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Linköping University, Deptartment of Computer and Information Science
58183 Linköping, Sweden
E-mail: janma@ida.liu.se

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): H.4, H.3, I.2, F.4.1, D.2

ISSN 0302-9743
ISBN 3-540-20582-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 10971512 06/3142 5 4 3 2 1 0



Preface

The Semantic Web is a major endeavor aimed at enriching the existing Web
with metadata and processing methods so as to provide Web-based systems with
advanced (so-called intelligent) capabilities, in particular with context-awareness
and decision support.

The advanced capabilities striven for in most Semantic Web application sce-
narios primarily call for reasoning. Reasoning capabilities are offered by exist-
ing Semantic Web languages, such as BPEL4WS, BPML, ConsVISor, DAML-S,
JTP, TRIPLE, and others. These languages, however, were developed mostly
from functionality-centered (e.g., ontology reasoning or access validation) or
application-centered (e.g., Web service retrieval and composition) perspectives.
A perspective centered on the reasoning techniques (e.g., forward or backward
chaining, tableau-like methods, constraint reasoning, etc.) complementing the
above-mentioned activities appears desirable for Semantic Web systems and ap-
plications. The workshop on “Principles and Practice of Semantic Web Reason-
ing,” which took place on December 8, 2003, in Mumbai, India, was the first of
a series of scientific meetings devoted to such a perspective.

Just as the current Web is inherently heterogeneous in data formats and data
semantics, the Semantic Web will be inherently heterogeneous in its reasoning
forms. Indeed, any single form of reasoning turns out to be irreal in the Semantic
Web. For example, ontology reasoning in general relies on monotonic negation
(for the metadata often can be fully specified), while databases, Web databases,
and Web-based information systems call for non-monotonic reasoning (for one
would not specify non-existing trains in a railway timetable); constraint reason-
ing is needed when dealing with time (for time intervals have to be dealt with),
while (forward and/or backward) chaining is the reasoning of choice when coping
with database-like views (for views, i.e., virtual data, can be derived from actual
data using operations such as join and projections).

This book contains articles presented at the first workshop on “Principles and
Practice of Semantic Web Reasoning” (PPSWR 2003). The workshop addressed
both reasoning methods for the Semantic Web and Semantic Web applications
relying upon various forms of reasoning.

The workshop organizers invited three papers on Foundations of Semantic
Web Reasoning: A methodology for a framework and component technology for
Semantic Web applications, based on layered frameworks and the semantic sepa-
ration principle of architecture systems, is proposed in “Composing Frameworks
and Components for Families of Semantic Web Applications.” “Semantic Web
Logic Programming Tools” discusses recent contributions from logic program-
ming to Semantic Web research and proposes well-founded semantics for the
WWW. In “Web Rules Need Two Kinds of Negation” it is argued that the Se-
mantic Web will benefit from distinguishing between open and closed predicates
using both strong negation and negation-as-failure.
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Accepted papers for the workshop discuss Reasoning in Practice, Query and
Rule-languages, and Semantics & Knowledge Representation: Reasoning in Prac-
tice is demonstrated via the embedding of personalization techniques in a dis-
tributed reasoning architecture, suitable for the Semantic Web, as proposed in
“Towards the Adaptive Semantic Web.” “On Reasoning on Time and Location
on the Web” shows the integration of temporal and locational reasoning into
XML query and transformation operations. An approach to interpret Semantic
Web and Web services in a framework of multi-agent interoperation systems is
proposed in “Reasoning about Communicating Agents in the Semantic Web.”

Query and Rule Languages are developed. A visual query language for XML,
based on a positional approach, is proposed in “A Visual Language for Web
Querying and Reasoning.” A web query language for data retrieval for adapta-
tion, and formalisms for expressing adaptation functionality are shown in “XML
Document Adaptation Queries (XDAQ): an Approach to Adaptation Reasoning
Using Web Query Languages.” “On Types for XML Query Language Xcerpt”
discusses type systems for rule languages and algorithms for automatically check-
ing the correctness of rule-language programs. A conceptual logic programming
language for reasoning about ontologies in a rule-based manner is proposed in
“Integrating Description Logics and Answer Set Programming.”

Finally, the issues of Semantics and Knowledge Representation are investi-
gated. “Extracting Mathematical Semantics from LATEX Documents” allows the
mapping from mathematical information in LATEX documents to MathML. Auto-
matic reasoning in the knowledge representation language Attempto Controlled
English is the aim of “Reasoning in Attempto Controlled English.” “System-
atics and Architecture for a Resource Representing Knowledge About Named
Entities” introduces special resources for formalizing and encoding types of in-
formation for named entities.

The first workshop on “Principles and Practice of Semantic Web Reason-
ing” took place as a satellite event of the 19th International Conference on
Logic Programming (ICLP 2003), thus bringing closer together such scientific
communities as the Logic Programming, Adaptive Web, and Web communities,
each concerned with reasoning on the conventional Web and the Semantic Web.
Because of the very positive resonance this first workshop on “Principles and
Practice of Semantic Web Reasoning” caused in the international research com-
munity, the organizers intend to continue this new workshop series.

Mumbai, December 8, 2003 François Bry, University of Munich
Nicola Henze, University of Hannover

Jan Ma�luszyński, University of Linköping
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Composing Frameworks and Components
for Families of Semantic Web Applications

Uwe Aßmann�

Research Center for Integrational Software Engineering (RISE)
Linköping University, Sweden
uwe.assmann@ida.liu.se

Abstract. This paper outlines a first methodology for a framework and
component technology for Semantic Web applications, layered constraint
frameworks. Due to the heterogeneity of the Semantic Web, different on-
tology languages will coexist. Applications must be able to work with
several of them, and for good reuse, they should be parameterized by
them. As a solution, we combine layered frameworks with architecture
systems and explicit constraint specifications. Layered constraint frame-
works can be partially instantiated on 6 levels, allowing for extensive
reuse of components and variability of applications. Not only that appli-
cations can be instantiated for a certain product or web service family,
also architectural styles, component models, and ontology languages can
be reused or varied in applications. And hence, for the first time, this
proposes a reuse technology for ontology-based applications on the het-
erogeneous Semantic Web.

Programmers are lazy. They do not want to develop their programs over and over
again, but want to reuse already existing parts in new applications. They want
to be more productive and quicker than the competitor. (In short, they want
to earn more money than their competitors.) Also the success of the Semantic
Web depends on that applications can be produced very quickly and with a
short time-to-market. Parts of ontology-based applications must be reused in
other ontology-based applications. To this end, an appropriate reuse technology
should be developed that treats many different ontologies, and, since these will
be written in different languages, also different ontology languages. In particular,
this problem is important for web services, since we would like to engineer service
families instead of single services. So, how can we build product and service
families for ontology-based applications?

For standard software, software engineering has developed several well-known
reuse concepts, one of them being frameworks [14]. A framework captures the
commonalities of an application domain in a code skeleton. This skeleton can be
� Work partially supported by European Community under the IST programme - Fu-

ture and Emerging Technologies, contract IST-1999-14191-EASYCOMP [6,7]. The
authors are solely responsible for the content of this paper. It does not represent the
opinion of the European Community, and the European Community is not respon-
sible for any use that might be made of data appearing herein.

F. Bry et al. (Eds.): PPSWR 2003, LNCS 2901, pp. 1–15, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 U. Aßmann

reused in several applications by parameterizing it with application specific code
(variabilities). This permits a company building product families [13]. For the
technical realization of frameworks, the concept of components plays an impor-
tant role. Frameworks are built of components, software blocks with variation
points (hot spots) that can be instiantiated to blocks without variation points.
Essentially, frameworks are larger components, i.e., collections of precomposed
components, which can be instantiated to products of a product family. Fig. 1
contains a little example. On top, a framework is drawn, consisting of several
components with several hot spots (white circles) and several frozen spots (grey
circles), bound to inner components. To instantiate the framework towards an
application, all hot spots of the framework have to be bound to components, such
that an application is complete (on the bottom). Hence, a framework is composed
out of components and is composed with other components to applications.

Fig. 1. A sketch of a framework with hot spots (white circles) and frozen spots (grey
circles). It can be instantiated to an application (below).

Unfortunately, the usual framework technology cannot directly applied to the
Semantic Web, since the Web had been planned and designed as a distributed,
loosely coupled, and heterogeneous medium. Hence, on the Semantic Web, there
will be always different approaches for ontologies and ontology languages. Ap-
plications will have to use components written in different ontology languages.
However, usually, a framework is very much tied to its underlying language and
cannot deal with components written in different languages. Hence, for the Se-
mantic Web, there is a need for a generic framework technology that supports a
family of ontology languages.
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As a simple example, consider to construct a web service family for travel ar-
rangements. The service family should offer services, such as information about
single travels, information on best price or shortest travel time, selection be-
tween different competitors, and finally, booking and payment. However, travel
booking systems live in a heterogeneous environment. They must interoperate
with many other systems that have very different background and technology.
For instance, hotel information, flight booking, rental car information, public
transport systems, are all provided by different organisations that cannot inte-
grate these systems easily. Hence, a web-based travel booking system will have to
contact many different systems, which will in the future rely on many ontologies
and ontology languages. So, if a family of travel booking web services should
be developed, components that had been developed with an ontology language
have to be varied with components written in other languages. Usual framework
technology does not permit this.

Beyond frameworks, there is a second reuse technology in software engi-
neering that is interesting in this respect. Architecture systems split off the ar-
chitecture of an application from the application-specific components [8]. The
architecture is specified with an architectural language, while the components
are written in a standard language. Since architectural languages provide a spe-
cific language for the architectural level, it can be argued that they are more
expressive and adequate for architectures than frameworks. For our problem,
an architectural language offers a decisive advantage: its semantics is specified
independently of the semantics of the component language and poses only min-
imal requirements on some selected language constructs. On the other hand,
the component language is independent of the architectural language. Hence, an
architectural language can easily work with several component languages at the
same time, allowing for heterogeneous applications. In the following, we call this
principle semantic separation1.

From architectural languages, we can learn how to arrive at truly generic
frameworks for the Semantic Web. In this paper, we combine semantic separation
with standard framework technology, resulting in a new generic framework tech-
nology, layered constraint frameworks. This technology goes far beyond standard
framework technology and is particularly suited for Semantic Web applications.
Firstly, layered constraint frameworks are based on layered frameworks [4]. Lay-
ered frameworks are application frameworks that are applied for product families
of a certain application domain, e.g., in the banking domain, in which applica-
tions can be divided into abstraction layers that contribute a certain concern to
the application. (A concern captures partial knowledge about the application,
abstracted from a certain viewpoint). A major advantage of a layered frame-
work is that all concerns, i.e., all layers, can be exchanged independently of each
other [4].

1 In particular, the semantic separation principle holds for the static semantics, i.e.,
the part of the semantics that can be evaluated statically, for instance, to compile
the languages to binary form. The static semantics can be specified with constraint
specifications, such as type constraints.
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Secondly, a layered constraint framework inherits the benefits of semantic
separation for all concerns of an application, not only the architecture. Essen-
tially, this means that every layer carries a separate set of semantic constraints
for a certain concern. This set of constraints can be used to check the layer’s
implementation on consistency. Together with their layer, the constraints can be
exchanged independently of the constraints of other layers.

Thirdly, layered constraint frameworks are interesting for the Semantic Web
because the semantic constraints can be specified in an ontology language, so
that we use ontology languages to describe frameworks for applications based
on ontology languages. This reuses Semantic Web technology for a framework
technology on the Semantic Web, bootstrapping the technology.

Lastly, layered constraint frameworks do not only explicitly capture appli-
cation or architectural concerns, but also capture the semantics of component
languages and component models. A layered constraint framework can be used
for application domains with several ontology languages, which is essential for
Semantic Web applications. Hence, layered constraints frameworks also general-
ize current framework technology considerably.

The structure of the paper is as follows. First, we present the ideas of layered
frameworks in more detail. Then, we explain the major concerns of a web-based
application in a product family or service family (Sec. 2). We argue that the
concerns can be ordered into layers, so that the layered framework technology
can be applied (Sec. 3). We show that, on every layer, semantic constraints
play a major role to check the consistency of a layer’s implementation and that
these constraints are also partially ordered. This leads to the definition of layered
constraint frameworks. Then, we show several examples how a layered constraint
framework can be instantiated to diverse Semantic Web applications (Sec. 4).
Finally, we conclude with an agenda for further research.

1 Layered Frameworks

Layered Frameworks have been invented for product lines of banking applica-
tions [4]. In this application domain, a framework has to be instantiated in pretty
diverse contexts. For instance, not only the product must be varied, but also the
bank and its customer rules. Also, the organizational structure of the bank plays
an important role since it poses requirements on the rights for accesses and ac-
tions. Investigating these scenarios, it was discovered that the concerns and the
products form a kind of matrix. Fig. 2 shows the main concerns in a layered
diagram. On top, the concern of the applications is shown, in the middle layers
the concern of the bank’s organizational structure, and on the bottom the core
concepts of the banking domain. Usually, an entity of an application, such as
the account, is not restricted to the banking domain, but crosscuts all layers.
In the figure, three product entities are shown, a telephone banking account, a
ATM account, and a telephone banking loan. Thus, an application entity usu-
ally has many concerns, or roles, which it has to play, with respect to a layer of
the application. On the other hand, the layers of the framework build on top of
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Fig. 2. The concerns of a banking application and some of the products.

Fig. 3. The RoleObject pattern realizes the concerns of a banking application with
a core object and layer-specific role objects.

each other, i.e., are hierarchically ordered. Hence, the application layers need the
concepts of a bank’s departments, and these in turn require the core business
concepts of a bank.

The layering of the framework leads to an implementation that splits the ap-
plication entities into layer-specific role objects that are linked by a core object.
This pattern has been recorded as the RoleObject pattern [5]. The structure
of this pattern ensures that, although upper layers require lower layers, every
layer can be exchanged independently of each other (Fig. 3). Since a role object
does not refer directly to its neighbor role objects in other layers, it only knows
its core object (see the relations between core and role objects in the lower layer
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of Fig. 3). Hence, all services of an application entity are executed via the core
object: whenever a role object gets a request and cannot handle it by itself, it
forwards the request to the core object. The core object knows all role objects
and distributes the request accordingly. Hence, this design pattern hides all in-
formation of one concern of an application in a layer, such that they layer’s role
objects can be exchanged without problems, even at runtime of an application.
Furthermore, applications can be extended easily, since more layers with more
role objects can be added.

Layered frameworks order the concerns of an application domain in depen-
dent layers, i.e., they allow for dependencies between concerns, which is im-
portant for many application domains. Layered frameworks provide information
hiding for their layers, such that layer implementations can be exchanged eas-
ily. The layers separate architecture and application-specific components. Most
importantly, layered frameworks allow for excellent reuse because they can be
partially instantiated. In Fig. 2, a framework can be instantiated only with the
core business concepts, leaving hot spots in both layers above. Alternatively,
it can be instantiated with the two lower layers, which leaves the hot spots
of the application layers open. Hence, reuse actually occurs on n levels: every
layer provides an additional level of reuse. And that is why layered frameworks
are successful in business applications: they can be scaled over many different
instantiations on different levels of abstraction.

Layered frameworks with RoleObject patterns bear resemblance to tech-
nologies, such as hyperspace programming (view-based programming [15]) or
aspect-oriented programming [11]. However, there are some differences. In a lay-
ered framework, the upper layers depend on the lower layers, i.e., cannot exist
without them. In our example, without business domain role objects and busi-
ness department role objects, an application role object does not make sense. In
view-based programming, usually, views are independent of each other. Then,
in our example, all layers should be independent, which is not the case. On the
other hand, in aspect-oriented programming, an aspect depends on the core of
the system. However, usually, aspects are partners of each other and not stacked
(although this is not impossible to achieve). Hence, layered frameworks play a
somewhat different role: on the one hand, every layer clearly expresses a concern
of the application and can be exchanged independently of the others; on the
other hand, upper layers cannot live without lower layers and must be stacked
on top of them. And this is the reason why we evolve them to frameworks for the
Semantic Web: their layers model dependent concerns (Sec. 3). But before, we
have to discuss, which concerns can be identified in a Semantic Web application,
and that these depend on each other acyclically.

2 The Concerns of a Framework
for Semantic Web Applications

In this section, we present a refined set of concerns for framework-based applica-
tions of a product line. It is refined, because we split the concerns of [4] into finer



Composing Frameworks and Components 7

Fig. 4. Major concerns of an application, also of those based on Semantic Web tech-
nology.

concerns, and add some new ones. And this refined set of concerns enables us to
treat applications for the Semantic Web, applications that use different ontology
languages. In general, we assume that a concern consists of a specification or
implementation, controlled by a set of semantic constraints that can check the
consistency of the specification or implementation. In some concerns, the focus
is on the specifications, in others on the constraints.

Fig. 4 gives an overview. Firstly, we distinguish a group of application con-
cerns, divided into the user-specific concern and the application-specific concern.
The personalization concern contains personalization constraints, such as I want
to use a Mozilla-style windowing theme, while the application-specific concern
contains specifications, such as The system provides for Mozilla- or Opera-style
windowing themes, but not IE-style. Application constraints are conditions on
these specifications, such as In case of an inflamed foot, a diabetes patient needs
a diabetes specialist and a dermatologist. While for a new product, at least the
user and application constraints have to be instantiated, all others might be
reused from the framework. Clearly, the user concern depends on the applica-
tion concern, but not vice versa. Also, the application concern depends on the
architectural and the core conceptual concerns, but not vice versa.

The second group of concerns are the architectural concerns. On the soft-
ware architecture level, we can distinguish between the application-family con-
straints, the architectural style of the application, and the component model.
All concerns together form the architecture of an application. The central con-
cern of this group, on which all others build, is the concern of the component
model. A component model defines the syntax and semantics of the components
of a framework. How does a component look? Which kinds of interfaces does
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it provide? When can it be composed to other components? Which are the op-
erations [2]? Typical constraints are Components can be composed at runtime
or A component may have an event port. Component models yield the base for
single composition operations, the small-step compositions that are needed for
framework-based development. In industrial practice many different component
models are employed, however, only two basic kinds of component models ex-
ist. The first kind of models is based on runtime objects, i.e., components are
runtime entities that are composed dynamically. Examples are the COM+ [12]
or the EJB component models [10]. The second kind is based on composition of
programs, i.e., components are sets of code fragments. Invasive software compo-
sition is such a fragment-based composition technology for Java [2], but there
are many others, such as hyperspace programming [15], or aspect-oriented pro-
gramming, at least in its static form [11]. We suppose that for the Semantic Web,
both kind of models will be important: runtime component models are required
for the dynamism of web-based systems, and fragment-based models are needed
for composition of ontologies and other specifications.

The architectural style of an application forms another concern. Historically,
architectural languages allowed only for specification of the application of an
architecture. Later on, they were extended to express architectural styles, such
as pipe-and-filter style, distributed-process style, or other general types of ar-
chitectures. In this way, constraints for very general classes of architectures can
be reused [1]. Typically a constraint in an architectural style prescribes the con-
nections that are allowed between components, such a Between two components,
there should be a pipe (connection constraints).

A last concern in this group is the application-family concern. Often, compa-
nies would like to define not only constraints on an architectural style, but also
describe a reference architecture that developers have to conform to. Application-
family constraints prescribe how a framework can be instantiated with certain
types of components (instantiation constraints), or which connections should be
used on which level of the architecture. For instance, for a pipe-and-filter ar-
chitecture an application-family constraint could be that Only POSIX-defined
filter components should be employed or On the outer level of the architecture,
all pipes have to be encrypted. Also core concepts of the application domain be-
long to this group. (Since [4] work in the banking domain, they call these core
business concepts). In essence, application-family constraints play a large role
within frameworks, because they adapt a very general architectural style to the
needs of an application family. Obviously, application-family constraints depend
on the architectural style, but not vice versa.

All concerns of this group form together the application’s architecture. If the
concerns are realized in a layered framework, several layers for every concern
may be developed. For instance, both the business department layer of Fig. 2
and the core concept layer belong to the application-family concern.

The final group of concerns are the core conceptual concerns. At the moment,
we consider in this group on the language of the components, but this will be
refined in Sec. 3.
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Ontologies play a role in several concerns. An ontology comprises the core
concepts of an application domain, standardized for a large number of people.
Hence, ontologies provide application and application-family constraints for a
set of applications. Also, architectural styles, or even component models, can
be specified with ontologies. In particular, if ontologies are based on inferencing
(rule-based ontologies), there is hope that complex constraints and semantics
can be expressed rather easily.

We do not claim that this list of concerns in framework-based applications
is complete. Other concerns might be discovered that are worthwhile to be dis-
tinguished. However, already with the identified ones, we can achieve a better
information hiding in framework-based applications. The next section will show
how to order the concerns into a layered framework. This is possible, because the
concerns depend are partially ordered (Fig. 4). Hence, we can encapsulate knowl-
edge of a concern into one or several layers of a layered framework. Furthermore,
we will show how to treat Semantic Web applications with their requirements
on multiple ontology languages.

3 Layered Constraint Frameworks
for Framework-Based Semantic Web Applications

This section proposes a framework technology for applications on the Semantic
Web, guided by semantic constraints and ontologies. The main idea is to model
the concerns of Sec. 2 as a layered framework. Every layer encapsulates a con-
cern of a application. The layers differ in what they know about the component
language, the component model, or the application style, so that they can be
exchanged for variants easily. Additionally, on every layer, constraints (or on-
tologies) can be specified that specify a static semantics for the layer (layered
constraint framework).

For better reuse, we propose to split and rearrange some of the concerns of
Sec. 2. In particular, we split the concern of the component model in three dif-
ferent layers, the layer of the generic component model, the layer of composition
time, and the layer of the concrete component model. The generic component
model layer encapsulates all knowledge about components in general, such that
it can be reused on upper layers. The composition time layer deals with the two
basic kinds of component models. Finally, the layer of the concrete component
model contains all specific constraints of a component model. It remains in the
architectural layer group.

Fig. 5 illustrates the layers of the framework. On the bottom, the generic
component model layer is found. This layer is introduced mainly for reuse of
component knowledge for different component languages. It knows about ab-
stract components with variation points (hot and frozen spots), as well as com-
position operations. Typically, this can be expressed in constraints, such as A
component consists of subcomponents, A component has hot and frozen spots, or
A composition operation has some arguments. Using this layer, an architecture
can be expressed very abstractly in form of a composition of abstract compo-
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Fig. 5. The layers of a layered constraint framework. Application and central frame-
work entities, such as component, variation point, or composition operator, crosscut
all layers.

nents. However, the layer does not know which concrete component model, which
component languages, nor which application it will be instantiated to.

The second layer provides information about the time of composition and
the basic kind of component model, fragment-based models for compile-time, or
runtime models for runtime. Also this layer does not know about the component
language, so that its knowledge can be reused for different component languages.

The third layer is rather rich because it adds the knowledge about the se-
mantics of the component language, which is in Semantic Web applications the
ontology language. So, this layer knows about constraints such as The product
works with a component model for OWL, Datalog, or Prolog. The layer does not
yet know about constraints of the concrete component model.

The second and third layer group is structured in the way as Sec. 2 indicated.
The second layer group realizes architectural specifications and constraints. The
remaining constraints for a concrete component model are added by the fourth
layer, the component model layer. It contains constraints, such as The prod-
uct works with EJB components and is based on transactions. On top of this
layer, constraints for the architectural styles are encapsulated. Above that, the
application-family constraints get a layer.

Finally, the third group provides layers for application and user constraints.
We have indicated that the resulting layers depend on each other acyclically.

Hence, they can be ordered into a layered framework. The dependencies of the
semantic constraints are also acyclic. Hence, also the consistency checking can
be distributed over the layers.

For a layered framework, we have to determine the application entities that
crosscut all layers and can be realized with a RoleObject pattern. It is easy
to see that all layers contain different abstractions of the notions framework,
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component, variation points, the composition operations and the constraint
checker. Hence, at least the entities Framework, Component, VariationPoint,
CompositionOperation, and ConstraintChecker should be implemented in all
layers with role objects (Fig. 5).

Layered Specification of the Constraints. On every level of a layered constraint
framework, constraints should be specified. To this end, all languages for seman-
tic specifications can be used, however, in the context of the Semantic Web, it
is appealing to employ ontology languages themselves. In the following, we give
a short list of the involved specifications. Since ontology languages can be used,
the specifications may be standardized to concern ontologies or role ontologies.

User and application layer constraints will be specified with public models
for personalization and application constraints. In particular, personalization
constraints should be standardized, to achieve a better interoperation for the
customers in mobile applications.

On the architectural level, the constraints of the application family and the
architectural style might form composition ontologies, ontologies that constrain
the way how applications are plugged together. It is makes a lot of sense to
define an ontology for architectural styles, since they are found in many appli-
cations throughout all areas. This standardization process is future work for the
software architecture and framework communities. However, application-family
constraints will probably hold only for single companies, since they define refer-
ence architectures for a certain product line.

On the level of the component model, also ontologies can be defined. A com-
ponent model is even more general than an architectural style, and hence, ap-
pears in a lot more applications. Hence, it can be assumed that the most impor-
tant component models will be defined by a standardized ontology.

Checking in a layered constraint framework should be implemented with
the RoleObject pattern. The checker entity crosscuts all layers, has a core
checker object and layer-specific role checker objects. Whenever a role checker
object cannot answer a request, it delegates it to the core object, which in turn
delegates it to the next layer-specific role checker. In this way, requests can always
be answered, but the checker of one layer can be exchanged without changing
other checkers. Hence, role objects that live in upper layers depend only on the
core object and role objects in lower layers. This is guaranteed, if the constraint
specifications also depend acyclically on each other. As we have explained above,
this is the case.

In summary, if an application area has several concerns and the semantic
constraints of the application framework acyclically depend on each other, it is
possible to order the concerns in layers, and the RoleObject pattern can be
used to implement the framework, also the checking of the semantic constraints.

4 Semantic Web Applications

Layered frameworks can be partially instantiated on every layer. For a rule-based
language family, such as the RuleML family containing binary Datalog, Datalog,
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Fig. 6. Possible component models in the framework. All paths can be used to define a
component model. Only the corresponding role objects in the component model layer
have to be exchanged for new models.

Prolog, and DAML [9], this implies that many different applications, application
frameworks, and component models can be instantiated.

Application to Different Ontology Languages. Fig. 6 shows a bunch of instantia-
tions of the framework for these 4 rule-based ontology languages. The instantia-
tions share several layers of the framework, but differ in the component language
layer, i.e., the ontology languages. Hence, the layered constraint framework can
instantiate 4 different web service models, each of them using a different ontology
language. The layer principle guarantees that the languages can be exchanged
for each other without modifying other layers.

In this scenario, all work that has been done for the abstract component
model layer and the composition time layer can be reused for all ontology lan-
guages. Only on the component language layer, work cannot be shared. If the
ontology languages are real subsets of each other, such as binary Datalog and
Datalog, sharing is possible even in this layer.

Fig. 6 also illustrates why layered constraint frameworks are suited for the
Semantic Web, in contrast to standard layered frameworks. Since a new group
of core conceptual concerns is added, not only core application concepts and
department structure can be varied, but also the language of the components
and the component model in question. As explained in the introduction, this is
required for Semantic Web applications.

Application to Different Architectural Styles. Fig. 7 shows variability in the ar-
chitectural style. Two framework instantiations provide two different architec-
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Fig. 7. Instantiations of a web service model with static and dynamic components for
different application families.

tural styles for the same web service model. This is possible, if the underlying
web service model contains enough functionality for both. Then, very different
applications can be built on top of these two styles.

In this scenario, the variation appears in the architectural style layer. All
work that has been done for the abstract component model layer, composition
time layer, language layer, and concrete component models can be reused for all
architectural styles.

Application to Component Models of Rule-based Languages. If the layered frame-
work is instantiated up to the concrete component model layer, it provides a
means for realizing component models of ontology languages. Fig. 8 shows how
two web service component models can be instantiated and employed by two
application families. Even if an ontology language does not support components
well, it is easy to define a component model for it. This is possible due to the
semantic separation principle and relies on fragment-based composition. The
details go beyond this paper [2].

In this scenario, all work in the two lowest layers can be reused. The richer
composition time and generic component layer are, the easier it is to instantiate
a concrete component model for a new component language.

5 Conclusion

This paper has outlined a first methodology for a framework and component
technology for Semantic Web applications. Due to the heterogenity of the Se-
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Fig. 8. Two instantiations of web service component models, both with static and
dynamic components for different application families.

mantic Web, different ontology languages have to be treated, so that applica-
tions must be parameterized with them. As a solution, we combine the layered
frameworks of [4] with the semantic separation principle of architecture sys-
tems, and enrich the resulting frameworks with layered constraint specifications.
The results are manifold. We could identify 7 concerns of Semantic Web appli-
cations: user, application, application-family, architectural style, concrete com-
ponent model, component (ontology) language, composition time, and generic
component model concern. The layered frameworks can be partially instantiated
on 6 levels, proving excellent potential for reuse. Not only that applications can
be instantiated for a certain product or web service family, also architectural
styles, component models, and ontology languages can be varied. And hence, for
the first time, this proposes a reuse technology for ontology-based applications
on the Semantic Web.

A Research Agenda. Much work remains to be done. For a concrete framework,
the interfaces of each layer have to be precisely specified. What may an up-
per layer assume about lower layers? A standardization with ontologies of the
Semantic Web would be desirable for every layer. As we have seen above, this
might be possible for some layers, but is less probably for others. How far can
standardization go? Since ontology languages do not support components and
composition very well, we should use the framework to define concrete compo-
nent models for them. How simple is this process? Finally, does the proposed
framework technology scale for large applications?



Composing Frameworks and Components 15

Building an actual implementation of the proposed framework will take some
time, however, the concepts are well-founded because they are derived from solid
framework technology for large applications. Currently, our group refactors our
software composition framework for Java towards the presented architecture [16].
The goal is to provide a layered constraint framework for the Semantic Web
community in the near future.
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16. The COMPOST Consortium (Linköping University and Karlsruhe University).
COMPOST home page. http://www.the-compost-system.org, April 2003.



Semantic Web Logic Programming Tools
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Abstract. The last two decades of research in Logic Programming,
both at the theoretical and practical levels, have addressed several top-
ics highly relevant for the Semantic Web effort, providing very concrete
answers to some open questions.
This paper describes succinctly the contributions from the Logic Pro-
gramming group of Centro de Inteligência Artificial (CENTRIA) of Uni-
versidade Nova de Lisboa, as a prelude to a description of our recent
efforts to develop integrated standard tools for disseminating this re-
search throughout the interested Web communities. The paper does not
intended to be a survey of logic programming techniques applicable to
the Semantic Web, and so the interested reader should try to obtain the
missing information in the logic programming journals and conferences.

1 Introduction

The eXtensible Markup Language provides a way of organizing data and docu-
ments in a structured and universally accepted format. However, the tags used
have no predefined meaning. The W3C has proposed the Resource Description
Framework (RDF) for exposing the meaning of a document to the Web commu-
nity of people, machines, and intelligent agents [26].

Conveying the content of documents is just a first step for achieving the
full potential of the Semantic Web. Additionally, it is mandatory to be able to
reason with and about information spread across the World Wide Web. The
applications range from electronic commerce applications, data integration and
sharing, information gathering, security access and control, law, diagnosis, B2B,
and of course, to modelling of business rules and processes.

Rules provide the natural and wide-accepted mechanism to perform auto-
mated reasoning, with mature and available theory and technology. This has
been identified as a Design Issue for the Semantic Web, as clearly stated by Tim
Berners-Lee et al in [10]:

“For the semantic web to function, computers must have access to
structured collections of information and sets of inference rules that they
can use to conduct automated reasoning.”

“The challenge of the Semantic Web, therefore, is to provide a lan-
guage that expresses both data and rules for reasoning about the data and
that allows rules from any existing knowledge-representation system to
be exported onto the Web.”

F. Bry et al. (Eds.): PPSWR 2003, LNCS 2901, pp. 16–32, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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“Adding logic to the Web – the means to use rules to make inferences,
choose courses of action and answer questions – is the task before the
Semantic Web community at the moment.”

Logic Programming is about expressing knowledge in the form of rules and
making inferences with these rules. A major advantage of Logic Programming
is that it provides an operational reading of rules and a declarative reading
with well-understood semantics. In this paper we defend the use of Generalized
Extended Logic Programs [29], i.e. logic programs with both (monotonic) explicit
negation and (non-monotonic) default negation, as an appropriate expressive
formalism for knowledge representation in the Web.

An important feature of Logic Programming is that it is able to deal with
negative knowledge, and to express closed world assumptions. Expressing and
reasoning with negative knowledge is fundamental for advanced applications
but these capabilities are currently lacking in the existing and proposed Web
standards. This is clearly identified as a limitation/feature of RDF, in the latest
W3C Working Draft of RDF Semantics [24]:

“RDF is an assertional logic, in which each triple expresses a sim-
ple proposition. This imposes a fairly strict monotonic discipline on the
language, so that it cannot express closed-world assumptions, local de-
fault preferences, and several other commonly used non-monotonic con-
structs.”

The introduction of (non-monotonic) default negation brought new theoretical
problems to Logic Programming, which were addressed differently by the two
major semantics: Well-founded Semantics [21] (WFS) and Stable Model Seman-
tics [22] (SM).

We start this paper by defending the use of Well-founded based semantics
as an appropriate semantics for Semantic Web rule engines, and by illustrating
its usage. We then proceed, in section 4 to describe our W4 project – Well-
Founded Semantics for the WWW – which aims at developing Standard Prolog
inter-operable tools for supporting distributed, secure, and integrated reason-
ing activities in the Semantic Web, and describe the implementations already
developed within the project.

The Semantic Web is a “living organism”, which combines autonomously
evolving data sources/knowledge repositories. This dynamic character of the
Semantic Web requires (declarative) languages and mechanisms for specifying
its maintenance and evolution. It is our stance that also in this respect Logic
Programming is a good choice as a representational language with attending
inference and maintenance mechanisms and, in section 5, we briefly describe our
recent research efforts for defining and implementing logic programming systems
capable of dealing with updates and knowledge-base evolution.

2 The Case for Well-Founded Based Semantics
As mentioned above, in this paper we propound the use of Generalized Extended
Logic Programs [29] as an appropriate expressive formalism for knowledge rep-
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resentation in the Web. A Generalized Extended Logic Program is a set of rules
of the form:

L0 ← L1, . . . , Ln

where literals L0, L1, . . . , Ln are objective literals, say A or ¬A, or default
negated objective literals, say not A or not¬A, with A an atom of a given first-
order language. Without loss of generality, a non-ground rule stands for all its
ground instances. Notice that two forms of negation are available, namely de-
fault (or weak) negation not and explicit (or strong) negation ¬, and can occur
both in the head (L0) and body (L1, . . . , Ln) of the rule.

Default negation is non-monotonic and captures what is believed or assumed
false (closed-world assumption), whilst explicit negation is monotonic and ex-
presses what is known to be false (open-world assumption). The rationale of the
two forms of negation is better grasped with the following example attributed
to McCarthy:

Example 1. Suppose a driver intends to cross a railway and must make a decision
whether he should proceed or stop. The two major possibilities he has to encode
the knowledge in a logic programming language are captured by the rules:

1) cross← ¬train 2) cross← not train

Rule 1) represents the usual behaviour of a safe driver by stating that he can cross
the rail tracks only when he has explicit evidence that a train is not approach-
ing. The second rule represents the situation of a careless driver that advances
whenever there is no evidence that a train is approaching (i.e. believes/assumes
the train is not approaching).

The introduction of default negation brought new theoretical problems, which
were addressed differently by the two major semantics for logic programs: Well-
Founded Semantics [21] (WFS) and Stable Model Semantics [22] (SM). We sug-
gest the use of Well-Founded based Semantics as an appropriate semantics for
Semantic Web rule engines, by the following reasons:

– The adopted semantics for definite, acyclic and (locally) stratified logic pro-
grams, coinciding with Stable Model Semantics.

– Defined for every normal logic program, i.e. with default negation in the
bodies, no explicit negation and atomic heads.

– Polynomial data complexity with efficient existing implementations, namely
the SLG-WAM engine implemented in XSB [30].

– Good structural properties.
– It has an undefined truth-value.
– Many extensions exist over WFS, capturing paraconsistent, incomplete, and

uncertain reasoning.
– Permits update semantics via Dynamic Logic Programs and EVOLP.
– It can be readily “combined” with DBMSs, Prolog, and Stable Models en-

gines.
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The minimal Herbrand model semantics for definite logic programs [20] (pro-
grams without default and explicit negation) is well-understood and widely ac-
cepted. Both Well-Founded Semantics and Stable Model Semantics coincide with
the minimal Herbrand model semantics for definite logic programs.

A major advantage of WFS is that it is possible to assign a unique model to
every normal logic program, in constrast to SM semantics. The same applies to
the several extensions of WFS treating explicit negation, supporting paraconsis-
tent reasoning forms [16], which we shall discuss in the following section.

The existence of an undefined logical value is fundamental for Semantic Web
aware inference engines. On the one hand, in a distributed Web environment
with communication failures and non-ignorable response times, a “remote” logic
inference can be assumed undefined, while the computation proceeds locally. If
the remote computation terminates and returns an answer, then the undefined
truth-value can be logically updated to true or false. On the other hand, rule
bases in the Web will naturally introduce cycles through default negation. Well-
Founded Semantics deals with these cycles through default negation by assigning
the truth-value undefined to the literals involved. In this particular situation,
Stable Models may not exist or may explode.

The computation of the Well-Founded Model is tractable, contrary to Stable
Models, and efficient implementations exist, notably the XSB Prolog engine [30].
XSB resorts to tabling techniques, ensuring better termination properties and
polynomial data complexity. Tabling is also a good way to address distributed
query evaluation of definite and normal logic programs. The XSB Prolog sup-
ports a full first-order syntax, which is not fully available in the state-of-the art
Stable Model engines [9,31]. Moreover, the latests XSB Prolog 2.6 distribution
is integrated with the SModels system, and thus applications can better exploit
both Well-Founded and Stable Model semantics.

In summary, Well-Founded Semantics can be seen as the light-inference basic
mechanism for deploying today complex Semantic Web rule-based applications,
and Stable Model Semantics a complementary semantics for addressing other
complex reasoning forms.

3 Knowledge Representation with Explicit Negation

In this section we illustrate the use of explicit and default negation for repre-
senting ontological knowledge, which may be contradictory and/or incomplete.
The ability to deal and pinpoint contradictory information is a desirable feature
of Semantic Web rule system, since it is very natural to obtain conflicting infor-
mation from different sources. Classical logic assigns no model to an inconsistent
theory, and therefore it is not fully appropriate as a general knowledge repre-
sentation formalism for the Semantic Web. This limitation is inherited by the
classical logic based formalisms like RDF(S) [26,24,12], DAML+OIL [13], and
OWL [17].

An interesting example is the case of taxonomies. The example is a natural
one since our common sense knowledge of the animal world is rather limited,
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and new species are discovered frequently. We present some examples showing
the capabilities of our own Generalized Paraconsistent Well-founded Semantics
with Explicit Negation, WFSXP for short. For a full account and all the formal
details, the reader is referred to [3,14,16].

Example 2. Consider the following common-sense rules for identifying birds and
mammals:

– Oviparous warm-blooded animals with a bill are birds;
– Hairy warm-blooded animals are mammals;
– Birds are not mammals and vice-versa;
– Birds fly;
– Mammals nurse their offspring.

This chunk of knowledge can be represented by the following extended logic
program rules:

bird(X)← bill(X), warm blood(X), oviparous(X).
¬bird(X)← mammal(X).
f lies(X)← bird(X).

mammal(X)← hair(X), warm blood(X).
¬mammal(X)← bird(X).
nurses(X)← mammal(X).

If the information regarding dogs and ducks is correctly filled in one gets the
expected results. We just add to the program the set of facts:

hair(dog). warm blood(dog). bill(duck). warm blood(duck). oviparous(duck).

The model of the above program under WFSXP entails the following expected
conclusions:






mammal(dog), nurses(dog),¬bird(dog), not bird(dog), not flies(dog),
bird(duck), f lies(duck),¬mammal(duck), not mammal(duck),
not nurses(duck)






Now on a trip to Australia the user discovers there are some creatures named
platypus which lay eggs, have warm blood, sport a bill, and are hairy! A nice
contradiction is obtained from the program containing the facts:

hair(platypus). warm blood(platypus). bill(platypus). oviparous(platypus).

The model entails the following new conclusions:





mammal(platypus),¬mammal(platypus),
not mammal(platypus), not¬mammal(platypus),
nurses(platypus), not nurses(platypus), not¬nurses(platypus),
bird(platypus),¬bird(platypus), not bird(platypus), not¬bird(platypus),
f lies(platypus), not flies(platypus), not¬flies(platypus)
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The remarkable points about this example are manifold. First, contradictory
information can coexist with safe one without interfering with each other; in
particular, we must not relinquish the information about dogs and ducks. Sec-
ond, we can detect a contradiction both about the mammal and the bird predi-
cates (both mammal and ¬mammal hold, as well as bird and ¬bird), its conse-
quences are propagated, and we are aware that the knowledge about platypuses
regarding nursing and flying capabilities depends on contradiction. This is recog-
nized by noticing that nurses(platypus) and not nurses(platypus) hold, while
¬nurses(platypus) is absent from the model [15]. Third, the right solution is
covered by the program’s model: platypus are mammals, do not fly, and nurse
their progeny. Finally, it is unsound to have a heuristic rule saying to drop all
objective (or default) knowledge. For platypus we want to retain that they nurse
their descendants but discard the fly(platypus) conclusion.

The rationale of WFSXP is to non-trivially extract the maximum number
of conclusions from contradictory information. This provides the user with the
information necessary to decide what to do, since all possible scenarios are taken
into account. The user is warned about some potential problems, and is up to him
to take the right decision. This is possible due to the adoption of the Coherence
Principle, which relates both forms of negation: “If something is known to be
false then it should be believed false: if ¬A holds then not A should hold; if A
holds then not¬A should hold”.

If A and ¬A hold, then by coherence, one should have not¬A and not A.
This produces a localized explosion of consequences which are propagated by
the semantics only to the dependant literals, and not to the whole model. The
same semantics can be exploited to represent taxonomies with exceptions, ex-
pressing general absolute (i.e. non-defeasible) rules, defeasible rules, exceptions
to defeasible rules and to other exceptions, explicitly making preferences among
defeasible rules. We assume that in the presence of contradictory defeasible rules
we prefer the one with most specific information.

Example 3. Consider the following statements, corresponding to the hierarchy
depicted in Figure 1:

(1) Mammals are animals. (6) Normally animals don’t fly.
(2) Bats are animals. (7) Normally bats fly
(3) Birds are animals. (8) Normally birds fly
(4) Penguins are birds. (9) Normally penguins don’t fly
(5) Dead animals are animals. (10) Normally dead animals don’t fly

the following individuals

(11) Pluto is a mammal. (14) Dracula is a bat.
(12) Tweety is a bird. (15) Dracula is a dead animal.
(13) Joe is a penguin.
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Absolute rules Defeasible rules Negated rules
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Fig. 1. A non-monotonic hierarchical taxonomy

and the preferences

(16) Dead bats do not fly though bats do.
(17) Dead birds do not fly though birds do.
(18) Dracula is an exception to the above preferences.

The above hierarchy can be represented by the program:

(1) animal(X)← mammal(X) (4) bird(X)← penguin(X)
(2) mammal(X)← bat(X) (5) animal(X)← dead animal(X)
(3) animal(X)← bird(X)

(6) ¬flies(X)← animal(X),¬flying animal(X), not flies(X)
¬flying animal(X)← not flying animal(X)

(7) flies(X)← bat(X), f lying bat(X), not¬flies(X)
flying bat(X)← not¬flying bat(X)

(8) flies(X)← bird(X), f lying bird(X), not¬flies(X)
flying bird(X)← not¬flying bird(X)
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(9) ¬flies(X)← penguin(X),¬flying penguin(X), not flies(X)
¬flyingpenguin(X)← not flying penguin(X)

(10) ¬flies(X)← dead animal(X),¬flying dead(X), notflies(X)
¬flying dead(X)← not flying dead(X)

(11) mammal(pluto)← (14) bat(dracula)←
(12) bird(tweety)← (15) dead animal(dracula)←
(13) penguin(joe)

with the implicit hierarchical preference rules (prefer most specific information):

flying animal(X)← bat(X), f lying bat(X)
flying animal(X)← bird(X), f lying bird(X)
¬flying bird(X)← penguin(X),¬flying penguin(X)
flying dead(X)← bat(X), f lying dead bat(X).

and the explicit problem statement preferences:

(16) ¬flying bat(X)← dead animal(X), bat(X),¬flying dead bat(X)
¬flying dead bat(X)← not flying dead bat(X)

(17) ¬flying bird(X)← dead animal(X), bird(X),¬flying dead bird(X)
¬flying dead bird(X)← not flying dead bird(X)

(18) flying dead bat(dracula)←

The model of this programs is non-contradictory, and we get the expected results,
namely that Pluto and Joe don’t fly, and that Dracula and Tweety do fly.

The above rules can be automatically generated from the description of the
hierarchies, as shown elsewhere [6]. As for WFS, the advantage of WFSXP is
that the computation of the well-founded model is tractable, is defined for every
Generalized Extended Logic Program in particular for contradictory programs.
Furthermore, we are able to detect dependencies on contradiction just by looking
at the model. Generalized Answer Set Semantics based [23,29] is an extension of
Stable Model Semantics for Generalized Extended Logic Programs, and is very
appropriate for the declarative representation of complex problems, but inherits
the same problems of Stable Model Semantics; moreover it explodes when faced
with contradiction.

4 The W4 Project:
Well-Founded Semantics for the WWW

The W4 project aims at developing Standard Prolog inter-operable tools for sup-
porting distributed, secure, and integrated reasoning activities in the Semantic
Web. The results of the W4 project are expected to contribute to the recently ap-
proved REWERSE European Network of Excellence. The long-term objectives
are:
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– Development of Prolog technology for XML, RDF, and RuleML.
– Development of a General Semantic framework for RuleML, including default

and explicit negation, supporting uncertain, incomplete, and paraconsistent
reasoning.

– Development of distributed query evaluation procedures for RuleML, based
on tabulation, according to the previous semantics.

– Development of Dynamic Semantics for evolution/update of Rule ML knowl-
edge bases.

– Integration of different semantics in RuleML (namely, Well-Founded Seman-
tics, Answer Sets, Fuzzy Logic Programming, Annotated Logic Program-
ming, and Probabilistic Logic Programming).

We have started the implementation efforts from the previously described
theoretical work and implementations, and the RuleML [25] language proposal.
A full RuleML compiler is already available for an extension of the hornlog
frament of RuleML (see [32]). The W4 RuleML compiler supports default and
explicit negation both in the heads and in the bodies of rules, as well as assert
statements of EVOLP programs (see section 5). The semantics implemented is
Paraconsistent Well-founded Semantics with Explicit Negation. We now shortly
illustrate the use of the W4 RuleML with an example session:

Example 4. Consider the taxonomy of Example 3 encoded in RuleML format.
E.g., one of the rules used for capturing the sentence “Normally, bats fly” is:

flies(X)← bat(X), f lying bat(X), not¬flies(X).

with the following corresponding RuleML encoding:

<imp>
<_head>
<atom> <_opr><rel>flies</rel></_opr> <var>X</var> </atom>

</_head>
<_body>
<and>
<atom> <_opr><rel>bat</rel></_opr> <var>X</var> </atom>
<atom> <_opr><rel>flying bat</rel></_opr> <var>X</var> </atom>
<not><neg>

<atom> <_opr><rel>flies</rel></_opr> <var>X</var> </atom>
</neg></not>

</and>
</_body>

</imp>

The whole rule base is loaded as follows:

| ?- loadRules( ruleML( ’taxonomy.ruleml’ ) ).
yes

The same predicate is capable of reading ordinary Prolog and NTriple files.
After loading its rule bases, the user can start querying them, a tuple-at-a-
time, with the demo/2 predicate. The first argument is the name of a loaded
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rule base and the second the query in the usual Prolog syntax, extended with
the unary operators not and neg for representing default and explicit negation,
respectively:

| ?- demo( animals, flies(X) ).
X = Dracula; X = Tweety;
no
| ?- demo( animals, neg flies(X) ).
X = Joe; X = Pluto;
no
| ?- demo( animals, ( animal(X), not flies(X) ) ).
X = Pluto; X = Joe;
no

The demo/2 predicate invokes a meta-interpreter that implements WFSXP
semantics via a program transformation into normal logic programming un-
der WFS, making use of the tabling primitives of XSB-Prolog. The predicate
queryRules/3 allows the user to collect all the answers to a query in a list, or
write them in XML format to an output stream. The first argument is the rule
based being queried, the second is a list of terms of the form query( Goal,
Label, ListofVars) with the several queries to issue, and finally the last ar-
gument is either a variable or an output stream.

| ?- queryRules(animals, [query( flies(X), q1, [animal=X] )], Ans).
Ans = [[answer(q1,[animal = Dracula]),answer(q1,[animal = Tweety])]]

| ?- queryRules(animals, [query( flies(X), q1, [animal=X] ),
query( neg flies(X), q2, [non=X])], Ans).

Ans = [[answer(q1,[animal = Dracula]),answer(q1,[animal = Tweety])],
[answer(q2,[non = Joe]),answer(q2,[non = Pluto])]]

| ?- queryRules(animals, [query( flies(X), q1, [animal=X] )],userout).
<answers>
<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Dracula</ind></_subst>
</_answer>
<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Tweety</ind></_subst>
</_answer>

</answers>

| ?- queryRules(animals, [query( flies(X), q1, [animal=X]),
query( neg flies(X) , q2, [non=X])], userout).

<answers>
<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Dracula</ind></_subst>
</_answer>
<_answer><_rlab><ind>q1</ind></_rlab>

<_subst><var>animal</var><ind>Tweety</ind></_subst>
</_answer>
<_answer><_rlab><ind>q2</ind></_rlab><_subst>
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<var>non</var><ind>Joe</ind></_subst>
</_answer>
<_answer><_rlab><ind>q2</ind></_rlab><_subst>

<var>non</var><ind>Pluto</ind></_subst>
</_answer>

</answers>

Mark that the answer may be labelled with user-provided labels in order to
identify the corresponding query, and variables can be given user-understandable
names. The format of answers is not specified in the RuleML proposal.

The W4 RuleML compiler supports several rulebases, imported from RuleML
files, Prolog files, or NTriples files. A converter from Prolog syntax to RuleML
syntax and from RuleML syntax to Prolog syntax is included. An experimental
RDF(S) engine is also provided, and makes extensive use of the tabling facilities
of the XSB Prolog engine. By exploiting the NMR features of the new XSB Pro-
log 2.6, support will be provided for Stable Models and Answer Set Semantics.
The package was originally developed for XSB Prolog 2.5, but porting to other
Prolog systems is foreseen.

There are some open issues, namely the definition of remote Goal invocation
method via the exchange of SOAP messages, and the selection of distributed
query evaluation algorithms and corresponding protocols. A standard integration
of RuleML with ontologies is still lacking. Further applications, testing, and
evaluation is required for the construction of practical systems.

5 Updates and the Evolution of Rule Bases

One of the features for which we developed research work, and corresponding
implementations is that of updates and evolution of rule-based knowledge bases.
While logic programming can be seen as a good representation language for
static knowledge, as we have just shown, if we are to move to a more open and
dynamic environment typical of, for example, the agency paradigm, we must con-
sider ways and means of representing and integrating knowledge updates from
external sources, but also inner source knowledge updates (or self updates). In
fact, an agent not only comprises knowledge about each state, but also knowl-
edge about the transitions between states. The latter may represent the agent’s
knowledge about the environment’s evolution, coupled to its own behaviour and
evolution rules. Similar arguments apply to the Semantic Web. In it, knowledge
is stored in various autonomous sources or repositories, which evolve with time,
thus exhibiting a dynamic character. Declarative languages and mechanisms for
specifying the Semantic Web’s evolution and maintenance are in order, and we
have recently worked towards this goal.

To address these concerns we first introduced Dynamic Logic Programming
(DLP) [5] ([19] addressed similar concerns). According to DLP, knowledge is
given by a linearly ordered sequence of generalized extended logic programs that
represent distinct and dynamically changing states of the world. Each of the
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states may contain mutually contradictory and overlapping information. The
semantics of DLP ensures that all previous rules remain valid (by inertia) so
long as they are not contradicted by newer (prevailing) rules.

We have developed two implementations of DLP1:

– One of them implements exactly the semantics defined in [5] which is a stable
models based semantics. This implementation is provided as a pre-processor
of sequences of generalized programs into programs that run under the DLV
system [9] for computing the stable models.

– The other implementation is based on a generalization of the well-founded
semantics [21] for sequences of programs, which is sound though not complete
with respect to the semantics in [5]. The advantages of using a well-founded
based semantics rather than a stable models based one can be found in
section 2. This implementation consists of a meta-interpreter of sequences
of programs, and runs under XSB-Prolog [30]. With it, one can consult se-
quences of generalized programs, as well as update the running sequence with
with set or another of generalized rules. Queries to literals can be posed to
the current (latest) state, or to any other previous state. It is also possibly
to ask in which of the states some literal holds.

Recently we have integrated a mechanism of preferences [7], which generalizes
the preferences of [11] to sequences of programs. The implementation of updates
with preferences is based on a pre-processor into DLV programs, according to a
transformation defined in [4].

To cope with updates of knowledge coming from various sources, we extended
DLP and developed Multi-dimensional Dynamic Logic Programming - (MDLP)
[28]. DLP allows to encode a single update dimension, where this dimension can
either be time, hierarchy strength of rules, priorities, etc. With MDLP more than
one of these dimensions can be dealt within a single framework (allowing e.g.
to model the evolution over time of hierarchically organized sets of rules). The
MDLP implementation is enacted as a meta-interpreter running under XSB-
Prolog. With it, Directed Acyclic Graphs (DAGs) of programs can be consulted
(with a special syntax for representing the graph), and queries can be put to any
of the programs in the DAG.

With these languages and implementations logic programs can describe well
knowledge states and also sequences and DAGs of updating knowledge states.
It’s only fit that logic programs be utilized to describe the transitions between
knowledge states as well. This can be achieved by associating with each state
a set of transition rules to obtain the next state. However, till recently, LP
had sometimes been considered less than adequate for modelling the dynamics
of knowledge change over time, because typical update commands are defined
by it. To overcome this limitation, we have introduced and implemented the
language LUPS [8] (related languages are EPI [18] and KABUL [27]).

LUPS is a logic programming command language for specifying logic pro-
gram updates. It can be viewed as a language that declaratively specifies how
1 All implementations mentioned in this section can be found at:
http://centria.di.fct.unl.pt/∼jja/
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to construct a Dynamic Logic Program by means of successive update com-
mands. A sentence U in LUPS is a set of simultaneous update commands that,
given a pre-existing sequence of logic programs, whose semantics corresponds to
our knowledge at a given state, produces a new DLP with one more program,
corresponding to the knowledge that results from the previous sequence after
performing all the simultaneous update commands. A program in LUPS is a
sequence of such sentences. The most simple LUPS command is assert Rule,
that simply asserts a rule in the next program of the running sequence. Other
more elaborate commands of LUPS take care of retraction of rules, persistent
assertion of rules, cancellation of persistent assertions, event assertion and per-
sistent event assertion. For example, the command for persistent rule assertion
is of the form always Rule when Conds, which from the moment it is given,
till cancelled, whenever Conds are true Rule is asserted. As with DLP, two
implementations have also been developed for LUPS, one stable models based,
running as a pre-processor into DLV programs, and another running as a meta-
interpreter in XSB-Prolog.

More recently, we have worked on a general language, christened EVOLP
(after EVOlving Logic Programs) [1], that integrates in a simple way the concepts
of both DLP and LUPS, through a language much closer to that of traditional
logic programs than the one of LUPS. EVOLP generalizes logic programming
to allow specification of a program’s own evolution as well as evolution due to
external events, in a single unified way, by permitting rules to indicate assertive
conclusions in the form of program rules. EVOLP rules are simply generalized
LP rules plus the special predicate assert/1, which can appear both in heads or
bodies of rules. The argument of assert/1 can be a full-blown EVOLP rule, thus
allowing for the nesting of rule assertions within assertions to make it possible
for rule updates to be themselves updated down the evolution line. The meaning
of a sequence of EVOLP rules is given by sequences of models. Each sequence
determines a possible evolution of the knowledge base. Each model determines
what is true after a number of evolution steps (i.e. a state) in the sequence:
a first model in a sequence is built by “computing” the semantics of the first
EVOLP program, where assert/1 is as any other predicate; if assert(Rule) is
true at some state, then the program must be updated with Rule in the next
state; this updating, and the “computation” of the next model in the sequence,
is performed as in DLP.

The current implementation of EVOLP is a meta-interpreter that runs under
XSB-Prolog. With it, it is possible to consult sequences of sets of EVOLP rules,
as well as update the running sequence with a new set of rules. Queries to literals
can be made in the current (later) state, or in any other previous state or interval
of states. It is also possibly to ask in which of the states is some literal true. We
are now in the process of integrating the EVOLP implementation (which, as
mentioned above, encompasses both the features from DLP and LUPS) into the
W4 RuleML compiler described in section 4, that already supports EVOLP’s
syntax . This work, which we expect to finish soon, will allow the usage of
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EVOLP for taking care of the evolution and maintenance of RuleML rule bases
in the Semantics Web.

We have applied these languages, and used the above mentioned implemen-
tations, in various domains, such as: actions, agents’ architecture, specification
of agents’ behaviours, software specification, planning, legal reasoning, and ac-
tive databases. References to this work, as well as the running examples, can be
found in the URL above.

To illustrate the expressiveness of these languages, we briefly illustrate here
how EVOLP can be employed to model an evolving personal assistant agent for
email management able to: Perform basic actions of sending, receiving, delet-
ing messages; Storing and moving messages between folders; Filtering spam
messages; Sending automatic replies and forwarding; Notifying the user of spe-
cial situations. All of this dependent on user specified criteria, and where the
specification may change dynamically. More details on this application can be
found in [2]. In this application messages are stored via the basic predicates
msg(Identifier, From, Subject, Body, T imeStamp) and in(Identifier, Folder)
for specifying in which folder the message is stored. New messages are simply
events of the form newmsg(msg(Identifier, From, Subject, Body). Basic ac-
tions can be easily modelled with EVOLP. For example, for dealing with incom-
ing messages, all we have to specify is that any new message, arriving at time T ,
should be stored in the inbox folder, unless it is marked for deletion. If a message
is marked to be deleted then it should not be stored in any folder. This can be
modelled by the EVOLP rules:

assert(msg(M, F, S, B, T ))← newmsg(M, F, S, B), time(T ), not delete(M)
assert(in(M, inbox))← newmsg(M, F, S, B), not delete(M)

assert(not in(M, inbox))← delete(M), in(M, F )

Rules for filtering spam can then be added, as updates to the program, in a
simple way. For example, if one wants to filter, and delete, messages containing
the word “credit” in the subject, we simply have to update our program with:

delete(M)← newmsg(M, F, S, B), spam(F, S, B)

spam(F, S, B)← contains(S, credit)

Note that this definition of spam can later be updated, EVOLP ensuring that
conflicts between older and newer rules are automatically resolved. For example,
if later one wants to update the definition of spam, by stating that messages
coming from one’s accountant should not be considered as spam, all one has to
do is to update the program with the rule:

not spam(F, S, B)← contains(F, my accountant)

With this update, EVOLP ensures that messages from the accountant are not
considered spam, even if they contain the word “credit” in the subject, and the
user doesn’t have to worry about guaranteeing, manually, the consistency of later
rules with previous ones.
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As an example of a more complex rule, consider that the user is now or-
ganizing a conference, and assigns papers to referees. Suppose further that he
wants to automatically guarantee that, after receipt of a referee’s acceptance,
any message about an assigned paper is forwarded to the corresponding referee.
In EVOLP terms, this means that if a message is received from the referee ac-
cepting to review a given paper, then a rule should be asserted stating that new
messages about that paper are to be sent to that referee:

assert(send(R, S, B) ← newmsg(M, F, S, B), contains(S, PId),
assign(PId, R) )

← newmsg(M, R, PId, B), contains(B,‘accept’)

For an illustration of more elaborate rules, showing other features of EVOLP,
such as the possibility of dynamically changing the policies of the agent triggered
by internal or external conditions, for commands that span over various states,
etc, the reader is referred to [2].

6 Conclusion

In our opinion, Well-Founded Semantics should be a major player in RuleML,
properly integrated with Stable Models. A full-blown theory is available for im-
portant extensions of standard WFS/SMs, addressing many of the open issues
of the Semantic Web. Most extensions resort to polynomial program transfor-
mations, namely those for evolution and update of knowledge bases. They can
handle uncertainty, incompleteness, and paraconsistency. Efficient implementa-
tion technology exists, and important progress has been made in distributed
query evaluation. An open, fully distributed, architecture is being elaborated
and proposed.
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Abstract. In natural language, and in some knowledge representation
systems, such as extended logic programs, there are two kinds of nega-
tion: a weak negation expressing non-truth, and a strong negation ex-
pressing explicit falsity. In this paper I argue that, like in several basic
computational languages, such as OCL and SQL, two kinds of negation
are also needed for a Web rule language.

1 Introduction

In [Wag91], I have argued that a database, as a knowledge representation system,
needs two kinds of negation to be able to deal with partial information. The
present paper is an attempt to make the same point for the Semantic Web.

Computational forms of negation are used in imperative programming lan-
guages (such as Java), in database query languages (such as SQL), in modeling
languages (such as UML/OCL), in production rule systems (such as CLIPS
and Jess) and in logic programming languages (such as Prolog). In imperative
programming languages, negation may occur in the condition expression of a
conditional branching statement. In database query languages, negation may
occur in at least two forms: as a not operator in selection conditions, and in
the form of the relational algebra difference operator (corresponding to the SQL
EXCEPT operator). In modeling languages, negation occurs in constraint state-
ments. E.g., in OCL, there are several forms of negation: in addition to the not
operator in selection conditions also the reject and the isEmpty operators are
used to express a negation. In production rule systems, and in logic program-
ming languages, a negation operator not typically occurs only in the condition
part of a rule with the operational semantics of negation-as-failure which can
be understood as classical negation under the preferential semantics of stable
models.

We show in section 2 that negation in all these computational systems is, from
a logical point of view, not a clean concept, but combines classical (Boolean)
negation with negation-as-failure and the strong negation of three-valued logic
(also called Kleene negation). In any case, however, it seems to be essential for
all major computational systems to provide different forms of negation. Conse-
quently, we may conclude (by common sense induction) that the Semantic Web
also needs these different forms of negation.

F. Bry et al. (Eds.): PPSWR 2003, LNCS 2901, pp. 33–50, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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In natural language, there are (at least) two kinds of negation: a weak nega-
tion expressing non-truth (in the sense of “she doesn’t like snow” or “he doesn’t
trust you”), and a strong negation expressing explicit falsity (in the sense of
“she dislikes snow” or “he distrusts you”). Notice that the classical logic law of
the excluded middle holds only for the weak negation (either “she likes snow” or
“she doesn’t like snow”), but not for the strong negation: it does not hold that
“he trusts you” or “he distrusts you”; he may be neutral and neither trust nor
distrust you.

A number of knowledge representation formalisms and systems, discussed in
section 4, follow this distinction between weak and strong negation in natural
language. However, many of them do not come with a model-theoretic semantics
in the style of classical logic. Instead, an inference operation, that may be viewed
as a kind of proof-theoretic semantics, is proposed.

Classical (two-valued) logic cannot account for two kinds of negation because
two-valued (Boolean) truth functions do not allow to define more than one nega-
tion. The simplest generalization of classical logic that is able to account for two
kinds of negation is partial logic giving up the classical bivalence principle and
subsuming a number of 3-valued and 4-valued logics. For instance, in 3-valued
logic with truth values {f, u, t} standing for false, undetermined (also called un-
known or undefined) and true, weak negation (denoted by∼) and strong negation
(denoted by ¬) have the following truth tables:

p ∼p
t f
u t
f t

p ¬p
t f
u u
f t

Notice the difference between weak and strong negation in 3-valued logic: if a
sentence evaluates to u in a model, then its weak negation evaluates to t, while
its strong negation evaluates to u in this model. Partial logics allow for truth-
value gaps created by partial predicates to which the law of the excluded middle
does not apply.

However, even in classical logic, where all predicates are total, we may dis-
tinguish between predicates that are completely represented in a database (or
knowledge base) and those that are not. The classification if a predicate is com-
pletely represented or not is up to the owner of the database: the owner must
know for which predicates she has complete information and for which she does
not. Clearly, in the case of a completely represented predicate, negation-as-failure
amounts to classical negation, and the underlying completeness assumption is
also called Closed-World Assumption. In the case of an incompletely represented
predicate, negation-as-failure only reflects non-provability, but does not allow to
infer the classical negation. Unfortunately, neither CLIPS/Jess nor Prolog sup-
port this distinction between ‘closed’ and ‘open’ predicates.

Open (incompletely represented total) predicates must not be confused with
partial predicates that have truth-value gaps. The law of the excluded middle,
p ∨ ¬p, applies to open predicates but not to partial predicates.
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For being able to make all these distinctions and to understand their logical
semantics, we have to choose partial logic as the underlying logical framework.
Partial logic allows to formally distinguish between falsity and non-truth by
means of strong and weak negation. In the case of a total predicate, such as
being an odd number, both negations collapse:

∼odd(x) iff ¬odd(x),

or in other words, the non-truth of the atomic sentence odd(x) amounts to
its falsity. In the case of a partial predicate, such as likes, we only have the
relationship that the strong negation implies the weak negation:

∼likes(she,snow) if ¬likes(she,snow),

but not conversely. Also, while the double negation form ’¬ ∼’ collapses (ac-
cording to partial logic, see [Wag98]), the double negation form ’∼ ¬’ does not
collapse: not disliking snow does not amount to liking snow. Classical logic can
be viewed as the degenerate case of partial logic when all predicates are total.

2 Negative Information, Closed Predicates
and Two Kinds of Negation in the Semantic Web

We claim that, like in the cases of UML/OCL, SQL and extended logic programs,
also for Web rules one needs two kinds of negation. This applies in particular to
RDF(S), OWL and RuleML. We first discuss this problem briefly for the case of
RDF(S), N3 and RuleML. Then in Section 3 and 4, we discuss it both for the
established languages/technologies of UML/OCL, SQL, Jess, and Prolog, and
for knowledge representation formalism. Finally, in Section 5, present its logical
foundation.

2.1 Expressing Negative Information in RDF

The FIPA RDF Content Language Specification (see www.fipa.org) that specifies
how RDF can be used as a message content language in the communication acts
of FIPA-compliant agents proposes a method how to express negated RDF facts
to ‘express belief or disbelief of a statement’. For this purpose an RDF state-
ment (expressed as a ‘subject-predicate-object’ triple corresponding to objectID-
attribute-value) is annotated by a truth value true or false in a <fipa:belief>
element as in the following example:

<fipa:Proposition>
<rdf:subject>RDF Semantics</rdf:subject>
<rdf:predicate rdf:resource="http://description.org/schema#author"/>
<rdf:object>Ora Lassila</rdf:object/>
<fipa:belief>false</fipa:belief>

</fipa:Proposition>
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This example expresses the negated sentence

Ora Lassila is not the author of ‘RDF Semantics’.

It shows that there is a need to extend the current syntax of RDF, so as to be
able to express negative information.

2.2 Closed Predicates and Negation-as-Failure in RDF/S

As opposed to the predicate ‘is the author of’, there are also predicates for which
there is no need to express negative information because the available positive
information about them is complete and, consequently, the negative information
is simply the complement of the positive information.

For instance, the W3C has complete information about all official W3C doc-
uments and their normative status (http://www.w3.org/TR/ is the official list
of W3C publications); consequently, the predicate is an official W3C document
should be declared as closed in the W3C knowledge base (making a ‘local’ com-
pleteness assumption)1. This consideration calls for a suitable extension of RDFS
in order to allow making such declarations for specific predicates.

For sentences formed with closed predicates it is natural to use negation-as-
failure for establishing their falsity (anything not listed on that page cannot be
a W3C recommendation). So, a query language for RDF should include some
form of negation-as-failure.

2.3 Default Rules in RuleML and N3

The RuleML standardization initiative has been started in August 2000 with the
goal of establishing an open, vendor neutral XML-based rule language standard.
The official website of the RuleML initiative is www.ruleml.org.

The current ‘official’ version of RuleML (in July 2003) has the version number
0.84. In [BTW01], the rationale behind RuleML 0.8 and some future extensions
of it is discussed, while [Wag02] provides a general discussion of the issues of
rule markup languages.

An example of a derivation rule involving strong negation (for making sure
that something is definitely not the case) and negation-as-failure (for expressing
a default condition) is the following:

A car is available for rental if it is not assigned to any rental order, does
not require service and is not scheduled for a maintenance check.

This rule could be marked up in RuleML as shown below. Strong negation
is expressed by <neg> while negation-as-failure is expressed by <naf>. Notice
that it is important to apply <neg>, and not <naf>, to requiresService in
order to make sure, by requiring explicit negative information, that the car in
question does not require service (the car rental company may be liable for any
consequences/damages caused by a failure of this check).
1 This example is due to Sandro Hawke, see [DDM].
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<imp>
<_head>
<atom>
<_opr>isAvailable</_opr>
<var>Car</var>

</atom>
</_head>
<_body>

<and>
<atom>
<_opr>RentalCar</_opr>
<var>Car</var>

</atom>
<neg>
<atom>
<_opr>requiresService</_opr>
<var>Car</var>

</atom>
</neg>
<naf>
<atom>
<_opr>isSchedForMaint</_opr>
<var>Car</var>

</atom>
</naf>
<naf>
<atom>
<_opr>isAssToRentalOrder</_opr>
<var>Car</var>

</atom>
</naf>

</and>
</_body>

</imp>

However, the last condition of the rule, expressed with <naf>, is a default
condition requiring only that there is no information about any assignment of
the car in question. In N3, one can test for what a formula does not say, with
log:notIncludes. In the following example (taken from [BL]), we have a rule
stating that if the specification for a car doesn’t say what color it is, then it is
black:

this log:forAll :car. { :car.auto:specification log:notIncludes
{:car auto:color []}}
=> {:car auto:color auto:black}.
In this rule, the log:notIncludes operator expresses a negation-as-failure in

a similar way as the isEmpty operator of OCL and the IS NULL operator of SQL.
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3 Negations in UML/OCL, SQL, CLIPS/Jess and Prolog

UML/OCL, SQL, CLIPS/Jess and Prolog may be viewed as the paradigm-
setting languages for modeling, databases, production rules and (logical) deriva-
tion rules. We discuss each of them in some more detail.

3.1 Negation in UML/OCL

The Unified Modeling Language (UML) may be viewed as the paradigm-setting
language for software and information systems modeling. In the UML, nega-
tion occurs in Object Constraint Language (OCL) statements. There are several
forms of negation in OCL: in addition to the not operator in selection conditions
also the reject and the isEmpty operators are used to express a negation. OCL
allows partially defined expressions and is based on a 3-valued logic where the
third truth value, denoted by ⊥, is called undefined.

The above rule for rental cars defines the derived Boolean-valued attribute
isAvailable of the class RentalCar by means of an association isAssignedTo
between cars and rental orders and the stored Boolean-valued attributes requi-
resService and isSchedForMaint. All these concepts are shown in the UML
class diagram in Figure 1.

RentalCarID[1] : String
requiresService[0..1] : Boolean
isSchedForMaint[1] : Boolean
/isAvailable[1] : Boolean

RentalCar
RentalOrder

1 0..1

isAssignedTo

«invariant»
{ RentalOrder->isEmpty

and not CarPark->isEmpty
and not requiresService

and not isSchedForMaint
implies isAvailable}

CarPark

* 0..1

isParkedOn

Fig. 1. This UML class diagram shows two classes, RentalCar and RentalOrder, and
the functional association isAssignedTo between them. The Boolean-valued attribute
isAvailable is a derived attribute whose definition is expressed by the attached OCL
constraint.

Notice that requiresService is defined as an optional attribute (that need
not always have a value). This reflects the fact that whenever a rental car is re-
turned by a customer, it is not known if it requires service until its technical state
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is checked. Only then this attribute obtains a value true or false2. As opposed to
requiresService, isSchedForMaint is defined as a mandatory attribute that
must always have a value, reflecting the fact that the car rental company always
knows if a car is or is not scheduled for a maintenance check.

Since the Object Constraint Language (OCL) of UML does not allow to
define derivation rules, we have to express the definition of the derived attribute
isAvailable by means of an OCL invariant statement:

context RentalCar inv:
RentalOrder->isEmpty
and not requiresService
and not isSchedForMaint

implies isAvailable

This integrity constraint states that for a specific rental car whenever there
is no rental order associated with it, and it does not require service and is not
scheduled for maintenance, then it has to be available for a new rental. It involves
three forms of negation:

1. the first one, RentalOrder->isEmpty, expresses the negation-as-failure there
is no information that the car is assigned to any rental order ;

2. the second one, not requiresService, is strong negation; and
3. the third one, not isSchedForMaint, is classical negation.

We discuss each of them in more detail.

The not Operator. The negation in not isSchedForMaint is classical nega-
tion, since isSchedForMaint is defined as a mandatory Boolean-valued at-
tribute. However, the negation in not requiresService is strong negation,
since requiresService is defined as an optional Boolean-valued attribute
such that the truth value of the corresponding statement is unknown whenever
the value of this attribute is NULL. Thus, viewing Boolean-valued attributes as
predicates, we may say that UML allows for both (closed) total and partial predi-
cates, such that not denotes classical (Boolean) negation when applied to a total
predicate and strong (Kleene) negation when applied to a partial predicate.

The isEmpty Operator. The negation that is implicitly expressed by Rental-
Order->isEmpty is negation-as-failure, since it evaluates to true whenever there
is no information about any associated rental order. Notice, however, that having
no information about any associated rental order does logically not imply that
there is no associated rental order. Only in conjunction with a completeness as-
sumption (either for the entire database or at least for the predicate concerned)
can we draw this conclusion.

In summary, we have three kinds of negation in OCL: classical negation,
strong negation and negation-as-failure.
2 Notice that optional, i.e. partial, attributes in the UML correspond to SQL table

columns admitting null values.
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3.2 Negation in SQL

In SQL, negation may occur in various forms: as a NOT operator or as an IS

NULL operator in selection conditions, or in the form of the EXCEPT table
operator (corresponding to the relational algebra difference operator). SQL may
be viewed as the paradigm-setting language for databases. It supports null values
and incomplete predicates (whose truth-value may be unknown), and is based
on a 3-valued logic with the truth values true, unknown and false, where NOT

corresponds to strong negation [MS02].
The following SQL table definition implements the class RentalCar from the

UML class diagram of Figure 1.

CREATE TABLE RentalCar(
CarID CHAR(20) NOT NULL,
requiresService BOOLEAN,
isSchedForMaint BOOLEAN NOT NULL,
isAvailable BOOLEAN,
isAssignedTo INTEGER REFERENCES RentalOrder
)

Notice that isSchedForMaint is defined as a mandatory (‘not null’) Boolean-
valued column, whereas requiresService is defined as an optional Boolean-
valued column and isAssignedTo as an optional reference to a rental order.
Table 1 contains a sample population of the RentalCar table.

Table 1. A sample population of the RentalCar table.

CarID requiresService isSchedForMaint isAvailable isAssignedTo
23010 false false false 1032779
23011 false false true NULL
23785 NULL false NULL NULL
30180 true true false NULL

In SQL databases, a view defines a derived table by means of a query. For
instance, the derived table of available cars is defined as the view

CREATE VIEW AvailableCar( CarID)
SELECT CarID FROM RentalCar
WHERE isAssignedTo IS NULL
AND NOT requiresService
AND NOT isSchedForMaint

The SELECT statement in this view contains three negations:

1. the first one, isAssignedTo IS NULL, expresses the negation-as-failure stating
that there is no information that the car is assigned to any rental order ;
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2. the second one, NOT requiresService, is strong negation; and
3. the third one, NOT isSchedForMaint, is classical negation.

We discuss each of them in more detail.

The not Operator. When applied to a complete predicate, SQL’s not ex-
presses classical negation, but when applied to an incomplete predicate, it ex-
presses strong negation because SQL evaluates logical expressions using 3-valued
truth functions, including the truth table for ¬ presented in the introduction.

When we ask the query ‘which cars do not require service?’ against the
database state shown in Table 1, using the SQL statement

SELECT CarID FROM RentalCar
WHERE NOT requiresService

we actually use strong negation because requiresService is an incomplete
predicate (admitting NULL values). Thus, the resulting answer set would be
{23010, 23011}. That SQL’s not behaves like strong negation when applied to
an incomplete predicate can be demonstrated by asking the query ‘which cars
require service or do not require service?’ :

SELECT CarID FROM RentalCar
WHERE requiresService OR NOT requiresService

leading to the result set {23010, 23011, 30180}. If not would be classical nega-
tion in this query, then, according to the law of the excluded middle, the answer
should be the set of all cars from table RentalCar, that is {23010, 23011, 23785,
30180}. However, SQL’s answer set includes only those cars for which the
requiresService attribute has the value true or false, but not those for which
it is NULL.

The IS NULL Operator. When we ask, however, ‘which cars are not assigned
to any rental order?’ using the SQL statement

SELECT CarID FROM RentalCar
WHERE isAssignedTo IS NULL

leading to the result set {23011, 23785, 30180}, we use negation-as-failure because
without a completeness assumption, the isAssignedTo IS NULL condition does
not imply that there is really no associated rental order, but only that there is
no information about anyone.

The EXCEPT Operator. Also, SQL’s EXCEPT operator corresponds to Pro-
log’s negation-as-failure not : a Prolog query expression ”give me all objects x
such that ’p(x) and not q(x)’” corresponds to the SQL expression ’P EXCEPT Q’
where P and Q denote the tables that represent the extensions of the predicates
p and q.



42 G. Wagner

3.3 Negation in CLIPS/Jess and Prolog

CLIPS/Jess and Prolog may be viewed as the paradigm-setting languages for
production rules and (computational logic) derivation rules. Both languages have
been quite successful in the Artificial Intelligence research community and have
been used for many AI software projects. However, both languages also have dif-
ficulties to reach out into, and integrate with, mainstream computer science and
live rather in a niche. Moreover, while Prolog has a strong theoretical foundation
(in computational logic), CLIPS/Jess and the entire production rule paradigm
lack any such foundation and do not have a formal semantics. This problem
is partly due to the fact that in production rules, the semantic categories of
events and conditions in the left-hand-side, and of actions and effects in the
right-hand-side, of a rule are mixed up.

While derivation rules have an if-Condition-then-Conclusion format, produc-
tion rules have an if-Condition-then-Action format. To determine which rules are
applicable in a given system state, conditions are evaluated against a fact base
that is typically maintained in main memory.

In Prolog, the rule for available cars is defined by means of the following two
rules:

availableCar(X) :-
rentalCar(X),
not requiresService(X),
not isSchedForMaint(X),
not isAssignedToSomeRental(X).

isAssignedToSomeRental(X) :-
isAssignedTo(X,Y).

The second of these rules is needed to define the auxiliary predicate isAssigned-

ToSomeRental because Prolog does not provide an existential quantifier in rule
conditions for expressing a formula like ¬∃y(p(x, y)). Although they include the
possibility of using the nonmonotonic negation-as-failure operator, Prolog rules
and deductive database rules (including SQL views) have a purely declarative
semantics in terms of their intended models (in the sense of classical logic model
theory). For rules without negation, there is exactly one intended model: the
unique minimal model. The intended models of a set of rules with negation(-as-
failure) are its stable models.

Production rules do not explicitly refer to events, but events can be simulated
by asserting corresponding objects into working memory. A derivation rule can be
simulated by a production rule of the form if-Condition-then-assert-Conclusion
using the special action assert that changes the state of a production rule system
by adding a new fact to the set of available facts.

The production rule system Jess, developed by Ernest Friedman-Hill at San-
dia National Laboratories, is a Java successor of the classical LISP-based pro-
duction rule system CLIPS. Jess supports the development of rule-based systems
which can be tightly coupled to code written in the Java programming language.
As in LISP, all code in Jess (control structures, assignments, procedure calls)
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takes the form of a function call. Conditions are formed with conjunction, dis-
junction and negation-as-failure. Actions consist of function calls, including the
assertion of new facts and the retraction of existing facts.

In Jess, the rule for available cars is defined as

(defrule availableCar
(and (RentalCar ?x)

(not (requiresService ?x))
(not (isSchedForMaint ?x))
(not (isAssignedToSomeRental ?x)))

=>
(assert (availableCar ?x))

Both Prolog and Jess allow negation to be used only in the body (or con-
dition) of a rule, and not in its head (in Jess, the head of a rule represents an
action, so negation wouldn’t make sense here, anyway), nor in facts. So, unlike
in SQL, where a Boolean-valued attribute can have the value false as distinct
from NULL corresponding to unknown, there is no possibility to represent and
process explicit negative information. For instance, the negative fact that the
car with CarID=23010 does not require service, expressed by the attribute-value
pair 23010.requiresService=false in Table 1, cannot be represented in Jess and
Prolog. In both languages, not expresses negation-as-failure implementing clas-
sical negation in the case of complete predicates subject to a completeness (or
‘Closed-World’) assumption.

This shortcoming has led to the extension of normal logic programs by adding
a negation for expressing explicit negative information, as proposed indepen-
dently in [GL90,GL91], and in [PW90,Wag91].

4 Two Kinds of Negation in Knowledge Representation

A number of knowledge representation formalisms and systems follow the dis-
tinction between weak and strong negation in natural language which is also
implicit in SQL. We mention just two of them:

– Logic programs with two kinds of negation (called extended logic programs
in [GL90]).

– The IBM business rule system CommonRules (described in [Gro97,GLC99])
that is based on the formalism of extended logic programs.

Using two kinds of negation in derivation rules has been proposed indepen-
dently in [GL90] and [Wag91]. Unfortunately, and confusingly, several different
names and several different semantics have been proposed by different authors
for these two negations. Strong negation has been called ‘classical negation’
and ‘explicit negation’, while negation-as-failure has been renamed into ‘implicit
negation’ and ‘default negation’. In particular, the name ‘classical negation’ is
confusing because (the real) classical negation satisfies the law of the excluded
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middle while the ‘classical negation’ in extended logic programs does not. Appar-
ently, the reason for choosing the name ‘classical negation’ is of a psychological
nature: one would like to have classical negation, or at least some approximation
of it. But that’s exactly what partial logic is able to offer: for complete predicates,
both strong negation and weak negation collapse into classical negation.

Unlike for logical theories in standard logics, the semantics of knowledge
bases in knowledge representation formalisms is not based on all models of a
knowledge base but solely on the set of all intended models. E.g., for relational
databases the intended models are the ‘minimal’ ones in the intuitive sense of
minimal information content. However, a satisfactory definition of minimally
informative models is not possible in classical logic, but only in partial logics.
Among all partial models of a KB the minimal ones are those that make a
minimal number of atomic sentences true or false. This definition does not work
for classical models where a sentence is false iff it is not true. So, classical models
allow only an asymmetric definition of minimality: one may define that among
all classical models of a KB the minimal ones are those that make a minimal
number of atomic sentences true. However, this definition does not adequately
capture the intuitive notion of minimal information content, since both the truth
and the falsity of a sentence should count as information.

For a KB consisting of derivation rules with negation-as-failure, minimal
model semantics is not adequate, because it does not account for the directedness
of such rules. This is easy to see. Consider the knowledge base {p← not q}. This
KB has two minimal models: {p} and {q}, but only {p} is an intended model.

The model-theoretic semantics of derivation rules with negation-as-failure
(e.g. in normal and extended logic programs) is based on the concept of stable
(generated) classical models (see [GL88,HW97]). Under the preferential seman-
tics of stable (generated) models, classical negation corresponds to negation-
as-failure, or, in other words, negation-as-failure implements classical negation
under the preferential semantics of stable (generated) models.

There is a kind of proof-theoretic semantics for normal logic programs, called
wellfounded semantics, originally proposed by [vG88]. It should be rather con-
sidered an inference operation (or a proof theory) which is sound but incomplete
with respect to stable model semantics.

The model-theoretic semantics of derivation rules with negation-as-failure
and strong negation (e.g. in extended logic programs) is based on the concept of
stable generated partial models (see [HJW99]). Under the preferential semantics
of stable generated partial models, weak negation corresponds to negation-as-
failure, or, in other words, negation-as-failure implements weak negation when
applied to an incomplete predicate, and it implements classical negation when
applied to a complete predicate.

Another model-theoretic semantics for extended logic programs, which is
elegant but more complicated (since based on possible worlds), is the equilibrium
semantics of [Pea99]. Other proposed semantics, such as the answer set semantics
of [GL90,GL91] or the WFSX semantics of [PA92], are not model-theoretic and
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less general (they do not allow for arbitrary formulas in the body and head of a
rule).

In the next section, we present the logical formalism needed to explain two
kinds of negation.

5 Partial Logics with Two Kinds of Negation
and Two Kinds of Predicates

This section is based on [HJW99,Wag98].
A function-free3 partial logic signature σ = 〈Pred ,TPred ,Const〉 consists

of a set of predicate symbols Pred, the designation of a set of total predicate
symbols TPred ⊆ Pred , and a set of constant symbols Const.

5.1 Partial Models

We restrict our considerations to Herbrand interpretations since they capture the
Unique Name Assumption which is fundamental in the semantics of databases
and logic programming.

Definition 1 (Interpretation) Let σ = 〈Pred ,TPred ,Const〉 be a signa-
ture. A partial Herbrand σ-interpretation I consists of:

1. A set UI , called universe or domain of I, which is equal to the set of constant
symbols, UI = Const;

2. an assignment I(c) = c to every constant symbol c ∈ Const;
3. an assignment of a pair of relations It(p), If (p) to every predicate symbol

p ∈ Pred such that
It(p) ∪ If (p) ⊆ U

a(p)
I ,

and in the special case of a total predicate p ∈ TPred,

It(p) ∪ If (p) = U
a(p)
I ,

where a(p) denotes the arity of p.

In the sequel we also simply say ‘interpretation’ (‘satisfaction’, ‘model’, ‘entail-
ment’) instead of ‘partial Herbrand interpretation’ (‘partial Herbrand satisfac-
tion’, ‘partial Herbrand model’, ‘partial Herbrand entailment’).

The class of all σ-interpretations is denoted by I4(σ). We define the classes
of coherent, of total, and of total coherent (or 2-valued) interpretations by

Ic(σ) = {I ∈ I4(σ) | It(p) ∩ If (p) = ∅ for all p ∈ Pred}
It(σ) = {I ∈ I4(σ) | It(p) ∪ If (p) = U

a(p)
I for all p ∈ Pred}

I2(σ) = Ic(σ) ∩ It(σ)
3 For simplicity, we exclude function symbols from the languages under consideration,

i.e. we do not consider functional terms but only variables and constants; signatures
without function symbols lead to a finite Herbrand universe.
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The model relation |= between a Herbrand interpretation and a sentence is
defined inductively as follows.

Definition 2 (Satisfaction)

I |= p(c1, . . . , cm) ⇐⇒ 〈c1, . . . , cm〉 ∈ It(p)
I |= ¬p(c1, . . . , cm) ⇐⇒ 〈c1, . . . , cm〉 ∈ If (p)

I |= ∼ F ⇐⇒ I �|= F
I |= F ∧G ⇐⇒ I |= F & I |= G
I |= F ∨G ⇐⇒ I |= F or I |= G
I |= ∃xF (x) ⇐⇒ I |= F (c) for some c ∈ Const
I |= ∀xF (x) ⇐⇒ I |= F (c) for all c ∈ Const

All other cases of compound formulas are handled by the following DeMorgan
and double negation rewrite rules:

¬(F ∧G) −→ ¬F ∨ ¬G ¬(F ∨G) −→ ¬F ∧ ¬G
¬∃xF (x) −→ ∀x¬F (x) ¬∀xF (x) −→ ∃x¬F (x)
¬¬F −→ F ¬∼F −→ F

in the sense that for every rewrite rule LHS −→ RHS , we define

I |= LHS ⇐⇒ I |= RHS

Mod∗ denotes the model operator associated with the system 〈L(σ), I∗, |=〉, and
|=∗ denotes the corresponding entailment relation, for ∗ = 4, c, t, 2, i.e.

X |=∗ F iff Mod∗(X) ⊆ Mod∗({F})

Observation 1 If only two-valued models are admitted, weak and strong nega-
tion collapse:

¬F ≡2 ∼F

5.2 Classical Logic as a Special Case of Partial Logic

Obviously, the entailment relation |=2 corresponds to entailment in classical
logic. The most natural way to arrive at classical logic from proper partial logic
is to assume that all predicates are total: TPred = Pred . Under this assumption,
the two entailment relations |=c and |=2 of partial logic collapse.

Claim. If TPred = Pred , then |=c = |=2.

5.3 Total Predicates and the Closed-World Assumption

In general, three kinds of predicates can be distinguished. The first distinction,
proposed in [Koe66], reflects the fact that many predicates (especially in empir-
ical domains) have truth value gaps: neither p(c) nor ¬p(c) has to be the case
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for specific instances of such partial predicates, like, e.g., color attributes which
can in some cases not be determined because of vagueness.

Other predicates, e.g. from legal or theoretical domains, are total, and we
then have, for instance, m(S) ∨ ¬m(S) and

prime(277 − 1) ∨ ¬prime(277 − 1)

stating that Sophia is either married or unmarried, and that 277 − 1 is either a
prime or a non-prime number. Only total predicates can be completely repre-
sented in a knowledge base. Therefore, only total predicates can be subject to a
completeness assumption. For simplicity, a predicate is called closed whenever
it is completely represented, otherwise it is called open.

For distinguishing between closed, open total and partial predicates, the
schema of a knowledge base has to specify a set Pred = {p1, . . . , pn} of pred-
icates (or table schemas), a set TPred ⊆ Pred of total predicates, and a set
CPred ⊆ TPred of closed predicates.

Definition 3 (Completeness Assumption) For a knowledge base Y over
a schema specifying a set of closed predicates CPred, we obtain the following
additional inference rule for drawing negative conclusions,

Y � ¬p(c) if p ∈ CPred & Y � ∼p(c)

The completeness assumption, in a less general form, was originally proposed
in [Rei78], under the name Closed-World Assumption (CWA). Our form of the
CWA relates explicit with default-implicit falsity, i.e. strong with weak negation.
It states that an atomic sentence formed with a closed predicate is false if it is
false by default, or, in other words, its strong negation holds if its weak nega-
tion does. It can also be expressed by means of the completion Compl(Y ) of a
knowledge base Y with respect to the set of closed predicates CPred:

Compl(Y ) = Upd(Y, {¬p(c) | p ∈ CPred & Y � ∼p(c)})

A sentence F is inferable from Y if it can be derived from the tertium-non-datur -
closure of Comp(Y ):

Y � F :⇐⇒ Upd(Compl(Y ), {p(c) ∨ ¬p(c) | p ∈ TPred− CPred}) � F

Notice that in definite knowledge bases (not admitting disjunctions), it is not
possible to declare total predicates that are open. Therefore, in definite knowl-
edge systems, TPred = CPred.

Observation 2 For a knowledge base Y , it holds that

1. for any total predicate p ∈ TPred, and any constant (tuple) c, the resp.
instance of the tertium non datur holds: Y � p(c) ∨ ¬p(c);

2. if q ∈ CPred, then Y does not contain any indefinite information about q,
i.e. Y � q(c), or Y � ¬q(c).
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5.4 Reasoning with Three Kinds of Predicates

Only certain total predicates can be completely represented in a KB. These
closed predicates are subject to the completeness assumption. For example, the
KB of a city may know all residents of the city, i.e. the completeness assumption
holds for resident, but it does not have complete information of every resident
whether (s)he is married or not because (s)he might have married in another city
and this information is not available. Consequently, the completeness assumption
does not apply to married in this KB.

The completeness assumption helps to reduce disjunctive complexity which
is exponential in the number of open total predicates: if n is the number of
unknown ground atoms which can be formed by means of predicates declared as
total but open, then the knowledge base contains 2n possible state descriptions.

We illustrate these distinctions with an example. Let m, r, s, l denote the
predicates married, resident, smoker and is looking at, and let M, P, A stand for
the individuals Mary, Peter and Ann. Let

Y = {{m(M), r(M), s(M), ¬m(A), ¬s(A), l(M, P ), l(P, A)}}
be a knowledge base over a schema declaring the predicates m and r to be total,
and the predicate r to be closed. The interesting queries we can ask Y and the
resp. answers are:

1. Does a married person look at an unmarried one? Yes, but Y does not know
who, either Mary at Peter, or Peter at Ann. Formally, it holds that

Y � ∃x∃y(l(x, y) ∧m(x) ∧ ¬m(y))

but there is no definite answer to this query, only an indefinite answer may
be obtained:

Ans(Y, l(x, y) ∧ r(x) ∧ ¬r(y)) = {{〈M, P 〉, 〈P, A〉}})
2. Does a resident look at a non-resident ? Yes, Mary at Peter.

Ans(Y, l(x, y) ∧ r(x) ∧ ¬r(y)) = {{〈M, P 〉}}
since Y � ¬r(P ) if Y � ∼r(P ).

3. Does a smoker look at a nonsmoker? No. Y is completely ignorant about
Peter being a smoker or not: neither is he a smoker, nor is he a nonsmoker,
nor is he a smoker or nonsmoker (as a partial predicate, s may have a truth
value gap for this instance):

Ans(Y, l(x, y) ∧ s(x) ∧ ¬s(y)) = ∅

6 Conclusion

Like many other computational systems and formalisms, also the Semantic Web
would benefit from distinguishing between open and closed predicates using both
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strong negation and negation-as-failure. We have shown that partial logic is the
logic of these two kinds of negation. Consequently, it would be important to
generalize RDF and OWL from their current classical logic version to a suitable
partial logic version and to combine them with RuleML.
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Abstract. In this paper we show how personalization techniques from
the area of adaptive hypermedia can be achieved in the semantic web.
Our approach is based on rule-based reasoning enabled by semantic web
technologies. The personalization techniques are formalized as reasoning
rules. The rules are able to reason over distributed information resources
annotated with semantic web metadata formats. This leads towards the
realization of an adaptive semantic web idea which provides personalized,
adaptive access to information, services, or other, distributed resources.

Keywords: adaptive hypermedia, personalization, adaptive web, seman-
tic web.

1 Introduction

Adaptive web, as envisioned in [10], should provide users with optimized access
to distributed electronic information on the web according to particular needs of
individual users or group of users. The main problem of current web systems their
inability to support different needs of individual users. This problem is mainly
due to their incapability to identify those needs, and insufficient mappings of
those needs to available resources (information/document).

The semantic web [6] initiative reflects this problem by “giving information
a well-defined meaning, better enabling computers and people to work in coop-
eration”. This can be achieved by making metadata about different resources
explicit using standardized descriptions.

Foundations for designing an adaptive web can be found in existing person-
alization and adaptive systems. For example, recommender systems (cf. [33,4])
explore the usage of information entities (or products, services, etc.) in order
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to point out further interesting information, products, services to a user. Adap-
tive hypermedia systems (cf.provide individual guidance through the hyperspace
by modeling and reasoning about explicit user models that contain preferences,
goals, and further characteristics of individual users.

However, their closed architecture, own formats used for representing in-
formation about a user, documents and knowledge concepts does not allow to
provide a personalization in wider distributed context. The exchange of the infor-
mation and data between those applications and providing well formed adaptive
functionality also to external parties cannot be achieved currently.

A step towards adaptive web can be made by employing standardized descrip-
tion formats for metadata. This will allow us to reason over facts described in
standardized metadata formats. More important, reasoning can be performed in
wider context over distributed data. In this paper we investigate how to provide
reasoning on the semantic web with special focus on personalization techniques.

Based on our experience in developing adaptive hypermedia systems for e-
learning, we propose separation of metadata about documents, information cov-
ered in the documents, users and observations. We propose a separation of adap-
tation rules from the metadata. These encapsulated reusable adaptive function-
alities allow us to reason over distributed metadata in the web.

After a brief introduction to adaptive hypermedia systems (section 2), sec-
tion 3 discusses how we can benefit from lessons learned from adaptive hyperme-
dia systems in the adaptive web. Section 4 discusses a logic-based formalization
of adaptive hypermedia. Section 6 describe how we can prototype an adaptive
web utilizing the logical characterization of adaptive hypermedia. Related work
is briefly reviewed in section 7. Finally we provide some remarks on further work
in section 8.

2 Background: Adaptive Hypermedia Systems

Adaptive hypermedia is an alternative to the traditional “one-size-fits-all” static
approach of hypermedia systems [9]. Adaptive hypermedia systems (AHS) en-
large the functionality of hypermedia systems to personalize the underlying hy-
permedia system to the individual user.

Adaptive hypermedia systems usually perform the adaptation based on sev-
eral user features they maintain. The user features are used to determine appro-
priate information presentation and navigation sequences through the informa-
tion. The systems are able to learn new user features from the user interaction
with a system or from information he provided. Thus, each user has an individual
view and individual navigational possibilities for working with the hypermedia
system.

A hypermedia system can be described as a graph:
A set of nodes (of text) and a set of edges between these nodes (links) (cf.

[31]). Thus personalization techniques in AHS can be grouped into techniques
that adapt the nodes, which means to select/modify/rearrange the content of
the documents (so called content-level adaptation) or the edges, which means to
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select appropriate hypertext links, delete links, or generate new, previously non
existing links (so called navigational-level adaptation).

The content-level adaptation focuses mainly on improving a local navigation
of a user and his orientation in currently presented page or fragment. For exam-
ple, such adaptive systems can provide different text or different media variants,
which serve information at different level of detail, to users with different level of
knowledge or expertise in some field. They can switch between different media
types according to different user preferences or his learning style. They are able
to hide or appropriately annotate the parts of presented information which are
not suited for current user based on values of his features the system maintains.

The navigational-level adaptation is trying to improve user global orientation
in hyperspace. This includes for example a support for making exploration of re-
quired information easier such as enabling, disabling, showing, hiding, removing
links when it is appropriate, or sorting links according to user goals or prefer-
ences. They can annotate links to indicate whether the links are appropriate or
relevant. They are able to generate next appropriate information and thus to
guide a user.

A specific research branch in the area of adaptive hypermedia, adaptive edu-
cational systems, improve learner guidance by showing e.g. the next reasonable
learning step to take or by the individual creation of learning sequences. They
have shown to improve orientation by annotating hypertext links with hints
according to the students learning progress, by adapting the teaching or presen-
tation style to the specific needs of the student, and by supporting learners to
find their own optimal learning strategy. We are building on our experience in
the area of educational systems in this paper as well.

3 From Adaptive Hypermedia to Adaptive Web

On the (semantic) web, we are confronted with a much more complex situation
compared to the usually “closed” adaptive hypermedia settings: there is no cen-
tral point of control and data storage, since on the web data and services are
distributed and change rapidly and unpredictably. Furthermore, data and meta-
data is represented in a multitude of formats: while there are several upcoming
standards, especially RDF/S [39,38] and its extensions like DAML+OIL and
OWL [15,30], to define metadata schemas and (domain) ontologies, there are no
commonly-agreed upon concrete schemas for metadata in specific domains like
e-learning, nor are there domain ontologies shared by a whole community. Al-
though first approaches to such generally useful metadata schemas and domain
ontologies exist, like LOM [28] (building upon DC [20]) for the description of
e-learning resources and classification systems like ACM [2] as a common do-
main ontology to characterize computer science content, it is not expected that
they will be generally accepted as they cannot deal with the specific details of
concrete (local) applications.

As a result, we need mechanisms on an adaptive web that allow resources,
metadata, and ontology concepts to be mapped to each other and to the concepts
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found in user profiles. The technologies to accomplish this are currently being
developed in the semantic web community. Promising approaches include those
based on (logical) mapping rules and description logics [12,29].

In order to provide personalized access to information on the web, we can
therefore assume that the required mapping and integration technologies, in the
style of wrappers and mediators in a web services (or P2P) architecture, are
provided as part of the general semantic web infrastructure. What is missing for
an adaptive web are the acquisition, representation, and usage of information
about the users, i.e., their general preferences, interests, etc., and their specific
situation and information need.

Because of the formal nature of resource metadata and domain ontologies
on the semantic web, we propose a logic-based approach, building on the same
technologies already developed for the semantic web. In the following sections,
we will therefore first describe a general logic-based definition of adaptive edu-
cational hypermedia systems and then a specific prototype using the semantic
web language TRIPLE [35].

4 Logic-Based Definition
of Adaptive Educational Hypermedia Systems

In order to develop design-proposals for the adaptive web based on AHS tech-
niques we have to analyze architecture and, even more important, data resources
and data flow in AHS. A functionality-oriented definition of adaptive hyperme-
dia given by Brusilovsky is [9]: “By adaptive hypermedia systems we mean all
hypertext and hypermedia systems which reflect some features of the user in the
user model and apply this model to adapt various visible aspects of the system
to the user.”

A logic-based definition of adaptive educational hypermedia systems has been
proposed in [25]. Components of an AHS are therefore the hypermedia system
which includes information about documents and their relations, the user model
which stores characteristics of a user and possibly reasoning rules to derive addi-
tional user characteristics, and the adaptation component which determines the
adaptive treatment provided for the particular user. During runtime, the system
monitors a user’s interaction to update the user model, thus a component for
observations is necessary, too. Basis data required by the AHS can be found
in the components “hypermedia system” (e.g. metadata about documents) and
“observations” (e.g. usage data during runtime). The “user model” component
processes data from both “hypermedia system” and “observations” to describe
and reason about a user’s characteristics. The “adaptation component” finally
decides about beneficial adaptive treatments for a user based on data of the other
three components. The component “hypermedia system” has been generalized
to document space due to the fact that a hypermedia system requires stronger
assumptions about the modeling of documents than we can expect to have in
the World Wide Web.
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Definition 1 (Adaptive Educational Hypermedia System [25]). An
adaptive educational hypermedia system (AEHS) is a Quadruple

( DOCS, UM, OBS, AC ) (1)

with

DOCS: Document Space: A finite set of first order logic (FOL) sentences with
constant symbols for describing documents (and knowledge concepts), and
predicates for defining relations between these (and other) constant symbols.

UM: User Model: A finite set of FOL sentences with constant symbols for
describing individual users (user groups), and user characteristics, as well
as predicates and formulas for expressing whether a characteristic applies to
a user.

OBS: Observations: A finite set of FOL sentences with constant symbols for
describing observations, and predicates for relating users, documents / con-
cepts, and observations.

AC: Adaptation Component: A finite set of FOL sentences with formulas for
describing adaptive functionality.

5 Example: Logically Describing an AEHS

In this section we will provide an example setting for illustrating the approach
proposed in this paper. We will define an adaptive system called SIMPLE which
can annotate information resources in order to give orientation by pointing out
where to start learning, and by indicating more advanced concepts. The adap-
tation techniques in SIMPLE are well known techniques in existing adaptive
hypermedia techniques. Our aim is to translate some well-explored techniques
to the semantic web. Doing this, we show how personalization can be brought
to the semantic web. Of course, more advanced adaptation techniques can be
implemented, or new techniques can be investigated. The important step which
will be illustrated in our example is to bring personalization to the logic level
of the semantic web tower [5]: This requires the encapsulation of adaptation
techniques for reuse (for example by formalizing adaptation techniques as logi-
cal formulas as done in [25]) and enabling adaptation techniques to reason over
various information resource.

The following sections will describe the AEHS SIMPLE and its functionality
in FOL, according to definition 1.

5.1 SIMPLE: Document Space

SIMPLE needs information about available information resources - like docu-
ments, knowledge concepts, etc. For the logical description we therefor need a
set of n constant symbols (n corresponds to the number of documents in the
document space) which name the documents (the URI of the documents respec-
tively) and a set of s atoms (s corresponds to the number of concepts in the
knowledge space) which name the knowledge concepts:
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D1, D2, . . ., Dn, C1, C2, . . ., Cs.

The predicate “depends” states learning dependencies between these concepts:
Concept C is required to understand C ′:

depends(C, C ′) for certain concepts C �= C ′.

Furthermore, the documents can be annotated with a non-empty set of concepts.
This can be expressed by the hasConcept-predicate between documents and
concepts. This can be compared to assigning a set of keywords to each document.

∀D ∃C hasConcept(D, C).

We cannot ensure that this constraint is fulfilled in the open world. However,
this rule says that a valid metadata – annotation for the AEHS Simple requires
that each document is related to at least one concept.

Further predicates between concepts and/or documents are possible but not
required by this example of an AEHS.

5.2 SIMPLE: User Model

The adaptive system SIMPLE needs data from the user model - in order to
reflect the user’s actual learning progress and learning state. Again, the user
model of SIMPLE is very straightforward and models only the user’s knowledge
state - further user characteristics can be considered as well.

SIMPLE‘s user model contains a set of m constant symbols, one for each
individual (registered) user:

U1, U2, . . ., Um.

A rule defines that a concept C is assumed to be learned whenever the corre-
sponding document has been visited by the user. Therefor, SIMPLE uses the
constant symbol

Learned.

The rule for processing the observation that a concept has been learned by a
user is given by:

∀U ∀C
( ∃D keyword(D, C) ∧ obs(D, U , Visited)
=⇒p obs(C, U , Learned).

5.3 SIMPLE: Observations

SIMPLE interpretes from the observations about a user’s action with the per-
sonalized systems only whether a user has visited some page. The time s/he
spend on this resource, or further information like information about the order
in which the user has accessed resources, or further interactions, are not required
for SIMPLE. Thus, one constant symbol for the observation whether a document
has been visited is enough:
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Visited.

A predicate is relating this observation to a user U and a document D:

obs(D, U , Visited) for certain D, U .

5.4 SIMPLE: Adaptation Component

The example system SIMPLE has the following adaptive functionality: It can
annotate hypertext-links to documents by using the traffic light metaphor[9].
The traffic light metaphor belongs to the group of navigational-level adaptation
techniques and assigns colors of a traffic light to point out the educational state
of a hypertext link (more precisely, the educational state of the resource to which
this hypertext link points to). E.g. a green color is used to indicate that a link
leads to a resource which is Recommended to a learner (because he has sufficient
pre-knowledge, or because of other reasons), a red color is used to show that
visiting the hypertext link is Not Recommended (because e.g. the user actually
lacks some knowledge for successfully learn the resource in question). In addition,
SIMPLE shows which links lead to documents that Will become understandable
(annotated by a dark orange icon; the user has started to learn some of the
necessary prerequisite knowledge), and documents that Might be understandable
(translated into a yellow icon; the user has learned nearly all required prereq-
uisite knowledge). A white icon in front of a link indicates that a user has
Already visited the resource belonging to the link.

To express the adaptation formulas, SIMPLE uses five constant symbols for
representing the learning state of a document:

Recommended, Not Recommended, Might be understandable,
Will become understandable, Already learned.

The following formulas then describe the educational state of a document. For-
mula 1 states that a document is Already learned whenever the user has read
the document

∀U ∀D
obs(D, U , Visited)
=⇒ learning state(D, U , Already visited).

Formula 2 states that a document is Recommended for learning if all prerequisites
for the keywords of this document are learned

∀U ∀D
∀C

(
keyword(D, C) =⇒ (∀C ′ depends(C, C ′) =⇒p obs(C ′, U , Learned)

))

∧ ¬ learning state(D, U , Already visited)
=⇒ learning state(D, U , Recommended).

Formula 3 states that a document Might be understandable if at least some of
the prerequisites have already been learned by this user:
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∀U ∀D
( ∀C keyword(D, C) =⇒
( ∃C ′ depends(C, C ′) =⇒p obs(C ′, U , Learned) ) )
∧ ¬ learning state(D, U , Recommended)
=⇒ learning state(D, U , Might be understandable).

Formula 4 derives that a document Will become understandable if the user
has some prerequisite knowledge for at least one of the document’s keywords:

∀U ∀D
∃C keyword(D, C) =⇒
(∃C ′ depends(C, C ′) =⇒p obs(C ′, U , Learned) )
∧ ¬ learning state(D, U , Might be understandable)
=⇒ learning state(D, U , Will become understandable).

∀U ∀D
¬ learning state(D, U , Will become understandable)
=⇒ learning state(D, U , Not Recommended).

The translation of the learning state into document annotations with
green, red, orange, yellow or white icons is straightforward, for example to an-
notate a document with a green ball, is expressed by

∀U ∀D
learning state(D, U , Recommended)
=⇒document annotation(D, U , Green Icon)

6 Prototyping the Adaptive Web

The logically described adaptive educational hypermedia system SIMPLE, pro-
posed in section 5 will be implemented in TRIPLE. The formal description of
adaptive systems in FOL [25] allows us to reuse the adaptation rules in different
contexts, here we will use them to access learning resources from the Sun Java
Tutorial [13,14]. There exists a freely available online version1 from the Sun Java
Tutorial. We annotated the resources of the Sun Java Tutorial according to our
document ontology as can be seen in the next section.

6.1 TRIPLE Overview

TRIPLE [34] is a rule language for the Semantic Web which is based on Horn
logic and borrows many basic features from F-Logic [27] but is especially designed
for querying and transforming RDF models.

TRIPLE can be viewed as a successor of SiLRI (Simple Logic-based RDF
Interpreter [16]). One of the most important differences to F-Logic and SiLRI
1 http://java.sun.com/docs/books/tutorial/
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is that TRIPLE does not have fixed semantics for object-oriented features like
classes and inheritance. Its modular architecture allows such features to be eas-
ily defined for different object-oriented and other data models like UML, Topic
Maps, or RDF Schema. Description logics extensions of RDF (Schema) like OIL,
DAML+OIL, and OWL that cannot be fully handled by Horn logic are provided
as modules that interact with a description logic classifier, e.g. FaCT [26], re-
sulting in a hybrid rule language.

Namespaces and Resources. TRIPLE has special support for namespaces and
resource identifiers. Namespaces are declared via clause-like constructs of the
form nsabbrev := namespace., e.g., rdf := ′′http : //www.w3.org/1999/02/22
−rdf − syntax− ns#′′. Resources are written as nsabbrev:name, where nsabbrev
is a namespace abbreviation and name is the local name of the resource.

Statements and Molecules. Inspired by F-Logic object syntax, an RDF statement
(triple) is written as: subject[predicate → object]. Several statements with the
same subject can be abbreviated as “molecules”:

stefan[hasAge→ 33; isMarried→ yes; . . .]

Models. RDF models, i.e., sets of statements, are made explicit in TRIPLE
(“first class citizens”)2. Statements, molecules, and also Horn atoms that are
true in a specific model are written as atom@model (similar to Flora-2 module
syntax), where atom is a statement, molecule, or Horn atom and model is a
model specification (i.e., a resource denoting a model), e.g.:

michael[hasAge→ 35]@factsAboutDFKI

TRIPLE also allows Skolem functions as model specifications. Skolem func-
tions can be used to transform one model (or several models) into a new one
when used in rules (e.g., for ontology mapping/integration):

O[P → Q]@sf(m1, X, Y ) ←− . . .

Logical Formulae. TRIPLE uses the usual set of connectives and quantifiers for
building formulae from statements/molecules and Horn atoms, i.e., ∧, ∨, ¬, ∀,
∃, etc3. All variables must be introduced via quantifiers, therefore marking them
is not necessary.

Clauses and Blocks. A TRIPLE clause is either a fact or a rule. Rule heads may
only contain conjunctions of molecules and Horn atoms and must not contain
(explicitly or implicitly) any disjunctive or negated expressions. To assert that a
set of clauses is true in a specific model, a model block is used: @model {clauses},
or, in case the model specification is parameterized:

∀ Mdl @model(Mdl) {clauses}
2 Note that the notion of model in RDF does not coincide with its use in (mathemat-

ical) logics.
3 For TRIPLE programs in plain ASCII syntax, the symbols AND, OR, NOT,

FORALL, EXISTS, <-, ->, etc. are used.



60 P. Dolog et al.

Semantics, Implementation. TRIPLE has been implemented via a translation
to Horn Logic plus enactment by XSB [36], i.e., a Prolog with tabled resolu-
tion, giving it the well-founded semantics [37]. Details on the model-theoretic
semantics of TRIPLE can be found in [17].

6.2 Facts about a Document

A simple structure for document meta data and relationships to other structures
is depicted in fig. 1. The class Document is used to annotate a resource which
is a document. Documents describe some concepts. The concepts are the main
information entities from domain knowledge communicated by the documents
(cf. [32]). Concept and Documents are related through dc:subject property.
Documents can have its prerequisites. This is annotated by dcterms:requires
property.

Class
Document

Class
DocumentType

Property

hasDocumentType

Property

dc:subject
Class

Concept

domain

range

domain

Property

isPrerequisiteFor
domain

range

range

Property

dcterms:requires

domain range

subConceptOf

Property

domain

range

Fig. 1. Ontology for documents

An example of such resource can be a page describing object oriented class
concept (URI of the resource is sun java:java/concepts/class.html. Follow-
ing example shows how such page can be annotated based on the document
metadata structure.

sun_java:java/concepts/class.html[
rdf:type->doc:Document;
dc:subject->java:OO_Class;
...].

java:OO_Class[
rdf:type->doc:Concept;
doc:isPrerequisiteFor->doc:OO_Method;
...
].

The page is annotated with type Document. It describes information about
classes (annotation dc:subject -> OO Class). The OO Class is of type Concept
and is subconcept of Classes and objects. The OO Class is prerequisite for the
OO Method concept.
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The structure of the document metadata can be more complex. It can contain
for example a slot for annotating a role of document, its type, level of covering
particular concept in the document, roles of concept in particular document,
position of particular document in document structure described by whole/part
relationships and so on.

All of these relationships can enhance adaptation possibilities for example
for construction of learning sequences based on user profile, annotating position
of a user in the document structure, helping to identify main outcomes of a
document based on roles and level of concept coverage, and so on.

6.3 Facts about a Domain

The dc:subject entries used in examples in previous section can be seen as facts
about a domain. Facts about domain can form complex structures. For space lim-
itation we show just a fragment of domain knowledge base about concepts for
java programming. For the same reason we show just isa (subConceptOf) re-
lationship between these concepts. Figure 2 depicts Programming Strategies
concept with its subconcepts: Object Oriented, Imperative, Logical, and
Functional. The OO Class, OO Method, OO Object, OO Inheritance, and OO
Interface are depicted as subconcepts of Object Oriented.

Concept
Programming_Strategies

Concept
Imperative

Concept
Logical

Concept
Functional

Concept
OO_Class

Concept
OO_Method

Concept
Object_Oriented

Concept
OO_Object

Concept
OO_Inheritance

Concept
OO_Interface

subConceptOfsubConceptOf subConceptOf subConceptOf

subConceptOf subConceptOf subConceptOf
subConceptOf subConceptOf

Fig. 2. Concept ontology for Java e-lecture

The facts about a domain and different relationships between the facts can be
used for adaptation purposes quite successfully. The mentioned subConceptOf
relationship can be for example utilized to recommend either more general doc-
uments introducing a concept of programming strategies in general, or to recom-
mend more specific documents (resources) about object oriented programming
strategy based on requirements, level of knowledge, or interest of a user.

Sequencing relationship is another relationship which can be used to recom-
mend documents. A document (resource) which describes a concept (the con-
cept appears in dc:subject slot in meta data about the document) from the
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beginning of the sequence will be recommended sooner than a document which
describes a concept from the end of such a sequence.

A dependency relationship referring to whether a concept depends on another
concept can be used as well. It can be used to recommend documents which
describe dependent concepts together with a document describing a concept
which was recommended by another rule.

6.4 Facts about the User Profile

We need to have explicit facts about a user to be able to recommend documents
(resources) which are relevant to user interests. This facts can enclose infor-
mation about user performance from courses within a domain, his goals and
interests, preferences, and so on. Following simple example contains just some
facts about resources visited by a user (for more complex user models see, e.g.,
[19]).

@simple:data{
...
kbs:henze[

rdf:type->User;
obs:visited->sun_java:’index.html’].

l3s:dolog[
rdf:type->User;
obs:visited->sun_java:’index.html’;
obs:visited->sun_java:’java/index.html’;
obs:visited->sun_java:’java/concepts/index.html’;
obs:visited->sun_java:’java/concepts/object.html’].

}

The user identified by kbs:henze URI has visited general sun java introduc-
tion page represented by index.html. The user identified by l3s:dolog URI has
visited the general introduction, the java introduction (sun java:’java/index.
html’), java concepts introduction (sun java:’java/concepts/index.html’),
and objects introduction (sun java:’java/concepts/object.html’).

Other facts and relationships between the facts can help to derive additional
information which can improve recommendation results. For example a time
spent on resource can be used to infer a level of knowledge gained from the
resource.

6.5 Reasoning Rules for Adaptation

The adaptive system SIMPLE which we have implemented (see section 5) re-
quires only view information about the user’s characteristics. Thus, for our ex-
ample we employed a very simple user model: This user model traces the users
path in the learning environment and registers whenever the user has visited
some learning resource.
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The TRIPLE rules for adaptive functionality will be described in the follow-
ing.

Following rule asserts that all triples from @simple:data view are also triples
in the @simple:adaptation.

FORALL O,P,V O[P->V] <- O[P->V]@simple:data.

Following rules derive all documents, concepts, and users from metadata
based on types taken from ontologies.

FORALL D document(D) <- D[rdf:type->Document].
FORALL C concept(C) <- C[rdf:type->Concept].
FORALL U user(U) <- U[rdf:type->User].

We need to derive observations about a user from metadata from user pro-
file (see an example in section 6.4). The observations states whether particular
user learned concept based on visiting a document describing the concept. The
following rule derive all learned concepts.

FORALL C, U p_obs(C, U, Learned) <- user(U) AND concept(C) AND
EXISTS D (D[dc:subject->C] AND U[obs:visited->D]).

To derive appropriate recommendation annotation for particular user, pre-
requisite concepts of documents have to be learned by a user. Following rule
derive concepts which are prerequisite concepts for a document being analyzed
for recommendation. The prerequisite concepts are derived according to the
doc:isPrerequisiteFor relationship.

FORALL D, C, Ck prerequisite_concepts(D, Ck) <-
document(D) AND concept(Ck) AND
D[dc:subject->C] AND Ck[doc:isPrerequisiteFor->C].

All previously mentioned rules are used in recommendation rules. We have
five rules for recommendation annotations. The first one annotates a document
which was visited.

FORALL D, U learning_state(D, U, Already_visited) <-
user(U) AND document(D) AND U[obs:visited->D].

The second rule determines documents which are Recommended. The recom-
mendation rule is performed according to a FOL sentence from section 5 that
document is recommended if all prerequisite concepts for all of its concepts are
learned.

FORALL D, U learning_state(D, U, Recommended) <-
document(D) AND user(U) AND NOT learning_state(D, U, Already_visited)
AND FORALL Ck (prerequisite_concepts(D, Ck) ->

p_obs(Ck, U, Learned)).
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The third rule derives less strong recommendation. It asserts that document
Might be understandable if at least one prerequisite concept of for all of its
concepts was learned.

FORALL D, U learning_state(D, U, Might_be_understandable) <-
document(D) AND user(U)
AND NOT learning_state(D, U, Recommended)
AND NOT learning_state(D, U, Already_visited) AND
FORALL C (D[dc:subject->C] ->
(EXISTS Ck (Ck[doc:isPrerequisiteFor->C]
AND p_obs(Ck, U, Learned)))).

A document is annotated as Will become understandable if at least one
prerequisite concept among its concepts was learned.

FORALL D, U learning_state(D, U, Will_become_understandable) <-
document(D) AND user(U)
AND NOT learning_state(D, U, Recommended)
AND NOT learning_state(D, U, Might_be_understandable)
AND NOT learning_state(D, U, Already_visited)
AND EXISTS Ck (prerequisite_concepts(D, Ck) AND p_obs(Ck, U,
Learned)).

For all other cases a document is annotated as Not recommended.

FORALL D, U learning_state(D, U, Not_recommended) <-
document(D) AND user(U)
AND NOT learning_state(D, U, Recommended)
AND NOT learning_state(D, U, Might_be_understandable)
AND NOT learning_state(D, U, Already_visited)
AND NOT learning_state(D, U, Will_become_understandable).

A query which queries for documents and particular annotations about rec-
ommendation for particular user can look as follows.

FORALL U, D, L <- learning_state(D, U, L)@simple:adaptation.

A subset of results derived from our knowledge-base is:

U=doc:kbs:henze, D=sun_java:’index.html’, L=’Already_visited’
U=doc:l3s:dolog, D=sun_java:’index.html’, L=’Already_visited’
U=doc:kbs:henze, D=sun_java:’java/concepts/message.html’,

L=’Not_recommended’
U=doc:l3s:dolog, D=sun_java:’java/concepts/message.html’, L=’Recommended’
...

The results show that the index.html document has learning state Already
visited for both users. Then the results say that the document message.html is
Not recommended to user identified by kbs:henze URI, and it is Recommended
for the user identified by l3s:dolog.

The complete example of the rules used in this paper can be found in
triple-file at http://www.learninglab.de/˜dolog/seminar/seminar03files/
ppswr03 triple example.triple.
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7 Related Work

Adaptive hypermedia has been studied normally in closed worlds, i.e. the under-
lying document space / the hypermedia system has been known to the authors of
the adaptive hypermedia system at design time of the system. As a consequence,
changes to this document space can hardly be considered: A change to the doc-
ument space normally requires the reorganization of the document space (or at
least some of the documents in the document space). To open up this setting for
dynamic document or information spaces, approaches for so called open corpus
adaptive hypermedia systems have been discussed [9,23]. Our approach to bring
adaptive hypermedia techniques to the web will therefore contribute to the open
corpus problem in AH.

Contributions to open corpus adaptive hypermedia can be found in the area
of so called open hypermedia systems, too. Open hypermedia is an approach to
relationship management and information organization for hypertext-like struc-
ture servers. Key features are the separation of relationships and content, the
integration of third party applications, and advanced hypermedia data models
allowing, e.g., the modeling of complex relationships. Approaches to open hyper-
media have been discussed, e.g., in [1]. [3] aims to describe adaptive hypermedia
techniques for open hypermedia by relating basic fundamental open hypermedia
model concepts with adaptive hypermedia techniques. The work presented in
this paper settles on more general descriptions of the data objects used in open
hypermedia: Instead of using specific kinds of data objects [3], we use resources
that are annotated by general RDF metadata. Because we provide a more ex-
pressive language for specifying contexts — Triple based queries and constraints
— we can have more complex rules for specifying accessibility and usage in gen-
eral. Behavior like update of user profiles can also be associated within the RDF
annotation of the resource and as Triple programs. RDF annotations provide
several possibilities for specifying relationships and association, as defined by
the RDF schema, and domain ontologies are defined as RDF data again in the
form of domain ontologies. Our work is also related to [23,24], and extends it
by investigating the different standards relevant for adaptive functionalities in
an open environment and how to use queries to implement that functionality.
This work also extends our work published in [18] where we made first steps
towards adaptive hypermedia based on logical characterization. We showed and
implemented more complex rules in comparison to the work and we employed
more powerful rule-based language for expressing adaptive functionality. The
core differences are availability of models (views) in TRIPLE and direct support
for namespaces and URIs.

If we compare our work with standard models for adaptive hypermedia sys-
tems such as the one used in AHA! [8] for example, we observe that they define
several model like conceptual, navigational, adaptation, teacher and user mod-
els. Compared to our approach, these models either correspond to ontologies
/ taxonomies, to different schemas describing teacher and user profile, and to
schemas describing the navigational structure of a course. We express adaptation
functionalities as encapsulated and reusable Triple rules, while the adaptation
model in AHA uses a rule based language encoded into XML. At the level of



66 P. Dolog et al.

concept or information items AHA! provides functionalities to describe require-
ments [7] for the resource, which state what is required from a user to visit that
information.

In our approach, we used the RDF-querying and transformation language
TRIPLE. Related approaches in the area of querying languages for the semantic
web can be found, e.g., in [11]. Here, a rule-based querying and transformation
language for XML is proposed. A web language for rules is currently under de-
velopment of the Rule Markup-Language (RuleML) Initiative 4. A discussion of
the interoperability between RuleML Logic programs and ontologies (coded in
OWL5 (web ontology language) or DAML+OIL6 (Darpa Agent Markup Lan-
guage + Ontology Inference Layer) can be found in [21].

Reasoning in open worlds like the semantic web is not fully explored yet,
sharing and reusing of resources with high quality is still an open problem. In
this paper, we discussed first ideas on the application of rules and rule-based
querying and transformation language for the domain of adaptation.

8 Conclusions and Further Work

In this paper, we described an approach to personalization on the semantic
web based on reasoning. We have shown how known techniques from adaptive
hypermedia (which normally work in closed worlds) can be realized in an open
world setting like the semantic web. The logical characterization of adaptive
hypermedia enables the formalization of personalization techniques in a common
language (FOL). The rule-based language TRIPLE allowed us to implement
this functionality and reason over distributed metadata. The ontology based
metadata descriptions and thorough use of the ontologies in the descriptions
allowed us to employ monotonic reasoning.

However, the semantic web is characterized with non-complete information.
We would like to continue with experiments with the environment where we will
not have always complete information to derive conclusions. Thus additional
experiments either with non-monotonic reasoning, with additional heuristics to
derive conclusions from not complete information, or experiments with local
closed worlds [22] are needed.

On the other hand, we would like to investigate also more complex con-
cept ontologies. In this paper we use just two types of relationships for relating
concepts, namely isPrerequisiteFor and subConceptOf. This includes for exam-
ple decomposition of sequences into smaller parts or content packaging with
additional relationships in concept model (ontology), e.g., partOf, belongsTo,
and alternatives. In addition, we can consider explicit ontologies for educational
models which can provide us with complementary facts for improving conclusions
from personalization reasoning rules. This enables to add additional rules to en-
hance adaptive functionalities based on the facts modeled in knowledge-base by
utilizing additional relationships.
4 http://www.dfki.uni-kl.de/ruleml/
5 http://www.w3.org/2001/sw/WebOnt/
6 http://www.w3.org/TR/daml+oil-reference
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At the application level we also would like to experiment with different visu-
alization strategies for displaying results of reasoning.
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Abstract. Reasoning on time and location is receiving increasing at-
tention on the Web due to emerging fields like Web adaptation, mobile
computing, and the Semantic Web. Web applications in these fields of-
ten refer to rather complex temporal, calendric, and location informa-
tion. Unfortunately, today’s Web languages and formalisms have merely
primitive temporal and location data types and temporal and location
reasoning capabilities – if any. This article reports on work in progress
aiming at integrating temporal and locational reasoning into XML query
and transformation operations. We analyze the problem and propose a
concrete architecture. A prototype of the temporal reasoner, the Web-
Cal system has already been realized.

1 Introduction

The next generation of the World-Wide-Web must have machine readable and
machine understandable Web content, and no longer just html pages – this is
the now widely agreed vision of the ‘Semantic Web’ initiative [5]. The basic tool
for the first step, to make Web content machine readable, is undisputedly XML.
The second step, however, to make Web content machine understandable, seems
to become a never ending story. Almost anything, human beings can think of,
can become Web content. Making all this machine understandable, means for-
malizing the whole knowledge of mankind in a way that computers can work
with; and this is the old vision of Artificial Intelligence. One can attack this
problem in at least two ways. The first approach is to develop XML compat-
ible knowledge representation and reasoning tools, and to leave the concrete
formalization of knowledge with these tools to the application developers. RDF
and OWL are systems of this kind. The second approach is to develop formal
theories and mechanisms of particular concepts occurring in Web content, and
to integrate these theories into the other XML mechanisms, in particular into
XML query and transformation languages. Both approaches are complementary
to each other in the same way as general purpose inference systems in logic are
complementary to special theory reasoning.

In this paper we propose the development of special theories and XML mech-
anisms for the concepts time and location, and the integration into XML query
and transformation languages. Our proposal goes far beyond the temporal data
types of the W3C standard XML Schema [1,2,3], which has in fact no reasoning
mechanisms and no location data types and operations.
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The time theory for XML we propose works with the WebCal system,
a server for advanced calendrical calculations. The WebCal system is based
on ideas first published in [13,14,15]. WebCal has an international dimension:
it provides most of the calendar systems world-wide in use, with timezones,
daylight savings time regulations, leap years, leap seconds etc. It also has an
historical dimension: it models historical sequences of calendrical regulations,
for example sequences of calendar systems, sequences of daylight savings time
regulations, timezones changing over time etc. It has an application oriented
dimension, i.e. one can define new application specific temporal notions, for ex-
ample school holidays, financial years, ecclesiastical calendars, Mary’s birthday,
my own working hours, and a lot more. WebCal can deal with fuzzy notions
like ‘late night’ or ‘around noon’ because it represents time intervals as fuzzy
sets.

The location theory for XML is not yet as far developed as the time theory,
but the solutions for the location theory will be in the same style as the solutions
for the time theory.

We shall integrate these mechanisms into the rule based query and transfor-
mation language Xcerpt [7,8,6]. Xcerpt is a declarative (logic-based) query and
transformation language for the Web currently developed and tested on web-
based systems at the University of Munich. Because of its ‘logic bias’, Xcerpt
appears to be a very convenient ‘host’ for temporal data types and temporal
reasoning. Most of the ideas and methods proposed in this paper, however, are
independent of Xcerpt and should work with any query language.

In order to illustrate the problems and approaches, we start with a small
introductory example.

2 An Introductory Example

The first example illustrates the problems with temporal reasoning in the Web
context. Quite similar problems come up with locational reasoning.

Suppose we have a cinema program as an XML document. The XML docu-
ment could look like:

<cinema_program>
<cinema name="Atlantis" location="Munich">
<year year="2003">

<month month="January">
<day day="1"> <film>

<title>Lampedusa</title>
<start>20:00</start>
<duration>120min </duration>

</film>
<film>
<title>City of God</title>
<start>22:00</start>
<duration>121min </duration>

</film>
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</day> ... </cinema_program>

A reasonable query could now be “give me all films ending before midnight
1/1/2003”. None of the currently available query languages can deal with such
a query. What are the problems?

1. The end times are not explicitly represented in the XML document.
2. The end times could be computed, but the information needed for this is

distributed over parts of the XML document.
3. The used calendar system is not mentioned. It could, however, be deduced

from the location ”Munich”.
4. The notion ‘midnight’ in the query is not clear. Is midnight in Munich meant,

or midnight at the place of the querying person, which could be on another
continent.

5. Would we really want to exclude ‘City of God’ although it ends only one
minute after midnight? What kind of relation is to be used to evaluate ‘24:01
before midnight’? A fuzzy ‘before’ relation could evaluate this expression to
a non-zero fuzzy value, such that this film could also be included in the
answer set, maybe at the end of the answer list.

In order to evaluate this query in the user’s sense, we need a query language
plus quite a number of extra mechanisms:

1. first of all we need a context detection and managing mechanism. In the
example it must figure out the calendar system from the location ‘Munich’
(alternatively one could require to specify the calendar system in the XML
document). It must also figure out the calendar system used in the query.
In addition it must determine the timezone and the daylight savings time
regulations – again from the location ‘Munich’ or from some explicit data in
the XML document.

2. in order to compute from start time and duration the end time, we need a
time reasoner which can compute from “year = 2003”, “month = January”,
“day = 1”, “start = 22:00” and “duration = 121min” the end time;

3. since the information to be fed into the time reasoner is distributed over the
XML document, we need an extraction language with which we can specify
where to get the necessary data from and how to transform it to become a
valid input for the time reasoner;

4. since ‘midnight’ is just a string, we need a definition of ‘midnight’ in terms
of concrete time points. To this end, a specification language for specifying
application or user specific temporal notions is necessary;

5. the relation ‘24:01 before midnight’ must be evaluated by the time reasoner,
possibly with a fuzzy version of the ‘before’ relation.

6. the query language must use the fuzzy values to order the answers.
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3 The Top Level Architecture

We propose the following top level architecture:

Documents Definitions Query Temporal Database

Definitions XML document Locational Database

Extr. Specs

Systems
Extraction and
Transformation
Engine

Query Engine Context Manage-
ment System

Time Reasoner Location Reasoner

Let us explain each component in more detail.

The Definition Files. Both, the query and the XML document may use appli-
cation or user specific temporal and locational notions. These notions must be
defined in special definition files, and loaded into the time and location reasoners
before they get invoked. Examples of defined temporal notions which might oc-
cur in XML documents are: ‘3 weeks after Easter’, ‘the first half of the semester’,
‘the third school hour’, ‘weekend’, ‘the time of the Olympic Games’, ‘late night’,
‘around noon’ etc. Queries can contain similar expressions, but in addition very
user specific expressions. For example, the user may define ‘weekend’ for himself
different to the common notion of ‘weekend’. Therefore the query and the XML
document may need different definitions.

A few examples of definable locational notions which might occur in XML
documents and queries are: ‘in Munich’, ‘in the south of Munich’, ‘close to the
station’, ‘along the A1’ ‘between Munich and Frankfurt’.

Since locations are 2 or 3-dimensional, there is a much greater variety of
locational notions, than of temporal notions. One of the first jobs in the proposed
project will therefore be to select classes of locational notions which can be
processed in a reasonable way.

The definition files should not be part of the DTD or the XML schema be-
cause the notions defined there are not specific to one particular XML document
type. With the definition files I can build up libraries of temporal notions which
can be used for many different XML-documents. Therefore the definition files
are more like style sheet files or JavaScript program files to be loaded together
with the XML-document.

The Extraction Specifications. These specify how to extract and transform
the data from the XML document to be submitted to the time and location
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reasoner. In the example of Section 2 we would specify something like: ‘in order
to calculate the end time, extract the ‘year’ attribute, the ‘month’ attribute, the
‘day’ attribute, the ‘start time’, turn the ‘month’ attribute into a number and
combine this to a string of the form year/month/day/hour/minute. Then extract
the ‘duration’ element and split it into the duration number and the time unit.
Now call the time reasoner to add the duration to the start time. (start hour
and minute + duration does not always yield the proper end time, for example
when summertime is changed to wintertime. Therefore the complete date and
time is needed here.) The preparation of the input to the time reasoner may
even require access to external reources. If for example in the cinema example
the year is not explicitly stated in the document, one may get the current year as
the default from the system clock. This very informal description must of course
be put into a formal language. A rule based query language like Xcerpt might
be appropriate here.

The Temporal Database. This database contains information which is not
specific to any application or user. It need not be one single database, but it can
be distributed and hierarchically organized. It must contain in particular map-
pings from countries and other areas to calendar systems, timezones, daylight
savings time regulations. If we want to process XML documents with historical
content, we may even need mappings from countries to historical sequences of
calendar systems and other time measurement parameters.

It also can contain the dates of public and ecclesiastical holidays, school
holidays, the dates of public events, and a lot more.

The Locational Database. This database could be a Geographic Informa-
tion System with geographic information about the landscape, places, streets,
parks, houses etc. It could also contain routes and timetables of public transport
systems: buses, underground, trains, taxi stands etc.

Information like ‘persons in a wheelchair cannot use bus line 263’ could also
be there, or heuristics of the kind ‘single female persons should avoid Central
Park at night’.

The Extraction and Transformation Engine. The Extraction and Trans-
formation Engine processes the extraction specifications. In the example of Sec-
tion 2 it would collect the relevant data for the start time and duration and turn
it into suitable input for the time reasoner.

The Query Engine. processes XML queries almost in the usual way. It moves
down the document tree and does string comparisons and maybe evaluate reg-
ular expressions over strings. In addition it must also call the time and location
reasoners for evaluating expressions like ‘24:01 before midnight’. If these expres-
sions yield fuzzy values as a result, the query engine must use them to order
the answers. This is quite easy if only one expression is involved. But consider
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the following query ‘give me all large cinemas in the south of Munich’. ‘large
cinemas’ is a fuzzy expression and ‘in the south of Munich’ is a fuzzy expression.
The evaluation of this query may yield for each cinema a pair of fuzzy values,
and this pair has to be turned into a single total ordering. There may be extra
parameters necessary in the query itself, which tell the evaluation engine whether
and how to prefer larger cinemas over ones more in the south of Munich, or the
other way round. Another alternative is to leave the answers unordered, but re-
turn the fuzzy values together with the answers. Then it is up to the application
what to do with them. The special theories – time and location and others –
should of course not be hardwired into the query language. Instead one should
be able to load them as a kind of library into the language evaluator. This is
much more flexible and extendible.

The Context Management System. This system is needed to configure the
time and location reasoner. In particular, the time reasoner needs to know the
calendar system, the timezone, the daylight savings time regulations, in addi-
tion to various application specific parameters. For example, on the northern
hemisphere the seasons spring, summer, autumn and winter begin and end at
different dates than on the southern hemisphere. It is the job of the context
management system to turn the information it can get about the document, the
application, and the user into corresponding configuration parameters for the
time and location reasoner. In the age of mobile computing where the user of a
Web Service can move his location (he drives in a car), or even change his device
(he switches for the notebook to his PDA or his mobile phone), while accessing
the Web service, the context becomes dynamic. It may therefore be necessary
for the Context Management System to permanently monitor the query context.
Dynamic context need not only come from users changing their location or de-
vice. In an ordinary session of a user with some system, for example a tutoring
system, the context may change during the course of the session, just by the
interactions of the user with the system. Therefore context management has a
much wider scope than just tracking times and locations.

The Time Reasoner. The proposed time reasoner is the WebCal system,
which is explained in more detail in Section 4.

The Location Reasoner. The main purpose of locational notions in XML
documents is to relate locational aspects of objects and events to locational
aspects of previously introduced objects or events, or to concrete coordinates.
Compared to the one-dimensional time axis, there is a much greater variety of re-
lations between 2- or 3-dimensional locational data. The basic relations between
2-dimensional regions have been investigated in the area of qualitative spatial
reasoning [10,4,16]. In this area, sophisticated automated reasoning about the
spatial relations between physical objects or regions of space has been inves-
tigated; and in many cases, this must be done without precise, quantitative
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information about these relations. Typically, some knowledge of the topological
relationships between the entities of interest may be available, along with incom-
plete and imprecise information about distances, directions and relative sizes;
and from this partial information, useful conclusions must be drawn. Examples
of the kind of question for which qualitative spatial reasoning is required are:
identify the islands in the lake and the largest one. Which parts of the network
of tunnels can the robot traverse without getting stuck? Could the collection of
objects in the scene fit together to make a spherical or cylindrical shell? When
cog A is turned clockwise, will cog B turn and if so, in which direction?

The kind of locational reasoning in the XML-context we want to investigate
has a different focus. It is about relations between geographical objects, coun-
tries, cities, streets, footpaths, houses etc. which involve a metric. The metric on
2- or 3-dimensional locational data comes from the way objects can move from
point A to point B. Suppose the query is ‘give me the nearest cinema playing
Terminator 3’. ‘nearest’ is here the crucial notion. It is very unlikely that it just
refers to the geographical distance to my current location. Instead it very likely
refers to the time I will need to get there, and maybe the money it will cost me.
But this depends on a lot of different factors: am I walking or driving by bicycle,
motorbike or car?; am I sitting in a wheelchair?; can I use public transport?; am
I alone or with children or with a pram?; how old am I?; am I male or female?;
can I park in a difficult parking lot?; is it advisable for a woman to cross a dark
park at night? etc. Evaluating ‘nearest’ actually amounts to planning a route
from my current location to the destination. Route planning for cars is not a
difficult issue anymore. The difficulties come up when all the above mentioned
possibilities should be taken into account. In particular for people without cars
one has to combine quite a number of different networks into a search graph:
streets, footpaths, bus lines, underground lines, tram lines etc.

One of the tasks of the location reasoner will be to evaluate ‘nearest’ in
this sense. The location reasoner has to get all the relevant parameters from
the context management system, combine the relevant networks into a search
graph, and find the shortest path to the potential destinations (the cinemas
playing Terminator 3 in the above example).

The XML Document and the Query. We want to put as few restrictions
to the structure of an XML document with temporal and locational data as
possible, but certain parts need to be stated in a formal language if the data
is to be processed automatically. In the cinema program document above, for
example, we used the XML element ‘<start>’, but we could also have used
‘<start time>’ or something else. This freedom is possible because we have the
extraction language, where we can specify where to look for the start time in
the XML document. The specifications in the extraction language must follow
the DTD or XML Schema specification of the XML document. If we want to
process two different XML documents, where one uses ‘<start>’ and the other
uses ‘<start time>’, we need two different extraction specifications, which is
not a good idea. One could think of an additional abstraction layer, where the
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difference between ‘<start>’ and ‘<start time>’ becomes irrelevant, and the
matching to the concrete DTD is an extra step, but this has still to be investi-
gated.

The extraction language allows us to leave the structure of the XML docu-
ment free. The content of the XML elements and attributes with temporal and
locational data, however, need to be written in a formal language. In particular
we need to agree on formats for date and time strings, but this is only the most
simple case. In the general case we may express temporal and locational notions
by relating them to other temporal and locational notions. The spectrum of
variations for this is almost infinite. Examples for temporal notions are ‘three
weeks after Easter’, ‘during my holidays’, ‘after the Iraq war’, ‘from around noon
until early evening’, ‘at Mary’s birthday’ etc. Examples for locational notions
are ‘in Munich’, ‘along the A1’, ‘in the center of London’, ‘between Picadilly
and Trafalgar Square’, ‘three miles from the river’ etc. It would be extremely
user friendly if we could put this as strings in natural language into the XML
documents, but making the reasoners understanding its meaning is then almost
impossible. Therefore we need a formal language to express these facts. The
specification language of WebCal provides some basics for the temporal part
of such a language, but it needs to be considerably extended for this purpose.

Modern designs of formal languages are typed. Types and type checking for a
language not only help avoiding mistakes. They also can provide useful informa-
tion for guiding the processing of the expressions. Therefore the formal language
for the XML documents and for the queries will be typed. A first proposal for a
type system for this purpose has been presented in [9]. Typical types are ‘time
point’, ‘time interval’, ‘duration’ etc.

Another problem to be solved is deliberate ambiguity. Consider for example
the string ‘three weeks after Easter’. First of all, it does not contain the infor-
mation about the year in which the term ‘Easter’ is to be evaluated. The year
may be listed in another part of the XML document, such that the extraction
language can make it precise by turning ‘Easter’ into for example ‘Easter(2003)’.
But this is still ambiguous. It is not clear whether the western Easter date or
the orthodox Easter date is meant. They may differ by a week. We may want
to leave this ambigue in the XML document itself, and resolve the ambiguity by
the query context. One querying person may want to interpret Easter as western
Easter, and another person may want to interpret it as orthodox Easter.

A similar example with ambigue locational notions could be an XML element
<location> capital </location>, where it is left open which capital of which
country is meant. Only the query context may make this clear.

Deliberate ambiguity means that the formal language for the time and lo-
cation dates cannot always refer to concrete events whose data can be taken
from the temporal and locational databases or from the definition files. We must
allow for an extra level of indirectness. This also means that this indirectness
has to be eliminated in an extra step at query time, for example by transforming
‘Easter(2003)’ into ‘Easter(2003,orthodox)’.
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The time and location part of the query language is a little bit simpler than
the time and location part in the XML documents. Ambiguous queries where it
is not clear whether for example the western Easter dates or the orthodox Easter
dates are meant, cannot be reasonably evaluated. Therefore we do not need the
extra level of indirectness as in the XML document.

4 Temporal Reasoning with WebCal

WebCal is a computer program which provides advanced calendrical calcu-
lations for Web services. WebCal has an international dimension: it provides
most of the calendar systems world-wide in use, with timezones, daylight savings
time regulations, leap years, leap seconds etc. It also has an historical dimension:
it models historical sequences of calendrical regulations, for example sequences
of calendar systems, sequences of daylight savings time regulations, timezones
changing over time etc. It has an application oriented dimension, i.e. one can
define new application specific temporal notions, for example school holidays,
financial years, ecclesiastical calendars, Mary’s birthday, my own working hours,
and a lot more. WebCal can deal with fuzzy notions like ‘late night’ or ‘around
noon’ because it represents time intervals as fuzzy sets. The program is based
on an algebraic model of basic temporal notions, which gives all the operations
a very precise semantics. The main idea behind WebCal is to provide a few
powerful datastructures, and to offer applications as many operations as possible
on these datastructures.

4.1 Fuzzy Time Intervals

All time information which is submitted to WebCal is immediately turned
into intervals of reference time seconds. For example, the command ‘parse 2000’
(year in UTC) turns the year 2000 into the interval [946684831 978307231[ which
corresponds to the time interval from the beginning of the first second in the
year 2000 till the end of the last second in the year 2000.

In order to be able to deal with fuzzy notions like ‘around noon’, WebCal
represents all intervals as fuzzy sets. Even ordinary intervals are in fact fuzzy sets.
For example, the above mentioned year 2000 is represented as a rectangular
polygon: [946684831,0 946684831,1000 978307231,1000 0,0[. Here the number
1000 stands for the fuzzy value 1.0. We choose an integer representation for
fuzzy values instead of a floating point representation because algorithms for
polygons with integer coordinates are more efficient and less error prone than
algorithms for polygons with floating point coordinates.

Admissible fuzzy intervals in WebCal are any polygons of the form [x1, y1
x2, y2 . . . xn−1, yn−1 xn, yn[ where the xi are integers in increasing order, and the
yi are integers between 0 and 1000.
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If y1 or yn is not 0 then this represents an infinite fuzzy interval where y1
or yn respectively stretch the interval to the infinity. Fuzzy intervals can also be
non-convex and therefore represent the union of separate intervals.

WebCal provides the following classes of operations on crisp and fuzzy time
intervals:

– turning crisp intervals into fuzzy intervals by applying ‘fuzzification func-
tions’;

– measuring various features of an interval, in particular its size as the integral
over the polygon;

– different hull operations (monotone hull, convex hull, crisp hull);
– the usual set theoretic operations on fuzzy intervals, in particular union,

intersection, complement, set difference. (For the expert: these operations
can be parameterized with t-norms, t-conorms and negation functions);

– some other functions which turn fuzzy sets into fuzzy sets. As an example,
consider an XML document about, say, the institute’s birthday parties. It
may contain the entry that the birthday party for the director took place
‘from around noon until early evening’ of 20/7/2003. ‘Around noon’ is a
fuzzy notion and ‘early evening’ is a fuzzy notion. What is now the duration
of the birthday party? It must obviously also be a fuzzy set. The fuzzy value
of the birthday party duration at a time point x is 1 if the probability that
the party started before x is 1 and the probability that the party ended after
x is also 1. Therefore the fuzzy value at point x is computed by integrating
over the probabilities of the start points and the end points. This is one of
the operations the WebCal system provides. The resulting fuzzy set is:

The dashed curve may for example represent the percentage of people at the
party at a give time.
We can continue this example to illustrate another phenomenon when we
reason about time in the XML context. Suppose my diary is also an XML
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document and it contains the information ‘I met this nice girl at the director’s
birthday party’. If I query the XML document ‘did I meet a nice girl between
20 and 21 hours?’ the system needs to determine the probability that I met
the girl in this time. Since the girl was at the party, the ‘meeting the girl’
event is correlated with the party time. Therefore the probability that this
happened is given by the integral over the party time’s fuzzy value during this
time period divided by the whole integral. If my diary contained in addition
the information ‘my mobile phone rang during the director’s birthday party’,
this is an event which is not correlated with the party itself. Therefore the
probability that it rang between 20 and 21 hours is just given by 1 hour
/(maximal length of the party time).
All these operations are supported by WebCal;

– various relations between points and intervals. These relations yield again
fuzzy values as results. Therefore a relation ‘12:01 before midnight’, where
midnight may for example be represented by a one hour interval, in fact
yields a non-zero fuzzy value. In addition to the standard relations ‘before’,
‘starting’, ‘during’ etc. WebCal also provides relations like ‘during the first
third of the interval’ or ‘in the middle of the second half’ etc.

– Fuzzy versions of Allen’s interval relations ‘before’, ‘starts’, ‘during’, ‘fin-
ishes’, ‘after’, ‘equal’. The relations are parameterized. The parameter con-
trols how fuzzy the relation behaves. If the parameter is very large then the
relations behave like the ordinary non-fuzzy relations.

4.2 Partitionings

The key notion for modeling calendar systems as well as many repeating events,
for example the seasons, is the notion of a finite partitioning of the real numbers.
A finite partitioning of R splits the time axis into an infinite sequence of finite
intervals, and these intervals can be numbered by integers. Basic time units like
seconds, minutes, hours, days, weeks, months, years etc. can all be represented
by finite partitions of R. The partitions can be of equal length, but usually
they have different sizes. In fact, the only relevant partitioning with equal sized
partitions in WebCal are the seconds. Already the minutes have different sizes:
minutes with added leap seconds are longer than 60 seconds.

Besides the basic time units in calendar systems, there are a lot of other
temporal notions which can be modeled as partitions: the seasons, the sequence
of Easter dates, financial years, semesters in universities, the sequence of sun-
rises and sunsets, the sequence of the tides, the sequence of school holidays etc.
The WebCal interface provides different specification mechanisms for defining
temporal notions as partitionings at run time. There are, however, other par-
titionings which need to be defined with special algorithms. Examples are the
sequence of Easter dates, sunsets and sunrises etc. They are built-in.

WebCal treats built-in partitions which model time units of calendar sys-
tems in the same way as defined partitions representing for example the seasons
on the northern or southern hemisphere. All operations working for example
with weeks and months work in the same way for the defined partitions. The
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algorithm for computing the n’th week in a month can therefore also compute
for example the n’th week in the summer.

In WebCal there are four different methods for defining partitionings. The
first method requires a starting point, an average length of the partitions and
a correction function. All standard time units, seconds, minutes, hours, weeks,
months, years etc. can be defined this way. The correction function for years, for
example, has to deal with leap years.

The second method defines a partitioning by giving an anchor date and the
length or the partitions. For example, the following command specifies semesters
as sequences of 7 months followed by five months, starting in October.
timeUnit semester regular 2000/10 winter 7 summer 5 month
In the third method we provide instead of the lengths of the partitions concrete
dates. For example, the following command
timeUnit season calendrical 2000/3/21 spring 6/21 summer 9/23 autumn 12/21
winter +1/3/21 month
specifies the seasons as a partitioning.

Finally, with the fourth method we provide concrete dates. It can for example
be used to define holidays.
timeUnit BavarianHolidays finite 2002/10/28 Herbst 2002/11/2 gap 2002/12/23
Weihnachten 2003/1/4 gap 2003/3/3 Winter 2003/3/7 gap 2003/4/14 Ostern
2003/4/26 gap 2003/6/10 Pfingsten 2003/6/21 gap 2003/7/28 Sommer 2003/9/8
In this case the partitioning is preceded by an infinite partition and followed by
an infinite partition. In all other cases the sequence of partitions is infinite itself.

Partitions can be labeled, and these labels can be used in various algorithms.
‘summer’, ‘winter’ etc. are such labels. ‘gap’ is a built-in label.

4.3 Calendar Systems

A calendar system in WebCal is essentially a collection of time units (sec-
onds, minutes, hours, day, weeks, months, years etc.). Each of these time units
is modeled as a partitioning of the reference time line. WebCal provides a class
Partitioning, which allows one to define partitionings by providing the average
length of a partition and a correction function for the cases that the length of
a particular time unit differs from the average length. For example, the Grego-
rian year is defined by an average length of 31536000 seconds (365 days) and a
correction function which adds 86400 seconds (one day) for each leap year. This
way, adding a new calendar system is quite easy, and the code to be implemented
needs to deal with the calendar specific concepts (leap years, length of months,
etc.) only.

Since calendar systems have been changed during the history of countries and
societies, WebCal allows one to define historical sequences of calendar systems.
For example, ‘Julian 1582/10/4 Gregorian’ in the ‘calendarSequence’ command
specifies that all dates before October, 4th, 1582 (in the Julian calendar) should
be interpreted in the Julian calendar, and all later dates should be interpreted
in the Gregorian calendar.



On Reasoning on Time and Location on the Web 81

4.4 Manipulation of Intervals

With the ‘shift’ command one can shift intervals by a given number of time
units. For example, one can shift forwards by 3 month, 1.5 days, 1 semester, and
backwards by 2.6 weeks etc.

Very similar to the shift command is the ‘extend’ command. Whereas shift
always shifts the whole interval, the extend command only shifts the upper or
lower part of the (fuzzy) interval. This way intervals can be extended for example
by 1 year, by 3.5 minutes, by 1.2 seasons, by 2 holiday periods etc.

The most powerful command is the ‘within’ command. It models expressions
like ‘the second day within the week’ (Tuesday) or ‘the third month within the
year’ (March) or the ‘the last day within the year’ (new years eve) or ‘the third
decade within the century’ or ‘the second but last winter within the decade’ or
‘the last week within the summer holiday’ etc. Within comes with a number of
control parameters which give it an enormous flexibility to compute different
things with the same basic algorithm. For example, the version ‘first month
within day’ can be used to cast a smaller interval, for example a day, into a
larger interval, in this case a month.

4.5 Definition Language

Many temporal notions are very application or user specific. For example, ‘the
second school hour’ is a temporal notion, which may only be relevant for me
and a few other people. Such a notion can’t be built into a system. Nevertheless,
I may want to ask a TV-program database ‘give me all documentations about
the Iraq war shown during the second school hour’. To account for this, Web-
Cal provides a specification language for defining new temporal notions. With
this language, we may for example define the n’th school hour during the time
interval x:

school hour(x, n) =
shift(extend(begin minute(hour within day(x, (n <= 5)?8 : 13)),

45, minute), (n − 1) ∗ 45, minute)

This defines a block of 45 minute school hours between 8 o’clock and 11:45, and
a second block of 45 minute school hours after 13:00.

4.6 Limits of the Current Version of WebCal

There are various things on the agenda to be built-in. Some of them are only
a matter of time, but they do not need new concepts: more calendar systems,
special time sequences like sunrises, sunset, moonrises, tides, solar and lunar
eclipses etc. Although these require special algorithms, they all can be modeled
as partitionings, and this fits nicely into the concepts of WebCal. The Easter
dates (western and orthodox) are already modeled this way.

More serious changes are required to overcome the next restriction: so far,
WebCal can only deal with concrete time intervals, for example ‘one week
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after Easter’. It cannot deal with notions like ‘one week between Christmas and
Easter’. This denotes a ‘floating interval’ which is constrained by concrete dates.
In order to deal with such intervals, we need a constraint handling mechanism.
Unfortunately things are not so easy that we can take one off the shelf. Consider
the following constraints: ‘at most one month’ and ‘at least 29 days’. This means
that it cannot be a February, except in a leap year. Obviously these constraints
depend very much on the structure of the calendar system. It is currently not
clear how to integrate this into WebCal.

5 Conclusion

In this paper we tried to give an overview on the various aspects of temporal and
locational reasoning in the Web context. We focused on the problem to evalu-
ate queries to XML documents and taking into account the proper semantics of
temporal and locational notions. We have shown that there are quite a number
of different ideas, methods and systems involved to evaluate even such simple
queries like ‘give me all films ending before midnight’ to an XML cinema pro-
gram database. Some of the problems have already been solved, in particular for
temporal reasoning. Before we can show a first prototype of a complete system,
however, many other problems still have to be investigated. For most of them it
is not really difficult to find some solution, but all the solutions must fit together
in a quite complex system, and the solutions must really be practical, and not
only solve simplified abstracted cases.
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Abstract. In this article we interpret the Semantic Web and Web Ser-
vice issues in the framework of multi-agent interoperating systems. We
will advocate the application of results achieved in the research area of
reasoning about actions and change by showing scenarios and techniques
that could be applied.

1 Introduction

The fast diffusion of Internet and the World Wide Web has inspired new
paradigms for the development of applications distributed over the network,
leading to the concept of “web service”. We can consider a web service as a
program (software) or a device (hardware) accessible through a network, that
can be invoked in an automatic way by programs or other web services. This
perspective brings along many interesting issues: how to describe the function
executed by a web service in a machine-interpretable way? How to advertise
web services? How to choose among the providers of apparently identical ser-
vices? All these questions and many others demand for the definition of tools
and languages for handling semantic information, not only ontologies but also
information about the functioning of services.

The standardization organizations developed a series of languages for rep-
resenting the semantic contents of a resource accessible on the web, from the
Resource Description Framework (RDF), to OWL and DAML+OIL for ontology
description, to WSDL [6] and DAML-S [7] for web service semantic description.
DAML-S inherited from the experience of the research community that studies
agent systems and their logic formalizations and draws considerably from the
action metaphor: a service can be viewed as an action (atomic or complex) with
preconditions and effects, that can modify the state of the world and the state
of agents that work in the world. Such a semantic characterization of the service
as an action is described in the so called DAML-S process model and can be
used for accomplishing tasks like automatic identification of a service of interest,
automatic invocation, automatic composition of services, and so forth.

In this line, one promising direction of research, that we mean to investigate,
consists in exploiting results achieved by the community that studies logic for AI
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and, in particular, reasoning about actions and change. Indeed, the availability of
semantic information about web resources enables the application of reasoning
techniques, such as constraint reasoning, non-monotonic reasoning, and temporal
reasoning. The main purpose of adopting reasoning techniques is to allow the
design of flexible systems, that can adapt to different users and that are open to
interact with one another in ways that cannot be fully foreseen at design time
and, thus, require such systems to reason for taking autonomous decisions.

Some work in this direction has already been carried on in [19], where, within
the context of the DAML-S project [5], the reasoning techniques supported by
GOLOG, an agent language based on the situation calculus, are applied to pro-
duce composite and customized services. Actually, when a service is described in
terms of the function that it executes, with its preconditions and effects, the use
of agents that can reason about the consequences of its invocation is a natural
choice: a rational agent is by definition characterized by a high-level of auton-
omy, it has an own internal state containing information about the world and
about its goals, it can reason about how to behave for fulfilling them, it can
react to alterations of the environment. Agents have also social capabilities that
enable them to interact both with other agents or devices as well as with hu-
man beings. This leads us to claim that there is another fundamental behavior
level, currently not addressed by the proposers of DAML-S, that should instead
be seriously considered and explicitly incorporated in the high-level service de-
scription: the interaction level, concerning the communicative behavior of a web
service, and more specifically the interaction protocol that it adopts for com-
municating with its clients or partners. Our proposal is set in a framework in
which the web service is an agent that communicates with other agents in a
FIPA-like Agent Communication Language (ACL) using predefined protocols.
In this context, the communicative behavior of a service can be expressed as a
conversation protocol in a logic language, at high (not at network) level. Having
a logic specification of the protocol, it is possible to reason about the effects of
engaging specific conversations, and to verify properties of the protocol.

In this paper we introduce two related approaches to reasoning about com-
municative actions by using as a running example a simple scenario of a web
service. Both approaches are based on an action theory where communicative
actions are formalized with a set of action and precondition laws. In Section 4
we show how the logic language DyLOG can reason about the changes caused by
a communicative action to the beliefs of the involved agents, and how this can
be exploited for realizing new forms of personalization in web service fruition.
In Section 5 we present a more general action theory which allows to specify
systems of communicating agents and to verify properties of such systems con-
taining temporal constraints.

2 Communication between Agents

Communication and dialogue have intensively been studied in the context of
formal theories of agency [8]. In particular, a great deal of attention has been
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devoted to the definition of standard agent communication languages (ACL),
such as FIPA and KQML. The crucial issue was to achieve interoperability in
open agent systems, characterized by the interaction of heterogeneous agents,
where it is fundamental to have a universally shared semantic.

Agent communication languages are complex structures because a commu-
nicative act must specify many kinds of information, such as its content and the
kind of performative. The definition of formal semantics for individual commu-
nicative acts has been one of the major topics of research in this field. Most of
the proposals are ultimately based on the philosophical theory of speech acts
developed by Austin and Searle in the sixties. Following the basic insight of the
speech act theory, communications are not just considered as transmitting infor-
mation but as actions that, instead of modifying the external world, affect the
mental states of the involved agents. As a consequence, individual speech act
semantic has been given in terms of preconditions and effects on mental atti-
tudes, as it is commonly done with action semantic, and standard techniques for
reasoning about change have been exploited for proving conversation properties,
planning communication with other agents and answer selection. In this line,
many approaches in the literature are based on variant of modal logic, in which
mental attitudes, such as beliefs, goals and intentions, as well as communicative
acts are represented by modalities [4,18,9].

Only recently the attention has been moved to formalize those aspects of
communication that are related to the conversational context in which commu-
nicative acts occur [21]. The formalization of conversation policies adds a higher
semantic level, which improves the interoperability of the various components
(often separately developed) and simplifies the verification of compliance to the
desired standards. In the area of agent languages based on logic, some exam-
ples of definition of protocols for guiding the agent communicative behavior can
be found in [26,1]. By working at the level of protocols, agents can more eas-
ily be seen as individuals, developed independently, on different platforms and
with different approaches, a very attractive view in the applicative field of web
applications and web services. For all these reasons we focus on a semantics of
communication that supports the specification and reasoning about single speech
acts, as well as the specification and reasoning about speech acts in the context
of a conversation protocol.

Instead of referring to a mentalistic approach as described above, some au-
thors have proposed a social approach to agent communication [27,14]. The
mental approach is not well suited for the verification of an “open” multi-agent
system, where the history of communications is observable, but the internal
states of the single agents may not be observable. In contrast, in the social
approach communicative actions affect the “social state” of the system, rather
than the internal states of the agents. The social state records the social facts,
like the permissions and the commitments of the agents, which are created and
modified in the interactions among them. The dynamics of the system emerges
from the interactions of the agents, which must respect these permissions and
the commitments (if they are compliant with the protocol). The social approach
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provides a high level specification of the protocol, and does not require the rigid
specification of all the allowed action sequences by means of finite state diagrams.

3 A Simple Scenario

In this section we will define a simple scenario aimed at showing the advantage
of expressing and reasoning about the interaction protocol followed by a web
service. Let us consider a software agent (we will refer to it as pa) whose task is
to crawl the internet for executing specific requests of a given user; indeed, pa is a
user personal assistant. Let us suppose that pa current task is to book a ticket at a
cinema where a given movie is shown. In a web service context, it will have to look
for a provider of a cinema booking service by consulting a registry, and interact
with it accordingly, supplying the requested information. As a further condition,
let us imagine that the user requested the personal assistant not to use his
credit card number in the upcoming transaction. Suppose also that two cinema
booking services are available, called click ticket and all cinema respectively,
that apply two different interaction protocols, one permitting both to book a
ticket to be paid later by cash (Fig. 1 (a)) and to buy it by credit card (Fig. 1
(b)), the other allowing only ticket purchase by credit card (Fig. 1 (c)). These
descriptions would induce a human assistant to choose click ticket, selecting the
option to pay cash; this choice can be done because we can reason about the
consequences of communicative acts and procedures.

Customer Service Provider

yes_no_query(available(Film)

inform(cinema(C))

yes_no_query(pay_by(c_card))

inform(cc_number)

inform(booked(Film))

[available(Film)]

[available(Film)]

[available(Film),pay_by(c_card)]

[available(Film),pay_by(c_card)]

Customer Service Provider

yes_no_query(available(Film)

inform(cinema(C))

yes_no_query(pay_by(c_card))

inform(pay_by(cash))

inform(booked(Film))

[available(Film)]

[available(Film)]

[available(Film),~pay_by(c_card)]

[available(Film),~pay_by(c_card)]

Customer Service Provider

yes_no_query(available(Film)

inform(cinema(C))

inform(cc_number)

inform(booked(Film))

[available(Film)]

[available(Film)]

[available(Film)]

(a) (b) (c)

Fig. 1. The three AUML graphs [23] represent the communicative interactions oc-
curring between the customer (pa) and the provider; (a) and (b) are followed by
click ticket, (c) is followed by all cinema. Formulas among square brackets represent
conditions on the execution of the speech act.

4 Interaction Protocols in DyLOG

In the Web service scenario, we are interested in formal languages that sup-
port reasoning techniques for proving existential properties of the kind “given
a protocol and a set of desiderata, is there a specific conversation, respecting
the protocol, that also satisfies the desiderata?”. In different words, the scenario
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demands for some technique that allows the personalization of the interaction.
We will show how reasoning methods supported by the agent language DyLOG
can be exploited in order to obtain this kind of personalization.

DyLOG is a high-level logic programming language for modelling and pro-
gramming rational agents [3,24,1]. It is based on a modal theory of actions and
mental attitudes where modalities are used for representing actions as well as
beliefs for modelling the agent’s mental state. It accounts both for atomic and
complex actions, or procedures. Atomic actions are either world actions, affect-
ing the world, or mental actions, i.e. sensing and communicative actions which
only affect the agent beliefs. Complex actions are defined through (possibly re-
cursive) definitions, given by means of Prolog-like clauses and by making use
of action operators like sequence, test and non-deterministic choice. The action
theory allows to cope with the problem of reasoning about complex actions with
incomplete knowledge and in particular to address the temporal projection and
planning problem. Intuitively DyLOG allows to specify the behavior of a rational
agent that reasons about its own behavior, chooses a course of actions condi-
tioned on its mental state and can use sensors and communication for obtaining
fresh knowledge. In this spirit it has already been used with success for agent
programming, in implementing a web application where a virtual tutor helps
students to build personalized study curricula [2], based on the description of
courses viewed as actions (an application that bears many analogies with web
service process model description and usage).

Let us recall how to specify and reason about communicative behaviors in
DyLOG, by focussing on the web service application scenario depicted above.
For a detailed description of the overall agent theory see [3,1].

4.1 Specifying Communicative Behaviours in DyLOG

Let us start with FIPA-like speech acts. Following the mentalistic approach, in
DyLOG they are considered atomic actions, described in terms of preconditions
and effects on the agent mental state, having form speech act(agi, agj , l), where
agi (sender) and agj (receiver) are agents and l (a fluent) is the object of the
communication. Since speech acts can be seen as mental actions, affecting both
the sender’s and the receiver’s mental state, we have modelled them by general-
izing non-communicative action definitions, so to allow also the representation
of the effects of an action executed by some other agent on the current agent
mental state, described by a consistent set of belief fluents. In fact in our for-
malization each agent has a twofold, personal representation of the speech act:
one is to be used when it is the sender, the other when it is the receiver. Such
a representation provides the capability of reasoning about conversation effects
from the subjective point of view of the agent holding the representation. In the
speech act specification that holds when the agent is the sender, the precondi-
tions contain some sincerity condition that must hold in its mental state. When
it is the receiver, instead, the action is always executable. Let us consider, as
an example, a primitive speech act from the standard agent communication lan-
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guage FIPA-ACL, and let us define its semantics within the DyLOG framework:
the inform speech act (more examples can be found in [24]).

a) �(BSelf l ∧ BSelfUOtherl ⊃ 〈inform(Self, Other, l)〉�)
b) �([inform(Self, Other, l)]MSelfBOtherl)
c) �(BSelfBOtherauthority(Self, l) ⊃ [inform(Self, Other, l)]BSelfBOtherl)
d) �(� ⊃ 〈inform(Other, Self, l)〉�)
e) �([inform(Other, Self, l)]BSelfBOtherl)
f) �(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)

Clause (a) states that Self will execute an inform act only if it believes l (we use
the modal operator Bagi to model the beliefs of agent agi) and it believes that
the receiver (Other) does not know l. It also considers possible that the receiver
will adopt its belief (the modal operator Magi is defined as the dual of Bagi ,
intuitively Magiϕ means the agi considers ϕ possible), clause (b), although it
cannot be certain about it -autonomy assumption-. If agent Self believes to be
considered a trusted authority about l by the receiver, it is also confident that
Other will adopt its belief, clause (c). Instead, when Self is the receiver, the
effect of an inform act is that Self will believe that l is believed by the sender
(Other), clause (e), but Self will adopt l as an own belief only if it thinks that
Other is a trusted authority, clauses (f).

DyLOG agents can be provided with a set of conversation protocols, that
build on individual speech acts and specify communication patterns guiding the
agent communicative behavior during a protocol-oriented dialogue. Reception
of a messages is modelled as a special kind of sensing action, what we call get
message actions. Indeed from the agent perspective receiving a message corre-
sponds to query for an external input, whose outcome is unpredictable. The main
difference w.r.t. normal sensing actions is that get message actions are defined
by means of speech acts performed by the interlocutor. Protocols are expressed
by means of a collection of procedure axioms of the action logic, having form
〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ, where p0 is the procedure name the pi’s can be i’s
communicative acts or special sensing actions for the reception of message. Each
agent has a subjective perception of the communication with other agents, for
this reason each protocol has as many procedural representations as the possi-
ble roles in the conversation. Let us consider for instance the personal assistant
introduced in Section 3, its aim is to look for a cinema booking service that
satisfies the user’s requests. The web service, click ticket follow the interaction
protocol get ticket 1, that permits both to book a ticket to be paid later by cash
and to buy it by credit card. Let us suppose that such protocol is a part of the
DAML-S descriptions of click ticket. Since the protocol is meant to allow the
interaction of two agents, it has two complementary views: the view of the web
service and the view of the client, i.e. pa. Intuitively, if one of the two agents
plays the part of the sender of a piece of information, the other should play the
part of the receiver. In the following we will report the view –written in DyLOG–
that pa has of the protocol get ticket 1. We refer to it as get ticket 1C . Notice
that it builds on primitive speech acts as well as on procedures for making a
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query (yes no queryQ) or replying to a query (yes no queryI) according to the
FIPA Query Interaction protocol [9].

(a) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self, WebS, available(Film));
BSelfavailable(Film)? ; get info(Self, WebS, cinema(C));
yes no queryI(Self, WebS, pay by(credit card));
BSelfpay by(credit card)? ; inform(Self, WebS, cc number);
get info(Self, WebS, booked(Film))〉ϕ

(b) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self, WebS, available(Film));
BSelfavailable(Film)? ; get info(Self, WebS, cinema(C));
yes no queryI(Self, WebS, pay by(credit card));
¬BSelfpay by(credit card)? ; get info(Self, WebS, pay by(cash));
get info(Self, WebS, booked(Film))〉ϕ

(c) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self, WebS, available(Film));¬BSelfavailable(Film)?〉ϕ

(d) [get info(Self, WebS, F luent)]ϕ ⊂ [inform(WebS, Self, F luent)]ϕ

Protocol get ticket 1C works in the following way: the personal assistant (Self)
is supposed to begin the interaction. After checking if the requested movie is
available in some cinema by the yes no queryQ protocol, it should wait for an
information (get info) from the provider (WebS) about which cinema shows it.
Then the form of payment is defined: (a) defines the interaction that occurs
when the tickets are paid by credit card (see Fig. 1(i)); (b) is selected when
¬BSelfpay by(credit card) is contained in pa mental state, leading to book a
ticket to be paid by cash (see Fig. 1(ii)). In both cases a confirmation of the ticket
booking is returned to the pa. Clause (c) tackles the case in which the movie is
not available. Clause (d) describes get info, which is a get message action.

Given a set ΠC of simple action laws defining an agent agi’s primitive speech
acts, a set ΠSget of axioms for the reception of messages, and a set ΠCP ,
of procedure axioms specifying a collection of conversation protocols, we de-
note by CKitagi (the communication kit of a DyLOG agent agi), the triple
(ΠC , ΠCP , ΠSget). CKitagi is a part of Πagi , i.e. the domain description of the
agent agi, including also S0, i.e the initial set of agi’s belief fluents, and eventu-
ally laws and axioms for specifying the agent non communicative behaviors.

4.2 Reasoning about the Interaction with a Web Service

Given a DyLOG domain description Πagi containing a CKitagi with the specifi-
cations of the interaction protocols and of the relevant speech acts, a planning
activity can be triggered by existential queries of form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where
each pk (k = 1, . . . , m) may be an atomic or complex action (a primitive speech
act or an interaction protocol), executed by our agent, or an external1 speech act,
1 By the word external we denote a speech act in which our agent plays the role of

the receiver.
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that belongs to CKitagi . Checking if the query succeeds corresponds to answering
to the question “is there an execution of p1, . . . , pn leading to a state where the
conjunction of belief fluents Fs holds for agent agi?”. Such an execution is a plan
to bring about Fs. The procedure definition constrains the search space. During
the planning process get message actions are treated as sensing actions, whose
outcome cannot be predicted before the actualexecution: since agents cannot
read each other’s mind, they cannot know in advance the answers that they
will receive. All of the possible alternatives are to be taken into account and,
indeed, we can foresee them because of the existence of the protocol. Therefore,
the extracted plan will be conditional, in the sense that for each get message
and for each sensing action it will contain as many branches as possible action
outcomes. Each path in the resulting tree is a linear plan that brings about Fs.

The problem that the personal assistant pa has in the Web service scenario
outlined above can be naturally turned into a planning problem in presence of
communication, as the one treated by DyLOG. In fact the question pa tries to
answer is: “is there some possible conversation, that is an instance of the proto-
col followed by the Web service provider and satisfies all the conditions posed by
the user (e.g. at the and of the interaction the service mustn’t know the user’s
credit card number)?”. In a way, pa wonders if it is possible to personalize the
interaction with its interlocutor so to achieve certain goals. Let us take a Dy-
LOG domain description containing the description of the get ticket 1C protocol
reported above, suppose that pa knows the credit card number (cc number) of
the user but it is requested not to use it, and consider the query:

〈get ticket 1C(pa, click ticket, akira)〉Bpa¬Bclick ticketcc number

that amounts to determine if there is a conversation between pa and click ticket
about the movie akira, that is an instance of the conversation protocol
get ticket 1C , after which the service does not know the credit card number of
the user. Agent pa works on the behalf of a user, thus it knows the user’s credit
card number (Bpacc number) and his desire not to use it in the current trans-
action (¬Bpapay by(credit card)). It also believes to be an authority about the
form of payment and about the user’s credit card number and that click ticket
is an authority about cinema and tickets. This is represented by the beliefs:
Bpaauthority(pa, cc number) and Bpaauthority(click ticket, booked(akira)).
The initial mental state will also contain the fact that pa believes that no ticket
for akira has been booked yet, Bpa¬booked(akira), and some hypothesis on
the interlocutor’s mental state, e.g. the belief fluent Bpa¬Bclick ticketcc number,
meaning that the web service does not already know the credit card number.
Suppose, now, that the ticket is available; since pa mental state contains the be-
lief ¬Bpapay by(credit card), when it reasons about the protocol execution, the
test on Bpapay by(credit card)? fails. Then clause (b) is to be followed, leading
pa to be informed that it booked a ticket, Bpabooked(akira), which is supposed to
be paid cash. No communication involves the belief Bpa¬Bclick ticketcc number,
which persists from the initial state. Even when the ticket is not available or the
movie is not known by the provider, the interaction ends without consequences
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on the fluent Bpa¬Bclick ticketcc number. The briefly described reasoning pro-
cess lead to find an execution trace of get ticket 1C , which corresponds to a
personalized conditional dialogue plan between pa and the provider click ticket,
always leading to satisfy the user goal of not giving the credit card number.

5 Specifying and Verifying Systems
of Communicating Agents

DyLOG is a sequential language which can describe the behavior of a single
agent and prove existential properties, such as finding a sequence of actions
achieving some goal. A more general problem is that of modelling systems of
communicating agents, so as to be able to prove properties of the whole system.
In this section we present a theory for reasoning about actions which allows to
describe the behavior of a network of sequential agents which coordinate their
activities by performing common actions together[12,13]. This theory is based on
the Product Version of Dynamic Linear Time Temporal Logic (denoted DLTL⊗)
[16], a logic which extends LTL, the propositional linear time temporal logic,
by strengthening the until operator by indexing it with the regular programs
of dynamic logic. Regular programs are well suited to model both the agent
behaviors and the communication protocols. Moreover, the formulas of the logic
are decorated with the names of sequential agents, thus allowing to describe the
behavior of a network of sequential agents which coordinate their activities by
performing common actions together. Let us first give a quick overview of the
logic.

5.1 The Logic DLTL and Its Product Version

First we recall the syntax and semantics of DLTL as introduced in [17]. DLTL
is an extension of LTL in which the next state modality is labelled by actions
and the until operator is indexed by programs in Propositional Dynamic Logic
(PDL) [15].

Let Σ be a finite non-empty alphabet whose members are interpreted as
actions. Let Prg(Σ) be the set of programs on Σ, defined as regular expressions.
A set of finite words, representing computation sequences, is associated with
each program by the mapping [[]] : Prg(Σ) → 2Σ∗

.
Let P = {p1, p2, . . .} be a countable set of atomic propositions. The set of

formulas of DLTL(Σ) is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ), and π ranges over Prg(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ is an infinite sequence of

actions and V is a valuation function. Given a model M = (σ, V ), a finite word
τ ∈ prf(σ) (a finite prefix of σ), and a formula α, the satisfiability of a formula
α at τ in M , written M, τ |= α, is defined as usual for the classical connectives.
Moreover:
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– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=
β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′ , M, ττ ′′ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behaviour which is a computation sequence of the program π.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ �Uπα
and [π]α ≡ ¬〈π〉¬α. Furthermore © (next), � and � of LTL can be defined as
follows: ©α ≡ ∨

a∈Σ 〈a〉α, �α ≡ �UΣ∗
α, � ≡ ¬�¬α.

Let us now recall the definition of DLTL⊗ from [16]. Let Loc = {1, . . . , K}
be a set of locations, the names of the agents. A distributed alphabet Σ̃ = {Σi}K

i=1
is a family of (possibly non-disjoint) alphabets, where Σi is the set of actions
which require the participation of agent i. If an action a belongs to Σi and to
Σj , the two agents i and j will synchronize on this action. Let Σ =

⋃K
i=1 Σi.

Atomic propositions are introduced in a local fashion, by introducing a non-
empty set of atomic propositions P. For each proposition p ∈ P and agent
i ∈ Loc, pi represents the “local” view of the proposition p at i, and is evaluated
in the local state of agent i.

The formulas in DLTL⊗(Σ̃) are boolean combinations of formulas with the
main constraint that no nesting of modalities Ui and Uj (for i = j) is allowed.
A model of DLTL⊗(Σ̃) is a pair M = (σ, V ), where σ ∈ Σ∞ and V = {Vi}K

i=1
is a family of functions Vi, where each Vi is the valuation function for agent
i. The satisfiability of formulas in a model is defined as in DLTL, except that
propositions are evaluated locally and the sequence of actions σ is projected on
the alphabet of local actions of each agent.

5.2 Action Theories and Protocols

Given a set of communicating agents, each agent participating in an action ex-
ecution has its own local description of the action determining the effects on
its local state. The global state of the system can be regarded as a set of local
states, one for each agent i. The action laws and causal laws of agent i describe
how the local state of i changes when an action a ∈ Σi is executed. The underly-
ing model of communication is the synchronous one: the communication action
comm act(i, j, m) (message m is sent by agent i to agent j) is shared by agent
i (the sender) and agent j (the receiver) and executed synchronously by them.
Their local states are updated separately, according to their action specifica-
tion. Though, for simplicity, we adopt the synchronous model, an asynchronous
model can be easily obtained by explicitly modelling the communication channels
among the agents as distinct locations.

A protocol defines the meaning of communicative actions involved in the con-
versation. In particular, by adopting a social approach, the protocol describes
the effects of each action on the social state of the system. These effects, includ-
ing the creation of new commitments, can be expressed by means of action laws.
Moreover, the protocol establishes a set of preconditions on the executability of
actions (permissions), which can be expressed by means of precondition laws.
Each agent has a local view of the social state and the execution of a commu-
nicative action can in general affect both the state of the sender and the state
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of the receiver. In particular, all agents can see the effects on the social state of
the actions to which they participate.

For instance, in the example of Section 3 there are two agents, the personal
assistant pa and the web service ws providing ticket booking. The conversation
protocol for the two agents will be given through a set of action laws and con-
straints in the form of permissions or commitments. Since our theory does not
allow to express a global states, the protocol will be projected on the local states
of the participating agents. Observe that, since the two agents participate in all
communicative actions, they have the same local view of the social state, and of
the action laws and constraints of the protocol.

Let us assume that pa is the sender of the following actions2 queryIf(pa, ws,
available(Film)), askBooking(pa, ws, Cinema), give cc(N), whereas the actions
whose sender is ws are inform(ws, pa, at(Film, Cinema)), inform(ws, pa, ¬
available(Film)), makeBooking(ws, pa, Cinema), sendTicket(ws,pa). The effects
of actions will be described by action laws such as (where k = pa, ws):

�k([queryIf(pa, ws, available(Film))]kasked(Film)
�k([makeBooking(ws, pa, Cinema)]kbooked(Cinema)

where asked(Film) and booked(Cinema) are fluents of the social state.
Commitments can be effects of actions and will be represented by special flu-

ents. They can be base-level commitments, of the form C(ag1, ag2, action) (agent
ag1 is committed to agent ag2 to execute the action), or they can be conditional
commitments of the form CC(ag1, ag2, p, action) (agent ag1 is committed to
agent ag2 to execute action, if the condition p is brought about).

For instance, when the web service finds a cinema, it commits to make the
booking, if the customer asks it. Furthermore it commits to send a ticket if the
customer gives its credit card number.

�k([inform(ws, pa, at(Film, Cinema))]k
CC(ws, pa, askedBooking(Cinema), makeBooking(ws, pa, Cinema))
∧CC(ws, pa, cc given, sendT icket(ws, pa))

Some reasoning rules have to be defined for cancelling commitments when
they have been fulfilled and for dealing with conditional commitments. For in-
stance we can have the law (where k = i, j):

�k((CC(i, j, p, a) ∧ ©kp) → ©k(C(i, j, a) ∧ ¬CC(i, j, p, a)))

saying that a conditional commitment CC(i, j, p, a) becomes a base-level com-
mitment C(i, j, a) when the condition p has been brought about. This law is a
causal law.

The protocol can specify constraints (permissions) on the execution of actions
by giving precondition to the actions. For instance ws will not send the ticket
before the credit card number has been given:

�k(¬cc given → [sendT icket(ws, pa)]k⊥)
2 This formulation does not correspond exactly to the diagram in Fig. 1.
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meaning that sendT icket(ws, pa) cannot be executed in those states in which
¬cc given holds, i.e. cc given is a precondition of the action.

An agent i satisfies its commitments when, for all commitments C(i, j, a) in
which agent i is the debtor, the formula:

�i(C(i, j, a) → �i〈a〉i�)

holds. Such a formula says that, when an agent is committed to execute action
a, then it must eventually execute a3.

Note that a protocol specified in this way is less rigid that the one given in
Fig. 1, and can have different executions satisfying the action laws, preconditions
and commitments. For instance the customer can leave the conversation before
asking booking (the web service will have no base-level commitments to fulfill), or
after asking booking and receiving confirmation, but before giving the credit card
number (in this case the web service will only be committed to make booking,
but not to send the ticket).

5.3 Reasoning about Protocols

Given a protocol, we denote with Di the domain description of agent i, i.e. its
action laws and causal laws4, with Permi the set of precondition laws of the
actions whose sender is i, and with Comi the set of all temporal formulas, as
the one above, describing the satisfaction of the commitments of agent i.

If we do not know the behavior of any agent, we can only reason on the
protocol by proving some properties of it, by assuming that all agents respect
their permissions and commitments. This can be formalized as a validity check
of the formula: ∧

j

(Di ∧ Permj ∧ Comj) → p

where j ranges over all agents.
Following [29] we might also extract from the protocol a plan, that is an

execution of the protocol, satisfying some given properties. Planning can be for-
mulated in our theory as a satisfiability problem., i.e. as the problem of finding
a model having the plan as a finite prefix. Assume instead that we know the
behavior of some agents. For instance we are given a program (regular expres-
sion) π which describes the behavior of the web service. In this case we would
like to verify that ws always satisfies its social fact, i.e. its permissions and com-
mitments. Since we don’t know anything about the behavior of pa, we can only
assume that it respects its social facts.
3 Here we assume that an agent cannot change its mind about commitments. However

the language allows to define actions for manipulating commitments, for instance
for cancelling them, as in [29].

4 Actually Di must also model the frame problem. To deal with it we make use [12]
of a completion construction which, given a domain description, introduces frame
axioms for all the fluents in the style of the successor state axioms introduced by
Reiter [25] in the context of the situation calculus.
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If Progws is the domain description of the behavior of ws, the following
formula:

(Dws ∧ Progws ∧ Dpa ∧ Permpa ∧ Compa) → (Permws ∧ Comps)

is valid if in all the executions of the system, in which agent ws respects its
specification Progws, and pa (whose internal program is unknown) respects the
protocol specification (including its permissions and commitments), the permis-
sions and commitment of agent ws are also satisfied. In general it is possible to
prove that an agent is compliant (respects its “social facts”) under the assump-
tion that all other agents in the protocol are compliant.

The above verification and satisfiability problems can be solved by extend-
ing the standard approach for verification and model-checking of Linear Time
Temporal Logic, based on the use of Büchi automata. As described in [17], the
satisfiability problem for DLTL can be solved in deterministic exponential time,
as for LTL, by constructing for each formula α ∈ DLTL(Σ) a Büchi automaton
Bα such that the language of ω-words accepted by Bα is non-empty if and only
if α is satisfiable. This result has been extended in [16] to DLTL⊗. The veri-
fication of a formula α → β can be carried out by constructing the two Büchi
automata for α and the negation of β. If the two automata have a common
execution sequence, this sequence provides a counterexample for α → β. Thus
α → β is valid if the language accepted by the product of the two automata is
empty. The similarities between the verification approach for LTL and that for
DLTL⊗ suggest the possibility of using techniques and tools which have been
developed for LTL. For instance, it is possible to extend to DLTL⊗ the efficient
tableau-based algorithm of [10] for constructing the automaton on the fly.

6 Conclusions

In this paper we have presented various approaches to reasoning about conver-
sation protocols within the framework of logic-based agent languages. We have
shown that a theory of communicative actions can be formulated in the Dy-
LOG logical framework, so as to allow the modelling of software agents that
can interact with one another by a speech act based communication mecha-
nism. This framework allows an agent to reason about conversation protocols
with other agents. We have also presented an action theory based on the logic
DLTL⊗ which provides a unified framework for specifying and verifying systems
of communicating agents: Programs are expressed as regular expressions, (com-
municative) actions can be specified by means of action and precondition laws,
properties of social facts can be specified by means of causal laws and constraints,
and temporal properties can be expressed by means of the until operator.

A related approach is that of ConGolog [11], an extended version of the lan-
guage Golog, that incorporates a rich account of concurrency, in which complex
actions (plans) can be formalized as Algol-like programs in the situation cal-
culus. A substantial difference with ConGolog, apart from the different logical
foundation, is that here we model agents with their own local states, while in
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Congolog the agents share a common global environment and all the properties
are referred to a global state.

Other related proposals for the specification and verification of systems of
communicating agents, based on a mentalistic approach, are presented [20] and
[28]. The goal of [20] is to extend model checking to make it applicable to multi-
agent systems, where agents have BDI attitudes. This is achieved by using a new
logic which is the composition of two logics, one formalizing temporal evolution
and the other formalizing BDI attitudes. In [28] agents are written in MABLE,
an imperative programming language, and have a mental state. MABLE sys-
tems may be augmented by the addition of formal claims about the system,
expressed using a quantified, linear time temporal BDI logic. [29] presents a so-
cial approach based on event calculus to protocol specification and execution. A
different approach to specification and verification of web services is presented
in [22], which shows how to encode in a Petri Net formalism a service description
given in DAML-S, providing decision procedures for web service simulation, ver-
ification and composition. Guerin’s thesis [14] defines an agent communication
framework which gives agent communication a grounded declarative semantics,
and defines different languages for agent programming, for specifying agent com-
munication and social facts, and for expressing temporal properties.
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Abstract. As XML is increasingly being used to represent information
on the Web, query and reasoning languages for such data are needed.
This article argues that in contrast to the navigational approach taken
in particular by XPath and XQuery, a positional approach as used in
the language Xcerpt is better suited for a straightforward visual repre-
sentation. The constructs of the pattern- and rule-based query language
Xcerpt are introduced and it is shown how the visual representation
visXcerpt renders these constructs to form a visual query language for
XML.

1 Introduction

Five years after its initial specification in 1998, XML [1] has become the de
facto standard for data exchange. It is nowadays increasingly being used for
representing semistructured databases, Web documents, and in particular meta
information like ontological data (as in OWL [2]) or browsing contexts and user
models [3]. There is hence a need for languages that are suitable for both querying
and reasoning with semistructured data.

Many existing query languages, in particular the W3C proposals XPath and
XQuery, are navigational in the sense that their variable binding paradigm re-
quires the programmer to specify path navigations through the document (or
data item). In contrast, some other languages – such as UnQL [4] and Xcerpt
[5] – are pattern-based: their variable binding paradigm is that of mathematical
logics, i.e. the programmer specifies patterns (or terms) including variables. This
difference is discussed in Section 2.

In this article, it is argued that the pattern-based paradigm is particularly
well-suited as a base for a visual query language for semistructured databases.
The reason is that patterns are form-like two dimensional structures that con-
ceptually are very close to two dimensional visual representations. Arguably,
every visual or graphical language for XML and/or semistructured data (such
as XML-GL [6], GraphLog [7], VXT [8], BBQ [9] and Xing [10]) as well as the
veteran language QBE and improvements thereof (such as MS Access and sim-
ilar products) might be seen as having an (in general implicit) pattern-based
language as an (in general unconscious) foundation.
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Interestingly, and maybe supporting the last above-mentioned claim, a visual
language for a pattern-based textual query and transformation language can
be developed simply by specifying a visual rendering (in contrast to a complex
transformation) of the textual programs very much like a CSS stylesheet specifies
a layout for an HTML document.

Besides the pattern-based nature, another property of the Xcerpt language
is of particular interest to visual querying: rule-based queries with a clear sepa-
ration of condition and result allows for a rather natural visual representation,
since an “if . . . then . . . ” is easily conveyed even by novice users.

This article is organised as follows. Section 2 provides a discussion of the
navigational and positional approaches for query languages. The basic elements
of the declarative, rule- and pattern-based language Xcerpt are then introduced
in Section 3. In Section 4 it is shown how semistructured data in general and the
Xcerpt constructs in particular are visually represented in the language visX-
cerpt. Section 5 finally gives a summary about further and related work.

2 Positional vs. Navigational Data Selection

Essential to querying semistructured data is the selection of data items in a
document (i.e. rooted graph). Most widespread query languages for XML – e.g.
XQuery – rely on path selections expressed using XPath (or similar approaches).
XPath-like languages provide with constructs like regular expressions and wild
cards for specifying paths through a rooted graph. For instance, the XPath
expression /a[b]//c means “find the document nodes labelled c that can be
reached from the document root via a child node labelled a having itself a child
node labelled b and having the c-labelled nodes as descendants”. Such node
selections can be called navigational.

For simple queries and transformations, the navigational approach is very
natural and results in simple programs. For more complex queries, especially
for queries involving several variables, the navigational approach often leads to
intricate programs.

Furthermore, the intertwining of construction and query parts in languages
such as XQuery and most of its precursors often yields programs that are difficult
to visualise properly.

Also, the possibility to specify forward and reverse axes in path languages
like XPath might further increase the complexity of query programs and an
equivalent query with only forward axes is often more intuitive.

A further important aspect of navigational node selections is that they do
not easily support the selection of several related nodes at once. Such multiple
node selections, however, are rather natural and are required by most non-trivial
queries. This is e.g. the case when one looks for bibliography entries combining
several aspects such as an author’s name, a keyword in the title, and a year
of publication. Everyone familiar with bibliographies immediately “visualises”
the shape or pattern of such a retrieval request and the respective positions
of the variables it refers to. Arguably, pattern-based or positional query and
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transformation languages such as Xcerpt reflect and convey such an intuitive
“visualisation”.

With the positional query and transformation language Xcerpt the nodes to
be selected are specified by variables in patterns called query terms. Query pat-
terns are related to other patterns called construct terms through their common
variables. The Xcerpt construct relating a construct term to a query expression
consisting of AND and/or OR connected query terms is a rule. These concepts
are introduced in the next section.

For querying semistructured data, the positional approach has been suggested
first with UnQL [4] and XML-QL [11]. In common programming, the positional
approach finds its roots in Functional and Logic Programming. Arguably, both
query languages QBE and SQL can be seen as positional languages.

3 Xcerpt’s Main Constructs

An Xcerpt program may consist of at least one goal and of some (maybe zero)
rules. Goals and rules are built up from database, query and construct terms
that are first introduced. Note that besides the “abstract” syntax presented here,
Xcerpt also has an XML syntax which is not described here for space reasons.

3.1 Database, Query, and Construct Terms

Common to all terms is that they represent tree-like (or graph-like) structures.
Square brackets (i.e. [ ]) denote ordered term specification (as in standard XML),
i.e. the matching subterms in the database are required to be in the same order
as in the query term. Curly braces (i.e. { }) denote unordered term specification
(as is common in databases), i.e. the matching subterms in the database may be
in arbitrary order.

Single (square or curly) braces (i.e. [ ] and { }) are used to denote that a
matching term must contain matching subterms for all subterms of a term and
may not contain additional subterms (total term specification). Double braces
(i.e. [[ ]] and {{ }}) are used to denote that the database term may contain
additional subterms as long as matching partners for all subterms of the query
term are found (partial term specification).

Graph structure is expressed using a reference mechanism. The construct
id @ t is used as a defining occurrence of the identifier id and the construct
^id is used as a referring occurrence.

Database Terms are used to represent XML documents and the data items of
a semistructured database. They are similar to ground functional programming
expressions and logical atoms. Database terms may only contain the single square
and curly braces described above.

A database is a (multi-)set of database terms (e.g. the Web). Note, however,
that a single database term is often used to represent what is commonly referred
to as a “database”, as shown in the following example.
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Example: a database term representing a bibliography consisting of several
books. Note the use of references to share common data. Also note that the
author list for a book is ordered while the data in general is unordered:

bib {
authors {

a1 @ author {
name { "Serge Abiteboul" }, publications { ^b1, ^b2 } },

a2 @ author {
name { "Peter Buneman" }, publications { ^b1 } },

a3 @ author {
name { "Dan Suciu" }, publications { ^b1 } },

a4 @ author {
name { "Richard Hull" }, publications { ^b2 } },

a5 @ author {
name { "Victor Vianu" }, publications { ^b2 } }

},
b1 @ book {

title { "Data on the Web" },
authors [ ^a1, ^a2, ^a3 ],
price { "69.95" }

},
b2 @ book {

title { "Foundations of Databases" },
editors [ ^a1, ^a4, ^a5 ],
price { "29.00" }

}
...

}

Database terms induce a graph in a straightforward manner. Figure 1 shows a
(incomplete) graph representation of the book database of the previous example.

editors

name pub...

author

name pub...

author

book bookauthors

books

title authors price title price

"29.00""Data on ..." "69.95" "Foundations ..."

.....

"Dan ...""Serge ..."

....

....

Fig. 1. Graph induced by the book database (incomplete). References to parts not
illustrated are shown as dashed arrows.
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Note that database terms do not cover all constructs found in XML. Con-
structs like Attributes or Processing Instructions are intentionally left out be-
cause they are either easy to model in the existing database terms or do not add
important information to the data represented.

Query Terms are similar to non-ground functional programming expressions
and logical atoms. Extending the database terms, query terms have the following
properties:

– in a query term, partial specifications omitting subterms irrelevant to the
query are possible (indicated by double square brackets or curly braces),

– in a query term, it is possible to specify subterms at arbitrary depth (indi-
cated by the keyword desc).

– a query term may contain term variables and label variables to “select” data
from the database (variables are written in upper case letters below)

As Xcerpt queries are pattern-based, a query term should resemble the
database as closely as possible, while leaving out such parts that are irrelevant
to the query.

The reference mechanism using ^id and id @ t has the same significance
as the parent-child edge. In the following example, the right hand side shows a
query which matches a parent-child edge with a reference edge in the database.
Example: Left: Select title and author pairs for each book. Right: Select pairs of
authors that have written at least one book together.

bib {{
book {{

var T � title {{ }},
authors {{ var A }}

}}
}}

bib {{ authors {{
author {{

var Author � name {{ }},
publications {{

book {{
authors {{ var CoAuthor � author {{ }} }}

}} }}
}}

}} }}

The Xcerpt construct X � t (read “as”) serves to associate a query term
to a variable, so as to specify a restriction of its bindings. The Xcerpt construct
desc (read “descendant” – not illustrated above) is used to specify subterms at
arbitrary depth.

Query terms are unified with database or construct terms using a non-
standard unification called simulation unification, which has been investigated
in [12]. Simulation unification is based on graph simulation [13] which is similar
to graph homomorphisms.

The outcome of unifying a query term with a database term are bindings
for the variables in the query term. Applying these bindings to the query term
results in a ground query term which is simulated (in the sense of [13]) in the
database term.

Construct Terms serve to reassemble variable (the bindings of which are spec-
ified in query terms) so as to construct new database terms. They may only
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contain single brackets and variables, but no partial specification or variable re-
strictions. The rationale of this is to keep variable specifications within query
terms, ensuring a strict separation of purposes between query and construct
terms.
Example: Create an Author-Title pair wrapped in a “result” element:
result {
var A, var T

}

In a construct term, the Xcerpt construct all t serves to collect (in the con-
struct term) all instances of t that can be generated by different variable bindings
for the variables in t (returned by the associated query terms in which they oc-
cur). Likewise, some n t serves to collect at most n instances of t that can be
generated in the same manner.
Example: Create a list publications for each author and a list of authors for each
publication:

results {
result {
var A,
all var T

}
}

results {
result {
all var A,
var T

}
}

Example: The following construct term collects all title/author pairs for the
previous query:
results { all result { var A, var T } }

The constructs all and some n may be nested to form more complex results.
The following example shows the usefulness of nesting:
Example: Assuming the previous query, the following construct term collects all
titles for each author:
results { all result { var A, all var T } }

Positioning the nested all around the A yields “all authors for each title” as a
result:
results { all result { all var A, var T } }

3.2 Queries

A query is a connection of zero or more query terms using the n-ary connectives
and and or. A query is always (implicitly or explicitly) associated with a resource.
A resource may be the program itself, an external Xcerpt program or an (XML
or other) document specified by a URI (uniform resource identifier).

Variables occurring in more than one query terms in an and connected query
evaluate similar to an equijoin in relational databases.
Example: Query for the prices of books in two different book stores (specified
by the resource identifier A and B).
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and {
bib {{

book {{ var T � title{{ }}, var Pa � price{{ }} }}
}} in http://www.a.com,
reviews {{

entry {{ var T � title{{ }}, var Pb � price{{ }} }}
}} in http://www.b.com

}

If a query does not explicitly have an associated resource, the resource spec-
ification is implicit and inherited from the parent. If none of the parents have a
resource specification, or the query does not have a parent, the queried resource
is the program itself (i.e. the heads of the rules and possibly database terms
contained in the program – see “Rule Chaining” below).

Note that it is possible to use curly and square braces in and and or con-
nections to specify that the evaluation order is of importance or not. This may
serve as an indication to the evaluation engine whether certain optimizations are
applicable or not.

3.3 Construct-Query Rules, Goals

An Xcerpt program consists of zero or more construct-query rules, one or more
goals and zero or more database terms. Both rules and goals have the form

Construct Term ← Query Part

where a construct term is constructed depending on the evaluation of a query
part.
Example: A rule that creates a price summary for the books in the two databases
A and B:

rule {
cons {

summary {
all book { var T, price-at-A { var Pa }, price-at-B { var Pb } }

}
},
query {

and {
bib {{

book {{ var T � title{{ }}, price{{ var Pa }} }}
}} in A,
reviews {{

entry {{ var T � title{{ }}, price{{ var Pb }} }}
}} in B

}
}

}

A rule can be seen as a “view” specifying how tc-shaped documents can be
obtained by evaluating the query part against a Web resource (e.g. an XML
document or a database).
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In addition to the form above, goals are always (explicitly or implicitly)
associated with an output resource. This resource specifies where to “write” the
resulting database terms. If not explicitly specified, the output resource defaults
to stdout, writing all output to the console.
Rule Chaining. In addition to querying external resources, a query may also
be evaluated against the program. In such a case, the heads of the program rules
(but not of the goals) are queried and the associated rule is evaluated. Both
forward and backward chaining are feasible.
Forward Chaining. In a forward chaining approach, rules are evaluated iter-
atively against the current set of database terms until saturation is achieved.
Forward Chaining is useful for instance for materializing views and for view
maintenance.
Backward Chaining. Backward Chaining is a goal driven approach. Beginning
with the query part of the goal, program rules are selected if they are relevant
for “proving” a query term. The query term in question is then replaced by the
query part of the selected rule. Backward Chaining is useful when the expected
result is small in comparison with the number of possible results of the program.

Backward Chaining in Xcerpt following the SLD resolution used in e.g. Pro-
log, with some major modifications to cover constructs like all and some and to
cope with multiple results of a simulation unification.

4 visXcerpt: A Visual Rendering of Xcerpt

The main goal of visual languages in general is to ease the use of a technology
especially among novice users since it avoids many common errors by abstract-
ing from the textual syntax. The Web context in particular demands for query
technology that is easy to use even by non-programmers, since there are always
queries not forseen by developers. Hence, a visual language would likely be well
accepted among many Web users.

For visual query languages it is considered to be important to have a strong
visual relationship between queries and queried data or query results. A natural
approach is to provide some sort of example of a valid result as query as first
presented in QBE. Xcerpt query patterns with positional variables can be seen
as samples of valid source data items, where some parts are left out and oth-
ers represented by variables. Construction patterns can be seen as samples or
templates of result data items.

The syntax and semantics of Xcerpt as a whole is well suited as foundation
for a visual language. As a consequence, textual Xcerpt’s visual counterpart
visXcerpt can be conceived as a mere rendering instead of a fully novel language.
This rendering might be seen as an advanced (because of the dynamic features)
layout.

In the following, it is illustrated how the textual Xcerpt constructs have their
visual counterparts in visXcerpt. A generic term representation is introduced
first, followed by the rule- and query constructs used to form Xcerpt programs
and by dynamic aspects of the visual representation.
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4.1 Visual Representation of Terms

Fig. 2. visXcerpt representa-
tion of a term using different
combinations of ordered/un-
ordered and partial/total.

Fig. 3. identifiers appear in
the tab, references are visu-
alised by icons.

Xcerpt terms (i.e. elements) are visualised as
boxes. A term label (or tag) is attached as a
tab on the top of its associated box. visXcerpt
has features for handling attributes and text. At-
tributes are placed in a two-column table with
names in the left column and values in the right
column. The attribute table appears first in a box
and is omitted if there are no attributes. Direct
subterms (i.e. children) are visualised the same
way as sub- or child boxes. Child boxes are ar-
ranged vertically in a parent box. For better dis-
tinction, they are coloured differently. Figure 2 on
the right illustrates this nesting on the Xcerpt term
f [[a{”TextA”}, b[”TextB”], c[[”TextA”]]]].

Different box borders are used as visual coun-
terparts to the Xcerpt parentheses {{ }}, [[ ]],
{ }, and [ ]. Ordered or unordered children are
indicated graphically by an icon (ascending bars
represent ordered, random bars unordered) at the
top right corner of a box. Optionally, partial and
total matching can also be indicated graphically
by an icon (see also Figure 2 on the right).

Visual Identifiers and References. Beyond
the hierarchical structure that terms can express,
Xcerpt provides a reference mechanism based on
IDs associated to terms (like id@t) and references
(like ↑ id).

Figure 3 on the right illustrates the visual rep-
resentation of a database term containing refer-
ences and both ordered and unordered content.
The references are represented with an icon re-
sembling a pointer and referenced terms carry the
anchor name in the title tab.

Note that visXcerpt also provides navigational
support for references by representing those con-
structs as hyperlinks (see dynamic aspects below).

Visual Query and Construction Patterns.
The constructs presented so far are the foundation of visXcerpt database terms.
They can be used to visualise any XML data as well as any Xcerpt data. Visu-
alisation of further Xcerpt constructs are irrelevant for pure data and are distin-
guished visually from the former constructs – they use reserved colours (black,
white and gray) and in some cases textual adornment with a reserved text style
(italic font). Those textual extensions always match to the corresponding Xcerpt
keywords.
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– variables are represented as black boxes with the variable name writ-
ten in white in the box. If a variable is restricted to a term (by the
� construct), this term appears within the box of the variable. The
variable A in Figure 4 illustrates this representation on the example
f[[ desc var A -> a{{ }} ]]. The variable A is restricted to such terms
that match with desc a{{ }}.

– The desc (descendant) construct is rendered as gray box with strong bevelled
border (a visual metaphor for depth) and the keyword descendant is written
in italic at the top (see Figure 4).

– The constructs all, and and or are rendered as white boxes with black border
and textual adornment. To further distinguish disjunctions and conjunctions
the content of or is arranged horizontally while the content of and is arranged
vertically. A visual representation of all and and can be seen in Figure 5 (left
of the arrow).

4.2 visXcerpt Programs

Fig. 4. descendant as bev-
elled box, variables as black
box with white text.

Visual Construct-Query Rules and Goals
are visualized in visXcerpt by connecting a query
part with a construct term by means of an arrow,
so as to emphasize the fact that in an Xcerpt rule
a result follows from a query. As can be seen in
Figure 5, the construct term is positioned left of
the arrow while the query part is positioned right
of the arrow.

Query and/or construct parts may contain re-
source specifications. Since a resource specification
has a scope, it is indicated as a box containing all
parts for which they are valid. The resource itself
is specified in the title of this box (see Figure 5).

Visual Programs are seen as documents of visXcerpt construct-query rules.
They are arranged vertically as a list of rules.

4.3 Dynamic Features

A static visualisation as described above is not sufficient for an interactive query
system that should provide features which enhance the usability and allow for
editing visXcerpt programs. The visXcerpt prototype provides features that al-
low for easier navigation and improved comprehension (browsing aspects). Fur-
thermore, an editor is provided as well as the possibility to “try out” programs
while developing them.

Browsing Aspects. When viewing (and editing) documents, an important
aspect are properties that allow navigation and different views upon the data.
In visXcerpt, such properties are referred to as browsing aspects. In particular,
visXcerpt provides means for:
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Fig. 5. A visual representation of the Xcerpt rule from Section 3.3. The construct term
is left of the arrow while the query part – consisting of an and connection of two query
terms – is right of the arrow. Note that the Xcerpt-specific constructs not found in
database terms (e.g. variables) are always displayed in shades of black and white.
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Partial Viewing. For large documents, only a part is displayed in the viewer.
Vertical and horizontal scrollbars allow to move the current view.

Fig. 6. information hiding: el-
ement “b” is folded.

Fig. 7. variable highlighting
of the variable “A”.

Information Hiding. In large documents, it is de-
sirable to be able to hide such information that is
irrelevant for the current task. In visXcerpt, click-
ing on the title tab of an element “folds” the ele-
ment together with all its contents such that only
the title tab remains (in a shaded color). Any sub-
sequent element boxes below the same parent ele-
ment move upwards such that their title tab is be-
sides the hidden elements (Illustrated in Figure 6
on the right).

References. Visually depicting references with
icons and identifiers only (as described above) is
dissatisfactory, since it does not model the graph
structure appropriately. Instead of further depict-
ing references visually, visXcerpt “moves them into
hyperspace” by representing them as hyperlinks.
That is, by clicking on a reference the visualisation
scrolls or focuses on the occurence of the referenced
element. Hovering with the pointer above a term
with ID highlights all occurrences of references to
it. Backward navigation to references is supported
through a popup menu of elements containing an
ID.

Variable Highlighting. In (vis)Xcerpt rules, all
variables that appear in the head of a rule are also
required to appear in its body. Moreover, the same
variable may occur in several parts of the body,
even several times within the same query term. To
support the user in designing visXcerpt rules, all
occurrences of a variable are highlighted by inverting its color when the mouse
hovers over one occurrence of the variable (see Figure 7 on the right). This eases
the comprehension of term equality in positional queries and thus allows the user
to recognize connections between different parts of a rule or within a term.
The reference visualisation and variable handling is similar indeed and future
implementations of variable visualisation may rely on the more general reference
mechanism.

Editing Capabilities. As visXcerpt is an editor for tree structured data, many
of the editing capabilities commonly found in plain text editors have only limited
applicability. Thus, in addition to common text editing primitives (like “cut”,
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“paste”), the visXcerpt editor provides primitives that are suitable for insertion
of subtrees and nodes (e.g. “paste into at beginning/end” or “paste before/after”,
illustrated in Figure 8 on the right).

Fig. 8. Editing capabilities:
context menu.

When build documents, the visXcerpt editor
follows a “copy and paste” paradigm with a tem-
plate area where templates of common elements
like “element” or “variable” can be copied from
and inserted into the edited document. A “drag
and drop” paradigm has also been considered but
is not yet implemented due to technical reasons.

Interactive Queries. When designing programs,
it is often necessary to be able to run the program
for test purposes as well as restrict the test to cer-
tain parts of the program. The visXcerpt interface
allows both:

– A program can be evaluated at any time, pro-
vided its semantics is meaningful (the visual
interface ensures that the syntax is always cor-
rect). For a program to be evaluated, it must contain at least one goal.
Depending on the output resource specified for the goal, the result of the
evaluation is either displayed in a new windows in the generic visXcerpt term
representation or written to the specified output resource.

– A single query term can be evaluated against the program to test only spe-
cific parts. This query term is evaluated against all rules and the result is
displayed as a disjunction of alternative variable bindings in a new window.

5 Related and Future Work

There is a large number of XML query languages available on the Web, most
of them based on a navigational selection of nodes. Most notably, the W3C
has issued the XQuery, XSLT and XPath recommendations [14]. The pattern-
based approach to querying semistructured data has first been presented in the
language UnQL [4]. However, UnQL rules may not be connected by chaining and
lack many of the constructs found in Xcerpt. Several publications concerning the
language design and semantics of Xcerpt are available, in particular[5, 15, 12, 16].

Visual XML query languages that the authors are aware of are XML-GL
[6], GraphLog [7], VXT [8], BBQ [9] and Xing [10]. Most of these languages
visualize the XML document as a tree (i.e. nodes connected with arrows or
similar). While on first look this appears to be very concise, it does not scale
well to larger documents and queries. Thus, visXcerpt uses the concept of nested
boxes as visual representation, which is borrowed from the language Xing and
enhanced in many ways in the visXcerpt viewer/editor.
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Work on Xcerpt is currently conducted to formally provide a model-theoretic
semantics (see [16]) and a reasoning calculus. Future work will investigate Xcerpt
as a reasoning language in a Web environment and add additional language
features like arithmetics, basic and complex types, constraints, etc.

The visXcerpt prototype will be extended by adding improved browsing facili-
ties, like browsing from an element to such elements that refer to it. Furthermore,
investigating suitable commands for editing tree- and graph-structured data is
of major interest. As the current visXcerpt editor is implemented prototypically
in HTML and JavaScript, a more efficient implementation is also sought for,
possibly by extending already-existing XML editors.
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Abstract. Adaptive web applications combine data retrieval on the web
with reasoning so as to generate context dependent contents. The data is
retrieved either as content or as context specifications. Content data is,
for example, fragments of a textbook or e-commerce catalogue, whereas
context data is, for example, a user model or a device profile. Current
adaptive web applications are often implemented using ad hoc and het-
erogeneous techniques. This paper describes a novel approach called
“XML Document Adaptation Queries (XDAQ)” requiring less hetero-
geneous software components. The approach is based on using a web
query language for data retrieval (content as well as context) and on a
novel generic formalism to express adaptation. The approach is generic
in the sense that it is applicable with all web query and transformation
languages, for example with XQuery and XSLT.

1 Introduction

Adaptive web applications combine data retrieval on the web with reasoning so
as to generate context dependent contents. Data is retrieved either as content
(for example fragments of a textbook or e-commerce catalogue), or as context
specifications (for example a user model or a device profile). For example, the
presentation of learning material for students (content) may be adapted to the
student’s estimated knowledge about the topics (context) [16]. Current adaptive
web applications [8,6] are often implemented using ad hoc and heterogeneous
techniques.

This paper describes a novel approach called “XML Document Adaptation
Queries (XDAQ)” requiring less heterogeneous software components. The ap-
proach is based on using a web query language for (content as well as context)
data retrieval and on a (novel) generic formalism to express adaptation. The
approach is generic in the sense that it is applicable with all web query and
transformation languages, for example with XQuery and XSLT.
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The benefits and contributions of XDAQ are as follows:

– The goal is not to implement a single or several adaptive web applications,
but to provide a framework that can be used to implement a wide variety
of adaptive web applications, ranging from educational hypermedia to e-
commerce systems and device-independent web applications for desktop and
mobile computers. Sample applications, however, will be implemented to test
and improve the XDAQ approach.

– XDAQ does not rely on a single, fixed query language. XDAQ can be used
with a wide variety of web query languages, among other with XQuery and
XSLT. XDAQ can also be applied with more than one query language si-
multaneously.

– XDAQ is a generic formalism for expressing adaptation of arbitrary XML
documents such as XML data and databases, HTML documents, XSLT
transformations, XSL documents, or XLink linkbases.

– Non-intrusive adaptation rules separate between web contents and adapta-
tion rules. This greatly improves modularity of adaptive web application
modeling and helps to avoid unwanted redundancy.

– XDAQ defines a formal model of how to process XML documents together
with adaptation rules, third-party links and style rules, thus avoiding existing
ambiguities when combining these approaches.

There are also two extensions which further broaden the application spectrum
of XDAQ. The first extension allows XDAQ adaptation rules not only to be used
with XML documents, but also with non-XML data like CSS style sheets, XPath
expressions, or URIs. The approach is based on the idea of separating data model
and syntax of those languages, and providing a data model based on XML while
keeping the original syntax.

The second extension is a processing model which allows processing of adap-
tation rules to be distributed between client, server and proxy. The distribution
is determined by the user’s privacy settings, and device characteristics like net-
work bandwidth and processing power. This approach allows XDAQ to be used
for both typical client-side adaptations like in educational hypermedia [8], as
well as typical server-side adaptations like in tourist information systems [6].
Furthermore, this approach enables a single adaptive web application to be used
both in desktop environments (fast network, powerful clients) and mobile envi-
ronments (slow network, slim clients). For simplicity, these two extensions are
not described in the present paper.

The rest of this paper is organized as follows: The next four sections introduce
step by step the concepts of XDAQ. Section 6 then discusses how the XDAQ
framework can be used to model complex adaptive web applications. Finally,
section 7 briefly presents an XDAQ prototype and future research issues.

2 Modeling Context Information

Adaptation is based on context information. XDAQ assumes context information
to be stored in one or more context documents. These documents are referenced
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by URIs (see section 3), therefore they can be located not only on the client
or the server of the adaptive web application, but anywhere on the web. Con-
text documents can be modeled using XML, RDF, or any other web modeling
language.

The following is an example of a (freely shaped) XML context document
which will be used by the examples in the rest of the paper:

<context>
<knowledge topic="html">beginner</knowledge> <!-- User Data -->
<language>en</language>
<language>ja</language>
<interest field="music">Pop</interest>
<device type="large"/> <!-- Device Data -->
<device pixel_width="1024"/>
<device pixel_height="768"/>
<time value="12:56"/> <!-- Environment Data -->
<date>30 June 2003</date>
<temperature value="24C"/>
<location value="Yokohama"/>
<situation>meeting</situation>
<history> <!-- Browsing History -->

<page uri="http://xyz.com/index.html">
<page uri="http://xyz.com/page1.html">

<page uri="http://xyz.com/page2.html"/>
</page>
<page uri="http://xyz.com/page3.html"/>

</page>
</history>

</context>

Context information considered in this paper covers the following (the list
does not preclude further context information that is not explicitly mentioned
in this paper to be used with the XDAQ approach):

– User: knowledge about certain topics (beginner about HTML), language
competence (speaks English and Japanese), or interests (pop music).

– Device: type (“large” device), resolution (1024x768 pixels).
– Environment: date and time, temperature, location, situation (meeting).
– Browsing history

The term context information, as it is used in this paper, is an abstraction of
notions like user profile and device profile, which are used in other approaches for
adaptive (web) applications [2,17]. Context information subsumes these notions,
and even goes beyond them: Any data found on the web can be used as context
information, not only data about the user or his device.

Context documents are typically administered by the adaptive web applica-
tion itself, but this could also be done by the web browser or by the operating
system. Maintaining and updating context information can be done in three
ways. Most information, like device data, environment data, the browsing his-
tory and part of the user data can be updated automatically. Information like
the situation can be explicitly set by the user. Data like test results and the



116 M. Kraus, F. Bry, and K. Kitagawa

user’s knowledge or interest on certain topics can be updated by the adaptive
web application. The user’s interests could also be deduced from the browsing
history, for example.

The definition of suitable standard vocabularies describing context informa-
tion for certain domains has been identified as one of the most urgent tasks within
the web context adaptation community [17,11]. There is a common need for a
standardized and simple vocabulary which ensures interoperability, and which
allows for proprietary extensions for domain-specific or application-specific con-
text information. In spite of this, it is a major goal of XDAQ to provide adap-
tation methods that are independent from the actual vocabulary of the context
information, and thus can be used with a wide variety of adaptive web applica-
tions. XDAQ makes no further assumption about context information than that
it is represented in a language like XML or RDF. While the examples in this
paper only use XML as language to represent context information, the XDAQ
approach can also be used with the existing CC/PP or UAProf [18] vocabularies,
which are based on RDF.

Context information may be modeled flat (like the user, device, and envi-
ronment sections), or structured (like the browsing history section). Many tradi-
tional adaptive hypermedia systems [8,16], as well as the CC/PP framework [13],
which is targeted at device independence, simply use flat lists of property/value
pairs for representing context information. In contrast to this, XDAQ also allows
to model complex structured context information. In conjunction with XDAQ’s
approach of modeling adaptation based on web query languages, this enables
adaptation not only to rely on the actual content of the context information,
but also on structural information. For example, adaptation could rely on cer-
tain browsing patterns of the user, which can be queried from the structure (not
the contents) of the browsing history.

An advantage of allowing for freely shaped contexts is that the roles of context
and content can be exchanged, if the application requires it. Consider for example
the browsing history information from above. This information can be used by
an educational hypermedia application to make recommendations to the user
about the suitability of yet unvisited pages, like it is done in [8]. In this case,
the browsing history serves as context information. Another application, for
example the history function of a web browser, might use the same information
but present it directly to the user. In this case, the browsing history serves as
content. Not requiring a fixed shape or vocabulary for context information makes
it possible to change the angle from which information is looked at, context or
content.

3 Expressing Adaptation with Query Languages
With XDAQ, adaptation is expressed through adaptation rules of the form:
<rule>

<href>URI</href>
<if context="URI" type="language">query</if>
<copy context="URI" type="language">query</copy>

</rule>
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There are two kinds of adaptation rules: if-rules and copy-rules. These rules
each consist of a set of target node bindings and a set of queries. The target
node bindings attach an adaptation rule to a set of nodes of one or more XML
documents, called the target nodes of that rule. The documents containing the
target nodes are called target documents of that rule. The queries each consist
of a reference to a context document, called the context document of that query,
and an expression of a web query language like XPath, XSLT, or XQuery. It is
possible to use more than one query language within a set of adaptation rules
and even within a single rule. This section discusses the queries of an adaptation
rule, and the following section discusses the target node binding.

An if-rule consists of one or more if-queries. The semantics is as follows: Each
query is evaluated against its context document, which is given by the context
attribute. If the result of at least one query is empty, that is, if there aren’t any
nodes in the context document that match the query, then each target node of
the rule is deleted from its containing document. Put the other way round, the
target nodes of an if-rule are remain in their containing document if and only
if the results of all the if-queries are not empty. The nodes are deleted together
with their all their children and descendants.

The following example illustrates the use of if-rules in conjunction with an
HTML document. As the queries do not specify their context document, the
default of the application is used, for example the context document maintained
by a web browser.

<rule>
<href>#paragraph1</href>
<if type="xpath">//knowledge[@topic=’html’][.=’beginner’]</if>

</rule>

<rule>
<href>#paragraph2</href>
<if type="xpath">//knowledge[@topic=’html’][.=’expert’]</if>

</rule>

<html>
...
<p>This page gives an explanation of HTML.</p>
<p id="paragraph1">Very <em>simple</em> introduction to HTML, in
addition to the following standard explanation.</p>
<p><em>Standard</em> explanation of HTML.</p>
<p id="paragraph2">Additional <em>advanced</em> aspects of HTML.</p>
...

</html>

The two rules can be used to adapt the HTML document to the user’s knowl-
edge about HTML:

– By default, the document contains a “standard explanation” of HTML. If
the user is neither classified as beginner nor as expert, then only the standard
explanation will be displayed.
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– If the user is classified as beginner about the topic HTML, then an addi-
tional “simple introduction” to HTML will be displayed before the standard
explanation.

– If the user is classified as expert, then additional “advanced aspects” of
HTML will be displayed after the standard explanation.

Actually, the HTML document contains both the standard explanation as
well as the simple introduction and the advanced aspects. According to the
context information, however, either the simple introduction or the advanced
aspects or both are deleted from the document by an XDAQ processor before it
is displayed by the browser.

A copy-rule consists of one copy-query and zero or more if-queries. The se-
mantics is as follows: The copy-query is evaluated against its context document,
given by the context attribute. Then the children of each of the rule’s target
nodes are replaced by the result of the query. Thus, if the rule has n target
nodes, then n copies of the query result are inserted into the target documents
of that rule. If the rule also contains if-queries, then first the if-queries are eval-
uated against their context documents. Only if the results of all if-queries are
not empty (similar as with if-rules), then the copy-query is evaluated, otherwise
the copy-rule has no effect.

The following example illustrates the use of a copy-rule in conjunction with
an XML document and an XSLT transformation:

<rule>
<href>#xpointer(//recommendation)</href>
<if type="xpath">//interest[@field=’music’]</if>
<copy type="xpath">//interest[@field=’music’]/text()</copy>

</rule>

<library>
<recommendation>Rock</recommendation>
<album title="Radio Musicola" artist="Nik Kershaw" genre="Pop"/>
<album title="Calling All Stations" artist="Genesis" genre="Rock"/>
<album title="Script From A Jester’s Tear"

artist="Marillion" genre="Progressive Rock"/>
<album title="The Works" artist="Nik Kershaw" genre="Pop"/>

</library>

<xsl:template match="library">
<html>

...
<p>Recommended Albums:</p>
<ul><xsl:apply-templates select="album[@genre=//recommendation]"/></ul>
<p>Other Albums:</p>
<ul><xsl:apply-templates select="album[@genre!=//recommendation]"/></ul>
...

</html>
</xsl:template>

The copy-rule is used to adapt the XML document by copying the user’s
preferred music genre into the document. The result of the copy-query is only
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copied if the result of the if-query is not empty, that is, if the context document
specifies the user’s preferred music genre. Without the if-query, the contents of
the rule’s target node would be deleted (set to empty) if the context document
did not specify such information. The XSLT transformation generates an HTML
document containing two lists: The first is a list of recommended albums, based
on the user’s interest that has been copied from the context document. The
second list contains all other albums.

Obviously, instead of XPath, any other query and transformation language,
for example XQuery, could be used. Thus, XDAQ does not rely on a single, fixed
query language. The only, obvious requirement is that the query language can
be used with the query’s context document, for example, using an RDF query
language for CC/PP documents.

4 Binding Adaptation Rules to Document Nodes

This section describes how adaptation rules are attached to nodes in an XML
document. The approach of XDAQ is non-intrusive, that is, adaptation rules
can be attached to nodes in a document without having to change to document
itself. This is important because it makes it possible to non-proprietary build an
adaptive system referring to contents collected from the web.

Non-intrusively binding is done by using references that point from an adap-
tation pool document, that is, a document containing a set of adaptation rules,
into the rules’ target documents, for example the HTML and XML documents
from the examples in the previous section. A single adaptation rule may have
more than one target node as well as more than one target document, that is, the
target nodes may be contained in more than one XML document. For example:

<rule>
<href>http://xyz.com/page1.html#xpointer(//p[@class=’beginner’])</href>
<href>http://xyz.com/page2.html#paragraph11</href>
<href>http://xyz.com/page2.html#paragraph12</href>
<if type="xpath">//knowledge[@topic=’html’][.=’beginner’]</if>

</rule>

This if-rule is attached to a class of p elements in document page1.html, as
well as to two single elements in document page2.html.

As reference mechanism URIs together with XPointer fragment identifiers are
used. XPointer allows not only to select arbitrary nodes from an XML document,
but also a set of locations, that is, simply speaking, substrings of the content
of a node [12]. Thus it is possible to model not only coarse adaptation like
deletion of elements, but also very fine-grained adaptation using attributes and
even substrings of nodes as targets. A single XPointer fragment identifier may
select more than one location, as in the example above.

Because the adaptation rules are separated from the documents that they
affect, both documents can be created and maintained by different persons and
be stored in different locations, even on different servers. In a large adaptive web
application which is created and maintained by a number of people, the task of



120 M. Kraus, F. Bry, and K. Kitagawa

adaptation modeling can be performed simultaneously to other tasks. The goal is
that, once the overall structure of an XML document (HTML document, XSLT
style sheet and so on) is fixed, it should be possible for one person to fill the
document with data, while another person may work on the adaptation rules,
without interfering each other. It is even possible for a third party to define
adaptation rules for a set of documents without having write access to those
documents.

Note that the same approach, that is, pointing from an external document
into the main document, is also used by CSS and XSLT style sheets as well
as XLink linkbases. Defining adaptation rules non-intrusively, both improves
modularity and avoids unwanted redundancy in adaptive web applications.

In contrast, an intrusive approach, that is, an approach that is attaching the
adaptation rules directly to nodes in an XML document, introduces redundancy,
as adaptation rules queries have to be copied for each target node. With an
intrusive approach, the example from above may look like the following (note
that adaptation queries in real applications might be much more complex than
those used in the examples in this paper):
<p class="beginner" xdaq:if="//knowledge[@topic=’html’][.=’beginner’]">...</p>
<p class="beginner" xdaq:if="//knowledge[@topic=’html’][.=’beginner’]">...</p>
<p class="expert">...</p>

<p id="paragraph10">...</p>
<p id="paragraph11" xdaq:if="//knowledge[@topic=’html’][.=’beginner’]">...</p>
<p id="paragraph12" xdaq:if="//knowledge[@topic=’html’][.=’beginner’]">...</p>

Even if the queries are not directly inserted into the document, but only
pointers to them, the document has still to be altered if it is to be equipped
with adaptation, thus hindering modularity:
<p class="beginner" xdaq:href="http://adapt.org/adaptation-pool1.xml#rule1">...</p>
<p class="beginner" xdaq:href="http://adapt.org/adaptation-pool1.xml#rule1">...</p>
<p class="expert">...</p>

<p id="paragraph10">...</p>
<p id="paragraph11" xdaq:href="http://adapt.org/adaptation-pool1.xml#rule1">...</p>
<p id="paragraph12" xdaq:href="http://adapt.org/adaptation-pool1.xml#rule1">...</p>

Furthermore, using an intrusive approach as above, it is not possible to at-
tach an adaptation rule to attributes or substrings of the contents of an element,
because XML does not allow to let attributes have attributes themselves, for
example. Thus, in contrast to XPointer fragment identifiers, only coarse adap-
tation, based on full elements, can be modeled.

A system using intrusive adaptation rules like above is [7]. Also CSS media
queries [15] use an intrusive approach by attaching media queries (adaptation
queries) directly to CSS document nodes. Therefore both of these approaches
suffer from unwanted redundancy and a lack of modularity.

Absolute vs. Relative Pointers

XDAQ allows the use of both absolute and relative URIs [1] for the target node
bindings of an adaptation rule. This allows to define adaptation rules for either
a specific document or for a class of documents.
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The example at the beginning of this section uses absolute URIs as target
node bindings, while the examples in section 3 all use relative URIs.

Relative URIs are relative to the document that is processed by an XDAQ
processor, called the main document. For example, if a set of adaptation rules
is used to adapt document A, then all relative URIs used as document node
bindings for adaptation rules are resolved using the URI of document A as base
URI. If the same rules are used to adapt another document B, then the URI of
document B is used as base URI.

The right use of absolute and relative URIs allows a single adaptation pool
document, that is, a single set of adaptation rules, to be used for a whole website,
even if some pages use different adaptation rules that all the others. Relative
URIs are used to describe the default adaptation, that is used by almost all
pages of the web site, while absolute URIs are used to describe exceptions from
that, for example to use different adaptation rules for the title page.

Note that while XLink also allows the use of both absolute and relative URIs
[9], there is no absolute referencing in CSS or XSLT style sheets. Therefore, if a
single page of a web site, is meant to be styled different than all the other pages,
either a different style sheet has to be used for that page, or the nodes in that
page have to be identified by id and class attributes that are not used elsewhere
on the web site.

5 Adaptive Web Document Processing

In an adaptive web application, adaptation rules exist together with links and
style rules, which both can change the structure and contents of the main doc-
ument. This may lead to ambiguous situations like this:

– A link inserts an image after element e1
– An adaptation rule deletes element e1 from the document

There are two possible semantics for this set of rules: Either the image is
inserted after e1 and then e1 is deleted, keeping the image. Or first e1 is deleted,
then there is nothing that is referenced by the link, resulting in the image not
being inserted. Adding style rules, things can get even more complicated. To
avoid such ambiguities, XDAQ defines a formal processing model for adaptive
web documents. A web document is referenced by a URI and consists of the
following parts:

– The main document, which is the XML document actually referenced by the
URI of the web document. The main document might be the result of an
XSLT transformation, a XQuery query of a database and so on. This step,
however, lies out of the scope of the XDAQ processing model.

– A set of processing information documents, that is, XDAQ adaptation pool
documents, XLink linkbases and CSS style sheets. These documents are ei-
ther referenced by the main document, recursively referenced by other pro-
cessing information documents that already have been referenced, or they
are known to an XDAQ processor by any other means.
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– Links from the main document to processing information documents are in-
line (intrusive) links. They may also contain inline (intrusive) adaptation
rules, in order to prevent unnecessary transfers of unused documents. Oth-
erwise, the main document contains no other intrusive links, style rules or
adaptation rules.

The XDAQ processing model considers adaptation rules, links and certain
style rules as transformations of the main document. Such style rules include
CSS pseudo-selectors like :before, or the display property with a value of
none. Properties that affect fonts, colors and similar are not considered to be
transformations, of course.

An XDAQ processor, for example contained in a web browser, performs the
following steps in order to process an adaptive web document:

1. Parse the main document m.
2. Recursively parse all processing information documents linked by m, after

evaluating each link’s adaptation rule. This leads to a set of adaptation pool
documents A, a set of linkbases L, and a set of style sheets S. Accordingly,
there exist sets of adaptation rules R(A), links R(L), and style rules R(S).

3. Process RA(A) = {r ∈ R(A) | T ∩ A �= ∅, T = target documents(r)}. In
other words, process all adaptation rules which have adaptation pool doc-
uments as target nodes. The rule r is not processed as a whole, but only
those target nodes contained in adaptation pool documents. This step en-
sures that all adaptation rules, which are subject to adaptation, are adapted
themselves before they are applied to their target nodes in the next step (see
section 6).

4. Process RL(A) = {r ∈ R(A) | T ∩ L �= ∅, T = target documents(r)} and
RS(A) = {r ∈ R(A) | T ∩ S �= ∅, T = target documents(r)}. This step
applies all remaining adaptation rules except those affecting the main docu-
ment, as the main document can still be changed by links and style rules in
the next step.

5. Process R(L) and R(S).
6. Process Rm(A) = {r ∈ R(A) | T � m, T = target documents(r)}, resulting

in m′, the adapted main document. This step finally applies all remaining
adaptation rules to the main document, after is has been modified by links
and style rules, thus giving adaptation rules the lowest priority in the adap-
tation process.

This processing model avoids ambiguities like the one described at the begin-
ning of this section. The lack of a formal processing model for XLink is considered
the main reason why major web browsers still do not support more than XLink
simple links, despite being the XLink specification a recommendation for more
than two years [10]. Several implementations have reported problems when com-
bining XLink with other mechanisms that alter the XML document structure, for
example XSLT transformations [14]. The combined processing model for XLink
and CSS described in [19], however, is much more complicated than the XDAQ
processing model and still lacks the concept of adaptation.
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6 Adaptation Reasoning

After the previous sections introduced the technical aspects of XDAQ (modeling
context information, definition of adaptation rules, binding of adaptation rules to
document nodes and the outline of a formal processing model), this section takes
a look at adaptation reasoning, that is, how adaptive applications can be modeled
using the XDAQ framework. By applying if-rules and copy-rules to certain nodes
of web pages, databases, or transformations, various adaptation technologies
like adaptive presentation and adaptive navigation support [2] can be modeled.
Two aspects of adaptation are important here: adaptation actions, for example,
deletion of a node from a document, and the query part of adaptation rules.

The kind of adaptation that can be modeled using if-rules is very similar to
the approach of Author’s Views described in [4]. With Author’s Views, certain
parts of an XML document (for example paragraphs in an HTML document)
are labelled with identifiers. A view corresponding to one of those identifiers
then deletes all parts of the document not labelled with that identifier. Author’s
Views can be implemented using the display property of CSS with a value
of none, and the user can choose between different views by selecting different
style sheets. The concept of if-rules is based on that approach, but extends the
simple notion of identifiers as labels to queries over a set of context documents,
thus allowing to implement conditional text [2]. This means that the views are
selected automatically based on the context information.

The metaphor of variables in programming languages can be used to illustrate
adaptation modeling with copy-rules. As in the example from section 3, the
target node of a copy-rule can be considered a variable, whose value is set by
a copy-rule. If the copy-rule also contains if-queries, then the original content
of the target node can be considered the default value of the variable. If the
conditions expressed by the if-queries do not apply, the variable keeps its default
value.

If-rules used to model Author’s View-like adaptation in conjunction with
copy-rules providing variables, are considered to be able to cover a large vari-
ety of adaptive web applications, namely technical documents like educational
hypermedia or manuals. Such documents can be adapted to beginner users and
expert users, or to small devices and large devices, as illustrated by the exam-
ples in the previous sections. However, adaptation may consist of more than just
deleting nodes, for example:

– inserting nodes into a document
– replacing node contents
– ordering
– splitting and merging of documents
– disabling of hyperlinks

In order to provide such functionality, one could introduce new types of rules,
one for each functionality: insert-rule, replace-rule, and so on. This, however,
would yield a complete XML transformation language equipped with adapta-
tion facilities, for example an XSLT/XQuery-like language with if/copy/insert/
replace-rules.
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The approach of XDAQ is different: take an existing, non-adaptive language
like XLink, and attach adaptation rules from the outside (non-intrusive). The
result is a two-step approach in many cases: XLink models for example insertion
of nodes into the main document, and an attached if-rule models the adaptation:

<link id="link1" xlink:type="extended">
<locator xlink:type="locator" xlink:href="a.xml#paragraph11-short"/>
<locator xlink:type="locator" xlink:href="b.xml#paragraph11-long"/>
<arc xlink:type="arc" xlink:actuate="onLoad" xlink:show="embed"/>
</link>

<rule>
<href>linkbase.xml#link1</href>
<if type="xpath">//device[@type=’large’]</if>

</rule>

The link inserts a long version of paragraph11 from document b.xml into
document a.xml, at the place of the short version of paragraph11. The if-rule,
however, deletes the link if the device is not “large”. This has the effect that
the long version is only inserted on large devices, whereas on other devices, the
short version of the paragraph is used as it is.

XDAQ adaptation rules can be used to directly adapt HTML documents,
or to adapt XML data, which is then transformed into an HTML document,
for example, or to adapt XML transformations, linkbases, style sheets, and any
combination of these. For example, by applying adaptation rules to hyperlinks
(as opposed to the actual content of a web page), adaptive navigation methods
like hyperlink sorting, hiding, and annotation [2] can be modeled. Finally, XDAQ
allows adaptation rules to be applied to other adaptation rules, which could be
called second-order adaptation. A detailed investigation of these issues within
the scope of sample applications remains to be done in the future (see section 7).

Adaptation may not only rely on “typical” context information, which is
stored in context documents, but also on properties of the main document. For
example:

If the document is displayed on a small device, then cut of all long
paragraphs (more than 200 characters) after 200 characters and add
“...” at the end.

Something like this can be modeled using an XSLT transformation, for exam-
ple, which checks the condition based on the main document (paragraph longer
than 200 characters) and performs the adaptation action (cut off paragraph and
add “...”). The condition based on context information is modeled by an at-
tached if-query. Thus again a two-step approach is used: conditions based on the
main document are modeled using a non-adaptive transformation mechanism,
while conditions based on context information is attached via adaptation rules.

The same example could also be implemented using CSS, with an appropriate
if-rule attached to the following set of style rules:

p[‘‘length>200’’] { ‘‘cut: 200’’ }
p[‘‘length>200’’]:after { content: "..." }
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The current CSS specification is both unable to express the notion of the
length of a paragraph as well as cutting off text. These two features, however,
could easily be introduced, as well as other, similar functionalities desirable for
adaptive web applications like ordering, splitting and merging of documents, and
hyperspace disabling.

The question whether such functionalities are considered as transformations
in the sense of XSLT and similar transformation or query languages, or simply
as style properties in the sense of CSS, cannot be answered unambiguously. Both
approaches are applicable, but the differences are as follows:

– A general-purpose transformation language like XSLT can be used to imple-
ment any desired functionality, whereas a style sheet language like CSS has
to be extended each time a new functionality is added.

– Using a transformation language, authors have to write an algorithm, that
is, how the adaptation action is to be performed. In the above example, this
could be done using either a loop or recursive templates together with the
strlen function of XPath. With CSS, authors only have to define the result
of the adaptation action, that is, what should be performed. The algorithm
itself is part of the CSS processors and has to be implemented only once
(and not by the author of the web application).

– Even if the CSS approach can only provide a limited set of functionalities,
a web application can combine it with a general-purpose transformation
language. Functionalities not covered by CSS can still be implemented using
the transformation language.

The idea of considering certain kinds of adaptation actions as style/layout
instead of transformations is described in more detail in [3]. Future research
will further investigate this issue and combine XDAQ with an extended version
of CSS, that is able to perform adaptation actions like splitting and merging
documents.

Query Languages for Adaptation

When used to express adaptation, query languages face different requirements
than when used within other applications.

In addition to simply retrieve values from context documents (content
queries), for example screen resolution, it must also be possible to express com-
plex structural queries. Using structural queries, certain kinds of browsing be-
haviour can be detected from the history data in the context document, for ex-
ample. According to the browsing behaviour, users can be classified into groups
like beginner or expert, which is important for educational hypermedia systems.

Educational hypermedia typically also makes use of various stochastic func-
tions. For example, adaptation might be based on the standard deviation of a
series of test results. Query languages used for adaptation should provide a wide
range of such functions.

Another feature widely used in adaptive hypermedia systems is ranking of list
items. Ranking can be performed on both contents, like a list of news headlines,
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or on navigation (links), like a list of keyword search results. It is sufficient for the
query language to generate rank values, for example by adding a rank attribute
to list elements. The ordering itself is considered as a style/layout issue, which
can be expressed by a CSS rule like this:

ul.recommendation li { sort-key: @rank; order: descending }

Furthermore, query languages used for adaptation must be able to perform
reasoning based on ontologies. For example, it should be possible to model some-
thing like small ⊂ medium ⊂ large, that is, everything that can be displayed
on a small device can also be displayed on a medium sized device, and that can
be displayed on a large device. Also, ontologies can be used to provide interop-
erability between different context vocabularies.

7 XDAQ Prototype and Future Research

A prototype implementing the XDAQ framework has been developed in Java. At
present, it exists only as a stand-alone tool, but it is being integrated into a web
browser, a web server and a proxy, thus implementing the extended processing
model described in the introduction. The prototype includes processing of adap-
tation rules as defined in sections 3 and 4, the processing model of section 5, as
well as processing of non-XML data (CSS) as described in the introduction.

Future research will concentrate on the issues discussed in section 6. Es-
pecially the combination of XDAQ with the web query language Xcerpt [5] is
promising, as Xcerpt is meant to be extended with functionalities needed for
adaptation reasoning. Also, further investigation of the difference between adap-
tation considered as transformation and adaptation considered as style/layout
is on the way. At present, the development of two adaptive web applications is
planned to investigate these topics and the issues discussed in section 6, adaptive
student learning material and an access-anywhere organizer.
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Abstract. Our intention is to provide a type system for rule languages
used in web applications. In this work we deal with an XML query lan-
guage Xcerpt. Our types are sets of documents. We represent XML data
as so called data terms and propose a formalism to define sets of data
terms. The formalism is a generalization of tree automata; the defined
sets roughly correspond to sets of documents definable by means of XML
schema languages, like DTD and XML Schema. The main contribution
of this paper is an algorithm for computing the type of possible results
of an Xcerpt rule, given the type of the database. The algorithm can be
used to automatically check correctness of Xcerpt programs with respect
to type specifications. For non recursive Xcerpt programs it can also be
used to compute the type of program results.

1 Introduction

A long range objective of this work is to develop analysis techniques for rules used
in web applications. A main intended application is locating errors in (programs
consisting of) rules. The rules we deal with can be seen as transformers of sets
of XML documents. To begin with, we have chosen XML query language Xcerpt
[6,7,5,1] as an example rule language. We show how to automatically prove
correctness of Xcerpt rules and how to compute (approximations of) the sets
of rule results. To make this possible, a restriction to some class of recursive sets
is necessary, together with a fixed formalism of defining sets. The sets from the
chosen class approximate the actual ones, in the sense that the latter are subsets
of the former.

XML (eXtensible Markup Language) has become a dominant standard for
data encoding and exchange on the Internet. It has been designed to create
more structured and adaptable documents and document systems. Sets of doc-
uments, often called types, can be specified using various schema languages, like
DTD [12], XML Schema [13], or RELAX NG [8]. Applications which deal with
many different DTD’s or XML Schemas require mechanisms for comparing such
specifications; in other words to compare types. This includes comparing types
given by different schema languages. For this purpose a common view of them
is necessary.

As XML data are essentially tree structured, a natural approach is to view
XML documents as trees (or, equivalently, terms), and types as sets of trees.
So we need a formalism to describe decidable sets of trees. It should be able
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to describe sets corresponding to those specified by major schema languages for
XML. Our intended application requires that basic operations on sets expressed
in the formalism (like intersection and checks for membership, emptiness and
inclusion) are decidable and efficient algorithms for them exist. A well known
such formalism is tree automata [9] (or tree grammars, which are just another
view of tree automata). However tree automata deal with terms where each
symbol has a fixed arity. This is not compatible with XML, where the number
of elements between a given pair of a start-tag and end-tag is not fixed. One can
adjust the view of XML data to the tree automata formalism, by representing
sequences of arbitrary length as lists (this means terms built using two symbols
of fixed arities 2 and 0). In this way n children of a tree node can be replaced
by one child, which is a list of length n. Such an approach is used in [15]. We
follow here another approach – extending the tree automata formalism.

As abstraction of XML data we employ data terms. Data terms can be seen as
mixed trees, which are labelled trees where children of a node are either linearly
ordered or unordered. Our formalism for defining sets of data terms combines tree
grammars with regular expressions. The latter are used to describe the possible
sequences (or sets) of children of a single node in a tree. Similar formalism is
used in [16], the novelty of our approach is that we deal with mixed trees.

There exist various rule languages related to XML documents (like RuleML
[2] or Xcerpt). Usually rules are (intended to be) applied to documents of a
certain type. An obvious question arises about the set of possible results of such
a rule (or of a set of rules). One would like to express the type of rule results
in terms of the types of documents to which the rule is applied. A variant of
this question is checking whether the rule is type correct – one requires that any
result of the rule is of certain type and wants to prove (or disprove) this fact.
Ability to perform such checks automatically, or to compute the type of results,
is instrumental for discovering errors in the rules. Experience with programming
languages shows how crucial static typing has been for quick discovering of cer-
tain kinds of errors in programs and thus for improving efficiency of programmers
and quality of programs. On the other hand, experience with untyped program-
ming languages, like Prolog, shows how lack of typing makes many simple errors
difficult to discover.

Providing algorithms for checking correctness of programs w.r.t. type specifi-
cations, or for deriving types, is sometimes called descriptive typing. This can be
seen as adding types to an untyped programming language, without modifying
its semantics. In this way one can combine advantages of typed and untyped pro-
gramming languages. See [10] for an example of such approach for (constraint)
logic programming, and for further references.

In this paper we present descriptive typing for (a large subset of) XML query
language Xcerpt [6,7,5,1]. Xcerpt stems from logic programming. It uses patterns
instead of paths to navigate the database. The mechanism of matching a pattern
against a database resembles unification. We present a method of computing the
type of results for an Xcerpt program, given a type of the database. To simplify
the presentation, our method is introduced for programs consisting of a single
rule of a rather restricted form. Abandoning this restriction is however discussed
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informally. The method applies to checking of type correctness of arbitrary pro-
grams and to finding the result type for non recursive programs. It also subsumes
checking whether a given data term is a member of a given type.

The paper is organized as follows. The next section introduces data terms
and their correspondence to XML data. Section 3 presents the formalism of
type definitions. Section 4 discusses certain restrictions on type definitions, their
purpose is to obtain simpler and more efficient algorithms. As an example, Sec-
tion 5 discusses an algorithm for checking type inclusion. Other basic algorithms
employed in this work are presented in an appendix available from the Web.
Section 6 presents Xcerpt and introduces the algorithm for computing query
answer types.

2 Modelling XML Data

We model XML data using a formalism of data terms similar to that defined
in [6]. Data terms can be seen as mixed trees which are labelled trees where
children of a node are either linearly ordered or unordered. This is related to
existence of two basic concepts in XML: tags which are nodes of an ordered tree
and attributes that attach attribute-value mappings to nodes of a tree. These
mappings are represented as unordered trees. Unordered children of a node may
also be used to abstract from the order of elements, when this order is inessential.
We assume that there is no syntactic difference between XML tag names and
attribute names and they both are labels of nodes in our mixed trees (and
symbols of our data terms). The infinite alphabet of labels will be denoted by L.

A content of an element is a sequence of other elements or basic constants.
Basic constants are basic values such as attribute values and all “free” data
appearing in an XML document – all data that is between start and end tag
except XML elements. Basic constants occur as strings in XML documents but
they can play a role of data of other types depending on an adequate definition
in DTD (or other schema languages) e.g. IDREF, CDATA,. . . . The set of basic
constants will be denoted by B. In our notation we will enclose all basic constants
in quotation marks ””.

XML documents are represented as data terms.

Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,
– If l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1 · · · tn] and

l{t1 · · · tn} are data terms.

The linear ordering of children of the node with label l is denoted by enclosing
them by brackets [ ], while unordered children are enclosed by braces {}.

A subterm of a data term t is defined inductively: t is a subterm of t, and
any subterm of ti (1 ≤ i ≤ n) is a subterm of l′[t1, . . . , tn] and of l′{t1, . . . , tn}.

To show how XML elements are represented by data terms, consider an XML
element

E = <tag attr1=value1 · · · attrk=valuek>E1 · · ·En</tag>,
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(k ≥ 0, n ≥ 0) where each Ei (for i = 1, . . . , n) is an element or the text occurring
between two elements or before the first element or after the last element. E is
represented as a data term tag[attributes child1 · · · childn], where the data
terms child1, . . . , childn represent E1, . . . , En, and the data term

attributes = &{attr1[value1] · · · attrk[valuek]}

represents the attributes of E. If E has no attributes then attributes is the
data term &{ }, which will be usually abbreviated as &. Subterms representing
attributes are not ordered and this is denoted by enclosing them by braces.

Example 1. This is an XML element and the corresponding data term.

<CD price="9.90" year="1985"> CD[&{price[”9.90”] year[”1985”]}
Empire Burlesque ”Empire Burlesque”
<subtitle></subtitle> subtitle[&]
<artist>Bob Dylan</artist> artist[& ”Bob Dylan”]
<country>USA</country> country[& ”USA”]

</CD> ]

The root of a data term t, denoted root(t), is defined as follows . If t is of the
form l[t1, . . . , tn] or l{t1, . . . , tn} then root(t) = l; for t being a basic constant we
assume that root(t) = $.

3 Type Definitions

Here we introduce a formalism for specifying a class of decidable sets of data
terms representing XML documents. It is a certain simplification of the formal-
ism of [4]. First we specify a set of type names T = C ∪ S ∪ V which consist
of

– type constants from the alphabet C
– special type names from the alphabet S
– type variables from the alphabet V

We associate each type name T with a set [[T ]] (the type denoted by T ) of
data terms which are allowed values assigned to T . For T being a type constant
or a special type name, the elements of [[T ]] are basic constants.

Type constants corresponds to an XML schema language base types. The set
of type constants is fixed and finite. In our examples we will use a type constant
# assuming that [[#]] is the set of non empty strings of characters. This is similar
to #PCDATA in DTD.

For a special type name T the corresponding set [[T ]] is a finite set of basic
constants {c1, . . . , cm} (m ≥ 0). This set is specified by a rule of the form
T → c1| . . . |cm. In our notation, type constants and special type names are
sequences of letters beginning with character #.

Each type variable T is associated with a set of data terms [[T ]] which is spec-
ified in a way similar to that of [4] and described below. First we introduce some
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auxiliary notions. The empty string will be denoted by ε. A regular expression
over an alphabet Σ is ε, φ, any a ∈ Σ and any r1r2, r1|r2 and r∗

1 , where r1, r2
are regular expressions. A language L(r) of strings over Σ is assigned to each
regular expression r in the standard way (see e.g. [14]). In particular, L(φ) = ∅,
L(ε) = {ε} and L(r1|r2) = L(r1) ∪ L(r2).

Definition 2. A regular type expression is a regular expression over the
alphabet of type names T . We abbreviate a regular expression rn|rn+1| · · · |rm,
where n ≤ m, as r(n : m), rnr∗ as r(n : ∞), rr∗ as r+, and r(0 : 1) as r?. A
regular type expression of the form

W1 · · ·Wk

where k ≥ 0, each Wi is Ti(ni,1 : ni,2), 0 ≤ ni,1 ≤ ni,2 ≤ ∞ for i = 1, . . . , k, and
T1, . . . , Tk are distinct type names, will be called a multiplicity list.

Multiplicity lists will be used to specify multisets of type names.

Definition 3. A type definition for type variables T1, ..., Tn is a set of rules
{R1, ..., Rn} where each rule Ri (i = 1, ..., n) is of the form

Ti → Gi,

T1, ..., Tn are distinct, and each Gi is an expression of the form li[ri] or li{qi}
where li is a label, ri is a regular type expression over {T1, . . . , Tn} ∪ C ∪ S, and
qi is a multiplicity list over {T1, . . . , Tn} ∪ C ∪ S.

A type definition for type variables together with a set of rules defining
special type names will be called a type definition. A rule of the form T → G
(occurring in a type definition D) will be called the rule for T (in D). We require
that for any special type name S the definition contains at most one rule for S.

Example 2. Consider type definition D:

Cd → cd [Title Artist+ #Category?]
Title → title[# Subtitle?]
Subtitle → subtitle[#]
Artist → artist [#]
#Category → pop | rock | classic

D contains a rule for each of type variables: Cd, Title, Subtitle, Artist and a rule
for special type name #Category . Labels occurring in D are: cd, title, subtitle,
artist, and pop, rock, classic are basic constants.

Type definitions are a kind of grammars, they define sets by means of deriva-
tions over data patterns.

Definition 4. A data pattern is inductively defined as follows

– a type name and a basic constant are data patterns,
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– if d1, . . . , dn (n ≥ 0) are data patterns and l is a label then l[d1 · · · dn] and
l{d1 · · · dn} are data patterns.

Thus, data terms are data patterns, but not necessarily vice versa, since
a data pattern may include type names in place of data terms. Given a type
definition D we use it to define a rewrite relation →D on data patterns.

Definition 5. Let d, d′ be data patterns. d→D d′ iff one of the following holds:

1. d′ is obtained from d by replacing an occurrence of a type variable T in d by
l[s], for some rule T → l[r] in D and some s ∈ L(r) (so s is a string of type
names).

2. d′ is obtained from d by replacing an occurrence of a type variable T in d by
l{s}, for some rule T → l{r} in D and a permutation s of some s0 ∈ L(r).

3. d′ is obtained from d by replacing an occurrence of a type constant C by a
basic constant in [[C]].

4. There exists in D a rule S → c1| . . . |cm for a special type name S, and d′ is
obtained from d by replacing an occurrence of S by one of the basic constants
c1, . . . , cm.

Example 3. For the type definition D from the previous example it holds: Cd→D
cd [Title Artist #Category ]→∗

D cd [title[#] artist [#] ”pop”]→∗
D cd [title[”Stop”]

artist[”Sam Brown”] ”pop”].

Iterating the rewriting steps we may eventually arrive at a data term. This
gives a semantics for type definitions.

Definition 6. Let D be a type definition. The type [[T ]]D associated with a type
name T by D is the set of the data terms that can be obtained from T

[[T ]]D = { t | T →∗
D t and t is a data term }

Notice that if T is a type constant then [[T ]]D = [[T ]]. If it is clear from the
context which type definition is considered, we will often omit the subscript in
the notation [[ ]]D and similar ones.

4 Proper Type Definitions

For our analysis of Xcerpt rules we need algorithms computing intersection of
sets defined by type definitions, and performing emptiness and inclusion checks
for such sets. To obtain efficient algorithms we impose certain restrictions on
type definitions. They are discussed in this section.

Consider a type definition D. If T → G is the rule for a type variable T in
D, where G is of the form l[r] or l{q}, then l will be called the label of T (in D)
and denoted labelD(T ) = l. For T being a type constant or a special type name
we define labelD(T ) = $. So if d ∈ [[T ]] then root(d) = label(T ).

For any regular type expression r in D we have the corresponding regular
expression over labels that is r with each type name S replaced by labelD(S).
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We assume that alphabet of labels L∪{$} is totally ordered by a relation ≤;
we call this ordering alphabetic ordering. A multiplicity list W1 . . . Wk, where each
Wi = Ti(ni,1 : ni,2) and Ti is a type name, is sorted w.r.t D if labelD(T1) ≤
. . . ≤ labelD(Tk). For practical reasons we assume that the multiplicity lists
occurring in our type definitions are sorted.

We say that a type definition D is proper, if for each regular expression
r in D all distinct type names occurring in r have different labels. Thus given
a term l[c1 . . . cn] and a rule T → l[r] ∈ D or a term l{c1 . . . cn} and a rule
T → l{r} ∈ D for each ci, the root of ci determines at most one type name S
such that S occurs in r and labelD(S) = root(ci) = li. Such type name S will be
denoted typeD(li, r). If any type occurring in r does not have label li we assume
that typeD(li, r) = NULL. We use typesD(r) to denote the set of all type names
occurring in the regular expression r.

Notice that, for a proper type definition D, at most one type constant or
special type name occurs in any regular expression of D since all type constants
and special type names have the same label $.

Restriction to proper type definitions results in simpler and more efficient
algorithms. Unless stated otherwise, we assume that the considered type defini-
tions are proper. The class of proper type definitions, when restricted to ordered
terms (i.e. without {}), is essentially the same as single-type tree grammars of
[16]. Dealing only with proper definitions seems reasonable, as the sets defined
by main XML schema languages (DTD and XML Schema) can be expressed by
such definitions [16].

Example 4. Type definition D1 = {A→a[A|B|C], B→b[D], C→b[#], D→c[#]} is
not proper because type names B, C have the same label b and occur in one reg-
ular expression. In contrast, D2 = {A→a[A|B|D], B→b[CD], C→b[#], D→c[#]}
is proper and e.g. typeD2(b, A|B|D) = B and typeD2(b, CD) = C.

Our algorithms employ inclusion and equality checks for languages described
by given regular expressions, and computing intersection of such languages. This
can be done by transforming regular expressions to deterministic finite automata
(DFA’s) and using standard efficient algorithms for DFA’s.

In the general case the number of states in a DFA may be exponentially
greater than the length of the corresponding regular expression [14]. Notice that
the XML definition [12] requires (Section 3.2.1) that content models specified
by regular expressions in element type declarations of a DTD are deterministic
in the sense of Appendix E of [12]. It seems that the formal meaning of this
requirement is that the regular type expressions are 1-unambiguous in a sense
of [3]. For such regular expressions a corresponding DFA can be constructed in
linear time.

5 Inclusion Subtyping

Due to lack of space we discuss only checking type inclusion. Algorithms for type
intersection and emptiness check are presented in [17]. Let T1, T2 be type names
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defined in type definitions D1, D2, respectively. T1 is an inclusion subtype of T2
iff [[T1]]D1 ⊆ [[T2]]D2 . We present an algorithm which checks this fact. It is not
required that D1 is proper.

The first part of the algorithm constructs a set C(T1, T2) of pairs of types to
be compared. It is the smallest set such that

– if label(T1) = label(T2) then (T1, T2) ∈ C(T1, T2),
– if
• (T ′

1, T
′
2) ∈ C(T1, T2),

• D1, D2 contain, respectively, rules T ′
1→ l[r1] and T ′

2→ l[r2], or T ′
1 → l{r1}

and T ′
2 → l{r2} (with the same label l), and

• type names T ′′
1 , T ′′

2 occur respectively in r1, r2, and labelD1(T ′′
1 ) =

labelD2(T ′′
2 )

then (T ′′
1 , T ′′

2 ) ∈ C(T1, T2). As D2 is proper, for every T ′′
1 in r1, there exists

at most one T ′′
2 in r2 satisfying this condition.

The second part of the algorithm checks whether [[T ′
1]] ⊆ [[T ′

2]] for each
(T ′

1, T
′
2) ∈ C(T1, T2):

IF C(T1, T2) = ∅ THEN return false
ELSE for each (T ′

1, T
′
2) ∈ C(T1, T2) do the following:

IF T ′
1, T

′
2 are special type names or type constants

THEN check whether [[T ′
1]] ⊆ [[T ′

2]] and return the result
Let T ′

1 → l[r1] and T ′
2 → l[r2], or T ′

1 → l{r1} and T ′
2 → l{r2}

be rules of D1, D2, respectively
Let s1 and s2 be the regular expressions over labels

corresponding to r1 and r2
Check whether L(s1) ⊆ L(s2)

IF for all pairs from C(T1, T2) the answer is true THEN return true
ELSE return false

The algorithm employs a check if [[T ′
1]] ⊆ [[T ′

2]], where each of T ′
1, T ′

2 is either a
special type name or a type constant. This check is based on recorded information
about inclusion of the sets defined by type constants and about which constants
are members of these sets.

If the algorithm returns true then [[T1]]D1 ⊆ [[T2]]D2 . If it returns false and
D1 has no nullable symbols (i.e. [[T ]]D1 	= ∅ for each type name T in D1)
then [[T1]]D1 	⊆ [[T2]]D2 . The main fact used in the proof of this property is
that a positive answer of the algorithm means the following. For any (S, U),
(S1, U1), . . . , (Sn, Un) ∈ C(T1, T2) if S →D1 l[S1 · · ·Sn] then U →D2 l[U1 · · ·Un].
A similar fact holds for terms with {} (remember that in this case the regular
expressions in the applied rules are sorted multiplicity lists).

Example 5. Consider type definitions: D = {A→l[B|C], B→l[A+], C→m[ ]} and
D′ = {A′→l[A′∗|C ′], C ′→m[C ′∗]}. To check whether [[A]]D ⊆ [[A′]]D′ , first we
construct set C(A, A′) which is {(A, A′), (B, A′), (C, C ′)}. Then the second part
of the algorithm checks if L(l|m) ⊆ L(l∗|m), L(l+) ⊆ L(l∗|m) and L(ε) ⊆ L(m∗).
Since all the checks give positive results, we conclude that [[A]]D ⊆ [[A′]]D′ .
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Notice that for a proper D2 and 1-unambiguous regular expressions [3] in
D1, D2 the algorithm is polynomial. In the general case a polynomial algorithm
does not exist, as inclusion for a less general formalism of tree automata is
EXPTIME-complete [9].

6 Typing of Xcerpt Query Results

In this section we first introduce XML query language Xcerpt. Then we discuss
objectives of computing types of query results and present an algorithm.

6.1 Xcerpt – Introduction

Xcerpt is a rule-based query and transformation language for XML (see [5,6,7,1]).
It employs patterns instead of paths to query XML and semistructured data.
This approach stems from logic programming. A query term is matched against a
data term from a database. A successful matching results in binding the variables
in the query term to certain subterms of the data term. This operation is called
simulation unification.

We consider here a somehow simplified version of Xcerpt. The main difference
is that our data terms represent trees while in full Xcerpt terms are used to
represent graphs (by adding unique identifiers to some tree nodes and introducing
nodes which are references to identifiers).

We assume that a database is a data term or a multiset of data terms.
There are two other kinds of terms in Xcerpt: query terms and construct terms.
A construct term is a data term possibly with some subterms replaced by
variables. We define query terms later on. Any data term is a construct term,
and any construct term is a query term. The role of query terms is to be matched
against a database. Construct terms are used in constructing data terms which
are query results. Queries in Xcerpt are (sets of) rules; the premise of a rule is
a query term and the conclusion of a rule is a construct term.

Definition 7. Query terms are inductively defined as follows:

– Any basic constant is a query term.
– A variable X is a query term.
– If q is a query term, then desc q is a query term.
– If X is a variable and q is a query term, then X � q is a query term.
– If l is a label and q1. . .qn (n≥0) are query terms, then l[q1 . . . qn], l{q1. . .qn},

l[[q1 . . . qn]] and l{{q1 . . . qn}} are query terms (called rooted query terms).

For a rooted query term q = lαq1, . . . , qnβ, where αβ are parentheses [ ], [[ ]], {}
or {{}}, root(q) = l and q1, . . . , qn are the child subterms of q. If q is a basic
constant then root(q) = $.

To informally explain the role of query terms, consider a query term q =
lαq1 . . . qmβ and a data term d = l′α′d1 . . . dnβ′, where α, β, α′, β′ are parenthe-
ses. In order to q match d it is necessary that l = l′. Moreover the child subterms
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q1, . . . , qm of q should match certain child subterms of d. Single parentheses in d
([ ] or {}) mean that m = n and each qi should match some (distinct) dj . Double
parentheses mean that m ≤ n and q1, . . . , qm are matched against some m terms
out of d1, . . . , dn. Curly brackets ({} or {{}}) in q mean that the order of the
child subterms in d does not matter; square brackets in q mean that q1, . . . , qm

should match (a subsequence of) d1, . . . , dn in the same order.
A variable matches any data term, desc q matches a data term d whenever

q matches some subterm of d. A query term X � q matches any data term
matched by q. A side effect of a query term X or X � q matching a data term
d is that variable X obtains a value d.

Now we formally define which query terms match which data terms and what
are the resulting assignments of data terms to variables. We do not follow the
original definition of simulation unification. Instead we define a notion of answer
substitution for a query term q and a data term d.

Definition 8. A substitution θ (of data terms for variables) is an answer sub-
stitution (shortly, an answer) for a query term q and a data term d if q and
d are of one of the forms below and the corresponding condition holds. (In what
follows m, n ≥ 0, X is a variable, l is a label, q, q1, . . . are query terms, and
d, d1, . . . data terms; set notation is used for multisets, for instance {d, d} and
{d} are different multisets).

q d condition on q and d

c c c is a basic constant

l[q1 · · · qn] l[d1 · · · dn] θ is an answer for qi and di,
for each i = 1, . . . , n

l[[q1 · · · qm]] l[d1 · · · dn] for some subsequence di1 , . . . , dim of d1, . . . , dn

(i.e. 0 < i1 < . . . < im ≤ n)
θ is an answer for qj and dij ,
for each j = 1, . . . , m,

l{q1 · · · qn} l{d1 · · · dn} for some permutation di1 , . . . , din of d1, . . . , dn

or (i.e. {di1 , . . . , din} = {d1, . . . , dn})
l[d1 · · · dn] θ is an answer for qj and dij

for each j = 1, . . . , m,

l{{q1 · · · qm}} l{d1 · · · dn} for some {di1 , . . . , dim} ⊆ {d1, . . . , dn}
or θ is an answer for qj and dij

l[d1 · · · dn] for each j = 1, . . . , m,

X d θX = d

X � q d θX = d and θ is an answer for q and d

desc q d θ is an answer for q
and some subterm d′ of d

We say that q matches d if there exists an answer for q, d.
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Thus if q is a rooted query term (or a basic constant) and root(q) 	= root(d)
then no answer for q, d exists. If q = d then any θ is an answer for q, d. A query
l{{}} matches any data term with the label l. If θ, θ′ are substitutions (of data
terms for variables) and θ ⊆ θ′ then if θ is an answer for q, d then θ′ is an
answer for q, d. If a variable X occurs in a query term q then queries X � q and
X � desc q match no data term, provided that q 	= X and q is not of the form
desc · · · desc X.

Example 6. Query term q1 = a[ c{{d[ ] ”e”}} f [[g[ ] h{”i”}]] ] matches data terms
a[ c{”e” d[ ] g[ ]} f [g[ ] l[ ] h[”i”] ] ] and a[ c[d[ ] g[ ] ”e”] f [g[ ] h[”i”] ] ]. In contrast,
data terms f [h[”i”] g[ ] ] and f{g[ ] h[”i”]} are not matched by f [[g[ ] h{”i”}]].
Query term q2 = desc w{{}} matches data terms a[b{w[ ]}] and w{”s”} and
query term q2 = a[[ X1�c[[d{}]] X2 ”p” ]] matches a[”s”c[d{} ”r”] h{j[ ]} ”p”],
with an answer which binds X1 to c[d{} ”r”] and X2 to h{j[ ]}.

Each answer for a query term q binds all the variables of the query to some
data terms. For any such answer θ′ (for q and d) there exists an answer θ ⊆ θ′

(for q and d) binding exactly these variables. We will call such answers non
redundant. Out of Definition 8 one can derive an algorithm which produces non
redundant answers for a given q and d. Construction of the algorithm is rather
simple, due to lack of space we skip the details.

An Xcerpt program is a set of construct-query rules. We restrict ourselves to
a simple kind of rules and to programs consisting of a single rule.

Definition 9. A construct-query rule (shortly, query rule or query) is an
expression of the form t← q, where t is a construct term, q is a query term and
every variable occurring in t also occurs in q. t will be sometimes called the head
and q the body of the rule. If θ is an answer for q and a data term d then tθ is
a result for query t← q and d.

Each result of a query rule is a data term, as an answer for a query term
binds all the variables of the rule to data terms.

Example 7. Consider a database:

catalogue[ cd[ title[”Empire Burlesque”] artist[”Bob Dylan”] year[”1985”] ]
cd[ title[”Hide your heart”] artist[”Bonnie Tyler”] year[”1988”] ]
cd[ title[”Stop”] artist[”Sam Brown”] year[”1988”] ] ]

Here is a rule which extracts titles and artists for the CDs issued in 1988
and presents the results in a changed form (title as name and artist as author).
TITLE and ARTIST are variables.

result [ name[TITLE ] author [ARTIST ] ] ←
catalogue{{ cd{title[TITLE ] artist [ARTIST ] year [”1988”] }}}

The results returned by the rule are:

result [ name[”Hide your heart”] author [”Bonnie Tyler”] ]
result [ name[”Stop”] author [”Sam Brown”] ]
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6.2 Reasoning about Types of Xcerpt Query Results

In this section we study the relation between types of databases and types of
query results. Assume that the only information available about the database is
that it is a data term (or a set of data terms) of a given type [[TDB]]. One may
want to know what query results are possible for such database. We show how
to compute (a superset of) the set of such results. The set will be expressed as a
type, specified by a type definition. We will usually call it the query result type.

Computing the query result type may serve some additional purposes. 1. If
this type is empty, then the query will never give an answer for a data term from
[[TDB]]. An algorithm checking this property is obtained by combining computing
query result type with checking emptiness of a type. 2. If some specification of
the intended type of results exists, one may check if the query is correct w.r.t. the
specification, by checking whether the computed type of the results is included
in the specified one. 3. If we use a data term d as the body of the query, then
computing the result type is also a check whether d ∈ [[TDB]]. Namely d ∈ [[TDB]]
iff the result type is not empty. 4. The algorithm computing the query result type
produces as a side effect the types of the variables of the queries. For each variable
from the query it gives a set containing every value that can be assigned to the
variable (when querying a data term from type [[TDB]]). This provides additional
information about the behaviour of the query. We may consider specifications of
the types of the query variables. A query is correct w.r.t. such a specification if
for every variable the computed type is a subset of the specified type.

Example 8. Consider the type definition D from Example 2 and a construct-
query rule Q:

result [ name[TITLE ] author [ARTIST ] ]←
cd{{TITLE ARTIST�artist{{}} ”rock” }}

The intention of the rule is to collect titles and authors of all the cd’s of the
rock category. When the query term of the rule is matched against a database
of type Cd, the variables TITLE, ARTIST are bound to data terms of types,
respectively, Title, Artist or Artist, Artist. As the variable TITLE is intended
to take values only of type Title, the query is incorrect w.r.t. our expectations.
The type Result of the query result can be described by the following type
definition D ′ = D ∪ {Result→result [Name Author ], Name→name[Title|Artist ],
Author→author[Artist] }.

In what follows we assume a fixed proper type definition D (describing the
type of the database).

To represent a set of answers (for a query term and a set of data terms) we
will use a mapping m : V → E , where V is the set of variables occurring in the
considered query rule and E is a set of expressions. E contains 0, 1, the type
names from D, and expressions of the form T1 ∩ T2, where T1, T2 ∈ E . Each
expression E from E denotes a set [[E]] of data terms. [[1]] denotes the set of
all data terms, [[0]] = ∅, [[T ]] = [[T ]]D for any type name T , and [[T1 ∩ T2]] =
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[[T1]] ∩ [[T2]]. The set of substitutions corresponding to a mapping m : V → E is
substitutionsD(m) = { θ | ∀X∈V θX ∈ [[m(X)]] }.

We define ⊥,� : V → E by ⊥(X) = 0 and �(X) = 1 for every X ∈ V . For
Y1, . . . , Yk ∈ V, T1, . . . , Tk ∈ E , mapping [Y1 �→ T1, . . . , Yk �→ Tk] : V → E is
defined as

[Y1 �→ T1, . . . , Yk �→ Tk](X) =
{

Ti if X = Yi

1 otherwise.

We will not distinguish between expressions T ∩ 1 and T , and between T ∩ 0
and 0 (where T ∈ E). For any m1, m2 : V → E we introduce m1∩m2 : V → E
such that

(m1 ∩m2)(X) = m1(X) ∩m2(X).

Notice that m ∩ ⊥ = ⊥ and m ∩ � = m for any m : V → E .
For a particular query term there may be many possible assignments of types

for variables. That is why we will use sets of mappings from V → E . For such
sets M1 and M2 we define:

M1 �M2 = {m1 ∩m2 | m1 ∈M1, m2 ∈M2}
M1 �M2 = M1 ∪M2

Hence M � {⊥} = {⊥}, M � {�} = M , for any set of mappings M . We will not
distinguish between M � {⊥} and M , and between M � {�} and {�}.

Computing the Set of Answers for a Query Term. A first step of comput-
ing the types of results of query rules is computing the set of answers for a given
query term q and the data terms from a given [[T ]]D. We begin presentation of
our algorithm from its auxiliary procedure, called match seq.

The input for match seq are parentheses αβ, a type variable T , and a string
of type names T1 · · ·Tn. It checks whether some query term of the form q =
lαq1 · · · qnβ, where l = label(T ) and root(qi) = label(Ti) for i = 1, . . . , n, matches
a data term from [[T ]]D of the form l[d1, . . . , dn] or l{d1, . . . , dn}. This is done
by treating type names as basic constants and checking whether query term
lαT1 · · ·Tnβ matches some data term lα′U1 · · ·Ulβ

′, where the rule for T in D is
T → lα′rβ′ and U1 · · ·Ul ∈ L(r). (We cannot simply check if T1, . . . , Tn ∈ L(r)
because the brackets of q must also be considered.)

match seq(αβ, T1 . . . Tn, T ) :
IF the rule for T in D is of the form T → l[r] THEN

let s be r with every type name U replaced by U |ε
IF αβ = [ ] THEN check whether T1. . .Tn∈L(r) and return the result
IF αβ = [[ ]] THEN check whether T1. . .Tn∈L(s) and return the result
IF αβ = {} THEN

check whether there exist a permutation S1 . . . Sn of T1 . . . Tn

such that S1 . . . Sn ∈ L(r) and return the result
IF αβ = {{}} THEN

check whether there exist a permutation S1 . . . Sn of T1 . . . Tn

such that S1 . . . Sn ∈ L(s) and return the result
ELSE (the rule for T in D is T→ l{r} where r is a sorted multiplicity list)
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let S1 . . . Sn be a permutation of T1 . . . Tn

such that label(S1) ≤ label(S2) ≤ . . . ≤ label(Sn)
let s be r with every type name U replaced by U |ε
IF αβ = [ ] or αβ = [[ ]] THEN return false
IF αβ = {} THEN

check whether S1 . . . Sn ∈ L(r) and return the result
IF αβ = {{}} THEN

check whether S1 . . . Sn ∈ L(s) and return the result

This algorithm employs a check whether some permutation x of a given string
y is in a given regular language L. This can be done by constructing a DFA M ′

for the language L′ of all permutations of y and then checking emptiness of
L ∩ L′. The states of M ′ are multisets of symbols (subsets of the multiset Y of
the symbols of y); there is also an error state ⊥. State Y is the start state, ∅ is
the final state. For each symbol S ∈ Y there is a transition labelled S from Y
to Y \ {S}. If S 	∈ Y then the transition goes to ⊥.

Now we are ready to present an algorithm which computes the set of answers
for a given query term q and the data terms from a given type [[T ]]D of a database.

We will say that a type name T ′ is reachable from T if T →D t for a data
pattern t in which T ′ occurs.

match(q, T ) :
IF q is a variable X THEN

return {[X �→ T ]}
IF q is of the form X � q′

return {[X �→ T ]} �match(q′, T )
IF q is of the form desc q′ THEN

let W = {T ′ | T ′ reachable from T }
return

⊔
T ′∈W match(q, T ′)

(Now q is a rooted query term or a basic constant).

IF root(q) 	= label(T ) THEN return ∅
IF T is a type constant or a special type name THEN

IF q is a basic value in [[T ]] THEN return {�} ELSE return ∅
let r be the regular type expression in the rule for T in D
let q = lαq1 · · · qnβ (n ≥ 0),

let S =


T1 . . . Tn

∣∣∣∣∣∣
Ti = type(root(qi), r) if qi is a rooted query term

or a basic constant,
Ti ∈ types(r) otherwise




(so |S| > 1 only if some qi is of the form X, X � q′, or desc q′)
let S′ = {T1 . . . Tn ∈ S | match seq(αβ, T1 . . . Tn, T ) }
return

⊔
T1...Tn∈S′

�n
i=1 match(qi, Ti)

Notice that any mapping m ∈ match(q, T ) has a property that m(X) is neither
1 nor 0 for any variable X occurring in q, and m(X) = 1 for any X not occurring
in q. (It is however possible that m(X) = T1 ∩ T2, where [[T1]] ∩ [[T2]] = ∅.)
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The set of mappings match(q, T ) produced by the algorithm describes the
possible answers for q. If q does not contain � then the description is exact.

Proposition 1. Let q be a query term and S =
⋃

m∈match(q,T ) substitutionsD(m).
If θ is an answer for q and a data term d ∈ [[T ]]D then θ ∈ S. If q does not contain
� then each θ ∈ S is an answer for q and some d ∈ [[T ]].

To avoid technical complications, we do not attempt here to compute more
precise descriptions for queries with �.

The values of the mappings from M = match(q, T ) may be expressions of
the form T1 ∩ . . . ∩ Tn, where each Ti is a type name. Consider the set WM of
all such expressions

WM =
{

T1 ∩ . . . ∩ Tn

∣∣∣∣T1 ∩ . . . ∩ Tn = m(X), m ∈M, X ∈ V
n > 1, each Ti is a type name

}
.

For any expression E ∈WM , [[E]] is the intersection of types defined by D. Using
the algorithm of the appendix [17] we can construct a type definition DM such
that for each E ∈WM there exists a type variable TE for which [[TE ]]DM

= [[E]].
Moreover, [[T ]]DM = [[T ]]D for all type variables occurring in D (hence for those
occurring in M). If D is proper then DM is proper.

So without lack of generality we can assume that match(q, T ) returns a set
of mappings M such that m(X) is a type name, for each m ∈ M and for each
variable X occurring in q.

Computing the Type of Query Results. Given a proper type definition D
and a set match(q, T ) of mappings describing answers to a query term q, the set
of results for a query t← q and data terms from [[T ]]D is a subset of

R =
⋃

m∈match(q,T )

R(m) where R(m) = { tθ | θ ∈ substitutionsD(m) }

(by Proposition 1). If q does not contain � then R is the set of results. We first
show how to compute R(m). We construct a type definition with a type name
Tu for each subterm u of the query head t. If u is a variable X then TX is m(X).
The type names Tu corresponding to the basic constants occurring in t are new
distinct special type names. For the remaining subterms of t the corresponding
variables of t are new distinct type variables. We construct a set of rules

rules(t, m) = {Tc → c | c is a basic constant and a subterm of t }
∪ {Tu → lαTu1 · · ·Tunβ | u = lαu1 · · ·unβ is a subterm of t }.

Type definition Dm = D ∪ rules(t, m) describes R(m):

[[Tt]]Dm = { tθ | θ ∈ substitutions(m) }

Let us find out whether Dm is proper. For each subterm u of t consider a cor-
responding label. If u is a variable then the corresponding label is labelD(Tu) =
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labelD(m(u)). Otherwise it is root(u). The type definition Dm is proper iff for
each subterm u of t the labels corresponding to distinct child subterms of u are
distinct. (Repeated occurrences of the same child subterm are allowed.)

Computing rules(t, m) for each m ∈ match(q, T ) completes our algorithm.
The union R of the sets [[Tt]]D∪rules(t,m) contains all the results for query t← q
and any database which is a data term (or a set of data terms) from [[T ]].

If t is a variable then R may contain data terms with distinct roots; such a
set is not a type in our sense (i.e. is not [[T ]]D for any type definition D). If t
is not a variable then one may express R by a single type definition, possibly
non proper. Assume that for no type name there exist rules in two distinct sets
rules(t, m) (in other words, all the newly introduced type names are distinct).
If t is a basic constant then R is defined by an obvious definition {TR → t} or
∅. So assume that t is a term lαt1 · · · tnβ. For each m ∈ match(q, T ), let Tm

t

be the type variable corresponding to t in rules(t, m) and let rm be the regular
expression in the rule for Tm

t . Let TR be a new type variable and r be the union
of the regular expressions rm, for m ∈ match(q, T ). For the type definition

D′ = {TR → lαrβ } ∪D ∪
⋃

m∈match(q,T )

rules(t, m)

we have R = [[TR]]D′ .
In general, the type definition D′ is not proper. It may be impossible to

describe R by a proper type definition. Instead one may consider constructing a
proper type definition defining a superset of the given set. This topic is however
outside of the scope of this paper.

Example 9. Consider the type Cd from Example 2 and the construct-query rule
Q from Example 8. When we apply our algorithm to obtain the type of the re-
sults for Q and a database from [[Cd]], we will get two type definitions: D ′ = D ∪
{Result→ result [Name Author ],Name→ name[Artist ],Author→author [Artist]},
D′′ = D ∪ {Result→ result[Name Author], Name→name[Title], Author→
author [Artist ]}. Thus every query result is a member of [[Result]]D′∪[[Result]]D′′ .
The latter set is equal to that described by the proper type definition of Exam-
ple 8.

Analysis of Xcerpt Programs. It is easy to generalize the method presented
in this section to query rules containing more than one query term. The method
applies also to Xcerpt programs containing many query rules, provided they
are not recursive and the constructed type definitions are proper. If a query
term q from a rule R2 is matched against the results of a query rule R1 then the
algorithm applied to R1 gives a type definition which is an input to the algorithm
applied to R2. The algorithm requires that the type definition is proper. It is
however sufficient that each Dm, treated separately, is proper (for a condition
under which this happens, see above). The algorithm for R2 can be executed
repetitively, for each Dm as an input. Each run of the algorithm produces some
description of a result set, the union of these sets is the set of results of query
rule R2.
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Applying this idea to a recursive set of rules may result in a non terminating
sequence of applications of the algorithm. Here one needs an approach similar
to abstract interpretation or set constraints solving. (For related work in the
area of logic programming see e.g. [10] and references therein.) However our ap-
proach can still be used to check correctness of recursive sets of rules w.r.t. type
specifications. Consider a set P of Xcerpt rules and a specification S describing
a set of allowed database terms and sets of allowed query results. A sufficient
condition for correctness of P w.r.t. S is that each rule of P applied to allowed
data terms produces an allowed result. This is an inductive proof method, sim-
ilar to those used for partial correctness of programs. (For such a method for
logic programs see [11] and references therein.) If specification S is given by a
proper type definition then the sufficient condition can be checked by means
of algorithms described in this paper. For each rule of P one can compute the
set of results, using the algorithm described above; it is not necessary that the
obtained type definition is proper. Then, using the algorithm of Section 5, one
can check if the computed set is included in that given by S.

7 Conclusions and Topics for Future Work

We introduced an abstraction of XML data by data terms and a formalism of
type definitions to specify sets of data terms. To simplify our algorithms, we re-
strict this formalism to proper type definitions. The restriction seems acceptable,
as the sets defined by main XML schema languages (DTD and XML Schema)
can be expressed by proper type definitions. (Here we neglect some special fea-
tures of these languages, like non context-free conditions of DTD on uniqueness
of identifiers). Our algorithms are more efficient when the regular expressions
in the type definitions are 1-unambiguous in a sense of [3]. Restriction to such
regular expressions seems not unnatural; for instance the regular expressions in
DTD are required to be 1-unambiguous.

The main contribution of this paper is an algorithm for computing (approx-
imations of) the sets of results of Xcerpt rules, given (approximations of) the
sets of databases. This makes it possible to prove correctness of Xcerpt pro-
grams w.r.t. specifications expressed by type definitions, and to compute ap-
proximations of the sets of results of non recursive Xcerpt programs. Computing
approximations for recursive programs is a subject for future work.

The presented algorithm requires a prototype implementation; the work is
in progress (we have e.g. a translator from DTD to type definitions and a type
inclusion checker). Another subject for future work is studying how much the
restriction to proper definitions may be relaxed. (A slightly more general class
of definitions is considered in [4].) A compromise has to be found between the
descriptive power of the formalism, and efficiency and simplicity of algorithms
using it. In this context a study should be done on how much expressive power
is actually needed in practice.

We have chosen Xcerpt as an example rule language; we expect that the ideas
of this paper are applicable to other rule languages used in web applications.
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Abstract. We integrate an expressive class of description logics (DLs) and an-
swer set programming by extending the latter to support inverted predicates and
infinite domains, features that are present in most DLs. The extended language,
conceptual logic programming (CLP) proves to be a viable alternative for in-
tuitively representing and reasoning nonmonotonically, in a decidable way, with
possibly infinite knowledge. Not only can conceptual logic programs (CLPs) sim-
ulate finite answer set programming, they are also flexible enough to simulate
reasoning in an expressive class of description logics, thus being able to play the
role of ontology language, as well as rule language, on the Semantic Web.

1 Introduction

Description logics (DLs) [2] and answer set programming [10, 19] are well-established
knowledge representation mechanisms. We integrate them by adding predicate inverses
to disjunctive logic programs (DLPs) and extending the answer set semantics by allow-
ing for an infinite domain, without introducing function symbols. Both extensions to
answer set programming are inspired by their presence in most DLs, effectively inte-
grating the flexible and intuitive way of representing knowledge in logic programming
with DLs features, making elegant reasoning with infinite knowledge possible.

However, simply extending answer set programming leads to undecidability, no-
tably of satisfiability checking. We therefore restrict the syntactic structure of DLPs,
obtaining conceptual logic programs (CLPs). Satisfiability checking can then be de-
cided by reducing it to checking satisfiability w.r.t. simpler DLPs with finite answer set
programming techniques.

CLPs can simulate (disjunction-free) logic programs as well as expressive classes
of DLs, such as SHIQ∗. SHIQ∗ is a slight modification of SHIQ [15] with tran-
sitive closure of roles instead of transitivity of roles. SHIQ is regarded as the formal
specification of the ontology language OIL [17, 8], which can be used to express on-
tologies1 on the Semantic Web [4]. Other, more expressive, ontology languages are, for
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European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

1 Like DL knowledge bases or database schema’s, ontologies are models of a domain, providing
an agreed and shared understanding [20].
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example, DAML+OIL [3] and, more recently, OWL [21] which also include support
for data types and individuals.

Although, satisfiability checking w.r.t. a SHIQ∗ knowledge base can be intuitively
reduced to satisfiability checking w.r.t. a CLP the reverse is not true, i.e. there are CLP
rules that cannot be translated to SHIQ∗. Moreover, we believe that, in many cases,
CLPs are more intuitive, modular and easier to use than description logics.

Consider the following example,

restore(X)← crash(X), yest(X,Y ), BackupSucceeded(Y ) (1)

BackupSucceeded(X)← ¬crash(X), yest(X,Y ), not(BackupFailed(Y ))(2)

BackupFailed(X)← not(BackupSucceeded(X)) (3)

← yest−(X, Y1), yest−(X, Y2), Y1 �= Y2 (4)

← yest(X, Y1), yest(X, Y2), Y1 �= Y2 (5)

yest(X,Y ) ∨ not(yest(X,Y )) ← (6)

crash(X) ∨ not(crash(X)) ← (7)

¬crash(X) ∨ not(¬crash(X)) ← (8)

where a system that has crashed on a particular day, can be restored on that day if a
backup of the system on the day before succeeded. Backups succeed, if the system does
not crash and it cannot be established that the backups at previous dates failed.

Rules (1) and (2) express the above knowledge, and are called tree rules, due to their
tree-like structure, i.e. a tree with root X and leaf Y connected trough yest. Rules (4)
and (5) ensure that for a particular today there can be only one yesterday and only one
tomorrow, where yest− denotes the inverse of yest. Both rules also have a tree structure
(with root X and leafs Y1 and Y2), and, since the conclusion part of the rule is empty,
we call them tree constraints. The last three rules are so-called free rules and express
that on any day a crash may or may not have occurred. In general, free rules express
that certain facts may freely be added to the model, subject to restrictions implied by
other rules.

The main point of attention in this example is that all answer sets, claiming a restore
on a particular date, should also assure that on all previous dates the backup succeeded,
explicitly demanding for an infinite domain, and an infinite domain only. Furthermore,
reasoning with CLPs is clearly nonmonotonic due to the presence of negation as failure,
i.e. the “not” in front of literals.

The attempt to integrate DLs with logic programming is not new. [1] presents, with-
out considering decidability issues, a translation from the DL ALCQI to answer set
programs, using, unlike in the present approach, artificial function symbols to accom-
modate for an infinite Herbrand universe. [11] simulates reasoning in DLs through sim-
ple datalog programs. This necessitates heavily restricting the usual DL constructors:
e.g. negation or number restrictions cannot be expressed. While our approach can ex-
press those constructions and, as such, makes the possible interweaving of ontologies
and rules more complete, the approach in [11] has the advantage that existing LP-
reasoning engines can be used. An alternative approach is to simply add datalog-like
programs to coexist with DL theories, as in [6, 7], thus exploiting the strengths of both
knowledge representation mechanisms. This contrasts with our approach which aims to
import the advantages of DLs into an extension of answer set programming.
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Other approaches that connect rules to ontologies are, for example, [9], where a
mapping of a set of descriptions in the languages RDF, RDF-S or DAML+OIL to first-
order predicate calculus is specified, or [18], where DAMLJessKB enables the querying
of information in DAML files, by using Jess as a forward chaining production system.

The remainder of this paper is organized as follows: Section 2 extends the answer
set programming semantics to support inverses and infinite domains. Section 3 restricts
the programs to DLPs with a tree structure in order to enforce the tree-model property
and decidability of reasoning with CLPs. A simulation of finite answer set programming
and a particular expressive DL can be found in Sect. 4. Sect. 5 contains conclusions and
directions for further research.

2 Answer Set Programming with Infinity

We give some basic definitions about disjunctive logic programs (DLPs) and answer
sets [10, 19], and extend them to take into account infinite domains and inverses.

We call individual names constants and write them as lowercase letters, variables
will be denoted with uppercase letters. Variables and constants are terms. Atoms are
defined as being of the form p1(t1), p2(t1, t2), p2

−(t1, t2), with p1 a unary predicate,
and p2 a binary predicate, t1 and t2 are terms. We assume p−− to be defined as p for
a binary predicate p, and for atoms a, we assume a− is a with the predicate and the
arguments inverted in case of binary (possibly inverted) predicates, i.e. p(t1, t2)

− =
p−(t2, t1), and p(t1)

− = p(t1) for unary predicates. Note that we restrict to unary and
binary predicates; inverting atoms does not seem to make sense for predicates of greater
arity.

Ground atoms are atoms without variables. A literal is an atom or an atom preceded
by ¬, i.e. l is a literal if l = a or l = ¬a for an atom a. We define (¬a)− as ¬(a−)
for an atom a. A ground literal is a literal without variables. An extended literal is a
literal l or something of the form not(l), with l a literal. A ground extended literal is an
extended literal without variables. For a set X of literals, ¬X = {¬l |l ∈ X}, where
we define ¬¬a as a. A set of ground literals X is consistent if X ∩ ¬X = ∅. For a
set X of extended literals, we define X− = {l |not(l) ∈ X}, i.e. the set of underlying
literals.

We use Greek letters to represent sets of (unary or binary, possibly negated and/or
inverted) predicates. Attaching variables then allows us to write e.g. α(X) for
{a(X)|a ∈ α}, β(X, Y ) for {b(X, Y )|b ∈ β}, or not(α)(X) for {not(a(X))|a ∈ α}.
Furthermore, we assume the existence of a binary predicate�=, with the usual interpre-
tation.

A disjunctive logic program (DLP) is a finite set of rules α ← β where α and β
are finite sets of extended literals. We call programs where for each rule β− ∪ α− =
∅, programs without negation as failure (naf). Programs without naf such that for all
rules β contains at most one element, i.e. no disjunction in the head, are called simple
programs. Programs that do not contain variables are ground. For a program P and a
(possibly infinite) non-empty set of constantsH, such that every constant appearing in
P is in H, we call PH the grounded program obtained from P by substituting every
variable in P by every possible constant in H. Note that PH may contain an infinite
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number of rules (if H is infinite). An infinite DLP must be a grounded version of a
finite one.

The universe of a grounded program PH is the (possibly infinite) non-empty set of
constantsHPH appearing in PH . Note thatHPH = H. The base of a grounded program
PH is the (possibly infinite) set BPH of ground atoms that can be constructed using the
predicates in PH and their inverses, with the constants inH.

An interpretation I of a grounded DLP P is any consistent set of literals that is a
subset of BP ∪ ¬BP . An interpretation I of a grounded DLP P without naf satisfies a
rule α ← β if α ∩ I �= ∅ whenever β ⊆ I . Or, intuitively, if the conjunction of literals
in the body of a rule is true, the disjunction of the literals in the head must be true. An
interpretation I is a model of a grounded DLP P without naf if it satisfies every rule
in P and p(t1, t2) ∈ I ⇐⇒ p−(t2, t1) ∈ I for all literals p(t1, t2) in BP ∪ ¬BP .
Furthermore, it is a minimal model if there is no model J ⊂ I of P .

For a grounded DLP P and an interpretation I , the Gelfond-Lifschitz transformation
[19], is the program P I , obtained by deleting in P

– each rule that has not(l) in its body with l ∈ I ,
– each rule that has not(l) in its head with l�∈ I , and
– all not(l) in the bodies and heads of the remaining rules.

An interpretation of a DLP P (not grounded) is a tuple (I,HI), such that I is an inter-
pretation of the grounded PHI . An interpretation (I,HI) of a DLP P is an answer set
of P if I is a minimal model of P I

HI
.

A DLP P is consistent if P has an answer set. For a unary p (p possibly negated),
appearing in P , we say that p is satisfiable w.r.t. P if there exists an answer set (I,HI)
of P such that p(a) ∈ I for an a ∈ HI ; if HI is finite we call p finitely satisfiable.
Checking this satisfiability for a (possibly negated) unary predicate is called satisfiabil-
ity checking.

Although we allow for infinite domains, we can motivate the presence of literals in
a minimal model of a simple program in a finite way. We express the motivation of a
literal more formally by means of an operator T that computes the closure of a set of
literals w.r.t. a program P .

For a DLP P and an answer set (M,HM ) of P such that PM
HM

is a simple program,
we define the operator TP M

HM

: BP M
HM

∪ ¬BP M
HM

→ BP M
HM

∪ ¬BP M
HM

2 as follows.

TP M
HM

(B) = B ∪ {a, a−|a← β ∈ PM
HM
∧ β ⊆ B}

We define T 0(B) as B, and T n+1(B) as T n(T (B)). The operator gives the immediate
consequences of a set B according to PM

HM
.

Theorem 1. Let P be a DLP and (M,HM ) an answer set of P , with PM
HM

a simple
program. Then ∀a ∈M · ∃n <∞ · a ∈ T n(∅)
Proof Sketch. Assume ∃a ∈M · ∀n <∞ · a �∈ T n(∅). We write down all r : a′ ←
β ∈ PM

HM
with a′ = a or a′ = a− such that β ⊆ M and such that there exist a2 ∈ β

2 We omit the subscript if it is clear from the context.
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such that ∀n <∞ · b�∈ T n(∅). Since such r can always be chosen, we can repeat this
procedure for all b ad infinitum. This way we can define a strict subset M ′ of M , i.e.
M without a, a− and all b with their inverses (intuitively, we throw away all the literals
that are causing a to be not finitely deducible). It can be shown that M ′ is a model of
PM
HM

. A contradiction with the minimality of M . ��
The previous theorem allows to find a finite foundation for a literal in an answer set
(M,HM ). It proves useful in the decidability proof of satisfiability checking, as well as
in the DLs simulation.

3 Conceptual Logic Programs

Satisfiability checking in the above context of answer set programming with infinity is
undecidable3. Hence we will restrict arbitrary DLPs, such that we regain the decidability
of satisfiability checking while being careful so as to maintain a sufficient degree of
expressiveness.

Inspired by modal logics (and DLs in particular), we restrict arbitrary DLPs to con-
ceptual logic programs as to obtain DLPs such that if a unary predicate is satisfied by an
answer set, it can be satisfied by an answer set with a tree structure, i.e. CLPs have the
tree-model property. In [22] this tree-model property is held responsible for the robust
decidability of modal logics. Confirming this, the tree-model property proves to be of
significant importance to the decidability of satisfiability checking in CLPs.

A CLP is defined as a collection of several kinds of rules: free rules, i.e. rules that
express that it does not matter whether a literal is in the answer set or not, provided there
are no other rules prohibiting or enforcing the presence of that literal, a collection of
tree constraints, and tree rules, both general rules, that are suitably restricted to ensure
the tree-model property, i.e. they have a tree structure.

Formally, a (finite) tree T is a (finite) subset of N
∗
0

4 such that if x ·c ∈ T for x ∈ N
∗
0

and c ∈ N0, we have that x ∈ T . Elements of T are called nodes and the empty word ε
is the root of T . For a node x ∈ T we call x · c, c ∈ N0, successors of x. By convention,
x · 0 = x and (x · c) · −1 = x (ε · −1 is undefined). If every node x in a tree has k
successors we say that the tree is k-ary. We call the maximum number of successors for
a node in a tree, the rank of that tree. A labeled tree over an alphabet Σ is a tuple (T, V )
where T is a tree and V : T → Σ is a function, labeling the nodes of T with elements
from the alphabet. We extend the definitions of free tree DLPs from [13] by allowing
for more general occurrences of inequalities, as well as the general tree structure also
for constraints and rules with a binary literal in the head, instead of only for rules with
a unary literal in the head.

Definition 1. A conceptual logic program (CLP) is a set of rules that does not contain
constants and such that every rule is of one of the following types:

3 Similar to the simulation in Section 4, it can be shown that satisfiability checking in the DL
SHIQ [15], extended such that arbitrary roles, i.e. roles that are transitive or have transitive
subroles, are allowed in number restrictions, can be reduced to checking satisfiability in an
extended DLP. Since satisfiability checking for the former is undecidable [15], it remains so
for the latter.

4
N0 = N \ {0}
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– free rules a ∨ not(a) ← with a a (binary or unary) literal. E.g. a rule such as
p(X)∨not(p(X))← indicates that ground literals of the form p(c) can be accepted
(or rejected) without further motivation, subject to restrictions imposed by the other
rules in the program.

– tree rules a(X)← β with a(X) a unary literal and β a finite set of extended literals
with the following restrictions:
• there exists a finite tree T such that there is a bijection φ : T → Vars, with

Vars the variables in a(X)← β, such that y is a successor of x in T iff there
exists a literal f(φ(x), φ(y)) in β,
• if β contains a literal of the form not(f(U, Z)) then β must also contain a

positive (without “not”) literal g(U, Z),
• there may be inequalities Yi �= Yj in β if φ−1(Y1) and φ−1(Y2) have the same

predecessor in T (they are siblings). We call T the tree representation of the
rule.

– tree rules f(X, Y ) ← β with the same tree restrictions on β as above, and addi-
tionally at least one positive g(X, Y ) in β,

– tree constraints← β with the same tree restrictions on β as for tree rules with a
unary literal in the head.

Consider for example the following tree rule, expressing that a top film is a film that did
well at the box office and received a good review of an expert magazine.

topF ilm(Film)← film(Film), boxOffice(Film, Number), high(Number),

goodReview(Film,Reviewer), writes(Reviewer,Magazine), expert(Magazine)

Graphically, one sees that this rule has indeed a tree structure.
F ilm

goodReview

Number Reviewer

Magazine

writes

boxOffice

Note that we also allow rules of the form a(X) ← in CLPs, since they can be
replaced by a(X) ∨ not(a(X))← and← not(a(X)). Furthermore, one does not need
to have that the X in the head of a tree rule is the root of the tree representation.

In a rapidly evolving environment such as the Semantic Web, it is important to be
able to revise or withdraw conclusions when additional information becomes available.
Such nonmonotonicity is provided by negation as failure, i.e. the allowance for “not” in
front of literals. Assume, for example, that we have that top films for which we cannot
establish that they are released in the US are low budget films.

lowBudget(Film)← topF ilm(Film), not(releasedInUS(Film))

If x is then a top film, with nothing known about its release status, all answer sets will
indicate that x is a low budget production. However, if we learn that all top films get a
chance to make it also in the US, i.e. our knowledge gets enriched with

releasedInUS(Film)← topF ilm(Film)
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we are no longer able to deduce that x is a low budget film.
An important factor in the decidability of satisfiability checking is the assessment

of the tree-model property for CLPs. We define tree-satisfiability as satisfiability such
that the involved answer set has a tree structure. Formally, a unary predicate p (possibly
negated) in a DLP P is tree-satisfiable w.r.t. P if there exists an answer set (M,HM )
and a labeling function V such that (HM , V : HM → 2Pred(P )), with Pred(P ) the
predicates in P , is a tree with bounded rank such that

– p ∈ V (ε), and
– p1 ∈ V (x) iff p1(x) ∈M , for a unary predicate p1 (possibly negated), and
– p2 ∈ V (xi) iff p2(x, xi) ∈ M or p2

−(xi, x) ∈ M , for a binary predicate p2

(possibly inverted and/or negated).

A DLP P then has the tree-model property if the following property holds: if a unary
predicate p (possibly negated) is satisfiable w.r.t. P then p is tree-satisfiable w.r.t. P .
For example the predicate restore from the example program in the introduction is tree-
satisfiable w.r.t. that program, since it has an answer set

{restore(x), crash(x), BackupFailed(x), yest(x, y), yest−(y, x),

BackupSucceeded(y),¬crash(y), yest(y, z), yest−(z, y),

BackupSucceeded(z),¬crash(z), yest(z, u), yest−(u, z), . . .}
and this answer set has a tree-structure:

{restore, crash,BackupFailed}

{yest, BackupSucceeded,¬crash}

{yest, BackupSucceeded,¬crash}

Furthermore, this is the case for every CLP.

Theorem 2. Every CLP has the tree-model property.

Proof Sketch. Assume P is a CLP. We can assume that P is such that every X in the
head of a rule is the root of the tree representation of that rule, and such that the tree
representation is a tree of one level deep [14]. We show that P has the tree-model prop-
erty, from which we can deduce that every (general) CLP has the tree-model property
[14].

Take a unary predicate p (possibly negated) of the CLP P to be satisfiable, i.e. there
exists an answer set (M,HM ) of P such that p(a) ∈M .

First note that every tree rule in P has a tree representation that is of bounded rank,
let m be the maximum rank of the tree representations of all rules, and define n to be the
product of m with the number of unary predicates (possibly negated) in P , We define a
θ : {1, . . . , n}∗ → HM , such that (dom(θ), t : dom(θ) → 2Pred(P )) is a labeled tree of
bounded rank. We define t such that

t(xi) = {p1|p1(θ(xi)) ∈M} ∪ {p2|p2(θ(x), θ(xi)) ∈M ∨ p2
−(θ(xi), θ(x)) ∈M}
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Define θ(ε) = a and assume we have already considered, as in [23], every member of
{1, . . . , n}k, as well as xi1, . . . , xi(j − 1) for xi ∈ {1, . . . , n}k.

For every p1 ∈ t(xi), p1 not free, xi ∈ dom(θ), p1 unary, we have that p1(θ(xi)) ∈
M and, since M is minimal, there is a rule

r1 :p1(θ(xi))← α(θ(xi)), γl(θ(xi), el), εl(el) ,

such that body(r1) ⊆M . In the case that γl �= 0 we proceed as follows.
If there exists a rule5 (either a tree constraint or a tree rule) with a body

α(X), not(β(X)), γ1(X, Y1), . . . , γn(X, Yn),
not(δ1(X, Y1)), . . . , not(δn(X, Yn)), Yk �= Yl, ε1(Y1), . . . , εn(Yn)

such that there exist n − 1 nodes yi corresponding to Yi, with yi ∈ {xi1, . . . ,
xi(j − 1), xij, . . . , xi(j + (l − 1))} or yi = x such that

– yi �= yj if Yi �= Yj in the body,
– α ⊆ t(xi),
– β ∩ t(xi) = ∅,
– for all yi,
• if yi = x, then γi ⊆ t(xi), δi ∩ t(xi) = ∅, and εi ⊆ t(yi), where γi is γi with

all binary literals inverted,
• if yi �= x, then γi ⊆ t(yi), δi ∩ t(yi) = ∅, and εi ⊆ t(yi),

– for the one remaining Yj , j �= i, we have that γj ⊆ {f |f(θ(xi), el) ∈ M}, δj ∩
{f |f(θ(xi), el) ∈M} = ∅, and εj ⊆ {q|q(el) ∈M}

and we have that the body cannot be made true w.r.t. M and θ(xi) corresponding to
X , θ(yi), i �= j corresponding to Yi and el corresponding to Yj , then θ(xi(j + l)) is
undefined, else θ(xi(j + l)) = el.

Define M ′ = {p1(x)|p1 ∈ t(x)} ∪ {p2(x, xi), p2
−(xi, x)|p2 ∈ t(xi)} andHM ′ =

dom(θ). This model clearly makes p tree-satisfiable, if (M ′,HM ′) is an answer set of
P , which is the case. ��
The decidability proof of satisfiability checking of unary predicates w.r.t. a CLP uses
then a reduction to a finite number of simple CLPs for which satisfiability can be
checked with normal finite answer set programming. The details can be found in [14].

4 Simulating Description Logics
and Finite Answer Set Programming

CLPs can simulate several expressive DLs as well as answer set programming with a
finite (Herbrand) universe and without disjunction in the head (i.e. datalog programs,
where not()-literals may appear in the body of a clause). E.g. the program q(X) ←
f(c, b, c) has {b, c} as its Herbrand universe. This universe is finite (if it is assumed that
a DLP consists of a finite number of rules), contrary to the answer set programming

5 Note that the tree rules/constraints are trees of one level deep.
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introduced in Section 2 where the universe is a superset (possibly infinite) of {c, b}.
However, one can translate q(X)← f(c, b, c) into a CLP by grounding it with its Her-
brand universe, thus obtaining another finite DLP, and subsequently, a CLP by attaching
a variable to it. For the above example, this yields the clauses q(b)(X)← f(c, b, c)(X)
and q(c)(X)← f(c, b, c)(X), with the grounded literals now considered as unary pred-
icates. One obtains the following theorem.

Theorem 3. M is an answer set of a logic program P iff (M ′, {a}), with ’a’ a constant,
is an answer set of the CLP P ′ where M ′ = {l(a)|l ∈M} and P ′ = {r(X)|r ∈ PM

HM
},

with r(X) defined such that every literal l in r is replaced by l(X).

Moreover, several DLs that cannot be simulated by finite answer set programming,
because they do not have the finite model property, i.e. some DL knowledge bases have
only infinite models, can be simulated by CLPs. Such a DL is for example SHIQ [16],
which is the DL that can provide the formal semantics of the ontology language OIL
[17], with transitive closure of roles instead of transitivity of roles, which we called
SHIQ∗.

We define the syntax of SHIQ∗ concept expressions as follows.

D1, D2 → A|¬D1|D1 �D2|D1 �D2|∃R.D1|∀R.D1|(≤ n Q.D1)|(≥ n Q.D1)

Q→ P |P−

R→ Q|Q∗

with A a concept name and P a role name. The semantics of a SHIQ∗ concept expres-
sion is given by an interpretation I = (∆I , ·I) which consists of a non-empty (possibly
infinite) domain ∆I , and an interpretation function ·I defined as follows.

AI ⊆ ∆I for concept names A

P I ⊆ ∆I ×∆I for role names P

P−I
= {(y, x)|(x, y) ∈ P I} for role names P

(¬D1)
I = ∆I \DI

1

(D1 �D2)
I = DI

1 ∩DI
2

(D1 �D2)
I = DI

1 ∪DI
2

(∃R.D1)
I = {x|∃y : (x, y) ∈ RI ∧ y ∈ DI

1 }
(∀R.D1)

I = {x|∀y : (x, y) ∈ RI ⇒ y ∈ DI
1 }

(≤ n Q.D1)
I = {x|#{y|(x, y) ∈ QI ∧ y ∈ DI

1 } ≤ n}
(≥ n Q.D1)

I = {x|#{y|(x, y) ∈ QI ∧ y ∈ DI
1 } ≥ n}

(R∗)I = RI∗
i.e. the reflexive transitive closure of RI

A terminological axiom is of the form C1 � C2, with C1 and C2 arbitrary concept
expressions. An interpretation I satisfies a terminological axiom C1 � C2 if CI

1 ⊆
CI

2 . A role axiom is of the form R1 � R2, with R1 and R2 roles (possibly inverted
or transitive closures). An interpretation I satisfies a role axiom R1 � R2 if RI

1 ⊆
RI

2 . A knowledge base Σ is a set of terminological and role axioms. An interpretation
I is a model of Σ if I satisfies every axiom in Σ. A SHIQ∗ concept expression
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<owl:Class rdf:ID="SalesItem">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Item"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPrice"/>
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1
</owl:minCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Fig. 1. An OWL DL example ontology

C is satisfiable w.r.t. Σ if there exists a model I of Σ such that C has a non-empty
interpretation, i.e. CI �= ∅. It is straightforward to simulate satisfiability checking in
SHIQ∗ with CLPs.

Consider for example the small fragment of an OWL DL6 ontology in Figure 1
which expresses that sales items are the items that have at least one price. The DL
knowledge base corresponding to the ontology in Figure 1 consists of the axioms7

SalesItem � Item � ∃hasPrice

Item � ∃hasPrice � SalesItem

The corresponding CLP makes SalesItem, Item, hasPrice, and ¬hasPrice free:

SalesItem(X) ∨ not(SalesItem(X))←
Item(X) ∨ not(Item(X))←

hasPrice(X, Y ) ∨ not(hasPrice(X, Y ))←
¬hasPrice(X, Y ) ∨ not(¬hasPrice(X, Y ))←

and contains rules defining the negation of concept expressions appearing in the knowl-
edge base8.

¬SalesItem(X)← not(SalesItem(X))
¬Item(X)← not(Item(X))

¬∃hasPrice(X)← not(∃hasPrice(X))
¬(Item � ∃hasPrice)(X)← not((Item � ∃hasPrice)(X))

as well as rules defining the intersection and the exists restriction ∃hasPrice:

(Item � ∃hasPrice)(X)← Item(X), ∃hasPrice(X)
∃hasPrice(X)← hasPrice(X, Y )

6 OWL DL [21] is the most expressive fragment of OWL that corresponds to a DL.
7 ∃hasPrice corresponds to the concept expression ∃hasPrice.� where� is the top concept,

i.e. �I = ∆I for every interpretation I.
8 Extending CLP to directly support “true negation” (¬) is possible and would simplify the

translation.
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Finally, we express both DL axioms directly as follows,

← SalesItem(X), not((Item � ∃hasPrice)(X))
← not(SalesItem(X)), (Item � ∃hasPrice)(X)

which are the only two rules that are strictly necessary to express the knowledge in the
OWL ontology; the other rules simulate the DLs semantics and can be automatically
derived.

Formally, we define Φ(C, Σ) to be the CLP, obtained from the SHIQ∗ knowledge
base Σ and the concept expression C as follows.

clos(C, Σ) Φ(C, Σ)

concepts A A(X) ∨ not(A(X))← (1)
role names P P (X, Y ) ∨ not(P (X, Y )) ← (2)

¬P (X, Y ) ∨ not(¬P (X, Y )) ← (3)
expressions D

D = ¬E ¬E(X) ← not(E(X)) (4)
D = E � F E � F (X) ← E(X), F (X) (5)
D = E � F E � F (X) ← E(X) (6)

E � F (X) ← F (X) (7)
D = ∃Q.E ∃Q.E(X) ← Q(X, Y ), E(Y ) (8)
D = ∃Q∗.E ∃Q∗.E(X) ← E(X) (9)

∃Q∗.E(X) ← Q(X, Y ),∃Q∗.E(Y ) (10)
D = ∀R.E ∀R.E(X) ← ¬∃R.¬E(X) (11)
D = (≤ n Q.E) (≤ n Q.E)(X) ← ¬(≥ n + 1 Q.E)(X) (12)
D = (≥ n Q.E) (≥ n Q.E)(X) ← Q(X, Y1), . . . , Q(X,Yn),

E(Y1), . . . , E(Yn), Y1 �= Y2, . . .(13)
C1 � C2 ∈ Σ ← C1(X), not(C2(X)) (14)
R1 � R2 ∈ Σ ← R1(X, Y ), not(R2(X, Y )) (15)

The closure clos(C, Σ), appearing in the above table, of a concept expression, C and
the SHIQ∗ knowledge base Σ, is defined as follows:

– for every concept expression D in {C} ∪Σ we have D ∈ clos(C, Σ),
– for every D in clos(C, Σ), we have one of the following

D = ¬D1, D1 ∈ clos(C, Σ)
D = D1 �D2, {D1, D2} ⊆ clos(C, Σ)
D = D1 �D2, {D1, D2} ⊆ clos(C, Σ)
D = ∃R.D1, {R, D1} ⊆ clos(C, Σ)
D = ∀R.D1, {D1, ∃R.¬D1} ⊆ clos(C, Σ)
D = (≤ n Q.D1), then {(≥ n + 1 Q.D1)} ⊆ clos(C, Σ)
D = (≥ n Q.D1), then {Q, D1} ⊆ clos(C, Σ)

– for all R∗ ∈ clos(C, Σ), R ∈ clos(C, Σ),
– for all D ∈ clos(C, Σ), ¬D ∈ clos(C, Σ).

Theorem 4. A SHIQ∗ concept expression C is satisfiable w.r.t. a SHIQ∗ knowledge
base Σ iff C(X) is satisfiable w.r.t. Φ(C, Σ).

Proof Sketch. ⇒ C is satisfiable w.r.t. Σ, so there exists a model I = (∆I , ·I) with
CI �= ∅. We construct the answer set A = (M,HM ) out of this interpretation with
HM = ∆I and M as follows



Integrating Description Logics and Answer Set Programming 157

M = {C(a) |a ∈ CI , C ∈ clos(C, Σ)} ∪ {¬C(a) |a�∈ CI , C ∈ clos(C, Σ)}
∪ {Q(a, b), Q−(b, a) |(a, b) ∈ QI , Q ∈ clos(C, Σ)}

∪ {¬Q(a, b),¬Q−(b, a) |(a, b)�∈ QI , Q ∈ clos(C, Σ)}

It is then easy to show that (M,HM ) is an answer set of Φ(C, Σ).
⇐ Let M be a minimal model of Φ(C, Σ)M

HM
with C(a) ∈ M , and define an

interpretation I = (∆I , ·I), with ∆I = HM , and AI = {a |A(a) ∈ M}, for concept
names A, QI = {(a, b) |Q(a, b) ∈M}, for role names or an inverse Q.
I is defined on concept expressions as usual, and one can show that I is a model of

Σ such that CI �= ∅. ��
Note that while every SHIQ∗ knowledge base can be rewritten, by Theorem 4,

as an equivalent CLP, not every CLP can be written as a SHIQ∗ knowledge base
expressing the same knowledge. Consider for example the rule

g(X, Y )← a(X), f(X, Y ), b(Y )

stating that g is exactly the projection of f on both its first and second coordinate. One
direction (the minimality) can be simulated by the three axioms � � ∀g−.a, � � ∀g.b
and g � f . The other direction would demand for a more expressive DL including
product of concept expressions and intersection of roles [5].

5 Conclusions and Directions for Further Research

We presented conceptual logic programming (CLP) as a language that unifies both an-
swer set programming and expressive description logics, exemplified by SHIQ∗. This
was achieved by, on the one hand, allowing inverse predicates and infinite domains and,
on the other hand, suitably restricting the form of clauses so as to keep the satisfiability
problem decidable.

Because ontology languages such as OIL, DAML+OIL and a large fragment of
OWL, obtain their formal semantics through a correspondence with a description logic,
CLP is useful to represent and reason about ontologies in a rule-based manner which
also supports fine grained modularity, where ontologies can be extended by simply
adding intuitive (business) rules. In addition, reasoning using CLP is nonmonotonic
(through negation as failure), an important feature in view of the evolving nature of
knowledge that is available on the Semantic Web.

Future work includes extending CLP, e.g. by supporting constants and further relax-
ing the restrictions on tree rules, possibly even dropping the reliance on the tree model
property to guarantee satisfiability. In another direction, CLP could be equipped with
a preference order on rules, thus introducing another source for nonmonotonic reason-
ing [12], which would be useful for resolving conflicts resulting from the integration of
knowledge from different schema’s/ontologies. Finally, we intend to confirm the theo-
retical results with an implementation of CLP.
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Abstract. We report on a project to use SGLR parsing and term rewrit-
ing with ELAN4 to extract the semantics of mathematical formulas from
a LATEX document and representing them in MathML. The LATEX doc-
ument we used is part of the Digital Library of Mathematical Func-
tions (DLMF) project of the US National Institute of Standards and
Technology (NIST) and obeys project-specific conventions, which con-
tains macros for mathematical constructions, among them 200 prede-
fined macros for special functions, the subject matter of the project. The
SGLR parser can parse general context-free languages, which suffices to
extract the structure of mathematical formulas from calculus that are
written in the usual mathematical style, with most parentheses and mul-
tiplication signs omitted. The parse tree is then rewritten into a more
concise and uniform internal syntax that is used as the base for extracting
MathML or other semantical information.

1 Introduction

Mathematics is potentially an interesting field of application for the Semantic
Web, as the underlying semantics is relatively clear and the main problem is to
communicate it in a standard way, so it becomes machine usable, for example
by computer algebra systems or theorem provers. However, today the semantics
exists solely in the mind of the mathematician, who uses mathematical notation,
typically in LATEX, to communicate it to other mathematicians. The mathemat-
ical notation is originally two-dimensional in its graphical representation, take
for example the use of subscripts and superscripts, or the notations for fractions
and matrices. TEX reduces mathematical notation to a linear form, however as a
natural language of humans it leaves out a lot of information that can be easily
reconstructed by the human reader, for example the structure of expressions or
their types. To enable machines to work with the semantics of mathematical for-
mulas, there needs to be a notation that explicitly denotes expression structure
and makes clear exactly which operations and objects are meant in a formula.

F. Bry et al. (Eds.): PPSWR 2003, LNCS 2901, pp. 160–173, 2003.
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TEX:

\cos(\tfrac{1}{3}tˆ3+xt)

Internal abstract syntax:

apply(function("cos"),
apply("(_)",
apply("_+_",
apply("__",
frac("t",Int("1"),Int("3")),
superscript(id(Simple,"t"),Int("3"))),

apply("__",id(Simple,"x"),id(Simple,"t")))))

Representation MathML:

<mrow>
<mo>cos</mo>
<mo>&ApplyFunction;</mo>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<mrow>
<mfrac displaystyle="false" scriptlevel="1">
<mn>1</mn>
<mn>3</mn>

</mfrac>
<mo>&InvisibleTimes;</mo>
<msup><mi>t</mi><mn>3</mn></msup>

</mrow>
<mo>+</mo>
<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>t</mi></mrow>

</mrow>
<mo stretchy="false">)</mo>

</mrow>
</mrow>

Fig. 1. Blowup in the transformation from TEX to Representation MathML

MathML [6] is an emerging standard for representing mathematical formulae,
which however is much too verbose to be directly used by humans. For example,
a short half-a-line formula in TEX corresponds to about half a page of MathML
(see Figure 1). MathML comes in two varieties, Representation MathML which is
targeted towards graphical representation for displaying or printing, and Content
MathML designed to represent the mathematical semantics for computation or
proving. Content MathML contains only basic high-school mathematics, for a
wider variety of mathematical objects there is the OpenMath effort [16]. Both
MathML and OpenMath address mathematical formulas in isolation, whereas
OMDoc [10] allows to express the structure of mathematical documents, for
example the relation between definitions, theorems and proofs.
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We use ELAN4, which combines the rewriting of ELAN [3] with the powerful
parser and development environment of ASF+SDF [7], to extract the semantics
of mathematical formulas from a LATEX document and to generate a represen-
tation in MathML. In a first stage we use the SGLR parser [4] to parse the
expression structure, which is then rewritten to an internal abstract representa-
tion, and finally to some form of MathML, currently Representation MathML.

Our project shows that it is feasible to extract mathematical formulas from a
mathematical text written in a project-specific form of LATEX. In the particular
project we worked on, the Digital Library of Mathematical Functions (DLMF)
project (http://dlmf.nist.gov/) of the US National Institute of Standards
and Technology (NIST), the subject matter was special functions, which has the
properties that there are only few types (real and complex numbers and functions
over these), and that there is a large body of macros for specific special functions.
The task would be more difficult in subjects like algebra or logic, where there are
more levels of abstraction and thus more ambiguity, and fewer easily identifiable
mathematical notions.

Due to the time frame of only three months and lack of suitable tools we were
not able to really investigate Content MathML, and we concentrated on Rep-
resentation MathML instead. However, we want to emphasize that in contrast
to other LATEX-to-MathML conversion tools [9,17], which transform a sequence
of symbols in LATEX into a corresponding mrow element in MathML indiscrimi-
nately, we deduce the complete expression structure of the formula, and that it
would thus would be much easier for us to derive Content MathML. To do this
the main thing that is missing is the disambiguation between multiplication and
function application, for example by type inference. We applied our tool sepa-
rately to the sections of the sample chapter on Airy functions1. As this is only
a proof of concept there are still parts missing, but, for example, we can treat
the section on Scorer functions completely2. In particular, the current prototype
cannot parse equations between expressions of function type3, the MathML rep-
resentation for a large number of macros for special functions is still missing,
and we currently do not use type inference for a more general disambiguation
between multiplication and function application.

Since we currently do not have permission to publish parts of the DLMF
chapter we worked on, we will only show small subformulas and point to the
version published on the WWW [15] where appropriate. We also use examples
from the predecessor of DLMF, the Handbook of Mathematical Functions [1],
in particular Section 10.4 on Airy Functions.

2 Mathematical Notation

Mathematical notation is a language invented by human mathematicians for
communicating with other human mathematicians. As such it is a natural lan-
guage, with a tendency to suppress information that can easily be deduced by
1 http://dlmf.nist.gov/Contents/AI/index.html
2 http://dlmf.nist.gov/Contents/AI/AI.12.html
3 http://dlmf.nist.gov/Contents/AI/AI.8_ii.html
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the mathematician. For example, in contrast to programming languages which
are designed to be parsed by machines, mathematical notation leaves out many
parentheses and multiplication signs, and there is no global order of priorities to
chose the right reading.

We looked at several mathematical texts to deduce rules for parsing mathe-
matical formulas, first and foremost of course the chapter on Airy functions we
were working on, the Handbook of Mathematical Functions [1], but also other
books chosen for their variety and availability [2,5,8,12,18] to get a wider un-
derstanding of the problem. Wolfram [20] describes his understanding of math-
ematical notation, however we feel that it is not as standardized as he claims.

The omission of multiplication signs leads to an ambiguity between func-
tion application and multiplication, which can only be resolved using knowledge
about the types. For example, w(a+b) could mean that the function w is applied
to a + b, or that w is multiplied by a + b.

The omission of parentheses complicates the parsing of expressions. In par-
ticular, for elementary transcendental functions, such as sin or log, parentheses
around arguments are often omitted. Expressions such as x sin ax cos bx are to
be understood as x(sin(ax))(cos(bx)) where following factors are also part of
the argument to the function, up to the next elementary transcendental func-
tions. For example, this notation is used throughout the chapter on elementary
transcendental functions in [1]. However, a formula like sin(pπ)z−n/4 might also
mean (sin(pπ))z−n/4, i.e. in this case sin could be understood to have parenthe-
ses around its argument4. We resolve this by parsing a parenthesis immediately
following an elementary transcendental function as its argument, excluding fol-
lowing factors. For the DLMF project, and in particular the chapter on Airy
Functions, this seems to lead to correct parses. However, there are examples in
other books [5, page 1069 (305)] where this will parse formulas incorrectly.

Similar conventions apply to big operators. For example, a sum operator
extends typically to the next additive operation (+, −, ±, ∓), including nested
sums. Often this is made clear by the scope of the index variables of the sum,
for example the i in ∑

i

i
∑

j

aij

shows that the scope of the first sum extends over the second. In any case, by
the distributivity laws the equality

∑

i

(ai

∑

j

bj) = (
∑

i

ai)(
∑

j

bj)

holds, so this ambiguity is usually not a problem. We do not currently treat other
big operators, as their interaction with

∑
and other operations is not clear to

us, and varies in the mathematical literature we surveyed.
For division it is rather unclear whether in sin a/b the b is part of the argument

of sin, in practice this seems to depend on the particular a and b. In the DLMF
this is resolved by always using macros for division, which makes this clear.
4 http://dlmf.nist.gov/Contents/AI/about_AI.13.9.html
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DLMF LATEX

DLMF LATEX parse tree

DLMF LATEX abstract syntax

XML abstract syntax

XML parse tree

XML

parser (sglr, large grammar)

rewriting (large number of rules but simple)

rewriting (interesting things happen here)

rewriting (small number of rules, simple)

unparser

Fig. 2. Overview of the system

All of this can be expressed in an SDF grammar with the help of a hierarchy of
sorts for various expressions. We will show such a grammar below for a fragment
that contains the elementary transcendental functions.

3 Overall Structure

The technique that we use is to proceed in several stages, using the SGLR parser
of ELAN4 to parse expressions and then rewriting them into the desired MathML
representation (see Figure 2). Processing of a document begins by parsing it with
the SGLR parser, which needs a relatively complex grammar that we describe in
Section 4. The rest of the processing is done by several passes of rewriting. We
first use a large rewriting system that parallels the grammar to rewrite the parse
tree to an internal abstract syntax (Section 5), which is then made more uniform
by successive rewriting phases (Section 6). From the final internal representation
we produce an abstract version of MathML (Section 7), which is then rewritten
to a parse tree for true XML by a small rewrite system (Section 8). From this
the resulting XML can be created by the unparse tool that is part of ELAN4.

4 Parsing

We use the SGLR parser [4] in ELAN4, which permits to write unrestricted
context-free grammars, even ambiguous ones, and has in addition a preference
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mechanism to choose certain parse trees if there are ambiguities. Grammars for
SGLR are written in SDF, the Syntax Definition Formalism. We use preferences
in the technique of “island parsing” [13], where a simple and loose subgrammar
allows to parse the complete document in a rather flat and meaningless way, the
“sea”, and wherever possible more detailed subgrammars parse the parts that
we are interested in, the “islands”. In the case of this work the sea consists of the
preamble and textual part, while the islands are the mathematical formulas. The
SDF for the standard, non-mathematical part of the grammar is shown in Fig-
ure 3. The nonterminal TeX-Element is extended in Math-Env by environments
for mathematical formulas, where all the mathematical parsing takes place. The
mathematical part consists in turn of several environments which are specific to
the DLMF project, which contain equations or mathematical formulas together
with for example labels and comments.

The central component of the grammar for mathematical formulas is the
grammar module Equation, which describes the rules according to which math-
ematical expressions can be formed. This grammar is rather large, it has about
100 productions, so we cannot present it here. Instead we present a fragment of
its core that describes basic arithmetic and elementary transcendental functions
in Figure 4. As said this is only a small fraction, the real grammar contains
many more rules, for example for fractions, differentials, integrals and other, less
well-known mathematical operators. Our example grammar relies on the pres-
ence of grammars for AddOp, MultOp, Function, Number and Variable, which
are of a very simple structure, either a few lexical definitions or dictionaries of
functions. A small example dictionary is shown in Figure 5. In the real grammar
the dictionaries are much larger, for example there are about 200 macros for
specific functions in the DLMF latex package.

5 Rewriting to Abstract Syntax

The result of parsing is a parse tree that conserves all the syntactical details of
a mathematical formula. In particular, each grammar rule becomes a function
symbol in the parse term, even though several grammar rules may represent
the same mathematical object. For example, in the full grammar the hierar-
chy of sorts leads to 7 rules for multiplication. This would make it extremely
hard to work with, as each of the redundant cases will need to be treated sep-
arately. We chose to obtain a more uniform representation as the first step,
rewriting the parse tree to an abstract internal representation that is more uni-
form and closely follows the mathematical structure. The abstract syntax con-
sists of variable-arity terms in prefix notation, with optional annotations. Atoms
are either constants or strings. For example, plus, apply(plus,"x","1") and
mo("("){[xml attribute(stretchy),"false"]} are terms in the abstract syn-
tax. The optional annotations consist of a list of pairs of terms in braces; we use
it mostly to represent XML attributes. The abstract syntax was chosen so that
it is a subset of the textual representation of ATerms [19].

The rewriting system that converts parse tree to abstract syntax parallels
the grammar, as grammar rules become function symbols in the parse trees, so



166 J. Stuber and M. van den Brand

module Latex-Document

imports
Math-Env
Layout

exports
sorts
LaTeX-Document
Doc-Class
Tex-Element
Tex-Token
Comment
Text-Token
Macro
Special-Macro
Bracket-Struct

lexical syntax
[A-Za-z0-9\-]+ -> Doc-Class

[\\] [a-zA-Z]+ [\\]? -> Macro
[\\] ˜[a-zA-Z] -> Special-Macro
˜[\\\%\ \n\{\}\[\]\#\$]+ -> Text-Token
[\#][0-9]+ -> Text-Token
"%" ˜[\n]* [\n] -> Comment

context-free restrictions
Macro -/- [A-Za-z]
Text-Token -/- ˜[\\\%\ \n\{\}\[\]\#\$]

context-free syntax
"\\documentclass{" Doc-Class "}" TeX-Element*
"\\begin{document}" TeX-Element* "\\end{document}" -> LaTeX-Document

Comment -> TeX-Token
Text-Token -> TeX-Token
Macro -> TeX-Token
Bracket-Struct -> TeX-Token
Special-Macro -> TeX-Token

TeX-Token -> TeX-Element

context-free syntax
"{" TeX-Element* "}" -> Bracket-Struct
"[" TeX-Token+ "]" -> Bracket-Struct

Fig. 3. Top part of island grammar
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module Expression

imports
Layout
Dictionaries

exports
sorts

Expression SumProduct ETFProduct SumApplication ETFApplication
SimpleProduct Power Base SumOp ETFunction

context-free syntax
ETFProduct -> Expression

AddOp ETFProduct -> Expression
Expression AddOp ETFProduct -> Expression

SimpleProduct -> ETFProduct
ETFApplication -> ETFProduct

ETFProduct MultOp ETFApplication -> ETFProduct

ETFunction SimpleProduct -> ETFApplication
ETFunction ETFApplication -> ETFApplication

Power -> SimpleProduct
SimpleProduct MultOp Power -> SimpleProduct

Base -> Power
Base "ˆ" "{" Expression "}" -> Power

Number -> Base
Variable -> Base
"(" Expression ")" -> Base
Function "(" Expression ")" -> Base

"\\sin" -> ETFunction
"\\log" "_" "{" Expression "}" -> ETFunction

ETFunction -> Function {prefer}

Fig. 4. Simplified grammar for mathematical expressions

we essentially need a rule for each of these function symbols. A typical rule is
shown in Figure 6. #to_term_expression is the function that converts parse
trees of sort (resp. nonterminal) Expression to abstract syntax. The general
form of the ELAN4 rules that we use (there are other features such as strategies
that we do not use currently) is

[] l => r where t1 := s1 . . . where tn := sn

where l, r, si and ti are terms. If l matches a subterm of the current term
then the variables in l are bound, and the terms in the right-hand sides si of
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module Dictionaries

sorts
Integer Number Variable Function LogFunction AddOp MultOp SumOp

exports
lexical syntax

[\-]?[1-9][0-9]* -> Integer

context-free syntax
Integer -> Number

"x" -> Variable
"y" -> Variable
"i" -> Variable
"n" -> Variable

"f" -> Function
"g" -> Function

"+" -> AddOp
"-" -> AddOp

-> MultOp
"*" -> MultOp

Fig. 5. Dictionary for the example grammar

[] #to_term_expression(#$Expression_1# #$PlusOp# #$Expression_2#)
=> apply(#$Term_op#,#$Term_1#,#$Term_2#)
where #$Term_op# := #to_term_plus_op(#$PlusOp#)
where #$Term_1# := #to_term_expression(#$Expression_1#)
where #$Term_2# := #to_term_expression(#$Expression_2#)

Fig. 6. Typical rule to rewrite to abstract syntax

the where clauses are successively rewritten to normal form and then matched
against the corresponding left-hand side ti. If this match fails the rule is not
applied, otherwise the variables in ti are bound and the process continues. At
the end l is replaced by r in the current term, with the variables in r instantiated
by their bound values. In the example variables have the syntax #$Sort Suffix#
where the optional suffix distinguishes several variables of the same sort. The #
helps to distinguish them from abstract terms and TEX-text.

This example illustrates that in the internal syntax we represent most math-
ematical expressions in the form apply(operation,arguments), except for frac-
tions, large operators, differentials and integrals, which have their special repre-
sentation.
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rules

[] #improve_abstract_syntax(#$Term#)
=> #$Term8#
where #$Term0# := #collate_tex_text(#$Term#)
where #$Term1# := #move_macro_argument(#$Term0#)
where #$Term2# := #transform_text_envs(#$Term1#)
where #$Term3# := #transform_references(#$Term2#)
where #$Term4# := #transform_headings(#$Term3#)
where #$Term5# := #transform_user_macros(#$Term4#)
where #$Term6# := #transform_equation_envs(#$Term5#)
where #$Term7# := #transform_text(#$Term6#)
where #$Term8# := #transform_preamble(#$Term7#)

Fig. 7. Phases for rewriting the abstract syntax

6 Improving the Abstract Syntax

The abstract syntax representation obtained in the previous step is still very close
to the original grammar, and needs to be refined to exhibit all the information
needed in subsequent steps in a convenient format. We use several passes that
traverse the complete term and each does a particular operation on the tree
(see Figure 7). First, we combine adjacent texts into one to substantially reduce
the term size, and we attach arguments to macros, which in the grammar are
braces that follow macros. Currently we do not do more sophisticated semantical
processing, such as type inference, however this could easily be extended.

The remaining phases #transform X are concerned with generating abstract
XML (XHTML and Representation MathML) for output, which we discuss in
the following section.

7 Rewriting to Abstract Representation MathML

As the final step within abstract syntax we generate an abstract version of XML
for output. XML elements are represented as function applications, text nodes
as strings and attributes as annotations. For example, the abstract syntax term

mo("("){[xml attribute(stretchy),"false"]}
represents the XML

<mo stretchy="false">(</mo>.

We also have a special notation XML Reference(String) to represent character
references, for example XML Reference("int") becomes &int;.

With this representation of XML in place it is straightforward to write rules
that transform our internal representation. Figure 8 contains the fragment of the
code that handles the various cases of apply, together with a few lines from the
dictionary rules to illustrate their format. Here we use the where clauses of the
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[] #to_mrep(apply(#$Term_op#, #$Term_1#, #$Term_2#))
=> mrow(#to_mrep(#$Term_1#),#$Term_mo#,#to_mrep(#$Term_2#))
where infix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))
=> mrow(#$Term_mo#,#to_mrep(#$Term#))
where prefix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))
=> mrow(#to_mrep(#$Term#),#$Term_mo#)
where postfix(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))
=> mrow(#$Term_mol#,#to_mrep(#$Term#), #$Term_mor#)
where fence(#$Term_mol#,#$Term_mor#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))
=>mrow(#$Term_mo#,mo(XML_Reference("ApplyFunction")),#to_mrep(#$Term#))
where et_function(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply(#$Term_op#, #$Term#))
=> mrow(#$Term_mo#,

mo(XML_Reference("ApplyFunction")),
mo("("),
#to_mrep(#$Term#),mo(")"))

where function(#$Term_mo#) := #to_mrep_op(#$Term_op#)

[] #to_mrep(apply("\sqrt", #$Term#))
=> msqrt(#to_mrep(#$Term#))

[] #to_mrep(apply("\sqrt", #$Term_exp#, #$Term#))
=> msqrt(#to_mrep(#$Term#),#to_mrep(#$Term_exp#))

[] #to_mrep_op("_+_") => infix(mo("+"))
...
[] #to_mrep_op("+_") => prefix(mo("+"))
...
[] #to_mrep_op("_!") => postfix(mo("!"))
...
[] #to_mrep_op(function("sin")) => et_function(mo("sin"))
...
[] #to_mrep_op(function("AiryAi")) => function(mo("Ai"))
...
[] #to_mrep_op("(_)") =>fence(mo("("){[xml_attribute(stretchy),"false"]},

mo(")"){[xml_attribute(stretchy),"false"]})
[] #to_mrep_op("\left(_\right)") => fence(mo("("),mo(")"))
[] #to_mrep_op("|_|") => fence(mo("|"),mo("|"))

Fig. 8. Transformation to MathML of apply

ELAN4 rules to distinguish the different operation types, in order to generate
different output. For example, in

where infix(#$Term_mo#) := #to_mrep_op(#$Term_op#)
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[] <#term_to_XML_element(#$Identifier#(#$Term,+#) #$Annotation?#)#>
=> <$QName $Attributes><#terms_to_XML_nodes(#$Term,+#)#></$QName>
where $QName := #term_to_qname(#$Identifier#)
where $Attributes := <#opt_annotation_to_attributes(#$Annotation?#)#>

Fig. 9. A core rule in the transformation from abstract syntax to XML

the rewriting of the term on the right-hand side results in a normal form. If
this normal form has the function symbol infix at the root it matches the left-
hand side, its argument gets bound to the variable #$Term mo# and the rule
is executed. In this way it is easy to write dictionaries for a large number of
operators.

8 Generating XML

We have written an SDF grammar for XML with namespaces that can be used
both for parsing and generating XML documents, which has the side effect that
generated documents must be syntactically correct. We use a small rewrite sys-
tem of 27 rules to generate XML from internal abstract syntax, which is not
specific to MathML. As an example we show the core rule that creates an XML
element from a function symbol in Figure 9. There are more rules for traversing
the term and for the other XML nodes. In particular the rules for traversing
make heavy use of list matching, since for example nodes below an element are
described in the grammar by a * operator. The strange syntax with <, # and $
characters is again used to ensure that operations and variables are not parsed
as TEX or XML text.

Using unparse on the resulting XML parse tree produces an XML document
that can be passed to other tools as input, in our case for example Mozilla for
Representation MathML display.

9 Performance

Of the 17 sections in the DLMF sample chapter on Airy functions we can handle
the mathematical formulas completely in 6, partially in 5 (without the transfor-
mation to MathML), and 6 remain incomplete.

The grammar currently contains approximately 1000 productions, of which
ca. 350 are dictionaries. There are about 550 rewrite rules. There are fewer
rewrite rules than grammar rules, partly because dictionaries can be treated
uniformly by manipulating literals, and partly because it is still incomplete with
respect to the grammar.

On a 1.8GHz Pentium 4 compiling the grammar and rules takes about a
minute, while parsing is relatively fast, on the order of a few seconds for the
complete chapter. The result is a parse tree of several hundred thousand nodes.
Rewriting it is comparatively slow, on the order of several minutes, since it is
done by an interpreter. We do not currently have a compiler for ELAN4.

We feel that the limit of what can be achieved with ELAN4 is not yet reached.
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10 Conclusion

SGLR permits a very flexible syntax, which allows to represent both LATEX
and XML directly. However, having these two markup languages, where almost
every input string except for some escape characters is legal, lead to problems in
correctly parsing the rewrite rules. These were overcome by designing a special
syntax for internal variables and function symbols, as these can also be chosen
freely.

Our project shows that parsing mathematics in the form of LATEX documents
written to project-specific rules is feasible, but due to the variations in notation
the grammar needs to be engineered specifically for the project, or even for differ-
ent chapters written by different mathematicians (e.g. the chapter on elementary
transcendental functions and on Airy functions).

In this kind of work there will also always be some part that cannot treated
automatically. For example, the example chapter contains the formula

∫ ∫
· · ·

∫
f(t) (dt)n,

which, even if we could parse it, we would not know how to represent in Content
MathML.

The use of ELAN4 is not a prerequisite but was a convenient vehicle due
to its combination with SDF. We could also have used ASF, since we currently
do not use ELAN’s strategies, however these might be useful for type inference.
Writing an equivalent grammar with, for instance, LEX+YACC will probably
next to impossible. It would also have been possible to keep the SGLR parser and
the grammar, but to use other tools for the transformation, in particular JAVA
tools like TOM [14] or JJForester [11]. The advantage of using ELAN4 or ASF
over these is that use of user-defined syntax for both the input format as well as
the output format ensures syntactically correct results. Another possible route
would be to translate the parse trees into XML and to express the transformation
in XSLT.

Parsing mathematical formulas in LATEX documents is a real challenge. In
this paper we only address the translation to Representation MathML, due to
time constraints. The translation to Content MathML is a next step in this
project and would create a link with computer algebra systems like Mathematica
or Maple. We feel that to generalize and extend these results further some of
the implicit mathematical semantic information, in particular type information,
needs to be encoded in the document and used by more semantically directed
parsing techniques.
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Abstract. Attempto Controlled English (ACE) – a subset of English
that can be unambiguously translated into first-order logic – is a knowl-
edge representation language. To support automatic reasoning in ACE
we have developed the Attempto Reasoner RACE (Reasoning in ACE).
RACE proves that one ACE text is the logical consequence of another
one, and gives a justification for the proof in ACE. Variations of the
basic proof procedure permit query answering and consistency checking.
Reasoning in RACE is supported by auxiliary first-order axioms and by
evaluable functions. The current implementation of RACE is based on
the model generator Satchmo.

1 Reasoning in Natural Language

Knowledge representation requires a language suited to the problem domain
investigated. Traditional candidates for knowledge representation languages are
natural language and formal languages. Discussing the pros and cons of natural
language versus formal languages one could easily overlook that natural language
is not on a par with these other languages, but plays an important and privileged
role. First, it is the prototypical means of human communication, and also offers
itself as a user-friendly means to interact with computers. Second, it serves
as the meta-language for all other languages, informal or formal ones. Third,
natural language effectively serves as its own meta-language, thus supporting
representation, explanation, argumentation, and analysis all in one and the same
notation. Fourth, natural language needs no extra learning effort, and – provided
we exercise some care to avoid vagueness and ambiguity – is easy to use and to
understand.

Some researchers go as far as to consider natural language “the ultimate
knowledge representation language” [18]. Arguably, natural language also has a
great potential for semantic web applications. This potential will be explored by
the EU Network of Excellence “Reasoning on the Web with Rules and Semantics
(REWERSE)”.

Likewise, we use natural language to perform common sense reasoning that
involves logical inference operations like deduction, abduction, and induction.
Knowing that

Every company that buys a machine gets a discount.
Hardware Corporation is a company and buys a machine.

F. Bry et al. (Eds.): PPSWR 2003, LNCS 2901, pp. 174–188, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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we deduce that

Hardware Corporation gets a discount.

Natural language and reasoning in natural language have concerned peo-
ple since ancient times. In more recent years researchers have increasingly em-
ployed computers to investigate the potential of natural language for knowledge
representation and its suitability for automated reasoning [9,20]. The systems
described in these publications usually process unrestricted natural language,
typically do not use first-order logic but richer representations, and try to per-
form “one-step” inferences by introducing a large number of specialised inference
rules that should closely mimic informal human reasoning in natural language.

These approaches have two major drawbacks. First, the large number of in-
ference rules – requiring a combination of forward and backward reasoning –
makes it hard to find an effective and efficient inference strategy, and can lead
to a combinatorial explosion of inferences. Second, each new language construct
can introduce additional inference rules threatening to further aggravate the in-
ference process. Arguably, these objections apply to all approaches that perform
one-step inferences – inferences that in first-order predicate logic would require
several elementary steps.

Here we suggest an alternative approach to using natural language for knowl-
edge representation and reasoning. Our approach differs in three essential aspects
from the approaches mentioned above.

First, realising that we cannot hope to process full natural language on a com-
puter, we use a tractable subset of English called Attempto Controlled English
(ACE) – where tractable refers to both parsing and reasoning.

Second, ACE texts are translated into first-order logic. Our conviction that
first-order logic is the adequate tool for our purposes is precisely expressed by
“. . . besides expressive power, first-order logic has the best-defined, least prob-
lematic model theory and proof theory . . . ” [18] . Further support for the use
of first-order logic in the context of natural language processing can be found
in [8,2].

Third, to show that a set T of theorems expressed in ACE is the logical
consequence of a set A of ACE axioms we automatically translate A and T into
their equivalent first-order representations LA and LT , try to deduce LT from
LA with the help of a standard first-order theorem prover, and then report the
success or failure of the proof – together with a justification – again on the level
of ACE.

The advantages of our approach are twofold. First, we can rely on the cor-
rectness, completeness and efficiency of first-order theorem provers and model
generators available off-the-shelf. Second, adding language constructs to ACE
will not affect in any way the inference rules and the inference strategy used on
the logical level. However, as will be seen in the sequel some language constructs
of ACE require auxiliary first-order axioms that necessarily enlarge the search
space for inferences.

In section 2 we briefly describe Attempto Controlled English (ACE) and
its translation into first-order logic. In section 3 we list and motivate our re-
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quirements for the Attempto Reasoner RACE (Reasoning in ACE), in section 4
we present our candidate Satchmo as the basis of RACE, and in section 5 we
sketch how we satisfy the requirements for RACE. Section 6 presents RACE’s
basic functionality, while section 7 demonstrates RACE’s application to the no-
toriously difficult processing of plurals using auxiliary first-order axioms and
evaluable functions. In section 8 we briefly discuss the performance of RACE.
Finally, in section 9 we conclude and point to open issues and further research.

2 Attempto Controlled English

Information on the language Attempto Controlled English (ACE) in particular,
and on the project Attempto in general, can be found at the Attempto web-site
[www.ifi.unizh.ch/attempto]. Here, we briefly recall ACE’s main features.

ACE is a controlled subset of standard English that allows users to express
technical texts precisely, and in the terms of the respective application domain.
ACE texts are computer-processable and can be unambiguously translated into
first-order logic. Concretely, ACE is equivalent to the subset of closed sentences of
FOL. ACE appears perfectly natural, but – being a controlled subset of English
– is in fact a formal language with the semantics of the underlying first-order
logic representation. It is exactly this logic underpinning that allows us to reason
in ACE.

The Attempto system and Attempto Controlled English are intended for
domain specialists – e.g. engineers, economists, physicians – who want to use
formal notations and formal methods, but may not be familiar with them. Thus
the Attempto system has been designed in a way that allows users to work
solely on the level of ACE without having to take recourse to its internal logic
representation.

Here is an ACE text from the example domain used in the sequel.

Every company that buys a standard machine gets a discount.
A British company buys a standard machine.

The Attempto Parsing Engine APE translates this ACE text unambiguously
into the following discourse representation structure [10]:

drs([A,B,C,D,E],[drs([F,G,H,I,J],[structure(G,atomic),
quantity(G,cardinality,count_unit,F,eq,1),
object(G,company),structure(I,atomic),
quantity(I,cardinality,count_unit,H,eq,1),
property(I,standard),object(I,machine),
predicate(J,event,buy,G,I)])=>drs([K,L,M],[structure(L,atomic),
quantity(L,cardinality,count_unit,K,eq,1),
object(L,discount),predicate(M,event,get,G,L)]),
structure(B,atomic),quantity(B,cardinality,count_unit,A,eq,1),
property(B,‘British’),object(B,company),
structure(D,atomic),quantity(D,cardinality,count_unit,C,eq,1),
property(D,standard),object(D,machine),
predicate(E,event,buy,B,D)])
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The discourse representation structure drs/2 uses a syntactic variant of the lan-
guage of first-order predicate logic. The first argument of drs/2 is a list of dis-
course referents, i.e. quantified variables naming objects of the domain of dis-
course. In our example the discourse referents A, B, C, D, E, K, L, M are existentially
quantified, and F, G, H, I, J being introduced in the precondition of an implication
are universally quantified. The second argument of drs/2 is a list of simple and
complex conditions for the discourse referents. The list separator ‘,’ stands for
logical conjunction. Simple conditions are logical atoms, while complex condi-
tions are built from other discourse representation structures with the help of
the logical connectors negation ‘-’, disjunction ‘v’, and implication ‘=>’.

Logical atoms are formed from a small set of predefined predicates like
object/2, property/2, or predicate/5. For example, instead of the usual
company(D), we reify the relation company, and write object(D,company). This
‘flat notation’ allows us to quantify over the arguments of the predefined predi-
cates and thus to express general aspects of relations in first-order axioms that
otherwise would require higher-order logic [8].

The discourse representation structure gets a model-theoretic semantics [10]
that assigns an unambiguous meaning to the ACE text from which it was derived.
Thus the Attempto system treats every ACE sentence as unambiguous, even if
people not familiar with ACE would perceive the same sentence as ambiguous
with respect to full English.

3 Requirements for the Attempto Theorem Prover

For the Attempto Reasoner (RACE) we determined a number of requirements
most of which take our decision for granted to base RACE on first-order logic.
Some requirements reflect the particular needs of the typical users of the At-
tempto system, that is to say domain specialists who may be unfamiliar with
logic and theorem proving. Other requirements concern complementing ACE as
RACE’s main input language by alternative notations. Still other requirements
refer to the efficient and flexible implementation of RACE.

Input and Output of RACE Should Be in Attempto Controlled English. To ac-
commodate the needs of the typical user of the Attempto system the input and
output of RACE should be in ACE. Alternative forms of input should be avail-
able for users familiar with first-order logic.

RACE Should Generate all Proofs. If an ACE text is unsatisfiable, RACE should
generate all minimal unsatisfiable subsets of sentences of the text, i.e. sets of
sentences that are unsatisfiable and all of whose strict subsets are satisfiable.

There can be several proofs of ACE theorems from ACE axioms, specifically
several answers to ACE queries. Furthermore, an ACE text can have several
inconsistent subsets. Users should be given the option to get all results.

RACE Should Give a Justification of a Proof. RACE should provide a justifi-
cation of a successful proof, either as a trace of the proof or as a report which
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minimal subset of the axioms was used to prove the theorems. Especially the
second alternative is of utmost practical relevance if the ACE text is a software
specification and users want to trace requirements.

RACE Should Combine Theorem Proving with Model Generation. If an ACE
text is satisfiable, RACE should generate a minimal finite model if there is one.

Theorem provers and model generators complement each other. If a problem
is unsatisfiable a theorem prover will find a proof. If, however, the problem
is satisfiable and admits finite models then a model generator will find a finite
model. Finally, if the problem is satisfiable, but does only have infinite models, we
can encounter non-termination for both theorem provers and model generators.

Besides complementing theorem provers, model generators generating (min-
imal) finite models offer additional advantages [3], foremost the possibility to
construct comprehensive answers to queries.

RACE Should Allow for the Definition of Auxiliary Axioms in First-Order Logic.
ACE is primarily a language to express domain knowledge. However, deductions
in ACE presuppose domain-independent knowledge, for instance general linguis-
tic knowledge like the relations between plural and singular nouns, or math-
ematical knowledge like comparisons between natural numbers. This domain-
independent knowledge is best expressed in auxiliary axioms using the language
of first-order logic. Users may even prefer to state some domain knowledge, for
instance ontologies, in first-order axioms instead of in ACE. In still other cases
users may want to state something in first-order logic that cannot yet be conve-
niently expressed in ACE.

RACE Should Have an Interface to Evaluable Functions and Predicates. Auxil-
iary first-order axioms, but also ACE texts can refer to functions or predicates,
for instance to arithmetic functions or Boolean predicates. Instead of letting users
define these functions and predicates, it is much more convenient and certainly
more efficient to use the evaluable functions and predicates that are provided by
the execution environment.

Using RACE Should not Presuppose Detailed Knowledge of Its Workings. Many
theorem provers allow users to control proofs through options and parameters.
Often these options and parameters presuppose detailed knowledge of the struc-
ture of the problem, of the internal working of a theorem prover, or of theorem
proving in general, that a typical user of the Attempto system may not have.
Thus, RACE should preferably run automatically, and at most expect users to
set familiar parameters like a runtime limit, or the number of solutions found.

4 A Basis for the Attempto Reasoner

Many first-order theorem provers and model generators are freely available off-
the-shelf. Since these tools have already reached a high level of maturity, we
decided to base RACE on one of them.
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Since RACE’s requirements imply extensions and possibly modifications of
the selected tool we wanted to have the tool locally available. This decision pre-
cludes solutions like MathWeb [www.mathweb.org] that farms out an inference
task simultaneously to theorem provers and model generators available on the
internet and then uses the first result returned. However, this competitive par-
allelism that leads to super-linear speed-ups can also be implemented as parallel
processes on one single machine [21].

After an extensive and necessarily subjective evaluation of candidates – in-
volving deduction rules for discourse representation structures [15], leanTAP [1],
EP Tableaux [4,22], Otter [13] and Mace [14] – we decided to base the imple-
mentation of RACE on the model generator Satchmo [12,5].

Satchmo accepts first-order clauses in implication form, or Horn clauses in
Prolog notation. Negation is expressed as implication to false.

If the set of clauses admits a finite model, Satchmo will find it. Satchmo is
correct for unsatisfiability if the clauses are range-restricted – which can always
be achieved – and complete for unsatisfiability if used in level-saturation manner
– technically achieved with the help of Prolog’s set predicates [5].

Satchmo is highly efficient since it delegates as much as possible to the un-
derlying Prolog inference engine.

5 Fulfilling the Requirements for the Attempto Reasoner

RACE consists of a set of Prolog programs with an extended version of Satchmo
at its core. Some of RACE’s requirements are already fulfilled by Satchmo, while
others are satisfied by RACE’s Prolog code making use of Satchmo’s basic func-
tionality and of special features of the logical representation of ACE texts.

Input and Output of RACE Should Be in Attempto Controlled English. RACE
proves that ACE theorems T are the logical consequence of ACE axioms A,
translating the ACE texts T and A into Satchmo clauses CT and CA, showing
that CA∪¬CT have no model, and then reporting the result of the proof A � T
using the original texts T and A.

RACE should Generate all Proofs. As a model generator Satchmo searches for
a model of a set of clauses. However, if the set is unsatisfiable, Satchmo will
stop immediately once it detected unsatisfiability. The requirement to generate
all proofs amounts to finding not just the first, but all cases of unsatisfiability.
We have extended Satchmo so that it will find all minimal unsatisfiable subsets
of the clauses, and thus all minimal unsatisfiable subsets of the ACE sentences
from which the clauses were derived.

RACE Should Give a Justification of a Proof. RACE generates for each proof a
report which minimal subset of the axioms was used to prove the theorems. The
implementation of this feature relies on an extended internal representation of
an ACE text called a paragraph. The example
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Every company that buys a standard machine gets a discount.
A British company buys a standard machine.

of section 2 is actually translated into

paragraph(drs([A,B,C,D,E],[drs([F,G,H,I,J],[structure(G,atomic)-1,
quantity(G,cardinality,count_unit,F,eq,1)-1,object(G,company)-1,
structure(I,atomic)-1,quantity(I,cardinality,H,count_unit,H,eq,1)-1,
property(I,standard)-1,object(I,machine)-1,
predicate(J,event,buy,G,I)-1])=>drs([K,L,M],[structure(L,atomic)-1,
quantity(L,cardinality,count_unit,K,eq,1)-1,object(L,discount)-1,
predicate(M,event,get,G,L)-1]),structure(B,atomic)-2,
quantity(B,cardinality,count_unit,A,eq,1)-2,property(B,‘British’)-2,
object(B,company)-2,structure(D,atomic)-2,
quantity(D,cardinality,count_unit,C,eq,1)-2,property(D,standard)-2,
object(D,machine)-2,predicate(E,event,buy,B,D)-2]),text([‘Every
company that buys a standard machine gets a discount.’,‘A
British company buys a standard machine.’]))

where drs/2 is a slightly extended version of the discourse representation struc-
ture discussed in section 2. The structure text/1 contains a list whose elements
are the input sentences represented as character strings. A logical atom Atom oc-
curring in drs/2 is actually written as Atom-I where the index I refers to the I’th
element of the list in text/1, i.e. to the sentence from which Atom was derived.

The discourse representation structure is translated into Satchmo clauses of
the general form

satchmo_clause(Body,Head,Index)

where Body, respectively Head, are the body and head of the Satchmo clause, and
Index is either axiom(I) or theorem(I) indicating that the clause was derived
from the I’th ACE axiom or from the I’th ACE theorem.

During a proof RACE collects the indices of atoms participating in a proof
in a sorted list. There is one list for each proof. These lists are then used to
generate reports showing which ACE axioms were used to derive which ACE
theorems.

RACE Should Combine Theorem Proving with Model Generation. Satchmo, and
consequently RACE, can be used both as a theorem prover and a model gen-
erator. If a set of Satchmo clauses is satisfiable and admits a finite model then
RACE will generate a minimal finite model that is returned as a list of ground
instances of atoms.

RACE Should Allow for The Definition of Auxiliary Axioms in First-Order
Logic. RACE accepts auxiliary first-order axioms of the form

fol_axiom(Number,Formula,Text)
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where Number labels the axiom, Formula is a closed first-order formula, and Text

is a string describing the axiom. All auxiliary axioms are conjoined with the
first-order formula derived from the ACE axioms, and the conjunction is trans-
lated into Satchmo clauses. While an auxiliary axiom is processed the atoms A

of its Formula are changed into A - fol axiom(Number) so that the Text of the
auxiliary axiom becomes accessible to the justification of the proof via the index
fol axiom(Number).

RACE Should Have an Interface to Evaluable Functions and Predicates.
Satchmo accepts and executes any Prolog predicate – be it user defined or built-
in.

Using RACE Should not Presuppose Detailed Knowledge of Its Workings.
Satchmo does not offer any options or parameters, nor can users interact with
Satchmo.

6 Using the Attempto Reasoner

In its basic form RACE proves that one ACE text – the theorems – follows
logically from another ACE text – the axioms – by showing that the conjunction
of the axioms and the negated theorems leads to a contradiction. Variations of
this basic proof procedure allow users to check the consistency of an ACE text, or
to answer queries expressed in ACE. These two forms of deduction are especially
interesting for the analysis of specifications written in ACE, for instance for their
validation with respect to requirements.

The following examples are deliberately simple to clearly demonstrate the
basic usage of RACE. We will only show the ACE input and output of RACE and
omit the internal logical representation into which the ACE input is transformed
by the Attempto parser before being fed to RACE.

Given the three ACE axioms

Every company that buys a standard machine gets a discount.
A British company buys a standard machine.
A French company buys a special machine.

and the ACE theorem

A company gets a discount.

RACE will prove the theorem and generate the following output

RACE proved that the sentence(s)
A company gets a discount.

can be deduced from the sentence(s)
Every company that buys a standard machine gets a discount.
A British company buys a standard machine.



182 N.E. Fuchs and U. Schwertel

Note that since RACE generates minimal unsatisfiable subsets, we only see the
two axioms actually used in the proof.

Given the same three axioms and the ACE query

Who buys a machine?

RACE generates the two answers

RACE proved that the query (-ies)
Who buys a machine?

can be answered on the basis of the sentence(s)
A British company buys a standard machine.

RACE proved that the query (-ies)
Who buys a machine?

can be answered on the basis of the sentence(s)
A French company buys a special machine.

All possible answers are generated, and for each answer we see only the ACE
axiom(s) used to derive that answer.

Similarly we can check the consistency of an ACE text. If the text is incon-
sistent, RACE will identify all minimal unsatisfiable subsets. Given the ACE
text

Every company that buys a standard machine gets a discount.
A British company buys a standard machine.
A French company buys a standard machine.
There is no company that gets a discount.

we get the two results

RACE proved that the sentence(s)
Every company that buys a standard machine gets a discount.
A French company buys a standard machine.
There is no company that gets a discount.

are inconsistent.

RACE proved that the sentence(s)
Every company that buys a standard machine gets a discount.
A British company buys a standard machine.
There is no company that gets a discount.

are inconsistent.

showing that the text contains two inconsistent subsets.
The preceding examples demonstrated the basic usage of RACE. More ad-

vanced applications making use of auxiliary first-order axioms and evaluable
functions will be shown in the next section.
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7 Plural Inferences via Auxiliary First-Order Axioms

Plural constructions in natural language raise hard linguistic and semantic prob-
lems [17], and trigger complex inferences. There are for example plural disam-
biguation processes activated by world-knowledge, inferences induced by linguis-
tic knowledge about the structure and interpretation of plurals, or inferences that
are driven by mathematical knowledge. Linguistic and mathematical inferences
can be modelled by extending RACE with auxiliary domain-independent first-
order axioms for lattice-theory, equality and integer arithmetic. The examples
used in this section may give the impression of being simple, and are in fact
easily solved by human beings. However, as will become apparent, they are not
at all trivial when solved by a computer.

Lattice Theoretic Axioms. The representation and processing of natural
language plurals in first-order logic requires additional axioms describing the
properties of plural entities. For the practical implementation we had to settle
with an axiom system that provides a good trade-off between empirical adequacy
and computational tractability. For conciseness we can only show a selection of
the axioms that were implemented in RACE.

From the two ACE sentences

Every company that buys a machine gets a discount.
Six Swiss companies each buy a machine.

where the second sentence contains a plural construction we want to infer the
singular sentence

A company gets a discount.

To perform this inference we need to deduce from the second sentence the ex-
istence of a company that buys a machine. The logical representation of the
second sentence is

paragraph(
drs([A,B],[structure(A,group)-2,drs([C],[structure(C,atomic)-2,
part_of(C,A)-2])=>drs([],[object(C,company)-2,property(C,‘Swiss’)-2]),
quantity(A,cardinality,count_unit,B,eq,6)-2,
drs([D],[structure(D,atomic)-2,part_of(D,A)-2])=>drs([E,F],
[object(E,machine)-2,structure(E,atomic)-2,
predicate(F,event,buy,D,E)-2])]),
text([‘...’,‘Six Swiss companies each buy a machine.’]))

This representation assumes a lattice-theoretic structure of the domain of dis-
course partially ordered by the relation part of/2. Additionally it is assumed
that for any subset S of the domain there exists a unique least upper bound
(supremum) of the elements of S with respect to part of/2. Thus, apart from
atomic individuals (atoms) there are complex individuals (groups) formed by the
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supremum operation which serve as the denotation of plural nouns. This lattice-
theoretic approach allows for a first-order treatment of plural objects [11]. In
the above representation each object variable is typed according to its position
in the lattice. Lines 2 and 3 of the structure express that there is a group A the
atomic parts of which are Swiss companies, the fourth line that the cardinality
of A equals 6, and lines 5 to 7 express the distributive reading triggered by the
cue word each.

Since from this representation the existence of a company that buys a ma-
chine cannot be directly deduced we add to RACE the following auxiliary first-
order lattice-theoretic axiom stating that each group consists of atomic parts:

fol_axiom(1,forall([X],(structure(X,group) =>
exists([Y],(part_of(Y,X) & structure(Y,atomic))))),
‘Every group consists of atomic parts.’).

Note that the axiom is not domain specific since it models the meaning of plurals
in natural language. Hence the axiom has to be available for each proof in each
domain. Calling RACE with the conjunction of the clauses derived from the
ACE text and from the auxiliary axiom we get the desired deduction and RACE
outputs

RACE proved that the sentence(s)
A company gets a discount.

can be deduced from the sentence(s)
Every company that buys a machine gets a discount.
Six Swiss companies each buy a machine.

using the auxiliary axiom(s)
Every group consists of atomic parts.

RACE includes other lattice-theoretic axioms, e.g. the reflexivity, transitivity
and antisymmetry of the part-of relation, the proper-part-of relation, or an ax-
iom that states that atoms do not have proper parts. Commutativity, associa-
tivity and idempotence of the lattice-theoretic join operation – needed for the
representation of noun phrase coordination – are not directly implemented via
first-order axioms but more efficiently simulated by list processing operations
like permutation.

Equality. Many inferences require the interaction of several auxiliary axioms
whereby equality plays an important role. Asking the query

Who buys machines?

we expect to retrieve the second sentence

Six Swiss companies each buy a machine.

of the above example since the bare plural machines in the query is indeterminate
as to whether one or more machines are bought. To model this we represent both
the query word who and the bare plural machines as underspecified with respect
to the position in the lattice (structure(V,dom)). The query representation is
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paragraph(
drs([A,B,C,D],[structure(A,dom)-1,query(A,who)-1,
structure(C,dom)-1,quantity(C,cardinality,count_unit,B,geq,1)-1,
drs([E],[structure(E,atomic)-1,part_of(E,C)-1])=>
drs([],[object(E,machine)-1]),predicate(D,event,buy,A,C)-1]),
text([‘Who buys machines?’])).

Using the auxiliary axiom 1 introduced above and additionally the following
three auxiliary axioms

fol_axiom(2,forall([X],(structure(X,atomic) => structure(X,dom))),
‘Atom is a subtype of the general type dom.’)

fol_axiom(3,forall([X,Y],(structure(X,atomic) & part_of(Y,X) =>
is_equal(X,Y))), ‘Atoms do not have proper parts.’)

fol_axiom(4,forall([X,Y,P],(is_equal(X,Y) & object(X,P) =>
object(Y,P))), ‘Identical objects have the same properties.’)

will licence the deduction of the query from the second sentence. The relation
is equal/2 models equality and is defined as reflexive, symmetric and transitive
via other auxiliary axioms. Equality substitution axioms like the fourth axiom
can be formalised directly in first-order logic due to our flat notation. Defining
equality in this way may seem näıve, but since Satchmo does not provide methods
like paramodulation or demodulation there is no alternative.

Mathematical Axioms. Assume the slightly modified ACE text

Every company that buys at least three machines gets a discount.
Six Swiss companies each buy one machine.
A German company buys four machines.

Answering the query

Who gets a discount?

needs mathematical knowledge about natural numbers.
In RACE mathematical knowledge about natural numbers can be straight-

forwardly implemented by triggering the execution of Prolog predicates during
the proof. For the current example we need the user-defined predicate

quantity(_A,_Dimension,_Unit,Cardinality,geq,NewNumber):-
number(NewNumber),
quantity(_A,_Dimension,_Unit,Cardinality,eq,GivenNumber),
number(GivenNumber),
NewNumber =< GivenNumber.

With this predicate it can be proved that an object has a Cardinality greater
or equal to NewNumber (here 3) if that object has a Cardinality that equals
GivenNumber (here 4) and if NewNumber is less or equal than GivenNumber. Instan-
tiation problems – that we encountered when working with the theorem prover
Otter – can be easily avoided by the Prolog predicate number/1.
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Domain-Specific Axioms. Even domain-specific knowledge – for instance on-
tologies – could analogously be formalised as auxiliary first-order axioms, al-
though the formulation in ACE is preferable.

8 Performance of RACE

Since RACE is an extended and modified version of Satchmo, we will compare its
performance with that of the original version of Satchmo. To put the performance
figures into the correct perspective, some comments are in order, though.

If a set of clauses is unsatisfiable, Satchmo will stop immediately once it
detects the first inconsistency. Since RACE generates all minimal unsatisfiable
subsets it has to cope with a much larger search space that must be traversed
exhaustively. This affects RACE’s performance negatively.

Satchmo owes much of its efficiency to the underlying Prolog inference engine.
While implementing RACE we have tried to preserve as much as possible of
Satchmo’s original code. However, to implement RACE’s additional functionality
we had to operate on a meta-level that necessarily introduces a performance loss.

Satchmo has one source of inefficiency, though. While trying to find a
model, Satchmo again and again checks the same clauses for (un-) satis-
fiability. RACE eliminates some of this inefficiency by pruning all clauses
satchmo clause(true,Head,Index) from the Prolog data base once they have been
used. Furthermore, RACE uses a simple, but effective algorithm [16] to select
relevant clauses for the (un-) satisfiability check. Other authors have proposed
alternative algorithms to identify relevant clauses. A recent proposal for such an
algorithm, and references to older ones, can be found in [7].

Since the original version of Satchmo used Schubert’s steamroller [19] as
one of its examples, we will report here RACE’s performance figures for the
steamroller.

We compared the original version of Satchmo with two versions of RACE,
one that generates all solutions and a modified version that stops after the first
solution. We used these three versions with the standard representation of the
steamroller and contrasted it to the flat Attempto representation introduced
in section 2. The following times were measured on a Macintosh 500 MHz G4
running under Mac OS X 10.2.6 and using SICStus Prolog 3.10.

Representation Standard Attempto
Satchmo (original) 15 ms 2050 ms
RACE (all) 230 ms 2100 ms
RACE (first only) 70 ms 990 ms

The runtimes for the Attempto representation may seem excessive when com-
pared to the runtimes of the standard representation of the steamroller. However,
we have to realise that this is a consequence of the much richer first-order lan-
guage necessary to adequately represent aspects of natural language, for instance
verb phrase modification and plural.
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Furthermore, the comparison between the original Satchmo and RACE (all)
is not completely fair since Satchmo finds the single solution of the steamroller
and then stops, while RACE – after finding this solution – searches for alternative
solutions. Thus we slightly modified RACE to stop after the first solution, and
got the results listed for RACE (first only).

A more thorough investigation of RACE’s performance remains to be done.

9 Conclusions

The Attempto Reasoner (RACE) proves that one text in Attempto Controlled
English (ACE) can be deduced from another one and gives a justification for
the proof in ACE. Variations of the basic proof procedure permit query answer-
ing and consistency checking. Extending RACE by auxiliary first-order axioms
and evaluable functions and predicates we can perform complex deductions on
sentences with plurals and numbers.

Though small, the examples of this paper already exhibit the practicality
and potential of our approach. Much more remains to be done, though, besides
investigating the scaling up of RACE. To support the analysis of ACE speci-
fications hypothetical reasoning (‘What happens if . . . ?’), abductive reasoning
(‘Under which conditions does . . . occur?’), and the execution of ACE specifica-
tions [6] using ACE scenarios would be helpful. These and other problems will
be investigated within the EU Network of Excellence REWERSE.
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Abstract. Named entities are ubiquitous in documents in the web and
other document repositories. The information that a human user asso-
ciates with named entities occurring in a document often suffices to de-
rive a simplified picture, or a fingerprint, of its contents. Quite generally,
background knowledge on named entities simplifies proper document un-
derstanding. In order to use this kind of information in automated docu-
ment processing, resources are needed that make information implicitly
carried by named entities explicit, formalizing it in an appropriate way.
We describe the systematics and architecture of an experimental resource
that contains a thematic-geographic-temporal hierarchy for classifying
named entities, positions named entities of various kinds with respect
to the hierarchy, lists synonyms, and gives formal descriptions of these
entities and their relations. The resource should offer a general basis for
semantic annotation, indexing, retrieval, querying, browsing and hyper-
linking of (semi-)textual web documents, structured documents and flat
texts.

1 Introduction

Named entities of various categories, such as “Ludwig van Beethoven”, “Daimler-
Chrysler”, “Dresdner Bank”, “Kofi Annan”, “Second World War”, “Coca-Cola”,
“International Conference on Logic Programming”, “February”, “Royal Albert
Hall”, “Niagara Falls” etc. are ubiquitous in (semi-)textual documents, including
documents in the web. Typically they carry a large amount of implicit semantic
information and associations that help human users to get a simplified picture
of the contents of the document. From the occurrence of “Beethoven”, “Royal
Albert Hall”, “February 7, 2004”, “Fidelio” we can guess that the document
announces or describes a classical concert in London. Documents with occur-
rences of “Beckenbauer”, “FIFA” and “World-Championship 2006” are likely to
describe some current political affair in the world of football. Documents with
occurrences of “Putin” and “George W. Bush” in general are related to the field
of global politics. Hence, named entities occurring in a document yield an inter-
esting fingerprint of its general content. Furthermore, in order to “understand”
contents or meta-information of a given document it might be necessary to know,
say, that “Regensburg” is a town in “Bavaria/Germany” and “Christmas” is in
“December”.

F. Bry et al. (Eds.): PPSWR 2003, LNCS 2901, pp. 189–207, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



190 K.U. Schulz and F. Weigel

Currently, techniques for automated analysis of documents only start to make
use of this kind of information. In the area of information retrieval (IR), some-
times special dictionaries for important categories of named entities (e.g., per-
sons, geographic entities) are used. However, the adequate role of these entities
in the general process of indexing and similarity search is not yet clarified in
a satisfactory way. Going beyond classical IR, analysis of named entities could
obviously support various ambitious document understanding/processing tasks
such as, e.g., extraction of meta-information, deduction, “semantic” document
transformation, automated hyperlinking and others. However, not much of this
potential role is realized in actual systems.

As a first step towards an automated analysis of named entities, a more pre-
cise picture of the semantic information that comes with specific kinds of named
entities has to be developed. In this paper we focus on four general types of infor-
mation. First, any named entity is associated with a collection of thematic fields.
Second, many named entities (e.g., “Olympic Games”, “International Conference
on Logic Programming”) are associated with a temporal period, or a collection
of temporal periods. Third, named entities are often related to a geographic lo-
cation, or to a collection of places. Fourth, characteristic relations exist between
named entities of various categories (e.g., “Leonardo da Vinci” is the creator of
the painting “Mona Lisa” which is located in the “Louvre”). As a matter of fact,
these relations may be temporarily restricted.

Before we may use semantic information associated with named entities for
document understanding/processing and reasoning tasks we have to make it
explicit. A special resource is needed where information on named entities of
the above type is formalized and encoded in an appropriate way. Both design
and construction of such a knowledge base are difficult tasks. From a conceptual
point of view a suitable hierarchical structure has to be found where thematic
areas, temporal periods, locations and entities are ordered using a well-defined
set of meaningful semantic relations. Using this scheme, knowledge on real world
entities and topics has to be formalized and imported. From a practical point
of view, the number of relevant entities is huge and associated with all kinds
of thematic areas. In a way, the intended resource covers an important part of
encyclopedic knowledge. On this background it makes sense to distinguish three
tasks, design of a suitable architecture, realization (filling) of the resource, and
adaption to specific applications.

In this paper we concentrate on the first task. We describe our actual picture
of an architecture for a resource that encodes the above-mentioned types of in-
formation for named entities. An experimental version of the resource based on
this architecture is currently realized in our group, concentrating on entities in
non-scientific “common-sense” thematic areas. The resource is structured using
three levels. Level 1, the navigational level, positions named entities of various
categories in a thematic-geospatial-geotemporal hierarchy. Each named entity,
as well as every field in the hierarchy, comes with a short formal description
including main name, synonyms and others. The ordering structure of the hi-
erarchy is induced by meaningful operations for refining and combining entries.
Level 2, the logical level, describes relations between entities in the hierarchy. It
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refines and complements the relationships implicitly encoded in the hierarchy,
adding explicit relations in the form of datalog facts. Level 3, the linguistic level,
is used to associate natural language words and phrases with the entries of the
hierarchy. This should support indexing mechanisms that include thematic in-
formation as well as geospatial and temporal information. Our ideas for Level 3
are only preliminary and we largely ignore this level here.

The paper is structured as follows. Taking the experimental nature of the
resource into account, the following section collects some pictures and ideas that
guide the design of the resource. In Section 3 we describe syntax and meaning
of the identifiers that are used for the thematic-geographic-temporal hierarchy
and show how the ordering relations of the hierarchy are derived from the set
of identifiers of entries. Section 4 briefly describes the structure of a single entry
of the hierarchy. Section 5 indicates how relations between named entities are
described in Level 2 using facts. Section 6 adds some concluding remarks.

2 Motivation: Goals, Pictures, and Intended Applications

In the following description, which explains the motivation behind the develop-
ment of the resource in more detail, we distinguish between

– general scientific goals that are associated with the design and construction
of the resource,

– pictures and ideas that influenced the design, and
– intended applications of the resource.

It should be stressed that the general development is not governed by a fixed set
of intended applications. However, some ideas of future applications are needed
to guide design principles.

Goal 1. Systematics for thematic areas, periods and locations with a semantic
meaning. By systematics we mean an abstract ordering scheme for positioning
entries of a structured knowledge base, together with a scheme for assigning
identifiers to the entries that reflect the organization. In the area of documenta-
tion languages many distinct systematics can be found for organizing collections
of thematic fields in a structured way. Most systematics yield a tree structured
classification scheme that is based on a single topic/subtopic ordering relation
(e.g. ACM Computing Classification Scheme [ACM01]). Other systematics, such
as the universal decimal classification [UDC], are more complex, but not very
explicit as to the meaning of syntactic constructs used for composing identifiers.
We would like to have a “typed” systematics that reflects the difference between
main categories of entries (thematic fields, temporal periods, locations, entities,
classes of entities, etc.). It should be possible to combine entries of distinct cate-
gories in a flexible way (e.g., 〈“Germany”,“Politics”〉 �→ “German Politics”) and
to refine thematic fields and other entries (e.g., “Politics” �→ “Foreign Politics”,
“Germany” �→ “Bavaria”). Refinement and combination operations should have
a defined semantic meaning. Further desirable properties are the following. Sta-
bility: local changes (e.g., addition of subentries, deletions) should not affect
other parts of the identification scheme. Arbitrary depth and branching degree:
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the identification scheme should allow an arbitrary number of levels for orga-
nizing concepts and topics. Similarly it should be possible to have an arbitrary
number of immediate subtopics for a given topic. Multiple parents: the scheme
should not be restricted to tree structures. It should be possible to consider an
entry as a child of distinct parent topics. Multiple subdivision of entries should
be supported. Many entries can be further subdivided using distinct criteria (e.g.,
the category of politicians can be subdivided by gender, nationality, administra-
tive role, etc.) It should be possible to encode the criterion that gives rise to a
certain division into subentries. Efficient computational access to subordinate
and superordinate concepts should be supported.

Goal 2. Providing a basis for geospatial and geotemporal reasoning. The data
contained in the resource should help to realize simple forms of geospatial and
geotemporal reasoning. To this end, the locational or temporal position of en-
tities and objects should be described. For example, the resource should make
clear that “Munich” is part of “Bavaria”, which is part of “Germany”. It should
encode that “Christmas” is in “December” and “December” is in the “Second
Half of a Year”. A reasoning component may then conclude that a given event
in Munich in December 2004 is an event in Germany in the second half of 2004.
In a similar way the resource should provide basic numeric information on dis-
tances that can be used to deduce, say, that the town “Holzkirchen” is within
a 50 km neighbourhood of “Munich”. To this end, temporal periods (“Second
World War”) and locations (“Munich”), as well as other classes of entities (e.g.,
conferences, concerts and other events) are described with the help of calendar
dates and geo-coordinates1. In addition we use symbolic temporal and spatial
relations such as inclusion or overlap. From a practical point of view, a large set
of entities carrying temporal and/or locational information has to be covered.

Goal 3. Connecting textual expressions and vocabulary with thematic fields.
As one vision going beyond analysis of named entities would like to be able

to associate with any content word of a given dictionary a set of topical areas
or domains of the hierarchy where the word has an important status. For ex-
ample, the noun “heart” typically points to a small selection of topics such as
“Love”, “Popsongs”, and “Medicine”. We plan to realize a partial mapping from
words/phrases to typical topics. This is the role of the above-mentioned Level 3.

Picture 1. A logical model of prominent entities of the world. From one point
of view, with Levels 1 and 2 we would like to describe a simplified formal model
of a part of the “real world” that includes time periods, places, individuals of
distinct type, their relations etc. The model does not try to capture “deep knowl-
edge” such as aspects of causality. It “merely” represents a (partial) collection
of relational facts. Still, many details of this picture remain to be clarified. For
example it is not really clear how the intuitive notion of a “thematic area” should
be modelled in logical terms.

Picture 2. Chaining of associations. Any real-world topic or entity can be
seen as a “mental container” for a whole class of related topics, places, periods

1 As a starting point we intend to describe locations numerically using a single pair of
geo-coordinates, marking a central point within the location. Clearly it is desirable
to integrate more precise descriptions.
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and entities. Opening this container, or looking at it with a magnifying glass,
we find new subordered topics etc. With “chaining of associations” we mean a
mental process where we start with a topic or entity, move to a subtopic, find
new subtopics and continue up to a certain point. One characteristic feature
of chaining is that it is possible to reach a given topic on distinct paths. As an
example, consider the event “Olympic Games Munich 1972”. One chain, starting
from “Munich” could have the form

Munich → History of Munich → Munich in the 1970ies → Events
in Munich in the 1970ies → Sport Events in Munich in the 1970ies →
Olympic Games Munich 1972

Further chains leading to “Olympic Games Munich 1972”could start, e.g., from
“Sports”, or from the period “1970ies”. When browsing the hierarchy we would
like to support chaining of associations. It should be possible to find a specific
entity or topic starting from distinct points. As an immediate consequence, our
hierarchical structure cannot be tree-formed. Still we definitely want to avoid
cycles. When finding an entry of the hierarchy such as “Olympic Games Munich
1972” in a document we would like to be able to derive superordinate entries
(“Munich”, “Sports”, “1970ies”). Once we have cycles, the notion of “superor-
dinate” entries does not make sense.

Intended application 1. Semantic annotation and semantic indexing of web-
documents and document repositories. With “annotation” we mean a process
where pieces of meta-information are attached to a document, or to specific el-
ements of a document. Based on the planned resource we may, e.g., enumerate
named entities of a particular type found in the document/element in a syntac-
tically normalized way, attach thematic areas, temporal periods and locations
associated with these entities to documents/elements. Furthermore, Level 3 of
the resource helps to map arbitrary words and phrases occurring in the docu-
ment to thematic areas, and to use this mapping for semantic annotation. With
“indexing” we mean the related process where we create a simplified description
for each document in a given repository. We may use the resource to create spe-
cialized subindexes that (conceptually) map named entities, thematic areas, time
periods and locations of the hierarchy to documents in the repository. Semantic
annotation and semantic indexing support the following practical applications.

Intended application 2. “Semantic” document querying and transformation.
A popular vision is that future generations of query/transformation languages
for data on the web are equipped with special mechanisms for dealing with se-
mantic information of distinct types. Using semantic annotations of the above-
mentioned form, such languages could be able to access, query and transform
documents based on topical, temporal and locational conditions. A possible web-
inquiry could be: “Find web pages that mention transport enterprises in a neigh-
bourhood of 100 km around Munich. Order them by distance from Munich.”

Intended application 3. Semantic Retrieval. Semantic retrieval is similar, but
does not involve transformation steps. Locational, temporal or topical conditions
in queries bring IR closer to data base querying. Possible retrieval tasks to be
supported are, e.g. “Find documents that mention international jazz musicians
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and locations in Bavaria.”, or “Find documents that mention banks in Bavaria,
contain the keyword ’mortgage’, and refer to each of the last twelve months.”

Intended application 4. Typed hyperlinking. Based on the resource we may
introduce links between web-pages that support special navigation/mining tasks.
We may, say, link documents that refer to the same entity of category X (person,
event, film, composition, organization,...), or to some entity in a given thematic
area (jazz in the 1970ies). We may use the relations of Level 2 to link documents
that mention at least two compositions of Ludwig van Beethoven. Using the
hierarchy, links can be typed, say, with topics like “Music”, “Politics” etc.

Intended application 5. Browsing. The hierarchy will include a small collec-
tion of web-addresses that are relevant for a given entry. Hence it can be used as
a special (limited) kind of web-directory. Based on the above-mentioned index-
ing mechanisms we may also use the hierarchy to support document retrieval by
interactive browsing techniques. For example, during a retrieval session where
we use conventional keyword querying we may open a parallel window where we
browse through the hierarchy. We may restrict a given large result set to those
documents that mention at least one entity of the special category X of the cur-
rently visited entry of the hierarchy. From more general point, the knowledge
available in the hierarchy is used to reduce complexity of searching and answer
navigation.

3 Systematics and Organization

Thematic fields and domains, as well as geographic regions and temporal pe-
riods, can be organized in at least two conceptually distinct ways. Following
an analytical organization scheme, topics and entities are ordered using a log-
ical perspective. Consequently, concepts that have the same analytical status
are introduced at the same level, or depth. On the other hand we may use a
relevance-based perspective. This would mean that we try to have “important”
topics close to the root of the hierarchy. As a matter of fact, the notion of “impor-
tance” is relative and depends on a given application. For example, assume that
the hierarchy is used to classify news in Germany. When following an analytical
ordering, the two states “Germany” and “Portugal” should be on the same level:
both are European states. When using a relevance-based ordering, “Germany”
has to be found on a higher level than Portugal. With our systematics we would
like to support a twofold organization with an analytical principal ordering and
a relevance-based secondary ordering.

3.1 Syntax of Identifiers

We use the following general philosophy. Each entry of the hierarchy has a unique
identifier. Identifiers have a well-defined term structure. The syntactic structure
of the identifier of an entry reflects its analytical position in the hierarchy: all
analytical parent- and ancestor-relations are derived from the term structure of
identifiers, in a way to be explained.

In order to support a secondary relevance-based organization we may specify
for a given entry a set of “godfather entries”. In the visual representation we do
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not only enumerate the analytical children of an entry but also its godchildren.
In this way an entity like “David Beckham”, who might perhaps be introduced
as an “Current British Football Player of Real Madrid” at a deep level of the
analytical hierarchy, can be made directly visible, say, under “Sportsmen”. The
use of godfather parents is not only relevant for browsing. For classification tasks
it might be important to know that David Beckham belongs to a small group of
prominent sportsmen, which implies that documents mentioning David Beckham
are related to sports, but not necessarily to the actual equipe of Real Madrid.
Definition 1. There are seven basic types of identifiers, E (category of enti-
ties), e (individual entity), G (category of geographic areas), g (individual geo-
graphic areas), T (category of temporal periods), t (individual temporal period),
F (thematic field). With T = {E, e,G, g, T, t, F} we denote the set of basic types.

Example 1. Entity categories (type E) can be considered as unary predicates
that refer to a set of entities. Examples are “Persons”, “Composers”, “Organi-
zations”, “Paintings”. Examples for individual entities (type e), which can be
interpreted as individual constants, are “George W. Bush”, “Beethoven”, “Pi-
casso”, “BMW”, “The Rolling Stones”. Possible categories of geographic areas
(type G) are, e.g., “Continents”, “States”, “Industrial Regions”. Individual geo-
graphic areas (type g) are, e.g., “Austria”, “Germany”, “Pacific Ocean”, “Alps”.
Categories of temporal periods (type T ) are, e.g., “Political Epochs”, “Epochs
in Art”, “Centuries”. Individual temporal periods (type t) are, e.g., “Middle
Ages”, “Second World War”, “1970ies”. Thematic fields (type F ) are “Politics”,
“Arts”, “Music”, “Mathematics and Music in Ancient Greece”.

Definition 2. The set of possible identifiers, I(T , IN), is recursively defined as
follows:

1. Root Identifier. The empty sequence, written ( ), is a possible identifier.
2. Local Introduction. If ϕ is an identifier, n is a positive integer, and if X ∈ T0

is a basic type, then (Xϕ.n) is a possible identifier.
3. Symmetric Intersection. If ϕ and ψ are possible identifiers, then (ϕ&ψ)

is a possible identifier. The operator “&” is considered to be associative,
commutative and idempotent. Hence expressions (ϕ1&ϕ2& . . .&ϕn) are well-
formed. The root identifier ( ) is treated as a neutral element w.r.t. “&”,
which means that expressions (ϕ&( )) and ϕ are equivalent.

4. Focus. If ϕ and ψ are identifiers, and if ϕ has type E, G, T , or F , then (ϕ:ψ)
is an identifier. The root identifier ( ) is treated as a right neutral element
w.r.t. “:”, which means that expressions (ϕ : ( )) and ϕ are equivalent.

We use the following notational conventions: If ϕ = ( ) we write (X.n) for
(Xϕ.n). Expressions (Xϕ.n.k) are shorthand for (X(Xϕ.n).k). Similarly (X.n.k)
is shorthand for (X(X.n).k).
Remark 1. In order to account for the above equivalences, identifiers are normal-
ized in the actual system. This means that nested symmetric intersections are
flattened in the obvious way. Conjuncts “( )” are suppressed, as well as multiple
conjuncts, the remaining conjuncts are ordered lexicographically. For example,
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the normal form of ((( )&(F.1))&(((F.3)&(F.2))&(F.3)) is ((F.1)&(F.2)&(F.3)).
Furthermore, any focus on ( ) is erased.

In the sequel, we write In(T , IN) for the set of normalized identifiers. If not
mentioned otherwise, with an identifier we always mean a normalized identifier.

Remark 2. For points deeply embedded in the hierarchy, identifiers tend to be
notationally complex and long. In the implemented version, each entry is mapped
to a unique integer that represents a second, numerical identifier. An identifier
of the form (ϕ&ψ) can then be written more compact in the form (n&m) where
n and m respectively denote the numerical identifiers corresponding to ϕ and ψ.

3.2 Meaning of Identifiers

The following remarks explain the intuition behind the above three operations
and describe the meaning. Clearly, since we model parts of the real world we
cannot expect to have a fully formalized semantics as, say, in mathematical logic.
Still, persons that fill the hierarchy and persons that use the results should have
a common picture that is as precise as possible.
Local Introduction. When moving to a specific topic, ϕ, we may find new
entity classes, thematic subtopics, temporal periods, geographic areas etc. that
are specific for the given topic in the sense that they do not play a major role
“outside” the topic. In such a case, the entity class (or the thematic subfield, the
period, the geographic area etc.) is introduced into the hierarchy using a local
introduction (Xϕ.n). For example, consider an entry “Music” with identifier
ϕ. The category of entities “Compositions” is only relevant inside the area of
music. We might introduce it using an identifier (Eϕ.1). If ϕ stands for Europe,
the European Commission might be introduced as (eϕ.1), the 20 commissioners
as (Eϕ.1). An entry “Politics” with identifier ψ might be refined using a local
introduction (Fψ.5) to “Foreign Politics”. In contrast, assuming that “Germany”
is an entry of the hierarchy, “German Politics” would not be introduced by
a local introduction, but as a symmetric intersection (s.b.). The following list
illustrates the formal relationship between an entry ϕ and a local introduction
(Xϕ.n). Due to type differences there are 49 possible instances of the local
introduction scheme. Hence we cannot describe all cases here. In the sequel we
use superscripts to denote types. Outermost superscripts represent the type of
the resulting expression.

1. (tϕt.n)t: a subperiod of the temporal period ϕ.
2. (TϕT .n)T : a subcategory of the category of temporal periods ϕ.
3. (Tϕt.n)T : a category of temporal periods, all overlapping with temporal

period ϕ. We do not demand containment in ϕ. As an example, assume
that we want to introduce as a category the “Years of the Second World
War” using ϕ = “Second World War”. Then 1945 would be a member of the
category, even if the war was finished before the end of 1945.

4. (tϕT .n)t: a member of the category of temporal periods ϕ.
5. (Gϕg.n)G: a category of locations, all overlapping with the location ϕ.
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6. (eϕe.n)e: a subentity of the structured (complex) entity ϕ.
7. (Eϕe.n)E : a category of entities, all subentities of the complex entity ϕ.
8. (eϕE .n)e: a member of the category of entities ϕ.

Symmetric Intersection. Given two thematic fields ϕF and ψF the sym-
metric intersection (ϕ&ψ) denotes the thematic intersection of the two fields. A
symmetric intersection is used if any subtopic of (ϕ&ψ) can be considered as a
common subtopic of both ϕ and ψ, which means that (ϕ&ψ) is a subarea of both
arguments. Given the analytical hierarchy defined below, (ϕ&ψ) will always be a
child both of ϕ and ψ. For unbalanced combinations where the second argument
only selects a specific subarea of the first argument the focus operator is used
(s.b.). In the general case the meaning of the operator “&” depends on the types
of the arguments. We list some examples.

1. (ϕt&ψt)t: a temporal period representing the intersection of temporal peri-
ods ϕ and ψ.

2. (ϕt&ψT )T : the category of temporal periods obtained by restricting category
ψ to those periods that overlap with period ϕ (cf. Case 3 above).

3. (ϕg&ψG)G: category of locations obtained restricting category ψ to those
locations that overlap with location ϕ. For example, “Danubian states” are
states overlapping with the Danube, and not states within the Danube.

4. (ϕF &ψt)F : thematic field ϕ restricted to “temporal window” ψ. For example,
if ϕ denotes “Politics” and ψ denotes “Second World War”, then (ϕF &ψt)F

means “Politics During the Second World War”.
5. (ϕF &ψg)F : thematic field ϕ restricted to location ψ. The interpretation is

liberal in the sense that subtopics only must have some strong relationship
to location ψ. For example if ϕ denotes “Politics” and ψ means “Germany”,
then “German Politics” can be introduced as (ϕF &ψg)F . Still, events of the
field “German Politics” might happen, say, in Paris, Warsaw, or Washington.

6. (ϕF &ψG)F : thematic field ϕ restricted to locations of the category ψ. If ϕ
denotes “Education” and ψ denotes “European States” then “Education in
European States” can be introduced as (ϕF &ψG)F .

7. (ϕE&ψF )E : a subcategory of the class of entities ϕE . Only entities are con-
sidered that are relevant for the thematic field F (entities “in the area” F ).

8. (ϕE&ψe)E : a subcategory of the class of entities ϕE . Only entities are con-
sidered where entity e plays a dedicated role. If ϕ denotes “Symphonies”
and ψ denotes “Haydn” then “Symphonies of Haydn” can be introduced as
(ϕE&ψe)E .

Focus. The focus operation (ϕ : ψ) is used for a kind of combination where the
first argument ϕ, which has type X ∈ {T,G,E, F}, is more privileged than the
“focussed” argument ψ. Typically, ψ represents just a kind of “object”, an “ori-
entation” of ϕ, the type of (ϕ : ψ) is always the type of ϕ. For example, “French
Policy concerning Germany” could be modelled as “French Policy” focussing
“Germany”. As a second example, consider the difference between “Political
Sciences” (German word: “Politikwissenschaft”) and “Policy of Science” (Ger-
man word: “Wissenschaftspolitik”). The former can be modelled as “Science”
focussing “Policy”, the latter as “Policy” focussing “Science”. Similarly “Policy
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of Education” would be modelled as “Policy” focussing “Education”, “Political
Films” as “Films” focussing “Policy”. It should be mentioned that in practice we
found a considerable number of cases where it is difficult to decide if a symmetric
intersection or a combination using the focus operation is more appropriate. For
example, under one possible interpretation, “Religious Arts” can also be con-
sidered as “Arts” focussing “Religion”. The problem is to decide if icons and
other paintings of the field of “Religious Arts” really have some kind of religious
status. If this is typically the case, then the use of a symmetric intersection is
appropriate.

Remark 3. For some applications it might seem desirable to model the rela-
tionship between distinct topics in a more detailed way, introducing further
operations. However, we have seen above that even with our coarse scheme it is
sometimes difficult to select the “correct” operation. These difficulties tend to
grow with an enlarged set of operations.

Remark 4. In order to design special reasoning mechanisms for the information
found in the hierarchy it would be interesting to have a formal notion of a
“model” of the hierarchy, purely based on algebraic notions. The development of
such a notion is one point of future work. Parts of Definition 2 can be considered
as a partial axiomatization. Subclasses of models could be characterized using
additional axioms such as, e.g., the equivalency between (ϕ : (ψ1&ψ2)) and
((ϕ : ψ1)&(ϕ : ψ2)).

3.3 Derived Hierarchical Structure

When describing a concrete thematic-geographic-temporal hierarchy we use a
finite subset H of the set of all normalized identifiers, In(T , IN). We now want
to define an ordering relation on H, based on a suitable parent/child relation.
It might seem natural to treat for any symmetric intersection of the form ϕ :=
(δ1&δ2) the two identifiers δ1 and δ2 as analytical parents of ϕ. However, this
leads to counterintuitive results. For example, with this choice, all identifiers of
H in the sequence (δ&(F.1)), (δ&(F.1.1)), (δ&(F.1.1.1)), . . . would be treated as
unrelated children of δ ∈ H. Thus the number of children becomes unacceptable
and the intuitive internal order among these children is ignored.

Definition 3. The set min-gen(ϕ) of minimal generalizations of ϕ ∈ In(T , IN),
and the set of X-refinements (where X ∈ T ) of a normalized identifier is recur-
sively defined in the following way (exponents n denote normalization):

1. min-gen(( )) := ∅.
2. min-gen((Xψ.n)) := {ψ}; the identifier (Xψ.n) is an X-refinement of ψ.
3. min-gen((ϕ&ψ)) :={(ϕ′&ψ)n |ϕ′ ∈min-gen(ϕ)} ∪ {(ϕ&ψ′)n |ψ′ ∈min-gen(ψ)}.

Here (ϕ&ψ) is an X-refinement of (ϕ′&ψ) iff ϕ is an X-child of ϕ′, and
similarly for (ϕ&ψ) and (ϕ&ψ′).

4. min-gen((ϕ : ψ)) := {(ϕ′ : ψ)n | ϕ′ ∈ min-gen(ϕ)} ∪ {(ϕ : ψ′)n | ψ′ ∈
min-gen(ψ)}. Here (ϕ : ψ) is an X-refinement of (ϕ′ : ψ) iff ϕ is an X-
refinement of ϕ′, and similarly for (ϕ : ψ) and (ϕ : ψ′).
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With gen(ϕ) we denote the set of all generalizations of ϕ, which is obtained using
the transitive closure of the min-gen-relation.

We define ψ <gen ϕ iff ψ ∈ gen(ϕ) and call “<gen” the refinement/
generalization order on normalized identifiers in In(T , IN). It is simple to see
that ψ <gen ϕ implies that the notational length of ψ is smaller than the length
of ϕ. As a trivial consequence we obtain:

Lemma 1. The refinement ordering “<gen” is a strict partial ordering on In

(T , IN). It imposes the structure of a rooted directed acyclic graph on In(T , IN).

Definition 4. Let H be a finite subset of In(T , IN), let ϕ ∈ H. The set R ⊆
gen(ϕ)∩H is called a minimal coverage of ϕ w.r.t. H iff the following conditions
hold:

1. Coverage. For all ψ ∈ gen(ϕ) ∩H there exists an element ϕ′ ∈ R such that
ψ ≤gen ϕ

′.
2. Minimality. If ϕ1 and ϕ2 are elements of R, then neither ϕ1 <gen ϕ2 nor

ϕ2 <gen ϕ1.

It is not difficult to see that a minimal coverage always exists and is unique.

Definition 5. Let H be a finite subset of In(T , IN). Then the analytical parents
of ϕ ∈ H w.r.t. H are the elements of the minimal coverage of ϕ w.r.t. H.

Example 2. We illustrate the definition of the analytical parent-child relation
with an example from sports where we show how the Spanish football club
“Real Madrid” could be positioned in a suitable (fragment of the) hierarchy. Let
us assume we have the following entries in H: (F.9) “Sports”, (E.3) “Organiza-
tions”, σ “Spain” (we leave the form of σ open), ((F.9)&σ) “Spanish Sports”,
((F.9)&(E.3)) “Sports Organizations”, (F.9.1) “Ball Games”, (F.9.1.1) “Foot-
ball”, ((F.9.1.1)&(E.3)) “Football Organizations”, ((F.9.1.1)&σ) “Spanish Foot-
ball”, (E((F.9.1.1)&(E.3)).1) “Football Clubs”, ((E((F.9.1.1)&(E.3)).1)&σ)
“Spanish Football Clubs”. Then (e((E((F.9.1.1)&(E.3)).1)&σ).1) might denote
“Real Madrid”. The analytical parent-child relationship induced by this set-up
can be seen in Figure 1. Now assume that we delete entry ((F.9.1.1)&σ) “Span-
ish Football” in H. Then link (1) disappears, and links (2), (3) are merged into
a link from “Spanish Sports” to “Spanish Football Clubs”.

Note that the semantics of the analytical parent-child relation can be derived
from the meaning of the operations. From Section 3.2 it follows that in Figure 1
((F.9.1.1)&σ) “Spanish Football” is a thematic subarea of (F.9.1.1) “Football”
obtained by looking only at those aspects/subtopics with a close relationship
to the location σ “Spain”. Similarly it follows that ((F.9.1.1)&(E.3)) “Football
Organisations” is obtained from ((F.9)&(E.3)) “Sports Organisations” by re-
stricting organisations in the area of sports to organisations in the more specific
area of football. Still, the ordering relations of the hierarchy only capture a part
the information that is encoded in the identifiers, due to “missing points” in the
hierarchy (such as “Spanish Football Organisations” above).
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(F.9) Sports (E.3) Organisations σ Spain

((F.9)&(Ε.3)) Sports Organisations

((F.9)&σ) Spanish Sports

(F.9.1) Ball Games

(F.9.1.1) Football

((F.9.1.1)&(E.3)) Football Organisations

(E((F.9.1.1)&(E.3)).1) Football Clubs

((E((F.9.1.1)&(E.3)).1)&σ) Spanish Football Clubs

((F.9.1.1)&σ) Spanish Football

(e((E((F.9.1.1)&(E.3)).1)&σ).1) Real Madrid

(1)
(2)

(3)

Fig. 1. Parent-child relationship derived from identifiers (cf. Example 2).

Remark 5. The actual computation of analytical parents of an identifier ϕ w.r.t.
a given set H ⊂ In(T , IN) proceeds in two steps. (1) We first compute a coverage
for ϕ. To this end we “treat” every minimal refinement ϕ′ of ϕ. To treat ϕ′ means:
check if ϕ′ ∈ H. In the positive case, add ϕ′ to the coverage for ϕ. In the negative
case, treat the minimal refinements of ϕ′. (2) Given a coverage C we erase all
members that refine other members of C. Details are omitted.

The transitive closure of the analytical parent relation on H is called the
ancestor-relation on H and denoted “<H

gen”.

Definition 6. A subset H of In(T , IN) is called constructive iff the following
conditions hold: (1) ( ) ∈ H, (2) (Xϕ.n) ∈ H implies that ϕ ∈ H (X ∈
{t, T, g,G, e, E, F} and n ∈ IN), (3) (ϕ&ψ) ∈ H implies ϕ ∈ H and ψ ∈ H,
(4) (ϕ : ψ) ∈ H implies ϕ ∈ H and ψ ∈ H.

Lemma 2. Let H be a constructive subset of In(T , IN). Then the ancestor re-
lationship “<H

gen” is a strict partial order on H that imposes the structure of a
rooted directed acyclic graph on H.

Remark 6. In the graphical visualization we not only depict analytical children
of a given entry, but also visualize the godchildren. As long as we do not control
the introduction of godfathers there is no guarantee that we run into a loop
when we follow arbitrary chains of children. For this reason, the visualization of
analytical children and godchildren is distinct.

3.4 Examples from the Experimental Version

In order to illustrate the systematics we add two further examples from the
experimental version.
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σ
Italy

(E.1)
VIPs

(F.6)
Arts and Culture

(T.1)
Epochs

(F.6.1)
Painting

((F.6)&(T.1))
Epochs of Arts

(t((F.6)&(T.1)).1)
Renaissance

((t((F.6)&(T.1)).1)&σ)
Italian Renaissance

((E.1)&(F.6))
VIPs of Arts
and Culture

((E.1)&(F.6.1))
Painters

((F.6.1)&(t((F.6)&(T.1)).1))
Renaissance Painting

((E.1)&(F.6.1)&(t((F.6)&(T.1)).1))
Renaissance Painters

((F.6.1)&(t((F.6)&(T.1)).1)&σ)
Painting of Italian Renaissance

((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ)
Painters of Italian Renaissance

(e((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ).1)
Leonardo da Vinci

(E(F.6).1)
Works of Arts

(E(F.6).1)&(F.6.1))
Paintings

(E(F.6).1)&(F.6.1)&(t...1))
Renaissance Paintings

(E(F.6).1)&(F.6.1)&(t...1)&s)
Paintings of Italian Renaissance

((E(F.6).1)&(F.6.1))&(e((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ).1))
Paintings of Leonardo da Vinci

(e((E(F.6).1)&(F.6.1))&(e((E.1)&(F.6.1)&(t((F.6)&(T.1)).1)&σ).1)).1)
Mona Lisa

Fig. 2. Part of the experimental hierarchy.

Example 3. The first level (analytical children of the root node) of the cur-
rent hierarchy has the following entries2. (E.1) “Persönlichkeiten” (VIPs), (E.2)
“Events”, (E.3) “Organisationen und Einrichtungen” (Organisations and Insti-
tutions), (F.1) “Politik” (Politics), (F.2) “Wirtschaft” (Economy), (F.3) “Fi-
nanzen” (Financial Sector), (F.4) “Recht und Justiz” (Law), (F.5) “Wissenschaft
und Technik” (Science and Technology), (F.6) “Kunst und Kultur” (Arts and
Culture), (F.7) “Medien und Kommunikation” (Media and Communication),
(F.8) “Bildung, Erziehung, Ausbildung und Beruf” (Education and Profession),
(F.9) “Sport” (Sports), (F.10) “Religion”, (F.11) “Lifestyle”, (F.12) “Gesund-
heit und Ernährung” (Health and Food), (F.13) “Natur und Umwelt” (Nature
and Environment), (G.1) “Geophysische Lokationen” (Geophysical Locations),
(G.2) “Politische geographische Lokationen” (Political Geographic Locations),
(G.3) “Kulturelle und religiöse Lokationen” (Cultural and Religious Locations),
(t.1) “Geschichte” (History), (T.1) “Epochen” (Epochs), (T.2) “Jahrhunderte”
(Centuries).

Example 4. Figure 2 gives a partial picture of the hierarchy, including temporal
and geographic axes, and illustrates how entities such as “Leonardo da Vinci”
and “Mona Lisa” are positioned in the hierarchy.

2 The current version of the resource uses German notions. English translations are
given in parentheses for convenience.
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4 The Structure of the Entries

We have seen how entries are positioned in the hierarchy. In order to complete
the description of Level 1 of the resource, some words on the structure of entries
are in order. Any entry of the hierarchy has the following components:

1. Identifier (element of In(T , IN)).
2. Secondary identifier (integer).
3. Main name (non-empty string).
4. Explanation (string, possibly empty). Explains the meaning/use of the main

name in the present context. For human readers.
5. Identifiers of godfather entries (list, possibly empty). Determines entries of

the hierarchy where the given entry is treated as an non-analytical immediate
child since it is considered as a relevant subentry.

6. Synonyms (list of strings, possibly empty). Collects distinct natural language
expressions that can be interpreted (in one reading) as synonyms of the main
name. Synonyms are important for recognizing entities and topics in texts.
Clearly, a remaining difficult problem is the resolution of ambiguities.

7. Relationship to entries of other classification schemes. Explains synonymy,
hyperonymy, hyponymy or similarity relations with subject categories from
other classification schemes such as the universal decimal classification UDC
[UDC] and the IPTC subject classification [IPT].

In addition, all entries of type X ∈ {g, t, e} come with a formal description that
depends on the category of the entry. In the experimental version, the format of
the formal description has only been fixed for a small number if entity classes. As
an illustration we describe which kind of data should be included in the formal
description of events. Some of these data belong to Level 2 (logical level).

1. Main URL (optional). If there is any URL especially for the event.
2. Useful URLs. URLs where useful information associated with the event can

be found.
3. Temporal description:

(a) Singular or periodical (sin/per).
(b) First/last occurrence (only for periodical events). Last occurrence: use

the last occurrence that is confirmed. This may be a point in future.
(c) Turnus (for periodical events only). (n days, n weeks, n months, or n

years (n ∈ IN).
(d) Duration. (n days, n weeks, n months, or n years n ∈ IN). May be

qualified with “approx.”.
(e) Temporal “home” position. For periodical events list a period that de-

scribes the usual temporal position of the event within a year as precisely
as possible (upper and lower boundary). Similar for singular events.
There are the following alternatives: For specifying a rough period of
the year, the categories (first half, second half, spring, summer, autumn,
winter) may be used. It is also possible to list an interval of months (from
April to August). It is also possible to give a more precise interval such
as “from April 15 to August 15”.
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4. Location. A state plus a subcountry (such as Bavaria, optional) plus a city
(optional) plus an address (optional). States and cities should be introduced
in the hierarchy. We use their identifiers. Exceptions are possible (small un-
known towns). For periodical events with distinct places we only give a com-
mon location of all instances. (E.g., “Europe” for European championships).

5. Location URL (optional). This might be the URL of a concert hall, of a
theatre, of a city, of a country,...

6. Organizer (optional). This might be another entity of the hierarchy (give
identifier and main name), or a freely specified entity.

7. Organizer URL (optional).
8. Importance. International (i), national (n), or local (l).

5 Level 2: Facts

Level 2 of the planned resource represents a collection of facts that yield a more
precise description of the relations between distinct entries of a hierarchy. Facts
are classified into several categories.
1. Compositional Facts describe the composition of an entry in terms of
other entries.

Definition 7. A symmetric union has the form (ψ1 � . . . � ψn) (n ≥ 2) where
the components ψi are distinct normalized identifers of the same type X ∈
F,E,G, T, g, t (1 ≤ i ≤ n). (ψ1 � . . . � ψn) has type X.

The operator “�” is considered to be associative, commutative and idem-
potent. Read, e.g., ((F.1) � (F.3)) as “Union of universal thematic fields 1 and
3”, ((G.1) � (G.3)) as “Union of the categories of geo-entities 1 and 3”, and
((g.1) � (g.3)) as “Spatial union of the geo-entities 1 and 3”, and ((t.1) � (t.3))
as “Temporal union of the temporal periods 1 and 3”.

Definition 8. Let ϕ denote an identifier, let α ∈ D be a possible division cri-
terion. A compositional fact for ϕ has the form ϕ ≡ (ψ1 � . . . � ψn), ϕ ≡
[α](ψ1 � . . . � ψn), ϕ � (ψ1 � . . . � ψn), or ϕ � [α](ψ1 � . . . � ψn) where the ψi

have the same type X ∈ {F,E,G, T, g, t} as ϕ.

Example 5. Let fmm ∈ D stand for the male-female distinction. Let (E(...).n)
denote any category of persons, say, politicians. Assume that we have two fur-
ther entries with identifiers (E(...).n.k) and (E(...).n.l) denoting female and male
politicians. Then the axiom (E(...).n) ≡ [fmm]((E(...).n.k) � (E(...).n.l)) ex-
presses that the class of all politicians is the union of the classes of female
politicians and male politicians, and that the division follows the male-female
distinction.

Example 6. Let adm ∈ D stand “immediate political-administrative subunit”.
Then an symmetric union of the German “Bundesländer” (Baden-Wurttemberg,
Bavaria, ..., Thuringia) and a compositional fact can be used to express that
Germany can be partitioned into 16 immediate political-administrative subunits.
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2. Pure Geographic Facts express relations between entities of type g. Sym-
bolic pure geographic facts are based on a collection of unary and binary relations
between geo-entities.

1. extended (unary). Used for geographic areas like states.
2. linear (unary). Used for geo-entities like rivers and roads with a linear form

on maps.
3. point (unary). Used for geo-entities like waterfalls, churches, ... which are

represented as points on maps. Cities/towns are not treated as points.
4. part of (binary). Describes spatial inclusion.
5. common border line (binary). For extended geo-entities with a common bor-

derline such as France and Belgium.
6. overlaps (binary). Describes two extended geo-entities where the intersection

is extended and a proper subarea of both entities. For example, Austria and
the alps overlap.

7. is-capital-of (binary).

Numeric pure geographic facts assign a pair of coordinates to a geographic
entity. The point described by the coordinates is meant to denote one central
point of the geographic entity. Later we perhaps look at more complex spatial
descriptions of extended geographic entities.
3. Pure Temporal Facts express relations between entities of type t. As for
geographic facts, there are two kinds of pure temporal facts. Symbolic temporal
relations. We use Allen’s 13 relations for temporal intervals [All83]. Numeric
temporal relations assign a starting date and an end point to a temporal entity.
4. Roles. Recall from the discussion of the local introduction operation that
the hierarchy in Level 1 is rich enough to encode elementship in sets represented
as entries of type X ∈ {E,G, T}. However, the hierarchy does not systematically
encode relations of arity n ≥ 2 between entities. To this end we introduce a set
R of roles in Level 2. The following is a non-exhaustive and preliminary list. For
relations with one temporal argument, this argument may either be an entry of
the hierarchy or an explicit date (a century, decade, year, month, or a day).

1. Is-location-of. Ternary relation; first argument type e, second argument type
G, third argument type g. Used to express locations that are stable. E.g.,
the location of “Hannover Messe” w.r.t. the category of locations “Towns” is
“Hannover”. The location of “Carnegy Hall” w.r.t. the category of locations
“state” is “USA”.

2. Is-time-of. Ternary relation; first argument type e, second argument type
T , third argument type t. Used for entities that are naturally associated
with a temporal period. E.g., the time of the “French Revolution” w.r.t. the
category of “Years” is “1789”.

3. Is-the-of-in. Arity 4. First argument type e, second argument type E, third
argument type e or g, fourth argument type t. With this predicate we express
that a twofold restriction of an entity category determines a unique person,
and that at some moment in time the person satisfied the predicate. E.g.,
“George W. Bush” is the “President” of the “USA” in “2003”. Again we
assume that “George W. Bush”, “President” and “USA” are entries of the
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hierarchy. Similarly person X might be the chief manager of an enterprise
in a given year.

4. Is-the-of-from-until. These axioms are similar, but they specify two points
in time that mark the beginning and the end of the role. Example pattern:
X was president of Y from U until V .

5. Is-a-of-in. Similar as “Is-the-of-in”-facts, but we do not assume that the role
determines a unique person. A person can be a member of a political party
in a fixed year. A person can be a member of a football equipe at a moment
of time.

6. Is-a-from-until. Similar as an “Is-the-of-from-until”-relation, but we do not
assume that the role determines a unique entity.

7. Is-the-location-of-in. For example, “Edinburgh” is the location of the
“ICDAR”-conference in “2003”.

8. Is-the-in. “Woytila” is the “Roman Pope” in “2002”.
9. Is-the-from-until.

6 Concluding Remarks

In this paper we introduced a systematics and a three-level architecture for
a resource that encodes knowledge about named entities using a thematic-
geographic-temporal hierarchy. Though the systematics described in Section 3
is stable, the complete picture of the resource is still preliminary in many re-
spects. We are not aware of another resource or knowledge base with a similar
functionality and structure. In our approach the thematic hierarchy - or the cor-
responding set of identifiers - is considered as a kind of quotient term algebra
with a derivable ordering structure that represents a simplified model of real-
world thematic areas, entities, and their relations. We think this perspective
deserves further attention. We intend to discuss how formal models based on
conventional set-theoretic notions can be used to derive a better semantics. This
problem is not simple. For example, thematic areas are always described using
natural language expressions. The inherent vagueness and context-adaptivity
represents one major obstacle.

We only started with second big task, the explicit construction (“filling”) and
maintenance of the resource. Here we face a considerable number of questions
and difficulties. Some of these might give rise to interesting research problems.
(1) Hierarchy construction. Due to the interleaved nature of the hierarchy and
the analytical ordering structure, which is fully derived from identifiers, persons
that “fill” a subpart of the thematic hierarchy have to be aware of neighboured
areas and their structure/identifiers. Hence hierarchy construction is much more
difficult than for any tree-based classification scheme. (3) Editing the hierarchy.
Intelligent techniques for editing a given hierarchy have to be developed. (4)
Collecting data. The collection of the data that are necessary to realize the
resource represents a huge amount of work. The process should be partially
automated.

As a matter of fact, many particular aspects of the resource can be found in
other work. A lexical treatment of domains, e.g, is discussed in [GG98]. Thesauri
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[DIN] or meta-thesauri [NLM] are obviously close to our resource. In particu-
lar, the geographic part of the hierarchy (once fully elaborated) is similar to
geographic thesauri such as Getty’s thesaurus [GRI]. The graph structure of
the hierarchy in Level 1 and some of the motivations in Section 2 indicate a
neighbourhood to knowledge bases such as WordNet [Fel98,Eur], perhaps also
to conceptual lattices [SW00,GW99]. From the temporal information encoded in
the resource we obtain a direct line to interval-based temporal reasoning [All83]
and calendar systems [Ohl00]. The idea of reasoning based on taxonomies and
classification schemes, which plays an important role for the given hierarchy,
has been discussed in [Fal96]. One important application area of the resource
is the semantic web [W3C]. Here suitable deduction mechanisms built upon the
resource could yield a valuable addition to approaches based on ontologies and
description logics [MFHS02,BCM+03,ECA98,Sch00]. Eventually, our resource
shares some ideas with Topic Maps [Top]. Topic Maps describe distinct entities
and thematic fields using typed relations called “associations”, and add typed
links to “occurrences” (CVs, home pages, etc.) that yield further information
on the topics. Associations are similar to the relations in our Level 2, occur-
rences are close to the URLs that we use in the formal description of events and
other entities. Topics Maps do not use identifiers that “describe” the nature of
topics and entities. Hence there is no internal ordering between topics derived
from identifiers, as in our approach. Furthermore, no special emphasis is given
to temporal and geographic data.
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