documents with
friends and co-workers.

Economic Consequences
These technological features shape the economics of software platforms
just as they shape the economics of most software products.

Intellectual Property Protection If people could get the source code for
any software product, they could reproduce it for next to nothing. The
price would fall to almost zero, and the original writer would derive no
financial benefit.

Software companies rely on all three major forms of intellectual prop-
erty protection to guard their investments against this fate.9 First, they
keep the source code secret as much as possible. Before they distribute the
software they turn it into the 1s and 0s of machine code. In principle, an
able, dedicated, and patient programmer could translate machine code
back into a high-level language. But this sort of decompiling is forbidden
by almost all commercial software licenses and all but impossible in prac-
tice for multi-million-line software platforms. In addition, “trade secret”
law protects software developers from the unscrupulous employee or
agent who might try to release the source code without authorization.

Software companies also copyright their code. As with a book, you
cannot reproduce copies of software programs without violating copy-
right law. Of course, as with other information goods, piracy is nonethe-
less rampant, especially in countries with weak intellectual property
laws. In India, an estimated 80 to 85 percent of the copies of Macro-

48 Chapter 3

9. Suzanne Scotchmer, Innovation and Incentives (Cambridge, Mass.: MIT
Press, 2004), chap. 3.

media Flash and Dreamweaver in use are not legal. Even in the United
States, almost 30 percent of Macromedia software is pirated.10

Finally, software companies get patents on algorithms and other fea-
tures. The United States had granted about 127,000 software patents
through 2004. (It takes about 3.5 years on average for the grant of a
patent application.11) Apple’s iTunes software, for example, allows users
to import an unlimited number of audio tracks and encode them into
the popular MP3 format, as well as listen to MP3s, audio CDs, or hun-
dreds of Internet radio stations. A patented system for accessing digital
media across networks was important for the success of iTunes.

Economies and Diseconomies of Scale Although no one has ever quan-
tified it, it is generally understood that there are diminishing returns to
scale in writing software platforms. That is, doubling the size of a plat-
form by adding more features more than doubles the cost (holding the
quality of the code constant—one can always write inefficient code).
Increases in size create more interdependencies (with N objects, there are
N2 possible pairwise interactions, for instance), thus raising the likeli-
hood of bugs, and thereby raising development, debugging, and test costs
more than proportionately.12 (Object-oriented programming and the use
of modules are designed to temper these diseconomies.) But once created,
cheap reproduction means that additional copies cost little. The pro-
duction technology is therefore as shown in Figure 3.1.

These economic features suggest some caution in characterizing the
marginal cost of producing software. It is true that once the costs of cre-
ating software have been sunk, the marginal costs of reproducing and
distributing it are very low. That is an ex post perspective on cost. But
it is also true that the likely adoption of a software program is not inde-
pendent of the costs that are incurred in creating it or revising it.

Both Sides Now 49

10. Venkatesh Ganesh, “The continuing story of software piracy,” The Finan-
cial Express (August 8, 2005), http://www.macromedia.com/devnet/logged_in/
swozniak_piracy.html.

11. It is difficult to define “software patents,” but in 2004, 127,098 patents were
granted under the G06F classification, which covers electronic data processing.
Data set available from www.uspto.gov.

12. “Linux: Fewer Bugs Than Rivals,” Wired News, December 14, 2004.

Software designers add features in part to bring in more consumers; in
the case of software platforms, those consumers include both users and
developers of applications that run on top of the platforms. Ex ante, the
marginal cost of acquiring additional customers by improving the plat-
form, is likely to be much higher than the marginal cost of reproducing
and distributing the software.

This distinction is also relevant for other information goods. Movies
are a good example. The cost of making a completed movie available to
an additional viewer is close to zero. However, the number of viewers a
movie garners is partly dependent on the investment in the actors, special
effects, and other features that make a movie popular. Movies made with
low budgets are often aimed for a narrow audience, while movies with
blockbuster potential typically have extravagant budgets. The marginal
cost of garnering a viewer, viewed ex ante, is positive.

Pricing and the Recovery of Investments As with all information goods,
software poses some challenges related to recovering investments and
earning profits. Pricing at ex post marginal cost or anything close to it
would lead to bankruptcy. Software pricing thus depends primarily on
demand (particularly the responsiveness of demand to changes in prices)
rather than on cost and has as its main goal at least recovering fixed and
sunk development costs. The pricing of software platforms is consider-
ably more complex because of their multisided nature, as we discuss later.

50 Chapter 3

To
ta

l C
o

st
s

A
ve

ra
g

e
C

o
st

s

Lines of Code Users

Figure 3.1
Diseconomies of scale.

Why have software prices not declined at the same pace as hardware
prices? Basically because software development costs have not declined
as rapidly as hardware costs, for two related reasons. The first is that
educated labor, which is not becoming cheaper, accounts for most of the
cost of producing software. In 2001, U.S. software firms paid about 33
percent of revenues to their employees, while semiconductor companies
paid less than half that percentage.13 The second reason is that software
products are becoming more complex: with advances in hardware, soft-
ware programs typically grow over time through the accretion of fea-
tures. A typical PC game program in 1994 was 20 megabytes; a typical
PC game program in 2004 was 2,200 megabytes.14

Bundling Features Most goods are bundles of features, many of which
could be provided separately but are not. Cars come with spark plugs
and tires even though you could buy your own. Moreover, many goods
are improved over time through the addition of features. Few cars come
these days without air conditioners and rear window defrosters.15 Many
cereals add fruit and flavors over time, leading to many variations.

The same is true for computer systems. Microprocessors, memory, and
other components are typically combined to create a hardware platform
such as a Nokia mobile phone handset or an Xbox game console. With
time, many peripherals come to be integrated into the hardware plat-
form. Consider the case of the math coprocessor, which facilitates
number crunching. Before the release of Intel’s 486 chip, Intel’s micro-
processors did not include a math coprocessor. Customers who wanted
one purchased it separately from one of several vendors at substantial
cost. Today, one cannot buy an Intel x86 processor without a built-in
math coprocessor.

Both Sides Now 51

13. 2002 Economic Census, Industry Series Reports, available at http://www.
census.gov.

14. “Doom II Game Has 500,000 Pre-Orders,” Newsbytes News Network, Octo-
ber 13, 1994; http://www.amazon.com/exec/obidos/tg/stores/detail/videogames/
B00006C2HA/tech-data/103-8949918-3544622.

15. David Evans and Michael Salinger, “Why do Firms Bundle and Tie? Evi-
dence from Competitive Markets and Implications for Tying Law,” Yale Journal
on Regulation (January 2005): 37–89.

Creating products through feature addition is particularly easy with
information goods. That is the beauty of the pliability of music and lan-
guage. Pop music was mainly distributed as singles on seven-inch records
until the early 1960s. The success of the Beatles’ Sergeant Pepper’s
Lonely Hearts Club Band album made clear the value of compiling songs
and helped make the market for long-playing albums. Bundling multiple
songs into albums became standard practice, and the distribution of
songs as singles became less common. (We return to this issue in Chapter
11, where we will see that music downloading is helping to promote
unbundling.) Newspapers have added various features such as style and
living sections over time.

Similar forces apply to software in general and platforms in particular.
Where exactly the tasks performed by software are accomplished is a
matter of business and design decisions. Many tasks that used to be per-
formed by stand-alone applications have become integrated into other
applications (such as spell checkers, which originally were sold separately
from word processing programs) or into the software platform itself.
Early operating systems, for example, did not include communications
functionality.

The malleability of code reinforces several economic forces that
encourage the inclusion and accretion of features in products.

Bundling and integration. Combining features in a single product
reduces transaction costs for consumers. Rather than having to buy two
products, they can buy just one. Moreover, the manufacturer can create
additional value by creating connections between the features. An
example is making the features of a spreadsheet program available to a
word-processing program.

Economies of scope. When there are fixed costs in offering separate
products, firms may find it profitable to bundle those products if demand
for the separate components is not particularly strong. Several major
automobile makers, for example, have decreased the number of differ-
ent cars people can purchase.16 They have done this by developing
bundles of options that “most people” want, even though some people

52 Chapter 3

16. Ibid.

would not value some of those options separately. For software there are
cost savings from combining several features into a single package, as
well as savings in distribution and product support. (There may be dis-
economies, of course, if making the program larger and thus more
complex results in disproportionately large increases in the costs of
writing, debugging, testing, and supporting the package.)

Demand aggregation. When there are fixed costs of producing and
distributing products but low marginal costs of adding components, it
may be possible to lower average costs and reduce variation in what
people are willing to pay by combining components that appeal to
different groups of customers.17 Hardware and software typically
include many features that most consumers never use. However,
by including these features vendors expand the number of consumers
who find the product valuable at the offered price. This is why many
word processors include equation editors, newspapers have horo-
scopes, and cable companies include channels that most of us never
watch.

Multisided Platforms

That shopping malls and software platforms have much in common is
one of the important insights of the economics of multisided markets.
The mall is available to stores and shoppers. Once there, the merchants
and consumers interact directly on the platform. The merchant rents
space. The shoppers often get amenities such as free parking, in addition
to getting into the mall for free.

Likewise, the software platform is available to developers and users.
The developer licenses its software to the user, who then runs the appli-
cation on the platform. Both user and developer rely on the services pro-
vided by the platform. For many software platforms the user pays to
license the platform, while the developers get to use the platform services
for free and may even get some subsidized software tools to help them
do so.

Both Sides Now 53

17. Yannis Bakos and Eric Brynjolfsson, “Bundling and Competition on the
Internet,” Marketing Science, 1 (Winter 2000): 63–82.

Both platforms help reduce duplication and thereby lower the cost
of providing services. Shopping malls provide parking, restrooms, and
many other common facilities. Stores benefit because they do not have
to provide these facilities on their own. Shoppers benefit because retail-
ers have lower costs. Software platforms make services available through
APIs. Developers benefit from these because they avoid having to write
some of their own code. Users benefit from a greater variety of and lower
prices for applications.

The economics of multisided platforms provides a set of tools for
understanding the past, present, and future of software platforms.

The Economics of Multisided Platforms
Multisided platforms cater to two or more distinct groups of cus-
tomers. Members of at least one customer group need members of
the other group for a variety of reasons. Platforms help these customers
get together in a variety of ways and thereby create value that the
customers could not readily obtain otherwise. The village market is
one of the oldest examples of a two-sided platform. It is a place where
buyers and sellers can get together and trade. So is eBay. Another old
example is the village matchmaker, who helped men and women
find marriage partners. Match.com provides a similar service using Inter-
net technology; speed dating is another important innovation. The
publisher of this book operates a platform, too. It is in the business of
finding authors in search of an audience and audiences in search of
content.

Governments run some two-sided platforms. Cash is an example. The
government institutions behind the euro help ensure that sellers will take
it for payment and buyers will use it for payment. Standards sometimes
give rise to two-sided platforms. Fax machines facilitate communication
between senders and receivers. Cooperatives of firms also operate two-
sided platforms—Visa is the most significant example. For-profit busi-
nesses operate two-sided platforms in a wide variety of industries and in
many economically significant ones. Highly visible examples include
American Express (travelers checks and charge cards), Google (search
engine–based portal), and News Corporation (advertising-supported
media).

54 Chapter 3

William Baxter presented one of the first formal analyses of a two-
sided business in 1983.18 He was a law professor who was self-taught in
economics. He observed that payment cards provided a service only if
both cardholders and merchants jointly agreed to use a card for a trans-
action. He derived some of the fundamental economic consequences of
this joint demand. (Baxter went on to become a highly innovative
antitrust chief in the United States.)

The notion, however, that diverse industries are based on two-sided
platforms and are governed by the same basic economic principles is due
to a pathbreaking paper by Jean Tirole and Jean-Charles Rochet that
began circulating in 2001.19 They showed that businesses such as com-
puter operating systems, dating clubs, exchanges, shopping malls, and
video game consoles were two-sided.

Economists now recognize that many industries, including the manu-
facture of software platforms, are guided by economic principles that
differ in important ways from those that govern traditional industries.
Many of these two-sided or multisided industries are subject to network
effects, which were studied extensively by economists during the 1980s
and 1990s.20 Network effects are also central to the economics of multi-
sided platforms, and more recent analysis provides additional insight into
their business implications.

Internalizing Externalities Multisided platform businesses tend to arise
in markets that have three characteristics:

1. There are two or more distinct groups of customers.
2. There is some benefit from connecting or coordinating members of
the distinct groups.

Both Sides Now 55

18. William Baxter, “Bank Interchange of Transactional Paper: Legal and Eco-
nomic Perspectives,” The Journal of Law and Economics 26 (October 1983):
541–588.

19. Jean Tirole and Jean-Charles Rochet, “Platform Competition in Two-Sided
Markets,” Journal of the European Economic Association 1, no. 4 (2003):
990–1029.

20. Shapiro and Varian, Information Rules. See the articles in Symposium on
Network Externalities, Journal of Economic Perspectives, 8 (Spring 1994):
93–150.

3. An intermediary can make each group better off through coordinat-
ing their demands. For example, dating clubs provide a service to men
and women, who benefit from meeting each other, and provide an effi-
cient way for men and women to connect.

As a practical matter, multisided platforms tend to arise when a
stronger version of condition 2 applies: most platform businesses exhibit
indirect network externalities. Consumers, for example, get more value
from their credit cards when more merchants take them, and merchants
get more value from accepting credit cards when more consumers use
them. This has not been lost on the card systems. The current advertis-
ing slogans highlight merchant acceptance: “Visa. Everywhere you want
to be.” “MasterCard: No card is more accepted.” American Express,
MasterCard, and Visa persuade merchants to pay for taking their cards
by emphasizing the millions of consumers that have these cards and want
to use them to pay. The sales pitch for the merchants is similar: then the
card systems tout the number of cardholders they have who could trans-
act at the merchant if it accepted the card for payment.

Customer groups can sometimes get together without a platform. Men
and women have found each other without matchmakers. Buyers and
sellers figured out ways to transact before there was money. Merchants
can advertise their wares without the media. Successful multisided plat-
forms, however, generally reduce the transactions costs that members of
different customer groups would incur in trying to reap the benefits of
getting together.

The fact that a platform could exist does not mean that it necessarily
will or that it will provide the only method for providing benefits to cus-
tomers. As we discuss in Chapter 8, Apple has thus far operated its
iPod/iTunes platform as a single-sided business. It buys music by paying
publishers royalties and distributes this music to customers who want it.
Similarly, many consumers have “store cards”—payment cards issued by
stores such as Bloomingdale’s. In fact, the payment card industry was
based entirely on this single-sided model until Diners Club introduced a
card in 1950 that put multiple merchants and consumers on the same
platform. We explore the decision to become a platform—along with plat-
forms’ related decisions regarding which system components to produce
and which to rely on the market to supply—in more detail in Chapter 9.

56 Chapter 3

Similarly, many businesses deal with multiple diverse groups without
being platforms. There is a sense in which auto companies bring tire
manufacturers and consumers together, but they do not do so in a way
that makes Toyota, for example, a multisided platform business. In this
case there is no direct interaction between the two sides. Toyota substi-
tutes itself for consumers when dealing with tire producers, just as Apple
does before sending music to consumers through iTunes. By contrast,
two-sided platform businesses provide support for direct interaction
between the two sides. Thus, game developers sell directly to PlayStation
users, for instance, not through Sony.

Multisided businesses can generate profits for themselves and benefits
for their customers if they can figure out ways to increase and then
capture indirect network externalities. There are three major ways in
which they do this.

First, they serve as matchmakers. Financial exchanges such as
NASDAQ and on-line auction sites such as eBay match buyers and
sellers. The Yahoo! Personals and 8MinuteDating match men and
women.

Second, they build audiences. Advertising-supported media do mainly
that: they use content to attract eyeballs and then sell access to those eye-
balls to advertisers. Many platforms engage in less overt audience build-
ing. Auction houses such as Sotheby’s try to build an audience of buyers
for the art they sell on consignment. Nightclubs sometimes try to build
an audience of women for men, and vice versa. We saw that payment
card systems try to build an audience of cardholders for merchants and
an audience of merchants for cardholders.

Third, they reduce costs by providing shared facilities for the cus-
tomers on each side. That’s the shopping mall case with which we began.
But other platforms also do this to some degree. Buyers and sellers have
shared auction institutions and auction sites from the Roman forum to
eBay. Readers and advertisers share the pages of Vogue. Payment card
systems provide a shared network for conducting transactions between
merchants and consumers.

Software platforms provide value through matchmaking and building
audiences, as well as through reducing duplication. Apple, for example,
helped bring commercial artists and developers of design software

Both Sides Now 57

together. It did this by including services in the Mac OS that developers
could use to develop programs such as Adobe Photoshop for commer-
cial artists. Sony PlayStation has developed an audience of console users
that it can make available to game developers. The main economic value
of software platforms, however, is in economizing on the amount of code
that developers must write to serve the needs of consumers.

The Pricing Balancing Act In single-sided markets, price usually tracks
costs and demand for the product pretty closely. Firms figure out what
their marginal cost will be and then mark it up—a little if customers are
price-sensitive because there is a lot of competition, more if there is little
competition. Particularly in stable markets, this is not rocket science.
That is why how-to books on starting your own small business can offer
reliable advice, such as “charge X times cost in sector Y.” For example,
one guide advises that the markup is generally 40 percent of the retail
price in hardware stores and that for jewelry it ranges between 400 and
800 percent.21

In multisided markets, pricing is more complicated because of indirect
network effects between the distinct customer groups. If you charge
women the same price as men to enter your singles club, you may not
get enough women. If this happens, men will not come, and suddenly
you will have an empty club. Many Internet publications discovered that
viewers deserted in droves when they attempted to charge them, although
some did make the successful transition to paid subscriptions plus
advertising.22

Multisided platform economics shows that it may make sense for firms
to charge very low prices to one or more groups or even to pay them to

58 Chapter 3

21. Stephen C. Harper, The McGraw-Hill Guide to Starting Your Own Busi-
ness, 2nd ed. (New York: McGraw-Hill, 2003), pp. 100–101; Jan Kingaard, Start
Your Own Successful Retail Business (Irvine, Calif.: Entrepreneur, 2003),
pp. 152–153.

22. Michael Liedtke, “Online Subscriptions Herald the End of Web Freedom,”
Associated Press newswires, March 18, 2002; Thomas E. Weber, “Web Users
May Balk at New Fee Services That Deliver Little Value,” Wall Street Journal,
April 8, 2002; Timothy J. Mullaney, “Sites Worth Paying For? The Paid Web Is
a Work in Progress, But Some Are Already Getting It Right,” Business Week,
May 14, 2001.

take the product. And that is what multisided businesses do. Magazines,
newspapers, and television broadcasters typically earn the preponder-
ance of their revenues from advertisers.23 Charge card companies such
as American Express earn the bulk of their revenue from merchants.

Businesses in multisided markets often subsidize one side of the market
to get the other side on board—sometimes explicitly by charging low or
negative prices. At other times subsidies are less apparent, such as when
the platform makes significant investments in one side and does not
charge for it. Table 3.1 shows some examples. We will see that all soft-
ware platforms make services available to at least one side for free. Most
make free services available to developers through the APIs.

Both Sides Now 59

23. Lisa George and Joel Waldfogel, “Who Benefits Whom in Daily Newspaper
Markets?” NBER Working Paper no. 7944 (October 2000), p. 9.

Table 3.1
Revenue in Selected Multisided Platforms

Side That Is
Industry Multisided Platform Sides “Charged Less”

Real estate Residential property • Buyer Buyer
brokerage • Seller

Real estate Apartment brokerage • Renter Typically renter
• Owner/landlord

Media Newspapers and • Reader Reader
magazines • Advertiser

Media Network television • Viewer Viewer
• Advertiser

Media Portals and Web • Web “surfer” Web “surfer”
publications • Advertiser

Finance Proprietary terminals • Trader/analyst Content provider
• Content provider

Shopping Mall • Merchant Shopper
malls • Shopper

Payment Travelers’ checks • Check holders Merchant
system • Merchant

Payment Charge/debit card • Cardholder Cardholder
system • Merchant

The economics of pricing for multisided platform businesses has
another key implication. In single-sided businesses, the principle that
the one who causes the cost should pay the cost is good advice, for
businesses as well as for policymakers. For example, a car buyer
“causes” the cost of manufacturing the car, and thus pays the full
cost. That principle usually does not make any sense in multisided
markets, however. Often a product cannot exist unless several different
customers participate simultaneously. They all “cause” costs and
“cause” benefits. That is true even if it is possible to identify costs
that increase as a result of an additional user on one side—for example,
the cost of printing another copy of the Yellow Pages. Economists
have shown that the best prices—either from the standpoint of the
business maximizing profits or from the standpoint of policymakers
maximizing social welfare—involve complex relationships between the
price sensitivity of each side, interdependencies between these demands,
and marginal costs.

Is There Anything New Here? Multisided platforms have a number
of features that economists have examined before. Yet traditional
learning does not deal with the role of intermediaries in internalizing
network externalities. Most businesses have distinct consumer types:
workers or retirees, households or corporate entities, men or women.
But multisided platforms differ in that they must serve two or more dis-
tinct types of consumers to generate demand from any of them.
Hair salons may cater to men, women, or both. Heterosexual dating
clubs must cater to men and women. For hair salons the ratio of men to
women does not matter much; for heterosexual dating enterprises it is
absolutely critical.

Most businesses in single-sided and multisided markets engage in price
discrimination (charging different prices that aren’t proportional to the
corresponding marginal costs) because it is possible to increase revenue
by doing so and because, in the case of businesses with extensive scale
economies, it may be the only way to cover fixed costs. A dating club
may charge men a higher price just because they have more inelastic
demand and because it is easy to identify that group of consumers. But

60 Chapter 3

businesses in multisided markets have an additional reason to price dis-
criminate: by charging one group a lower price the business can charge
another group a higher price; and unless prices are low enough to attract
sufficient numbers of the former group, the business cannot obtain any
sales at all.

Like firms in multisided markets, many firms in single-sided markets
sell multiple products, and there is extensive economic literature
explaining why they do so. The standard explanations for why firms
produce multiple products probably apply to many of the platforms
discussed here. But firms that make multiple products for several one-
sided markets (for example, General Electric makes light bulbs and
turbine engines) or several complementary products for the same set
of consumers (for example, IBM sells computer hardware and computer
services) do not secure profit opportunities from internalizing indirect
network effects.

Finally, it is important to ask how the business implications of the
recent work on multisided markets differ from those of the older eco-
nomic literature on network effects. This is not as simple as it might
seem, since popular discussions of network effects often missed impor-
tant subtleties in the academic literature.

Take the case of single-sided markets with direct network effects.
Because of those effects it follows that there is an advantage to size, all
else equal. But it does not follow that this advantage, if present, is large,
and it certainly does not follow that the firm with the biggest market
share always wins in the end, let alone that the first entrant always wins.
Nonetheless, in the frenetic days of the Internet bubble, lots of businesses
were founded on the assumption that network effects were present and
important in their markets and that the key to success was to get in fast,
price low, and build share at any cost. Proponents of this simplistic view
emphasized tipping—you build up critical mass, and then the whole
market flocks to you. And they emphasized an extreme sort of lock-in—
once you get most of the customers, nobody can enter against you, even
with a better product.

As Brian Arthur, an author of several influential papers in network
economics, put it, “You want to build up market share, you want to

Both Sides Now 61

build up user base. If you do you can lock in that market.”24 This is a
nice, simple theory—much simpler than the economic literature from
which it claimed to be derived. But it is hard to find many businesses
that succeeded by following it. Unfortunately, many dot-com entrepre-
neurs and investors thought that “build share fast” was the path to great
riches. Only a few made it very far down that path before reality closed
it off and supposedly locked-in buyers left en masse. It turns out that
only rarely are direct network effects strong enough to prevent buyers
from switching to a better product, as the massive defections of buyers
from once dominant word-processing programs illustrates.

Those who believed that riches could be made quickly and easily by
harnessing network effects tended not to distinguish sharply between
direct and indirect network effects. In both cases the managerial pre-
scription was to build share rapidly; indirect network effects, like direct
network effects, would kick in automatically and both fuel and protect
further growth. Work on two-sided markets makes it clear that this is
dangerously simplistic in two important respects.

First, even though at least two distinct groups must be involved or
there to be indirect network effects, the network enthusiasts assumed
both that it is obvious that one should pay and the other should not,
and that it is obvious which group should pay.

Second, they generally assumed that the group that did not pay could
be ignored in setting business strategy because it would automatically
fall into line and generate valuable network effects. In contrast, economic
analyses of multisided platforms, along with the industry case studies
discussed in the following chapters, show that successful multisided plat-
form businesses must pay careful attention to all relevant groups, and
typically must worry more about balance among them than about build-
ing share with one of them. The multi-sided approach is consistent with
asymmetric treatment of customer groups, but getting it right requires
great luck or careful analysis.

The popular network economics literature also suggested that markets
with direct or indirect network effects would tend to tip toward a single

62 Chapter 3

24. Joel Kurtzman, “An Interview with W. Brian Arthur,” Strategy+Business 11
(1998): 100.

provider.25 That does not happen much in practice, though. Sometimes
congestion costs outweigh network effects—that is the case with night-
clubs, trading pits, and shopping malls. Platforms also differentiate them-
selves, and thereby counter the network effects of their rivals, by trying
to appeal to different consumer preferences. That is one of the reasons
for the proliferation of magazines.

Consider some markets that seem to display important indirect
network externalities: PC operating systems, real estate agencies,
payment cards, auction houses, local and national newspapers, broad-
cast networks, parcel delivery services, banks, dating services, standards
for encoding DVDs, financial information services, music publishers, and
recorded music manufacturers. Of these many markets, the only ones in
which a single large player accounts for the preponderance of sales are
PC operating systems (i.e., Windows) and some local newspaper markets
(such as the Los Angeles Times).

Most software platform categories are competitive as a result of
providers differentiating themselves to appeal to different types of
customers on either side of the market.

Business Models in Multisided Platform Markets Making a platform a
success is a delicate process. Businesses have to get the pricing structure
right; they must balance the demands of the various customer groups
and nurture the several sides of the market. Getting the balance right
seems to be more important than building shares. Platform markets do
not tip quickly because as a practical matter, it takes time to get things
right. And the first entrant often does not win in the end: many other
firms may come in and successfully tweak the pricing structure, product
design, or business model. eBay is a successful business-to-business (B2B)

Both Sides Now 63

25. Some of the network effects models allowed for differentiated tastes and the
coexistence of multiple networks. See Jeffrey Church and Neil Gandal, “Network
Effects, Software Provision and Standardization,” Journal of Industrial
Economics 40, no. 1 (March 1992): 85–104. S.J. Liebowitz and S.E. Margolis,
“Network Externality: An Uncommon Tragedy” Journal of Economic Perspec-
tives 8 (1994): 133–150. However, this literature was often taken to suggest
overall that network effects naturally lead to a single firm dominating a cate-
gory. See Brian Arthur, “Increasing Returns and the New World of Business,”
Harvard Business Review 74 (July–August 1996): 100–109.

exchange now, for example, but many earlier B2Bs failed.26 Most B2Bs
tried a big-bang strategy: make substantial investments in a platform and
hope both sides show up when the platform opens for trading. The first
and third entrants into the payment card industry, Diners Club and Carte
Blanche, barely exist today. The second entrant, American Express, had
a 14 percent share of credit and debit card purchase volume in 2003.27

Getting All Sides on Board An important characteristic of multisided
markets is that the demand on each side vanishes if there is no demand
on the others, regardless of what the price is. Merchants will not accept
a payment card if no customer carries it because no transactions will
materialize. Computer users will not use an operating system for which
the applications they need to run have not been written (except those
rare users who plan to write their own applications). The businesses that
participate in such industries have to figure out ways to get both sides
on board.

One way to do this is to obtain a critical mass of users on one side of
the market by giving them the service for free or even paying them to
take it. Especially at the entry phase of firms in multisided markets, it is
not uncommon to see precisely this strategy. Diners Club gave away its
charge card to cardholders at first—there was no annual fee, and users
got the benefit of the float.28 Netscape gave away its browser to many
users, particularly students, to get a critical mass on the end-user side of

64 Chapter 3

26. eBay was not begun as a B2B Web site, but as more and more businesses
began to do business on it, it became one. In 2003, eBay officially launched a
separate B2B site. “Prior to the B2B site, eBay listed more than 500,000 busi-
ness items for sale every week on its consumer site, with business buyers repre-
senting more than $1 billion in annualized gross merchandise sales, officials
said.” Renee Boucher Ferguson, “eBay Launches B2B Site,” eWeek, January 28,
2003 (http://www.eweek.com/print_article/0,3048,a=36363,00.asp); eBay Press
Release, “eBay Launches eBay Business to Serve Its Growing Community of Busi-
ness Buyers,” January 28, 2002 (http://investor.ebay.com/news/20030128-
100772.cfm); Mark Berniker, “SAP, eBay Setup Industrial B2B Marketplace,”
internet News.com, June 16, 2003 (http://www.internetnews.com/xSP/article.
php/2222371).

27. Nilson Report 805 (February 2004).

28. “Credit Cards for Diners,” New York Times, March 30, 1950, p. 37; Diners
Club display advertisement, New York Times, March 30, 1950, p. 42.

its business.29 (Initially the other side was providers of Web sites, to
whom Netscape sold its server software.)

Another way to solve the problem of getting the two sides on board
simultaneously is to invest to lower the costs of consumers on one side
of the market. As we saw earlier, for instance, Microsoft invests in the
creation of software tools that make it easier for application developers
to write application software for Microsoft operating systems and pro-
vides other assistance that makes developers’ jobs easier. In some cases,
firms may initially take over one side of the business in order to get the
market going. Palm would never have succeeded in creating the vibrant
Palm economy, with thousands of software applications and hardware
add-on developers and millions of users, had it not provided the first
applications itself (especially Graffiti, the handwriting recognition
system).30

Providing low prices or transfers to one side of the market may help
the platform solve the simultaneity problem by encouraging the bene-
fited group’s participation—which in turn, owing to network effects,
encourages the nonbenefited group’s participation. In addition, provid-
ing benefits to one side can discourage its use of competing multisided
platforms. For example, when Palm provides free tools and support to
PDA applications software developers, it encourages those developers to
write programs that work on the Palm OS platform and automatically
induces those developers to spend less time writing programs for other
operating systems.31

Pricing Strategies and Balancing Interests Firms in mature multisided
markets—those that have already gone through the entry phase, in which
the focus is on getting the various sides on board—still have to devise

Both Sides Now 65

29. David Plotnikoff, “Internet Born with Netscape,” Mercury News, February
28, 2003 (http://www.tc.umn.edu/~jbshank/7_NetscapeIPO.html).

30. Annabelle Gawer and Michael Cusumano, Platform Leadership: How Intel,
Microsoft and Cisco Drive Industry Innovation (Boston: Harvard Business
School Press, 2003).

31. Jean-Charles Rochet and Jean Tirole, “Platform Competition in Two-Sided
Markets,” working paper, December 13, 2002; http://www.palmsource.com/
developers/why_develop.html.

and maintain an effective pricing structure. In most observed multisided
markets, companies seem to settle on pricing structures that are heavily
skewed toward one side of the market, as Table 3.1 shows. Google earns
the preponderance of its revenue from advertisers, for instance, and real
estate brokers usually earn most or all of their revenues from sellers.

Sometimes all competing platforms converge on the same pricing strat-
egy. In principle, Microsoft, Apple, IBM, Palm, and other operating
system companies could probably have charged higher fees to applica-
tions developers and lower fees to hardware makers or end users. Most
discovered that it made sense to charge developers relatively modest fees
for developer kits and, especially in the case of Microsoft, to give away
a lot for free.

Getting the pricing balance right, however, requires considerable care.
For example, in 2000, Yahoo!’s Internet auction site was second only to
eBay in terms of the number of listings. Sellers found the site appealing
because unlike eBay, Yahoo! did not charge sellers a fee for listing their
products. In 2001, Yahoo! changed its pricing strategy and began charg-
ing a fee. Yahoo!’s listings dropped by 90 percent as sellers presumably
moved to the larger venue, eBay.32 The price change affected Yahoo!’s
buyer-side market as well, since buyers were now left with little to bid on.

Two important factors influence multisided pricing structures. There
may be certain customers on one side of the market—Rochet and Tirole
refer to them as “marquee buyers”33—who are extremely valuable to cus-
tomers on the other side of the market. The existence of marquee cus-
tomers who create strong network effects tends to reduce the price to all
customers on the same side of the market and increase it to customers
on the other side. A similar phenomenon occurs when certain customers
are extremely loyal (or captive) to the multisided platform firm, perhaps
because of long-term contracts or sunk cost investments. The effect is
then opposite: the presence of captive customers leads to an increase in
the price charged to those on the same side and a decrease in the price
charged to the other side.

66 Chapter 3

32. Saul Hansell, “Red Face for the Internet’s Blue Chip,” New York Times,
March 11, 2001, section 3, p. 1.

33. Rochet and Tirole, “Platform Competition in Two-Sided Markets,” pp.
23–24.

For example, American Express has been able to charge a relatively
high merchant discount as compared to other card brands, especially for
its corporate card, because merchants have viewed the American Express
business clientele as extremely attractive.34 Corporate executives on
expense accounts were “marquee” customers, who allowed American
Express to raise its prices to the other side of the market, merchants.
Similarly, marquee customers—in the guise of popular stores, often called
anchor tenants—are important for shopping malls as well: by attracting
customers they make a mall more attractive to other stores. The decline
of a marquee store can sound the death knell for an entire mall.

In the software world, marquee customers are usually businesses on
the user side and “killer applications”—an application so innovative and
popular that people and businesses buy the computer system mainly
because they want the app—on the developer side. VisiCalc was the killer
app for the Apple II computer. It was one of the most important reasons
behind the initial popularity of this platform. Likewise, Mario Bros. was
largely responsible for Nintendo’s millions of sales of its NES video game
console in the United States, and Sonic the Hedgehog was the main
reason for its displacement by Sega’s Genesis as the dominant console
several years later.

Multihoming As Table 3.2 illustrates, customers on at least one side of
a multisided market often belong to several different networks. This is
known as multihoming. Take payment cards. Most merchants accept
charge, credit, and debit cards associated with several systems; consider
how many card symbols there are at the next gasoline pump you use.
On the other side of the market, the average consumer has 3.6 payment
cards.35 Advertisers typically place advertisements in several different
magazines, and consumers read various magazines.

In general, multihoming by one side of the market relaxes platform
competition for that side and intensifies it on the other. For instance, if
game developers suddenly become more prone to porting their games to

Both Sides Now 67

34. Jon Friedman and John Meehan, House of Cards: Inside the Troubled
Empire of American Express (New York: Kensington Publishing, 1992), pp. 13,
56.

35. http://www.cardweb.com/cardtrak/pastissues/april2004.html.

68 Chapter 3

Table 3.2
The Presence of Multihoming in Selected Multisided Platforms

Multisided
Platform Sides Presence of Multihoming

U.S. • Buyer Uncommon: Multihoming may be
residential • Seller unnecessary, since a multiple listing
property service allows the listed property to
brokerage be seen by all member agencies’

customers and agents.

Securities • Buyer Common: The average securities
brokerage • Seller brokerage client has accounts at

three firms. Note that clients can
be either buyers or sellers, or both.

Newspapers • Reader Common: In 1996, the average
and • Advertiser number of magazine issues read per
magazines person per month was 12.3. Also

common for advertisers: for
example, on August 26, 2003,
AT&T Wireless advertised in the
New York Times, (the) Wall Street
Journal, and the Chicago Tribune,
among many other newspapers.

Network • Viewer Common: For example, viewers in
television • Advertiser Boston, Chicago, Los Angeles, and

Houston, among other major
metropolitan areas, have access to
at least four main network
television channels: ABC, CBS,
FOX, and NBC. Also common for
advertisers: for example, Sprint
places television advertisements on
ABC, CBS, FOX, and NBC.

Operating • End user Uncommon for users: Individuals
system • Application developer typically use only one operating

system.
Common for developers: As noted
earlier, the number of developers
that develop for various operating
systems indicates that developers
engage in significant multihoming.

Video game • Game player Varies for players: The average
console • Game developer household (that owns at least one

console) owns 1.4 consoles.

both Sony PlayStation 3 and Microsoft Xbox 360, there would be less
reason for Sony and Microsoft to hold royalties down to attract develop-
ers. Moreover, in this case the two consoles would become closer substi-
tutes from the users’ perspective, since they would have more games in
common, so one might expect the battle for the end users (many of whom
buy only one console) to become fiercer, resulting in lower console prices.

Sometimes unrelated platforms evolve into intersecting ones, which
target one or more groups of customers in common; we will see this for
digital media platforms. Platform competition can be fierce when either
group of customers is price-sensitive because they have other alterna-
tives. The Houston Chronicle may have 89 percent of the newspaper
readers in Houston, but that does not mean that it can exercise a great
deal of pricing power.36 Advertisers have many other ways of getting mes-
sages to readers, so they are sensitive to prices. And while readers may
not have many newspaper alternatives, they do have other ways of
getting the news, and having a lot of readers is what makes advertisers
pay.

Both Sides Now 69

Table 3.2
(continued)

Multisided
Platform Sides Presence of Multihoming

Common for developers: For
example, in 2003, Electronic Arts,
a game developer, developed for
the Nintendo, Microsoft, and Sony
platforms.

Payment card • Cardholder Common: Most American Express
• Merchant cardholders also carry at least one

Visa or MasterCard. In addition,
American Express cardholders can
use Visa and MasterCard at almost
all places that take American
Express.

36. This number is the total daily circulation of the Houston Chronicle divided
by the total daily circulation of all daily newspapers in the Houston area. Cir-
culation 2003, SRDS (2002), p. 67.

Scaling Many successful multisided firms seem to have adopted a
fairly gradual entry strategy in which they scale up their platform
over time.37 Many payment card systems, for example, started in one
city or region before expanding nationally. It is often difficult to
predict just what the right technology and operations infrastructure
will be. Therefore, the multisided firm may find it advantageous to
establish efficient buyer-seller transactions and balanced pricing first,
and make large investments only after the platform has been tested.
Platforms such as eBay, Palm, and Yahoo! have expanded gradually
and methodically, building up customers on both sides of their
markets.

Strategy Markets hardly ever cooperate with professors by following
simple textbook rules exactly. But in traditional markets there are classic
truisms that can at least serve as a benchmark, a starting point for more
nuanced analysis. By contrast, multisided platforms, especially those in
new markets, all too often require clean-sheet planning. With multiple
yet interdependent business constituencies to serve, costs provide little
guidance for pricing strategies. By the same token, early entry may yield
first-mover advantages or provide an instructive failure that simplifies
the search for successful strategies by businesses that follow. And, in light
of the interdependence between different stakeholders, changes in the
business environment may have multisided effects that are very difficult
to anticipate.

Open-Source Software

The fortune made by the founders of Google is built in part on the efforts
of thousands of volunteers around the world who helped develop the
operating system that powers the massive array of server computers that
helps us conduct searches and in return peppers us with customized

70 Chapter 3

37. An example of a failed strategy is the case of Chemdex, a business-to-
business marketplace, and its parent company, Ventro, which made initial tech-
nological and operational investments in the hundreds of millions of dollars
(http://www.zdnet.com.au/newstech/enterprise/story/0,2000025001,20107754,0
0.htm).

advertising messages. Google uses Linux. Like anyone else, it can down-
load this software platform for free from the Internet and customize the
source code to meet its own needs. As of 2004, around 19 percent of
server computers ran Linux worldwide.38

This is almost unthinkable in any other industry. It could not happen
in manufacturing, because someone would have to pay for the raw mate-
rials to assemble an automobile, for example. Yet even in intellectual
property-based businesses such as movies one seldom sees products made
by volunteers beating those built by for-profit firms. Linux is the result
of the remarkable open-source production model. We turn now to the
underlying economics of that model.

Open source is based on a decentralized method for producing
software that relies heavily on the Internet. Programmers working on
their own or through their companies contribute code to open-source
projects. The source code of the resulting programs is made available
for free; hence the term open source. Users must sign a license that
requires that if they redistribute the program, even in modified form, they
must make the source code available. As a result, it is hard to make
money directly from open-source programs or anything derived from
open-source programs. Open source began as an ideology—“free
software is a matter of liberty,” according to Richard Stallman—but
has evolved into a multi-billion-dollar business based on selling hard-
ware, software, and services that are complementary to open-source
programs.39

The Production of Open-Source Software
In its early days, individuals who donated their time to work on projects
that interested them were the main contributors to open-source software.
Typically, a person or a small group of people gets an idea for a project
that is interesting, useful, or both. The original developers begin work
on the project and eventually solicit support from other interested pro-

Both Sides Now 71

38. Al Gillen and Dan Kusnetzky, “Worldwide Client and Server Operating
Environments 2004–2008 Forecast: Microsoft Consolidates Its Grip” (ID C
report no. 32452), December 2004, table 2.

39. http://www.fsf.org/philosophy/free-sw.html.

grammers. Over the course of the project, programmers, including the
original developers, may come and go as they complete work and as their
interest waxes or wanes.

The programmers communicate with each other over the Internet. A
core group, often consisting of one or more of the original developers,
has responsibility for incorporating changes and suggesting things that
need to be done. Modified versions of the source code are posted on the
Internet and available for free to anyone who wants to use them or
modify them further. Over time, users regularly identify bugs that had
originally escaped detection, and worthwhile features to add. These users
can provide feedback to the developers (or become developers them-
selves). Through this ongoing process the software becomes tested,
debugged, and developed.

The Apache Web server is one of the most successful and famous open-
source projects. An early version was written at the National Center for
Supercomputing Applications (NCSA) and became the most popular
Web server by 1995. Development stalled when Rob McCool, the core
developer, left NCSA. Following his departure, some Webmasters began
coordinating their fixes via email. Eventually, the Apache group, con-
sisting of eight core contributors, was formed. In April 1995 the first
version of the Apache server (version 0.6.2) was released, and became a
huge success. The server was completely revamped during the second
half of 1995, and Apache 1.0 was released in December 1995. Less than
a year after its release, Apache 1.0 became the most popular Web server
in the world.40 The Apache group was incorporated in June 1999 as the
Apache Software Foundation. Apache 2.0 was released in 2002, and
minor fixes and updates have been periodically released since then.
Apache remains the most popular Web server in use, with more than a
50 percent share of its segment.41

This production method differs from the commercial approach.
First, there is typically little analysis of consumer needs other than

introspection: “What would I like my software to do?” This may be aug-
mented by user feedback, but these users are self-selected; except in

72 Chapter 3

40. http://httpd.apache.org/ABOUT_APACHE.html.

41. http://en.wikipedia.org/wiki/Apache_web_server.

unusual circumstances, they are not drawn randomly from the universe
of potential users of the software.

Second, there is little formal testing of the type that commercial firms
often must engage in: internal testing using hundreds, perhaps thousands
of hardware and software configurations in a controlled manner. Testing
is instead performed by the users who try versions of the software in
uncontrolled environments, much like beta tests for commercial software
developers (although perhaps with more sophisticated users providing
feedback to the developers).

Third, the development of open-source software is less structured than
the development of proprietary software. Although the core developers
may provide direction, changes in the software result much more from
individual action.

As open source has evolved, commercial businesses have become more
intimately involved in steering open-source projects. They do this by
having their employees spend time contributing open-source code and
working on the various committees that oversee open-source projects. In
a 2003 survey of open-source contributors, nearly 15 percent reported
that their employer paid them to develop open-source code, 13 percent
noted they were paid to “support” open source, and 13 percent stated
they were paid to “administer” open-source projects.42

IBM is arguably the best example of a traditional for-profit company
with strong ties to open-source software. The bond was officially created
in 2000, when IBM announced a $1 billion investment (including mar-
keting expenditures) in a variety of open-source initiatives, including
adapting Linux and Apache to IBM’s various computer hardware plat-
forms.43 IBM’s hardware business was unusual in that it marketed several
fundamentally different types of servers with mutually incompatible oper-
ating systems. Adopting Linux permitted IBM to unify its server product
line, so that proprietary IBM software (and other software) could be used
on all the different servers. By making Linux available on all of its servers,
from the smallest to the largest, IBM added consistency to its product line

Both Sides Now 73

42. http://www.idei.fr/doc/conf/sic/papers_2005/pdavid_slides.pdf.

43. Joe Wilcox, “IBM to Spend $1 Billion on Linux in 2001,” CNETNews.com,
December 12, 2000 (http://news.com.com/2100-1001-249750.html).

that was missing before. IBM therefore had an incentive to do open-
source development that would make Linux run (or run better) on its
servers because the investment would provide benefits to IBM.44

The open-source investment strategy appears to have paid off hand-
somely for IBM. For example, China’s postal service hired IBM to build
Linux-based networks for over 1,200 of its branch offices.45 A year after
its initial $1 billion investment, the company announced that it had
already recouped that amount and more.

Intellectual Property Rights
The proponents of open-source software faced a problem. On the one
hand they wanted to make open-source software widely available. That
meant that they did not want to use copyrights, patents, or trade secrets
to limit the distribution of open-source programs. On the other hand,
they wanted to make sure that commercial enterprises could not free-
ride on the efforts of the open-source community by making minor
changes or additions to open-source programs but then enforcing their
own intellectual property rights on the entire modified programs.

The General Public License (GPL) was an ingenious solution to this
dilemma. The GPL is based on “copyleft”:

You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to
be licensed as a whole at no charge to all third parties under the terms of this
License.46

(Despite the copyleft name, the GPL is enforced by copyright law. Copy-
right is the source of the property protection that enables those who
release software under a GPL to impose conditions on others who obtain
that code.) The copyleft provision means that if people choose to dis-
tribute software that is based in part on other software covered by the
GPL, they must distribute their new software under the GPL. GPL soft-

74 Chapter 3

44. James Evans, “IBM to Invest Almost $1 Billion on Linux Development,”
InfoWorld, December 12, 2000 (http://www.infoworld.com/articles/hn/xml/00/
12/12/001212hnibmlin.html).

45. http://www.infoworld.com/articles/hn/xml/03/01/23/030123hnibmlinux.
html?0124fram.

46. http://www.fsf.org/licensing/licenses/gpl.html.

ware thereby propagates itself. Copyleft makes it difficult for anyone to
earn significant profits from selling software code subject to the GPL. As
Richard Stallman observed,

We encourage two-way cooperation by rejecting parasites: whoever wishes to
copy parts of our software into his program must let us use parts of that program
in our programs. Nobody is forced to join our club, but those who wish to par-
ticipate must offer us the same cooperation they receive from us.47

Proprietary programs can use or communicate with GPL programs
in some limited ways without themselves becoming subject to the viral
license condition, but the FSF recognizes that the dividing line can
be murky. The terms of the GPL apply only to the distribution of soft-
ware licensed under the GPL, although what “distribution” means in
this context is not entirely clear either. It may be possible for an
enterprise to modify a GPL program and use it internally without
being legally bound to make the source code for its modified
version available to others. On the other hand, if the same enterprise
distributed its modified GPL program to a subsidiary, the terms of
the GPL might well require it to make the source code available to all
comers.

Most open-source projects are subject to the GPL. However, several
commercial ventures have chosen to use modified licenses. The two most
prominent examples are the Common Development and Distribution
License (CDDL) that covered Sun’s Solaris as it went open source and
the Mozilla Public License (MPL) that governs the Firefox browser,
among other products. Both contain provisions that GPL does not, and
thus code cannot be freely moved between GPL and projects covered
under these other licenses. Opponents of this balkanization of open-
source licenses contend that it leads to islands of legally incompatible
code. For example, owing to different licenses, no cross-pollination
between Linux (GPL) and Solaris (CDDL) is possible. Proponents argue
that companies have varying needs and catering to these differences is
necessary for open-source software to flourish. In addition to relying on
more restrictive licenses some open-source software companies are using
intellectual property rights to help protect their investments and guard

Both Sides Now 75

47. http://www.rons.net.cn/RMS/ms_oss.html.

their profits. Red Hat, for example, has used trademark law to help
protect its compilation of Linux from others.

Incentives
The incentives for writing open-source software are different from those
for writing commercial software. Many people write open-source code
without being paid directly for it. These are volunteers who write code
in their spare time because it interests them. Others write code because
their companies have asked them to. This may sound traditional but is
not, since their employers cannot sell the resulting code or obtain intel-
lectual property rights over it.

Why Individuals Work on Open-Source Software Why programmers
donate time to open-source software projects is a subject that has
generated considerable discussion.48 Open-source advocates have
suggested several motives, four of which involve nonfinancial rewards:

• It is a good way to learn how to program and develop skills.
• It is fun. Since a programmer is free to pick and choose among open-
source projects, he need only work on matters of interest.
• It is prestigious. Success at open-source development rates highly
among those whose opinions most programmers most value—other
programmers.
• It “scratches an itch.” Programmers attack problems that they per-
sonally face or because they are intrigued by the intellectual challenge.
• It meets an ideological urge—the desire for free software and the
“liberty” it entails.

The “scratches an itch” motive has been considered by some analysts
as leading to something like a cooperative of users. A number of devel-
opers all consider a particular type of software potentially useful, so they
pool their talents to develop the software. With this type of motivation,
the GPL has sometimes been considered beneficial as an enforcement
mechanism: it ensures that no one can take the collective intellectual

76 Chapter 3

48. For a more detailed discussion of open-source software development, see
Joshua Lerner and Jean Tirole, “Some Simple Economics of Open Source,”
Journal of Industrial Economics, 2002; Joshua Lerner and Jean Tirole, “The
Open Source Movement: Key Research Questions,” European Economic Review
45, nos. 4–6 (2001): 819–826.

property, add some private intellectual property, and treat the whole as
a private good.

Business Models Based on the Open-Source Concept Businesses have
incentives to “donate” employees to the development of open-source
projects that stimulate the demand for other products or services sold by
the firm. This has become an increasingly large source of labor for open-
source projects.49 IBM and Red Hat illustrate the motivations. As dis-
cussed earlier, IBM’s model is built on driving the sales of its key
products: supporting Linux software increases IBM’s sales of hardware,
proprietary software, and services. Linux offered a way for IBM to inte-
grate its entire line of servers without having to develop a software plat-
form of its own, and without having to shoulder the continued support
and development of that system on its own.

Red Hat is a somewhat different story. That company began as a
pure open-source vendor offering a distribution of Linux. Over time,
it has gradually moved toward more traditional software licensing,
presumably because it is difficult to support a for-profit company
with a pure open-source business model. Red Hat is focused on solving
a problem inherent in the Linux development model. For major
proprietary operating systems such as Windows, the components of
the software are integrated by the distributor and sold as a single
program. Since no one developer exists for Linux, bits and pieces of
the operating system tend to float around—some in forms unusable by
nonprofessionals. Specific Linux distributions consolidate these bits and
pieces into a convenient package.

Red Hat is arguably the premiere Linux distribution, with more than
46 percent of Linux server distribution shipments in 2004.50 The
company was founded in 1995 and subsequently enjoyed significant

Both Sides Now 77

49. “OpenOffice Team Wants IBM Contribution,” VNUNet, April 25, 2005;
Timothy Prickett Morgan, “Novell Creates Hula Open Source Collaboration
Server,” ComputerWire, February 16, 2005 (http://www.computerwire.com/
industries/research/?pid=23554158-E49D-4ED2-9482-72B4B5D4119F&type=
CW%20News).

50. Al Gillen, Milla Kantcheva, and Dan Kusnetzky, “Worldwide Linux Oper-
ating Environments 2005–2009 Forecast and Analysis: Product Transitions
Continue” (IDC report no. 34390), table 2.

growth, topped off with an IPO in 1999 that generated the eighth biggest
first-day percentage gain in Wall Street history.51 Like many other high-
tech companies, Red Hat lost quite a bit of value in the dot-com crash,
but it has since rebounded successfully.

Red Hat really does three things. First, it integrates components of
Linux into a cohesive distribution, including commonly used open-
source products along with the core operating system. Second, it adds
its own software to provide a better user experience and to make instal-
lation and updating easier. Third, it sells support packages and certifies
that external administrators are qualified to work on Red Hat products.
The company includes only open-source software, and the code it writes
is licensed mainly under the GPL.

Red Hat changed its business model drastically in 2003 by splitting
its distribution into two products—the Fedora Project, a more tradi-
tional open-source project, and Red Hat Enterprise Linux (RHEL),
the flagship product. Fedora is the place for experiments to run and
outside developers to submit code, while RHEL is a stable version
of Linux for paying customers. Along with the split came a new licens-
ing agreement. RHEL source code is available for free from Red Hat,
but the code computers need to run the operating system is available
only with the purchase of a support subscription.52 And support
subscriptions must be purchased for each computer, just like traditional
proprietary software licenses.

One fundamental problem with generating revenue from GPL soft-
ware is that anyone can take the source code, “compile” it for comput-
ers to read, and resell it without incurring the original creator’s
development costs. Red Hat has tried to sidestep this problem. Another
company could rebuild RHEL from freely available source code, but it
would have to strip out all references to Red Hat to comply with trade-
mark law. Purchasers could not be certain that the distribution really
contained all of the pieces in Red Hat’s, or that the installation would

78 Chapter 3

51. W. G. Rohm, “Inside The Red Hat IPO,” Linux Magazine, November 15,
1999 (http://www.linux-mag.com/1999-11/redhatipo_01.html).

52. Advanced users could compile the source code themselves. As discussed later
in the chapter, this has many disadvantages for corporate customers.

work as seamlessly. Thus, Red Hat has used its reputation in combina-
tion with trademark law to limit the potential for another company to
undercut its profits.

Open source seems so New Age. Yet when one looks over the history
of the computer industry, it turns out that the business of selling
software—including software platforms—really didn’t take hold until the
late 1970s. Microprocessors created a mass market for software that
attracted entrepreneurs. Many of these pioneers wrote applications that
would run on the new microprocessor-based personal computers. A few
focused on refining software platforms whose shared code could be used
by many developers and customers at the same time. The next two chap-
ters examine the almost contemporaneous birth of software platforms
on PCs and video game consoles.

INSIGHTS

• Like other information goods, software platforms are produced by edu-
cated workers, are malleable and easily changed, and are reproducible
at virtually no cost.

• Bundling features into the software platform is often efficient for the
platform producer and for end users, as it is for most information goods,
because it lowers distribution costs and expands demand.

• Software platforms create value by reducing the costs for their multi-
ple customer groups to come together and thereby enhance the value that
each customer group delivers to the other. They do this mainly through
providing shared services—made available through APIs—that reduce
costs for developers and users.

• Multisided platforms must consider marginal costs and price sensitiv-
ity in pricing, like single-sided businesses, but they must also consider
which side values the other side more. Software platforms generally
charge low prices on one side in order to attract customers who can then
be made available to the other side. Getting the balance right among all
sides is more important than building market share.

Both Sides Now 79

80 Chapter 3

• Commercial and open-source production methods have both proved
viable models for producing software platforms. Commercial methods
seem better suited for managing the multisided aspects of platforms,
while open-source methods have produced reliable platforms and appli-
cations.

4
Dropouts and Evangelists

So we went to Atari and said, “Hey, we’ve got this amazing thing, even built
with some of your parts, and what do you think about funding us? Or we’ll give
it to you. We just want to do it. Pay our salary, we’ll come work for you.” And
they said, “No.” So then we went to Hewlett-Packard, and they said, “Hey, we
don’t need you. You haven’t got through college yet.”

—Steve Jobs, founder of Apple Computer Inc., on attempts to get Atari and
H-P interested in his personal computer.1

INSIDE THIS CHAPTER

• The history of PC software platforms
• The role of multisided strategies in promoting growth and profits
• Hardware integration and its effect on the growth of the Apple and
Microsoft platforms

In the first years of the computer industry, every computer was on its
own island. In the early 1950s, a few large corporations, government
agencies, and universities bought mainframe computers from a few
large companies such as Sperry Rand. They didn’t get much beyond
the hardware. They got a few manuals and the basic software they
needed to run programs written in assembly language. They didn’t
even get an operating system. Each computer’s owner needed a team
of in-house programmers who, perhaps with some technical help
from Sperry, would write applications customized for that organization
and that computer. Buying a new computer, even from the same

1. Blech, Benjamin, Taking Stock: A Spiritual Guide to Rising Above Life’s
Financial Ups and Downs (New York: AMACOM, 2003).

82 Chapter 4

manufacturer, often meant laboriously rewriting those applications
almost from scratch.

The isolation of computer centers began changing at the end of the
1950s, when there were around 4,000 computers in use worldwide.
Computer vendors began bundling rudimentary operating systems with
their hardware. And the development of high-level programming lan-
guages such as FORTRAN and COBOL made programming simpler and
made it easier, though hardly simple, to move programs from one
machine to another. Computer owners could also start calling out for
help. Two computer analysts who worked in the aerospace industry,
for example, started one of the first programmers-for-hire companies—
Computer Sciences Corporation—in 1959. Others followed suit. At first
these software companies focused on helping companies write special-
ized software, from compilers to applications, for their expensive main-
frame computers.

It didn’t take much longer, though, for computer entrepreneurs to
realize that there could be a market for general-purpose software
that many companies would find useful. In the early 1960s, RCA, a
computer manufacturer, commissioned Applied Data Research (ADR)
to develop software that would automate the flow-charting of programs
so as to facilitate debugging new applications and updating old ones.
RCA had planned to give away the ADR product to help sell its com-
puters, but it ultimately decided not to do this. Other computer manu-
facturers showed no interest in bundling ADR’s software with their
machines either. So ADR decided to try something new: it marketed its
product, christened Autoflow, directly to computer users. It was hardly
a mass market success by today’s standards. But by 1968 ADR had sold
about 300 copies of AutoFlow for operating systems from RCA, IBM,
and Honeywell.

Others followed in ADR’s footsteps. Informatics was one of the most
influential. Its Mark IV file management software was, for computers,
selling like hotcakes in the late 1960s. It sold thousands of copies of
Mark IV, which ran on IBM’s System/360 computer, for $30,000 each.
That amounted to over $100 million in sales from late 1967 to the
early 1980s. The “packaged” software industry was born. IBM gave
this new arrival a significant boost in 1970 when the largest producer of

Dropouts and Evangelists 83

84 Chapter 4

mainframes began charging for all its software products (except its
operating systems) rather than including them at no charge with its
computers.2

Fast-forward to today’s personal computer industry. The changes in
industry structure are dramatic. Millions of people buy computers from
dozens of manufacturers. Most computer users have never written a
program of any sort. More than 90 percent of today’s PCs have an oper-
ating system licensed from Microsoft, which plays a major role in the
industry, even though it doesn’t make computers.3 Microsoft and many
other firms sell a wide range of applications that can be run on most new
computers.

Indeed, the software industry has become enormous: in 2003, the
global software industry had revenues of $178 billion for packaged soft-
ware. More than 10,000 businesses specialized in writing applications—
Independent Software Vendors (ISVs), to use the industry jargon—in the
United States alone.4 More than one million people worked in pro-
gramming-type occupations in the United States at the turn of the
twenty-first century.5 And, increasingly, large quantities of programming
work are outsourced to software factories in India.

In addition, a large number of other firms produce monitors, printers,
mice, and other peripheral equipment that can be used with virtually
any PC. Those few isolated individuals struggling to make computers
useful in the early 1950s might have been able to imagine much more
powerful machines than those available then. But they would almost

2. Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry (Cambridge, Mass.: MIT Press, 2003), pp. 36,
101, 103–118.

3. Al Gillen and Dan Kusnetzky, “Worldwide Client and Server Operating Envi-
ronments 2004–2008 Forecast: Microsoft Consolidates Its Grip” (IDC report no.
32452), December 2004.

4. Richard W. Heiman and Anthony C. Picardi, “Worldwide Software
2004–2008 Forecast Summary” (IDC report no. 31785), August 2004.

5. In the 2000 Census, there were 521,105 full-time year-round workers in the
Computer Programmers title and 595,965 Computer Software Engineers, for a
total of 1,117,070 people doing programming-related jobs. In addition, there
were 554,720 Computer Scientists and System Analysts, which if included would
bring the total to 1,671,790. http://www.census.gov/hhes/income/earnings/
call2usboth.html.

Dropouts and Evangelists 85

certainly have been unable even to dream of today’s rich and lively PC
ecosystem, and they would never have been able to imagine the key role
that software in general and operating systems in particular play in that
ecosystem. The chronicle of this great structural transformation is mainly
about the emergence of popular PC software platforms that sit between
the hardware and applications. It is a tale, at the human level, driven by
entrepreneurs who dropped out of college to pursue dreams that came
true, and, more important for our purposes, of evangelists who worked
at popularizing software platforms and thereby helped stoke the indirect
network effects that propelled the PC revolution.

The Apple and Microsoft Software Platforms

Innovation was already shaking the stodgy mainframe computer indus-
try by the mid-1970s. Computer power was coming to the masses—sort
of. Companies such as Digital Equipment Corporation (DEC) were
making minicomputers that were far less expensive than IBM’s main-
frames and that more businesses could use for more applications. And
schools, too: Bill Gates learned how to program on his high school’s DEC
PDP computer. The time-sharing business was taking off: companies
rented access to powerful computers to businesses with remote termi-
nals. And companies such as Wang had developed specialized comput-
ers for office work. Innovations were occurring in operating systems as
well, as we saw in Chapter 2. AT&T had developed Unix, which, in its
several somewhat incompatible variants, became a powerful operating
system for many of the new minicomputers and workstations.6

Minicomputer makers, however, still largely followed the highly inte-
grated model pioneered by mainframe makers. They provided hardware,
operating systems, and some applications—though they often charged
separately for the apps. The biggest challenges to the industry’s tradi-
tional structure and way of doing business were under way but almost
invisible. Few noticed as the foundations were being laid for the PC rev-
olution. The ensuing story has been told often, so we will just sketch
some of the highlights.

6. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, pp.
143–144, 159.

86 Chapter 4

The Intel 8080 microprocessor, which debuted in 1974, made it pos-
sible to produce cheap electronic devices for a variety of purposes. The
first PC was the Altair 8800, which became available in 1975. It came
as a kit that hobbyists could use to build their own computers with 8080
chips. Like the earliest mainframes, the Altair came without an operat-
ing system. Bill Gates famously dropped out of Harvard to work with
his childhood friend Paul Allen on a program that would allow users to
compile and run BASIC programs on the Altair.7

Two years later Steve Jobs and Steve Wozniak (dropouts from Reed
and Berkeley, respectively) took the next step. They sold the Apple II as
a product bundled with a keyboard, a monitor, and a 6502 micro-
processor from MOS Technology. It also came with a tape drive and
Apple’s version of BASIC. Apple later shipped a floppy disk drive for the
Apple II that included a disk operating system called DOS or Apple DOS.
Before that, BASIC was used to run programs.

Commodore Business Machines’ Commodore PET and Radio Shack’s
TRS-80 were two of the more popular contemporaries of the Apple II.
Like the Apple II, these machines came with a BASIC interpreter that
functioned as the software platform. The TRS-80 also came with
TRSDOS, a disk operating system, and a floppy disk drive.

None of these machines came with any applications to speak of. Many
applications soon became available, though, especially for the Apple II.
Most were programs that people shared freely.

By the early 1980s, hundreds of new computer companies were selling
machines based on 8-bit processors. Then IBM appeared with its Intel
8088-based PC in 1981. It came with a version of Microsoft BASIC, and
most purchasers also bought a new operating system produced by
Microsoft called MS-DOS (more on this later).8

Early Software Platforms
After Bill Gates and Paul Allen developed their BASIC compiler for the
Altair 8800, they went on to develop BASIC programming languages and
tools for other early PCs. BASIC, which had been developed in 1963 at

7. Ibid., pp. 202–204.

8. http://inventors.about.com/library/weekly/aa033099.htm.

Dropouts and Evangelists 87

Dartmouth College as a teaching tool, became a software platform for
these machines. Many PC owners, particularly hobbyists, used BASIC to
write their own programs. Often users could copy BASIC source code
from magazines and books such as BASIC Computer Games. BASIC
applications could use the commands in BASIC (such as those control-
ling printing) to perform various tasks so programmers didn’t have to
write assembly language code themselves to perform those tasks. These
commands thus played something like the role of the APIs we discussed
in the last chapter.

BASIC and other programming languages were Microsoft’s core busi-
ness through the late 1970s. They accounted for about 30 percent of its
revenue in 1984, shortly before the firm went public in 1986.9 While
BASIC was important during these early days, most prospective users
weren’t programmers, and BASIC never became for any manufacturer
what Apple quickly acquired—a killer app.

Microsoft’s pricing of BASIC departed from industry practice. Other
software companies had translated various programming languages for
specific operating systems used for mainframes and workstations. They
had generally licensed the code to computer vendors for a substantial
flat fee. Microsoft, though, charged PC makers a royalty for each copy
they distributed—$30 a copy in the case of the MITS Altair 8800.

This approach worked well for both buyer and seller. Especially for
cash-poor computer startups, it reduced their upfront costs. It also
reduced their risks: if they didn’t do well, they didn’t have to pay much.
They could also easily pass on the per-copy royalty cost to their cus-
tomers. Per-copy charges also helped Microsoft capitalize on its invest-
ment in programming languages in the face of great uncertainty as to
which computer makers would succeed. A flat fee would have earned
less from the top sellers and would have discouraged other makers from
even trying. Microsoft retained this basic pricing model when it went
into the operating system business.

Another software platform seemed very promising during the late
1970s. Gary Kindall developed an operating system for the Intel 8080

9. Andrew Pollack, “Lotus Is the Spoiler at Microsoft’s Party,” New York Times,
September 9, 1985.

88 Chapter 4

chip called CP/M. He initially sold copies to hobbyists by mail for $75
each. He also gave one of the new computer makers, IMSAI, a blanket
license for $25,000 in 1977. Kindall’s company, Digital Research, wrote
versions of CP/M for other new startups.

CP/M was important in the early days for two reasons. First, it
relieved PC startups of the cost of designing their own operating systems,
thereby reducing barriers to entry into the PC market. By 1980,
Digital Research had licensed versions of CP/M to some 200 PC
makers.10 Second, CP/M to some extent provided a cross-platform envi-
ronment for third-party application developers. Even though CP/M
applications were not perfectly portable between computers from dif-
ferent manufacturers, the widespread use of CP/M significantly reduced
the burden of writing applications for multiple otherwise incompatible
computers.

From the beginning, Jobs and Wozniak decided that Apple should
develop its own proprietary operating system. They followed the same
model as mainframe and minicomputer companies. At first this seemed
to be an enormous competitive advantage. A killer application for the
Apple II, the VisiCalc electronic spreadsheet, appeared in 1979 and
helped turn the Apple II into a highly successful computer platform
shortly after its introduction.

VisiCalc didn’t run at first on the competing CP/M software platforms.
And while the CP/M machines were popular, there was no killer appli-
cation for them in this period. Moreover, had one appeared, it is unlikely
that it would have lighted a fire under any one of the manufacturers of
CP/M computers—the flip side of low barriers to entry is generally low
ability to sustain the profits needed to recoup investments. But a CP/M
killer app might have given at least a short-term boost to the fortunes of
Digital Research.

Many other companies followed Apple’s highly integrated model,
including Tandy, Commodore, Texas Instruments, Coleco, Atari, Timex,
and Sinclair. Like the CP/M-based computers, they now appear mainly
in trivia quizzes for computer buffs.

10. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, pp.
205–206.

Dropouts and Evangelists 89

Atari became a household name thanks to its popular VCS game
console and, to a lesser extent, its arcade games. However, the company
was making home computers as early as 1979. After producing several
8-bit machines, Atari released the ST line of computers in the mid-1980s
with the slogan “Power without the Price.” These computers compared
favorably with IBM PCs, Apple Macintoshes, and Commodore Amigas
in terms of performance per dollar. They also included a MIDI port that
made them popular with musicians.

Microsoft, IBM, and the Birth of a New Platform
In 1980, mighty IBM was in the uncomfortable position of playing catch-
up in the PC market; Apple, Commodore, and Atari, among others, were
already well established. Contrary to its usual practice of doing almost
everything itself, IBM decided to speed development by securing partners
to make much of the necessary hardware and systems software. The
company offered Microsoft a contract to produce programming lan-
guages, its specialty at the time, for its new PC. Microsoft didn’t have the
time or interest to write an operating system and thought CP/M was their
and IBM’s best bet to meet their deadlines. According to Bob O’Rear, who
led the IBM technical efforts at Microsoft, “[O]ur first shot at IBM was
to get them to pick up CP/M from DRI and Bill helped set up a meeting.”11

When DR failed to come to terms quickly with Big Blue, IBM came back
to Microsoft; Microsoft realized its programming language deal required
an operating system and agreed to do it.12 According to O’Rear,

The [operating system] we thought fit the best for a personal computer was CP/M.
It was small, it was targeted at the right audience, it was something we could build
on. We had a lot of faith in DR. [But] that didn’t work, so we folded MS-DOS
into the technical proposal and submitted that and IBM went for it. And then they
also went for a huge list of modifications that had to be done to 86-DOS.

IBM was in a hurry for its new operating system. Microsoft bought a
rudimentary operating system for the Intel 8086 from neighboring
Seattle Computer Products to get a quick start. Seattle Computer Prod-
ucts had been waiting for a version of CP/M for a computer they had

11. O’Rear interview notes from MS-DOS encyclopedia project. Ray Duncan,
ed., The MS-DOS Encyclopedia (Redmond, Wash.: Microsoft Press, 1988).

12. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, pp.
206–207.

90 Chapter 4

built. Frustrated by delays, they had one of their employees, Tim Pat-
terson, write a “quick and dirty operating system” (dubbed Q-DOS) for
it. Seattle Computer Products didn’t want to be in the software business.
Patterson joined Microsoft to help lead the effort to turn his Q-DOS into
something that would meet IBM’s specifications.

Microsoft’s programmers then wrestled with a multitude of bugs and
complexities to produce a finished operating system that was more effi-
cient and included numerous enhancements. Among other things,
it offered increased hardware independence, improved disk space
allocation and management, and greater ease of use for users with less
technical know-how. Microsoft turned over the completed version of PC-
DOS modified for the 8088 chip nine months after sealing its deal with
IBM. The basic system consisted of roughly 4,000 lines of assembly lan-
guage code that took up 12 kilobytes of memory. IBM was able to ship
its PC with PC-DOS a year after its aggressive decision to take on Apple
and the other startups.13 (Under Microsoft’s agreement it could also
license DOS to others, and it did so under the name MS-DOS.)

The computer giant thought it had kept control of the platform it
was developing. It had a royalty-free license for PC-DOS. It was IBM
that shipped PC-DOS, not Microsoft. And IBM planned to make it
possible for its hardware platform to work with several operating
systems. It reached an agreement with Softech for the UCSD p-System.
The USCD p-System was available when the new IBM PC was launched,
but it ran very slowly. IBM also belatedly reached a deal with
Digital Research to produce a version of CP/M for its new machine.
CP/M-86 for the IBM PC appeared several months after the launch,
but Digital Research decided to price it at $240, four times the $60
cost of PC-DOS.14

13. Duncan, The MS-DOS Encyclopedia, pp. 15–24; Daniel Ichbiah and Susan
L. Knepper, The Making of Microsoft: How Bill Gates and His Team Created
the World’s Most Successful Software Company (New York: Prima Publishing,
1991), p. 85; Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog,
p. 207.

14. Michael A. Cusumano and Richard W. Selby, Microsoft Secrets (London:
HarperCollins, 1995), p. 159; Campbell-Kelly, From Airline Reservations to
Sonic the Hedgehog, pp. 239–240.

In retrospect, having multiple operating systems run on a hardware
platform is a poor strategy. The idea, of course, was to ensure that the
hardware, not the operating system, became the standard that defined
the platform and determined its evolution. Indeed, IBM followed an
important economic principle for traditional industries: all firms would
like everyone else in the supply chain to be competitive. IBM didn’t seem
to recognize that this was far from a traditional industry.

If IBM’s strategy had worked, and if several operating systems had
been installed on substantial numbers of IBM PCs, what would have hap-
pened? Most likely, having multiple operating systems would have made
the hardware platform less popular than having a single operating
system. Applications are generally written for software platforms, not
the underlying hardware. The more fragmented the installed base of
operating systems, the less attractive it is to write an application for any
one of them. Thus, operating system fragmentation would have reduced
the number of compatible applications for each of them, reducing their
attractiveness to end users and thus reducing the value of the underly-
ing hardware platform.

As we noted in Chapter 2, that is in fact what happened with
the UNIX operating system for minicomputers. Several versions were
created, and applications weren’t compatible across them. That fragmen-
tation (often called “forking”) stunted the growth of UNIX. As of 2006,
Linux, a stepchild of UNIX, has managed to overtake UNIX in part
because Linus Torvalds and the rest of the committee that manages
Linux have worked very hard to prevent fragmentation (more on this
later).

But, as we now know, IBM’s multiple-OS strategy did not work.
In order to get to market quickly and hold down system cost, IBM

decided to create an open hardware platform—one quite unlike the
walled garden it had tended for years in mainframes. And, of course, it
had outsourced operating systems to Microsoft and other firms over
which it had limited control. It appears to have believed nonetheless—
one can only conjecture at this point—that it could reap the lion’s share
of profits from this innovative computer platform through its brand
name, its marketing muscle, and its intellectual property in the basic
input-output system (BIOS) that starts the computer when it is turned

Dropouts and Evangelists 91

92 Chapter 4

on. After all, it was selling the computers and should be able to charge
a premium for them, as it had always done.

Things didn’t work out that way. Microsoft had retained the rights
to license MS-DOS—an exact replica of PC-DOS—to other computer
manufacturers. It was keen to do so. At the same time, dozens of
manufacturers started trying to clone the IBM PC. Their main stumbling
block was the BIOS. Copyright law wouldn’t allow them just to copy it.
But nothing prevented them from reverse-engineering it. Like recreating
a gourmet meal without the chef’s secret recipe, this involved writing code
for the BIOS by observing what the code did rather than what the code
was.

Compaq produced the first truly legal IBM PC clone after reportedly
spending $1 million to figure out the secrets of the BIOS. By 1983,
IBM competitors had produced almost one million IBM PC clones.
All ran MS-DOS, which was already the most popular operating system
for PCs. And the price was right—an estimated $10 per computer
at a time when the average PC went for about $1,300.15 IBM tried
to develop other proprietary technology to recapture control, but it
had to give up the fight by the end of the 1980s. IBM’s share of
IBM-compatible PC sales tumbled to 14 percent by 1990.16 It
stopped making PCs altogether with the sale of its PC division to Lenovo
in 2004.

The IBM/DOS-compatible PCs quickly killed off the many CP/M-
compatible manufacturers. Between 1981 and 1986, Morrow Design,
Osborne, and Franklin went out of business, and the rest failed not much
later.17 Companies like DEC tried to enter with CP/M-compatible
machines during this period but had little success.

15. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, pp. 207,
240–242; Dataquest, “Personal Computer Industry Service Worldwide Ship-
ments and Forecast,” tables 1.3.5 and 1.3.13.

16. Bruce Stephen and Mark Levitt, “Worldwide PC Market Review and Fore-
cast 1990–1995” (IDC report no. 6077), December 1991, table 3.

17. Helen Grant, “Zenith High But Maker Goes Broke,” Australian Financial
Review, March 13, 1986; http://www.absoluteastronomy.com/encyclopedia/
O/Os/Osborne_Computer_Corporation.htm; http://www.ti99ers.org/timeline/
time1984.htm.

Dropouts and Evangelists 93

By the mid-1980s it seemed clear that the battle would be between
two PC platforms, Apple computers and “IBM-compatible” computers.
By the early 1990s, when IBM and Microsoft had competing operating
systems for PC’s based on Intel microprocessors, the phrase “IBM-com-
patible” was no longer in use. In the mid-1990s, IBM decisively lost the
competition between these two operating systems. Since then, platform
competition has been between Apple’s Macintosh platform and the
“Wintel” platform: Microsoft’s Windows operating system running on
computers based on Intel’s microprocessors.

18. At times, IBM devoted as many as 10,000 developers to the project,
compared with Microsoft’s 100. In 1986 IBM had roughly 150 times
Microsoft’s sales and 120 times its market capitalization. Microsoft Corporation
1986 Annual Report and Form 10-K; Fact Set Research Systems, CompuStat
Database, 2001.

19. Maurice F Estabrooks, Electronic Technology, Corporate Strategy, and
World Transformation (Westport, Conn.: Greenwood Publishing, 1995), p. 64.

IBM’s OS/2 versus Microsoft’s Windows

In 1985, IBM and Microsoft agreed to develop a new operating system for
the PC. IBM led the project and provided most of the resources.18 The first
version, OS/2 1.0, was released in 1987 but was intended mainly as a
preview for developers. Among other things, it lacked a graphical user
interface (GUI) and a comprehensive hardware support.

The relationship between Microsoft and IBM was always difficult, in
part because of the very different styles of the two companies. For example,
IBM measured programmers’ contributions by the number of lines of code
they wrote, which Microsoft thought encouraged the production of sloppy,
inefficient code. The fact that Microsoft was developing Windows in par-
allel to OS/2 did not help the relationship. Moreover, IBM and Microsoft
had different visions for OS/2. From the beginning, Microsoft urged IBM
to base the OS/2 GUI on Windows APIs. However, IBM had different
plans. It sought to create a single graphical interface across all of its plat-
forms, from mainframes to PCs. Consequently it rejected Windows and
included features in OS/2 that added little for PC users. OS/2 would also
run only on the then most powerful PCs. In a joint statement in the late
1980s, IBM and Microsoft positioned OS/2 as the operating system of
choice for powerful PCs, with Windows the alternative for lower-end
machines, which constituted about 75 percent of the shipments at the
time.19

94 Chapter 4

20. http://en.wikipedia.org/wiki/OS/2.

21. John C. Dvorak, “Obituary: O/S,” PC Magazine, December 16, 2002
(http://www.pcmag.com/article2/0,4149,767456,00.asp).

22. Instead of OS/2, IBM used AIX, its version of Unix, for its workstations
running its PowerPC processors. In 1991, Apple and IBM reportedly were
jointly developing a new version of Unix, PowerOpen. In 1992, they formed a
joint venture, Taligent, which started out with the goal of developing yet another
new operating system, code-named Pink. Roy A. Allan, A History of the
Personal Computer: The People and the Technology (Allan Publishing, 2001),
p. 19.

23. Doug Barney, “Big Blue Pitches a Play-to-Play of Its OS Plan,” InfoWorld,
July 11, 1994, pp. 21–22.

(continued)
In 1990, Microsoft released Windows 3.0. Not only was Windows 3.0

very successful, it was also a viable option for the upper end of the market.
Later that year, Microsoft and IBM parted company in one of the most
famous corporate divorces. IBM got the project that would produce the
next version of OS/2, while Microsoft got the research in progress on what
would eventually become Windows NT.

IBM released OS/2 2.0 in 1992 with the slogan, “a better DOS than
DOS, and a better Windows than Windows.”20 It was the first PC operating
system to run on 32-bit microprocessors, which could support more ambi-
tious applications, yet it was also able to run programs written for DOS and
contemporary versions of Windows. OS/2 was backed by the IBM brand
name and IBM’s research capacity and marketing muscle. Moreover, the
company seemed committed to making the platform work, advertising
heavily (if sporadically) and regularly updating OS/2 through 1996. But
version 2.0 and its successors never effectively challenged Windows. Why
not?

Some argue that IBM didn’t invest enough in developer support and
evangelization. “The company stupidly reckoned that if you give develop-
ers a good operating system, coders will code for it,” wrote the computer
columnist John C. Dvorak.21 IBM also charged substantial prices for devel-
oper tools. The incompatibility of Windows and OS/2 APIs also made it
harder for developers to write simultaneously for OS/2 and Windows.
Forced to choose, most chose Windows.

IBM also sent confusing signals to developers. OS/2 was only one of at
least four operating systems for microcomputers under development at
IBM.22 IBM was also unable to explain its overall strategy to developers,
prompting an editor to exclaim that “IBM’s strategy is about as compre-
hensive [sic] as Balkan politics.”23 In 1996, IBM scaled back its OS/2
efforts, and in July 2005, IBM finally withdrew support for OS/2.

Dropouts and Evangelists 95

24. “Hands On–Mac–Universal Solution,” Personal Computer World, February
1, 1999; “Mac Ports, Past and Present,” http://charm.cs.uiuc.edu/users/olawlor/
ref/mac_ports/.

Apple versus Microsoft

During the 1980s, Apple operated a two-sided platform. The company
made its own hardware, which it sold with its own operating systems.
It also branded its own peripheral equipment. Until 1998 it also refused
to include industry-standard ports to facilitate connections to peripher-
als made by others.24 Even today, Apple computers are designed in ways
that discourage the use of third-party peripherals. Some of its models,
for example, integrate a proprietary monitor, disk drives, and speakers
in a single computer unit. Apple also wrote applications software for its
operating systems. But early on, its managers understood the importance
of building and sustaining a two-sided platform, attracting software
applications from independent developers (including Microsoft) to add
to the appeal of the Mac.

Microsoft went four-sided. Like Apple, it encouraged third-party
development of applications for MS-DOS and subsequent operating
systems while also writing applications software for its own operating
systems. But it did not sell computers, only dabbled in peripheral equip-
ment, and stayed out of the markets for big-ticket items such as moni-
tors and printers. Instead, it encouraged computer and peripheral makers
to make best use of its software platform.

The Microsoft platform was therefore more complex than the Apple
platform: Microsoft had to harness the indirect network externalities
between computer manufacturers, peripheral equipment makers, soft-
ware developers, and, of course, computer users. That meant getting
them all on the same platform—Microsoft’s operating system for Intel-
compatible computers—and generating positive indirect network effects
between them. The multisided strategies we discussed in Chapter 3 were
critical to its success.

96 Chapter 4

25. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, p. 253;
Jonathan Chevreau, “Apple Hopes Macintosh Will Take Bite of Market,” The
Globe and Mail, January 23, 1984; “Lotus Is the Spoiler at Microsoft’s Party,”
San Francisco Chronicle, September 1985; Owen Linzmeyer, Apple Confidential
(San Francisco: No Starch Press, 1999), p. 134.

Apple’s Blunder?

It is now commonplace to view Apple’s choice of an integrated two-sided
platform as an unpardonable strategic error, one that consigned erstwhile
market leader Apple to a marginally viable niche in PCs. Indeed, to this
day, some argue that sticking with an integrated hardware-software plat-
form undermines the profitability of workstation and server computer
makers ranging from IBM to Sun.

Bill Gates wrote to Apple’s CEO John Sculley and Apple Products’ Pres-
ident Jean-Louis Gassée in 1985, a year after Apple reported a $40 million
loss as lower-cost IBM clones grabbed an ever-greater chunk of the PC
market. He advised them to license the highly regarded Macintosh oper-
ating system to clone-makers, concluding as follows:

As the independent investment in a ‘standard’ architecture grows, so does
the momentum for that architecture. The industry has reached the point
where it is now impossible for Apple to create a standard out of their inno-
vative technology without support from, and the resulting credibility of
other personal computer manufacturers. Thus, Apple must open the Mac-
intosh architecture to have the independent support required to gain
momentum and establish a standard. (From a memo dated June 25, 1985,
Quoted by permission from Microsoft.)

This wasn’t just friendly advice. At the time, Microsoft earned about
half of its revenue from applications for the Macintosh (including its hot
Word word-processing package, which hadn’t yet made a dent in the IBM-
PC segment, as well as its Excel spreadsheet program, which accounted
for 90 percent of Macintosh spreadsheet sales by September 1985) and
only about 20 percent from MS-DOS.25 It wasn’t at all clear at the time
that Microsoft would get a second home run after DOS. So Gates was cov-
ering his bets. Microsoft might have done extremely well as a leading appli-
cation developer for a dominant Mac OS.

But hindsight has a way of making uncertain outcomes seem inevitable.
A closer look suggests that integrating the hardware and software plat-
forms tightly had significant advantages over letting a thousand hardware
makers bloom. Apple was able to tailor its operating system software to
its hardware during a period in which operating systems were rapidly
growing more complex and hardware performance was rapidly improv-
ing. And since it controlled both the hardware and the operating system,
it was possible to test the operating system with every possible hardware

Dropouts and Evangelists 97

(continued)
combination before Apple computers were put on the market, something
Microsoft could not possibly do. Apple had a powerful graphical user inter-
face before Microsoft, and its systems have long been viewed as more stable.

What we know in hindsight is that Apple’s share of the PC business plum-
meted, so that today it has only a 4 percent share of sales.26 But unlike the
many CP/M clone-makers it once faced, Apple is still around and quite well
known. Apple either knows its own strengths or is stunningly stubborn—it
has chosen the same vertically integrated hardware/software strategy for its
latest hit product, the iPod, which we discuss further in Chapter 8.

Managing the Software Side
Both Apple and Microsoft have focused considerable efforts on per-
suading third-party producers to write applications for their software
platforms. These efforts paid off and were critical to the success of these
operating systems.

Killer Apps In the first decade or so of the PC industry, several com-
puter platforms took off after the emergence of a killer app for them.
VisiCalc, the first spreadsheet application for PCs, was a killer app for
Apple. Dan Bricklin, its inventor, and his team wrote it in assembly lan-
guage—the tedious process required in those days to get good perfor-
mance—for the microprocessor used in the Apple II.

After a number of limited-distribution versions—we would call
them demos, alpha, and beta versions today—the first “real” release
came out in October 1979. An analyst report captured its significance:
“VisiCalc could some day become the software tail that wags (and
sells) the personal computer dog.”27 Although VisiCalc was quickly
ported to other platforms, Apple had the early lead. And, most
important, businesses realized that these tiny new computers were not
toys; they really could provide important productivity tools for their
workers.

26. “Worldwide Client and Server Operating Environments 2005–2009 Fore-
cast: Modest Growth Ahead” (IDC report no. 34599), December 2005.

27. http://www.bricklin.com/history/saiproduct1.htm; http://www.bricklin.com/
history/rosenletter.htm.

98 Chapter 4

Spreadsheets continued to provide the spark needed for platforms to
get off the ground over the next decade or so. Lotus 1-2-3 appeared in
1983, not long after the IBM PC had started building momentum, and
it only ran on PC/MS-DOS. It was a major advance over VisiCalc because
it combined a spreadsheet, a rudimentary database, and the ability to
create graphs into one product. Microsoft’s Excel turned out to be one
of the hot apps—killer is perhaps too strong a term at this point—that
finally got Windows off the ground in its third release.

Killer apps have also played important roles for the other software
platforms we consider in later chapters. These applications helped set up
the positive network effects that make platforms grow. More people got
a computer system with a particular software platform. That encouraged
more application developers to write more applications for that
platform.28

Apple, though, had no role in the development of VisiCalc. Dan
Bricklin’s Web site on the history of the development of his product
makes no mention of interactions with anyone from that company. Like-
wise, neither Microsoft nor IBM helped Lotus create a killer application
for their software-hardware platform. IBM even declined the exclusive
marketing rights to the Lotus 1-2-3 spreadsheet.29 VisiCalc had already
been ported to DOS, after all; what more did they need?

Nevertheless, it didn’t take long for Apple, Microsoft, and others to
recognize that applications were so important to the success of their plat-
forms that they needed to nurture their development and not just sit back
and hope they became available.

Evangelization The realization that independent software vendors were
vital to their success led both Apple and Microsoft to mount aggressive,
ongoing efforts to recruit independent software developers to their plat-
forms. In part, these efforts took the form of old-fashioned “you must
believe” marketing long practiced by tent revivalists and self-help gurus,
and perfected by Apple’s Guy Kawasaki. The author of books with titles
such as The Art of the Start, Rules for Revolutionaries, Selling the

28. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, p. 216.

29. Paul Carroll, Big Blues: The Unmaking of IBM (New York: Crown, 1993),
pp. 77–78.

Dropouts and Evangelists 99

Dream, and The Macintosh Way, Kawasaki led the charge to give the
Apple Macintosh cult status among both early computer users and
software developers.30 To hear Kawasaki tell it, the interdependence
between the user and developer sides of the platform was not behind the
original effort: “I was never told, ‘OK, you go get XYZ to write soft-
ware, and they in turn will get more customers to buy your software and
to buy Macs.’ That’s what happened, but that was not the plan.”31

Kawasaki’s marketing innovations ranged from developer conferences,
which were part technical presentations and part pep rallies, to
EvangeList, an email newsletter sent to Apple devotees in the mid-1990s
that was designed to counter worries that Apple would disappear as its
market share dwindled. To this day, his success has set the tone for mar-
keting to software developers. It was an important contribution to the
development of the positive indirect network effects needed to grow these
multisided platforms. We will see that “evangelism of the platform” has
been critical to all of the successful software platforms we consider.
Indeed, Google appointed Vinton Cerf, one of the intellectual founders
of the Internet, to be its first chief evangelist in September 2005.

As a practical matter, though, Microsoft’s formation of its Developer
Relations Group (DRG) in 1984 probably had more impact on the way
computer platforms evolved than Kawasaki’s barnstorming. This team
was charged with attracting independent developers to the then-unborn
Windows platform: “Drive the success of Microsoft’s strategic platforms
by creating a critical mass of third-party applications” was its mission.32

DRG has pursued this goal with a determination reflected in both the
degree of long-term planning and the significant resources invested. Long
before Microsoft introduces a new operating system, it solicits advice on
the tools that developers will need to create applications to run on it.
For example, it sent tentative specifications for Windows NT to devel-
opers in November 1990, asking for feedback three years before the
operating system was released.

30. http://www.guykawasaki.com/about/index.shtml.

31. Ben McConnel and Jackie Huba, Creating Customer Evangelists (Chicago:
Dearborn Trade Publishing, 2003), p. 13.

32. “Microsoft Developer Relations: Microsoft’s Commitment to Third-Party
Developer Success,” Microsoft Corporation white paper (Redmond, Wash.:
Microsoft Corp., 1998).

100 Chapter 4

Many developers belong to the Microsoft Developer Network
(MSDN). They are regularly sent information on how to create applica-
tions to run on Microsoft platforms: between 1993 and 1998, Microsoft
shipped 100 million CDs with this sort of information. The company
sponsors several series of conferences to keep the programming com-
munity both informed and involved. In 1998 alone, some 450,000 devel-
opers took part in various Microsoft training programs. All told, the
company spent $630 million on its evangelism effort that year.33

Application Program Interfaces Evangelization is unlikely to succeed
with application developers without a good product—in particular, soft-
ware services made available through APIs. On the one hand, it is impor-
tant to convince developers that the platform will attract many end users
interested in their products: hence direct, visible advertising to end users
and the pep rally aspects of evangelization. On the other hand, it is
important to convince developers that they can write attractive programs
to run on the platform relatively easily: hence efforts to reduce the costs
of writing applications for the Apple and Windows platforms.

The platform owners make heavy investments in technical assistance
to developers as part of this effort. All platform managers maintain the
so-called developer networks. MSDN, with over 3 million members, is
one of the biggest, while the Apple Developer Connection has about
500,000 members.34 These networks are subscription-based, with annual
charges ranging from a few hundred dollars to over $10,000, depending
on the services provided. They offer access to news, technical documen-
tation, developer forums, and online support. Members may receive dis-
counts on select developer tools or conference fees. Although the
open-source Linux platform has no formal platform manager, Linux
developer forums are regarded as some of the best because all the
members of the ecosystem participate, including IT managers, applica-
tion developers, and platform developers.

33. United States v. Microsoft, Civil Action No. 90–1232, Testimony of Paul
Maritz, January 20, 1999, § 140, § 136–152.

34. http://www.edn.com/blog/400000040/post/740000874.html; “Microsoft
Announces Unprecedented Momentum for MSDN at 3 Million Members,” M2
Presswire, March 7, 2000.

Dropouts and Evangelists 101

Platforms make another key investment in reducing developer costs:
they constantly add and improve the software services provided through
the APIs discussed in Chapter 2. For example, the Apple Mac OS X,
introduced in 1999, has about 8,000 APIs that expose underlying soft-
ware services. Some (called Cocoa) were designed to support new soft-
ware applications and others (called Carbon) were designed to ease the
transition from the Mac OS 9.35

These numbers by themselves don’t say much, of course; it is the range
of services these APIs offer to developers that is impressive. The original
MS-DOS offered developers APIs for keyboard input, file operations, and
time control, to name a few. In the late 1980s, Windows came with many
more, including APIs that enabled developers to use memory in a much
more sophisticated way, to take advantage of the GUI, and to use a
mouse for input. Media functionality was added in the early 1990s, CD
support in the mid-1990s and DVD APIs at the turn of the twenty-first
century. Throughout the 1990s, operating systems added support for
new networking technologies such as infrared, Bluetooth, and WiFi.

The end user does not see any of this. Instead, she sees the applications
that are built on top of these APIs. The many media players on PCs these
days, for instance, rely on the underlying operating system for the core
media functionality, in addition to using the APIs that display the media
player on the screen and let the user control it with a mouse. Instant mes-
sengers, Palm synchronization, and other applications use networking
APIs, while games use the operating systems’ 3D graphics support.

Managing the Hardware Side
Apple treats hardware from other suppliers in much the same way that a
vertically integrated automobile company like Toyota treats parts and
optional equipment made by others: it buys many components from inde-
pendent suppliers. Over the years, for example, Apple’s microprocessors
have come largely from Motorola and IBM.36 But as a major customer,

35. William Peterson, Jean Bozman, and Dan Kusnetzky, “Apple Announces
New Operating System Strategy for the Mac” (IDCFlash no. 16257), May 1999;
http://en.wikipedia.org/wiki/Mac_OS_X_history.

36. Stephen Shankland, “Apple to Ditch IBM, Switch to Intel Chips,” CNET
News.com, June 3, 2003 (http://news.com.com/2100-1006_3-5731398.html).

102 Chapter 4

Apple has a strong say in their design and specifications. Apple’s first com-
mercial computer, the Apple II, was an open system and owes a large part
of its success to the availability of many third-party hardware add-ons.
However, Steve Jobs felt that a true PC should be an appliance like a TV
that requires no interaction with the circuitry, no technical knowledge,
and no assembly. He realized this vision in the original Macintosh,
released in 1984. This machine had no expansion slots, no hard disk
drive, and no standard ports. Its keyboard also lacked arrow keys, to
force the user to use the mouse. After Jobs’ departure, the Macintosh
design was relaxed and expansion slots, standard ports, hard drives, and
arrow keys all appeared on the models released in 1986.37

One of Apple’s most successful branded products was the LaserWriter
line of printers. Launched in 1985, they helped create what is now
known as desktop publishing. As of 2005, Apple’s high-end thin-screen
displays are one its most popular branded peripherals. They, like other
Apple products, including the iPod discussed in Chapter 8, are sold in
Apple’s chain of retail stores, among other places.

Microsoft, by contrast, has specialized in software from the outset—
a “stick to your knitting” strategy. It has made only a few forays into
hardware, such as the Microsoft mouse and its wireless keyboards.
Microsoft makes hardware, however, mainly to help sell more software.
Microsoft’s SoftCard, introduced in 1980, for example, enabled Apple
II computers to run CP/M applications, including Microsoft BASIC. Sim-
ilarly, Microsoft introduced its mouse in 1983 to help spur sales of
Microsoft Windows, which was in development at the time.38

These exceptions aside, Microsoft mainly relies on third parties to
make the complementary hardware that helps sell PCs and thereby its
operating systems. This may seem like a difference without a distinction.
After all, Apple purchases many of the parts for its machines, and it has
to make sure these suppliers provide technology that will help Apple sell
its computers. But Microsoft, like other multisided platform firms, has
structured a complex series of relationships with third parties to promote

37. http://lowendmac.com/history/1984dk.shtml; http://www.lowendmac.com/
history/1986dk.shtml.

38. Paul Freiberger and Michael Swaine, Fire in the Valley: The Making of the
Personal Computer, 2nd ed. (New York: McGraw-Hill, 2000), p. 329; Stephen
Manes and Paul Andrews, Gates (New York: Simon & Schuster, 1994), p. 221.

Dropouts and Evangelists 103

the licensing of its operating system software. These relationships are
managed partly through financial incentives and partly through devel-
oping the software platform in close cooperation with these third parties
to promote their sales as well as Microsoft’s sales.

That difference is best seen in the incorporation of CD-ROM drives
into computers. Apple could just decide to do this, buy CD-ROM drives
from third parties, and build them into its computers. Microsoft had to
encourage the computer manufacturers in its ecosystem to install them.
Those manufacturers didn’t have much incentive to do this, however,
when there wasn’t much software that relied on CD-ROMs. Microsoft
provided financial incentives to install CD-ROM drives and promised
that its software platform would ensure the development of applications
that used CD-ROMs. We return to this later.

The Microsoft-Intel partnership has been central to the hardware-soft-
ware platform that is the basis for the PCs that most of us use. Intel had
virtually no competition until 1990, when AMD, Intel’s former second
source supplier, released the Am386 chip. As of 2004, Intel had an 82
percent share of the global PC microprocessor business.39 Intel and
Microsoft have had to work closely to ensure that Microsoft operating
systems get the computing power they need from Intel processors and
that Intel’s processors get the support they need from the software plat-
form. Not surprisingly, the relationship between these two elephants has
not been free of conflict. Each has sought more control over the Wintel
platform, and with it, presumably, a larger share of the profits associ-
ated with the platform’s spectacular success.

Both have sought to hedge their bets with other partners. Microsoft
has long dealt with Intel’s microprocessor rival, AMD. Intel, for its part,
is reportedly underwriting efforts to develop applications for the Linux
platform in China, India, and Brazil.

Microsoft’s relationship with makers of branded PCs is simpler. Vir-
tually all PCs are now sold with an operating system installed. Microsoft
provides information to PC makers on how changes in the operating

39. AMD had already been making Intel compatible chips. It had a cross-license
agreement with Intel until 1986, when Intel ended the contract. A lengthy legal
battle between the two companies ensued. AMD, http://www.amd.com/us-
en/Weblets/0,,7832_12670_12686,00.html; Shane Ran “Worldwide PC Proces-
sor 2004 Vendor Shares” (IDC report no. 33398), May 2005.

104 Chapter 4

system will affect the optimal design of the hardware, and it solicits feed-
back during the development process. Manufacturers pay license fees to
Microsoft, which they pass on, as they would any costs, to end users as
part of the price of the box.

Microsoft offers some discounts on its licensing fees in return for com-
puter makers doing certain things that improve the overall quality of the
entire platform. For example, Microsoft provided a small discount to
computer makers in 1996 to give them incentives to install USB ports on
their computers. Microsoft benefited from these incentives: USB ports
promoted the addition of various peripherals that Windows would
support, and that made Windows a more valuable platform. Of course,
the computer makers and peripheral manufacturers in aggregate bene-
fited from additional sales. But none of them individually had the incen-
tive to promote the inclusion of USB ports. Microsoft as the maestro of
the multisided platform had both the incentive to subsidize the inclusion
of USB ports and the ability to do so.

These sorts of financial incentives are only one aspect of the platform
strategy to get customers on board. As we noted earlier, in the mid-1980s
Microsoft pressed hard to accelerate the development of CD-ROM
technology as a cornerstone of multimedia computers. It held annual
developers conferences for interested parties, worked with major manu-
facturers to create an industry-standard format, and evangelized computer
makers to package built-in CD-ROM drives with new machines. Begin-
ning with Windows 95, Microsoft has included code to create a relatively
seamless “plug-and-play” experience with thousands of peripheral
devices.40 As we will see throughout this book, this sort of platform man-
agement is hardly unique to Microsoft. Most software platforms engage
in similar activities, if not always with Microsoft’s drive and skill.

Platform Pricing and Hardware Integration
Pricing is key for getting customers on board a platform and harnessing
network effects to increase its size, as we saw in Chapter 3. The PC

40. Randall E. Stross, The Microsoft Way (Reading, Mass.: Addison-Wesley,
1996), p. 65; http://searchwin2000.techtarget.com/sDefinition/
0,,sid1_gci212799,00.html.

Dropouts and Evangelists 105

industry quickly settled on a particular pricing structure. Virtually all
revenue and profit have come from end users, not from the businesses
that have relied on the services provided by APIs to write applications.
No commercial maker of PC software platforms—whether integrated
into hardware, as was the case with Apple and Atari, or sold separately,
as was the case with Microsoft, Digital Research, and IBM—has tried to
make money from application developers. So the “end user pays/the
developer gets a free ride” pricing structure has held firm for more than
a quarter of a century over several significant shifts in the industry.

It took longer to settle on pricing methods. Several of the early oper-
ating system companies licensed their code to manufacturers for a flat
fee and allowed the manufacturers to modify the source code for their
machines. Microsoft took a different approach. It licensed the binary
code on a per-machine basis. Neither computer makers nor end users
could modify the software platform easily. Apple took yet another
approach. It didn’t license its operating system at all (with the exception
of a short period in the late 1990s). Nor did it make the source code
available for modification.

The different makers of operating systems also took very different
approaches to the price levels they were charging. We already saw the
stark contrast between Microsoft and CP/M for the early IBM PCs. Later,
IBM initially priced OS/2 at $325, compared with Microsoft Windows
3.0 at $149. A more interesting although difficult comparison is between
Microsoft and Apple, since Apple’s operating system generally comes
bundled with its hardware, with no separate price. However, there is a
clue: the 1990 upgrade to Windows 3.0 was $50, about half the price
($99) of a 1991 upgrade to Apple’s System 7.0. Another useful clue
comes from a comparison between computers with similar hardware: in
this same period the average price of an Apple PC was over $200 more
than the average price of a similarly equipped and powerful Compaq PC
sold with Microsoft operating systems.41

41. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, p. 250;
“Microsoft Corp.: Windows 3.0 Is Here,” Business Wire, May 22, 1990; Ron
Wolf, “Apple Begins Shipping Long-Awaited System 7.0 Operating System,”
Austin American-Statesman, May 13, 1991; Dataquest, “Personal Computers
U.S. Vendor Segmentation: 1998,” April 19, 1999.

Thus, it appears that Microsoft chose a low-price strategy relative both
to other stand-alone operating system vendors and to sellers of integrated
software-hardware platforms. This encouraged computer makers to sell
more machines with Microsoft’s operating systems installed. Competi-
tion among them forced hardware prices down further. That extended
the pricing advantage of the DOS/Intel and later Windows/Intel com-
puter platform.

We examine the determinants of these pricing choices—and why they
differed dramatically from the choices made in the video game indus-
try—in Chapter 10. In the next chapter we learn that the video game
console platform took a “developer pays/console user gets a cheap ride”
pricing strategy.

Bundling
Early PC operating systems did relatively little, just managing basic func-
tions like the input and output of data and the loading and execution of
applications. Operating systems were only as capable as the computers
on which they ran and accordingly provided only a fraction of func-
tionality of their modern counterparts. But as computer technology
advanced, operating systems expanded their reach—often into areas pre-
viously served by applications software made by others. For example, all
modern PC operating systems include code for applications as basic as
arithmetic calculators and as advanced as automating connection to
networks.

Competition in PC operating systems has served to accelerate
this trend. For example, in 1991, both the Mac OS and Windows
integrated TrueType software for manipulating font sizes. Likewise,
Apple offered QuickTime, a collection of multimedia functionalities,
as a free add-on for the Mac OS in 1991; Microsoft followed with
Video for Windows in 1994. Both Apple and Microsoft added peer-
to-peer networking features in 1991 and 1992, respectively. IBM
scored a first by adding an Internet browser to OS/2 Warp in 1994.
Microsoft, playing catch-up with IBM as well as the independent
release of Netscape Navigator, offered a Windows browser in 1995,
based largely on code licensed from Spyglass. Microsoft included
Outlook Express email software with Windows 2000, and Apple

106 Chapter 4

Dropouts and Evangelists 107

followed with its Mail email client in the first release of the Mac
OS X, early in 2001. Both Windows XP (2001) and the “Jaguar”
version of the Mac OS X (2002) included instant messaging
applications.42

The Linux platform for desktop PCs does not have a single manager
with competitive incentives to bundle applications. However, all the
companies that package and support Linux include most of the features
now bundled with Windows and the Mac OS X. Indeed, because many
Linux applications are free, Linux distributors often include more.
Novell’s Desktop 9 distribution, for instance, includes an Office-like
productivity suite as well as instant messaging software that is compat-
ible with AOL, MSN, and Yahoo IM applications. Red Hat does the
same.

The Platforms in Perspective
Microsoft came to dominate PC platforms in the 1990s by pricing low
and by capitalizing on what we now see as the strategic errors of others
in the 1980s. Network effects associated with DOS’s head start may well
have given the company a competitive advantage. But Microsoft was able
to translate that advantage into success only by understanding what it
took to nurture its multisided platform and acting decisively on that
knowledge to bring application developers on board and keep them
there.

After some very rough patches, Apple has managed to stabilize rev-
enues from its tightly integrated hardware-software platform and may

42. http://en.wikipedia.org/wiki/System_7_(Macintosh); “Windows 3.1: What’s
New Is for the Users on Networks,” LAN Times, April 6, 1992; http://www.
macos.utah.edu/Documentation/MacOSXClasses/macosxone/macintosh.html;
http://www.microsoft.com/windows/windowsmedia/press/dmtimeline.
aspx; http://support.microsoft.com/default.aspx?scid=kb;EN-US;q126746;
http://www.macos.utah.edu/Documentation/MacOSXClasses/macosxone/
macintosh.html; http://channel9.msdn.com/ShowPost.aspx?PostID=10049;
http://en.wikipedia.org/wiki/Spyglass; http://en.wikipedia.org/wiki/Spyglass;
“Outlook Express,” Internet Magazine, May 1, 2000; http://en.wikipedia.org/
wiki/Mac_OS_X_v10.0; Joe Wilcox, “Apple to Unleash Jaguar OS Upgrade,”
CNET News.com, August 29, 2002 (http://news.com.com/
Apple+to+unleash+Jaguar+OS+upgrade/2100-1001_3-955063.html); http://en.
wikipedia.org/wiki/Windows_xp#Windows_XP_Starter_Edition.

108 Chapter 4

yet be able to profit from its inherent strengths. By controlling both the
hardware and the operating system, it has been able to produce an excep-
tionally benign computing environment that attracts nonbusiness users
who are prepared to pay more for handsome design and superior sta-
bility. And it may find ways to leverage its great success in portable digital
devices—specifically, the iPod—to the benefit of the Mac OS platform.
Indeed, surveys of iPod users indicate that the “halo effect” from the
iPod has given a very substantial boost to sales of computers based on
the Mac OS X platform.43

Still, it would be folly to make predictions about the evolution of
the PC platform competition in coming years with any confidence.
For one thing, technological change—for example, greater penetration
of broadband that made server-based platforms practical—could
undermine today’s PC platforms. Google looms large as of this writing.
This advertising-supported search engine offers an extremely popular
platform that seems to reside on what we call the Web but of course
really resides on Google’s vast array of Linux-based servers. Many
take it for granted that this new firm, so different from Apple and
Microsoft, could push these old warriors aside. We return to this in
Chapter 12.

For another, regulation—or corporate response to the threat of greater
regulation—could slow innovation in Windows the way it impaired
innovation at IBM in the 1970s and 1980s. Microsoft is subject to reg-
ulation stemming from adverse antitrust decisions in both the United
States and the European Union—economies that together account for 59
percent of the world’s gross domestic product and at least 70 percent of
Microsoft’s sales.44 The U.S. regulation expires in 2007, while the EU
regulation is perpetual, although it is the subject of an ongoing legal
appeal. Then again, Microsoft’s rival of the moment, Google, is coming

43. Daniel Drew Turner, “Apple Could See Near Doubling of Market
Share,” eWeek.com, March 22, 2005 (http://www.eweek.com/article2/0,1759,
1778538,00.asp).

44. http://en.wikipedia.org/wiki/List_of_countries_by_GDP_%28nominal%29;
http://www.sec.gov/Archives/edgar/data/789019/000119312505174825/d10k.
htm.

Dropouts and Evangelists 109

under scrutiny from many quarters, and that could slow any challenge
it might make to Microsoft.

Yet another wild card, to which we now turn, is the Linux open-source
platform, which has made great inroads in server software but is only
now beginning to make a dent in platforms geared for client computers
in business uses.

The New Challenger with No Owner: Linux

Windows’ tens of millions of lines of code are a well-guarded trade secret.
Until recently, only carefully screened outsiders—major software and
hardware developers, along with government experts seeking to uncover
security flaws in the code—ever got to see the proprietary code, and then
only under strict conditions of secrecy. Apple used some publicly avail-
able code as a key building block for the Macintosh OS X platform, and
the company made portions of Mac OS X available to the programming
community, both as a gesture of goodwill and as an enticement to
develop applications for the platform. But vital features of the operating
system remain secret, including Apple’s GUI and the code that makes the
operating system compatible with earlier generations of Apple applica-
tions. Windows and the Mac OS, moreover, are both owned and care-
fully managed by companies that seek a return on their investments in
these systems.

There is an alternative model, though. Open-source software, designed
and maintained by volunteer programmers, has been successful in
several areas45—something of a surprise in light of the worldwide
success of market-driven incentives and the general failure of communal
production. For example, the Apache Web Server is widely used on
standard server computer platforms, as well as being distributed
with major proprietary operating systems such as Sun’s Solaris. And

45. Surprisingly at least to economists, who have long assumed that profit incen-
tives were critical to the design of modern software. David Evans, “Is Free Soft-
ware the Wave of the Future?” Milken Institute Review (4th Quarter, 2001); Josh
Lerner and Jean Tirole, “The Scope of Open Source Licensing,” NBER working
paper, 2002.

110 Chapter 4

many have argued in recent years that the most potent competitive threat
faced by Windows comes not from Apple but from a PC operating
system that is built entirely from open, publicly available source code
and that, accordingly, nobody owns or manages for a profit: Linux.
Linux has already secured a strong presence as an operating system
for server computers—it had a 12 percent share of paid shipments
(from firms like Red Hat) in 2004, along with a large but unknown
number of free downloads, and is clearly a significant competitor
for Microsoft, Sun, Novell, and other companies in that business.46

The big open question is whether this un-owned, open-source alterna-
tive will evolve into a major multisided platform for desktop PCs that
competes successfully with Windows and the Macintosh operating
systems.

An early version of Linux, a rudimentary kernel, appeared in 1991
for use with Intel 386-compatible hardware. By 1994, with the release
of Linux 1.0, it had evolved into a full-fledged operating system. Unlike
the other multisided OS platforms, however, Linux had—and has—
no corporate parent to guide its development or to evangelize about
either the development of applications software or the development
of device drivers to make it compatible with peripheral equipment.
Instead, hundreds of open-source enthusiasts, loosely organized and
uncompensated, have both directed and executed the work of enhanc-
ing the Linux platform. One can debate its merits, but one can’t dispute
that many sophisticated users choose it for a significant number of
important tasks.

Over the years, Linux has made an important transition from an oper-
ating system created mainly by volunteers with little money to gain from
its success to one that is supported by many employees of companies that
do have money to gain. As Linux’s popularity has grown, technology
companies have started contributing code and evangelizing the operat-
ing system. As of 2006, large companies, including IBM, Computer Asso-
ciates, and HP, contribute code to Linux development. IBM has modified
Linux for use with its zSeries mainframes. Similarly, Intel is working to

46. “Worldwide Client and Server Operating Environments 2005–2009, Fore-
cast: Modest Growth Ahead” (IDC report no. 34599), December 2005, table 2.

Dropouts and Evangelists 111

make its chips and Linux fully compatible, presumably in order to sell
chips for “Lintel” equipment and to reduce its dependence on the
Windows software platforms.

Customers who choose Linux today are different from those who
choose proprietary operating systems for servers such as Sun’s Solaris
or Windows. Numerous information technology specialists in charge
of corporate and government networks have embraced Linux. They
can customize Linux to their own needs, since they can see and alter
its source code. IT specialists are able to fix bugs in Linux without
help or permission from the licensor. Desktop users, on the other hand,
rarely benefit from access to the operating system’s source code. Also,
volunteer programmers don’t have as much incentive as salaried employ-
ees to do the more mundane work necessary to make a desktop operat-
ing system easier to use—for example, writing the device drivers
necessary for the thousands of peripherals available for PCs to be
compatible with the operating system or making the user interface
easy for novices to master. With the increasing popularity of Linux,
however, some vendors of peripheral equipment are starting to fill
the device driver void themselves, a process that is arguably made
easier by easy access to the source code. But until enough desktop
users demand such drivers for Linux, most of the burden of producing
them will continue to fall on volunteers, making it more difficult to
balance the sides of the Linux platform. The challenge of producing
an easy-to-use graphical interface seems to have proven even more
difficult.

To date, Linux has yet to dent the market for desktop operating
systems, with only a 2 percent share of such systems delivered in 2004.
Still, that’s doing about as well as Apple, which has been around much
longer.47 If the un-owned Linux desktop platform does continue to make
headway against the competition, it seems most likely that the advance
will be led by large businesses that have long experience with Linux
servers and that can provide internal support for free applications. Or it
may come in rapidly emerging economies such as South Korea, where
the government subsidizes Linux applications development, or China,

47. Ibid.

112 Chapter 4

where mandatory use of Chinese-produced software by government
agencies has motivated adoption of Linux by many local and national
organizations.48

In any case, the success that Linux has attained has interesting impli-
cations for those contemplating developing software platforms. On the
one hand, it provides an alternative production model that has obviously
achieved some successes. Many companies are learning from the Linux
experience. On the other hand, it is a bit scary to proprietary software
firms and their backers. One wouldn’t have thought that an un-owned
platform that is free to all sides of the market could have taken almost
20 percent of the server business in competition with Microsoft, Novell,
and Sun in about a decade.

Yet open source hasn’t had any significant impact yet on video games,
personal digital assistants, mobile telephones, or digital devices. We
therefore won’t see it mentioned much in what follows. We turn next to
a hardware-software platform that looks almost identical to PCs but has
evolved very differently—video game consoles.

INSIGHTS

• The PC software platform has changed the way computer power is
delivered to businesses and consumers. Today it coordinates a noninte-
grated and decentralized process in which separate firms deliver hard-
ware, peripherals, applications, and software platforms.

• Killer applications were important for the early success of PC software
platforms; many people bought systems because they could run a
particular killer application, such as VisiCalc. That in turn stimulated
more applications developers to write for the underlying software plat-
form.

• Platform “evangelists” were also crucial to the success of PC platforms.
They helped persuade independent developers to write applications

48. http://news.com.com/China+Local+software+for+local+people/
2100-7344_3-5951629.html; http://linux.slashdot.org/linux/05/03/29/0322248.
shtml?tid=163&tid=190&tid=106.

for the platform. Evangelism went hand-in-hand with the development of
software services for developers that were made available through APIs.
• All commercial PC software platform vendors have adopted
the “charge users/let developers free-ride” pricing structure in order
to encourage software developers to write applications for their
platform.

• Four key strategies helped Microsoft obtain the leading position in per-
sonal computers: (1) offering lower prices to users than its competitors;
(2) intensely promoting API-based software services to developers;
(3) promoting the development of peripherals, sometimes through
direct subsidies, in order to increase the value of the Windows
platform to developers and users; and (4) continually developing
software services that provide value to developers directly and to end
users indirectly.

Dropouts and Evangelists 113

Video games are bad for you? That’s what they said about rock and roll.

—Shigeru Miyamoto, the most famous game developer in history (Mario Bros
and Donkey Kong, among others)1

INSIDE THIS CHAPTER

• What ignited the market for video games
• Why video game business models are different from other software
platforms
• How the video game industry operates today

In 1991, Trip Hawkins seemed to be trying to do for video games what
Bill Gates had done for PCs. He started 3DO as a new kind of game
console company. Instead of making its own consoles, it licensed its tech-
nology to manufacturers in return for royalties. Matsushita, Sanyo,
AT&T, and other major players agreed to make 3DO’s Multiplayer, a
32-bit CD-based console released in 1993. Further departing from indus-
try practice, 3DO charged game developers royalties that were about a
fifth of what its competitors were asking.

It was an interesting idea, but it didn’t work. Even though analysts
had said the Multiplayer was based on some of the finest technology in
the market, the public didn’t rush to buy it. It isn’t hard to see why. The
hardware manufacturers sold the Multiplayer for $700, compared to
prices ranging from $150 to $200 for competing consoles from Sony and
Sega. There weren’t many games for 3DO’s product either, despite the

5
PONG

1. http://www.answers.com/topic/shigeru-miyamoto.

116 Chapter 5

PONG 117

low royalty rate developers paid. Game developers likely figured out that
at more than three times the price of the competition, Multiplayers
weren’t going to fly off the shelves. There wouldn’t be enough demand
to justify the cost of writing games. In 1996, 3DO stopped selling console
technology, and in 2003 it filed for bankruptcy.2

3DO tried a product pricing and integration strategy that was much closer
to the long-standing PC model than the long-standing video game console
model. As it went under, it became the exception that proved the rule.

Almost from the beginning, makers of game consoles have followed
an approach that stands the PC model on its head. They integrate the
hardware and the core software. Consumers can’t get one without the
other. They sell this integrated console to end users at a price that often
doesn’t even cover the manufacturing cost. The console producers make
their profits from games they develop for their own consoles and, more
important, from licensing their console’s proprietary coding information
to third-party game developers.

The difference between the PC strategy and the video game strategy
presents an intriguing puzzle. Video game consoles and PCs are techni-
cally similar. Developers write games for both platforms and consumers
use both platforms for playing games. The console platform rules,
though. U.S. consumers spent five times more on video games than on PC
games in the first half of 2005. Indeed, video games have become a major
entertainment industry. By 2002, consumers around the world were
spending more money annually on video games than on movie tickets.
That year, the top-selling game, Halo 2, sold 2.4 million copies and earned
about $125 million in its first 24 hours on store shelves. That was more
than three times as much the highest-grossing Hollywood movie that year,
Spider-Man 2, which earned a mere $40.5 million in its first day.3

This chapter examines the puzzle of the video game pricing model in
the course of describing an industry that has revolutionized how people

2. Harvard Business School, “Power Play (C): 3DO in 32-bit Video Games,”
July 12, 1995; http://en.wikipedia.org/wiki/The_3DO_Company.

3. http://www.npd.com/dynamic/releases/press_050728.html; video game sales
were $21 billion in 2002, whereas box office sales were $19 billion. “Gaming’s
New Frontier,” The Economist, October 2, 2003; http://www.usatoday.com/life/
movies/news/2004-07-01-spider-man-2-opening_x.htm; http://money.cnn.com/
2004/11/11/technology/halosales/.

118 Chapter 5

play games, a millennia-old pastime, and how people, especially those
who grew up after the twin birth of the PC and the video game console
in the late 1970s, entertain themselves at home.

The Birth of the Video Game Industry

In 1951, Ralph Baer was designing a television for aerospace electron-
ics manufacturer Loral. He wanted to make the television interactive and
incorporate a game, but his employer didn’t like the idea. Fifteen years
later, working for another defense contractor, Baer got permission to try
television-based games. His team developed a chase game, tennis, Ping-
Pong, and a “gun” that could sense light on the television screen. He
filed what is considered the first patent on a video game system in 1968.4

Magnavox, a television manufacturer, licensed the technology and
released the Odyssey game system in early 1972. For $100 it came with
twelve games, each on a printed circuit board. For another $25 buyers
could get a rifle to use with the system. Magnavox limited retail outlets
for the Odyssey to its own dealers. Its advertising—plus its exclusive use
of Magnavox dealers—suggested, incorrectly, that people needed a Mag-
navox television to use the system. Magnavox might have stimulated its
television sales with this strategy had Odyssey been more appealing.
Instead, it limited sales to the 10 percent of households that had a Mag-
navox television. It sold more than 100,000 game systems by year end,
but sales quickly trailed off, and Odyssey was pulled from the market.5

Meanwhile, significant innovations in games were taking place else-
where. Nolan Bushnell had played the Spacewar game on a minicom-
puter while in graduate school. Created in 1962 by an MIT student, it
used the machine’s toggle switches as controls for dueling rocket ships.6

4. Rusel Demaria and Johnny L. Wilson, High Score!: The Illustrated History
of Electronic Games (Berkeley, Calif.: McGraw-Hill/Osborne, 2002), p. 14;
http://www.emuunlim.com/doteaters/play1sta1.htm.

5. http://www.pong-story.com/odyssey.htm; http://www.gbrc.jp/GBRC.files/
journal/abas/pdf/ABAS4-1-1.pdf. David Sheff, Game Over: Press Start to Con-
tinue (Wilton, Conn.: Game Press, 1999), p. 141.

6. Demaria and Wilson, High Score!, p. 12; Steven L. Kent, The Ultimate
History of Video Games (Roseville, Calif.: Prima Publishing, 2001), p. 18.

PONG 119

A decade later, Bushnell came up with the idea of using the new
microprocessor technology to develop a coin-operated arcade version
of Spacewar called Computer Space. The console he conceived and
licensed to a manufacturer had a circuit board with only Computer
Space hardwired into it, a black-and-white monitor, and a mechanism
for handling coins put in through a coin drop. Computer Space didn’t
do well—it was too complex for inebriated bar patrons. The manufac-
turer liked the console design, however, and asked Bushnell for another
game. They couldn’t come to terms, however, and Bushnell started Atari
instead.7

Atari’s first game hit was a version of Ping-Pong called Pong. Atari
sold 8,500 Pong consoles in its first year, a high volume for an arcade-
type game, for about $1,200 each. The buyers got to keep all the quar-
ters that people paid to play the game. Atari, like Apple in PCs, did
everything—it designed the hardware and software for the arcade game
consoles and manufactured them itself.

The arcade game business boomed in the 1970s. Numerous variants
on Pong were introduced as multiple players searched for the next killer
app for arcade machines. Over time, arcade games have declined as home
video games have become more popular. We focus exclusively on the
latter in what follows.

7. Sheff, Game Over, p. 135. http://lavender.fortunecity.com/fullmonty/22/atari.
htm.

Magnavox Collects

Ralph Baer patented the idea of projecting electronic games onto a televi-
sion screen and the design of a Ping-Pong game. Magnavox sued Atari for
patent infringement and claimed that Bushnell had gotten the idea for Pong
from seeing the Odyssey demo in a trade show. Bushnell managed to nego-
tiate an out-of-court settlement with Magnavox that allowed Atari to
become Magnavox’s sole licensee in exchange for a one-time fixed fee of
$700,000. As more Pong-based games came into the market, Magnavox
successfully prosecuted a number of patent claims during the 1970s. Most
game system makers paid Magnavox royalties for use of its video game
patents. Magnavox reportedly received more than $80 million in royalty
payments or settlement checks.

120 Chapter 5

Although a television maker for living rooms tried to start the
home video game industry, it was an arcade game maker for bars that
succeeded. Atari developed a home version of Pong in 1974. Having
seen the Odyssey system fizzle, retailers weren’t interested. But in 1975,
Sears agreed to distribute it, and ordered 150,000 systems. At $100
each, they flew off the shelves. By Christmas, Pong had become the
biggest-selling item at Sears, with lines of parents waiting outside the
stores.8

Meanwhile General Instruments had developed a $5 chip with four
tennis-like games and two shooting games programmed into it. That
allowed any toy maker to produce Pong clones. Dozens of manufactur-
ers introduced game systems based on these chips. By 1977 there were
almost 75 Pong-style clones, each of which sold for a few dollars. The
home video game industry had arrived.

These early manufacturers sold complete systems that included one
or more games. Consumers had no way to install additional games.
These were single-sided businesses. Moreover, the machines didn’t make
significant use of microprocessors or rely on software to develop the
games.

The Emergence of the Video Game Platform

The foundations for the two-sided business model that dominates the
video game industry today were laid in the late 1970s. Video games
were separated from the console so that end users could add games
over time. This separation made it possible for companies to specialize in
developing games for these consoles. It also raised the basic pricing
question: Should console makers raise prices for the console, given that
third-party games make those consoles more valuable, or should console
makers figure out some way to charge third-party game producers for
games—or both?

8. http://en.wikipedia.org/wiki/Pong; Demaria and Wilson, High Score!, p. 26.

PONG 121

Adding Games
In 1976, Fairchild Camera introduced the Channel F console. It could
play games stored on cartridges. Each cartridge had a memory chip that
had one or more games programmed into it. Fairchild sold the cartridges
for $19.95 each and eventually released twenty-one versions of them.
The Channel F console itself went for about $170.

A year after Channel F came out, Atari introduced the Video
Computer System (VCS). It had an 8-bit microprocessor and could
play games that came in cartridges. The console sold for $199—a
little more than manufacturing cost—and the “carts” containing the
games sold for $30 each (it cost less than $10 to manufacture a car-
tridge).9 The console came with what became an important peripheral,
a joystick.

The Atari VCS didn’t sell well at first. That changed in 1980 when it
licensed the popular arcade game, Space Invaders. This killer app for the
VCS sold one million copies in its first 18 months, and helped Atari sell
more than 15 million VCS consoles between 1979 and 1982. Atari
earned about $512 million in 1980 and had an 80 percent share of the
gaming market. As an Atari history Web site notes, “designers
had unknowingly created a console whose hidden potential was quickly
discovered by programmers who created games far outperforming what
the console was originally conceived to do.”10

From then on, video game consoles have been based on microproces-
sors and games have been stored mainly on removable media rather than
being hardwired into the console. The Atari VCS was an inflection point
for the video game industry.

Sell the Blades
Now that it had separated the console and the games, Atari—and its
copycat competitors—had more flexibility in how they priced their prod-
ucts. Earlier, single-game console makers had to recover their investments

9. Demaria and Wilson, High Score!, p. 29; Kent, The Ultimate History of Video
Games, p. 107; http://en.wikipedia.org/wiki/Atari_2600.

10. http://en.wikipedia.org/wiki/Atari_2600; http://www.biggeworld.com/
archive/atarishift.html; http://www.atarimuseum.com/videogames/consoles/
atari_videogame_consoles.htm.

122 Chapter 5

and earn a return from selling the integrated game consoles. They
had to do it in a hurry before a rival came out with a more attractive
game.

Atari decided to sell the VCS at or below manufacturing cost and
make its profit from selling games over time to its installed base of
console owners. This was a novel strategy in the 1970s: computer makers
then were giving away software to sell more hardware, from which
they earned their profits. Atari turned this strategy upside down. Like
many critical innovations, it is obvious in hindsight. The economic
theory of two-part pricing offers some hints as to Atari’s thinking
and also suggests why this approach worked for video game consoles
but not other computer hardware.11 (We return to these matters in
Chapter 10.)

There’s an old business strategy often described as giving away razors
to sell blades. It isn’t literally used much by razor manufacturers
anymore. But the basic idea is still employed by many other makers of
durable goods who sell the durable good at little or no markup over cost,
or even at a loss, and make their profit from products that work with
the durable good. The basic idea is that selling the razor at cost, or even
at a loss, encourages people to buy the razor and increases the demand
for blades. Technically, the razor and blades are complements: because
lowering the price of the razor raises the demand for blades, which are
sold at a profit, the optimal razor price is lower than it would be for a
firm that didn’t sell blades.

But there is more to the story. Not only can the razor-blade business
make money from people who buy blades, it can make more money
from people who shave a lot, either because they have fast-growing beards
or because they care more about their appearance. By making money
mainly or exclusively on the blades, the business sorts customers so that
those who value the system (razor + blade) more end up paying more
for it.

11. Thomas T. Nagle and Reed K. Holden, The Strategy and Tactics of Pricing,
3rd ed. (Englewood Cliffs, N.J.: Prentice-Hall, 2002); Richard Schmalensee,
“Monopolistic Two-Part Pricing Arrangements,” Bell Journal of Economics 11
(Autumn 1981): 445–466.

Technically, this is a two-part tariff, consisting of an access fee
(the price of the razor) plus a usage fee (the price of the blade). Here
the blade can be thought of as having two related roles. It meters the
use of the durable good, and it sorts customers into those who are willing
to pay more and those who are willing to pay less. These metering
devices tend to increase profits and help companies better recover their
fixed costs of investment. Because it is particularly attractive to make
money on the blades, it is especially attractive to reduce the price of
the razor, perhaps to below cost, or perhaps even to zero in extreme
cases.

For video game console makers this razor-blade strategy made a lot
of sense. Getting the console into the hands of many people increased
the demand for the games it could play. Moreover, it made buying a
console less risky for households, who had no good way of knowing how
valuable the console would be until they saw the games produced for it.
The game-console company, which was in the best position to forecast the
quality of those games, took the risk: it lost money if consumers didn’t buy
many games, and it made money if they did. The people who ultimately
bought a lot of games were those who valued the console the most, so
making profits mainly or even entirely on games enabled the console
makers to earn the most from those willing to pay the most for their
system.

Even though royalties are paid to console makers by game developers,
the above discussion implicitly assumes that they are passed along dollar-
for-dollar to consumers. In this textbook case, the only reason to charge
royalties to developers rather than directly to consumers is convenience.
As we discuss in Chapter 10, however, because competition among game
developers involves the production of highly differentiated products,
even if convenience were not an issue, console makers would probably
earn more charging game developers.

The video game pricing strategy wouldn’t have made sense for com-
puter makers. There’s probably not much correlation between the
number of applications that someone uses on a computer and the value
that person places on that computer. An engineering firm might use more
applications than an electrical utility, but most likely both are using the

PONG 123

124 Chapter 5

computer to its maximum capacity. Likewise, there’s no apparent reason
why an author who uses her PC only for word processing and email will
value it any less than a retired person who runs dozens of different appli-
cations for fun.

The Emergence of the Two-Sided Platform
When games were separated from consoles, it became possible for
console makers to adopt a two-sided model by encouraging other
companies to develop games for them. But none took that step at
first.

Several game programmers left Atari to start the first independent
video game software firm, Activision, in 1979. Using their knowledge of
the Atari VCS, they developed a number of very popular games. Other
third-party game developers quickly appeared. Some of their games were
great. Others weren’t.

These game makers had all developed their games without obtaining
permission from the console makers or paying anything to them.
Since the console makers had invested to develop the underlying
technology and were earning returns on those investments by selling
games, this third-party entry posed a direct threat to their profits. Notice
the contrast with PC software platforms: the major players didn’t
specialize in making applications for their platforms, had other sources
of revenues, and quickly encouraged developers to free-ride on their
platform code. The game console makers, on the other hand, saw
independent game developers as a scourge. Atari sued Activision
repeatedly.12

The bottom fell out of the video game industry in 1983. According
to one source, of more than 130 significant video game software firms
in 1982, only five or six survived the crash. Atari, the industry leader,
was the biggest victim. Its sales fell from 5.1 million units in 1982 to 3
million units in 1983, when it lost $356 million, taking down the share
price of the company to which Bushnell had sold it, Warner Communi-
cations, by 50 percent over 10 months. The next year, Warner sold

12. SN Kent, The Ultimate History of Video Games, p. 194.

PONG 125

Atari at a loss. The other publicly held companies such as Mattel and
Coleco took similar hits. Many video game magazines also went out of
business.13 We leave the causes of the great video game depression to
others. Some say it was the proliferation of bad games. Others at the
time thought a fad had merely run its course.

A new entrant, however, soon appeared that embraced the two-sided
platform model and reignited the industry. Nintendo introduced its
Famicom system in Japan in 1983 and its Nintendo Entertainment
System (NES) two years later in the United States. The console was sold
for $249, at an operating loss.

Nintendo had actively pursued licensing agreements with third-
party game publishers to get a critical mass of games for its new
system. However, having witnessed the 1983 U.S. video game market
crash, it concluded that in order to succeed, it had to control the quality
of games sold for its platform. Accordingly, each NES cartridge
contained an authentication chip that was necessary to provide access
to the console circuits. Nintendo also kept tight control over the
games supplied for its console through its Nintendo “Seal of Quality”
policy and, in the interest of quality control, forbade any single
developer to publish more than five games every year for the
NES.14

The authentication chip also allowed Nintendo to charge royalties to
third-party game developers, thus converting them from enemies to
allies. Nintendo determined the selling price of all games and charged its
third-party developers a 20 percent royalty on sales. Since Nintendo
made the cartridges and required licensees to order them in advance and
be subject to strict inventory management policies, it knew how many

13. Martin Campbell-Kelly, From Airline Reservations to Sonic The Hedgehog:
A History of the Software Industry (Cambridge, Mass.: MIT Press, 2003), p.
280; http://www.dbbs.gr/hcg/cop36.htm; Warner Communications historical
share prices; Kent, Ultimate History of Video Games, pp. 239, 252–255; Leonard
Herman, Phoenix: The Fall and Rise of Videogames (Union City, N.J.: Rolenta
Press, 1997), p. 128.

14. Later, several very successful developers such as Acclaim and Konami were
granted licenses for an additional five games a year.

126 Chapter 5

games each licensee was producing. Nintendo also adopted the novel
policy of prohibiting game makers from publishing their games on a rival
system for at least two years.15

A year after Nintendo entered, there were more than twenty-four
games for the NES. By 1989 Nintendo games were selling at a rate of
50 million cartridges per year. Some of these are all-time classics, such
as Donkey-Kong. Nintendo wrote many of its games itself, including
Mario Brothers, which was the killer game for the NES. This reflected
both its strong previous experience in arcade games and its inability to
sign up more than four developers, all Japanese, by NES’s launch.
Despite countless visits and evangelization efforts, major American
developers that had survived the 1983 crash preferred to remain focused
on the emerging PC gaming market, which we discuss below.16

As Nintendo captured a larger share of the U.S. video game console
market—reaching 90 percent in 1987—American third-party game
developers began to come on board. At the same time, however, the
Federal Trade Commission also started taking an interest in Nintendo.
Under its scrutiny, Nintendo stopped setting retail prices for its games,
dropped the exclusivity clause in its licensing agreements, and let devel-
opers make their own cartridges. Nintendo kept its security chips,
though, and continued to charge royalties.17

15. Campbell-Kelly, From Airline Reservations to Sonic The Hedgehog, pp.
284–286.

16. “Robot Lets Firm Toy with Success: Electronic Playmate Opens Doors for
Redmond Video-Game Maker,” The Seattle Times, February 11, 1986; “Home
Electronics: Video Wars,” Associated Press, October 16, 1989; Kent, The Ulti-
mate History of Video Games, p. 307.

17. http://www.nationmaster.com/encyclopedia/List-of-NES-games; http://www.
cyberiapc.com/vgg/nintendo_nes.htm; “Will Justice Dept. Probe Nintendo?
(Antitrust Investigation),” HFD—The Weekly Home Furnishings Newspaper,
December 18, 1989; “Nintendo Agrees to Settle FTC Charges,” Los Angeles
Times, April 11, 1991; “FTC Action Takes No Bite Out of Nintendo (Federal
Trade Commission, Nintendo Company Ltd) (Washington Report),” Discount
Store News, August 5, 1991. Nintendo thought their antitrust problems were over,
but not long after the price fixing settlement in 1991 the FTC began a new inves-
tigation into monopolization charges. The investigation was dropped in 1992.
“FTC Halts Probe of Nintendo: Two-Year Investigation Looked Into Accusations
of Antitrust Activity,” Seattle Post-Intelligencer, December 3, 1992.

PONG 127

The Game Boy

In 1989, Nintendo introduced another gaming platform, the handheld
Game Boy. Like the NES, the Game Boy was initially driven by one killer
app, Tetris. Tetris had been created by a Russian mathematician, Aleksey
Pajitnov. In 1986, Robert Stein, the president of a London-based software
company, encountered a pirated copy of Tetris and negotiated with
Pajitnov for the right to license it. Stein apparently did not realize that
he needed to obtain the rights from the Russian authorities, not Pajitnov.
Stein went on to negotiate deals for the European and American computer
rights to the game before the Russians had actually given him the author-
ity to do so. Atari also obtained the rights to the game and in turn sold
the Japanese coin-operated rights to Sega. Multiple firms obtained the same
rights to Tetris from Stein, who did not have the authority to
issue any of these contracts. At this point Nintendo realized no one truly
owned the rights to Tetris, negotiated with the Russians, and obtained the
worldwide video game rights to Tetris. Nintendo then introduced the
Game Boy handheld console with the Tetris game bundled. The Game
Boy sold over 1 million units and over 2.4 million games in its first year
on the market. By 1992, worldwide shipments were 10 million units per
year.18

The licensing contracts for third-party Game Boy developers were
identical to those for the NES. When the Game Boy was first released,
there were only four games in addition to Tetris available, but twenty-
three of the licensees for the NES had signed on to develop more titles.
By May 1990 there were seventy titles available for the Game Boy, and
at the June Expo Center show of the same year there were 200 titles avail-
able for trial.19

18. Kent, The Ultimate History of Video Games, pp. 377–381. “Nintendo
Doesn’t Intend to Sell 16-Bit Game,” Los Angeles Daily News, March 23, 1990;
“Grown-up Game Boy Still Has Youthful Charm,” Plain Dealer Cleveland,
December 22, 1997.

19. “Nintendo Nirvana: Thousands of Devotees of Electronic Games Plan
to Converge on Portland for Expo Center show,” Portland Oregonian, June
27, 1990; “A Video Shootout in Hand-held Games,” The Dallas Morning

Nintendo’s lead didn’t last. In 1989, Sega launched its 16-bit console,
Genesis, several months before Nintendo came up with its own 16-bit
Super NES. With its killer game, Sonic the Hedgehog, Genesis had
outsold Super NES four to one by 1991. Sega relied on the same
platform strategy as Nintendo: it used a security system to lock out

128 Chapter 5

unlicensed game developers, and it relied on first-party game sales and
royalties charged to licensees (virtually identical to those charged by
Nintendo) for the bulk of its profits. All subsequent significant game
console makers have followed the same basic strategy. While it is
possible that the strategy could be improved upon, 3DO’s failure sug-
gests that low-priced games can’t make up for a high-priced console
and that “charge developers/subsidize consoles” is the more profitable
model.

The Other Video Game Platform: PC
Personal computers arose as a gaming platform when the first cheap
PCs appeared in the wake of the 1983 video game crash. Introduced
in 1982 at a price of $600, the Commodore 64 (C64) claimed to
rival the Apple II, priced at more than $1,000, in power. The C64
helped shift the market’s attention from dedicated video game consoles
to PCs.

Trip Hawkins created Electronic Arts in 1983 to develop games for
the C64. Within 6 months of introducing its first products, Electronic
Arts was supporting the Apple II and the Atari 800, in addition to the
C64. When Nintendo introduced the NES in the United States, Electronic
Arts refused to support it. Like many others in the industry, Hawkins
thought the PC platform had definitively supplanted the console plat-
form as a gaming medium.

Three years and 28 million NES video game consoles later, it became
clear that he was wrong. (Note that while Hawkins has gotten two
major things wrong so far in this chapter, Electronic Arts is the world’s
largest game developer, with annual revenues of over $3 billion.) In
the 1990s, console game software outsold PC game software by two
to one in unit terms and four to one in revenue terms, even though there
were nearly ten times more computer game titles than console titles
on the market. In 2004, U.S. consumers spent $5.2 billion on
162.7 million console games, compared to $1.1 billion on 45 million PC

News, May 30, 1990; “Atari’s Handheld Video Game Bows With Color
LCD Monitor,” HFD—The Weekly Home Furnishings Newspaper, June 12,
1989.

PONG 129

games and $1.0 billion on games for Game Boy and other portable
devices.20

Clearly, neither of the two overlapping platforms has driven the other
out of the market. They are still competing today for both game devel-
opers and users, as we discuss later. Remarkably, they are overlapping
multisided platforms (see Chapter 3) with opposite two-sided pricing
strategies. Their coexistence is a testament to the power of product dif-
ferentiation in multisided platform industries.

The Sony PlayStation

Sony solidified the two-sided platform model. And it introduced the first
commercially successful machine with an operating system and with
applications that came on a CD rather than a chip.21

Sony’s first contact with the video game market occurred when Nin-
tendo approached it in 1988 with a proposal to manufacture a CD-ROM
drive for the Super-NES. That deal never materialized, and Sony opted
to design its own console. The PlayStation hit the market in 1994 in
Japan, and at its 1995 U.S. launch the console sold for $299 and the
games for about $40–$50 each.22 It was competing against Sega’s Saturn,
Nintendo’s Super NES, and later against Nintendo’s N64, which was
launched in 1996.

Unlike Nintendo and Sega, Sony didn’t have much experience in devel-
oping games and decided to rely mainly on third parties. By 1999, about
77 percent of the games developed for PlayStation came from third
parties, whereas they supplied only 43 percent of N64’s games. To ensure

20. “The Power of Nintendo (Direct Marketing Success of Nintendo
America Inc.),” Direct Marketing, September 1, 1989; Electronic Arts, Income
Statement, 2004; Peter Coughlan, “Competitive Dynamics in Home Video
Games (K): Playstation vs. Nintendo64,” Harvard Business Online, June 13,
2001; http://www.writenews.com/2005/021105_gamesales_04.htm.

21. Among a slew of ill-fated video game consoles introduced at the beginning
of the 1990s, 3DO’s Multiplayer and NEC’s Turbografx were the first machines
to play games on CDs.

22. http://www.scee.com/about/sonyHistory.jhtml http://en.wikipedia.org/wiki/
Sony_Playstation; “Console Yourself—It’s Only Money,” The Independent–
London, January 8, 1996.

130 Chapter 5

the availability of some quality titles, the company purchased a leading
game developer before launching the PlayStation.23 Sony also pursued
alliances with other developers to secure the exclusive support of their
games for its console.

Users preferred the Sony PlayStation because it was sleeker and had
more games than Sega’s Saturn. Also, though the Saturn came bundled
with the highly desirable Virtual Fighter game, it cost $100 more than
the PlayStation.24

The software platform for the PlayStation was a proprietary Sony oper-
ating system developed in-house. It was designed exclusively for the
PlayStation and optimized to make the most of the console’s hardware
capabilities, including a very capable microprocessor. It was also designed
to read game software from CD-ROMs, just as PCs did. CD-ROMs were
much cheaper to manufacture than cartridges, had more storage capacity,
making possible a significant improvement in game complexity, and could
be easily obtained if game makers needed to increase production. The
only drawback was that the data access speed was somewhat slower.
Sega’s Saturn also relied on CD-ROMs, but Nintendo decided to continue
using cartridges, both for the Super NES and for the N64.

By the time the PlayStation launched, Sony had signed up nearly a
hundred game companies, and with its licensees had more than 300 indi-
vidual game projects under way. An important factor in Sony’s success
was its provision of an unprecedented array of development tools and
software libraries that made it easier to write games to the PlayStation
than to the competing systems from Nintendo and Sega. The latter were
believed to discriminate in favor of their own game developers when it
came to supplying tools. (This is a tension that runs through businesses
that produce applications as well as software platforms. Many software
platform makers, however, also do applications for their platforms.
Providing developers assurance that there is a level playing field is a
business necessity.)

Over time Sony has nurtured the PlayStation platform by continuing
to encourage third-party game developers. Its library of titles grew

23. Coughlan, “Competitive Dynamics in Home Video Games,” p. 1; Kent, The
Ultimate History of Video Games, p. 505.

24. Kent, The Ultimate History of Video Games, p. 517.

PONG 131

from 19 in 1995 to 300 in 1997 and 2,600 in 2000. It managed to
sell almost 10 million consoles within its first two years on the market,
and 26 million consoles by the end of 1997 (three years after release).
Even the launch of Nintendo’s N64 in 1996 was not enough to stop
it. By 2000, there were more than 81 million PlayStations worldwide,
compared to 29 million N64s. Sega’s Saturn fared very poorly, with
only 17 million units sold by 1998, when it was discontinued. Between
1996 and 2000, PlayStation’s market share never dropped below 33
percent.25

PlayStation 2
Launched in 2000, PlayStation 2 continued Sony’s dominance into
the current generation of 128-bit consoles, where it faced Sega’s Dream-
cast, Nintendo’s GameCube, and the new kid on the block, Microsoft’s
Xbox.

Like the original PlayStation, PlayStation 2 was initially priced at $299
when it was released in the United States. It followed the established
industry pattern of selling hardware below cost (at least initially)—
according to some estimates, its manufacturing cost was over $400—and
recouping through sales of first-party game software and royalties
charged to third-party game publishers. Component costs fell over time
and manufacturing efficiency increased over time, so that in 2004 a Sony
executive could assert that there was a “positive gross margin” on
PlayStation 2 sales. But the largest share of PlayStation’s profits (between
60 and 70 percent, according to interviews with Sony executives) still
comes from sales of Sony-produced games and royalties ($3 to $9 per
disk) paid by third-party game publishers.26

25. “Sony Sets Up New Games Companies,” Music & Copyright, February 1,
1995, “PlayStation Game Console Sells More Than One Million Units in Novem-
ber,” Business Wire, December 8, 1997; “Video Game War Heats Up Sony Re-
enters Fray with Playstation 2,” The New Orleans Times-Picayune, February 19,
2000; “Worldwide Videogame Forecast and Analysis, 2001–2006” (IDC report
no. 26906), 2002, table 4; Installed Base “Video Game Consoles: Sony, Nintendo
and Sega Brace for Microsoft Challenge,” In-Stat, December 2000, table 2.

26. Dean Takahashi, Opening the Xbox (Prima Lifestyles, 2003); Takao Yuhara,
Sony Corporation earnings conference call, January 28, 2004; Adam Branden-
burger, “Power Play (C): 3DO in 32-bit Video Games,” Harvard Business Online,
April 10, 1995; Coughlan, “Competitive Dynamics in Home Video Games (K).

132 Chapter 5

Built around a new processor, the “Emotion Engine,” PlayStation 2 was
a powerful machine, able to process graphics fifty times faster than the
PlayStation 1, according to a standard measure of speed. PlayStation 2
games were loaded on DVDs, with twenty-five times the capacity of a
conventional CD. The new console could also play movies stored on
DVDs.

The PlayStation 2 suffered, though, from a lack of investment in devel-
opment tools. Developers complained that the system was very difficult
to work with. Shinji Mikami, the designer behind several such hit games,
complained that unlike the original PlayStation, the PlayStation 2 had
“no library.” Developers needed “to create [their] own library, which
poses its own set of problems in that there are so many choices to achieve
the same effects.” And Gozo Kitao, the general manager of Konami,
stated, “If you focus on making full use of all the specs, it will be very
expensive and time-consuming to produce a game.”27

In addition to being sparse, the developer tools for PlayStation 2 were
also released quite late, only nine months before its Japanese launch. By
contrast, game developers for Xbox had received their tools from
Microsoft 18 months before that console launched. It is therefore not
surprising that at Sony’s PlayStation Festival 2000 trade show, which
took place about a month before the Japanese launch, only nineteen
games were in development for the PlayStation 2.

PlayStation 2 managed to win the support of third-party game devel-
opers in part because it was compatible with PlayStation 1. Manufac-
turers had previously reasoned that incompatibility would help drive
sales of game software developed for new machines. It turned out,
however, that backward compatibility was especially attractive to
PlayStation 1 users, who valued the ability to play their library of games
on the new console. These users upgraded even though there were rela-
tively few new games initially available for PlayStation 2. By 2004,
PlayStation 2 had more than 1,000 titles, compared to roughly 700 for
Xbox and 600 for GameCube.28

27. Kent, The Ultimate History of Video Games, pp. 568–569.

28. Anthony N. Gihas and Stephanie S. Wissink, “The Video Game Industry”
(Piper Jaffray & Co.), April 2005, p. 18.

PONG 133

PlayStation 2 emerged as the clear winner of this round of console
competition. In 2004, it sold 15.2 million consoles worldwide and had
a 58 percent market share.29 Sony has announced that it hopes to trans-
form its game console into a rich home entertainment device. But so does
Microsoft. The bundling of new features this broader role involves has
become a major focus of the competition between consoles.

The Xbox

Microsoft made its first foray into the video game market when Sega
decided to use a stripped-down version of Microsoft’s Windows CE soft-
ware platform as a development environment for its 1998 Dreamcast
console. Sega had invested heavily in Dreamcast development tools. It
standardized the interface between its development environment and the
Windows CE development environment. As a result, developers could
easily port games to and from PCs. Good theory, bad execution. The
performance of game software using the Microsoft APIs was much
slower than that of software using Sega’s original Ninja library of APIs.
In the end, only one of the forty games available within six months of
Dreamcast’s launch used the joint development tools.30 Although the
reasons for the failure may be different, Microsoft, like 3DO, found that
licensing software platforms to hardware makers was not the road to
riches in the video game industry.

Microsoft got the execution right the next time. Rather than build a
new gaming platform for its Xbox, Microsoft relied on a version of the
Windows NT/2000 operating system, stripped down and modified in
order to focus it on gaming. It built the Xbox software platform around
DirectX, a collection of Windows software services that were specially
designed to help PC game developers deal with the diversity of user
hardware, particularly the sound and graphics cards that were so impor-
tant to games. In the words of J Allard, one of the key executives on the

29. “Worldwide Videogame Hardware and Software 2004–2008 Forecast and
Analysis: Predicting the Future” (IDC report no. 31260), May 2004.

30. Stegan Thomke and Andrew Robertson, “Project Dreamcast: Serious
Play at Sega Enterprises Ltd.,” Harvard Business Online, September 9, 1999,
p. 11.

134 Chapter 5

Xbox team: “We started taking things out of Windows NT, or rather
putting things in DirectX, to put the software together. It was more or
less a DirectX operating system.”31

The Xbox operating system resides on the DVD disk with each game
rather than, as in a PC, on the console’s hard disk. This enables devel-
opers to customize the operating system to some extent and thereby to
enhance memory usage. If a game does not make use of online capabil-
ities, for example, the corresponding networking code can be left off the
DVD.

The original Xbox hardware had two important innovations: an 8-
gigabyte hard drive and a high-speed Ethernet adapter. Earlier consoles
had not included hard drives because of the cost involved. Indeed,
Microsoft spent almost $50 per machine for the hard drive. However,
the company reasoned that a hard drive would give more flexibility to
game developers and would help improve the online gaming experience
by providing a storage medium for game data.

PlayStation 2 and GameCube did not come with built-in network con-
nections but could be connected through either a 56K modem or an Eth-
ernet adapter. By contrast, Microsoft chose to integrate a broadband-only
connector to simplify the life of online game developers, who did not
program for slower forms of Internet access. Of course, this was a gamble
on the growing penetration of broadband connectivity, but it was one that
paid off. Microsoft’s subscription-based online gaming service, Xbox
Live, has grown from 750,000 users in 2004 to about 2 million in 2005.
The PlayStation 2 boasts the same number of online gamers, but that is a
much lower proportion of the console’s installed base, 6 percent of the
PlayStation 2 installed base compared to 16 percent for Xbox.32

To ensure the availability of attractive first-party titles, Microsoft
recruited game developers and acquired game companies. These

31. Takahashi, Opening the Xbox, pp. 150–153.

32. “Microsoft Quarterly Revenue Tops $10 Billion Launch of Office 2003 and
Strength in PC Market Fuels Demand for Desktop Software,” PR Newswire,
January 22, 2004; “Xbox Dedication: With 3-Day Jump, Greenfield Teen Finds
Lot to Love in New Machine,” The Milwaukee Journal Sentinel, November 22,
2005; “Nintendo Gives Gamers a Reason to Chat,” The Boston Globe, May 23,
2005.

PONG 135

33. Analysts estimated that over 80% of Xboxes sold at launch were sold with
Halo. Takahashi, Opening the Xbox, p. 319.

34. “Microsoft Playing Out of the Box,” The Hartford Courant, November
4, 2001; “Game on! Sony, Nintendo and Microsoft Get Ready to Rumble in
the Battle for North America’s $8-Billion Video-Game Market,” Winnipeg Free
Press, November 10, 2001; “Game Wars,” The Tampa Tribune, November 19,
2001.

35. Microsoft PressPass, “Microsoft Embraces the Worldwide Independent
Video Game Developer Community,” November 7, 2000 (http://www.microsoft.
com/presspass/press/2000/Nov00/XPKPR.asp [downloaded 21 June 2004]);
http://news.com.com/2100-1040-248875.html?legacy = cnet.

supplemented its in-house team, which had done only PC games. The
most significant acquisition was the highly acclaimed game development
firm Bungie, whose Halo has been by far the strongest selling Xbox game
and has largely driven purchases of Xbox.33 Overall, there were three
first-party and twelve third-party titles available for Xbox when it was
released. That number doubled to more than thirty games available
during the 2001 holiday season.34

Even though Microsoft chose to follow video game industry practice,
rather than its policy regarding PC games, and to act as a careful gate-
keeper for third-party games with the Xbox, it courted developers to an
extent unprecedented in the video game industry. Before the Xbox
launch, it set up an Independent Developer Program. It also established
the Incubator Program to encourage smaller developers by providing free
software tools, and it waived the normal prepublishing requirements.35

The presence of DirectX and its evangelization were particularly suc-
cessful. The tools used for creating Xbox games were quite similar to PC
game tools, which made life particularly easy for developers with PC
experience.

Like most consoles since the Atari VCS, the Xbox console is a loss
leader: its launch price was $260, which was $100 less than its estimated
manufacturing cost. Microsoft has continued to lose at least $100 on
each console sold, as price cuts have tracked reductions in manufactur-
ing costs. From its 2001 launch through December 2003, the company
had gross revenues of $961 million from Xbox software sales—direct
sales of its own games plus $7 per unit royalties levied on third-party
games—and $313 million gross revenues from sales of peripherals such

136 Chapter 5

as game controllers, memory cards and other plug-ins, and remote con-
trols. (First-party games accounted for roughly 70 percent of total game
software revenues over this period.) Because of negative hardware
margins, however, through the end of 2003 Xbox had incurred a total
loss of roughly $590 million.36

The foregoing may suggest that Microsoft simply accepted the core
elements of the standard video game business model. In fact, in the
process of creating Xbox it challenged almost every element of that
model, from the vertical integration between software and hardware in
the platform and the below-cost pricing of the console to the royalty-
based model with quality control for third-party games. For example, it
considered making money on the console but learned from developers
that they wouldn’t write games unless they were confident that many
consumers would buy the console. The fact that Microsoft ended up
adopting the standard business model despite its initial skepticism sug-
gests that model makes good economic sense for this industry, at least
at this time.

36. This estimate and the next are based on J.P. Morgan North American Equity
Research, “Microsoft Corporation: Patience Is a Virtue,” January 6, 2004, table
12.

37. Takahashi, Opening the Xbox.

Microsoft (Almost) Channels 3DO

Xbox started as Project Midway in 1999 inside Microsoft—a bow to the
critical World War II battle in the Pacific and an expression of the
company’s intention to produce something midway between a PC gaming
platform and a console. Indeed, the original idea was to come up with a
low-cost personal computer specialized for playing games, in order to
counter the threat posed by Sony’s ambitious PlayStation 2.37 Remarkably,
the Windows Entertainment Platform, as the machine was to be called in
the beginning, was initially supposed to run a future version of the
Windows 98 operating system, function as an open platform like the PC
(in the sense that game developers could program anything they wanted
without constraints or having to pay royalties), and be made according to
Microsoft’s specifications by licensed third-party OEMs. Microsoft knew
about 3DO’s failure six years earlier, but it concluded that overpriced hard-
ware had been the main flaw and decided it had what it took to make the

PONG 137

(continued)
same strategy succeed. After all, if anyone could successfully bring the PC
platform model into the gaming industry, it would surely be Microsoft.

Not surprisingly, the initial hardware strategy did not work. Dell,
Panasonic (Matsushita), Sharp, Toshiba, Mitsubishi, and Samsung all
declined to produce hardware under license, arguing (quite reasonably)
that there was no way for them to make money. Everyone was aware
of the negative hardware margins characteristic of the video game
industry, and a third-party hardware maker had no way to recoup its losses
because it did not sell any game software. In the end, Microsoft had to
rely on a contract manufacturer for Xbox, just like all other console
vendors.

Similarly, the Xbox was in the end designed as a closed system, and
Microsoft charged royalties to third-party developers, just like all the
other console vendors. One reason for this shift was that Microsoft
came to the conclusion that it was important to control the quality of
titles supplied for the console. (In particular, it understood that it had
to exclude the mediocre games that flooded the PC platform, especially
if it planned to charge royalties to developers; a security system
was accordingly developed to prevent quick-and-dirty porting of
PC games.) A second reason for this shift was financial: after long brain-
storming sessions with senior executives, it became clear that the company
needed the royalty revenues from third-party game developers to help
offset the losses incurred on console sales. The case for royalties was
even stronger when Microsoft realized it had to supply the hardware
itself. In the end, it settled on the $7 per game royalty charged by every-
one else.

Today’s Video Game Industry

When Pong came out thirty years ago, mainly young boys played video
games. The industry has grown up along with those boys: the average
age of video game players had crept up to 28 by 2004. More games are
written for young adults: they are rated, like movies, and many have
explicit sexual content. Online gaming is also beginning to take off, to
the point that the “currency” used in these games is now bought and
sold on eBay so that game players can purchase some of the virtual
weapons of war needed in their favorite online games.38

38. “Reel fakes; Phony Web sites are the movie studios’ latest advertising tactic.
But have they gone too far?,” St. Paul Pioneer Press, May 30, 2004. In the United

138 Chapter 5

The video game industry had global revenues of $28 billion in
2004 from the sale of video game consoles and games. It is still only
one-fifth the overall size of the movie industry, which had global
revenues of $129 billion in 2004 from all sources, although, as
mentioned earlier, video game sales exceed movie ticket sales. But the
video game industry has grown at an average rate of 17 percent per
year in the last four years, compared with 4 percent for movies, and if
these trends continue, video games will overtake movies in a decade.39

Whether they do or do not, what is striking is how these software
platforms coupled to specialized computers have revolutionized home
entertainment.

Console Makers
At the software platform level, the video game industry is far less con-
centrated than the PC industry. In 2004, Sony’s PlayStation (1 and 2)
accounted for about 65 percent of both console and game sales world-
wide. Xbox was second in console sales, with a 17.6 percent share, and
had a 15.5 percent share of software sales. And Nintendo’s GameCube
also had a 16.9 percent share of console sales, which well exceeds Apple’s
4 percent share in PCs.40

Though there has generally been a clear leader among each crop of
new consoles, none has attained shares like those enjoyed by Microsoft
in PCs. Why not? After all, video games have the same sorts of network
effects: users like platforms with more games, and developers like

States, for example, rating is done by the Entertainment Software Rating Board.
There are similar organizations in many other countries, including Japan,
Australia, and Germany. http://en.wikipedia.org/wiki/Entertainment_Software_
Rating_Board “Patti Waldmeir: Cyber World is Heading for Regulation,” March
30, 2005.

39. “Global—Movies & Entertainment—Market Value,” Datamonitor Market
Research Profiles, May 1, 2004; “Worldwide Videogame Forecast and Analysis,
2001–2006” (IDC report no. 26906), 2002, table 20 (derived 2000 revenues
from growth percentage and 2001 numbers).

40. “Worldwide Videogame Hardware and Software 2004–2008 Forecast and
Analysis: Predicting the Future (IDC report no. 31260),” May 2004; “Worldwide
Client and Server Operating Environments 2004–2008 Forecast: Modest Growth
Ahead” (IDC report no. 34599), December 2005. Apple’s share is 3.7%.

PONG 139

platforms with more users. There are scale economies in software plat-
forms and scale and learning economies in console production.

We can see at least three reasons.
First, there has been less demand by customers for standardization of

video game consoles. People don’t use these devices for the sort of col-
laborative work that requires file sharing on PCs and that places a
premium on compatibility. If Billy has a PlayStation, he might actually
prefer that his buddy Johnny buy an Xbox; that way Billy will get to
play a new set of games. In addition, games aren’t like word-processing
packages that people keep upgrading. Game players like diversity, just
as moviegoers and television watchers do. Indeed, until the PlayStation,
console vendors explicitly rejected backward compatibility to differenti-
ate new products from old ones; that stands in sharp contract to the
considerable investments Apple and Microsoft regularly make to ensure
that new versions of their operating systems are able to run old appli-
cations. As the stock of games increased, console makers realized that
some game players didn’t want to lose their entire investment in games
or to have to maintain two consoles. Nevertheless, as the leap-frog
competition in this industry shows, consumers care far more about “new
features” than backward compatibility of their games or having the same
console as their friends do. The demand for product differentiation coun-
ters direct network effects and makes it hard for a single platform to
emerge triumphant and secure.

A second reason why console leaders’ shares have stayed well short of
100 percent is related to their basic business model. By pricing consoles
low (at or below manufacturing cost) and relying on games (their own
and third parties’) for profit, they have been able to weaken consumers’
resistance to buying new consoles before the full set of compatible games
is known.41 Because consoles are both differentiated and relatively cheap,
there is significant multihoming on the consumer side in this market: 60

41. It is worth noting just how much cheaper these consoles are than similarly
equipped PCs. The Xbox 360, for instance, comes with a Power PC processor,
500 megabytes of memory, and an operating system that allows users to play
movies and connect to the Internet. At $399, it is around a tenth of what a sim-
ilarly powerful Apple PC costs. See the prices for Apple Power Mac G5 at
http://store.apple.com/, checked August 22, 2005.

140 Chapter 5

percent of American households who play video games own more than
one console.42

Last, technology has moved fast enough (Table 5.1) that using
technological advances to make significantly better consoles and
games has helped console makers displace or least seriously challenge
the leading platform maker several times in the short history of the
industry. From 1989 to 1994, Sega’s Genesis machine was clearly
the leading console, but it was displaced by the Nintendo Super NES
shortly after its 1995 launch. After a very brief reign, the Super NES was
outsold by the PlayStation in 1996. The PlayStation led the market
until 2001, when it was replaced by the PlayStation 2, which, as this is

42. “Tales of the Gamer: IDC’s 2004 Videogamer Survey” (IDC report no.
31760), September 2004, fig. 7.

Table 5.1
Technical Specifications for Selected Consoles

CPU Release
Console Width CPU Speed Memory Media Date

Atari VCS 8-bit 1.19MHz 128 bytes 4kb 1977
2600

NES 8-bit 1.79MHz 2kb 0.5Mb 1983

Genesis 16-bit 7.61MHz 64kb 4Mb 1989

SNES 16-bit 3.58MHz 128kb 6Mb 1991

PlayStation 32-bit 33MHz 2Mb CD 1994
(650Mb)

Saturn 32-bit 2 × 28.6MHz 2Mb CD 1994
(650Mb)

N64 64-bit 93.75MHz 4Mb 64Mb 1996

Dreamcast 128/64-bit 200MHz 16Mb 1Gb 1998

PlayStation 128-bit 300MHz 32Mb DVD 2000
II (4Gb)

Xbox 128-bit 733MHz 64Mb DVD 2001
(8Gb)

Game Cube 128-bit 485MHz 40Mb 1.5Gb 2001

PONG 141

43. IDC reports nos. 31260, 29404, 28282, and 26906; “Video Game Consoles:
Sony, Nintendo and Sega Brace for Microsoft Challenge,” In-Stat, December
2000, table 2.

44. See, for example, “Video Games: A Serious Contest,” The Economist, May
8, 2004.

45. http://www.us.playstation.com/gamefinder.aspx; http://www.nintendo.com/
gamelist.

written (just after the Xbox 360 launch), remains the market leader.43

Network effects don’t always favor incumbents: a hot new console can
attract consumers because it plays a few great games, or it can attract
game developers because they can obtain its software platform and devel-
opment tools to write great games at reasonable cost, or both. Once both
sides race to climb on board a hot new platform, there is little a market
leader with an inferior platform can do to lure them back.

The software platform has become an important part of this compe-
tition. As we have seen above, Xbox placed unprecedented emphasis on
the software platform. Although many see Sony’s strategy as quite dif-
ferent because it emphasizes hardware capabilities, a closer look makes
it clear that PlayStation’s appeal to developers also rests on the exten-
sive software development tools that Sony and licensees provide.44

Game Developers and Publishers
Since Activision began writing third-party games in 1979, this niche in
the ecosystem has grown rapidly (Table 5.2). By 2005, the bulk of games
were developed by third-party publishers. Nintendo, for example, devel-
oped only 10 percent of the games currently available for its GameCube
and Sony only 9 percent for its PlayStation 2.45

Electronic Arts

Electronic Arts (EA) was founded by entrepreneur Trip Hawkins after
he left Apple Computer in 1982. EA started as a game developer for the
PC platform and, having observed the 1983 video game crash, ignored
Nintendo’s NES console initially. Later Hawkins admitted his mistake, and
EA entered the console gaming market in 1990 as a licensee of Sega’s
Genesis.

Today EA is the world’s largest video game publisher, with 2005 fiscal
year sales of $3 billion and market capitalization in 2005 of over $16

142 Chapter 5

billion.46 It supports all major gaming platforms: PC, Xbox, PlayStation,
and GameCube. It also runs its own Internet gaming Web site, Pogo.com,
that provides small Internet games for brief entertainment.

Hawkins’s key innovation was the so-called Hollywood model of game
production. At a time when game developers were not well rewarded
by their employers, he decided to treat them as artists. He attracted top
development talent by offering attractive bonuses and introducing the prac-
tice of printing the authors’ names clearly and visibly on game packages, to
some extent imitating album covers in the music industry. In general, EA
paid more attention to the packaging and marketing of games than its
rivals. By careful management of the creative process, coupled with creative
marketing, EA transformed game development into the complex process we
see today. Games are no longer created only by programmers: video layout
artists, sound and music directors, and script editors are also employed, as
well as marketing specialists.

EA’s other major innovation was the introduction of sports tie-ins.
It began by paying the modest sum (by today’s sports industry standards)
of $25,000 to legendary NBA star Julius Erving for using his image
in a basketball game. Today EA owns the rights to several extremely
profitable sports game franchises (NBA Live, Madden NFL, FIFA soccer,
and others), some of which are exclusive, others of which are shared
with competitors. For example, in December 2004, EA obtained from
the NFL the exclusive rights to publish games using the league’s image
and that of its players for five years, in exchange for an amount
speculated to be in the neighborhood of $300 million. In contrast, the
NBA has licensed the rights to produce basketball games to EA, Take Two
Interactive, Sony, and Atari. EA is rumored to have paid up to $20 million
each for the rights to both the Harry Potter and the Lord of the Rings
franchises.47

EA operates nine in-house development studios around the world. In
addition, it frequently publishes games from independent studios that lack
the capital and marketing savvy necessary to go it alone. Sometimes EA
buys out promising studios altogether and creates episodic franchises based
on their successful games. For example, it bought Origin Systems Inc. in
1992, and after the success of Ultima Online, released in 1997, it decided
to focus Origin on building the Ultima franchise, the latest incarnation of
which is Ultima IX: Ascension.

46. http://en.wikipedia.org/wiki/Electronic_Arts; Yahoo! Finance Electronic
Arts, August 22, 2005.

47. Kent, The Ultimate History of Video Games, pp. 260–266; http://money.cnn
.com/2004/01/20/commentary/game_over/column_gaming/?cnn = yes.

(continued)

PONG 143

48. Piper Jaffray, “The Video Game Iindustry.”

49. http://www.nintendo.com/gamelist; http://www.us.playstation.com/
gamefinder.aspx; http://www.xbox.com/en-US/games/catalog.htm; http://www.
sega.com/home.php?hsid=235711; http://www.ea.com/home/
pccd.jsp?src=11001hometab5linknone; http://www.activision.com/en_US/
game_list/game_list.jsp; http://www.konami.com/gs/, http://www.konami.com/
gs/; http://www.namco.com/platform/pc/; http://www.microsoft.com/games/pc/
default.aspx.

50. Includes games published by SCEA and Sony Online Entertainment.

Table 5.2
United States Third-Party Game Developers

2004 Platforms
Publisher/ Revenues48 Supported
Developer (millions) (no. of titles)49 Hit Titles

Electronic $444 GameCube (74); NBA Live (2003: GC,
Arts PS 2 (121); Xbox PS2, Xbox), 007: Agent

(80); PC (15) Under Fire (2003: GC,
PS2, Xbox)

Nintendo $231 GameCube Super Mario Sunshine
of America (53); PS 2 (0); (2002: GC); Donkey

Xbox (0) Kong Jungle (2005: GC)

THQ $133 GameCube (40); SpongeBob SquarePants:
PS 2 (55); Xbox Battle for Bikini Bottom
(30); PC (23) (2003: GC, PS2); Evil

Dead (2002: PS2,
Xbox)

Activision $125 GameCube (35); Spiderman (2002: GC,
PS 2 (43); Xbox Xbox); Tony Hawk’s
(40); PC (43) Underground (2003:

GC, PS2, Xbox)

Sony50 $116 GameCube (0); PS EverQuest Online
2 (98); Xbox (0) Adventures (2003: PS2)

Konami $77 GameCube (21); Yu-Gi-Oh! (2003: GC,
PS 2 (69); Xbox PS2, Xbox); Dance
(20); PC (22) Dance Revolution

Extreme (2004: PS2,
Xbox)

Sega $69 GameCube (29); ESPN College Hoops
PS 2(42); Xbox (2003: PS2, Xbox);
(34); PC (7) SEGA Sports NHL

2K3 (2002: GC)

144 Chapter 5

Most video game developers write games for several competing
platforms (that is, they multihome), as shown in Table 5.2. Often they
will write a game for one platform and, if it is successful, port it to other
platforms. This happens much more in video games than it does in
software applications because there are comparably large markets on
multiple consoles.

Technical progress in hardware has made it possible to write and play
increasingly sophisticated games. As a consequence, the game develop-
ment process has become longer and more complex. During the early
days of Atari (1977–1982), individual developers sometimes produced
games in as little as 3 months. A quarter-century later, video games are
developed by large teams of software engineers, 3D graphic designers,
and sound artists. These teams may devote 18 months or more to a single
game. For example, reportedly more than 100 developers are currently
working on Halo 3 for Xbox 360. Developing a video game is becom-
ing more like producing a movie with extensive special effects than like
writing a typical software application.

The tools used in the development process have also become
more sophisticated. In the early days, game developers wrote in
assembly language and worked directly with the console. As the

Table 5.2
(continued)

2004 Platforms
Publisher/ Revenues48 Supported
Developer (millions) (no. of titles)49 Hit Titles

Midway $59 GameCube (4); PS Mortal Kombat (2002:
2 (40);Xbox (31); GC, PS2, Xbox); MLB
PC (4) Slugfest (2002: GC,

PS2, Xbox)

Microsoft $58 GameCube (0); PS Project Gotham Racing
2 (0); Xbox (53); (2003: Xbox); Amped:
PC (42) Freestyle Snowboarding

(2001: Xbox)

Namco $57 GameCube (16); SoulCalibur II (2003:
PS 2 (44); Xbox Xbox); Moto GP
(11); PC (5) (2000: PS2, Xbox)

PONG 145

hardware platforms, software platforms, and the games themselves have
become more complex, the modeling, graphics and design work,
and actual coding have moved to workstations or PCs. Developers
use higher-level programming languages, development tools, and soft-
ware libraries provided by the console’s manufacturer or third-party
firms. Development tools include development environments emulating
the upcoming console’s capabilities (usually a modified console plus a
PC), APIs, documentation, demos that can be used as prototypes, and
more.51

Console manufacturers generally price the assistance they provide
developers just to cover costs. In addition, in exchange for a modest fixed
licensing fee (approximately $12,000 for PlayStation 2) covering admin-
istrative costs, developers and publishers can get technical information
about the console and the right to sell their products to licensed game
developers.52 The provision of good development aids at attractive prices
is one of the major ways of getting and keeping developers on board the
platform. Particularly intense efforts go into providing game developers
and publishers with development tools in a timely manner so as to allow
the latter to maximize the number of attractive games ready at console
launch.

Console makers use multiple channels and venues for reaching their
development communities. At the industry’s two most prominent events,
the annual Electronic Entertainment Expo and the semi-annual Con-
sumer Electronics Show, they expend large sums of money on lavish
parties and fancy booths, which are used to showcase cool technologies,
as a public relations vehicle and as a way to advertise their clout to game
developers and (via the media in attendance) end users. Console makers
also hold regular briefing sessions for licensees, with announcements and
technical presentations regarding upcoming consoles, features, and busi-
ness schemes, as well as some hands-on opportunities for developers in
attendance.

51. For example, Sony offers both a professional developer toolkit (T10K) and
a Linux kit for PlayStation 2. See http://playstation2-linux.com/faq.php#
Availability__When_Where_and_how_much.

52. http://www.tmstation.scei.co.jp/ps2/public/license.html.

146 Chapter 5

Other creative initiatives abound. For instance, Sony launched a devel-
oper kit for hobbyists that it sent to college programmers eager to take
a stab at game development for PlayStation 2. And Microsoft sent two
key members of its Xbox team on a three-week worldwide evangeliza-
tion tour to visit some forty game publishers, introduce and demonstrate
the Xbox, and convince them to work with it.53

As with many economic activities, the growth, maturation,
and increasing complexity of the game development process has
led to a division of labor among specialist firms. Development
studios do most of the actual game programming. Game publishers
provide seed money, take responsibility for most of the financial
risks associated with the marketing and distribution of games, and
negotiate the licensing agreements with the console manufacturers.
Some firms are integrated across this boundary, others cross it by
contract. The contracts between a publisher and an independent devel-
opment studio generally involve payments made by the publisher in
the form of a cash advance and, in case a game is successful (if sales
exceed a certain threshold), royalties ranging from 10 to 40 percent of
the game’s retail price, depending on the studio’s reputation and self-
financing ability.

A third category of firms has recently emerged, specializing in
providing development tools and middleware to game developers.
These products can significantly lower development time and costs
and reduce the expertise required by developers in order to be able
to program for a specific console. There are currently over fifty third-
party providers of tools and middleware for the PlayStation 2 and
over thirty for Xbox.54 Their products range from 3D graphics APIs
and console-specific compilers to speech recognition software and music
playback systems.

Thus, as with PCs, a complex ecosystem of interdependent companies
has developed around multisided platforms (Figure 5.1). The key differ-
ence is that several significant software platforms coexist.

53. http://www.xboxusersgroup.com/forums/showthread.php?t = 167.

54. http://www.tmstation.scei.co.jp/ps2/public/TM_liste.html http://www.xbox.
com/en-US/dev/tools.html.

PONG 147

PC Games

As noted earlier, console gaming has led PC gaming in terms of revenues
since the late 1980s. Nevertheless, PC gaming hasn’t disappeared. It
remains strong in some segments, particularly online gaming, which first
appeared on the PC platform. In 2005, there were about 62 million
online PC gamers in the United States.55

There are three main categories of PC games. Classic CD-based games
usually focus on single-player experiences, although multiplayer support
has become more common. Like sellers of any other software applica-
tion, the publishers of these games receive revenue only from CD sales.
Not surprisingly, they suffer from extensive piracy.

Games in the second category, known as massive multi-player online
role-playing games (or MMPORPGs), are played online simultaneously
by thousands of users 24 hours a day, 7 days a week. They are the
most expensive PC games to develop, with budgets ranging from $5
million to $30 million. They are hosted on the publishers’ servers. Users
pay a fixed fee to buy the game CD, usually around $50, after which
they are charged monthly subscription rates, typically between $6 and
$15.

Consumers

Tools and Middleware
providers

Console Maker

Consoles and 1st-
party games

2nd and 3rd
party games

Royalties

Financing,
marketing

Game
software

Proprietary
content

Developers

Content
Providers

Publishers

Figure 5.1
Platform ecosystem for consoles.

55. http://blogs.zdnet.com/ITFacts/?p=920156. Another option chosen by Real,
for example, is to allow users to play the full version for free but for a limited
time only.

148 Chapter 5

Web-based games, the third category, are short, fun, and easy to learn,
designed to appeal to casual gamers (think office employees playing
during coffee breaks). And they have become the most popular form of
entertainment on the Internet. These games range from Solitaire, Tetris,
and Collapse to arcade classics and word puzzles. They are most com-
monly Java applications played through a browser, which can be
accessed through sites such as Electronic Arts’ pogo.com, Real’s Real
One Arcade, and Shockwave.com. The basic version of the game is
usually free and designed to whet the appetite for the full version, for
which the publisher charges a one-time fixed fee for unlimited play there-
after. Upgrade rates from free downloaders to paying customers are low
(between 1 and 5 percent), and game sites have turned to advertising as
a source of revenue.

As with console games, there are development studios, game publish-
ers, and middleware providers involved in developing PC games. Most
firms in each of these three segments are active on both platforms, con-
soles and PCs. All this makes for a rather rich ecosystem around the PC
gaming platform, similar to the console ecosystems but with several new
actors. We illustrate it in Figure 5.2.

2nd and 3rd
party games

Ad space

Financing,
marketing

Game
software

Other
Applications

Consumers

Advertisers

Tools and Middleware
Providers

PCs and 1st party
games

PC Platform

Developers

Publishers

Figure 5.2
Platform ecosystem for PC games.

PONG 149

PC versus Consoles: Platform Competition
At first glance it is quite surprising that the PC and console gaming
platforms have coexisted for a long time by the standards of com-
puter-based industries, even though they employ radically different
business models. A closer look suggests a straightforward economic
explanation.

As two-sided platforms, PCs and consoles compete for both
game developers and game users. The most obvious difference is on
the developer side: PCs are open platforms, while developing games
for a console requires access to proprietary information supplied by
its vendor, as well as the payment of royalties. On the other hand,
thanks to the gatekeeper role played by console vendors, console
games compete against fewer titles (there are approximately ten
times more PC game titles) and are not “diluted” into the mass of
low- to mediocre-quality games that flood the PC market. On the PC
side, games are only one category of application among many. Nonethe-
less, games are an important category of PC applications, and PC soft-
ware platform vendors have accordingly been interested in attracting
them. Perhaps the best illustration is Microsoft’s development of the
DirectX collection of APIs specifically geared for PC game development,
discussed earlier.

There is much multihoming by both developers and users. Most pub-
lishers of console games are also very active in the PC game business.
For example, in June 2006 the Electronic Arts Web site listed fifty-two
games on CD for PCs, fifty-four games for Xbox, and fifty-four games
for PlayStation 2, with at least fifteen titles available on all three plat-
forms. Similarly, 91 percent of console gamers who own a PC also use
their PC for playing games.56 These facts suggest that consumers and
therefore developers value the different features offered by these alter-
native platforms. They like variety.

From the point of view of users, the game technologies are quite dif-
ferent. PC games use a keyboard and a mouse, whereas consoles use a
controller and/or a joystick. The latter are more suitable for “fast twitch”

56. Coughlan, “Competitive Dynamics in Home Video Games.”

150 Chapter 5

games, and it is thus not surprising that console game developers gener-
ally focus on racing and shooting games. Strategy games such as Civi-
lization, by contrast, are available exclusively on PCs. Another
interesting source of differentiation on the consumer side is that consoles
are naturally geared for a more social gaming experience: most people
play console games in the living room, often with friends or family com-
peting against each other. By contrast, PC games are more solitary expe-
riences: users sit alone in front of a computer and play either against the
machine or against other players in remote locations.

Thus the PC and console gaming platforms offer rather different
experiences to end users, with many enjoying both, and game develop-
ers seem to find it easy to participate in both ecosystems. As long as
both sides of the market continue to benefit from both platforms,
both platforms will survive. This is consistent with a more general
pattern that we will see in later chapters: when consumers value product
differentiation and platforms can offer innovative and unique features,
multiple platforms can coexist despite indirect network effects that make
bigger better.

Online Games

Lured by the prospect of profits that a subscription-based online service
could create for a video game console, Nintendo was the first to get into
online games, back in 1988, with the Famicom, the Japanese version of
the NES. Nintendo sold a $100 modem, which allowed the Famicom to
hook up to a telephone line. With this connection, Famicom users could
play games with each other and also get stock prices, make purchases,
read news, or do the many things one does on the Internet nowadays.
Despite the potential to become a nascent online community in Japan,
the Famicom network failed. Only 130,000 households purchased the
modem, and only a fraction of those ended up using the services. Sega
also sold a modem peripheral for the Genesis that allowed players to
compete against each other via the phone lines, but it wasn’t a great
success either.57

57. Ibid.

PONG 151

Microsoft and Sony have started online gaming platforms more
recently. They have gotten multiple sides on board and are growing
rapidly. They have adopted different strategies in doing so.

Microsoft built an integrated, centralized, closed platform, Xbox Live,
that provides a variety of services to both users and game developers.
Developers must comply with Microsoft’s technical specifications and
cannot rely on their own online infrastructure. At the same time, they
can benefit from a host of features built into Xbox Live: matchmaking,
authentication, friends service, statistics storage, content delivery, and,
most notably, support for voice communication. Meanwhile, users, who
pay about $50 a year for a subscription, benefit from a centralized service
with a consistent interface across games.

Sony, by contrast, has chosen an open approach for its online gaming
platform. It simply supplies the network and the security system,
as well as the option to host third-party games on its servers.
However, it leaves the task of providing additional features such
as matchmaking to individual developers. This approach works for
big publishers such as Electronic Arts that can use their existing infra-
structures, but not for many smaller publishers. Because each developer
can add its own features, this approach results in fragmentation of
the platform, and each publisher offers a few games for its “flavor” of
the platform.

Platform Expansion

The guts of any game console are basically the same as those of a PC.
Video game platform vendors have long realized that their consoles are
capable of much more than just playing games. Since the start of the
industry, some vendors have looked to expand the functionality of their
machines and to invade formerly separated markets. As we discussed
above, for instance, in 1988 Nintendo launched the Family Computer
Communications Network System in Japan. A modem and a special car-
tridge allowed the Famicom console to interact with other networked
Famicoms and with computers. This ultimately unsuccessful system
offered users services such as online stock trading, banking, travel reser-
vations, and game-related information.

152 Chapter 5

The most radical expansions occurred in the early 2000s. Industry
experts dubbed the Sony PlayStation a Trojan horse for taking control
of the living room. The PlayStation and Sega’s Dreamcast could
play music CDs, while Xbox and PlayStation 2 are capable of playing
movies as well as music, both on DVD and on traditional CD-ROM
formats. In 2003, Sony launched PlayStation X, a souped-up version
of PlayStation 2, including a hard-disk–based video recorder, satellite
and analog TV tuners, and photo album and music playback features.
Pushing the limits even further, the Xbox 360, which went on the market
in late 2005, can check email, surf the Internet, and record television
programs, as well as connect with the version of Windows that Microsoft
has developed for home entertainment use.58 Not to be outdone,
PlayStation 3, due in November 2006, will be an even more powerful
home computer, making all PlayStation 2’s features available in high
definition and adding the ability to connect to various consumer
electronics devices.

This is all part of the continuing quest for the living room, to which
we return in Chapter 12.

INSIGHTS

• The console video gaming industry operates a radically different busi-
ness model from other software platform industries. Game manufactur-
ers tightly integrate hardware and software systems; they offer consoles
to consumers at less than manufacturing cost, and they earn profits by
developing games and charging third-party game developers for access
to their platforms.

• In 1977, Atari’s VCS 2600 established this “razor/blade” strategy,
by pricing that encouraged people to buy the console (the razor)
so that Atari could earn profits from the sale of games (blades) to
them.

58. “Microsoft Gambles With Xbox 360,” Wall Street Journal, May 13, 2005;
“Power-Packed Chatty Xbox,” The Australian, May 17, 2005.

• In the early 1980s, Nintendo was the first to embrace the now-stan-
dard two-sided business model; it recruited independent third-party
game developers by offering them a 20 percent royalty on game sales
while imposing procedures to control game quality.

• The PC and console video game platforms have maintained opposite
business models, even though many game developers and others partic-
ipate in both ecosystems. This has been possible because the two plat-
forms offer products that users consider significantly different.

• Video game consoles have greatly expanded beyond games and have
become platforms for all kinds of home entertainment with the addition
of such features as DVD playing and recording capabilities, photo man-
agement, Internet access, and on-line shopping.

PONG 153

6
The Palm Economy

I rigged my cellular to send a message to my PDA, which is online with my PC,
to get it to activate the voicemail, which sends the message to the inbox of my
email, which routes it to the PDA, which beams it back to the cellular. Then I
realized my gadgets have a better social life than I do!

—Tom Ostad, comic artist1

INSIDE THIS CHAPTER

• How PDAs were born and came of age

• Multisided strategies and the “Palm economy”

• Changing patterns of integration over time

During the late 1990s, many a young executive carried a PalmPilot and
pecked her appointments into the device’s screen using its special hand-
writing recognition software. PalmPilots were mainly organizers—com-
puterized versions of the once hot FiloFax—that could do a few other
things, including email. By 2001 Palm had sold over 21 million of its
personal digital assistants (PDAs). Palm’s shipments had grown at an
average rate of 115 percent in the previous five years. Then growth sud-
denly stopped and turned into decline. Between 2001 and 2004, Palm
sales decreased at an average annual rate of 13 percent. Annual unit sales
were more than a million lower in 2004 than in 2003.2

1. http://www.uhv.edu/it/IT_staff/quotes.asp.

2. Diana Hwang, “Technology Road Map of Smart Handheld Devices” (IDC
report no. 16225), June 1998; Jill House and Diana Hwang, “Pocketful of Palms:
The Smart Handheld Devices Market Forecast Update and Outlook,
1999–2003” (IDC report no. 21177), December 1999; Jill House, “Market

156 Chapter 6

The Palm Economy 157

This chapter is about the spectacular and surprising rise, and slow but
(at least as this is written) uncertain decline of Palm.

It is an interesting story at several levels.
For one, Palm executed a multisided platform strategy with aplomb.

It grew quickly as users and developers made it an increasingly valuable
platform for each other. It succeeded where many others, including
Apple, had failed miserably.

For another, Palm is mainly a software story. Palm got into hardware
mainly because it needed to make sure it got the overall initial system
right. But its focus was on handwriting software and the underlying
operating system. The Palm Economy, as it was called, was built on the
Palm OS.

At yet another level Palm illustrates the choices platform providers
make in integrating into different elements of the platform. It started out
as a pure software company, integrated into hardware, and then divided
itself into independent software and hardware companies.

Finally, Palm shows how the flexibility of software and hardware plat-
forms enables them to seize categories quickly but also leaves them open
to quick destruction by other categories. PalmPilots were great organiz-
ers that did some other things, such as email, well enough. Palm’s growth
has slowed for a number of reasons, but chief among these is that many
consumers prefer great email devices or mobile phones that do organiz-
ing well enough.

Mayhem: The Smart Handheld Devices Market Forecast and Analysis,
1999–2004” (IDC report no. 22430), June 2000; Kevin Burden and Alex
Slawsby, “Hand Check: The Smart Handheld Devices Market Forecast and
Analysis, 2000–2005” (IDC report no. 24859), July 2001; Kevin Burden,
Weili Su, Alex Slawsby, and Jennifer Gallo, “Sync or Swim: Worldwide
Smart Handheld Devices Forecast and Analysis, 2002–2006” (IDC report
no. 26865), April 2002; Alex Slawsby, Randy Giusto, Kevin Burden,
Ross Sealfon, and David Linsalata, “Worldwide Smart Handheld Devices
Forecast and Analysis, 2003–2007” (IDC report no. 29586), June 2003; Kevin
Burden, David Linsalata, Alex Slawsby, and Randy Giusto, “Worldwide
Smart Handheld Device 2004–2008 Forecast Update: First Quarter Triggers
Downward Revision” (IDC report no. 31554), August 2004; David Linsalata,
Kevin Burden, Ramon T. Llamas, and Randy Giusto, “Worldwide Smart Hand-
held Device 2005–2009 Forecast and Analysis: Passing the Torch” (IDC report
no. 33415), May 2005.

158 Chapter 6

Palm could rise again, though. The Palm OS is now competing against
other operating systems for smart mobile phones. We leave this transi-
tion from PDAs to phones to the next chapter.

The Birth of PDAs

Palm started as a software company. The PalmPilot grew out of its
inventor’s early interest in handwriting recognition software. Jeff
Hawkins (no relation to Trip Hawkins of video game fame) had
developed software for recognizing hand-printed characters while at
the University of California, Berkeley. He joined GriD, a computer
company that was making a device for pen computing, and licensed his
PalmPrint software to his new employer. Aimed at the corporate market,
the $2,500 4.5-pound GriDPad did not catch on. Nor did other pen-
operated computing devices, despite Microsoft’s hyped entry into the
category.

Hawkins began looking for a market that could be served by his soft-
ware. He started Palm Computing in January 1992 with the idea of
taking his software to consumers. The Zoomer (derived from “con-
sumer”) appeared late the next year.3

Palm collaborated with three other partners to produce this new small
computing device. Casio manufactured it. GeoWorks designed an oper-
ating system for it based on its GEOS operating system. Tandy distrib-
uted it. And Palm made the application software. AOL and Intuit became
partners as well, providing applications.4

The $700 one-pound Zoomer came loaded with an organizer that had
scheduling and address features; a dictionary, spell-checker, and the-
saurus; a calculator; and other applications. Intuit provided Pock-
etQuicken for the Zoomer, and AOL provided an email program.
Zoomer also came with PalmPrint, which provided the way for users to
enter information into the organizer. Unfortunately, this handwriting

3. Andrea Butter and David Pogue, Piloting Palm (New York: John Wiley &
Sons, 2002), pp. 7, 10.

4. Walter S. Mossberg, “Personal Technology,” The Wall Street Journal, October
28, 1993; “Tandy, Casio Unveil ‘Zoomer’ Plans,” Computer Reseller News,
January 18, 1993.

The Palm Economy 159

recognition software didn’t work well.5 And the device was loaded with
so many features that it was slow. As Jeff Hawkins reflected some years
later, “It was the slowest computer ever made by man. It was too big
and too expensive. We executed badly.”6

It was also second to market. Apple had introduced the Apple Newton
to great publicity a few months before Palm launched the Zoomer. The
$1,000 Apple Newton had the same problems as the Zoomer. Its hand-
writing recognition software was lampooned in a series of Doonesbury
cartoons and an episode of the Simpsons. Apple continued to improve
the Newton, but its sales remained dismal—only 85,000 in its first year—
and it was discontinued by 1998.7

The Newton was a hit, though, compared to the Zoomer. Estimates of
sales vary widely, but all reports agree that fewer than 60,000 Zoomers
were ever sold. Palm’s partners lost interest.8

They were not alone. According to an interview with Hawkins’s
number two, by the end of 1994, venture capitalists and consumer elec-

5. Tom Thompson, Tom R. Halfhill, et al., “Hands-on Evaluations of the Apple
Newton MessagePad, Tandy/Casio Zoomer, and the Eo 440 Personal Commu-
nicator,” BYTE, October 1, 1993.

6. http://www.palmloyal.com/modules.php?name=News&file=article&sid=26.

7. John Markoff, “Apple’s Newton Reborn: Will It Still the Critics?” The
New York Times, March 4, 1994; http://www.pdasupport.com/
PDAencyclopediaAppleNewton.htm.

8. PC Week estimated that 20,000 Zoomers had been sold by November 1993,
whereas PC World estimated 60,000 units by February 1994, yet Electronic

DOONESBURY © 1993 G. B. Trudeau. Reprinted with permission of UNIVERSAL PRESS
SYNDICATE. All rights reserved.

160 Chapter 6

tronics companies had invested $1 billion in the PDA market. No one
had anything to show for it.9 Go, one of the PDA contenders, liquidated
itself in 1994. The trade press suggested that PDAs had gone the way of
pen-based computers.

Engineering Times said no more than 40,000 of the model had been sold by
November of that same year. Mike McGuire, “PDA Shipments Are Meeting Goals
of Manufacturers and Analysts,” PC Week, November 8, 1993; James Daly,
“Newton PDA Faces Uphill Struggle: Interest in Entire Genre Wanes,” Computer-
World, February 7, 1994; Rick Boyd-Merritt, “PDAs Fall into Disfavor; Concen-
tration on Cellphones, Pagers,” Electronic Engineering Times, 28 November 1994.

9. Pat Dillon, “The Next Small Thing,” Fast Company, June 1998
(http://www.fastcompany.com/online/15/smallthing.html).

10. http://en.wikipedia.org/wiki/Apple_Newton.

11. http://www.pdasupport.com/PDAencyclopediaAppleNewton.htm.

12. Mark H. Ebell, “Pocket Doc 1.1,” Journal of Family Practice 41 (October 1,
1995); Mary Heng, “Apple’s Newton Offers Firm A Slice of Software Business,”
The Omaha World-Herald, October 18, 1993, “Apple Computer Gets Defense
Contract To Study ‘Newton’ Use,” Dow Jones News Service, December 6, 1993.

The Apple Newton

Like the PalmPilot, the Apple Newton had its roots in software. It became
known as the Newton because it was powered by the Newton OS. Apple
had been developing the Newton OS as part of a revolutionary new pro-
gramming environment and operating system based on a “rich object-ori-
ented graphics kernel.”10 The Newton was originally conceived as a
sophisticated PC that would be especially useful for architecture and other
graphic design uses. Apple reportedly feared the Newton computer would
cannibalize Macintosh sales, and diverted the effort toward PDAs.

For developers, Apple offered an object-oriented programming system
called NewtonScript. According to one source, programmers complained
that “the programming environment was overpriced—on top of purchas-
ing a Newton for nearly $1,000 US [the list price], the Toolbox program-
ming environment cost an additional $1,000 US.”11 Apple developed other
toolkits to help application developers and eventually provided the pro-
gramming environment for free. A number of applications were developed
for the Newton; many are still available. Some of these helped transform
the Apple Newton into a specialized device for certain businesses or pro-
fessions. In the medical industry, doctors ran programs like Pocket Doc
and Hippocrates to assist with medical records and billing, for instance,
and Apple was awarded a $1 million contract to investigate the Newton’s
use in the medical operations of the Department of Defense.12

(continued)
Apple discontinued the Newton PDA in 1998 as a result of its poor

sales in the face of the PalmPilot’s success. Apple had initially planned to
continue the development of the Newton OS, which was designed to
work in small mobile devices. However, after Steve Jobs returned to
lead the company, it decided to focus its operating system development
on the Mac OS and to develop a version of this for small devices. As
it turned out, Apple has not become a competitor in this arena. It bought
an operating system from another vendor for its iPod device, as we discuss
in Chapter 8.

The Palm Economy 161

Palm, on the other hand, regrouped. It surveyed Zoomer buyers to
find out what they liked and didn’t like, what they used and didn’t
use:

What these people said opened the company’s eyes. More than 90% of
Zoomer owners also owned a PC. More than half of them bought Zoomer
because of software (offered as an add-on) that transferred data to and
from a PC. These were business users, not retail consumers. And they didn’t
want to replace their PCs—they wanted to complement them. People
weren’t asking for a PDA that was smart enough to compete with a
computer. They wanted a PDA that was simple enough to compete with
paper.13

Making the Market

Palm couldn’t find partners interested in pursuing its new vision of the
PDA. Making a virtue out of necessity, Palm decided to go it alone and
became a vertically integrated PDA maker.

Development of the PalmPilot
Reflecting on the failure of the Zoomer, Palm decided that to be
successful a device had to adhere to several principles. The software
had to be simple so the device could run quickly enough. The device
had to be small enough to fit into a shirt pocket. And it had to be
cheap.

Handwriting recognition software had to recognize a wide variety of
writing styles. That necesssarily required complex code. And at the time

13. Dillon, “The Next Small Thing.”

162 Chapter 6

even the best handwriting software—the software in the Newton was
state-of-the-art—was not very good. Palm decided to reverse the logic.
Rather than having software learn how to recognize people’s handwrit-
ing, have people learn how to write for the device. Hawkins argued that
it was easier to teach people to learn a single new writing style than to
write software that could recognize their many individual writing styles.

This insight led to the development of Graffiti. Each letter is based on
a single stroke, so that an A is written as an inverted V and an F as an
inverted L. The simple style made the software efficient and accurate,
although of course it required users to go to the trouble of learning this
odd script.

The original PDAs were like bricks. The Zoomer weighed a pound
and the Newton 0.9 pounds. The Newton was 7.25 inches × 4.5 inches
× 0.75 inches. Neither could fit into a shirt pocket. Hawkins reportedly
paced the Palm halls, measuring employee pockets against balsa wood
prototypes. Palm’s new device weighed about 5.5 ounces and measured
4.6 inches × 3.1 inches × 0.6 inches.14 Its volume was just over a third
of the original Newton’s.

Hawkins complained that his business partners for the Zoomer had
kept insisting on adding more and more features to the product. That’s
one reason it was large, cumbersome, and slow. Simplicity was key in
Palm’s second act. The basic applications were a calendar, an address
book, a to-do list, and a memo writer, along with easy connectivity to
and synchronization with PCs.

The target price for the product was $299.

Starting as a Single Silo
Palm’s lead investor advised Hawkins to become a “self-sufficient
company that designed, built, and marketed” the new PDA.15 Rather
than taking on partners, as it had done with the Zoomer, Palm out-
sourced the hardware design and manufacturing to other companies
while it focused on the operating system and applications. Palm still

14. http://www.pdasupport.com/Newton.htm; Rich Schwerin, “Portable Pocket
Assistant,” PC/Computing, March 1, 1996.

15. Dillon, “The Next Small Thing.”

The Palm Economy 163

needed help with marketing. It approached US Robotics, then a leading
PC modem manufacturer, about becoming a partner. US Robotics offered
instead to buy Palm for $44 million in stock. Palm accepted and became
a division of US Robotics.

Several commentators have suggested that Hawkins and his colleagues
were not interested in pursuing a platform strategy. Yoffie and
Kwak quote Hawkins as saying in the context of competition
with Microsoft: “We are not about the operating systems. . . . we
are about a highly integrated product that delivers an end user results.
. . . In all honesty, if Microsoft walked in today with a great environment
that we could build great products on, we’d absolutely consider it.”16

That comment seems dubious in light of Palm’s past as a software
company through 1995 and its aggressive software platform strategy
after 1996. And we doubt that Palm would have wanted to become
another Windows CE device manufacturer any more than Apple would
have wanted to become yet another manufacturer of Wintel PCs. Instead,
it appears that Palm integrated into hardware in part because it wanted
to maintain its revolutionary design vision and in part because it had
little choice.

The 5.5-ounce PalmPilot debuted in April 1996. Consumers and
reviewers agreed that Palm had gotten it just right. Palm sold 390,000
units by year end and could barely keep pace with demand.17 According
to one review, “If you’re searching for the ultimate palm-size organizer,
look no further.”18 Graffiti was also a hit. Some called it the killer
application for the Palm, although it was part of the software platform
rather than an application. It was a user interface that had value only
because it made it easy for consumers to use the applications on the
device.

The PalmPilot quickly dominated the PDA category. It garnered almost
one-third of PDA shipments in 1996, and became the market leader only
a year after being introduced. It had sold over 1 million units by the end

16. Annabelle Gawer and Michael A. Cusumano, Platform Leadership, 2002,
p. 195.

17. Diana Hwang, “Technology Road Map of Smart Handheld Devices.”

18. Schwerin, “Portable Pocket Assistant.”

164 Chapter 6

of 1997 and over 3 million by the end of 1998. Its market share climbed
to just over 65 percent by 2000 before it started falling as a result of
increased competition (mainly from Windows CE-based devices) in
PDAs. Table 6.1 shows how the different PDA software platforms fared
in market share terms from 1996 to 2004.

The fact that Palm had produced a breakthrough device was
important to its success. But so too was its low-price strategy. At
$299 it was one of the least expensive PDAs available. Apple was
still asking about $1,000 for its Newton. Donna Dubinsky, Hawkins’s
right-hand person at Palm, later emphasized that the low price
was important to get penetration and secure network effects, a point
we return to later. Like the iPod and BlackBerry devices, Palm’s
PDA became a cultural icon. In 2000, the supermodel Claudia
Schiffer released a Palm Vx Claudia Schiffer Edition through her Web
site.19

Palm made the market for PDAs. Most of the early makers with
their own operating systems, such as Apple, exited the business. Palm
soon faced competition from Microsoft, which had developed Windows
CE for handheld devices. Microsoft followed its traditional strategy of
focusing on the software platform and encouraging computer manufac-
turers to make devices based on it. Moreover, Palm had to endure the
management problems that resulted from 3Com’s disastrous acquisition
of US Robotics in 1997 and the difficulty that Palm’s key employees had
in working within large established organizations. Hawkins and Dubin-
sky left Palm in mid-1998, and many of the key engineers and managers
left within the next year. Within 3Com, Palm had four presidents over
the next year. Nonetheless, Palm managed to maintain its lead in tradi-
tional PDAs until 2004, as Table 6.1 shows. But it was a lead in a shrink-
ing category.

Disintegration
Palm started moving away from its single silo approach in late
1997, when it decided to license the Palm OS for other mobile

19. Ian Fried, “Palm Shows New OS with Wireless Voice, Data Feature,” CNET
News.com, December 12, 2000.

Table 6.1
Market Share by Operating System

1996 1997 1998 1999 2000 2001 2002 2003 2004

Palm 25.7% 34.2% 46.3% 60.6% 66.5% 55.1% 57.5% 51.0% 46.0%
Microsoft 4.5% 17.5% 25.8% 19.3% 16.6% 16.6% 23.3% 38.0% 46.8%
Powered
EPOC 19.0% 12.2% 8.3% 8.5% — — — — —
Synergy 32.5% 15.2% — — — — — — —
(Zaurus)
Newton 4.4% — — — — — — — —
Linux — — — — 0.3% 0.1% 1.1% 1.6% 1.1%
DOS 10.1% 1.2% 0.5% 0.3% — — — — —
Other 3.9% 19.9% 19.1% 11.4% 16.7% 28.1% 18.0% 9.5% 6.2%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Source: IDC reports.

165

166 Chapter 6

devices, such as bar code scanners, smart cards, and mobile
phones.20 Palm soon signed up Symbol, Nokia, Sony, and Motorola.

Even more aggressive licensing followed, partly precipitated by dis-
agreements between Palm’s founders, Hawkins and Dubinsky, and
3Com’s management. The pair tried to persuade 3Com to spin off the
Palm division. When it refused, they decided to leave. They persuaded
3Com to grant them a license to the Palm OS. (Ironically, 3Com’s leaders
had earlier advocated licensing the Palm OS widely, but Hawkins and
Dubinsky had opposed this.) They started a new company called Hand-
spring in October 1998 and introduced the Visor PDA the next year;21

they focused on innovative hardware design.
Meanwhile, 3Com decided to spin Palm off as a separate company that

would license the Palm OS to other PDA manufacturers. In the next five
years these would include Handspring, Sony, Kyocera, Nokia, Symbol,
and Qualcomm. Hardware makers like Handspring produced popular
models running the Palm OS. The Handspring Visor Deluxe, released in
2001, came with a springboard expansion slot that was not a part of
Palm’s PDAs. This expansion slot allowed owners of the Handspring
Visor Deluxe to attach other hardware modules to make their PDA a
pager, mobile phone, or voice recorder. The Handspring Visor Deluxe was
also available in five colors. By 2001, the Palm OS was on 55 percent of
PDAs sold that year; and 40 percent of those were not made by Palm.22

Palm went public in 2000. A year later Palm divided itself into two
companies—one making and licensing the operating system and
the other making the hardware—although both were still under
common ownership. The rationale for the separation was that hardware
manufacturers would be more comfortable licensing the Palm OS

20. “In the Palm of its Hand: Why Windows CE Has Been Unable to Unseat
the Palm Operating System,” Red Herring, December 1, 1998.

21. Stephanie Miles, “PalmPilot Creators Form New Firm,” CNET News.com,
November 6, 1998; Dawn Kawamoto, “New Handheld Device Firm Formed,”
CNET News.com, October 9, 1998 (http://news.com.com/New+handheld+
device+firm+formed/2100-1001_3-216527.html?tag=st.rn).

22. Alex Slawsby, Randy Giusto, Kevin Burden, Ross Sealfon, and Dave
Linsalata, “Worldwide Smart Handheld Devices Forecast and Analysis,
2003–2007.”

The Palm Economy 167

from a company that didn’t compete with them.23 It completed this
process of disintegration in 2003 when it spun off the operating system
as PalmSource. Palm, the remaining hardware company, acquired Hand-
spring and renamed itself PalmOne. PalmOne received a license to the
Palm OS (which it renewed in May 2005 through 2009) and agreed that
if it used a different operating system it would not brand its PDA as
Palm.

This last and radical step was supposed to enable the Palm OS to be
licensed widely, giving it the scale necessary to face growing competition
from the charging legions of Windows CE–based devices. However,
when we asked David Nagel, until recently CEO of PalmSource, his view
was that the separation of Palm was too slow (it took about two years)
and was completed too late. With Palm’s purchase of Handspring and
Sony’s decision to discontinue sales of its Palm OS–based PDAs in
Europe and the United States in 2004 (and Japan in 2005), the fortunes
of the Palm OS software platform remained essentially tied to a single
hardware maker, PalmOne.

Meanwhile, by 2004 the market was rife with rumors that PalmOne
was about to release devices based on Windows CE, which would end
its exclusive allegiance to the Palm OS software platform. That year, the
Palm OS’s share of sales for PDA devices fell behind Windows CE for
the first time.

Although the formal announcement that PalmOne would build devices
running on Windows CE did not come until September 2005 (and
no such device has been sold as of this writing), this lingering
rumor weakened PalmSource considerably in the eyes of investors
and consumers. This led to the purchase of PalmSource by the Japanese
software company Access in September 2005 for about $324 million.24

On the one hand, this acquisition reflected investors’ lack of confidence
that the Palm OS could survive as a stand-alone software platform.
On the other hand, Access’s prominence in software for mobile devices

23. Authors’ interviews with David Nagel, CEO of PalmSource, December 2001
to May 2005 passim; Piu-Wing Tam, “Palm Plans Split Into Two Firms: Holders
Will Be Asked to Approve Separation of Gadget Division from Company’s Soft-
ware Unit,” Wall Street Journal Europe, October 28, 2003.

24. http://www.palmsource.com/press/2005/111405_access.html.

168 Chapter 6

may breathe new life into the Palm OS and help it break into
other domains of mobile computing beyond PDAs. Indeed, Access
produces the highly regarded NetFront Web browser for use on a
variety of electronic devices (from digital television to car navigation
systems), the most prominent of which are NTT DoCoMo’s third-
generation i-mode mobile phones, which we will encounter in the next
chapter.25

Palm’s Platform Strategy

Palm adopted a sophisticated multisided platform strategy to secure its
position in handhelds. According to Dubinsky, “We are a platform busi-
ness. The idea in the beginning of a platform business is to get as much
market share and installed base as possible, to draw as many develop-
ers as possible.”26

The tactics were similar to those we have seen already for PCs and
video games: adding features that helped software companies develop
valuable applications, providing them with tools and other assistance for
writing programs, and evangelizing the platform.

Palm supported developers from the beginning of its introduction of
the PalmPilot. In early 1996, it released its first software development
kit (SDK) for developers. This free software included the source code for
the applications it had bundled with the Palm, including the calendar,
to-do list, address book, and memo pad. Developers could use these
applications as reference models for building their own application. As
Dubinsky explained,

This [application] source code was in the SDK, so [it] was under a license, but
a royalty-free license. We found many developers that took advantage of this.
Some would just use the source code for specific elements, such as picking up
the code for a scroll bar. Others looked at it as sample code, and others took a
whole application and created an enhanced version.27

25. It is noteworthy that as of November 30, 2005, NTT DoCoMo has
increased its investment share in Access from 7.12 percent to 11.66 percent
(http://www.nttdocomo.com/presscenter/pressreleases/press/pressrelease.html?
param%5Bno%5D=597).

26. Gawer and Cusumano, Platform Leadership, p. 198.

27. Gawer and Cusumano, Platform Leadership, p. 199.

The Palm Economy 169

The Palm OS included software services made available to developers
through APIs. Like the PalmPilot itself, the API-based services
were simple but highly functional. Although there were few frills, the APIs
gave developers access to a rich set of tools to use to build programs. Palm
also provided documentation, white papers, frequently asked questions,
tech notes, a tutorial, and an emulator environment through its Web site.
By 2000, Palm was also making its Conduit Development Kit available
for free; it had cost $99 just a year previously.28 (Each application
designed for a Pilot has two parts: the part that runs on the handheld, and
the “conduit,” which allows the handheld application to sync with a com-
puter. Palm included a default conduit in the operating system, so that if
a developer did not design a specific conduit portion of his or her appli-
cation the Palm would still synchronize the relevant data.)

Within 18 months of its introduction in 1996 Palm had gotten devel-
opers on board its platform. According to an article in Wired, “On its
way to becoming the bestselling handheld computer of all time, the
3Com PalmPilot has spawned an intense, emotional, and fanatical devel-
oper following not seen since the glory days of the Mac.”29 By then there
were hundreds of third-party applications for the PalmPilot.30 Books
geared for developers who wanted to write programs for the Palm OS
started appearing. Palm OS Programming: The Developers Guide, for
example, was published in January 1999.

After Palm had established itself as the leading PDA, it started to spend
more effort on evangelizing its operating system. It held its first devel-
oper conference in late 1997. Palm also offered business development

28. Neil Rhodes and Julie McKeehan, Palm Programming: The Developers
Guide (Sebastopol, Calif.: O’Reilly & Associates, 1999), pp. 19, 27–29; Robert
Mykland, Palm OS Programming from the Ground Up (Berkeley, Calif.:
Osborne/McGraw-Hill, 2000), pp. 389–390.

29. “How PalmPilot Became a Hacker Cult,” Wired, February 20, 1998.

30. In March 1997, only 11 months after its introduction, there were 180 appli-
cations for the PalmPilot (“Personal Organizer: U.S. Robotics Adds Support to
Palm OS Enabling Development of Internet- and Network-Based Software Appli-
cations; More than 2,000 Developers Creating Software for PalmPilot Connected
Organizers,” EDGE: Work-Group Computing Report, March 17, 1997), later
articles just generalize to hundreds. “3Com Corporation Releases Spanish
Language Version of the Best-Selling PalmPilot Professional Edition Connected
Organizer,” Business Wire, November 3, 1997.

170 Chapter 6

resources to developers, including joint development, marketing, and
bundling. By 1998 it had 3,595 registered developers. In 2000, Palm
launched PluggedIn@Palm, a program providing resources and advice to
its developers. During the same year, Palm also set up a $50 million
venture capital unit called Palm Ventures to support businesses focusing
on Palm OS applications. It offered Palm OS development classes regu-
larly and encouraged other activities among its community of users
through developer portals.31

The growth in developers is shown in Figure 6.1. In 2001 there were
almost 200,000 registered developers of software applications, who had

300,000

250,000

200,000

150,000

100,000

50,000

0

R
eg

is
te

re
d

 D
ev

el
o

p
er

s

1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.1
Growth of Palm registered developers. (Source: Palm press releases and SEC
filings.)

31. http://www.palmone.com/us/company/pr/1998/devpr.html; http://www.
palmone.com/us/company/corporate/timeline.html; Richard Shim, “Microsoft
Crashes Palm Developer Party,” CNET News.com, December 7, 2000; Gawer
and Cusumano, Platform Leadership, pp. 203–206.

The Palm Economy 171

produced more than 13,000 commercial applications for the Palm OS. The
existence of a large variety of applications was integral to fueling further
sales of Palm OS PDAs. Applications like those listed in Table 6.2 encour-
aged consumers to purchase PDAs running the Palm OS. As of February
2005, people could choose from over 26,000 applications for the Palm OS.

PalmSource has continued to pursue an aggressive two-sided platform
strategy since Palm spun off this operating system company. It had
400,000 registered developers as of April 2005. It courts these develop-
ers in several ways. First, it provides them a range of development tools.
The Palm OS Developer Suite, for example, “provides a convenient and
streamlined path to create compelling, robust, and professional applica-
tions for Palm OS smart phones and traditional Palm OS devices.”32

These tools are all available at no charge. However, PalmSource offers
additional priority access to certain developers’ tools through its Inside
Track program for a $149 annual fee. Second, it maintains regular
contact with developers through conferences and other ways. Its recent
developer conference in May 2005 attracted over 1,000 developers.
Third, it hosts a software store on its Web site that helps promote the
sale of third-party applications.33

Table 6.2
Selected Top-Selling Palm OS Applications

2004 2005

SplashID (information security) AOL (account access)
Splash Wallet Suite (productivity apps) Agendus Professional Edition

(PIM enhancement)
Agendus Standard Edition (PIM Ringo Pro (ringtone manager)
enhancement)
Agendus Professional Edition (PIM Agendus for Windows Outlook
enhancement) (contact manager)
Diet & Exercise Asst. (fitness and PocketMirror Std. (Outlook
diet manager) synchronization)

Source: Handango.com.

32. http://www.palmos.com/dev/tools/dev_suite.html.

33. The Palm OS Developer Suite is free to members of the Palm OS Developer’s
Program, which is free to register for at the lowest level (http://www.palmos.com/
dev/programs/pdp/). http://www.palmos.com/dev/programs/insidetrack/learn.

172 Chapter 6

As a result, developers continue to write applications for the Palm OS.
More than 650 new applications appeared in the first quarter of 2005.
Recent arrivals in 2005 include the Galaga game, for $14.99, and a free
guide to the FIFA World Cup football (soccer, for American readers)
championship.34

From a two-sided platform pricing perspective, Palm has therefore fol-
lowed the model of PC operating system vendors such as Microsoft. Palm
(and later PalmSource) charges software and hardware developers little
or nothing for the various forms of support it provides.35 And, just as
Microsoft charges computer manufacturers a licensing fee for installing
Windows on computers, PalmSource charges a license fee of approxi-
mately $11 per PDA for its Palm OS. In both cases, we would expect
manufacturers to pass most of these fees on to end users. From 2002 to
2004, PalmSource made an average of 93 percent of its revenues and 96
percent of its gross margins from licensing and royalties on its Palm OS
and therefore, in effect, from end users. Palm received the remaining 7
percent of its revenues and 4 percent of its gross margin from developer
and manufacturer support.36 As with all the software platforms we

html; “Palmsource Affirms Linux Commitment,” Linuxdevices.com, May 24,
2005; http://palmsource.palmgear.com/.

34. PalmSource 10-Q, January 2005, p. 9; PalmSource 10-Q, April 2005, p. 41;
PalmSource 10-Q January 12, 2005. http://www.handango.com/Software
Catalog.jsp?siteId=1&jid=46AF5AX2F73CACD44A29426F29CDF764&
platformId=1&N=96804&Ntk=All&Ntt=Galaga; http://www.freewarepalm.com/
database/fifaconfederationscup2005.shtml

35. One could, however, argue that venture capital support to (selected) devel-
opers possesses a variable fee dimension, since it provides Palm with an equity
position in these firms. This would generally enable it to capitalize on at least some
successful complements, much as video game console makers capitalize on suc-
cessful games through royalties. We were unable to find any detailed data regard-
ing the funding deals made by Palm Ventures; this suggests that net revenues from
venture capital deals are small compared to revenues from licensing the Palm OS.

36. We can approximate the royalty fee by taking the revenue from royalties
(e.g., $15,952,000 for three months ending May 2005) and dividing by number
of devices shipped in that same time period (e.g., 1.4 million), for an average
royalty of $11.40 per device (PalmSource 8-K, March 2005; PalmSource 10-K
2004). Gross margin here is computed by dividing total revenue minus cost of
revenue by total revenue from each business section.

The Palm Economy 173

encounter in this book, the business model is based on highly skewed
pricing.

Windows CE

Following launches by Apple, Palm and other PDA manufacturers,
Microsoft made its own entry into the handheld device market in
November 1996 with Windows CE, a new operating system for small,
handheld computers.37 And, like Palm, Microsoft didn’t get it right from
the beginning. Microsoft spent five years and three iterations building a
software platform that could compete with the Palm OS for PDAs.

Initially, Microsoft’s lack of integration and reliance on third-party
hardware manufacturers seemed to be a relative disadvantage. Follow-
ing its customary PC-like approach, Microsoft developed the software
platform and teamed up with computer makers that produced devices
based on its hardware specifications. However, until the release of
Windows CE 3.0 and Pocket PC 2000, Microsoft and the computer
makers had concentrated their efforts on the “wrong” handheld plat-
form. They were building handheld PCs, a rather bulky and expensive
species, closer to PCs than to true pocket-size PDAs like the PalmPilot.
Microsoft even avoided using the term “PDA” and preferred talking
about “PC companions” and later about “Palm-tops.” The Windows CE
software platform itself was viewed as too complex for the needs of PDA
users, especially when compared to the simplicity of the Palm OS.

Despite Microsoft’s having six big-name computer manufacturers—
Casio, Compaq, HP, LG, NEC, and Phillips—on board, fewer than
500,000 Windows CE-based handheld PCs were sold in 1997.38 Palm,

37. Contrary to what is commonly believed, Windows CE was built from the
ground up and was not a trimmed-down version of Windows 98 (http://www.
hpcfactor.com/support/windowsce/). Stephanie Miles, “Microsoft Unveils Antic-
ipated Pocket PC for Handhelds,” CNET News.com, April 19, 2000.

38. Windows CE was started as the project Pegasus within Microsoft. OEMs
were selected based on the work carried out up to the fourth beta (i.e., prelim-
inary) release of the new operating system. http://www.hpcfactor.com/support/
windowsce/; Jill House and Diana Hwang, “Pocketful of Palms: The Smart
Handheld Devices Market Forecast Update and Outlook, 1999–2003” (IDC
report no. 21177), December 1999.

174 Chapter 6

by contrast, sold almost one million units that year. Over the next three
years, Palm’s PDA sales rose spectacularly, while sales of Windows CE
devices were sluggish. From 1997 to 2000, shipments of Palm-powered
PDAs exceeded those of Windows CE–based devices by an average of
one million units per year.

Failure to attract end users meant that Windows CE also had a hard
time getting developers on board. Ed Colligan, vice president for mar-
keting at Palm, put it very plainly: “They’d offer funding for the initial
development. They [Microsoft] held all the development kitchens. They
always put on a big dog-and-pony show, and we our little nothing thing.
[. . .] In the end, all the schmoozing and all the tools and all those things
really don’t matter if the products aren’t selling.”39

Faced with a stagnating platform, Microsoft shifted gears. In the
Pocket PC operating system and corresponding hardware specifications
that it released in April 2000, it abandoned the familiar desktop
Windows look in favor of a simpler GUI better adapted for PDAs.40

The devices were no longer to be called Palm-tops but Pocket PCs.
Microsoft’s hardware partners took advantage of the new software
platform to release smaller PDAs, such as HP’s Jordana and Compaq’s
iPAQ.

The sleeker Pocket PC platform has permitted Microsoft to compete
with the Palm OS and its entourage. Microsoft offered comprehensive
development tools such as Platform Builder 3.0 and eMbedded Visual
Tools 3.0, which allowed developers and hardware manufacturers to
build “rich embedded devices that demand dynamic applications and
Internet services.”41 For example, Pocket PC sported an upgraded version
of Windows Media Player, a new Internet browser, and improved email
software.

39. Gawer and Cusumano, Platform Leadership, pp. 199–200.

40. Pocket PC was the direct successor of Windows CE 2.0 (September 1998)
and 3.0 (April 2000). These latter incarnations of the Windows CE software plat-
form were modular, enabling hardware makers to pick the parts they needed and
use them to power a variety of devices, including ATMs, cars, video game con-
soles such as Sega’s Dreamcast, and even kitchen utensils. Miles, “Microsoft
Unveils Anticipated Pocket PC for Handhelds.”

41. http://members.fortunecity.com/pcmuseum/windows.htm.

The Palm Economy 175

Still, Palm’s lead remained more than comfortable. In 2001, end-user
market shares were 55 percent for Palm versus 16 percent for Pocket
PC.42 At the time, Palm OS had about 190,000 developers providing
13,000 commercial applications, whereas Pocket PC had only 1,600
developers. And Palm devices remained significantly cheaper, starting as
low as $99, while Pocket PCs did not go below $200.43

Microsoft intensified its efforts on all fronts. It started courting PDA
software developers more actively, in particular those that had been sup-
porting the Palm OS platform exclusively and had been a major source of
the latter’s strong competitive advantage over Windows CE. For example,
Vindingo, the vendor of the popular electronic city guides on Palm,
decided to start offering them on Pocket PC devices as well in 2001.

Microsoft expanded the number of its hardware licensees from six in
2000 to more than thirty in 2002, and it added major hardware makers
such as Toshiba, Dell, Gateway Computers, Samsung, and JVC. Some of
these computer manufacturers started making inroads into the low-cost
PDA category, long Palm’s exclusive territory.44

Most important, over time Microsoft integrated a number of new
features into its software platform that made it particularly attractive
for corporate mobile workers. The 2001 and 2003 subsequent releases
of Pocket PC added virtual private networking, instant messaging,
remote control of office PCs, and the wireless technologies Wi-Fi and
Bluetooth. Microsoft also made the hardware specifications for Pocket

42. Although some sources claim that Palm had a 71% market share in 2001
and Pocket PC had only a 15% share, these figures are based on a more narrow
definition of the handheld market. http://palmtops.about.com/cs/pdafacts/a/
Palm_Pocket_PC_p.htm; Alex Slawsby, Randy Giusto, Kevin Burden, Ross
Sealfon, and Dave Linsalata, “Worldwide Smart Handheld Devices Forecast and
Analysis, 2003–2007.”

43. Arthur Gasch, “Receiving Stations to PDAs, New Products Set the Pace at
ACEP (Personal Digital Assistants) (American College of Emergency Physicians),”
The BBI Newsletter, January 1, 2003; http://www.palmsource.com/press/2002/
012102.html; http://palmtops.about.com/cs/pdafacts/a/Palm_Pocket_PC_p.htm.

44. Richard Shim, “Microsoft Extends Hand on Low-Cost PDAs,” CNET
News.com, November 11, 2002; Mitch Irsfeld, “New Foodservice Tools Could
Flow from Microsoft’s Expanded PDA Initiative,” Nation’s Restaurant News,
May 29, 2000.

176 Chapter 6

PCs more stringent, requiring its licensees to use more powerful
microprocessors.45

These additions and improvements were a key factor in raising Pocket
PC’s fortunes against Palm OS. Windows pulled ahead, with a full-year
market share of 46.8 percent, compared to Palm’s share of 46.0 percent
in 2004.46

Palm emphasized simplicity and ease of use when it started. That was
a wise re-entry strategy, given the failure of the bulky Newton and
Zoomer. Microsoft focused on providing lots of features. That didn’t
help at first. But as happened with Windows, the hardware platform
eventually caught up to the software platform. The learning and
development of the richer platform eventually paid off, enabling
Microsoft’s Pocket PC to close the gap with the Palm OS.

45. http://news.com.com/Pocket+PC+2002+debuts/2100-1040_3-273912.html;
http://news.com.com/Microsoft+preps+new+handheld+OS/2100-1041_3-
1015726.html.

46. David Linsalata, Kevin Burden, Ramon T. Llamas, and Randy Giusto,
“Worldwide Smart Handheld Device 2005–2009 Forecast and Analysis: Passing
the Torch.”

47. http://www.blackberry.com/news/press/2006/pr_30_05_2006_01.shtml.

The BlackBerry

The other significant competitor to Palm, attacking from a different angle,
is the BlackBerry handheld device, the product of the Canadian firm
Research in Motion. BlackBerry—also known as CrackBerry, an allusion
to its addictive nature—is a PDA, the star feature of which is mobile email:
users send and receive their email through the device’s always-on wireless
connection. The mere access to email, however, did not make BlackBerrry
unique or drive its popularity. Its killer feature has been that email is
“pushed” onto the device as soon as it arrives at the server, while users of
other PDAs have had to contact their server to see whether they had email.
While well-known, especially to likely readers of this book, the BlackBerry
remains a niche product. There were 5 million BlackBerry users in May
2006.47 RIM produces the devices, then sells them either directly, in
bunches, to companies, which can also buy RIM’s email software to inte-
grate with their corporate email servers, as well as to mobile network oper-
ators, which then resell them to their customers, just as they do with mobile
phones.

The Palm Economy 177

48. “Attack of the BlackBerry Killers,” The Economist, March 17, 2005.

49. http://www.rim.net/investors/pdf/2004rim_ar.pdf.

(continued)
Like Palm, RIM started by selling Blackberries as fully inte-

grated systems: hardware plus software. The company manufactures
the hardware and has developed a proprietary operating system that
takes advantage of the device’s unique input system, particularly its
thumbwheel. In addition, RIM licenses the BlackBerry Enterprise
Server (BES) software, which allows organizations to integrate their
employees’ BlackBerry devices with their email system. In other words,
if your company does BlackBerry, then you have a small box on your
corporate email server that handles email transit to and from BlackBer-
ries and also ensures that emails sent from a user’s BlackBerry will
also appear in his PC mailbox. There are versions of BES for most
major email servers: Microsoft Exchange, Lotus Domino, and Novell
Groupwise.

Initially, RIM provided all BlackBerry applications bundled with
the device. Recently, however, the rising popularity of the device has
attracted many third-party applications software providers, which
have turned the BlackBerry into a true two-sided platform, very similar
to the way in which Palm became two-sided. RIM seems to be
following in Palm’s footsteps with respect to its hardware strategy as
well. In an effort to expand the market for its technology, the firm recently
started licensing the BlackBerry software (the operating system and
BES) to prominent mobile phone manufacturers such as Nokia, Motorola,
and Samsung.48 The devices built by the latter are therefore competing
against the BlackBerry, just as PDAs running Palm OS and built by
Sony and Handspring were competing against Palm’s own Pilot. RIM’s
hope seems to be to move into the mass market and focus more on
the software platform and related services, as the hardware becomes
commoditized.

Like Palm and all other software platforms we have encountered
except for video games, RIM derives the largest share of its revenues
from end users, either directly (through sales of BlackBerry devices,
licensing of the BES software and subscription revenues) or indirectly
(through licensing of the BlackBerry operating system to third-party
handheld manufacturers). For example, in 2004, handhelds accounted
for 57.7 percent of BlackBerry’s revenues; the remainder came from
service (28.8 percent) and software (13.5 percent).49 The service
revenues came from individual subscribers to the BlackBerry Wireless
Solution: either they are collected directly from the customer or the
customer pays a third-party carrier that in turn pays BlackBerry. The
software revenue comes from the licensing of BES, maintenance, and
upgrades.

178 Chapter 6

Bundling

Much of the competitive dynamics between Palm and its rivals and
much of the innovation that has taken place in PDAs has involved
bundling new features. The holy grail of PDA makers has been
a collection of features that consumers wanted in a handheld device
that could deliver them well. The Apple Newton and Zoomer
failed because they misjudged the applications that people ultimately
cared about and because they bundled more into their products than
the hardware could deliver well. The same goes for Microsoft and
its Windows CE hardware licensees before Pocket PC came on the
market.

The PalmPilot was the first PDA to strike the right balance
between the key applications that consumers wanted and the device
speed that made these applications attractive. One of the key
features that Palm included—and that was copied by all that followed—
was PC connectivity. Consumers wanted to be able to move data
between their PCs and PDAs and, most important, to synchronize
their address books and calendars. That required bundling software
and hardware features to make this possible. The PalmPilot came
with a cradle in which the user put the device to sync it with the user’s
PC.

Table 6.3 shows the history of key product features for users in PDAs
from 1993 to 2004. (A similar set of features offered to developers was
included in the operating system.)

(continued)
This is not surprising given that RIM charges very low (if any) prices

to independent software developers. The SDK and the emulator are
downloadable free of charge from BlackBerry’s Web site. The only restric-
tion imposed by RIM is that certain controlled APIs must be “signed” in
order to become functional on a BlackBerry handheld. To obtain and
use these controlled APIs, developers must register and pay a $100 regis-
tration fee.50

50. http://www.blackberry.com/developers/downloads/jde/api.shtml.

The Palm Economy 179

Convergence of Categories

The worldwide sales of PDAs peaked in 2001 at 13.5 million units. It
fell to 9 million units as of 2004.51 It is generally expected to continue to
fall.

This decline illustrates some important principles about computer-
based platforms in general and software platforms in particular. These
platforms are bundles of features that appeal to different users for

Table 6.3
Timeline of major features added to PDAs

Operating System Capabilities

1993 Apple Newton, Palm Handwriting recognition, Infrared
Zoomer beaming, Organizer, Address book,

Dictionary, Thesaurus, Spellcheck,
Calculator

1996 Palm OS 1, Windows CE Graffitti handwriting recognition,
1.0 computer synchronization, Basic email,

Spreadsheet, Word processor, Expansion
cards, Networking

1997 Palm OS 2, Windows CE 32-bit color, on-screen keyboard, True
2.0 Type fonts, TCP/IP and Ethernet support

1998 Palm OS 3, Windows CE USB support, Network printing, Better
2.1 audio support, Encryption, Device-

device synchronization
1999 Windows CE 2.12 Wireless networking, Text messaging
2000 Palm OS 3.5, Windows Media Player, HTTP Server, Language

CE 3.0: Pocket PC 2000 localization, XML support, E-Book
Edition support

2001 Palm OS 4, Windows CE: Bluetooth support, Third party 128-bit
Pocket PC 2002 Edition encryption, 160 × 160 resolution, MP3

playback
2002 Palm OS 5, Windows CE Voice recording, 320 × 320 resolution,

4.0 Camera
2003 Palm OS 6, Windows CE Basic voiceover IP, Java virtual machine

4.2
2004 Palm OS 6.1: Cobalt, USB on-the-go support, Asian language,

Windows CE 5.0 QVGA, HVGA resolution

51. David Linsalata, Kevin Burden, Ramon T. Llamas, and Randy Giusto,
“Worldwide Smart Handheld Device 2005–2009 Forecast and Analysis.

180 Chapter 6

different reasons. It is easy to add or subtract features. The PDA was orig-
inally conceived of as a bundle of hardware and software features that
would compete with PCs. The idea was that some people didn’t need
all the power that came with a PC and would be happy with something
smaller that did less. That assumption was wrong. People didn’t like
the feature bundles they got from the Newton or Zoomer. After
Zoomer, Palm tried a different bundle of features that turned out to give
consumers what they wanted: a complement to their PCs rather than a
substitute.

It turns out, however, that the PDA was a much less stable category
than video games or PCs. People liked handheld devices, but over
time they found other bundles of characteristics more appealing
than those that came with a PDA. The RIM BlackBerry has been a major
turn-of-the-century hit. These handheld devices mainly send and receive
email, but they can organize contacts and maintain calendars as
well. They have their own operating system, and RIM is pursuing its
own platform strategy, as we saw above. A more important hit has
been mobile phones—or, more precisely, smart mobile phones, which
have operating systems and can run applications. As a result of this
competition, PDAs and BlackBerries have started bundling mobile tele-
phone features. The PalmOne Treo 650 smart phone has all the capa-
bilities of a PDA: organizer, messenger, Web access, and Bluetooth
technology.

As the Treo shows, Palm OS isn’t limited to running PDAs. Palm diver-
sified into other mobile devices in late 1999, as we noted earlier. As the
smart mobile telephone business has taken off, Palm has increased its
efforts to persuade phone manufacturers and wireless carriers to rely on
its operating system. There are advantages (the large base of Palm appli-
cations and end users familiar with them) and disadvantages (there are
other operating systems that were designed specifically for mobile
phones) to doing so. Palm secured a 6 percent share of mobile telephone
operating systems in 2004.52 But it faces tough competition, to which we
now turn.

52. Ibid.

INSIGHTS

• Palm made the market for PDAs in the mid-1990s after the first gen-
eration of personal organizers flopped in the early 1990s. Handwriting
recognition was the device’s “killer app”; it made a variety of applica-
tions easy to use.

• Palm, which started as an application software company, created its
hit Pilot as an integrated hardware/application/software platform and
then disintegrated by encouraging others to develop applications and
make hardware.

• Palm followed multisided strategies of promoting its platform to devel-
opers and encouraging the creation of third-party applications. It also
innovated by adding features to its hardware and software platforms.

• Palm’s PDA success has proven short-lived, both because Microsoft’s
competing software platform has gained traction and because smart
phones and other handheld devices have reduced the demand for PDAs.

• RIM’s popular BlackBerry has attracted a developer following that has
turned it into a two-sided platform. BlackBerry’s decision to license its
operating system to mobile phone manufacturers has turned these cus-
tomers into competitors, just as Palm created competitors when it
licensed its OS to Nokia, Motorola, and Sony.

• Bundling decisions are at the core of competition in the PDA segment.
Early PDAs failed because they came with more features than the hard-
ware could support. When PDAs included only features that people
really wanted on devices fast enough to make those features attractive
to users, sales took off.

The Palm Economy 181

7
Ba-BA-Ba-BAAAAH

This “telephone” has too many shortcomings to be seriously considered as a
means of communication. The device is inherently of no value to us.

—Western Union internal memo, 18761

INSIDE THIS CHAPTER

• The complex structure of the mobile phone industry

• Software platforms for smart mobile phones

• Multisided strategies and the development of DoCoMo’s i-mode phone
platform

Many years ago, most telephones alerted people that they had a call with
a single jarring ring. The same unchangeable ringtone was bundled into
every phone. As we all know from the cacophony of mobile phones
ringing in public places, people now hear many sounds that tell them
they have incoming calls. Mobile manufacturers have different standard
tones, and many makers allow people to choose among several possible
rings.

Moreover, people are no longer restricted to the ringtones that come
with their phone. They can buy ringtones from various Web sites and
download them into their phones. If you want to hear Simon and
Garfunkel singing “Bridge Over Troubled Water” to announce a call,
you can get it for $2.49 from www.cingular.com, among other places.
These downloadable ringtones are small software applications. They

1. Morgan, Michael, Making Innovation Happen: A Simple and Effective Guide
to Turning Ideas Into Reality (Warriewood, Australia: Australian Print Group,
2000).

184 Chapter 7

Ba-BA-Ba-BAAAAH 185

include 15 seconds of digital sound and code that works with the soft-
ware platform that’s on the phone to make the digital sound audible.

With the spread of increasingly sophisticated mobile telephones, ring-
tones have become a big business. Consumers around the world spent
an estimated $4 billion in 2004 on downloadable ringtones.2 Most
mobile operators sell these on their Web sites, and many Web portals
specialize in providing them. The segment has attracted hundreds of soft-
ware developers in the last few years.

That something as frivolous as ringtones has become such a money-
maker for mobile operators, music owners and publishers, and software
developers is early evidence of the power of the software platforms that
power these small computing devices.

Most of the mobile phones used by subscribers in the world aren’t
smart enough for ringtones or other software or Web-based applications.
They don’t have the microprocessor and operating system required for
an intelligent phone. (Many data sources restrict “smart phones” to
those that are closer to the PDAs of the last chapter—ones onto which
it is easy to download sophisticated applications. These data sources
would not include many of the sophisticated phones we discuss here.)
That is changing rapidly in many countries. Mobile network operators
have seen Web-based services as a driver of revenues and profits. They
have developed capacious networks for delivering data and have started
encouraging their subscribers to take ever-smarter phones that can rely
on these services.

Japan is far ahead of the pack. Most phones there are smart, with 79
percent connected to the Internet in 2004. A June 2005 article in the
Business Telegraph describes what anyone who has lived recently in
Japan knows:

There are some things that a teenage girl in Tokyo cannot leave the house
without. Her gladiator sandals, her Mac strobe cream moisturiser, and her i-
mode mobile phone. With i-mode she can be constantly connected to a virtual
playground of web-based treats: ringtones, chat, email, games, horoscopes and
whacky cartoon characters.3

2. Reinhardt Krause, “Cellular Carriers Search for Piece of Music Biz,”
Investor’s Business Daily, May 13, 2005.

3. Business Telegraph, June 24, 2005.

186 Chapter 7

If the Japanese experience is any indication of the future elsewhere, these
small computing devices promise to revolutionize many industries.
People with certain i-mode phones in Japan can wave them at a device
at the store counter to automatically pay for things. The transaction gen-
erally goes through the i-mode mobile phone network (and its associated
billing system) rather than through a payment system network like that
operated by MasterCard.

This chapter is about how mobile phone software platforms are
driving innovation and transforming industries. It is a story once again
of the power of these invisible engines and the role of multisided strate-
gies in getting diverse customer groups on board. Pricing, bundling, and
evangelizing remain the key tactics.

The Mobile Phone Business

The company that operates the wireless network has a critical influence
on mobile telephone platforms. These “mobile operators” ultimately
control what mobile telephones their subscribers use, what software plat-
form runs those phones, and what applications can be downloaded onto
them. We begin with these networks and then consider the other key
players in the ecosystem: the phone manufacturers, software platform
providers, application developers, and content providers. A simplified
sketch of the relationships among the players is shown in Figure 7.1.
(Americans refer to cell phones. We use the term mobile phones or

Software

Software Platform:
Operating System,

Middleware

Handset
Makers

Network
Operator Consumers

Royalties

Applications
and content

Handsets Handsets, voice
and data services

Application and
Content Providers

Figure 7.1
Platform ecosystem for mobile phones.

Ba-BA-Ba-BAAAAH 187

mobiles, which seems to be the more common term outside the United
States.)

Mobile Operators
The first mobile phone call—made with a handset in a car—took place
on June 17, 1946. More than 100 cities and highways had wireless phone
service by 1948. There were 5,000 subscribers using clunky handsets.
The wireless network, then controlled by the nationwide Bell telephone
system, grew slowly. There were only 40,000 subscribers in 1965. The
2,000 New York City subscribers had to wait 30 minutes to place a call
on one of the limited number of channels available. At this point, the
wireless network was based on a single transmitter serving each wide
geographic area.

Cellular telephone technology originated at Bell Laboratories. In 1947,
the well-named D. H. Ring came up with the idea of having low-power
transmitters spread across a grid and handing off calls from one cell to
another of this grid as a person moved around it. Further development
of computers was necessary to make this idea workable. A Motorola
employee walking the streets of New York finally made the first cellular
telephone call on April 3, 1973. AT&T started field-testing cellular tele-
phone service in the late 1970s. The first commercial cellular network in
the United States was started in Illinois in 1983. Japan, however, had
started one four years earlier. Cellular technology soon displaced single-
transmitter systems.4

Before the mid-1980s, telephone systems in most countries were
monopolies, either public utilities or state-run enterprises. The United
States started introducing competition in telephone service in the 1970s.
As a result of the settlement of a government antitrust case, on January 1,
1984, AT&T divided itself into a separate long-distance company, oper-
ating in competition with other long-distance providers, and seven
regional operating companies. Although few other countries went this far,
the idea of promoting more competition in telephone service had
widespread appeal. When the promise of cellular technology became
apparent, many countries decided to create competition in this area by
making licenses for the necessary radio spectrum available to several

4. http://www.ideafinder.com/history/inventions/mobilephone.htm.

188 Chapter 7

competing companies. As of 2005 there were four major mobile opera-
tors in the United States, five in the United Kingdom, three in France, four
in Germany, and three in Japan.

Mobile networks are multisided platforms. They link people who
make calls and people who receive calls (we discuss more sides below).
The subscribers to a mobile telephone network make calls to, and receive
calls from, other subscribers on the same mobile network, subscribers of
other mobile networks, and individuals with traditional fixed-line tele-
phones. Mobile operators around the world have followed a similar
pricing strategy. They generally subsidize the purchase of mobile tele-
phone handsets by prospective subscribers. They then recover the costs
of these handsets through various subscription plans for making calls
and other fees that callers pay, as well as from the many new mobile tele-
phone services discussed below. For example, Vodafone offers several
mobile telephones for free in the United Kingdom as part of an initial
subscription package that also includes reduced calling charges. A three-
month subscription that costs £12.50 per month includes a Motorola V3
telephone that is sold separately on amazon.uk for £199.99.5

Mobile telephone companies compete for subscribers. After investing
in subsidized phones and sales efforts to sign them up, they try to make
these subscribers as “sticky” as possible to their networks. In many coun-
tries, for instance, people who switch carriers lose their telephone
numbers. They also usually have to switch telephones, and that often
means losing all of the telephone numbers and other information they
have programmed into their handsets.6

The mobile operators also try to get their subscribers to use the
network as much as possible. Until recently that meant encouraging

5. Vodafone: http://shop.vodafone.co.uk/index.cfm?fuseaction=home.
viewPressOffers&WT_ref=HOM-15-07-2005-H005 (downloaded October 10,
2005); Amazon.co.uk, Motorola V3: http://www.amazon.co.uk/exec/obidos/
ASIN/B000980PVM/qid=1128958244/sr=8-2/ref=sr_8_xs_ap_i2_xgl/
026-6708820-8480445 (downloaded October 10, 2005).

6. Local number portability has been available in the United States and the
United Kingdom for years, and Japan began to offer local number portability
in 2006. http://www.fcc.gov/cgb/consumerfacts/wirelessportability.html;
http://www.ofcom.org.uk/consult/condocs/uk_numb_port/uk_numb_port_cons/
#content; “KDDI to Turn Its Handsets into Wallets,” Financial Times, July 12,
2005.

Ba-BA-Ba-BAAAAH 189

people to make and take phone calls. With Internet connectivity, these
companies are trying to get their customers to use the networks for other
services, such as messaging, buying things online, and downloading
content. One of the most successful of these is DoCoMo, whose i-mode
service we discuss in this chapter.

The mobile operators serve as gatekeepers to their subscribers, a role
that doesn’t exist in other computer-based industries. One cannot call a
subscriber without going through the operator’s switch. Although it is
possible for manufacturers to sell handsets directly to subscribers, it is
more convenient for the subscriber to get both the phone and the
network subscription from the operator. Most mobile phones are sold
through system operators.7

Mobile network operators have consolidated over time in most
nations, and several global operators have appeared. The largest by
revenue as of 2004 were Vodafone, followed by NTT DoCoMo and T-
Mobile, as shown in Table 7.1.

The United States has lagged behind Europe and Japan in the use of
mobile telephones. For many years just about everyone under the age of
thirty has had a mobile telephone in Europe and Japan. Young people
outside the United States have used these computing devices since the
mid-1990s for tapping out short messages (SMS) to each other, often
using a dialect that economizes on keystrokes, such as the common “ttyl”
(talk to you later) or “cu” (see you). The United States is catching up.
But SMS is less popular in the United States because of the relatively low
cost of voice telephone calls and high Internet penetration.8

Mobile telephones are particularly attractive for emerging economies
that haven’t invested in their fixed-line systems. More than 330 million
residents of China have a mobile phone. Estimates are that more than
545 million—about 41 percent of the Chinese population—will have one
by 2009.9 Eventually most of these phones will be smart enough for the

7. “The NPD Group,” Business Wire, November 21, 2005.

8. Charles S. Golvin, “Sizing the US Mobile Messaging Market” (Cambridge,
Mass.: Forrester Research, July 30, 2004).

9. “China: Telecoms and Technology Forecast,” Economist Intelligence Unit—
Executive Briefing, April 19, 2005.

190 Chapter 7

kinds of services we describe in this chapter. Worldwide, some analysts
predict that the smart phone share of mobile shipments will more than
quadruple over the next few years to about 18 percent in 2009, so that
more than 180 million will be shipped annually.10 Many of these people
probably won’t have a PC and will be connected to the Internet mainly
through their mobile phones.

Mobile Phone Manufacturers
As we noted earlier, Motorola made the first mobile telephone for use
with a cellular network. For a while it owned the business, but aggres-
sive competitors soon appeared.

Table 7.1
Largest Mobile Operators by Revenue, 2004

Revenues Subscribers
Carrier (billions) (millions) Countries

1 Vodafone $58.7 $154.8 Australia, New Zealand,
Germany, Greece, Hungary,
Ireland, Italy, Portugal,
Spain, Sweden, U.K.

2 NTT DoCoMo $45.1 $117.0 Japan
3 T-Mobile $29.9 $120.0 U.S., Australia, Germany,

U.K., Slovakia
4 Verizon Wireless $24.4 $45.5 U.S.
5 Orange (France $23.5 $50.0 Australia, Hong Kong,
Telecom) Thailand, France,

Netherlands, Poland, U.K.
6 China Mobile $23.2 $220.5 China
7 Cingular $19.4 $50.0 U.S.
8 MoviStar $14.4 $74.0 Argentina, Spain
9 China Unicom $9.6 $112.0 China
10 Mobile $3.9 $42.3 Russian Federation
TeleSystems

Note: Vodafone also owns 49% of Verizon Wireless (not included in the Voda-
fone total).
Source: Operator Web sites, and the press.

10. Kevin Burden, Randy Giusto, David Linsalata, Ramon T. Llamas, and Allen
M. Liebovitch, “Worldwide Mobile Phone 2005–2009 Forecast Update and
1H05 Vendor Analysis” (IDC report no. 34408), November 2005.

Ba-BA-Ba-BAAAAH 191

One of them, Nokia, overtook Motorola as market leader in 1998.11

It had moved more quickly than Motorola to respond to the emergence
of digital networks in the early 1990s. It also recognized that people who
carried mobile phones around all the time cared about how they looked.
Nokia excelled at creating fashionable phones that initially appealed to
the burgeoning European market, and eventually to Americans as well.
Motorola fought back by continuing to improve its popular StarTac
phone, which it originally introduced in 1996.12

An important dimension of competition among manufacturers has
become how smart the phone is13: the sophistication of the hardware and
software platform and therefore its functionality. Motorola introduced
the first mobile that could receive wireless email, for instance, while
Alcatel had the first phone that could both send and receive wireless
email, and Samsung offered the first mobile that could play streaming
video.14 Competition has also included adding features that weren’t

11. http://nds2.ir.nokia.com/aboutnokia/downloads/archive/pdf/eng/nok98eng.
pdf.

12. http://www.motorola.com/content/0,,123-288,00.html.

13. The wireless transmission standards are the other noteworthy technological
dimension: they are embodied in the phone chips and determine how data (voice
and other) are transmitted on the network. For second-generation (2G) networks
there are three main standards: GSM, accounting for 75% of worldwide users,
especially in Europe; CDMA, with 17% of users, prevalent in South Korea,
China, and North America; and TDMA, an old U.S. standard, which is fading
away. Patents for the GSM standards are owned by a consortium of major
handset manufacturers, including Nokia, Motorola, and Ericsson. By contrast,
virtually all patents for CDMA are owned by U.S. firm Qualcomm, which in
2003 was virtually the sole provider of chips for CDMA phones and the overall
world’s number 2 cell phone chip provider, after Texas Instruments. For
advanced, third-generation (3G) networks capable of supporting higher band-
width and faster data transmission, the two main standards are WCDMA (Wide-
band CDMA, known in Europe as UMTS), the upgrade for GSM used by carriers
such as NTT DoCoMo, Vodafone, T-Mobile, and Cingular; and CDMA2000,
the upgrade for CDMA used by Verizon Wireless, SK Telecom, and Sprint,
among others. Qualcomm owns all patents on CDMA2000 but only 20% of
those for WCDMA, at least 60% of which is owned by Nokia, Ericsson, NTT
DoCoMo, and Siemens together.

14. “Samsung Electronics Launch Streaming Video Cell Phone,” Israel Business
Today, October 1, 2000; “Motorola Debuts Internet Service At Wireless ’96,”

192 Chapter 7

originally associated with mobile phones. The now famous example is
bundling a digital camera with a phone. Some phones now do almost
everything one could do with a PDA—they include calendars, contact
managers, and other features of an electronic organizer.

Because network operators serve as gatekeepers, competition among
mobile telephone makers has a dimension that we haven’t seen in other
industries based on software platforms. Manufacturers sell their phones
mainly through the operators, giving those operators considerable influence
over the features that get included on the phones. After all, these phones are
ultimately designed to benefit subscribers and thereby to help each opera-
tor sell calling and other services to its subscribers. Thus, when DoCoMo
decided that it wanted its phones to include a smart card so that its
subscribers could pay for things, it asked Fujitsu, NEC, Panasonic, Sharp,
and other manufacturers that supply its phones to include this feature.15

Ultimately, of course, the consumer determines the popularity of
different mobile phones. There is a choice among operators in many
countries. The operators therefore have strong incentives to make sure
that consumers are getting the phones they value most highly. In addi-
tion, most operators give prospective subscribers the ability to choose
among different phones. For example, Verizon offers various mobile
phone models from Kyocera, Audiovox, Samsung, Motorola, and LG at
its wireless stores. The pricing of mobile telephones to the consumer is,
however, less transparent than hardware-software platform pricing in
other industries. Mobile operators enter into deals with manufacturers
to supply phones. These are then bundled by the operators into pack-
ages that are designed to appeal to different customer groups.

Operating Systems, Middleware, and Software Platforms
For mobile telephones to become smarter, they needed increasingly
sophisticated operating systems to exploit advances in microprocessors
and other elements of the mobile hardware platform.

Mobile Phone News, March 25, 1996; Saunthra Thambyrajah, “New Alcatel
Phones with Net Capabilities,” The New Straits Times, June 18, 1998.

15. Ben Charney, “Carrier Turns Cell Phones into Wallets: NTT DoCoMo
Launches a Service That Lets People Make Credit Card Transactions and Bank
Withdrawals via a Handset,” Cnet, August 9, 2004.

Ba-BA-Ba-BAAAAH 193

IBM made the first smart phone. Dubbed Simon, it was distributed for
use with Bell South’s mobile network in 1994.16 It was an early PDA—
it included an address book, appointment calendar, notepad, sketchpad,
calculator and to-do programs, plus utilities for setting system prefer-
ences and managing data files. In addition to making telephone calls,
subscribers could also send and receive emails and faxes. The operating
system was primitive—a version of DOS. The Simon died a quick death,
just as other early PDAs introduced around this time did.

Nokia introduced its Communicator phone two years later. The Com-
municator could send and receive faxes, emails, and SMS messages, as
well as access corporate or public databases and the Internet. It also
included a calendar, calculator, address book, and notepad. It was more
of a success than the Simon. Nokia sold 100,000 Communicators in the
six months after the release.17 The Communicator used an operating
system from Geoworks, the company that made the operating system for
Palm’s failed Zoomer.

These and other early smart phones had only those applications that
had been embedded in the phone by the manufacturer or mobile
operator. There was no significant community of third-party application
developers.

With the development of the World Wide Web, the increasing sophis-
tication of mobile networks, and greater interest on the part of
consumers for email services, the demand for smart telephones increased,
and the need to develop sophisticated platform software grew.

Three major operating systems have emerged for smart mobile phones:
the Symbian OS, Windows CE-based Microsoft systems, and the Palm
OS. Table 7.2 shows their shares over time. Together they have about
75 percent of all operating systems for mobile phones, with the remain-
der divided between Linux, voice-enabled BlackBerries that have the
BlackBerry OS, and other smaller operating systems.

Creating a sophisticated operating system for a mobile telephone is a
significant undertaking. As the need for such systems became apparent,

16. Chris O’Malley, “Simonizing the PDA,” Byte, December 1994.

17. “Nokia 9000 Communicator Named Best New Product of ’97,” Business-
World, January 30, 1998; Mark Moore, “Smart Phones Get Smarter,” PC Week,
February 10, 1997.

194 Chapter 7

so did the reluctance of individual hardware manufacturers to go it
alone. On the other hand, the large makers didn’t want to leave this
to Microsoft. They feared that mobile telephone manufacturing would
become like computer manufacturing—a highly competitive industry
in which each firm struggles to differentiate itself from its rivals. The
mobile manufacturers also didn’t want to leave this to competition.
They feared they might repeat the fragmentation of the early days of
personal computing, with many incompatible operating systems and
applications.

So in 1998, the hardware manufacturers formed a joint venture to
create an operating system they could all use. Symbian, as the joint
venture was called, initially consisted of the three largest handset makers
at the time—Ericsson, Motorola, and Nokia—together with Psion, a
British maker of a PDA with its own operating system. This cooperative
venture developed the Symbian OS and released it in 1999. (It was based
on Psion’s EPOC 321 OS for its PDAs.) Nokia was the first to release a
phone based on the Symbian OS, the Nokia 9210 Communicator.

Symbian licenses its operating system both to the manufacturers who
own the joint venture and to other manufacturers of telephones and
other small computing devices. It has become the leading operating
system for smart phones. Of the 22 million smart phones sold world-
wide in 2004, 12 million used the Symbian OS.18

Table 7.2
Operating Systems Market Shares (%)

2002 2003 2004

Microsoft powered 11.9 9.7 12.7
Palm OS 17.6 8.0 6.3
Symbian 45.6 66.0 55.9
Other 24.9 16.2 25.2

Total 100.0 100.0 100.0

Source: IDC reports nos. 29586, 31554, and 33415.

18. David Linsalata, Kevin Burden, Ramon T. Llamas, and Randy Giusto,
“Worldwide Smart Handheld Device 2005–2009: Forecast and Analysis: Passing
the Torch” (IDC report no. 33451), May 2005, Table 27.

Ba-BA-Ba-BAAAAH 195

As of April 2005, Symbian’s shareholders consisted of Nokia,
Ericsson, Panasonic, Samsung, Siemens, and Sony. Nokia had the largest
stake, at 48 percent, followed by Ericsson, at about 15 percent.19 All the
shareholders license Symbian. Motorola dropped out of the joint venture
in 2003 as a result of Nokia’s growing influence. But it continues to
license Symbian. So do a number of other mobile makers that don’t
belong to the venture.

Microsoft has had less success in this business than Symbian. It has
had trouble getting the largest manufacturers to take its software plat-
forms for mobile phones—Windows Smartphone, released in October
2002, and Windows Mobile 5, released in May 2005. As a result, its
approach as of 2005 has been to form partnerships with low–cost,
original design manufacturers (ODMs) to produce mobile phones. It
tailors its mobile software platform to the needs of individual network
operators.20

Microsoft thereby effectively bypassed the brand-name handset makers
by dealing directly with the network operators. For example, it got
Taiwanese ODMs to build phones that use Windows Mobile, and
Orange, a French network operator, to sell these phones to its subscribers.
Orange benefited from the greater flexibility it had to customize the
phones it sells and from being able to market them under its own brand.21

Motorola and Samsung have decided to use Windows-powered oper-
ating systems on some lines. Samsung did this quite early, beginning in
1998. Motorola did so as part of its strategy to reduce its participation
in and reliance on Nokia-controlled Symbian. It released its first
Windows-based phone in September 2003. Both companies are multi-
homers: they both use Symbian as well as Windows Mobile; Motorola
also uses an operating system it developed based on Linux. Most other
mobile manufacturers have standardized on a single operating system.22

19. http://www.symbian.com/about/ownership.html (accessed April 28, 2005).

20. “The Third Way,” The Economist, September 18, 2003.

21. For instance, operators seem to think that one-touch access to their portals
through a button common to all their handsets (such as the “i” button on i-mode
handsets) can work wonders in increasing revenues from customers. Sue Marek,
“Customisation? Suits You, Sir!” Mobile, April 14, 2005.

22. “News in Brief,” Digital Cellular Report, April 23, 1998; “Mobile Phones:
Battling for the Palm of your Hand,” The Economist, April 29, 2004; Ben King,

196 Chapter 7

Palm was well positioned to take the lead in smart mobile phones. Its
Palm OS was a well-regarded operating system for small computing
devices. It had a significant share of mobile operating systems in the first
few years of the twenty-first century. But it has declined precipitously
since. Symbian was a major obstacle for it, as for everyone, since the
large mobile phone makers had a stake in and control over Symbian and
feared losing control of the platform to anyone else. The rising fortunes
of Windows CE in both the PDA (as we saw in the previous chapter)
and the smart phone spaces have also hurt Palm OS. In particular, in late
2005 PalmOne itself (the hardware company resulting from the 2003
split of Palm) added a model to its popular line of Treo smart phones
that used the Windows Mobile 5 software platform.23 But Palm OS may
yet find a way to rise from the ashes through its new owner, Access Co.,24

the main provider of Internet browsers for NTT DoCoMo’s i-mode
phones.

This doesn’t quite complete the story of software platforms. Windows
CE and the Palm OS are sophisticated software platforms with rich sets
of software services for developers. Symbian is a more bare-bones
operating system. Early on, Symbian decided to separate the software
platform into a rudimentary operating system and middleware that
would run on top of it. Meanwhile, some of the handset manufacturers
have chosen to develop their own proprietary middleware. Nokia is
perhaps the most advanced in this regard, as we discuss later in the
chapter.

Applications
Writing applications for mobile telephones isn’t like writing them for
Wintel or Apple computers. Different mobile phones have different
operating systems and middleware. Developers have to customize their

“Challenger Is Open Source of Debate: LINUX,” Financial Times, February 18,
2004.

23. http://www.microsoft.com/presspass/press/2005/sep05/09-26MobilityPR.
mspx.

24. As mentioned at the end of Chapter 6, Access bought PalmSource for $324
million in September 2005.

Ba-BA-Ba-BAAAAH 197

applications for each of the packages on which they want their applica-
tions to run. Developers sometimes need to customize their applications
to run on different phones running the same operating system and mid-
dleware (such as a Samsung phone running Series 60 and a Nokia phone
also running Series 60). The varying screen sizes and other hardware
components may also require nontrivial adjustments.

Given these difficulties, it is perhaps not surprising that the leading
consumer application is something as simple as a ringtone. This is not a
killer application in the sense we have used that term. People bought
Apple IIs just because they wanted to use VisiCalc. People—at least
people we know—don’t buy mobile phones just because they want to
hear “Toxic” from Britney Spears every time they get a call.

Ringtones may be trite, but they are hardly trivial applications. They
are supposed to make the mobile phone play a replica of up to 15 seconds
of a song you choose. How close they come to the original depends on
the cleverness of the programmers in using the mobile platform to repli-
cate the tones of the song. It also, of course, depends on the mobile
phone. The smart phones available in 2005 aren’t known for the quality
of their speakers.

As in the Palm economy, most ringtone developers are small shops and
startups. Faith, Inc. was one of the largest in 2005. It developed the spe-
cific polyphonic ringtone MIDI format first used in Japan and now
worldwide. It has a market capitalization of less than $500 million—
quite small for a publicly traded company.25

Three other types of businesses besides the developers earn profits
from ringtones and are therefore relevant for understanding this niche
of the mobile software platform ecosystem. The most popular ringtones
are based on popular songs that are protected by copyright. The music
publishers that own these copyrights (and the songwriters who get roy-
alties from the publishers) benefit whenever a ringtone is sold. The pro-
ducer of a $2 ringtone usually pays $0.40, or 20 percent, to the music
publisher. (Publishers usually charge more for higher-fidelity ring tones—

25. “Faith—Mobile Solution,” http://www.faith.co.jp/hp_engl/e_mobile.htm.
“Faith, Inc.” http://quote.tse.or.jp/tse/quote.cgi?F=listing/EDetail1&MKTN=
T&QCODE=4295 (downloaded October 10, 2005).

198 Chapter 7

between 35 and 55 percent of the ringtone price.26) Many mobile
phone operators sell ringtones from their Web sites and take a piece of
the action; they also profit when their subscribers download ringtones
from other sites. And finally, there are a number of Internet businesses
such as RingTonesGalore that aggregate ringtones and sell them to
consumers.

Ringtones are by far the most popular application for mobile phones
as of early 2006. Games are another popular application. American con-
sumers spent almost $345 million dollars on games for mobile phones
in 2004, and estimates indicate this will rise to $1.4 billion by 2008.27

Other applications for personalizing mobile phones, such as wallpapers
and screen savers, and personal productivity applications, such as
contact organizers, are also popular. Some mobile phones based on the
Symbian OS support mobile versions of the Adobe Acrobat document
reader, the Opera browser, and the RealPlayer media player.

Many applications are sold directly to consumers through the
Internet or the mobile carriers. However, developers also license appli-
cations to the operating system makers or handset manufacturers
directly, and they in turn bundle the applications with their own
offering.

The development of applications for mobile phone software
platforms has taken longer to take off than for personal computers,
video game consoles, or PDAs. This side of the mobile platform is still
in its infancy in 2006. The explanation for this difference is quite
simple. Unlike these other industries, the mobile phone software plat-
forms lack the ability to control the ecosystem and drive innovation in
it. Much of the power that other software platforms have is dissipated
in the mobile phone industry as a result of the fragmentation of control
in this global industry among many network operators and device
makers.

26. Lewis Ward, “U. S. Wireless Ring Tone 2004–2008 Forecast and Analysis”
(IDC report no. 34713), August 2004.

27. David Linsalata, Schelley Olhava, and Lewis Ward, “U.S. Wireless Gaming
2004–2008 Forecast and Analysis: Gaming . . . Together” (IDC report no.
32644), December 2004.

Ba-BA-Ba-BAAAAH 199

The Role of the Software Platform

Symbian has the largest share of mobile telephone operating systems,
but it leaves the provision of many platform features to others. Take
the Nokia 6620. It has the Symbian OS 7.0. That operating system
takes care of all low-level tasks of the phone, such as sending and
receiving voice and other data, updating the date and time, and
connecting to the wireless network. The Nokia phone also has
Nokia’s Series 60 platform, a middleware platform that runs on top of
the Symbian OS. This middleware platform provides a graphical
user interface, an organizer, a media player, and application support.
Nokia licenses its middleware software to other mobile makers,
including LG Electronics, Lenovo, Panasonic, Samsung, Sendo, and
Siemens. These makers customize it for their phones. Other mobile
makers, such as Sony Ericsson, Fujitsu, and Mitsubishi, use different
middleware with the Symbian OS. All of the middleware makers provide
third-party applications developers with software development kits for
writing to their middleware. Symbian does the same for its operating
system.

All of the software platforms for mobile phones, whether middleware
or not, engage in the basic tactics that all software platforms pursue.
They keep adding services exposed through APIs that help developers,
they provide tools that facilitate writing applications, they do all this
with minimum charges, and they evangelize. Symbian and Nokia provide
examples of tactics pursued in some form by all of the mobile software
platforms.

Symbian
Although the middleware provides additional features not present in the
Symbian OS, Symbian has been very successful in encouraging the devel-
opment of applications that work directly with the OS. The number of
Symbian applications offered by third-party vendors rose from 1,700 in
2003 to more than 4,700 in 2006. Macromedia’s Flash Player for the
Symbian OS enables people to navigate through interactive content
provided in sleek graphic formats, the Adobe Acrobat reader allows

200 Chapter 7

people to read Adobe documents, people can stream audio and video
with RealNetworks’ RealPlayer, and they can browse the Web with the
Opera web browser.28 Some of the more important applications such as
RealPlayer resulted from joint development efforts.

Symbian has an active program for encouraging application develop-
ers. Its Web site enables independent developers to download software
development kits, programming languages (Java, C++, OPL,29 and Visual
Basic) customized for various middleware packages, and other develop-
ment tools and documentation. It also holds industry-wide events and
organizes contests for the best applications.30

Although many development aids can be downloaded from Symbian’s
Web site at no cost, some tools for development and customization of
the operating system are available only to those who enroll in Symbian’s
Platinum Partnering Program. Affiliation with the partnership program
costs $5,000 per year for Platinum members and $1,000 per year for
Affiliate members.31 In exchange for these participation fees, Platinum
members receive the Symbian OS development and customization kits,32

technical, commercial, and marketing support from Symbian, and par-
ticipation and showcase opportunities at industry events. Membership
in the Platinum Program allows a company to purchase a development
kit license for Symbian OS v7 for $15,000 (with optional updates at
$3,000 per year), Symbian OS v8 for $18,000 (updates at $3,600), or
for v9 and above for $25,000. But according to Symbian, these programs

28. “Total Cumulative Shipments Reach 70.5 m,” Symbian press release, May 16,
2006; “RealNetworks Launches New Mobile Media Solutions for Content
Providers,” Asia Pulse, February 19, 2004; “Adobe Expands Reach of Adobe
Reader and PDF on Consumer Electronics Devices,” Business Wire, June 10, 2004;
“Symbian Enhances Wireless Internet Offering with Opera,” Symbian press
release, May 29, 2001.

29. Open Programming Language.

30. “At the Heart of Smartphone Evolution,” Symbian News, March 11, 2002;
“Symbian Exposium03—Invitation to Press,” Symbian press release, April 10,
2003; “Nokia Names Top Symbian Applications Globally,” Symbian press
release, April 15, 2002.

31. Emails to Laura Gee of LECG from Pamela Annund of Symbian, May 5,
2005.

32. They are available free to Symbian’s licensees.

Ba-BA-Ba-BAAAAH 201

are “priced only to enable cost recovery.”33 (These programs accounted
for only 5.7 percent of Symbian’s total revenues in 2004.)

Symbian earns its keep from licensing its OS to mobile phone makers.
From Symbian OS version 7.0 onward, the royalty has been set at $7.25
per unit for the first 2 million phones and $5 per unit thereafter. It
also charges its licensees for the consulting services it provides during
the installation and customization of the Symbian OS. The share of
royalty revenues has dramatically increased over time, as shown in Table
7.3: it went from 26 percent of total revenues in 2002 to 68 percent
in 2004.

Nokia
Nokia established an independent division called Nokia Mobile Software
to write and evangelize its middleware. It set up a “Chinese wall”
between this division and the rest of the firm in an attempt to assure
competing manufacturers that licensed its middleware that Nokia would
not seek a software advantage at its competitors’ expense.

Nokia’s Series 60 middleware has software services exposed through
APIs for supporting a variety of applications such as games, navigation,

33. “Symbian OS Phone Shipments Reach 14.4m in 2004,” Symbian press
release, February 14, 2005.

Table 7.3
Symbian Revenue Structure

2004 2003 2002

Symbian OS Units 14.38m 6.67m 2.00m

Average royalty/unit* US$5.72 US$6.24 US$5.75
Royalty revenue* (£m) 45.2 25.5 7.7
Consulting services revenue (£m) 17.5 17.1 20.2
Revenues from partnering and 3.8 2.8 1.6
other revenues† (£m)

Total (£m) 66.5 45.4 29.5

* Royalties comprise Symbian OS and UIQ.
† “Partnering and other revenues” include revenues from training, partner activ-
ities, and trade shows.

202 Chapter 7

dictionaries, voice recognition, and multimedia. The current version
comes bundled with a variety of features. These include a Web browser,
streaming audio and video based on RealPlayer, a camcorder application,
organizational software, a mobile wallet, and video telephony.34

I-Mode

A new breed of platform, portals for mobile Internet services, has
emerged with the advent of smart phones and advanced-generation
mobile networks with greater bandwidth. I-mode is the focus here.35 It
was created by DoCoMo, the Japanese mobile network operator that is
owned by NTT, Japan’s largest telephone company. It was the first 3G
network and remains the most successful to date.

The Japanese mobile market differs from others in several ways that
have proved important for the emergence of i-mode in Japan and the
lack of emergence of similar services in the American and European
markets. DoCoMo has a much higher share of the Japanese mobile
market (56 percent in March 200536) than most mobile operators have
in their national markets. DoCoMo therefore has considerable bargain-
ing power over handset manufacturers that hope to sell in Japan. There’s
another difference. Japanese households are far less likely to have a PC
at home than American households and households in many European
Union countries.37 The mobile telephone became the major way for

34. “Series 60 Platform 3rd Edition Overview,” Nokia Corporation, February
2005; available at http://www.series60.com.

35. Most of the analysis is informed by our conversations with Takeshi Natsuno,
i-mode’s architect and chief strategist.

36. “DoCoMo Will Sell Nokia Phones for 3G Network From October,”
Bloomberg, May 27, 2005.

37. “USA: Telecoms and Technology Forecast,” Economist Intelligence Unit—
Executive Briefing, June 9, 2005; “Japan: Telecoms and Technology Forecast,”
Economist Intelligence Unit—Executive Briefing, June 9, 2005; “Singapore: Tele-
coms and Technology Forecast,” Economist Intelligence Unit—Executive Brief-
ing, June 6, 2005; “France: Telecoms and Technology Forecast,” Economist
Intelligence Unit—Executive Briefing, February 10, 2005; “Germany: Telecoms
and Technology Forecast,” Economist Intelligence Unit—Executive Briefing,
February 1, 2005.

Ba-BA-Ba-BAAAAH 203

Japanese consumers to surf the World Wide Web. Finally, a love of
gadgets and games appears to be deeper for Japanese consumers than
for American and European consumers. The conditions were ripe for
i-mode.

The I-Mode Technology
The other software platforms we have examined up to this point all
reside on the computing device. By contrast, the i-mode software plat-
form consists of many pieces that reside in several places. Some are on
the handset and others are on a variety of server computers that handle
requests from the handsets and pass information to and from the Inter-
net. The core of the i-mode platform is a set of rules for transmitting
data between the mobile handsets, DoCoMo’s wireless network, and
DoCoMo’s server computer farm. Much of the platform lives on the
server computers. These pieces count packets sent and received by each
i-mode user, manage user email and subscriber accounts for various
content sites, handle billing information, and connect i-mode mobile
phones to the content providers’ application servers. A portion of the
platform therefore sits on top of the operating systems used by the several
handset makers (including Linux and Symbian).

Getting Two Sides on Board
I-mode is a two-sided platform that serves subscribers to DoCoMo’s
mobile phone network, on one side, and Internet content providers on
the other. Before i-mode was launched in February 1999, the company
signed up sixty-seven content providers, handpicked by Mr. Natsuno, its
chief strategist. He sought a diverse portfolio from the beginning. Mobile
banking, perceived as vital to the success of i-mode, had twenty-one sites.
The remaining forty-six sites covered gaming, fortune telling, news,
sports, airline information, train and other travel information, real estate
listings, and weather forecasts.38 This variety set the stage for a market-
ing campaign that emphasized the myriad of amazing things subscribers
could do with their mobile phones other than making phone calls.

38. Takeshi Natsuno, i-mode Strategy (New York: John Wiley & Sons, 2002),
p. 49.

204 Chapter 7

I-mode gained one million subscribers in six months, 5.6 million in
one year and 32.2 million in three years. Subscribers totaled 45 million
in August 2005. That is a remarkable market penetration for a premium
service in a nation with a population of 127 million. The content
provider side today includes some 5,000 “official” i-mode sites and
another 88,000 unofficial ones.39 Official sites can be accessed directly
from the i-mode menu on subscribers’ handsets. To access unofficial sites,
users must type in the Web address manually.

Three strategic decisions were key to i-mode’s success.
Adopt standards. I-mode chose standard formats and protocols with

which Internet content providers were already familiar. This dramatically
lowered the cost to content providers of providing content for the new
service. To begin with, i-mode supported the compact HyperText
Markup Language (c-HTML) for the creation of Web pages by content
providers. This choice was widely viewed as contrarian at the time. Other
major players, including mobile phone manufacturers such as Nokia and
network operators such as Vodafone, were championing the rival Wire-
less Application Protocol (WAP) as the standard for creating Web pages
for handheld wireless devices. The DoCoMo team opted for c-HTML
because the language permitted content providers to adapt their existing
Web sites for i-mode access at very low cost.

DoCoMo supported other standard Internet formats. These included
the HyperText Transfer Protocol (HTTP) for transmitting data between
the phones and servers and the standard protocol (SSL) for trans-
mitting the secure data needed for financial transactions over the Inter-
net. It also decided to support the Music Instruments Digital Interface
(MIDI), a sound format widely used in karaoke-on-demand services.
MIDI became the standard format for downloading i-mode ringtones.40

Rely on others for content. DoCoMo decided from the start to go two-
sided. It relied on the market for the provision of diverse content to end
users rather than supplying everything itself. This ran counter to con-

39. www.nttdocomo.co.jp/english/corporate/investor_relations/referenc/annual/
pdf_02_e/2002.pdf; http://www.nttdocomo.com/companyinfo/subscriber.html;
http://www.nttdocomo.com/companyinfo/subscriber.html.

40. The MIDI standard was adopted by the electronic music industry for con-
trolling all devices (including synthesizers and sound cards) that emit music.

Ba-BA-Ba-BAAAAH 205

ventional industry wisdom at the time, not to mention the advice
DoCoMo received from McKinsey—that wireless platforms needed to
own the content they supported and to block entry by competing third-
party content providers if they were to maximize network revenues.
DoCoMo rejected the closed garden for the open one.

In Mr. Natsuno’s view, it was essential to assist third-party content
providers in joining i-mode—for example, by lowering their fixed costs.
The combined innovative power and resources of outside providers, he
reasoned, far exceeded that of any single platform vendor. A large variety
of creative offerings attracts more users to the service, and a large poten-
tial market stimulates yet more creative effort on the part of indepen-
dent providers.

Develop a billing system. I-mode’s unique billing system was its third
strategic pillar. DoCoMo set up the network to charge users according
to the amount of data, measured in packets, they downloaded rather
than the amount of time they spent online.41 In addition, they made this
billing system available to content providers so that these providers could
charge small monthly fees for their services; i-mode charges 9 percent of
the gross billings as its fee for providing this to the content providers.42

Users therefore got the convenience of a single monthly bill, while
content providers got reliable billing service for a fraction of the cost of
doing it themselves.

It is interesting to contrast i-mode’s strategy with that employed by
Vodafone during its failed attempt to introduce wireless 3G services in
Europe. In 2000, this British network operator partnered with the French
media conglomerate Vivendi to launch the Vizzavi service for mobile
phones.43 Like all European operators at the time, Vizzavi relied on WAP
as the protocol for displaying content. Therefore, content providers with

41. “Traditionally, Telco’s billing models have been designed to handle voice
traffic . . . and, as in the traditional voice world, charges were usually based on
prices per minute. With content services and new GPRS technologies, where data
connection will be ‘always on,’ this model is no longer valid.” Alain Lefebvre,
“Not all kilobytes are equal,” Telecommunications International, March 1,
2002.

42. This offer is restricted to official content providers.

43. Ian Lynch, “Vodaphone Clinches Vizzavi Purchase,” vnunet.com, August 30,
2002.

206 Chapter 7

traditional Web sites had to rewrite their pages from scratch in order to
make them accessible through Vizzavi-enabled mobile phones. Further-
more, Vizzavi was not an “always on” mobile Internet service like i-
mode, so users had to establish a dial-up connection to an access number
in order to browse wireless content, tying up the phone the way fixed-
line telephone modems displace voice communications. Time spent
online was billed exactly like a voice call at the same per-minute rate, an
inefficient and very expensive arrangement for both the operator and the
user. Vizzavi attracted very little interest from third-party content
providers, but both Vodafone and Vivendi were confident that the
content they were able to supply themselves through Vivendi’s owner-
ship of Universal (Music and Studios) would be sufficient to attract a
critical mass of subscribers, whereupon third-party developers would
find the service more interesting.

Despite Vodafone’s and Vivendi’s investment of €1.6 billion44 in
Vizzavi, the portal’s revenue and subscriber growth were both disap-
pointing. After one year of operation Vizzavi had 2 million subscribers,
compared to i-mode’s 5.6 million subscribers, and after about two years
Vizzavi had 4.2 million subscribers, compared to the Japanese service’s
21.7 million. By May 2002, the portal was spending €1.02 million per
day without any profit in sight, and its stock market valuation, which
had been €20 to €50 billion at the height of the Internet bubble, had
dropped to almost nothing by the time Vodafone bought out Vivendi’s
50 percent stake in Vizzavi in August 2002.45

Evangelization
Given the explosive success of i-mode with subscribers, DoCoMo found
itself overwhelmed with propositions from many diverse content and

44. Dan Roberts, “Survey—Creative Business Vizzavi,” Financial Times, June
12, 2001.

45. “Vivendi Universal Announces 24% Revenue Growth to 7.3 Billion Euros
and 90% Ebitda Growth to 1.5 Billion Euros in Third Quarter for Media &
Communications Businesses,” Vivendi Universal press release, October 30, 2001;
Dan Roberts, “Survey—Creative Business Vizzavi,” Financial Times, June 12,
2001; “Vivendi considers sale of stake in new media portal Vizzavi,” The Cana-
dian Press, August 20, 2002, Ian Lynch, “Vodaphone Clinches Vizzavi Pur-
chase,” vnunet.com, August 30, 2002.

Ba-BA-Ba-BAAAAH 207

application providers. In October 2000, a little more than a year and a
half after the service’s introduction, there were already 1,200 official sites
from 665 companies and approximately 28,000 nonofficial ones.46 These
sites already covered the four major content categories initially identi-
fied by DoCoMo: information (news updates, weather, sports results),
e-commerce (mobile banking, securities trading, ticket purchases), data-
bases (telephone directories, restaurant guides, maps, dictionaries), and
entertainment (games, fortune telling, clubs, ringtone and character
download). Content providers were attracted by the subscribers, the ease
of porting content to the i-mode platform as a result of its standard
formats, and the fact that they got to keep 91 percent of their revenues.

Having made wise strategic decisions in designing i-mode, DoCoMo
didn’t need to stoke the fires continually under the content providers who
were the application developers for this platform. Since its launch,
DoCoMo has never had to seek new content. Its major challenge has
instead been how to select among the many applicants that want to
become “official” i-mode sites. I-mode is an open platform, and there-
fore content providers don’t need permission to make themselves avail-
able. However, i-mode helps ensure the quality of its content through a
certification program that labels some sites “official.” The company
organizes regular meetings bringing together the content editors from
each of its regional subsidiaries to discuss their views on what content
should or should not be included as official, in marathon sessions that
sometimes last for two days. In May 2004 the 4,100 official providers
accounted for 40 percent of i-mode network traffic, while the 70,000
unofficial content providers accounted for the remainder.47

DoCoMo does not organize conferences for its application developer
and content provider community. Nor does its Web site have space and
resources specifically dedicated to its developer-content providers like the
other software platforms we have encountered.48 It doesn’t need to
provide any special tools since its platform is intentionally composed of

46. Natsuno, i-mode Strategy, pp. 9–10.

47. Natsuno, i-mode Strategy, pp. 64–65; http://ojr.org/japan/wireless/
1084495929.php.

48. Compare http://www.nttdocomo.co.jp/english/index.shtml; www.symbian.
com; www.palmsource.com; www.microsoft.com; and www.apple.com.

208 Chapter 7

already successful and widely used technologies, such as c-HTML and
Java, that already have strong developer communities. Its technology
partners provide and advertise their own tools.

Pricing
To access i-mode, users must purchase i-mode–enabled handsets from
DoCoMo, which acquires them from a variety of manufacturers, includ-
ing Fujitsu, NEC, Panasonic, and Sharp. From the beginning DoCoMo
has employed a loss-leader strategy, selling handsets for roughly $80 to
$170 less than it pays the manufacturers.

DoCoMo began by charging end users roughly $2.50 per month and
2.5 cents per 128-byte packet. The maximum-length email (500 alphanu-
meric characters, or 250 kanji characters)49 costs a user less than 80 cents
to send. These prices were in force as of late 2005 for users of older 2G
handsets. However, those who used 3G phones paid $1.25 per month
and less than 2 cents per packet. DoCoMo also offers volume discounts.

DoCoMo has always allowed content providers to keep the lion’s
share of their revenues in order to encourage them to provide diverse
and innovative content. The only charge to content providers is the 9
percent fee levied on official sites that choose to piggyback on i-mode’s
billing system. In 2004, for example, DoCoMo derived $10 billion in
revenues from traffic charges to users and only $90 million from fees
charged to content providers.

The I-Mode Platform
Consider a day in the life of Yoshiko, an avid i-mode user in the summer
of 2005. During her one-hour commute to the trendy Ebisu area in central
Tokyo, where a branch of her company is located, she uses her pink NEC
N700i phone to send ten emails to her friends, her boyfriend, and her
mother in Kobe. She also buys advance movie tickets for that evening’s
Lost in Translation showing at a nearby Toho Cinema (Japan’s biggest
chain of movie theaters). When she gets to the theatre she will get her
tickets by simply waving her mobile phone—equipped with a FeliCa chip
for contactless payment—in front of a reader placed at the entrance.

49. Youngme Moon, “NTT DoCoMo: Marketing i-mode,” Harvard Business
Online, July 17, 2002, p. 4.

At lunchtime she goes to an Italian café for lunch. She has to pay cash
for the only time that day because they don’t take FeliCa yet. While
eating with a colleague, she books a flight to Seoul on All Nippon
Airways (ANA) for the next weekend to visit a high school friend. She
gets an e-ticket and notices that she can even do e-pre-check-in, so that
at Narita airport she will get her boarding pass by simply waving her
phone in front of a reader close to ANA’s counter. As the meal ends, she
takes a picture with her camera phone of herself and her colleague and
emails it to her mother.

That evening, on the way to the movie theater by subway, she leafs
through a fashion magazine and uses her phone to scan the QR code
next to an ad for Shiseido makeup. This opens an on-screen window
giving more details about when the makeup line will become available,
as well as prices and recommended accessories. Distracted, she can’t find
the movie theater. With her almighty keitai (mobile phone), she goes to
Japan Teletext Co.’s Web site, pulls up an interactive map of the movie
theater and, after 2 minutes of deft navigation, finds her way there. She
meets her boyfriend, who is passing the time furiously playing an online
i-mode game provided by locally famous publisher Enix.

After the movie, she starts talking with her boyfriend about how they
both like Green Day’s “Holiday” and they decide to have it as a ring-
tone. Her phone is more advanced than his, so she uses i-mode and the
Chaku-Uta music service to search and download the song in two
minutes. She also gets her favorite animated cat character from Chaku-
motion, which will move in sync with the song when her phone rings.
Then she beams the song to her boyfriend’s phone through infrared.
Meanwhile, her boyfriend was checking baseball results on i-mode
because they missed an important Yomiuri Giants’ game to see the movie,
which they didn’t much like.

This is reality in Japan, especially for the young. It is made possible
by the invisible engine of the software platform. It is already revolu-
tionizing industries in Japan beyond mobile phones. DoCoMo is becom-
ing a leading payment system and disrupting the existing industry. The
success of i-mode in Japan is the result of a technology that was just
right for the economic and social circumstances of that country. While
some of the story told above may remain uniquely Japanese, some of it
will no doubt become reality in many parts of the world.

Ba-BA-Ba-BAAAAH 209

210 Chapter 7

After encountering so many “platforms” in the mobile phone industry, one
wonders, who exactly controls (and in what sense) the mobile phone
platform? Indeed, one interesting feature of this industry that has become
particularly salient with the rise of smart phones is the struggle between
handset manufacturers, mobile operators, software platform providers,
and standard setters (such as Qualcomm) to dominate the entire ecosys-
tem. There is of course competition within each of these layers—Nokia
versus Motorola, Vodafone versus Verizon, Microsoft versus Symbian—
but, more interesting, there is also intense competition between layers.
Mobile phone operators would like handset manufacturers to yield to
their demands and design the phones in accordance with the operators’
specifications. Handset makers, on the other hand, wish to maintain
the strength of their brand name and are not very keen on customizing
their devices for each individual operator, both because it is costly and
because it would give operators too much control. Finally, given the
importance computer-like features have gained in consumers’ minds,
software platform vendors see a good reason for both mobile operators
and handset makers to bend to their will. Things are in fact even more
complicated, as some actors in this ecosystem participate in several layers.
Take Nokia, the primary sponsor and leader of the Symbian consortium.
Through its strong brand name it hopes to maintain the high ground it
has traditionally had over U.S. and European mobile phone operators. At
the same time, its Symbian efforts have been in no small part motivated
by the desire to pre-empt Microsoft (or any other software platform pro-
ducer, for that matter) from taking control of the mobile phone industry.
To counter this, as we have seen above, Microsoft has temporarily allied
itself with the other layer, mobile operators, by using Asian device manu-
facturers and branding Windows-powered phones with the operators’
logos.

That Nokia and Microsoft, two companies with very different products
and business models, can be considered to be competing against each other
illustrates the complex platform relationships in the mobile phone indus-
try. After all, no one would argue that Dell is competing with Microsoft
for control of the PC industry.

That dominance of the software platform is a critical asset in the com-
petition for dominance of the industry seems to be clear to everyone. The
handset makers were quick to realize this, which led to the creation of
Symbian. More recently the major mobile operators have taken a strik-
ingly similar step by establishing a London-based organization, the Open
Mobile Terminal Platform (OMTP), to promote standards that will give
mobile phone owners a more universal user experience while still allow-
ing mobile operators to customize their offerings. The OMTP alliance is
a clear indication that mobile operators want more control of the handsets

Which Is the Platform for Mobile Phones?

Ba-BA-Ba-BAAAAH 211

used on their networks. Through this alliance, operators will be able to
define standards regarding handsets and operating systems that major
mobile phone vendors such as Nokia, Samsung, and Motorola will be
expected to follow.50 And Qualcomm, the company behind CDMA 3G
mobile telephone standards, is also staking a serious claim with its Brew
software platform, which has risen to prominence recently through the
success of another Japanese operator, KDDI, and its au mobile Internet
service, a serious rival to NTT DoCoMo’s i-mode.

It is not yet clear what exactly “control” or “dominance” of the mobile
phone industry means. “Ownership” of the customer seems to be an
important element and one helping to tilt the balance of power in favor
of mobile operators. But those same customers are rather sensitive to
handset brands and design—witness the success of the latest Razr phone
by Motorola—so that one popular model can make its producer a domi-
nant player. Last but not least, consumers today care more and more about
the variety and quality of features and content available on their phones,
which depend crucially on the underlying software platforms. This gives
software platform providers considerable say and influence over the evo-
lution of the industry, which explains why participants from all layers are
keen on being involved in a software platform.

Thus, if one defines dominance or control as the ability to drive
innovation and ultimately extract the lion’s share of profits, the dominant
position in the mobile phone industry is still up for grabs. In particular, it
is telling that mobile phone industries in different countries have different
power structures. Japan’s NTT DoCoMo, for instance, is the envy of
mobile operators worldwide for its ability to dictate technical specifica-
tions to handset makers (including Panasonic, Sony, Sharp, Fujitsu, and
NEC) and even downplay their brand names. The situation is very
different in Europe and in the United States, where mobile operators
have little leverage with giant handset makers such as Nokia and
Motorola, and therefore little ability to drive innovation throughout the
industry.

It is not at all clear, as we write these lines, that the traditional
operating system platform as we know it from PCs and PDAs is
necessarily the relevant software platform in the smart phone space. As
David Nagel, once head of Palm, pointed out to us, it might turn out
to be a different type of platform, say a network standard or a mobile
Internet platform such as i-mode, which commoditizes all the layers
underneath.

50. “Mobile operators unite to influence handset evolution,” EE Times UK, June
23, 2004.

(continued)

INSIGHTS

• Because mobile telephone operators have generally controlled what
phones subscribers use, what software platforms run those phones, and
what applications can be downloaded onto them, the mobile phone busi-
ness has been an unusually complex environment for software platforms.
This control is being challenged by both handset makers and software
platform providers.

• The Symbian OS, Microsoft’s Windows-powered OSs, and Palm OS
are the leading operating systems and software platforms for mobile
phones. Symbian, with by far the largest market share, is a joint venture
formed by leading mobile operators in an effort to standardize on non-
Microsoft operating systems.

• Some mobile operators/manufacturers control middleware platforms
that sit on top of the mobile phone operating system; handset maker
Nokia and mobile operator DoCoMo are the leading examples.

• Although industry fragmentation and efforts by mobile operators to
control the customer experience have slowed the growth of application
developers, there are now multibillion dollar markets for ringtones and
games.

• Japan’s DoCoMo, a mobile operator, has built a highly successful soft-
ware-platform–based ecosystem that provides third-party content and
applications to phone users. DoCoMo uses its significant share of mobile
phone sales to persuade handset manufacturers to, for example, equip
phones with contactless FeliCa chips that make it possible to pay with
one’s phone.

• Several key DoCoMo decisions defied conventional wisdom. It chose
standard formats and protocols with which Internet providers and devel-
opers were familiar, relied on the market to develop content rather than
producing it themselves, and made money by charging users for data
downloaded rather than air time consumed.

212 Chapter 7

8
Dangerous Intersections

When you’re playing Bobby Fischer—and you want to win—don’t play chess.
Make sure whatever game you’re playing—be it network delivery of media vs.
stand-alone PC, whatever you’re in—that you’re not playing a game someone
else has mastered when you have an option to play another game.

—Rob Glaser, Founder of RealNetworks, May 20011

INSIDE THIS CHAPTER

• The elements of digital media platform technology

• The major players and their diverse business models

• Competition among intersecting digital media platforms

White headphones dangle from the ears of many employees at the
Microsoft campus in Redmond, Washington. These almost always
connect to iPods. Apple had sold 15 million of these digital music devices
by mid-2005. Since it came on the market in 2001, the iPod has domi-
nated the market for digital media devices with hard disks.2

Microsoft must find this grating. iPod users live in an almost entirely
Apple world when it comes to music. Apple makes the devices with its
proprietary digital software system built in. While iPods can be used with
Windows-based personal computers, iPod owners can download music
from their computer into their iPods and manage their iPod music only

1. Amy Johns, “If I Knew Then What I Know Now: Rob Glaser vs. Goliath,”
Business 2.0, May 30, 2001.

2. Apple 10-Q, 2nd Quarter of the financial year 2005, p. 15.
“Apple’s iPod Available in Stores Tomorrow,” Apple press release, November 9,
2001 (http://www.apple.com/pr/library/2001/nov/09ipod.html).

214 Chapter 8

Dangerous Intersections 215

with Apple’s iTunes application. And they can generally download music,
that is paid for, from the Internet only through Apple’s iTunes store.3 (We
mention some exceptions later.)

With its digital music device, Apple has again followed a single-sided,
vertically integrated strategy rather than a multisided platform strategy.
So far it has worked. Apple’s profits have soared. The financial markets
appear to believe that iPods have turned Apple around. Apple’s market
capitalization has increased from $8 billion in 2001, when the iPod was
introduced, to $31 billion in 2005. (Compare this 280 percent increase
to the Nasdaq, which rose only 7 percent during the same period.4)

Bill Gates, though, holds the same view on the iPod as he did on the
Mac. In May 2005 he conjectured:

I don’t think the success of the iPod can continue in the long term, however
good Apple may be. . . . I think you can draw parallels here with the
computer here [sic], too, Apple was once extremely strong with its
Macintosh and graphic user interface, like with the iPod today, and then lost its
position.5

Of course, back in 1985, when Gates sent his famous letter to Jobs
about licensing the Mac OS, his interests were aligned with Apple’s. A
bigger market for Macs would have made a bigger market for
Microsoft’s applications. Twenty years later Apple is one of many com-
petitors populating handheld devices with software platforms that do not
come from Microsoft. The digital media system that Apple uses for its
iPod empire is one that competes with Microsoft in many dimensions.
Indeed, the iPod is but one facet of competition among media platforms
for encoding, streaming, playing, managing, and limiting the piracy of
digital music.

3. RealNetworks has recently reverse-engineered Apple’s proprietary scheme, so
that currently iPod users can use the RealPlayer to purchase and transfer songs
to their iPods; however, Apple has warned that future software and hardware
improvements mean that this scheme may not work in the future (Brian Dipert,
“Song Wars: Striking Back Against the iPod Empire,” EDN, June 9, 2005).

4. Market Capitalization on June 22, 2005, was $31 billion, according to
Yahoo! Finance. Market Capitalization Apple 10-K, 2001. The Nasdaq closed
in December 2001 at 1950.4 and in June 2005 at 2091.07.

5. “Report: Gates Says iPod Success Won’t Last,” ABCNews.com, May 12,
2005.

This chapter is about that competition—one that is quite different
from what we have seen for other computer platforms. Elsewhere the
competing firms had similar business models and were making money
on the same side of the platform. They were all playing more or less the
same game. While Microsoft and Apple followed different integration
strategies, for example, both earned the bulk of their revenues from com-
puter users. With digital music systems each major player has a quite dif-
ferent business model and source of revenue than the other. Apple is
making its money increasingly from selling hardware, while Microsoft’s
profits come from increased sales of operating systems, and selling
content is a growing source of RealNetworks’ revenues.

How these intersecting platforms (see Chapter 3) compete with each
other is one of the issues we address. The lessons from the digital media
player wars are relevant well beyond this narrow category. Software plat-
forms increasingly collide with each other in a process that is sometimes
called, wishfully, convergence. They are also colliding with other multi-
sided platforms, as the faltering advertising-supported media industry
can attest in the face of the onslaught from Google, Yahoo!, and other
Web-based software platforms.

Digital media platforms provide a contrast in many other ways to the
software platforms we have discussed thus far. They also, however, have
numerous similarities. Multisided pricing strategies have been key to
igniting these platforms. Finding marquee customers on one side has
been key, too. And, as with all code-based products, they compete by
adding features—and thus grow larger—over time. (Most of the plat-
forms we discuss work with digital video data as well as digital audio
data. We focus on the audio part of these platforms and especially its
relationship to the online distribution of music. Much of what we say,
though, has parallels for video and the online distribution of movies.)

Digital Music Technology

The software technology for creating, delivering, and playing back digital
music files has several components that help shape competition among
the digital music platforms. These are different from the technologies we
have discussed thus far.

216 Chapter 8

Dangerous Intersections 217

To begin with, the music has to be in digital form. Much recorded
music is already digital. But the raw digital files are too big for distrib-
uting music over the Internet or downloading music into smaller devices
as digital music files. For those who want to store their music on their
computer hard drives, Beethoven’s nine symphonies would take up 3,500
megabytes of hard disk space if they were downloaded directly from the
CDs.

The invention of software-based algorithms for compressing these
large digital audio files on one computer and decompressing the result-
ing smaller files on another computer has been critical for the use of
digital music on computer networks and smaller devices. This software
is called a “codec,” short for compression/decompression. The codec
used by iTunes, for example, reduces the size of the original file by up
to 90 percent, making all nine of Beethoven’s symphonies fit into a more
manageable 350 megabytes.

Most codecs make the original file smaller by eliminating portions of
the sound that humans cannot hear, such as very high-pitched tones, or
by eliminating portions of the file that will not reduce the quality too
much. The codec also pulls other tricks to make the file smaller. (Media
players have separate codecs for audio and video; some have a codec
only for audio.) When the user wants to listen to music, the software
decompresses the file to reproduce the song as close to the original as
the technology permits. (Users can often choose the degree of compres-
sion. Greater compression results in smaller files but poorer sound
quality.)

After it has been compressed through one of these algorithms, audio
data are put into a “container”—a data file—that can be used for
transport and storage. The container file is often referred to as the
format. A song stored in an MPEG container file, for example, is in
the MPEG format. Most container files can contain multiple audio
and video tracks encoded with different codecs. The container also
has a label that describes various characteristics of the media data,
including the type of compression. In the case of audio and video files
this label has information that helps synchronize the audio and video
tracks when they are played back. (There isn’t necessarily a one-to-
one correspondence between a codec and a file format; indeed,

218 Chapter 8

codecs are often independent of the format. However, some pairs of
the file formats and codecs have been developed jointly and are used
together for legal or technical reasons. The Windows Media codecs
that are usually stored in a Windows Media file format are one
example.)

The container may also have information related to digital rights man-
agement (DRM). A music file downloaded from iTunes, for example, is
subject to a license agreement that Apple has with the owners of the
music. The agreement says that users can play a song on no more than
five authorized computers but can download it to an unlimited number
of iPods. After a track is encoded to reduce its size, DRM technology
will also encrypt it so that it can be decrypted and played only with the
proper set of keys or passwords and thus so that only authorized users
can play it.

You must have a media player on your computer to be able to play
audio files that you have received from a content provider over the
Internet. As a practical matter, that means that you have to have installed
a media player that can read the file sent by the content provider
and decompress it. Your media player must be compatible with the
format and codec used by the content provider. Moreover, it must
also understand the DRM technology if one is used. The firms that make
digital media platforms have, however, chosen different formats and
codecs.

So how do all these components fit together?
For you to buy Charlie Parker’s rendition of “Salt Peanuts” for your

iPod, “Salt Peanuts” takes the following journey. For iTunes to carry
“Salt Peanuts,” Apple has to have a deal with the Savoy Jazz music label,
which owns the right to this track. Most likely Apple has worked out a
deal with Savoy Jazz for many of its songs. Apple provides the publisher
the iTunes Producer tool (including the “signed iTunes labels”) to encode
their music using the AAC codec. After Savoy Jazz has encoded the
master tracks of the songs that it has agreed to distribute through iTunes,
it provides iTunes with these encoded tracks for distribution. (It is pos-
sible that Apple rather than Savoy does the encoding.) Apple uses its
media system software to put it on its servers in an MPEG format file,
the container used by iTunes Music Store.

You now have to have iTunes software installed on your computer
to buy “Salt Peanuts” from Apple and download it onto your
machine. (You couldn’t have used another media player to download
the iTunes song. Even though it would probably understand both the
MPEG format and the AAC codec, Apple uses proprietary DRM
technology that prevents other players from playing that track.) After
you pay the 99 cents for the track, Apple’s web server will deliver the
song to you over the Internet, along with the keys needed to unlock
the DRM protection. The iTunes software arranges to store it on your
hard drive.

You can use the iTunes software to play “Salt Peanuts” on your com-
puter as often as you want. Each time you listen, iTunes retrieves infor-
mation from the file, decrypts and decompresses the audio data, and
plays the song. If you want to download it onto your iPod, you just direct
iTunes to do that after connecting your iPod. But your iPod has its own
software platform that coordinates with iTunes. As on your computer, if
you want to hear a song, the iTunes software on the iPod retrieves the
file, decrypts, decompresses, and plays. You can also download the song
to other computers and devices, but the DRM will stop this if you try
to do this for more than five computers.

Of course, much digital audio is not destined for an iPod, nor is it nec-
essarily even distributed over computers. Much content still comes on
CDs or DVDs. People “rip” music from these onto their computers.
Their media players will most likely give them choices on the extent to
which they want to compress the music. People can generally download
the music from their computers onto their digital devices. So you could
buy a Charlie Parker album with “Salt Peanuts” and download it onto
your iPod that way—or onto your MP3 player or other digital music
devices.

People also get audio and video content “streamed” to them over the
Internet. They get to see or hear the content just as they would watch a
movie on television or listen to a radio broadcast. It is possible to listen
to hundreds of radio stations over the Internet. Many content providers
such as cnn.com offer audio clips and in some cases video clips on their
sites. And this technology is being used on cable and other systems for
“video on demand,” which plays movies over communication networks.

Dangerous Intersections 219

220 Chapter 8

As with listening to the radio or watching television, you often can’t save
streaming files without special tools.

Nevertheless “streaming technology” has been one of the other
key innovations driving the growth of digital media systems. The audio
and video signal is sent to the device and it plays an infinitesimal
time after the signal leaves the transmittal device. The streaming
server does this by sending small portions of the file, called packets.
These are stored in a buffer on the computing device and played
back. The streaming server continues to replenish the buffer. As a result,
when all this works properly, the user perceives the file as playing in real
time.

If there is too much traffic on the Internet, there may be a delay in
replenishing the file, and the user will see that a movie has frozen or a
song has been interrupted. Moreover, the quality of the playback is
highly dependent on the speed of the user’s Internet connection; slower
speeds require the use of greater compression and thus entail greater loss
of quality.6 Indeed, streaming has become viable only because improve-
ments in codecs have made it possible to reduce file size without sacri-
ficing too much quality, and the spread of broadband has increased the
size of the data pipe going into many homes and offices.

Many software components have helped create the now vibrant
market for distributing audio and video content over the Internet. Media
players are key ones and the component that most people use.

Evolution of Digital Media Systems

Software to create and manage digital audio files dates back to at least
the early 1980s. Before the early 1990s, however, PCs did not have
enough computing power to use media to any substantial degree.

In 1991, Microsoft and Apple both introduced “multimedia exten-
sions” to their software platforms. These additional services, made avail-
able through APIs, provided support for media-related tasks, such as
playing audio. For the most part, these early multimedia features were

6. With downloaded content, large, high-quality files can be transmitted via
slower connections, albeit with correspondingly longer download times.

Dangerous Intersections 221

used by software applications for sound effects or by CD drives for
playing music CDs. IBM, the other major contender in PC operating
systems at the time, also introduced multimedia features into its operat-
ing system (OS/2) in the early 1990s.7

Apple and Microsoft evangelized the use of media-related APIs use by
developers. Microsoft released the Microsoft’s Multimedia Developers
Kit and Apple its QuickTime Software Developer Kit. Both companies
released significantly improved tools for developers and content
providers starting in 1995.8 At this point, media players were two-sided
platforms, appealing to users and developers.

Interestingly, unlike many other platform services, Apple and
Microsoft each ported their media-related services to each other’s plat-
forms by providing separate applications that ran on each other’s plat-
form. We return to this later in the chapter.

The Internet made another platform side possible. From the news to
the blues, many Web-based businesses started providing audio and video
content that consumers could download onto their PCs. The New York
Times began to provide online content through its @Times services via
AOL. The House of Blues posted interviews with artists online, as well
as broadcasts of concerts.9 Apple, Microsoft, and other media player
vendors encouraged these content providers to make their content

7. “Microsoft Ships Windows with Multimedia Extensions 1.0,” Business Wire,
August 21, 1991; Erica Schroeder, “Apple’s Multimedia Effort Gains Support;
QuickTime Backers Meet at MacWorld,” PC Week, January 20, 1992. IBM
bundled Multimedia Extensions to Program Manager (MMPM/2) with OS/2 2.1
in June 1993 (Gabrielle Gagnon, “OS/2. IBM’s OS/2 2.1 Operating System,” PC
Magazine, May 31, 1994).

8. John Sayers and Rockley Miller, eds., “A Look Back: The Year in Review,”
Multimedia & Videodisc Monitor, January 1, 1992; “Apple Ships Quicktime for
Windows to Provide Cross-Platform Multimedia Standard,” PR Newswire,
November 10, 1992; “Apple Rolls Out QuickTime 2.1 for Macintosh,” Multi-
media & Videodisc Monitor, October 1, 1995; Andrew Singleton, “Wired on
the Web: It’s Not Just for Breakfast Anymore,” BYTE, January 1, 1996.

9. Mark Berniker, “ ‘Times’ and NY 1 Team for CD-ROM (Telemedia Week)
(includes related article on combining TV with multimedia),” Broadcasting &
Cable, January 9, 1995; Marilyn Gillen, “House of Blues Stands at the Interac-
tive Crossroads: (Company Forms the House of Blue Media),” Billboard,
January 14, 1995.

222 Chapter 8

available for their media platforms. Each vendor provided software that
read the digital content, encoded it using their codec, and put it into a
file format that their media players could read. Many content providers
made content available for the major media player platforms. Media
players were three-sided platforms.

Beginning in 1995, with the growing popularity of the Internet,
media player platforms started emerging that focused more on
compression and streaming so that users could receive music and
video files over the slow telephone lines that were the predominant
method of connection to the Internet in the late 1990s. Shortly
thereafter, software for compression and streaming video over the
Internet also started appearing. (Streaming audio technology is a
prerequisite for streaming video content, which generally has a sound
track.) Apple, Microsoft, Motorola, Oracle, Precept Software, Progres-
sive Networks (RealNetworks), VDONet, Vosaic LLC, Vextreme, and
Xing Technology Corporation were some of the pioneers in the creation
of streaming audio and video media software. Many of these firms,
largely unremembered a decade later, were acquired by other players or
folded.

Among the startups, Progressive Networks, which became RealNet-
works, was the main success story. Its RealAudio media player, intro-
duced in April 1995, enabled content providers to stream audio content
over the Internet and enabled computer users to play this content over
the slow dial-up connections that were mainly used at that time. By 1997,
RealNetworks was delivering more than 80 percent of streaming audio
over the Internet.10

As is typical in these platform industries, firms engaged in leapfrog
competition to offer better compression, streaming, and other features
than their rivals. Consider the innovation that has taken place in digital
media platforms since 1995. RealNetworks was the first to add stream-
ing video to its player in early 1997. Apple followed, adding streaming
audio to its media player in March 1998, and Microsoft did the same in

10. Archived news on RealAudio.com (http://web.archive.org/web/
19961220180029/www.realaudio.com/prognet/prognews.html [downloaded
June 18, 2005]); Thomas W. Haines, “RealNetworks Hopes to Make Real
Profits When Net Matures,” The Seattle Times, October 1, 1997.

Dangerous Intersections 223

Table 8.1
Media Player Features Over Time

Date Product Features Added

Aug. 1991 Multimedia Media Player can start, stop and pause the
Extensions for playback of sound or animation files. Music
Windows Box can play and catalog audio CDs.

Dec. 1991 QuickTime 1.0 Multimedia extension added to Mac OS
System 7. Users could combine animation,
sound, and video, and incorporate the results
into Macintosh applications.

July 1995 RealAudio 1.0 RealAudio 1.0 released. It can stream audio
from the Internet (in the RealAudio format
and codec).

Dec. 1996 Flash 1 Macromedia acquires FutureSplash Animator
and rebrands it the Flash Player.

Jan. 1997 RealVideo 1.0 RealVideo released and bundled with
RealAudio in RealPlayer. Plays and streams
video.

May 1997 Flash 2 Adds sound capabilities, including support for
synchronizing. WAV and AIFF (Audio
Interchange File Format) sounds to
animations.

Mar. 1998 QuickTime 3 Introduces real-time streaming of digital
content over the Internet.

July 1998 Windows Media Streams audio and video.
Player

May 1999 RealJukebox RealJukebox introduced. Users can play,
record, organize, and search for music from
single interface, rip CDs, find and download
music from the Internet, sync with
portable device.

May 1999 Flash 4 Adds streaming MP3 audio.

June 1999 QuickTime 4 Allows streaming of both live and stored
video and audio over the Internet. Uses
nonproprietary industry standard RTP and
RTSP protocols.

Aug. 1999 Window Media Windows Media integrates DRM.
DRM

July 2000 Windows Media Integrated a digital audio and video player,
Player 7 “jukebox” features, and Internet radio tuner.

Capable of CD burning and copying.

224 Chapter 8

Table 8.1
(continued)

Date Product Features Added

Jan. 2001 iTunes 1.0 iTunes, jukebox software-introduced. Users
can listen to audio CDs, MP3, or Internet
radio, rip CDs and store them on hard drive
in MP3 format, maintain music library,
burn CDs, and download songs to certain
MP3 players.

Apr. 2001 QuickTime 5 Full support for MPEG-1 standard and
Flash 4.

Dec. 2001 RealOne Player Combines functions of RealPlayer and
RealJukebox with a media browser. Includes
support for audio and video streaming,
burning CDs.

Nov. 2001 iTunes 2.0 Adds MP3 CD burning, an equalizer, and
cross fading.

Mar. 2002 Flash 6 Macromedia allows developers to embed
video streams for playback in the Flash
Player.

May 2002 QuickTime 6 Support for MPEG-4, AAC, DVC Pro (PAL),
and more.

July 2002 iTunes 3.0 Adds Smart Playlist feature—allows user to
automatically create mixes from songs in
music library based on chosen criteria.

Aug. 2002 RealOne Player Supports all major file formats. Adds DVD
2.0 playback support.

Sept. 2002 Windows Media Built in support for Fast Streaming
Player 9 technology.

Apr. 2003 iTunes 4/ Integration of iTunes Music Store; music
Quicktime 6.2 sharing between Macs. Adds DRM.

June 2003 QuickTime 6.3 Support for 3GPP enables users to share
video, audio, and text on wireless devices.

Oct. 2003 iTunes 4.1 First version of iTunes for Windows.

Apr. 2004 RealPlayer 10 Supports all major media formats and codecs
(RealAudio, RealVideo, AAC, MP3, MPEG-4,
Windows Media, QuickTime) and the ability
to play music from all major online music
stores. Integrated music download store.
Ability to fast forward and rewind within
streams without delay, and to pause live
streams. DRM included.

Dangerous Intersections 225

July 1998.11 Other companies entered with media players. Adobe’s Flash
became a leading media player for the distribution of video content
almost overnight in 2005. Table 8.1 shows the major media player plat-
forms that were introduced between 1995 and 2005, their capabilities,
and their major components. (In addition to these media systems, a
number of open-source and small commercial systems have also been
introduced.)

These media player vendors were not all in the same business. They
were pursuing different strategies for making money, as we see next. But
they did have one important thing in common: they gave away the media
players to users.

Competition Between Intersecting Platforms

Hardly anyone pays directly for using a media player. All of the major
media player developers have Web sites where you can download the
latest versions of their basic media players for free. So if you want to
get the most recent version of RealNetworks’ media player, as of June
2006 you could go to real.com and click on the free download link

Table 8.1
(continued)

Date Product Features Added

Sept. 2004 Windows Media Built-in Digital Media Mall gives users choice
Player 10 of online stores. Supports Janus DRM, which

allows time-sensitive DRM (secure clock
technology).

June 2005 QuickTime 7 Preview release. Supports playing and
streaming high-definition video.

June 2005 iTunes 4.8 Streams QuickTime Video.

Aug. 2005 Flash 8 Integrates new video codec for improved
performance.

11. “Progressive Networks Ships RealAudio System,” RealNetworks press
release, July 25, 1995; “QuickTime 3 and QuickTime 3 Pro Available Now,”
Apple press release, March 30, 1998; “Key Corporations, Internet Sites and
Industry Vendors Announce Deployment, Support,” Microsoft press release, July
7, 1998.

226 Chapter 8

to get a copy of RealPlayer 10.5. Real made its stand-alone media player
available for free from the start. When asked, “What’s the best move
you’ve made?” Rob Glaser, its chief executive and founder, responded,
“Probably making the RealPlayer free.”12 Many PCs for home use come
with several media players at no extra charge. These include the media
players that are included in the Mac OS and Windows as well as several
other media players, such as MusicMatch or RealPlayer. Media players
are also included in other products such as music devices or services such
as AOL.

Some media player vendors sell premium versions of their players.
Apple, for example, charges $29.99 for a beefed-up version of Quick-
Time, and RealNetworks charges $19.99 for a premium version of
the RealPlayer, RealPlayer Plus. (The premium RealPlayer Plus is also
available bundled with the Real SuperPass service for a fee of $12.99
a month.) But nothing suggests that any company sees media players
as a significant source of revenue. The financial statements for compa-
nies such as Apple and RealNetworks do not break out media player
sales, nor do they suggest that these sales provided a material source
of earnings. Instead, vendors of media player software hope that
through free distribution they will achieve profits from increased sales of
complementary goods and services. The mix of such goods and services
varies across vendors and, for some vendors, has varied across time as
well.

Where Does the Money Come From?
So how do media player vendors make their money? What motivates
them to make the significant investment in developing complex media
platforms and giving the media players away for free? We consider the
answers to these questions next. Table 8.2 summarizes the results for
easy reference. Like other software platforms, media players subsidize
one customer group to get other customer groups on board. Unlike other
software platforms, different media software platforms secure profits
from different customer groups. We illustrate this with a detailed dis-
cussion of Apple and RealNetworks.

12. Johns, “If I Knew Then What I Know Now.”

Table 8.2
Sources of Revenue from Media Players

Media Player Media Computer Major
Software Server Content Application Hardware Content Operating Source of
(Free Version) Software Providers Developers Sales Sales Systems Profits

Apple — 0 0 + + + + Hardware sales,
and operating
systems

RealNetworks — + + + 0 + 0 Content sales

Microsoft — 0 + + 0 + + Operating
systems

Adobe — + + + 0 0 0 Media server
sales

227

228 Chapter 8

Apple Apple first demonstrated the QuickTime product at an Apple
developer conference in May 1991.

Apple released QuickTime as a separate add-on in December 1991 and
included it as part of the Mac OS System 7 the next year. It also ported
QuickTime to Windows and started shipping that version in 1994. As a
result, most copies of QuickTime—and the related iTunes software intro-
duced in 2001—run on Wintel computers and not on Macs.13

Apple also made the software necessary for distributing QuickTime
files available for free. It eventually made the source code for its stream-
ing server software available so that others were free to create versions
for non-Macintosh servers. Like other software platforms, with the
exception of video games, Apple has made the API-based services in
QuickTime available to developers for free, has provided free software
to developers to help them write programs using QuickTime, and has
spent effort evangelizing its media platform among the developer
community.14

This poses a mystery: How does Apple make money from its consid-
erable investment in improving and porting QuickTime?

The inclusion of QuickTime with the Mac OS does not require much
explanation. As with any feature added to an operating system, it makes
the operating system more valuable to some end users and therefore
tends to increase sales and possibly the price that the vendor can charge.
While it is impossible to know the extent to which QuickTime increased
sales of Macs, we note that a 1 percent increase in sales would generate
revenues of about $50 million per year.15 It is not a bad strategy, and it
is in any case one followed by many software platforms. We return to
this in Chapter 11.

Apple had to make a trade-off in considering whether to port
QuickTime to Windows. On the one hand, making its media technology

13. Schroeder, “Apple’s Multimedia Effort Gains Support”; Carolyn Said,
“QuickTime 2.0 Now Plays on Windows,” MacWEEK, November 28, 1994;
“Apple Unveils New iMacs with CD-RW Drives and iTunes Software,” Apple
press release, February 22, 2001.

14. http://developer.apple.com/darwin/projects/streaming/. Apple does charge for
the SDK for QuickTime.

15. According to the Apple 10-K filing for 2004, Macintosh net sales were
$4,923,000,000 (p. 28).

Dangerous Intersections 229

available for free to developers and users of competing software plat-
forms strengthens those platforms and therefore harms Apple. On the
other hand, making its media player technology available for these rival
software platforms encourages content providers to make content avail-
able for that technology. That in turn makes the Mac OS with Quick-
Time more appealing to end users. Apple presumably decided that having
a popular media player for its software platform was more important
than losing some sales to competing software platforms. Microsoft made
the same decision.

Apple’s investment in QuickTime, however, began paying significant
dividends by the turn of the century when it introduced the iPod/iTunes
music system. Apple introduced the now-iconic iPod in October 2001.
These devices could download music (at first only using the Mac OS,
and later using Windows) using iTunes. iTunes is based on the Quick-
Time media player and allows consumers to do many of the things they
can do with other media players.16

Apple opened its iTunes Store in April 2003. It charged consumers
99 cents per downloaded song. Apple, however, doesn’t try to earn
significant profits from the iTunes Store. Instead, the iTunes store and
media player platform are designed to increase sales of iPods and to some
extent Macs. As we discuss later, Apple has tried to design the
iTunes/iPod system so that it doesn’t work with competing media players
or devices. That helps ensure that Apple doesn’t lose revenues to others.
Thus Apple has adopted a “give away the blades and sell the razor” strat-
egy. That pricing strategy is unique among the industries we have
considered.

Apple had sold 50 million iPods by March 2006, and 1 billion music
tracks by February 2006. The iPod/iTunes music system helped Apple
earn record profits in 2005 and accounted for 32 percent of Apple’s net
sales in 2005. One brokerage firm has estimated that sales of the high-
margin iPod portable players will top 24 million units in 2006.17

16. “Apple Unveils New iPods,” Apple press release, July 17, 2000; “Apple
Launches iTunes for Windows,” Apple press release, October 16, 2003.

17. “iTunes Music Store Downloads Top One Billion Songs,” Apple press
release, February 23, 2006; Apple 10-K for financial year 2005 and quarterly
statements 2006; Howard Wolinsky, “What’s next for iPod? Popular gizmo may
get makeover,” The Chicago Sun Times, February 19, 2006.

230 Chapter 8

RealNetworks Rob Glaser, the force behind RealNetworks from its
beginning, worked on Microsoft’s media platform in the early 1990s. He
left and formed Progressive Networks in early 1994. This startup
launched its RealAudio Player in April 1995. In early 1996, the Seattle
Post-Intelligencer reported that more than 3 million people had installed
the RealAudio Player.18 That was about three times more installations
than Xing, its nearest competitor, had achieved.

Progressive Networks adopted two classic multisided strategies to
establish its position.

First, it made its player available for free. As it noted in its first 10-K
filing two years after it launched RealAudio, “From its inception the
Company has strategically chosen to offer its RealPlayer software to indi-
vidual users free of charge to promote the widespread adoption of its
client software and speed acceptance of internet multimedia.”19 With the
development of browsers and the expansion of the Internet, it was able
to distribute its free player easily through Web sites where people could
download it.

Second, it developed the second side of its platform, the content
providers. According to the Seattle Post-Intelligencer, “Progressive has
teamed with a host of companies and organizations to serve up a cor-
nucopia of internet audio, from the State of the Union address to the
music of Madonna and Meatloaf to a historical tour of the Oscar Mayer
Wienermobile.”20 Progressive Networks gave content providers the
encoder software they needed to make their content available for
RealAudio.

During its early years, Progressive’s main source of revenue was from
the sale of RealAudio servers—the software that content providers
needed to stream audio to users. And even here it appears that Progres-
sive gave away a basic version of the server software, charging only for
more advanced versions that streamed content to a large number of
users.

18. http://web.archive.org/web/19961220183228/www.realaudio.com/prognet/
pr/prodannounce.html; Warren Wilson, “Now Hear This: Seattle Company
Leads the Way with ‘Streaming Audio’ for Internet Sound,” Seattle Post-
Intelligencer, February 19, 1996.

19. RealNetworks 10-K filing for 1998, p. 4.

20. Wilson, “Now Hear This.”

Dangerous Intersections 231

Glaser’s company changed its name to RealNetworks and went
public in November 1997. Its first 10-K filing with the Securities and
Exchange Commission provides more insights into the strategy followed
by this innovative firm. By this time RealNetworks had expanded
from streaming audio into streaming video. At that time its businesses
consisted of the RealSystem for streaming audio and video, “a
web-site designed to promote the proliferation of streaming media
products,” and a network of Web sites that were supported by adver-
tising revenues. About 78 percent of its revenues came from software
licenses. Although these aren’t broken out, they appear to come
mainly from licensing server software. (RealNetworks also introduced a
premium version of its player in late 1996, from which it received licens-
ing revenues.)

It made RealPlayer widely available to consumers. According to its
filing with the SEC,

This strategy has been pursued through various means, such as offering the
Company’s RealPlayer and Basic Server free of charge over the internet, bundling
the Company’s products with those of other major vendors and using multiple
distribution channels, including both direct sales and indirect original equipment
manufacturer (“OEM”) and retail relationships.21

In the two years since it introduced RealAudio it had made consider-
able progress. RealNetworks reported in its SEC filing that more
than 40 million copies of RealPlayer had been downloaded, more than
260,000 Web pages had content encoded in RealPlayer, and more
than 1,200 software developers had joined its development program.22

RealNetworks envisioned pursuing three related businesses as of 1997:

1. Licensing server software. Content providers need this software to
make audio and video available to RealPlayer users.
2. Expanding its Internet commerce business for content providers and
developers. At the time this included RealNetworks products, streaming
media tools and utilities for developers, and training.
3. Aggregating content for streaming media. It appears that RealNet-
works hoped for advertising revenue from building a network of Web
sites that had streaming content.

21. RealNetworks 10-K filing for 1998, p. 5.

22. Ibid., pp. 2–20.

232 Chapter 8

In light of RealNetworks’ subsequent evolution, it is interesting that the
company at this point in time did not seem to envision that it would
make money by providing its own content.

RealNetworks quickly built a five-sided platform consisting of users,
content providers, developers, server manufacturers, and other partners.
In 1998 it had 56 million unique users of its players. That year CNN,
ESPN, ABC, Bloomberg, SportLine USA, and Broadcast.com started
offering content in Real. The RealGuide provided users with access to
more than 1,700 live radio and television stations. The company added
850 registered developers in 1998, giving it more than 2,000 in its
program.23 And finally, RealNetworks had persuaded America Online,
Netscape, and a number of PC manufacturers to bundle its RealPlayer
with their products.

But profits were elusive. They were not going to come from free media
players for consumers. And unlike Apple and Microsoft, RealNetworks
had no prospect of earning money from operating system sales. Nothing
prevented the company from pursuing the hardware-centric strategy that
later proved successful for Apple. But RealNetworks had always spe-
cialized in software. It didn’t have hardware in its genes.

Over time, RealNetworks shifted its pursuit of profits from selling
server software toward selling content that relies on its digital media plat-
form. As of the summer of 2005, RealNetworks had three major content
offerings.

First, its Real Music Store had more than a million songs. Consumers
could download these to more than a hundred different digital music
devices. Its Rhapsody service provided a variety of subscription services;
the basic version allowed users to play songs on their computers but not
take permanent possession of the music. This subscription service also
worked with portable devices through its Rhapsody To Go program. In
December 2005, Real’s Music Store had about a 1 percent share of the
online digital music market, compared to iTunes’ share of 82 percent.24

In addition, Rhapsody provides access to more than fifty radio stations,
including many without advertisements.

23. Ibid., p. 4; RealNetworks 10-K filing for 1999, p. 4.

24. NPD Musicwatch Digital, February 2006.

Dangerous Intersections 233

Second, RealNetworks offered audio and video content through its
SuperPass program. Video content included films from iFilm, broadcasts
from CNN, ABC, and BBC, and sports radio. Audio content includes
access to the radio stations mentioned above. Users also got some free
music downloads as part of the package. In May 2005, RealNetworks
had 1.85 million paying subscribers, one million of those being to its
music subscription services.25

Finally, RealNetworks got into gaming in 2000. According to Glaser,

The game strategy is to be publisher, developer and distributor to focus
on platforms used by regular consumers, not just hard-core game lovers.
You don’t need to purchase a special console and we believe that the
accessibility of the games is a key to broad demographic penetration.
With[in] the foreseeable future, the most important . . . platform for us is the
PC. The second most important one, which will grow . . . is the mobile
phone.26

As part of these efforts RealNetworks has purchased several game-
related companies, including GameHouse and Mr.Goodliving.27 Real-
Networks has two major game offerings: RealArcade, which allows
people to play games online, and RealArcade GamePass, which allows
people to download games.

As a result of these content-related strategies, RealNetworks has
obtained a greater portion of its revenue from consumer subscriptions
and less from licensing software for corporate customers. In 2004,
RealNetworks earned as much as 70 percent of its revenue from
content sales, though it had earned no such revenue before 2000.28

Within consumer products, about half of revenues were from sales
of video (including the Real SuperPass subscription service), 30 percent
were from music sales, and the remaining 20 percent were from game
sales.

25. RNWK Q1 2005 RealNetworks Earnings Conference Call, May 4, 2005.

26. Ibid.

27. “RealNetworks Revenue Grows 29% in First Quarter of 2004,” RealNet-
works press release, April 28, 2004; “RealNetworks Enters Mobile Games
Market: Acquires European-Based Mr. Goodliving Ltd.,” RealNetworks press
release, May 11, 2005.

28. RealNetworks 10-K filings for 1998, 1999, and 2005 (p. 22); Erich Leuning,
“RealNetworks Turns on Subscription Service,” Associated Press Newswires,
August 15, 2000.

There’s an important strategic complexity here: RealNetworks com-
petes increasingly with other content providers, who themselves have dif-
ferent strategies for making money from various sides of their platforms.
Many of these content providers—Yahoo! for example—earn revenues
mainly from advertising rather than selling content.

Platform Integration and Interoperability
The companies that have built media software platforms differ in two
other related ways that affect how they compete with each other. One
involves the extent to which they operate particular sides of the plat-
forms themselves—that is, the extent to which they integrate into one of
the business sides as opposed to encouraging other firms to provide those
services. The other concerns the extent to which they interoperate with
other platforms.

At one extreme is Apple. Its iPod/iTunes platform is integrated into
the hardware and content-provider sides of the media platform, and it
doesn’t interoperate with any other platform. At the other extreme is
Microsoft, whose media platform is integrated into neither hardware nor
content and which interoperates with all other media platforms that
allow it to do so. In the middle are vendors like RealNetworks, which
limit interoperability—but not completely—and integrate—but only par-
tially—into the content provider side.

Figure 8.1 summarizes where the various media platforms fall in terms
of integration and interoperability. For each it shows whether the plat-
form is integrated fully or partly into a hardware device or the provision
of content and the degree of interoperability with other platforms. Apple
and Sony operate vertical silos that do not interoperate, at least inten-
tionally, with anyone else. Microsoft and many of the media players that
rely on its APIs are unintegrated and highly interoperable. RealNet-
works’ RealPlayer lies in between.

Why do these companies choose such different business models for the
same line of products? As we have noted, each company has different
strengths, and their goals vary.

Apple has kept the iTunes/iPod platform tightly integrated. It has lever-
aged its strength of having software and hardware engineers work closely
together to create products that are elegant and easy to use for

234 Chapter 8

Dangerous Intersections 235

consumers. For now, at least, this has given Apple a significant compet-
itive advantage over rivals.

RealNetworks has built a more open media player platform than
Apple. It is trying to increase the reach of its media player and content
provision to the widest scope of devices and industries. It has deepened
its relationships with cable operators and mobile phone producers.29

And, as we noted before, it has developed Rhapsody To Go for increas-
ingly popular mobile devices.

Microsoft also operates an open media player platform. The Windows
Media Player platform enriches the overall Windows software platform.
The more open and interoperable the Windows Media Player platform
is, the more attractive the Windows platform becomes.

Microsoft thereby earns revenues from increased Windows sales.

Product Differentiation and Multihoming
Digital media platforms differ from other software platforms we have
discussed in two significant ways. First, in all of the industries we have
discussed, competing firms served roughly the same platform sides and
earned their profits from similar sides. Makers of PC operating systems

Fully Integrated Semi-integrated Un-integrated

iTunes Software

iTunes Music
Store

Connect Music
Store

Minidisc, Network,
Walkman

Sony SonicStage
Software

Real Music Store

RealPlayer

iPod
iPod

Helix
DRM

Device

WM
DRM

Device

WM
DRM

Device

MSN
Music
Store

WM DRM Stores
(e.g., Napster)

Windows Media
Player

Interoperable (same company)
Interoperable through licensing
Interoperable through reverse engineering

Figure 8.1
Models of varying integration and interoperability in media players.

29. “Wall Street Web Stocks: Napster and RealNetworks CEOs Sound Off on
Yahoo—Update 2,” AFX International Focus, June 17, 2005.

236 Chapter 8

all make their money from end users, video game console makers make
their money mainly from selling games or securing royalties from other
game makers, PDA makers make money from end users, and smart tele-
phone manufacturers make money from device makers, who pass the
costs on to end users. In contrast, the current models for digital media
platforms range from Microsoft, which earns its return on media systems
mainly from licensing its operating system; to Apple, which increasingly
earns its profits from selling digital music devices; Real, which earns its
profits mostly from content subscriptions; and Adobe, which makes
profits from Flash server sales.

The other key difference is the importance of usaging several plat-
forms, or what we have called multihoming. In most sectors, most end
users use a single software platform; that is the case with PCs, PDAs,
and smart mobile phones. People may have more than one video game
console, but they seldom buy two of the most recent generation. Multi-
homing is more prevalent on the other sides of these industries. Appli-
cation developers often write for multiple platforms and sometimes port
applications (especially games) from one platform to another. Some of
the large hardware manufacturers also engage in some multihoming. For
example, IBM and Hewlett Packard sell computers with different soft-
ware platforms. Most makers of PDAs and mobile telephones, however,
use just one software platform.

In contrast, multihoming is prevalent on almost all sides of media plat-
forms. Many people use several media players. Some might watch a
movie using QuickTime, listen to streaming music using RealPlayer, and
manage their music collection using iTunes and listen to it on their iPods.
About 40 percent of consumers who used media players use two or more
every month.30 Most content providers make their audio and video mate-
rial available in several formats. More than 85 percent of the most
popular Web sites had content in at least two of the following formats:
Windows, Real, QuickTime, or MPEG formats. On average they had
files in 3.1 different formats as of late 2005.31 (Stores operated as part

30. Nielsen NetRatings, Custom Rollup Reports, January 2005 to December
2005.

31. Media Metrix, Top 1000 Website Survey, Dcember 2005.

Dangerous Intersections 237

of one of the vertical silos such as iTunes and Google’s videostore are
the key exceptions.) Many PC manufacturers install multiple media
players for their users, though digital music devices and mobile phones
typically have just one. A 2006 study found that large manufacturers
install an average of 5.6 media players on consumer and small-business
computers sold in the United States.32 (Multiple media players are not
common, however, on mobile phones and other small computing
devices.)

Multihoming appears to be prevalent for media platforms for several
interrelated reasons. For one, media player platforms provide many dis-
tinct services valued differently by heterogeneous consumers. These plat-
forms provide both audio and video, downloading and streaming, and
interoperability with non-PC devices. It doesn’t cost consumers much to
use several platforms—it is easy to get several media players for a PC
and to switch between them, depending on the task. Their choices are
based on what they want to do, whether the task is streaming a movie
clip or downloading a song from iTunes or Napster. One reason is that
the decision by consumers to use a particular media player depends on
decisions by content providers to make material available for particular
media players. Consumers might prefer to use Windows Media Player
with their iPods, but Apple’s iTunes store prevents that. In other cases
content providers make decisions to use a particular media format
because it is better in some relevant respect; that is why many stream-
ing video providers rely on Flash.

Another reason, though, is that media player platforms have differenti-
ated themselves to appeal to different consumers. They have developed
different looks and features that appeal in varying degrees to different
users for different uses. For the past several years, for example, PC
Magazine has recommended MusicMatch for organizing and playing
downloaded music but not for playing video or streaming content (for
which MusicMatch offers minimal capabilities). iTunes, on the other
hand, has distinguished itself by being very good at managing music
libraries and working with the popular iPod. The newest release of

32. LECG, “Survey and Analysis of Media Players Installed on New PCs Sold
in Europe and the United States,” March 2006.

238 Chapter 8

Windows Media Player is recommended for organizing mixed media
libraries, such as those that include music as well as photos. RealPlayer is
currently the only player that allows users to integrate music tracks with
different DRM protection schemes, so a person can put songs bought
from iTunes and those purchased from Real’s Music Store in the same
playlist.33 Flash is the most compact player, which makes it very quick to
download. That is a plus for content providers who want to standardize
on a particular media player of their choice. They automatically down-
load it to the PC of the consumer who tries to view their content.

Making content available exclusively for a single media player is
another important differentiation strategy. RealPlayer pioneered this
approach in 2001. It struck an exclusive deal with Major League Base-
ball to host audio broadcasts of games and video highlights that would
only be available to people who had a subscription with Real and used
its RealPlayer. Other exclusives followed. As of June 2005, the newest
album of the popular rock band the White Stripes was only available
before its official release on Real’s media platform. Also, all free online
content from the hit television show “American Idol” will be offered
only in Real’s formats.34 Apple adopted a similar tactic with iTunes.
Although people can obtain many of the songs on iTunes from other
online music stores, the iPod is designed so they should only be able to
use it with songs they have purchased and downloaded from the iTunes
store. (As of this writing, RealNetworks has been able to reverse Apple’s
iPod technology to sidestep these restrictions, but this compatibility is
likely to be eliminated by Apple in the next software or hardware update
of iTunes or the iPod.)

33. Matthew P. Graven, “MusicMatch Jukebox 8.1,” PC Magazine Review,
November 11, 2003; Matthew P. Graven, “MusicMatch Jukebox 7.5,” PC Mag-
azine Review, February 1, 2003; “Microsoft Windows Media Player 10,” PC
Magazine Product Guide; http://www.pcmag.com/article2/0.1759.1641331.00.
asp “RealPlayer 10.5,” PC Magazine Product Guide, http://www.pcmag.com/
article2/0.1759.1654038.00.asp.

34. Derek Caney, “Major League Baseball Inks 3-Year Pact with Real Net-
works,” Reuters News, March 27, 2001; Brian Garrity, “Billboard.biz: Real
Grabs White Stripes Exclusive,” VNU Entertainment Newswire, June 6, 2005;
Carl Bialik, “RealNetworks to Stop Providing Services to Baseball Site,” Dow
Jones Business News, February 5, 2004.

Digital Rights Management

Media software platforms are central to the growing market for the dis-
tribution of audio and video content over the Internet to PCs, digital
music devices, and mobile phones. DRM technologies are a critical com-
ponent of these platforms. Without these technologies the owners of
content—the artists, music publishing companies, and movie studios—
would never have assented to the distribution of their otherwise easily
pirated content online.

DRM is perhaps best thought of as a software platform in itself,
although in practice, the DRM software platform is an integral part of
the overall media software platform. The DRM platform provides a
mechanism for granting people permission to use certain content, pre-
venting those without permission from using that content, and manag-
ing payment terms for using one or more copies of that content. DRM
platforms used for content distributed online typically have five
components:

1. Software that locks up the content so that it can only be accessed with
the proper key
2. A “rights expression language” that describes how the content can
be used
3. Software that manages and distributes the keys to unlock the content
4. A method for collecting payment for the usage rights
5. Software on the consumer’s device that monitors usage and locks or
unlocks content, depending on the rights the consumer has to a copy of
the content and payment for that copy

Like the media platform overall, the DRM technology is distributed
across several different parts of the platform.

Most DRM technologies work in a very similar way. Audio or video
tracks are first encoded using a codec. The resulting encoded track is
encrypted and stored in a container. When a user purchases the track
online, the track is downloaded onto the user’s computer. The unique
decryption key along with relevant rights information (number of autho-
rized computers, expiration date, number of allowed playbacks, and so
on) is stored in a key depository on the customer’s computer and also
on the music store servers. Alternatively, when one transfers the track

Dangerous Intersections 239

240 Chapter 8

onto a portable media player, the key is also transferred into that player’s
key depository. When the user wishes to play the track, the proposed
usage is checked against the associated right: Is this computer autho-
rized? Has the allowed number of playbacks been exceeded? Finally, if
authorized, a key is retrieved from the depository and the track is
decrypted (DRM), decoded (codec), and then played (media player).

Like many of the software platforms we have discussed, DRM makers
have to get several groups on board their platform to make it a success.
The content owners are a particularly critical platform side for DRM,
though. They have to be convinced that the DRM solution strikes the
right balance between persuading consumers to buy the content and pre-
venting consumers (and others) from pirating songs, movies, and other
valuable intellectual property. Finding the right balance is more impor-
tant than it seems. Before iTunes there were many unsuccessful attempts
at selling digital music and video protected by DRM. Interestingly, iTunes
wasn’t successful because its DRM technology, FairPlay, was better or
more secure but because it was more user-friendly. Apple pioneered the
concept of “good enough” protection: good enough to keep innately
honest customers pretty honest while making DRM as invisible to them
as possible. Apple recognized that dedicated hackers will eventually
break through any protection and, accepting that inevitability, decided
to make the experience pleasant for everybody else.

Content owners like EMI and content service providers like Yahoo!
find content protection solutions useful because these solutions allow
them to charge for content while discouraging nonpayers from gaining
access to the content. Many content owners and content service
providers have, of course, used content protection solutions of varying
degrees of sophistication for a long time. Those solutions range from
producing printed material in forms that discourage photocopying to
encrypting broadcasts for satellite television. Stricter solutions generally
impose greater cost and inconvenience on content users. Consequently,
content owners and providers have always faced trade-offs deciding
whether and to what extent to rely on content protection solutions.35

35. For example, “the tone of the discussion by music industry interests is one
of enabling flexible business models and avoiding consumer backlash, as much
as it is about controlling piracy. In this respect, the music industry may be

Dangerous Intersections 241

As RedMonk analyst Stephen O’Grady notes, “It comes down to the
rights of consumers vs. the rights of business. What people want is fair
use of content purchased at a reasonable price.”36 The adoption of DRM
solutions for digital music devices illustrates the importance of these
trade-offs. Apple FairPlay is not regarded as the “best” DRM solution
in terms of eliminating piracy or managing content licensing.37 But it is
regarded as good enough, relative to the constellation of economic
factors, that content owners must consider.38 Just as important, FairPlay
is the DRM feature associated with the iPod player, which is by far the
most popular digital music device on the market today. (DRM solutions
are features of media software platforms and are one of many ways in
which these platforms differentiate themselves. Each of these DRM fea-
tures, however, is substitutable from the standpoint of content owners,
store owners, and music consumers.39)

As with other multisided platforms it is difficult to get one side on
board without simultaneously attracting the other sides. People who

learning a positive lesson from its early experiments with DRM.” Bill
Rosenblatt, “Microsoft and Music Industry Discuss Future of CD Copy Protec-
tion,” DRM Watch, September 23, 2004.

36. Byron Acohido, “IBM raises stakes in digital media circle,” USA Today,
April 19, 2004 (http://www.usatoday.com/tech/news/techinnovations/2004-04-
19-ibm-digital-rights_x.htm, downloaded August 26, 2005).

37. Apple’s iTunes and its FairPlay solution have been undermined a number of
times: “programmers have worked to strip out the anti-copying features, called
FairPlay, included with every song purchased from the iTunes store. Several pro-
grammers have created software that does appear to remove the FairPlay pro-
tections altogether, allowing the purchased songs to be distributed without
restriction.” Ina Fried, “Apple Disables iTunes Song-Swapping Tool,” CNET
News.com, April 29, 2004; http://asia.cnet.com/news/personaltech/0,39037091,
39177444,00.htm (downloaded August 26, 2005).

38. “Apple’s Own FairPlay Copy Protection Tools Have Also Won the Big
Record Labels’ Approval and Form the Heart of the Company’s iTunes Music
Store.” John Borland, “MP3 getting antipiracy makeover,” CNET News.com,
March 2, 2004.

39. Analysts see these as providing similar benefits to consumers and content
owners: Sony, Microsoft, and Apple, along with several others, all have music
stores which sell content and have their own content protection solutions. “Sony
to take on iTunes in Europe,” Reuters Newswire, September 30, 2004.

242 Chapter 8

license content over the Internet or wireless networks need to have the
DRM software installed on their computing devices. Generally that
means having a media player that uses the same DRM technology as has
been used by the content owner. Likewise, the content providers need to
be on board. Some of them act as intermediaries between the DRM solu-
tion providers and the content owners, while others, such as Apple, are
both the DRM solution provider and the content provider, and still
others, like Sony, are the content owner, content provider, and DRM
solution provider (although Sony makes its content available to other
providers and subject to other DRMs).

The Future

Between 2000 and 2004, the number of hours that American households
spent surfing the Web increased from 1.1 to 2.7 billion. About 75
percent of American households used the Internet on a regular basis
by February 2006. An increasing amount of commerce is being done on
the Web. In the United States, the total dollar amount of sales through
Web-based transactions (excluding travel) increased from $34 billion
in 2001 to $86 billion in 2005.40 From 2000 to 2005 the percentage
of American households with broadband connections increased from
5 percent to 60 percent.41 These changes are all interrelated: the more
users there are, the more content that is created for them; the more
content there is, the more use there will be; and greater use drives
an increased demand for high-speed connections. All of these trends
are happening in many countries outside of the United States—
usually less rapidly, as in Germany, but sometimes far more rapidly, as
in Korea.

Media platforms are useful without access to the Web—people play
CDs and DVDs and download them to other devices, for example. But
media platforms have become far more popular for users, content

40. “Two-Thirds of US Web Users Now On Broadband,” eMarketer, March
2006. http://www.emarketer.com/Articles/Print.aspx?1003875.

41. Jeffrey Grau, “Retail E-Commerce: Future Trends,” eMarketer, February
2006. Ben Macklin, “The Broadband Report,” eMarketer, April 2001; Ben
Macklin, “North America Broadband,” eMarketer, March 2005.

Dangerous Intersections 243

providers, application developers, and hardware makers because of the
growth of Web-based delivery mechanisms for digital content. In 2005,
American consumers downloaded more than 353 million songs legally.
(Estimates suggest that they also downloaded more than 430 million
songs illegally that same year.42)

Digital media systems will play an important role in the emerging
markets for digital content. Predictions are always hazardous, but it
seems clear that the rapid growth we have seen in recent years will con-
tinue, especially as digital content becomes downloadable and playable
on more devices.

Consider the possibility that smart mobile telephones will be used for
this purpose. Mobile telephones are ubiquitous: more people globally
have them than PCs. It is anticipated that by 2008, almost 15 percent of
the mobile phones shipped will be “smart” and therefore capable of
downloading and playing digital content. That is 130 million devices.43

Alternatively, iPod and similar devices may continue their rapid
growth and become the device of choice for consumers. One analyst pre-
dicts that more than 180 million portable media devices will be sold in
2009.44

Beyond this, as DRM technology has advanced, more content owners
have seen digital distribution as highly desirable. The music companies
that once sued to shut down Napster embraced, after initial skepticism,
the idea of paid downloadable music. The movie studios are following,
and several “movie stores” have emerged on the World Wide Web.

A further development concerns home entertainment. As more content
is distributed over the Internet, it is inevitable that consumers will have
a computer, with a software platform, wherever they watch television.
The only question is what form that computing platform will take. We
return to this subject in Chapter 12.

42. Jeffrey Grau, “Retail E-Commerce: Future Trends,” eMarketer, February
2006. Ben Macklin, “The Broadband Report,” eMarketer, April 2001, p. 45.

43. http://www.ifpi.org/site-content/press/20050119b.html. Yankee Group,
“Pumping Up the Volume for Online Music Services,” January 23, 2004.

44. Alex Slawsby, Allen M. Leibovitch, Randy Giusto, Kevin Burden, David
Linsalata, and Ramon T. Llamas, “Worldwide Mobile Phone 2005–2009 Fore-
cast and Analysis” (IDC report no. 33290), April 2005, tables 5 and 6.

INSIGHTS

• All digital media software players are available at no additional cost
as part of a software platform or as a free application and all add fea-
tures over time to attract additional users, developers, and hardware
makers.

• Some providers of digital media platforms have integrated them into
their overall software platform and derive revenue from overall software
platform sales (Windows); others have provided separate platforms and
tried to earn money from the provision of content (RealNetworks); and
still others have tried to earn revenue from an integrated hardware/
software/content platform (Apple).

• Apple has pursued a single-sided strategy in which it has integrated
into all possible sides of the digital media software platform business. It
has adopted a unique “sell the razor/give away the blades” strategy: it
earns profits from the sale of its hardware (iPod) and loses money or
breaks even on its software platform and content provision (iTunes).

• Multiple software platforms with conflicting strategies have survived
in part as a result of differentiating themselves to appeal to varying
segments of consumers, content providers/owners, and application
developers.

• As with other software platforms pricing low to one side, evangeliza-
tion of the platform, and feature accretion through bundling have been
important competitive strategies.

244 Chapter 8

9
With a Little Help . . .

Do not hold the delusion that your advancement is accomplished by crushing
others.

—Marcus Tullius Cicero1

INSIDE THIS CHAPTER

• The design of software platform ecosystems

• Advantages and disadvantages of one-sided versus multisided strategies

• Why software platform integration varies across industries and over
time

This chapter and the next two focus on three key strategic decisions faced
by software platform vendors. The first, considered in this chapter, is the
scope and integration of the business. Should it produce complements
that work with the software platform or leave that to others? Should it
operate a multisided platform, and if so, what sides should that platform
have? The second decision, examined in Chapter 10, involves how to
price to get all the sides on board and to interact with each other. Should
it levy a fixed charge for accessing the platform or a variable charge for
using it—or both? How much of its profit should it seek from each side?
The third decision, considered in Chapter 11, involves what features and
functionality to include in the software platform itself. Should it offer
several alternative platforms or just one?

In the preceding five chapters, we saw that some software platform
vendors define the scope of their activities quite narrowly. In recent years

1. http://www.orangejobs.com/nz/graduates/articles/interviews.htm.

PalmSource, for instance, has focused on developing and licensing the
Palm OS operating system. Others define the scope of their activities
more broadly and have offered most or all components of the complete
system. That is the case with the iPod/iTunes platform. We have seen dif-
ferences in integration within industries, Apple versus Microsoft being
perhaps the most familiar contrast. Over time, Palm’s metamorphosis
from a complete systems provider to a supplier of only operating systems
(PalmSource) has been perhaps the most striking. Many platform
vendors have been partially integrated into applications, producing some
themselves and, in a variety of ways discussed in this chapter, encour-
aging third parties to produce others. Overall, the industries we have
studied have tended to exhibit less integration over time, though the
process has hardly been steady or uniform. This chapter attempts to
make sense of all this.

Ecosystem Participants and Structures

The first strategic issue a software platform vendor must consider is
the structure of the ecosystem that surrounds it. What groups partici-
pate in this ecosystem or could? How might they best contribute to
helping get the platform off the ground and contribute to long-term
profitability?

End users, the final customers for the systems built around the soft-
ware platforms, are common to all platforms. They typically are inter-
ested in working systems, not unconnected components, but whether
they obtain those systems from one firm or from several varies from
industry to industry and from time to time. Sometimes the software plat-
form vendor deals directly with end users (an example is Sony’s PlaySta-
tion), but it is at least as common to reach end users only through a third
party (Microsoft’s Windows Mobile). In some cases end users can be
profitably divided into subgroups for pricing purposes, as we discuss in
the next chapter.

End users apart, every other participating group is a potential com-
plementor, a provider of products or services that are complements to
the software platform and that therefore enhance the value of the

246 Chapter 9

platform when their quality increases or their price falls.2 Hotel rooms
in Las Vegas and flights to Las Vegas are complements; hotel rooms in
Las Vegas and hotel rooms in Honolulu are substitutes. If software plat-
form vendors decide not to produce a particular complementary product
themselves, they need to encourage complementors to affiliate with their
platform and to invest in making their complementary products better
and cheaper.

Producers of basic hardware—the systems, containing one or more
CPUs, on which the software platform can run—are important comple-
mentors in all the industries we have examined so far (they won’t be for
two industries we look at in Chapter 12). Within platform industries,
there is variation in the extent to which the same firms make the hard-
ware and software platforms; the key exception is video game providers,
in which all successful firms have made integrated hardware and soft-
ware platforms. RealNetworks has never been in the hardware business.
Apple has never left it.

When an ecosystem includes independent hardware producers, they
need to be courted by the software platform provider. Microsoft needs
to convince computer makers to build computers that run on Windows.
PalmSource must convince companies to design and produce PDAs based
on the Palm OS. This courtship takes the form of a rather intricate dance
in periods of rapid innovation and changing technical standards, since
quick changes in hardware and software need to be coordinated among
independent firms if systems are to function well and the ecosystem as a
whole is to prosper. At the same time, independent hardware vendors
frequently also serve as distributors of the software platform to users.
PalmSource does not license the Palm OS directly to end users. Instead,
the Palm OS is licensed to device makers, and the latter install them on
their products before selling systems to end users.

An interesting exception is the mobile phone industry, in which mobile
network operators are mainly responsible for the distribution of mobile
phones (the basic hardware) and their software platforms to end users.
Symbian deals with phone manufacturers, and they in turn deal with the
network operators. Microsoft, on the other hand, has not had much luck

With a Little Help . . . 247

2. Karl Case and Ray Fair, “Principles of Economics,” 3rd ed. (Upper Saddle
River, N.J.: Prentice Hall, 1994), pp. 82–83.

persuading major manufacturers to use its mobile phone operating
system; it has therefore concentrated on selling phones made by second-
tier manufacturers directly to mobile network operators. In the case of
i-mode, the software platform sponsor, NTT DoCoMo, is also the
network operator and thus the distributor of mobile phones equipped
with i-mode to end users.

The production of peripheral equipment is a significant business in
many of the industries we have examined. This is just as true for Apple
iPods in 2005 as it was for Windows PCs in 1995. The boundary
between hardware and peripheral equipment is to some extent depen-
dent on both the state of technology and hardware makers’ design deci-
sions, of course. Microsoft’s early operating system for the IBM
computer didn’t have a graphical user interface (GUI) and didn’t need a
mouse. That changed with the development of Windows. However, it
turns out that computer makers have relied on third parties to make mice
rather than doing it themselves. Interestingly, many are made by
Microsoft, which integrated into mouse production in 1983 mainly to
be sure that the sort of mouse specified by its nascent Windows system
would be available in the marketplace. Microsoft developed and
patented a mouse that could connect to a PC through an existing serial
port rather than to a special card installed within the computer. This
innovation reduced the cost of the mouse and thus of mouse-using com-
puters running Windows. Apple as a vertically integrated hardware and
software platform maker has always produced its own mice.

Applications are the third major category of complements. Applica-
tions are products that are typically licensed directly to end users.
Ranging from word-processing programs to “shoot-’em-up” games to
ringtones, they are key actual or potential participants in software plat-
form ecosystems. Many software platforms begin by providing their own
applications. That was the case with the Apple Newton and Palm
Zoomer and many of the video game consoles. Others begin with a small
stock of third-party applications. The original IBM PC began with
Microsoft’s languages along with a few applications such as VisiCalc that
were ported by their developers from CP/M. Almost all software plat-
forms end up relying mainly on third-party developers as they mature.

248 Chapter 9

Finally, content is an important complement for many media-oriented
software platforms. There is very little evidence that software platforms
produce their own content. They typically encourage third parties to
make it available. That is the case with media players: Apple, Microsoft,
Real, and others facilitate content providers and content owners to make
everything from songs to news to videos available for their media plat-
forms. In some case media-oriented platforms license content, sometimes
exclusively, and then provide it to end users. That’s the case with Apple’s
iPod/iTunes platform and RealNetwork’s Rhapsody music service. Some
software platforms, such as iMode, work as actively with content
providers as others work with application developers, to sustain a rich
ecosystem of complementary content provision.

When one describes the extent to which a software platform is inte-
grated into its ecosystem, it is important to recognize that partial inte-
gration is common and varies importantly in extent. Microsoft writes
some applications to run on Windows and some games for the Xbox,
for instance, but third-party vendors are important in both cases, and
their importance has varied over time. For a time Apple did license the
Macintosh operating system for use on third-party hardware, but these
licensees were never very important in aggregate, while Symbian licensees
produce all of the smart phones that run the Symbian platform. Some
changes in integration, particularly partial integration, reflect accidents
of history and the marketplace. If third parties had offered a quality two-
button mouse in 1983, it seems unlikely that Microsoft would have
gotten into the mouse business. Similarly, Microsoft’s Word and Excel
products were successful on the Macintosh platform when Microsoft was
still working with IBM to develop OS/2, and this earlier experience
clearly contributed to the success of these products in the Wintel segment.
It is hard to imagine that this was the outcome of a conscious long-term
plan, as evidenced by Bill Gates’s plea to Apple’s Scully to make the Mac
OS platform ubiquitous (see Chapter 4).

The closeness of the contractual and informal relationships between
participants in different parts of a business ecosystem varies from arm’s-
length, anonymous spot market transactions, as in the textbook wheat
market, to long-term, joint-venture–like arrangements that are hard to

With a Little Help . . . 249

distinguish from integration by ownership. In the case of the software
platforms we have examined, even the weakest relationships are far
deeper than the arm’s-length relationships one sees in many one-sided
industries. Software platforms can’t have direct relationships with the
thousands of small developers, hardware makers, and peripheral device
makers. Yet they document and make APIs available to developers,
provide interface information to hardware and peripheral makers, and
make sure their platforms have the relevant drivers for the peripherals.
And they develop relationships through large developer conferences and
small focus groups that bring some of these smaller players together. At
the other extreme, software platforms often have deep relationships with
several larger partners. These relationships involve regular exchange of
information and joint work on defining new standards and specifications.
They may also involve joint investments in product development or mar-
keting. Representatives from Microsoft’s Xbox and Sony’s PlayStation
divisions, for instance, both spend a great deal of time with Electronic
Arts. At the furthest extreme, Symbian spends a great deal of time with
its major backers, especially Nokia.

Key Determinants of Integration

Transactions Costs
The economic literature on determinants of the scope of firms’ activities
effectively began with Ronald Coase’s classic 1937 paper titled “The
Nature of the Firm.”3 Coase argued that competition generally forces
firms to operate at least cost. For instance, an auto producer will make
its own steel if and only if it is cheaper to make steel than to buy it. This
of course has a touch of tautology to it. The novel and powerful aspect
of Coase’s analysis was his focus not on the production cost of making
steel but on comparing the transactions costs of alternative methods—
firm and market—of organizing the relationship between steel and auto
production, of achieving coordination and motivation. Further work by

250 Chapter 9

3. Ronald Coase, “The Nature of the Firm,” Economica 4 (1937): 386–405. A
very nice summary of the main themes in this literature, with references, is pro-
vided by John Roberts, The Modern Firm (Oxford: Oxford University Press,
2004), chap. 3.

economists following Coase has enhanced our understanding of the
determinants of these important costs.4

For some kinds of goods and services, the market is generally supe-
rior, and integration is correspondingly uncommon. To focus on a polar
case, banks use lots of pencils, but not even the biggest banks make their
own. On the one hand, entry into pencil production seems relatively easy,
so banks can count on competition to hold pencil prices close to costs.
Moreover, it is relatively easy to specify pencil quality, to compare pencils
from different vendors, and to switch from one pencil supplier to
another, so arm’s-length spot market competition can be relied on to
produce both good quality and low prices. On the other hand, there is
no reason to believe that banks are particularly good at producing
pencils, and devoting top management time to pencil production takes
it away from competing in banking.

The economics literature argues that changing any of the conditions
enumerated in the preceding paragraph tends to tilt the organizational
decisions toward integration. If the relevant market is not competitive
or if the buyer has special advantages in production, for instance, inte-
gration becomes more attractive. Partial integration is sometimes used
as a device to deal with upstream market power, because it both adds
competition and makes an implicit threat of further integration. And
when technical change is rapid, or standards are in flux, or interface spec-
ifications are evolving, the software platform provider may be able to
optimize system performance only by also producing other system
components.

A factor that is particularly relevant in this context is the difficulty of
writing a contract that deals acceptably with all contingencies. Suppose,
for instance, that Sony believes that a great submarine game would be a
powerful complement to PlayStation 2 and thus sell millions of copies,
but that no such game exists yet, so it decides to contract with a third
party to develop one. Sony can write a contract for the development of
a submarine game with a long string of specified technical properties. It
would be reasonably straightforward to verify whether such a contract

With a Little Help . . . 251

4. The work of Oliver Williamson has been particularly important. See Oliver
E. Williamson, The Economic Institutions of Capitalism (New York: Free Press,
1985).

had been breached. It would also be straightforward to write a contract
that required a great game by specifying that it had to achieve a partic-
ular sales target. But it would be hard to determine if the failure to
achieve greatness was the fault of the developer or because of a poor
console platform. Moreover, if the project were technically adventurous,
it might fail either because the developer didn’t do a good job or because
the project was infeasible. It would be difficult for a court or anyone else
to decide objectively which was the case and therefore enforce the con-
tract. Integration is one way to deal with these sorts of problems. Man-
agement decides whether or not the game its own staff produces is great
or the reasons why the project failed, little or no time is spent writing a
formal contract, and litigation is essentially ruled out.

Contracting problems can be an important impediment to innovation
in systems businesses.5 If, for example, the interface between hardware
and operating system is well defined and unchanging, independent hard-
ware and operating system vendors can take it as a specification and
innovate more or less independently.6 But if innovation is architectural
and involves changes in that interface and thus in key technical specifi-
cations, coordination is essential and contracting generally does not
work well, as both the Pentagon and many buyers of custom homes have
learned to their sorrow.

The Multisided Solution
Instead of making a complement internally (integration) or buying it
from a third party (contracting), platform vendors often induce a third
party to supply it directly to end users and, possibly, to pay for the priv-
ilege. Suppose Sony persuades one or more independent developers that
a great submarine game for PlayStation 2 would sell millions of copies,
and it provides development tools that make it easy to develop games.
If the royalty Sony charges on PlayStation 2 games is reasonable,

252 Chapter 9

5. Kevin Boudreau, “How Does ‘Openness’ Affect Innovation? Evidence from
Mobile Computing” (MIT Sloan School of Management working paper)
(Cambridge, Mass.: MIT, 2005).

6. This is, of course, the modular approach to design discussed in Chapter 2.
See Carliss Baldwin and Kim Clark, Design Rules I: The Power of Modularity
(Cambridge, Mass.: MIT Press, 2000).

developers will have strong incentives to invest in the hope of develop-
ing a great submarine game: a great game will make a lot of money
(probably a large multiple of what Sony could pay in-house developers),
while a lousy game will return little or nothing (certainly less than Sony
would likely pay its in-house developers if their game bombed). Because
of these strong incentives, which are aligned with Sony’s interests, no
game-specific contract is necessary. Similarly, Microsoft doesn’t have to
try to use a contract to persuade Dell to produce high-quality, inexpen-
sive computers, since Dell already has very strong incentives to do just
that.

This multisided approach has its own problems, though.7 First, if there
are only a few possible suppliers of a key complement, there is a pricing
problem.8 Suppose firm A sells software platform a, firm B is the only
producer of compatible hardware product b, consumers are interested
only in systems that combine the two products, and A has adopted a
multisided approach in which both it and B set prices independently.
Because products a and b are complements, if either A or B raises its
price, sales of both products will fall. But when B considers raising its
price, it will take into account only the resulting fall in its sales, not the
reduction in A’s sales. The reverse holds for A. The result will be a total
system price (for a plus b) that is above the profit-maximizing level.
Thus A has to share system profits with B, and those system profits are
lower as a result of independent pricing than they would be through
coordination.

What is the cure? From A’s point of view, one cure is to have many
competing producers of good b. Competition will then hold the price of
b close to cost (including a reasonable return on capital) regardless of
A’s pricing, so that A both effectively determines the system price (via
the price of a) and captures all the economic profit. Generally, it is more

With a Little Help . . . 253

7. Annabelle Gawer and Michael Cusumano (Platform Leadership: How Intel,
Microsoft, and Cisco Price Industry Innovation [Boston: Harvard Business
School Press, 2003]) provide interesting discussions of several of the points made
in this paragraph and the next in the context of the computer industry.

8. Testimony of Kevin Murphy in United States v. Microsoft, No. 98-1233.—
Augustine Cournot, Researches into the Mathematical Principles of the Theory
of Wealth, trans. Nathaniel Bacon (New York: Macmillan, 1927) (original in
French, 1838).

attractive to rely on others to supply a complement (instead of buying it
or making it), all else equal, if there are many producers of that com-
plement who compete intensely. Hence the common strategic advice,
“Commoditize the complements.”

On the other hand, potential complementors will invest only if they
expect their investments to earn a reasonable return in the marketplace.
That often depends critically on how they expect the platform vendor to
behave. This raises some interesting dilemmas. For instance, while partial
integration into production of complements can provide a hedge against
failure of the market to produce what is needed, it can also, by threat-
ening more intense competition, inhibit desirable third-party investment.
(Similarly, Chapter 11 notes that software platforms commonly innovate
by adding features and functionality that had previously been supplied
by third-party applications. While this process makes platforms more
valuable to both end users and application developers, it in effect inten-
sifies the competition expected by the latter.) Expectations are not nearly
so important for internal development or development by contract.

Finally, while the provider of a complete system can determine the
direction of technical change internally and informally, this process
becomes much more complex when system components are supplied by
different parties. Sometimes a single entity, often the software platform
provider, emerges as the driving force and system regulator. This seems
clearly the case in video games, for instance, where console vendors both
drive innovation and serve as gatekeepers for game developers to
promote both quality and variety. DoCoMo plays a similar gatekeeper
role in the i-mode ecosystem. But, as the world of PC games illustrates,
the existence of a gatekeeper is not inevitable. The costs of setting up
and operating an effective gate vary from case to case, as do the net ben-
efits of managing entry (and thus to some extent limiting creativity).

Moreover, when several ecosystem participants have critical knowl-
edge, leadership in the innovation process is often shared. And the iden-
tity of the leaders is not necessarily predetermined. In personal
computers, for instance, IBM initially played the lead role in driving
innovation but soon lost it to a combination of Microsoft and Intel.
Microsoft needs to work with Intel, hardware makers, and application

254 Chapter 9

developers to ensure that the systems in which all have a financial stake
take full advantage of advances in a wide range of technologies.

Among the platform vendors we have discussed, DoCoMo has
arguably the most complex task of coordinating innovation around its
mobile Internet i-mode platform. Whenever it adds a new feature or
service (e-payment, for example), it has to work with handset makers to
include the corresponding chip or software in their phones. Then it has
to explain to content and service providers how to build services based
on the new feature. And of course it needs to do some plumbing itself
on its network, adding software on its application servers or even
upgrading the physical network gear. Nokia, to take another smart
phone example, seems the main driver in the Symbian ecosystem. Fear
of being thereby disadvantaged at the hands of a leading competitor may
have led to Motorola’s partial defection from that community.

This last example illustrates a final issue that arises with some regu-
larity in the multisided businesses we’ve discussed. Before Motorola’s
defection, Nokia and Motorola collaborated in managing Symbian while
competing to sell handsets. Similarly, between 1998 and 2003, Palm both
collaborated with Handspring, to make sure the Palm OS and Hand-
spring’s hardware worked well together, and competed with it in the sales
of integrated hardware-software systems. These are necessarily complex
relationships, and keeping both collaborative and competitive dimen-
sions healthy is not simple. It is often hard for individuals to both col-
laborate with each other and compete effectively against each other, so
that these functions are often handled at the working level by different
units within the organization. Top management, of course, cannot divide
itself in this fashion.

Nokia faces these issues when licensing its Series 60 middleware plat-
form to makers of Symbian-based handsets that compete against Nokia’s
own phones. As mentioned in Chapter 7, to alleviate licensee concerns,
the company decided to raise a high internal Chinese wall between the
Mobile software division, which is in charge of developing and licensing
Series 60, and the hardware division. This sort of arrangement is not
without its costs, of course, since there are efficiency gains from allow-
ing hardware and software developers to communicate.

With a Little Help . . . 255

Merchants or Two-Sided Platforms

Software platforms have a choice between two models when it comes to
the provision of applications, games, or content. The first is a multisided
model: platforms provide support for interactions among the various
customer groups supported. Each customer group needs access to the
multisided platform to reach the other groups. The platform doesn’t sub-
stitute itself for any customer group in these interactions. For example,
it doesn’t buy applications or games and resell them to end users. This
multisided model is used for at least two customer groups by most soft-
ware platforms we have encountered with the exception of the
iPod/iTunes digital media platform.

To take one example, i-mode is a three-sided platform. It sells access
to both users and content providers. It never takes ownership of content.
Each content provider receives revenues directly from i-mode users,
depending on how popular or appealing her content is. Each i-mode
content provider therefore cares a great deal about how many people
buy i-mode phones, because this determines the size of their target
markets. And this implies that, in turn, each content provider cares about
how many other content providers support i-mode and how good their
content is as well, because the overall availability of content drives users
to i-mode. Also, although DoCoMo does buy i-mode phones from con-
tract manufacturers and resells them to end users, a significant fraction
of i-mode phones are sold by manufacturers through other retail chan-
nels. This means that handset manufacturers need to be induced to
produce and sell i-mode phones,9 and each of them necessarily cares
about the overall popularity of the i-mode system.

The second business model is a merchant or single-sided model. The
platform buys the complementary products or services and resells them
to users. It substitutes for the user when dealing with the maker of com-
plementary products—that is, it buys and takes ownership of these prod-
ucts—or it makes these complementary products itself. Indirect network

256 Chapter 9

9. As we have seen in Chapter 7, the inducement to produce is a particularly
complex one, as DoCoMo works very closely with its associated phone manu-
facturers to help them include the specifications needed to take advantage of the
features offered by the i-mode service.

effects are no less important for the merchant model than they are for
the two-sided model. They are just managed directly by the platform
owner rather than through the multisided strategies we discussed in
Chapter 3.

iPod/iTunes is the only example of a pure merchant model we have
seen among software platform–based businesses. Apple buys or makes
all the pieces necessary for making the iPod (with the exception of a
variety of peripheral equipment), and it in effect buys the music from
publishers and owners on behalf of iTunes users. It has acted on behalf
of consumers in negotiating directly with the music publishers and
owners. At the end of 2005, the publishers were trying to persuade the
digital music industry to adopt variable pricing that would charge more
for hit songs than for older ones; Apple is vigorously defending its 99
cent price for all model—and is therefore reserving royalty fees that
depend on popularity—on the grounds that this is the best model for the
ecosystem.

Many software platforms, however, have adopted partial merchant
models in the sense that they either integrate into a side or buy the com-
plementary product or services on behalf of consumers. That is Apple’s
approach on the hardware side for its computers. It makes its own com-
puters and either makes or buys some of the peripheral equipment that
come with its computers. And it was Palm’s approach as well initially;
it made or bought all the relevant pieces for the Pilot.

With a Little Help . . . 257

According to the general definition we provided in Chapter 3, a platform
is running a two(multi)-sided business model whenever it connects two (or
more) groups of agents, each of which benefits from the participation of
the other(s), and the platform provides the support for direct interaction
between the two (or more) sides, without taking the place of any of these
sides. Sony PlayStation is clearly multisided: the more independent game
developers it signs up, the more consumers will buy it, and vice versa. And
game developers sell their games directly to PlayStation users. The same
holds for i-mode, Windows, and Palm.

As pointed out above, however, Apple’s iPod platform functions as a
one-sided business, although there are positive indirect network effects
from its adoption by music publishers and users. To throw some light on

What Exactly Does It Mean to Be Two-Sided?

what may sometimes appear as an obscure distinction, consider a retailer
like Wal-Mart.

In the first scenario, Wal-Mart functions like your average village mer-
chant who wakes up early in the morning to go acquire (many different
types of) produce from suppliers, and then resells it to consumers at its
local store. In this case the transactions Wal-Mart conducts with members
of the two groups, suppliers and consumers, are largely independent of
each other. First, Wal-Mart takes the place of buyers when dealing with
suppliers, and then it substitutes itself for sellers when dealing with con-
sumers. Suppliers could not care less about how many people visit Wal-
Mart’s stores, they are only interested in the price Wal-Mart bids for their
products and the quantity it buys. Similarly, consumers care only about
the prices at which Wal-Mart sells and the quality of the product it sup-
plies, not the prices at which it buys.

Imagine now that Wal-Mart becomes more sophisticated and offers each
supplier a contract specifying the price per unit of its product, a quantity
it commits itself to buy, and also a price at which the supplier has to repur-
chase any unsold units. This type of contract is likely to improve efficiency
by allowing Wal-Mart to order larger quantities upfront rather than
restricting itself to a minimum in order to avoid accumulating unsold
inventories. Short-run risk is now shared between Wal-Mart and its sup-
pliers. At the same time, however, this contract also introduces indirect
network effects. In deciding whether or not to accept such contracts, sup-
pliers now have to take into account the visitor traffic Wal-Mart’s stores
generate, because it determines sales and ultimately their profits: more con-
sumer traffic means fewer unsold items and therefore higher profits. And
since consumers are clearly more likely to visit Wal-Mart if it offers a
greater variety of products, each individual supplier ultimately cares about
how many other suppliers (particularly of complements and substitutes)
contract with Wal-Mart.

This example illustrates simply how even in the context of a one-sided
merchant, two-sided indirect network effects may appear just by the nature
of the contracts it writes with its suppliers. Nonetheless, the merchant’s
business is still not two-sided in any meaningful sense. Furthermore, this
example is not directly relevant to software platforms, since “buying back
unsold units” does not make any sense for digital applications, games, or
content. Inventory is not an issue in the digital economy.10

There is, however, a way in which Wal-Mart’s business can become
clearly two-sided, which is also directly relevant to software platforms.

258 Chapter 9

10. For a more detailed discussion of the scope of the platform, see Kevin
Boudreau, “The Boundaries of the Platform: Vertical Integration and Economic
Incentives in Mobile Computing” (working paper, MIT Sloan School of
Management, Boston, 2005).

(continued)

With a Little Help . . . 259

Patterns of Integration Over Time

At the most general level, the computer-based industries studied in this
book have tended to become less integrated over time. The computer
industry, for instance, started off with mainframe suppliers such as IBM
providing fully integrated, stand-alone systems, including hardware, soft-
ware platform, some applications, and peripheral equipment. An inde-
pendent software industry emerged later, along with suppliers of
peripheral equipment. Then, as computers became smaller and the work-
station and PC revolutions unfolded, third-party suppliers of applica-
tions and peripheral equipment became more important. Some software

Imagine that instead of buying all products and reselling them, thus effec-
tively taking ownership, Wal-Mart rents shelf space to some suppliers, say
to Kellogg for its cereals, to Coke for its cans, and to Sony for its elec-
tronic devices. The suppliers are responsible for supplying, displaying,
pricing, and advertising their merchandise within the space allocated by
Wal-Mart, and they receive the revenue from sales to consumers. Again,
putting aside suppliers’ costs of visiting multiple stores, this contract is
likely to result in cost savings because it provides suppliers with both flex-
ibility and incentives to use price, advertising, and display to maximize
profits, and thus allows Wal-Mart to charge high rents. (On the other
hand, some efficiency might be lost because suppliers have no incentive to
take into account the effects of their in-store actions on other suppliers.)
In this case, Kellogg, Coke, and Sony are more than a little interested in
the traffic Wal-Mart generates, since this determines how many consumers
are likely to stop by their stands and eventually buy their products. It
makes sense to think of them as “on board” the Wal-Mart platform.
Renting shelf space to third-party vendors in the material world is akin to
being a portal in the digital world. Conversely, i-mode can be described as
offering “virtual shelf space” to its content providers, which the latter can
manage as they choose. As Wal-Mart surely would in this example,
DoCoMo in fact reserves the right to pick and choose which firms are
awarded the most prominent spaces (that is, are designated official
providers), as well as how the entire space is managed.

Naturally, one can come up with many other contractual specifications
that transform pure merchants partially or fully into two-sided platforms.
These specifications may enhance efficiency by better aligning interests
and incentives between the platform or merchant and its suppliers or
complementors.

(continued)

platform vendors, such as Apple and Sun, continued to provide both
hardware and software platforms, while Microsoft produces operating
systems and some applications but no computer hardware platforms and
no major peripheral equipment.

A similar evolution (although on a much shorter time scale) has taken
place in the PDA and smart phone industries: these devices have evolved
from single-purpose electronics products supplied by individual manu-
facturers into small computers based on software platforms that support
a variety of application vendors and hardware suppliers. Similarly, the
video game industry has evolved from single-game systems such as Home
Pong through multiple-game systems provided by the same manufacturer
(Fairchild’s Channel F, Atari’s VCS 2600) and ultimately to video game
consoles (PlayStation, Xbox) that integrate hardware and software and
are supported by hundreds of third-party game developers and publish-
ers, as well as middleware providers.

The most plausible industry-wide explanation for this trend is the
development of competitive markets for system components, which
depends on the emergence of both accepted standards that are relatively
stable and platforms that are perceived as viable. The analysis of changes
in integration over time goes back at least to Adam Smith, who asserted
in The Wealth of Nations that “the division of labor is limited by the
extent of the market.” In a famous 1951 paper, Nobel Laureate George
Stigler argued that this proposition implies that “vertical disintegration
is the typical development in growing industries, vertical integration in
declining industries.”11

Stigler noted that at the inception of new industries, vertical integra-
tion is necessary because the technologies involved are unfamiliar. It is
therefore hard for firms to persuade outsiders to participate in a busi-
ness with uncertain prospects and with which they have had little or no
experience. If and when the industry grows and becomes viable, many
of the tasks involved in the production processes are sufficiently well
defined and are performed on a sufficient scale to make it possible for
an integrated early entrant to turn them over to specialized firms, either
as suppliers or as complementors. It is also profitable to do so provided

260 Chapter 9

11. George Stigler, “The division of labor is limited by the extent of the market,”
Journal of Political Economy 59 (June 1951): 185–193.

the market of specialists is sufficiently competitive, as we discussed
above, and that generally depends on the industry being large enough to
support multiple specialist firms. Disintegration frees previously inte-
grated firms to concentrate on those parts of the final product on which
they have a comparative advantage. They may become specialists, or
system vendors that buy components from specialists and assemble them.

Naturally, the industries Stigler had in mind were traditional one-sided
ones, such as cotton textile machinery: the system vendors just bought
parts and sold final integrated products. However, his insights apply to
the modern digital industries we discussed here, and with particular force
in some respects. It is not just that software platform vendors can rely
on specialist firms to provide complements as an alternative to buying
them. Rather, it seems that they must rely on third parties: increasing
technological complexity and consumer demand for more diverse and
better products make it impossible for the same firm to innovate effec-
tively throughout the entire system; enlisting the cooperative participa-
tion of outsiders via well-defined interfaces becomes a must. In the words
of Takeshi Natsuno, i-mode’s chief strategist, “given the complexity of
today’s IT businesses, one technology or one firm alone cannot lead a
new service.”12

As the applications software industry matured and became more
competitive, platform software vendors could turn from writing appli-
cations for their platforms to managing relations with third-party sup-
pliers. The development of the IBM PC and its clones allowed Microsoft
to offer a successful software platform without getting into the hardware
business. Disintegration of the video game business both required and
enabled the emergence of a vibrant industry of independent game
developers. When Palm had managed to establish itself as a viable plat-
form, it could enable the creation of the “Palm economy” of third-party
complementors.

The video game industry took at least an additional step further on
the disintegration path than the other industries did. A second wave of
disintegration followed the emergence of the third-party game providers.
As consoles became more complex, resulting in a longer and more

With a Little Help . . . 261

12. Takeshi Natsuno, i-mode Strategy (New York: John Wiley & Sons, 2002),
pp. 31–48. Interview with the author.

complex development process, the game development side of the market
separated into game development studios and game publishers. As
described in Chapter 5, the former do the actual coding, whereas the
latter specialize in managing relationships with console vendors, pro-
viding initial financing for developers and marketing for their games, and
managing financial risks by spreading investments over a broad range of
games. We have also seen the gradual build-up of a third wave of disin-
tegration with the appearance of pure middleware firms that specialize
in providing development tools to game developers for specific console
platforms. Their market opportunity was created mainly by the increas-
ing complexity of 3D graphics programming and especially the rise of
online games, which require sophisticated networking solutions. And, of
course, consoles such as PlayStation and Xbox welcomed the appearance
of these firms, as they lowered the entry costs and expertise required of
game developers.

Digital media platforms represent an interesting partial exception to
this general tendency. In adopting its integrated iPod/iTunes platform,
Apple apparently believed, for example, that the relationships among the
various sides—such as inducing music companies to license their songs
for online distribution—were too delicate to leave to others. It also may
have believed that Apple’s organizational advantage comes from pro-
ducing cool integrated solutions. Moreover, it may be naive to think that
Apple, whose genes come from Steve Jobs, could run a software-centric
ecosystem as it is to think that Microsoft, whose genes come from Bill
Gates, could make fashion accessories.

To explore these trends in more detail, it is useful to consider inte-
gration between platform software and applications separately from inte-
gration with hardware and peripheral equipment.

Applications Software
Our overviews of the evolution of computer-based industries suggest that
the main reason why software platform vendors integrate into applica-
tions is to overcome the difficulty of attracting multiple complementors
to new platforms with uncertain market prospects—the so-called
chicken-and-egg problem, with technical uncertainty and complexity on
top. If a PC operating system, for instance, lacks enough attractive appli-

262 Chapter 9

cations, users will not adopt it, and therefore independent developers will
not have any reason to write applications for it. Similarly, nobody wants
to buy a video game console for which there are no good games, and
nobody wants to write video games for a console that nobody will buy.
There may be other ways to make developers more optimistic, of course,
and evangelization certainly has a role.

In fact, DoCoMo relied on a “pure evangelization” strategy before the
launch of its i-mode platform and has followed the same pattern when
introducing major new features. It initially solved the chicken-and-egg
problem by enlisting sixty-seven providers of attractive and diverse
content; it was perhaps able to do this because its large share of the
gadget-loving Japanese mobile phone business made i-mode seem highly
likely to succeed. DoCoMo has always made it a point neither to buy
content nor to provide any by itself, in order to preserve the incentives
of third-party content providers. The company thinks that if it entered
the content business, third parties would be reluctant to participate for
fear that any innovative service they might come up with would even-
tually be imitated and competed away by DoCoMo. Likewise, if it
bought content, providers would have an incentive to write content likely
to appeal to DoCoMo, not to i-mode users, and would stop develop-
ment once they sold it.13

On the other hand, integration—and the actual production of appli-
cations—provides more credibility to a software platform with uncertain
prospects than evangelization by itself. In combination with evangeliza-
tion, integration amounts to putting the platform vendor’s money where
its mouth is. Thus, most of the platforms we have encountered in this
book initially opted for an approach involving writing some attractive
applications or good games internally, so that end users had a reason to
buy the platform and independent software vendors had a concrete
reason to bet on its viability. Naturally, if and when its viability is estab-
lished, it often makes sense to focus development efforts on the platform
itself and tools for developers, and to work to bring independent devel-
opers on board as participants in the platform’s ecosystem. Even in
mature systems, though, doing some applications in house may provide

With a Little Help . . . 263

13. Natsuno, i-mode Strategy, pp. 62–63. Interview with the author.

valuable information on the quality of its development tools (eating one’s
own dog food, so to speak) and be a useful device for showcasing new
platform features.

Palm provides the best example of gradual disintegration as a
strategy. As we saw in Chapter 6, Palm thought that, in the wake of the
failure of previous PDAs, including its own Zoomer, application devel-
opers would be quite reluctant to develop applications in time for the
launch of PalmPilot. Therefore Palm decided to write the core applica-
tions itself and bundle them with the device. When it had established a
significant base of users it could turn its attention to getting independent
software application developers on board and creating the Palm
economy. Palm’s emphasis on getting others to write applications is par-
ticularly noteworthy because Palm began as an application developer for
small computing devices. Even when it developed the PalmPilot it
contracted most of the work for pieces other than the applications out
to others.

Another example is provided by the video game industry. When
Sony entered with its highly successful PlayStation in 1994, the domi-
nant players, Nintendo and Sega, each had more than half the games
for their respective consoles developed in-house. In large part this
stemmed from the fact that both companies had been major players in
the arcade industry before entering the home video game console market
and therefore had a lot of in-house game development talent and stocks
of proven games. Before launching the PlayStation and the Xbox, Sony
and Microsoft acquired several prominent game publishers in order
to ensure the presence of a few good games at launch: Psygnosis
(Lemmings) for Sony, Rare (Battletoads, Golden Eye 007) and Bungie
(Halo) for Microsoft. But only one of the twenty-six games was
developed in house when PlayStation 2 was released in 2000,14 and both
Sony and Microsoft relied primarily on effectively courting the indepen-
dent game developers that had emerged since the industry’s creation.
After the launch of major consoles, the fraction of games by console
vendors has generally remained small: the proportion of games

264 Chapter 9

14. David Canter and Jeb Haught, “Fans of Sony Will Find PlayStation 2
Satisfies,” The San Diego Union-Tribune, November 14, 2000.

available in North America and developed in house is about 10 percent
for GameCube, 8 percent for PlayStation, and 8 percent for Xbox.15

In the PC world, Apple’s early computers mainly ran Apple-developed
applications, but there soon emerged a set of independent vendors—of
which Microsoft was an important member—creating applications
for the Apple II and then the Macintosh. By the late 1980s Apple had
less than a 10 percent share of the market for Macintosh applications.
Today Apple makes less than 1 percent of the applications available for
Mac OS.16

Microsoft’s role over time as a supplier of applications for PCs running
its operating systems was more complex, both because of its history and
because a vigorous applications software industry was already in place
when the IBM PC was launched. As we noted in Chapter 4, Microsoft
began as a developer of programming languages and tools for 8-bit com-
puters and the CP/M operating system. While it was selling the DOS
operating system for IBM PCs and their clones, it was also selling appli-
cations with GUIs for Apple computers. In 1988, seven years after the
IBM PC was launched, independent software vendors provided the
leading word processor (WordPerfect), spreadsheet (Lotus 1-2-3), and
database (Ashton-Tate dBase) for the DOS software platform.17

Microsoft accounted for only 18 percent of the sales of spreadsheets and
8.5 percent of the sales of word processors for DOS-based PCs. It played
a larger role in applications for the Apple platform, accounting for 75
percent of Macintosh spreadsheet sales and 60 percent of the Macintosh

With a Little Help . . . 265

15. http://www.us.playstation.com/games.aspx (note that SCEA is a division of
Sony); http://www.xbox.com/en-us/games/default; http://www.nintendo.com/
games.

16. Of the 18,247 software products available for Mac OS X, Apple Computer
created only 43 (http://guide.apple.com/action.lasso; advanced search of software
performed December 29, 2005).

17. “Strategies for Microcomputers and Office Systems: PC Spreadsheet Soft-
ware: Market Review and Forecast, 1988” (IDC report no. 4389), November
1999; “Word Processing Software, 1989” (IDC report no. 5019), December
1990; “PC Database Management Systems Software” (IDC report no. 4258),
September 1989; “PC File Management Software: Market Review and Forecast,
1988” (IDC report no. 4413), November 1989.

word-processing sales.18 With the rise of Windows 3.0 and its GUI and
the appearance of processors capable of running graphics-intensive pro-
grams at acceptable speeds, Microsoft’s experience in the Macintosh
world became relevant to computers running its own operating systems.
Its word processor (Word) and spreadsheet (Excel) quickly became
category leaders, and the Office package built around them rapidly
attained a similar status. By the late 1990s, Microsoft accounted for
about 20 percent of the revenue earned by makers of Windows
applications.19

Although integration into applications/games/content can help a soft-
ware platform vendor deal with the chicken-and-egg problem of end-
user and complementor skepticism at launch, it is neither necessary nor
sufficient for the solution of this problem. In addition to i-mode, exam-
ples of apparently successful platforms that did not initially integrate into
applications include Linux and Symbian. Likewise, the digital media
platforms offered by Apple, Microsoft, and RealNetworks didn’t inte-
grate into the provision of content (although there was plenty of content
available) or into applications that used the APIs provided in those
platforms.

Most of these platforms had other sorts of integration that served to
reduce initial doubts as to their viability. For example, in mobile phones
Symbian had the backing of the major hardware manufacturers, and
Windows CE was sponsored by a company that had already built up a
reputation for persistence in the face of market apathy. Others had dif-
ferent strategies that didn’t require the development of an ecosystem.
Linux has developed mainly as an operating system used for specialized
applications, such as doing the special effects for the film Titanic, oper-
ating the Google search engine, or running task-specific servers. Its sim-
ilarity to UNIX and its open nature also made it relatively easy to port
existing applications. RealNetworks started as an application itself that
ran on top of Windows. For a while it was the only streaming audio
game in town and could leverage that to attract content.

266 Chapter 9

18. Ken Siegmann, “Microsoft’s Dominance Continues: Resellers, Competitors
Cite Concerns with Developer’s Huge Share of Mac Market,” Macintosh News,
December 11, 1989.

19. “Worldwide Software Market Forecast Summary, 2000–2004,” (IDC report
no. 22766), August 2000. Calculation excluded “system software.”

The history of media devices suggests that integration into content, for
example, can even be harmful if incentives within the integrated enter-
prise are not in line. In this business, Sony trails Apple’s iPod by three
years and tens of millions of consumers. Before iPod’s launch, Sony had
the successful Walkman mobile media device and possessed an
unmatched amount of content (Columbia, CBS Records, and MGM),
whereas Apple was prominent in neither players nor content. But Sony’s
media player and music download service, designed to compete with
iTunes, were significantly slowed by internal conflicts between its hard-
ware and media divisions, the latter claiming that digital music players
would increase the threat of piracy and therefore would significantly hurt
its revenues. Meanwhile, Apple demonstrated that a well-designed soft-
ware platform such as QuickTime/iTunes can be made attractive both to
consumers, by allowing them to purchase music through the iTunes Web
site, encrypt it in AAC or MP3 format, and transfer it to their iPod, and
to music publishers, by managing digital rights effectively and thus pro-
viding a healthy source of revenues.

Interestingly, we are aware of no examples of software platforms that
initially integrated into the applications/games/content that subsequently
exited that business entirely. On the other hand, almost all such plat-
forms have adopted a two-sided strategy and made significant invest-
ments in attracting third-party suppliers. Partial integration is the norm.
The only exceptions are those successful software platform vendors that
launched without integration; they have remained out of the applications
business.

Hardware and Peripherals
The tendency of computer-based industries to disintegrate over time is
even clearer—with interesting exceptions—when we consider integration
with the supply of basic hardware and peripherals. In the early main-
frame days, these were tightly linked to operating system software. Not
only were there no specialist vendors to attract in these early days and
no standardized hardware-software interfaces to provide to them, but
different vendors made different technical choices, and there was neces-
sarily great uncertainty regarding the viability of individual platforms.
For instance, until 1998, when Apple introduced the iMac with USB

With a Little Help . . . 267

ports, Apple used nonstandard interfaces to connect peripherals such as
printers, keyboards, and mice, and it bundled a computer mouse and
display with those systems.20 It continues to bundle hardware with its
Mac OS.21 Because Microsoft entered the platform business later and in
partnership with IBM, whose viability was not in much doubt at that
date, it has never been in the hardware business and is only a marginal
supplier of peripherals.

Accidents of history and birth shape what firms are good at, their core
competencies, and this has a long-lived effect on overall strategy and inte-
gration decisions. One can’t presume that Apple could have created the
rich ecosystem that Microsoft did, or that Microsoft could have created
the style and veritable cultural icons that have helped Apple survive
where so many others failed.

As we discussed in Chapter 4, Apple’s strategy enables it to coordi-
nate hardware and operating system changes internally, without inter-
corporate negotiation, and, because the Mac OS runs only on Apple
hardware, to test all hardware/OS packages thoroughly before they are
offered to end users. Microsoft’s strategy requires it to invest heavily in
working with hardware vendors and makes it impossible to test its soft-
ware platforms with all hardware configurations end users will
encounter. On the other hand, its hardware complementors have very
strong incentives to produce quality machines at low cost, as both Dell
shareholders and those who lost their investments in firms that used to
compete with Dell can attest. One can imagine Apple’s strategy winning
in a world in which technological change drove frequent, radical changes
in hardware and software architectures, so that the ability to manage
those changes internally and produce more reliable systems was an

268 Chapter 9

20. “Hands On–Mac–Universal Solution,” Personal Computer World, February
1, 1999; “Mac Ports, Past and Present,” http://charm.cs.uiuc.edu/users/olawlor/
ret/mac_ports.

21. As we noted in Chapter 4, Apple briefly (from 1994 to 1996) pursued a
policy of partial integration in hardware. But this pursuit was both brief and
timid: Apple’s licensees never accounted for more than 21 percent of the sales
of computers running Apple operating systems. “Macintosh Clone,”
http://www.answers.com/topic/macintosh-clones; John Poultney, “Dataquest
Posts 1997 Mac Tally,” February 23, 1998.

enormous advantage, but that is not the world in which the computer
industry has operated in the last few decades.

The Microsoft strategy of having the hardware complement its oper-
ating system produced by a competitive, technologically dynamic indus-
try has served to make its operating systems more valuable and to speed
their market penetration. Microsoft is not above using integration on
occasion to stimulate important markets for complements, as its entry
into mouse production, discussed earlier, illustrates.

Palm, discussed in Chapter 6, provides another interesting example of
disintegration over time. It began as a developer of PDA applications
that teamed up with others to create a PDA. It learned the downsides of
lack of integration from that failed experience: it was hard to design a
product by committee. So when it made another try at this business, it
adopted a fully integrated strategy, not in the sense that it made every-
thing but in the sense that it controlled all aspects of the software and
hardware design process and treated other firms as subcontractors rather
than partners. Following its success, it intentionally let this tight inte-
gration unravel. It started licensing its operating system to other hard-
ware manufacturers—makers of PDAs, mobile phones, code bar readers,
and other devices—in 2000 in order to increase its attractiveness to appli-
cation developers. Eventually, Palm went all the way by disintegrating in
2003 into PalmSource, the software platform vendor, and PalmOne, the
hardware manufacturer.

It did so mainly to liberate itself from the delicate conflicts of interest
it was facing by licensing its operating system to PDA manufacturers that
competed against Palm’s own devices, the same problem Nokia is
addressing by building a Chinese wall around its Mobile Software
division. Disintegration allowed PalmSource to focus clearly on building
a software platform that would appeal to a variety of device
manufacturers.

Palm was responding to the competitive pressure of Microsoft’s
Windows CE, the software platform that is currently the biggest chal-
lenge for Palm OS in the PDA business and that relies entirely on third-
party hardware producers. The now independent PalmSource would be
in a better position to compete for the attention of those same hardware
producers. In the words of David Nagel, PalmSource’s CEO “As an

With a Little Help . . . 269

independent company, PalmSource can accelerate the acceptance of Palm
OS.”22 In doing so, Palm explicitly stated that it did not want “to go the
way of Apple and become a niche player.”

Microsoft is pursuing the same strategy in smart phones, treating the
hardware (handsets) as a commodity. The major producers of handsets
have responded with Symbian, which can be viewed as an attempt to
turn the operating system into a commodity. (This interpretation is rein-
forced by Symbian’s design: hardware-specific middleware must be
developed in order to make Symbian fully functional [with an end-user
interface] with each manufacturer’s handsets.) Although Symbian looks
from some angles to be a nonintegrated software platform, its close links
with Nokia have naturally made other handset producers nervous. Con-
tinuing this theme, i-mode can be viewed as an attempt, using Java mid-
dleware and other additions to its platform (e-payment in particular), to
commoditize both handsets and operating systems to some extent; if end
users and content providers can interact through i-mode interfaces
regardless of their underlying hardware and software, then operating
systems become less important. Thus, for instance, i-mode users can
download Java applications through the i-appli service regardless of the
particular handset model they have and the operating system it uses.
And, as in other sectors, Linux is both a nonintegrated software plat-
form and a nonstandard sort of competitor.

In addition to Apple in PCs, there are two other clear exceptions to
the general pattern of disintegration of software platforms from hard-
ware over time. The first of these is Apple’s iPod media device, which
integrates a hardware platform, software platform, and, through Apple’s
iTunes service, content. As noted earlier, it is hard to know whether this
is no more than Apple’s staying true to a corporate strategy that favors
integration across the board or whether it reflects some nonobvious
technical advantage to coupling hardware and software tightly—or even
whether this tight integration is a permanent state of affairs.

The second clear exception is the video game industry. All successful
providers of video game systems integrate hardware and platform

270 Chapter 9

22. Palm, “PalmSource Spin-Off and Handspring Acquisition Approved by
Stockholders,” Palm press release, October 28, 2003.

software. We believe the explanation for this departure from the norm
stems from special features of video game consoles. These are comput-
ers designed for only one type of application, interactive games in which
graphics are typically very important. To provide the best possible
gaming experience, sophisticated graphic designs must be rendered with
high speed and great accuracy. Poor performance is visible, literally, to
customers. To be competitive, system vendors have designed all platform
components, hardware and software, to squeeze the best possible gaming
performance out of the underlying microprocessor, and market leaders
clearly have no interest in developing industry standard designs or inter-
faces. For example, the Emotion Engine processor at the core of PlaySta-
tion 2 and the entire architecture surrounding it were new, “the result
of brilliant, out-of-the-box thinking.”23 It was built for one purpose: to
generate amazing 3D graphics and digital sound. It was not as fast as
Intel’s Pentium II CPU for some operations, but, not surprisingly, its
graphics processor had 1,000 times more bandwidth than PC graphics
processors at the time of its introduction. Just as devotees of PC games
have typically demanded the hottest PCs, so it seems that on average,
video game systems need to be closer to the technological cutting edge
(or, as is sometimes said, the bleeding edge) than PCs. This is just the
sort of environment in which the flexibility in innovation provided by
integrating hardware and platform software is most likely to pay off.

Still, it would be a great surprise if the enormous success of Microsoft’s
“commodity hardware” strategy in the PC business had not attracted
imitators in the video game industry. This is at least one way to look at
the short-lived 3DO Multiplayer discussed in Chapter 5. Trip Hawkins,
its creator, had focused on specifying the best possible gaming technol-
ogy and intended to license hardware production to multiple manufac-
turers—Panasonic, Sanyo, Creative Labs, and AT&T. As we noted, the
other novelty in Hawkins’s strategy was Multiplayer’s pricing: the
console was very expensive for end users ($699), while developers were
charged remarkably low royalty rates ($3). It is hard to know which
novelty was the main cause of failure, and, as we discussed in Chapter

With a Little Help . . . 271

23. Steven L. Kent, The Ultimate History of Video Games (Roseville, Calif.:
Prima Publishing, 2001), p. 560.

5, the pricing strategy was clearly unsound. On the other hand, Michael
Katz, former CEO of Sega of America, suggests that licensing hardware
production was also unworkable in video games:

I’d like to think that we would have had the smarts at Sega to market the 3DO
in the conventional, successful way and not create this, if you’ll forgive the
expression, ridiculous new model that Trip came up with of how to market and
sell 3DO. I mean, not manufacturing the hardware himself and licensing the
technology to other people—it’s ridiculous. Why would more than one company
want to compete against someone else with exactly the same product? Why
would a retailer want to buy the same product from more than one company?
Everyone in the industry thought that was ludicrous.24

At first blush, Mr. Katz seems to be saying that the exact strategy
that made Bill Gates the richest man in the world was “ludicrous.” But
the sectors are different. Third-party hardware production may work in
the PC world because machines that are differentiated in buyers’ eyes
can still run Windows successfully. We talk of Wintel PCs as commodi-
ties, but this is only approximately true: the major manufacturers
produce many models and configurations and advertise their superior
features and functionalities loudly. This is perhaps even clearer in PDAs
and smart phones, where different devices running the same applications
on the same software program can be highly differentiated via differ-
ences in hardware design. The ability to differentiate and innovate in
these sectors holds out the prospect of high profits. In the video game
arena, however, it may be necessary for all vendors to produce “exactly
the same product” in order to generate a satisfactory gaming expe-
rience. And, as Mr. Katz indicates, manufacturers would much rather
differentiate their products, if only slightly, than produce a pure
commodity.

Still, Microsoft itself, although it seems to have been fully aware of
the failure of 3DO’s Multiplayer eight years before, decided to try the
same model again when it launched the Xbox in 2001. After all, if
someone could successfully bring the PC platform model into the video
game industry, who else better than Microsoft? But, as we saw in Chapter
5, Microsoft was quickly rebuffed by the third-party PC manufacturers
it tried to enlist—quite probably a blessing in disguise. In a rephrasing

272 Chapter 9

24. Kent, The Ultimate History of Video Games, p. 486.

of Mr. Katz’s words, Michael Dell told Microsoft upon refusing the Xbox
deal offered to him:

When Sony cuts the prices on their PlayStations, their stock price goes up. Every
time I cut prices, my stock price goes down. If you don’t understand why that
happens, you don’t understand the console business. I understand why this is
strategic to Microsoft. I don’t understand why this is strategic to Dell.25

Competing Ecosystem Structures

In most of the preceding chapters, we have encountered examples of
competing software platform vendors with very different scope and inte-
gration strategies and thus, typically, very different business models.
Apple versus Microsoft in PCs is the most familiar example, and
Microsoft versus Symbian versus i-mode is perhaps the most complex.
Rivalry of this sort raises economic issues that do not arise in the tradi-
tional world of bricks, mortar, and widgets. How does competition
across the various layers of the mobile phone industry (mobile network,
handset hardware, handset operating system) differ from competition
within the same layer?

The managerial and strategic issues this sort of competition poses are
interesting and difficult. As PCs and video games compete to become
dominant as home entertainment centers, should video game manufac-
turers encourage or discourage conversion of video game consoles into
PCs? As PDAs and smart phones both seek to become the single indis-
pensable device in every purse and pocket, what sorts of complementors
should they seek to attract, or should they focus on integrated strategies?
Should Apple’s competitors emulate its one-sided model, or should they
be confident that multisided strategies will ultimately win out in media
devices, as they have elsewhere?

INSIGHTS

• Software platform vendors are participants in complex ecosystems
that include end users as well as producers of complements (such as

With a Little Help . . . 273

25. Dean Takahashi, “Opening the Xbox,” Prima Lifestyles, 2003, p. 168.

hardware devices, software applications, and content), and, in mobile
phones, mobile operators.

• Platform vendors are more likely to find a multisided strategy most
effective when technical interactions with complementary products
are stable and well defined, and the markets for those complementary
product markets are competitive. These conditions tend to be more
prevalent in more mature markets.

• At the start, software platform vendors often also produce applications
and hardware because third parties can’t be attracted until a base of end
users has been built. Over time, software platform vendors generally
become less integrated, though partial integration into applications is
very common.

• In a multisided strategy, the software platform mainly facilitates inter-
actions between the sides of the platform (particularly applications
vendors and end users). In a single-sided (or merchant) strategy, the plat-
form either produces the complementary products itself or buys them
and resells them to end users.

• Most software platform vendors adopt a multisided approach with
respect to at least two sides, although they may take a merchant
approach with other sides. The major exception is the iPod/iTunes plat-
form, which operates as a merchant with regard to all sides: hardware,
software, and content provided to its customers.

274 Chapter 9

10
Some Lunches Are Free

“Oh, ‘tanstaafl.’ Means ‘There ain’t no such thing as a free lunch.’ And isn’t,” I
added, pointing to a FREE LUNCH sign across room, “or these drinks would
cost half as much. Was reminding her that anything free costs twice as much in
the long run or turns out worthless.”

—Robert Heinlein1

INSIDE THIS CHAPTER

• The basics of software platform pricing

• When to use fixed versus access fees

• Where software platforms have sought profit

When you go to a video game arcade, you have to pay every time you
start a game. At home, once you have bought a game for your video
game console, you can play it as often as you like. And if you play online,
you can also play as often as you like, but only if you pay a monthly
fee. When you play music on your computer, you can either use the media
player that came with it or download others for free and use them
instead. RealNetworks sells its digital content by subscription; Apple
charges 99 cents per song. Computer manufacturers can pay Microsoft
for the right to install Windows (with larger manufacturers receiving a
volume discount) or they can install Linux for free. Software developers
can either pay Sony a royalty for each copy of a PlayStation game they
sell or they can get Apple’s help to write games for the Macintosh and
pay Apple no royalties at all. Mobile phone users in the United States

1. Robert A. Heinlein, The Moon Is a Harsh Mistress (New York: Tom Doherty
Associates, 1997).

are generally charged according to the number of minutes they are con-
nected to the network, with various volume discounts available, while i-
mode users in Japan pay according to the amount of data they send or
receive, regardless of how long they are connected.

This chapter tries to explain why different industries have chosen dif-
ferent pricing methods to get both sides on board and maximize profits
from the participants in their ecosystems. In so doing it provides insights
into the pricing policies that new businesses based on software platforms
should consider. We begin by explaining the basic economics of pricing
in multisided platform businesses. We then consider three important
dimensions of pricing for software platforms. First, what is priced? Some
businesses based on software platforms charge for access to their plat-
form, some charge for use of the platform, and a few charge for both.
Second, how do prices vary across the customers on a given side of a
platform (game developers, for example)? One price does not fit all in
either theory or practice. Third, who gets the (nearly) free lunch? Con-
trary to Milton Friedman’s observation that there’s no such thing as a
free lunch, in the industries we have examined, the customers on one
side get services for free, or at least for a price that at best covers out-
of-pocket cost.

Pricing in Multisided Businesses

In single-sided businesses, pricing analysis mainly focuses on the level of
price, both at introduction for new products and at maturity, and on
price discrimination—differences in price paid by different customers.
The profit-maximizing price for a single product depends on the cost of
supplying an additional unit—the incremental or marginal cost—and on
the responsiveness of demand to price. Demand will be more responsive
to the price of a particular product—economists would say the price elas-
ticity of demand will be higher—the easier it is for buyers to reduce pur-
chases of the product in question when its price rises, either by switching
to competitive products or by doing without, and the less likely com-
petitors are to match price increases or ignore price cuts. The higher a
product’s price elasticity of demand, the lower is the optimal markup of
that product’s price over marginal cost.

276 Chapter 10

Pricing is more complex for new products and for firms that produce
multiple products. Firms sometimes engage in “penetration pricing”:
they charge low introductory prices to get the attention of buyers and
penetrate a new market, then raise these prices over time as the market
matures. Under other conditions firms practice “cream skimming,”
charging high prices to early, eager buyers and then lowering prices over
time to capture a larger market. Similarly, firms that produce several
products must adjust prices to take into account that some may be sub-
stitutes for each other (pricing high reduces cannibalization of sales from
substitutes) and some may be complements for each other (pricing low
boosts the sales of complementary products).

Even in these and other more complex cases, pricing in single-sided
markets always begins with product-specific marginal cost. This tight
connection between the incremental cost of a product and its price
weakens considerably in multisided businesses in ways that have impor-
tant implications for pricing strategy.

The fact that there is a tight connection between prices and costs in
single-sided businesses doesn’t mean that all customers get charged the
same price. In fact, many firms charge higher markups over cost to some
customers (or groups of customers) than others, depending on their
intensity of demand. Economists gave this practice the name “price dis-
crimination” before “discrimination” acquired such negative connota-
tions.2 Not only is price discrimination common in market economies,
but often it enhances economic welfare by, for example, better enabling
firms to recover the costs of research and development and thus increas-
ing incentives to perform R&D.

Price discrimination turns out to be important in multisided businesses
as well, as we discuss later in this chapter. As background for these
discussions, it is helpful to summarize the three major types of price dis-
crimination that economists have identified.

Firms would like to be able to charge every individual buyer the
absolute most they would be willing to pay. That is what a very good
used car salesperson tries to do: he tries to figure out the most each buyer

Some Lunches Are Free 277

2. Mankiw, “Principles of Economics,” p. 334; Carlton and Perloff, “Modern
Industrial Organization,” pp. 297–299.

would pay and then quotes just a little bit less. (Economists would say
he is practicing first-degree price discrimination.) In practice, sellers
rarely have enough information to pull this off, so they try a couple of
cruder methods.

One common method involves various bulk or volume discount
schemes that give customers a lower average cost per unit the more units
they buy. (Economists call this second-degree price discrimination, or
nonlinear pricing.) The simplest bulk discount is called a “two-part
tariff,” because customers have to pay both a fixed charge to buy any-
thing (an access charge) and a per-unit charge for each unit purchased
(a usage charge). The average cost per unit falls as more units are pur-
chased.3 In principle, firms can generally increase profits by using both
access and usage charges, though collecting both charges sometimes
entails higher transactions costs that swamp any potential profit gain. If
there are costs associated both with providing access and with provid-
ing usage, it seems more common for firms to make the bulk of their
profits from usage, which measures strength of demand, rather than from
access. That is, to use the most familiar example, giving away the razor
(or selling it at cost) and making money on the blades seems to be more
common than selling the blades at cost and making profits on the razor.

Another method of price discrimination reflects the fact that it is often
much easier for firms to guess how much, on average, a particular group
would be willing to pay than to guess how much a particular individual
might pay. An airline may not know how much a particular individual
will pay for a seat, but it does know that people who travel at the last
minute are typically business travelers who are willing to pay much more
than people who book weeks in advance. The airline can therefore charge
the group of last-minute travelers more than advance-booking passen-
gers. Of course, to engage in this group method of pricing, the seller must
find groups of buyers who have different sensitivity to the product’s
price, who can be identified and therefore charged separate prices, and

278 Chapter 10

3. The classic exposition is Walter Oi’s “A Disneyland Dilemma: Two-Part
Tariffs for a Mickey Mouse Monopoly,” Quarterly Journal of Economics 85
(1971): 77–96. For a more technical treatment, see Richard Schmalensee,
“Monopolistic Two-Part Pricing Arrangements,” Bell Journal of Economics 11
(Autumn 1981): 445–466.

who can’t defeat the scheme by having the low-price group sell to the
high-price group. Although there are challenges here, many businesses
in practice figure out ways to engage in this sort of discrimination. (This
is known as third-degree price discrimination.)

Pricing for Balance . . .?
We have emphasized that in theory and in practice, multisided firms have
to balance the demand on the two sides by pricing, and that they often
do this by pricing low to one side and high to another. Any student of
basic economics, though, should question this statement for any plat-
form in which the two sides interact directly with each other. After all,
under textbook competition it doesn’t matter whether the government
imposes a product-specific tax (2 cents per bushel of wheat, for instance)
on buyers or on sellers, since sellers will pass the full amount of the tax
through to the buyers. Now consider payment cards. Card systems typ-
ically charge cardholders a zero price for using their cards and charge
merchants about 2 percent of the transaction amount when cardholders
use their cards to pay. This effort to tilt pricing in favor of cardholders
would be defeated if merchants imposed a surcharge of 2 percent on all
transactions using a card. Then the cardholder would end up paying,
and the merchant wouldn’t.

Could a similar result be true for video game consoles? Does it matter
whether the console maker collects royalties from game developers or
from game users? If game developers pass the royalty cost on to the users,
the users end up paying in the end anyway.

In practice, it generally does matter which side pays, because two key
assumptions made in the textbook discussion don’t apply. First, there are
often significant transactions costs that prevent the customers on the
two sides of most markets from just “sorting it out” themselves. Take
the payment card example. Although most card systems prohibit mer-
chant surcharging because it degrades the value of their product to card-
holders, several countries have barred card systems from imposing such
a no-surcharge rule. In those countries, however, most merchants don’t
surcharge. One reason is that it is costly to impose small charges on cus-
tomers. Those merchants that do surcharge often charge more than they
are charged by the card system—an indication that they are using the

Some Lunches Are Free 279

fact that a customer wants to use her card as a basis for groupwise price
discrimination.

The effects of transactions costs are visible in many two-sided markets.
We discuss their likely role in video games below.

Second, competition in most real markets is less intense than in text-
book markets. Competition among suppliers on at least one side of two-
sided businesses is often imperfect, either because there are only a few
major sellers or because products are differentiated. In this case, per-unit
charges on that side generally are not passed on dollar for dollar. The
exercise of market power (which leads to output restrictions) on that side
may complicate the problem of balancing the two sides, and the pres-
ence of excess profits (deriving either from market power or from a few
highly successful differentiated products) makes it more attractive to
charge that side.4

When balance matters in a mature two-sided business, the pricing
problem is much more complex than in a single-sided business. Marginal
cost and price responsiveness on both sides matter for both prices, and
so does the pattern of indirect network effects. In general, if side A cares
more about side B than B cares about A, then, all else equal, A will con-
tribute more total revenue. Thus, newspapers make their money from
selling advertising, not from selling papers.

The textbook pricing formula for a single-sided market gives the
optimal markup over marginal cost as 1 over a measure of price respon-
siveness (the price elasticity of demand), so low price responsiveness
implies high markups. The corresponding formula for a two-sided busi-
ness involves marginal costs on both sides, price responsiveness on both
sides, and measures of the strength of indirect network effects in both
directions. In particular, balance may require charging a price below mar-
ginal cost to a group with low price responsiveness, something a single-
sided business would never do, if it is critical to attract members of that
group in order to get members of the other group on board.

280 Chapter 10

4. For a general discussion of the issues discussed in this paragraph and the
remainder of this section, see Jean-Charles Rochet and Jean Tirole, “Two-Sided
Markets: A Progress Report,” mimeo, IDEI and GREMAQ, Toulouse, France.
On the effects of imperfect competition, see Andrei Hagiu, “Pricing and Com-
mitment by Two-Sided Platforms,” Rand Journal of Economics, 37 (2006):
forthcoming.

As we mentioned in Chapter 3, most two-sided businesses earn all or
almost all of their profits from only one of the customer groups they serve.
The standard economic theory of pricing in these businesses indicates that
such pricing structures may be optimal, but it does not imply that they
should be the norm. One explanation for the observed pattern is that sen-
sitivity to price typically differs substantially between the two sides, so
that it is optimal to price low to the price-sensitive side in order to attract
the price-insensitive side, which can then serve as the main source of
profit.5 Another explanation is that the standard theory neglects the
transactions costs of collecting revenue from two sides rather than one.
If, for instance, standard theory says that an 80/20 revenue split between
two sides is optimal, but the costs of monitoring usage and excluding
nonpayers required to collect the 20 would be significant in practice, the
true optimum, taking those costs into account, may be 100/0.

Entry and Platform Competition
Two other strands of the economic literature would seem to be relevant
to software platforms. The first deals with entry strategies. Recent work
has argued that it may be necessary for new two-sided businesses to use
a “divide and conquer” pricing strategy to deal with the chicken-and-
egg problem, or the reluctance of either side to come on board without
the other. The idea is initially to subsidize one side (or, more generally,
to do whatever it takes) in order to get it on board even though the other
side is not yet on board, and to use the presence of the subsidized side
to attract the other side.6 This differs from the single-sided penetration
pricing strategy discussed above because the key here is to generate indi-
rect network effects, to use the subsidized side as a magnet to attract the
other side. After entry has been successfully effected and both sides are
on board, of course, the rationale for the initial subsidy vanishes, and

Some Lunches Are Free 281

5. The technical argument that “corner solutions” of the 100/0 sort are the rule
under the most plausible assumptions is given by Wilko Bolt and Alexander F.
Tieman, “Skewed Pricing in Two-Sided Markets: An IO Approach” (working
paper 13, De Nederlandsche Bank, Amsterdam, October 2004).

6. Bernard Caillaud and Bruno Jullien, “Chicken and Egg: Competition Among
Intermediation Service Providers,” Rand Journal of Economics 34, no. 2
(Summer 2003): 521–552.

one would expect to see a corresponding shift in pricing policy. One of
the regularities we discuss below, however, is that pricing structures—
the relative amounts paid by the various sides—appear fairly robust over
time; there are not many examples of pricing low to one side at first and
then raising prices significantly later.

A slightly different entry problem arises when members of one side
must be attracted before members of the other side.7 In order to attract
buyers for a new video game console, for instance, an array of attrac-
tive games must be available at the console’s launch, but this won’t
happen unless developers have been persuaded earlier to invest in devel-
oping those games. Developers, of course, won’t make those investments
unless they expect the console to be popular. This requires at least that
they expect the console to be sold for a low price. In order to create such
expectations, console makers often commit publicly to low prices months
before their products are launched, in announcements directed at both
game developers and end users. Steve Race, then president of Sony Com-
puter Entertainment, describes such an announcement he made at a large
trade show six months before the launch of Sony’s Playstation8:

Olaf [Olafsson, President of Sony Electronic Publishing] was about two-thirds
of the way through his speech when he said, ‘I would like to call up Steve Race
to tell you a little bit more about the Sony Playstation.’ So I walked up. I had a
whole bunch of sheets of paper in my hands, and I walked up, put them down
on the podium, and I just said ‘$299,’ and I walked off to this thunderous
applause.

The other relevant strand of the economic literature considers com-
petition among multisided platform businesses. At one level, the stan-
dard pricing formula mentioned above deals with this: as in single-sided
markets, the presence and behavior of competitors are important deter-
minants of price responsiveness of demand. A new element here is the
distinction between “single-homing” and “multihoming.” When faced
with two or more competing platforms, a business or household is said
to single-home if (because of switching costs or for other reasons) it can
deal with at most one of them; it is said to multihome if it is able to deal

282 Chapter 10

7. Andrei Hagiu, “Pricing and Commitment by Two-Sided Platforms,” Rand
Journal of Economics 37 (2006): forthcoming.

8. Steven L. Kent, The Ultimate History of Video Games, 2001 p. 516.

with two or more of them. In the PC world, most households single-
home, while many software developers multihome.

This is a fairly general pattern: most members of one side single-home
and most members of the other multihome. While it seems plausible that
this difference should affect pricing, it is less clear which side should
benefit in general. The standard theory says that pricing on one side will
tend to be lower, all else equal, when the number of single-homing
members increases on that side and higher when the number of multi-
homing members increases.9 The argument is that if members on one
side become more inclined to single-homing—which happens, for
example, if their switching costs become higher—then competition will
be more intense on that side, since it becomes competition for all of a
member’s business, not just for some of it. On the other hand, casual
observation of the video game industry suggests that as multihoming has
become more common among video game developers over time, their
royalty rates have come down substantially. This is consistent with the
opposed argument that the easier it is for an important player on one
side to multihome, the lower its switching costs and thus the greater its
ability to shift its business between competing platforms. This in turn
enhances its bargaining power vis-à-vis platforms and thus its ability to
command lower prices. Perhaps in part for this reason, as we discuss
below for most software platforms, end users, who generally single-
home, contribute much more to the net revenue of the platform business
than application or content developers, who commonly multihome.

What Is Priced?

Most of the preceding section implicitly assumed a platform business that
charged only usage fees. In fact, an important choice in the industries
studied here is between access fees and usage fees, which can be exem-
plified as the difference between buying a video game for home use, and
thereby getting the right to play it as often as you like, versus being

Some Lunches Are Free 283

9. Jean-Charles Rochet and Jean Tirole, “Platform Competition in Two-Sided
Markets,” Journal of the European Economic Association 1, no. 4 (2003):
990–1029.

charged each time you play a game in an arcade. Even though, as we
discussed above, it is theoretically preferable to employ both kinds of
fees, we know of only one case in which this is done—most plausibly
because of transactions costs. That case is massive, multiplayer online
role-playing games (MMPRPGs to gamers), where players do face a two-
part pricing regime—and more.

284 Chapter 10

10. This has a lot to do of course with the fact that PC online gaming has largely
predated console online gaming, which has only become a key aspect of plat-
form competition with the last two console generations.

11. IGDA Online Games white paper (2003).

12. A hit like Everquest reached 500,000 users, whereas more recently, Korea’s
NCSoft shattered all records when it announced that its Lineage MMPRPG had
an astounding 4 million paying customers.

13. “Patti Waldmeir: Cyber World Is Heading for Regulation,” Financial Times,
March 30, 2005.

Online gaming has spawned several new and original pricing business
models, which have first appeared on the PC platform and are now increas-
ingly emulated by console manufacturers and console game publishers.10

Most of these novel pricing models have been created by the develop-
ers of online massive multi-player role-playing games (MMPRPG), which
are hosted on the publishers’ servers and played online simultaneously by
thousands of users who enter and exit the game 24 hours a day, 7 days a
week.11 The basic pricing is a simple two-part tariff: users pay a fixed fee
to buy the game CD, usually around $50, after which they are charged
monthly subscription rates. (For example, the current monthly fee for Sony
Online Entertainment’s Everquest is $12.99, and the one for Electronic
Arts’ The Sims Online is $10.) However, the very successful MMPRPGs
realized that they could profitably sell expansion packets and game
enhancements.12 Everquest, for example, started offering a premium server,
Everquest Legends: for an extra $30 per month, players gain access to
additional content, guidelines, and events. Other MMPRPGs have pushed
price discrimination even further by selling additional game characters and
objects. Players of Electronic Arts’ Ultima Online can get advanced char-
acters (alchemists and magicians) for $30. It was not long before a sec-
ondary market appeared on eBay, where players trade characters among
themselves.13

Noticing these developments, console makers realized the revenue-
generating potential they offered and sought to capture it. Xbox 360, with

Price Discrimination in MMPRPGs

For video game consoles that connect to the Internet, one could
imagine emulating MMPRPG pricing and charging both an access fee
(the purchase price of the console) and a variable (per-month or per-
game) fee for games played at home on the console. In theory, using both
forms of pricing would generally increase profits somewhat. In reality,
collecting a usage fee for console-based games would certainly increase
the seller’s costs, and that cost increase would almost certainly swamp
any theoretical increase in profit. Moreover, charging a usage fee to
consumers who have always been able to play “their” games as much as
they want would almost certainly provoke a serious consumer backlash.
As this example illustrates, the pricing instruments that each software
platform can use on each side of its market depend to a large extent on
the transaction costs involved, on the institutions of that particular
market, and on the available technology.

Exclusion and Piracy
For a software platform to be able to charge a positive access or vari-
able price to a certain side of its market, it first needs the means to
exclude members of that side who don’t pay. On the end-user side, this
is a relatively small problem when the software platform is integrated

Some Lunches Are Free 285

its centralized and proprietary online service, is in a particularly good posi-
tion to create an online marketplace where players can trade game arti-
facts (levels, characters, weapons, and so on). PlayStation will find it more
difficult to do this, since its online service is decentralized.

These practices open up the very interesting possibility of “piece-
mealing” games, transforming them from unitary packaged goods into
completely modular, mix-and-match collections of products. It is easy to
imagine publishers selling bare-bones versions of their games on CDs and
then price discriminating among users by offering additional levels, char-
acters, features, weapons, and so on for sale individually. This would
present console manufacturers with the opportunity of charging users each
time they downloaded a game piece through their online services. This
would be broadly akin to the per-data packet charges levied by mobile
network operators such as Japan’s NTT DoCoMo on users downloading
content on their mobile phones through the wireless network.

(continued)

into the hardware. Even if the software platform can be easily copied, it
is useless without the basic hardware, and there are many ways (includ-
ing using nonstandard components and nonpublic designs) to make
cloning the hardware difficult. It is thus not surprising that we are
unaware of any allegations of substantial piracy of Apple computer
systems.14

On the other hand, it does not seem easy to exclude makers of periph-
eral devices. In any case, we are unaware of any serious attempt to do
so in the industries studied here.

When the software platform is not bundled with the basic computer
hardware, software piracy can become a major problem, particularly if
(as is the case for PCs designed to run Windows) there are numerous
third-party hardware producers using standardized components and
working with well-documented hardware-software interfaces so that the
necessary hardware is easy to buy or build. In this case, the software
vendor almost certainly needs to devote resources to fighting piracy. It
might license its systems only to hardware vendors who agree (on pain
of heavy penalties) not to ship hardware without operating systems, for
instance, and devote resources to enforcing that contract provision. It
might also hire agents to attempt to buy pirated copies of its system and
hand the sellers over to the authorities.

Because these and other sorts of antipiracy measures are costly,
whereas copying software is essentially free, some amount of piracy of
popular platforms is almost certain to occur. Since the higher the price
of the platform, the more tempting it is to copy it illegally, a strategy of
selling software separate from hardware fits best with a strategy of selling
the software for a relatively low price.

One other aspect of licensing platform software to hardware makers
deserves mention. Microsoft has long offered discounts on operating
system licenses to computer makers to design and build machines that
meet certain standards. These offers are a part of the Market Develop-
ment Program, and their conditions typically include selling more than

286 Chapter 10

14. Although Apple’s June 2005 announcement that they would be switching to
Intel architecture started rumors that such piracy might be a concern in the
future.

a certain percentage of computers with certain minimum technical spec-
ifications (memory, CPU speed, and so on). The rationale is to provide
incentives for improving the quality of the computers that reach end
users, which in turn stimulates demand for Windows. This is also one
method for coordinating innovation across corporate boundaries and,
from Microsoft’s point of view, of reducing the number of end users who
are unhappy that advertised features of Windows don’t work on their
new computers.

Developers of applications, games, or media content cannot be auto-
matically excluded from using operating systems. It is hard to keep APIs
secret (they need to be documented for internal developers, for instance)
or to prevent developer tools and programming languages from being
copied, especially if they are being sold for a high price. All video game
consoles obtain exclusion by using a security chip to prevent games pro-
duced by unauthorized developers from running, and one cannot use a
mobile phone purchased from one carrier on another’s network without
the other carrier’s SIM card. We are unaware of any other exclusion
device that has been used successfully in the industries studied here at
any significant scale.

In the smart phone industry, third-party vendors could initially supply
applications freely, as in the PC industry. However, realizing that the
quality of applications available had a significant impact on the overall
user experience, network operators and handset manufacturers began to
create signing programs for third-party software. These programs resem-
ble the distinction DoCoMo makes between official and unofficial
content: nobody is completely excluded, but not every application can
obtain official approval. Users know that signed applications satisfy
certain quality standards. In 2003, Symbian introduced what has become
the most significant signing program, Symbian Signed, endorsed by
Symbian’s hardware licensees as well as network operators. In addition
to granting signed applications a public seal of approval, handset man-
ufacturers such as Nokia and Sony Ericsson, as well as operators such
as Orange and T-Mobile, open their distribution channels only to appli-
cations that are Symbian-signed. (Developers pay modest fees to Symbian
in this process: $350 for registration and from €185 to €560 for

Some Lunches Are Free 287

testing.15) We understand that it is technically possible on at least some
phones for network operators to go a step farther and block end users
from installing nonapproved applications on their handsets, and that
some are at least considering this step.

Intensity of Use
If it is possible to exclude potential participants, the next choice is
whether to do so and to charge something for access or usage. If a pos-
itive price is to be charged, access fees, which do not vary with intensity
of usage, are typically (but not always) easier to charge than usage fees
in the markets we’ve discussed here. This is because it is easy to monitor
purchase, but purchase in these settings typically enables usage at widely
different levels of intensity. (Arcade video games provide a counter
example: it is much more natural to charge each time a game is played
than to sell the rights to unlimited play.) Once I’ve bought a video game
for my Xbox, I can play it every waking hour or toss it in the closet and
forget it. The developer would like to charge more in the former case
than in the latter, though he would generally like to charge something
(an access fee) in the latter case as well. But, as we discussed above, it is
simply not easy to monitor and charge for postpurchase usage in this
case.

Things are changing with the advent of online gaming. Console online
games have followed PC online games by adopting a subscription model;
users pay a monthly subscription fee to play.16 This isn’t pure usage
pricing, though; that would involve charging for time spent online or
at least for each login. This sort of pricing would seem to be feasible;
perhaps it is not done for the same reason that most U.S. consumers pay
a flat monthly fee for unlimited local (land-line) telephone calls: con-
sumers value having a predictable monthly bill and don’t like having to

288 Chapter 10

15. https://www.symbiansigned.com/app/page/faq, https://www.symbiansigned.
com/app/page/testhouses. Registration is done by VeriSign, Inc., and testing by
either CapGemini, Mphasis, or NSTL; all are Symbian partners.

16. As we have seen, however, on Xbox Live, users pay a monthly fee to
Microsoft and have access to all Xbox-supported online games, whereas the
PlayStation online service leaves it to each individual game developer to charge
subscription fees to users.

think about the cost consequences of their actions on a minute-by-minute
basis.

The access/usage issue arises in slightly different form with applica-
tions developers. A software platform vendor could, in principle, charge
each third-party application or game developer only a fixed fee for access
to its system. One can argue that Apple, Microsoft, Symbian, and Palm-
Source do this, but their fees for developer tools and related information
at best just cover the costs involved. In fact, one can think of this policy
as offering negative prices to credible developers, with more attention
devoted (and thus, in effect, a larger subsidy given) to developers that
produce the most popular applications—thus, roughly, a negative usage
charge on that side of the market.

Any attempt to make significant profit from access charges to devel-
opers would run into the exclusion problem discussed above. Moreover,
such a policy would clearly be inefficient. Game developers, for instance,
differ enormously in scale, and a fee that Electronic Arts would notice
would likely exclude most of the firms in the industry. The pricing scheme
actually adopted by video game platforms, a royalty for each game sold,
is in effect a usage fee for game developers: it charges them more if they
derive more value from access to the platform. But, as we discussed
above, it leads to access pricing, not usage pricing, of individual games
to end users.

Some platforms do have the potential to monitor intensity of usage,
at least approximately. If the number of songs downloaded from iTunes
were a good measure of iPod usage, Apple could use song pricing on
iTunes to levy a usage charge on iPod owners. However, as we discussed
in Chapter 8, Apple has decided not to do this and to sell songs on iTunes
on roughly a break-even basis. This may be simply a continuation of
Apple’s long-standing strategy of seeking profit in hardware rather than
software, or it may reflect worries that piracy would make higher prices
for music unsustainable. RealNetworks’ Rhapsody service, in contrast,
charges users monthly fees for unlimited streaming access to a million
songs, but it does not allow downloading, so that when they stop paying
they no longer have access to any songs they have heard before.

In Chapter 7 we noted that one of the main features of i-mode is its
sophisticated billing system, which allows NTT DoCoMo to charge users

Some Lunches Are Free 289

based on the amount of data they receive and send to and from their i-
mode phones. This is arguably a reasonable proxy for consumer usage
of (and thus value derived from) the platform. While clearly imperfect,
it seems superior to the much less accurate alternative that was used by
WAP-based services such as Vizzavi that charged based on time spent on
the network. Today, virtually all wireless service providers around the
world charge usage fees based on the amount of data transferred or levy
a flat fee for unlimited data transfers.

Particularly with ubiquitous access to the Internet, it is possible in prin-
ciple to monitor intensity of end-user usage for essentially any software
platform. One could, for example, imagine that every time a PDA using
the Palm OS is linked to a computer connected to the Internet, it would
report CPU usage to PalmSource, which would automatically generate a
monthly charge to the owner’s credit or debit card, just as some Inter-
net service providers do now.17 But this sort of monitoring is not free,
and in most cases suppliers seem to have found it more efficient on
balance to let the cheapest method of transacting (per session at video
game arcades and per game for home systems) determine whether access
or usage is priced, and not to incur the extra cost of instituting a two-
part tariff or other more sophisticated pricing system.

Price Discrimination

Like many, if not most, businesses, software platform vendors have
employed a variety of forms of price discrimination, some traditional and
some not, in order to enhance their profits. For instance, license fees for
the Palm OS are negotiated separately for each licensee, while Symbian
uses the same price schedule for all its licensees (who are also its owners).
From 2002 to 2004 Symbian earned an average of almost half its revenue
from providing consulting services to its licensees, helping them to adapt
the Symbian operating system to their hardware, but consulting fees have
become less important over time, and in 2004 they constituted only one-
fourth of total revenue. We do not know how the use of these services
varies across licensees or how, if at all, they are marked up. Like

290 Chapter 10

17. After a certain amount of CPU usage, the system could be set up to deny
the end user access to applications until it had been linked to the Internet.

Microsoft, both Palm and Symbian offer bulk discounts, so that larger
licensees pay lower per-unit license fees.

In video games, it has been argued that console pricing reflects cream
skimming, which is a form of intertemporal price discrimination: prices
typically decline over the life spans of particular consoles so that on
average, the most eager buyers pay higher prices. On the other hand, it
is likely that costs decline over time as well, as learning occurs and com-
ponent prices fall, so the extent of discrimination is not clear. It is our
understanding that Sony and Microsoft charge lower per-unit royalties
for games that sell many copies.18 This interesting form of nonlinear
pricing strengthens game developers’ incentives to focus on a few good
games rather than many mediocre games.

Without a detailed knowledge of costs, it is difficult to know whether
some pricing strategies have an element of discrimination. I-mode users
pay on the basis of the volume of data transferred and iTunes users pay
for each song downloaded, while subscribers to RealNetworks’ Super
Pass service pay monthly fees independent of usage. The first two seem
better designed to measure individual differences in demand, while the
subscription scheme, which resembles the way local phone service has
traditionally been priced in the United States, is no doubt a response to
consumers’ preference for flat, known fees.

Two relatively unusual pricing practices encountered in these indus-
tries reflect the multisided nature of most platform businesses. First, as
we noted in Chapter 5, video game console vendors generally offer lower
royalties and joint marketing arrangements to developers that develop
exclusively for that console.19 Note that there is no forcing: developers
are free to choose whether or not they wish to develop exclusively for a

Some Lunches Are Free 291

18. Email correspondence with Nanako Kato and Gerald Cavanagh of SCEI,
May–August, 2005, and Dean Takahashi, Opening the Xbox (Roseville, Calif.:
Prima, 2002). SCEI.

19. Authors’ interviews at SCEI. In the economic literature on multisided
markets, developers who focus on a single platform are said to single-home, while
others are described as multihoming. For a discussion of the strategic implica-
tions of these behaviors, see Rochet and Tirole “Platform Competition in Two-
Sided Markets”; Jean-Charles Rochet and Jean Tirole, “Tying in Two-Sided
Markets and the Impact of the Honor All Cards Rule” (mimeo, IDEI University
of Toulouse, 2003); Jean-Charles Rochet and Jean Tirole, “Two-Sided Markets:
An Overview” (mimeo, IDEI University of Toulouse, 2004).

particular platform. (This differs from the exclusive contracts used by
Nintendo in the late 1980s and early 1990s, which left independent
developers with no choice but to support NES exclusively if they wanted
to be granted any access at all.) The motivation for offering better prices
to exclusive developers is simply that exclusivity offers the console maker
a competitive advantage over rival platforms in competition for the end
users that constitute the other side of the market. This is especially true
for killer games, whose sole presence on a console is sometimes sufficient
to entice many users to purchase that console. Another software plat-
form offering better deals in exchange for exclusivity is RealNetworks,
which paid Major League Baseball $20 million in exchange for making
game coverage available exclusively through RealPlayer.20

In the video game industry, game developers also seek exclusivity. As
we noted in Chapter 5, movie and sports tie-ins are important sources
of value to game publishers. Accordingly, significant licensing fees are
paid to Hollywood studios and professional sports leagues in exchange
for the rights to feature their images, characters, and players in games.
And publishers pay significantly higher amounts for exclusive rights:
Electronic Arts’ exclusive NFL license was rumored to be close to $200
million for five years, whereas their NBA license cost well below that
amount, as it was shared with rival game publishers (the NBA sold
nonexclusive rights to five game makers for a total of $400 million).21

The second unusual pricing practice is discrimination among comple-
mentors based on “quality.” Microsoft has given more favorable license
terms to computer makers that offer machines meeting certain design
standards. These arrangements do not reflect Microsoft’s costs or differ-
ences among computer manufacturers; rather, they reflect the greater
value of “quality” computers as complements to Microsoft’s operating
systems. In addition, as we noted above, NTT DoCoMo offers better
deals in the form of additional services to “official” i-mode content
providers (those endorsed by DoCoMo) than to others, and the Symbian

292 Chapter 10

20. “RealNetworks pays $20M for baseball audio rights,” UPSIDE Today,
March 27, 2001.

21. “NBA Grants Videogame Rights to 5 Publishers for $400 Million,” The Wall
Street Journal, March 22, 2005.

Signed program is administered by some network operators and handset
providers in a similar fashion. Finally, video game consoles simply
exclude poor-quality games completely by denying them the necessary
security chips. Multisided platforms have strong interests in raising the
quality of the products supplied by complementors to end users.

Price Structures of Multisided Platforms

A fundamental decision facing all multisided platform businesses is
choice of a price structure: How much should the platform vendor charge
each side relative to the others? Since transactions involving some sides
may have significant associated variable costs (the production and
distribution costs of video game consoles, for instance), the most illu-
minating way to analyze observed price structures is to look at the con-
tributions of each side to gross margin or variable profits: revenue minus
side-specific variable cost. Should a two-sided platform derive most of
its gross margin from one side of the market, and if so, which side, or
should it choose a more balanced structure, with both sides making
significant contributions to gross margin?

Like all multisided platforms, the pricing structures of the software
platforms we have encountered in this book reflect the need to get all
unintegrated sides on board: end users, application/game/content devel-
opers, and manufacturers of hardware and peripheral equipment. The
structures we have examined have three remarkable features. First, all of
them are extremely skewed: almost all earn a disproportionate share of
their variable profits on only one side of the market, either end users or
developers. Second, for all but video games, the platform earns the bulk
of its net revenues from end users. The third remarkable feature, which
we consider in the next section, is that these structures have been stable
over time.

Main Characteristics
As we have seen in Chapter 4, PC operating system vendors such as
Microsoft and Apple make virtually all of their profits on the end-user
side of the market. Since applications developers tend to multihome and
end users tend not to, this is somewhat at odds with the theoretical

Some Lunches Are Free 293

prediction, noted above, that all else equal, pricing tends to favor the side
of the market that does not multihome. Of course, all else is never equal.

Apple makes profits from end users directly by selling Apple comput-
ers based on the Mac OS. Microsoft, on the other hand, charges most
end users indirectly, through the licensing fees it levies on OEMs, which
the latter pass through in the final prices of their computers. (Some
Windows users do buy upgrades themselves.) As one would expect in
this highly competitive industry, these fees appear to be passed through
roughly dollar-for-dollar.22 Apple’s variable costs on the user side are the
marginal costs of producing each Macintosh computer and installing its
software on it, whereas Microsoft has essentially zero marginal costs.
(Microsoft distributes master CDs; the computer manufacturers do the
copying.)

On the developer side, Apple, Microsoft, and most other operating
system vendors devote significant resources to supporting application
developers through development tools, conferences, and direct assis-
tance. The prices charged for these services are set to at most cover costs.
In fact, some development tools are available for download for free from
the software platforms’ Web sites.23 Somewhat less attention is paid to
makers of peripheral equipment, in part because they need less infor-
mation to produce compatible devices. But neither Apple nor Microsoft
seeks profits from the provision of this information.

The pricing strategies of PalmSource and Symbian are very similar to
Microsoft’s strategy in PCs, which in turn is very similar to Microsoft’s
strategy in PDAs and smart phones. PalmSource and Symbian, like
Microsoft, make most of their profits in the form of licensing fees
charged to manufacturers of devices running their operating systems, and
both offer a great deal of support to third-party developers in exchange
for fees that are generally set just to cover costs.

NTT DoCoMo’s i-mode mobile Internet platform also earns a dis-
proportionate share of its profits from end users, in this case through

294 Chapter 10

22. Interview with Microsoft.

23. Many of Apple and Microsoft’s SDKs are available free of charge on their
developer Web sites, and there are some other tools that are sold, but we believe
that these are sold at close to cost. See http://developer.apple.com/;
http://msdn.microsoft.com/.

network usage charges. We have seen that DoCoMo also earns some rev-
enues from “official” content providers who choose to use DoCoMo’s
billing system, but this accounted for only around 1 percent of total
revenue from users in 2004. Furthermore, although these revenues are
designed to cover the costs of providing the billing service to official
content providers, it is unlikely that they cover the overhead costs
DoCoMo incurs in connection with the teams that monitor and select
official content.

Net profits from i-mode’s hardware side are negative, as DoCoMo
buys the handsets from manufacturers and resells them at a significantly
lower price to consumers in order to encourage adoption of the i-mode
platform and thus to generate more revenues from network usage
charges.24 This practice, known in the mobile phone industry as “handset
subsidies,” is yet another version of the cheap razor/expensive blades or
two-part-tariff policy we’ve discussed before. Selling a handset both pro-
duces profits directly and generates future profits by increasing network
traffic. The presence of this second effect makes the optimal handset price
lower than it would otherwise be. If this effect is strong enough, it can
drive the optimal price below marginal cost, as it apparently does for
DoCoMo and other network operators.

As we discussed in Chapter 8, the leading digital media platforms
employ markedly different business models. But in all these models,
end users are the primary source of variable profit: in Microsoft’s case
through licensing of Windows, in RealNetworks’ case through licensing
access to content, and in Apple’s case through sales of iPods. None of
these vendors extracts profit from content owners, and indeed, Apple
and RealNetworks pay for content.

Video game console manufacturers are the single, striking exception
to the general “end users pay” pattern in these industries. These firms
derive most of their variable profits from games, both by charging roy-
alties to independent or third-party game developers and through sales
of games produced in-house (so-called first-party games). Ever since
Atari introduced the VCS 2600 and the cheap razor/expensive blades
business model in 1977, game consoles have been most often priced at

Some Lunches Are Free 295

24. Interview with Takeshi Natsuno of DoCoMo, March 2005.

or below marginal cost.25 However, due to falling costs of components
and learning effects, there commonly exist periods of time over a
console’s life cycle when price exceeds marginal cost.

For example, a Sony executive in 2004 stated that there is a “positive
gross margin” on PlayStation 2 sales,26 a statement that our interviews
at Sony Computer Entertainment Inc. (SCEI) have confirmed. It is most
likely that Sony originally sold the PlayStation consoles below marginal
cost, but over time it has been able to make manufacturing more
efficient and derive positive gross margins. Nonetheless, even now the
largest share of SCEI’s PlayStation variable profits come from royalties
levied on third-party publishers of video game software and sales of first-
party games—between 60 and 70 percent, according to our interviews.
In addition, game developers must also pay a fixed fee for the necessary
game development tools, but this fee is very small relative to royalty rev-
enues. The published price for a three-year Tools and Middleware license
for the PlayStation 2 was approximately $12,000.27 That is equivalent
to typical $8 royalties levied on only 1,500 copies of a PlayStation game,
when hits like Tomb Raider sell millions of copies.

The Xbox console also has had negative gross margins. The average
selling price of an Xbox console has been $160 since 2002, yet the
average cost of producing it for the same period has been $304.
Microsoft’s newest console, the Xbox 360, is also being sold at a loss.
The company released the Xbox 360 in November 2005, but does not
expect any profits until 2007. By contrast, from its 2001 launch and
through December 2003, the company received $961 million in revenues
from software sales—direct sales of its own games plus $7 per-unit
royalties levied on third-party games—and $313 million from sales of

296 Chapter 10

25. Leonard Herman, Phoenix: The Fall and Rise of Videogames (Union, N.J.
Rolenta Press, 1997); Southwest Securities “Interactive Entertainment Software:
Industry Report,” Fall 2000; Peter Coughlan, “Competitive Dynamics in Home
Video Games,” Harvard Business Online, June 13, 2001.

26. “kelly s i.” Mirror, March 4, 2000; quotation from Takao Yuhara, Sony
Corporation Senior Vice President and Group CFO, Sony Corporation earnings
conference call, January 28, 2004.

27. Tools & Middleware License for PlayStation(R)2, Sony Corporation,
September 8, 1999.

peripherals such as game controllers, memory cards and other plug-ins,
and remote controls. First-party games accounted for roughly 70 percent
of total game software revenues.28

Some Explanations
What determines these pricing structures? In particular, how can one
make sense of the fact that video game consoles have chosen to earn the
bulk of their profits on the game developer side of their market, whereas
all other software platforms studied here make most of their profits from
end users? It is clear that transactions costs can’t be the driving force,
since extra costs for a security system must be incurred to exclude games
from unlicensed developers.

We offered one explanation in Chapter 5, based on the assumption
that the number of games purchased by an individual console owner is
correlated with the value he or she places on the video game system.
Under this assumption the optimal pricing policy is that first introduced
with the Atari VCS 2600: price the console low to generate penetration
and build demand for games, and make most profit on the games. Once
this pricing model has become established, it is difficult for any firm to
depart from it by charging a high price for the console and a low price
for games, as 3DO learned to its sorrow, since it is hard for a high-priced
console to get penetration unless it somehow manages to launch with an
unusually large number of great games, and without penetration it won’t
get great games in the first place.

We have encountered a variety of related alternative explanations that
deserve discussion. Many of our interviewees stress that one important
reason why PC operating system vendors do not generate variable profits
from their application developers is that PC platforms are open. In prin-
ciple, anyone can develop applications for Windows or Mac OS without
explicit consent from Microsoft or Apple. (You don’t even need devel-
opment tools, which are relatively expensive in any case.) In other words,
the openness of these software platforms means that their sponsors have

Some Lunches Are Free 297

28. Arik Hesseldahl, “Microsoft’s Red-Ink Game,” Business Week Online,
November 22, 2005; Andrew Hendley, Adam Holt, Phil Michelson, and Derek
Wong, J.P. Morgan North American Equity Research, “Microsoft Corporation:
Patience Is a Virtue,” January 6, 2004, table 12.

forfeited the ability to exclude developers and therefore the ability to
charge them for access and usage of the platform. The same is true for
Palm and Symbian and for Microsoft’s PDA and smart phone operating
systems. In contrast, video game consoles have always been closed plat-
forms and have maintained the ability to exclude through the use of a
security system that locks out unauthorized developers. These security
systems are necessary to be able to charge royalties to third-party game
developers.

Of course, simply having the ability to charge game developers does
not explain why they should in fact be charged. Moreover, video game
platforms are closed because their owners spent money to close them,
and this begs the question of why other platforms have remained open.
It is not that hard to imagine Microsoft, Apple or Palm devising soft-
ware security systems to lock out unauthorized application developers.
(Note, in particular, that video game developers pay royalties only for
video games that run on consoles; royalties are not charged for games
that run on PCs and other open platforms.) If these companies have
chosen not to do this, the reason is unlikely to be technological; it is most
probably because the costs exceed the benefits. In particular, if it were
optimal for operating system vendors to charge independent software
developers substantial royalties, similar to those charged by video game
consoles, the potential revenues created would likely justify the fixed cost
of developing a security system. If, on the other hand, it is not optimal
to charge much anyway, then leaving their platforms open is the most
cost-effective solution.

When discussing why the price of consoles is set low, manufacturers
often argue that their prime customers are particularly price-sensitive and
reluctant to pay too much for a platform mainly designed for playing
games. They also stress the importance of obtaining a large installed base
of users right away in order to reward game developers and give them
incentives to keep writing games for that particular console.29 On the
other hand, the price of consoles is generally highest at launch. Manu-
facturing cost is also highest at launch, of course, and consoles are typ-
ically priced at or below marginal cost at launch.30 As we have suggested

298 Chapter 10

29. Interview with Nanako Kato and Gerald Cavanagh of SCEI, April 2005.

30. Coughlan, “Competitive Dynamics in Home Video Games.”

above, subsequent price cuts reflect both cost reductions and, plausibly,
intertemporal price discrimination: eager early adopters pay higher prices
and, plausibly, contribute more to variable profits than less interested,
late adopters.

The recent economic literature on two-sided markets implies that
optimal price structures are determined by side-specific marginal costs,
price elasticities of demand on both sides of the market, and the relative
intensities of externalities between the two sides.31 One general result
that has emerged is that the side that “cares” more about the other side
should pay more, all else equal. It’s rather difficult to compare indirect
network effects or side-specific price responsiveness in software plat-
form industries, however, and examining side-specific costs doesn’t
discriminate between, say, Apple’s computers and Sony’s video game
consoles.

The only economic modeling framework that has been specifically
designed for studying two-sided software platforms is that of Hagiu.32

He shows that the greater is user demand for variety of applications/
games/content, the greater is the optimal share of platform profits con-
tributed by developers (as opposed to end users). When demand for
variety is higher, products (applications, games or content) are less sub-
stitutable, so there is less competition among developers. This allows
developers to charge higher prices to end users and some of them to earn
high profits, making it harder for the software platform to earn profits
directly from end users and easier to extract them from developers via
royalties.

Although user demand for product variety is difficult to quantify
precisely, it is quite clear that video game users care about product variety

Some Lunches Are Free 299

31. Rochet and Tirole, “Platform Competition in Two-Sided Markets,” “Tying
in Two-Sided Markets and the Impact of the Honor All Cards Rule,” and “Two-
Sided Markets: An Overview”; M. Armstrong and J. Wright, “Two-Sided
Markets, Competitive Bottlenecks and Exclusive Contracts” (mimeo, University
College, London, and National University of Singapore, 2004); Wilko Bolt and
Alexander F. Tieman, “Skewed Pricing in Two-Sided Markets: An IO Approach”
(DNB working paper no. 13, October 2004); Wilko Bolt and Alexander F.
Tieman, “A Note on Social Welfare and Cost Recovery in Two-Sided Markets”
(DNB working paper no. 24, December 2004).

32. Andrei Hagiu, “Two-Sided Platforms: Pricing and Social Efficiency”
(http://www.princeton.edu/~ahagiu/job%20market%20paper%204%202.pdf).

more than users of computers, PDAs, or smart phone applications. One
reason is durability: consumers quickly grow tired of one video game
and frequently demand new ones, while we have been using the same
basic word-processing program since around 1995. Video game console
users buy an average of 3.5 games per year.33 On the other hand, when
it comes to computers, PDAs, smart phones and even mobile Internet
services such as i-mode consumers use a remarkably low number of
different products, and they stick to the same ones for long periods of
time. Put otherwise, video games are more substitutable (inter-
changeable) from the point of view of consumers than applications for
computers, PDAs, or mobile phones. Hence, one would expect to see
video game platforms make a larger share of profits on developers rela-
tive to the other software platforms. And this is precisely what we
observe.

Evolution of Pricing Strategies

It is natural to ask how software platforms’ pricing strategies evolve
over time. Based on our case studies, the surprising answer is, to a first
approximation, they don’t. Both what is priced and the basic pricing
structures tend to remain constant over time. The only major shift in
pricing strategy that we have observed occurred in 1977, when Atari
began selling its new VCS game console below manufacturing cost, plan-
ning to make its money selling games. This razor/blades strategy has
persisted in video games ever since. This continuity in pricing strategies
is somewhat surprising, since the environments that software platforms
face when they are established in the market differ dramatically from the
ones they faced at their inception.

In principle, at least, all two-sided platforms face a rather difficult
chicken-and-egg problem at launch. Application/game/content develop-
ers, along with third-party hardware and peripheral equipment manu-
facturers, are naturally reluctant to invest in supporting a new software

300 Chapter 10

33. Schelley Olhava, “Worldwide Videogame Hardware and Software
2004–2008 Forecast and Analysis: Predicting the Future,” (IDC report no.
31260), May 2004. Installed base for consoles is 123,368 and software ship-
ments were 434,715.

platform unless they expect it to have a substantial installed base of
end-users, and end users are generally reluctant to adopt a platform
unless they expect it to be supported by an attractive array of applica-
tions, hardware, and peripherals. Economic theorists have argued that
platform vendors’ initial pricing structures should be designed to over-
come this startup problem. The divide-and-conquer strategy calls for
subsidizing the participation of one side of the market through fees low
enough (possibly negative) to attract it, regardless of the participation of
the other side (divide), and then charge positive prices to the latter, who
knows that the first side will participate no matter what (conquer).

Once both sides are on board and the platform is clearly viable, of
course, there is no need to subsidize the participation of either side in
this fashion. Thus, a platform following a divide-and-conquer strategy
would be predicted to subsidize participation of at least one side but to
do so only temporarily; price should rise substantially to the initially sub-
sidized side. But we have seen no such behavior by any of the platform
software businesses we have studied.

On the other hand, we have seen changes in platform businesses’ scope
and integration that may play a similar role. In the extreme case, Palm
removed all doubts about the availability of hardware, applications, and
peripherals by being completely integrated into all these market sides at
the launch of the PalmPilot. Over time, as it became established and
these sectors matured, it was able to withdraw and focus on the soft-
ware platform. Similarly, in video games both Sony and Microsoft
acquired several high-profile game developers before releasing their con-
soles so that both end users and other game developers could reliably
expect their consoles to have a number of high-quality games. It may be
that because integration decisions are less easily changed than price poli-
cies, they serve as more credible devices to affect expectations when
products are launched. Price policies, in contrast, seem to be selected
with the long run in mind, though it is a bit surprising that so many
firms apparently managed to get those policies right from the beginning.
In any case, the fact is that price policies have been more stable than
integration and scope strategies in the computer-based industries studied
in this book.

Some Lunches Are Free 301

INSIGHTS

• In principle, the pricing problem for software platforms (and other
two-sided businesses) is complex, since it must consider the interdepen-
dencies of costs and demands (particularly indirect network effects)
linking all sides.

• There is much variety in what software platform vendors charge for,
and this is expanding as technology progresses. A general rule of thumb
is that even though it is more profitable in theory for software platforms
to charge both access and usage fees, they generally charge only one or
the other.

• Like most businesses, software platform vendors use a variety of forms
of price discrimination in order to ignite the market for their products
and services. This helps firms target the most profitable customers and
enables the most efficient and profitable bundling of services.

• Software platform vendors generally earn the bulk of their profits from
only one side of the market, typically end users. The exception is video
game console producers, who subsidize end users and incur extra costs
to enable them to charge royalties to game developers. A plausible expla-
nation is that the number of games purchased correlates with end users’
demand for video game systems, so that making money on games enables
console vendors to earn more from those who have the highest demand.

• Pricing strategies of software platforms have been remarkably stable.
There are no examples of a software platform–based business pricing
low to one side at first and then raising prices after getting that side on
board. The pricing structure that ignites the business is generally the
pricing structure that persists over time.

302 Chapter 10

11
When Bigger Is Better

“I want a pair of jeans—32–28,” I said. “Do you want them slim fit, easy fit,
relaxed fit, baggy, or extra baggy?” she replied. “Do you want them
stonewashed, acid washed, or distressed? Do you want them button-fly or zipper-
fly? Do you want them faded or regular?” “I just want regular jeans. You know,
the kind that used to be the only kind.”

—Barry Schwartz, “The Paradox of Choice”1

INSIDE THIS CHAPTER

• How and why software platforms have expanded over time

• The software platform value proposition

• The economics of bundling features into software platforms

As we first noted in Chapter 2, when measured by lines of code, soft-
ware platforms have grown steadily and substantially over time.

This pattern holds across software platforms for the same computing
device. Linux, the Mac OS, and Windows have all grown rapidly. And
it is true across different computer-based systems. Software platforms
have gotten larger for handheld devices, mobile telephones, and video
game consoles as well as for personal computers.

Table 11.1 shows the growth in the number of lines of code of various
software platforms over time. Although numbers are not available for
every year, the data show a consistent pattern. The average annual
growth rate is about 50 percent. That means that the number of lines of
code doubles about every two years.

1. http://www.aarp.org/bulletin/yourlife/many_choices.html.

Table 11.1
Size of Operating System by Year

Compound
Annual
Growth

OS 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Rate (%)

Measured in millions lines of code
Red Hat 9 16 27 42 50 33
Linux
Windows 3 15 18 35 40 30
Windows 0.4 2 2.5 58
CE
Linux 0.1 0.2 0.5 1.1 2.2 3.8 50
Kernel

Measured in megabytes
Macintosh 70 200 250 1,500 4,000 66

Source: Red Hat Linux source code (http://research.microsoft.com/projects/SWSecInstitute/DIMACS-report.pdf); Linux Kernel source
code; Apple system requirements.

304

This might not seem surprising, since hardware is becoming more
powerful at a rapid rate, and hardware and software platforms are
tightly coupled. The processing power and memory of computing devices
have risen because the costs of producing microprocessors and memory
have declined rapidly as a result of technological change and scale
economies. But those forces cannot explain the growth of software plat-
forms. Innovations such as object-oriented programming and the open-
source model have made it more efficient to write platform code, but not
dramatically so. There is certainly no Moore’s Law operating in the
labor-intensive process of computer programming. And while there are
scale economies from using the same software platform across an
increasing number of devices, there are, as Chapter 2 noted, disec-
onomies from expanding the size of the software platform itself.

Besides, there is something fundamentally different between what’s
happened with hardware and with software. Hardware has generally
gotten smaller and more powerful. In contrast, software platforms have
gotten bigger.

Increases in computer speed and storage capacity have indirect effects
that help explain some of the growth in software platforms. More code
is needed to control more complex and capable hardware. With more
memory available, software platform architects and programmers have
less incentive to economize on code. Neither effect is large enough,
however, to explain the historical growth of software platforms.

The main driver is clear: software platforms have added code primar-
ily to provide more features to end users and application developers.
They have done this in tandem with the hardware platform that has pro-
vided more features with which the software platform can work. This
chapter documents this expansion over time of the scope of software
platforms and describes the economic and technological forces behind it.

Feature Accretion

Three patterns emerge from our study of software platforms across dif-
ferent computing devices:

• Every release of each software platform contains significant new fea-
tures, and some features are even introduced between releases.

When Bigger Is Better 305

• Over time, software platforms incorporate many features that had been
provided by third parties on a stand-alone basis.
• Software platforms generally include the code for all available features;
they are seldom offered with a list of optional features from which cus-
tomers can pick and choose.

More Features
Over time, software platform producers add features that appeal to
end users, to application developers, and sometimes to both. They
have to do this in part to get end users to buy another version of
the software platform, since software platforms, like diamonds, don’t
wear out. They also have to do this to get software developers to
write or modify their applications and thereby increase the value of
the software platform. Applications don’t wear out either, and new ser-
vices made available through Application Programming Interfaces (APIs)
will enable and entice developers to write new ones or upgrade existing
ones.

The Palm OS is a good example. As we discussed in Chapter 6,
when the original version was introduced in 1996, it included a
feature called Graffiti that recognized a special kind of script. This
enabled users to convey written information to the device by stroking
a “pen” (a stick) over the screen. It also included a calculator,
notebook, address book, calendar, and a utility to synchronize files
and contacts in the PDA with desktop computers. The fourth version,
released in 2001, added support for Bluetooth wireless technology
and bundled America Online and utilities for reading and editing
Microsoft Office documents. At the same time, it added many software
services for developers, including some for telephony-based applica-
tions.2 By 2004, the Palm OS, now in its sixth version, included APIs
that enabled developers to take advantage of modern wireless networks,
as well as headset and hands-free support for users, who were
increasingly using their PDAs as telephones. It also includes a Web
browser and supports advanced Web technologies, multimedia, and
sophisticated security.

306 Chapter 11

2. Cameron Crouch, “Palms Gain Expansion Options, Keep Popular, Sleek
Design,” PC World, May 2001; “Palm Revamps Operating System, Adds APIs,”
Network World, July 2, 2001.

Apple’s Mac OS has also added features that have made it more valu-
able to end users and developers. The very first Mac OS in 1984 included
a graphical user interface (GUI), calculator, notebook, a simple puzzle
game, and a clipboard tool called Scrapbook to move text between appli-
cations. By 1988 it also included a color user interface that could be dis-
played on multiple monitors. Three years later it bundled AppleTalk and
AppleShare, which enabled users to share files and printers across a
network. In 1994, now on to Mac OS 7.5, Apple included Stickies—a
desktop application that provided an electronic version of Post-It Notes.
Version 9.0, released in 1999, had an updated version of Sherlock,
Apple’s search engine, which searched the user’s hard drive and the Inter-
net. Video chatting was included in 2003.3 The most recent version,
released in early 2005, includes Dashboard, a visually appealing utility
that lets the user run many useful mini-applications called widgets.
Among the widgets included are a stock ticker, a weather forecast, a flight
tracker, a dictionary, and a translation tool. Over this period Apple also
added more APIs that developers could use. These included a sophisti-
cated set of media APIs associated with the QuickTime media platform
(discussed in Chapter 8) that have been used by a large number of media
applications available on the Mac, including Adobe’s Premiere, a popular
video editor.4 Other APIs let developers take advantage of new tech-
nologies like Bluetooth and the visual technology behind the Mac OS’s
good looks.

All software platforms have added features over time that helped users
and developers avail themselves of the new opportunities made available
by the rapid development of the World-Wide Web. Table 11.2 shows
when each of the major platforms on which we have focused added Inter-
net communication protocols, a Web browser, an email client, and a

When Bigger Is Better 307

3. http://www.macos.utah.edu/Documentation/MacOSXClasses/macosxone/
macintosh.html.

4. http://www.mackido.com/History/EarlyMacOS.html; http://www.macos.
utah.edu/Documentation/MacOSXClasses/macosxone/macintosh.html; Gene
Wilburn, “Some Bugs to Iron Out in Mac OS,” The Toronto Star, January 5,
1995; Steve Wood, “Mac OS O9. I Think I Like It!” A View from the Classroom,
November 8, 1999 (http://lowendmac.com/macinschool/991108.html);
http://adobe.es/aboutadobe/pressroom/presskits/pdfs/premiere50/PREaag.pdf.

308 Chapter 11

Table 11.2
Feature Accrual Across Platforms

Platform

Mac Palm Windows Play-
Feature Windows OS OS CE Symbian Xbox Station

Networking 1995 1994 1997 1996 2000 2001 2000
Web browser 1995 1998 2003 1996 1999 NA NA
Email 1993 2001 1997 1996 1999 NA NA
Media player 1991 1993 2002 2000 2000 2001 2000

media player.5 In some cases these additions came in the form of code
that was integrated into the operating systems. Microsoft, for example,
wove various browser-related features (such as an HTML-rendering
engine) into Windows 98. In other cases this came through bundling an
application with the software platform. For example, Palm OS 3.0
included a stand-alone Expense application that eased the task of track-
ing business trip expenses.

5. Bernard J. Reddy, David S. Evans, and Albert L. Nichols, “Why Does Microsoft
Charge So Little for Windows?” (National Economic Research Associates paper),
October 9, 1998; “Windows For Workgroups 3.11 Launched” (Network Week
APT Data Services no. 94), October 15, 1993; “Microsoft Ships Windows with Mul-
timedia Extensions 1.0,” Business Wire, August 21, 1991;
http://kb.iu.edu/data/abmc.html; “What Changed in Mac OS X Version 10.1?”
Mac OS History, http://www.macos.utah.edu/Documentation/MacOSXClasses/
macosxone/macintosh.html; David Flynn, “New Pilots Fly Higher,” Sydney
Morning Herald, June 3, 1997; “Where is Palm OS 6?” (http://www.
palminfocenter.com/view_story.asp?ID=6393); Ian Cuthbertson, “Multimedia on
the Move: Sony Clie NX70VG,” The Australian, February 11, 2003; Marty Jerome,
“Put Windows in Your Pocket,” PC/Computing, January 1, 1997;
Jack Schoefield, “Third Strike for Windows CE in Palm Territory,” The
Guardian, April 19, 2000; “Symbian OS Version 6.x Detailed Operating System
Overview” (http://www.symbian.com/technology/symbos-v6x-det.html); “Sym-
bian Releases Latest EPOC Technology for Future Smartphones and Communica-
tors,” Symbian press release, June 15, 1999 (http://www.symbian.com/
press-office/1999/pr990615.html); http://reviews.cnet.com/Microsoft_Xbox/
4505-6464_7-7853769-3.html?tag=top; “Playstation2 Launch Drawing A
Crowd,” Sun-Sentinel-Ft. Lauderdale, March 19, 2000; “kelly s. i.,” Mirror, March
4, 2000.

Features Already Provided by Others
Many features were available, in some form, to users or developers as
third-party “add-ons” before they were incorporated into software plat-
forms. This is most obvious in the case of PCs. Internet browsers, file
encryption and compression, firewalls, and many other applications were
available to end users before they were incorporated into either Mac OS
or Microsoft Windows. Similarly, third-party media players preceded
integrated ones on both Palm and Symbian operating systems. Third-
party console accessories enabled network connectivity and online game
downloads as early as 1983, nearly two decades before such functional-
ity was integrated into the major consoles.

Some new features were provided first to developers rather than to end
users, sometimes by third-party vendors offering libraries and tools that
enable developers to take advantage of new technologies or innovations.
In 2000, for instance, Extended Systems released a set of tools that
enabled manufacturers to add Bluetooth support into their Palm
OS–based devices, a year before Palm added this capability into the Palm
OS. Similarly, SoftConnex provided USB connectivity APIs a couple of
years before they were incorporated into the Symbian OS.6

Several dynamics are at work here. Platform releases need to occur at
discrete intervals, and they can only include features that have been fully
tested by the release data. For this reason, some features are not released
promptly. Other vendors sometimes fill in the resulting gaps by offering
add-ons that improve the platform in some dimension. Independent soft-
ware developers also come up with ideas that the platform developers
hadn’t even thought about. Many of these attract very few interested
users, but others become quite popular. If the original developer doesn’t
have intellectual property rights on her idea, the software platform
vendor can incorporate these innovative features into its own product.

In the late 1980s, for instance, Apple and Microsoft decided to develop
their own scaleable font technology instead of using Adobe’s PostScript.

When Bigger Is Better 309

6. “Extended Systems Ships Bluetooth Software Development Kit for Handheld
Devices,” M2 Presswire, April 4, 2000; “USB On-The-Go Frees Digital Devices
for Direct Connectivity Without A PC,” Business Wire, November 18, 2002;
“SoftConnex Joins Symbian Platinum Partner Program and Announces USBLink
Host Software Solution,” Business Wire, February 18, 2003.

Each was concerned about Adobe’s per-font royalties and chose to
bypass Adobe and develop their own technology. They collaborated on
TrueType, which was included with both firms’ respective operating
systems in the early 1990s. Other times, though, the software platform
has had to license technologies developed by others or acquire these firms
in order to build in the feature promptly. That was the case with Inter-
net Explorer, Microsoft’s Web browser, which was originally built with
technology that Microsoft licensed from Spyglass in 1995.

Of course, this means that making third-party add-ons for software
platforms can be bit like making souvenirs for the latest Olympics. The
market opportunities may be fleeting and might disappear as soon as
the platform vendor catches up. The add-on developer can survive only
by providing more value than the platform vendor. Many software
products have disappeared after a short life when the platform vendor
caught up.

One such example is the Watson browser add-on for Mac OS X.
Watson, released in 2001 by Karelia Software, enabled users to access
the Web in a novel and efficient way. Apple named it 2002’s “Most
Innovative Mac OS X Product.” However, a year later, Apple’s new
Sherlock 3 search tool essentially supplanted it, and Watson was dis-
continued in 2004. Similarly, when ARM released MPEG-4 codecs for
the Symbian platform in late 2000, the Symbian OS did not include that
functionality. Newer versions of the OS, however, have come with
support for MPEG media included, and ARM does not offer the codecs
any more.

However, inclusion of a feature in the platform does not mean certain
death for related third-party offerings. Third-party utilities have been
able to distinguish themselves in various ways from the corresponding
platform functionality. One such example is the Norton Utilities suite of
disk and system repair and diagnosis utilities. Since its introduction in
1982, the Norton suite has had to adapt continuously as the function-
ality it offered has been added to both major desktop operating systems.
Over time, disk compression, disk repair, defragmentation, disk opti-
mizing, encryption, and other tools have all been added to both Mac and
Windows platforms. Nevertheless, Symantec still offers Norton Utilities
as a part of its SystemWorks bundle.

310 Chapter 11

Versions and Options
Unlike automobiles and Chinese restaurants, software platforms tend
not to offer different models or options. Consider the original Mac OS,
introduced in 1984. It contained many fairly obscure features, but users
and developers had to take all of them—or none. The same is true for
the 2005 version. You can buy only one version of Mac OS X Tiger, and
you cannot get it without Safari, the Apple browser, or Spotlight,
Apple’s search engine. Similarly, your Palm or Symbian-based smart
phone will include a Web browser, a calendar, and an address book. You
must take the option to play CDs on your Xbox or PlayStation 2 or to
browse the Web via your i-mode phone even if you don’t ever want to
exercise it.

There are two exceptions to this pattern.7 Software platforms for
servers—the computers that serve as nodes and perform specialized tasks
on networks (including “serving” content requested over the network)—
often come in several versions for different uses. These versions are
offered mainly to enable pricing to be tailored to differences in user
requirements. More advanced versions are almost always supersets of
the basic versions and usually come with better software support. The
other exception concerns software platforms that are embedded in
devices, such as cash-dispensing machines. Here, memory, performance,
and power consumption concerns drive the market to small systems with
targeted functionality. Often different versions target different sets of
devices, or the manufacturer can pick and choose from the different com-
ponents that make up the platform. Manufacturers can use utilities such
as the Windows Embedded Studio to select components and build a
system.

When Bigger Is Better 311

7. A third exception exists by order of the European Commission: since January,
Microsoft has made two versions of Windows XP available to computer
manufacturers. One makes Windows Media Player available to end users and
makes the corresponding APIs available to developers; the other does not. Since
they cost the same, no major computer manufacturer has licensed the second
version. “Microsoft to Release Windows XP Home Edition N and Windows XP
Professional Edition N in Europe,” Microsoft press release, June 8, 2005
(http://www.microsoft.com/presspass/press/2005/jun05/06-08XPNEuropePR.
mspx).

The Economics of Bundling

Software platforms differ from most other products in the number of
features that are included in the product and in the growth of that
number over time. But the difference is a matter of degree. Most prod-
ucts are bundles of components that could be provided separately and
sometimes are. You cannot buy this chapter alone; you must buy the
whole book. Men’s laced shoes always come with laces, although it is
possible to buy laces separately. Airlines cannot purchase the Airbus
A380 without also buying the software system for flying it. And numer-
ous products besides software platforms include features that others used
to provide as add-ons.

312 Chapter 11

Many years ago automobiles were designed so that customers
could purchase an air conditioning unit and have it installed after they
bought the car. Today, almost all automobiles sold in the United
States come with a factory-installed air conditioner. In the 1980s, PC
users had to purchase an additional chip, a math coprocessor, if they
wanted to do significant numerical calculations. By the 1990s these
numerical capabilities had been integrated into all microprocessors used
in PCs.

In all these cases, firms made two related decisions. One concerned
product design and scope. What should be included, and how should the

© The New Yorker Collection 1997 Arnie Levin from cartoonbank.com. All Rights Reserved.

parts interrelate? The other decision concerned the firm’s product line.
Should the firm offer only one product, or should it offer several with
different combinations of features? Economists have examined these
questions, as we describe in this section, and the answers help explain
the scope and bundling patterns we observe for software platforms, as
we show in the next section.

Product Design and Product Lines

Almost all products consist of components. Take something simple such
as salt. Few consumers purchase pure salt. If you buy Morton’s iodized
salt in the United States you get salt, iodine, and a box. More complex
products are combinations of even more components. The typical
personal computer has hundreds of separate parts. A credit card pro-
vides two major distinct features: the ability to pay for things and the
ability to finance those things.

These products could be designed differently—and historically were.
Long ago salt did not contain iodine and did not come in easy-to-use
containers. If you wanted a CD-ROM drive for your computer in the
late 1980s you had to buy it separately and attach it with a cable. Charge
and debit cards allow people to pay but not to finance.

To illustrate the decisions that firms make about how to design their
products and what products to offer to consumers, consider a simple
case in which there are two components, A and B, each valuable to con-
sumers in its own right. The possible products are listed in Table 11.3.
Three cases are particularly important:

• Components selling occurs when the firm offers A and B separately
(cars and bicycle racks).
• Pure bundling occurs when the firm only offers A and B together as a
single bundled product, AB (men’s laced shoes).
• Mixed bundling occurs when the firm offers the bundle AB and either
or both of its components, A and B (such as the Sunday New York Times
and the New York Times Book Review).

With two components, there are three possible “products” and seven
possible product lines, as shown in Table 11.3. The number of products
and product lines increases dramatically as the number of components

When Bigger Is Better 313

increases. Thus, with three components there are seven possible
products and 127 possible product lines, while with five components
there are thirty-one possible products and over 2 trillion possible product
lines.8

Firms make different decisions on product designs and product lines
within the same industries. Some may offer only components, while
others may offer only bundles, and still others may engage in mixed
bundling. Consider the most popular midsize automobiles sold in the
United States, the Ford Taurus, Honda Accord, and Toyota Camry. The
Accord comes in six models that have between zero and two options.
The Camry has three models with between nine and twelve options. And
the 2004 Taurus had four models with between three and thirteen
options. Across car segments there is even greater variation. For example,
Porsche is famous for having an enormous number of options that allow
purchasers to customize their cars. All of these automobile makers

314 Chapter 11

8. Mathematically, the simplest way to formulate the general problem is to ask
ourselves how many different subsets of K objects you can conceive. Line up the
objects in whatever order you like: for each of them, there is a simple binary
decision, to include it in the current subset or not, and one needs to make this
decision for all objects. Note that modifying the decision for one object results
in a different subset; therefore there is a total of 2 to the power K (2K) different
subsets. This includes, of course, the empty set, which is obtained by opting for
noninclusion for each individual object; therefore the total number of distinct
nonempty product lines based on K products is 2K − 1.

Table 11.3
Products That Can Be Sold Based on Two Components

A B AB

Components selling × ×
Components selling ×
Components selling ×
Pure bundling ×
Mixed bundling × ×
Mixed bundling × ×
Mixed bundling × × ×

include tires on their cars. They all purchase tires from third parties, and
none of these automakers sells tires separately.9

Minimizing Producer and Consumer Costs
Bundling decisions affect costs for both producers and consumers. In
both cases it is useful to divide these into costs that vary with each unit
(marginal costs) and costs that are lumpy over a range of units (fixed
costs). There may be diseconomies of scope from producing multiple sep-
arate products that raise both sorts of cost.

For example, studies of automobile manufacturing have found that
making many options available increases what are called “complexity
costs,” which do not vary much with sales. Similarly, maintaining and
managing different SKUs (Stock-Keeping Units) costs money, regardless
of sales volume. Separate products require separate packaging and shelf
space, each of which raises costs. To offer multiple versions of its Linux
distribution, Red Hat Linux would have to create distinct packages and
probably obtain additional shelf space at software retailers to display all
versions. Marginal costs may also rise with product variety. It is cheaper
to produce and distribute one pill that contains both cold and headache
medicine than two separate products. Likewise, it is less expensive for
operating system vendors to distribute a single CD with both an oper-
ating system and Internet communication functionality (for example,
support for TCP/IP protocols) than to distribute these separately.

It is also possible, of course, that combining features may increase
fixed or marginal costs directly by making products more complex and
harder to make. And complexity may have costly indirect effects as well,
such as raising the likelihood of products breaking down, raising support
costs for customers, and increasing the costs of repair. As software plat-
forms have gotten larger, it has become harder to manage their produc-
tion, the likelihood of bugs has gone up, since more modules interact
with each other in ways that are difficult to anticipate entirely, and secu-
rity problems have escalated. Likewise, combining drugs together

When Bigger Is Better 315

9. David S. Evans and Michael Salinger. “Why Do Firms Bundle and Tie? Evi-
dence from Competitive Markets and Implications for Tying Law,” Yale Journal
on Regulation 22 (Winter 2005): 37–89.

increases the risks of unintended and unanticipated side effects. The mar-
riage of computers and automobiles provides other examples of the
potential disadvantages of bundling. Owners of Dodge 2001 minivans
have, according to the New York Times, “posted anguished cries . . .
about electronic gremlins that stop windows from rolling all the way up,
that unexpectedly dim the interior lights, that drain batteries or that
make engines sputter.”10

Unless they dislike the components that are bundled, consumers are
likely to realize savings from bundling. If you like to read about sports
and arts every day, it is cheaper to get a newspaper with both than to
have to buy two papers, even if you have to throw away the style section.
And if you have both a cold and a headache, it is more convenient to
get a single package of pills. Letting the producer make choices for you
can save you time as well. When we go to the hospital for surgery, most
of us would prefer to leave most of the choices of most of the compo-
nents to the experts rather than make them ourselves. Downloadable
music lets us pick individual songs for our collections. But many might
prefer the bundles the artists and publishers put together and distribute
as albums. Choice is costly because it takes time and effort to make
informed decisions, ones that others may be able to do more efficiently,
and bundling reduces consumers’ transaction and search costs.

But bundling may also impose costs on consumers. Consumers may
prefer to mix and match components—a common strategy in building
home entertainment systems and increasingly popular for music collec-
tions. Although automobile manufacturers have reduced variety over
time, many car buyers like having some choice, and some no doubt resent
option packages that require them to take a moon roof to get a more
powerful engine.11

These sorts of costs help explain how businesses choose the finite set
of products they actually do offer from among the essentially infinite
number they could offer. Firms must weigh the demand for a particular
product offering against the costs of making it available as a stand-alone

316 Chapter 11

10. “What’s Bugging the High-Tech Car?” The New York Times, February 6,
2005, p. 14.

11. Example of an options package for Ford Taurus from Evans and Salinger,
“Why Do Firms Bundle and Tie?”

product or as part of another product. Many products are not offered
at all because there is not enough demand to cover the costs of produc-
ing and distributing them. Some men would no doubt prefer to get their
shoes without shoelaces because they have a favorite shoelace brand or
color they like to use. But there are probably so few shoelace aficiona-
dos that it would not pay to offer this option. Other products are offered
only separately because few people want them as a system. Although this
is changing, many families buy their own ingredients for dinner rather
than prepackaged meals. And in other cases there is enough demand for
the components and the bundle for producers to offer both—to engage
in mixed bundling.

In some cases, it isn’t profitable for producers to offer bundles versus
the individual components. Consider a simple example. One hundred
consumers would pay up to $10 for A; fifty different consumers would
pay up to $6 for B, and a third group of ten would pay up to $20 each
for AB. It costs $1 to produce each unit of A and B and $2 to produce
each unit of AB. It costs $200 to make each of these three products avail-
able at all; these might be the fixed costs of creating and stocking any
one of these products. In this case the average per-unit cost, if all demand
is met, of A is $3 (= $1 + $200/100), of B is $5 (= $1 + $200/50), and
of AB is $22 (= $2 + $200/10).

Both A and B could be provided separately for a profit, since the con-
sumer willingness to pay for each unit is greater than the average cost
of producing it ($10 vs. $3 for A and $6 vs. $5 for B). However, the
bundle cannot be provided profitably because the unit costs exceed what
people will pay; it costs $22 to make AB on average, but consumers will
only pay $20. The problem here is lack of demand. Not enough people
want the bundle to make it profitable to provide, given the significant
fixed cost involved.

On the other hand, firms sometimes offer pure bundles because, even
though some consumers do not value portions of the bundle, it is cheaper
to sell the components together. To see the intuition, consider the extreme
case in which each of several types of consumers wants one component
but none of the others. If the fixed cost of providing each of the com-
ponents is high enough, it may nonetheless pay to combine them all
together. It may be cheaper to give consumers a component they do not

When Bigger Is Better 317

want than to provide the component they do want separately. The
manufacturer then saves money, and the consumer often gets a lower
price than she would otherwise.

A simple example illustrates this. There are two consumers. Person 1
is willing to pay $5 for A and nothing for B; person 2 is willing to pay
$5 for B but nothing for A. It costs the manufacturer $2 per unit to make
the components A and B. The per-product fixed cost of offering a
product at all is $1. The manufacturer could sell a unit of A and a unit
of B separately for $5 each, collect $10 in revenue, incur $4 in manu-
facturing cost and $2 in product-offering cost, and make a profit of $4.
Or it could sell a bundle AB to both consumers for $5 each, collect $10
in revenue, incur $4 in manufacturing cost and $1 in product-offering
cost, and make a profit of $5.

Bundling is the best strategy in this example: it saves $1 of fixed cost.
In this example the manufacturer pockets the difference, but some of the
cost savings would get passed on to the consumer in a competitive
market. Moreover, if the fixed cost of offering a product were $5, it
would not be profitable to offer A or B separately (the additional $4 in
fixed cost would wipe out the profit of $4), but it would be profitable
to offer AB (the manufacturer would earn $1 of profit).

Although these examples are contrived, they illustrate why firms offer
only a fraction of the products—defined by combinations of
components—that they could. The examples above involve just two
components, for which there are three possible products. As we noted
above, with three components there would be seven possible products
(ABC, AB, AC, BC, A, B, C); with ten there would be 1,023. Even
minimal fixed costs of offering individual products would encourage pro-
ducers to reduce the number of products in their product lines to those
for which there is significant demand. If you think about the products
you buy, while you may have a great deal of choice, you have infinitely
less than you could if firms offered all possible combinations of compo-
nents that some customers might like.

Exploiting Demand
Firms bundle components because it enables them to sell more and
usually make more profits. That can be true for demand-related reasons,
as well as to save costs.

318 Chapter 11

One obvious reason to add features to a product is to increase the demand
for it. Perhaps surprisingly, this does not necessarily lead to a higher price.
Speaking a bit loosely, it all depends on what sort of new buyers are
attracted by the new features. Features that attract price-sensitive buyers—
perhaps because they are particularly eager to save the cost of buying a
separate product with those features—will tend to reduce the profit-max-
imizing price. Conversely, features that attract price-insensitive buyers will
tend to raise the seller’s profit-maximizing price. In the case of software,
it is common for firms to add features without increasing the price. Since
it introduced QuickTime in 1991, Apple has added many new features
such as streaming audio and video, and support for new formats, yet Apple
continues to offer the QuickTime player free of charge. Similarly,
RealNetworks has added DVD playback and CD ripping to its player,
which it still offers for free.

When Bigger Is Better 319

It is common to bundle together products that are complements, such
as automobiles and tires, but firms may find that it pays to bundle prod-
ucts that aren’t complements. We already saw an example of this above.
Bundling persuaded two consumers to buy a product even though each
wanted only a single component. This saved the manufacturer costs.

The idea that bundling of noncomplements can be used to enhance
profits goes back to a classic paper by Nobel Prize winning economist
George Stigler. Stigler tried to explain why movie distributors at one time
required theaters to take bundles of pictures.12 Suppose for movie A,
theater 1 is willing to pay $8,000 and theater 2 $7,000; for movie B,
theater 1 is willing to pay $2,500 and theater 2 $3,000. If the distribu-
tor rents the films separately, it would charge $7,000 for A and $2,500
for B to attract both theaters and collect $9,500 from each, for a total
of $19,000. But consider how much the exhibitors would pay for a
bundle of both movies: theater 1 would pay $10,500 and theater 2 would
pay $10,000. Thus, if the distributor charged $10,000 for the bundle, it
would collect $20,000 and make more money.

More generally, businesses can exploit the law of large numbers when
they are producing products that have many components. Consumers
place different valuations on the various features available to them. You

12. George J. Stigler, “United States v. Loew’s Inc.: A Note on Block Booking,”
Supreme Court Review 152 (1963): 152–157.

value the arts section of the newspaper highly, while your spouse does
not care much for it; your spouse values the sports section highly, while
you do not care much for that section. The valuations for any compo-
nent can be quite dispersed across consumers with different tastes. If you
combine all these components into a single product, the variations tend
to cancel each other out, and, relative to the corresponding average
value, there will be less dispersion in the value consumers place on the
product than on the individual components. This makes it easier for the
firm to sell to a large fraction of the market at a price that captures a
large share of the product’s economic value.13

This of course means that many people are getting components that
they do not value. But if it does not cost much to provide these compo-
nents, if it costs little or nothing for consumers to ignore or dispose of
these components, and if it is expensive to offer multiple product ver-
sions, bundling components together into a single product typically
expands demand efficiently. These assumptions are especially likely to
hold for software and other information goods for which the marginal
cost of providing the product (and any component of it) is approximately
zero, and the cost of developing and distributing the product is high.

Newspapers are a good example. They provide many features—from
crossword puzzles to astrology tables, stock market quotes, and dance
reviews—that only a portion of their readers care about. But, relative to
the cost of producing and distributing a newspaper, these features are
not that expensive to add. By including them the newspaper brings in
more readers at its typical price, sells more copies, and therefore covers
more of the fixed costs of producing the paper. Consumers who don’t
want to read these features can easily ignore them. Such bundling can
benefit consumers by providing products that either would not be pro-
duced or would be more expensive absent bundling.

As is often the case, firms make money bundling this way because they
are providing a service to consumers. Consumers get to pick and choose
what they want. They can ignore choices they don’t care about at little

320 Chapter 11

13. For formal analyses, see Richard Schmalensee, “Gaussian Demand and
Commodity Bundling,” Journal of Business 57, no. 2 (January 1984):
S211–S230; Yannis Bakos and Erik Brynjolfsson, “Bundling Information Goods:
Pricing, Profits, and Efficiency” Management Science 45 (December 1999):
1613–1630.

Aggregating Demand

Suppose that the first tenth of the population of 100 persons would be
willing to pay $10 for component 1, the second tenth would pay $10 for
component 2, and so forth up to component 10. Each would be willing to
pay only $2 for each of the other nine components. Costs are zero. If the
firm sells each component separately, it could charge $2 for each, sell all
ten to all customers, and thereby make $2,000. Or it could charge $10 for
each but sell each to only ten customers, and thereby make $1,000.
However, every consumer would pay $28 ($10 + 9 × $2) for the bundle
of all ten components. By bundling, the firm could get all 100 consumers
to buy the bundle and make $2,800. Bundling this way can make con-
sumers better off because they can get choices they wouldn’t otherwise get.
Moreover, producers of information goods can use this approach to cover
the fixed costs of developing and offering products.

cost. Few people care that their eyes may wander over horoscopes in the
daily newspaper or that the paper weighs a bit more from the extra
newsprint or that a software program takes up a smidgeon more memory
because of code for a feature they’ll never use.

When Bigger Is Better 321

14. For a different potential use of bundling for price discrimination, see Richard
Schmalensee, “Commodity Bundling by Single-Product Monopolies,” Journal of
Law and Economics 25, no. 1 (April 1982): 67–71.

Bundling can be used in a different way to facilitate price discrimina-
tion, which we discussed in the preceding chapter.14 That is, if different
groups of consumers place different values on groups of components,
bundles can be designed so that those with stronger demand pay more.
The idea is possible to design bundles of components that cause
consumers to sort themselves by the bundles they choose into groups
with different willingness to pay. (Marketers call this “segmentation.”)
In the case of autos, some will want the car with the sports package,
while others will want only the basic package. The seller can then
charge a premium to groups that have a particularly high demand
for a particular package and offer an especially aggressive price to
consumers that are very sensitive to price but are also willing to take the
no-frills deal. For this to work, there must be a predictable correlation

between combinations of components and demand (for example,
price-sensitive consumers generally have a low demand for frills).
A number of studies have found, for example, that automobile
companies have much higher markups on luxury models than on base
models.15

Multisided Platforms
Bundling decisions by multisided platforms are particularly complex
because they have to take into account all customer groups.

All of the considerations discussed so far still apply to multisided
platforms. The principles just have to be adjusted to take into account
the fact that there are several distinct groups of customers linked by
indirect network effects. Newspapers—advertiser-supported media plat-
forms—include style sections that appeal to younger women, who are
valuable to advertisers. Video game console manufacturers may bundle
joysticks not only because players want them, but because developers
can produce cooler games if they know that all players will have
joysticks.

Multisided considerations affect bundling decisions in three other
ways.

Bundling customers. In some cases one can think of a platform
provider as bundling customers together on one side to offer them to
customers on the other side. Take shopping malls. Mall developers rent
space to stores. But they are selective as to which stores they allow in
the mall. They try to offer a diverse group of shops that match their
intended customers. That means choosing particular quality levels of
stores and limiting duplication. Most mall developers would reject a
second bookstore even if it offered to pay the same rent as the first book-
store. That is in part because having greater diversity attracts more shop-
pers and therefore makes the mall more valuable to merchants, which in
turn will pay more for more foot traffic. The same considerations apply
to the content that mobile telephone operators offer to their subscribers
and the types of articles that magazines offer their readers.

322 Chapter 11

15. Steven Berry, James Levinsohn, and Ariel Pakes, “Automobile Prices in
Market Equilibrium,” Econometrica 63 (July 1995): 841–890.

Bundling negatives. Multisided platforms may also bundle compo-
nents in ways that harm side 1 directly but create value to side 2 and,
by attracting more customers on side 2, benefit side 1 indirectly. A shop-
ping mall again provides a good illustration. You may have noticed that
some malls, especially vertical ones, are not designed to minimize the
amount of time it takes the customer to walk between stores. Instead,
they are sometimes designed to increase the distance customers need to
walk and therefore the number of stores they pass en route. That
increases the foot traffic that passes by each store.16 Payment cards are
another example. Merchants that agree to accept cards from a system
generally have to agree to take cards from all customers who present
cards from that system and refrain from charging card customers more
than customers who pay in other ways. Both rules impose costs on mer-
chants and reinforce the bundling of all customer cards. But each rule
benefits cardholders directly and merchants indirectly. (These rules have
been challenged under the competition laws in various countries. In
the United States, merchants can now take credit cards without taking
debit cards, while in the United Kingdom, merchants can surcharge card
transactions.)

Bundling for externalities. Multisided platforms pay particular atten-
tion to harvesting externalities among customer groups. Some features
may be bundled because doing so promotes interactions between the two
sides. Singles-oriented clubs often bundle drinks with admission; an
example is the two-drink minimum. One explanation for this is that it
promotes social interaction. Similarly, i-mode has signed a deal with
Macromedia that enables it to include (bundle) the Flash Player plug-in
in the platform it offers content providers, in order to encourage them
to build Web sites with enhanced visual effects that are presumably more
appealing to users. And, as we have noted before and will discuss in more
detail below, including APIs in software platforms helps developers
provide services to end users.

When Bigger Is Better 323

16. Beyard, Michael D, Shopping Center Development Handbook, 3rd ed.
(Washington, D.C.: Urban Land Institute, 1999).

What Is Bundled, What Is Not; Why and Why Not?

As we have noted, the steady growth in the size of software platforms
(as measured by lines of code) has been driven by the steady addition of
features—most of which could have been provided by separate applica-
tions, and many of which once were—for developers and users. And cus-
tomers don’t get to pick and chose their features. Models are few and
options are rare.

But it isn’t as if software platforms have an irrational appetite, like
PacMan, for absorbing everything in sight. The Sony Playstation doesn’t
have a word processor, although some of its customers might like to have
one included. And Microsoft has kept Windows and Office for Windows
separate, even though all Office customers need Windows too.

Then again, platforms’ appetites do seem pretty voracious. As we men-
tioned earlier, i-mode phones can substitute for payment cards at stores
in Japan. You just wave the phone over a sensor and press your thumb
for further verification. The software for PDAs now helps people to make
telephone calls, as well as to send emails and manage their calendars.
Video game consoles and PCs are both racing to become media hubs that
will help people manage and play music, videos, and television programs.

One reason software platforms have added more features is quite
simple: they can.

Technology
Changes in the hardware for computing devices have made it possible to
include more features in the software platform. The mobile phone oper-
ating systems of today, for example, simply could not fit in the memory
that was available on mobile phones ten years ago. But advances in the
underlying hardware have also created more opportunities for software
platform vendors to devise features that can attract one or more groups
of customers.

The cost of storage has declined for all computing devices. Figures 11.1
and 11.2 show the trends in the cost of random access memory (RAM)
and hard disk storage for PCs. Between 1984 and 2005, the price per
megabyte of RAM declined from $1,000 to less than 25 cents. Over the
same period, the price per megabyte of hard disk storage declined from

324 Chapter 11

When Bigger Is Better 325

$1,000.00

$100.00

$10.00

$1.00

$0.10

$0.01

$0.00

P
ri

ce
 p

er
 M

eg
ab

yt
e

Average 54% decline in price per Mb each year

Jan.
83

Jan.
85

Jan.
87

Jan.
89

Jan.
91

Jan.
93

Jan.
95

Jan.
97

Jan.
99

Jan.
01

Jan.
03

Jan.
05

Figure 11.1
The price of hard disk storage in personal computers, 1983–2005, log scale.
(Source: Data from 1983 to 2001 are from Steven J. Davis, Jack MacCrisken,
and Kevin M. Murphy, “Economic Perspectives on Software Design: PC Oper-
ating Systems and Platforms,” in Microsoft, Antitrust and the New Economy:
Selected Essays, ed. David S. Evans [Boston: Kluwer, 2002]. Data from 2002 and
beyond are from archived prices taken from compusa.com.)

$1,000

$100

$10

$1

$0

P
ri

ce
 p

er
 M

eg
ab

yt
e

Average 41% decline in price per Mg each year

Jan.
85

Jan.
87

Jan.
89

Jan.
91

Jan.
93

Jan.
95

Jan.
97

Jan.
99

Jan.
01

Jan.
03

Jan.
05

Figure 11.2
The price of random access memory (RAM) in personal computers, 1984–2005,
log scale. (Source: Data from 1983 to 2001 are from Steven J. Davis, Jack
MacCrisken, and Kevin M. Murphy, “Economic Perspectives on Software
Design: PC Operating Systems and Platforms,” in Microsoft, Antitrust and the
New Economy: Selected Essays, ed. David S. Evans [Boston: Kluwer, 2002]. Data
from 2002 and beyond are from archived prices taken from compusa.com.)

326 Chapter 11

slightly more than $100 to less than a penny. Although other comput-
ing devices use different memory and storage components, they have
all experienced similarly dramatic cost reductions.17 For instance, the
memory component used in many mobile phones, “NOR flash memory,”
fell 42 percent in price just between 2003 and 2004. Similarly the
memory used in MP3 players, “NAND flash memory,” experienced a
20 percent price drop over the same two years.18 As a result, it is possi-
ble to put more code on the hardware and do more things with more
RAM.

The price of processing power has also declined dramatically, as shown
in Figure 11.3. Between 1993 and 2001 the price per million instructions
per second (MIPS) declined from slightly more than $12 to less than 10
cents for Intel microprocessors. Today this cost has fallen to about a
nickel for Intel’s Pentium 4 chips. Similar changes occurred for other
microprocessors. These changes have allowed software platform devel-
opers to provide complex new features that perform quickly enough to
be of value to developers and customers. Many of the visual effects for
today’s video games could have been programmed in the early 1990s,
but they would have had no commercial appeal then because games using
them would have played too slowly.

Interactions among users of computing devices have also become
easier and cheaper. Broadband connections have become cheaper and
more widely available. The average cost of monthly DSL rental fell 30
percent, from $42 to $30, from 2000 to 2005.19 Most significant busi-
nesses have broadband connections that facilitate wide-area networks of
computers as well as connection to the Internet. The percentage of house-
holds with broadband connections has increased in most industrialized

17. Steven J. Davis, Jack MacCrisken, and Kevin M. Murphy, “Economic
Perspectives on Software Design: PC Operating Systems and Platforms,” in
Microsoft, Antitrust, and the New Economy, ed. David S. Evans (Boston: Kluwer,
2002), fig. 1.

18. Takuya Inoue, Mario Morales, and Soo-Kyoum Kim, “Worldwide Flash
Memory Forecast 2005–2008” (IDC report no. 32854), February, 2005.

19. Point Topic, “Long Term Trends in Broadband Pricing: 2000–2005,”
May 18, 2005 (http://www.point-topic.com/content/operatorSource/dslreports/
Longtermtrendsinbroadbandprices2000-2005.htm).

countries, as shown in Table 11.4, with almost one-third of U.S. house-
holds connected through cable or DSL in 2004.

In addition to these general trends, most computing devices have expe-
rienced decreases in the prices of other important components. The cost
to computer assemblers of a CD-ROM drive declined from about $500
in 1991 to about $30 in 2005. The cost to mobile telephone manufac-
turers of a SIM card declined 25 to 30 percent from 2002 to 2003.20

The hardware and software platforms have a symbiotic relationship.
These incredible advances in the hardware platform make it possible for
the software platform to do far more than it could previously. Software
platform makers see more capacious hard drives, faster microprocessors,

When Bigger Is Better 327

20. A SIM card is a component of most mobile phones that carries identifying
information about the mobile customer as well as some address book informa-
tion. “High-end cards and growing applications enable smart card manufactur-
ers to leave behind a troubled 2002,” M2 Presswire, August 6, 2003.

$0

$2

$4

$6

$8

$10

$12

$14

Jun.
98

Jun.
97

Jun.
96

Jun.
95

Jun.
94

Jun.
93

Jun.
99

Jun.
00

Jun.
01

P
ri

ce
 P

er
 M

IP
S

486-DX2 50 MHz
$12.12 per MIPS

PIII 933 MHz
$0.09 per MIPS

Figure 11.3
The price of processing power in personal computers, 1993–2001, Intel Proces-
sor MIPS. (Source: Steven J. Davis, Jack MacCrisken, and Kevin M. Murphy.
“Economic Perspectives on Software Design: PC Operating Systems and Plat-
forms,” in Microsoft, Antitrust and the New Economy: Selected Essays, ed.
David S. Evans [Boston: Kluwer, 2002].)

and bigger broadband pipes, and think they can now develop new and
improved features that consumers want. Hardware platform makers
understand this. They recognize that it makes sense to invest in these
hardware improvements in part because they can depend on software
platforms, and the applications they support, to make use of the
increased capability those improvements will produce. These positive
feedbacks reinforce each other and lead to the addition of features—and
tremendous innovation—through the various ecosystems based on com-
puter hardware and software platforms.

Feature Accretion
One of Microsoft’s lawyers once remarked, famously and flippantly, that
he thought that Microsoft should be allowed to bundle a ham sandwich
with Windows if it wanted to.22 Why doesn’t it—with mustard and
pickles on the side, for that matter? Or, more seriously, why has it
included Windows Media Player but not Office? On the other hand, why
do some mobile phones, supported by their software platforms, come
with cameras, email, instant messaging, and games, not to mention the
ability to make a dinner reservation?

328 Chapter 11

21. Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands,
Portugal, Spain, Sweden, and the United Kingdom.

22. Todd Bishop, “Microsoft Loses Crucial EU Ruling; It Must Split Off Media
Player While Appealing,” Seattle Post-Intelligencer, December 23, 2004.

Table 11.4
Percentages of Households with Broadband Services

Country 2002 2003 2004

France 5.40% 11.00% 23.10%
Germany 7.20 10.20 14.80
Italy 4.10 8.60 17.00
Spain 5.90 13.60 22.40
UK 5.10 12.80 22.30
Western Europe21 8.20 12.70 20.40
US 15.70 23.10 29.90
Canada 28.10 35.80 42.70

Source: eMarketer, “Europe Broadband,” April 2005.

Most developers and users rely on only a portion of the features
included in the software platform they are using. For example, any given
software program typically would call on a small percentage of all the
APIs provided by Windows. But different developers use different ones:
game developers make much more use of the platform’s graphics capa-
bilities than developers of personal finance programs, for instance. Most
consumers use only a few of the features included in Windows. Have
you ever used the on-screen keyboard? Or explored the fonts installed
on your system using Character Map? We haven’t, and we suspect few
others have either.

Similarly, few individuals read newspapers from cover to cover. Most
pick and choose articles that interest them. The most popular section of
U.K. newspapers, sports, is read by fewer than half of newspaper readers,
while most sections are read by fewer than a third.23 Some of us never
read the sports section, while others never read the marriage announce-
ments or obituaries. Similarly, a typical basic cable television package
comes with seventy channels,24 but we suspect most people watch a
handful or two and ignore all the rest. There probably isn’t much overlap
between the regular viewers of Comedy Central, Home and Garden TV,
the Discovery Channel, and ESPN2. This isn’t surprising. As we noted
above, bundling different things together is a particularly good business
strategy for information goods, for which the marginal cost of adding
and distributing another feature is typically very small.

There is a simple explanation for the steady feature accretion we see
in software platforms. Technological advances in hardware have given
software platforms more to work with and have all but eliminated hard-
ware-related constraints on their size, at least for the time being. Soft-
ware platforms add features in the hope that more users will find the
platform worth its price because they can find the particular features they
want and that more developers will write to the platform because they

When Bigger Is Better 329

23. PR Week Media Snap—“National Newspaper Readership Patterns,” PR
Week, May 10, 1990.

24. Comcast standard cable package comes with seventy channels in the Boston
area, RCN “Full Basic” comes with seventy-five channels (http://www.comcast.
com/Support/ChannelGuide.ashx); http://www.rcn.com/cabletv/lineupDetails.
php?lineupID=13.

can find some subset of APIs that helps them write profitable programs.
Because platforms are multisided businesses, these additional users and
developers increase demand indirectly as well as directly. A platform is
more attractive to end users if it has more applications, and it is more
attractive to developers if it has more users.

But if more is always better, why no ham sandwich? The answer lies
in comparing the additional consumers brought in by adding new fea-
tures with the cost of adding them. Take Office. There were 63 million
Microsoft-licensed copies of Office in use in 2004.25 The average price
of an Office upgrade was upward of $250, and a new license for Office
for businesses was upward of $350. And there were about 515 million
Microsoft-licensed copies of Windows in use in 2004. Users interested
in upgrading their version of Windows can purchase the latest edition
from retailers—an upgrade of XP is $90 on average, or a new license is
upward of $150.26 Many business customers do not need Office on their
computers because they use specialized software. Insurance company
employees, for example, typically spend their days using customized soft-
ware for dealing with claims and other insurance-specific matters. And
many households do not need the firepower in Office either. By keeping
Office separate, Microsoft can charge companies that do not need word
processing and the other Office features a lower price and companies
that do need those features a higher price. In this case the fixed cost of
offering separate products is probably fairly small relative to the addi-
tional profits that can result from selling Office and Windows separately.
But what if most customers who bought Windows also wanted Office?
Then it might well make sense, in terms of both Microsoft’s profits and
total cost to society, to bundle Windows with Office.

This example highlights the fact that the features that get bundled into
software tend to be of two extreme sorts. It makes business sense to
bundle features that are used by relatively few users, as long as those

330 Chapter 11

25. http://www.microsoft.com/msft/speech/FY05/Raikes_CaposselaFAM2005.
mspx.

26. Survey of Office products on Amazon.com; AI Gillen and Dan Kusnetzky,
“Worldwide Client and Server Operating Environments 2004–2008 Forecast:
Microsoft Consolidates Its Grip” (IDC report no. 32452), December 2004, tables
1 and 2; survey of Windows products on Amazon.com.

users value the features in question highly enough, because it will gen-
erally cost little to add these features relative to the additional sales
brought in. (Of course, at the far extreme we have features that are
simply not worth developing in the first place because so few end users
care about them that there is no way to cover their development cost.
We are ignoring those features here—as software platform vendors try
hard to do in practice.) And it makes sense to bundle features that are
used by most users. If most users want a calendar with their PDA, there
is nothing to be gained by incurring the extra cost of selling it as a stand-
alone product.

Between these two extremes, it could make business sense to offer the
components separately or to offer multiple versions, some of which don’t
have certain features. Looking across software platforms, however, it
appears that this sort of mixed bundling is seldom used. Software plat-
forms either include a feature in the platform or they don’t. Unlike cars
or cereals, there are almost never multiple versions of the platform to
choose from. (Of course, as with everything, this can change with devel-
opments in technology [innovations in making modular software, for
example], consumer demand [segments develop that want a specific
feature set], and competition policy [some competition policy authori-
ties have argued that Microsoft should offer multiple versions of
Windows].)

The multisided nature of software platforms helps explain this. Users
want to know that the applications they license will run on their version
of the software platform, while developers want to know that their appli-
cations will work for customers who have the software platform to
which they are writing. This assurance is particularly important, since
developers and end users are making decisions at different points in time.
If there are multiple versions of a software platform on the market, the
developer may not be able to conduct the advertising necessary to tell
you which is the right version. Thus, standardizing software platforms
tends to help both end users and applications developers.

Most commercial vendors of Unix have made their versions proprietary,
and more than twenty versions are currently available. Applications
written for one version might not run on another. Given its roots in Unix,
Linux has been particularly careful to prevent similar fragmentation or

When Bigger Is Better 331

“versioning” of its software platform. The GPL prevents Linux vendors
from appropriating the source code to build a proprietary version of Linux
(or for any similar purpose).

Innovation Through Bundling
One only has to take a look at ads for Apple’s Mac OS X Tiger to see
that a major source of innovation in software platforms comes from
bundling new features. Although Apple has made lots of improvements
to the core of this operating system over the years, consider what it is
highlighting for consumers in Figure 11.4: a search program (Spotlight),
a Web browser (Safari), video and audio conferencing (iChat), a media
player (QuickTime), and an email program (Mail). All in all Apple says
there are more than 200 new features in Tiger.

Some of these features were included in previous versions of the oper-
ating system but have undergone considerable improvement. Others are
new, such as Spotlight. And while products similar to each of these fea-
tures are available from independent application developers (Firefox for
browsing and RealPlayer for media, to take two examples), Apple users
benefit from having these features available to them as part of a single
integrated platform. Consumers, for example, don’t have to find and
install their own browser, media player, and email client. They can just
trust Apple to provide a good package. And a number of reviewers have
commented that these additional features make Tiger an innovative and
desirable software platform. They claim that “even casual Mac users
will immediately see the difference,”27 because “Tiger is the best version
of Mac OS X yet. . . . The performance improvements are immediately
noticeable. Every major bundled application has been improved. There’s
an unprecedented number of substantial, totally new features and
technologies: Spotlight, Core Image and Video, Quartz 2D Extreme,
Dashboard, and Automator, just to name a few.”28 Of course, if an
Apple-supplied feature is a dog, end users always have the option of
ignoring it and using something else.

332 Chapter 11

27. “Apple Mac OS 10.4 Tiger,” Cnet Review, April 29, 2005 (http://reviews.
cnet.com/Apple_Mac_OS_10_4_Tiger/4505-3673_7-31256837-2.html?tag=
top).

28. http://arstechnica.com/reviews/os/macosx-10.4.ars.

Mac OS X Tiger doesn’t just provide innovative new features to end
users. Apple marketing highlights the new features it has provided to
developers. For example, Apple’s QuickTime 7 technology “features an
ultra-efficient new video codec . . . that delivers stunning video quality,”29

while Core Image “unlocks the performance of today’s powerful graph-
ics hardware for ultra-fast, pixel-accurate image processing.”30 Reviews
geared toward developers have also noted the value of these additions.
Reviewers have described Mac OS X Tiger as “a milestone in Mac OS

When Bigger Is Better 333

Spotlight

Dashboard Safari RSS

IChat AV

MailAutomator

QuickTime

7

.Mac Sync

Mac OS X Tiger

Figure 11.4
Diagram based on a screen shot of Apple’s online promotion of Mac OS X Tiger.
(Source: http://www.apple.com/macosx/.)

29. http://www.apple.com/macosx/features/quicktime/.

30. http://www.digitalhub.com/macosx/overview/advancedtechnology.html.

X’s development process.”31 This system has some developers saying
things like “being a Mac developer was a fun and rewarding experience
before Tiger, but now with all of these new technologies, our jobs got
even easier.”32

Comparing the Mac OS 7, introduced in 1991, to the Mac OS X Tiger,
introduced in 2005, highlights the pattern of technical advance. Table
11.5 lists some of the features added during this period. Some of the
things you couldn’t do in 1991 but could do in 2005 were the result of
other information technology innovations. Thus, you couldn’t browse or
stream audio and video in 1991. But today, not only can you do those
things, you can do them “right out of the box” with your new Macin-
tosh, without buying any applications. For most people that’s a benefit.
Other things could have been done in principle in 1991, but no one had
thought of them or didn’t know how to do them very well, or there was
no use for them. Sophisticated searching was unnecessary, for instance,
since few people stored a large number of documents or multimedia files
on their PCs. The sophisticated compression technology that enabled
streaming media did not exist until the mid-1990s, and even then, people
did not realize how popular streaming media would become.

These same sorts of observations could be made for any software plat-
form. Although bigger isn’t always better, the growth we documented at
the beginning of the chapter has enabled users and developers—and, we
should note, makers of hardware and peripheral equipment—to do more
with their software platforms.

Convergence
There seems to most of us to be a qualitative difference between Palm
OS including a browser and DoCoMo turning its phone into a payment
device. The former seems like a natural expansion within a relatively
well-defined category, while the latter seems like one category setting out
unexpectedly to conquer another. But there is really nothing unexpected
about it. Increasingly, computer platforms—sometimes led by the soft-
ware platform, at other times working hand-in-hand with the software
platform—have invaded nearby, and not so nearby, categories.

334 Chapter 11

31. http://arstechnica.com/reviews/os/macosx-10.4.ars.

32. http://maczealots.com/reviews/tiger/developers/.

Mobile telephones, for example, are starting to compete with digital
music devices to download, store, and play music. And increasingly
these devices are able to play television—for now, specially designed
short soap operas—to help entertain subway and train commuters,
among others. We’ve gotten used to seeing them used for email and
instant messaging.

Game consoles are competing with other home entertainment tech-
nologies. They include DVD drives and therefore compete with manu-
facturers of DVD players; they have the ability to store, manage, and
play music, and thus compete with a variety of music-related devices;
and they can download, store, and edit television, and are therefore com-
petitive with products like TiVo.

The fact that computer platforms can combine all these features does
not necessarily mean that consumers will embrace them. Many fortunes
have been lost by those who believed the 1990s’ hype about digital
convergence—witness the AOL Time Warner merger. Companies like
Microsoft have been working on ways to get PCs into the living room
for more than a decade. Thus far consumers seem to like their PCs and
their home entertainment systems to be separate boxes in different
rooms. Yet convergence may occur slowly and by stealth.

The home entertainment system of the future, like the automobile of
the present, may not look or feel like a PC. But at its heart it is likely to

When Bigger Is Better 335

Table 11.5
Some of the New Features Added to Mac OS Since System 7

Multimedia functionality (QuickTime and iTunes)
DVD support and recording
Email and Internet functionality
Disk and Internet searching
Java support
Handwriting recognition
Stickies—Post-It-like application
Bluetooth
Power management
Better disk management
Encryption
Support for multiple users
Password management, voice passwords
Modern multiprocessing

have a microprocessor and a software platform. It may look like an
obvious product, but in fact it will probably be the result of the accre-
tion of features in various software and hardware platforms over time.
Bundling drives innovation and creates industries.

INSIGHTS

• The ability to select bundles of features to sell helps firms segment their
customers, control costs, and enhance profits. Bundled products offer
consumers convenience, lower costs, and products tailored to their needs
and wants.

• Bundling decisions by multisided platforms, such as software plat-
forms, are more complex since they must take into account the effect on
all customer groups. Multisided businesses must consider both the addi-
tional customers they get on one side as a result of including a new
feature and the additional customers they will get on the other side from
having those additional customers. They may also include features that
harm one side directly but benefit the platform overall by getting more
customers on board on another side.

• Bundling makes sense for businesses whenever the cost of adding addi-
tional features is lower than the additional sales generated thereby—even
if most purchasers do not value or use all the features in a product
bundle.

• Software platforms double in size roughly every two years mainly as a
result of adding new features; all software platforms have attracted new
users and innovated in this way. This behavior is a response to demand
that has been made possible by the plummeting costs and rapidly increas-
ing capabilities of computer hardware.

• Software platforms tend not to offer models or options. They come
bundled with features that users and developers have to take in total,
even if those features are not widely used.

336 Chapter 11

12
Swept Away

Look to the future, because that is where you’ll spend the rest of your life.

—George Burns1

INSIDE THIS CHAPTER

• Why software platforms create, destroy, and transform industries

• The enormous potential of Web-based software platforms

• How auction-based and search-based platforms are transforming the
retail sector

Introduction

Software platforms march relentlessly across the economic landscape,
forming new industries, transforming others, and sometimes shattering
old ones in their wake.

Video game platforms have gradually pushed board games to one side.
In 2004, people spent twelve times as much on video games as they did
on board games; twenty years earlier they had spent more than seven
times as much on board games as on video.2 The PC software platform
made the typewriter a museum piece within a generation. In 1985 the

1. http://en.wikiquote.org/wiki/George_Burns.

2. http://money.cnn.com/2005/04/29/news/midcaps/bored_games/; “The Profit
In Games People Play,” New York Times, December 31, 1986; “Video Game
Wars Heating Up: Firms Hawk New Generation of Machines,” Los Angeles
Daily News, August 24, 1993; Schelley Olhava, “Worldwide Videogame Hard-
ware and Software 2004–2008 Forecast and Analysis: Predicting the Future”
(IDC report no. 31260), May 2004.

typewriter industry had U.S. sales of $1.1 billion; about two decades later
it was less than a tenth as large.3 The destruction isn’t confined to old
industries. Fax machines started a global revolution in real-time com-
munication in the 1980s. Slowly, email and other document delivery
platforms are making the fax machine passé. Nor are software platforms
protected from their brethren, as the Palm OS learned from the platforms
that have powered smart mobile phones. And, like amoebae, software
platforms envelope their own. Regularly, they add features such as Inter-
net communication capabilities that had been provided by stand-alone
applications.

The malleability of code makes software platforms particularly adept
at moving into old industries and starting new ones. Sometimes this is
as simple as adding a block of code to an existing software platform—
more or less like adding another section to a newspaper. For example,
the Safari browser that Apple added to the Mac OS took up just over 6
megabytes of this 500+ megabyte software platform. Other times it
requires more substantial work. Yet both Symbian for mobile phones
and MS-DOS for PCs were completed in less than a year by building on
code that was created for other purposes, much as a writer might build
a novel from a short story.

Creative destruction has been a hallmark of economic progress for mil-
lennia, but it has proceeded at a glacial pace for most of history. The
Industrial Revolution sped this process up. Even so, it took decades for
change to filter through the economy following innovations such as the
spinning jenny, steam engine, and electric generator. The information
technology revolution has quickened the pace of industrial change
greatly. The plummeting costs of computer processing and storage make
it possible to create products and industries that were not only infeasi-
ble but also unimaginable a few years earlier. Software platforms further
accelerate the process of creative destruction, mainly because code is
digital and malleable. Think how easy it is to add a new feature to a
software platform and distribute that change electronically over the
Internet to potentially billions of computing devices around the world.

338 Chapter 12

3. “What’s New in Typewriters,” New York Times, March 9, 1986. “Clack of
Typewriter Still Stirring Minds,” USA Today, June 20, 2003.

As we look ahead, there are signs that the pace at which software plat-
forms transform the economy will accelerate even further in the coming
decades. People have speculated about some of these transformations for
years.

The control of the living room is perhaps the best example. As of 2006
there is little doubt that software platforms in some form will dominate
home entertainment. Many of these platforms have crept into the tele-
vision ecosystem without much notice.

People usually think of TiVo as a digital video recorder (DVR) maker:
it makes a box that records television shows and skips over commercials.
In fact, the hardware in that box is built around a hard disk drive and
didn’t require much inventive effort. The software platform is the secret
behind the TiVo service and the strategy that this company has adopted
for home entertainment.

To make inroads, TiVo followed strategies with which we are now
familiar. It priced the box low to penetrate the market and earned rev-
enues from subscription fees. At first this was a familiar one-sided “give
away razor and sell the blades” strategy. However, this pricing approach
was designed to create a critical mass of TiVo users. Once developed,
those users could be used to attract two other sides.

One is familiar: developers. TiVo is evangelizing its software platform
by providing tools and offering prizes for the best applications in several
categories, including games, music, and photos.

The other side is perhaps surprising: advertisers. As a verb, “to TiVo”
has entered American slang as the process of skipping over com-
mercials—not a development likely to thrill the companies that spend
billions every year on television advertising. As a software platform,
however, TiVo provides tools that allow television advertisers to provide
creative services to users. Viewers can select advertisements they are
interested in and can download infomercials and other more detailed
product information that they can’t get in a 30-second spot. Whether
TiVo will succeed with this strategy is not obvious as of this writing. (It
is facing stiff competition from low-priced DVRs offered by cable com-
panies.) But using the invisible engine in its DVR, TiVo is trying, at least,
to transform the television advertising model, and with it how we
consume home entertainment.

Swept Away 339

Automobiles provide another instructive example. Although we doubt
software platforms will transform the auto industry, they will surely take
on a more significant role in automobiles. Microprocessors now control
more than thirty mechanical systems in automobiles, from power
windows to antiskid systems, as well as features that provide entertain-
ment and information such as radio and navigation.4 Many different
operating systems, some of which are dedicated to particular micro-
processor-based features, run these computing devices.

The dashboard now comes with separate technologies that are ripe for
integration through a software platform. The navigation system, for
example, is currently a self-contained computer application. Many devel-
opers have created map-based applications on the Web. Drivers will soon
relish the ability to download these applications onto their automobiles.
At the same time, automobile makers are increasingly incorporating new
entertainment technologies into cars, including the ability to use iPods,
MP3 players, and satellite radio. These create a demand for a more
flexible software platform that can facilitate in-car entertainment. In
addition, consumers are interested in more wireless speech-enabled appli-
cations in their cars, which is a natural for a software platform.

Not surprisingly, several vendors have been working on developing
in-car software platforms. Enea, a Swedish company, for example, offers
three operating systems for automobiles. These operating systems share
a common set of APIs and environment for writing applications. As of
late 2004, automobile companies wrote customized applications to run
on in-car software platforms in their vehicles. Over time we would expect
more third-party developers to produce applications for these platforms.
Moreover, cars are increasingly becoming connected computing devices.
One source estimates that sales of global positioning systems (GPSs) have
increased 33-fold between 1998 and 2004, and about 60 percent of con-
sumers plan to purchase a GPS system with their next vehicle.5 More-

340 Chapter 12

4. http://www.epn-online.com/page/18332/embedded-software-platform-for-
automobiles-the-replacement-of-mechanical—.html.

5. “Microsoft bolsters auto application software,” Network World, July 18,
2005. “Enea Introduces Embedded Software Platform for Automobiles,” Busi-
ness Wire, December 2, 2004. “Cost of Getting Lost Is Higher Than Ever,” PR
Newswire, May 19, 2005; “You are here,” The Virginian-Pilot & The Ledger-
Star, December 20, 2004.

over, the increased use of wireless technology with cars through mobile
phones could enable Internet access and the integration of in-car soft-
ware platforms and Web services into the dashboard.

Enterprise software is another example of an industry that software
platforms will change. Oracle, Microsoft, SAP, and other software devel-
opers have written large, complex applications that large enterprises use
to handle tasks such as human resources, accounting, and supply chain
management. Globally, enterprises spent more than $21 billion on such
software in 2004.6

Enterprise software is evolving into middleware platforms that them-
selves support a developer community. Rather than adding their own
features to their applications, the large enterprise software makers are
making the system services provided by various modules in their prod-
ucts available to third-party developers. That includes publishing APIs
and providing software developer kits to help other companies develop
applications. SAP, for example, announced in early 2005 that it was
making its Netweaver development platform publicly available. That
platform includes more than 1,200 services that are available through
APIs that developers can use. Later in the year Oracle introduced its com-
peting Java-based Fusion middleware. Both companies are making devel-
oper tools available for free to actively encourage developers to “get on
board” the platform. SAP includes the core components of Netweaver
for free with its mySAP ERP and mySAP Business Suite while Oracle
offers Fusion’s Java IDE, called JDeveloper, for free.7

Over the next decade invisible engines will transform economic life
well beyond our living rooms, cars, and offices. They will change how
we buy and pay for things. And they will cut a wide swath of destruc-
tion across many industries that have heretofore helped buyers and
sellers find and do business with each other.

The market capitalization of the newspaper industry provides a
leading indicator of what’s to come. From December 2004 to December

Swept Away 341

6. Paul Hamerman and R“Ray” Wang, Forrester Research, “ERP Applications
—The Technology and Industry Battle Heats Up,” June 9, 2005.

7. http://www.zdnet.co.uk/print/?TYPE=story&AT=39192233-39020466t-
20000007c; “Oracle JDeveloper 10g,” http://www.oracle.com/tools/jdev_home.
html; Ellen O’Brien, “NetWeaver for Free? Not Quite,” SearchSAP.com,
September 30, 2004.

2005, each of the ten largest newspaper companies in the United States
lost market value; their market capitalization fell 23 percent over this
period, while the S&P 500 rose by 4 percent. New York Times
Company’s market value declined by $2 billion (35 percent), and
Gannett, the largest, lost $6 billion (29 percent).8 A major factor behind
this is Internet-based advertising. And behind Internet-based advertising
search engine–based software platforms that are using multisided strate-
gies to drive the growth of vast ecosystems. The source of this cata-
clysmic change is the subject of this concluding chapter.

Web-Based Software Platforms

Many of the software platforms we have discussed are married to a hard-
ware platform. That’s the case with PC and video game console plat-
forms. Being a couple enables the software and hardware to play as much
as possible to each other’s strengths. Specialists talk about “optimizing”
the software for the hardware. Other software platforms can’t indulge
in monogamy. They have to work well with several hardware platforms
because the industry is fragmented along hardware lines. That’s the case
with mobile phones. It became the case for PDAs as software platform
makers such as Palm realized that mobile phones provided both oppor-
tunities and challenges. A few others are “distributed platforms.” Digital
media platforms and i-mode have pieces that reside on the devices that
people use (often called the client) and other pieces that reside on com-
puters that sit in the backroom (often called the server).

It has always been possible to design a software platform that resides
entirely on servers. Indeed, one of the businesses we discuss in the box
below, payment systems such as Visa, are server-side platforms. The soft-
ware platform resides on servers on a network and does virtually all the
work necessary to execute transactions. The clients—payment cards with
magnetic stripes and terminals at the point of sale—do little (like the
computer screens called “dumb terminals,” that long ago connected
people to mainframes).

342 Chapter 12

8. Pulled from Bloomberg on December 28, 2005 (http://finance.yahoo.com/
q?s=%5EGSPC).

Two related developments have made server-based software platforms
increasingly attractive. For one, the World Wide Web has grown dra-
matically. The number of computers sold for use as Web server activi-
ties grew 60 percent from 2000 to 2005.9 For another, communications
capacity has grown: more households and businesses globally have
broadband connections, and those connections have increasing rates of
throughput. As we’ve noted, this piping has extended to mobile tele-
phones and other handheld devices. Not surprisingly, businesses have
developed software platforms that live on the Web.

As consumers, we tend not to think about the code that lies at the
heart of many Web-based enterprises. Yet, putting aside whether this
code comprises a software platform, it is a major source of value for
companies like Amazon. Instead of building factories, they construct
software programs that process information on mainframes or, more
commonly, massive arrays of server computers. They innovate through
adding features in their software, such as Amazon’s feature, “Customers
who bought this book also bought. . . .”

Most Web-based enterprises do not, in fact, operate what we’ve called
software platforms. They run computer applications that, while innova-
tive and admirable, do not have the defining feature of a platform: the
provision of software services to third parties. But others have followed
multisided strategies by making software-based services available
through APIs and encouraging the growth of developers and other third-
party complementors.

This chapter focuses on two software platforms that facilitate
transactions on the Web: eBay and Google. Before we discuss them in
detail, we need to take a quick, relatively painless detour into economic
history.

Driving Down Transactions Costs

Economic textbooks often describe an idyllic world in which everybody
has perfect information for free. Pricing is transparent. Quality is known.
Search is costless. With intense competition in such a world, resources

Swept Away 343

9. IDC Server Workload Data, 2005.

flow effortlessly to their highest-valued uses. Adam Smith’s “invisible
hand” of self-interested behavior inevitably leads to the greatest good.

Like the frictionless plane of introductory physics class, this economic
nirvana is unreachable. Yet over centuries, societies have gotten closer
to it through the development of institutions that facilitate trade among
people and businesses. We have grown so accustomed to some of these
institutions that we forget how innovative they were in their times, and
the enormous values they created for humankind.

In the Western world, some of the most important innovations of this
sort date to very ancient times. The Lydians introduced the first money—
standard gold and silver coins that were an easy way to exchange and
store value—in the seventh century b.c. The Babylonians held the first
auction for which there is a record, in around the fifth century b.c.10 The
village market that brought buyers and sellers together in a central loca-
tion had been around for millennia before the Roman Forum opened its
doors to traders.

Further innovations that facilitated buying and selling arose as Europe
came out of the dark ages. The development of checks in twelfth-century
Florence was the major monetary one. Stock exchanges—bourses—began
several centuries later. The predecessors of today’s modern exchanges were
firmly in place by the first part of the nineteenth century. The invention of
printing with moveable type in 1450 vastly increased the rate at which
information could be disseminated throughout the world. London news-
papers printed advertisements regularly by the seventeenth century.11

During the early nineteenth century, at least in the United States, retail-
ers started allowing customers to buy on credit. People could charge their
purchases and pay at the end of the month. Many larger retailers offered
installment plans that allowed people to buy durables, such as sewing
machines, over time. In 1950, Diners Club—the first payment card that
could be used by individuals at many merchants—gave birth to the
modern global industry of debit, credit, and charge.12

344 Chapter 12

10. “Auctions . . . A History” (http://www.jjmanning.com/selling.htm).

11. Encyclopedic Dictionary of Semiotics, Media, and Communication, edited
by Marcel Danesi, 2000.

12. David Evans and Richard Schmalensee, Paying with Plastic, 2nd ed. (Cam-
bridge, Mass.: MIT Press, 2005).

Over the course of economic history there have also been many inno-
vations in transportation. These have ranged from the early traders, who
traversed the known world, to the development of shipping and rail, and
eventually automobile and air transportation. The world became a more
connected place. We had a global economy that allowed financial and
physical resources to move relatively freely well before the birth of the
commercial Internet in 1995.

All these innovations have lowered transactions costs and thereby
made exchange cheaper and broader. The Lydian invention of coins, for
example, made trade cheaper and more secure. It also permitted trade
that might not have taken place because buyers or sellers were more
likely to have a common medium of exchange and unit of account.

Consider a simple modern-day example. I have a car I am willing to
sell so long as I get more than $10,000. You are willing to pay up to
$12,000 for my car. Suppose it costs $500 between the two of us to find
each other and consummate the deal. Then we can share in $1,500 of
value that is created by moving the car from me (the lower-valued user)
to you (the higher-valued user). How much we each capture depends on
our bargaining power and the sales price we negotiate. But in the end
there’s $1,500 of hard value to be had net of transactions costs.

Institutions can help consumers and businesses obtain value through
exchange in two major ways. They can make it cheaper. If you and I
could find each other and consummate our deal for $100 less, we’d have
$100 more value to share. They can also make trade that was impossi-
ble possible. Suppose you and I couldn’t find each other and do a deal
without a particular institution—an auction, an advertisement, or a
payment card. Then we might not be able to obtain the $1,500 of value
at all, or we might end up with less desirable trading partners and obtain
less than $1,500.

Summed across all people and businesses and all possible transactions,
innovations that can reduce transactions costs or make more trades
possible have immense value. A little arithmetic reinforces the insight.
An innovation that could reduce the cost of retail transactions in the
United States by 0.1 percent of the value of those transactions would
result in savings of almost $4 billion annually.13 That’s one of the reasons

Swept Away 345

13. http://www.census.gov/svsd/advretl/view/adv44x72.txt.

The payment card remains both an important vehicle for reducing trans-
actions costs and an intriguing computing device. Even in its magnetic
stripe form it provides a primitive interface with a vast global computer
network that allows people to obtain cash and conduct other transactions
around the world. It is also the most popular computer-related device in
the world. There were more than 2.2 billion payment cards in circulation
in 2004 compared with 1.5 billion mobile phone subscribers.14

The technological basis for making the payment card the most widely
available computing device in the world has already been laid. Smart cards,
which contain a computer chip with considerable storage capacity, have
held the promise of replacing the magnetic stripe technology since they
were invented in the early 1970s. Yet virtually all cards in the United States
remain based on magnetic stripes. Smart cards are more popular in
Europe—they were introduced in France in the early 1990s, and Master-
Card and Visa have recently provided strong incentives for all banks in
Europe to deploy the next generation of these cards.15

Although their considerable hardware intelligence remains largely
untapped, it is not for lack of an operating system. The major card net-
works have sponsored software platforms for smart cards that could
promote the development of applications for these cards. MasterCard
adopted the MULTOS operating system in 1997, while Visa uses Sun’s
Java Card, also developed in 1997, and American Express uses both.16

These software platforms provide software services through APIs and
make it possible to create applications that will run on the smart cards’
microprocessors. So far, however, relatively few such applications have
been created.

Smart cards have not succeeded in generating the sort of indirect
network effects between the hardware and software that has helped other
platforms overcome their chicken-and-egg startup problems and grow
quickly. They have faced several problems.

346 Chapter 12

14. Alex Slawsby, and Allen M. Liebovitch, “Worldwide Mobile Phone
2004–2008 Forecast Update” (IDC report no. 31080), July 2004. Source: The
Nilson Report, no. 829, March 2005.

15. http://www.cartes-bancaires.com/EN/groupement/historique.html.

16. http://www.javarss.com/java-timeline-10years.html; Kim Min-hee, “Master-
Card Takes on Visa in Smart Card,” The Korea Herald, November 15, 2004;
Donald Davis, “Brand Awareness: The Four Big Payment Brands Are Counting
on Contactless Chips to Inject Some Excitement into Their Smart Card Pro-
grams,” Card Technology, March 1, 2005.

payment systems compete to shave off seconds on transactions at the
point of sale.

Payment Cards

Swept Away 347

While reductions in microprocessor costs have lowered the cost of smart
cards over time, these cards are still significantly more expensive than mag-
netic stripe cards. Without a killer application that some group—mer-
chants, cardholders, issuers, or other players in the system—values highly,
there is little demand for smart cards in the United States. (In Europe they
serve to provide enhanced security that is provided in other ways in the
United States.17) On the other side of the market, without a base of smart
cards there is little incentive to develop applications for them, and no killer
application for smart cards has emerged to spark their widespread adop-
tion. One possible killer application that we will return to below is “con-
tactless”—these are chip-based cards that use radio waves to connect to a
reader at a short distance.

The payment card industry has faced a problem similar to one experi-
enced by mobile telephone producers but even more severe. Banks issue
credit and debit cards. Although card associations such as MasterCard and
Visa can encourage the development of applications that run on all cards,
each bank has a strong incentive to differentiate the cards it issues from
those issued by other banks. The cards, after all, are part of the service
that banks are providing their depository customers, in the case of debit
cards, or often part of a lending relationship, in the case of credit cards.
Banks are interested in applications that help them sell these broader rela-
tionships in competition with other banks. Unfortunately, that reduces
their incentives to promote the development of applications. The card
issuers have a further incentive for maintaining a walled garden around
their devices: security. Either the card issuer or the cardholder faces sig-
nificant liability if the card is breached. Two developments could provide
the indirect network effects necessary for supporting a software platform–
based ecosystem for payment cards. The first involves the marriage of two
popular computer devices—the payment card and the mobile phone.

In Japan, NTT DoCoMo has incorporated the ability to pay for goods
and services in some of the mobile phones it provides subscribers. It relies
on Sony’s FeliCa contactless chip. Consumers scan items at merchants that
have contactless readers that can communicate with the phones. Based on
an early 2005 report, there were a million phones with this payment ability
and 13,000 merchants with readers.18 In Japan, most of these bricks-and-
mortar transactions are going through the DoCoMo billing system in addi-
tion to the Internet billing system we discussed in Chapter 7. Of course,
Japan is one of a kind in so many ways, as we have noted—DoCoMo’s
success as a payment system partly results from the fact that payment cards
were much less popular than cash; DoCoMo got people paying by phone

17. Evans and Schmalensee, Paying with Plastic.

18. Matt Richtel, “Momentum Is Gaining for Cellphones as Credit Cards,” New
York Times, January 10, 2005.

(continued)

Multisided platforms were behind most of the institutions that have
formed to facilitate transactions. Consider three examples.

• The first recorded auction, at least according to Herodotus, involved
the marriage market. Women were auctioned for the highest price, which
could be positive or negative. Men paid for some women, while other
women had to offer a dowry to attract a mate. What this lacked in
romance it made up for in efficiency. It provided good information and
transparent pricing. Other exchange platforms followed relying on many
variants of the original highest-bid auction.
• The first money had to get buyers and sellers on board in the same way
that American Express needs to get merchants and cardholders on board
today. Traders could still have bartered their oxen and kettles or con-
tinued to use the irregular metal slugs that were then used as stores of
value. The Lydian coins became popular because, like modern-day
payment cards, buyers and sellers agreed on this means of exchange and
store of value.
• The early advertising-supported media had to get advertisers and eye-
balls on the same platform. Magazines were, for many years, resistant
to advertisers and, in an effort to protect readers, only permitted them
on the back. But publishers quickly learned that advertising boosted sales
and covered the high first-copy costs. By the end of the nineteenth
century, many magazines were in the business of delivering readers to
advertisers.19

348 Chapter 12

before it got them to pay by card in effect. And DoCoMo is the largest
mobile phone operator in Japan.

The other development is contactless payment as a possible killer appli-
cation that could appeal to cardholders and merchants. Chip-enabled cards
have not become popular because no one had figured out a way to gen-
erate significant value for customers that would warrant the initial cost.
With few chip-enabled cards around, combined with the walled garden
issue raised above, there wasn’t much incentive to write applications.
Several U.S. payment card issuers have been introducing contactless cards
to their cardholders and trying to persuade merchants to install the
necessary terminals. It is too early to tell, but the growth of contactless
may seed the market with enough chip-based cards to increase the growth
of applications.

19. James Twitchell, “Media and the Message,” Advertising Age, March 29,
1999.

(continued)

The prevalence of multisided platforms in facilitating transactions his-
torically is not surprising. By definition, these platforms solve transac-
tion problems, broadly construed, between different groups of customers
that would like to interact with one another. A multisided platform is
often the solution to market frictions.

The Internet provides a technology that can help these multisided plat-
forms operate more efficiently. But that flat description, though true, is
an immense understatement. The development of Web-enabled software
platforms is leading to the creation of new institutions that can dramat-
ically reduce transactions costs and drastically expand the scope of trade
among buyers and sellers around the world. It is this revolution to which
we now turn.

eBay

For the fun of it, Pierre Omidyar decided to write the code for an auction
program over Labor Day weekend in 1995.20 He started Friday after-
noon. By Monday, September 4, he had a program that would allow
users connected through the Internet to list, view, and bid on items. He
posted AuctionWeb, as he called it, as one of several home pages on his
URL—ebay.com—and announced it on several Internet newsgroups to
help attract interest. Slowly, it did.

Omidyar had created several categories of things to list. They included
computers, antiques, comic books, and a few others. People started
placing items. In the first few weeks these included an autographed poster
of Michael Jackson, a Toyota Tercel, and a Mattel Nintendo Powerglove.
The buyers and sellers were on their own. The successful bidder paid the
seller directly and the seller made arrangements to deliver the merchan-
dise to the successful bidder.

Omidyar didn’t charge users for AuctionWeb and hadn’t originally
intended to turn it into a business. However, as the traffic increased,
his Internet service provider complained about the amount of capacity
ebay.com was taking and decided to increase his monthly fees. To defray
these costs, Omidyar decided to charge sellers 5 percent of the sales price

Swept Away 349

20. Adam Cohen, The Perfect Store: Inside eBay (Boston: Little, Brown, 2002).

for items that sold for less than $25 and 2.5 percent for items that sold
for more. Buyers didn’t pay anything to look, bid, or buy, and sellers
only paid when they made a sale.

The growing community of buyers and sellers was self-policing at first.
Omidyar encouraged them to behave ethically and to trust one another.
Most did. But, as Webmaster, Omidyar was the natural person to appeal
to when they didn’t. To help govern the community, Omidyar developed
the Feedback Forum. He noted,

Most people are honest. Some people are dishonest. Or deceptive. This is true
here, in the newsgroups, in the classifieds, and right next door. It’s a fact of life.
But here, those people can’t hide. We’ll drive them away.21

He encouraged people to rate those with whom they transacted on a
scale of −1, 0, and +1 and to provide any comments they wished. He
barred people who had accumulated several negative ratings from the
site.

eBay evolved from these beginnings.22 The story is told well elsewhere,
so we will fast forward to 2005. The code for eBay has grown from the
few lines Omidyar wrote over a long weekend to about one million lines
of C++ in 1999, and now to more than 6 million lines, mainly written
in Java EE. It has gone from running along with many other things on
Omidyar’s home computer to running on an array of over 9,000 servers
in multiple locations. As of the third quarter of 2005, it had 168 million
registered users around the world exchanging goods in about 50,000 cat-
egories. In 2005 it earned $4.5 billion of revenue on sales of more than
$25 billion. Its market capitalization was $62 billion as of January 4,
2006.23

The invisible engine that powers this transaction platform has grown
enormously from the code that Omidyar wrote and patched together

350 Chapter 12

21. The first part of this section is based in large part on Cohen, The Perfect
Store: Inside eBay, p. 27.

22. The following is based on interviews with Michael Dearing and Chris
Donlay of eBay, December 2005.

23. http://www.auctionbytes.com/cab/abn/y04/m06/i26/s01; Jeffrey Schwartz,
“Dot Coms Need You,” VARBusiness, July 22, 2002; “‘Bot’ Networks on the
Rise, According to Symantec Report,” Bangkok Post, October 19, 2005;
www.sec.gov; http://finance.yahoo.com/q?s=ebay.

from whatever freeware he could find to do the job that Labor Day
weekend in 1995. As with all the software platforms we have seen, this
growth resulted in large part because eBay kept adding features that were
valuable to its community. Of course, if computer code was all there was
to eBay, it wouldn’t be a software platform in the sense that we’ve used
that term in this book.

In fact, eBay decided to make services provided by its code available
to others through APIs. These APIs have resulted in eBay creating an
ecosystem of developers that create applications for sellers. Moreover,
eBay has provided various tools to sellers themselves that better enable
them to benefit from the power of its software engine. Before we explore
this aspect of the eBay software platform, we first summarize how this
huge online marketplace promotes transactions between buyers and
sellers.

eBay helps buyers and sellers come together in two main ways. A
number of sellers offer merchandise at a fixed price—”Buy It Now.”
They are like traditional shopping mall retailers. This model accounted
for about 30 percent of eBay sales during the third quarter of 2005.24

Many other sellers use eBay’s auction engine. Auctions have been eBay’s
long-term focus and what we concentrate on here.

Most auctions start with a minimum price and a fixed length of time
over which the seller will accept bids. They usually follow a “second-
price”—the highest bidder wins but pays the price offered by the second-
highest bidder. This type of auction provides a lot of information to
buyers and sellers, and it is transparent. In practice, if not in theory, it
tends to avoid the winner’s curse, which arises when the high bid is based
on overestimation of an item’s value, since the winner pays only the
second-highest bid. Sellers can also opt to have a reserve price at which
they can decline to sell the item. This price is higher than the minimum
price; the fact that there is a reserve is disclosed to bidders, but the
amount isn’t.

eBay could make money in various ways. It could charge buyers to get
into its marketplace or for bidding in auctions. It could charge sellers for
accessing its platform, using the resources available for establishing

Swept Away 351

24. “EBay Faces Threat from Google on Fixed-Price Business,” Dow Jones News
Service, October 25, 2005.

stores, for listing items, or for selling things. Although it has progressed
beyond the simple commission fees for sellers that Omidyar established
when he was pressed for cash, eBay has maintained a relatively simple
pricing structure, one designed to encourage certain behavior as well as
to raise revenue.

Buyers don’t pay anything directly. They can browse, bid, and buy for
free. Sellers pay an insertion fee for each item. These fees are similar to
the access or fixed fees that we discussed in Chapter 10; they are inde-
pendent of whether the item sells or how much it sells for. Sellers also
pay a commission on items that are sold. This commission is similar to
the variable fees we discussed in Chapter 10. The commission is based
on a sliding scale: 5.25 percent for the first $25, 2.75 for the next $975,
and 1.5 percent for anything at or beyond $1,000. Finally, sellers can
pay to have a reserve price, which varies from $1 for less than $50, $2
for $50 to $199.99, and 1 percent for more than $200.

Omidyar’s Feedback Forum has evolved into a critical aspect of eBay.
Buyers and sellers are encouraged to provide these ratings. The ratings
are aggregated and reported for each registered user as a buyer or seller.
Our own experience with eBay is that people are fanatical about these
ratings. People don’t want negative ratings because it affects their ability
to do business with a broad community. Sellers in particular value high
ratings because it provides buyers assurance for merchandise that they
can’t see (except in pictures) from a seller who exists mainly as an email
address. These buyer and seller ratings are a valuable asset for eBay and
for its community.

Like many exchange platforms, eBay has to satisfy both buyers and
sellers. It maximizes revenues more by encouraging sales rather than
trying to get the highest price for every sale. The second-price bidding
scheme encourages buyers who are fearful of the winner’s curse—the ten-
dency for winners of high bid auctions to have overpaid. Sellers are
encouraged to adopt low minimum bids and reserves. The rating system
provides information on the reliability of buyers and sellers.

As a result, eBay—and rivals around that world that have followed
similar approaches—has reduced transactions costs and expanded the
scope of trade. We’re sure economists will examine the social value that
eBay and its imitators have created. It is likely to be enormous, for the

352 Chapter 12

reasons we mentioned earlier. eBay has reduced transactions cost for
many buyers and sellers. While these savings are likely small relative to
transaction values, when accumulated across buyers and sellers and com-
pounded over time they are likely huge. But, more important, some of
the transactions that take place on eBay probably wouldn’t have taken
place at all. The entire value from trade net of transactions costs would
have been left unrealized.

If that were all, eBay would be a revolutionary transaction platform
but not one that fits into this book. In fact, eBay is fundamentally dif-
ferent from the London Stock Exchange, Sotheby’s, and manheimauc-
tions.com because it allows two groups of businesses to use services
provided by the software platform: sellers and developers. And, as a
result, it lies at the center of an expanding ecosystem of businesses that
benefit from eBay and in turn make eBay a more valuable platform for
the eBay communities.

eBay provides sellers with a variety of tools that help them run their
businesses through eBay’s platform. Much of this involves free tips and
advice. Sellers can also attend local “eBay universities” and seminars that
provide further instruction. eBay has developed a variety of software pro-
grams that help these sellers. Turbolister, for example, is a free applica-
tion that helps sellers list multiple items on eBay, design the listings, and
manage the schedules. Other programs are available for small monthly
charges after a 30-day trial period. Selling Manager, for example, helps
larger sellers manage their entire eBay program, including downloading
sales data from eBay.

Moreover, sellers can also obtain software tools from third-party
developers that have built programs that rely on the software services
eBay makes available through its APIs. Like the other software platforms
we have seen, it didn’t take long in its evolution for eBay to realize the
importance of a vibrant developer community for helping its buyers and
sellers. The eBay Developers Program was started in November 2000. It
provides developers with

• Software services available through APIs
• Software development kits that facilitate writing applications
• A “developer zone” that provides, for example, access to tools, sample
code, and technical support

Swept Away 353

• A “developer sandbox” that provides a place where developers can test
their applications
• Member forums for online discussions with other developers

Web Services comprise an important set of APIs. They enable devel-
opers to create Web-based applications that can conduct business on
eBay. These applications, which can be written in any programming lan-
guage that is capable of making Internet data requests, enable users to
do all the things they could do from the eBay desktop, including con-
ducting auctions and managing their stores. There were roughly 2.5
billion calls to the Web Services APIs monthly in 2005, and almost half
of the traffic on eBay came through these Web-based applications.

As of the end of 2005, about 21,000 developers have registered
for the developer program. Thus far they have developed more than
1,600 applications that buyers and sellers can use with eBay. These
include tools for managing auctions, productivity tools, and wireless
applications.

Terapeak.com, for example, provides users with access to data on the
hundreds of millions of eBay listings, along with analytical tools for
examining buying habits and trends for specific categories. It is targeted
to sellers who want to better understand the marketplace in which they
are competing. Vendio’s Ticket Manager is an example of software that
is designed to help sellers in a particular category. According to its mar-
keting material, it will “increase your listing capacity, manage your live
listings to boost sell through, and fulfill orders with powerful post sale
management.” Auction Wireless Alerts, by Prisma Corporation, is
designed for bidders: it will alert you on your mobile phone when an
auction is about to end.

As with many other platforms we have seen, eBay has an annual
contest for the “best application” for eBay. The grand prize winner of
the “eBay Developer Challenge 2006” was UnWired Buyer, which calls
a buyer on her mobile and lets her bid by phone. The first place winner
was Auction Contact, which helps online publishers place ads for items
on eBay. It also holds an annual developer conference.

Initially, eBay charged developers fees for accessing their APIs. These
were intended in part to encourage developers to design efficient soft-
ware that minimized the load on the software platform. In November

354 Chapter 12

2005, eBay decided to eliminate all developer charges. It is providing free
use of the APIs (so long as developers use the most recent version of the
platform), membership, and certification, as well as live technical
support. eBay also provides a place where developers can promote their
applications to the eBay community.

The eBay community is transforming the traditional retail industry. It
has made the process of buying and selling more efficient and is provid-
ing serious competition for everything from shopping malls to used car
dealers. Time will tell the extent to which this software platform destroys
traditional businesses. But perhaps the most remarkable aspect of eBay
is that it has swept into the economy many transactions that wouldn’t
have occurred without it.

Google

Google is a software platform, with a search engine at its core, that con-
trols a massive array of Web servers. It derives revenue and profit from
facilitating transactions between buyers and sellers. It doesn’t, as of the
end of 2005, facilitate these transactions directly in the way eBay does.
Rather, it does so indirectly through advertisements that point users to
particular businesses that can meet a need those users seem likely to have.
Virtually all of its revenues and profits come from charging businesses
for some form of advertising.

It didn’t start that way. We briefly summarize Google’s evolution from
search engine par excellence to advertising-supported search engine–
based transaction platform before examining the business model pursued
by this software platform.25

As the number of sites and amount of content on the Web expanded
rapidly in the mid-1990s, it became apparent that people needed tools
for finding things. Programmers began writing search engines. These
software applications automatically searched (or “crawled”) the web to
recover its content, indexed this content in some way that facilitated
people finding things, and provided a user interface, including a search

Swept Away 355

25. Much of the following discussion is based on John Battelle, The Search: How
Google and Its Rivals Rewrote the Rules of Business and Transformed Our
Culture (Huntington, N.Y.: Portfolio Press, 2005).

method for recovering information from the index. AltaVista, created by
Digital Equipment Corporation in its death throes, was launched in
December 1995.26 One of the most successful of the early search engines,
it handled more than 4 billion search queries during its first year. It
became a popular portal and made money by selling display advertising.
More sophisticated search engines followed AltaVista. They tried to
deliver better search results to users by, for example, conducting statis-
tical analyses of word relationships between Web pages.

Google began as an academic research project conducted, famously,
by Stanford engineering graduate students Larry Page and Sergey Brin.
Page started working on a doctoral dissertation concerning the mathe-
matical characteristics of the Web. The Web can be thought of as a map
of interrelated links. Page’s idea was to study who links to whom—a
simply stated but computationally difficult problem. Brin joined him.
They brought to bear a set of tools that were developed initially by Pro-
fessor Eugene Garfield. Garfield was a pioneer in the field of informa-
tion science who did groundbreaking work on the analysis of scientific
citations.

To see the idea behind this, consider the sorts of ranking that acade-
mics obsess over. Who, for example, is the best evolutionary biologist in
the world? One can’t really answer that question objectively, so let’s pose
a different one: Whose scientific papers on evolutionary biology are cited
most often? One can answer that question objectively by looking at the
citations in academic papers to other academic papers. Papers that are
cited more often are presumably more influential and therefore more
important. One can refine the analysis—and this is where Garfield’s
breakthroughs came in—by weighting the citations by the importance of
the paper making the citation. So citations by papers that hardly anyone
cites (and therefore are presumably not very good) count for less than
citations by papers that many people cite (and are therefore presumably
very good). This analysis can be extended to the ranking of academic
departments, journals, and countries by aggregating across the papers
relevant for each.

Applying this concept to the Web, one can ask simply how many Web
sites are linking to each Web site. That leads to a simple ranking of Web

356 Chapter 12

26. http://www.clubi.ie/webserch/engines/altavist/history.htm.

sites. One can also ask how many “important” Web sites are linking to
each Web site. A simple measure of importance, following scientific cita-
tion analysis, is how often a Web site that, itself, has many links is linking
to a particular Web site. Web sites that are linked often by other Web
sites that are linked often are in some sense better, or at least more
interesting.

The Stanford team developed a program that crawled the web and
documented the links between sites. Using this program, dubbed
BackRub, to collect data on the entire Web on an ongoing basis required
an immense amount of computer resources. They then developed an
algorithm, PageRank, that ranged pages based roughly on the number
of other highly cited pages that cited them. These rankings were married
to the standard index that emerges from crawling the Web based on
words. The index identifies the Web sites that seem to be relevant to a
particular word search. The ranking then identifies the importance of
these Web sites.

Computer search is about helping people find the best answers to their
questions. Page and Brin made a huge leap forward in doing that. They
made their search engine available through Stanford. It was a quick
success.

They then started their own search—for a financial return on their
innovation. For the first 18 months they tried to sell the technology to
some other established search-based Internet businesses. The founder of
Infoseek, one of the leading portals of its time, says, “I told them to go
pound sand.” As more or less did everyone else. The problem, accord-
ing to John Battele’s book on Google’s early years, The Search, was that
the Web portals viewed search as a commodity technology and one that
only had to be “good enough.”

Page and Brin needed money, though. Between the exponential growth
of the Web, which had increased the computing demands for construct-
ing their searches, and the exponential growth of people using their
search engines, which had increased the computing demands for han-
dling the searches, they needed more hardware and space than Stanford
was able to offer for free. They raised start-up funds and incorporated
as Google, Inc., on September 7, 1998.

Google initially earned revenue by licensing its search engine to other
companies such as Netscape and Yahoo. They eventually turned to

Swept Away 357

advertising. This was the way that other Web portals with search fea-
tures supported themselves. Several questions were already apparent.
First, should the pricing scheme entail charging for the number of eye-
balls that see an ad or the number of people who click on an ad? Second,
should the advertising be separate from the search, such as display ads
on a portal that happens to have a search engine, or be integrated into
the search, so that advertising that is relevant to the search appears?
Third, should the search engine alter the search results—in particular,
the order in which results are presented—based on payments made by
companies?

The answers to these questions may be apparent in hindsight now, but
they were not clear around the turn of the twenty-first century to
Google’s founders or to many others in search of Internet business
models. Battelle’s book provides an interesting discussion of how the
advertising-supported search industry and Google decided to resolve
these issues. We fast-forward to Google’s answers.

It is useful to begin by recalling what a Google search result page looks
like. Consider a search for “BMW series 6.” The top of the page (on
December 21, 2005) had two sponsored links by automobile Web
portals—edmunds.com, which has reviews as well as links to dealers,
and southbankleasing.com, which leases cars. Below this, on the left-
hand side of the page, are the ranked search results. Not surprisingly,
www.bmwusa.com is the first. On the right-hand side of the page are
more sponsored links—on the first page of the search results all of these
are places where you could find out about leasing or buying a BMW.

Google settled on charging for the number of clicks. The supported
links only pay Google if people click on them. While this is a natural
approach for Web-based advertising, the fact that it is used instead of
the traditional pay-per-eyeball approach distinguishes Google, and
similar firms, from the traditional advertising-supported media industry.

Google also decided to have only search-related advertising, and even
then only text-based advertising. There’s no reason the BMW page
couldn’t have an ad that isn’t directly related to the search—a Pepsi ad,
for example—or a display ad for a local BMW car dealer. But it doesn’t.
(This reflects a typical two-sided trade-off. In this case, Google decided
that it was better to give up certain advertising revenue than to degrade

358 Chapter 12

the quality of the product to the users. By making the search more
appealing that increased the number of users and therefore the amount
of advertising revenue from those users.)

Finally, Google decided not to take payment for altering the search
results. There are many ways to climb the Google charts. Some of these
are encouraged, such as selecting keywords that help the search engine
make the proper linkages. Others are discouraged, and Google, often to
the ire of entities that care about where they are displayed, makes
changes in algorithms to defeat gaming of the rankings.

Google operates a bidding process for appearing as a sponsored link.
Entities bid on a price per click. However, Google cares about the
number of times an advertisement is clicked, as well as on the amount
it gets per click. As a result, the actual ranking of the sponsored links on
the search pages depends on the price-per-click bid as well as the number
of times that the link has been clicked on. Thus, if two entities had bid
the same per click, the links with the greater number of clicks will be
first; if two links have the same number of clicks, the link with the higher
bid will be first. As of 2005, 99 percent of Google’s $6 billion revenue
came from pay-per-click advertisements—its AdWord program for its
own site and its AdSense program for external sites.27

Google, as just described, is an advertising-supported search engine
that competes mainly with other advertising-supported media. Like other
advertising-supported media, it is a multisided platform that supports
advertisers and eyeballs. Unlike most traditional advertising-supported
media (although like the Yellow Pages), it uses valuable search results to
attract eyeballs rather than using content such as Lost for ABC or Paul
Krugman’s column for the New York Times. If that were all, as we said
for eBay, Google would be a fascinating business, but not one for this
book.

The invisible engine behind Google is a software platform that
provides services through APIs to software developers. As of the end of
2005, Google offered four major sets of APIs. All of these promote
the development of applications that either drive traffic to Google, and

Swept Away 359

27. http://www.sec.gov/Archives/edgar/data/1288776/000119312506056598/
d10k.htm.

therefore enable it to obtain advertising revenue, or enable Google to
export advertising to other Web sites or devices.

Web APIs give developers access to the Google search engine so that
their programs can pull information from the Web. That could include,
for example, sending out periodic search requests to update information
on a subject. At the end of 2005, this program was still experimental,
and developers who wanted to create commercial services needed to get
permission.

AdWords APIs permit developers to write programs that interact with
Google’s AdWords server. They are particularly helpful to advertisers
who want to write internal applications for managing their “sponsored
links” on Google’s search and developers who want to write applications
that they can sell to advertisers—both of which will make advertising
with Google more attractive.

Desktop APIs concern a search engine program that Google has made
available for local use. The Google Desktop applies Google’s search tech-
nology to the storage contained on computers used by individuals or
enterprises. Google makes APIs available that permit developers to write
applications that use this search capability on these computers that are
under the control of the individual or enterprise (as opposed to com-
puters that are on the Web).

Map APIs allow developers to write programs that use Google’s
mapping service. Google has constructed a database of maps and satel-
lite images of the world. It made APIs available to developers for creat-
ing applications in June 2005.28 As of the end of 2005, these APIs were
available only for applications that were free to the public. Businesses
can use this to develop applications to help people find locations so long
as they don’t charge for it.

Accessing Google’s Web and AdWords APIs imposes costs on Google
because they result in additional traffic on its servers. That is quite unlike
the APIs in software platforms that reside on local computing devices. It
doesn’t cost Apple anything when a person runs an application on the
computer that relies on a software service that Apple has made available
through an API in the Mac OS. Not surprisingly, Google limits the use

360 Chapter 12

28. “Google, Yahoo Offer Maps APIs,” CMP TechWeb, June 29, 2005.

of APIs that result in traffic on its system. In the case of Web APIs, Google
limits users to 1,000 queries a day and, since this is still experimental,
doesn’t provide any method, aside from negotiating with Google, for
obtaining more. In the case of AdWords, Google provides advertisers
with a quota of “units” with their advertising account. Different opera-
tions based on the AdWords APIs consume various numbers of these
units. The quota is tied to the amount of advertising spending. In January
2006, Google began providing a mechanism for commercial developers
to obtain larger quotas. As of the end of 2005, Google was not charg-
ing for accessing its Map APIs, although it was reserving the right to
place advertising on Web pages that relied on these APIs.

Seven years after its formation, Google is at an early stage in creating
the kind of developer community that has surrounded other computer-
centric software platforms, and is also behind eBay in this regard. Nev-
ertheless, the direction is clear. Google Maps, for example, created an
enormous flurry of developer activity quickly. Developers have created
applications, some of which can be run from mobile phones, for finding
cafés or wireless hotspots and showing criminal activity such as bur-
glaries in small neighborhoods. At the end of 2005, there were at least
500 applications written on these APIs.29 Google’s APIs are poised to
support a significant ecosystem of application developers. Google stands
to benefit from these APIs by charging for access to its search engine and
databases, driving traffic to its site from which it derives advertising
revenue, and exporting its paid advertising services to linked sites.

Google is not alone in taking these approaches, although it is the
largest Internet advertising-based business, with 2005 revenues of $6
billion, and the one with the highest market capitalization, $125 billion
as of the end of 2005.30 Yahoo has taken somewhat different approaches
to developing an advertising-supported platform. Microsoft introduced
Windows Live in late 2005 as a Web-centric platform that would
compete in many dimensions with Google. In all these cases, the plat-
forms are vehicles for lowering search and transactions costs for

Swept Away 361

29. There were about 500 Google Maps applications listed on the “Google
Maps Mania” blog on December 23, 2005.

30. http://finance.yahoo.com/q?s=goog; http://www.sec.gov/Archives/edgar/
data/1288776/000119312505065298/d10k.htm.

consumers and businesses. The ultimate driver of revenue and success is
facilitating transactions. Not surprisingly, Google and Microsoft are both
developing payment systems that, much like PayPal on eBay, can help
their users consummate transactions.

These software platforms are sweeping away traditional industries.We
noted earlier, to take one example, newspapers’ collapsing stock market
valuations. There are several Internet-related reasons behind this, but a
major one is that Google and similar platforms can eliminate two major
inefficiencies in traditional advertising. Think about all of the advertis-
ing dollars that beer manufacturers such as Miller in the United States
spend. A large proportion of Americans don’t drink beer. Miller ads have
no chance of resulting in additional sales from them. It is inefficient both
for these “eyeballs” and for Miller for them to spend time glancing at
or hearing a Miller ad. Moreover, in the end, Miller has a very limited
ability to figure out the extent to which its advertising expenditures result
in increased sales. There isn’t any convenient way to link exposure to an
advertisement to a subsequent sale. (This can only be done, imperfectly,
through expensive consumer surveys.) Google and its competitors,
however, can tailor the insertion of advertisements to signals from users
that they are possibly interested in a topic—buying a BMW for example,
or being interested in French restaurants in Tokyo, or where to get the
cheapest Miller Lite in Boston.

These software platforms also have the promise of altering signifi-
cantly how people buy things and how stores sell things and how
payments are made. First, along with the auction-based platforms, adver-
tising-supported platforms are likely to move more transactions from
physical to virtual stores. Second, the search engine platforms are likely
to change the way people buy things at physical stores. For example,
wireless devices could be used to find merchandise, compare prices, and
guide the user to a store. These devices could also quickly capture feed-
back on the retail experience, which could be fed back to the software
platform. That would extend the important online feedback system to
off-line. In both these cases, although eBay and Google have made rela-
tively limited advances thus far, we would expect, based on the other
software platforms that we have studied, that developers will create a
vast number of applications for auction-centric and search-centric

362 Chapter 12

software platforms. It would be hard to overstate the likely importance
of these applications for stimulating innovation in the ecosystems sup-
ported by software platforms such as eBay and Google.

Back around the turn of the century there was a great deal of talk
about the third industrial revolution, the new economy, and how the
Internet would transform the economy as we knew it. Then the dot-com
bubble was pricked. Trillions of dollars of value disappeared from stock
market valuations in a few short months.31 Those who hyped the new
economy were seen as foolish if not in a few cases criminal. With the
benefit of hindsight, though, it looks like the bust was at least as much
an overreaction as the bubble. We think three things are clear.

We are about 25 years into a third industrial revolution that is built
on microprocessors and, what is often overlooked, the software plat-
forms that use the underlying computer technology to provide powerful
services to a wide variety of applications. The first industrial revolution
lasted from 1760 to 1830. It was based on innovations such as the steam
engine and iron production. The second industrial revolution went from
1850 to 1930. Important developments included the invention of the
electric generator and the rise of the chemical industry. Although a longer
perspective may change our views on this, it appears that the third indus-
trial revolution started around 1980 with the incorporation of the micro-
processor into PCs and video games and the subsequent development of
software platforms to create vast ecosystems of businesses around these
hardware-software platforms. The second leg of this information tech-
nology revolution is the invention of the Internet, which had its com-
mercial birth in 1995.

Just as electric generators drove the development of diverse industries
in the second industrial revolution, software platforms have been the
invisible engines behind the third industrial revolution. That is not to
understate the importance of hardware innovations, which have been
essential to what this third revolution has accomplished. Nor is it to min-
imize the importance of the innovations that led to the Internet: these
will ultimately go down in history, we suspect, as some of the most

Swept Away 363

31. http://catablast.blogspot.com/2005/07/kozmocom-relic-of-dotbomb-bust.
html.

important organizational innovations economic history has seen. It is to
say, though, that software platforms have played a critical role in sus-
taining businesses based on microprocessor technologies and are likely
to do so for those based on the Internet as well. At a purely technolog-
ical level, these software platforms permit the software industry to obtain
vast scale economies by providing application developers, hardware
makers, and content providers with services they all need; the software
platforms thereby enable the ecosystem to avoid significant duplication
of effort. At a business level, these software platforms permit the for-
mation of ecosystems that create value through the symbiotic relation-
ships between diverse communities.

Software platforms naturally lead to multisided businesses. Almost all
of them discussed here have done so. By their nature, multisided plat-
forms reduce the cost of doing business for buyers and sellers. From
Apple’s OS at the early end of the historical spectrum we have consid-
ered to eBay at the late end, these businesses have followed similar mul-
tisided strategies to get multiple distinct groups on board and generate
value for separate communities of users. Their success, generally, has
resulted not from following the dot-com hype of building share quickly
and at whatever cost, but from nurturing mutually interdependent com-
munities. In the main, that has meant providing software services for free
or at subsidized prices to numerous third parties. That results in the soft-
ware platform being enveloped in a rich ecosystem of complementors
who together provide great value for themselves and for consumers.

History teaches us that it takes decades for technological changes to
work their way through the economy, destroying, creating, and trans-
forming industries. The third industrial revolution got off to a quick
start. We suspect that it will continue through at least the first few
decades of the twenty-first century and that our invisible engines will
ultimately touch most aspects of our business and personal lives.

INSIGHTS

• Software platforms have powered new industries such as personal com-
puters and mobile phones, destroyed traditional industries such as type-
writers, and disrupted industries from music to payment cards.

364 Chapter 12

• Software platforms are powerful engines of change because of the mal-
leability of code, which makes it easy for them to march across indus-
try boundaries, and because their multisided nature enables them to
create vigorous ecosystems of complementors.

• Web-centric platforms that facilitate transactions and lower transac-
tions costs are poised to disrupt the retail sector and advertising-
supported media. The 24 percent drop in the market capitalization of
the major newspaper publishers between 2004 and 2005 is just one
signal of the upcoming transformation.

• The leading Web-centric platforms based on auctions (eBay) and search
(Google) have developed multisided strategies based on providing ser-
vices through APIs to developers and other third parties and encourag-
ing the creation of vibrant ecosystems around their platforms.

• Software platforms are critical players in the third industrial revolu-
tion that started around 1980. The first leg of this revolution focused on
software platforms that run on dedicated computing devices. The second
leg, which began around 2000, is focused on software platforms that run
on Web servers and that help businesses and consumers buy goods and
services.

Swept Away 365

Books

Allan, Roy A. A History of the Personal Computer: The People and the Tech-
nology. London, Ontario: Allan Publishing, 2001.

Andrews, Paul, and Stephen Manes. Gates. New York: Touchstone, 1994.

Babbage, Charles. Passages from the Life of a Philosopher. In The Works of
Charles Babbage, ed. Martin Campbell-Kelly. London, U.K.: Pickerings,
1989.

Baldwin, Carliss Y., and Kim B. Clark. Design Rules. Cambridge, Mass.: MIT
Press, 2000.

Battelle, John. The Search: How Google and Its Rivals Rewrote the Rules
of Business and Transformed Our Culture. Huntington, N.Y.: Portfolio Press,
2005.

Beyard, Michael D. Shopping Center Development Handbook, 3rd ed.
Washington, D.C.: Urban Land Institute, 1999.

Brooks, Frederick P. The Mythical Man-Month: Essays in Software Engineering.
New York: Addison-Wesley, 1975.

Butter, Andrea, and David Pogue. Piloting Palm. New York: John Wiley & Sons,
2002.

Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry. Cambridge, Mass.: MIT Press, 2003.

Carlton, Dennis, and Michael Perloff. Modern Industrial Organization. Boston:
Addison-Wesley, 2005.

Carlton, Jim. Apple: The Inside Story of Intrigue, Egomania, and Business
Blunders. New York: HarperCollins, 1997.

Carroll, Paul. Big Blues: The Unmaking of IBM. New York: Crown Publishers,
1993.

Case, Karl, and Ray Fair. Principles of Economics. Upper Saddle River, N.J.:
Prentice Hall, 1994.

Selected Bibliography

Cohen, Adam. The Perfect Store: Inside eBay. New York: Little, Brown,
2002.

Cournot, Augustine. Researches into the Mathematical Principles of the Theory
of Wealth, trans. Nathaniel Bacon. New York: Macmillan, 1927 (original in
French, 1838).

Cusumano, Michael, and Annabelle Gawer. Platform Leadership: How Intel,
Microsoft and Cisco Drive Industry Innovation. Boston: Harvard Business
School Press, 2003.

Cusumano, Michael A., and Richard W. Selby. Microsoft Secrets. London, U.K.:
HarperCollins, 1995.

Demaria, Rusel, and Johnny L. Wilson. High Score! The Illustrated History of
Electronic Games. Berkeley, Calif.: McGraw-Hill/Osborne, 2002.

Duncan, Ray. The MS-DOS Encyclopedia. Redmond, Wash.: Microsoft Press,
1988.

Estabrooks, Maurice F. Electronic Technology, Corporate Strategy, and World
Transformation. Westport, Conn.: Greenwood Publishing, 1995.

Evans, David, and Richard Schmalensee. Paying with Plastic, 2nd ed. Cambridge,
Mass.: MIT Press, 2005.

Freiberger, Paul, and Michael Swaine. Fire in the Valley. New York: McGraw-
Hill, 2000.

Friedman, Jon, and John Meehan. House of Cards: Inside the Troubled Empire
of American Express. New York: Kensington Publishing, 1992.

Harper, Stephen C. The McGraw-Hill Guide to Starting Your Own Business.
New York: McGraw-Hill, 2003.

Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach. New York: Elsevier Science & Technology Books,
2002.

Herman, Leonard. Phoenix: The Fall and Rise of Videogames. Union City, N.J.:
Rolenta Press, 1997.

Ichbiah, Daniel, and Susan L. Knepper. The Making of Microsoft: How Bill Gates
and His Team Created the World’s Most Successful Software Company. Rocklin,
Calif.: Prima Publishing, 1991.

Kent, Steven L. The Ultimate History of Video Games. Roseville, Calif.: Prima
Publishing, 2001.

Kingaard, Jan. Start Your Own Successful Retail Business. Santa Monica, Calif.:
Entrepreneur Press, 2002.

Linzmeyer, Owen W. Apple Confidential. San Francisco: No Starch Press, 1999.

Mankiw, Gregory. Principles of Economics. New York: SouthWestern/Thomson,
2003.

McConnel, Ben, and Jackie Huba. Creating Customer Evangelists. Chicago:
Dearborn Trade Publishing, 2003.

368 Selected Bibliography

Moon, Youngme. NTT DoCoMo: Marketing i-Mode. Cambridge, Mass.:
Harvard Business School, 2002.

Mykland, Robert. Palm OS Programming from the Ground Up. Berkeley, Calif.:
Osborne/McGraw-Hill, 2000.

Nagle, Thomas T., and Reed K. Holden. The Strategy and Tactics of Pricing, 3rd
ed. Englewood Cliffs, N.J.: Prentice-Hall, 2002.

Natsuno, Takeshi. i-Mode Strategy. West Sussex, U.K.: John Wiley & Sons, 2002.

Rhodes, Neil, and Julie McKeehan. Palm Programming: The Developers Guide.
Sebastopol, Calif.: O’Reilly & Associates, 1999.

Roberts, John. The Modern Firm, Oxford, U.K.: Oxford University Press, 2004.

Scotchmer, Suzanne. Innovation and Incentives. Cambridge, Mass.: MIT Press,
2004.

Shapiro, Carl, and Hal Varian. Information Rules. Cambridge, Mass.: Harvard
Business School Press, 1998.

Sheff, David. Game Over: Press Start to Continue. Wilton, Conn.: GamePress,
1999.

Stallings, William. Operating Systems: Internals and Design Principles, 4th ed.
Upper Saddle River, N.J.: Prentice Hall, 2001.

Stross, Randall E. The Microsoft Way. Reading, Mass.: Addison-Wesley, 1996.

Takahashi, Dean. Opening the Xbox. Roseville, Calif.: Prima Publishing, 2002.

Williamson, Oliver E. The Economic Institutions of Capitalism. New York: Free
Press, 1985.

Articles

Armstrong, M., and J. Wright. “Two-Sided Markets, Competitive Bottlenecks
and Exclusive Contracts” (mimeo). University College, London, and National
University of Singapore, 2004.

Arthur, Brian. “Increasing Returns and The New World of Business.” Harvard
Business Review 74 (July–August 1996): 100–109.

Bakos, Yannis, and Eric Brynjolfsson. “Bundling and Competition on the
Internet.” Marketing Science 1 (Winter 2000): 63–82.

Bakos, Yannis, and Erik Brynjolfsson. “Bundling Information Goods: Pricing,
Profits, and Efficiency.” Management Science 45 (December 1999): 1613–
1630.

Baxter, William. “Bank Interchange of Transactional Paper: Legal and
Economic Perspectives.” The Journal of Law and Economics 26 (October 1983):
541–588.

Brandenburger, Adam. “Power Play (C): 3DO in 32-bit Video Games” (case
study). Harvard Business Online, April 10, 1995.

Selected Bibliography 369

Berry, Steven, James Levinsohn, and Ariel Pakes. “Automobile Prices in Market
Equilibrium.” Econometrica 63 (July 1995): 841–890.

Bolt, Wilko, and Alexander F. Tieman. Skewed Pricing in Two-Sided Markets:
An IO Approach. Working Paper 13, De Nederlandsche Bank, Amsterdam,
October 2004.

Bolt, Wilko, and Alexander F. Tieman. A Note on Social Welfare and Cost Recov-
ery in Two-Sided Markets. DNB Working Paper 24, December 2004.

Boudreau, Kevin. How Does “Openness” Affect Innovation? Evidence from
Mobile Computing. MIT Sloan School of Management working paper,
Cambridge, Mass., 2005.

Boudreau, Kevin. The Boundaries of the Platform: Vertical Integration and
Economic Incentives in Mobile Computing, MIT Sloan School of Management
working paper, Cambridge, Mass., 2005.

Caillaud, Bernard, and Bruno Jullien. “Chicken and Egg: Competition among
Intermediation Service Providers.” Rand Journal of Economics 34, no. 2
(Summer 2003): 521–552.

Church, Jeffrey, and Neil Gandal. “Network Effects, Software Provision and
Standardization.” The Journal of Industrial Economics 60 no. 1 (March 1992):
85–104.

Coase, Ronald. “The Nature of the Firm.” Economica 4 (1937): 386–405.

Coughlan, Peter J. “Competitive Dynamic in Home Video Games (B): Nintendo
Power” (case study). Harvard Business Online, June 13, 2001.

Coughlan, Peter J. “Competitive Dynamics in Home Video Games (K):
Playstation vs. Nintendo 64” (case study). Harvard Business Online, June 13,
2001.

Davis, Steven J., Jack MacCrisken, and Kevin M. Murphy. “Economic Perspec-
tives on Software Design: PC Operating Systems and Platforms.” In Microsoft,
Antitrust and the New Economy: Selected Essays, ed. David S. Evans. Boston:
Kluwer, 2002, p. 361.

Evans, David. “The Antitrust Economics of Multi-Sided Platform Markets.” Yale
Journal on Regulation 20 (Summer 2003): 325–381.

Evans, David. “Is Free Software the Wave of the Future?” Milken Institute
Review (4th Quarter 2001): 33–41.

Evans, David, Albert L. Nichols, and Bernard J. Reddy. “Why Does
Microsoft Charge So Little For Windows?” In Microsoft, Antitrust and the
New Economy: Selected Essays, ed. David S. Evans. Boston: Kluwer, 2002,
p. 93.

Evans, David, and Michael Salinger. “Why Do Firms Bundle and Tie? Evidence
from Competitive Markets and Implications for Tying Law.” Yale Journal on
Regulation 22 (Winter 2005): 37–89.

370 Selected Bibliography

Evans, David, and Richard Schmalensee. “The Industrial Organization of
Markets with Two-Sided Platforms.” Working paper, August 2005. Available:
http://ssrn.com/abstract=786627.

George, Lisa, and Joel Waldfogel. “Who Benefits Whom in Daily Newspaper
Markets?” NBER Working Paper no. 7944, October 2000.

Hagiu, Andrei. Platforms, Pricing, Commitment and Variety in Two–Sided
Markets. Doctoral dissertation, Princeton University, 2004.

Hagiu, Andrei. “Pricing and Commitment by Two-Sided Platforms.” Rand
Journal of Economics 37 (2006): forthcoming.

Hagiu, Andrei. “Two-Sided Platforms: Pricing and Social Efficiency.” Harvard
Business School and Research Institute of Economy Trade and Industry working
paper, Cambridge, Mass., 2005.

Katz, Michael, and Carl Shapiro, “Systems Competition and Network Effects.”
Journal of Economic Perspectives 8 (Spring 1994): 93–115.

Kurtzman, Joel. “An Interview with W. Brian Arthur.” Strategy+Business 11
(1998): 95–103.

Lerner, Joshua, Parag Pathak, and Jean Tirole. “The Determinants of Open
Source Contributions.” American Economic Review Papers and Proceedings 96
(May 2006).

Lerner, Joshua, and Jean Tirole. “The Open Source Movement: Key Research
Questions.” European Economic Review 45 (2001): 819–826.

Lerner, Joshua, and Jean Tirole, “The Scope of Open Source Licensing.” Journal
of Law, Economics and Organization 21, no. 1 (April 2005): 20–56.

Lerner, Joshua, and Jean Tirole, “Some Simple Economics of Open Source.”
Journal of Industrial Economics 50 (June 2002): 197–234.

Liebowitz, Stan, and Stephen Margolis. “Network Externality: An Uncommon
Tragedy.” Journal of Economic Perspectives 8 (Spring 1994): 133–150.

Moon, Youngme. “NTT DoCoMo: Marketing i-mode” (case study). Harvard
Business Online, July 17, 2002.

Oi, Walter. “A Disneyland Dilemma: Two-Part Tariffs for a Mickey Mouse
Monopoly.” Quarterly Journal of Economics 85 (1971): 77–96.

Rochet, Jean-Charles, and Jean Tirole. “Platform Competition in Two-Sided
Markets.” Journal of the European Economic Association 1 (June 2003):
990–1029.

Rochet, Jean-Charles, and Jean Tirole. “Two-Sided Markets: A Progress Report”
(mimeo). IDEI and GREMAQ, Toulouse, France.

Rochet, Jean-Charles, and Jean Tirole, “Tying in Two-Sided Markets and the
Impact of the Honor All Cards Rule” (mimeo). IDEI, University of Toulouse, 2003.

Schmalensee, Richard. “Commodity Bundling by Single-Product Monopolies.”
Journal of Law and Economics 25, no. 1 (April 1982): 67–71.

Selected Bibliography 371

Schmalensee, Richard. “Gaussian Demand and Commodity Bundling.” Journal
of Business 57, no. 2 (January 1984): S211–S230.

Schmalensee, Richard. “Monopolistic Two-Part Pricing Arrangements.” Bell
Journal of Economics 11 (Autumn 1981): 445–466.

Stigler, George. “The Division of Labor Is Limited by the Extent of the Market.”
Journal of Political Economy 59 (June 1951): 185–193.

Stigler, George. “United States v. Loew’s Inc.: A Note on Block Booking.”
Supreme Court Review 152 (1963): 152–157.

Thomke, Stegan, and Andrew Robertson. “Project Dreamcast: Serious Play at
Sega Enterprises Ltd.” (case study). Harvard Business Online, September 9,
1999.

Market Research

Burden, Kevin, Jennifer Gallo, Alex Slawsby, and Weili Su, “Sync or Swim:
Worldwide Smart Handheld Devices Forecast and Analysis, 2002–2006.” IDC
report no. 26865. http://www.idc.com, April 2002.

Burden, Kevin, Randy Giusto, Allen M. Liebovitch, David Linsalata, Ramon
T. Llamas, and Aley Slawsby, “Worldwide Mobile Phone 2005–2009 Forecast
and Analysis.” IDC report no. 33290. http://www.idc.com, April 2005.

Burden, Kevin, Randy Giusto, Allen M. Liebovitch, David Linsalata, and Ramon
T. Llamas, “Worldwide Mobile Phone 2005–2009 Forecast Update and 1H05
Vendor Analysis.” IDC report no. 34408. November 2005.

Burden, Kevin, Randy Giusto, Dave Linsalata, Ross Sealfon, and Alex Slawsby,
“Worldwide Smart Handheld Devices Forecast and Analysis, 2003–2007.” IDC
report no. 29586. http://www.idc.com, June 2003.

Burden, Kevin, Randy Giusto, David Linsalata, and Ramon T. Llamas, “World-
wide Smart Handheld Device 2005–2009 Forecast and Analysis: Passing the
Torch.” IDC report no. 33415. http://www.idc.com, May 2005.

Burden, Kevin, Randy Giusto, David Linsalata, and Alex Slawsby, “Worldwide
Smart Handheld Device 2004–2008 Forecast Update: First Quarter Triggers
Downward Revision.” IDC report no. 31554. http://www.idc.com, August
2004.

Burden, Kevin and Alex Slawsby, “Hand Check: The Smart Handheld
Devices Market Forecast and Analysis, 2000–2005.” IDC report no. 24859.
http://www.idc.com, July 2001.

Byron, Dennis, Richard Heiman, Gary Ingram, R. Paul Mason, and Melita
Marks, “Worldwide Software Market Forecast Summary, IDC report no. 22766.
http://www.idc.com, 2000–2004.” August 2000.

Gikas, Anthony N., and Stephanie S. Wissink, “The Video Game Industry,” Piper
Jaffray. April 2005.

372 Selected Bibliography

Gillen, Al, and Dan Kusnetzky, “Worldwide Client and Server Operating Envi-
ronments 2004–2008 Forecast: Microsoft Consolidates Its Grip.” IDC report no.
32452. http://www.idc.com, December 2004.

Gillen, Al, and Dan Kusnetzky, “Worldwide Linux Operating Environments
2004–2008 Forecast and Analysis: Enterprise Products Pave the Way to the
Future.” IDC report no. 32416. http://www.idc.com, December 2004.

Gillen, Al, Milla Kantcheva, and Dan Kusnetzky, “Worldwide Linux Operating
Environments 2005–2009 Forecast and Analysis: Product Transitions Continue.”
IDC report no. 34390. http://www.idc.com, December 2005.

Golvin, Charles S., “Sizing the US Mobile Messaging Market.” Forrester
Research. July 30, 2004.

Grau, Jeffrey, “E-Commerce in the US: Retail Trends.” eMarketer. May
2005.

Grau, Jeffrey, “Retail E-Commerce: Future Trends.” eMarketer. February
2006.

Hammerman, Paul, and R. “Ray” Wang, “ERP Applications—The Technology
and Industry Battle Heats Up.” Forrester Research. June 9, 2005.

Heiman, Richard V., Sally Hudson, Henry D. Morris, Albert Pang, and Anthony
C. Picardi, “Worldwide Software Forecast Summary, 2003–2007.” IDC report
no. 30099. http://www.idc.com, September 2003.

Heiman, Richard V., and Anthony C. Picardi, “Worldwide Software 2004–
2008 Forecast Summary.” IDC report no. 31785. http://www.idc.com, August
2004.

Hendley, Andrew, Adam Halt, Phil Mickelson, and Derek Wong, “Microsoft
Corporation: Patience Is a Virtue,” J.P. Morgan North American Equity
Research. January 6, 2004.

House, Jill, “Market Mayhem: The Smart Handheld Devices Market Forecast
and Analysis, 1999–2004.” IDC report no. 22430. http://www.idc.com, June
2000.

House, Jill, and Diana Hwang, “Pocketful of Palms: The Smart Handheld
Devices Market Forecast Update and Outlook, 1999–2003.” IDC report no.
21177. http://www.idc.com, December 1999.

Hwang, Diana, “Technology Road Map of Smart Handheld Devices.” IDC
report no. 16225. http://www.idc.com, June 1998.

IDC Server Workload Data. http://www.idc.com, 2005.

Inoue, Takuya, Soo-Kyoum Kim, and Mario Morales, “Worldwide Flash
Memory Forecast 2005–2008.” IDC report no. 32854. http://www.idc.com,
February 2005.

Kevorkian, Susan, “Worldwide Compressed Audio Player 2004–2008 Forecast:
MP3 Reaches Far and Wide.” IDC report no. 31811. http://www.idc.com,
August 2004.

Selected Bibliography 373

Kevorkian, Susan, “Worldwide and U.S. Compressed Audio Player 2005–2009
Forecast and Analysis: MP3 All Over the Place.” IDC report no. 33932.
http://www.idc.com, September 2005.

Kevorkian, Susan, and Josh S. Martin, “U.S. Paid Music Service Provider
2004–2008 Forecast and Analysis: Sounding Better and Better.” IDC report no.
31426. http://www.idc.com, June 2004.

Levitt, Mark, and Bruce Stephen, “Worldwide PC Market Review and
Forecast 1990–1995.” IDC report no. 6077. http://www.idc.com, December
1991.

Liebovitch, Allen M. and Alex Slawsby, “Worldwide Mobile Phone 2004–
2008 Forecast Update.” IDC report no. 31080. http://www.idc.com, July
2004.

Linsalata, David, Schelley Olhova, and Lewis Ward, “U.S. Wireless Gaming
2004–2008 Forecast and Analysis: Gaming . . . Together.” IDC report no. 32644.
http://www.idc.com, December 2004.

Macklin, Ben, “Europe Broadband.” eMarketer. April 2005.

Macklin, Ben, “North America Broadband.” eMarketer. March 2005.

Macklin, Ben, “The Broadband Report.” eMarketer. April 2001.

Media Metrix. Top 1000 Website Survey, Fall 2004.

Nielsen NetRatings data.

The Nilson Report no. 829, March 2005.

Olhava, Schelley, “Tales of the Gamer: IDC’s 2004 Videogamer Survey.” IDC
report no. 31768. http://www.idc.com, September 2004.

Olhava, Schelley, “Worldwide Videogame Hardware and Software 2004–2008
Forecast and Analysis: Predicting the Future.” IDC report no. 31260.
http://www.idc.com, May 2004.

Olhava, Schelley, “Worldwide Videogame Forecast and Analysis, 2001–2006.”
IDC report no. 26906. http://www.idc.com, April 2002.

O’Rourke, Brian, “Video Game Consoles: Sony, Nintendo and Sega Brace for
Microsoft Challenge,” In-Stat. December 2000.

“PC Database Management Systems Software.” IDC report no. 4258.
http://www.idc.com, September 1989.

“PC File Management Software: Market Review and Forecast, 1988.” IDC
report no. 4413. http://www.idc.com, November 1989.

“Personal Computer Industry Service Worldwide Shipments and Forecast.”
Dataquest. 1988.

“Personal Computers U.S. Vendor Segmentation: 1998.” Dataquest. April 19,
1999.

“Pumping Up the Volume for Online Music Services,” Yankee Group. January
23, 2004.

374 Selected Bibliography

Ramsey, Geott, “The eCommerce: B2C Report.” eMarketer. March 2001.

Rau, Shane, “Worldwide PC Processor 2004 Vendor Shares.” IDC report no.
33398. http://www.idc.com, May 2005.

“Strategies for Microcomputers and Office Systems: PC Spreadsheet Software:
Market Review and Forecast, 1988.” IDC report no. 4389. http://www.idc.com,
November 1989.

Ward, Lewis, “U. S. Wireless Ring Tone 2004–2008 Forecast and Analysis.” IDC
report no. 34713. http://www.idc.com, August 2004.

“Word Processing Software, 1989.” IDC report no. 5019. http://www.idc.com,
December 1990.

Selected Bibliography 375

America Online, 158, 335
Analytical Engine, 19
Andrews, Paul, 102
Annund, Pamela, 200
antitrust, 108, 126
AOL. See America Online
Apache Web server, 72, 109
APIs. See application programming

interfaces (APIs)
Apple. See also iPod; iTunes;

QuickTime
bundling by, 106–107
early microcomputers, 9, 82
early operating systems, 88–89
emergence of, 93–94
evangelization by, 98–99
features added by, 307
hardware, 101–102
iTunes, 6
killer apps, 97–98
marginal costs, 294
matchmaking by, 57–58
multimedia extensions, 220–221
printers, 102
third-party hardware and, 95,

101–102
two-sided platforms and, 95–97
USB ports, 267–268
vs. Microsoft, 95–109, 294

Apple Developer Connection, 100
Apple DOS, 86
Apple II, 86, 97, 102
AppleShare, 307

AAC codec, 219
access charges, 289
Access (software company), 156, 168
Acclaim, 125
Acohido, Byron, 241
Activision, 116, 124, 141, 143
add-ons, third-party, 310
Adobe Acrobat, 198–199
Adobe Flash, 48–49, 199, 224, 225,

227, 236, 237, 323
Adobe PostScript, 309
Adobe Premiere, 307
ADR. See Applied Data Research

(ADR)
advertising

early, 348
on Google, 358–359, 361–362
multihoming in, 67–69
revenue in, 58–59

AdWords, 359, 361
Afuah, Allan, 17
aggregation of demand, 53, 321
airline industry, 278, 312
Alcatel, 191
Allard, J, 133
Allen, Paul, 86
Allen, Roy A., 94
Altair, 82
Altair 8800, 86, 87
AltaVista, 356
Amazon, 343
Am386 chip, 103
American Express, 67, 346

Index

378 Index

application programming interfaces
(APIs), 27–30

for eBay, 353–355
for Google, 359–361
importance of, 43
Macintosh, 101
PalmPilot, 169
in video game consoles, 145–146,

149
in Windows, 32, 100–101

Applied Data Research (ADR), 83
Armstrong, Mark, 299
Arthur, Brian, 61–62, 63
Ashton-Tate dBase, 265
assembly language, 21
Atari, 82, 88, 116, 119, 120, 121,

124
Atari VCS, 89, 152, 260
ATM machines, 4, 10, 174
AT&T, 82, 85, 115, 187, 271
auctions, 348. See also eBay
audience building, 57
audio, streaming, 219–220, 222,

231–232
Audiovox, 192
Autoflow, 82, 83
automobiles, 10–11, 174, 312,

314–315, 316, 321–322,
340–341

Babbage, Charles, 18–19
BackRub, 357
Bacon, Nathaniel, 253
Baer, Ralph, 116, 118
Bakos, Yannis, 53, 320
balance, pricing and, 279–281
Baldwin, Carliss Y., 23, 252
Barney, Doug, 94
baseball, 292
BASIC, 22, 86–87
batch operating systems, 25–26
Battelle, John, 45, 355
Battletoads, 264
Baxter, William, 55
B2B exchanges. See business-to-

business (B2B) exchanges

Beatles, The, 52
Bell Labs, 184, 187
Benjamin, Blech, 81
Berniker, Mark, 64, 221
Bernoulli numbers, 19
Berry, Steven, 322
Beyard, Michael D., 323
Bialik, Carl, 238
binary, 21
BIOS, 91–92, 92
Bishop, Todd, 328
BlackBerry, 40, 156, 176–178, 179,

180, 181
BlackBerry Enterprise Server

software, 177
Bluetooth, 101, 175, 307, 309
board games, 337
Bolt, Wiko, 281, 299
Bondreau, Kevin, 252, 258
Borland, John, 241
Boyd-Merritt, Rick, 160
Bozman, Jean, 101
Brandenburger, Adam, 131
Bricklin, Dan, 97, 98
Brin, Sergey, 356, 357
broadband connections, 326–328
Brooks, Frederick P., 23
browsers

addition of, to various platforms,
308

Internet Explorer, 32, 310
Netscape, 64–65, 106
Opera, 198
Safari, 332
Watson, 310

Brynjolfsson, Eric, 53, 320
bulk discounts, 278
bundling, 51–53, 324–334

by Apple, 106–107
convergence and, 334–336
cost and, 316–318
of customers, 322
demand aggregation and, 321–322
economics of, 312–313
for externalities, 323
extremes and, 330–331

Index 379

Channel F (video game system), 121,
260

Charney, Ben, 192
Chavreau, Jonathan, 96
checks, 344
chicken and egg problem, 262–263,

266
China Mobile, 190
China Unicom, 190
Chinese postal service, 74
c-HTML, 204
Church, Jeffrey, 63
Cicero, Marcus Tullius, 245
Cingular, 190, 191
circuits, invention of, 7
Clark, Kim B., 23, 252
class libraries, in Java, 35
closed vs. open software platforms,

12–13
Coase, Ronald, 250
COBOL, 22, 82, 83
Cocoa (Macintosh API), 101
code

copyrighting of, 48–49
for eBay, 350
growth of, 303–305
hardware and, 305
malleability of, 46, 52, 338
in operating systems, 35
protection of, 48
purpose of, 1–2
safeguarding of, 4
useless stretches of, 6

code-cracking, 19
codecs, 217–218, 239, 267
Cohen, Adam, 349, 350
coins, 345, 348
Coleco, 88, 125
Colligan, Ed, 174
Columbia Records, 267
commercial vs. open-source,

72–74
Commodore PET, 86
Commodore 64, 128
Common Development and

Distribution License, 75

innovation through, 332–334
Mac OS X Tiger and, 332–334
by Microsoft, 106–107, 328
in multisided platforms, 322–323
negatives, 323
of noncomplementary components,

319–320
in PDAs, 178–179
product lines and, 313–314
technology and, 324–328

Bungie (video game company), 264
Burden, Kevin, 10, 157, 166, 175,

176, 179, 190, 194, 243
Burns, George, 337
Bushnell, Nolan, 116, 118–119
business-to-business (B2B) exchanges,

63–64
Butter, Andrea, 158
byte code files, 25

C (programming language), 24
Caillaud, Bernard, 281
Campbell-Kelly, Martin, 84, 85, 88,

89, 90, 92, 96, 105, 125, 126
Canada, broadband service in,

328
Caney, Derek, 238
Canter, David, 264
capitalization, market, 341–342
Carbon (Macintosh API), 101
Carlton, Jim, 46, 277
cars, 10–11, 174, 312, 314–315, 316,

321–322, 340–341
Case, Karl, 247
Casio, 158, 173
Cavanagh, Gerald, 291, 298
CBS Records, 267
CDDL. See Common Development

and Distribution License
CDMA mobile phone transmission

standard, 191
CD-ROMs, 103, 129, 130, 327
cellular technology, 187. See also

mobile phones
Cerf, Vinton, 99
certificates, programming, 12–13

380 Index

Communicator (early mobile phone),
184, 193, 194

Compaq, 92, 173
compilers, 21
complementarity, 47–48
complementors, in platform

ecosystems, 246–247, 253–254,
262–263

complexity, of products, 315
components selling, 313–314
computer(s)

early, 7, 25
growth of industry, 9–11
history of, 18–21
integration patterns with, 259–260
Microsoft and manufacturers of,

103–104
pricing of, 8
video games on, 128–129,

147–150
Computer Associates, 110
Computer Sciences Corporation, 83
Computer Space, 119
connections, broadband, 326–328
Consumer Electronics Show, 145
contactless readers, 347
content, in platform ecosystems, 249
convergence, 334–336
copyleft, 74
copyright

of code, 48–49
digital music and, 218–219
Red Hat and, 78–79
ringtones and, 197–198

cost
bundling and, 317–318
demand and, 317
marginal, 294, 315
minimizing, 315–318
pricing and, 277
transactions, 250–252, 279–280,

281, 343–349
Coughlan, Peter, 129, 130, 149, 296,

298
CP/M (operating system), 87–88
“cream skimming,” 277

creative destruction, 338
Creative Labs, 271
credit, 344
credit cards, 56, 279–280, 344,

346–348
Crouch, Cameron, 306
Crum, Rex, 9
Cusumano, Michael A., 37, 45, 65,

90, 163, 168, 170, 174, 253
Cuthbertson, Ian, 308

Daly, James, 160
Danesi, Marcel, 344
Davis, Donald, 346
Davis, Steven J., 325, 326
Dearing, Michael, 350
debit cards, 1, 11
debugging, 36, 37–38, 73
degree programs, in computer

science, 45
Dell, 137, 175, 253, 268
Dell, Michael, 273
demand

aggregating, 53, 321
exploiting, 318–322
features and, 319
price and, 276, 316–317
variety in, 319–321

demand aggregation, 53
Demaria, Rusel, 118, 120, 121
Department of Defense, 160
design, product, 313–323
destruction, creative, 338
Developer Relations Group, 82, 99
development costs, 48–49, 50–51
Difference Engine (early computer),

18–19
digital convergence, 334–336
Digital Equipment Corporation

(DEC), 85, 92, 356
digital media, 218–225. See also

music devices
Digital Research, 88, 90
digital rights management, 218, 219,

224, 238, 239–242
digital video recorder, 339

Index 381

software platforms and, 2, 3,
48–53

ecosystems, platform
applications in, 248–249
competition and, 253, 273
complementors in, 246–247,

253–254
content in, 249
developers and, 263–264
disintegration in, 261–262
end users in, 246
hardware in, 247–248, 267–273
innovation and, 252
integration in, 250–255, 259–262
leadership and, 254–255
for mobile phones, 186, 247–248
multisidedness and, 252–255
peripheral equipment and, 248,

267–273
transactions costs in, 250–252
for video games/consoles, 147

educated nature, of programmers, 45
Electronic Arts, 128, 141–142, 143,

149, 284, 292
Electronic Entertainment Expo, 145
email, 176–178, 308
emerging markets

media players in, 243
mobile phones in, 189–190

Emotion Engine, 271
Enea, 340
ENIAC (early computer), 7, 20
Enigma code, 19
enterprise software, 341
entry strategies, pricing and,

281–282
Ericsson, 184, 194, 195, 199
Estabrooks, Maurice F., 93
European Commission, 311
EvangeList, 99
evangelization, 94, 98–100, 206–208,

263
Evans, David, 11, 51, 52, 109, 308,

315, 325, 344, 347
Evans, James, 74
Everquest, 284

Dillon, Pat, 160, 161, 162
Diners Club, 56, 64, 344
Dipert, Brian, 215
DirectX, 149
discounts, volume, 278
discrimination, price, 60–61, 277,

284–285, 290–293
disintegration, 261–262, 263–265
distribution costs, 47
DoCoMo, 168, 189–192, 202–208,

211
billing system, 295, 347–348
innovation by, 255
in platform ecosystem, 248, 263
software, 287–288

Dodge minivans, 316
Donlay, Chris, 350
DOS

Apple, 86
MS, 92
PC, 90
Q, 90
on TRS80, 86

Dreamcast, 131, 140, 174
Dreamweaver, 48–49
DRM. See digital rights

management
DSL (direct service line), 326–327
Duncan, Ray, 89, 90
Dvorak, John C., 94
DVR. See digital video recorder

eBay, 14, 66, 284, 349–355
eBay Developers Program, 353–354
Ebell, Mark H., 160
economics. See also pricing

of bundling, 312–313
of Haigu, 299
history, 344–345
information as commodity, 44
intellectual property and, 48–49
of multisided platforms, 54–70
network effects and, 61–62
scale and, 49–50
scope and, 52–53
of software industry, 5

382 Index

Excel, 96, 98, 249, 266
exclusion, 285–288
expense accounts, 67
Extended Systems, 309
externalities, bundling for, 323

Fair, Ray, 247
Fairchild Camera, 121
FairPlay, 240, 241
Faith Inc., 197
Famicom, 125, 150, 151
Family Computer Communications

Network, 150, 151
fax machines, 338
feature accretion, 305–311, 328–332
Fedora Project, 78
FeliCa chip, 347
FiloFax, 155
financial innovations, in history,

344–345
Flash, 48–49, 199, 224, 225, 227,

236, 237, 323
flash memory, 326
Flynn, David, 308
font technology, 82, 106, 309–310
Ford Taurus, 314
formula, product line, 314
FORTRAN, 22, 82, 83
486 chip, 51
France

broadband service in, 328
debit cards in, 1, 11

Franklin, 92
Free Software Foundation, 33, 75
Freiberger, Paul, 8, 102
Fried, Ian, 164, 241
Friedman, Jon, 67
Friedman, Milton, 276
Fujitsu, 192, 199, 208

Gagnon, Gabrielle, 221
Gallo, Jennifer, 157
Game Boy, 127
GameCube, 131, 134, 138, 140, 143,

144
Gandal, Neil, 63

Ganesh, Venkatesh, 49
Garfield, Eugene, 356
Garrity, Brian, 238
Gasch, Arthur, 175
Gassée, Jean-Louis, 82, 96
Gates, Bill, 2–3, 22, 32, 82, 85, 86,

96, 215, 249, 262. See also
Microsoft; Windows

Gateway Computers, 175
Gawer, Annabelle, 65, 163, 168, 170,

174, 253
Gee, Laura, 200
General Instruments, 120
General Public License, 74–76, 78
George, Lisa, 59
GeoWorks, 158, 193
Germany, broadband service in, 328
Gihas, Anthony N., 132
Gillen, Al, 71, 77, 84, 330
Gillen, Marilyn, 221
Giusto, Randy, 10, 157, 166, 175,

176, 179, 190, 194, 243
Glaser, Rob, 213, 226, 230, 233
global positioning system (GPS), in

cars, 340
Goldeneye 007, 264
Golvin, Charles S., 189–190
Google, 14, 99, 108, 355–363

advertising on, 358–359,
361–362

APIs in, 359–361
employment, 45
evolution of, 356–358
licensing of, 357–358
linking and, 356–357
Linux and, 70–71, 266
results page, 358
sponsored links, 359

Google AdWords, 359, 361
Google Desktop, 360
Google Maps, 361
GPL. See General Public License
GPS system, in cars, 340
Graffiti (handwriting recognition

system), 65, 162, 163
Grant, Helen, 92

Index 383

Heiman, Richard V., 5, 84
Heinlein, Robert, 275
Hendley, Andrew, 297
Heng, Mary, 160
Hennessy, John L., 8
Herman, Leonard, 125, 296
Herodotus, 348
Hesseldahl, Arik, 297
Hevorhian, Susan, 10
Hewlett Packard, 110, 173
Holden, Reed K., 122
Hollywood model, 142
Holt, Adam, 297
Honda Accord, 314
Hopper, Admiral Grace, 7
House, Jill, 155, 173
House of Blues, 221
HTML, for mobile phones, 204
HTTP, for mobile phones, 204
Huba, Jackie, 99
Hudson, Sally, 5
Hwang, Diana, 155, 163, 173
Hypertext Transfer Protocol, for

mobile phones, 204

IBM, 9, 73–74, 77, 82, 89–94, 101,
193

IBM compatibles, 92–93
IBM OS/360, 26
IBM PC, 82, 86
IBM System/360, 7, 26, 83
Ichbiah, Daniel, 90
I-mode, 202–209, 248, 289–290,

292–293, 294–295
incentives, for open-source software,

76–77
India

outsourcing to, 84
software pirating in, 48–49

indirect network externalities, 61
Industrial Revolution, 338, 363
inexhaustibility, 47
Informatics, 82, 83
Inoue, Takuya, 326
integration, in platform ecosystems,

250–255, 259–262

graphics processor, in PlayStation,
271

Grau, Jeffrey, 242, 243
Graven, Matthew P., 238
GriD, 158
GriDPad, 158
GSM mobile phone transmission

standard, 191

Hagiu, Andrei, 280, 282, 299
Halfhill, Tom R., 159
Halo, 135, 264
Halo 2, 117
ham sandwiches, 328
handheld devices, 9–10
handset subsidies, 295
Handspring, 156, 166, 177, 255
handwriting recognition, 65,

158–159, 161–162, 163
Hannerman, Paul, 341
Hansell, Sail, 66
hard disks, 324, 326
hardware

advances in, 8
code and, 305
evolution of, 20
feature accretion and, 329
IBM’s mistakes over, 91–92
integration and, 267–273
licensing, 272
by Microsoft, 102
Microsoft and, 268–269
peripheral, 248
piracy, 285–286
in platform ecosystems, 247–248,

267–273
production of, 84
third-party, Apple and, 95,

101–102
Harper, Stephen C., 58
Haught, Jeb, 264
Hawkins, Jeff, 156, 158, 159, 162,

163, 164
Hawkins, Trip, 115, 116, 128, 141,

271
Hayes, Frank, 25

384 Index

Intel, 103
Intel 4004, 7
Intel 8080, 86, 87–88
intellectual property protection, 44,

48–49, 71, 74–76
intensity of use, 288–290
Internet. See also email; media

players
added to various platforms, 308
broadband connections, 326–328
Java and, 34
media content on, 221–222
on mobile phones, 189, 202–209
revolutionary nature of, 363
software platform growth and, 5–6

Internet Explorer, 32, 310
Intuit, 158
investment recovery, 50–51
iPod, 215. See also Apple; Macintosh

debut of, 214
digital rights management, 241
dominance of, 213
Macintosh sales and, 108
mini, 9
as pure merchant model, 257
RealPlayer and, 238

Irving, Julius, 142
ISMAI, 88
Italy, broadband service in, 328
iTunes, 49, 218–219, 224

codec, 217
debut of, 229
digtial rights management, 240
as pure merchant model, 257
RealPlayer and, 238
revenue from, 227

Jacquard, Joseph, 18
Jaffray, Piper, 143
Japan, mobile phones in, 185–186,

188, 202–203, 208–209. See also
DoCoMo

Java
class libraries in, 35
history of, 34

limitations of, 35
as object-oriented, 24–25
overview of, 34–35
Symbian and, 200
in Web-based gaming, 148

Java 2 Micro Edition, 18
Java Virtual Machine, 25, 31, 34–35
JCL. See job control language (JCL)
Jerome, Marty, 308
job control language (JCL), 26
Jobs, Steve, 2, 81, 86, 88, 102, 215,

262
Johns, Amy, 213, 226
Jullien, Bruno, 281
JVC, 175

Kantcheva, Milla, 77
Karelia Software, 310
Kato, Nanako, 291, 298
Katz, Michael, 47, 272
Kawamoto, Dawn, 166
Kawasaki, Guy, 98–99
Kent, Steven L., 118, 124, 125, 126,

127, 130, 132, 142, 271, 282
kernels, 33–34, 38
killer apps, 97–98, 126
Kim, Soo-Kyoum, 326
Kindall, Gary, 87
King, Ada, 19
King, Ben, 195
Kingaard, Jan, 58
Kitao, Gozo, 132
Knepper, Susan L., 90
Konami, 125, 143
Krause, Reinhardt, 185
Kurtzman, Joel, 62
Kusnetzky, Dan, 71, 77, 84, 101, 330
Kyocera, 166, 192

LaserWriter, 102
leadership, innovation and, 254–255
Lefebvre, Alain, 205
Lemmings, 264
Lenovo, 199
Lerner, Josh, 38, 76, 109

Index 385

lunchmeat, 328
Lynch, Ian, 205

MacCrisken, Jack, 325, 326
machine language, 21, 23
Macintosh. See also Apple; iPod

early hardware insularity by, 102
iPod and sales of, 108
operating system, 5, 36, 101, 265,

304, 307, 311, 332–334
Macklin, Ben, 242, 243
Mac OS, 5, 36, 101, 265, 304, 307,

311, 332–334
Macromedia Flash Player, 48–49,

199, 224, 225, 227, 236, 237,
323

magazines, 68
Magnavox, 116, 118
mainframes, early, 81–83, 85
Major League Baseball, 292
mall analogy, 53
malleability, of code, 46, 52, 338
malls, 323
Manes, Stephen, 102
Mankiw, Gregory, 277
manufacturing, vs. software

production, 71
maps, on Google, 361
Marek, Sue, 195
marginal costs, 294, 315
Margolis, Stephen, 63
Mario Bros., 67, 126
Maritz, Paul, 100
market capitalization, 341–342
markets, emerging

media players in, 243
mobile phones in, 189–190

Markey Development Program,
286–287

Mark IV, 82, 83
Markoff, John, 159
marquee customers, 66
massive multi-player online role-

playing games (MMPORPGs),
147, 284–285

Leuning, Erich, 233
Levinsohn, James, 322
Levitt, Mark, 92
LG (computer manufacturer), 173,

192, 199
licensing fees, 104, 292
licensing hardware, 272
Liebovitch, Allen M., 190, 243, 346
Liebowitz, Stan, 63
Liedtke, Michael, 58
Lineage (online game), 284
lines, product, 313–323
linking, Google and, 356–357
Linsalata, David, 10, 157, 166, 175,

176, 179, 190, 194, 198, 243
Linux

APIs in, 28–29
bundling by, 107
code growth, 304
customer demographics, 111
desktop penetration by, 111–112
developer support with, 100
development of, 38–39
early, 82
Google and, 70–71
IBM and, 73–74, 77
kernel, 33–34, 38
mobile phone operating system,

195
as open-source, 33
overview of, 32–34
as platform, 40
popularity of, 110–111
Red Hat operating system, 5, 34,

76, 77–79
reproducibility of, 46
rising of, 109–112
specialization of, 266
versioning of, 331–332
as Windows threat, 110

Linzmeyer, Owen, 96
Llamas, Ramon T., 10, 157, 176,

179, 190, 194, 243
Loral, 118
Lotus 1-2-3, 98, 265

386 Index

matchmaking, 57–58
Matsushita, 115
Mattel, 125
McConnel, Ben, 99
McCool, Rob, 72
McGuire, Mike, 160
McKeehan, Julie, 169
media players, 101

addition to platforms, 308
codecs and, 217–218, 239–240
digital rights management and,

239–242
in emerging markets, 243
features over time, 223–225
future of, 242–243
integration and, 266
Internet and, 242–243
interoperability, 234–235
multihoming among, 235–238
platform integration, 234–235
premium versions, 226
product differentiation among,

235–238
profit from, 225–234
as three-sided platforms, 222

media revenue, 59
Meehan, John, 67
memory, 21, 324–326
Menabrea, Luigi, 19
merchant model, 256–257
MGM, 267
Michelson, Phil, 297
microprocessors, 7–8, 9–11
Microsoft. See also Gates, Bill;

Windows
antitrust and, 108
BASIC and, 87
bundling by, 106–107, 328
developer assistance from, 65
Developer Relations Group, 82, 99
dominance of, 82, 84
early operating systems from,

89–92
hardware and, 268–269
hardware by, 102
hiring practices of, 45

IBM and, 82, 89–90
Intel and, 103
licensing fees, 104
marginal costs, 294
mobile phones and, 195–196, 270
mouse developed by, 248
multimedia extensions, 220–221
multisided nature of, 95
Nokia and, 210
PC manufacturers and, 103–104
in PDA market, 173–178
pricing strategy of, 104–106
programming language business of,

87
software specialization by, 102
as video game publisher, 144
vs. Apple, 95–109, 294
vs. Linux, 109–112
Windows profitability, 2
Xbox, 6, 29, 69, 116, 131, 132,

133–137, 138, 140, 143, 146,
272–273, 296–297

Microsoft Developer Network
(MSDN), 100

Microsoft Office, 328, 330
Microsoft XML Core Services, 32
middleware, 12, 29–30, 146,

192–196, 201–202
MIDI, 204
Midway, 144
Mikami, Shinji, 132
Miles, Stephanie, 173, 174
Miller, Rocky, 221
minimizing costs, 315–318
Mitsubishi, 137, 199
Miyamoto, Shigeru, 115
MMPORPGs. See massive multi-

player online role-playing games
(MMPORPGs)

mobile phones
applications, 196–198
business side of, 186–202
cellular vs. transmitter technology,

187
competition with, 210–211
dominance in industry, 210–211

Index 387

movies, 50, 138, 243
movie theaters, 319
MoviStar, 190
Mozilla Public License, 75
MPEG format, 217, 219
MPL. See Mozilla Public License
MP3 players. See digital media; iPod;

music devices
MSDN. See Microsoft Developer

Network (MSDN)
Mullaney, Timothy J., 58
Multics, 27
multihoming, 67–69, 139–140, 144,

235–238, 282–283
Multiplayer (video game system),

115–116, 129, 271
multisided platforms, 53–70, 256

Apple’s understanding of, 95–97
bundling in, 322–323
business models for, 63–64
competition in, 69
customer groups in, 55–56, 60
economics of, 54–70
examples of, 54
externalities and, 323
features of, 55–56
interconnectedness in, 64–65
Microsoft as, 95
mobile phone networks as, 188
multihoming in, 67–69
platform ecosystems and, 252–255
price discrimination in, 60–61
price structures in, 293–300
pricing in, 58–60, 276–283
pricing strategies in, 65–66
revenue in, 58–59
scaling in, 70
strategy in, 70
subsidies in, 59
video games as, 124–128
Wal-Mart and, 258–259

MULTOS operating system, 346
Murphy, Kevin, 253, 325, 326
music. See also media players

digital, 218–225
in ringtones, 197–198

eBay and, 354
in emerging economies, 189–190
feature accretion in, 335
handset subsidies, 295
history of, 187–188
Internet connectivity on, 189,

202–209
in Japan, 185–186, 208–209
manufacturers, 190–192
Microsoft and, 270
middleware on, 192–196
as multisided platform, 188
number portability, 188
operating systems, 29, 30, 192–196
operators, 187–190
as PDAs, 192
piracy and, 287–288
platform ecosystem for, 186,

247–248
pricing strategies, 188
ringtones, 183–184, 197–198, 204
SIM cards in, 327
as software platform, 199–202
text messaging, 189
third-party software for, 287–288
timeline of, 184
transmission standards, 191
ubiquity of, 10
video on, 191

Mobile TeleSystems, 190
modularity, 23–24, 315
monitor (code entity), 26
Moon, Youngme, 208
Moore, Mark, 193
Moore’s Law, 8
Morales, Mario, 326
Morgan, Michael, 183
Morgan, Timothy Prickett, 77
Morris, Henry D., 5
Morrow Design, 92
Mossberg, Walter S., 158
motivation, for open-source

development, 76–77
Motorola, 101, 166, 184, 190–191,

192, 194, 195, 222
mouse, 248

388 Index

music devices, 10. See also iPod
codecs for, 218–219
digitization of music, 217–218
memory in, 326
technology, 216–220
timeline of, 214

music industry, advent of bundling in,
52

MusicMatch, 237
Mykland, Robert, 169

Nagel, David, 167, 211, 269–270
Nagle, Thomas T., 122
Namco, 144
National Center for Supercomputing

Applications (NCSA), 72
Natsuno, Takeshi, 202, 203, 205,

207, 261, 263, 295
navigation system, in cars, 340–341
NCSA. See National Center for

Supercomputing Applications
(NCSA)

NCSoft, 284
NEC, 129, 173, 192, 208
negative bundling, 323
Netscape, 64–65, 106
Netweaver, 341
network economics, 61–63
network effects, 47–48, 55, 56, 58,

61–63, 95, 107, 141, 258
Neumann, John von, 19, 21
newspapers, 68, 69, 280, 320, 329,

341–342
Newton (early PDA), 9, 156, 159,

160–161, 162, 178, 179, 180
NewtonScript, 160
New York Times, 221
Nichols, Albert, 308
Nintendo, 67, 116, 125–128, 143,

151
Nintendo 64, 140
Nintendo Entertainment System,

125–128, 140, 292
Nokia, 166, 184, 191, 193, 194,

195, 199, 201–202, 210, 255
Norton Utilities, 310

object-oriented programming, 24–25
scale and, 49

O’Brien, Ellen, 341
Odyssey (video game system), 118
Office, Microsoft, 328, 330
O’Grady, Stephen, 241
Oi, Walter, 278
Olafsson, Olaf, 282
Olhava, Schelley, 198, 300, 337
O’Malley, Chris, 193
OMAP microprocessors, 30
Omidyar, Pierre, 349, 350
OMTP. See Open Mobile Terminal

Platform
online gaming, 150–151
Open Mobile Terminal Platform,

210–211
open-source software

business models based on, 77–79
decentralized nature of, 71
general public license and, 74–76
history of, 5
IBM and, 73–74
incentives for, 76–77
intellectual property rights and,

74–76
Linux as, 33
in non-desktop arenas, 112
overview of, 37–39, 70–79
production of, 71–74
Red Hat, 77–79
testing of, 73
vs. commercial approach, 72–74

open vs. closed software platforms,
12–13

Opera (browser), 198
operating systems. See also specific

operating systems
APIs and, 27–30
Apple’s early, 88–89
for automobiles, 340–341
batch, 25–26
code in, 35
CP/M and, 88
development of, 36–37
early, 83, 88

Index 389

handwriting recognition, 158–159,
161–162, 163

PC connectivity in, 178
platform strategy, 168–173
timeline of, 156

PalmPrint, 158–159
PalmSource, 167, 246
Panasonic, 137, 192, 195, 199, 208,

271
Pang, Albert, 5
Passages from the Life of a

Philosopher (Babbage), 18
patents, 37, 49
Pathak, Parag, 38
Patterson, David A., 8
Patterson, Tim, 90
payment cards, 56, 69, 323, 346–348
PDAs (personal digital assistants)

birth of, 158–161
bundling in, 178–179
disintegration, 268–269
email on, 176–178
feature accretion in, 306
handwriting recognition, 158–159
Microsoft and, 173–178
mobile phones as, 192
operating systems, 165, 167–168
PC connectivity in, 178
as platforms, 40
timeline of, 156

PDP-8, 7
penetration pricing, 277, 281
personal computer, timeline of, 82
Peterson, William, 101
Phillips, 173
Picardi, Anthony C., 5, 84
piracy, 48–49, 127, 218–219,

239–240, 285–288
“Platform Competition in Two-Sided

Markets” (Tirole & Rochet), 55
PlayStation, 129–133

debut of, 116
developer kit for, 146
Emotion Engine in, 271
extra capabilities of, 152
licensing fees, 296

in early mainframes, 81
evolution of, 25–27
IBM, 89–92
innovations in, 27
mobile phone, 192–196
multihoming in, 68
multiple, 91–92
open-source, 37–39
for payment cards, 346
for PDAs, 165, 167–168
piracy of, 286–287
profits from, 293–294
proprietary, 36–37
software platforms as, 12
versions, 311
Window’s emergence as dominant,

93–94
Oracle, 222, 341
Orange (mobile carrier), 190, 195,

287
O’Rear, Bob, 89
Osborne, 92
OS/2 (operating system), 93–94, 105
Ostad, Tom, 155
Outlook Express, 106

Page, Larry, 356, 357
Pajitnov, Aleksey, 127
Pakes, Ariel, 322
Palm OS, 40, 156, 166–168,

170–172
decline of, 196
feature accretion, 306
Handspring and, 255
license fees, 290
market share, 194
Windows CE and, 269

PalmPilot, 9
APIs for, 169
applications, 170–172
birth of, 158–161
debut of, 163
developer assistance with, 168–172
development of, 161–162
features added to, 179, 306
growth and decline of, 155

390 Index

PlayStation (cont.)
market share, 138, 140
middleware, 12, 29
network connections, 134
network effects, 47
royalties, 69
third-party developers for, 143

Plotnikoff, David, 65
plug-and-play, 104
PluggedIn@Palm, 170
Pocket PC, 174–178
PocketQuicken, 158
Pogo.com, 141, 148
Pogue, David, 158
Pollack, Andrew, 87
Pong, 116, 119, 120
PostScript, 106
Poultney, John, 268
Precept Software, 222
pre-installed software, 46–47
price discrimination, 60–61, 277,

284–285, 290–293, 324–326
pricing, 104–106

in airline industry, 278
for balance, 279–281
competition and, 280
of computers, 8
costs and, 277
deciding what is priced, 283–290
demand and, 276
of eBay, 351–352
entry strategies and, 281–282
exclusion and, 285–288
importance of, 6, 275–276
investment recovery and, 50–51
of memory, 324–326
of MMPORPGs, 284–285
multihoming and, 282–283
in multisided platforms, 58–60,

276–283, 293–300
penetration, 277, 281
of PlayStation, 282
single-homing and, 283
in single-sided markets, 276–277
usage, 288–289, 295
use intensity and, 288–290

of video game consoles, 115,
122–124, 135–136, 279,
291–292, 295–296, 298–299

pricing methods, 105
pricing strategies, 65–66, 122–124,

300–301
pricing structure, 105, 295–300
printers, 102
print media, 68
Prisma Coroporation, 354
processing power

growth in, 305
price of, 327

product design, 313–323
product lines, 313–323
programmers

as educated people, 45
Linux popularity among, 111
Microsoft assistance to, 65
open-source, 76–77

programming
complexity of, 36–37
growth of, 305
history of, 18–21, 83
of open-source software, 37–39,

71–74
vs. manufacturing, 71

programming languages
development of, 21–25
Microsoft and, 87
object-oriented, 24–25

proprietary operating systems, 36–37.
See also operating systems

Psion, 184, 194
Psygnosis, 264
punch cards, 18, 26

Q-DOS, 90
Qualcomm, 166, 191, 211
QuickTime, 106, 214, 223, 227,

228–229, 319, 332, 333

Race, Steve, 282
Radio Shack TRS-80, 86
Ran, Shane, 103
Rare (video game company), 264

Index 391

Saturn (video game system), 129,
130, 131, 140

Sayers, John, 221
SCEA, 265
Schiffer, Claudia, 164
Schmalensee, Richard, 11, 122, 278,

320, 344, 347
Schroeder, Erica, 221, 228
Schwartz, Barry, 303
Schwerin, Rich, 162, 163
scope, economies of, 52–53
Scotchmer, Suzanne, 48
Scuito, Donatella, 1
Sculley, John, 82, 96, 249
Sealfon, Ross, 157, 166, 175
search engines, 355–356
Sears, 116, 120
Seattle Computer Products, 89–90
securities brokerage, 68
Sega, 67, 116, 127, 129, 130, 131,

133, 140, 143, 272
segmentation, 321
Selby, Richard W., 37, 45, 90
Selling the Dream (Kawasaki), 98
Sendo, 199
Sergeant Pepper’s Lonely Hearts Club

Band (Beatles), 52
servers, 311, 342
Shankland, Stephen, 101
Shannon, Claude, 19, 20
Shapiro, Carl, 47, 55
shared facilities, 57
Sharp, 137, 192, 208
Sheff, David, 119
Sherlock (search engine), 307, 310
Shim, Richard, 170, 175
Short Code, 21
Siegmann, Ken, 266
Siemens, 191, 195, 199
signing programs, 287
Silvano, Cristina, 1
SIM card, 327
Simon (early mobile phone), 184, 193
Sims Online, 284
Sinclair, 88
single-homing, 283

Raymond, Eric, 43
razors and blades model, 122
RCA (computer manufacturer), 83
RealArcade, 233
RealArcade GamePass, 233
RealAudio, 231–232
real estate, 59, 68
Real Music Store, 232
RealNetworks, 214, 222, 230–234,

289, 291
RealPlayer, 198, 202, 223–226, 227,

231, 234, 238
recorders, digital video, 339
Reddy, Brendan, 308
Red Hat (operating system), 5, 34,

76, 77–79, 304, 315. See also
Linux

regulation, 108
releases, platform, 309
reproducibility, 46–47
Research in Motion, 176–178. See

also BlackBerry
Rhapsody, 232, 289
Rhodes, Neil, 169
Richtel, Matt, 347
Ring, D. H., 187
ringtones, 183–184, 197–198, 204
Roberts, Dan, 206
Roberts, John, 250
Robertson, Andrew, 133
Rochet, Jean-Charles, 55, 65, 66,

280, 283, 291, 299
Rohm, W. G., 78
royalties, in video game industry, 69,

125–126, 146, 298
Rules for Revolutionaries (Kawasaki),

98

Safari browser, 332
Said, Carolyn, 228
Salinger, Michael, 51, 52, 315
Sami, Mariagiovanna, 1
Samsung, 137, 175, 191, 192, 195,

199
Sanyo, 115, 271
SAP (software company), 341

392 Index

single-sided platforms, 256–257
Singleton, Andrew, 221
SK Telecom, 191
Slawsby, Alex, 157, 166, 175, 243,

346
smart cards, 346–348
Smith, Adam, 260, 344
SoftCard, 102
SoftConnex, 309
Softech, 90
software libre, 5. See also open-

source software
software platforms. See also open-

source software
bundling features in, 51–53
characteristics of, 45–48
as commodity, 44
complementarity in, 47–48
costs associated with production,

49–50
definition of, 30
distribution costs, 47
as documents, 43
early, 83–84
economic power of, 2, 3
educated nature of producers, 45
feature accretion in, 305–311
growth of, 5–6
hardware platforms and, 4
inexhaustibility of, 47
list of, 40
malleability of code in, 46, 52
mobile phone, 192–196, 199–202
in mobile phones, 30
modularity in, 23–24
multisided nature of, 43, 53–70,

331–332
open vs. closed, 12–13
pre-installed, 46–47
pricing of, 50–51
profitability and, 2
reproducibility of, 46–47
single-sided, 256–257
types of, 11–13
uses of, 1
value provided by, 57–58

video games as, 120–129
vs. software, 4
Web-based, 342–343

Solaris (operating system), 33, 75,
109, 111

SonicStage, 214
Sonic the Hedgehog, 67, 116, 127
Sony, 12, 29, 47, 69, 116, 129–133,

143, 151, 166, 195
Space Invaders, 116
Spacewar, 118, 119
Spain, broadband service in, 328
Sperry Rand, 81
Spider-Man 2, 117
Spotlight (search program), 332
spreadsheets, 96, 97, 98
Spring, 191
Spyglass, 106, 310
Stallings, William, 26
Stallman, Richard, 71, 75
Stein, Robert, 127
Stephen, Bruce, 92
Stigler, George, 260, 261, 319
stock management, 315
storage, computer, 21, 324–326
strategy, in multisided platforms, 70
streaming audio, 214, 219–220, 222,

231–232
streaming video, 219–220, 231–232
Stross, Randall E., 104
Su, Weili, 157
subsidies, in multisided markets, 59
SuperPass program, 233, 291
Swaine, Michael, 8, 102
Symantec, 310
Symbian (operating system), 3, 30,

40, 184, 194–195, 196,
199–201, 210, 270

Symbian Signed, 287–288

Takahashi, Dean, 131, 134, 135,
136, 273, 291

Tam, Piu-Wing, 167
Tandy, 88, 158
TDMA mobile phone transmission

standard, 191

Index 393

United States, broadband service in,
328

United States v. Loew’s Inc., 319
United States v. Microsoft, 253
UNIVAC, 26–27
Unix, 32–34, 82, 85, 91, 266,

331–332
UnWiredBuyer, 354
usage pricing, 288–289, 295
USB, 104, 179, 267–268
use, intensity of, 288–290
US Robotics, 163, 164
utilities, platform, 310

value, 57–58
Varian, Hal, 47, 55
variety, 299–300, 316
VCS. See Video Computer System

(VCS)
VDONet, 222
Vendio, 354
VeriSign Inc., 288
Verizon Wireless, 190, 191, 192
versions, 311, 331–332
Vextreme, 222
video

on mobile phones, 191
streaming, 219–220, 231–232

Video Computer System (VCS), 121
video games/consoles, 1, 3

antitrust and, 126
APIs with, 145–146, 149
attracting buyers, 282
backwards compatibility in, 139
business strategy of, 122–124
computer-based, 147–150
computer-based vs. console,

149–150
on computers, 128–129
console manufacturers, 138–141
costs associated with, 291
crash of industry, 116, 124
current state of industry, 137–146
demographics, 137
developer assistance with,

134–135, 145, 146

television, 68, 232, 339
Terapeak.com, 354
Tetris, 127
textile industry, 18, 261
text messaging, 189
third-party add-ons, 310
Thmabyrajah, Saunthra, 192
Thomke, Stegan, 133
Thompson, Tom, 159
THQ, 143
3Com, 164, 166
3DO, 6, 115–116, 117, 129, 133,

136–137
Tieman, Alexander F., 281, 299
Tiger (Macintosh operating system),

332–334. See also Mac OS
Time Warner, 335
Timex, 88
Tirole, Jean, 38, 55, 65, 66, 76, 109,

280, 283, 291, 299
Titanic (film), 266
TiVo, 339
T-Mobile, 189, 190, 191, 287
Torvalds, Linus, 33, 38, 43, 91
Toshiba, 137, 175
Toyota Camry, 314
trade secret law, 48
transactions costs, 250–252,

279–280, 281, 343–349
transistors, 8
Treo, 180, 196
TRS-80, 86
TrueType, 82, 106, 310
Turbografx, 129
Turing, Alan, 19
Turing machine, 19–20
Turner, Daniel Drew, 108
Twitchell, James, 348
two-sided platforms, 257–259
typewriters, 337–338

UCSD p-System, 90
Ultima game franchise, 142
Ultima Online, 284
United Kingdom, broadband service

in, 328

394 Index

video games/consoles (cont.)
developers and publishers,

141–146
digital convergence and, 335
disintegration in, 261–262,

264–265, 270–271
early, 9
game development in, 130–131
growth of, 9
history of, 116, 118–129
Hollywood model, 142
Internet connectivity in, 152
middleware with, 146
multihoming and, 67–69, 139–140,

144, 283
network capabilities in, 134
network effects with, 141
online gaming, 150–151
operating systems in, 12
piecemealing of, 285
platform ecosystem for, 147
platform expansion, 151–152
as platforms, 40, 120–129
pricing of, 115, 122–124,

135–136, 279, 291–292,
295–296, 298–299

revenues from, 138
royalties in, 123, 125–126, 146,

298
sports-themed, 142
timeline of, 116
as two-sided platform, 124–128
variety in, 299–300
vs. board games, 337
vs. consoles, 120
vs. PC model, 117
Web-based, 148

Vindingo, 175
Visa, 346
VisiCalc, 67, 82, 97, 98, 197
Visor (PDA), 166
Vivendi, 205
Vizzavi, 184, 205–206
Vodafone, 184, 188, 189, 190, 191,

205–206
volume discounts, 278

Vosaic LLC, 222

Waldfogel, Joel, 59
Waldmeir, Patti, 284
Walkman, 214, 267
Wal-Mart, 258–259
Wang, 85
Wang, R “Ray,” 341
WAP. See Wireless Action Protocol
Ward, Lewis, 198
Warner Communications, 124–125
Watson browser, 310
WCDMA mobile phone transmission

standard, 191
Wealth of Nations (Smith), 260
Web-based software platforms,

342–343
Weber, Thomas E., 58
WiFi, 101, 175
Wilburn, Gene, 307
Wilcox, Joe, 73
Williamson, Oliver, 251
Wilson, Johnny L., 118, 120, 121
Wilson, Warren, 230
Windows, 98, 173. See also

Microsoft
APIs in, 32, 100–101
CE, 133, 173–178, 184, 196, 266
code growth, 304
developer assistance with, 99–101
development of, 93–94
emergence as dominant system,

93–94
feature accrual in, 308
ham sandwiches bundled with, 328
lines of code in, 27
Linux as threat to, 110
NT, 31, 99, 133
piracy of, 286–287
pricing of, 105
profitability of, 2
QuickTime on, 228–229
3.0 release, 82, 94
Vista, 32
XP, 31–32, 107, 311

Windows Embedded Studio, 311

Index 395

Windows Media Player, 223–225,
227, 235, 238, 311

Windows Smartphone, 184, 195
wireless, 101
Wireless Action Protocol, 204,

205–206
Wissink, Stephanie S., 132
Wolf, Ron, 105
Wong, Derek, 297
Word, 96, 249, 266
WordPerfect, 265
World War II, 7, 19
Wozniak, Steve, 2, 86, 88
Wright, Julian, 299

Xbox, 131, 132, 133–137
costs associated with, 296–297
debut of, 116
Dell and, 272–273
evangelization of, 146
market share, 138
middleware, 29
royalties, 69
third-party developers for, 143

Xbox Live, 151
Xing Technology Corporation, 222,

230

Yacowitz, Caryn, 1
Yahoo!, 66
Yuhara, Takao, 296

Zaccaria, Vittorio, 1
Zoomer, 156, 158–160, 161, 162,

178, 179, 180

