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Chapter 1

Introduction to real R&D options

DEAN A. PAXSON

Real R&D options are usually embedded in projects or processes, where manage-
ment has the on-going capacity to alter the R&D investment timing, amounts
and/or ultimate project, or downsize or abandon the R&D. In contrast to real
property and real resource options, it is difficult to accurately predict ‘discov-
eries’ or estimate future unit sales of R&D products, and there is no established
forward unit price market.

There are some excellent classics on real R&D options, starting some 20 years
ago, which were not originally considered real options, but where the R&D
discovery, volume of sales, as well as the unit prices of the development were
considered uncertain. Over the last five years, there has been a growth of real
R&D option models, applied to a host of industries, especially biotechnology,
e-commerce, internet and telecommunications, as well as the exploration phase
of natural resources.

This book contains seven articles (most of which have been revised) presented
at the symposium on real R&D options held at Manchester Business School on 12
July 2000, and published in the April 2001 issue of the R&D Management journal
(Chapters 2, 3, 4, 5, 8, 9, 13). In addition there are six new papers (Chapters 6, 7,
10, 11, 12, 14), which were discussed in the MBS autumn 2001 doctoral finance
seminar by the participants, José Azevedo-Pereira, João Duque, Sydney Howell,
I-Doun Kou, Jongwoo Lee, David Newton, Helena Pinto and Siqin Xu.

There are nine relatively new models and four new applications or refinements
of previous models, although what should be considered new and refinement
is debatable. After all, we are building on Thales, Jevons, Samuelson and
others. The new models are: analytical values for real options when there are
information costs and implementation costs uncertainty; analytical solutions for
exit/entry decisions when the future cash flows are mean-reverting, or alterna-
tively finite and fat-tailed; finite options with possibly endogenous learning and
exogenous and experiential shocks; analytical approximations for real Amer-
ican sequential option values; pre-emption options for temporary first mover
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advantages; analytical real option values given externalities and government
subsidies, also for mean-reverting stochastic processes. The new applications are
R&D expenditures modeled as forward start premiums for ‘new product devel-
opment’ (NPD) options; valuing the exploration options in natural resources;
viewing technological innovation models under incomplete information costs;
and calculating the follower’s and leader’s real value functions, with a time-
varying market share. In addition, there is a biotechnology case study at the
end (Chapter 15), utilizing some of these models in financial analysis and plan-
ning, and then a review of some of the classical real R&D option articles
(Chapter 16).

1.1 CHALLENGES IN VALUING REAL R&D OPTIONS

There are several major challenges in valuing real R&D options, including:

(1) Modeling the duration, dimension and diffusion processes of the even-
tual R&D payoff values.

(2) It is not always realistic to assume that the eventual project or product
will be a perpetuity [as in some land developments and (practically)
some natural resources].

(3) Identifying the time-varying volatilities of the processes and of the
underlying eventual values.

(4) Including the possibility of success or failure of the venture, which
may also be time-varying, in a real option model.

(5) Identifying the stages of R&D management flexibility and actions.
(6) Dealing with the usual environment where R&D is budgeted and the

expenditure consists of salaries and experiments occurring continu-
ously in time rather than instantaneously at a point of time.

(7) In some R&D projects, the real options might become proprietary,
where patents or orphan drug status might be available. In other indus-
tries, which are wholly or partly competitive, the first mover’s advan-
tages are not necessarily pre-emptive, so that the advantages of deferral
are partly dependent on competitive (follower’s) actions.

(8) R&D data is not always public, or even available within research enter-
prises, and often not suitable as input for economic models.

(9) While the traditional literature on real options in R&D often focuses on
the upside, there are no doubt put options written by R&D enterprises
(such as product guarantees, reimbursement obligations, requirements
for further testing, product liabilities), as well as suboptimal exercise
of real options, which may destroy value.

(10) Finally, the link between basic research and the eventual discovery or
project value is seldom well identified; indeed, the eventual project
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value may not be imagined at the research stage, and other aspects
such as developing technical and intellectual competency, reducing
information costs of the eventual project and the real option, and
increasing the implementation capacity of the firm may be important
products of R&D.

1.2 COMPLEXITY OF R&D MODELS

The authors have been organized (loosely) on the basis of the complexity of the
R&D and project stages of their models, and on how they deal with many of the
challenges above (see Table 1.1). The following four chapters assume the even-
tual project is (or can be valued like) a perpetuity and there is an instantaneous
R&D expenditure. The next two chapters assume that the underlying project
distributions are not lognormal, but instead resemble Student distributions, or
(possibly) mixed jump and geometric Brownian motion (gBm). The next two
chapters assume limited stages in expenditures and a finite life (or sale) for
the project. The next three chapters assume that there are first adopters/first
movers who are influenced by attitudes towards risk and growth and the action
of other players. The last two chapters contrast public and private objectives,
in the context of determining optimal fiscal policies for R&D expenditures and
disinvestments.

1.2.1 Underlying R&D project value

All authors assume that the ‘underlying’ eventual project value volatility is
constant or deterministic over time, and that there is a constant (sometimes
risk-adjusted) project drift. Usually the eventual project cash flows or values
are modeled as gBm.

The exception to these general model rules are: Tsekrekos (Chapter 3) and Jou
and Lee (Chapter 13), who allow for a Poisson hazard rate for implementation
jumps and technology shifts; Biekpe, Klumpes and Tippett (BKT; Chapter 5),
Rhys and Tippett (Chapter 6) and Jou and Lee (Chapter 14), who deal with
mean-reverting cash flows; and Martzoukas (Chapter 7), who considers mixed
diffusion processes, incorporating jumps. Most of these authors have the luxury
(and innovation) of closed-form solutions, and usually derive the critical prices
which justify irreversible investments (and entry/exit decisions).

1.2.2 Sequential decisions

Six chapters allow for a (slightly more) realistic environment, where R&D
expenditures are not instantaneous, and decisions to enter, adopt an innovation,
continue expenditures, or exit are made sequentially. In some cases, the volatility
of the expenditures and/or the volatility of the outcome are not necessarily
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constant. Lint and Pennings (Chapter 4) assume gBm in two stages, R&D and
NPD, and allow for a volatility of R&D outcome in excess of that for NPD.
Lee and Paxson (Chapter 8) also consider stages, but where R&D and invest-
ment cost volatility is different from the value volatility, although correlation
and both volatilities are time-invariant. Cortazar, Schwartz and Casassus (CSC;
Chapter 9) also examine various stages, and in addition allow for an explor-
ation volatility, in excess of eventual project volatility, to be dependent on
the exploration expenditures (a process of reducing volatility through a type
of learning). Bellalah (Chapter 10) examines adoption strategies over initial
and subsequent technological advances. Tsekrekos (Chapter 11) and Paxson
and Pinto (Chapter 12) consider an entry stage for the leader, which is partly
dependent on the entry timing for the follower. None of these authors allow for
multiple stages, or stochastic volatility.

1.2.3 Real R&D option model solutions

There is a variety of real R&D option model solutions proposed by these authors.
Many articles model real R&D expenditure and its underlying project value
as a perpetual American call (entry) or put (exit) option. Lint and Pennings
(Chapter 4) use a forward start option, for an American perpetuity. Two chap-
ters (8 and 9) propose compound options for the stages of R&D and investment,
an American sequential exchange compound option with approximated values,
and then a complex mixed European and American compound option requiring a
numerical solution. There is an analytical solution for various jump processes.
Two chapters (5 and 6) provide new real option model solutions based on
mean-reverting stochastic processes, and then Student distributions. There are
analytical solutions for the follower and leader value functions in a duopoly.
The Genzyme case study (Chapter 15) shows the possible use of some of these
analytical real option models in relating internal R&D project valuation to
external financial market valuation.

1.2.4 Real R&D option ‘Greeks’

Most authors have provided the partial derivatives of each real option model
with respect to the underlying project or discovery value, and in some cases
with respect to other parameters. The Black–Scholes first derivative of the call
option value with respect to the underlying asset value (V ) is 0 at V = 0 and
approaches 1 as V approaches infinity (or some large number). The derivative
of a European option with respect to volatility is always positive. These are
also two commonsense derivatives for real options, a departure from which
requires explanation. Where the underlying R&D project value is lognormally
distributed, and the analytical solution is relatively simple, most real option
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model ‘Greeks’ herein are consistent with these tests. The Lint and Pennings
forward start option, the jump models, and the sequential compound call options
all have deltas that are similar to, but not always the same as, the cumulative
standardized normal distribution function ranging from 0 to 1. Also, all of these
real option values increase with increased project value volatility, keeping all
other parameters constant.

However, when the underlying is a cash flow, or a price (then continuing in
perpetuity, or multiplied by the quantity of production, for instance), some of
the deltas with respect to the state variable are a multiple of that variable. In
addition, some mean-reverting and Student distribution deltas appear different
from ordinary call option deltas; and the option vegas are complex. For CSC,
the numerical delta (value of the real option value with respect to the copper
price) increases from 0 to over 14, although the gamma and vega are similar to
those for ordinary options. Where there is partial pre-emption, some competitive
environment deltas are not necessarily positive, since after the follower’s entry
trigger point, the leader’s market share, or profitability, declines.

Several authors have provided other partial derivatives particular to their
model. Bellalah (Chapters 2 and 10) shows the sensitivity of real option values
to information costs. Tsekrekos (Chapter 3) provides the analytical partial deri-
vative of real option value with respect to the implementation and hazard rate
parameters, respectively. Martzoukos (Chapter 7) shows the partial derivative
of the endogenous control option with respect to the size and volatility of the
control (jump) variable. Jou and Lee (Chapters 13 and 14) show the sensi-
tivity of optimal capital stock for the firm and for the industry to changes in
several parameters.

Besides the commonsense aspect of viewing these partial derivatives, the real
option Greeks and sensitivity analyses may ultimately be useful for issuers of
(and investors in) related derivatives, indirectly through equity in such R&D
projects, more or less directly through ‘tracking stock’ with embedded options,
or eventually in synthetic real R&D options, conceivably exchange traded.

1.2.5 Empirical contributions

One inherent problem in real R&D model development and publication is the
typical confidentiality of R&D results and empirical parameters. For commer-
cial reasons, most R&D enterprises require hypothetical (or disguised) empirical
illustrations. While most authors herein have not emphasized empirical studies,
each chapter illustrates the option values, given ranges for the input param-
eters required. Bellalah (Chapter 2) requires data or estimates for information
costs for both projects and options. Tsekrekos (Chapter 3) requires estimates of
implementation costs and the hazard rate for implementation uncertainty. Both
the pattern of future cash flows (long-term mean reversion level and speed of
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reversion) and the cash flow volatilities (related to the cash flow level, or its
square root) are required in the BKT model. Rhys and Tippett (Chapter 6) require
not only the eventual project cash flow and reversion speed, but also a volatility
estimate related to the cash flow level. Martzoukas (Chapter 7) requires jump
frequency, jump size and volatility estimates for both exogenous and endogenous
systems. Bellalah (Chapter 10) requires data or estimates for information costs
for both projects and options, as well as migration inclinations of technolog-
ical adopters. Tsekrekos (Chapter 11) requires an estimate of the proportion of
project profitability temporarily (before followers) and permanently (even after
followers) retained by the leader, as well as other parameters. Paxson and Pinto
(Chapter 12) require rates of new customer arrivals, and old customer departures
from the market, data which is often available. Jou and Lee (Chapters 13 and 14)
require a large number of estimated inputs, especially concerning externalities
(production function for an individual firm that is affected by aggregate industry
investment) and eventually the mean-reverting parameters.

Some authors provide ‘empirical’ data (even though disguised) for their
models, which one might take as (more or less) representative. Lint and Pennings
(Chapter 4) show the real option value of the NPD option to launch for a
unit investment and range of NPD values and volatilities. Lee and Paxson
(Chapter 8) use project revenues and costs, R&D effectiveness estimates, R&D
and investment costs, and associated volatilities and correlations. Cortazar,
Schwartz and Casassus (Chapter 9) provide sample ‘mine profiles’ and occur-
rence probabilities, along with specific exploration and investment expenditures.

1.3 SUMMARY OF CHAPTERS

Chapter 2. Mondher Bellalah focuses on the possibility that R&D investments
may be conducted in an environment of information uncertainty, regarding the
quality, quantity and persistence of future projects and options on projects.
In the context of such incomplete information, both analytical solutions and
illustrated numerical results are provided.

Chapter 3. Andrianos Tsekrekos supposes that even with research success,
development and production timing and value may be exposed to implemen-
tation uncertainty. Since implementation uncertainty may affect both the level
and timing of project profitability, the option deferral value of R&D and other
irreversible investments will be dependent on the resolution of such uncertainty.

Chapter 4. Onno Lint and Enrico Pennings consider the new product devel-
opment process as a series of real options with reducing uncertainty over
time. In electronics R&D and new products, particular projects may be viewed
in terms of a matrix of volatility versus R&D and new product value. For
low volatility projects, high NPV projects should be adopted immediately and
low NPV projects abandoned. For high volatility NPD, high NPV projects
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should be adopted, but low NPV projects have primarily real option value and
commencement of the NPD should be deferred.

Chapter 5. Nicholas Biekpe, Paul Klumpes and Mark Tippett derive the crit-
ical level of future cash flows for triggering commencement of serious research
units, or product development and marketing, when cash flows are expected
to be mean-reverting. Analytical expressions (using the complementary error
function) are proposed for optimal (dis)investment decisions, even when the
option to enter or exit a business is significant.

Chapter 6. Huw Rhys and Mark Tippett derive an explicit formula for the
value of the option to invest in a capital project when the difference between the
benefits and costs of the investment decision are generated by a general class
of Student distributions. These processes encapsulate the ‘fat tail’ property of
some of the characteristic R&D project payoffs. Their analytic solution is based
on the assumption that the option to invest has a finite life.

Chapter 7. Spiros Martzoukos values real investment options in the pres-
ence of endogenous and exogenous learning. Endogenous learning is captured
through optimally activated controls arising because of costly managerial actions
such as R&D intended to enhance value and reveal information. Exogenous
learning is captured through random information arrival of rare events (jumps
resulting from technological and other shocks) that follow a Poisson process and
have a size drawn from a mixed distribution. Experiential shocks are captured
by a dynamic volatility similar to that observed in the financial options markets.
An optimization problem is solved by considering the trade-off between the
benefits and costs of R&D actions.

Chapter 8. Jongwoo Lee and Dean Paxson model stages of R&D expense
and then the ultimate e-commerce and internet project values as real sequen-
tial (compound) exchange options. In the sequential investment phases, future
revenues and investment costs are stochastic, and the investments can be initi-
ated or abandoned at any time. Approximate analytical solutions (based on the
confined exponential distribution) are provided, where the input parameters are
consistent with market volatilities.

Chapter 9. Gonzalo Cortazar, Eduardo Schwartz and Jaime Casassus consider
several real options from natural resource exploration to development and then
to mine operations. There are joint price and geological–technical uncertain-
ties, which are collapsed into a one-factor model for tractability. The investment
schedules for exploration and development are flexible, and the technological
uncertainty is reduced by exploration expenditures. An implicit finite difference
numerical approach is used to compute the value of the operational, development
and exploration options, for different levels of eventual mine values.

Chapter 10. Mondher Bellalah examines how frictions such as costly infor-
mation affect equilibrium in capital and real markets. Investment in technological
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innovations, with stochastic arrival times and profitability, may require gathering
information before deciding on the appropriate technology. Important character-
istics of real-world technology adopters are considered in the context of varying
project and option information costs to derive firm policies.

Chapter 11. Andrianos Tsekrekos examines the strategic exercise of real
options, when the first mover’s full advantage is temporary, in a competitive
environment. Otherwise identical firms will invest at different critical prices
(and thus at different times) depending on the scale of the advantage, and the
economic characteristic of the underlying R&D project value.

Chapter 12. Dean Paxson and Helena Pinto model a leader and follower
function (in a duopoly) where the market (and thus the market share) evolves
according to new arrival (birth) and departure (death, or churn) processes. This
is characteristic of new product markets, where the total market is not well
defined, and the behavior of adopters and leavers (or adopters of the followers’
innovations) are similar to well-studied stochastic processes in other fields.

Chapter 13. Jyh-bang Jou and Tan Lee ask whether governments should
subsidize R&D directly (through scientific funding institutions) or indirectly
(through tax credits and other incentives). Suppose R&D capital exhibits both
irreversibility and externality through the learning-by-doing effect. Given private
risk aversion, private enterprise will not invest sufficiently in R&D, so subsidy
is justified, along with taxation of disinvestments.

Chapter 14. Jyh-bang Jou and Tan Lee now assume that the return to R&D
capital is driven by a technological factor that follows a mean-reverting process.
The optimal paths for R&D capital under both a decentralized and a centralized
economy are derived and then compared, using the confluent hypergeometric
function. In theory, an equal rate of investment tax credits should be given
to both costlessly reversible investments and irreversible R&D, regardless of
whether the ultimate R&D project values are a geometric Brownian motion or
a mean-reverting process.

1.4 FUTURE REAL R&D OPTION MODELS

These authors (and the classical authors) provide what eventually will be re-
garded as elementary models for realistic R&D environments. As partly noted
in Section 1.1, R&D is typically expended continuously over time, sometimes
with greater emphasis, depending on the urgency of outcomes, availability
of personnel and facilities, likelihood of successful results and, of course,
R&D fashion.

Empirical aspects are eventually critical for the implementation of real R&D
option models in aiding decisions regarding the amount, timing, direction and
value of R&D. The empirical problems that have to be addressed in practice
are: (a) the direct link between R&D and underlying discovery value, and hence
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the effectiveness of specific R&D expenditures over time; (b) the distribution
of that underlying value, and the time-varying parameters; (c) the correlation or
dependency relationships between cost and value, and among different projects
(often with non-normal distributions); (d) identification of analogous securities
(to R&D discovery value and processes) for estimating volatility and drifts; and
(e) estimates of the information cost reduction and/or implementation improve-
ment contributed by R&D. Each of these challenges will probably be the topic
of lots of R&D and many articles in the future.
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Chapter 2

On irreversibility, sunk costs
and investment under

incomplete information

MONDHER BELLALAH

SUMMARY

This chapter presents a framework for the valuation of investment
opportunities by accounting for the effects of incomplete information
regarding the firm and its cash flows. We present some simple models
of irreversible investment to illustrate the option-like characteristics
of investment opportunities under incomplete information. We show
how optimal investment rules can be obtained using real option
theory under shadow costs of incomplete information. Simulations
are provided to illustrate our main results.

2.1 INTRODUCTION

Several models in financial economics are proposed to deal with the ability
to delay an irreversible investment expenditure. These models undermine the
theoretical foundation of standard neoclassical investment models and invalidate
the net present value criteria in investment choice under uncertainty.

Pindyck (1991) reviews some of the results of basic models of irreversible
investment and uses the theory of option pricing to illustrate the option-like char-
acteristics of investment opportunities. Roberts and Weitzman (1981) developed
a model of sequential investment that puts the stress on the role of information
gathering during the investment process. In this model, information gathering
adds a shadow value to the early stages of the investment. This latter result
applies whenever information gathering, rather than waiting, yields informa-
tion. A simple example is given in Pindyck (1991) to illustrate this result. We
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believe that it is possible to extend the analysis in Pindyck (1991) by accounting
for information costs. Our definition of information costs refers to the models
in Merton (1987) and Bellalah (1999a). Merton (1987) introduced a modified
capital asset pricing model where each investor can participate only in markets
contained in an exogenous, investor-specific subset of all asset markets.

Since the acquisition of information and its dissemination are central activ-
ities in finance and in the investment process, Merton’s (1987) simple model
of capital market equilibrium with incomplete information might provide some
insights into the behavior of security prices. This model can be applied in the
investment decision and in the derivation of equilibrium option prices. Bellalah
(2000) applies Merton’s (1987) model to study the cost of capital and extends
the standard Modigliani–Miller analysis to account for shadow costs of incom-
plete information.

It is well known that an investment opportunity is like a call option. This
option gives the holder the right, for some specified amount of time, to pay an
exercise price and in return receive the underlying asset. Using a similar context
as that of Black and Scholes (1973) in a Merton (1987) economy, it is possible to
present option valuation formulas for the investment opportunity in the presence
of information costs as in Bellalah (1990, 1999a,b) and Bellalah and Jacquillat
(1995). Bellalah (2000) applies a similar analysis to the investment decision in
the study of strategic investments.

In this chapter, we present some models of basic investment by accounting
for the option-like characteristics of investment opportunities in an incomplete
information context. In this context, we obtain optimal investment rules using
option pricing theory. Section 2.2 presents a justification for the foundations of
information costs in investment decisions. These costs are based on the shadow
costs of incomplete information in the spirit of Merton’s model. We provide
a basic continuous-time model of irreversible investment in the presence of
information costs. The model shows when the firm should invest in a project in
the presence of incomplete information. Section 2.3 extends the basic model so
that the price of the firm’s output is random and the firm can stop production
whenever the price falls below variable cost. We derive the value of the project
and the value of the firm’s option to invest in the project as well as the optimal
investment rule in the presence of information costs. Simulations are provided
to illustrate our main results. Section 2.4 compares some of our results with
respect to some standard models. Section 2.5 concludes.

2.2 THE PROBLEM OF INVESTMENT TIMING AND THE ANALOGY
TO FINANCIAL OPTIONS WITH INCOMPLETE INFORMATION

Before introducing the model, we justify the main assumptions in this chapter
regarding information costs.
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2.2.1 The role of information in investment decisions

The introduction of information costs on the option ‘market’ and the underlying
asset markets can be better understood by reviewing the main results in Merton’s
(1987) model. In Merton’s model, the expected returns increase with systematic
risk, firm-specific risk, and relative market value. The expected returns decrease
with relative size of the firm’s investor base, referred to in Merton’s model as
the ‘degree of investor recognition’.

Merton’s model may be stated as follows:

RV − r = βV [Rm − r] + λV − βV λm (2.1)

where:

RV = the equilibrium expected return on an asset V ,
Rm = the equilibrium expected return on the market portfolio,

r = the riskless rate of interest,
βV = cov(RV /Rm)/var(Rm),
λV = the equilibrium aggregate ‘shadow cost’ for the asset V (of the same

dimension as the expected rate of return on this asset V ),
λm = the weighted average shadow cost of incomplete information over all

assets.

The model is based on the assumption that there are several factors in addi-
tion to incomplete information that may explain this behavior for individuals
and firms. Hence, the presence of prudent-investing laws and traditions and
other regulatory constraints can rule out investment in a particular firm by
some investors. Using this assumption, Merton shows that the expected returns
depend on other factors in addition to market risk. The main intuition behind
this result is that the absence of a firm-specific risk component in the capital
asset pricing model (CAPM) comes about because such risk can be elimi-
nated (through diversification) and is not priced. Merton’s (1987) model is
supported by several authors, including Amihud and Mendelson (1989), Kadlec
and McConnell (1994), Kang and Stulz (1997), Coval and Moskowitz (1999)
and Stulz (1999).

Merton’s model is an extension of the CAPM to a context of incomplete
information. The model gives a general method for discounting future cash
flows under uncertainty. In this model, assets with higher idiosyncratic risk
are rationally priced to earn a higher expected return. It appears in this model
that taking into account the effect of incomplete information on the equilib-
rium price of an asset or an investment opportunity is similar to applying an
additional discount rate to its future cash flows. In fact, the expected return
on the asset is given by the appropriate discount rate that must be applied to
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its future cash flows. Then, relying on Merton’s model to derive a valuation
formula should lead to more accurate theoretical prices since information costs
are included for assets and options. Merton’s model is used to price contingent
claims in Bellalah (1990), Bellalah and Jacquillat (1995) and Bellalah (1999a,b)
and capital budgeting decisions in Bellalah (2000, 2001).

For a project, information costs correspond to the costs of collecting infor-
mation about the investment opportunity. These costs are specific to each asset
and to each investment opportunity. Empirically, they can be estimated using
the estimation procedure in Merton (1987) or in Kadlec and McConnell (1994).
They can also be estimated implicitly using market option prices. In this case, a
procedure is applied to estimate information costs from option data in the same
way as we estimate implied volatilities.

2.2.2 Investment timing and the pricing of assets

The investment opportunity is analogous to a call option on a common stock
since it gives the right to make an investment expenditure at the strike price
and to receive the project. The firm’s option to invest refers to the possibility of
paying a sunk cost I and receiving a project, which is worth V . Unlike standard
options, this call is perpetual and has no expiration date. This result is used in
McDonald and Siegel (1986) and Pindyck (1991). The decision regarding the
timing of the investment is equivalent to the choice of the exercise time of
this option.

The dynamics of the project’s value can be described by the following
equation:

dV/V = α dt + σ dz (2.2)

where α and σ refer to the instantaneous rate of return and the standard deviation
of the project, and dz is a geometric Brownian motion. This equation shows that
the current project value is known, whereas its future values are lognormally
distributed. Now, let X denote the price of an asset or a dynamic portfolio of
assets perfectly correlated with V . The dynamics of X are given by:

dX/X = µ dt + σ dz (2.3)

where µ stands for the expected return from owning a completed project.
Let δ = µ − α. If V were the price of a share, δ would be the dividend rate

on the stock. In this context, δ represents an opportunity cost of delaying invest-
ment. If δ is zero, then there is no opportunity cost to keeping the option alive.
Hence, the value of δ must be positive. Let C(V ) denote the value of the firm’s
option to invest, which corresponds also to an investment timing option. Using
Merton’s model, Bellalah and Jacquillat (1995) and Bellalah (1990, 1999a,b)
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obtain option prices in the context of incomplete information. The derivation is
reproduced in the appendix (Section 2.6). Consider the return on the following
portfolio: hold an option which is worth C(V ) and go short CV units of the
project where the subscript V refers to the partial derivative with respect to V .
The value of this portfolio is:

P = C − CV V (2.4)

Over a short interval, the change in the value of V induces changes in the
value of CV and in the portfolio’s value. The short position requires a payment
of δV CV dollars per time period, where δV refers to a dividend stream. If this is
not verified, no rational investor will enter into the long side of the transaction.
Since the short position includes CV units of the project, it requires the paying
out of an amount δV CV . The total return for this portfolio over a short interval
of time dt is:

dC − CV dV − δV CV dt (2.5)

To avoid riskless arbitrage, the value of this portfolio must be the riskless
rate. However, since there are information costs embedded in the option and in
its underlying assets, the return must be equal to (r + λV ) for the project and
(r + λc) for the option, where λV and λc refer respectively to the information
costs on the project and the option. These parameters represent sunk costs,
which are necessary before entering into a project. They are incurred during the
phase of gathering information about the project and the opportunity to invest.
Since the project may not have the same value for all the firms, this information
cost can be specific to each firm. Therefore, the costs of gathering information
and data about the project and the investment opportunity are present in the
discounting procedure. It is important to note the presence of a shadow cost of
incomplete information for each asset. In this context, we have:

dC − CV dV − δV CV dt = (r + λc)C dt + (r + λV )V CV dt (2.6)

Assuming a hedged position is constructed and ‘continuously’ rebalanced, and
since dC is a continuous and differentiable function, it is possible to use a
Taylor series expansion to expand dC(V ). When limiting arguments are used
and second-order terms ignored, we get:

dC = 1
2CV V (dV )2 + CV dV

This is just an extension of simple results to get Itô’s lemma. The application of
this lemma gives: dC = 1

2CV V σ 2V 2 dt + CV dV . Since α = µ − δ, the value
of dC is:

dC = 1
2CV V σ 2V 2 dt + (µ − δ)CV V dt + CV V σ dz (2.7)
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If we substitute equation (2.7) into equation (2.6), we get after simplification:

1
2CV V σ 2V 2 + (r + λV − δ)V CV − (r + λc)C = 0 (2.8)

Since there are two assets C and V , there are two information costs:
one regarding C and the other regarding V . Note that this is a modified
Black–Scholes (1973) equation, in which the interest rate is adjusted by the
effect of incomplete information regarding the two assets.

This equation for the value of the investment timing option C(V ) must satisfy
the following conditions:

C(0) = 0 (2.9)

C(V ∗) = V ∗ − I (2.10)

CV (V ) = 1 (2.11)

The value V ∗ is the project value at which it is optimal to invest. At that
time, the firm receives the difference V ∗ − I . The last condition is the ‘smooth
pasting’ condition. The solution to the differential equation under the above
conditions gives the value of the investment timing option C(V ). The solution
under the first condition is:

C(V ) = aV β (2.12)

where a is a constant and:

β = 1
2 − (r − δ + λV )/σ 2 +

{[
(r − δ + λV )/σ 2 − 1

2

]2 + 2(r + λc)/σ
2
}0.5

The delta in this case is � = aβV β−1, if V < V ∗. The value of the constant a

and the critical value V ∗ are determined using the other two boundary condi-
tions. Substituting equation (2.12) into equations (2.10) and (2.11) gives:

V ∗ = βI/(β − 1) and a = (V ∗ − I )/(V ∗β)

This solution gives the value of the investment opportunity or the investment
timing option contingent on a value V ∗ where V ∗ corresponds to an optimal
timing of the investment. This value maximizes the firm’s market value. These
equations also give the optimal investment rule in the presence of information
costs. The opportunity cost is C(V ). The firm must invest only when V is greater
than V ∗. When V is less than V ∗, then V < I + C(V ). Hence, the value of
the project is less than its full cost, i.e. the direct cost I plus the opportunity
cost of terminating the option. The value of C(V ) and the critical value V ∗
increase with the volatility parameter. They also increase with interest rates
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and information costs. Since the present value of an investment I made at an
instant T is I exp[−(r + λc)T ], the present value of the project received for this
expenditure is V exp[−(δ + λV )T ]. In this case, an increase in r and information
costs reduces the present value of the cost of investing, but not the payoff.

Table 2.1 shows the optimal investment rule using equation (2.12). For σ =
20%, β = 2.1583, the critical value of V at which it is optimal to invest
is V ∗ = 186.332. For σ = 30%, β = 1.6667, V ∗ = 250. For σ = 40%, β =
1.4354, V ∗ = 329.666. In all cases, V ∗ > I . Note that for all values of V < V ∗,
V < I + C(V ), since the value of the project is less than its full cost. This
corresponds to the cost I plus the opportunity cost of terminating the invest-
ment option. The critical value V ∗ is an increasing function of the volatility
parameter for fixed levels of information costs. This confirms the analysis in
Pindyck (1991). However, when δ increases, the critical value decreases and
the expected rate of growth of V falls. In this case, it becomes costlier to wait
rather than invest now. An increase in the interest rate and in the information
costs leads also to an increase in the option value and the critical value. In fact,
an increase in the discounting rate given by the interest rate and the informa-
tion cost reduces the present value of the investment expenditure but does not
reduce the payoff. The results can depend as before on the interaction between
the different values that determine the sign of the quantity (r − δ + λV ) and its
magnitude with respect to σ 2.

Table 2.1 Simulation of the effect of volatility on the value of
the investment opportunity or the investment timing option C(V)
given by equation (2.12) as a function of the project value V in the
presence of information costs r = 4 %, δ = 6 %, I = 100 , λc =
1 %, λV = 2 %

[V ] C(V )

σ = 0.2 σ = 0.3 σ = 0.4

12 0.232 0.951 1.976
24 1.035 3.019 5.343
36 2.484 5.934 9.562
48 4.622 9.585 14.451
60 7.481 13.903 19.907
72 11.089 18.840 25.862
84 15.466 24.359 32.267
96 20.632 30.431 39.084

108 26.604 37.031 46.283
120 33.396 44.139 53.839

In this table, r is the interest rate, δ is the opportunity cost of
delaying a project or a constant payout rate, I is the cost of
investment or investment expenditure, σ is the volatility, λc (λV )
is the information cost related to C(V ) (V ).
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2.3 THE INVESTMENT DECISION AND THE PROJECT’S VALUE
WITH INCOMPLETE INFORMATION

It is well known that option pricing models can be used to value projects and
to search for the optimal investment rule. While in equation (2.2) the value of
the project is a random walk, it is more realistic to assume that the price of
the output of the project is a random walk. We assume that the output price P

follows the dynamics:

dP/P = α dt + σ dz (2.13)

and that δ = µ − α. When the output is a storable commodity, then δ refers
to the net marginal convenience yield from the storage activity. This refers to
the difference between the flow of benefits and the storage costs offered by a
marginal stored unit. Following the analysis in Pindyck (1991), let us assume
that: marginal and average production costs are equal to a constant co; the
project can be shut down when P falls below co; it can be restarted when P

is above the cost co; and the project yields one unit of output per period. The
sunk cost is I and the project is infinitely lived. What is the value of the project
V (P )? What is the value of the firm’s option to invest in this project?

The value of the project can be studied by viewing the project as a set of
options, where for each option the firm pays co and receives P . The value of
the option to invest can be determined with respect to the critical price, P ∗,
above which the firm will invest.

2.3.1 The project’s value with incomplete information

Using the same analogy with respect to option pricing theory, it is possible
to construct a portfolio which comprises a long position in the project, V (P ),
and a short position in VP units of P . This project leads to an instantaneous
cash flow j (P − co)dt − δVP P dt . The value j = 1 holds when the firm is
producing, i.e. P > co, otherwise j = 0. In this context, the total return on the
portfolio is:

dV − VP dP + j (P − co)dt − δVP P dt

In the presence of information costs regarding the project and the output in a
risk-neutral world, this return must be:

(r + λV )V dt − (r + λP )VP P dt

By applying Itô’s lemma for dV and substituting for dP , we obtain the following
differential equation for the value of the project V :

1
2VPP σ 2P 2 + (r + λP − δ)PVP − (r + λV )V + j (P − co) = 0 (2.14)
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This equation for the value of the project V (P ) must satisfy the following
conditions:

V (0) = 0 (2.15)

V (co−) = V (co+) (2.16)

VP (co−) = VP (co+) (2.17)

lim(P → ∞) V = (P/δ) − (co/r) (2.18)

The first condition shows that when P is zero, the project has no value. The
following two conditions show that the project’s value is a function which is
continuous and smooth in the output price. The last condition shows that for
large values of the price P , the project’s value tends toward the difference
between two perpetuities: a flow of revenue P discounted at δ and a flow of
cost co discounted at r .

As in Pindyck, the solution has two parts according to the position of P with
respect to co. Using the above equation, the first and the last conditions, the
project value V (P ) in the presence of information costs is given by:

V (P ) = A1P
β1 if P < co

(2.19)
V (P ) = A2P

β2 + (P/δ) − (co/r) if P ≥ co

where:

β1 = 1
2 − [(r − δ + λP )/σ 2]

+
{[

(r − δ + λP )/σ 2 − 1
2

]2 + 2(r + λV )/σ 2
}0.5

and

β2 = 1
2 − [(r − δ + λP )/σ 2]

−
{[

(r − δ + λP )/σ 2 − 1
2

]2 + 2(r + λV )/σ 2
}0.5

The values of the constants A1 and A2 can be found using the second and third
conditions, or:

A1 = {
[r − β2(r − δ)]/rδ(β1 − β2)

}
co(1−β1)

and

A2 = {
[r − β1(r − δ)]/rδ(β1 − β2)

}
co(1−β2)

The delta (with respect to P ) is �(P ) = A1β1P
β1−1, if P < co.

It is important to note that this formula exhibits two information costs: the
first λV concerns V and the second λP is linked to P . When P < co, the project
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is inactive and the value of the firm’s options for the future are given by A1P
β1 ,

if P increases. When P > co, the project is active and the present value of the
firm’s future flow of profits is (P/δ) − (co/r). If the price falls, the firm has
the option to stop production. The value of these options is A2P

β2 .
Table 2.2 simulates the project’s value in the presence of information costs

using the solution (2.19). The solution shows that the project is inactive when
the output price is less than the marginal or average production cost. In this
case, the solution gives the value of the options to produce in the future. The
table gives the value of the project, the options to produce and to suspend
production for different levels of the volatility parameter in the presence of
information costs. For σ = 20%, the parameters defining the two parts of the
solution for different levels of the volatilities are A1 = 0.7142, A2 = 2258.77,
β1 = 2, β2 = −1.5. For σ = 40%, A1 = 5.0380, A2 = 439.3214, β1 = 1.4077,

Table 2.2 Simulation of the effect of volatility on the
value of the project V(P) as a function of the output price P
using equation (2.19) in the presence of information costs.
r = 4 %, δ = 4 %, co = 10 , λV = 2 %, λP = 1 %

[P ] V (P )

σ = 0.20 σ = 0.40 σ = 0.50

1 0.7142 5.0380 7.6799
2 2.8571 13.3671 18.8007
3 6.4285 23.6555 31.7409
4 11.4285 35.4663 46.0249
5 17.8571 48.5560 61.3994
6 25.7142 62.7641 77.7028
7 35.0000 77.9752 94.8216
8 45.7142 94.1012 112.6707
9 57.8571 111.0723 131.1840

10 71.4285 128.8313 150.3081
11 86.9131 147.4528 170.0774
12 104.3375 166.9060 190.4613
13 123.1900 187.0255 211.3447
14 143.1201 207.6887 232.6409
15 163.8807 228.8022 254.2833
16 185.2932 250.2938 276.2194
17 207.2254 272.1062 298.4076
18 229.5776 294.1937 320.8138
19 252.2735 316.5192 343.4106
20 275.2538 339.0521 366.1748

In this table, r is the interest rate, δ is an opportunity cost of
delaying a project, co is the marginal or average production
cost, σ is the volatility, λP (λV ) is the information cost
related to the output price P (the value of the project V ).
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β2 = −0.5327. For σ = 50%, A1 = 7.6799, A2 = 353.6775, β1 = 1.2916,
β2 = −0.3716. It is notable that the higher the volatility, the greater the expected
future flow of profit and the higher the value of the project.

Table 2.3 gives the values of the project and the options for different levels
of information costs. For λV = 3%, the parameters defining the two parts of
the solution are A1 = 0.0644, A2 = 644.6651, β1 = 2.3333, β2 = −0.6667.
For λV = 4%, A1 = 0.0407, A2 = 742.2238, β1 = 2.4056, β2 = −0.7389. For
λV = 5%, A1 = 0.0244, A2 = 850.5883, β1 = 2.4748, β2 = −0.8081. Note
that the higher the information costs relative to P , the lower the project’s
value. The effect of information costs seems to be important.

2.3.2 The investment decision and the option’s value
with incomplete information

Since we know the project’s value, it is possible to determine the value of the
firm’s option to invest. This option depends on the output price P and its critical

Table 2.3 Simulation of the value of the project V(P) in the
presence of information costs using equation (2.19). r = 4 %,

δ = 8 %, co = 10 , σ = 30 %, λP = 1 %

[P ] V (P )

λV = 0.03 λV = 0.04 λV = 0.05

1 0.0644 0.0407 0.0244
2 0.3248 0.2160 0.1360
3 0.8367 0.5729 0.3711
4 1.6373 1.1446 0.7564
5 2.7559 1.9579 1.3141
6 4.2171 3.0359 2.0634
7 6.0426 4.3988 3.0218
8 8.2517 6.0652 4.2052
9 10.8617 8.0520 5.6283

10 13.8888 10.3785 7.3050
11 17.8383 13.6679 9.9969
12 22.9928 18.3105 14.1791
13 29.1018 24.0152 19.5271
14 35.9810 30.5722 25.8054
15 43.4920 37.8245 32.8387
16 51.5283 45.6519 40.4936
17 60.0067 53.9612 48.6669
18 68.8611 62.6783 57.2772
19 78.0381 71.7441 66.2596
20 87.4845 81.1106 75.5616

In this table, δ is the opportunity cost of delaying a project,
co is the marginal or average production cost, λP (λV ) is the
information cost related to the output price P (the value of the
project V ).
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level P ∗. At this level, the firm exercises the option by paying an amount I

in exchange for the project. Using the same steps as before, it is possible to
construct a hedging portfolio to show that the firm’s option to invest, C(P ),
obeys the following partial differential equation:

1
2CPP σ 2P 2 + (r + λP − δ)PCP − (r + λc)C = 0 (2.20)

Since there is a shadow cost of incomplete information for each asset, this
formula shows an information cost for P , λP , and a cost for the option C, λc.
The firm’s option to invest must satisfy the following conditions:

C(0) = 0 (2.21)

C(P ∗) = V (P ∗) − I (2.22)

CP (P ∗) = VP (P ∗) (2.23)

These conditions are similar to those of the preceding section. The main differ-
ence is that the payoff is a function of the output price P . The solution to
equation (2.20) under the first condition (2.21) is:

C(P ) = aP β1 if P < P ∗
(2.24)

C(P ) = V (P ) − I if P > P ∗

where:

β1 = 1
2 − [(r − δ + λP )/σ 2]

+
{[

(r − δ + λP )/σ 2 − 1
2

]2 + 2(r + λc)/σ
2
}0.5

The delta of equation (2.24) with respect to price is: �(P ) = aβ1P
β1−1, if

P < P ∗; that is the option with respect to price increases by a multiple of
the price.

The solution for V (P ) is similar to equation (2.19). The two conditions (2.22)
and (2.23) are used to search for the critical price P ∗ and the constant a. The
value of a is:

a = (β2A2/β1)(P
∗)(β2−β1) + (1/β1δ)(P

∗)(1−β1) (2.25)

The critical price P ∗ is the solution to the following equation:

[A2(β1 − β2)/β1](P ∗)β2 + (β1 − 1)/(β1δ)P
∗ − (co/r) − I = 0 (2.26)

where:

β2 = 1
2 − [(r − δ + λP )/σ 2]

−
{[

(r − δ + λP )/σ 2 − 1
2

]2 + 2(r + λc)/σ
2
}0.5
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Using an iterative procedure, the numerical solution to equation (2.26) gives
the optimal investment rule. Note, as for the previous model, that an increase
in σ produces a higher V (P ) for any price P . This result comes from the fact
that a project is a set of call options and an increase in price volatility leads to
higher call values.

This model shows the effect of uncertainty over future prices on the value of
the project and on the timing of the investment decision. It includes the sunk
costs regarding gathering information and analyzing data. The model can have
practical implications if the produced commodity is a traded asset, like copper,
coffee, oil, etc. In this case, the values of σ , δ and information costs can be
inferred from futures, spot and options data as in Bellalah (1999a,b).

Table 2.4 gives the value of the firm’s option to invest as a function of the
price P using equations (2.24)–(2.26). The optimal investment rule in the pres-
ence of information costs is calculated for different levels of volatility. The table
gives, for different levels of P , the opportunity cost of investing C(P ) and the
project value. For σ = 20%, the parameters defining the solution for different
levels of the volatility parameter are A1 = 0.7142, A2 = 2258.769, β1 = 2,

Table 2.4 Simulation of the effect of volatility on the value of the firm’s option to invest C(P)
as a function of the price P using equations (2.24)–(2.26). The table gives the opportunity cost of
investing C(P) and the value of the project V(P). r = 4 %, δ = 4 %, I = 100 , co = 10 , λc = 2 %,
λP = 1 %

[P ] C(P ) V (P )

σ = 0.20 σ = 0.30 σ = 0.40 σ = 0.20 σ = 0.30 σ = 0.40

1 0.4691 1.8643 3.9632 0.7142 2.5339 5.0380
2 1.8764 5.6804 10.5154 2.8571 7.7204 13.3671
3 4.2220 10.8996 18.6090 6.4285 14.8141 23.6555
4 7.5058 17.3073 27.9002 11.4285 23.5230 35.4663
5 11.7278 24.7739 38.1973 17.8571 33.6712 48.5560
6 16.8881 33.2096 49.3744 25.7142 45.1365 62.7641
7 22.9866 42.5470 61.3404 35.0000 57.8273 77.9752
8 30.0233 52.7327 74.0262 45.7142 71.6712 94.1012
9 37.9983 63.7234 87.3768 57.8571 86.6090 111.0723

10 46.9115 75.4824 101.3472 71.4285 102.5911 128.8313
11 56.7629 87.9785 115.8998 86.9131 119.7923 147.4528
12 67.5526 101.1847 131.0027 104.3375 138.1913 166.9060
13 79.2805 115.0771 146.6280 123.1900 157.5257 187.0255
14 91.9466 129.6343 162.7516 143.1201 177.6052 207.6887
15 105.5510 144.8372 179.3520 163.8807 198.2884 228.8022
16 120.0935 160.6687 196.4102 185.2932 219.4679 250.2938
17 135.5744 177.1129 207.2254 241.0607 213.9089 272.1062
18 151.9934 194.1555 231.8327 229.5776 263.0015 294.1937
19 169.3507 211.7831 250.1672 252.2735 285.2383 316.5192
20 187.6462 229.9834 268.8997 275.2538 307.7289 339.0521
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β2 = −1.5, a = 0.4691. In this case, the critical price P ∗ at which the firm
should exercise the option to invest an amount I = 100 to purchase the project
is P ∗ = 25.5516. For σ = 30%, A1 = 2.5339, A2 = 692.866, β1 = 1.6073,
β2 = −0.8295, a = 1.8643, P ∗ = 30.5528. For σ = 40%, A1 = 5.0380, A2 =
439.3214, β1 = 1.4078, β2 = −0.5328, a = 3.9632, P ∗ = 35.9260. The higher
the volatility, the higher the critical price. This price is higher than the cost co,
and V (P ∗) > I . This indicates the project must show a large positive NPV
before the firm decides to invest. An increase in the volatility parameter leads
to a higher V (P ) for any value of P . In fact, since a project is viewed as a set
of call options on future production, a higher volatility implies a higher option
value. For any increase in the value of P , the opportunity cost of investing
C(P ) increases the same in relative terms as the project’s value V (P ), until
P > co, when C(P ) increases by more than V (P ) in relative terms.

Table 2.5 shows the value of the firm’s option to invest as a function of the
price P using equations (2.24)–(2.26). The optimal investment rule is calculated
for different levels of option information costs. The table shows, for different
levels of P , the values of C(P ) and V (P ). For λc = 3%, the parameters defining

Table 2.5 Simulation of the effect of information costs on the value of the firm’s option to invest
as a function of the price P using equations (2.24)–(2.26). The table gives the opportunity cost of
investing C(P) and the value of the project V(P). r = 4 %, σ = 20 %, δ = 4 %, I = 100 , co = 10 ,
λP = 1 %

[P ] C(P ) V (P )

λc = 0.03 λc = 0.04 λc = 0.05 λc = 0.03 λc = 0.04 λc = 0.05

1 0.2981 0.1967 0.1337 0.4825 0.3364 0.2406
2 1.3111 0.9459 0.6990 2.1233 1.6179 1.2576
3 3.1208 2.3703 1.8392 5.0512 4.0541 3.3091
4 5.7720 4.5484 3.6537 9.3422 7.7795 6.5739
5 9.2996 7.5408 6.2225 15.0519 12.8976 11.1956
6 13.7313 11.3975 9.6137 22.2249 19.4939 17.2972
7 19.0902 16.1615 13.8875 30.8984 27.6422 24.9868
8 25.3960 21.8709 19.0983 41.1046 37.4073 34.3622
9 32.6664 28.5599 25.2956 52.8722 48.8479 45.5125

10 40.9173 36.2596 32.5254 66.2266 62.0173 58.5205
11 50.1628 44.9988 40.8306 81.6570 77.4121 73.8924
12 60.4162 54.8042 50.2515 99.1333 94.9483 91.4927
13 71.6896 65.7006 60.8263 118.0977 114.0246 110.6788
14 83.9942 77.7116 75.5912 138.1727 134.2385 131.0249
15 97.3407 90.8593 85.5808 159.0949 155.3118 152.2395
16 111.7390 105.1648 99.8282 180.6757 177.0474 174.1178
17 127.1985 120.6481 115.3650 202.7767 199.3019 196.5120
18 143.7280 137.3282 132.2218 225.2949 221.9691 219.3136
19 161.3360 155.2236 150.4281 248.1518 244.9689 242.4413
20 180.0305 174.3518 170.0124 271.2867 268.2400 265.8330
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the solution are A1 = 0.4825, A2 = 2874.0292, β1 = 2.1375, β2 = −1.6375,
a = 0.2981, P ∗ = 24.2464. For λc = 4%, A1 = 0.3364, A2 = 3614.7458, β1 =
2.2656, β2 = −1.7656, a = 0.1967, P ∗ = 23.2856. For λc = 5%, A1 = 0.2406,
A2 = 4501.0051, β1 = 2.386, β2 = −1.886, a = 0.1337, P ∗ = 22.5434. The
higher the information cost, the lower the critical price at which the firm should
invest. Note that the higher the information cost, the lower the values of options
on future production and the smaller the values of the project.

2.3.3 Alternative models

The way the price of the commodity is represented may correspond to only
some specific assets. It is possible to use other processes like the mean-reverting
process in the description of the price dynamics. For example, suppose that the
price follows a mean-reverting process:

dP/P = κ(P ′ − P)dt + σ dz (2.27)

In this context, the price P tends to revert back to its ‘normal’ level P ′. The
term P ′ may be the long-run marginal cost. Using the same arguments as before,
the value V (P ) must satisfy the following equation:

1
2VPP σ 2P 2 + [(r + λP − µ − κ)P + κP ′]PVP

− (r + λV )V + j (P − co) = 0 (2.28)

This equation for the value of the project V (P ) must satisfy the
conditions (2.15) to (2.18). The value of the investment option C(P ) must obey
the following equation:

1
2CPP σ 2P 2 + [(r + λP − µ − κ)P + κP ′]PCP − (r + λV )V = 0 (2.29)

This equation must be solved under boundary conditions (2.21) to (2.23).
Equations (2.28) and (2.29) can be solved by numerical methods.

2.4 COMPARISONS TO OTHER MODELS

The models presented show how to value a project and an investment opportu-
nity as a set of options in the presence of information costs. These costs concern
the gathering of information about the project, some of which may be research
and development costs. These are sunk costs which are different from those
used in the standard literature.

In Myers and Majd (1990), the sunk costs are related to the decision to exit
or abandon a project for different reasons, including severance pay for workers
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and land reclamation for the case of a mine. In the Brennan and Schwartz
(1985) model, the decision to invest contains the sunk cost of land reclamation.

However, these models do not account for information costs. The Brennan
and Schwartz (1985) model shows how sunk costs of opening and closing a
mine can explain the ‘hysteresis’ observed in extraction industries. However,
their sunk costs are different from those presented here. If we recognize the
fact that information costs are related to the decision to open and close a mine,
then it is straightforward to derive their models in our context by accounting
for information costs.

In a different context, Majd and Pindyck (1987) study sequential investment
programs considered as compound options. Their analysis concerns a contingent
plan for making sequential and irreversible expenditures. In their model, the
firm invests continuously until the project is completed. Hence, each dollar
spent buys an option to spend the following dollar. In that model, investment
can be stopped and later restarted costlessly. Their analysis can be extended
by accounting for the information costs concerning the study of the decision to
suspend or to start the investment as in the above models.

The model proposed in Roberts and Weitzman (1981) stresses the role of
information gathering in sequential investment. In this type of investment, early
stages offer information about the net payoffs and costs of later stages. In fact,
the engineering prototype production and testing stages provide information
about the final costs and revenues. In the same way, the research and devel-
opment and testing stages of the development of a new product contribute to
the value of the final product. The shadow costs in that model are not very
different from ours. However, their model assumes that prices and costs do not
evolve stochastically. Hence, the analysis shows that the process of informa-
tion gathering might add a shadow value to the early stages of the investment.
Their results apply whenever information gathering, rather than waiting, yields
information. In practice, gathering information can reduce uncertainty but it
does not eliminate it. Therefore, it is possible to ‘pay’ informational sunk costs
even when waiting for new information. This is one of the main ideas in our
formulation.

2.5 CONCLUSION

This chapter develops some simple models for the analysis of the investment
decision under uncertainty, irreversibility and sunk costs like shadow costs of
incomplete information. We focus our analysis on investment in capital goods
and R&D, but the results apply to a broad variety of problems showing irre-
versibility. We first provide a justification for the use of information costs
in investment decisions. These costs refer to the shadow costs of incomplete
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information in the spirit of Merton’s model. We develop a continuous-time
model of irreversible investment in the presence of information costs. Then, we
extend the model so that the price of the firm’s output is random and the firm
can stop production whenever the price falls below variable cost. This allows us
to derive the value of the project and the value of the firm’s option to invest in
the project as well as the optimal investment rule in the presence of information
costs. We provide some analytical solutions and equations that can be solved by
numerical methods. Several simulations are run in our illustrations of the effects
of various parameters on project valuation and real option prices. The results are
roughly similar to those obtained in standard models, with an important differ-
ence. The behavior of the option to invest and the project value depend on the
possible interaction between the different values that determine the sign of the
algebraic sum of the interest rate, the opportunity cost of delaying the project,
the values of the information costs and the variance parameter. The models
can provide some insights into the importance of shadow costs or informa-
tion costs in the study of the irreversibility and the ranges of opportunity costs
implied in this context. This analysis can be applied to capital goods, R&D,
labor markets, natural resources and the environment, and to a broad variety
of investment problems in the presence of irreversibility and information costs.
Our analysis can be applied to the valuation of all well-known real options in
the presence of information costs. It can also be applied to the valuation of
political risks.

2.6 APPENDIX

An alternative derivation of the formula is as follows.
The relation between an option’s beta and its underlying security’s beta is:

βc = V (CV /C)βV (A2.1)

where βc is the option’s beta and βV is the stock’s beta.
According to Merton’s model, the expected return on a security should be:

RV − r = βV [Rm − r] + λV − βV λm (A2.2)

where RV is the expected return on the asset V over a short interval of time.
Equation (A2.2) may also be written as:

E(dV/V ) = [r + βV (Rm − r) + λV − βV λm]dt (A2.3)

Using Merton’s model, the expected return on a call option should be:

E(dC/C) = [r + βc(Rm − r) + λc − βcλm]dt (A2.4)
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Note that an information cost λc appears in the expression of the option’s
expected return. Multiplying equation (A2.3) and equation (A2.4) by V and
C yields:

E(dV ) = [rV + VβV (Rm − r) + V λV − VβV λm]dt (A2.5)

E(dC) = [rC + Cβc(Rm − r) + Cλc − Cβcλm]dt (A2.6)

When substituting for the option’s elasticity from equation (A2.1), the
equation for E(dC) becomes after transformation:

E(dC) = [rC + V CV βV (Rm − r) + Cλc − V CV βV λm]dt (A2.7)

Taking expectations of both sides and replacing dV , we get:

E(dC) = 1
2CV V σ 2V 2 dt + CV E(dV ) + Ct dt (A2.8)

Replacing the expected value of dV gives:

E(dC) = 1
2CV V σ 2V 2 dt

+ CV [rV + VβV (Rm − r) + V λV − VβV λm] dt + Ct dt (A2.9)

Combining and rearranging yields the following differential equation:

1
2CV V σ 2V 2 + (r + λV )V CV − (r + λc)C + Ct = 0 (A2.10)
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Chapter 3

Investment under economic
and implementation uncertainty

ANDRIANOS E. TSEKREKOS

SUMMARY

Some investment decisions are exposed to uncertainty over their
implementation phase apart from the underlying economic uncer-
tainty. We provide a general way of introducing implementation
uncertainty, which includes prior research as a special case. The
generality of our treatment stems from the fact that implementa-
tion uncertainty is allowed to affect both the level and the timing of
project profitability. In a case explicitly addressed, implementation
uncertainty might even cause earlier investment if the probability of
uncertainty resolution exceeds the opportunity cost of delaying invest-
ment. Investment will be earlier, the higher the effect of uncertainty
resolution on project profitability.

3.1 INTRODUCTION

When a firm is contemplating entry into a new market or investment in a
research project, its decision must be made in an uncertain environment and
in most cases it entails costs, which are at least partly irreversible. Uncertainty
arises from the stochastic nature of the economic value of the investment. Since
the return to a new product design or production process is derived from product
market profitability, the value of the investment is affected by fluctuations in
expected cash flows or market demand. On the other hand, R&D or investment
expenditures may be sunk costs either because of the specificity of their nature
in a particular firm/industry or because of what is termed the ‘lemons’ effect
(see Akerlof, 1970).
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A growing line of research known as ‘real options’, by exploiting the analogy
between real and financial investment decisions, has stressed the fact that uncer-
tainty and irreversibility give rise to option values which must be taken into
account when making optimal investment/entry decisions. This insight, applied
to the analysis of natural resource extraction by Brennan and Schwartz (1985),
improves upon traditional investment appraisal approaches (decision trees or
NPV-based criteria) by allowing the value of delay and the importance of flex-
ibility to be incorporated into the assessment.1 Since then, a substantial number
of papers have explored this idea. McDonald and Siegel (1985, 1986) and
Dixit (1989) price option values associated with entry and exit from a produc-
tive capacity. Pindyck (1988) examines irreversible investment decisions where
capacity utilization is a choice variable. Trigeorgis (1993) deals with the inter-
action of real option opportunities, while Dixit and Pindyck (1994) survey the
literature as a whole.

However, most of the real option models seem to abstract from the complex-
ities and the uncertainty surrounding the implementation phase of a project.
The characteristics of the implementation stage of an investment will have an
impact both on the timing and the level of profitability realized. For example,
large-scale projects have substantial time lags between the decision to invest
and the realization of cash returns, thus the length of the time lag has to be taken
into consideration2 (notable examples would be the aircraft and mining indus-
tries). In product markets, the level of profitability of a new product will depend
on distribution channels and the accessibility to selling points. The ability to
service the whole potential market is of great concern in some commodity
markets.3 In technology-intensive industries, the uncertainty concerning the
discovery of innovation will have an impact on the profitability of the project.
In industries where marketing considerations are important, the relative time
of adoption of a new product by consumers will affect the timing and level of
profitability realized.4

Notable exceptions in the real options literature are Majd and Pindyck (1987)
and Weeds (1999). The former look at option values and sequential investment
decisions when projects have a ‘time-to-build’ element. The rate of construction
in their model is deterministic and cash flows accrue to the investor only when
the project is completed. Weeds, on the other hand, deals with the technological
uncertainty of research projects by allowing cash flows to be realized only after
a random event (i.e. discovery). However, uncertainty over the implementation
phase in these models only affects the timing and not the level of profitability
realized from the project.

In this chapter we provide a general framework for incorporating uncertainty
over the implementation phase of investment, which allows both the timing
and the level of profitability realized to be affected. Implementation uncertainty
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is introduced as an exogenous parameter a, which summarizes the effect of
this uncertainty on the cash flows realized. In addition, this implementation
uncertainty is allowed to be resolved randomly according to a Poisson arrival.
Thus, the optimal investment timing of our firm will also be directly influenced
by the implementation uncertainty, through the effect on the level of cash flows.

Our findings imply that uncertainty over the implementation phase of a project
might cause earlier or later optimal investment compared to the corresponding
certainty case. The relative magnitudes of the probability of uncertainty reso-
lution and the opportunity cost of delay will determine which is the case.
Moreover, the value of the project is also affected by the direction (favorable
or not) of the resolution of implementation uncertainty. However, in a case
explicitly addressed in this chapter, favorable resolution does not necessarily
imply higher project value.

The exposition is based on the model by Dixit (1989), modified to allow
for implementation uncertainty. Specifically, as implementation uncertainty is
eliminated, the model collapses to his model. More importantly, our framework
is general enough to encompass the work of Majd and Pindyck (1987) and
Weeds (1999) as special cases, and has the ability to generate a range of other
possible outcomes.

The structure of the chapter is as follows. Section 3.2 describes our framework
for incorporating implementation uncertainty and presents the basic setting.
Section 3.3 examines the optimal investment strategy of our firm. The value of
the project and the critical value that triggers investment are derived in closed
form and comparative statics are presented. Section 3.4 concludes.

3.2 THE MODEL

A single risk-neutral firm is contemplating investment in a new project, facing
no actual or potential competitors in the area. The decision to invest is assumed
to be irreversible and the profitability of the project, as summarized by the state
variable x, evolves stochastically over time. The market profit flow, x, evolves
exogenously according to a geometric Brownian motion with drift given by the
following expression:

dxt = µxt dt + σxt dWt (3.1)

where µ ∈ [0, r) is the drift parameter, measuring the expected growth rate5

of x, σ > 0 is the instantaneous standard deviation or volatility parameter, and
dW is the increment of a standard Wiener process, dWt ∼ N(0, dt).
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Note that geometric Brownian motion is a Markov process with continuous
sample paths. The probability distribution for the value of the process at any
future date depends only on its own current value, i.e. it is unaffected either by
past values of the process or by any other current information. Thus, to make a
best estimate of the future value of the process, all that is needed is the current
level of x, along with the parameter values µ and σ .

When the firm invests, it pays a sunk cost K > 0. To introduce implemen-
tation uncertainty, we assume that upon investment the firm receives ax with
a ∈ [0, 1]. The implementation parameter a collectively summarizes any exoge-
nous effect of the implementation phase on the project value, i.e. time-to-build
effects, distribution difficulties, technological uncertainty, inability to service
the whole market, etc. Obviously, letting a = 1 abstracts from any complica-
tions arising in the implementation phase of the project. If a < 1, we allow
the implementation uncertainty to be resolved randomly according to a Poisson
arrival with parameter (or hazard rate) h, i.e.

dq =
{
ξ(a) w.p. h dt

0 w.p 1 − h dt
(3.2)

where ξ , the effect of the uncertainty resolution (i.e. the Poisson jump) on the
value of the project, depends on the parameter a, and ‘w.p.’ = with probability.

The flexibility that our framework provides could be displayed with reference
to Figure 3.1. In this figure, let T stand for the random time at which our firm
optimally invests and τ > T stand for the expected time at which implementa-
tion uncertainty is resolved, conditional on investment having occurred. Panel
(a) corresponds to the case where implementation uncertainty only affects the
timing of the project cash flows, i.e. the cases treated by Majd and Pindyck
(1987) and Weeds (1999). In Weeds (1999) the firm receives no cash flows
(a = 0) even after investment, until implementation uncertainty is resolved (in
the form of a Poisson jump, a = 1). Similarly, in Majd and Pindyck (1987) cash
flows accrue to the project only when implementation (in their case building
the project) is completed.6 Panels (b) and (c) represent intermediate cases where
implementation uncertainty is allowed to affect both the level and the timing of
the project’s profitability. Implementation uncertainty can be resolved favorably
(panel b) or unfavorably (panel c) for our firm. These cases demonstrate the
generality of our framework.

In the next section we derive the optimal investment behavior for our firm
under the ‘regime’ of panel (b). Similar reasoning would provide the optimal
solution for any possible uncertainty resolution case.
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Panel (a)

Panel (b)

Panel (c)

T t
t

Level of a

a = 1

a = 0

T t
t

Level of a

a = 1

a = 0

0 < a < 1

t

Level of a
a = 1

a = 0

T t

0 < a < 1

Figure 3.1 Alternative formulations depending on different evolution for the exogenous implemen-
tation parameter a ∈ [ 0 , 1]. T is the optimal investment/entry time and τ is the random time at
which implementation uncertainty is resolved. In panel (a), which corresponds to the cases treated
by Majd and Pindyck (1987) and Weeds (1999), our firm receives no cash flows (a = 0 ) until imple-
mentation uncertainty is resolved. Our specification allows the firm to earn cash flows from the time
of entry with the possibility of favorable (panel b) or unfavorable (panel c) uncertainty resolution
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3.3 OPTIMAL INVESTMENT TIMING

The investment decision that our firm faces could be formulated as the following
optimal stopping time problem:

V ∗ = max
T

E

{
e−rT

[∫ ∞

T

e−r(t−T )axt dt

+
∫ ∞

τ

e−r(t−T )(1 − a)xt dt − K

]}
(3.3)

where E denotes the risk-neutral expectation, T is the unknown future stopping
time at which the investment is made, and τ is the random time of the Poisson
jump conditional on investment having occurred. Equation (3.3) simply says
that upon investment at T the firm gets axt perpetually and after a random
time τ ≥ T (when implementation uncertainty is resolved) the remaining frac-
tion (1 − a)xt . The stopping time T is optimally chosen so as to maximize
this equation.

Note that the only decision variable for our firm is the stopping time T at which
the cost K is sunk. The resolution of implementation uncertainty is random
and our firm has no control over it. Our solution methodology draws on the
Hamilton–Bellman–Jacobi principle of optimality7 (hereafter HBJ). Namely,
the value of the project before and after investment is examined and the optimal
investment timing is derived from boundary conditions so as to maximize the
value of the firm.

3.3.1 Value of the project before investment

Let V0(x) denote the value of the project in the continuation region (values of
x for which it is not yet optimal to invest). Prior to investment, the firm only
holds the opportunity to invest in the project and get the flow axt perpetually
upon entry. It has no cash flows but may experience a capital gain or loss on
the value of its option. Hence, in this region the HBJ equation for the value of
the investment opportunity V0(x) is given by:

rV0(x)dt = E[dV0(x)] (3.4)

Expanding dV0(x) using Itô’s lemma, we can write:

dV0(x) = V ′
0(x)dx + 1

2V ′′
0 (x)(dx)2

Substituting from equation (3.1) and noting that E[dWt ] = 0, we can write:

E[dV0(x)] = [
µxV ′

0(x) + 1
2σ 2x2V ′′

0 (x)
]

dt
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Thus the HBJ equation (3.4) gives rise to the following second-order differen-
tial equation:

1
2σ 2x2V ′′

0 (x) + µxV ′
0(x) − rV0(x) = 0 (3.5)

From equation (3.1) it can be seen that if x ever goes to zero8 it then stays
there. Therefore the option to invest in the project should be worthless and
V0(x) must satisfy the following boundary condition:

lim
x→0+

V0(x) = 0 (3.6)

Solving the differential equation (3.5) subject to (3.6), the following solution
for the value of the project is obtained:

V0(x) = B(a)xλ (3.7)

where B(a) ≥ 0 is a constant whose value is determined as part of the solution
and λ is the positive root of the fundamental quadratic:9

Q = 1
2σ 2λ(λ − 1) + µλ − r = 0 (3.8)

3.3.2 Value of the project after investment

Now consider the value of the project in the stopping region, i.e. values of x for
which it is optimal to undertake the investment at once. Note that in this region,
the value of the project is exposed not only to economic uncertainty – the
evolution of the state variable in equation (3.1), but also to implementation
uncertainty – the independent Poisson jump in equation (3.2). Moreover, since
investment is irreversible, the value of the project in the stopping region, V1(x)

is given by the expected value alone with no option value terms. Thus the HBJ
equation in this region is given by:

rV1(x)dt = E[dV1(x)] + ax dt (3.9)

where the last term in equation (3.9) recognizes the fact that in this region the
firm receives a perpetual cash flow of magnitude ax every instant. Expanding
dV1(x) using Itô’s lemma yields:

dV1(x) = V ′
1(x)dx + 1

2V ′′
1 (x)(dx)2 + V ′

1(x)dq
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Substituting from (3.1), (3.2) and noting that E[dWt ] = 0 gives:

E[dV1(x)] = {
rxV ′

1(x) + 1
2σ 2x2V ′′

1 (x) + hE [V1(x + z(a)) − V1(x)]
}

dt

where the last term in the square brackets captures the effect of the Poisson
jump on the value of the project. It is easy to see that for the case where
0 < a < 1 after investment at T [panel (b) in Figure 3.1], this term will be
E[V1(x + ξ(a)) − V1(x)] = (1 − a)x/(r − µ) and the previous equation would
now be:

E[dV1(x)] =
[
µxV ′

1(x) + 1

2
σ 2x2V ′′

1 (x) + h
(1 − a)x

r − µ

]
dt

which simply states that with conditional probability h dt , implementation uncer-
tainty is resolved and the remaining fraction of profitability (1 − a)x is realized
perpetually. Substituting in equation (3.9) and rearranging gives rise to the
following second-order differential equation:

1
2σ 2x2V ′′

1 (x) + µxV ′
1(x) + H(a, h)x − rV1(x) = 0 (3.10)

where H(a, h) ≡ [a(r − µ − h) + h]/(r − µ). Keeping in mind that the firm
has no option value components in this region, a simple substitution would
verify that the solution for the value of the active firm is given by:

V1(x) = x

r − µ
H(a, h) (3.11)

3.3.3 Value of the project and the investment trigger

The boundary between the continuation and the stopping region is given by
a critical value of the stochastic process or trigger point such that continued
delay (immediate investment) is optimal for values of x below (above) this
level. Let x̄ denote this critical value of the state variable. The optimal stopping
time T is then defined as the first time that the state variable enters the interval
[x̄,∞), i.e.

T = inf{t > 0 : x ≥ x̄}

At the boundary between regions, the critical value x̄ must satisfy the following
conditions by arbitrage:

V0(x̄) = V1(x̄) − K (3.12)

V ′
0(x) = V ′

1(x) (3.13)
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Condition (3.12), also known as the value-matching condition, simply states
that when the critical value x̄ is reached, the firm exercises its option to invest
in the project by paying the sunk cost K , to get the value of the active project.
Condition (3.13), also known as the smooth-pasting condition, says that at the
critical value, the value function of the continuation and stopping regions must
meet smoothly to ensure optimality.10 Substituting expressions for the value
functions from equations (3.7) and (3.11), these two conditions uniquely deter-
mine the critical value x̄ and the unknown coefficient B(a). The result can be
summarized in the following proposition.

Proposition 3.1 Under the setting described in the last two sections, the value
of the project prior to investment is:

V (x) =
(

x̄

r − µ
H(a, h) − K

)(x

x̄

)λ

(3.14)

where H(a, h) and λ are as previously defined. The firm’s optimal strategy
consists of entering when xt first crosses x̄ from below, where x̄ is given by:

x̄ = λ

λ − 1
(r − µ)K

1

H(a, h)
(3.15)

Proofs of this and subsequent propositions are provided in the appendix
(Section 3.5). The project value and optimal investment trigger in this model
are essentially modified versions of the value and optimal exercise strategy of
an infinite American call option (see Merton, 1973).

Figure 3.2 shows the value of the project and critical investment threshold
for different values of a and how they converge to the implementation certainty
case (a = 1).11 Let φ ≡ x̄/xm denote the ratio of the investment trigger of our
setting to the trigger that would emerge by abstracting from implementation
phase uncertainty (denoted by xm). If φ > 1 (φ < 1), our firm optimally invests
later (earlier) in the face of implementation uncertainty. Compared to the case
without implementation uncertainty, the optimal policy depends on the extra
term H , which is a function of a (the parameter that determines the magnitude
of the jump), h (the parameter that determines the timing of the Poisson arrival),
and δ ≡ r − µ (the opportunity cost of delaying investment and instead keeping
the option to invest alive).12 A simple substitution would verify that φ is equal
to the reciprocal of the H(a, h) term, i.e.

φ = 1

H(a, h)
= δ

aδ + (1 − a)h
(3.16)

From equation (3.16), the next result follows naturally.
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Figure 3.2 The value of the project as a function of the state variable x , for different values of the
implementation parameter a ∈ [ 0 , 1]. The dashed lines indicate the optimal investment threshold
x̄ for each case, which are (rounded to four decimals): 0.1800, 0.2077, 0.2455 and 0.3000 for
a = 1 to a = 0 .4 , respectively. The parameters used are: r = 0 .03 , µ = 0 , σ = 0 .1 , K = 4 and
h = 0 .01

Corollary 3.1 If the hazard rate h < δ, φ exceeds unity. If h > δ, φ is less than
one. In the special case where h = δ, implementation uncertainty considerations
are not important as far as the investment policy is concerned (φ = 1).

The above corollary simply states that the investment timing in our setting might
lead or lag the timing when implementation uncertainty is not present, depending
on the magnitude of the Poisson density and the profitability return shortfall.

Figure 3.3 plots the critical value x̄ as a function of a under the two different
‘regimes’ of Corollary 3.1. We also include the implementation certainty critical
value xm, which is between ‘regimes’ as Corollary 3.1 states. As we move away
from implementation certainty (a = 1), our firm optimally enters later (earlier)
depending on the magnitude of the conditional probability of the profitability
jump against the ‘dividend-like’ shortfall in the state variable. If our firm knows
that it will take a considerable amount of time to fully exploit the profitability
of the market (low h), option values are preserved in the face of implementation
uncertainty and our firm will optimally delay incurring the sunk cost K until
further into the future. However, if implementation uncertainty is short-lived
(high h), our firm will be eager to undertake the project earlier and obtain the
cash flows that actual investment guarantees.

3.3.4 Comparative statics and numerical example

Our analytical solution in Proposition 3.1 lends itself easily to the examination
of comparative statics over key parameters of the specification. Differentiating
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Figure 3.3 The critical investment threshold x̄ as a function of the implementation parameter
a ∈ [ 0 , 1], under two different ‘regimes’: h > δ (h = 0 .05 , δ = 0 .03 ) and h < δ (h = 0 .01 ,
δ = 0 .03 ). The dashed line corresponds to the critical investment threshold with implementation
certainty, xm (i.e. h = δ). The parameters used are: r = 0 .03 , µ = 0 , σ = 0 .1 and K = 4

equation (3.14) with respect to the implementation parameter a yields:

∂V

∂a
= [λ(λ − 1)K]1−λ

[
x

r − µ
H(a, h)

]λ

(δ − h) (3.17)

The sign of this partial derivative depends on the sign of the last term, δ − h.
Thus, when the opportunity cost of delay exceeds the intensity of the uncer-
tainty resolution, the greater the effect of the implementation uncertainty on
profitability (higher a), the higher the value of the project. However, if the
conditional probability of uncertainty resolution is high enough, a higher a

would lead to a project value decrease. This is illustrated in the numerical
example summarized in Table 3.1.

Project values and optimal investment thresholds (in parentheses) are reported
for a set of varying parameters.13 As the implementation parameter a increases
(from 0.75 to 0.95), the value of the project increases (from 0.0136 to 0.0194)
when δ = 0.02 > h = 0.01, but decreases (from 0.0536 to 0.0249) when the
inequality is reversed (δ is 0.02 and h increases to 0.05).

Figure 3.4 plots the value of the project as a function of a under both cases.
By examining Figures 3.3 and 3.4, our model suggests that when h > δ, our
firm optimally enters earlier than in the implementation certainty case and the
value of the project is negatively related to a. On the other hand, in cases where
the opportunity cost of delay exceeds the probability of uncertainty resolution,
our firm optimally delays incurring the sunk cost K until further into the future
and the value of the project will increase with a. Figure 3.4 and Table 3.1 show
that changes in a affect project value in a non-linear fashion, since a, δ and h
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Figure 3.4 The value of the project V( x , a) as a function of the implementation parameter
a ∈ [ 0 , 1], under two different ‘regimes’: h > δ (h = 0 .05 , δ = 0 .03 ) and h < δ (h = 0 .01 ,
δ = 0 .03 ). The dashed line corresponds to the value of the project under implementation certainty,
Vm (i.e. h = δ). The parameters used are: r = 0 .03 , µ = 0 , σ = 0 .1 , K = 4 and x = 0 .02

are included in the non-linear part of equation (3.17) through the H(a, h) term.
The effect of a changing a seems to induce larger decreases in value (h > δ)
when a is low but larger increases (h < δ) when it is high.

Differentiating now with respect to the hazard rate of the Poisson arrival
gives:

∂V

∂h
= (1 − a)

[
λ

λ − 1
K

]1−λ [
x

(r − µ)2

]λ

H(a, h)(r − µ) ≥ 0 (3.18)

which implies that an increase in the probability of the uncertainty resolution
has a positive impact on the value of the project.

Figure 3.5 plots the value function against the hazard rate [equation (3.18)]
and the numerical example confirms the non-linear positive dependence evident
in the graph. The positive dependence of project value on h is more pronounced
the lower the level of volatility (σ = 0.05) and a. The intuition is that lower
market volatility means a larger fraction of the project’s upside potential is
represented by the Poisson arrival, thus an increase in intensity (h) has a more
significant impact on the firm’s option. On the other hand, bear in mind that
h dt is the conditional probability that implementation uncertainty is resolved,
and the remaining (1 − a)x is realized. Thus, the larger the part of market
profitability subject to implementation uncertainty (i.e. higher a), the higher the
impact of an increased intensity on project value.

All other comparative statics yield intuitive results, namely ∂V/∂σ > 0,
∂V/∂µ > 0, ∂V/∂r < 0. An increase in σ and µ (decrease in r) causes an
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Figure 3.5 The value of the project V( x , a) as a function of the intensity of the Poisson arrival
h ∈ [ 0 , 1]. The parameters used are: r = 0 .03 , µ = 0 , σ = 0 .1 , K = 4 , x = 0 .02 and a = 0 .8

increase in the value of the project. The effect of a volatility increase is more
evident for high values of a and low values of the ‘return shortfall’ δ.

3.4 CONCLUDING REMARKS

Part of the uncertainty inherent in project investments arises from the unknown
future economic value of the project. However, in some industries there is
also significant uncertainty over the implementation phase of a project. In
product markets, the sales of a new product at launch will be influenced by
the uncertainty over distribution channels and access to customer selling points.
In large-scale projects (aircraft, mining), uncertainty over the construction and
completion of the project is significant. It is natural to expect that in such
cases, the level and the timing of the project’s profitability will be affected by
the resolution of implementation uncertainty.

All previous models of investment under uncertainty, with the exception of
Weeds (1999) and Majd and Pindyck (1987), abstract from complexities over
the implementation phase of a project. We provide a general framework for
incorporating implementation uncertainty, which includes the two previously
mentioned models as special cases, by allowing both the level and the timing
of project profitability to be exposed to such uncertainty. Intuitively, the project
value is found to depend on the direction (favorable or not) of uncertainty
resolution, but in a non-linear fashion.

In a case explicitly addressed, implementation uncertainty does not neces-
sarily guarantee further delay in the investment decision. If implementation
uncertainty is resolved favorably, the optimal investment timing is found to
depend on the magnitude of the opportunity cost of delay compared to the prob-
ability of uncertainty resolution. Naturally, our model implies investment delay
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if the probability of uncertainty resolution is low (lower than the opportunity
cost of delay). However, if the opportunity cost of delaying investment is rela-
tively low compared to the probability of resolution, a firm will optimally invest
earlier, so as to benefit from the possible resolution of implementation uncer-
tainty after investment. The higher the possible gain of uncertainty resolution,
the earlier is optimal investment.

3.5 APPENDIX

3.5.1 Proof of Proposition 3.1

The general solution to the differential equation (3.5) is:

V (x) = B1(a)xλ1 + B2(a)xλ2 (A3.1)

where B1(a) and B2(a) are constants (depending on the parameter a) to be deter-
mined from the boundary conditions and λ1 and λ2 are the negative and positive
roots of the fundamental quadratic in equation (3.8) (see for example Shimko,
1992, chapter 2). As x → 0, the right-hand side of equation (A3.1) explodes if
B1(a) �= 0. Since this contravenes the boundary condition in equation (3.6), i.e.
limx→0+ V (x, a) = 0, we conclude that B1(a) = 0.

Substituting V (x) = B2(a)xλ2 in boundary condition (3.12), i.e.

V (x̄) = x̄

r − µ
H(a, h) − K (A3.2)

and dropping the subscript on the positive root, λ2 for simplicity, we obtain
the expression given in equation (3.14). The optimal investment trigger, x̄, is
found as the root of the smooth-pasting condition in equation (3.13). It is easy to
verify that the second-order condition corresponding to this optimality condition
is ∂2V (x, a)/∂x2 > 0. QED

3.5.2 Proof of Corollary 3.1

From the definition of φ in equation (3.16), it is straightforward to derive that:

φ = δ

aδ + (1 − a)h
> 1 ⇒ δ > aδ + (1 − a)h ⇒ δ > h (A3.3)

φ = δ

aδ + (1 − a)h
< 1 ⇒ δ < aδ + (1 − a)h ⇒ δ < h (A3.4)

In the special case that h = δ, the model collapses to the implementation
certainty case (a = 1). QED
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NOTES

1. The reconciliation of traditional investment appraisal techniques and real option
valuation paradigms is an area of active research. For some recent results, see
Teisberg (1995) and Kasanen and Trigeorgis (1995).

2. The importance of sequential investment and time to build have been demon-
strated by Kydland and Prescott (1982) in the context of a general equilibrium
model.

3. Alfred S. Eichner (1970) deals with this inability to service the whole potential
market at initial stages in his case study of the sugar refining industry in the US.

4. See Kotler (1988) and his adoption categorization theory.
5. The restriction that µ < r , commonly found in real option models, is necessary

to ensure that there is a positive opportunity cost to holding the option, so that
it would not be held indefinitely. In more technical terms, the integral over
time of discounted expected values of xt would be unbounded if this restriction
did not apply. Since the model is concerned with the effects of implementation
uncertainty, not expected drifts, the conclusions from the analysis are unaffected
by this assumption.

6. Even though both models conform to the same case of our framework, there
is a qualitative difference, which should be stressed. The implementation time
lag τ − T is random (subject to a Poisson jump) in Weeds, while in Majd and
Pindyck it is a deterministic function of time depending on construction rates.

7. For a rigoros exposition of the technique and its intuition see Bellman (1957) or
Bellman and Dreyfus (1962). Alternatively, Dixit and Pindyck (1994, chapter 4)
present applications of the technique in a real options context.

8. Technically this is a zero probability event if x0, the initial value of the state
variable, is positive.

9. The positive root λ is a function of the drift and volatility parameters, µ and σ ,
and the riskless rate r , and has the following analytic expression:

λ = 1

2
− µ

σ 2
+
√(

µ

σ 2
− 1

2

)2

+ 2r

σ 2

10. Alternatively, if a kink arose in V (x) at x̄, a deviation from the supposedly
optimal policy would raise the firm’s expected payoff. See Dumas (1991) for
a clear presentation of the smooth-pasting and high-contact conditions or Dixit
and Pindyck (1994, chapter 4, Appendix C), for a less technical explanation.
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11. This and subsequent figures employ the parameter values used by Dixit (1989)
as a base case, namely µ = 0, σ = 0.1, r = 0.03, K = 4 and h = 0.01.

12. Drawing upon the analogy of the investment opportunity with financial options,
δ is sometimes referred to as a dividend or convenience yield. It collectively
accounts for any shortfall in the return of the state variable that makes exercise
in finite time optimal. For an exposition of this case see the seminal paper of
McDonald and Siegel (1985) or the survey work of Dixit and Pindyck (1994).

13. In Table 3.1, K = 4 and the state variable x is set at a level of 0.02.
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Chapter 4

An options approach to new
product development: experience

from Philips Electronics

ONNO LINT AND ENRICO PENNINGS

SUMMARY

This chapter considers the product development process as a series
of (real) options with reducing uncertainty over time. Criteria are
developed to decide on speeding up or delaying the development
process. The chapter demonstrates how, in the R&D phase, any
particular project may be assigned within a 2 × 2 matrix of uncertainty
versus R&D option value. A similar matrix can be established for
the product launch phase. The matrices support portfolio manage-
ment throughout the different phases of development and enable
management to decide on an appropriate point at which to abandon
individual projects. The approach originates from applying real options
insights to the product development process at Philips Electronics.
The chapter is illustrated with some actual R&D projects.

4.1 INTRODUCTION

Management is often confronted with the dilemma of whether or not to invest in
a particular stage of the new product development (NPD) program, given a high
level of market and technology uncertainty. Rapid product obsolescence and the
emergence of new markets require a fast resource allocation process in NPD,
while at the same time market and technology uncertainty demand flexibility in
the program (see Sanchez, 1995 and Wind and Mahajan, 1988). The trade-off
between accelerating time to market and making pre-launch improvements in
product performance is a topical concern. On the one hand, an accelerated
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market introduction may lead to a substantial gain of future market share
(see Urban et al., 1986; Liebermann and Montgomery, 1988; or Brown and
Lattin, 1994). Millson et al. (1992) and Urban and Hauser (1993) give surveys
on the acceleration of the NPD process by skipping phases. On the other hand,
as argued by Griffin and Page (1993), reducing time to market is only advisable
when this does not limit the probability of success of the final product to be
introduced to the market.

Given that financial risk assessment is important in the NPD process, standard
discounted cash flow methods such as the NPV method dominate the project
evaluation process (Newton et al., 1996). However, only when the NPD process
is treated as a fixed series of investments can the application of the NPV method
be justified. With an NPV approach, differing management forecasts of project
values are weighted in order to get a single forecast of the average project
value, thereby neglecting the extra information in the entire data set (i.e. the
NPV rule assumes a fixed scenario without any contingencies).

In this chapter, an option approach to the NPD process is used to develop a
framework that incorporates market and technology uncertainties in all go/no-
go decisions. In particular, the product launch phase is treated as an American
perpetual call option, which is a timing option with no limitation to the length
of the exercise time. In order to create this option, a firm has to success-
fully fulfill the R&D stage. The value of the product launch option during the
R&D stage is the discounted expected value of the opportunity to launch the
product after R&D completion. The value of this option is derived and explicit
decision criteria are developed that enhance decision making on abandoning,
mothballing, delaying or speeding up R&D projects during the NPD trajectory.
The calculation of this so-called forward start American perpetual call option
adds to the literature on forward start options (see Hull, 2000).

The traditional process for new product development is the sequential
approach. Several refinements to this approach have been proposed, mainly
because of the lack of speed and flexibility in the sequential approach. Takeuchi
and Nonaka (1986) propose a holistic approach. They acknowledge that the
NPD process involves different stages, but stress that these stages interact with
each other. Their approach to NPD builds upon the iterative communication
between the functional specialists and the parallel processing of tasks. Since
the process does not delay when one functional department is lagging behind,
this NPD process is flexible and effective. The holistic approach improves the
sequential approach, but lacks criteria on how much integration is necessary
and this may hamper its use in practice (Gupta et al., 1986). Also, the approach
does not explicitly capture market and technology uncertainty, nor does it
give guidelines for the optimal time to abandon a project or introduce the
technology to the market. Since development already starts when research is
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still in its embryonic stage, projects are liable to continue once research is
finished. Quality function deployment (QFD) provides another approach that
aims at simultaneous development across functions (Hauser and Clausing, 1988;
Griffin, 1992; Griffin and Hauser, 1992). QFD uses a customer’s perceptions of
several physical product characteristics and requirements of a new product in
order to arrive at the final new product. However, the proposed framework is
less suited for the whole NPD process, but is particularly useful in the design
phase of the NPD process.

A classic redesign of the NPD process in such a way that management can
better deal with market and technology uncertainty is the phase review process
(Cooper, 1990). Phase review processes divide NPD into a predetermined set
of stages with checkpoints (gates). Each gate is characterized by a set of deliv-
erables or inputs, a set of criteria and an output. The inputs of the functional
area at each stage are the deliverables from the functional area at the preceding
stage. The criteria are the hurdles that the project must pass at the gate to have
it opened to the next stage. At these stages, management can perform different
kinds of assessment such as market, technical, financial and legal. By dividing
the NPD process into different stages at which a go/no-go decision is made, this
approach deals effectively with market and technology uncertainty surrounding
the new product. However, the stage–gate approach does not consider option
characteristics within NPD.

By treating NPD as an incremental process, the option approach gives explicit
decision rules for the trade-off between validating the project or market pre-
emption. We set up a framework for NPD that can be regarded as (i) an
extension of stagewise NPD processes, (ii) an interface between marketing,
finance and R&D, and (iii) an amalgamation of qualitative and quantitative
NPD assessment criteria. Our main contribution is to derive economic criteria
for the go/no-go decision before and after the R&D stage – including the deci-
sion to launch a new product – based upon the flexibility to opt out at each
decision node. We derive pre- and post-R&D option portfolios that enable a
thoughtful comparison between feasible projects. This way, we provide a justi-
fied assessment of idiosyncratic new product initiatives at all stages of the NPD
process in an uncertain environment. When economic criteria for assessing a
project’s flexibility in terms of the value to opt out are lacking, decision rules
are invalid and a balanced dynamic portfolio of feasible business initiatives
cannot be created.

The essential parameter is the uncertainty both during and after the R&D
stage. When uncertainty is high, there is a high probability that a high (low)
project value turns out to be low (high). Since management has the flexibility
to opt out of the NPD process at all stages, downward risk is limited, while
upward potential is not. Therefore, a higher uncertainty is beneficial during the
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initial stages of the NPD process. However, with a high uncertainty at the final
stages, the option approach induces firms to postpone market introduction, as
there is a high risk of failure. Thus, our option approach is consistent with the
observation made by Crawford (1992) that delaying market introduction, while
gathering more information, is valuable in the case of high uncertainty.

The following studies are related to the framework presented in this chapter.
Baldwin and Clark (1998) analyze the option value of modularity in product
design. Their approach involves simultaneous development of complementary
projects, while our approach assumes that projects are mutually exclusive.
Cohen et al. (1996) examine the performance and time-to-market trade-off. The
authors analyze in a deterministic setting the optimal time to market and the
product performance target of a single new product. We focus on uncertainty
during the NPD process, the decision to skip the validation stage in the NPD
process or entirely refrain from market introduction. Huchzermeier and Loch
(2001) use a real option approach to evaluate flexibility in R&D and extensively
address the distinction between financial uncertainty and stochastic variability in
operations (budget, schedule, technical product performance and market require-
ments). The authors focus on the value of a single R&D project, while we
concentrate on portfolios of R&D options and product launch options. Finally,
Childs and Triantis (1999) propose a framework for dynamic R&D investment
policies. They consider a multi-period model for the R&D process and provide
a numerical solution procedure to derive the optimal investment strategy and to
value the resulting R&D program. In particular, they build a three-dimensional
lattice to model two projects and demonstrate how R&D characteristics such
as learning, interaction between projects, and competition can be incorporated.
The authors concentrate on managerial flexibility during the R&D stage, while
we also take into account managerial flexibility subsequent to completion of
the R&D stage.

The chapter is organized as follows. Section 4.2 discusses investment under
uncertainty and the specific conditions and assumptions that are fundamental
to the option approach to the NPD process. Section 4.3 presents our option
framework for NPD that helps to solve timing issues of sequential investments
in NPD. Subsequently, Section 4.4 analyzes the value of managerial flexibility
at the R&D and launching stages, thereby creating explicit rules for the decision
to conduct R&D. In Section 4.5, we introduce the option portfolios which enable
management to discriminate between different but equally feasible alternatives.
Finally, Section 4.6 concludes the chapter.

4.2 ASSUMPTIONS

The real option approach (McDonald and Siegel, 1986; Dixit and Pindyck, 1994;
Trigeorgis, 1996) states that firms should only make an irreversible investment
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when the value of the investment opportunity, V , exceeds some critical value,
V ∗, which reflects the required fixed investment sum, I , and the value of waiting
to invest. The critical value can be written formally as g(σ2, δ)I , with g(σ2, δ) ≥
1 defined in the appendix (Section 4.7). The parameter σ2 denotes the standard
deviation per unit time of the growth in V after the R&D stage and δ reflects the
value that is lost by waiting. Let TL denote the time when R&D is finished and
product launching could take place. Product launch prior to this lower bound
of market introduction entails substantial technology risk and may have severe
consequences for future market share.

The standard deviation is a measure of the uncertainty surrounding the project
value. As uncertainty increases, the probability that V ex ante appears to be
lower than the value expected at the moment of market introduction increases.
At the same time, as uncertainty increases, the chances of attaining a higher
project value by waiting increase. Therefore management will require a higher
V ∗ in an environment with higher uncertainty. When there is no uncertainty at
all, market introduction will take place when the (deterministic) value of the
investment opportunity exceeds the investment sum. This investment rule is just
the traditional net present value (NPV) rule. The NPV rule is encompassed in
this microeconomic framework since g(σ2, δ) → 1 in the case of σ2 → 0.

We define the following four specific assumptions with respect to the option
approach to the NPD process.

(A1) The capital and marketing expenditures that are required for market
introduction are significantly larger than the cost of R&D. Also, these expen-
ditures are known ex ante and are assumed to occur instantaneously at a
specific time.

When capital and marketing expenditures are relatively small, but R&D
investment is large, the investment decision is not about creating the launching
opportunity, but about conducting R&D (and subsequent product launch) or
not. For empirical examples supporting assumption A1, see (Urban and Hauser,
1993, chapter 3, p. 60).

(A2) The product launch investments, consisting of the capital and marketing
expenditures that are required for successful market introduction, are assumed
to be irreversible.

The expenditures cannot be undone or in some way be recovered. Without
this (reasonable) assumption, there is no final go/no-go decision as a project
can be stopped after product launch of the new product without major financial
consequences.

(A3) The length of the R&D stage is fixed and R&D are considered as
one stage.

When the R&D stage is complete, management holds the option to introduce
the newly developed product to the market. In order to calculate the value of the
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R&D, the option value must be discounted to get the present value. For reasons
of tractability, we assume that the length of the R&D stage is fixed. Note that
although the length of the R&D stage is fixed, the outcome of the project value
is stochastic. The length of the R&D stage is given by TL − tRD, where tRD

is the moment at which R&D starts. Treating TL as an optimization parameter
requires a separate analysis. We refer to Granot and Zuckerman (1991) for an
interesting multi-period model in which the stopping time of the R&D process
is introduced as a decision variable to be determined endogenously.

(A4) The project value follows a geometric Brownian motion1 with drift µ

and standard deviation σ1 for t ≤ TL and a geometric Brownian motion with
zero drift and standard deviation σ2 for t > TL. So, dV = µV dt + σ1V dz for
t < TL and dV = σ2V dz for t ≥ TL.

Once the R&D stage is successfully completed, the uncertainty surrounding
technology is resolved. Also, part of the market uncertainty is resolved. Since
product specifications are set and scans of targeted markets are conducted,
product–market combinations become clear. Therefore, σ1 will drop2 to a lower
value σ2 after TL. In our model, σ2 represents the market uncertainty to which
the project value is exposed, while σ1 represents both market and technology
uncertainty to which the project value is exposed.

4.3 AN IMPROVED INVESTMENT APPROACH TO THE NPD PROCESS

Our option approach to the NPD process takes financial elements into account
within the NPD process to capture the flexibility value and extend the R&D–
marketing interface to a cross-functional interaction between R&D, marketing
and finance. At each stage of the NPD process, management has the possi-
bility, but not the obligation, to step into the next stage. In the last part of
the product development cycle this turns into the possibility of launching the
new product. From the possibility of stopping the NPD process at each stage,
including the possibility of refraining from product launch when market and
technology conditions turn out to be unfavorable, downward risk is limited
while upward potential is maximized. Flexibility, though it does not offer bene-
fits in an environment known with certainty, is advantageous under uncertainty.
At each stage this flexibility stems from different options. First, there exists the
option to conduct R&D without the obligation of product launching. Second,
when R&D is complete, management has the option of validation or market
introduction.

Our framework is based upon the stage–gate approach and is graphically
presented in Figure 4.1. The framework consists of four stages: (i) idea gener-
ation and initial screen, (ii) research and development, (iii) validation, and
(iv) product launch. Between all stages, option assessment of each individual
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Figure 4.1 Framework

project will take place. We explain the specific contribution of the option
approach at each of these stages.

4.3.1 Idea generation and initial screen

At the initial screen, the product idea is evaluated and a go/no-go decision
whether to embark on large-scale R&D is made. All involved functional depart-
ments – marketing, finance, R&D and engineering – will contribute to and eval-
uate the input parameters for option decision making. This way, the potential
value of the project (V ) as well as the aggregate market and technology uncer-
tainty (σ1) surrounding the project value can be analyzed. With managerial
judgement, the fraction of market uncertainty (σ2) within the aggregate uncer-
tainty must be captured. Also, the capital and marketing expenditures that are
required for market introduction, as well as the length of the R&D stages, are
determined. At the same time a concept business plan is written with the vision,
scope, strategic fit, unique selling points, entry barriers, challenges, competen-
cies and a suitable marketing mix.

The interaction between the qualitative strategic assessment and the quantita-
tive option assessment will lead to realistic business plans, as well as to realistic
input parameters as inaccurate financial, marketing or R&D assessments will be
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detected and changed to meet reality. Finally, the expenditures that are required
for successful R&D are determined. When all information is gathered and the
tasks are complete, the value of the option to launch (OL) can be calculated and
compared to the costs of the option (C). These costs denote the R&D effort that
is required for successful completion of the research stage. When C > OL, the
product should move back to the initial screen. Consequently, the vision, scope
and unique selling points of the new product have to be redefined in order to
attain a project value that sufficiently increases the option value.

4.3.2 Research and development

During this stage, R&D is completed and business plans with detailed financial,
marketing and manufacturing plans are worked out. The option portfolio will be
created on an on-going basis, thereby tracking the dynamics in the value during
the R&D stage that result from new information about the market and tech-
nology. A discussion of the R&D options portfolio is presented in Section 4.5.
At the end of this stage all technology uncertainty is resolved and all involved
functional departments will recalculate the project value.

In case of successful development, the option approach provides a deci-
sion tool for assessing the timing of new product development. A company
can launch immediately when first, the R&D stage is successfully completed
and second, the project value has crossed the critical value of product launch.
When project uncertainty has decreased sufficiently, so that V > V ∗, the option
approach provides a clear solution to the dilemma of early market entry or
not. With product launch just after the R&D stage, one phase in the NPD
process, the validation stage, is skipped. Skipping a phase in the NPD process
offers a substantial contribution to accelerate NPD, and therefore shorten the
time to market.

When R&D has been completed, but the uncertainty surrounding the new
product is still very high and expected future sales do not sufficiently exceed the
required capital and marketing expenditures, the required additional resolution
of uncertainty can be achieved in the validation stage.

4.3.3 Validation

The validation stage reviews the R&D stage of the projects that are not suitable
for early market introduction. In the case that V < V ∗, additional information
about the value of the project will be pulled from the market. The company
may test market the new product, trial sell the new product by means of a
phased roll-out (Pennings and Lint, 2000) or use simulated test markets in order
to get more insight regarding the market. The purpose of these procedures
is to attain better forecasts of volume and profitability. If development fails
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on technological grounds, product definitions have to be re-examined and a
renewed option assessment must be conducted.

The outcome of the validation can be that the project value is higher than
predicted just after the R&D stage, resulting in either support for market entry
or postponing product launch once more. In the latter case, the product strategy
can be revised – for example by market introduction in targeted markets only
(regional, professional, etc.). The procedure of strategy reformulation can in
principle be repeated ad infinitum.3

4.3.4 Product launch

Once the option approach supports market introduction, the product has a
high probability of success. The product that enters a market characterized by
high uncertainty is expected to yield high benefits, since otherwise the option
approach will indicate not to go to market. This way, the option approach
prevents a company from commercializing failures arising from high market
and technology uncertainties.

4.4 THE OPTION VALUE AT EACH STAGE

By combining microeconomic theory with an NPD perspective, we derive and
apply a model for assessing the value of the options in the NPD process as
described. When the R&D stage is complete and the possibility of market
introduction is thus created, the value of the timing option [F(V (TL))] can
be calculated as:

E

[
max
T ≥TL

(e−ρ(T −tRD)(V (T ) − I ))

]
(4.1)

where E[·] denotes the mathematical expectation operator, ρ is the appropriate
discount factor and T is the ex ante optimal time to market. The option value
reflects the expected net value of the launching opportunity. This value is always
non-negative since the product will not be launched into the market as long as
the investments required for a proper product launch (I ) exceed the value of
market introduction (V ). When it is expected that V will never surmount I , the
optimal time to market (T ) will tend to infinity and, by discounting, the option
value will tend to zero.

Samuelson (1965) and Dixit and Pindyck (1994) argue that product launching
can be regarded as an American perpetual call option. The option is American
since it can be exercised any moment after completion of the R&D stage, while
it is perpetual since there are in principle no limitations to the length of the
exercise time. When V (TL) > V ∗, the investment threshold has been crossed at
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TL and there is no value in waiting to invest. Economic theory suggests that the
option should be exercised immediately and market introduction should take
place. Hence, the net value of the market introduction opportunity, F(V (TL)),
equals V (TL) − I . When it appears that the investment threshold has not been
crossed after the R&D stage, continuing the NPD process is valuable. Dixit and
Pindyck (1994) show that the timing option can be calculated as:

F(V (TL)) = AV β(TL) (4.2)

with A > 0 and β > 1 as defined in the appendix (Section 4.7).4 Although
uncertainty is advantageous during the R&D stage, it limits market introduction
afterwards. When TL is passed, project uncertainty has to be resolved in order to
lower the threshold and make an improved go/no-go decision. Management must
proactively handle the relevant information content and resolve uncertainty by
increasing research efforts and team capabilities, by enhanced customer orienta-
tion, by product tests, (pre)test marketing, by setting up appropriate distribution
channels and by managerial decision making (see Lint and Pennings, 1999).
When the threshold is lower, crossing the threshold becomes more likely.

In order to create the timing option, a firm has to successfully fulfill the R&D
stage. So, the value of the product launch option is the discounted expected
value of the opportunity to go to market after the R&D stage at any moment,
and can be written as:

OL(tRD) = exp(−ρ(TL − tRD))EtRD [F(V (TL))] (4.3)

In the appendix, the value of the product launch option5 is derived as:

OL(tRD) = AV β(tRD) exp(βwµ + 1
2β2w2

σ )�(κ1)

+ V (tRD) exp(µ(TL − tRD))�(κ2) − I�(κ3) (4.4)

where κ1, κ2 and κ3 are parameters that are defined in the appendix.6 In
Figure 4.2 we illustrate the value of the product launch option for different
project values and uncertainty during the R&D stage. In the figure we assume
that market uncertainty is proportional to technology uncertainty (σ2 = σ1/2).

Projects for which the product launch option value exceeds the R&D cost
enter the portfolio of research projects, which we examine in the next section.
In addition to the project value (V ) and R&D stage volatility (σ1), the portfolio
explicitly takes into account the cost of investment (I ) and the cost of the
R&D stage (C). This way, the portfolio enables a transparent comparison of
the project value, the complementary investment cost for product launch and
the required R&D budget across projects differing in size.
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Figure 4.2 The value of the product launch option for 0 .001 ≤ σ1 ≤ 0 .7 and 0 ≤ V ≤ 3 .5 .
Other parameter values: δ = 0 .04 , µ = 0 , ρ = 0 .04 , σ2 = σ1 /2 , I = 1 and TL –tRD = 2

4.5 MANAGEMENT OF R&D INVESTMENTS:
THE OPTIONS PORTFOLIOS

We develop two portfolios. The first one consists of projects on which manage-
ment has to decide whether R&D will be abandoned or continued. The other one
consists of projects after the R&D stage on which management has to decide
whether to introduce these directly to the market, to delay market introduction
or to abandon market introduction.

4.5.1 The R&D options portfolio

Considering the first portfolio, projects can be classified at the R&D stage in four
categories, depending on two variables. The first variable is the level of joint
market and technology uncertainty (σ1). We will distinguish between projects
with a low σ1 and projects with a high σ1. The second variable is the expected
value at present of the difference between the expected project value and the
investment threshold and the R&D costs: PV[E(V (TL)) − V ∗] − C.7 We divide
the sample of projects into projects with a positive value and a negative value.
The four categories derived this way are illustrated in Figure 4.3 and can be
described as follows.

(A) These projects are so valuable that their market introduction is expected
as soon as R&D is complete. These projects have a low market and tech-
nology uncertainty. This implies that the investment threshold (V ∗) is close to
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Figure 4.3 The R&D options portfolio

the cost of investment (I ). Also, E(V (TL)) − V ∗ is positive. Because of the
low uncertainty surrounding the project outcomes, the traditional NPV rule can
be applied.

(B) These projects are liable to be market failures. Since these projects have
a low market and technology uncertainty, the threshold is close to the cost
of investment and the traditional NPV method can be applied. Because of the
negative NPV, these projects will be abandoned.

(C) These projects are exposed to a high market and technology uncertainty.
The threshold can be relatively low in the case of low market uncertainty or
relatively high in the case of high market uncertainty. Nevertheless, it is ex
ante expected that the threshold will be crossed at the first moment of potential
product launching. This means that there are two kinds of projects in this cell.
On the one hand, there are projects which are surrounded by a relatively large
market uncertainty, but with expected sales that compensate the uncertainty to
a great extent. On the other hand, cell C includes projects with a relatively low
market uncertainty, but relatively high technology uncertainty. Development
of the required technology is a bottleneck, but market demand forecasts are
accurate. The option value during the R&D stage will be relatively high for
both projects in this cell, and will likely exceed the R&D costs. Regardless of
the kind of project, implicitly built into the model by the dividend yield δ, the
option approach may support rapid completion of R&D for high-yield projects
in order to create possible first mover and pioneering advantages.

(D) Like projects in cell C, these projects are surrounded by a relatively high
market and technology uncertainty. Again, market uncertainty can be relatively
high or relatively low. In each case, however, the investment threshold will
ex ante exceed the expected project value, so there is a high probability that
market introduction will be postponed after the R&D stage and validation is
recommended. Since these projects can be stopped at the end of the R&D stage,
the relatively high market and technology uncertainty during this stage will
provide an option value that may exceed the R&D costs. At the end of the R&D
stage, management can determine whether the investment threshold has been
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crossed and market introduction can take place. When market uncertainty can
be decreased, marketing theory advocates embarkment upon a validation stage.

The portfolio consists of all projects in the R&D stage. At each moment,
if new information that affects the project values arrives, the portfolio can be
revised (Lint and Pennings, 1998). Consequently, a dynamic portfolio is built
and management can fine-tune the allocation of R&D resources.

We made a first step at Philips Electronics Corporate Research to build a port-
folio along the lines outlined above. Typical A projects, with a high expected
payoff and relatively low uncertainty, appear in the field of lighting. The option
approach does not support B projects. As a consequence, they are abandoned
and are not part of the actual option portfolio. The Philips’ R&D pipeline is well
fuelled with C projects. Typical C projects are multimedia applications, such as
optical tape recording and speech recognition systems. D projects appear to
involve new technologies with an application base that is dominated by mature
product–market combinations. A representative example is polymer light emit-
ting diodes (LEDs), which could replace existing liquid crystal displays (LCDs)
in existing products.

4.5.2 The product launch options portfolio

The second portfolio deals with projects at the NPD stage. We add projects that
have just departed from the R&D stage to existing projects in the validation
stage. Like the R&D options portfolio, the product launch portfolio can be
represented by a 2 × 2 matrix (see Figure 4.4).

(AA) These projects are characterized by a low market uncertainty and hence
the traditional NPV rule applies. The investment hurdle of these projects has
been crossed or, alternatively, these projects have a positive NPV. Consequently,
these options should be exercised immediately. Therefore, this cell is likely to
consist only of projects that recently completed the R&D stage.

(BB) Like the investment projects in cell AA, these projects are subject to a
low market uncertainty, but in contrast to the projects in cell AA, the investment
hurdle has not been crossed. These projects typically have a negative NPV and

AA CC

BB DD

Low High

+

0

_

s2

V (T L ) − V *

Figure 4.4 The product launch options portfolio
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will be abandoned. Like cell AA, this cell is likely to contain projects that just
left the R&D stage.

(CC) Projects in cell CC can be identified as projects with a high market
uncertainty surrounding the project value. Hence, the investment hurdle is rela-
tively high, but despite this high hurdle the project value exceeds the investment
hurdle. Because of this high project value, the options in cell CC can be exer-
cised immediately.

(DD) Like the projects in cell CC, the value of the projects in cell DD is
subject to a high market uncertainty, but contrary to the projects in cell CC,
it has not crossed the investment hurdle yet. Since market uncertainty is high,
the investment hurdle in this cell exceeds the project value and immediate
exercise of these options is not optimal. It might be true that the project value
exceeds the irreversible costs and thus that the NPV rule – neglecting the high
market uncertainty – would support immediate investment. However, the option
approach shows that postponement of market introduction and waiting until the
project value has crossed the investment hurdle is optimal for these projects.
This cell may include a lot of projects, since projects can stay within this cell
for an unknown period.

4.6 DISCUSSION

Although the option approach to NPD enhances the traditional phase review
process, the approach simultaneously may introduce new pitfalls. A general
limitation of the phase review approach is that the framework is only suitable
when clearly defined milestones exist at which investment decisions have to be
taken. The approach is not capable of valuing NPD processes with an integrated
design, manufacturing and roll-out, which is current practice in the software
industry (see Cusumano and Selby, 1996; Iansiti, 1998). In this industry, market
uncertainty already resolves at the R&D stage.

Assumption A1 may hold for several new products (for example consumer
goods and high-tech products), but industrial chemicals require high R&D costs
relative to the investment needed for successful product launch (see Mansfield
and Wagner, 1975). Moreover, the assumption will be violated in the case of
uncertain product launch investments. This, however, can easily be overcome by
implementing stochastic product launch investments. Assumption A2 may also
not always hold. For example, when a company works with advertising agen-
cies on a ‘no cure no pay’ basis, the advertising costs can be recovered when
market introduction appears to be unsuccessful. Additionally, when machines
and equipment can be used for manufacturing of alternative products, the capital
expenditures may be recovered. The assumption that the length of the R&D
stage is fixed (A3) may not always hold as R&D breakthroughs or failures may
occur randomly over the R&D stage. Moreover, research and development can
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be treated as sequential, so that research offers a European compound option
on the product launch option (see Lee and Paxson, 2001, for treatment of real
American sequential exchange options). Finally, a major drawback is the exclu-
sion of explicit actions by competitors in the model. Though competitive action
is implicitly built into the model by the dividend yield δ, explicit modeling
is an interesting but complex avenue for further research (see Lambrecht and
Perraudin, 1997 or Kulatilaka and Perotti, 1998).

In conclusion, using the same decision tool for different projects in different
stages of NPD, a more sophisticated comparison between all projects will be
possible. This way, a transparent and consistent portfolio of projects can be
built. With the option approach, the portfolio can be updated each time new
information arrives with substantial impact.

4.7 APPENDIX

When the possibility of product launch has been created, the value of the timing
option can be calculated analogous to Dixit and Pindyck (1994, pp. 140–144):

F(V (TL)) =
{

AV β(TL) V (TL) < V ∗

V (TL) − I V (TL) ≥ V ∗ (A4.1)

with:

β = 1

2
− ρ − δ

σ 2
2

+
√(

1

2
− ρ − δ

σ 2
2

)2

+ 2ρ

σ 2
2

, A = (β − 1)β−1

ββIβ−1
,

V ∗ = g(σ2, δ)I, g(σ2, δ) = β

β − 1

Under assumption A4, ρ = δ, so:

β = 1

2
+
√

1

4
+ 2ρ

σ 2
2

Now, we can determine the value of the product launch option (OL) as the
discounted expected value of the timing option as follows. Note that:

OL(tRD) = exp(−ρ(TL − tRD))EtRD [F(V (TL))] (A4.2)

By applying Itô’s lemma, it holds that the process for ln(V ) for t < TL is:

d ln(V ) = (
µ − 1

2σ 2
1

)
dt + σ1 dz (A4.3)
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Therefore, it is true that:

ln(V (TL)) − ln(V (tRD)) ∼ N
((

µ − 1
2σ 2

1

)
(TL − tRD), σ 2

1 (TL − tRD)
)
(A4.4)

Let wµ = (µ − 1
2σ 2

1 )(TL − tRD) and wσ = σ1
√

TL − tRD. Now we can write
V (TL) as:

V (TL) = V (tRD) exp(wµ + wσ x) (A4.5)

where x is distributed according to a standard normal distribution.
Now:

OL(tRD)= exp(−ρ(TL − tRD))

[∫

x<x∗
AV β(tRD) exp(βwµ + βwσ x)ϕ(x)dx

+
∫

x≥x∗
{V (tRD) exp(wµ + wσx) − I }ϕ(x)dx

]
(A4.6)

where ϕ(·) denotes the density function of a standard normal distribution and

x∗ = [ln(V ∗) − ln(V (tRD)) − wµ]/wσ (A4.7)

Equation (A4.6) can be written as:

OL(tRD) = AV β(tRD) exp
(
βwµ + 1

2β2w2
σ

)
�(κ1)

+ V (tRD) exp(µ(TL − tRD))�(κ2) − I�(κ3) (A4.8)

where �(·) denotes the cumulative probability distribution function of a standard
normal variable and where κ1 = x∗ − βwσ , κ2 = −x∗ + wσ and κ3 = −x∗.
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NOTES

1. The described decision rules are based on specific assumptions about the diffu-
sion process of V . More specifically, it is assumed that V follows a geometric
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Brownian motion after time TL. Consequently, V is distributed according to a
lognormal distribution at any point in time.

2. Thus, we assume that technology uncertainty is constant during the R&D stage
and drops to zero at R&D completion. Alternatively, technology uncertainty may
be modeled as a decreasing function of time. Since only aggregate uncertainty
during R&D matters for the calculation of the product launch option value, such
adjustments can be incorporated.

3. In practice, the cost of keeping the option alive will induce management to put
an end to it at some point in time.

4. The synthetic timing option can be (delta) hedged by an investment banker taking
a position in an asset which is perfectly correlated with V . The position in the
correlated asset equals the ratio of V and the correlated asset multiplied by the
option delta, which is AβV β−1(TL) if V (TL) < V ∗ and 1 otherwise.

5. The delta of the product launch option can be calculated as AβV β−1(tRD)

exp(βwµ + 1
2 β2w2

σ ){β�(κ1) − ϕ(κ1)/wσ } + exp(µ(TL − tRD)){�(κ2) + ϕ(κ2)/

wσ } − Iϕ(κ3)/V wσ .
6. It should be noted that the effect of market uncertainty on the value of the product

launch option (the so-called vega of the option) is difficult to calculate, as market
uncertainty affects both σ1 and σ2.

7. This value can be determined analogous to the calculations in Figure 4.2.
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Chapter 5

Analytic solutions for the value
of the option to (dis)invest

NICHOLAS BIEKPE, PAUL KLUMPES AND MARK TIPPETT

SUMMARY

It is well known that costly reversibility complicates capital investment
analysis to the point where closed-form expressions for the value
of a firm’s investment opportunities seldom exist. In such circum-
stances numerical evaluation is normally taken as the most practical
(and often the only) way of determining investment value. However,
we demonstrate that power series expansions can often be used
to obtain analytic expressions for the value of a firm’s investment
opportunities. We use them in a research and development (R&D)
setting to determine investment value when cash flows are generated
by two well-known stochastic processes. The first is based on the
Cox et al. (1985) ‘square root’ process; the second on the Uhlenbeck
and Ornstein (1930) mean-reverting random walk. The criteria which
lead to optimal investment decisions when the options to abandon or
take up investment opportunities have the non-trivial values implied
by these processes are also briefly examined.

5.1 INTRODUCTION

One of the most significant developments in capital investment analysis since
the seminal works of Irving Fisher (1907, 1930) has come with the realization
that some of the central tenets of neoclassical investment theory do not hold up
in practice. It is now generally conceded, for example, that irreversibility and
the possibility of delay are critical characteristics of any investment decision.
This means that firms are viewed as having the right but not the obligation
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to incur future capital investment expenditures. However, when firms do elect
to exercise these options and thus take irreversible investment decisions, they
give up the possibility of waiting for new information, and this could affect
the desirability and/or timing of the investment expenditures they actually end
up making. Furthermore, this lost option value is an opportunity cost, which
must be included in the assessment of a capital project’s viability. In other
words, the irreversibility of investment decisions means that firms ought to
invest to the point where the expected present value of project cash flows
just exceeds the purchase and installation costs by an amount equal to the
value of keeping the investment option alive (Dixit and Pindyck, 1994; Trige-
orgis, 1996). The accumulated weight of both the empirical and analytical
evidence is that the inclusion of these (formerly ignored) option values can
lead to significantly different investment evaluation criteria to those based on
the simple net present value rules of traditional neoclassical theory (Burgstahler
and Dichev, 1997).

One of the difficulties with these more realistic investment appraisal tech-
niques, however, is that they may lead to intractable expressions for the value
of the firm’s investment opportunities. In such cases custom dictates that numer-
ical evaluation is the most practical (and often the only) way of determining
optimal investment expenditures (Trigeorgis, 1996, chapter 10). However, we
demonstrate that under fairly mild regularity conditions, power series expan-
sions can often be used to obtain analytic expressions for the value of a firm’s
investment opportunities and that these permit a somewhat deeper understanding
of the criteria leading to the optimal investment decisions made by firms.
In Section 5.2 we begin our analysis by considering the two crucial propo-
sitions which underpin much of the analytical and applied work which has
been published in the irreversibility literature. We then illustrate the appli-
cation of these propositions for two particular stochastic processes. The first
(Section 5.3) is based on the purely non-negative project cash flows implied
by the Cox et al. (1985) ‘square root’ process. The second (Section 5.4), based
on the Uhlenbeck and Ornstein (1930) process, takes the more realistic focus
of allowing the project cash flows to have potentially negative values. In
Section 5.5 we then briefly examine the criteria which lead to optimal invest-
ment decisions when the options to abandon or take up investment opportunities
have the non-trivial values implied by these processes. Finally, Section 5.6
contains our summary and conclusions.

5.2 FUNDAMENTAL PROPOSITIONS

Our analysis is based on the assumption that capital projects are valued by
discounting their expected future cash flows.1 We further assume that a project’s
cash flows are made up of two components. The first of these, which we would
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normally expect to be positive, consists of the ‘current’ operating cash flows
arising out of the physical investment and research and development decisions
taken in the past. The second, generally negative component, arises out of the
project’s ‘current’ physical investment and research and development activities.
The sum of these two cash flow streams is defined as the project’s ‘current’ net
cash flow. The operative decision for an ‘active’ firm is whether the project’s
current operating cash flow is of sufficient magnitude to justify continuing with
its investment and research and development activities. An ‘inactive’ firm must
decide whether it ought to invoke them.

We now show that whichever state the firm is in (active or inactive), capital
project values will satisfy a fundamental valuation equation known as the
Feynman–Kac ‘killing’ equation or formula (Dixit and Pindyck, 1994, p. 123).
It is often the case that expected present values are more easily computed by
determining solutions to this equation rather than by evaluating the present
value integral itself. It also permits a more general treatment of the issues
arising out of irreversibility problems. We can thus begin by summarizing the
Feynman–Kac formula in terms of the following proposition.

Proposition 5.1 Suppose a capital project’s instantaneous net cash flows are
generated by the process:

dC(t) = b(C(t))dt +√a(C(t)) dz(t) (5.1)

where E[dC(t)]/dt = b(C(t)) is the expected instantaneous net cash flow (per
unit time) at time t, dz(t) is a standard Gauss–Wiener process and Var[dC(t)]/
dt = a(C(t)) is the variance (per unit time) of the instantaneous net cash flows
at time t. Let i be the discount rate so that:

Vp(C) = E

[∫ ∞

0
e−itC(t)dt

]
(5.2)

is the expected present value of the net cash flows over the time interval [0,∞).
Then Vp(C) is a ‘particular solution’ of the fundamental valuation equation:

1
2a(C)V ′′(C) + b(C)V ′(C) − iV (C) + C = 0 (5.3)

Proof: A modified version of the proof is contained in Karlin and Taylor
(1981, pp. 203–204).

Here, however, it is important to distinguish between a particular solution of
the fundamental valuation equation defined in this proposition and the general
solution of the same equation. A particular solution of a given differential
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equation is any solution which satisfies the equation. Now, there are potentially
an infinite number of (different) particular solutions which satisfy the funda-
mental valuation equation. The functional relationship describing the (complete)
set of all such particular solutions is called the general solution of the given
differential equation. Hence, every particular solution can be obtained by im-
posing a ‘particular’ set of restrictions on the functional form which charac-
terizes the general solution of the given differential equation.2 A more precise
statement of these ideas is contained in the following proposition.

Proposition 5.2 Every solution of the fundamental valuation equation (defined
in Proposition 5.1) takes the form:

V (C) = Vp(C) + a1V1(C) + a2V2(C) (5.4)

where Vp(C) is an arbitrarily chosen ‘particular’ solution of the fundamental
valuation equation, a1 and a2 are constants and V1(C) and V2(C) are linearly
independent ‘complementary’ functions satisfying the auxiliary equation:

1
2a(C)V ′′(C) + b(C)V ′(C) − iV (C) = 0 (5.5)

Proof: Boyce and DiPrima (1997, p. 163).

Now suppose a firm has a given capital project in place. Then we can choose
the particular solution, Vp(C), so that it represents the expected present value
of the net cash flows from maintaining the capital project intact. It then follows
that if the firm follows optimal investment policies, the complementary func-
tions, V1(C) and V2(C), must capture the value associated with the embedded
option to abandon (or terminate) its commitment to the physical investment
and research and development policies associated with the capital project, at
some future point in time (Dixit, 1989, p. 626). That is, a linear combination
of the complementary functions returns the value of the option to abandon its
continuing investment in the project.3

A particular difficulty here, however, is that it is only on rare occasions
that the auxiliary equation submits to closed-form solution. When it is not
possible to obtain a closed-form solution, convention has it that numerical
procedures ought to be used to approximate the true solution. By a
numerical procedure for solving the auxiliary equation we mean a method for
constructing approximate values, V a(C0), V a(C1), V a(C2), . . . , V a(Cn), of the
true solution, V (C0), V (C1), V (C2), . . . , V (Cn), at the net cash flow ‘mesh’
points C0, C1, C2, . . . , Cn. There are, however, some significant limitations
associated with the numerical evaluation of differential equations of the kind
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arising in the irreversibility literature (Boyce and DiPrima, 1997, pp. 445–453).
Probably best known amongst these is that numerical techniques will often
return systematically biased approximations of the true solution, especially when
the true solution is either continuously increasing or decreasing (i.e. monotonic),
as will often be the case with irreversible investment decisions (Boyce and
DiPrima, 1997, pp. 423–429). Normally this problem is addressed by applying
a combination of sophisticated numerical methods (e.g. multistep Milne or
Runge–Kutta predictor–corrector) to a more ‘compact’ set of mesh points
(Boyce and DiPrima, 1997, pp. 429–434). However, it may be shown that this
procedure is often characterized by problems of ‘overfitting’; for as the distance
between the mesh points declines the approximation error at first decreases, but
then a point will be reached where the error progressively increases. Boyce and
DiPrima (1997, p. 447) note that no method is available for identifying where
the ‘turning point’ in the error occurs, and since the error beyond this point
grows at an exponential rate, the potential for large and significant errors in the
approximating solution is very high. For a more detailed account of this and
some other problems which arise with the numerical solution of differential
equations, the reader is referred to Boyce and DiPrima (1997, pp. 445–453).

There is, however, an alternative procedure which can be used when the
auxiliary equation assumes the linear form defined in Proposition 5.2. For then
some mild regularity conditions show that it will be possible to represent the
general solution of the auxiliary equation in terms of an infinite series expansion
of the form (Boyce and DiPrima, 1997, pp. 262–275):4

V (C) =
∞∑

j=0

ajC
j+r (5.6)

where the aj are coefficients and r , which is known as the ‘exponent of singu-
larity’, is determined by solving what is known as the ‘indicial equation’
(Boyce and DiPrima, 1997, p. 264). We now demonstrate how the indicial
equation is obtained and the exponent of singularity computed from it by
assuming that a capital project’s net cash flows are generated by the Cox
et al. (1985) elastic (mean-reverting) random walk or ‘square root’ process.
Here Dixit (1989, p. 634) notes that the net cash flows from capital projects
often show a tendency to revert ‘toward some predictable long-run equilibrium
level . . . even though they may fluctuate in response to various random short-
run influences.’ Unfortunately, these processes also lead to auxiliary equations
which do not, in general, possess closed-form solutions (Dixit, 1989, p. 634)
and, as a consequence, relatively little work has been published on irreversibility
problems where project cash flows are generated by mean-reversion processes
of this type.
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5.3 COX, INGERSOLL AND ROSS (CIR) ‘SQUARE ROOT’ CASH FLOWS

We thus consider a capital project whose instantaneous net cash flows evolve
in accordance with the stochastic differential equation:

dC(t) = β(µ − C(t))dt + σ
√

C(t) dz(t) (5.7)

This process characterizes the net cash flows as an elastic (or mean-reverting)
random walk with instantaneous changes in the net cash flow being described
by a normal distribution with a mean (per unit time) of b(C) = β(µ − C).
Hence, if the net cash flow, C, exceeds the long-run expected cash flow of µ,
then it will be drawn back towards µ with a force which is proportional to the
difference between µ and C. Here β > 0, the speed of adjustment coefficient,
is the constant of proportionality which measures the intensity with which the
net cash flow is drawn back towards its long-run mean. Note also that σ is
an ‘intensity parameter’ defined on dz(t), a standard Gauss–Wiener process, in
which case the variance (per unit time) of instantaneous changes in the cash
flow amounts to a(C) = σ 2C. Hence, the uncertainty surrounding future net
cash flows increases with the magnitude of the current net cash flow.

We can now determine the expected present value of the net cash flows
generated by the CIR process by first noting that integration by parts implies:

Vp(C) = E

{∫ ∞

0
e−itC(t)dt

}

= E

{[
−1

i
e−itC(t) + 1

i

∫
e−itdC(t)

]∞
0

}
(5.8)

However, since E[dC(t)] = b(C)dt = β(µ − C(t))dt will be the expected ins-
tantaneous change in the net cash flow, it follows that:

E

{
1

i

∫
e−itdC(t)

}
= β

i
E

{∫
e−it (µ − C(t))dt

}

= βµ

i

∫
e−itdt − β

i
E

{∫
e−itC(t)dt

}
(5.9)

Hence, the expected present value of the net cash flows may be restated as:

Vp(C)

(
1 + β

i

)
= E

{[
−1

i
e−itC(t) + βµ

i

∫
e−it dt

]∞
0

}
(5.10)

Thus, if we impose the transversality condition limt→∞ e−itE[C(t)] = 0 (project
cash flows grow more slowly than the discount rate) and evaluate the right-hand
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side of the above equation on this basis, it follows that the expected present value
of the future net cash flows will be:

Vp(C) = µ

i
+
(

C − µ

β + i

)
(5.11)

The intuition behind this result becomes clearer if we recall that E[C(t)] =
µ is the instantaneous net cash flow expected over the ‘long run’ and so, if
expectations are realized, the above result implies E[Vp(C)] = µ/i, as one
would expect.5

We can now substitute b(C) = β(µ − C) and a(C) = σ 2C into the funda-
mental valuation equation of Proposition 5.1 to give:

1
2σ 2CV ′′(C) − β(C − µ)V ′(C) − iV (C) + C = 0 (5.12)

where, it will be recalled, V (C) is the combined expected present value of the
project’s net cash flows and the value of the option to abandon (or activate)
the investment in the capital project which generates these cash flows. Direct
substitution shows

Vp(C) = E

{∫ ∞

0
e−itC(t)dt

}
= µ

i
+
(

C − µ

β + i

)

to be a particular solution of this equation. Hence, as expected from the discus-
sion surrounding Propositions 5.1 and 5.2, the expected present value of the net
cash flows from maintaining the capital project in place is a particular solution
of the fundamental valuation equation. It thus follows that a linear combination
of the complementary functions, V1(C) and V2(C), gives the value of the option
to abandon (or activate) the investment in the capital project. Recall that whilst,
in principle, these functions are retrieved as solutions of the auxiliary equation
defined by Proposition 5.2, it is only rarely that it will be possible to solve this
equation in closed form. However, our previous discussion shows that it will
normally be possible to represent any given solution of the auxiliary equation in
terms of an infinite series expansion. We now demonstrate how this is achieved
for the CIR mean-reversion process considered here.

For the present example, Proposition 5.2 shows that the auxiliary equation
takes the form:

1
2σ 2CV ′′(C) − β(C − µ)V ′(C) − iV (C) = 0 (5.13)

Unfortunately, there is no general closed-form solution for this equation. How-
ever, in the appendix (Section 5.7) we show that it does possess two linearly
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independent series solutions. The first has an exponent of singularity of r = 0
and takes the following form:

V1(C) = 1 +
∞∑

j=1

{
i(β + i) . . . ((j − 1)β + i)

βµ(σ 2 + 2βµ) . . . ((j/2)(j − 1)σ 2 + jβµ)

}
Cj (5.14)

Note that since β, µ, σ 2 and i are all positive, each term in this series expansion
will also be positive. This, in turn, implies that V1(C) is a strictly positive and
increasing function of C or that V ′

1(C) > 0. In other words, if C increases in
value then V1(C) also increases in value, whilst if C decreases in value then
V1(C) also decreases in value. Finally, in the appendix we show that the series
expansion for V1(C) converges (to a finite sum) for all positive values of C.6

We also demonstrate in the appendix that the second series solution for the
auxiliary equation has the exponent of singularity r = 1 − 2βµ/σ 2 and takes
the form:7

V2(C) =

1 +
∞∑

j=1





[
β

(
1 − 2βµ

σ 2

)
+ i

] [
β

(
2 − 2βµ

σ 2

)
+ i

]

. . .

[
β

(
j − 2βµ

σ 2

)
+ i

]

(σ 2−βµ)(3σ 2−2βµ) . . . ((j/2)(j+1)σ 2−jβµ)





Cj

C

( 2βµ

σ 2 −1
)

(5.15)
We can, however, simplify this solution considerably if we assume that the
discount rate can be represented in the parametric form i = β(2βµ/σ 2 − q) >

0, for some integral value of q.8 It then follows that β(j − 2βµ/σ 2) + i =
−β(q − j) when j < q and β(q − 2βµ/σ 2) + i = 0 when j = q. Substitution
then shows that the series expansion for V2(C) consists of q terms only. We
can then use these results to show that the series expansion for V2(C) reduces
to the simpler form:

V2(C) =

1 +
q−1∑
j=1




βj (q − 1)(q − 2) . . . (q − j)

(βµ − σ 2)(2βµ − 3σ 2)

. . . (jβµ − (j/2)(j + 1)σ 2)




Cj

C

( 2βµ

σ 2 −1
) (5.16)

For positive net cash flows, convergence of the series expansion for V2(C) is
guaranteed by the fact that it consists of a finite number of terms. Note also
that the exponent of the last term in the series expansion for V2(C) is:

C

(
1− 2βµ

σ 2

)
Cq−1 = C

(
q− 2βµ

σ 2

)
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Furthermore, the parametric representation of the discount rate implies:

0 > q − 2βµ

σ 2
> (q − 1) − 2βµ

σ 2
> · · · > 1 − 2βµ

σ 2

or that the exponent associated with C for each term in the series expansion for
V2(C) is negative. Hence, it is of crucial importance to note that if 2βµ > σ 2,
an assumption which is satisfied by the parametric representation of the discount
rate used here, then C > 0 or that the net cash flow from operations will always
be positive (Feller, 1951; Cox et al., 1985, p. 391).9 In other words, the origin
(where C = 0) is inaccessible and so we need not worry about the fact that
V2(C) is unbounded at this point. Furthermore, since i = β(2βµ/σ 2 − q) > 0
then 2βµ − jσ 2 > 2βµ − qσ 2 > 0 for all j < q and so both the numerator
and denominator of each term in the series expansion for V2(C) are positive.
This in turn implies that V2(C) is a strictly positive function. Finally, differen-
tiation shows V ′

2(C) < 0 or that V2(C) is a strictly decreasing function of the
project cash flows. Hence, when C increases, V2(C) declines in value; when C

decreases, then V2(C) increases in value.
Now consider a firm in the active state; that is, a firm which currently owns

and operates a capital project which generates an instantaneous net cash flow of
C(t) at time t . If this net cash flow is ‘large’, then the value of the option to
abandon the investment in the capital project will be ‘small’. However, if the net
cash flow is ‘small’, then the value of the option to abandon the investment in the
capital project will be ‘large’. The only way we can insure that these requirements
are simultaneously satisfied is when a1 = 0 and a2 > 0. It then follows that the
combined expected present value of the project’s net cash flows and the option
to terminate the investment opportunity will be VA(C) = Vp(C) + a2V2(C), or:

VA(C) = µ

β

(
2βµ

σ 2
− q

) + (C − µ)

β

(
2βµ

σ 2
− (q − 1)

)

+

a2


1 +

q−1∑
j=1





βj (q − 1)(q − 2) . . . (q − j)

(βµ − σ 2)(2βµ − 3σ 2)

. . . (jβµ − (j/2)(j + 1)σ 2)





Cj




C

( 2βµ

σ 2 −1
)

(5.17)
where VA(C) is defined as the value of an active firm and we have used the
fact that:

Vp(C) = µ

i
+
(

C − µ

β + i

)
= µ

β

(
2βµ

σ 2
− q

) + (C − µ)

β

(
2βµ

σ 2
− (q − 1)

)

due to the parametric representation of the discount rate, i = β(2βµ/σ 2 − q).



76 Real R&D Options

For a firm in the inactive state, the option is whether or not to activate the
potential investment in the research and development and physical investment
policies implied by the capital project. Hence, if there is a large net cash flow,
the value of the option to invest must also have a large value. If, on the other
hand, there is only a small net cash flow, then the option to invest must also
have a small value. The only way we can insure that these requirements will
be simultaneously satisfied is when a1 > 0 and a2 = 0. It then follows that the
value of the option to delay incurring the research and development and physical
investment expenditures implied by the project will be VN(C) = a1V1(C), or:

VN(C) = a1




1 +
∞∑

j=1




βj−1

(
2βµ

σ 2
− q

)(
2βµ

σ 2
− (q − 1)

)

. . .

(
2βµ

σ 2
− (q − j + 1)

)

µ(σ 2 + 2βµ) . . . ((j/2)(j − 1)σ 2 + jβµ)




Cj




(5.18)
where VN(C) is defined as the value of an inactive firm and we have again
substituted the parametric expression for i = β(2βµ/σ 2 − q) into the previous
expression for V1(C). Now we can use the expressions for VA(C) and VN(C)

to determine the instantaneous net cash flow that induces an inactive firm to
exercise its option to invest in the capital project and also the net cash flow
which induces an active firm to abandon its investment in the capital project.
Before doing so, however, we demonstrate how the techniques used to obtain
series expansions for the value of capital projects with CIR cash flows can
also be extended to determine the value of capital projects with the potential to
return negative cash flows.10

5.4 ORNSTEIN–UHLENBECK (OU) CASH FLOWS

A significant drawback with the CIR square root cash flow process and many
other processes used to model irreversibility problems is that they are based on
the assumption that project net cash flows can never be negative. Yet we know
the potential negative cash flow characteristic to be an important feature of most
capital projects in practice. Fortunately, it is a relatively simple matter to adapt
the CIR process to accommodate negative cash flows. We thus consider the
Uhlenbeck and Ornstein (1930) process, which may be summarized as follows:

dC(t) = β(µ − C(t))dt + σ dz(t) (5.19)

Here, as with the CIR process, C(t) represents the capital project’s instantaneous
net cash flow, µ is the expected cash flow over the long run, β > 0 is the speed
of adjustment coefficient and σ is an intensity parameter defined on dz(t),
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a standard Gauss–Wiener process. Hence, the OU process also characterizes
project net cash flows as an elastic (or mean-reverting) random walk with the
same mean as the CIR process. However, the variance of instantaneous changes
in the net cash flow no longer depends on the current cash flow itself and this
means that the OU process accommodates the possibility of negative project
cash flows.

We can now follow procedures similar to those invoked in the previous
section to show that the OU and CIR processes return the same expression for
the expected present value of the project’s net cash flows, namely:11

Vp(C) = E

{∫ ∞

0
e−itC(t)dt

}
= µ

i
+
(

C − µ

β + i

)
(5.20)

Furthermore, we can also substitute b(C) = β(µ − C) and a(C) = σ 2 into
Proposition 5.1 to obtain the fundamental valuation equation for OU cash
flows, namely:

1
2σ 2V ′′(C) − β(C − µ)V ′(C) − iV (C) + C = 0 (5.21)

Here it will be recalled that V (C) is the total of the expected present value of
the project’s net cash flows and the value of the option (to abandon or take up
the investment) in the capital project which generates these cash flows. Now,
the reader will verify that:

Vp(C) = µ

i
+
(

C − µ

β + i

)
(5.22)

is a particular solution of the OU fundamental valuation equation. This, taken
in conjunction with Proposition 5.2, implies that the value of the option (to
abandon or take up the investment) in the capital project is determined as the
solution of the auxiliary equation for OU cash flows, namely:

1
2σ 2V ′′(C) − β(C − µ)V ′(C) − iV (C) = 0 (5.23)

Again, there is no general closed-form solution for this equation. However,
applying similar procedures to those used for the CIR cash flows in the previous
section shows that:

V1(C) = 1 +
∞∑

j=1

{
2j i(2β + i)(4β + i) . . . (2(j − 1)β + i)

(2j)!σ 2j

}
(C − µ)2j

(5.24)
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and

V2(C) = (C − µ) +
∞∑

j=1

{
2j (β + i)(3β + i) . . . ((2j − 1)β + i)

(2j + 1)!σ 2j

}

× (C − µ)2j+1 (5.25)

are series expansions for the two complementary functions which are solutions
of the OU auxiliary equation. Now β, i and σ 2 are all positive and so the
bracketed coefficients for both complementary functions are strictly positive. It
thus follows that V1(C) is a strictly positive and symmetric (or even) function
with a minimum value of unity at C = µ. However, V2(C) is an odd function,
being positive when C > µ and negative when C < µ. It may also be shown
that both series expansions are convergent for all values of the project’s net
cash flow. Hence, the option value associated with abandoning or taking up
a capital project with OU cash flows can be expressed in terms of (a linear
combination of) these two series expansions.

It facilitates the further discussion of these complementary functions, however,
if we substitute the ‘low order’ mean-reversion assumption i = 2β into each of
the above series expansions.12 It then follows that the series expansion for the
first complementary function reduces to:

V1(C) = 1 +
√

2β

σ
(C − µ)

∞∑
j=1

1

(1)(3) . . . (2j − 1)

×
[√

2β

σ
(C − µ)

]2j−1

(5.26)

However, using Spiegel (1974, exercise 118, p. 257) shows that this is the series
expansion for the following closed-form expression:

V1(C) = 1 +
√

βπ

σ 2
(C − µ) exp

[
β(C − µ)2

σ 2

]
erf
[√

β

σ
(C − µ)

]
(5.27)

where exp(·) is the exponential operator and erf(x) = (2/
√

π)
∫ x

0 exp(−z2)dz

is the error function of mathematical physics (Crank, 1975, p. 14). Furthermore,
substituting i = 2β into the second complementary function shows that its series
representation becomes:

V2(C) = (C − µ)


1 +

∞∑
j=1

(
β

σ 2

)j
(C − µ)2j

j !


 (5.28)
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However, Kiselev et al. (1967, p. 128) show this to be the series expansion for
the following closed-form expression:13

V2(C) = (C − µ) exp
[
β(C − µ)2

σ 2

]
(5.29)

Hence, the low order mean-reversion assumption employed here enables us to
state the two complementary functions in closed form. Recall, however, that the
importance of these results stems from the fact that Proposition 5.2 shows that
every solution of the OU fundamental valuation equation can be expressed as a
linear sum of the particular solution and the two complementary functions. We
now use this proposition and these results to determine the value of investment
options available to firms with OU cash flows.

Consider then a firm in the active state, that is a firm which currently owns and
operates a capital project with research and development and physical invest-
ment policies which results in an instantaneous net cash flow, C, generated by
an OU process. Now, if the project’s net cash flows are positive and large, then
the value of the option to abandon the investment in the capital project will
be small. Furthermore, if there is a large negative project net cash flow, then
the value of the option to abandon the investment project will be large. Now
suppose, as with the CIR cash flow example in the previous section, we define
VA(C) to be the value of the firm in the active state. Then inspection of the two
complementary functions shows we can insure that these two requirements will
be simultaneously satisfied when VA(C) = Vp(C) + a1[V1(C) − V2(C)], or:

VA(C) = µ

2β
+
(

C − µ

3β

)
+ a1

{
1 −
√

βπ

σ 2
(C − µ) exp

[
β(C − µ)2

σ 2

]

×
[

1 − erf
(√

β

σ
(C − µ)

)]}
(5.30)

where a1 > 0. Note that in this solution we have substituted i = 2β into the
expression for the expected value of the future project cash flows:

Vp(C) = µ

i
+
(

C − µ

β + i

)
= µ

2β
+
(

C − µ

3β

)
(5.31)

on which the investment options are based.14

For a firm in the inactive state, the option is whether or not to invest in the
capital project with research and development and physical investment policies
which results in an instantaneous net cash flow generated by an OU process.
Here it will be recalled that if the project’s net cash flows are large and positive,
the value of the option to invest must also have a large value. If, on the other
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hand, the project’s net cash flows are negative and large, then the option to invest
must have a small value. Now suppose, as previously, we define VN(C) to be the
value of the firm in the inactive state. Then we can insure that these two require-
ments will be simultaneously satisfied when VN(C) = a2[V1(C) + V2(C)], or:15

VN(C) = a2

{
1 +
√

βπ

σ 2
(C − µ) exp

[
β(C − µ)2

σ 2

]

×
[

1 + erf
(√

β

σ
(C − µ)

)]}
(5.32)

where a2 > 0 is also a constant. In Figure 5.1 we graph the option values to
(dis)invest for OU project cash flows when the speed of adjustment coefficient
is β = 0.05, there is a unit variance, σ 2 = 1, and a1 = a2 = 1. Note that the
value of the option to invest uniformly increases with the project’s net cash
flows whilst the option to disinvest decreases. This is, of course, precisely what
one would expect.

The magnitude of the values contained in these graphs also gives one a
good ‘feel’ for the significant errors, which may arise when embedded option
values are ignored in project evaluation. We now turn to the issue of how we
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The graph with a negative slope is:

which is the normalized value of the option to invest, for an inactive firm.

b(C − m)2

s21 − (C − m)exp
bp

s2 1 − erf (C − m)b

s

b(C − m)2

s21 + (C − m)exp
bp

s2 1 + erf (C − m)b

s

which is the normalized value of the option to disinvest, for an active firm. The
graph with a positive slope is:

Figure 5.1 Value of option to (dis)invest for Ornstein–Uhlenbeck cash flows: β = 0 .05 ,
σ 2 = 1 , a1 = a2 = 1



The value of the option to (dis)invest 81

might determine the instantaneous net cash flows that induce an inactive firm to
exercise its option to activate its potential investment in the capital project and
also the cash flows which will induce an active firm to abandon (or terminate) its
commitment to the research and development and physical investment policies
implied by a capital project with OU cash flows.16

5.5 DETERMINATION OF ENTRY AND EXIT OU PROJECT
CASH FLOWS

Now, consider an inactive firm which has an investment opportunity whose
‘immediate’ purchase and installation costs amount to I . Then we use the OU
analyses with i = 2β of the previous section to illustrate how the instanta-
neous cash flow, Ch, which will induce the firm to avail itself of the investment
opportunity is determined. The operative rule is that the value of the invest-
ment opportunity must exceed the purchase and installation costs by an amount
equal to the value of keeping the investment option alive. Now, the value of
the investment opportunity to an active firm is composed of two parts: the
expected present value of the project’s future net cash flows and the value of
the option to ‘kill’ or abandon the investment opportunity at some future point
in time. Their combined value is given by the equation for VA(C) defined in
the previous section. The value of the investment opportunity to an inactive
firm, however, is composed entirely of the value of the option to activate the
investment opportunity at some future point in time, VN(C), also defined in the
previous section. Hence, if we add the purchase and installation costs, I , to
VN(C) and set their sum equal to VA(C) then we can determine the instanta-
neous cash flow, Ch, which will induce the firm to avail itself of the investment
opportunity. The operative rule will thus be to determine the Ch for which we
have VA(Ch) = VN(Ch) + I , or:

µ

2β
+ σ

3β
√

β
xh + a1

{
1 − √

π xh exp(x2
h)[1 − erf(xh)]

}

= I + a2
{
1 + √

π xh exp(x2
h )[1 + erf(xh)]

}
(5.33)

where xh = (
√

β/σ)(Ch − µ), in terms of the equations for the OU process
determined in the previous section.

Now consider an active firm which is considering whether or not to abandon
the investment project. We assume that if it does so, it incurs immediate
decommissioning costs amounting to E. If the firm does elect to abandon the
investment opportunity it also loses the expected present value of the future
net cash flows and the value of its option to kill or abandon the investment
opportunity at some future point in time. Their combined value is given by
the equation for VA(C) defined in the previous section. In return it gains the
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value of the option to reactivate the investment opportunity at some future
point in time, VN(C), also defined in the previous section. Hence, if we add
the decommissioning costs, E, to VA(C) and set their sum equal to VN(C) then
we can determine the instantaneous net cash flow, Cu, which will induce the
firm to abandon the investment opportunity. The operative rule will thus be to
determine the Cu for which we have VA(Cu) + E = VN(Cu), or:

E + µ

2β
+ σ

3β
√

β
xu + a1

{
1 − √

π xu exp(x2
u )[1 − erf(xu)]

}

= a2
{
1 + √

π xu exp(x2
u)[1 + erf(xu)]

}
(5.34)

where xu = (
√

β/σ)(Cu − µ). Note that this analysis returns four unknowns:
Ch, Cu, a1 and a2. There are, however, presently only two equations from which
to determine these four variables.

The remaining two equations are provided, however, by the Samuelson
‘smooth-pasting’ conditions. The smooth-pasting conditions rule out the
possibility of arbitrage profits at the net cash flows which will just induce
the firm to exercise its option to activate the capital project (Ch), or abandon
its commitment to it (Cu). In other words, if we are to rule out arbitrage
opportunities at these cash flows, the following smooth-pasting conditions will
have to apply:17

dVA(C)

dC

∣∣∣∣∣
Ch

= dVN(C)

dC

∣∣∣∣∣
Ch

and
dVA(C)

dC

∣∣∣∣∣
Cu

= dVN(C)

dC

∣∣∣∣∣
Cu

Differentiating the affected equations shows that these conditions are satisfied
at the two roots for which the following equation holds:

( −σ

3β
√

β
+ H

2

)
+ Gx + Hx2 = 0 (5.35)

where x = (
√

β/σ)(Ch − µ); (
√

β/σ)(Cu − µ) are the two roots of this equa-
tion, G = −2(a1 − a2) and H = 2

√
π{a1 exp(x2)[1 − erf(x)] + a2 exp(x2)[1 +

erf(x)]}. This means that we now have four equations through which to deter-
mine the four unknowns: Ch, Cu, a1 and a2.

We demonstrate the implementation of the above procedures by considering
a capital project whose purchase and installation costs amount to I = 11.6924.
Decommissioning costs of E = 3.4566 will have to be paid in the event that
the firm abandons its investment in the research and development and physical
investment activities implied by the capital project. Finally, we assume that the
project’s net cash flows are generated by an OU process with an expected cash
flow over the long run of µ = 0, a mean-reversion coefficient of β = 0.05, an
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instantaneous variance of σ 2 = 1 and a cost of capital amounting to i = 2β =
0.10. Substitution then shows that C = x/

√
0.05 and this, taken in conjunction

with the optimality conditions derived above, leads to the following ‘entry’ and
‘exit’ net cash flows and coefficients defining the option values:

Ch = 3.1743, Cu = −2.2220, a1 = 4.6020, a2 = 2.4512

In other words, the firm would implement the physical investment and research
and development activities associated with this capital project once its instan-
taneous net cash flow rises above Ch = 3.1743. It would, however, abandon
them once its instantaneous net cash flow falls below Cu = −2.2220. Figure 5.2
contains the graph of the equation summarizing the smooth-pasting conditions,
for this example. Note that there are two roots for this equation, the lower
root of x = √

0.05 C = −0.4969 corresponding to the ‘exit’ net cash flow of
Cu = −2.2220 and the upper root x = √

0.05 C = 0.7098 corresponding to the
‘entry’ net cash flow of Ch = 3.1743. The reader will find a good illustra-
tion of the numerical procedures which can be used for determining these
roots in Dixit and Pindyck (1994, chapter 6), whilst Carnahan et al. (1969,
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This is the graph of the smooth-pasting condition for the Ornstein–Uhlenbeck process:

where x = 

−s
3b b

b

H
2

+ + Gx + Hx2 = 0

(C − m)/s, G = −2(a1 − a2) and H = 2  p {a1·exp (x2)[1 − erf(x)] + a2·exp(x2)

 × [1 + erf(x)]}. The two roots of this equation define the entry (Ch) and exit (Cu) cash flows.

Figure 5.2 Determination of entry and exit cash flows for an Ornstein–Uhlenbeck process:
β = 0 .05 , σ 2 = 1 , a1 = 4 .6020 , a2 = 2 .4512 , µ = 0
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pp. 308–320) contains a useful discussion of the underlying analytical theory
and convergence properties of the non-linear iteration techniques on which they
are based.

Table 5.1 contains a more detailed summary of the particular version of
the OU process illustrated here. Thus, when the discount rate is i = 20%, the
cash flow which will induce an inactive firm to invoke the physical investment
and research and development activities implied by the OU cash flows will
be Ch = 4.3646. For an active firm, however, the cash flows will have to fall
below Cu = −2.2742 before the firm would exercise its option to abandon the
physical investment and research and development activities implied by this
process. Finally, the coefficients defining the option values at this discount rate
are a1 = 0.9003 and a2 = 0.0909.

Table 5.1 Ornstein–Uhlenbeck process: entry ( Ch ) and exit ( Cu ) residual income triggers and
constants ( a1 and a2 ) associated with the option to implement or terminate production and

investment plans; µ = 0 , i = 2β, σ = 1

i Ch Cu a1 a2

0.01 2.3287 −2.2450 248.1824 244.2726
0.02 2.4116 −2.2414 82.2459 78.5432
0.03 2.4974 −2.2380 42.0623 38.5658
0.04 2.5859 −2.2347 25.7116 22.4191
0.05 2.6771 −2.2316 17.3363 14.2451
0.06 2.7711 −2.2287 12.4395 9.5460
0.07 2.8678 −2.2262 9.3181 6.6183
0.08 2.9673 −2.2242 7.2033 4.6922
0.09 3.0694 −2.2223 5.7036 3.3757
0.10 3.1743 −2.2220 4.6020 2.4512
0.11 3.2818 −2.2221 3.7697 1.7893
0.12 3.3920 −2.2230 3.1262 1.3089
0.13 3.5048 −2.2250 2.6189 0.9570
0.14 3.6202 −2.2280 2.2125 0.6980
0.15 3.7382 −2.2323 1.8824 0.5068
0.16 3.8587 −2.2379 1.6109 0.3658
0.17 3.9816 −2.2448 1.3853 0.2621
0.18 4.1069 −2.2531 1.1962 0.1861
0.19 4.2346 −2.2629 1.0363 0.1308
0.20 4.3646 −2.2742 0.9003 0.0909
0.21 4.4969 −2.2870 0.7838 0.0624
0.22 4.6313 −2.3013 0.6835 0.0422
0.23 4.7679 −2.3171 0.5968 0.0281
0.24 4.9064 −2.3343 0.5216 0.0184
0.25 5.0470 −2.3530 0.4561 0.0119
0.26 5.1895 −2.3731 0.3989 0.0075
0.27 5.3338 −2.3944 0.3489 0.0047
0.28 5.4799 −2.4169 0.3052 0.0028
0.29 5.6277 −2.4407 0.2668 0.0017
0.30 5.7772 −2.4655 0.2331 0.0010
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5.6 SUMMARY AND CONCLUSIONS

The realization that investment opportunities also carry embedded options has
revolutionized the theory of capital investment analysis. Unfortunately, it has
also complicated project evaluation to the point where optimal investment
decisions invariably depend on a series of intractable valuation expressions.
In such cases, custom dictates that numerical evaluation is the most prac-
tical (and often the only) way of determining optimal investment expendi-
tures. However, we demonstrate that it is often possible to use power series
expansions to obtain analytic expressions for the value of a firm’s invest-
ment opportunities. These will normally permit a somewhat deeper investi-
gation of the criteria leading to the optimal investment decisions made by
firms. Furthermore, they can often identify the specialized circumstances under
which it will be possible to obtain closed-form expressions for the value of a
firm’s investment opportunities. Here, we demonstrate how these procedures
are applied when a firm’s investment opportunities have net cash flows which
are generated by the CIR ‘square root process’ and also by the OU process.
The latter process has the advantage of allowing project cash flows to assume
negative values.

Other stochastic processes are accommodated by our analysis in a fairly
straightforward manner. Here, a particularly interesting candidate is the ‘scaled’
t distribution of Praetz (1972) and Blattberg and Gonedes (1974). This process
is based on the assumption that expected changes in operating cash flows are
always towards a long-run mean, are potentially negative and have a variance
which depends on the difference between the ‘current’ and long-run operating
cash flows. Hence, the uncertainty associated with future cash flows depends on
the current level of the operating cash flow – something that intuition suggests
ought to be the case. It thus combines the most attractive features from the
CIR and OU processes. Determining the value of the embedded investment
options for this stochastic process would be a very useful addition to the liter-
ature. However, Kendall et al. (1987, p. 216) note that the Pearson Type IV
distribution, of which the scaled t is a special case, is ‘difficult to handle in
practice.’ Furthermore, the valuation equations based on it lead to complemen-
tary functions involving intricate convergence issues. Hence, it seems sensible
that we leave consideration of the scaled t operating cash flow processes until
another occasion.

5.7 APPENDIX

5.7.1 Series solution of the CIR auxiliary equation

The solution V (C) =∑∞
j=0 ajC

j+r implies that V ′(C) =∑∞
j=0(j + r)ajC

j+r−1

and V ′′(C) =∑∞
j=0(j + r)(j + r − 1)ajC

j+r−2. Substitute these expressions
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into the CIR auxiliary equation to give:

∞∑
j=0

{ 1
2σ 2(j + r)(j + r − 1)ajC

j+r−1

+ βµ(j + r)ajC
j+r−1 − β(j + r)ajC

j+r − iajC
j+r
} = 0 (A5.1)

Noting that the last two summations in this equation may be restated
as
∑∞

j=0(j + r)ajC
j+r =∑∞

j=1(j + r − 1)aj−1C
j+r−1 and

∑∞
j=0 ajC

j+r =∑∞
j=1 aj−1C

j+r−1 and combining terms gives:

a0
{ 1

2σ 2r(r − 1) + βµr
}
Cr−1 +

∞∑
j=1

{ 1
2σ 2(j + r)(j + r − 1)aj

+ βµ(j + r)aj − β(j + r − 1)aj−1 − iaj−1
}
Cj+r−1 = 0 (A5.2)

Now the coefficient associated with the first term of this expansion, when set
equal to zero, is known as the indicial equation (Boyce and DiPrima, 1997,
pp. 262–266). Hence, for the CIR process the indicial equation is 1

2σ 2r(r −
1) + βµr = 0. Furthermore, the roots of the indicial equation are known as
the ‘exponents of singularity’ for the differential equation (Boyce and DiPrima,
1997, p. 264). Hence, for the square root process, r = 0 and r = 1 − 2βµ/σ 2

are the exponents of singularity. Note that if we let r = 0 then the series expan-
sion becomes:

∞∑
j=1

{ 1
2σ 2j (j − 1)aj + jβµaj − β(j − 1)aj−1 − iaj−1

}
Cj−1 = 0 (A5.3)

or the following recurrence relationship holds:

aj =
{

2((j − 1)β + i)

j (j − 1)σ 2 + 2jβµ

}
aj−1 (A5.4)

Letting j vary over all integral values then implies the following solution to
the auxiliary equation:

V1(C) = 1 +
∞∑

j=1

{
i(β + i) . . . ((j − 1)β + i)

βµ(σ 2 + 2βµ) . . . ((j/2)(j − 1)σ 2 + jβµ)

}
Cj

(A5.5)
Note that the limit of the ratio of the (j + 1)st and j th terms of this expansion is:

lim
j→∞

[
2(jβ + i)

j (j + 1)σ 2 + 2(j + 1)βµ

]
C = 0
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Hence, by the ratio test (Spiegel, 1974, p. 226; Boyce and DiPrima, 1997,
pp. 226–227), the above series converges for all C.

For the second exponent of singularity, r = 1 − 2βµ/σ 2, similar analysis
returns the recurrence relationship:

aj =




2
[
β

(
j − 2βµ

σ 2

)
+ i

]

j (j + 1)σ 2 − 2jβµ




aj−1 (A5.6)

Hence, if we let j vary over all integral values we obtain the following solution
to the auxiliary equation:

V2(C) =

1 +
∞∑

j=1





[
β

(
1 − 2βµ

σ 2

)
+ i

] [
β

(
2 − 2βµ

σ 2

)
+ i

]

. . .

[
β

(
j − 2βµ

σ 2

)
+ i

]

(σ 2−βµ)(3σ 2−2βµ) . . . ((j/2)(j+1)σ 2−jβµ)





Cj

C

( 2βµ

σ 2 −1
)

(A5.7)
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NOTES

1. Rubinstein (1974, 1976) summarizes some mild regularity conditions which can
be used to justify this assumption.

2. As a simple example, consider the differential equation y ′′(x) + y(x) + x =
0. Both yp(x) = −x and yp(x) = cos(x) − x are particular solutions of this
equation. However, the general solution takes the form y(x) = a1 cos(x) +
a2 sin(x) − x, where a1 and a2 are constants. Hence, the first particular solu-
tion is obtained by letting a1 = a2 = 0, whilst the second particular solution is
obtained by letting a1 = 1 and a2 = 0. Hence, by letting a1 and a2 vary over all
real numbers, we can define the infinite number of particular solutions which
exist for this differential equation.

3. For an inactive firm, V1(C) and V2(C) capture the value of the option to activate
the capital project at some future point in time.
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4. These mild regularity conditions are that 2C[b(C)/a(C)] and 2C2[i/a(C)],
where b(C) and a(C) are defined in Proposition 5.1, must both possess conver-
gent Taylor series expansions over some finite domain (Boyce and DiPrima,
1997, pp. 229, 272–273).

5. It may also be shown when C �= µ, that the expected present value of the future
‘abnormal’ cash flows amounts to (C − µ)/(β + i).

6. Convergence for this series can, however, be extremely slow in the sense that
a large number of terms are required before the remaining terms are insignifi-
cantly small. However, modern computing power means that slow convergence
is unlikely to be of any practical significance.

7. The two series solutions given here are derived on the assumption that the
absolute difference between the two exponents of singularity is of non-integral
value. When this assumption is not satisfied, the solutions take a slightly different
form. See Boyce and DiPrima (1997, pp. 272–273) for further details.

8. This assumption simplifies the analysis without detracting from its generality.
9. The proof follows from substituting a = σ 2/2, β = −b and c = βµ into

equation (1.1) of Feller (1951, p. 173) and using lemma 6 (p. 179) of the
same article.

10. Cox et al. (1985, pp. 396–397) determine the value of a (European) investment
option with CIR cash flows but which expires on a fixed and known date.

11. Note, however, that the actual value for the discount rate, i, will in general be
different between the two processes, reflecting the differing risks associated with
the cash flows they imply.

12. The discount rate, i, is typically small and so this assumption implies that the
speed of adjustment coefficient, β, will be of even lower order. We should
also emphasize that this assumption does not affect the generality of the results
which we are about to report. We invoke this assumption purely because of
the tractability and pedagogic convenience which arises out of the closed-form
solutions it implies.

13. In subsequent analysis we normalize this complementary function so that
it becomes:

V2(C) =
√

βπ

σ 2
(C − µ) exp

[
β(C − µ)2

σ 2

]

This renders it compatible with the expression for V1(C).
14. The substitution x = (

√
β/σ)(C − µ) shows:

√
βπ

σ 2
(C − µ) exp

[
β(C − µ)2

σ 2

] [
1 − erf

(√
β

σ
(C − µ)

)]

= 2x exp(x2)

∫ ∞

x

exp(−z2)dz =

∫ ∞

x

exp(−z2)dz

1

2x
exp(−x2)
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It then follows:

lim
x→∞




∫ ∞

x

exp(−z2)dz

1

2x
exp(−x2)


 = lim

x→∞


 − exp(−x2)

−1

2x2
exp(−x2) − exp(−x2)




= lim
x→∞

[
2x2

2x2 + 1

]
= 1

by virtue of L’Hôpital’s rule (Spiegel, 1974, p. 62). Furthermore, Cauchy’s
generalized theorem of the mean (Spiegel, 1974, p. 71) shows for non-negative x:

0 ≤

∫ ∞

x

exp(−z2)dz

1

2x
exp(−x2)

≤ 1

Together, these results imply that the embedded option value, as given by the
term a1[V1(C) − V2(C)], can never be negative – as one would expect.

15. Analysis similar to that contained in the previous note shows VN(C) to be a
strictly positive function. Furthermore, Boyce and DiPrima (1997, exercise 12,
p. 144) note that if V1(C) and V2(C) are two complementary functions for
the auxiliary equation 1

2 a(C)V ′′(C) + b(C)V ′(C) − iV (C) = 0, then V1(C) −
V2(C) and V1(C) + V2(C) can also be taken as the complementary functions if
it turns out that this is more convenient. This is, in fact, what we have done in
this section in deriving the value of the embedded options for OU cash flows.

16. Cox and Ross (1976, pp. 162–163) and Egginton et al. (1989, pp. 265–266)
determine the value of a (European) investment option with OU cash flows but
which expires on a fixed and known date.

17. Dixit and Pindyck (1994, pp. 130–132) contains an intuitive and very readable
account of the arbitrage ideas which underscore the smooth-pasting conditions.
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Chapter 6

Student’s distribution and the value
of real options

HUW RHYS AND MARK TIPPETT

SUMMARY

In this chapter we derive an explicit formula for the value of the option
to invest in a capital project when the difference between the benefits
and costs of the investment decision are generated by a general class
of Student distributions. These processes encapsulate the ‘fat tail’
property that characterizes the empirical distributions of some of the
asset pricing literature. Furthermore, since many real-life investment
opportunities are not infinitely lived but expire and become worthless
at a known point in time, our analysis is based on the assumption that
the option to invest has a finite life.

6.1 INTRODUCTION

In this chapter we derive an explicit formula for the value of the option to
invest in a capital project, but where the option to do so has a finite life. The
seminal and most often quoted papers in this area are those of Margrabe (1978)
and McDonald and Siegel (1986), both of which solve the valuation problem
by assuming that the benefits and costs associated with the capital project are
generated by a geometric Brownian motion. Virtually all the subsequent work in
the area, such as that by Myers and Majd (1990), Olsen and Stensland (1992),
Quigg (1993), Carr (1988, 1995) and Schroder (1999), has continued with the
Brownian motion assumption. There is growing evidence, however, that asset
prices evolve in terms of distributions which possess ‘fat tails’ when compared
to the normal distribution on which the Brownian motion is based (Praetz, 1972;
Blattberg and Gonedes, 1974; Theodossiou, 1998; Barndorff-Nielsen and Shep-
hard, 2001). Hence, our purpose here is to present a closed-form solution for the
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value of the option to invest in a capital project when the difference between the
benefits and costs of the investment decision are generated by a general class of
Student distributions. These processes exhibit the ‘fat tail’ properties that char-
acterize the (probable) distributions of some R&D projects, which either fail
after large expenditures in development and clinical trials, or succeed as block-
buster products. Section 6.2 develops the valuation formula and analyzes some
of its more important properties. Section 6.3 contains our summary conclusions.

6.2 THE VALUE OF THE INVESTMENT OPTION

Our focus is on determining the value of the option to invest in a capital project
whose net present value at time t is x(t). We emphasize that x(t) is a net present
value; it represents the discounted expected value of the capital project’s net
cash flows (composed of the operating cash flow less any investment outlays
incurred in each period) given the information that is available about it at time t .1

As such, x(t) may assume both positive and negative values. Furthermore, the
‘fat tail’ property alluded to earlier will mean that the variance of instantaneous
increments, dx(t), in the capital project’s net present value will have to depend
on the level, x(t), of the variable itself. Our analysis encapsulates both these
requirements by assuming that instantaneous increments in the capital project’s
net present value evolve in terms of the following elastic (or mean-reverting)
random walk:

dx(t) = −βx(t)dt +
√
k2 + 2rx2(t) dz(t) (6.1)

where β ≥ 0 is the ‘speed of adjustment’ coefficient, k2 > 0 is the variance of
instantaneous increments in the capital project’s net present value when there
are no economic rents (that is, when x(t) = 0), r > 0 is the intertemporally
constant risk-free rate of interest and dz(t) is a ‘white noise’ process with unit
variance.2 Hence, under these assumptions the expected instantaneous increment
(per unit time) in the net present value variable will be Et [dx(t)]/dt = −βx(t),
where Et(·) is the expectations operator taken at time t . This means that we can
expect any economic rents to be eliminated with a force which is proportional to
the existing rents; the constant of proportionality being defined by the speed of
adjustment coefficient, β. Furthermore, the variance (per unit time) of instan-
taneous variations in the net present value variable will be Vart [dx(t)]/dt =
k2 + 2rx2(t), where Vart (·) is the variance operator (also taken at time t).
This expression reflects the belief that the uncertainty associated with varia-
tions in asset values increases as the value of the affected asset becomes larger
[Fama, 1965; Blattberg and Gonedes, 1974; Cox et al., 1985; Theodossiou,
1998; Barndorff-Nielsen and Shephard, 2001].3
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Here we need to emphasize, however, that assuming increments, dx(t), in the
net present value of the capital project are generated by some form of Gaussian
process (as is the case above) does not necessarily imply that the (level of
the) net present value variable, x(t), itself will also be Gaussian. In fact, the
exact relationship between the distributions describing how the increments to
a stochastic variable evolve and that which describes the levels of the variable
itself are summarized by the Fokker–Planck equation (Cox and Miller, 1965,
pp. 213–225). In the present context Merton (1975, pp. 389–391) and Karlin
and Taylor (1981, pp. 219–221) amongst others show that the solution to the
Fokker–Planck equation takes the form:

g(x) = c

a(x)
exp

[∫ x 2b(y)

a(y)
dy
]

(6.2)

where x is the instantaneous level of the stochastic variable, g(x) ≥ 0 is its
probability density, b(x) = Et [dx(t)]/dt is the expected instantaneous incre-
ment (per unit time) in the stochastic variable, a(x) = Vart [dx(t)]/dt is the
variance (per unit time) of the instantaneous increment in the stochastic vari-
able and c is a normalizing constant which ensures that there is a unit area under
the probability density. Substituting the expressions for b(x) and a(x) into the
Fokker–Planck equation shows that the probability density for (the level of)
the net present value variable, x(t), is given by:

g(x) = c
(

1 + x2

ν1

)−(1+ν2)

(6.3)

where ν1 = k2/2r > 0, ν2 = β/2r ≥ 0, c = �(ν2 + 1)/[
√
πν1�((2ν2 + 1)/2)]

and �(·) is the gamma function. Furthermore, substitution shows z =√
(2ν2 + 1)/ν1x is distributed as a Student’s ‘t’ variate with 2ν2 + 1 degrees of

freedom. This identifies g(x) as the ‘scaled’ Student distribution first introduced
into the financial economics literature by Praetz (1972) and Blattberg and
Gonedes (1974). It is well known that this distribution has ‘fat’ tails relative to
the normal distribution, reflecting the fact that in a research and development
context, capital projects either tend to pay off as blockbuster products or be
dismal failures. However, relatively little is known about the properties of
options written on securities that evolve in terms of fat-tailed distributions like
these, and so it is to this issue we now turn.

Using the standard arbitrage arguments demonstrated in the appendix
(Section 6.4) (Smith, 1976, pp. 20–23) we can show that the value of an option,
V (x, t), written on the net present value of the underlying capital project, x(t),
will have to satisfy the fundamental valuation equation:

1

2
(k2 + 2rx2)

∂2V

∂x2
+ rx ∂V

∂x
+ ∂V

∂t
− rV (x, t) = 0 (6.4)
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For simplicity we assume that the option will only be exercised if the net present
value of the underlying capital project is positive. This means that the option
value will also have to satisfy the following boundary condition:

V (x, T ) =
{
x if x > 0
0 if x ≤ 0

(6.5)

where T ≥ t is the date on which a decision about whether to invest in the
capital project (or not) must be taken. The more general case, which requires
that the option will only be exercised if the project’s net present value exceeds
a prespecified and non-trivial (positive) hurdle value at maturity, is treated in
the appendix.

Progress towards solving this boundary value problem can be made by making
the substitution V (x, t) = exp[−r(T − t)]F(ξ, η), based on the transformed
co-ordinate system ξ = (1/√2r) log(x +√

x2 + k2/2r) and η = (T − t)/2. We
can demonstrate the significance of these transformations by recalling that the
martingale equivalent pricing property for ‘viable’ arbitrage economies ‘causes
every security to earn (in expected value) at the riskless rate . . . .’ (Harrison
and Kreps, 1979, p. 383). In other words, the continuous trading property of
an arbitrage economy means that there is ‘a redistribution of probability mass’,
the effect of which is to change the underlying distribution (of the security’s
return) so that it has an expected return equal to that on the riskless asset. All the
‘higher’ moments, however, remain unchanged. This means that the arbitrage
process will be based on a security whose value evolves in accordance with the
following stochastic differential equation:4

dx(t) = rx(t)dt +
√
k2 + 2rx2(t) dz(t) (6.6)

Thus, in the arbitrage economy depicted here, the net present value variable will
have increments with an instantaneous mean (per unit time) of Et [dx(t)]/dt =
rx(t). The instantaneous variance of increments in the net present value variable,
however, remains unchanged at Vart [dx(t)]/dt = k2 + 2rx2(t). Furthermore,
using this result in conjunction with Itô’s lemma shows that instantaneous
increments in ξ evolve in terms of a white noise process with unit variance
parameter, or:

dξ = ∂ξ

∂x
dx + 1

2
(dx)2

∂2ξ

∂x2
= rx dt + √

k2 + 2rx2 dz√
k2 + 2rx2

− (k2 + 2rx2)rx dt

[
√
k2 + 2rx2]3

= dz(t) (6.7)

This means that ξ itself is a Wiener–Lévy process and, as such, will be normally
distributed with a mean of zero and a variance of t . Now, given the well-known



The value of real options 95

relationship between the normal distribution and the diffusion equation of math-
ematical physics (Apostol, 1969, p. 292), it ought to come as no surprise that
under the (ξ, η) transformations, the fundamental valuation equation assumes
the canonical form:5

∂2F

∂ξ 2
= ∂F

∂η
(6.8)

with the boundary condition:

F(y, T ) = h(y) =




[
2r exp(

√
2ry)− k2 exp(−√

2ry)

4r

]

if y ≥ 1√
2r

log
(
k√
2r

)

0 if y <
1√
2r

log
(
k√
2r

)

(6.9)
Now, it is well known that the general solution to this equation takes the form
(Weinberger, 1965, pp. 327–328):

F(ξ, η) = 1√
4πη

∫ ∞

−∞
h(y) exp

[−(ξ − y)2
4η

]
dy (6.10)

Thus, if we substitute the boundary condition, h(y), into this equation and
simplify, we end up with the following unique solution to the fundamental
valuation equation:

V (x, t) = 1

2


x +

√
x2 + k2

2r


N(d1)− 1

2



√
x2 + k2

2r
− x


N(d2)

(6.11)
where:6

d1 =
log




√
2r

k
x +

√
2rx2

k2
+ 1


+ 2r(T − t)

√
2r(T − t)

d2 =
log




√
2r

k
x +

√
2rx2

k2
+ 1


− 2r(T − t)

√
2r(T − t)

and N(d) = (1/√2π)
∫ d
−∞ exp(−z2/2)dz is the accumulated area under the

standard normal distribution.7
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Table 6.1 Value of the option to implement the capital project whose net present value is x( t),
when there is one year to run until maturity

k = 1 k = 3 k = 5

x(t) r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09

−4.00 0.0000 0.0001 0.0003 0.1308 0.1339 0.1366 0.5958 0.5905 0.5851
−3.75 0.0001 0.0002 0.0004 0.1546 0.1571 0.1592 0.6492 0.6427 0.6361
−3.50 0.0002 0.0004 0.0007 0.1821 0.1838 0.1851 0.7065 0.6986 0.6908
−3.25 0.0004 0.0007 0.0011 0.2137 0.2145 0.2149 0.7676 0.7584 0.7494
−3.00 0.0008 0.0013 0.0018 0.2498 0.2495 0.2490 0.8328 0.8223 0.8121
−2.75 0.0015 0.0022 0.0030 0.2909 0.2894 0.2878 0.9022 0.8905 0.8790
−2.50 0.0029 0.0039 0.0049 0.3373 0.3346 0.3319 0.9759 0.9630 0.9504
−2.25 0.0055 0.0067 0.0079 0.3895 0.3856 0.3816 1.0541 1.0401 1.0264
−2.00 0.0100 0.0115 0.0128 0.4481 0.4428 0.4376 1.1369 1.1218 1.1071
−1.75 0.0179 0.0194 0.0208 0.5133 0.5068 0.5003 1.2243 1.2083 1.1926
−1.50 0.0308 0.0322 0.0334 0.5855 0.5778 0.5702 1.3166 1.2997 1.2832
−1.25 0.0515 0.0524 0.0531 0.6653 0.6564 0.6478 1.4138 1.3961 1.3788
−1.00 0.0833 0.0832 0.0830 0.7527 0.7430 0.7333 1.5159 1.4976 1.4797
−0.75 0.1298 0.1285 0.1272 0.8483 0.8377 0.8273 1.6230 1.6042 1.5858
−0.50 0.1952 0.1926 0.1901 0.9520 0.9409 0.9299 1.7352 1.7161 1.6973
−0.25 0.2828 0.2792 0.2758 1.0642 1.0527 1.0414 1.8525 1.8332 1.8142

0.00 0.3950 0.3911 0.3873 1.1850 1.1733 1.1619 1.9749 1.9555 1.9365
0.25 0.5328 0.5292 0.5258 1.3142 1.3027 1.2914 2.1025 2.0832 2.0642
0.50 0.6952 0.6926 0.6901 1.4520 1.4409 1.4299 2.2352 2.2161 2.1973
0.75 0.8798 0.8785 0.8772 1.5983 1.5877 1.5773 2.3730 2.3542 2.3358
1.00 1.0833 1.0832 1.0830 1.7527 1.7430 1.7333 2.5159 2.4976 2.4797
1.25 1.3015 1.3024 1.3031 1.9153 1.9064 1.8978 2.6638 2.6461 2.6288
1.50 1.5308 1.5322 1.5334 2.0855 2.0778 2.0702 2.8166 2.7997 2.7832
1.75 1.7679 1.7694 1.7708 2.2633 2.2568 2.2503 2.9743 2.9583 2.9426
2.00 2.0100 2.0115 2.0128 2.4481 2.4428 2.4376 3.1369 3.1218 3.1071
2.25 2.2555 2.2567 2.2579 2.6395 2.6356 2.6316 3.3041 3.2901 3.2764
2.50 2.5029 2.5039 2.5049 2.8373 2.8346 2.8319 3.4759 3.4630 3.4504
2.75 2.7515 2.7522 2.7530 3.0409 3.0394 3.0378 3.6522 3.6405 3.6290
3.00 3.0008 3.0013 3.0018 3.2498 3.2495 3.2490 3.8328 3.8223 3.8121
3.25 3.2504 3.2507 3.2511 3.4637 3.4645 3.4649 4.0176 4.0084 3.9994
3.50 3.5002 3.5004 3.5007 3.6821 3.6838 3.6851 4.2065 4.1986 4.1908
3.75 3.7501 3.7502 3.7504 3.9046 3.9071 3.9092 4.3992 4.3927 4.3861
4.00 4.0000 4.0001 4.0003 4.1308 4.1339 4.1366 4.5958 4.5905 4.5851

Table 6.1 contains a summary of the option values implied by this pricing
formula for three values of the risk-free rate of interest (r = 3%, 6% and 9%)
and three values of the ‘zero rent’ variance parameter (k = 1, 3 and 5) when the
option has a year to run until maturity (T − t = 1). Thus, when the risk-free
rate of interest is r = 6%, the zero rent volatility parameter is k = 3 and the
net present value of the capital project is currently x = −£2, then the option to
invest in the capital project will have a value of 44.28p.
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Figure 6.1 Value of the option on the capital project (T = 6 months, r = 6 %)

Figure 6.1 provides an equivalent illustration for the case when all parameters
are the same as in Table 6.1 except that the option now has only six months
(T − t = 1/2) to run until maturity. Note that as k grows (there is more uncer-
tainty associated with the capital project’s future net present value), the value
of the option also grows. Furthermore, the option’s value always exceeds what
could be obtained from exercising it before its maturity date; that is, V (x, t) > x
for all values of x and t < T (Merton, 1973, pp. 143–144). This means that
the holder of the option would be foolish to exercise the option prematurely,
since there is a greater financial advantage to be had from selling the option
itself rather than implementing the capital project on which it is written.

The sensitivity of the option formula, V (x, t), to small changes in its deter-
mining variables sheds further light on the impact that Student distributions can
have on option values. We begin with the most commonly computed sensitivity
measure; namely, the option delta, which is the derivative of the option value,
V (x, t), with respect to the net present value, x, of the capital project, or:

 = ∂V

∂x
= 1

2


1 +

√√√√√
x2

k2

2r
+ x2


N(d1)+ 1

2


1 −

√√√√√
x2

k2

2r
+ x2


N(d2)

(6.12)
Numerical values of this derivative are summarized in Table 6.2 and Figure 6.2.
The table contains the option delta for three values of the risk-free rate of interest
(r = 3%, 6% and 9%) and three values of the zero rent variance parameter (k =
1, 3 and 5) when the option has a year to run until maturity. Figure 6.2 provides
an equivalent illustration for the case when all parameters are the same as in
Table 6.2, except that the option now has only six months to run until maturity.
These show that the option delta will be near to zero for deep out-of-the-money
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Table 6.2 Value of delta ( = ∂V /∂x) when the option to implement the capital project whose
net present value is x( t) has one year to run until maturity

k = 1 k = 3 k = 5

x(t) r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09

−4.00 0.0001 0.0003 0.0005 0.0886 0.0862 0.0840 0.2065 0.2014 0.1966
−3.75 0.0003 0.0005 0.0008 0.1025 0.0996 0.0968 0.2212 0.2161 0.2112
−3.50 0.0006 0.0009 0.0013 0.1180 0.1145 0.1113 0.2366 0.2314 0.2265
−3.25 0.0011 0.0016 0.0022 0.1351 0.1311 0.1274 0.2525 0.2474 0.2425
−3.00 0.0021 0.0029 0.0035 0.1540 0.1496 0.1455 0.2691 0.2640 0.2592
−2.75 0.0040 0.0050 0.0058 0.1746 0.1699 0.1654 0.2861 0.2813 0.2766
−2.50 0.0075 0.0086 0.0094 0.1971 0.1920 0.1873 0.3038 0.2991 0.2946
−2.25 0.0135 0.0145 0.0154 0.2212 0.2161 0.2112 0.3219 0.3175 0.3132
−2.00 0.0237 0.0244 0.0248 0.2472 0.2420 0.2371 0.3404 0.3364 0.3324
−1.75 0.0401 0.0400 0.0398 0.2747 0.2697 0.2649 0.3594 0.3558 0.3521
−1.50 0.0654 0.0640 0.0627 0.3038 0.2991 0.2946 0.3788 0.3755 0.3723
−1.25 0.1025 0.0996 0.0968 0.3342 0.3300 0.3260 0.3985 0.3957 0.3930
−1.00 0.1540 0.1496 0.1455 0.3658 0.3623 0.3588 0.4184 0.4162 0.4139
−0.75 0.2212 0.2161 0.2112 0.3985 0.3957 0.3930 0.4386 0.4369 0.4352
−0.50 0.3038 0.2991 0.2946 0.4319 0.4300 0.4281 0.4590 0.4578 0.4567
−0.25 0.3985 0.3957 0.3930 0.4658 0.4648 0.4639 0.4795 0.4789 0.4783

0.00 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.25 0.6015 0.6043 0.6070 0.5342 0.5352 0.5361 0.5205 0.5211 0.5217
0.50 0.6962 0.7009 0.7054 0.5681 0.5700 0.5719 0.5410 0.5422 0.5433
0.75 0.7788 0.7839 0.7888 0.6015 0.6043 0.6070 0.5614 0.5631 0.5648
1.00 0.8460 0.8504 0.8545 0.6342 0.6377 0.6412 0.5816 0.5838 0.5861
1.25 0.8975 0.9004 0.9032 0.6658 0.6700 0.6740 0.6015 0.6043 0.6070
1.50 0.9346 0.9360 0.9373 0.6962 0.7009 0.7054 0.6212 0.6245 0.6277
1.75 0.9599 0.9600 0.9602 0.7253 0.7303 0.7351 0.6406 0.6442 0.6479
2.00 0.9763 0.9756 0.9752 0.7528 0.7580 0.7629 0.6596 0.6636 0.6676
2.25 0.9865 0.9855 0.9846 0.7788 0.7839 0.7888 0.6781 0.6825 0.6868
2.50 0.9925 0.9914 0.9906 0.8029 0.8080 0.8127 0.6962 0.7009 0.7054
2.75 0.9960 0.9950 0.9942 0.8254 0.8301 0.8346 0.7139 0.7187 0.7234
3.00 0.9979 0.9971 0.9965 0.8460 0.8504 0.8545 0.7309 0.7360 0.7408
3.25 0.9989 0.9984 0.9978 0.8649 0.8689 0.8726 0.7475 0.7526 0.7575
3.50 0.9994 0.9991 0.9987 0.8820 0.8855 0.8887 0.7634 0.7686 0.7735
3.75 0.9997 0.9995 0.9992 0.8975 0.9004 0.9032 0.7788 0.7839 0.7888
4.00 0.9999 0.9997 0.9995 0.9114 0.9138 0.9160 0.7935 0.7986 0.8034

options (when the capital project has a large negative net present value) and
near to unity for deep in-the-money options (when the capital project has a
large positive net present value). Note also that the delta changes more quickly
when the capital project’s net present value is close to zero, although increasing
values of the zero rent variance parameter k have a moderating influence on the
rate at which delta grows. Furthermore, comparing Table 6.2 with Figure 6.2
shows that for out-of-the-money options, delta converges towards zero as the
option’s maturity date approaches; for in-the-money options, however, delta
converges towards unity as the maturity date approaches.
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Figure 6.2 Value of delta for the option on the capital project (T = 6 months, r = 6 %)

A second sensitivity measure is the option’s theta which is obtained by differ-
entiating the option valuation formula, V (x, t), with respect to calendar time, or:

! = ∂V

∂t
= −1

2


x +

√
k2

2r
+ x2


N ′(d1)

√
2r

T − t

= −1

2



√
k2

2r
+ x2 − x


N ′(d2)

√
2r

T − t (6.13)

where N ′(d) = (1/√2π) exp(−d2/2) is the derivative of (the accumulated area
under) the standard normal distribution. Numerical values of this derivative are
summarized in Table 6.3 and Figure 6.3. Table 6.3 contains the option theta for
the three values of the risk-free rate (r = 3%, 6% and 9%) and the three values
of the zero rent variance parameter (k = 1, 3 and 5) previously used, given
that the option has a year to run until maturity. Figure 6.3 provides an equiva-
lent illustration for the case when all parameters are the same as in Table 6.3,
except that the option now has only six months to run until maturity. These
show that as the capital project’s net present value, x, grows, the option theta
at first decreases, reaching a minimum when the capital project’s net present
value is zero. The option theta then increases in a symmetrical fashion towards
zero. Comparing Table 6.3 with Figure 6.3 shows that for at-the-money options
(where the capital project’s net present value is not far removed from zero) theta
is decreasing as the option’s maturity date approaches. For (moderately or deep)
in- or out-of-the-money options, however, the option theta is either increasing
or decreasing as the time to maturity declines, depending on the exact values
of the risk-free rate of interest, r , and the zero rent variance parameter, k.

The final sensitivity measure we consider is the option’s rho, which is obtained
by differentiating the valuation formula with respect to the risk-free rate of
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Table 6.3 Value of theta (! = ∂V /∂t ) when the option to implement the capital project whose
net present value is x( t) has one year to run until maturity

k = 1 k = 3 k = 5

x(t) r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09

−4.00 −0.0004 −0.0009 −0.0017 −0.2460 −0.2452 −0.2439 −0.7057 −0.6874 −0.6696
−3.75 −0.0007 −0.0015 −0.0025 −0.2721 −0.2698 −0.2669 −0.7329 −0.7133 −0.6943
−3.50 −0.0013 −0.0024 −0.0037 −0.2993 −0.2953 −0.2909 −0.7594 −0.7386 −0.7184
−3.25 −0.0023 −0.0038 −0.0054 −0.3273 −0.3215 −0.3157 −0.7849 −0.7631 −0.7417
−3.00 −0.0041 −0.0060 −0.0080 −0.3557 −0.3483 −0.3409 −0.8095 −0.7865 −0.7642
−2.75 −0.0070 −0.0094 −0.0117 −0.3841 −0.3752 −0.3664 −0.8328 −0.8089 −0.7857
−2.50 −0.0118 −0.0146 −0.0170 −0.4123 −0.4019 −0.3918 −0.8547 −0.8299 −0.8059
−2.25 −0.0192 −0.0221 −0.0246 −0.4397 −0.4280 −0.4166 −0.8750 −0.8495 −0.8247
−2.00 −0.0302 −0.0329 −0.0351 −0.4659 −0.4530 −0.4404 −0.8937 −0.8675 −0.8421
−1.75 −0.0456 −0.0476 −0.0491 −0.4904 −0.4765 −0.4629 −0.9105 −0.8837 −0.8577
−1.50 −0.0659 −0.0667 −0.0671 −0.5128 −0.4980 −0.4835 −0.9254 −0.8981 −0.8716
−1.25 −0.0907 −0.0899 −0.0890 −0.5326 −0.5170 −0.5019 −0.9381 −0.9104 −0.8836
−1.00 −0.1186 −0.1161 −0.1136 −0.5494 −0.5332 −0.5175 −0.9487 −0.9207 −0.8935
−0.75 −0.1466 −0.1427 −0.1389 −0.5629 −0.5463 −0.5301 −0.9571 −0.9288 −0.9013
−0.50 −0.1709 −0.1660 −0.1612 −0.5727 −0.5558 −0.5394 −0.9631 −0.9346 −0.9070
−0.25 −0.1876 −0.1821 −0.1767 −0.5787 −0.5616 −0.5450 −0.9667 −0.9381 −0.9104

0.00 −0.1936 −0.1879 −0.1823 −0.5807 −0.5636 −0.5469 −0.9679 −0.9393 −0.9115
0.25 −0.1876 −0.1821 −0.1767 −0.5787 −0.5616 −0.5450 −0.9667 −0.9381 −0.9104
0.50 −0.1709 −0.1660 −0.1612 −0.5727 −0.5558 −0.5394 −0.9631 −0.9346 −0.9070
0.75 −0.1466 −0.1427 −0.1389 −0.5629 −0.5463 −0.5301 −0.9571 −0.9288 −0.9013
1.00 −0.1186 −0.1161 −0.1136 −0.5494 −0.5332 −0.5175 −0.9487 −0.9207 −0.8935
1.25 −0.0907 −0.0899 −0.0890 −0.5326 −0.5170 −0.5019 −0.9381 −0.9104 −0.8836
1.50 −0.0659 −0.0667 −0.0671 −0.5128 −0.4980 −0.4835 −0.9254 −0.8981 −0.8716
1.75 −0.0456 −0.0476 −0.0491 −0.4904 −0.4765 −0.4629 −0.9105 −0.8837 −0.8577
2.00 −0.0302 −0.0329 −0.0351 −0.4659 −0.4530 −0.4404 −0.8937 −0.8675 −0.8421
2.25 −0.0192 −0.0221 −0.0246 −0.4397 −0.4280 −0.4166 −0.8750 −0.8495 −0.8247
2.50 −0.0118 −0.0146 −0.0170 −0.4123 −0.4019 −0.3918 −0.8547 −0.8299 −0.8059
2.75 −0.0070 −0.0094 −0.0117 −0.3841 −0.3752 −0.3664 −0.8328 −0.8089 −0.7857
3.00 −0.0041 −0.0060 −0.0080 −0.3557 −0.3483 −0.3409 −0.8095 −0.7865 −0.7642
3.25 −0.0023 −0.0038 −0.0054 −0.3273 −0.3215 −0.3157 −0.7849 −0.7631 −0.7417
3.50 −0.0013 −0.0024 −0.0037 −0.2993 −0.2953 −0.2909 −0.7594 −0.7386 −0.7184
3.75 −0.0007 −0.0015 −0.0025 −0.2721 −0.2698 −0.2669 −0.7329 −0.7133 −0.6943
4.00 −0.0004 −0.0009 0.0017 −0.2460 −0.2452 −0.2439 −0.7057 −0.6874 −0.6696

interest, or:

ρ = ∂V

∂r
= − k2

8r2

1√
k2

2r
+ x2

[N(d1)−N(d2)]

+ 1

2



√
k2

2r
+ x2 + x


N ′(d1)

√
2(T − t)
r

(6.14)
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Figure 6.3 Value of theta for the option on the capital project (T = 6 months, r = 6 %)

Numerical values of this derivative are summarized in Table 6.4 and Figure 6.4.
Table 6.4 contains the option rho for the three values of the risk-free rate
(r = 3%, 6% and 9%) and the three values of the zero rent variance parameter
(k = 1, 3 and 5) previously used, given that the option has a year to run until
maturity. Figure 6.4 provides an equivalent illustration for the case when all
parameters are the same as in Table 6.4, except that the option now has only six
months to run until maturity. These show that as the capital project’s net present
value, x, grows, the option rho at first increases towards a maximum and then
declines towards a minimum which is reached when the capital project has a net
present value of zero.8 Rho then grows again in symmetrical fashion towards
another maximum before asymptotically declining towards zero. Comparing
Table 6.4 with Figure 6.4 shows that for at-the-money options, the option rho
is increasing as the option’s maturity date approaches. For in- or out-of-the-
money options, however, the option rho is either increasing or decreasing as
the time to maturity approaches, depending on the exact values of the risk-free
rate of interest, r , and the zero rent variance parameter, k.

There is an important relationship between the elasticities implied by each
of the determining variables considered above. Here it will be recalled that the
elasticity of the option price with respect to its determining variables is the
proportionate change in the option price divided by the proportionate change in
the determining variable. This means that the elasticity of the option price with
respect to the net present value of the capital project will be (x/V )(∂V/∂x).
Hence, if the proportionate change in the option price exceeds the propor-
tionate change in the net present value of the capital project, then the elasticity
of the option value with respect to this variable will exceed unity; that is,
(x/V )(∂V/∂x) > 1. Likewise, if the proportionate change in the option price
is less than the proportionate change in the net present value of the capital
project, then the elasticity of the option value with respect to this variable will
be less than unity; that is, (x/V )(∂V/∂x) < 1. Now, suppose also that we let T
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Table 6.4 Value of rho (ρ = ∂V /∂r) when the option to implement the capital project whose net
present value is x( t) has one year to run until maturity

k = 1 k = 3 k = 5

x(t) r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09 r = 0.03 r = 0.06 r = 0.09

−4.00 0.0022 0.0039 0.0056 0.1112 0.0969 0.0843 −0.1761 −0.1780 −0.1795
−3.75 0.0037 0.0059 0.0077 0.0882 0.0755 0.0642 −0.2198 −0.2197 −0.2193
−3.50 0.0062 0.0086 0.0106 0.0606 0.0498 0.0402 −0.2636 −0.2617 −0.2596
−3.25 0.0099 0.0125 0.0144 0.0287 0.0199 0.0122 −0.3073 −0.3037 −0.3000
−3.00 0.0153 0.0177 0.0191 −0.0073 −0.0137 −0.0195 −0.3503 −0.3452 −0.3401
−2.75 0.0227 0.0242 0.0249 −0.0466 −0.0508 −0.0545 −0.3922 −0.3857 −0.3793
−2.50 0.0318 0.0319 0.0314 −0.0884 −0.0904 −0.0921 −0.4324 −0.4248 −0.4173
−2.25 0.0416 0.0398 0.0378 −0.1319 −0.1318 −0.1316 −0.4705 −0.4619 −0.4536
−2.00 0.0500 0.0462 0.0427 −0.1757 −0.1738 −0.1719 −0.5061 −0.4967 −0.4876
−1.75 0.0534 0.0483 0.0437 −0.2186 −0.2153 −0.2120 −0.5386 −0.5286 −0.5189
−1.50 0.0478 0.0424 0.0376 −0.2594 −0.2549 −0.2504 −0.5677 −0.5573 −0.5470
−1.25 0.0294 0.0252 0.0214 −0.2967 −0.2912 −0.2859 −0.5931 −0.5822 −0.5716
−1.00 −0.0024 −0.0046 −0.0065 −0.3292 −0.3231 −0.3172 −0.6143 −0.6031 −0.5922
−0.75 −0.0440 −0.0439 −0.0439 −0.3558 −0.3493 −0.3429 −0.6311 −0.6197 −0.6086
−0.50 −0.0865 −0.0850 −0.0835 −0.3756 −0.3688 −0.3622 −0.6432 −0.6317 −0.6205
−0.25 −0.1186 −0.1164 −0.1143 −0.3877 −0.3808 −0.3741 −0.6506 −0.6390 −0.6277

0.00 −0.1306 −0.1283 −0.1260 −0.3918 −0.3849 −0.3781 −0.6530 −0.6415 −0.6301
0.25 −0.1186 −0.1164 −0.1143 −0.3877 −0.3808 −0.3741 −0.6506 −0.6390 −0.6277
0.50 −0.0865 −0.0850 −0.0835 −0.3756 −0.3688 −0.3622 −0.6432 −0.6317 −0.6205
0.75 −0.0440 −0.0439 −0.0439 −0.3558 −0.3493 −0.3429 −0.6311 −0.6197 −0.6086
1.00 −0.0024 −0.0046 −0.0065 −0.3292 −0.3231 −0.3172 −0.6143 −0.6031 −0.5922
1.25 0.0294 0.0252 0.0214 −0.2967 −0.2912 −0.2859 −0.5931 −0.5822 −0.5716
1.50 0.0478 0.0424 0.0376 −0.2594 −0.2549 −0.2504 −0.5677 −0.5573 −0.5470
1.75 0.0534 0.0483 0.0437 −0.2186 −0.2153 −0.2120 −0.5386 −0.5286 −0.5189
2.00 0.0500 0.0462 0.0427 −0.1757 −0.1738 −0.1719 −0.5061 −0.4967 −0.4876
2.25 0.0416 0.0398 0.0378 −0.1319 −0.1318 −0.1316 −0.4705 −0.4619 −0.4536
2.50 0.0318 0.0319 0.0314 −0.0884 −0.0904 −0.0921 −0.4324 −0.4248 −0.4173
2.75 0.0227 0.0242 0.0249 −0.0466 −0.0508 −0.0545 −0.3922 −0.3857 −0.3793
3.00 0.0153 0.0177 0.0191 −0.0073 −0.0137 −0.0195 −0.3503 −0.3452 −0.3401
3.25 0.0099 0.0125 0.0144 0.0287 0.0199 0.0122 −0.3073 −0.3037 −0.3000
3.50 0.0062 0.0086 0.0106 0.0606 0.0498 0.0402 −0.2636 −0.2617 −0.2596
3.75 0.0037 0.0059 0.0077 0.0882 0.0755 0.0642 −0.2198 −0.2197 −0.2193
4.00 0.0022 0.0039 0.0056 0.1112 0.0969 0.0843 −0.1761 −0.1780 −0.1795

be the calendar date on which the option matures. It then follows that τ = T − t
will be the time until the option’s maturity – in which case (τ/V )(∂V/∂τ) will
be the elasticity of the option price with respect to the time the option has
remaining until its maturity. Furthermore, the elasticity of the option price with
respect to the risk-free rate of interest will be (r/V )(∂V/∂r). Differentiating
through equation (6.11) and a little algebra shows that these three elasticity
measures are related by the formula:

x

V

∂V

∂x
+ 2

(
τ

V

∂V

∂τ
− r

V

∂V

∂r

)
= 1 (6.15)
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Figure 6.4 Value of rho for the option on the capital project (T = 6 months, r = 6 %)

This provides a useful device for checking whether the numerical values
obtained for the important sensitivity measures ( ,! and ρ) have been
correctly computed. Needless to say, it is a relationship that is satisfied by
the values reported for the sensitivity measures in the above tables.

6.3 SUMMARY CONCLUSIONS

Our purpose here has been to present a closed-form solution for the value of the
option to invest in a capital project when the option to do so has a finite life. In
doing so, we assume that the capital project’s net present value evolves in terms
of the Student distributions which exhibit the ‘fat tail’ properties characterizing
at least some of the empirical distributions of R&D. However, most analytical
work conducted in this area assumes that the option to undertake an investment
project has an infinite life (McDonald and Siegel, 1986). Unfortunately, many
real-life investment opportunities are not infinitely lived but expire and become
worthless at a known point in time. Probably the best example of this is a
finitely lived patent, which gives the holder the option to invest at any time
before a given expiration date. Our analysis provides an explicit closed-form
solution for the valuation of finite-lived derivative securities of this kind.

Closed-form solutions, such as the one derived here, are, however, notoriously
difficult to come by. Yet, despite the difficulties associated with obtaining closed-
form solutions, there is one variation to our analysis that is worthy of further
investigation. This stems from the fact that many asset prices appear to evolve
in terms of distributions which exhibit not only ‘fat’ tails but also significant
skewness (Theodossiou, 1998; Barndorff-Nielsen and Shephard, 2001). Here it is
important to note that the symmetric Student distributions on which our analysis is
based are a specific instance of a more general class of Student distributions known
as the Pearson Type IV. These distributions, which Kendall and Stuart (1977,
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p. 163) emphasize are ‘very difficult to handle . . . in practice’, encapsulate not
only the ‘fat’ tail property which characterizes many asset prices, but also allow for
skewness in the increments of asset values. It would be a useful exercise to explore
whether, for these more general Student distributions, it is possible to obtain
closed-form formulae for the value of the option to invest in a capital project.

6.4 APPENDIX

Applying Itô’s lemma to the value of the option, V (x, t), implies:

dV = ∂V

∂x
dx + 1

2

∂2V

∂x2
(dx)2 + ∂V

∂t
dt (A6.1)

or

dV =
[
−βx ∂V

∂x
+ 1

2
(k2 + 2rx2)

∂2V

∂x2
+ ∂V

∂t

]
dt +

√
k2 + 2rx2

∂V

∂x
dz

(A6.2)
This means that the instantaneous rate of return on the option will be:

dV

V
= θ dt + γ dz (A6.3)

where:

θ =
−βx ∂V

∂x
+ 1

2
(k2 + 2rx2)

∂2V

∂x2
+ ∂V

∂t

V
and γ =

√
k2 + 2rx2

∂V

∂x

V

Now, suppose we invest W1 in the underlying capital project, W2 in options
and W3 in the risk-free asset, but in such a way that the investment is self-
financing, or W1 +W2 +W3 = 0. Then differentiation shows:

W1
dW1

W1
+W2

dW2

W2
+W3

dW3

W3
= 0 = W1

dx

x
+W2

dV

V
− (W1 +W2)r dt

(A6.4)
Substituting the stochastic differential equations for dx and dV into the right-
hand side of this expression will then give:


−β dt +

√
k2

x2
+ 2r dz


W1 +W2(θ dt + γ dz)− (W1 +W2)r dt = 0

(A6.5)
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Now, suppose we pursue an investment policy which eliminates all uncertainty,
so that:



√
k2

x2
+ 2r


W1 + γW2 = 0 =



√
k2

x2
+ 2r


W1 +

√
k2 + 2rx2

∂V

∂x

V
W2

(A6.6)
or

− x

V

∂V

∂x
W2 = W1

Since all uncertainty has been eliminated, arbitrage will dictate that the non-
stochastic component of the investment policy will also have to be zero, or:

− (β + r)W1 + (θ − r)W2 = 0 = (β + r)x
V

∂V

∂x
W2

+




−βx ∂V
∂x

+ 1

2
(k2 + 2rx2)

∂2V

∂x2
+ ∂V

∂t

V
− r


W2 (A6.7)

Simplifying the right-hand side of this equation gives:

1

2
(k2 + 2rx2)

∂2V

∂x2
+ rx ∂V

∂x
+ ∂V

∂t
− rV (x, t) = 0 (A6.8)

which is the fundamental valuation equation contained in the text.
In the text we develop a pricing formula for a call option written on the

net present value variable, with an exercise price of zero. Here, we solve the
fundamental valuation equation under the more general boundary condition:

V (x, T ) =
{
x − E if x ≥ E
0 if x < E

(A6.9)

where E is a (non-trivial) exercise price. We again make the substitution
V (x, t) = exp[−r(T − t)]F(ξ, η), based on the co-ordinate system ξ =
(1/

√
2r) log(x +√

x2 + k2/2r) and η = (T − t)/2. The fundamental valuation
equation will then assume the canonical form:

∂2F

∂ξ 2
= ∂F

∂η
(A6.10)
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subject to the boundary condition:

F(y, T ) = h(y) =





2r exp(
√

2ry)− k2 exp(−√
2ry)

4r
− E

if y ≥ 1√
2r

log


E +

√
E2 + k2

2r




0 if y <
1√
2r

log


E +

√
E2 + k2

2r




(A6.11)
The general solution to this equation will now take the form (Weinberger, 1965,
pp. 327–328):

F(ξ, η) = 1√
4πη

∫ ∞

−∞
h(y) exp

[−(ξ − y)2
4η

]
dy (A6.12)

Evaluating this integral shows the more general option pricing formula to be:

V (x, t) = 1

2


x +

√
x2 + k2

2r


N(d1)− 1

2



√
x2 + k2

2r
− x


N(d2)

− E e−rtN(d3) (A6.13)

where:9

d1 =
log


x +

√
x2 + k2

2r


− log


E +

√
E2 + k2

2r


+ 2r(T − t)

√
2r(T − t)

d2 =
log


x +

√
x2 + k2

2r


− log


E +

√
E2 + k2

2r


− 2r(T − t)

√
2r(T − t)

d3 =
log


x +

√
x2 + k2

2r


− log


E +

√
E2 + k2

2r




√
2r(T − t)

and N(d) = (1√
2π)

∫ d
−∞ exp(−z2/2)dz is the accumulated area under the stan-

dard normal distribution.
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As a second application of the above analysis, consider the case of a perpetual
call option, for which t → ∞ with an exercise price of E = 0. The value, V (x),
of this option will have to satisfy the following ordinary differential equation:

1

2
(k2 + 2rx2)

d2V

dx2
+ rx dV

dx
− rV (x, t) = 0 (A6.14)

Now, direct substitution shows that V1(x) = x is a solution of this equation and
so, by reduction of order, it is readily shown that a second linearly independent
solution is (Boyce and DiPrima, 1969, pp. 103–106):

V2(x) = x
∫ ∞

x

dy

y2
√
α2 + y2

= − x

α2
+

√
α2 + x2

α2
(A6.15)

where α2 = k2/2r . It thus follows that the general solution of the ordinary
differential equation (A6.14) is:

V (x) = c1V1(x)+ c2V2(x) = c1x + c2

[
− x

α2
+

√
α2 + x2

α2

]
(A6.16)

where c1 and c2 are constants determined by boundary conditions which require
that V (x) > x for all x, V (x)→ 0 as x → −∞ and V (x) → x as x → ∞.
Setting c1 = c2/(α

2 − 1) and c2 = α2/2 returns the solution satisfying these
boundary conditions, namely:

V (x) = 1

2
x + 1

2

√
x2 + k2

2r
(A6.17)
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NOTES

1. It warrants emphasizing that our model does not assume there is a one-off invest-
ment outlay incurred immediately before installation of the capital project. We
assume, instead, that operating cash flows and investment outlays accumulate
over the entire term of the investment project. This means that the net cash flows
from the project (by which we mean the operating cash flow less any investment
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outlays incurred in each period) might be negative, and so the present value of
these cash flows can also be negative.

2. A ‘white noise’ process (Hoel et al., 1972, p. 142) is the derivative of a
Wiener–Lévy process (Hoel et al., 1972, p. 123). Furthermore, the coefficient
associated with x2(t) in the stochastic term of this formulation – namely 2r – is
chosen for computational and analytical convenience. By allowing dz(t) to be a
white noise process with variance parameter σ 2 not, in general, equal to unity,
we can reduce the impact of this assumption.

3. For some alternative empirical evidence (and models) on this issue see the articles
by Heston (1993) and Hull and White (1988).

4. A simple application of Itô’s lemma shows that the solution to this equation is:

x(t) = 2r exp[
√

2r z(t)] − k2 exp[−√
2r z(t)]

4r

where z(t) is a Wiener–Lévy process with unit variance parameter.
5. The Black and Scholes (1973) option valuation formula is likewise founded on a

co-ordinate system which transforms the assumed geometric Brownian motion on
which asset prices are based into a white noise process. The particular transforma-
tion used by Black and Scholes (1973, p. 643) is ξ = log(x)+ (r − 1

2σ
2)(T − t)

where dx/x = r dt + σ dz(t) is a geometric Brownian motion based on a white
noise process, dz(t), with variance parameter σ 2 and an instantaneous drift term
equal to the risk-free rate of interest, r . A simple application of Itô’s lemma
then shows:

dξ = dx

x
− 1

2

(
dx

x

)2

−
(
r − 1

2
σ 2

)
dt = σ dz(t)

in which case it follows that instantaneous increments in ξ are generated by a
white noise process with variance parameter σ 2. Hence, if there is a transformation
which reduces the underlying stochastic process on which asset prices are based
into a white noise process, then it will always be possible to recast and solve
the valuation problem in terms of the diffusion equation of mathematical physics
(Crank, 1975).

6. More parsimonious, but perhaps less familiar, expressions for these variables are:

d1 =
sinh−1

(√
2r

k
x

)
+ 2r(T − t)

√
2r(T − t) and

d2 =
sinh−1

(√
2r

k
x

)
− 2r(T − t)

√
2r(T − t)

7. In the appendix there is a brief treatment of the option valuation formula for the
more usual (restricted) scenario which assumes the capital project has an infinite
life (McDonald and Siegel, 1986).
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8. Cox and Rubinstein (1985, p. 226) show that for the Black and Scholes (1973)
option pricing formula, ρ is uniformly positive. The negative numbers for ρ
which arise for the option pricing formula (6.11) considered here are due to the
fact that the variance of instantaneous changes in the net present value variable,
x, depend on the return on the risk-free asset, r . In the Black and Scholes (1973)
formula, however, the instantaneous variance of changes in the share’s price does
not depend on the return on the risk-free asset.

9. More parsimonious, but perhaps less familiar, expressions for these variables are:

d1 =
sinh−1

(√
2r

k
x

)
− sinh−1

(√
2r

k
E

)
+ 2r(T − t)

√
2r(T − t) ,

d2 =
sinh−1

(√
2r

k
x

)
− sinh−1

(√
2r

k
E

)
− 2r(T − t)

√
2r(T − t) ,

d3 =
sinh−1

(√
2r

k
x

)
− sinh−1

(√
2r

k
E

)

√
2r(T − t)
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Chapter 7

Real R&D options with endogenous
and exogenous learning

SPIROS H. MARTZOUKOS

SUMMARY

We demonstrate the valuation of real (investment) options in the pres-
ence of endogenous and exogenous learning. Endogenous learning
is captured through optimally activated controls arising because
of costly managerial actions (R&D, marketing research, advertise-
ment, etc.) intended to enhance value and reveal information. The
realization of the controls are jumps with a random size. The decision-
maker solves an optimization problem by considering the trade-off
between the benefits of the R&D actions and their cost. Exogenous
learning is captured through random information arrival of rare events
(jumps resulting from technological, competitive, regulatory or polit-
ical risk shocks, etc.) that follow a Poisson process and have a size
drawn from a mixed distribution. In addition, experiential learning is
captured by a dynamic volatility similar to that observed in the financial
options markets.

7.1 INTRODUCTION

Very little has appeared in the academic literature to capture the ability of
managers to intervene in order to add value and/or learn more in the context
of the contemporary theory of investments under uncertainty. It has long been
known that even pure learning but optional actions should have a positive effect
on the value of investment opportunities (see Roberts and Weitzman, 1981).
This is clearly observed in practice, as a recent article in Business Week demon-
strates the high value of oil exploration rights (Exploiting Uncertainty, Business
Week, 7 June 1999, pp. 118–124).
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Investment theory under uncertainty is now synonymous with the term real
options and the pricing tools are those of contingent claims (option) pricing
theory, in its contemporary form initiated by Black and Scholes (1973) and
Merton (1973a). The same methodology has also been used for evaluation of
many real-life investment decisions under uncertainty, following the seminal
paper of McDonald and Siegel (1986) (see also Dixit and Pindyck, 1994 and
Trigeorgis, 1996). Much of the theory of real (investment) options captures
the value of waiting to invest, and the flexibility to switch among modes of
operation without explicit consideration of managerial actions to enhance value
and acquire more information. Notable exceptions are Epstein et al. (1999) and
Childs et al. (2001), who use a filtering approach, and Martzoukos (2000a) who
considers (European and American) real options with embedded costly and
optional control/learning (i.e. R&D) actions. He captures these actions using
costly and optimally activated proportional jumps defined with a continuous
distribution. In the real options literature it is often assumed that assets under-
lying the options are observed variables, and that they follow a continuous-time
geometric Brownian motion. Often it is more realistic to assume that they repre-
sent subjective management estimates (incomplete information). Since these
are simply estimates, the management would act in order to improve infor-
mation, and/or add value (R&D and market research or advertisement). Acts
like these would come at a cost, but they would affect the estimates of the
uncertain variables, and outcome is uncertain. This method of active learning is
in contrast with Hendricks (1992), who proposes a deterministically decreasing
instantaneous variance as a tool to capture passive learning over time (see also
Kolstad, 1992), and also with Majd and Pindyck (1989), who use an auxil-
iary state variable that captures continuous learning as a linear function of the
time that an operation – which can be switched on and off – has been active,
thus making stochastic the time that any particular level of learning is reached.
Note also the use of a scenario-type approach called technical uncertainty, often
related to the technological uncertainty of construction, project completion, etc.
(see Pindyck, 1993 and Cortazar et al., 2001).

The empirical return distributions of most financial assets can exhibit signifi-
cant skewness and fat tails. This may be due in part to a higher likelihood of rare
events (jumps), which naturally affects the value of financial and real options.
In the absence of controls, Trigeorgis (1991) values real options in the pres-
ence of multiple (but single-class) rare events induced by competitive entries,
and Martzoukos and Trigeorgis (2002) study real options in the presence of
multiple classes (sources) of rare events. A rare event class is characterized by
the frequency and distribution of jump arrivals, and by the distributional char-
acteristics of the jump size. The relevant parameter values may differ across
different types of events (jumps). Examples of different sources of rare events
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might be technological innovations (positive jumps), competitive entry or arrival
of substitute products (negative jumps), a court ruling or a new regulatory or
environmental decision (positive or negative jumps), and expropriation or polit-
ical risk (negative jump). For example, Grenadier and Weiss (1997) present
a real options application with technological innovations, while Pennings and
Lint (1997) and Mauer and Ott (1995) present applications with a single source
of rare events representing R&D and cost-reducing innovations, respectively.
Brennan and Schwartz (1982a,b) discuss the impact of regulation uncertainty,
and Teisberg (1993, 1994) presents a real options application. Wagner (1997)
discusses the importance of political risk, while Clark (1997) presents a real
options application with a single source of (catastrophic) rare events.

In this chapter we are interested in the European real option under incom-
plete information in the presence of endogenously generated actions of control
(R&D) and exogenous information arrival. The uncertainty about the evolution
of the value of the asset underlying an investment opportunity (or the value of a
relevant state variable) is described by either a geometric Brownian motion or a
jump-diffusion process. We capture management intervention through optimal
activation of proportional jumps of random size (random controls). In the case
of control, the arrival of the jump is not random, but is optimally activated by
management that wishes to maximize the value of the real option. For the equiv-
alence between contingent claims valuation and dynamic optimization, see Dixit
and Pindyck (1994). We consider control actions that directly aim at enhancing
real option value (impact controls) by enhancing the value of the underlying
asset or decreasing the cost, or actions that will enhance value by improving
information (pure learning controls). Examples of the first type are research
in high-tech or chemical firms to enhance product value/attributes, but also
pre-launch advertisement, etc. Examples of the pure learning actions could be
oil exploration activities, soil structural experiments before large infrastructure
projects are committed, and marketing research.

We proceed as follows. In Section 7.2 we elaborate on the model with
endogenous costly control/learning. Then in Section 7.3 the model with exoge-
nous learning is demonstrated. In Section 7.4 the two are synthesized and the
model with both endogenous and exogenous (plus experiential) learning is
presented. Numerical results are presented and discussed in Section 7.5, and
Section 7.6 concludes.

7.2 THE MODEL WITH ENDOGENOUS COSTLY LEARNING

We consider a real (investment) option on a real asset S with a determin-
istic exercise price (capital cost) X. The decision-maker has monopoly power
over this investment option. For option pricing we resort to the risk-neutral
approach (which in its present form is due to Cox and Ross, 1976 and Harrison



114 Real R&D Options

and Pliska, 1981). Since in the case of real options the underlying asset is
often not traded, for contingent-claims valuation we do not need to invoke
the replication and continuous trading arguments in Black and Scholes (1973).
We assume instead that an intertemporal capital asset pricing model holds
(see Merton, 1973b) and we draw on Constantinides (1978) (see also Cox
et al., 1985). We assume that markets are complete and all uncertainties are
spanned by traded assets. In the real probability measure, S follows the process:

dS

S
= g dt + σ dZR +

I∑
i=1

ki dqi (7.1a)

and in the risk-neutral measure, S follows:

dS

S
= (r − δ)dt + σ dZ +

I∑
i=1

ki dqi (7.1b)

Thus, we have the deterministic drift component g and two random components.
The first random component is the increment dZ of the standard Wiener process,
with σ a constant or deterministic function of time. The second component is a
controlled jump of (random) size k, and the counter increment dq is zero before
the jump is activated, and one afterwards. This differs from the jump-diffusion
assumption of random (Poisson distributed) jump arrival, since here dq is not a
random but a control variable. The riskless rate of interest is denoted by r . The
dividend yield δ of the underlying asset or state variable can be interpreted as a
shortfall between the required return and the actual growth rate (McDonald and
Siegel, 1984; see also Brennan, 1991 for a convenience yield interpretation).

We also consider that the realization of the control will be random, so we
must make specific assumptions about the distribution of 1 + k and assume that
the mean E[k] and its variance are known (with E[·] denoting the expectations
operator). We can assume many plausible distributional assumptions for the
outcome of the control, but it will be more convenient to assume that 1 + k

follows a lognormal distribution. These specific distributional assumptions make
available analytic solutions isomorphic to the familiar Black and Scholes model.
The realization of the control’s outcome is independent of the increment of
the standard Wiener process, and is incurred at a cost c. We also make the
assumption that jump k carries a diversifiable risk. In the case of a jump that is
induced for pure learning (in contrast to impact control), the expected size k
of the jump is zero, E[k] = 0. If the outcome is observed instantaneously, the
expected value of S(t+) at time t , conditional on the occurrence of the jump,
equals its value S(t−) before the jump: E[S(t+)|dq = 1, S(t−)] = S(t−).

We consider the real investment (call) option C to acquire S by paying a
capital cost X. Similarly we can solve for a put option to sell S in order
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to receive X. In general, the objective is to find the optimal control/learning
policy that maximizes the value of the real claim. Each control action ‘i’ has
a prespecified timing t (i), so the decision-maker for each available control ‘i’,
has the option to activate it at time t (i) by paying cost ci . Many such controls
can exist at different times t (i), and several controls could coincide in time
and be mutually exclusive. In this chapter and in order to focus on an analytic
solution, we consider only the European option, and controls that are available
at time t = 0.

In general the problem is stated as follows:

maximize
i, t (i)

[C(t, S, ci)] (7.2)

subject to:

dS

S
= (r − δ)dt + σ dZ +

I∑
i=1

(ki dqi)

ln(1 + ki) normally distributed with mean: γi − 0.5σ 2
i and variance: σ 2

i

E[ki] = eγi − 1 (7.3)

and the terminal condition at maturity T that defines the claim as a call (or
alternatively as a put) option. Below we give the option value conditional on
activation of i controls.

Proposition 7.1 Given the above assumptions, the European call option C
conditional on activation of i random controls at t = 0 equals:

Ccond(S, X, T , σ, δ, r, γi, σi) = e−rT E[(ST −X)+|i controls] (7.4)

The discounted risk-neutral expectation, derived along the lines of the
Black–Scholes model but conditional on control activation equals:

e−rT E[(ST −X)+|i controls]

= S exp

[
−δT +

I∑
i=1

(γi)

]
N(d1)−X e−rT N(d2)

where:

d1 ≡
ln(S/X)+ (r − δ)T +

I∑
i=1

(γi)+ 0.5σ 2T +
I∑
i=1

(0.5σ 2
i )

[
σ 2T +

I∑
i=1

(σ 2
i )

]1/2



116 Real R&D Options

and

d2 ≡ d1 −
[
σ 2T +

I∑
i=1

(σ 2
i )

]1/2

with N(d) again denoting the cumulative standard normal density evaluated
at d . Note that if controls were costless, the conditional value would be the
same even if activation time differs from t = 0, due to the proportionality of
the impact.

The sensitivities (the Greeks) of the European call option in respect to asset
S, the control’s mean γi and the control’s volatility σi equal:

∂C

∂S
= N(d1) exp

[
−δT +

I∑
i=1

(γi)

]
> 0 (7.5)

∂C

∂γi
= N(d1)S exp

[
−δT +

I∑
i=1

(γi)

]
> 0 (7.6)

and

∂C

∂σi
= X exp(−rT − d2

2/2)√√√√2π

[
σ 2T +

I∑
i=1

(σ 2
i )

]σi > 0 (7.7)

Now we wish to find the control that maximizes option value. First assume
the existence of a single control at t = 0.

Proposition 7.2 For every single control i affecting a European call option,
the optimal value equals:

max[Ccond(S, X, T , σ, δ, r, γi, σi)− ci, C(S,X, T , σ, δ, r)] (7.8)

If more controls can be activated, the optimal combination will be
chosen. For example, if controls are mutually exclusive, only the best one
will be considered among the alternatives [Ccond(S, X, T , σ, δ, r, γ1, σ1)−
c1, . . . , Ccond(S,X, T , σ, δ, r, γI , σI )− cI ]. Similarly, we proceed if combina-
tions of controls are permissible. The problem above has analytic solutions
for European call and put options when controls can be exercised at t = 0.
When this is not the case, numerical solutions like in Martzoukos (2000a)
are needed.
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It is known in general that the probability that a call option will be exercised
(that at T the value of asset S will be above X) is N(d2) under risk-neutrality.
In the real probability measure, this probability equals N(d2) if in d2 we replace
(r − δ) with the real expected growth rate g. In the case of one control action
i we can calculate the risk-neutral probability P(ST > X) = N(d2), with:

d1 ≡ ln(S/X)+ (r − δ)T + γi + 0.5σ 2T + 0.5σ 2
i

(σ 2T + σ 2
i )

1/2

and

d2 ≡ d1 − (σ 2T + σ 2
i )

1/2

whereas for the real probability, (r − δ) is again replaced by g.
Thus, E[ST | given activation of control i] = S0 e(r−δ)T+γi and S0 egT+γi in

the risk-neutral and the real measure, respectively. If we want to isolate the
impact of a control, we can see the expected value E[S | given activation of
control i] = S0 eγi , and the probability that S will be above any value X:

P(S > X| given activation of control i) = N(d2) (7.9)

with:

d1 ≡ ln(S/X)+ γi + 0.5σ 2
i

(σ 2
i )

1/2

and

d2 ≡ d1 − (σ 2
i )

1/2

The control impact is rather unlikely to be present in any observed time series.
Equation (7.9) can be very useful in creating confidence intervals in trying to
estimate these parameters subjectively. In the presence of differing opinions
(i.e. when there are several experts), Lindley and Singpurwalla (1986) recom-
mend a Bayesian method to combine subjective experts’ opinions (see also
Cooke, 1991).

The value of a European put option P is similarly shown to be Pcond(S, X, T ,

σ, δ, r, γi, σi) = e−rT E[max(X − ST , 0)|i controls], etc., and the optimal uncon-
ditional value equals max [Pcond(S, X, T , σ, δ, r, γi, σi)− c, P (S,X, T , σ, δ, r)].
Like in Propositions 7.1 and 7.2, we can derive the Greeks and the probability
of exercise of the European put option.

7.3 THE MODEL WITH EXOGENOUS LEARNING

Stochastic processes with discontinuous (Poisson distributed) events have been
studied by Kushner (1967, 1990) and Davis (1976) and, in the context of option



118 Real R&D Options

pricing, by Merton (1976). Later applications in option pricing include Ball
and Torous (1985), Amin (1993), and Bates (1991). The finance literature has
mostly focused on the case of a single source of discontinuity (information
arrival). Notable exceptions are Jones (1984), who studied hedging of financial
(European) options under two classes of jumps, and Abraham and Taylor (1997),
who considered a jump with anticipated and a jump with random arrival to price
European financial options.

Here we assume the existence of multiple (j = 1, . . . , J ) sources of jumps,
such that the underlying asset S follows a continuous-time stochastic process
of the form:

dS

S
= µ dt + σ dZR +

J∑
j=1

(kj dqj ) (7.10a)

Summation is over the j classes of rare events, µ is the drift and σ the
instantaneous standard deviation (excluding the impact of the jumps), dZ is
an increment to a standard Wiener process, λj is the frequency of the Poisson
arrival of a jump of type j , dqj is a jump counter that takes a value (dqj = 1)
with probability λj dt or a value (dqj = 0) with probability (1 − λj )dt , and
kj is the jump size of each event class. Due to the impact of the jumps, the
actual trend of this process equals µ+∑J

j=1(λj k̄j ) with a term λk̄ ≡ λE[k] for
each event class, and with E[·] denoting the expectations operator. The overall
frequency of rare events equals

∑J
j=1 λj , with jump size drawn from a mixed

distribution j with probability equal to λj/
∑J
j=1 λj .

Under risk-neutral valuation the state variable S follows the process:

dS

S
=

r − δ −

J∑
j=1

(λj k̄j )


 dt + σ dZ +

J∑
j=1

(kj dqj ) (7.10b)

Following Merton (1976), we assume the jump risk to be diversifiable, and that
an intertemporal capital asset pricing model holds, as for example in Merton
(1973b). Again we do not need to invoke the replication and continuous trading
arguments of Black and Scholes (1973). The parameter δ represents any form
of a ‘dividend yield’. The presence of jumps affects the underlying stochastic
process in two ways. First, volatility is higher due to the randomness of the
jump size and of the jump arrival. Second, jumps can affect the actual drift by
adding a component equal to λk̄ ≡ λE[k] for each jump class. The latter effect
can be avoided if the deterministic drift component includes a ‘compensation’
term −λk̄ for each event class. This term is present in the jump-diffusion model
of Merton (1976), where the underlying asset is traded to ensure that the total
expected return of the asset equals the required (risk-neutral) return r . Jump



Endogenous and exogenous learning 119

classes that are not due to discontinuities in the price process of a traded asset
would not require such a compensation term, in which case the jump assumption
affects not only volatility but also the actual drift. This compensation term for
example is missing from the jump-diffusion model in Dixit and Pindyck (1994,
p. 171), where the authors assume that the jumps affect both the drift and
the volatility. Finally, the stochastic differential equation can alternatively be
expressed in stochastic integral form as:

ln[S(T )] − ln[S(0)] =
∫ T

0


r − δ −

J∑
j=1

(λj k̄j )− 0.5σ 2


 dt

+
∫ T

0
σ dZ(t)+

J∑
j=1

nj∑
q=1

[ln(1 + kj, q)] (7.11)

where the nested summation is over the realizations for all j classes of jumps of
size kj,q , with n = (n1, . . . , nJ ) a J -element vector with each element being the
number of realized j -type jump occurrences. For each event class, we assume
that the distribution of the jump size, 1 + kj , is lognormal: ln(1 + kj ) ∼ N(γj −
0.5σ 2

j , σ 2
j ), with N (.,.) denoting the normal density function with mean γj −

0.5σ 2
j and variance σ 2

j , and E[kj ] ≡ k̄j = eγj − 1. This multi-class assumption
is an extension of Merton (1976) and like in his case this equation in general is
hard to solve. Following the approach in Merton (see also Jones, 1984) we can
value a European call option on asset S with time to maturity T and exercise
price X, assuming independence between the different event classes and the
Wiener process dZ.

Proposition 7.3 The solution to the European call option with multiple
sources of jumps is given by the iterated integral (see Martzoukos and Trigeorgis,
2002):

C(S, X, T , σ, δ, r, λj , γj , σj )

= e−rT
∞∑
n1=0

. . .

∞∑
nJ=0

{P(n1, . . . , nJ )E[(ST −X)+|(n1, . . . , nJ ) jumps]}
(7.12)

where P(n1, . . . , nJ ) denotes the joint probabilities of any random realization
of n = (n1, . . . , nJ ) jumps. Because of the independence assumption, these joint
probabilities simplify to the J-term product:

P(n1, . . . , nJ ) =
J∏
j=1

[e−λjT (λjT )nj /nj !]
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The discounted risk-neutral expectation, conditional on n = (n1, . . . , nJ )

equals:

e−rT E[(ST −X)+|(n1, . . . , nJ ) jumps]

= S exp






−δ −

J∑
j=1

(λj k̄j )


 T +
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(njγj )



N(d1n)−Xe−rT N(d2n)

where:
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(njγj )

+ 0.5σ 2T + 0.5
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(njσ
2
j )


σ 2T +
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(njσ
2
j )
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and

d2n ≡ d1n −

σ 2T +

J∑
j=1

(njσ
2
j )




1/2

N(d) again denotes the cumulative standard normal density evaluated at
d . The value of a European put option with multiple types of jumps is
similarly shown.

7.4 THE MODEL WITH ENDOGENOUS AND EXOGENOUS LEARNING

Now we combine the previous results and consider both controlled actions and
rare events. There are (i = 1, . . . , I ) controls and (j = 1, . . . , J ) classes of
rare events. In addition we can add experiential learning by assuming that the
instantaneous variance σ 2 = σ 2(t) is a (potentially decreasing) function of time.

Proposition 7.4 The solution to the European call option with multiple
sources of jumps conditional on activation of controlled actions is given by the
iterated integral:

Ccond(S, X, T , σ, δ, r, γi, σi, λj , γj , σj ) = e−rT
∞∑
n1=0

. . .

∞∑
nJ=0

× {P(n1, . . . , nJ )E[(ST −X)+ | (n1, . . . , nJ ) jumps, i controls]} (7.13)



Endogenous and exogenous learning 121

where P(n1, . . . , nJ ) denotes the joint probabilities of any random realization
of n = (n1, . . . , nJ ) jumps. Because of the independence assumption, these joint
probabilities simplify to the J-term product:

P(n1, . . . , nJ ) =
J∏
j=1

[e−λjT (λjT )nj /nj !]

The discounted risk-neutral expectation, finally conditional on both random
information arrival n = (n1, . . . , nJ ) and control activation, is:

e−rT E[(ST −X)+|(n1, . . . , nJ ) jumps, i controls]

= S exp
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J∑
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I∑
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+ 0.5
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and
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The sensitivities to S, γi, σi, γj , σj , etc. are derived exactly like for the model
in the first proposition, but probability is weighted for all possible realizations
of random jumps and all jump classes

∑∞
n1=0 . . .

∑∞
nJ=0{P(n1, . . . , nJ )[Greek |

(n1, . . . , nJ ) jumps, i controls]}.
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Proposition 7.5 For every single control i affecting a European call option,
the optimal value in the presence of rare events equals:

max[Ccond(S, X, T , σ, δ, r, γi, σi, λj , γj , σj )

− ci, C(S, X, T , σ, δ, r, λj , γj , σj )] (7.14)

Again, in the presence of mutually exclusive controls or combinations of
controls, the optimal one is chosen from the set:

[Ccond(S,X, T , σ, δ, r, γ1, σ1, λj , γj , σj ), . . . ,

Ccond(S, X, T , σ, δ, r, γI , σI , λj , γj , σj )]

Similar results can also be derived for the put option.

7.5 NUMERICAL RESULTS AND DISCUSSION

Let us see some numerical results for a real (call) option. The endogenous costly
learning is presented in Table 7.1. The case with γi = 0 is the pure learning
case. Control is not expected to change the value of the underlying asset, only to
reveal information. Think for example of the case where S is the product of two
variables, a stochastic price and a (potentially) constant but unknown quantity. If
the learning action is not activated, the real option will be valued and exercised,
calculating S from the (subjective) estimate of this quantity. If the learning
action is activated, the true quantity (or a better estimate) will be revealed (see
discussions on issues of path dependency in Martzoukos and Trigeorgis, 2001).
The cases with γi = 0 are for a normal control where the effort is to change the
value of the underlying asset, albeit with uncertain outcome (γi > 0 seems more

Table 7.1 Real option values with activation of a control

S = 75.00 S = 100.00 S = 125.00

γ i = – – – σi = – – – 0.005 3.608 22.666
γi = 0.10 σi = 0.10 0.500 11.413 34.574

σi = 0.30 4.411 17.311 37.182
γi = 0.00 σi = 0.10 0.086 5.101 22.971

σi = 0.30 2.426 11.368 27.116
γi = −0.10 σi = 0.10 0.010 1.716 13.297

σi = 0.30 1.243 7.053 18.939

Call option parameters are: exercise price X = 100.00, time to maturity T = 1, stan-
dard deviation σ = 0.10, dividend yield δ = 0.10, riskless rate r = 0.10. Control has
been activated at t = 0, and option value is before considering the control’s cost.
Figures in bold demonstrate option value in the absence of control.
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relevant for a call option and γi < 0 for a put option). We observe the results
conditional on control activation with the use of equation (7.4). The control’s
cost should be subtracted from the figures in order to compare with the base case
without control activation (i.e. 3.608 when S = 100.00) and derive the optimal
decision through equation (7.8). See the top figure in the middle column. The
control should be activated only if its cost is less than 11.413 − 3.608. It is
obvious that the relative impact of control learning is much higher for out-
of-the-money options. Martzoukos and Trigeorgis (2001) demonstrate that the
absolute impact of controls is the highest for options that are about at-the-money,
and they also discuss the optimal control exercise boundary.

In Table 7.2 we see numerical results for an option in the presence of rare
events of information arrival. The four rows after the base case are for an
increasing degree of expected directional impact in the case of a rare event
arrival. Notice the significant difference with the case γj = 0.00 (which could
be an erroneous but tempting simplification in order to use a single class of
jumps with twice the frequency). The second column provides results when the
compensation terms are not present in the drift of the stochastic equation (7.10b).
In that case the jump means affect the stochastic process not only through the
volatility (of the arrival time and the jump size), but also through the drift.
When the compensation terms are present like in Merton (1976), jumps affect
the option value only through the volatility since the expected directional impact
is removed (compensated for). This is obvious by comparing the figures of the
last two rows.

The random controls (endogenous learning) and the rare events are combined
in Tables 7.3 (for pure learning actions) and 7.4 (for impact control). The
insights gained earlier do not change. The numerical results are conditional on

Table 7.2 Real option values with exogenous learning

Rare event parameters compns = YES compns = NO

γj = – – – (σj = – – –) 3.608 3.608
γ1 = γ2 = 0.00 4.951 4.951
γ1 = −γ2 = 0.10 5.949 6.192
γ1 = −γ2 = 0.30 11.232 13.626
γ1 = γ2 = 0.30 12.689 39.261
γ1 = γ2 = −0.30 11.126 1.352

Call option parameters are: exercise price X = 100.00, underlying
asset S = 100.00, time to maturity T = 1, standard deviation σ =
0.10, dividend yield δ = 0.10, riskless rate r = 0.10. Jump parame-
ters are: two jump classes with frequency 0.50 per year each, and
σ1 = σ2 = 0.10. If compns = YES for both jumps the compensation
term is included in the drift of the process, otherwise it is not. Figures
in bold demonstrate option value in the absence of rare events.
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Table 7.3 Real option values with endogenous (pure learning) and exogenous learning

Rare event parameters Control σi = 0.10, γi = 0.00 Control σi = 0.30, γi = 0.00

compns = YES compns = NO compns = YES compns = NO

γj = – – – (σj = – – –) 3.608 3.608 3.608 3.608
γ1 = γ2 = 0.00 6.164 6.164 11.906 11.906
γ1 = −γ2 = 0.10 7.028 7.274 12.409 12.669
γ1 = −γ2 = 0.30 11.917 14.354 15.832 18.366
γ1 = γ2 = 0.30 13.172 39.892 16.522 43.486
γ1 = γ2 = −0.30 11.618 1.961 15.329 5.194

Call option parameters are: exercise price X = 100.00, underlying asset S = 100.00, time to matu-
rity T = 1, standard deviation σ = 0.10, dividend yield δ = 0.10, riskless rate r = 0.10. Jump
parameters are: two jump classes with frequency 0.50 per year each, and σ1 = σ2 = 0.10. If
compns =YES for both jumps the compensation term is included in the drift of the process, other-
wise it is not. Control parameters: one (pure learning) control activated at t = 0. Option value is
before considering the control’s cost. Figures in bold demonstrate option value in the absence of
either rare events or controls.

Table 7.4 Real option values with endogenous (impact control) and exogenous learning

Rare event parameters Control σi = 0.10, γi = 0.10 Control σi = 0.30, γi = 0.10

compns = YES compns = NO compns = YES compns = NO

γj = – – – (σj = – – –) 3.608 3.608 3.608 3.608
γ1 = γ2 = 0.00 12.345 12.345 17.852 17.852
γ1 = −γ2 = 0.10 13.134 13.506 18.357 18.699
γ1 = −γ2 = 0.30 17.810 21.120 21.813 25.015
γ1 = γ2 = 0.30 18.603 52.126 22.291 55.078
γ1 = γ2 = −0.30 18.080 4.524 21.563 8.187

Call option parameters are: exercise price X = 100.00, underlying asset S = 100.00, time to matu-
rity T = 1, standard deviation σ = 0.10, dividend yield δ = 0.10, riskless rate r = 0.10. Jump
parameters are: two jump classes with frequency 0.50 per year each, and σ1 = σ2 = 0.10. If
compns =YES for both jumps the compensation term is included in the drift of the process, other-
wise it is not. Control parameters: one control activated at t = 0. Option value is before considering
the control’s cost. Figures in bold demonstrate option value in the absence of either rare events
or controls.

control activation and are given through the use of equation (7.13). Accounting
for the control’s cost through the use of equation (7.14) would provide the
optimal activation decision. It would be easy to also add experiential learning
by considering volatility of the Brownian motion component of the stochastic
process to be a function of time. New industries or products would have at first
a higher volatility. In that case, as we have already shown in equation (7.13),
we replace σ 2dt with

∫ T
t=0 σ

2(t)dt . In the simple case where the variance σ 2(t)

is a linear function of time, the integral is replaced by σ̄ 2 dt , where σ̄ 2 is the
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arithmetic average of σ 2(t = 0) and σ 2(t = T ). For example, if we have a
decreasing σ from 0.30 to 0.10:

σ̄ 2 = [σ 2(t = 0)+ σ 2(t = T )]/2 = (0.302 + 0.102)/2

= 0.05 ⇒ σ̄ = 0.22361

and the option value (for the parameter values of Table 7.2) in the absence of
rare events or controls equals 8.055.

In this chapter, the exercise price of the investment option is assumed
constant. The results are practically unaffected under the assumption of a
stochastic exercise price that follows a geometric Brownian motion, like in
McDonald and Siegel (1986). The volatility parameter σ 2 of the economic
uncertainty will be replaced by a function of the two volatilities and the
covariance between the two. Again, if these parameters are functions of time,
this function will be replaced by its integral in respect to time like in the previous
section. These results hold due to the proportionality of the jump even when S
follows jump-diffusion, and of course for such assumptions they also hold in the
presence of activated random controls. In the same McDonald and Siegel paper,
in addition to the geometric Brownian motion assumption, a catastrophic risk
(with a Poisson distribution of arrival time) is added. Before the real option is
exercised, there is a chance that a rare (catastrophic) event driving the value of
the underlying asset to zero will occur, and the call option will expire worthless.
An example is clinical trials about the suitability (safety) of a new drug. The
intensity of this process provides a simple adjustment to the risk-neutral process
parameters, which can also easily be accommodated for in our framework.

The simplicity of the analytic solution makes the model a useful tool for both
application and pedagogical purposes. In the analysis presented here we assumed
the existence of a European option with one stochastic variable and controls
available at time zero. Many realistic situations though would require more
uncertainties and/or numerical solutions. For an extension to analytic and numer-
ical (lattice-based) results with more state variables, see Martzoukos (2000a),
and for an explicit treatment of controls with path dependency (including the
path dependency induced due to the optimal timing of a single control), see
Martzoukos and Trigeorgis (2001). Beyond lattice-based numerical methods, the
random controls methodology can also be incorporated in a numerical frame-
work for the direct solution of partial differential equations. Note finally that
in the traditional real options literature we assume that the firm has monopoly
power over the investment opportunity. There is a growing literature where this
assumption is relaxed, and strategic game-theoretic interactions are considered.
Notable examples directly relevant to R&D decisions are Smit and Ankum
(1993), Joaquin and Butler (2000), Lambrecht (2000), Jou and Lee (2001), and
in a random controls framework Martzoukos and Zacharias (2001).
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7.6 CONCLUSIONS

In this chapter we elaborated on the analytic solution of the continuous
random controls and then we presented a more general model that included
both endogenously generated (costly) learning and exogenously generated
information through the arrival of rare events. Many industries with heavy
R&D expenditures, exploration, experimentation or clinical testing activities,
and similar actions like marketing research and advertisement, face too many
uncertainties in their capital-intensive investment process to ignore efforts for
information acquisition, which of course come at a cost. The model presented
allows managers to estimate how much to spend in order to enhance the
value of their investment opportunities. This value enhancement they pursue
either directly through impact control-type actions or indirectly through pure
learning (information acquisition) actions. Modeling management’s decision
process with contingent claims (real options) tools is required; neglecting such
actions would provide erroneous results for both the investment value and the
optimal investment timing decision.
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Chapter 8

Approximate valuation of real R&D
American sequential exchange options

JONGWOO LEE AND DEAN A. PAXSON

SUMMARY

We model the stages of R&D expense and then the ultimate discovery
value (given an estimated development cost for the discovery) using
real sequential (compound) exchange option models. This is applied
to e-commerce R&D, so the timing is relatively short-term, with initial
R&D, a second phase of R&D, and a final development phase, when
the project values are realized. Proxies from the financial markets are
used for expected project value and cost volatilities (and correlation).
An approximate American sequential exchange option is compared
to somewhat easier, although less realistic, exchange option values.
Through comparing the real option worth to the initial R&D cost of
separate projects, this approach serves as an R&D fund allocation
criterion, in order to improve overall R&D portfolio value/costs.

8.1 INTRODUCTION

We address overall R&D budget and allocation problems through evaluating
R&D worth using real American sequential exchange option values (RASE).
The analysis is based on the R&D specifications and timing of required initial
expenditures R&D0, a second phase of required R&D1 expenditures, and a
final development phase, when the project values are realized. The essential
aspect of this characterized R&D program is that managers have the timing
choice for both the R&D1 expenditures, and then the timing of development
costs (K) (and development versus sale) of the development package (P ). The
R&D program constitutes call options on further call options. If all costs are
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considered ‘sunk costs’, R&D0 expense at t0 is an irrecoverable premium for
a call option to pay R&D1 at t1, which is itself a premium for an option to
pay K at t2, to receive then the project values. Without management flexibility
not to pay R&D1 or K , perhaps such an R&D program should be valued using
present values. With management discretion, real option models are appropriate
since future expenditures can be canceled. The first stage decisions are based
on the difference between perceived value (including future options) and cost
at or before exercise dates (perhaps best pictured as R&D budget review dates).
The transitions between the stages are sequential exchange options.

This model is suitable for any R&D program, where there are required
interim expenditures for program continuance, such as: (a) a telecommunica-
tions company contemplating providing intermediate services and looking to
maintain or increase line usage, or a mobile operator initially bidding for a 3G
license, which requires R&D at a first stage, and then implementation expendi-
tures; (b) an e-commerce software or an internet service provider, which aims
to add advertising, and then content in sequences, each requiring R&D and
marketing expenditures; and (c) a wholesale or retail merchant studying e-
commerce as a supplement to (or eventual replacement of) mail catalog or
physical store sales, where there are interim customer survey or marketing
expenditures.

Hypothetical inputs have been provided for a particular e-commerce R&D
project. The timing of the investment is assumed to be in one year for the R&D1
phase and two years for the development costs. The expenditure in one year t1 is
a proportion of K . The expenditure is stochastic as is the developed value, and
there is an allowance for a correlation between the two stochastic processes.

Four real option valuation methods are considered, two ‘exchange’ options
and two ‘sequential exchange’ options. The simplest European exchange model
is from Margrabe (1978), which assumes that development costs and the e-
commerce development are stochastic, and costs (R&D1 and K) are exchanged
for the underlying asset at the development time. Then the Margrabe model
has been adjusted to reflect possible early exercise, that is assuming the
combined amount of R&D1 and K can be spent any time before t2. Analytic
approximations for American exchange option models are in Carr (1988),
Bjerksund and Stensland (1993),1 Lee and Paxson (2000b). We use the latter
as the second model.2

The sequential exchange option model is a more realistic characterization of
R&D options than standard American or European exchange option models, if
R&D projects take the form of stages of research and/or sequential investment
opportunities. We use as the third model the Carr (1988) model, which inte-
grates both elements of the Geske (1979) compound option and the Margrabe
(1978) exchange option to value European sequential exchange options. This
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model may be interpreted as a combination of a time-to-build option (growth
option) and an option to exchange (operating option). Carr (1988) also provides
an approximation for an American sequential exchange option. We use as the
fourth model the Lee and Paxson (2000b) approximation of American sequen-
tial exchange option value, where the asset is expected to have a significant
current income.

Then we apply the last model to an overall R&D budget and to each individual
R&D project comprising the aggregate budget. Each project is expected to
produce a different pattern of future cash flows. The conclusion is that given
the assumptions, the aggregate initial budget for R&D is not quite justified (since
the total real option value is $0.12 million less than the t0 R&D0 cost), but this
varies widely among research projects. One of the smallest currently budgeted
R&D projects has a 165% ratio of RASE/cost, and yet it has a high ratio of
the critical development value (which justifies spending R&D1) to currently
estimated project value. The largest current R&D project is worth far less than
the cost. Just selecting two R&D projects would increase the ratio of real option
worth to cost to nearly 1.5, so project selection would increase the total R&D
value over the R&D0 cost by $1.28 million.

Section 8.2 surveys some of the studies and strategies on sequential R&D
options. Section 8.3 reviews the stochastic processes for R&D costs and bene-
fits, and presents the closed-form solutions for sequential exchange options.
Section 8.4 describes the empirical basis for the parameter inputs for these real
R&D options. Section 8.5 shows the calculation of real R&D American option
values. Section 8.6 discusses some of the unsolved problems herein and the
likely uses of this e-commerce R&D options approach.

8.2 STUDIES ON R&D SEQUENTIAL OPTIONS

There is a rich literature on modeling R&D sequential options, although these
have not always been recognized as real options. Roberts and Weitzman (1981)
modeled the terminal R&D benefits as a geometric Brownian motion process,
where the concern was an optimal stopping problem. Since costs were determin-
istic, R&D provided information learned in stages. Weitzman et al. (1981) used
similar assumptions, except that costs were stochastic, and process volatility
decreased over time.

Carr (1988), building on Margrabe (1978) and Geske (1979), provided the
valuation of sequential exchange options. This has been applied to R&D real
options indirectly in Taudes (1997), Childs et al. (1998), and Bar-Ilan and
Strange (1998). The Carr (1988) European sequential exchange model assumes
that the process is a compound option, with stochastic exercise prices (R&D1
at t1 and K at t2). The solution utilizes the bivariate normal distribution,
with a correlation equal to the square root of (t1/t2). Schwartz and Moon
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(2000a) provided a numerical solution (successive over-relaxation iterations) for
multiple sequential exchange options. Lee and Paxson (2000b) suggested some
methods for (increasingly accurate) approximate value of American exchange,
and American sequential exchange options.

Note that simple real R&D sequential option models are not meant to be
prescriptive, and are not a recommendation that the structure of sequential
choices is necessarily the best way to organize R&D, or to achieve R&D
effectiveness. Where it is possible to have frequent experimentation and quantifi-
cation of R&D performance, as in some user testing of software, the additional
information is likely to be helpful in deciding the usefulness of current R&D,
exercise of options for further research along the same lines, and the value of
the underlying innovation.

Other authors have suggested that sequential R&D organization is often inef-
ficient and ineffective, especially for development (or close to production) R&D
as in some software companies. Iansiti (1998) outlined an R&D model divided
into two stages, concept development after which the concept or specification is
frozen, and implementation. Alternative flexible development (technology inte-
gration) models have the implementation stage beginning before the concept
stage is completed, so that there is feedback to the specifications before ‘concept
freeze’. He noted that Microsoft now has the policy of letting the specifica-
tion change during the project development, driven by daily integration and
experimentation efforts. Cusumano and Selby (1995) described in detail this
‘synch-and-stabilize’ process, where code written during the day is ‘frozen’,
then immediately tested internally, and frequently externally. Implementation
stages (and marketing stages) appear to be determined partly by the ‘bug rate’,
although another policy is apparently to be ready to ‘ship a new product’ at any
time, in response to competition.

Perhaps this type of R&D strategy could be modeled as multiple sequential
options, except that the sequences would be daily (or longer practical review
intervals). Such a strategy is close to manufacturing flexibility, where quality
control and customer responsiveness are important. This would not be difficult
to model, if the sequential options were more or less identical, as in capped
floating-rate mortgages. However, where the nature of the options and the
underlying asset (software products) change daily, along with the R&D invest-
ment required (in terms of person-years, or person-years weighted by salaries),
modeling will be a challenge.

8.3 STOCHASTIC PROCESSES FOR R&D, DEVELOPMENT
COSTS AND VALUE

In so far as developed e-commerce systems are securitized through the vehi-
cles of traded shares, one might assume that developed values (P ) follow a
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geometric Brownian motion:

dP = (µP − δP )P dt + σP P dzP (8.1)

where µP is the equilibrium expected rate of return perfectly correlated with
the developed e-commerce system, δP is the income rate (or dividend rate) of
P , and σP is the volatility of the e-commerce development. Then suppose that
the R&D1 and development costs (K) follow a similar diffusion process:

dK = µKK dt + σKK dzK (8.2)

where µK is the drift term (the expected cost escalation, which we assume is
nil), σK is the volatility of the e-commerce development cost, and the correlation
between the Wiener processes is ρ. If the developed project values and R&D1
and development costs (equal to exercise price) are lognormally distributed
and occur when the e-commerce value is developed, e-commerce value options
can be priced as European-style options to exchange R&D1 and development
costs for the e-commerce values (especially if technical progress is restricted
so that the development cannot occur until a specified date). The solution for a
European exchange option (in this case of development costs for the developed
system) was provided in Margrabe (1978):

V (P, K, R&D1, σP , σK, ρ, r, δP , t2)

= P e−δP t2N(d1) − (K + R&D1)N(d2) (8.3)

where P = the value of developed system, K = the development cost,
R&D1 = second phase R&D expenditure, t2 = time of the development, σ =√

σ 2
P − 2ρσP σK + σ 2

K , N(·) = cumulative standard normal distribution func-
tion and:

d1 = ln(P/(K + R&D1)) + (−δP + 0.5σ 2)t2

σ
√

t2
, d2 = d1 − σ

√
t2

The European option model assumes that R&D1 and K cannot occur until t2.
However, if the development has substantial income (which is not always the
case for e-commerce companies), it may be preferable to start development
earlier. Modifying Ho et al. (1994), Lee and Paxson (2000a) suggested a two-
point confined exponential extrapolation method for an American option by
extending the Geske and Johnson (1984) compound option approach. Applying
the symmetry property, Lee and Paxson (2000b) gave the following analytic
approximation for the value of an American exchange option:

VA(P, K, R&D1, σP , σK, ρ, r, δP , t2) =
[
V∞ − (V∞ − V2)

2

V∞ − V1

]
(8.4)
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V1 is the European exchange option price expiring at t2, and V2 is the price of
a twice-exercisable exchange option, which can be exercised either at maturity
(t2) or at the midpoint of its time to maturity (t2/2), given by:

V2 = P e−δP t2B(−a1, d1; −ρ ′) − (K + R&D1)B(−a2, d2; −ρ ′)

+ P e−0.5δP t2N(a1) − (K + R&D1)N(a2) (8.5)

where:

a1 = ln(P/P ∗) + (−δP + 0.5σ 2)0.5t2

σ
√

0.5t2
, a2 = a1 − σ

√
0.5t2,

ρ ′ = √
0.5t2/t2

and B(a, d; ρ ′) is the bivariate cumulative standard normal distribution function
with correlation coefficient ρ ′.

The critical price, P ∗, is obtained by solving the value matching condition:

P ∗ − (K + R&D1) = P ∗ e−δP (t2−0.5t2)N(d ′
1) − (K + R&D1)N(d ′

2) (8.6)

where:

d ′
1 = ln(P ∗/(K + R&D1)) + (−δP + 0.5σ 2)(t2 − 0.5t2)

σ
√

t2 − 0.5t2
,

d ′
2 = d ′

1 − σ
√

t2 − 0.5t2

The value of the perpetual American exchange option, V∞, is given3 by:

V∞ = K + R&D1

θ − 1

(
P

P ∗∞

)θ

(8.7)

Here, P ∗∞ denotes the optimal exercise price at which the perpetual American
exchange option should be exercised:

P ∗
∞ = θ

θ − 1
(K + R&D1) (8.8)

where:

θ = −(−δP − 0.5σ 2) +√
(−δP − 0.5σ 2)2

σ 2

Although these American exchange options cover the flexibility inherent in
investment opportunities, in contrast to the European counterpart, these standard
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exchange options do not model the sequential nature inherent in many R&D
investment projects. Suppose we simplify the R&D1 process and assume that
it is identical to the development cost stochastic process, except that it occurs
(entirely and instantaneously) at time t1 (that is t1 − t0 years after today), and
is proportional to the development cost. These assumptions enable this entire
process to be valued as a sequential European exchange option, see Carr (1988)
and Lee and Paxson (2000b). The value of such a European sequential exchange
option is:

W(P, K, R&D1, σP , σK, ρ, r, δP , t1, t2)

= P e−δP t2B(a′
1, d

′′
1 ; ρ ′′) − KB(a′

2, d
′′
2 ; ρ ′′) − QKN(a′

2) (8.9)

where Q = fraction of K required for R&D1, R = P/K , t1 = time of the
R&D1 expenditure:

a′
1 = ln(R/R∗) + (−δP + 0.5σ 2)t1

σ
√

t1
, a′

2 = a′
1 − σ

√
t1

d ′′
1 = ln(R) + (−δP + 0.5σ 2)t2

σ
√

t2
, d ′′

2 = d ′′
1 − σ

√
t2, ρ ′′ = √

t1/t2

The critical price ratio R∗ above which the simple exchange option should be
acquired at t1 is found by solving the following equation for R:

V1(P, K, 0, σP , σK, ρ, r, δP , t2 − t1) = Q (8.10)

where V1 = the Margrabe exchange option, adjusted for t1.
The European sequential option model assumes that R&D1 cannot occur until

t1 and K is only exercised at t2 (in the Carr formula). Like American exchange
options, when the asset to be received in the exchange has a sufficiently large
dividend yield, there is always a probability that the compound option and the
underlying American exchange option should be exercised prior to expiration.
So consider a ‘pseudo-American sequential exchange option’ model, where the
first compound option can be exercised (investment made) at a fixed time t1,
then evaluate an underlying American exchange option, which can be exercised
at any time before t2 (during t2 − t1). This is the sum of the Carr European
compound exchange option and the early exercise premium for the underlying
exchange option between t2 − t1.4 The value of such an American sequential
exchange option is given in Lee and Paxson (2000b) as:

WA(P, K, R&D1, σP , σK, ρ, r, δP , t1, t2)

= W(P, K, R&D1, σP , σK, ρ, r, δP , t1, t2)

+ VA1(P, K, 0, σP , σK, ρ, r, δP , t2 − t1)

− V1(P, K, 0, σP , σK, ρ, r, δP , t2 − t1) (8.11)
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The first part of the right-hand side of equation (8.11) is a European compound
option with R&D1 given by Carr (1988), and the last two parts are the early
exercise premium inherent in an underlying American exchange option with
time interval t2 − t1(R&D1 = 0).

8.4 EMPIRICAL MODELING OF REAL R&D OPTIONS

This section discusses the empirical inputs required to analyze the real option
value for a specific R&D program overall and on a project-by-project basis.
Implicit in all of these option calculations is that e-commerce system returns
and development cost ‘returns’ are multivariate normally distributed, so that the
normal standard distribution and bivariate distributions represent the underlying
distributions.

8.4.1 Inputs

First of all the expected revenues, operating costs, R&D expenditures and devel-
opment costs are estimated for each R&D project, and aggregated for purposes
of the overall R&D budget benefits/costs. Table 8.1 (based on disguised infor-
mation) is an example of the e-commerce R&D estimates for project I. It
is assumed that small revenues and (larger) operating costs are currently in
process, that the evaluation concerns R&D0 in 1998, that net operating profits

Table 8.1 Hypothetical e-commerce R&D estimates: project I

$ Millions

Year 1998 1999 2000 2001 2002 2003 Terminal
value

Project I
Revenues 2.00 18.00 68.00 194.50 445.00 611.50
Op. costs 18.13 42.05 92.08 207.35 421.95 537.95
Op. profit −16.13 −24.05 −24.08 −12.85 23.05 73.55 490.33

INVESTMENT 90.00 115.00 115.00 150.00 1000.00

R&D1 25.00 37.50 50.00
R&D0 5.71

Net present values
E-commerce value = P 172.21

E-commerce invest = K 823.77

E-commerce R&D (99+) = R&D1 82.97
Discount rate 0.15
‘Moneyness’ 0.21
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from e-commerce are treated as perpetuity after year 2003, and capitalized at
the company’s discount rate for similar risky projects. The e-commerce present
value is calculated as of 1998, the R&D1 (the present value of all subsequent
R&D expenses after 1998) as of 1999, and the development costs as of 2000.
The actual R&D0 spend is $5 710 000. The ‘moneyness’ is the ratio of the e-
commerce current present value to the present value at time t2 of the e-commerce
investment costs. This corresponds to the ‘moneyness’ of a financial option (as
defined by some authors), which is the ratio of the current stock price to the
exercise price.

Table 8.1 shows the project I proposal is to spend $5.7 million at t0, for
the option to spend on R&D1 the equivalent of $83 million at t1 in order to
continue the option to spend a development cost equivalent to $824 million at t2,
in order to obtain a project value with a current PV of $172 million. Since this
proposal clearly has a large negative net present value, it might be considered
worthless and beyond consideration, but valued as a sequential option it has
some positive value.

Holland et al. (1992), Holland and Lockett (1996, 1997), and Hagel and
Armstrong (1997) show that the R&D1 and K are e-commerce system-specific,
and so require separate R&D cost and e-commerce value projections for each
type of research. The value volatility and correlation for each R&D project is
built up as a composite volatility and correlation of separate e-commerce value
and supplier securities.5 The volatility of each R&D1 stage for each project is
assumed to be constant and the same as for K . The cost volatilities are assumed
to be the same for all projects.

Conveniently, there are quoted shares and traded options for a wide variety of
e-commerce developments, including more or less pure R&D, software develop-
ment, internet facilities, and e-commerce applications. The underlying assets of
R&D on e-commerce are (ultimately) developed networks and systems, which
are often securitized in the US and Europe, and traded on NASDAQ or on some
of the new European exchanges. We use e-commerce value historical volatili-
ties from a time series (November 1997 through December 1998) selection of
securities including Amazon.com,6 Cybercash, Harbinger, Open Market, Ster-
ling Commerce and Wave Systems Corporation. The historical time series of
e-commerce service companies and software suppliers are used to calculate the
correlation between value and cost.

The e-commerce cost elements could be considered (in part) securitized, in
so far as software companies are also traded on NASDAQ, including Microsoft
and SAP, which have e-commerce services bundled with other software. For
those securities with traded options, the implied volatility of e-commerce values
and costs is also used as (weighted) input to derive the value and cost volatilities
for each R&D project.
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8.5 REAL R&D AMERICAN SEQUENTIAL EXCHANGE
OPTION EXAMPLES

We calculate first the European and American exchange option values of the
overall R&D budget, which assumes that the R&D1 and K are fixed at t2

(for the Margrabe European formula and for the Lee and Paxson American
exchange formulae).

8.5.1 E-commerce R&D: RASE options

Table 8.2 shows the valuation of the overall e-commerce hypothetical projects,
supposing that the eventual cash flows are as specified, the R&D1 occurs
after one year, and the development occurs in the second year. The correla-
tion between the costs and the e-commerce values is assumed to be around
0.29, and the volatilities are assumed to be around 97% (value) and 30% (cost).
Valued as simple European or even American exchange options, this aggregate
R&D program has a value of some $22 million, even though the net present
value is negative. However, assuming that R&D1 expenditure is required at t1

in order to keep the program alive, the sequential exchange option value is only
$9.7 million, or almost $2 million below the R&D0 budget.

Because eventually an e-commerce development is expected to yield some
income, and because the timing of R&D1 and development costs can (more
or less) be initiated any time over a planning horizon, the more realistic real
option value is an American sequential exchange option. As an alternative to a
numerical solution, we calculate an approximate ‘pseudo-American’ sequential
exchange option value.

In order to approximate the value of an American sequential exchange option
value, one has to numerically find two critical points: one critical price ratio
from European sequential exchange options at t1 and one critical price from
an American exchange option at t2/2. One point is the critical price ratio, R∗,
the ratio of e-commerce value/costs which would justify paying the R&D1
costs at t1, which triggers the manager to start up the project. The other
point is the critical price, P ∗, from the American exchange option, which
triggers the manager to exercise or exchange the project after it has been
started at t1 (this critical price is also calculated as P ∗/K). Note the R∗
ratio is 64% and the critical price P ∗ is around $2736 million (or a ratio of
166%), which is far from the actual P/K ratio [see equation (8.6) for P ∗ and
equation (8.10) for R∗].

Given the inputs and assumptions, and considering the adjustment (favoring
early exercise) for the expected development income, the approximate American
sequential exchange option value is around $9.72 million, which is slightly
greater than the Carr European sequential exchange option value of around
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Table 8.2 E-commerce R&D: real American option

Net income rate of e-commerce development 0.15
R&D1 phase time 1
Investment phase time 2
Cost & value correlation 0.29
Value volatility 0.97
Cost volatility 0.30
Interest rate 0.06
Exchange volatility 0.92

Development value = P 344 $ millions
Development cost = K 1648 $ millions
R&D1 phase cost 166 $ millions

(Eq 8.3) V = Margrabe real European exchange option 22.20 $ millions

(Eq 8.4) VA = Lee & Paxson real American exchange option 22.87 $ millions

(Eq 8.9) W = Carr European sequential exchange option 9.69 $ millions

Lee & Paxson real American sequential exchange option
(Eq 8.10) R∗ = critical price ratio 0.64
(Eq 8.6) P ∗ = critical price 2736 $ millions
(Eq 8.4) VA1 = Lee & Paxson American exchange with t2 − t1(R&D1 = 0) 7.34 $ millions
(Eq 8.3) V1 = European exchange with t2 − t1(R&D1 = 0) 7.31 $ millions
(Eq 8.5) V2 = twice exercisable exchange with t2 − t1(R&D1 = 0) 7.33 $ millions
(Eq 8.7) V∞ = perpetual exchange (R&D1 = 0) 80.25 $ millions
(Eq 8.11) WA = approximate American sequential exchange option 9.72 $ millions
option value % e-commerce value 2.82%

The first seven inputs are the e-commerce income rate, R&D1 and K timing estimates, the value
and cost volatilities and correlation from e-commerce securities, and the riskless rate.
The next three inputs are from the R&D e-commerce project estimates.
The Margrabe European and the American exchange option values (Lee and Paxson) assume R&D1
and K are stochastic and at t2.
The Lee and Paxson American sequential exchange option values assume R&D1 at t1, and K is
exercised at any time after t1.
R∗ is the price ratio P/K at which it will pay to spend R&D1 at t1.
P ∗ is the critical price above which the option should be exercised after t1.
The approximate American sequential exchange option value is W + VA1 − V1, where VA1, the
confined exponential approximation for the American exchange option with time interval t2 − t1,
is calculated as V∞ − (V∞ − V2)

2/(V∞ − V1).

$9.69 million. Since the budgeted R&D0 effective cost is over $11 million,
cancellation of the R&D activity and/or selectivity among R&D projects is
still warranted.

Figure 8.1 shows that the American sequential exchange option value is more
valuable than the Carr European sequential exchange option value as time t1
decreases, since the early exercise premium inherent in the underlying American
exchange option becomes large.

However, it should be noted that this outcome is highly sensitive to the
underlying assumptions. Also, only the overall R&D budget has thus far been
considered. The differences between the American and European sequential
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The inputs are the same as in Table 8.2 with different time t1 between 0.1 and 1.9.
The approximate American sequential exchange option value is the European
sequential exchange option (W ) + the American exchange option with time interval
t2 − t1 (R&D1 = 0) − the European exchange option with time interval t2 − t1 (R&D1 = 0).

Figure 8.1 Real American versus European sequential exchange option values (as a
function of t1 )

exchange options are not going to be significant for way out-of-the-money
options like all of these R&D projects.

8.5.2 Allocation among competing R&D projects

The R&D project allocation focuses on the problem of allocating the R&D
budget among ‘competing’ projects. The expected R&D project cash flows must
be specified, and any R&D program dependencies identified (we assume the
four R&D programs are independent). Then particular projects are associated
with specific e-commerce securities and software suppliers correlations and
(in many cases) historical volatilities. For convenience, the cost volatility is
assumed to be the same for all projects, and the timeframe for all R&D1 and
all K is assumed to be t1 and t2. Then the European and approximate American
sequential exchange option values are calculated for each project.

As summarized in Table 8.3, there is a range of RASE option values, expres-
sed as a percentage of e-commerce value. The project cost and value correlations
range from −0.03 to 0.42, and the value volatilities range from 87% to 107%.
The highest RASE (as %P ) is project III at 7.2%, due to the high value volatility
and negative correlation (remember these are way out-of-the-money options,
characteristic of many e-commerce and internet enterprises).
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Table 8.3 Real American sequential exchange option value: comparison of R&D projects

R&D project I II III IV

E-commerce income rate 0.15 0.15 0.15 0.15
R&D1 phase time 1 1 1 1
Investment phase time 2 2 2 2
Cost & value correlation 0.05 0.07 -0.03 0.42
Value volatility 0.88 0.87 1.07 1.06
Cost volatility 0.30 0.30 0.30 0.30
Interest rate 0.06 0.06 0.06 0.06
Exchange volatility 0.91 0.90 1.12 0.97

Development value = P 172 86 43 43 $ millions
Development cost = K 824 412 206 206 $ millions
R&D1 phase cost 83 23 23 37 $ millions

(Eq 8.9) W = Carr European sequential
exchange option

4.56 2.80 3.09 1.10 $ millions

Lee & Paxson real American sequential
exchange option

(Eq 8.10) R∗ = critical price ratio 0.64 0.51 0.56 0.80
(Eq 8.6) P ∗ = critical price 1358 672 395 353 $ millions
(Eq 8.4) VA1 = Lee & Paxson American

exchange with t2 − t1(R&D1 = 0)

3.48 1.57 2.42 1.19 $ millions

(Eq 8.3) V1 = European exchange with
t2 − t1(R&D1 = 0)

3.46 1.57 2.40 1.18 $ millions

(Eq 8.5) V2 = twice exercisable exchange
with t2 − t1(R&D1 = 0)

3.47 1.57 2.41 1.19 $ millions

(Eq 8.7) V∞ = perpetual exchange
(R&D1 = 0)

39.32 20.06 14.20 10.07 $ millions

(Eq 8.11) WA = approximate American
sequential exchange option

4.58 2.80 3.11 1.10 $ millions

Option value % e-commerce value 2.66% 3.25% 7.22% 2.56% $ millions

The first seven inputs are the e-commerce income rate, R&D1 and K timing estimates, the value
and cost volatilities and correlation from e-commerce securities, and the riskless rate.
The next three inputs are from the R&D e-commerce project estimates.
The Carr European exchange option values (W ) assume R&D1 and K are stochastic and at t2.
The Lee and Paxson American sequential exchange option values assume R&D1 at t1, and K is
exercised at any time after t1.
P ∗ is the critical price above which the option should be exercised after t1.
The approximate American sequential exchange option value is W + VA1 − V1, where VA1, the
confined exponential approximation for the American exchange option with time interval t2 − t1,
is calculated as V∞ − (V∞ − V2)

2/(V∞ − V1).

Table 8.4 compares the RASE option worth to the R&D0 cost. The R&D
project III is associated with high volatility and low correlation, but its real
option worth/cost ratio is 0.93. The favored project is IV and then project II,
whereas project I should be canceled. Note that the RASE option values of
four projects is $11.59 million, higher than the overall RASE option value
of $9.72 million, which is consistent with the value of a portfolio of options
exceeding the option on a portfolio.7 Thus the aggregate R&D budget is (almost)
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Table 8.4 Allocating R&D budget among separate projects ($ millions)

I Project II Project III Project IV Project Aggregate

Real option worth 4.58 2.80 3.11 1.10 11.59
R&D0 cost 5.71 2.00 3.33 0.67 11.71
Real option worth/cost 0.80 1.40 0.93 1.65 0.99

Critical price = P ∗ 1358.32 671.57 394.67 353.02
Ratio P ∗/P 7.90 7.81 9.19 8.21

P ∗ is the critical price for e-commerce value above which the exchange option should be exercised
after t1.

justified considering the separate RASE option valuation, especially if project
selectivity is feasible. Selecting the two best R&D projects with a positive
worth/cost ratio would increase the ratio of real option worth to cost to nearly
1.5. Project selection would increase the total R&D value over the R&D0 cost
by $1.35 million. Focus on developed e-commerce value volatility, develop-
ment cost volatility, and the correlation of separate R&D projects by research
management is critical in assessing both appropriate budget allocation and the
appropriate level of the total R&D budget.

8.5.3 Real option value sensitivities

The real option value would be increased if the expected operating cash flows
are increased, or if the R&D1 and development costs are reduced, or if the time
to development is extended, or if the expected volatilities are increased or the
correlation reduced. Figures 8.2 and 8.3 show graphically the sensitivity of the
RASE option values to changes in some separate factors. With other factors held
constant, the option values (both European and American) increase and the early
exercise premium of the RASE becomes larger as development value increases
(Figure 8.2). As P approaches K + R&D1, the American is worth much more
than the European exchange option, which itself is not much greater than the
American sequential exchange option. For almost in-the-money options, having
to pay the R&D1 is not much of a penalty. For way out-of-the-money options,
the sequential exchange option values are worth much less than the exchange
options, because of the requirement to spend the R&D1 cost. Comparison of
these option values over a range of moneyness might provide some guidance
on the appropriate structuring and strategy for R&D management.

As expected, Figure 8.3 shows that a lower cost and value correlation makes
all exchange and sequential exchange options more valuable. For example, a
decrease in the correlation (from 0.29 to zero) brings about a 62% increase in
RASE option value (from $9.72 million to $15.75 million). Note that the spread
between exchange and sequential exchange options increases with a decrease
in correlation.
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Figure 8.2 American versus European exchange and sequential exchange options
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The inputs are the same as in Table 8.2 with different cost and value correlation between
−0.7 and +1.  

Figure 8.3 Sensitivity of real American and European exchange and sequential exchange
options to correlation

Also, American sequential exchange options are highly sensitive to changes
in e-commerce income. Assuming all of the inputs for the American option
values for the separate R&D projects remain constant, we ‘simulate’ the RASE
assuming that only income rate changes. American approximate value decreases
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The inputs are the same as in Table 8.3 with different income rates between 0% and 30%.
The approximate American sequential exchange option value is the European
sequential exchange option (W ) + the American exchange option with time interval
t2 − t1 (R&D1 = 0) − the European exchange option with time interval t2 − t1 (R&D1 = 0).
Assumes change in income rate does not affect project present value.
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Figure 8.4 Sensitivity of real American sequential exchange option value to income rates

as income rates are increased. Figure 8.4 shows that the RASE value declines
sharply as income rate is increased from 0% only to 5% and decreases more
than 50% as income rates are increased from 0% to 30%, and that this decline
varies among the four projects.

8.6 FURTHER RESEARCH AND CONCLUSION

There are four alternative real exchange and sequential exchange option models
considered herein. The European and American sequential exchange option
values are similar (since the options examined in this chapter are extremely
out-of-the-money). Comparisons should be made for all of these methods to
numerical solutions for different ranges of moneyness and cost of carry.

Some very broad assumptions as to e-commerce values and development
costs have been made herein to assess the possible benefits of e-commerce
R&D and real option values. The multivariate normal assumption presumes
that both value and cost ‘return’ proxies are normally distributed and stationary.
Other remaining theoretical problems include using multivariate normal distri-
butions that can model several investment stages over time; volatility and
correlation matrices for these sequential investments; allowing for variable e-
commerce income and development cost escalation assumptions over time; and
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using mixed diffusion-jump processes for both value and cost.8 Determining
the optimal exercise time for R&D1 and development stage expenditures is an
important consideration. These RASE models do not allow for the abandonment
option (selling R&D information to date while canceling R&D1 and K expendi-
tures) or for the more realistic R&D1 and K continuous expenditures over time.9

The primary uses of these RASE models are: (i) determining the appropriate
R&D strategy and budget; (ii) allocating the overall budget among competing
research proposals; and (iii) determining the optimal timing (and likely occur-
rence) of the subsequent stage R&D phase, if the timing is flexible (that is
any time before a given date). Following from (i) are some corporate finance
issues, such as issuing equity if the R&D enterprise market capitalization (MC)
exceeds the RASE adjusted for other enterprise values, cutting R&D and repur-
chasing shares in the opposite case, and buying other enterprises with large
relative RASE/MC.
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NOTES

1. Lee and Paxson (2000b) show that the confined exponential approximation
(CEA) is around three times more accurate (using a PSOR scheme for 3TLD
finite difference numerical method as a benchmark) than the Carr model, and
comparable to the Bjerksund and Stensland (1993) model. If the CEA model is
refined using tighter upper bounds, it is around three times more accurate than
the Bjerksund and Stensland (1993) model.

2. Carr (1995) also proposes an analytic approximation for an American exchange
option by generalizing the solution of Geske and Johnson (1984) using three-point
Richardson extrapolation. However, this approach is still not inexpensive and is
not considered in this chapter.

3. McDonald and Siegel (1986) gave an explicit analytic solution for the value of
an infinitely lived American exchange option, where project value and investment
cost both follow geometric Brownian motions. Gerber and Shiu (1996) derived
a closed-form solution for a perpetual American exchange option applying a
martingale approach.

4. It is usual to assume that the compound option is European-style since the option
holder would not want to exercise the compound option before the beginning of
the underlying option (see Lee and Paxson, 2000b).

5. Since the composite weightings would indirectly reveal the type and scope of
research considered herein, the exact weightings are not disclosed.
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6. Schwartz and Moon (2000b) showed that the implied volatility of options on
Amazon.com is not consistent with their real option valuation of the underlying
security.

7. This would be true if the volatilities and correlations were the same on all of the
projects.

8. Suggested by a referee.
9. Noted by another referee.
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Chapter 9

Optimal exploration investments under
price and geological–technical

uncertainty: a real options model

GONZALO CORTAZAR, EDUARDO S. SCHWARTZ
AND JAIME CASASSUS

SUMMARY

This chapter develops a real options model for valuing natural resource
exploration investments (e.g. oil or copper) when there is joint price
and geological–technical uncertainty. After a successful several-
stage exploration phase, there is a development investment and
an extraction phase. All phases are optimized contingent on price and
geological–technical uncertainty.

Several real options are considered. There are flexible investment
schedules for all exploration stages and a timing option for the devel-
opment investment. Once the mine is developed, there are closure,
opening and abandonment options for the extraction phase. Our
model maintains a relatively simple valuation structure by collapsing
price and geological–technical uncertainty into a one-factor model.

We apply the model to a copper exploration prospect and find that
a significant fraction of total project value is due to the operational,
development and exploration options available to project managers.

9.1 INTRODUCTION

We present a real options model for valuing natural resource exploration invest-
ments (e.g. oil or copper) when there is joint price and geological–technical
uncertainty. Price risk refers to output market value, while geological–technical
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risk applies to reserves, development investments and cost structure. Continu-
ous-time Brownian motions are used to model both uncertainty processes assum-
ing a futures market for output prices1, and a declining geological–technical
risk level as exploration investments are undertaken. In case of finding an
economically feasible mine, there may be a development investment phase,
to be followed by an extraction phase. All phases are optimized contingent on
price and geological–technical uncertainty.

Several real options are considered. The exploration investment schedule is
flexible and may be stopped and/or resumed at any moment depending on
cash flow expectations, which in turn depend on current commodity price
and geological–technical expectations. The model allows for several explo-
ration phases, each one with its own investment schedule and probabilities of
success. In the event of an exploration success there is a timing option for the
development investment, and closure, opening and abandonment options for the
extraction phase.

The model has the virtue of maintaining a relatively simple structure by
collapsing price and geological–technical uncertainty into a one-factor model.
The model can be applied to value oil or other natural resource investments and
has been used by a major copper company to value real exploration prospects.
We solve the model using implicit finite-difference numerical methods and
present results for a specific case.

Our model follows the rapidly increasing literature on the real options
approach for the valuation of investments under uncertainty. Among them, Majd
and Pindyck (1989) include the effect of the learning curve by considering that
accumulated production reduces unit costs, Trigeorgis (1993) combines real
options and their interactions with financial flexibility, McDonald and Siegel
(1986) and Majd and Pindyck (1987) optimize the investment rate, and He
and Pindyck (1992) and Cortazar and Schwartz (1993) determine two optimal
control variables. This approach has been used to analyze uncertainty on many
underlying assets, including exchange rates (Dixit, 1989), costs (Pindyck, 1993)
and commodities (Ekern, 1988). Finally, many asset types and problems have
been modeled using this approach, including natural resource investments,
environmental and new technology adoption, and strategic and competitive
options (Trigeorgis, 1996, 2000; Brennan and Trigeorgis, 2000; Dixit and
Pindyck, 1994).

Our model follows the Brennan and Schwartz (1985) model for valuing
natural resource investments. Closely related papers on the modeling of unde-
veloped oil fields or the software implementation approach are Paddock et al.
(1988), Cortazar and Schwartz (1997), and Cortazar and Casassus (1998). Other
models for valuing oil contingent claims include Smith and McCardle (1998,
1999), Lehman (1989) and Trigeorgis (1990).
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9.2 THE MODEL

9.2.1 Modeling the exploration investment decision

Exploration of natural resources typically involves following several stages,
each one with an investment schedule and with associated success and failure
probabilities. A representation of n exploration stages is presented in Figure 9.1
with the following notation:

Xj Value of the exploration project at the initial point in stage j
I j Present value of the investment during stage j
T j Time of exploration stage j
pj Probability of success stage j
H Value of the project at the end of the exploration stages, conditional

on success

We can view the exploration project X as an infinitely compounded option
that may be continuously exercised as the exploration investment is undertaken.
The model assumes that at any point in time investment can be stopped or
resumed depending on the expected value of the project, which in turn depends
on the geological and technical data, as will be explained later.

Contingent on an exploration success, the project may be developed by
investing a present value of I id during a development time of T id . These values
depend on the characteristics of the mine i found. The model considers a
perpetual timing option by allowing the delay of this development investment.
Once the decision to invest is made, there is no possibility of stopping the
development investment.

When the development investment is concluded, the mine enters into the
extraction phase. We use Brennan and Schwartz (1985) to model this phase
considering opening, closing and abandonment options.

Stage 2Stage 1 Stage n

1 − pn

1 − p2

Xn

X 2

X1

t

Hpn

p2

p1

1 − p1

I1, T1

I 2, T 2

In, T n

Figure 9.1 Illustration of the n exploration stages of the project
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9.2.2 Modeling price and geological–technical risk

Exploration prospects of natural resources (e.g. oil, copper) are very risky invest-
ments because both output prices (which have been widely studied) and output
quantities and development/production costs are uncertain.

Commodity price risk has long been modeled using no-arbitrage finance
models in a continuous-time setting. Even though recent multi-factor price
models are very promising for explaining commodity price behavior (Schwartz,
1997; Cortazar et al., 1999), for simplicity in this chapter we use a standard
one-factor constant-convenience-yield model for risk-neutral prices:

dS

S
= (r − c)dt + σS dωS (9.1)

with the following notation:

S Spot unit price of copper
r Risk-free real rate of interest, assumed constant
c Convenience yield on holding one unit of copper
σS Instantaneous volatility of returns on holding one unit of copper

dωS Increments to standard Gauss–Wiener process

While price risk is constant during all three phases of the project (exploration,
development and extraction), the geological–technical risk is much higher during
the exploration phase. This geological–technical risk may be decomposed into
two parts: one is the success or failure in finding an economically feasible mine,
and the other is related to the particular characteristics of the (eventual) mine.
While the first part has already been modeled using the discrete success–failure
probabilities at each of the exploration stages, the second part, defined by mine
reserve levels, development investments, production schedules and cost struc-
tures, is explained in what follows.

Before undertaking any exploration investment, uncertainty on the value of
the expected final reserve, conditional on success, is at its greatest level. The
characteristics of the eventual mine are highly unknown, ranging from modest
to highly profitable. In a real options framework it is clear that exploration
investments should optimally be undertaken considering both the expected mine
value and its distribution.

As exploration investment is undertaken, uncertainty on the final charac-
teristics of the mine decreases and price risk becomes comparatively more
important. The Brennan and Schwartz (1985) model of a copper mine, for
example, considers only price risk once development investment starts. But it
is clear that an appropriate exploration investment model should add to its price
risk the effect of a declining geological–technical risk.
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To model geological–technical risk, different approaches may be followed.
One alternative could be to define a vector of geological–technical variables that
affect mine value and specify a stochastic process for each of them. In this case
the value of the (already explored) mine would be a function of output price, S,
as well as of a vector G of mine characteristics, {G1,G2, . . . ,GN }, which could
include development investment, extraction rate, costs, etc. Thus, the value of the
expected mine would be defined asH(S,G1,G2, . . . ,GN). In this setting, model
complexity increases with the dimension of the mine-characteristics vectorG due
to both the amount of information required to specify the multivariate process
for the state variables, and the added effort of solving a multi-factor model.

We take a simpler approach that provides a reasonable approximation for many
cases and helps keep the model tractable. Instead of asking geologists/mining
engineers to specify the level and multivariate process for all relevant mine char-
acteristics, we ask them only to determine a representative set of possible mine
types, with their probabilities of occurrence, that could be found attending current
prospect characteristics. Each mine type is defined using the parameters required
by the Brennan and Schwartz (1985) model, including total reserves, develop-
ment investment amounts and schedule, and production schedule (amounts and
costs), with associated opening and closing costs. Thus we are able to value each
of the possible mines as a function of output price using the Brennan and Schwartz
(1985) model. Using the conditional probabilities for each mine type, we obtain
the expected mine value (as a function of output price) as well as an initial empir-
ical distribution of mine values that we define as the geological–technical risk.

To obtain the process for this geological–technical risk we start by defining
a one-dimensional state variable G to represent this risk. We know the initial
empirical distribution of mine values associated with this risk (obtained using
the initial probability assessment) and assume that after the exploration invest-
ment concludes there will be no residual geological–technical uncertainty. In the
absence of better information on the particular characteristics of the exploration
process, we assume that initial geological–technical uncertainty is reduced
continuously as exploration investment is undertaken.

Once we have defined mine value as a function of two state variables, output
spot price, S, and geological–technical risk, G, we use the fact that both factors
may be assumed to be independent and in many cases may be collapsed into
one state variable, Z. This makes the model very simple to implement, while
providing a reasonable approximation to the project value.

To formalize the model we define a geological–technical risk factor G (for
example the amount of mineral in a mine) that follows a zero-drift constant
volatility Brownian motion, as follows:2

dG

G
= σG dωG (9.2)
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This geological–technical risk factor is assumed to be independent of output
price S:

dωS dωG = 0 (9.3)

Mine value, H(S,G), can be modeled as a function of output price, S, and the
geological–technical variable, G.

We can now define a new state variable Z, a function of S and G, such that:

H(Z) ≡ H(S,G) (9.4)

and

Z ≡ F(S,G) (9.5)

Applying Itô’s lemma and using equations (9.1) and (9.2), we obtain:

dZ = [
FSS(r − c)+ 1

2FSSS
2σ 2
S + 1

2FGGG
2σ 2
G

]
dt

+ FSSσS dωS + FGGσG dωG (9.6)

We can further simplify model implementation by assuming:

Z = SG (9.7)

This is equivalent to assuming that an increase in any of the two factors (S
or G) has a similar effect on mine value. The process for this new state vari-
able becomes:

dZ

Z
= (r − c)dt + σS dωS + σG dωG (9.8)

The new state variable, Z, can be seen as a modified commodity price with the
same drift as the original one, S, but with an increased volatility:

σZ =
√
σ 2
S + σ 2

G (9.9)

For many projects equation (9.7) represents a very convenient approximation;
for others it is not only a good approximation, but holds perfectly. This is the
case, for example, if G represents total mine reserves, A1 is a constant that
depends on a fixed extraction rate3 and A2 is a fixed cost. Then project value
H is defined by:

H(S,G) = A1SG+ A2 or H(Z) = A1Z +A2 (9.10)

and equation (9.7) holds.
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Reducing model complexity at the exploration phase by collapsing all geolog-
ical–technical risk into one factor, with an appropriate (increased) volatility, is
convenient because it allows for representing many geological–technical factors
by their joint effect on mine value. The fact that all these factors are orthogonal
to the market factor (represented in this model by commodity price) allows for
this reduction in the state space with little loss of accuracy, while retaining the
possibility of being individually considered during the extraction phase. Should
there be any additional knowledge on the way exploration investment modi-
fies geological–technical risk for any particular case, adjustments to the above
model should be undertaken.

9.2.3 Estimation of geological–technical volatility

As we have stated above, all of the geological–technical risk is represented
by the initial distribution of the expected mine value at the beginning of the
development stage. Before initiating the exploration stage we have an expected
mine value and the variance for this distribution as a function of output price.
The estimation of the geological–technical volatility σG needs to be consistent
with the variance of the expected mine value. By applying Itô’s lemma to the
expected value of the mine for any given output price S (such that all the
volatility is due to the geological–technical risk), we obtain the relation to pin
down σG.

9.2.4 Valuing the exploration investment project

In order to value the exploration project we start by valuing the alternative mines
that could be obtained if exploration is successful. Then, we value the devel-
opment investment decision, and conclude by valuing the exploration phase.

Before exploration investments begin, there is a set of alternative mines that
could eventually be obtained, should the exploration phases be successful. Each
one of the M possible mines is assumed to have an associated probability of
occurrence, conditional on exploration success, αi , such that:

M∑
i=1

αi = 1 (9.11)

9.2.4.1 Value of a developed mine
Each of the M possible mines is valued using the Brennan and Schwartz (1985)
model:4

max
qip

[
1
2V

i
SSS

2σ 2
S + (r − c)SV iS − qipV iQ + qip(S − ai)− (r + λ)V i

]
= 0

(9.12)

1
2W

i
SSS

2σ 2
S + (r − c)SWi

S −mi − (r + λ)Wi = 0 (9.13)
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Subject to:

Wi(S∗i
0 ,Q) = 0 (9.14)

V i(S∗i
1 ,Q) = max[Wi(S∗i

1 ,Q)−Ki1, 0] (9.15)

Wi(S∗i
2 ,Q) = V i(S∗i

2 ,Q)−Ki2 (9.16)

Wi
S(S

∗i
0 ,Q) = 0 (9.17)

V iS(S
∗i
1 ,Q) =

{
Wi
S(S

∗i
1 ,Q) if Wi(S∗i

1 ,Q)−Ki1 ≥ 0

0 if Wi(S∗i
1 ,Q)−Ki1 < 0

(9.18)

Wi
S(S

∗i
2 ,Q) = V iS(S∗i

2 ,Q) (9.19)

V i(S, 0) = 0 (9.20)

Wi(S, 0) = 0 (9.21)

V i(0,Q) = 0 (9.22)

Wi(0,Q) = 0 (9.23)

lim
S→∞VSS(S,Q) = 0 (9.24)

lim
S→∞W

i
SS(S,Q) = 0 (9.25)

We use the following notation:

V i Value of mine i when it is optimal to be open
Wi Value of mine i when it is optimal to be closed
Q Reserves
qip Production rate of mine i
S∗i

0 Critical price below which it is optimal to abandon
S∗i

1 Critical price below which it is optimal to close
S∗i

2 Critical price above which it is optimal to open
Ki1 Cost of closing the mine i
Ki2 Cost of opening the mine i
mi Annual maintenance cost of keeping a mine closed
λ Country risk (or probability of expropriation)

9.2.4.2 Value of an undeveloped mine
We first assume the development investment decision has been made, but is still
under way. The value of the mine must now satisfy the following equation:

1
2U

i
SSS

2σ 2
S + (r − c)SUiS − UiT − (r + λ)Ui = 0 (9.26)
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Subject to:

Ui(0, T ) = 0 (9.27)

lim
S→∞U

i
SS(S, T ) = 0 (9.28)

Ui(S, 0) = V i(S,Q) (9.29)

Then, we can define H as the value of the mine before the development
investment is made, which must satisfy:

1
2H

i
SSS

2σ 2
S + (r − c)SH iS − (r + λ)H i = 0 (9.30)

Subject to:

Hi(0) = 0 (9.31)

Hi(S) =
{
Hi(S) if S ≤ S∗i

d

U i(S, T id )− I id if S > S∗i
d

(9.32)

We use the following notation:

I id Development investment
T id Time of development stage (after the investment has been done)
S∗i
d Critical price above which it is optimal to invest

Once each of the mines are valued, we can obtain an expected mine value by
multiplying each of the values by its probability αi :

H(S) =
M∑
i=1

αiH i(S) (9.33)

9.2.4.3 Value of an exploration project
Finally, we solve for the value of the exploration project. We consider that while
the project is under way and exploration investment is undertaken, the value of
the project is X, and while the project is optimally stopped, the value is Y .

Notice that while exploration investment is under way (X), relevant volatility
is higher than when it is temporally stopped (Y ),5 because geological–technical
information is only obtained with investment.

It is possible to solve for each stage j , with j = 1, . . . , n. To do this we start
by solving for stage j = n and work our way backwards until j = 1. We now
present the equations for an intermediate stage j :

max
q
j

i

[
1
2X

j

ZZZ
2σ 2
Z + (r − c)ZXjZ + qji XjI − qji − (r + λ+ γ j )Xj

]
= 0

(9.34)

1
2Y
j

ZZZ
2σ 2
S + (r − c)ZY jZ − (r + λ)Y j = 0 (9.35)
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Subject to:

Xj(0, I ) = 0 (9.36)

Y j (0, I ) = 0 (9.37)

lim
Z→∞X

j

ZZ(Z, I) = 0 (9.38)

Xj(Z, I j ) = Xj+1(Z, 0) if Z ≥ Z∗j (9.39)

Y j (Z, I j ) = Y j+1(Z, 0) if Z < Z∗j (9.40)

For the final stage these last two boundary conditions are replaced by:

Xn(Z, In) = H(Z) if Z ≥ Z∗n (9.41)

Y n(Z, In) = H(Z) if Z < Z∗n (9.42)

We use the following notation:

I Accumulated exploration investment at that stage

q
j

i Investment rate stage j
I j Present value of the investment during stage j
T j Time of exploration stage j
pj Probability of success stage j
Z∗j Critical price for investing at stage j
γ j Poisson probability of success stage j 6

9.3 RESULTS

The model can be applied to oil and other commodity exploration prospects. We
have applied it to several exploration prospects available to a copper company.
To our knowledge there is no analytical solution to this compound option system
of equations even if we consider infinite resource profiles during the extraction
stage. In what follows we present a specific case and report the results of solving
the above exploration model using implicit finite-difference numerical methods.

The prospect we present considers that before exploration starts the geologists
have an exploration investment plan with four exploration stages, each one with
its own investment schedule and probabilities of success (see Table 9.1). In
case of failure at one stage the exploration is abandoned. In case of success
the project could be stopped or resumed, depending on the expected value of
the mine. This expected value varies due to both changes in prices and/or the
expected geological–technical characteristics of the mine.

If the exploration stage is successful, the project enters into the develop-
ment stage. In the specific case we are evaluating, we consider 11 different
development/extraction plans, each one represented by a mine profile. Each
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Table 9.1 Description of the exploration stages of the project

Exploration stage Investment
(MUS$)

Time of
exploration (years)

Success probability

1 3 1 0.2
2 15 3 0.3
3 12 2 0.3
4 12 2 0.8

Table 9.2 Investments of the development stage
for mine 1

Year Investment
(MUS$)

1 123.2
2 246.4
3 123.2

Table 9.3 Costs and production schedule of the
extraction stage for mine 1

Maintenance costs (MUS$/Year) 0.45
Closure costs (MUS$) 70.4
Opening costs (MUS$) 48.3

Year Production
(Mlb)

Operating costs
(MUS$)

1 248 81.1
2 248 81.9
3 248 97.5
4 248 83.6
5 248 84.4
6 248 100
7 248 86.1
8 248 87
9 248 102.6

10 248 88.7
11 248 89.6
12 166.4 60.7

of these possible mines has particular development and production schedules.
For example, Tables 9.2 and 9.3 describe one of the mine profiles (‘mine 1’ in
Figure 9.2) that has a 15% probability of occurrence.

Figure 9.2 shows the value of all mines contingent on output price using the
Brennan and Schwartz (1985) model. The expected deposit is the expected mine
value obtained by multiplying each of the values by its occurrence probability.
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Figure 9.3 Optimal investing policy for the four exploration stages contingent on cumulative
investment. If the expected deposit is above the critical value, it is optimal to invest

Figure 9.3 presents the optimal exploration investment schedule. If the expected
mine value exceeds the critical expected mine value, then exploration investment
should proceed; if not, then it should be stopped.

Finally, Table 9.4 shows the value of the exploration project at the begin-
ning of the exploration stage and how it can be decomposed in terms of option
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Table 9.4 Sources of value of the exploration project in MUS$, when r = 2 .8 %, c = 6 %,
σS = 40 % and λ = 2 %

Expected
deposit
(MUS$)

Value
without
options

Operational
options

Development
option

Exploration
option

Total value

500 −11.44 6.68 2.94 3.19 1.37
1000 −6.29 5.46 2.25 1.58 3.01
1500 −1.95 4.71 1.82 0.60 5.17
2000 2.26 4.15 1.49 0.20 8.09

values associated with each stage. The optimal value of the exploration project
(total value) is decomposed into: (a) the value of the project if there is no
flexibility (or there is no volatility) at any stage (value without options); (b) the
value added for optimally opening, closing or abandoning the mine during the
extraction stage (operational options); (c) the extra value for optimally defer-
ring the development investment (development options); and (d) the additional
value for optimally investing during the exploration stage (exploration option).
The results are presented contingent on the value of the expected mine before
development investment is made.

For example, suppose that at the beginning of the exploration stage our best
estimation for the value of the mine that we can potentially develop is 500. In this
value we consider the output price and estimations regarding possible reserves,
investments, costs and productions during development and extraction phases.
If we don’t consider any flexibility during the life of the project, the value of the
exploration project is −11.44. To calculate this value, we evaluate the project
considering that the investment rate during exploration stage j is always qji even
when it is optimal to wait, that the development investment is done immediately
the exploration stage is finished (in all mine profiles), and that the production rate
during the extraction stage is always qip (in all mine profiles), even if it is optimal
to stop or abandon the mine. If we only consider operative options during the
extraction phase, the value of the exploration project is −4.76 (=−11.44 +
6.68). To calculate this value we allow for an optimal operation of the mine [see
equations (9.12) to (9.25)]. If in addition we consider the development option
the value increases to −1.82 (=−11.44 + 6.68 + 2.94). To get this value we
optimally defer the development investment [see equations (9.30) to (9.32)].
Finally to get the total value of the exploration project (and the exploration
option value) we consider that we can optimally invest during the exploration
stage [see equations (9.34) to (9.42)]. This will give a value for the exploration
project of 1.37 and an exploration option value of 3.19.

Table 9.4 also shows that option values decrease when the value of the
expected deposit increases. This occurs because when the value of the expected
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deposit is low, the option to postpone investment or close the mine is valuable.
When the expected value of the mine is high, it will be optimal to invest or
extract the commodity as fast as possible, and the option value will be small.7

Figure 9.4 gives the values of the ‘delta’ of the exploration project as a func-
tion of the one-year copper futures price. This represents the partial derivative
of the project value with respect to changes in the futures price. The second
derivative of the project value with respect to the futures price, the ‘gamma’
of the project, is shown in Figure 9.5. As expected the sensitivity of the delta,
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or equivalently the gamma, reaches a maximum value at the exercise value of
the relevant option, which in this case is the critical price for investment at
the beginning of the exploration stage. Figure 9.6 presents the ‘vega’ of the
exploration project, that is the sensitivity of the project to changes in volatility.
Consistent with the idea that the value of the exploration project is a (call) option
on the underlying commodity, we find that the deltas, gammas and vegas of the
project are similar to those observed for simple call options.

9.4 CONCLUSIONS

We have presented a real options model for valuing natural resource exploration
investments when there is joint price and geological–technical uncertainty. By
collapsing both sources of uncertainty, price and geological–technical uncer-
tainty, into a one-factor model for expected value we are able to maintain model
simplicity, while retaining operational flexibility.

The model considers that the exploration investment schedule may be stopped
and/or resumed at any moment depending on cash flow expectations, which
depend on current commodity price and geological–technical expectations.
Once all exploration phases are concluded the project is modeled as having
the flexibility of postponing development investments and, once developed, as
having the option to close or reopen production.

Results for a copper exploration prospect show that a significant fraction of
total project value is due to the operative, the development and the exploration
options available to project managers.
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NOTES

1. Actually the model only requires that price risk may be hedged. This is easily
satisfied when there is a futures market, but also if there is a portfolio of traded
assets perfectly correlated to commodity spot prices.

2. To understand why the process has zero drift, suppose for simplicity that G
represents only the risk associated with the total reserves. If we think that the
reserves will increase at a certain rate during the exploration stage, then our
estimation of the initial G should be updated such that it reflects the reserves that
we are expecting by the end of the exploration stage, keeping G as a martingale.

3. For example if all reserves can instantaneously be extracted, then A1 = 1.
4. Although in this specification it is straightforward to allow for extra cash flows

like taxes, we have not included them for simplicity.
5. Recall that σZ > σS .
6. Since the probability that no Poisson event occurs in interval (0,T j ) (i.e. success

of exploration stage j ) is e−γ j T j , it is easy to see that γ j should be −ln(pj )/T j .
7. This is a common characteristic of most real options models (see for example

Brennan and Schwartz, 1985).
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Chapter 10

Investments in technological innovations
under incomplete information

MONDHER BELLALAH

SUMMARY

An important question in financial economics is how frictions affect
equilibrium in capital and real markets since in a world of costly infor-
mation, some investors will have incomplete information. The specific
features of financial and real markets often require an investment in
information. Hence, the investment in technological innovations may
require gathering information before deciding on the appropriate tech-
nology. Technological innovations may be stochastic in their arrival
times and their profitability. In this context, recognizing the mechanism
of learning by doing and the role of information gathering may explain
actual firm policies when adopting new technologies. This chapter
extends some results in Grenadier and Weiss (1997) by accounting for
information costs. Information costs can be defined in the context of
Merton’s (1987) model of capital market equilibrium with incomplete
information. We incorporate the most important characteristics of real-
world technology markets as well as information costs to derive firm
policies. Our formulas are simulated in different contexts for several
technological parameters.

10.1 INTRODUCTION

Several models in financial economics have been proposed to deal with the
ability to delay an investment expenditure. In general, the behavior of firms
toward the adoption of innovations is variable. Some firms adopt new tech-
nologies when they are first available. Other firms delay the adoption until the
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technology is proved. Several authors analyze the factors that drive the differ-
ences in behavior. For a survey of this literature, the reader can refer to Pindyck
(1991), Grenadier and Weiss (1997) and references cited therein. The innova-
tion investment strategy can hence be viewed as a link in a chain of future
investment options. Grenadier and Weiss (1997), hereafter ‘G-W’, identify four
potential strategies.1 The analysis in G-W shows that firms may choose to adopt
an initial innovation even when facing more valuable innovations in the future.
Using the path-dependent property, the model shows also that optimal migra-
tion strategies differ according to the previous histories of technology adoption
by the firms. The model leads to interesting results regarding the adoption of
different technologies in relation to the volatility of the technological innova-
tions. In the conclusion of their paper, they suggest several extensions of their
model, including increases in R&D by suppliers of new technology, which
might be interpreted as information costs.

The shadow costs of incomplete information are considered in the analysis
of Merton (1987, 1998), Orosel (1997), Shleifer and Vishny (1997), Basak and
Cuoco (1998) among others. Information costs correspond to the costs required
for gathering and processing data regarding the existing and future investment
opportunities. These costs also include the costs of transmitting information
from one party to another. If, for each technology or innovation, investors must
pay a significant ‘set-up’ cost before they can process information released
from time to time about the innovation, then this fixed cost will cause any one
investor to follow only a subset of the available products. Even if the firm is
not the only source of information available (the existence of professionals of
information and a market place), the same argument used for the firm can also
be applied to explain the costs incurred in making investors aware of these
other sources of information.2

Agents can spend time and resources to gather information about the markets.
For example, they may read newspapers, participate in seminars, subscribe to
newsletters, join investment clubs, etc. Information in financial economics can
be viewed as a commodity purchased in the market or produced in the house-
hold using both time and money as inputs. By introducing these information
costs, it is possible to extend the G-W model. In order to apply the results
about information costs, we recall that Merton’s (1987) model is a modified
capital asset pricing model where each investor can participate only in markets
contained in an exogenous, investor-specific subset of all asset markets. Since
the process of acquisition and dissemination of information is a central element
in the investment process, Merton’s (1987) model might provide some insights
into the behavior of firms when they support these sunk information costs.
Merton’s model can be applied in the investment decisions and in the derivation
of equilibrium option prices.
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Merton (1987) adopts most of the assumptions of the original CAPM and
relaxes the assumption of equal information across investors. Besides, he
assumes that investors hold only securities of which they are aware. This
assumption is motivated by the observation that portfolios held by actual
investors include only a small fraction of all available traded securities.3

Bellalah (1990) provides a valuation formula for commodity options in a context
of incomplete information.

This chapter extends the G-W model to account for information costs. In
Section 10.2, we justify information costs and their use in the valuation of real
options. In Section 10.3, we present the model and derive the optimal migration
strategy under incomplete information. In Section 10.4, we provide an explicit
expression for the likelihood that a firm will choose a migration strategy. This
allows us to study the impact of the speed of innovation arrival, the uncertainty
of technological progress and the expected benefits of pending innovations. In
Section 10.5, we give simulation results for the value of the option to upgrade.
We simulate also the value of the option to purchase the current innovation
(prior to adopting the current innovation) and before a future innovation arrives.
Section 10.6 concludes.

10.2 ON THE FOUNDATIONS OF INFORMATION COSTS
IN THE PRICING OF ASSETS AND DERIVATIVES

We introduce information costs in the pricing process of securities as a funda-
mental assumption of our model. Information plays a central role in the pricing
of financial assets. Merton (1998) and Perold (1992) show that the cost of
implementing financial strategies for institutions using derivatives can be one-
tenth to one-twentieth of the cost of executing them in the underlying cash
market securities. Bellalah and Riva (2002) show that information costs for
very liquid assets are between 1 and 5%. Their empirical analysis reveals the
importance of information costs for less ‘liquid assets’. Differences in infor-
mation are important in financial and real markets. They are used in several
contexts to explain some puzzling phenomena like the ‘home equity bias’, the
‘weekend effect’ and ‘the smile effect’.4 Edwards and Wagner (1999) study
the role of information in capturing the research advantage and show how to
incorporate trading information into the decision process of active investment
management. Information reduces uncertainty, but good execution is essential
to investment success. They show that implementation costs make sense only
when weighted against the benefit of enhanced performance.5

Edwards and Wagner (1999) show that managers must measure and develop
confidence in the value of their research and then incorporate feedback from the
market. The main distinction between Merton’s model and the standard CAPM
is that investors invest only in the securities about which they are ‘aware’. This
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assumption is referred to as incomplete information. However, the more general
implication is that markets are segmented.6

Using this assumption, Merton (1987) shows that the expected returns depend
on other factors in addition to market risk. The main intuition behind this result
is that the absence of a firm-specific risk component in the CAPM comes about
because such risk can be eliminated (through diversification) and is not priced.7

The introduction of information costs in our analysis is done with respect to
the findings in Merton (1987). Merton (1987) advanced the investor recogni-
tion hypothesis (IRH) in a mean–variance model. This assumption explains
the portfolio formation of informationally constrained investors. The IRH in
Merton’s context states that investors buy and hold only those securities about
which they have enough information. Let us review the main results in Merton’s
model.8 The key behavioral assumption of the model is that an investor or a
firm considers including a technology X in his portfolio only if he has some
information on this opportunity.9

Merton’s model is an extension of the CAPM to a context of incomplete
information. The model gives a general method for discounting future cash
flows under uncertainty. In this model, assets with higher idiosyncratic risk are
rationally priced to earn a higher expected return. It appears in this model that
taking into account the effect of incomplete information on the equilibrium price
of an asset or an investment opportunity is similar to applying an additional
discount rate to its future cash flows. The implications of this model are studied
in different contexts by several authors. In this setting, Kadlec and McConnell
(1994) study the effect of market segmentation and illiquidity on asset prices.

Increasing empirical support for IRH-consistent behavior appeared in
Falkenstein (1996), Huberman (1998) and Shapiro (2000) among others. Coval
and Moskowitz (1999) document the economic significance of geography and
attempt to uncover the effect of distance on portfolio choice.10 The evidence
presented in Coval and Moskowitz (1999) suggests that because local investors
have more accurate estimates of future earnings prospects, they may expose
themselves more to earnings risk factors. This means that investors are willing
to place larger and riskier bets on firms they know more about.

10.3 THE MODEL

Consider a firm that faces several opportunities when investing in technology
innovations. The investment decision concerns actual, current innovations or
future innovations. A path dependency is invoked since the firm’s decision to
adopt a future technology is contingent upon its earlier decision regarding the
current technology. The value of the current innovation at time 0 is denoted
P0 and its adoption cost (early adoption) is Ce. Hence, the payoff to early
adoption is (P0 − Ce) with P0 ≥ Ce. The next generation of technology arrives
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at a random time T . If the firm has adopted the previous innovation, then it can
either conserve it or adopt the new innovation worth PT . If the firm decides to
upgrade at a cost Cu, then the benefit of exchanging the current technology for
the new one is (PT − P0 − Cu).

Suppose that the firm bypassed the first innovation. In this context, it has
two options: leapfrog to the new at a cost C� or acquire the older technology
at a price Cd with Cd ≤ Ce and C� < Ce + Cu. As in G-W, let us denote by
X(t) the process regarding the state of the technological progress. If the process
rises to an upper boundary Xh, the future innovation arrives where the random
arrival time T is characterized as follows: T = inf[t ≥ 0 : X(t) ≥ Xh]. Let the
dynamics of the project or the technology X(t) obey the following process:

dX/X = (α + λx) dt + σ dz (10.1)

where α and σ refer to the instantaneous expected change and the standard
deviation of the project per unit time, and dz is a geometric Brownian motion.
The term λx corresponds to the additional return required in compensation for
the costs incurred in the process of gathering information about the project or
the technology X. Hence, markets with high levels of the growth term α will be
characterized by faster innovation arrival and more information costs regarding
the collection and gathering of data.

The random arrival time T is defined as in the literature modeling bond
default. It can be shown as in Harrison (1985, equation 1.11) that the cumulative
distribution function of the arrival time T is:

Pr[T ≤ t] = N [−(ln(Xh/X)+ (α + λx − σ 2/2)t)/σ
√
t]

+ (Xh/X)
(2/σ 2(α+λx−σ 2/2))N [−(ln(Xh/X)

− (α + λx − σ 2/2)t)/σ
√
t]

In this expression N(·) corresponds to the cumulative standard normal distri-
bution and X denotes the current value of the arrival state variable. When
α + λx − σ 2/2 > 0, then the expected arrival time E(T ) exists and is equal to
ln(Xh/X)/(α + λx − σ 2/2). Let us define the value of the future innovation PT
as (P0 + ε) with ε ∼ N(µ, ν2) where ε is normally distributed with mean µ and
variance ν2 and ε and dz are independent. To incorporate learning, it is assumed
that the cost Cu < C�. It is important to note that in our dynamics of X, we have
increased the term α by λx to account for the additional expected return required
from information gathering. This means also that a firm, which has previously
adopted the current innovation, can sooner utilize the future innovation.

Now, to derive the optimal innovation strategy, we follow the approach in
G-W by working in a dynamic programming fashion. Assuming that the firm
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has adopted the current innovation at a cost Ce and receives P0, it holds the
option to upgrade or to convert from P0 to PT at a cost Cu at the random time
T . The firm adopts this strategy if PT ≥ P0 + Cu. This option is similar to the
exchange option studied in Margrabe (1978), with the main difference that T
is stochastic and is an American perpetuity.

Let us denote by F(X) the option to upgrade from the current to the future
innovation. Applying Itô’s lemma gives:

dF = 1
2Fxxσ

2X2 dt + (α + λx)FxX dt + FxXσ dz (10.2)

The total expected return on F per unit time is:

αF ≡ E[dF/F ](1/dt) = [ 1
2Fxxσ

2X2 + (α + λx)FxX](1/F ) (10.3)

Since the expected return on the upgrade option must be equal to the equilibrium
expected return for that asset in the presence of information costs, (r + λf ),
we have:

1
2Fxxσ

2X2 + (α + λx)FxX − (r + λf )F = 0 (10.4)

where r is the riskless interest rate.
As shown in Bellalah (1990), there are two terms corresponding to infor-

mation costs in this equation. The first shadow cost is λx . It is linked to the
costs incurred regarding X. The second is λf and is linked to the costs incurred
regarding F . Note that each variable X and F is multiplied by its appropriate
cost. This equation can also be derived as follows. Consider the return on the
following portfolio: hold an option which is worth F(X) and go short Fx units
of the project where the subscript x refers to the partial derivative with respect
to X. The value of this portfolio is:

F − FxX (10.5)

Over a short interval, the change in the value of X induces changes in the value
of Fx and in the portfolio’s value. The total return for this portfolio over a short
interval of time dt is:

dF − Fx dX dt (10.6)

To avoid riskless arbitrage, the return on this portfolio must be the riskless
rate. However, since there are information costs for the option and its under-
lying assets, the return must be equal to (r + λx) for the project and (r + λf )

for the option, where λx and λf refer respectively to the information costs
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on the project and the option. Since the project may not have the same value
for all firms, this information cost can be specific to each firm. Therefore,
the costs of gathering information and data about the project and the invest-
ment opportunity are present in the discounting procedure. In this context,
we have:

dF − Fx dX = (r + λf )F dt + (r + λx)XFx dt (10.7)

Assuming a hedged position is constructed and ‘continuously’ rebalanced,
and since dF is a continuous and differentiable function, it is possible to use a
Taylor series expansion to expand dF(X). When limiting arguments are used
and second-order terms ignored, we obtain dF = 1

2Fxx(dX)
2 + Fx dX. This is

just an extension of simple results to get Ito’s lemma. The application of this
lemma gives dF = 1

2Fxxσ
2X2 dt + Fx dX:

dF = 1
2Fxxσ

2X2 dt + (α + λx)FxX dt + FxXσ dz (10.8)

Substituting this result, we get after simplification:

1
2σ

2X2Fxx + (α + λx)XFx − (r + λf )F = 0 (10.9)

which must be solved under the following conditions:

F(0) = 0 (10.10)

F(Xh) = E[max(PT − P0 − Cu, 0)] (10.11)

The first condition indicates that the option is worthless when X(t) falls to
zero. The second condition gives the expected payoff of the upgrade option at
the instant when the new technology arrives. The expectations are taken with
respect to the distribution of PT . The solution F(X) can be given in a closed
form as:

F(X) = (X/Xh)
β [ν × n((Cu − µ)/ν)

+ (µ− Cu)N((µ− Cu)/ν)] if X < Xh

F(X) = ν × n((Cu − µ)/ν)

+ (µ− Cu)N((µ− Cu)/ν) if X ≥ Xh (10.12)

where:

β = (1/σ 2)[−(α + λx − σ 2/2)+
√
(α + λx − σ 2/2)2 + 2(r + λf )σ 2]
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In this expression n(·) stands for the standard normal density function, N(·) is
its cumulative distribution function, and Xh = X exp{(α + λx − σ 2/2)E[T ]}.
For the sake of convergence, it is assumed in this analysis that r > α.

The partial derivative of F(X) (if X < Xh) with respect to λx is:

∂F

∂λx
=
(

1

σ 2

)



( X

Xh

)−d+
√
d2+2(r+λf )σ 2

σ 2



[

d√
d2 + 2(r + λf )σ 2

− 1

]

× ln
(
X

Xh

)

[
ν × n

(
Cu − µ

ν

)
+ (µ− Cu)N

(
µ− Cu

ν

)]

where d = α + λx − σ 2/2.
Now, we can move back a step to study the optimal investment strategy for

the current innovation. When the firm acquires the current innovation, it has
the current payoff from adoption (P0 − Ce) as well as an embedded option to
upgrade. In this context, the firm holds a compound option when choosing its
optimal exercise policy.

Let us denote by G(X) the value of the option to purchase the current inno-
vation. The optimal exercise and the optimal time for the investment in the
current technology imply that the variable X(t) falls to a lower trigger level
X� which is chosen so as to maximize the value of G(X). At this level, the
benefits of investing correspond exactly to the benefits of waiting. The value of
this option must satisfy the following system:

1
2σ

2X2Gxx + (α + λx)XGx − (r + λg)G = 0 (10.13)

where λg corresponds to the information costs on the option to purchase. The
following boundary conditions are used:

G(X�) = P0 − Ce + F(X�) (10.14)

Gx(x�) = Fx(X�) (10.15)

G(Xh) = E[max(PT − C�, P0 − Cd)] (10.16)

The first condition indicates that the option payoff upon exercise is given by
the net benefits of investment plus the option to upgrade. It is a familiar value-
matching condition. The second condition corresponding to the classic smooth-
pasting ensures optimality of the exercise at X�. The last condition indicates
the expected payoff if the option is not exercised when the future technology
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arrives. The solution to the above system is:

G(X) = P0 − Ce + F(X�) if X ≤ X�
G(X) = A1X

−β1 + A2X
β2 if X� < X < Xh

G(X) = K2 if X ≥ Xh

(10.17)

where:

X� = [(β1/(β1 + β2))((P0 − Ce)/ω)]
(1/β2)

A1 = c1ω
(β1/β2)

A2 = ω +K1X
−β2
h

K1 = ν × n((Cu − µ)/ν)+ (µ− Cu)N((µ− Cu)/ν)

K2 = ν × n((C� − Cd − µ)/ν)+ (C� − Cd − µ)N((C� − Cd − µ)/ν)

+ P0 − C� + µ

β1 = (1/σ 2)[(α + λx − σ 2/2)+ (α + λx − σ 2/2)2

+ 2(r + λg)σ
2]1/2 > 0

β2 = (1/σ 2)[−(α + λx − σ 2/2)+ (α + λx − σ 2/2)2

+ 2(r + λg)σ
2]1/2 > 1

c1 = (β2/β1)[(β1/(β1 + β2))(P0 − Ce)]
((β1+β2)/β1)

and ω is the solution to the following equation:

c1X
−β1
h ω(−β1/β2) + ωX

β2
h = K2 −K1 (10.18)

In this context, the optimal migration strategy is similar to that reported in the
context of complete information. However, the values of the embedded options
are modified with respect to the information costs. In fact, the critical exercise
level X� and the option value are modified according to the levels adopted for
information costs.

10.4 LIKELIHOOD OF MIGRATION STRATEGIES AND INNOVATION
ADOPTION BEHAVIOR IN DIFFERENT ENVIRONMENTS

The above model can be applied to predict the innovation adoption choices of
a firm in the future. In fact, when the optimal migration strategy is known, it is
possible to derive explicit expressions for the probability that a firm will pursue
any of the possible four migration strategies. In the same vein, it is possible to
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obtain the expected time at which a firm first invests in an innovation. In this
setting, the analysis is very similar to that in G-W.

Let us define the first passage of time X(t) to the early adoption trigger by:

Te = inf[t ≥ 0 : X(t) ≤ X�] (10.19)

We denote the first passage of time to the value that triggers the arrival of the
future innovation by:

T = inf[t ≥ 0 : X(t) ≥ Xh] (10.20)

The definitions of Te and T in equations (10.19) and (10.20) refer also to the
stopping time. In this context, the probability of early adoption is Pr[Te < T ],
which means that the firm will adopt the current innovation only if Te < T .
Following this line of reasoning, it is possible to provide an explicit derivation of
the probabilities that a firm will fall into any one of the four possible categories.
It turns out that these probabilities depend on the shadow costs of incomplete
information. This is because uncertainty reflected in the volatility is outweighed
or reduced with respect to the available information.

10.4.1 Case 1: a firm pursuing a compulsive strategy

Consider the first case of a firm pursuing a compulsive strategy and denote
by PC(X) the probability of this strategy, conditional upon X(0) = X. A firm
pursues this strategy when it adopts early (Te < T ), and exercises the upgrade
option at time T (PT − P0 − Cu ≥ 0). For this case:

PC(X) ≡ Pr[Te < T,PT − P0 − Cu ≥ 0] (10.21)

Using a change of variables and the analysis in Harrison (1985, section 3.2),
we can show as in G-W that:

PC(X) = H(X)[1 −N((Cu − µ)/ν)] (10.22)

where:

H(X) = 1 if X ≤ X�

H(X) = (X−γ −X
−γ
h )/(X

−γ
� −X

−γ
h ) if X� < X < Xh

H(X) = 0 if X ≥ Xh

and11

γ = (2/σ 2)(α + λx − σ 2/2)
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When there is no information uncertainty, the term λx is zero and the expressions
of the probabilities collapse to those in G-W.

10.4.2 Case 2: a firm pursuing a buy-and-hold strategy

Consider the second case of a firm pursuing a buy-and-hold strategy and denote
by PB(X) the probability of this strategy, conditional upon X(0) = X. A firm
pursues this strategy when it adopts early and does not exercise the upgrade
option at time T (PT − P0 − Cu < 0). For this case:

PB(X) ≡ Pr[Te < T,PT − P0 − Cu < 0] (10.23)

or

PB(X) = H(X)N((Cu − µ)/ν) (10.24)

10.4.3 Case 3: a firm pursuing a leapfrog strategy

Consider the third case of a firm pursuing a leapfrog strategy and denote by
PL(X) the probability of this strategy, conditional upon X(0) = X. A firm
pursues this strategy when it does not adopt early (Te ≥ T ) and adopts the
future innovation when it arrives (PT − C� ≥ P0 − Cd). For this case:

PL(X) ≡ Pr[Te ≥ T , PT − C� ≥ P0 − Cd] (10.25)

or

PL(X) = [1 −H(X)][1 −N((C� − Cd − µ)/ν)] (10.26)

10.4.4 Case 4: a firm pursuing a laggard strategy

Consider the fourth case of a firm pursuing a laggard strategy and denote by
PG(X) the probability of this strategy, conditional upon X(0) = X. A firm
pursues this strategy when it does not adopt early (Te ≥ T ) and adopts the
older innovation when the future innovation arrives rather than leapfrogging
(PT − C� < P0 − Cd). For this case:

PG(X) ≡ Pr[Te ≥ T , PT − C� < P0 − Cd] (10.27)

or

PG(X) = [1 −H(X)]N((C� − Cd − µ)/ν) (10.28)
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The model can be applied to characterize the speed at which a firm
invests in technology. In this case, the definitions of stopping times in
equations (10.19) and (10.20) show that the time it takes a firm to adopt an
innovation is min[Te, T ]. In the same vein, the expected time of initial adoption
corresponds to:

E[min[Te, T ]|X(0) = X] (10.29)

This expression can be computed as in Harrison (1985, section 3.2) and G-W
to obtain the following expected time of future adoption.

When (α + λx �= σ 2/2):

E[min[Te, T ]|X(0) = X]

= [ln(Xh/X�)/(α + λx − σ 2/2)][(X−γ
� −X−γ )/(X−γ

� −X
−γ
h )]

− [ln(X/X�)/(α + λx − σ 2/2)] if X ∈ (X�,Xh) (10.30)

E[min[Te, T ]|X(0) = X] = 0 otherwise

When (α + λx = σ 2/2):

E[min[Te, T ]|X(0) = X] = [ln(Xh/X) ln(X/X�)]/σ
2 if X ∈ (X�,Xh)

E[min[Te, T ]|X(0) = X] = 0 otherwise

It is important to note that the term corresponding to the shadow cost of
incomplete information plays a central role in the above expressions regarding
the expected time of initial adoption. In fact, since it appears often in the
denominator, the values attributed to this parameter can affect substantially
the expected time of future innovation. Information cost is the counterpart of
the volatility as it appears in the condition (α + λx = σ 2/2) determining the
expected time of future adoption. This analysis allows one to study the impact of
the speed of innovation arrival, the uncertainty of technological progress, and the
expected benefits of pending innovations in the presence of information costs.

Consider the impact of innovation arrival. High technology environments
are often regarded as having a rapid pace of innovation, while more mature
technologies are characterized by minor cosmetic changes. The main question
is how do firms’ optimal adoption behaviors differ according to the speed of
innovation arrival? In our analysis, the model reveals that for markets with
rapid innovations, firms will probably postpone their innovation investments
until the future innovation arrives. Hence, the leapfrog and laggard strategies
are most probable in markets with rapid innovation arrival. The compulsive
and buy-and-hold strategies are probable in markets with slow innovations. A
market with rapid (slow) innovation is characterized by low (high) E(T ).
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The solutions (10.22), (10.24), (10.26) and (10.28) can be represented as a
function of the expected arrival time E(T ). In the analysis of G-W, E(T ) varies
from zero to five years by increasing the arrival trigger parameter Xh. This
assumption is consistent with many technology-based industries. The resulting
curves can move upside and downside as a function of the shadow cost of
incomplete information. The solution depends on all the parameters used.

The significance of the improvements characterizes also technological envi-
ronments. The model allows one to increase the expected profitability of the
future innovation, which increases the likelihood that the second innovation will
be adopted. The probabilities of the various strategies can be represented as a
function of the expected profitability of the future innovation µ. By increasing
µ, the compulsive and leapfrog strategies increase. In the same context, when
the future innovation becomes very profitable, the laggard and buy-and-hold
strategies become less likely. Again, all the above results and implications of
the model are a function of the shadow cost of incomplete information.

Another characteristic of technological markets concerns the level of uncer-
tainty surrounding future innovations. The timing and impact of future innova-
tions are difficult to forecast. In general, results in G-W reveal that volatility
can retard the adoption of a current innovation, prompting firms to postpone the
investment decisions into the future. The increased willingness of managers to
delay the investment decision is a known result in real options pricing models.
The value of the option to wait increases in more volatile environments. In
this case, firms become more reluctant to follow compulsive or buy-and-hold
strategies. Similar results can be derived in the presence of shadow costs of
incomplete information.

10.5 SENSITIVITY ANALYSIS AND SIMULATION RESULTS

We use plausible default parameter values provided in the study of G-W, even
though they do not simulate option values. We consider plausible values of
information costs for the variable X, the option to upgrade and the option to
purchase the current innovation. The simulation results for the first formula
(10.12) are slightly easier than those of the second formula (10.17). In fact,
simple numerical techniques must be used in the second case for the computa-
tion of critical levels.

For the simulations of formula (10.12), the values of the arrival trigger param-
eter Xh are set in accordance with the various levels of X given the expected
arrival time of the future innovation. When X reaches Xh, the holder of the
option has the possibility to upgrade to the realized value of the new tech-
nology PT.

Table 10.1 reports the main results regarding the optimal migration strategy.
The simulations assume that the firm has adopted the current innovation and
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Table 10.1 Simulation of the value of the option to upgrade F( X) from the current to the future
innovation as a function of current state of technological progress X using equation (10.12): the
effect of information costs relative to the technological progress on the option value. α = 0 .05 ,
σ = 0 .05 , r = 0 .07 , P0 = 1 , µ = 1 , ν = 1 , Cu = 0 .85 , λf = 1 %

E(T ) λx = 1% λx = 2% λx = 3%

X(h)− X F(X) X(h)− X F(X) X(h)− X F(X)

0.00 0.0000 0.4784 0.0000 0.4784 0.0000 0.4784
0.50 0.0119 0.4602 0.0140 0.4600 0.0161 0.4600
1.00 0.0363 0.4426 0.0427 0.4424 0.0492 0.4422
1.50 0.0737 0.4257 0.0869 0.4254 0.1003 0.4251
2.00 0.1247 0.4095 0.1474 0.4090 0.1706 0.4087
2.50 0.1899 0.3939 0.2250 0.3933 0.2611 0.3929
3.00 0.2698 0.3788 0.3207 0.3782 0.3731 0.3778
3.50 0.3653 0.3644 0.4353 0.3636 0.5078 0.3632
4.00 0.4768 0.3505 0.5698 0.3497 0.6665 0.3491
4.50 0.6052 0.3371 0.7251 0.3362 0.8506 0.3357
5.00 0.7512 0.3242 0.9025 0.3233 1.0616 0.3227
5.50 0.9155 0.3119 1.1029 0.3109 1.3010 0.3102
6.00 1.0988 0.3000 1.3275 0.2989 1.5704 0.2983
6.50 1.3021 0.2885 1.5776 0.2875 1.8716 0.2868
7.00 1.5261 0.2775 1.8543 0.2764 2.2063 0.2757

In this table, α is the instantaneous conditional expected percentage change in X, σ is the instanta-
neous conditional standard deviation per unit time, µ is the mean of the incremental improvement,
and Cu the upgrade cost. The values of the arrival trigger parameter Xh are set in accordance with
the various levels of X given the expected arrival time E(T ) of the future innovation. When X
reaches Xh the holder of the option has the possibility to upgrade to the realized value of the new
technology PT .

holds the option to upgrade to the future innovation. The firm also has the
valuable option to convert from the current innovation P0 to the future inno-
vation PT at an upgrade cost Cu at a random arrival time T . Information costs
λx take the values of 1%, 2% and 3%. The table shows that higher informa-
tion costs lead to higher trigger levels Xh relative to X, for the same E(T ). It
indicates that higher information costs lead also to lower values of the option
to upgrade. Hence, the option to upgrade is less valuable when information
is ‘rare’ and investors suffer more sunk costs in collecting and analyzing the
market environment.

For the simulations of formula (10.17), the values of the arrival trigger param-
eter Xh are set in accordance with the various levels of X given the expected
arrival time of the future innovation. The optimal time at which the firm invests
in the current innovation is when X(t) falls to the trigger value X�. This value
maximizes the option value G(X). At the optimal exercise trigger level X�, the
benefits of investing in the current innovation are equal to the marginal benefits
of waiting.
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We distinguish two cases. The first uses information costs relative to the vari-
able X. The second uses information costs regarding the option itself G(X).
Table 10.2 reports the main results regarding the optimal technological migra-
tion strategy in the presence of information costs related to the variable X. The
table gives simulation results for the value of the option to purchase the current
innovationG(X) using equation (10.17). It studies the effect of information costs
relative to the technological progress. Since the firm has an embedded option to
upgrade, it holds a compound option and must choose an optimal exercise policy.

The simulations give the values of X�, Xh and the value of the option G(X).
The value of ω is found using an iterative procedure. Information costs λx take
the values of 0% to 6%. The table shows that higher information costs lead to
lower trigger levels of X�. However, higher information costs lead to higher
levels of Xh. The value of the critical ω is a slightly decreasing function of
information costs.

The value of the option G(X) to purchase the current innovation (prior to
adopting the current innovation and before the future innovation arrives) is also
a slightly decreasing function of information costs. Hence, the value of this
option is less valuable when information is ‘rare’ and the firm suffers more
sunk costs in collecting and analyzing market conditions.

Table 10.3 gives simulation results for the value of the option G(X) using
equation (10.17). It shows the effect of option information costs λg relative

Table 10.2 Simulation of the value of the optimal technological migration strategy and the value
of the option to purchase the current innovation G( X): the effect of information costs relative to
the technological progress. α = 0 .05 , σ = 0 .05 , r = 0 .07 , P0 = 1 , µ = 1 , ν = 1 , Ce = 0 .825 ,
Cd = 0 .8 , C� = 1 .65 , Cu = 0 .85 , λg = 0 %, E( T) = 1

λx (%) X� Xh ω G(X)

0 0.9308 1.0499 0.1868 0.6340
1 0.9263 1.0605 0.1867 0.6336
2 0.9208 1.0711 0.1867 0.6333
3 0.9147 1.0819 0.1866 0.6331
4 0.9082 1.0928 0.1866 0.6330
5 0.9014 1.1039 0.1866 0.6329
6 0.8944 1.1149 0.1865 0.6329

In this table, α is the instantaneous conditional expected percentage change in X, σ is the instanta-
neous conditional standard deviation per unit time, µ is the mean of the incremental improvement,
P0 is the value of the current innovation to the firm, Ce the cost of early adoption of the current
innovation, Cu the upgrade cost, C� the cost of leapfrog and Cd the price of the older innovation.
The values of the arrival trigger parameter Xh are set in accordance with the various levels of X
given the expected arrival time E(T ) of the future innovation. The optimal time at which the firm
invests in the current innovation is when X(t) falls to the trigger value X�. This value maximizes
the option value G(X). At the optimal exercise trigger level X�, the benefits of investing in the
current innovation are equal to the marginal benefits of waiting.
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Table 10.3 Simulation of the value of the optimal technological migration strategy and the value
of the option to purchase the current innovation G( X): the effect of information costs relative
to the option. α = 0 .05 , σ = 0 .05 , r = 0 .07 , P0 = 1 , µ = 1 , ν = 1 , Ce = 0 .825 , Cd = 0 .8 ,
C� = 1 .65 , Cu = 0 .85 , λx = 1 %, E( T) = 1

λg(%) X� Xh ω G(X)

1 0.9395 1.0605 0.1850 0.6276
2 0.9499 1.0605 0.1833 0.6217
3 0.9583 1.0605 0.1815 0.6159
4 0.9654 1.0605 0.1798 0.6102
5 0.9713 1.0605 0.1782 0.6045

In this table, α is the instantaneous conditional expected percentage change in X, σ is the instanta-
neous conditional standard deviation per unit time, µ is the mean of the incremental improvement,
P0 is the value of the current innovation to the firm, Ce the cost of early adoption of the current
innovation, Cu the upgrade cost, C� the cost of leapfrog and Cd the price of the older innovation.
The values of the arrival trigger parameter Xh are set in accordance with the various levels of X
given the expected arrival time E(T ) of the future innovation.

to the option value. The simulations give the values of X�, Xh and the value
of the option G(X). Information costs λg take the values of 1% to 5%. The
table shows that higher information costs regarding the option lead to higher
trigger levels of X�. However, higher option information costs do not affect the
level of Xh. The value of the critical ω is slightly decreasing with information
costs. The value of the option G(X) to purchase the current innovation is also
decreasing with information costs on that option.

Finally, the existence of information costs appears to have a significant effect
on the probability of migration strategies as a function of the expected arrival
time. As shown in Figure 10.1 (compared to figure 1 in Grenadier and Weiss,
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Figure 10.1 Simulation of the effect of the speed of arrival on the probability of migration
strategies, with information costs, using equations (10.22), (10.24), (10.26) and (10.28). α = 0 .05 ,
σ = 0 .05 , r = 0 .07 , P0 = 1 , µ = 1 , ν = 1 , Ce = 0 .825 , Cd = 0 .8 , C� = 1 .65 , Cu = 0 .85 ,
λx = λg = 5 %
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1997, p. 408), the probability of all strategies is ‘shifted’ towards extremes at
earlier arrival times. Leapfrog and laggard strategies have a minimum likelihood
and compulsive and buy-and-hold strategies have a maximum likelihood with
earlier expected innovation arrival times. Thus with environments with slower
innovation, the compulsive and buy-and-hold strategies are more likely the
higher the information costs.

10.6 CONCLUSION

Information plays a central role in the pricing of financial and real assets and in
the process of financial and real innovations. This appears in the work of Scholes
(1998) and Merton (1998). In this spirit, the study of the analogy between the
adoption of innovations and the exercise strategy of a stream of embedded
options in the presence of incomplete information allows the implementation
of option pricing theory to derive the firm’s optimal migration strategy under
technological uncertainty. We present a model which accounts for information
costs and extends the main results in G-W. Our definition of information costs
is similar to that in Merton (1987), who provides a simple capital market equi-
librium model with incomplete information. Merton’s (1987) model shows that
asset returns are an increasing function of their beta risk, residual risk and
size, and a decreasing function of the available information for these assets.
Several empirical tests by Kadlec and McConnell (1994), Falkenstein (1996),
Huberman (1999), Shapiro (2000), Bellalah and Riva (2002) among others seem
to support Merton’s model. The information costs correspond to the expenses in
research and development which are experienced by the users and the suppliers
of a new technology. The formulas derived in this chapter are simulated. The
effects of changing different parameters on the options values are studied. The
simulations of both analytical formulas regarding the option to upgrade and
the optimal technological migration strategy reveal the effects and the role of
incomplete information in the computation of option values. Our results suggest
that future empirical and theoretical studies should distinguish between different
technological environments as characterized by information costs and timing.
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NOTES

1. These strategies are: (i) a compulsive strategy of purchasing every innovation;
(ii) a leapfrog strategy of skipping an early innovation; (iii) a buy-and-hold
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strategy of purchasing only an early innovation; and (iv) a laggard strategy
of waiting until a new generation of innovation arrives before purchasing the
previous innovation.

2. The story of information costs applies in varying degrees to the adoption in prac-
tice of new structural models of evaluation such as real option pricing models. It
applies also to the diffusion of innovations for several products and technologies.
The recognition of the different speeds of information diffusion is particularly
important in explaining the behavior of different firms.

3. In Merton’s model, the expected returns increase with systematic risk, firm-
specific risk, and relative market value. The expected returns decrease with
relative size of the firm’s investor base, referred to in Merton’s model as the
‘degree of investor recognition’.

4. See the models in Bellalah (1990).
5. They recognize that the most valuable commodity in the market is information

that reduces uncertainty. In this spirit, trading cost information is part of the
research that gives a manager active advantage.

6. Merton’s model is based on the assumption that there are several factors in
addition to incomplete information that may explain this behavior for individuals
and institutions. Hence, the presence of prudent-investing laws and traditions and
other regulatory constraints can rule out investment in a particular firm by some
investors.

7. It appears from Merton’s model that the effect of incomplete information on
expected returns is greater the higher the firm’s specific risk and the higher the
weight of the asset in the investor’s portfolio. The effect of Merton’s non-market
risk factors on expected returns depends on whether the asset is widely held or
not.

8. Merton’s model is a two-period model of capital market equilibrium in an
economy where each investor (or firm) has information about only a subset
of the available investment opportunities.

9. Merton’s model may be stated as follows: Rx − r = βx[Rm − r] + λx − βxλm,
where Rx = the equilibrium expected return on an asset X,Rm = the equilib-
rium expected return on the market portfolio, r = the riskless rate of interest,
βx = cov(Rx/Rm)/var(Rm), λx = the equilibrium aggregate ‘shadow cost’ for
the asset X (of the same dimension as the expected rate of return on this asset
X), λm = the weighted average shadow cost of incomplete information over all
assets.

10. They find that local equity preference is strongly related to firm size, leverage
and output tradability. Their results suggest an information-based explanation for
local equity. Since a manager cannot follow all publicly traded firms, investors
select specific firms for which they incur ‘receiver set-up costs’. These costs are
larger in small firms. In the analysis of Coval and Moskowitz (1999), proximity
may lower this fixed cost, and local investors may have a larger comparative
advantage informatively trading in small firms.

11. Correcting the sign given in Grenadier and Weiss (1997, p. 415).
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Chapter 11

The effect of first-mover’s advantages
on the strategic exercise of real options

ANDRIANOS E. TSEKREKOS

SUMMARY

When real investment opportunities are open to competing firms in
the same line of business, strategic considerations become extremely
important in determining investment/entry policies. We develop an
equilibrium framework for strategic (real) option exercise where the
focus is on the effect of first-mover’s advantages. The generality of
our framework stems from the fact that we allow such advantages
to be either temporary or permanent in nature. When the latter is
true, economically identical competing firms might end up investing
at very distinct times simply due to the effect of first-mover’s advan-
tages. First-mover advantages are found to have an asymmetric
effect on rival firms’ values. If the advantages are substantial and
permanent, the rival entry times are drawn further apart as uncer-
tainty increases.

11.1 INTRODUCTION

The application of option pricing techniques to real-world investment deci-
sions has changed the way academics and corporate practitioners think about
capital budgeting and project valuation. Originating in the work of Brennan
and Schwartz (1985) and McDonald and Siegel (1985, 1986), this stream of
literature – collectively termed real options – has stressed that under conditions
of uncertainty, there is an option value to waiting before making irreversible
decisions. This option value of remaining uncommitted, which is not captured
by traditional discounted cash flow techniques like the net present value (NPV)
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criterion, can be substantial in magnitude and highly important in investment
appraisal decisions (see Kester, 1984).

In the case of traditional financial options, optimal exercise strategies can
be derived without consideration of the strategic interactions across option
holders.1 However, this is not the case in real options: real investment oppor-
tunities are rarely held by one firm in isolation. Most projects or markets are
open to more than one firm in the same industry or line of business. In such
cases, where investment opportunities are not proprietary to one firm, strategic
considerations become important. Optimal (real) option exercise strategies will
have to strike a balance between the value of waiting for uncertainty to be
resolved and the fear of pre-emption, i.e. the possibility that a rival firm with
access to the project/market may seize an advantage by acting first.

In this chapter, we provide a game-theoretic approach to real options exercise
in an effort to highlight the importance of strategic considerations. We focus
on the advantage of being first in a market, and our aim is to quantify the
effects of such an advantage on investment valuation and exercise policies. We
allow the magnitude of first-mover’s advantages or degree of pre-emption to
be fully parameterized in the model, which allows us to assess their effect on
entry decisions and game equilibria.

In our model, two competing firms have the option to enter a market with
uncertain profitability. The option to enter is an American-style call option
with an exercise price equal to the investment cost, and the underlying security
is the (net) profitability derived from operating in the market. However, the
exercise of the option to enter by one firm has repercussions on the value of
both competing firms’ options. The firm to enter first (the leader) has to sink
the investment cost earlier, but can benefit from securing a higher market share
than the competitor. An appealing feature of our framework is that it admits
the possibility that this first-mover advantage can be temporary or permanent.

The other firm (the follower) must then decide when it is optimal to sink the
cost of investment so as to claim a share of the market lower than that of the
first entrant. When the follower decides to enter, the underlying game ends and
the resulting market structure is a duopoly where market sharing is an explicit
function of the degree of pre-emption parameter. Once the value functions of
being the leader or the follower in the market are determined, we proceed in
identifying and analyzing the possible equilibria for this strategic entry option
game and assessing the effect of the magnitude of first-mover’s advantages.

The main implication is that first-mover’s advantages not only guarantee a
higher market share for the leading firm in the market, but also deter optimal
rival entry, thus augmenting the time period that the leader can act as a monop-
olist. Because of this dual role that they play, first-mover advantages, when
permanent in nature, have an asymmetric effect on competing firms’ value
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functions. Another interesting finding is that the effect of volatility on entry
strategies depends positively on the magnitude of first-mover advantages. This
dependence can actually reverse if such advantages are not substantial.

Our model draws on the work of Smets (1993) in the context of foreign
direct investment, and the subsequent adoption of his model by Grenadier
(1996) in the real-estate market. Like their work, our model admits the
possibility of both simultaneous and sequential exercise equilibria depending
on initial conditions and the magnitude of the first-mover’s advantages.
However, by explicitly accounting for the magnitude and nature (temporary
or permanent) of such advantages, our model can better assess their effect
on value functions, exercise strategies and game equilibria. Other related
papers would include the study of capital budgeting in settings with pre-
emption and learning (Spatt and Sterbenz, 1985), investment with strategic
competition (Kulatilaka and Perotti, 1998), the effect of incomplete information
on pre-emptive investment (Lambrecht and Perraudin, 1997) and technological
uncertainty in R&D competition (Weeds, 2000).

The rest of the chapter is organized as follows. Section 11.2 presents the
basic setting of the underlying game, as well as the main assumptions made.
Section 11.3 derives the value functions of the leader and the follower, while
Section 11.4 determines the equilibrium set of exercise strategies for both firms.
Section 11.5 assesses the effect of changing parameters on exercise strategies
through comparative statics, while Section 11.6 concludes.

11.2 THE BASIC MODEL

Two competing firms are contemplating entry into a new market where operating
profitability is stochastic. The decision to enter the market is assumed to be
completely irreversible.

Operating the market yields a revenue flow xt , which is assumed to evolve
exogenously according to a geometric Brownian motion with drift given by the
following expression:

dxt = µxt dt + σxt dWt (11.1)

where µ ∈ [0, r) is the drift parameter, measuring the expected growth rate of
xt , σ > 0 is the instantaneous standard deviation or volatility parameter, and
dWt is the increment of a standard Wiener process, dWt ∼ N(0, dt).

Note that geometric Brownian motion is a Markov process with continuous
sample paths. The probability distribution for the value of the process at any
future date depends only on its own current value, i.e. it is unaffected either by
past values of the process or by any other current information. Thus, to make a
best estimate of the future value of the process, all that is needed is its current
level, along with the parameter values µ and σ .
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The assumption in equation (11.1) that the state variable is lognormally dis-
tributed, even though standard in the option pricing literature, might be question-
able in our context. Indeed, the fact that Pr(xt > 0|x0 > 0) = 1 implicit in
equation (11.1) is not easily justified for the profitability of an industry or a
market. Alternatively, one could assume that xt follows an arithmetic Brownian
motion, i.e.

dxt = µ dt + σ dWt (11.2)

or even a mean-reverting Ornstein–Uhlenbeck process, both of which admit
the possibility of negative realizations for future values of x. The choice made
will ultimately have to do with the industry under review (product market,
internet or biochemical, R&D intensive, etc.) and its long-run characteristics.
Subject to this critique, our exposition uses equation (11.1) simply for reasons
of compatibility and comparability with the literature. All notions and findings
of this chapter are qualitatively unaffected by the state variable assumption, but
any quantitative implications drawn for a specific industry should be made with
the above caveat in mind.

Entry by any firm entails a fixed investment cost. To avoid favoring one
of the firms and to concentrate on the effect of first-mover’s advantages, we
impose symmetry and assume that both rivals face the same investment cost,
denoted by K .

Careful readers would note that our model implicitly assumes that firms,
once active, can service the market and earn revenues without incurring any
more (i.e. operating) costs apart from the fixed entry cost K . The easiest way
to accommodate operating costs in the model would be to interpret xt as net
operating profitability. Explicitly introducing operating costs would give firms
the extra flexibility to temporarily cease operations and/or abandon the market in
states of very low revenues, which would complicate the model without offering
any additional insights on entry decisions. Abstracting from the possibility of
operating costs has no effect on the conclusions of the chapter since our focus
is on the effect of first-mover’s advantages on strategic investment.

The underlying game is that of Stackelberg leader–follower : the first firm to
enter the market (the leader, L) sinks the investment cost K in order to receive
the monopolistic revenue flow xt dt for as long as it operates alone in the market.
However, when the second firm enters the market (the follower, F) the order
of entry determines the magnitude of duopolistic revenue flows for the two
competing firms. If there is an advantage of being first in a market, the leader
should have a higher market fraction than the follower, even when both firms
operate. To allow that, we assume that when both firms enter the market, the
leader reserves a fraction a ∈ ( 1

2 , 1] of market profitability, leaving (1 − a)xt for
the follower.2 This exogenous parameter a measures the degree of pre-emption
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or the magnitude of first-mover’s advantages: being the first to enter the market
guarantees, at a minimum, axt of market profitability. Obviously, absolute pre-
emption (first mover gets all) is included as a special case by setting a = 1
(see Lambrecht and Perraudin, 1997 for an absolute pre-emption duopoly game
with incomplete information).

In the following sections, we derive a set of equilibrium exercise strategies.
Specifically, we derive a pair of Markovian exercise strategies that form a
subgame perfect equilibrium, i.e. at each point of the game, each firm’s exer-
cise strategy is optimal conditional on the rival’s exercise strategy. Derivation of
equilibrium strategies draws from the methodology of stochastic stopping-time
games, in particular the results of Dutta and Rustichini (1993). Their formu-
lation allows for the possibility that the stochastic process continues to evolve
after the leader’s action, and the follower still has a move to play, as is the case
in our model.

Lastly, firms are assumed to use stationary Markovian strategies. A stationary
Markovian strategy consists of actions that depend only on the current state and
the strategy formulation itself does not explicitly depend on time. Because xt

follows a Markov process, Markovian strategies incorporate all payoff-relevant
factors in this game. Furthermore, if one player uses a Markovian strategy then
its rival has a best response which is Markovian as well. Hence a Marko-
vian equilibrium remains an equilibrium when history-dependent strategies are
also permitted, although other non-Markovian equilibria may arise.3 With the
Markovian restriction, a player’s strategy is a stopping rule specifying a critical
trigger value or ‘threshold’ of the state variable at which the firm invests.

Before turning to the derivation of the leader–follower value functions, a
brief comment about the option valuation framework is in order. In traditional
financial option pricing models, the approach to valuation is based on arbi-
trage. Namely, the fact that one can instantaneously trade the underlying asset
and a riskless asset allows precise replication of the option under valuation. In
the case of real assets however, where short-selling may not be possible and
assets cannot be traded in infinitesimal increments, such an arbitrage technique
is highly unrealistic. The alternative valuation technique used here is an equilib-
rium approach. For simplicity, in what follows we assume risk-neutrality. This
seemingly restrictive assumption is only made for convenience and can easily
be relaxed by adjusting the drift term µ in equation (11.1) to account for a risk
premium in the manner of Cox and Ross (1976).

11.3 THE VALUE OF THE LEADER AND THE FOLLOWER

In this section we derive the value functions for pursuing the role of the
leader and the follower in the market. For the moment, those roles are taken
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as exogenously assigned. In the next section, the equilibrium set of exercise
strategies that determine the identities of the leader and the follower are derived.

As usual, such dynamic games are solved backwards in a dynamic program-
ming fashion. Thus, assume – without loss of generality – that one firm has
already invested in the market and first consider the optimal investment strategy
of the follower.

11.3.1 The follower’s value function

Denote by V F
0 (x) the value of the follower in the continuation region (values of

the state variable xt for which it is not yet optimal to invest). Prior to entry, the
follower only holds the option to invest and claim 1 − a of the market. It earns
no cash flows but experiences a capital gain or loss in the value of its option
depending on the evolution of the market profitability. Hence, in this region the
equilibrium return condition for the value of the follower is given by:

rV F
0 (x) dt = E{dV F

0 (x)}
Expanding the right-hand side of the equation using Itô’s lemma and substi-

tuting from equation (11.1) yields the following ordinary differential equation
that the value of the following firm must satisfy:

1
2σ 2x2V ′′

0
F(x) + µxV ′

0
F(x) − rV F

0 (x) = 0 (11.3)

The differential equation is solved subject to the boundary condition:

lim
x→0+

V F
0 (x) = 0 (11.4)

which recognizes that zero is an absorbing barrier for the process of xt in
equation (11.1), i.e. if the state variable ever gets to zero, it stays there forever,
thus the option to enter will be worthless. Solving equation (11.3) subject to
(11.4) yields the value of the follower before investment:

V F
0 (x) = Bxλ (11.5)

where B ≥ 0 is a constant whose value is yet to be determined and λ is the
positive root of the characteristic equation:

1
2σ 2λ(λ − 1) + µλ − r = 0 (11.6)

which is equal to:

λ = 1

2
− µ

σ 2
+
√(

µ

σ 2
− 1

2

)2

+ 2r

σ 2
> 1 (11.7)
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Next consider the value of the follower in the stopping region (values of the
state variable xt for which it is optimal to undertake the investment at once),
which we denote V F

1 (x). In this region, the follower has invested the fixed cost
K in order to receive perpetually the flow (1 − a)x, thus the equilibrium return
condition in this region will be:

rV F
1 (x) dt = E{V F

1 (x)} + (1 − a)x dt

where the last term simply implies that the active follower gets a revenue flow
of (1 − a)x every instant.4 Expanding and rearranging yields:

1
2σ 2x2V ′′

1
F(x) + µxV ′

1
F(x) − rV F

1 (x) + (1 − a)x = 0 (11.8)

Recognize that since investment is irreversible, the value of the follower in this
region V F

1 (x) is given by the expected value of revenue flows alone, with no
option value terms, i.e.

V F
1 (x) = 1 − a

r − µ
x (11.9)

The boundary between the continuation and the stopping region is given by
a critical value of the stochastic process or trigger point such that continued
delay (immediate investment) for the follower is optimal for values of x below
(above) this level. Let x̄F denote this critical value of the state variable. At
the boundary between regions, the critical value x̄F must satisfy the following
conditions by arbitrage:

V F
0 (x̄F) = V F

1 (x̄F) − K (11.10)

V ′
0

F(x̄F) = V ′
1

F(x̄F) (11.11)

The first boundary condition is commonly termed the value-matching condi-
tion. It simply reflects the fact that, upon exercise, the follower gives up the
option to enter V F

0 (x̄F) for the value of being active in the market, V F
1 (x̄F),

minus the entry cost K . The second boundary condition is known as the ‘high-
contact’ or smooth-pasting condition.5 Essentially, this condition ensures that
x̄F is the trigger that maximizes the value of the follower’s option.

Substituting equations (11.5) and (11.9) into the boundary conditions (11.10)
and (11.11) yields a system of two equations, which uniquely determine the
two unknowns, B and x̄F. Then, the value of the follower is given by:

V F(x) =





[
1 − a

r − µ
x̄F − K

](
x

x̄F

)λ

if x < x̄F

1 − a

r − µ
x − K if x ≥ x̄F

(11.12)
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Figure 11.1 The value of the follower’s option to enter the market, V F( x), as a function of x for
different values of volatility σ . The rest of the parameters are: µ = 0 .02 , K = 5 , r = 0 .09 and

a = 0 .60

where:

x̄F = λ

λ − 1
(r − µ)K

1

1 − a
(11.13)

Figure 11.1 plots the follower’s value function in equation (11.12) as a func-
tion of x for three different volatility values. The usual positive dependence of
real option values on volatility is evident. Figure 11.2 shows x̄F, the optimal
entry threshold of the follower in equation (11.13), as a function of σ for
different magnitudes of first-mover advantages. The unwillingness to commit
by investing (‘value of waiting’) as volatility increases, which has been reported
in the real options literature, is apparent. Note that this unwillingness increases
as a, the market share that the leader can command under duopolistic competi-
tion, increases. We return to this point in Section 11.5, where we formally assess
the effect of first-mover’s advantages on the entry strategies of competing firms.

Thus, the optimal follower strategy is summarized in the following
proposition.

Proposition 11.1 Conditional on the leader having entered the market, the
optimal follower strategy is to invest in the market the first moment that xt

reaches x̄F, as defined in equation (11.13), from below. That is, the optimal
entry time for the follower, TF, can be written as:

TF = inf
{
t ≥ TL : xt ≥ λ

λ − 1
(r − µ)K

1

1 − a

}
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Figure 11.2 The trigger value of the follower, x̄F, as a function of σ for different values of
first-mover advantages a. The rest of the parameters are: µ = 0 .02 , K = 5 and r = 0 .09

where TL, the optimal entry time of the leader, is to be derived in the next
subsection.

Note that the optimal strategy of the follower is independent of the point
at which the leader invests: given that it invests later, the follower simply
optimizes its entry time, irrespective of the precise location of the leader’s
trigger point.

11.3.2 The leader’s value function

We now consider the value of becoming the leader in the market, given that
neither firm has entered yet, and that the follower will act optimally in the
future in accordance with the stopping rule described in Proposition 11.1.

Once the leader has sunk the investment cost K , it has no further action to
take. It enjoys monopolistic revenues, xt , for as long as the follower has not
entered (i.e. for t < TF); however, its expected value will be affected by the
possible action of the rival firm investing later at TF. Bearing that in mind, the
leader’s post-investment payoff can be written as:

V L(x) = Et

[∫ TF

t

e−rτ x dτ

]
+ Et [e

−rTF]
ax̄F

r − µ
− K (11.14)

In equation (11.14), the first expectation represents the period of time that
the leader earns monopolistic rents. Before TF the leader operates alone in the
market, earning the full x dt of market profitability per instant. The second
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expectation, however, implies that once the follower enters at TF, the leading
firm settles for the fraction of the market guaranteed by first-mover’s advantages.

We compute the expectations (in Section 11.7.1) and substitute to get the
value of the leader in the market:

V L(x) =




x

r − µ
+ Dxλ + ax̄F

r − µ

(
x

x̄F

)λ

if x < x̄F

a

r − µ
x − K if x ≥ x̄F

(11.15)

where D = −x̄1−λ
F /(r − µ) ≤ 0. Note that when x < x̄F, the option term Dxλ ≤

0 captures the negative effect that entry by the follower will have on the leader’s
value.6 If the follower invests, the leader essentially stops being a monopolist
in the market and loses (1 − a) of the market to the follower.

Finally, consider the relative values of the leader and the follower in the
market in equations (11.12) and (11.15). Depending on the level of market
profitability, the leader’s value may be greater or less than that of the follower.
The following proposition describes the relative valuations.

Proposition 11.2 There exists a unique point, x̄L ∈ (0, x̄F), with the following
properties:

V L(x) < V F(x) for x < x̄L

V L(x) = V F(x) for x = x̄L

V L(x) > V F(x) for x > x̄L

Proof: See appendix.

Proposition 11.2 demonstrates that there is a unique value of x ∈ (0, x̄F),
denoted x̄L, at which the payoffs to both the leading and the following firm are
equal. At any point below (above) x̄L, each firm would prefer being the follower
(leader). At x̄L, the benefits of pre-emption (first-mover’s advantages) just equal
the costs of making the investment cost earlier. Figure 11.3 graphically confirms
the above by plotting the values of being the leader and the follower in a market
with a = 0.60 pre-emption advantages.

From Proposition 11.2 the following corollary, which formalizes the leader’s
optimal strategy, comes naturally.

Corollary 11.1 The optimal leader strategy is to invest in the market the first
moment that xt reaches x̄L, as defined in Proposition 11.2, from below. That is,
the optimal entry time for the leader, TL, can be written as:

TL = inf{t ≥ 0 : xt ≥ x̄L}
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Figure 11.3 The value functions of the leader V L( x) and the follower V F( x) for first-mover advan-
tages of a = 0 .60 . Optimal trigger values are x̄L = 0 .3651 and x̄F = 1 .3125 for the leader and the
follower, respectively. The rest of the parameters are: µ = 0 .02 , K = 5 , r = 0 .09 and σ = 0 .10

11.4 SOLVING FOR THE EQUILIBRIUM STRATEGIES

Moving back to the beginning of the game, the two competing firms have
to choose their equilibrium entry strategies. We derive a pair of symmetric,
subgame perfect equilibrium entry strategies in which each firm’s exercise
strategy, conditional upon the other’s exercise strategy, is value-maximizing.
The nature of equilibrium depends (a) on the level of the initial market oper-
ating profitability, x0 and (b) on the magnitude and nature of first-mover’s
advantages, a.

When first-mover’s advantages are permanent (a > 1
2 ), pre-emptive incen-

tives are strong and equilibrium entry will depend on x0. If x0 < x̄F, equilibrium
entry will be sequential : once a firm enters the market, a period of time will
pass before its rival finds it optimal to enter. If x0 ≥ x̄F, however, equilibrium
entry will be simultaneous: one firm enters instantly after the other. Lastly,
we comment on the nature of equilibrium entry strategies when first-mover’s
advantages are temporary in nature.

11.4.1 Sequential equilibrium: x0 < x̄F

If the investment game begins with an initial level of x which is less than x̄F,
a pair of symmetric, subgame perfect equilibrium strategies is for each firm to
act as follows:
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If your competitor has not entered the market yet, invest the first time that
xt equals or exceeds x̄L. If your competitor has already entered the market,
then wait until xt rises to x̄F before investing.

Given the above strategies, the equilibrium will appear as follows. If x0 <

x̄L, one firm waits until the trigger x̄L is reached, and the other waits and
invests at x̄F. At x̄L, the competing firms will be indifferent between leading
or following in the light of Proposition 11.2 [V L(x̄L) = V F(x̄F)]. Since firms
are economically identical, there are essentially two equilibria of that form,
where the identities of leader and follower are interchanged between firms.
Moreover, if x0 ∈ [x̄L, x̄F), both firms will race to enter since V L(x) > V F(x)

(see Proposition 11.2). We impose the slight technical assumption that in such a
case one, randomly selected firm wins the race (e.g. through a toss of a coin or
any other arbitrary consideration). The random winner will invest immediately,
and the loser will get the follower’s role, entering later at x̄F.

It is relatively simple to demonstrate that the above set of policies constitute
an equilibrium. From Proposition 11.2, it is suboptimal to enter before x rises
to a level of x̄L. Thus, if its rival follows the equilibrium strategy, the best that
a firm can do is also pursue the equilibrium strategy by attempting to enter
at x̄L. Moreover, Proposition 11.1 demonstrates that if a firm enters second, it
does so optimally at x̄F.

11.4.2 Simultaneous equilibrium: x0 ≥ x̄F

Now, consider the case where x0 ≥ x̄F. In this range, any equilibrium will be
characterized by simultaneous entry by both rivals. If one firm invests at a level
of profitability greater than x̄F, its rival will invest immediately thereafter. This
is obvious in the light of Proposition 11.1, which depicts the optimal follower
response to invest the first moment that x̄F is reached or exceeded. Thus, in this
region, the equilibrium will be characterized by simultaneous entry.7

From Proposition 11.2, since V L(x) > V F(x) for any x > x̄F > x̄L, there is
a strong pre-emptive incentive to be the leader in the market. Both firms will
again race to enter. The (random) winner will secure a fraction a of the market,
while the loser will invest immediately thereafter and settle for (1 − a)x.

However, since x0 could be any value greater than x̄F, there are essentially
an infinite number of Markovian, subgame perfect equilibria over this region.
Thus, when x0 ≥ x̄F, a ∈ ( 1

2 , 1] the equilibrium strategies of competing firms
can be summarized in the following:

Invest in the market immediately to gain first-mover advantages. If your
competitor wins the race to enter first, then enter immediately thereafter.
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Figure 11.4 The value functions of the leader V L( x) and the follower V F( x) for the special
case of equal post-entry market sharing a = 0 .50 . Optimal trigger values are x̄L = 0 .3843 and
x̄F = 1 .0500 for the leader and the follower, respectively. The rest of the parameters are: µ = 0 .02 ,
K = 5 , r = 0 .09 and σ = 0 .10

Before concluding this section, a comment on the special case where first-
mover’s advantages are temporary. This translates to setting a = 1

2 , i.e. post-entry
duopolistic rivals share the market equally. In this special case, any pre-emption
advantage is temporary since the first-mover enjoys higher profitability only
as long as it acts as a monopolist. Once the follower enters, payoffs are the
same for both firms. Figure 11.4 demonstrates this graphically. Note that for
x ≥ x̄F the value functions of leader and follower coincide. Even when advan-
tages are temporary, equilibrium entry by rivals will still be either sequential or
simultaneous, depending on initial industry profitability conditions, x0.

11.5 COMPARATIVE STATICS

In this section, we examine the effect of changes in underlying parameters on
the value functions and entry thresholds of competing firms. A major concern
is to determine the effect of parameter changes on the timing of investment
by leading and following firms. Towards that end, we assume throughout that
x0 < x̄F. Thus, we focus on the sequential equilibrium, where entry options are
exercised at distinct stopping times.

First, concentrate on the effect of pre-emption incentives. We are interested in
determining the dependence of leader and follower values and exercise strategies
on the degree of first-mover’s advantages. Differentiating equations (11.12) and
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(11.15) with respect to a yields an intuitive and interesting result:

∂V F(x)

∂a
=




− x

r − µ

(
(1 − a)(λ − 1)x

λK(r − µ)

)λ−1

< 0 if x < x̄F

− x

r − µ
< 0 if x ≥ x̄F

(11.16)

∂V L(x)

∂a
=





λx

r − µ

(
(1 − a)(λ − 1)x

λK(r − µ)

)λ−1

> 0 if x < x̄F

x

r − µ
> 0 if x ≥ x̄F

(11.17)

A change in the magnitude of first-mover’s advantages has an opposing effect
on the value of the leader and the follower: the higher the market share that pre-
emptive entry guarantees, the higher (lower) the value of pursuing the leader’s
(follower’s) role. Intuitively, since competition between rival firms over market
fractions is direct, a higher degree of pre-emption implies that what the leading
firm wins by acting first is the follower’s loss. This is obvious in the above
partial derivatives, especially when both firms are active (x ≥ x̄F): the effect of
a is symmetric in magnitude but of opposite sign.

Interestingly, if not surprisingly, the effect of changes in a is asymmetric
on V F(x), V L(x) prior to entry (x < x̄F). It is directly observable from
equation (11.16) and (11.17) that:

∂V L(x)

∂a

−∂V F(x)

∂a

= λ > 1

for x < x̄F, i.e. an increase in first-mover’s advantages has a more pronounced
(positive) effect on the leader’s value compared to the (negative) effect on the
follower’s. The reason is that the magnitude of first-mover’s advantages has
a dual effect on the leader’s payoff before follower entry: a higher value of a
increases the market share that the leader retains after follower entry but also
augments the period of time that the leader earns monopolistic rents, by delaying
optimal follower entry. This is because ∂TF/∂a > 0. Thus, before entry by the
follower, the (positive) dependence of V L(x) on a is greater in magnitude than
the (negative) one of V F(x), but it is then symmetric once the follower becomes
active in the market. This is graphically confirmed in Figure 11.5, which plots
the dependence of leader and follower value functions on first-mover advan-
tages, ∂V L(x)/∂a and ∂V F(x)/∂a, as a function of the state variable x under
two ‘regimes’: before (panel a) and after (panel b) entry in the market by
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Figure 11.5 The partial derivatives of leader and follower value functions with respect to
first-mover advantages a, as a function of the state variable x prior to (x < x̄F, panel a) and
after (x ≥ x̄F, panel b) follower entry. The follower trigger value and the parameters used are:
x̄F = 0 .7676 , µ = 0 .05 , K = 4 , r = 0 .07 , a = 0 .60 and σ = 0 .10

the follower. It is evident that ∀x < x̄F the effect of a change in a is more
pronounced on the leader’s value function by a factor λ. Once the follower
enters the market (x ≥ x̄F, panel b) the effect is symmetric: what the leading
firm wins from a change in a is the follower’s loss.

Next, we turn to assess the effect of volatility, where the leader–follower
value functions and trigger points are complex functions of σ . A well-established
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result from the theory of real options is that increasing uncertainty increases the
unwillingness to commit to investment. Thus, conditional on any initial level
of market profitability, this result will tend to postpone entry into the market.
On the other hand, increases in uncertainty have an opposing effect as well:
increasing volatility makes it more probable that substantial changes in prof-
itability can take place in shorter periods of time. Thus, changes in σ alter
both the optimal entry strategies and the stochastic properties of the underlying
profitability.

Figure 11.6 demonstrates that the net effect of increasing volatility is an
increase in the ratio of entry thresholds of the two firms, i.e. more volatile
market profitability makes rivals enter at more separated times. The intuition of
this result is as follows. As volatility increases, it is more likely that the time
it takes operating profitability to rise from x̄L to x̄F will fall, bringing the ratio
x̄F/x̄L down. On the other hand, increases in uncertainty will increase the option
value of waiting, increasing both x̄L and x̄F since firms are less eager to invest.
However, this option to wait does not affect the leader and the follower equally
since their claims are on different fractions of the underlying market. When first-
mover’s advantages are substantial and permanent as in our setting, leader’s
and follower’s entry options are on different fractions of the underlying, thus
their value of waiting is differently affected by increases in σ . As Figure 11.6
confirms, it is this second effect that dominates: x̄F increases more than x̄L,
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Figure 11.6 The ratio of entry trigger values x̄F/x̄L as a function of volatility σ for different
values of first-mover advantages a. The rest of the parameters are: µ = 0 .05 , K = 4 and

r = 0 .07
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thus their ratio is positively related to σ , and this positive dependence is more
pronounced the greater the first-mover’s advantages (higher a).

Turning to the dependence of the value functions on the state variable, we
can differentiate equations (11.12) and (11.15) with respect to x to get:

∂V F(x)

∂x
=




λK

(λ − 1)x

(
(1 − a)(λ − 1)x

λK(r − µ)

)λ

> 0 if x < x̄F

1 − a

r − µ
> 0 if x ≥ x̄F

(11.18)

∂V L(x)

∂x
=




1

r − µ
− λ2K

(λ − 1)x

(
(1 − a)(λ − 1)x

λK(r − µ)

)λ ≥ 0
≤ 0

if x < x̄F

a

r − µ
> 0 if x ≥ x̄F

(11.19)
Equations (11.18) and (11.19) could be thought of as the leader–follower deltas.
Interestingly, the leader’s value can be a decreasing function of the state variable
x in the region prior to entry by the follower. If λ is large enough (i.e. for higher
r , lower µ and σ ), V L(x) will actually peak to the left of x̄F, and then approach
x̄F with a negative slope. Figure 11.7 plots equations (11.18) and (11.19) as a
function of the first-mover advantages a. Intuitively, the larger the fraction that
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Figure 11.7 The partial derivatives of leader and follower value functions with respect to the
state variable x , as a function of first-mover advantages a. The rest of the parameters are:

µ = 0 .05 , K = 4 , r = 0 .07 , x = 0 .17 and σ = 0 .10
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Figure 11.8 The ratio of entry trigger values x̄F/x̄L as a function of the interest rate r for
different values of first-mover advantages a. The rest of the parameters are: µ = 0 .02 , K = 4

and σ = 0 .10

first entry guarantees, the more (less) sensitive the leader’s (follower’s) value
functions become to the underlying market profitability.

Finally, and in accordance with standard option pricing results, an increase
in the risk-free interest rate, r , postpones option exercise by increasing both x̄L

and x̄F. However, as Figure 11.8 demonstrates, the effect on the trigger values
is not symmetric. A higher interest rate brings the ratio of entry times down
and this negative dependence is steeper the higher the first-mover advantages.

11.6 CONCLUSION

Real-world competitive investment situations do not allow firms to choose exer-
cise strategies in isolation. Optimal investment policies have to take into account
the threat of pre-emption and the advantages that may accrue to the first entrant
in the new market. These calculations cannot be conducted separately, but must
be done as part of a strategic equilibrium.

In this chapter we provide a model of strategic entry option exercise where
the threat of pre-emption is severe. Namely, unlike previous research, we allow
the degree of pre-emption motives to be a parameter in the model and account
for the case where the advantages that accrue to the first entrant in the market
can be sustained permanently.

We demonstrate that equilibrium entry into a new market can be sequen-
tial or simultaneous, depending on initial market conditions and the magnitude
of first-mover’s advantages. Firm values are shown to depend differently on
such advantages, and the dependence is of different direction for leading and
following firms. Moreover, first-mover advantages are shown to have a dual
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effect on the first entrant’s decision, making its value more sensitive to changes
in such advantages. Finally, the analysis of equilibrium exercise strategies
implies that more volatile industries should experience more separated firm
entries over time the more substantial the first-mover privileges.

11.7 APPENDIX

11.7.1 Expectations calculations

Here we calculate the expectations stated in Section 11.3.2 for the value of the
leading firm in the market. Let:

f (x) = E[e−rTF] and g(x) = E

[∫ TF

0
e−rτ x dτ

]

where x follows the geometric Brownian motion in equation (11.1) and TF

is defined in Proposition 11.1. A more general approach to the calculation of
such expectations can be found in Harrison (1985, p. 42) or Karlin and Taylor
(1975, p. 362).

For t < TF, over any infinitesimal interval of time dt , we can write the first
expectation as a dynamic-programming recursive expression:

f (x) = e−r dtE[f (x + dx)]

Expanding the right-hand side using Itô’s lemma, this becomes:

f (x) = [1 − r dt + o(dt)][f (x) + µxf ′(x)dt + 1
2σ 2x2f ′′(x)dt + o(dt)]

where o(dt) collectively accounts for all terms which are asymptotically of
order less than dt . Simplifying the above and letting dt → 0 yields the differ-
ential equation:

1
2σ 2x2f ′′(x) + µxf ′(x) − rf (x) = 0

This has a general solution:

f (x) = C1x
λ + C2x

κ

where λ is as in equation (11.7) and κ is the negative root of the fundamental
quadratic in equation (11.6).

The constants C1 and C2 are determined by boundary conditions:

lim
x→x̄F−

f (x) = 1

lim
x→0+

f (x) = 0
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i.e. as x approaches x̄F, TF is likely to be small and e−rTF will tend to 1.
Moreover, as x tends to zero, TF will be large and e−rTF close to zero. These
boundary conditions imply C2 = 0 and C1x̄

λ
F = 1, so:

f (x) =
(

x

x̄F

)λ

Similarly, g(x) satisfies the following differential equation:

1
2σ 2x2g′′(x) + µxg′(x) − rg(x) + x = 0

with general solution:

g(x) = D1x
λ + D2x

κ + x

r − µ

and boundary conditions:

lim
x→x̄F−

g(x) = 0

lim
x→0+

g(x) = 0

Therefore, D2 = 0 and D1 = −x̄1−λ
F /(r − µ). Substituting the expectations

in equation (11.14) and rearranging yields equation (11.15) in the text.

11.7.2 Proof of Proposition 11.2

Define the function Q(x) = V L(x) − V F(x) where V L(x) and V F(x) are defined
in equations (11.15) and (11.12), respectively.

To establish existence of a root for Q(x) in (0, x̄F), first establish that:

Q(0) = −K < 0

Q(x̄F) = λ(2a − 1)K

(1 − a)(λ − 1)
> 0

Since Q(x) is continuous in (0, x̄F), it has at least one root in this interval.
To prove uniqueness, one merely needs to demonstrate strict concavity of

Q(x) over this interval. Differentiating Q(x) twice yields:

Q′′(x) = −λ(λ + 1)K

x2

(
(1 − a)(λ − 1)x

λK(r − µ)

)λ

< 0

Thus, the root is unique.
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11.7.3 The effect of follower entry on the market profitability

In our basic setting, entry by the follower is assumed to have repercussions
only on the sharing of the market between rivals and not on the size or the
profitability of the market as a whole. In this section we briefly outline two
possible ways of allowing follower entry to influence market profitability.

There is nothing in the exposition that restricts the drift µ and/or the volatility
σ of the market profitability from being deterministic functions instead of
constants. Thus, one could write equation (11.1) as:

dxt = µ(t)xt dt + σ(t)xt dWt

where µ(t) and σ(t) are deterministic functions of time and replicate the whole
analysis. This formulation can be very useful in cases where life cycle issues are
important for a market. For example, allowing µ(t) to be a downward sloping
curve can accommodate cases where there is a downward shift in profitability
(decreasing rents) as the market becomes more mature.

Another possibility is to allow for a ‘structural break’ in market profitability
after entry by the follower. Assume that equation (11.1) is replaced by:

dxt = µjxt dt + σjxt dWt

for j = 1, 2 (the number of active firms in the market). Intuition would suggest
that µ1 ≥ µ2, i.e. operating a monopoly is more profitable than a duopoly. The
relative magnitudes of the volatility parameters are not so clear.

This formulation allows us to accommodate cases where entry by a rival
(follower) makes market profitability returns lower (even negative) for both
firms and more (or less) volatile. Allowing this, equations (11.7), (11.12) and
(11.13) should be replaced by:

λ = 1

2
− µ1

σ 2
1

+
√(

µ1

σ 2
1

− 1

2

)2

+ 2r

σ 2
1

> 1

V F(x) =





[
1 − a

r − µ2
x̄F − K

](
x

x̄F

)λ

if x < x̄F

1 − a

r − µ2
x − K if x ≥ x̄F

x̄F = λ

λ − 1
(r − µ2)K

1

1 − a

respectively, and Figures 11.1–11.5 will have the same shape but with lower
values. Interestingly, optimal exercise strategies will only depend on σ1 and not
on the post-entry profitability volatility σ2.
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NOTES

1. Notable exceptions would be warrants and convertible securities where exercising
requires firms to issue new shares of common stock, thus influencing the value of
the underlying and of remaining unexercised contracts. On the strategic exercise
of warrants and convertible securities see Emanuel (1983), Constantinides (1984)
and Spatt and Sterbenz (1988).

2. The restriction a > 1
2 is necessary for first-mover’s advantages. Mathematically,

there is nothing in the exposition that restricts a from being any real number.
3. For further explanation see Fudenberg and Tirole (1985, 1986, 1991).
4. It is implicitly assumed that entry by the follower affects only the way the market

is shared by rivals and not the market profitability or size per se (i.e. the process
of xt ). This seemingly restrictive assumption can be easily relaxed to allow for
different profitability patterns in monopolistic and duopolistic competitive eras.
See the appendix (Section 11.7.3) for a discussion along these lines.

5. See Merton (1973) and Dumas (1991) for a clear presentation of the smooth-
pasting and high-contact conditions or Dixit and Pindyck (1994, chapter 4,
appendix C) for a less technical explanation.

6. In a complete information setting, all parameters are common knowledge to all
agents/rivals, thus value functions, which are forward looking, anticipate future
optimal (re)actions.

7. The concept of one firm acting ‘instantaneously’ after its rival is not problem-free
in continuous-time stochastic games. However, Simon and Stinchcombe (1989)
provide a framework that resolves difficulties such as this, by specifying pure
strategies in continuous time that conform as closely as possible to their discrete-
time analog.
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Chapter 12

Leader/follower real value functions
if the market share follows

a birth/death process

DEAN A. PAXSON AND HELENA PINTO

SUMMARY

For a duopoly environment, we model the leader and follower real
value functions assuming that the leader’s ‘market share’ evolves
according to an immigration (birth) and death process. We derive
analytical solutions for the follower and leader options to invest,
and numerical solutions for the leader’s optimal investment timing.
Then we calculate the partial derivatives of the leader and follower
value functions to market share, birth/death parameters and market
profitability. This model is possibly more realistic than that proposed
by some other authors studying the advantages of being first (and
also being a follower).

We show that over certain ranges of parameter values, the leader
and follower real options to wait to invest, and not to wait to
invest, are sometimes surprising, but possibly on reflection plau-
sible. The follower’s value function is usually less sensitive than (and
of opposite sign to) the leader’s value function to market share or
the rate of customer arrivals/departures until the expected revenue
exceeds the follower’s trigger investment level. However, the sensi-
tivity is dependent on the relative parameters, particularly the revenue
and trigger. The follower’s trigger increases with market share, the
immigration/death ratio and revenue volatility. The leader’s value func-
tion ‘deltas’ are highly sensitive and unstable as revenues approach
the follower’s trigger, confirming the adage, if you’re ahead, ‘watch
the competition’.
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12.1 INTRODUCTION

There is a developing real option literature that considers firms not to be in a
monopoly setting and focuses on the option of not waiting. Fearing the move of
competitors, many times firms act in order to achieve the advantages of being
first, balanced against the advantages of the option to wait. In a duopoly setting
where one of the firms is the first to enter, from now on defined as the leader,
and the other one the follower, there are some advantages and disadvantages
for assuming either of the roles. The leader normally has advantages in distri-
bution, product line breadth, product line and especially market share (Tellis
and Golder, 1996). The follower can have lower adoption costs and a reduc-
tion in uncertainty (Hope, 2000), through ‘learning from the leader’s mistakes’.
An adequate model to determine investment/entry timing should consider the
strategic policies of each firm and consequently include the advantages and
disadvantages of each role.

The advantages of leaders establishing a dominant market share have been
documented using the PIMS1 database. More than 70 % of current market
leaders are market pioneers. Tellis and Golder (1996) argue that although being
first does not necessarily induce an advantage, it certainly creates an opportu-
nity. When the pioneer is alone in the market, the leader enjoys the revenues of
a monopolist; when other firms enter, the pioneer can continue to be the leader
or not and that will depend on his ability to satisfy customers and innovate.

Spatt and Sterbenz (1985) consider learning and pre-emption. Smets (1991)
considers a strategic setting where firms can act under the fear of pre-emption.
Grenadier (1996) applies the model to the real-estate market. The effect
of incomplete information is analyzed by Lambrecht and Perraudin (1997);
strategic competition in Kulatilaka and Perotti (1998); the advantage of being
first with the network advantage of adopting with others is in Mason
and Weeds (2000); R&D competition in Weeds (2000); and Tsekrekos (2002)
studies the sensitivity of the leader and follower value function to market share,
assumed to be constant after the follower enters.

We relax the constant market share assumption to reflect a possibly more
realistic environment, where the market and the market share reflect new
customers arriving (birth or immigration process) and old customers departing
(death process). Section 12.2 develops this model. Section 12.3 derives the
partial derivatives of the follower and leader value functions to changes
in market share, birth/death parameters, volatility and market profitability.
Section 12.4 concludes.

12.2 MARKET SHARE AND BIRTH/DEATH PROCESSES MODEL

In common with Smets (1991), Weeds (2000) and Tsekrekos (2002), we develop
a model where two competing firms have the option to enter the market; the
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leader will invest earlier and will benefit from securing a higher market share
than its competitors. Operating the market will yield a net revenue flow xt that
evolves according to a geometric Brownian motion given by:

dxt = µxt dt + σxt dwt (12.1)

where µ is the drift parameter, σ is the standard deviation and dwt is the
increment of a standard Wiener process. We assume lognormality of revenues
and do not consider operating costs explicitly, so there is no option to abandon.
The underlying game is a Stackelberg leader–follower: the leader receives a
monopolistic revenue flow xt dt when alone in the market. When the follower
enters, that revenue will be shared with the leader having a higher market
share, a. The market share is presented in a deterministic setting; the leader
will have a revenue flow of axt and the follower of (1 − a)xt , which might be
adjusted by a multiplier.

12.2.1 The follower’s value function

Let V F
0 (x) represent the value of the follower in the region where it is not

yet optimal to invest. This option gives the follower a capital gain or loss
according to the evolution of the market. In the continuation region the value
of the follower is given by:

rV F
0 (x) dt = E[dV F

0 (x)] (12.2)

where r is the riskfree interest rate.
Using Itô’s lemma, we obtain the differential equation:

1
2σ

2x2V ′′F
0(x)+ µxV ′F

0(x)− rV F
0 (x) = 0 (12.3)

This has the general solution:

V F
0 (x) = Axβ1 + Bxβ2 (12.4)

where A and B are constants, and β1 and β2 are:

β1 = 1

2
− µ

σ 2
+
√(

µ

σ 2
− 1

2

)2

+ 2r

σ 2
> 1 (12.5)

β2 = 1

2
− µ

σ 2
−
√(

µ

σ 2
− 1

2

)2

+ 2r

σ 2
< 0 (12.6)
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We assume that if our state variable reaches zero it will stay there forever,
meaning that zero is an absorbing barrier, and so we obtain the following
boundary condition:

V F
0 (0) = 0 (12.7)

Since as the state variable goes to zero the function has to decrease, B in
equation (12.4) has to be equal to zero, so our solution becomes:

V F
0 (x) = Axβ1 (12.8)

Let V F
1 (x) denote the value of the follower in the stopping region, the region

where it is optimal to invest. In this region the follower invests a fixed cost K
in order to receive perpetually a proportion of the net market revenue that will
be determined by the market share.

Consider now that the initial market share a evolves according to a random
process, more specifically an immigration–death model where new clients arrive
according to a Poisson process and once there, can leave at any time. The
lifetime of each individual as a client has an exponential distribution. This model
gives a realistic representation of many practical situations, like molecules of
gas in a given space. New particles can enter at any time and the Poisson process
represents their arrival pattern. Once inside the molecules can leave at any time,
so the exponential distribution also provides a good model for the time spent
inside the space.2 This process can also be used to model the number of people
in a shop, or use of a telephone system, adoption of 3G mobile facility, or net
new internet banking customers. In the UK, football pay-TV viewing developed
first in one media (B-SkyB) and some customers were expected to migrate to
another (ITV Digital). (In this case, the follower’s expectations on customer
migration rates from the leader turned out to be irrationally exuberant, as ITV
Digital failed.)

The immigration–death process has an equilibrium distribution (the distri-
bution of the population size at time t approaches a limiting distribution as t
increases). This equilibrium distribution gives the expected proportion of time
spent in each state in the long run. Consider an immigration–death model where
the individuals join the population according to a Poisson process at rate λ and
the lifetime distribution of each individual is exponentially distributed, M(ν).
Let X(t) equal the population size at time t , X(t) is asymptotically Poisson
distributed with parameter ρ = λ/ν (see the appendix, Section 12.5) where birth
(or immigration) has the parameter λ and death ν:

P(X(t) = n)→ ρn

n!
e−ρ (12.9)
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Now assume that the ‘market share’ is not constant, so some new clients will
arrive and others will leave, and that the immigration–death model is appro-
priate for this phenomenon. We define ‘market share’ broadly as the multiplier
for a standard revenue x. The multiplier is itself adjusted over time by a param-
eter ρ, which is immigration (λ) divided by death (ν) (new customers adjusted
for old and new customers leaving). In the stopping region, the follower receives
perpetually the expected value of the active project with no option value, so the
expected value will be given by:

V F
1 (xt )dt =

∫ ∞

0
(1 − aρ)x e−γ t dt (12.10)

where γ = r − µ+ ρ.
Solving equation (12.10) we obtain the function for the follower in the stop-

ping region:

V F
1 (x) = x(1 − aρ)

γ
(12.11)

As usual, the optimal investment rule is found by solving for the boundary
between the continuation and the stopping regions. The boundary is the trigger
point xF. If the value of the state variable is smaller than the trigger, the optimal
decision for the investor is not to invest, i.e. to continue in the continuation
region; if it exceeds the trigger, then the follower should invest. At the boundary
two conditions must be satisfied: the value-matching condition requires that
when the state variable reaches the trigger the investor will invest so that:

V F
0 (xF) = V F

1 (xF)−K (12.12)

and the smooth-pasting condition requires that the derivatives of the functions
match at the boundary:

V ′F
0(xF) = V ′F

1(xF) (12.13)

Conditions (12.12) and (12.13) imply:

xF = Kβ1γ

(1 − aρ)(β1 − 1)
(12.14)

and

A =
K

(
Kβ1γ

(1 − aρ)(β1 − 1)

)−β1

β1 − 1
(12.15)
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Putting equations (12.8), (12.11), (12.14) and (12.15) together we obtain the
value function of the follower:

VF(x) =




K

β1 − 1

(
x

xF

)β1

if x < xF

x(1 − aρ)
γ

−K if x ≥ xF

(12.16)

Figure 12.1 shows the sensitivity of the follower’s option to enter to volatility,
and as expected, that the option increases with volatility. Figure 12.2 shows the
sensitivity of the follower’s option to the initial market share, and that as the
market share of the follower diminishes so does the value of the option to
enter the market. Note that the sensitivity rate declines as the leader’s market
share increases. Figure 12.3 shows the sensitivity of the follower’s option to the
parameter ρ. Since ρ explains the evolution of the market share of the leader,
increases in ρ imply an increase in the leader’s future market share. Thus as
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Figure 12.3 Sensitivity of the follower’s option to wait to the immigration/death parameter

a ratio greater than one increases, due to an increase in net immigration, the
option value of the follower will decrease, because the probability of obtaining
those clients is decreasing.

According to our model the optimal strategy for the follower is stated in
Proposition 12.1.

Proposition 12.1 In a duopoly setting where the market share evolves accor-
ding to an immigration–death model, the optimal entry time for the follower
conditional on a previous entrance of the leader is given by:

TF = inf

{
t ≥ TL : xt ≥ K

(β1 − 1)

(
x

xF

)β1
}

(12.17)

where TL is the trigger time for the leader.

12.2.2 The leader’s value function

Until the follower enters the market, the leader’s decision either to enter the
market or to wait may seem identical to the single setting framework. So the
basic idea, following Dixit and Pindyck (1994), would be that there exists an
optimal time to enter that will maximize the firm’s value. Until that moment the
firm should wait to invest and its value is explained by the option to wait. When
that moment is reached, the firm should invest and its value function is given
by the present value of the revenues in perpetuity. The possible problem with
the option to wait is that it excludes the case where companies do not have the
possibility of waiting, and also that not waiting can itself be an important option.

First-mover advantage should make pre-emption attractive, and pre-emption
should lead to early adoption by the leader. Examples where the value of being
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the first can become very important are: the location of a building because this
can determine how profitable it will be and once it is built you cannot change
its location; and the decision of companies to have a website. A first-mover
company might buy cheaper domain names and obtain lower staff costs and
better access to resources. However, the value of the clients obtained by being
first is offset by not learning by others’ mistakes.

Often, if a company does not make an investment immediately, it loses either
the investment opportunity, or the chance of success is diminished. Our model
is not concerned with what happens to the leader prior to investment. We are
assuming that the fear of pre-emption leads to a possible early entrance into the
market, or in other words that the option to wait is nullified by the fear of not
achieving the advantage of being first.

Once entering the market, the leader has no further action to take. It will
enjoy monopolistic revenues until the moment that the follower enters the
market and will share them with the follower afterwards. The value function
of the leader, before the follower enters the market, can be explained by the
following equation:

V L(x) = E
[∫ TF

0
e−rτ x dτ

]
+ Et [e−rTF]

aρxF

γ
−K (12.18)

The first function of equation (12.18) represents the monopolistic revenues
received by the leader until the follower enters the market.

Let the expectations terms of equation (12.18) be respectively f (x) =
E[e−rTF] and g(x) = E[ ∫ TF

0 e−rτ x dτ
]
, where x follows a geometric Brownian

motion as described in equation (12.1). Over the time interval dt we can write
the first expectation as:

f (x) = e−r dtE[f (x + dx)] (12.19)

Using Itô’s lemma we obtain the following partial differential equation:

1
2σ

2x2f ′′(x)+ µxf ′(x)− rf (x) = 0 (12.20)

with a general solution:

f (x) = Cxβ1 +Dxβ2 (12.21)

where β1 and β2 are as defined previously in equations (12.5) and (12.6), respec-
tively, and f (x) represents the expectation of the discounted term at the risk-free
rate, during the time TF. So, we can submit equation (12.21) to two boundaries:
as our state variable x tends to the trigger price of the follower xF, the optimal
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time to invest TF will be very small; obviously the moment that it reaches
zero our function f (x) will be one so limx→xF f (x) = 1. The other boundary is
defined as x goes to zero. If the revenues go to zero, the follower will not enter
in the short run, implying that its optimal time to enter will be very large, so
that f (x) will tend to zero, limx→0 f (x) = 0. This last boundary implies that D
in equation (12.21) has to equal zero, and the first one implies that C = 1/xβ1

F .
So, our equation (12.21) becomes:

f (x) =
(
x

xF

)β1

(12.22)

In the same way, g(x) satisfies the following partial differential equation:

1
2σ

2x2g′′(x)+ µxg′(x)− rg(x)+ x = 0 (12.23)

with a general solution:

g(x) = Exβ1 + Fxβ2 + x

r − µ (12.24)

and subject to two boundary conditions: as x goes to zero, g(x) will tend to
zero implying that F in equation (12.24) has to be zero; on the other hand
as x tends to xF, the monopoly revenues will also tend to zero because the
follower will enter the market. This last boundary condition implies that: E =
−x(1−β1)

F /(r − µ). So equation (12.24) becomes:

g(x) = − x
1−β1
F

r − µ x
β1 (12.25)

Substituting f (x) and g(x) back into equation (12.18) we obtain:

V L(x) =




x

r − µ + Exβ1 + aρxF

γ

(
x

xF

)β1

−K if x < xF

aρx

γ
if x ≥ xF

(12.26)

where Exβ1 is an option-like term that captures the negative effect that the entry
of the follower will have on the leader’s value function.

The value functions of the leader and of the follower are shown in
Figure 12.4. The value function of the leader is almost always higher than
that of the follower. It is possible, as can be seen in the figure, for the follower
to have a higher value function when the revenues are very low. In this case the
follower has not yet entered the market while the leader has already invested.
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Figure 12.4 The follower’s and leader’s value functions

We can also observe that when the follower enters the two functions almost meet
tangentially.3 Dixit and Pindyck (1994) describe this as a smooth-pasting-like
property of present values.

The value function of the leader is more complicated than that of the follower.
It is concave until the trigger time of the follower is reached and at that precise
moment its slope is discontinuous. This happens because the follower’s decision
changes discontinuously at xF (Dixit and Pindyck, 1994). The two curves meet
at a point that we will designate as xL; this point should be the trigger point
of the leader since until that point its value function is negative, following the
equalization principle of Fudenberg and Tirole (1985).4

Although we cannot obtain an explicit general expression for xL, we can
prove that this expression has a root strictly below xF.5 If we evaluate V (x) at
x = 0 using our value functions for the leader and the follower, we obtain:

V (0) = −K < 0

and evaluating V (x) at xF:

V (xF) = (2aρ − 1)Kβ1

(1 − aρ)(β1 − 1)
> 0

Since V (x) is continuous on the interval (0, xF), it has at least one root in
that interval. Uniqueness of the root xF can be proved while demonstrating strict
concavity of V (x) over the same interval. The second derivative of V (x) is:

V ′′(x) = −
β(β − 1)

(
K

β − 1
+ xF

r − µ − aρxF

γ

)(
x

xF

)

x2
F

< 0
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So, the root is unique, with V (x) < 0 for V (x) ∈ (0, xL) and V (x) > 0 for
V (x) ∈ (xL, xF). Thus we have shown that there exists a single point belonging
to the interval (0, xF) at which the leader and the follower have the same value.
At any point below that interval the follower has a higher value, meaning
that the only motive that can explain a rational leader entering the market is
fear of pre-emption. After passing the trigger point of the leader, the leading
firm benefits from the advantage of being the leader, in this special case from a
higher market share that evolves according to an immigration–death process. In
Figure 12.4 we can see that until the leader trigger point is achieved6 the leader
incurs losses while the follower has a positive value function. The stopping
time for the leader is given in the following proposition.

Proposition 2.2 The optimal leader strategy is to invest as soon as the
revenues reach xL. In other words the optimal time for the leader to invest is:

TL = inf{t ≥ 0 : x ∈ [xL, xF]} (12.27)

12.3 VALUE FUNCTION PARTIAL DERIVATIVES

In studying the behavior of our value functions, we derive in this section some
partial derivatives, namely we study the sensitivity of our value functions to
changes in the market share, in the immigration/death ratio, the revenues and
also the sensitivity of the trigger function of the follower to volatility.

The partial derivatives of the value functions to market share (‘MS #’) are:

∂VF

∂a
=




−
ρx

(
x

xF

)β1−1

γ
< 0 if x < xF

−ρx
γ

< 0 if x ≥ xF

(12.28)

∂VL

∂a
=




β1Kρ[β1(r − µ)+ ρ(−1 + β1(1 − ar + aµ))]
(β1 − 1)(aρ − 1)2(r − µ)

(
x

xF

)β1

> 0

if x < xF

ρx

γ
> 0 if x ≥ xF

(12.29)

Figures 12.5 and 12.6 show that the MS # of the follower and leader have
contrasting reactions to different revenue levels. Note that in our model we
are assuming that the initial market share is shared by two parties. Since a
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Figure 12.6 Sensitivity of the leader’s MS # to revenues

represents the leader’s initial share, the sign of the partial derivatives is consis-
tent with the leader’s value increasing with a, prior to the follower’s entry.
Consequently, an increase in the initial market share of the leader will imply a
decrease in the market share of the follower, so the value function of the follower
has to decrease with the market share of the leader. The slope of Figure 12.2
is negative, and the curve concave; the slope of Figure 12.5 is negative, and
convex (at least before the trigger). Another interesting, though expected conclu-
sion, is that since an increase in the market share implies an increase in the
value function of the leader, and a decrease in that of the follower, and since
market share appears in the model as an advantage of the leader, pre-emption
is obvious and seems to justify what is described in the literature as the fear
of pre-emption.
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The market share as a pre-emption advantage is further pronounced prior to
the entrance of the follower. After the follower enters, the leader continues to
benefit from increases in its market share, and the follower continues to have
a decrease in its value function, but the magnitude of changes in the market
share is exactly the same for both, obviously of different sign.7 But prior to the
follower’s entrance the difference between the two functions is not only in sign
but also in magnitude. Although the market share as a pre-emptive factor will
always constitute an advantage over the follower, the higher advantage relative
to the follower will occur during the time interval that the follower is inactive.
The optimal time for the follower to invest increases with a and consequently
the leader will enjoy monopolistic revenues for longer.8

The partial derivatives of the value functions to the immigration/death ratio
(‘Ratio #’) are:

∂VF

∂ρ
=




β1K

(
x

xF

)1−β1
(
− x

xFγ
− a(β1 − 1)x

βKγ

)

β1 − 1
< 0 if x < xF

− (1 − aρ)x
γ 2

− ax

γ
< 0 if x ≥ xF

(12.30)

∂VL

∂ρ
=




(
x

xF

)β1

{β1K[ρ[(−1 − β1(−1 + a2(r − µ)2)]
+ (r − µ)(−1 + β1 + aβ1r − aβ1µ)]}

(β1 − 1)(aρ − 1)2(r − µ)γ > 0 if x < xF

ax

γ
− aρx

γ 2
> 0 if x ≥ xF

(12.31)
Figures 12.7 and 12.8 show that the Ratio #’s are similar to the MS #’s,

after the follower’s trigger. An increase in the ratio, that is the number of new
clients divided by the ones that leave, signifies an increase in the evolving
market share of the leader and consequently leads to the same conclusions
as for parameter a. When x < xF, the sensitivity of the follower’s and the
leader’s value functions to changes in ρ will depend on the parameter values,
particularly (x/xF) times some variables divided by ρ for the follower, and the
same ratio times some variables multiplied and divided by ρ for the leader. For
illustrative parameters herein, K = 5, r = 0.09, µ = 0.02, σ = 0.10, a = 0.55,
over a range of ρ = 0.97 to 1.07, the follower’s value function is less sensitive
than the leader’s value function to changes in ρ when x is slightly less than xF

and more sensitive to changes in ρ when x is slightly greater than xF but always
of opposite sign.
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The partial derivatives of the value functions to the revenues (delta) are:

∂VF

∂x
=





(1 − aρ)
(
x

xF

)β1−1

γ
> 0 if x < xF

1 − aρ
γ

> 0 if x ≥ xF

(12.32)

∂VL

∂x
=





1

r − µ −
β1

(
x

xF

)β1−1

r − µ +
aβ1ρ

(
x

xF

)β1−1

γ
>< 0 if x < xF

aρ

γ
> 0 if x ≥ xF

(12.33)
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The value function of the follower behaves as expected; delta is always
positive. As the revenues increase, so does the follower’s value function. The
value function of the leader decreases as the state variable increases, as shown
in Figure 12.9, while x < xF. There is a trade-off between monopoly revenue
enjoyed by the leader and the likelihood that the monopoly will end with the
follower’s entry.

Thus the leader’s value function MS #, Ratio # and delta are highly sensitive
(and change signs) to expected revenues slightly below the follower’s trigger
revenues. In a broad sense, ‘delta’ hedging of the leader’s value function would
be very complex, and probably confounded by transaction costs.

Finally, volatility is one of the most important parameters in option pricing.
From the literature, we expect an increase in real option value with volatility.
Since the value functions and trigger points are complex functions of volatility
we computed only the ‘vega’ of the trigger function of the follower, which is:

∂xF

∂σ
=

4Kγ


µσ 2


1 +

√
1 + 4µ2

σ 4
+ 8r

σ 2
− 4µ

σ 2


− 2µ2 − 2rσ 2




(aρ − 1)σ


2µ+ σ 2 − 2σ 2

√(
µ

σ 2
− 1

2

)2

+ 2r

σ 2




2

×
√(

µ

σ 2
− 1

2

)2

+ 2r

σ 2

> 0

(12.34)
The vega behaves as expected, that is increases in volatility lead to increases
in the trigger value function of the follower, because the option value of
waiting until some of the uncertainty will be resolved increases. This result
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is confirmed in Figures 12.1 and 12.10. Figure 12.10 shows that the follower’s
trigger increases (almost) linearly with volatility.

Figure 12.11 shows the behavior of the trigger function of the follower
divided by that of the leader as volatility and the immigration–death param-
eters increase. Volatility increases induce an increase of higher magnitude in
the trigger function of the follower compared to the leader. This result leads
to the conclusion that the follower’s decision to invest is more affected by
volatility than that of the leader, probably because the follower is the one being
pre-empted. Notice that as the advantage of being the first increases, so does the
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ratio of the follower/leader triggers. When the advantage of being first is very
high, the follower will desire even more that the uncertainty is resolved before
investing, meaning that the follower will attribute higher value to the option
to wait. In contrast, although there is a higher value for the leader’s option to
wait while facing higher volatility, first-mover advantage gives a lower value
relative to the follower.

12.4 CONCLUSION

For a duopoly environment, we model the leader and follower value functions
assuming that the leader’s ‘market share’ evolves according to an immigration
(birth) and death process. We define ‘market share’ broadly as the multiplier
for a standard revenue x. The multiplier is itself adjusted over time by a param-
eter ρ, which is immigration (λ) divided by death (ν) (new customers adjusted
for old and new customers leaving). We derive analytical solutions for the
options to invest, and numerical solutions for the leader’s optimal investment
trigger. Then we calculate the partial derivatives of the leader and follower
value functions to market share, birth/death parameters and market profitability.
This model is possibly more realistic than that proposed by some other authors
studying the advantages of being first (and also being a follower).

We show that over certain ranges of the parameter values, the leader and
follower real options to wait to invest, and not to wait to invest, are some-
times surprising and not immediately intuitive. The follower’s value function
is less sensitive than the leader’s value function to market share or the rate of
customer arrivals/departures, until the expected revenue exceeds the follower’s
trigger investment level. The follower’s trigger increases with market share, the
immigration/death ratio and revenue volatility.

The leader’s value function ‘deltas’ are highly sensitive and unstable as
revenues approach the follower’s trigger, confirming the adage, if you’re ahead,
‘watch the competition’.

12.5 APPENDIX: THE IMMIGRATION–DEATH MODEL

Immigration: individuals join the population according to a Poisson process
at rate λ.
Death: the lifetime distribution of each individual is exponential, M(ν).

The overall birth and death rates of this process are:

βx = λ, νx = νx
The Kolmogorov forward equation is:

d

dt
px(t) = βx−1px−1(t)+ νx+1px+1(t)− (βx + νx)px(t) (A12.1)
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So the differential-difference equations for the immigration–death model are:

d

dt
px(t) = λpx−1(t)+ ν(x + 1)px+1(t)− (λ+ νx)px(t) x = 1, 2, . . .

(A12.2)

d

dt
px(t) = νp1(t)− λp0(t) x = 0 (A12.3)

12.5.1 The equilibrium distribution

The equilibrium distribution, if it exists, is found by putting dpx(t)/dt = 0 in
the forward equations, and solving:

For x = 0, νp1 − λp0 = 0, so p1 = λ

ν
p0

For x = 1, λp0 + 2νp2 − (λ+ ν)p1 = 0, so p2 = λ

2ν
p1, p1 = λ2

2ν2
p0

For x = 2, λp1 + 3νp3 − (λ+ 2ν)p2 = 0, so p3 = 1

3!

(
λ

ν

)3

p0

For general x:

px = 1

x!

(
λ

ν

)x
p0

For a proper probability distribution,
∞∑
x=0

px = 1:

∞∑
x=0

px = p0

∞∑
x=0

1

x!

(
λ

ν

)x
= p0 eλ/ν, p0 = e−λ/ν

The equilibrium is:

px =
e−λ/ν

(
λ

ν

)x

x!
, x = 0, 1, . . .

This is a Poisson distribution with parameter ρ = λ/ν.
Assuming that the conditional probability of the market share having a certain

value in a short interval of length dt is ρ dt , and the density function of the
time that the company takes to achieve a certain market share a is given by
ρ e−ρt , then equation (12.9) follows.
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NOTES

1. Profit Impact of Market Strategies.
2. See Karlin and Taylor (1975, chapter 4).
3. The leader always has a higher value function of x ≥ xL because we are assuming

a first-mover advantage.
4. At the leader’s investment point the expected payoff of the two firms must be

equal. If this were not the case, one firm would have an incentive to deviate and
the proposed outcome would not be an equilibrium.

5. This implies that the trigger point exists and is unique.
6. The trigger point for the leader for r = 0.09, µ = 0.02, K = 5, σ = 0.1, a = 0.55

and ρ = 1.01 is 0.35 (calculated numerically).
7. Note that after the follower enters, the partial derivatives of the value functions

are exactly the same, except for the sign.
8. The relative higher advantage of the value function of the leader compared to the

follower prior to the entrance of the latter can also be seen in Figure 12.4.
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Chapter 13

R&D investment decision
and optimal subsidy

JYH-BANG JOU AND TAN LEE

SUMMARY

This chapter assumes that a firm facing technological uncertainty
must decide when to purchase R&D capital. R&D capital exhibits both
irreversibility and externality through the learning-by-doing effect. The
combination of irreversibility and uncertainty drives agents to be more
prudent, i.e. the maxim ‘better safe than sorry’ applies. This maxim
is more important if uncertainty is greater, technology progresses at
a lower pace, the externality is stronger, or a catastrophic event is
less likely to occur. A firm ignoring the externality will both invest
later and disinvest earlier than a social planner who internalizes the
externality. An equal rate of investment tax credits should be given to
both costlessly reversible investments and irreversible ones, and the
same rate of taxation should be imposed on disinvestment.

13.1 INTRODUCTION

Research and development (R&D) activities have three major characteristics.
First, R&D outlays are usually irreversible. Second, the future rewards from
R&D activities are usually uncertain. Finally, R&D activities may exhibit posi-
tive externalities. Previous literature fails to combine these characteristics. The
literature on the ‘endogenous growth’ theory (see Romer, 1986) emphasizes the
last one while abstracting from the first two. In contrast, real options litera-
ture (see Dixit and Pindyck, 1994; Schwartz and Moon, 2000) emphasizes the
first two while ignoring the last one. This chapter will introduce externalities
into real options literature so as to examine the issues regarding both R&D
investment decisions and the optimal R&D subsidy.
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We assume the industry considered has a fixed number of identical firms
and its demand function has constant elasticity. Each firm’s production is in a
Cobb–Douglas form with respect to its employed workers, its employed R&D
capital, the industry’s average amount of R&D capital, and a multiplicative
technology-shift factor. The last one, which evolves as a mix of a Poisson
process and a geometric Brownian motion, captures the uncertainty faced by all
firms in the industry. The combination of irreversibility and uncertainty induces
agents to be more prudent. Given that firms may either invest or disinvest
R&D capital when the payoff is uncertain, this implies that agents will both
invest later and disinvest earlier, compared to the case either when there is no
uncertainty or when there is complete reversibility.

Externalities due to investments may result in inefficient market solutions,
because a firm ignoring the externality will both invest later and disinvest earlier
than a social planner. Accordingly, there is room for governmental interven-
tion. This chapter will focus on both tax credits on investment and taxation on
disinvestment while abstracting from any other policy instrument. This chapter
will show that an equal rate of investment tax credits should be given to both
costlessly reversible investments and irreversible ones. In addition, this optimal
rate coincides with the optimal rate of taxation on disinvestment.

Before proceeding, it is important to place our analysis in the context of both
real options and optimal subsidy literature. This chapter abstracts from two
main aspects of R&D investment that have received attention in real options
literature:1 sequential nature and strategic interactions between firms. On the
one hand, Roberts and Weitzman (1981) suggest that the investment in R&D
is usually an ‘exploratory’ one that discloses information for the later-stage
investment such as marketing or commercialization. Several articles on real
options have incorporated this suggestion, see Bar-Ilan and Strange (1998),
Dixit and Pindyck (1994, chapter 10), Grenadier and Weiss (1997), Lambrecht
(2000), Pindyck (1993) and Schwartz and Moon (2000). In contrast, this chapter,
like Weeds (1999), assumes that R&D capital is input for producing final
goods. On the other hand, Beath et al. (1989), Fudenberg et al. (1983) and
Harris and Vickers (1985) have allowed firms to compete for R&D investment.
This has been incorporated into real options literature by Dixit and Pindyck
(1994, chapter 9), Lambrecht (2000) and Weeds (2000). In contrast, this chapter
assumes that competition between firms is of a Cournot–Nash type, thus
abstracting from the Stackelberg-type competition addressed by those articles.

Several articles examine the issue of optimal subsidy on capital while
assuming that capital exhibits costless reversibility, e.g. Romer (1986) and Judd
(1997). Romer considers that human capital rather than physical capital exhibits
externalities through the ‘learning-by-doing’ effect. He finds that the optimal
tax credit on human capital depends on the relative magnitude between the
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external and the internal effect of capital if the production technology is in a
Cobb–Douglas form with respect to an individual firm’s human capital input
and the industry’s aggregate stock of human capital.2 His results are similar
to ours. Judd considers imperfect rather than perfect competitive markets. He
shows that subsidies on capital should be higher if the gap between price and
marginal cost is higher. His analysis thus justifies the investment tax credit
policy commonly employed in the US which favors equipment over structures.
In contrast, this chapter abstracts from imperfect competitive markets and finds
that investment tax credits should be equal across industries.

Section 13.2 develops the model for optimal individual and then social profit
with respect to R&D investment. Section 13.3 derives the optimal individual
and social investments, along with the optimal tax and tax credits. Section 13.4
provides numerical examples, and Section 13.5 concludes.

13.2 THE MODEL

Dixit (1991) builds a model to examine the impact of price ceilings on irre-
versible investment decisions. This chapter introduces externalities into his
model while abstracting from price ceilings. The industry under consideration
is composed of N identical risk-neutral firms, indexed by 1 to N , which face a
demand function with a constant elasticity ε (≥0), i.e.

Q(t) = P(t)−ε (13.1)

where Q(t) is quantity and P(t) is price. The output of each i firm depends on
its employed labor force, denoted by li (t), its employed capital stock, denoted by
ki(t), the industry’s aggregate capital stock, denoted by Ka(t) (= ∑N

j=1 kj (t)),
and a technology-shift factor, denoted by Z(t). More precisely, the production
technology is given by:

qi(t) = li (t)
γ (Z(t)ki (t))

1−γ Ka(t)
λ (13.2)

Two sources of technology uncertainty are considered. First, following Schwartz
and Moon (2000) and Weeds (1999), a catastrophic event that suddenly drives
Z(t) to zero is assumed to follow a Poisson process with a hazard rate µ

(which is the probability per unit of time that drives Z(t) to zero). Second,
in the case where a catastrophic event does not happen, Z(t) evolves as a
geometric Brownian motion:

dZ(t) = ηZ(t)dt + σZ(t)d�(t) (13.3)

where the drift parameter η is the expected growth rate of Z(t) and the parameter
σ (>0) is the instantaneous volatility of the growth rate of Z(t), and d�(t) is an
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increment to a standard Wiener process, with E{d�(t)} = 0 and E{d�(t)}2 =
dt . For a high-technology environment such as DRAM production, Z(t) may
exhibit a higher expected growth rate. Accordingly, the expected unit production
cost tends to decline over time. A high-technology environment may also have
a higher volatility of Z(t), and therefore may have a wide variation of unit
production costs. Furthermore, the specification in equation (13.3) also indicates
that information about the evolution of each individual firm’s output that arrives
in time is independent of its decision to invest. This contrasts with that of
both Pindyck (1993) and Schwartz and Moon (2000), where uncertainty can be
reduced over time through learning.

The production function given by equation (13.2) suggests that R&D capital
exhibits externality because the output of firm i will be higher not only when the
firm itself installs more capital, but also when any other firm in the industry installs
more capital. This kind of externality may result from the ‘learning-by-doing’
effect, first addressed by Arrow (1962) and later widely employed by ‘endogenous
growth’ models (e.g. Romer, 1986; Lucas, 1988). In equation (13.2), the effect
of ki(t) on qi(t) is internal, and the term 1 − γ measures its size. In contrast, the
effect of Ka(t) on qi(t) is external with λ measuring its size.

Suppose that q(t) = (q1(t), . . . , qN(t)) and k(t) = (k1(t), . . . , kN(t)). Denote
by w the wage rate. From equation (13.2), firm i’s short-run variable cost,
wli(t), will then be given by:

Ci(q(t), k(t), Z(t)) = wqi(t)
g(Z(t)ki(t))

1−gKa(t)
−λg (13.4)

where g = 1/γ > 1. Differentiating equation (13.4) with respect to qi(t) yields
firm i’s short-run marginal cost as given by:

MCi(q(t), k(t), Z(t)) = wgqi(t)
g−1(Z(t)ki(t))

1−gKa(t)
−λg (13.5)

The operating flow profit of firm i, denoted by πi(q(t), k(t), Z(t)), is equal
to its revenue, P(t)qi(t), net of its operating cost, Ci(·) in equation (13.4),
thus yielding:

πi(q(t), k(t), Z(t)) = P(t)qi(t) − Ci(q(t), k(t), Z(t)) (13.6)

In (Cournot–Nash) short-run equilibrium, firm i will take the other firms’
production strategies as given while choosing an amount of output, denoted by
qi(t)

∗, to maximize its operating flow profit, πi(·) given by equation (13.6).
Consequently, qi(t)∗ is derived by setting the derivative of πi(·) with respect
to qi(t) equal to zero. This yields the equality of the marginal revenue, 1 −
qi(t)/(εQ(t)) multiplied by P(t) defined in equation (13.1), with the short-run
marginal cost, MCi(·) given by equation (13.5). This equality, together with
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the equilibrium condition qi(t) = qi(t)
∗ (j = 1, . . . , N) yields qi(t)

∗ and its
corresponding P(t)∗ as respectively given by:

qi(t)
∗ =

[
w

γ
Ne

(
1 − e

N

)−1
] −1
(e+g−1)

[(Z(t)ki (t))
1−γ Ka(t)

λ]
g

(e+g−1) (13.7)

and

P(t)∗ =
[
w

γ

(
1 − e

N

)−1
] e
(e+g−1)

N
−e(g−1)
(e+g−1) [(Z(t)ki (t))

1−γ Ka(t)
λ]

−eg

(e+g−1)

(13.8)
where e = 1/ε, which is required to be smaller than the number of firms N to
ensure that qi(t)∗ and P(t)∗ are both positive.

For ease of exposition, define ka(t)(= Ka(t)/N) as the average capital stock
of the industry. Evaluating πi(·) given by equation (13.6) at qi(t) = q∗

i (t) (j =
1, . . . , N) yields the optimized value of firm i’s private flow profit, denoted
by π1

i (k(t), Z(t)), as shown by equation (13.9) below. Define f = eg/(e +
g − 1), then:

π1
i (k(t), Z(t)) = d0Z(t)

(1−f )ki(t)
(1−f )ka(t)

(1−e)f λ

e (13.9)

where:

d0 =
[
1 −

(
1 − e

N

)
γ
]
N

−f

(
1− (1−e)λ

e

) (
1 − e

N

) (1−e)

(e+g−1)
(
w

γ

) (e−1)
(e+g−1)

In contrast, a social planner will internalize the external effect of R&D capital
before investing. The social planner understands that firm i’s capital stock,
ki(t), is equal to the industry’s average level of capital stock, ka(t), because
all firms are identical. Substituting this equality into the right-hand side of
equation (13.9) yields the optimized value of the social flow profit, denoted by
π2
i (ki(t), Z(t)), as given by:

π2
i (ki(t), Z(t)) = d0Z(t)

(1−f )ki(t)

(
1−f+ (1−e)f λ

e

)
(13.10)

13.3 OPTIMUM INVESTMENT TAX CREDITS

For ease of exposition, we ignore capital depreciation and assume that the
purchasing and installation price of capital, denoted by PK , is constant over
time. The resale price of capital is denoted by θPK , where 1 ≥ θ ≥ 0. When
θ = 1, then capital exhibits complete reversibility; otherwise, capital exhibits at
least partial irreversibility.3
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When R&D capital exhibits externality, as suggested by equation (13.2), then
market outcomes will be inefficient. The policy to correct this includes an invest-
ment tax credit, deposit refund schemes, and accelerated depreciation (Hassett
and Hubbard, 1996). In the following, we will focus on the first one. We assume
there is a simplified tax system in which a government collects lump-sum taxes
from firms, and then returns the proceeds to them in the form of an investment
tax credit once they invest. The rate of this credit is denoted by h so that the
purchase price of capital faced by firms is given by (1 − h)PK . Similarly, we
will assume that a government imposes a tax once firms disinvest and then
returns the proceeds from taxation to them in the form of lump-sum transfers.
The tax rate is denoted by u so that the net revenue firms receive from selling
per unit of capital is given by (1 − u)θPK .

13.3.1 Costlessly reversible investment

Suppose that investment is costlessly reversible, then ki(t) will be a choice vari-
able rather than a state variable. Let ρ denote a given discount rate. The R&D
capital stock chosen by firm i at each instant is found by equating the private
marginal return to capital with the user cost of capital (Jorgenson, 1963), i.e.

∂π1
i (k(t), Z(t))

∂ki(t)
= (1 − h)(ρ + µ)PK (13.11)

The left-hand side of equation (13.11) indicates that the marginal return to
firm i’s capital is equal to the derivative with respect to ki(t) of its opti-
mized private flow profit, π1

i (·) given by equation (13.9). The right-hand side of
equation (13.11) indicates that the user cost is equal to the rental cost of capital,
(1 − h)ρPK , plus capital loss, (1 − h)µPK ; the latter arises because the prob-
ability of a catastrophic event can be interpreted as a ‘tax rate’ µ on the value
of capital since on average a fraction of µ of this value will be lost per unit of
time (Brennan and Schwartz, 1985). In (Cournot–Nash) industry equilibrium,
each firm will choose an equal amount of capital stock, denoted by kf1(·, h, t),
where the first subscript ‘f’ denotes the case for a frictionless world, and the
second subscript ‘1’ denotes the case for a decentralized economy. Substituting
this equilibrium condition into equation (13.11), and rearranging yields:

kf1(·, h, t) =
[

d0(1 − e)f

e(1 − h)(ρ + µ)PK

(
1 − γ + λ

N

)
Z(t)(1−f )

] 1

f
(

1− (1−e)λ

e

)

(13.12)
To ensure that kf1(·, h, t) is decreasing with PK , here and in what follows, we
will assume that e > (1 − e)λ. This inequality is more likely to hold if either
demand elasticity is lower (ε is lower) or the external effect is less significant
(λ is lower).
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Similarly, the capital stock chosen by a social planner at each instant,
denoted by kf2(·, t) (the second subscript ‘2’ denotes the case for a centralized
economy), is found by equating the social marginal return to capital, the
derivative with respect to ki(t) of the optimized social flow profit, π2

i (·) given
by equation (13.10), with the user cost of capital, i.e.4

∂π2
i (ki(t), Z(t))

∂ki(t)
= (ρ + µ)PK (13.13)

Evaluating the left-hand side of equation (13.13) at ki(t) = kf2(·, t) and then
rearranging yields:

kf2(·, t) =
[
d0(1 − e)f (1 − γ + λ)

e(ρ + µ)PK

Z(t)(1−f )

] 1

f

(
1− (1−e)λ

e

)
(13.14)

The role of externality is to raise the optimal stock of R&D capital. In
other words, in the absence of any investment tax credits (h = 0), the social
marginal return to capital, the term on the left-hand side of equation (13.13), will
outweigh the private marginal return to capital, the term on the left-hand side
of equation (13.11). Consequently, the R&D capital stock chosen by a social
planner, kf2(·, t) given by equation (13.14), will be higher than that chosen
by an individual firm, kf1(·, 0, t) given by equation (13.12). An investment tax
credit can abolish this wedge, as suggested by Proposition 13.1.

Proposition 13.1 Suppose that h∗
f denotes the optimal rate of investment tax

credits for R&D capital which exhibits complete reversibility, then:

h∗
f = λ

(1 − γ + λ)

(
1 − 1

N

)
(13.15)

Proof: h∗
f is the h that satisfies the equality:

kf1(·, h, t) = kf2(·, t) (13.16)

Replacing kf1(·, h, t) given by equation (13.12) with kf2(·, t) given by equation
(13.14) yields h∗

f as shown in equation (13.15).

13.3.2 Irreversible investment

When R&D capital exhibits irreversibility, then in the long run, through
Cournot–Nash competition, firm i will maximize the expected discounted
private flow profit, net of the costs from purchasing capital or plus the proceeds
from selling capital, taking the strategies of the other firms as given (Baldursson,
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1998; Dixit, 1991; Lucas and Prescott, 1971). Consequently, the Bellman value
function of firm i, denoted by V1(k(t), Z(t)), is given by:

V1(·) = max{ki (τ)}Et

∫ ∞

t

e−ρ(τ−t)[π1
i (k(τ ), Z(τ))dτ − 1[dki (τ)>0]

× PK dki(τ ) + 1[dki (τ)<0]θPk dki(τ )] (13.17)

where π1
i (·) is given by equation (13.9), ρ is a given discount rate, k(τ) =

(k1(τ ), . . . , kN(τ)), 1[·] is an indicator function which is equal to one if
the condition within [·] is satisfied, and zero otherwise, and Et {·} denotes
conditional expectation taken at time t . The maximization problem faced
by firm i amounts to choosing the optimal path for ki(t). There are N +
1 state variables in this maximization problem, k(t) and Z(t); k−i (t) =
(k1(t), . . . , ki−1(t), ki+1(t), . . . , kN(t)) and Z(t) are exogenously given, while
ki(t) is subject to control. However, all N − 1 elements of k−i (t) should be
equal to ki(t) in industry equilibrium.

As is well known in real options literature (e.g. Dixit and Pindyck, 1994),
the interaction of the stochastic evolution of Z(t) and capital irreversibility
indicates that firm i solves a problem of two-sided instantaneous control of
Brownian motion. The optimal policy is to regulate the state variable ki(t) at
both an upper barrier, denoted by ki(t)

∗, and a lower barrier, denoted by ki(t)∗
(Harrison and Taksar, 1985). In other words, as long as ki(t)∗ > ki(t) > ki(t)∗,
no action will be taken (i.e. dki(t) = 0). However, when ki(t) hits ki(t)

∗, a
minimum amount of capital to be sold is chosen to prevent ki(t) from rising
above ki(t)

∗ (i.e. dki(t) < 0). Similarly, when ki(t) hits ki(t)∗, a minimum
amount of capital stock to be purchased is chosen to prevent ki(t) from falling
below ki(t)∗ (i.e. dki(t) > 0), the ‘desired’ capital stock coined by Bertola and
Caballero (1994).

When ki(t)
∗ > ki(t) > ki(t)∗, the private marginal gain from increasing the

capital stock, vi(·) = ∂V1(·)/∂ki(t), is given by (see appendix, Section 13.6.1):

v1(·) = A1

[
Z(t)(1−f )ki(t)

(−f )ka(t)
(1−e)f λ

e
−1
(
θka(t) + λki(t)

N

)]β

+ d0(1 − e)f

φ(1)e
Z(t)(1−f )ki(t)

(−f )ka(t)
(1−e)f λ

e
−1
(
θka(t) + λki(t)

N

)

(13.18)
where A1 is a constant to be determined, β is the larger root of τ in the quadratic
equation given by (A13.4), and φ(1) is obtained by setting τ = 1 in (A13.5). On
the right-hand side of equation (13.18), the first term (which is negative since A1

is negative) is the private value of the option to install one more incremental unit
of capital, while the second term is the private value of the last incremental unit
of installed capital. Two optimal conditions must be satisfied at ki(t) = ki(t)∗
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(Bertola and Caballero, 1994; Pindyck, 1988). First, the private marginal gain
from increasing the capital stock must equal its marginal costs at the instant of
investing, i.e.

v1(·) = (1 − h)PK (13.19)

This is the value-matching condition. Second, condition (13.19) must be satis-
fied at the states both just before and just after the investment, thus yielding:

∂v1(·)
∂Z(t)

= 0 (13.20)

This is called the smooth-pasting condition.
Denote by ks1(·, h, t) (the first subscript ‘s’ denotes the case where the invest-

ment costs are sunk) the ki(t)∗ chosen by firm i when investment is irreversible.
This ks1(·, h, t) is solved by the following procedures. First, the equilibrium
condition kj (t) = ks1(·, h, t) (j = 1, . . . , N) is substituted into both conditions
(13.19) and (13.20). Second, equation (13.20) is multiplied by Z(t)/[(1 − f )β],
and then the result is added into equation (13.19), along with the value of φ(1)
defined in (A13.5). As a result, we obtain:

ks1(·, h, t) = m1kf1(·, h, t) (13.21)

where:

m1 =
[

α

1 + α

]f (1− (1−e)λ

e

)
(<1)

−α is the smaller root of τ in the quadratic equation given by (A13.4) and
kf1(·, h, t) is given by equation (13.12). Proposition 13.2 will then follow.

Proposition 13.2 The wedge between the desired capital stock with
irreversible investment, ks1(·, h, t), and the choice of capital stock with costlessly
reversible investments, kf1(·, h, t), will be expanded (i.e. the multiple m1 will
be lower) in the following cases: (i) uncertainty is greater (σ is higher);
(ii) technology shifts at a lower pace of growth (η is smaller); (iii) a catastrophic
event is less likely to occur (µ is lower); and (iv) the external effect of capital is
higher (λ is larger).

Proof: See appendix, Section 13.6.2.

The intuition behind Proposition 13.2 is as follows. As is well known in real
options literature, the combination of irreversibility and uncertainty will induce
an individual firm to be more prudent, i.e. the maxim ‘better safe than sorry’
applies. Given that a firm invests in R&D capital when the payoff is uncertain,
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the implication of this maxim is that the firm’s optimal stock of R&D capital
will be lower compared to the case when either there is no uncertainty or there
is complete reversibility. As either uncertainty becomes greater or technology
progresses at a lower rate, the ‘desired’ capital stock for costlessly reversible
investments will remain unchanged. In contrast, the desired capital stock for irre-
versible ones will be reduced because the option to install one more incremental
unit of capital is raised by more than is the private value of the last incremental
unit of installed capital (see e.g. Pindyck, 1988). Accordingly, this maxim will
become more important. As either a catastrophic event becomes less likely to
occur, or the externality is stronger, the ‘desired’ capital stock for costlessly
reversible investments will be raised by a proportion more than it will be for
irreversible ones. Accordingly, this maxim will also become more important.

Consider the optimal conditions when disinvestment occurs. The value-
matching and smooth-pasting conditions which must be satisfied at ki(t) =
ki(t)

∗ are respectively given by:

v1(·) = (1 − u)θPK (13.22)

∂v1(·)
∂Z(t)

= 0 (13.23)

Denote by kd1(·, u, t) (the first subscript ‘d’ denotes the case for disinvestment)
the ki(·, t)∗ chosen by firm i when investment is irreversible. Solving condi-
tions (13.22) and (13.23) simultaneously, and then imposing the equilibrium
condition kj (t)

∗ = kd1(·, u, t) (j = 1, . . . , N) yields:

kd1(·, u, t) = m2ks1(·, u, t) (13.24)

where:

m2 = θ

−1

f

(
1− (1−e)λ

e

)
(>1)

The equality given by (13.24) indicates that the ratio of the capital stock that
triggers disinvestment over that which triggers investment, i.e. the factor m2,
will be expanded as the size of capital irreversibility, i.e. 1 − θ , becomes larger.
Following Pindyck (1988), this implies that disinvestment will be less likely to
occur as capital investment exhibits a higher irreversibility.

Now consider the optimal investment and disinvestment decisions for a social
planner. In the long run, the social planner will internalize the external effect
when choosing an optimal path of ki(t) to maximize the expected discounted
social flow profit, net of the investment costs or plus the proceeds from selling
capital. Suppose that V2(k(t), Z(t)) denotes the Bellman value function of the
social planner, which is given by:

V2(·) = max{ki (τ)}Et

∫ ∞

t

e−ρ(τ−t)[π2
i (ki(τ ), Z(τ))dτ − 1[dki (τ)>0]

× Pk dki(τ ) + 1[dki (τ)<0]Pk dki(τ )] (13.25)
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where π2
i (·) is given by equation (13.10). The maximization problem faced by

the social planner has two state variables, Z(t) and ki(t); Z(t) is exogenous,
while ki(t) is subject to control. Note that ki(t)∗ and ki(t)∗ have been defined
as the respective upper and lower barriers of the capital stock. When ki(t)

∗ >
ki(t) > ki(t)∗, the social marginal gain from increasing the capital stock, v2(·) =
∂V2(·)/∂ki(t), is given by (see appendix, Section 13.6.1):

v2(·) = A2

[
Z(t)1−f ki(t)

f
(
(1−e)λ

e
−1
)]β

+ d0(1 − e)f (1 − γ + λ)

φ(1)e

× Z(t)1−f ki(t)
f

(
(1−e)λ

e
−1
)

(13.26)

where A2 is a constant to be determined. The value-matching and smooth-
pasting conditions applied to v2(·) are respectively given by:

v2(·) = PK (13.27)

and

∂v2(·)
∂Z(t)

= 0 (13.28)

These two equations must be satisfied at ki(t) = ki(t)∗.
Suppose that ks2(·, t) denotes the ‘desired’ capital stock ki(t)∗ chosen by a

social planner when investment is irreversible. This ks2(·, t) is solved by the
following procedures. First, the left-hand side of both conditions (13.27) and
(13.28) is evaluated at ki(t) = ks2(·, t). Second, equation (13.28) is multiplied
by Z(t)/[−(1 − f )β], and then the result is added into equation (13.27), along
with the value of φ(1) defined in (A13.5). As a result, we obtain:

d0(1 − e)f (1 − γ + λ)α

eρ(α + 1)
Z(t)1−f ks2(·, t)f

(
1− (1−e)λ

e

)
= PK (13.29)

Solving for ks2(·, t) in equation (13.29) yields:

ks2(·, t) = m1kf2(·, t) (13.30)

where m1 is given by equation (13.21) and kf2(·, t) is given by equation (13.14).
In the absence of any regulations, the social marginal gain from increasing the

capital stock, the left-hand side of equation (13.27), will outweigh its private
marginal gain, the left-hand side of equation (13.19). Consequently, a social
planner will choose a higher ‘desired’ capital stock than that chosen by an
individual firm. Both an investment tax credit given to firms and a tax on disin-
vestment will be optimal if they cause both the decentralized and the command
economy to have identical upper and lower barriers of capital stocks.5 Propo-
sition 13.3 derives the optimal rate of investment tax credits.
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Proposition 13.3 Denote the optimal rate of investment tax credits for irre-
versible investments as h∗

s , then:

h∗
s = λ

(1 − γ + λ)

(
1 − 1

N

)
(13.31)

Proof: h∗
s is the h that satisfies:

ks1(·, h, t) = ks2(·, t) (13.32)

Replacing ks1(·, h, t) given by equation (13.21) with ks2(·, t) given by equation
(13.30) yields h∗

s as shown in equation (13.31).

Comparing h∗
f given by equation (13.15) with h∗

s given by equation (13.31)
yields Corollary 13.1.

Corollary 13.1 An equal rate of tax credits should be given to both costlessly
reversible investments and irreversible ones.

The intuition behind Corollary 13.1 is as follows. Evaluating equation (13.21)
at h = 0, and then dividing each side of equation (13.30) by its counterpart of
equation (13.21) yields kf2(·, t)/kf1(·, 0, t) = ks2(·, t)/ks1(·, 0, t). In other words,
in the absence of any regulations, the ratio between the social and private optimal
stocks of R&D capital when investment exhibits complete reversibility is equal
to its counterpart when investment exhibits irreversibility. Consequently, irre-
versibility is irrelevant to the optimal rate of investment tax credits.

Consider the optimal conditions for a social planner who sells installed
capital. The value-matching and smooth-pasting conditions required to be satis-
fied at ki(t) = ki(t)

∗ are respectively given by:

v2(·) = θPK (13.33)

∂v2(·)
∂Z(t)

= 0 (13.34)

Denote by kd2(·, t) the ki(t)
∗ chosen by the social planner when investment

is irreversible. Solving conditions (13.33) and (13.34) simultaneously, and then
imposing ki(t)

∗ = kd2(·, t) yields:

kd2(·, t) = m2ks2(·, t) (13.35)

where m2 is given by equation (13.24).
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In the absence of any regulations, an individual firm will sell installed capital
earlier than socially desirable, as suggested by kd2(·, t) > kd1(·, 0, t). Conse-
quently, a tax should be imposed, and its optimal rate is given by Proposition 13.4.

Proposition 13.4 Denote the tax rate that should be imposed on firms selling
capital that exhibits irreversibility as u∗, then:

u∗ = λ

(1 − γ + λ)

(
1 − 1

N

)
(13.36)

Proof: u∗ is the u that satisfies kd1(·, u, t) = kd2(·, t). Substituting kd1(·, u, t)
given by equation (13.24) and kd2(·, t) given by equation (13.35) into this
equality yields u∗ as shown in equation (13.36).

Comparing Proposition 13.3 with Proposition 13.4 yields Corollary 13.2.

Corollary 13.2 The rate of taxation that should be imposed on disinvestment,
u∗, is equal to the rate of tax credits required to subsidize investment. This
common rate will be higher as either λ/(1 − γ ) is higher or N is larger.

The intuition behind Corollary 13.2 is as follows. Evaluating equation (13.24)
at u = 0, and then dividing each side of equation (13.35) by its counterpart
of equation (13.24) yields ks2(·, t)/ks1(·, 0, t) = kd2(·, t)/kd1(·, 0, t). In other
words, in the absence of any regulations, the ratio between the social and
private lower barriers of R&D capital, ks2(·, t)/ks1(·, 0, t), coincides with
the ratio between the social and private upper barriers of R&D capital,
kd2(·, t)/kd1(·, 0, t). Consequently, the optimal subsidy rate on investment will
be equal to the optimal penalty rate on disinvestment. This common rate will be
higher as either the ratio between the external and the internal effect of capital,
λ/(1 − γ ), becomes higher, or the industry is composed of more firms; this is
because in both cases, the inefficiencies caused by ignoring externality become
more significant.

13.4 NUMERICAL EXAMPLES

We establish a set of central values for the parameters and then investigate a
wide variation around this. The benchmark parameter values are as follows:
the (risk-adjusted) discount rate ρ = 8% per year, the price of capital PK = 1,
the wage rate w = 0.8, demand elasticity ε = 2, the size of the internal effect
1 − γ = 0.4, the size of the external effect λ = 0.1, the number of firms = 100,
the technology-shift factor Z(t) = 1, the hazard rate µ = 1% per year, the drift
parameter η = 0.1, the volatility parameter σ = 20% per year, and the size
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of irreversibility 1 − θ = 0.1.6 Given these central cases of parameter values,
Table 13.1 shows that factor m1 = 0.92, factor m2 = 1.18, and that the rate of
tax credits for costlessly reversible investments (h∗

f ), for irreversible investments
(h∗

s ), and the penalty rate on disinvestment (u∗) should be equal to 19.8%.
Table 13.1 also reports the effects of an increase in σ in a region over (0%,

40%), η in a region over (6%, 14%), µ in a region over (0%, 2%), λ in
a region over (0, 0.2), and h in a region over (0%, 40%) on kf1(·), kf2(·),
ks1(·), ks2(·), as well as the option value multiple, m1 and m2. The results of
Table 13.1 (see also Figures 13.1–13.4) show that regardless of whether the
economy is decentralized or centralized, investment is more likely to occur,
that is, the ‘desired’ capital stock when investment is irreversible is larger,
as (i) uncertainty (σ ) is smaller; (ii) technology shifts at a higher pace of
growth (η is larger); (iii) a catastrophic event is less likely to happen (µ is
lower); and (iv) the external effect of capital is more significant (λ is higher).
Table 13.1 (see Figure 13.5) also shows that investment tax credits are effec-
tive regardless of whether investment is irreversible or not because a more
generous tax credit policy raises both the choice of capital stock when invest-
ment is costlessly reversible and also the ‘desired’ capital stock when investment
is irreversible.

Table 13.1 also yields results that conform to those in the last section (see
also Figures 13.1–13.5). First, in the absence of any regulations, the ratio
between the desired capital stock with irreversible investments, ks1(·, 0, t), and
the choice of capital stock with costlessly reversible investments, kf1(·, 0, t),
will be lower (i.e. m1 will be lower) in the following cases: (i) uncertainty is
greater (σ is higher); (ii) technology progresses at a lower pace of growth (η
is smaller); (iii) a catastrophic event is less likely to occur (µ is lower); and
(iv) the external effect of capital is stronger (λ is higher). This confirms the
result of Proposition 13.2. Second, kf2(·, t)/kf1(·, 0, t) = ks2(·, t)/ks1(·, 0, t). In
other words, in the absence of any regulations, the following two ratios will
be equal: (i) the ratio between the social and private choices of capital stocks
when investment is costlessly reversible; and (ii) the ratio between the social
and private ‘desired’ capital stocks when investment is irreversible. Finally, the
common ratio stated above leads to a common value of the optimal rate of
investment tax credits for costlessly reversible investments and that for irre-
versible investments, as suggested by Corollary 13.1. This common rate is
irrelevant to variations in the volatility parameter σ , the drift parameter η,
and the hazard rate µ. In contrast, this common rate will be higher as the size
of externality λ becomes more significant. For example, given the parameter
values of the benchmark case, except that λ is raised from its central value 0.1
to 0.2, this common rate will be raised from 19.8% to 33%. This confirms the
result of Corollary 13.2.
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Table 13.1 Capital stock, option value multiple and optimal investment tax credit rate. Central
case: ρ = 0 .08 , PK = 1 , w = 0 .8 , ε = 2 , 1 − γ = 0 .4 , λ = 0 .1 , N = 100 , Z( t) = 1 ,

µ = 0 .01 , η = 0 .1 , σ = 0 .2 , 1 − θ = 0 .1 ; m1 = 0 .9159 , m2 = 1 .1781 ,
h∗

f = h∗
s = u∗ = 19 .8 %

Variation in σ

0% 10% 20% 30% 40%

kf1(·, 0, t) 0.0121 0.0121 0.0121 0.0121 0.0121
kf2(·, t) 0.0171 0.0171 0.0171 0.0171 0.0171
ks1(·, 0, t) 0.0121 0.0119 0.0111 0.0100 0.0087
ks2(·, t) 0.0171 0.0167 0.0156 0.0141 0.0122
m1 1.0000 0.9781 0.9159 0.8237 0.7161

Variation in η

6% 8% 10% 12% 14%

kf1(·, 0, t) 0.0121 0.0121 0.0121 0.0121 0.0121
kf2(·, t) 0.0171 0.0171 0.0171 0.0171 0.0171
ks1(·, 0, t) 0.0101 0.0109 0.0111 0.0112 0.0114
ks2(·, t) 0.0150 0.0154 0.0156 0.0158 0.0160
m1 0.8803 0.9005 0.9159 0.9277 0.9369

Variation in µ

0% 0.5% 1% 1.5% 2%

kf1(·, 0, t) 0.0146 0.0132 0.0121 0.0111 0.0103
kf2(·, t) 0.0205 0.0187 0.0171 0.0157 0.0145
ks1(·, 0, t) 0.0133 0.0121 0.0111 0.0102 0.0094
ks2(·, t) 0.0188 0.0171 0.0156 0.0144 0.0133
m1 0.9145 0.9152 0.9159 0.9165 0.9172

Variation in λ

0 0.05 0.1 0.15 0.2

kf1(·, 0, t) 0.0118 0.0120 0.0121 0.0123 0.0125
kf2(·, t) 0.0118 0.0142 0.0171 0.0206 0.0251
ks1(·, 0, t) 0.0109 0.0110 0.0111 0.0112 0.0113
ks2(·, t) 0.0109 0.0131 0.0156 0.0188 0.0228
m1 0.9240 0.9201 0.9159 0.9111 0.9059
m2 1.1590 1.1680 1.1781 1.1895 1.2025
h∗

f = h∗
s = u∗(%) 0 11 19.8 27 33

Variation in h

0% 10% 19.8% 30% 40%

kf1(·, h, t) 0.0121 0.0143 0.0171 0.0211 0.0268
kf2(·, t) 0.0171 0.0171 0.0171 0.0171 0.0171
ks1(·, h, t) 0.0111 0.0131 0.0156 0.0193 0.0246
ks2(·, t) 0.0156 0.0156 0.0156 0.0156 0.0156
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Figure 13.1 The effect of a change in the size of uncertainty
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Figure 13.3 The effect of a change in the hazard rate
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13.5 CONCLUSION

This chapter assumes that a firm facing technological uncertainty must decide
whether to purchase R&D capital at each instant. R&D capital exhibits both
irreversibility and externality through the learning-by-doing effect. The combi-
nation of irreversibility and uncertainty drives agents to be more prudent, i.e.
the maxim ‘better safe than sorry’ applies. This maxim is more important as
uncertainty is greater, technology progresses at a lower pace, the externality
is stronger, or a catastrophic event is less likely to occur. A firm ignoring the
externality will both invest later and disinvest earlier than a social planner who
internalizes the externality. An equal rate of investment tax credits should be
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given to both costlessly reversible investments and irreversible ones, and the
same rate of taxation should be imposed on disinvestment.

Corollary 13.1 indicates that asset characteristics such as irreversibility and
uncertainty are irrelevant to the optimal tax incentives. It can be shown that
asset durability is also unrelated to the optimal tax incentives if we allow capital
to be depreciating at a constant exponential rate. Nevertheless, it is common
for a government to give more generous tax credits to either (i) short-lived
assets such as equipment than long-lived assets such as structures (Gravelle,
1994) or (ii) high-technology industries that use capital assets with either a
higher expected growth pace of technology or greater degree of technological
uncertainty. Our result thus questions these discriminatory R&D subsidy poli-
cies. Nevertheless, it deserves investigating whether Corollary 13.2 is robust
enough by relaxing several main assumptions which include (i) demand is
constant elastic; (ii) production technology is of a Cobb–Douglas type; and
(iii) production externality arises from the ‘learning-by-doing’ effect.

Corollary 13.2 indicates that a tax reduction for purchasing R&D capital should
be accompanied with the same tax rate on sales of R&D capital. Currently, in
most countries sales of R&D are either free of taxation or taxed at a lower rate
than the subsidy rate for purchasing R&D capital. Our result thus questions such
a lenient policy towards sales of R&D capital.

Future research may also relax several other assumptions of this chapter.
First, firms may be better informed on their R&D technology (e.g. Gaudet
et al., 1998). Second, R&D decisions may be characterized in a sequence (e.g.
Bar-Ilan and Strange, 1998; Grenadier and Weiss, 1997). Third, capital invest-
ment may take time to build (e.g. Majd and Pindyck, 1987; Bar-Ilan and Strange,
1998). Finally, strategic interactions between firms in making R&D investments
may be important (Lambrecht, 2000; Weeds, 2000).

13.6 APPENDIX

13.6.1 Derivation of v1(·) and v2(·)
We will solve for v1(·) given by equation (13.18) first, and later for v2(·) given
by equation (13.26). Suppose that ki(t)∗ > ki(t) > ki(t)∗. Treating V1(·) as an
asset value, using equation (13.3) and applying Itô’s lemma yields its expected
capital gain as:

Et

dV1(·)
dt

= 1

2
σ 2Z(t)2 ∂

2V1(·)
∂Z(t)2

+ ηZ(t)
∂V1(·)
∂Z(t)

(A13.1)

This expected capital gain plus the dividend d0[Z(t)ki(t)](1−f )ka(t)
(1−e)f λ/e,

π1
i (·) given by equation (13.9), should be equal to the normal return (ρ +
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µ)V1(·) to prevent any arbitrage profits from arising. This yields the differen-
tial equation:

1

2
σ 2Z(t)2 ∂

2V1(·)
∂Z(t)2

+ ηZ(t)
∂V1(·)
∂Z(t)

− (ρ + µ)V1(·)

+ d0[Z(t)ki(t)]
1−f ka(t)

(1−e)f λ

e = 0 (A13.2)

Let ∂V1(·)/∂ki(t) = vi(·). Differentiating equation (A13.2) term by term with
respect to ki(t) yields:

1

2
σ 2Z(t)2 ∂

2v1(·)
∂Z(t)2

+ ηZ(t)
∂v1(·)
∂Z(t)

− (ρ + µ)v1(·) + d0(1 − e)f

e

× Z(t)(1−f )ki(t)
−f ka(t)

(1−e)f λ

e
−1
[
θka(t) + λki(t)

N

]
= 0 (A13.3)

By Bertola and Caballero (1994, appendix), the term [Z(t)(1−f )ki(t)
(−f )

× ka(t)
(1−e)f λ/e−1(θka(t) + λki(t)/N)] solves the homogeneous part of the quad-

ratic equation (A13.3). Substituting this into (A13.3) yields the quadratic equation:

φ(τ) = − 1
2σ

2(1 − f )τ [(1 − f )τ − 1] − (1 − f )ητ + (ρ + µ) = 0
(A13.4)

Denote β and −α respectively as the larger and smaller roots in the quadratic
equation given by (A13.4). Following Dixit (1991), equation (A13.4) can be
rewritten as:

φ(τ) = 1

2
(1 − f )2σ 2(α + τ)(β − τ) = (ρ + µ)(α + τ)(β − τ)

αβ
(A13.5)

where φ(τ) > 0 if −α < τ < β. Figure 13.6 depicts φ(τ) as a function of τ .
One particular solution from the non-homogeneous part of equation (A13.3) is

given by:

v1P (·) = d0(1 − e)f

φ(1)e
Z(t)(1−f )ki(t)

(−f )ka(t)
(1−e)f λ

e
−1
[
θka(t) + λki(t)

N

]

(A13.6)
Since the value function V1(·) must approach zero as Z(t) approaches zero,
only the positive root of equation (A13.4) should be considered. The general
solution of equation (A13.3), which is composed of solutions from both
the homogeneous and non-homogeneous parts of equation (A13.3), is shown
in equation (13.18). Following similar procedures as above yields v2(·) =
∂V2(·)/∂ki as shown in equation (13.26).
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13.6.2 Proof of Proposition 13.2

Let E = α/(1 + α) < 1 and G = 1/f (1 − (1 − e)λ/e) > 0, then m1 = EG.
Differentiating m1 with respect to η, σ , µ and λ yields the following results:

∂m1

∂σ
= m1G

α(1 + α)

∂α

∂σ
< 0 (A13.7)

where:

∂α

∂σ
= ∂φ(−α)/∂σ

∂φ(−α)/∂τ
< 0

since ∂φ(−α)/∂σ = −σ [(1 − f )(−α)][(1 − f )(−α) − 1] < 0 and ∂φ(−α)/

∂τ > 0 from Figure 13.6;

∂m1

∂η
= m1G

α(1 + α)

∂α

∂η
> 0 (A13.8)

where:

∂α

∂η
= ∂φ(−α)/∂η

∂φ(−α)/∂τ
> 0

since ∂φ(−α)/∂η = (1 − f )α > 0 and ∂φ(−α)/∂τ > 0;

∂m1

∂µ
= m1G

α(1 + α)

∂α

∂µ
> 0 (A13.9)

where:

∂α

∂µ
= ∂φ(−α)/∂µ

∂φ(−α)/∂τ
> 0

since ∂φ(−α)/∂µ = 1 and ∂φ(−α)/∂τ > 0;

∂m1

∂λ
= m1 ln

α

(1 + α)

∂G

∂λ
< 0 (A13.10)

since ∂G/∂λ = G2f (1 − e)/e > 0
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NOTES

1. Some studies focus solely on valuation of R&D investment, e.g. Pennings and
Lint (1997) and Lint and Pennings (1999).
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2. See also Saint-Paul (1992) who emphasizes that an investment tax subsidy rather
than public debt can be used to solve the externality problem.

3. Partial irreversibility may come from firm-level or industry-level specific assets,
the lemons problem, or government regulation (see Dixit and Pindyck, 1994).

4. The term e is required to be smaller than one to assure that the private and
social marginal returns to capital are both positive. We will assume this holds
in what follows.

5. See Pindyck (1988) for a proof and also Xepapadeas (1999).
6. In Dixit (1989), some capital costs arise from depreciation and are more thought

of as recurrent, and some costs are recoverable when disinvestment occurs.
Accordingly, a ratio of w : ρPK = 10 : 1 seems plausible.
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Chapter 14

Optimal R&D investment tax credits
under mean reversion return

JYH-BANG JOU AND TAN LEE

SUMMARY

This chapter assumes that the return to R&D capital is driven by
a technological factor that follows a mean-reverting process. R&D
capital also exhibits both irreversibility and externality through the
learning-by-doing effect. The optimal paths for R&D capital under
both the decentralized and the centralized economy are derived and
then compared. It is found that an equal rate of investment tax
credits should be given to both costlessly reversible investments and
irreversible ones, and this common rate is unrelated to the parameters
that characterize the mean-reverting process.

14.1 INTRODUCTION

Our previous article (Jou and Lee, 2001) considers the issue of optimal subsidy
for R&D in an oligopoly industry that has a fixed number of identical firms. Each
firm in the industry installs R&D capital that exhibits production externalities
through the learning-by-doing effect (Arrow, 1962). The return to R&D is driven
by a technology-shift factor that evolves as a mix of a Poisson process and a
geometric Brownian motion. The costs associated with installing R&D capital
are partially sunk. It is then found that an equal rate of investment tax credits
should be given to both costlessly reversible investments and irreversible ones.
In addition, this optimal rate coincides with the optimal rate of taxation on
disinvestment.

While considering the same issue as our previous article, this chapter differs
in the following respects. First, it considers a competitive industry that allows
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free entry and exit rather than an oligopoly industry. Second, it considers the
polar case where the costs of purchasing R&D capital are fully sunk, thus
abstracting from the issue regarding optimal taxation on disinvestment. Last,
but most importantly, it models the technology-shift factor that affects the return
to R&D capital as a mean-reverting process. This is more realistic because in
our previous article, the return to R&D capital can be infinite given that the
underlying process of the technological-shift factor can diverge over time. But
an infinite return to capital seems to be incompatible with the assumption that
all firms in the oligopoly industry (and also the competitive industry) can access
R&D capital.

This chapter shows that the mean-reverting process matters for R&D invest-
ment decisions: no matter whether the external effect is internalized or not, as the
speed of mean reversion increases, the incentive to invest is raised because the
long-run variance of the technology-shift factor is dampened. However, similar
to our previous article, we find that an equal rate of investment tax credits should
be given to both costlessly reversible investments and irreversible ones, and this
common rate is unrelated to the parameters that characterize the mean-reverting
process. Consequently, the optimal subsidy on capital is unaffected by the use
of a mean-reverting process rather than a geometric Brownian motion process.

The literature on real options that investigates the mean-reverting process
includes Dixit and Pindyck (1994, chapter 5), Metcalf and Hassett (1995) and
Biekpe et al. (2001).1 Dixit and Pindyck heuristically derive the investment
option exercise policy given that the value of the firm follows that process. In
contrast, Metcalf and Hassett assume that the output price follows that process,
and point out that the cumulative investment is generally unaffected by the
use of a mean-reverting rather than a geometric Brownian motion process.
Finally, Biekpe et al. show that closed-form expressions for the value of a
firm’s investment opportunities exist when the firm’s cash flow is generated by
the mean-reverting process.

The remaining sections are organized as follows. Section 14.2 develops the
model for optimal private and then social flow surplus with respect to R&D
investment. Section 14.3 derives the optimal private and social investments,
along with the optimal tax credits. Section 14.4 provides numerical examples,
and Section 14.5 concludes.

14.2 THE MODEL

Dixit (1991) models the impact of price ceilings on irreversible investment
decisions. This chapter introduces externalities into his model while abstracting
from price ceilings, and considers a competitive industry that is composed
of N(t) identical risk-neutral firms. The industry as a whole faces a demand
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function with a constant elasticity ε (≥ 0), i.e.

Q(t) = P(t)−ε (14.1)

where Q(t) is quantity and P(t) is price. The output of each firm i depends on
its employed labor force, denoted by li (t), its employed capital stock, denoted
by ki(t), the industry’s aggregate stock of capital, denoted by Ka(t), and a
technology-shift factor, denoted by Z(t). More precisely, the production tech-
nology is given by:

qi(t) = li (t)
γ (Z(t)ki (t))

1−γ Ka(t)
λ (14.2)

We assume that Z(t) follows a mean-reverting process given by:

dZ(t) = [η(Z̄ − Z(t))]Z(t)dt + σZ(t)d�(t) (14.3)

The parameter η (>0) measures the speed of reversion. The parameter Z̄ is the
normal level of Z(t), i.e. the level to which Z(t) tends to revert. Note that the
expected growth rate of Z(t) depends on the difference between Z(t) and Z̄.
The parameter σ (>0) is the instantaneous volatility of the growth rate of Z(t),
and d�(t) is an increment to a standard Wiener process, with E{d�(t)} = 0
and E{d�(t)}2 = dt .

The production function given by equation (14.2) suggests that R&D capital
exhibits externality from the ‘learning-by-doing’ effect (Arrow, 1962). In
equation (14.2), the effect of ki(t) on qi(t) is internal, and the term 1 − γ

measures its size. In contrast, the effect of Ka(t) on qi(t) is external, with λ

measuring its size.
Multiplying both sides of equation (14.2) by N(t) yields:

Q(t) = L(t)γ (Z(t)K(t))1−γ Ka(t)
λ (14.4)

where Q(t) is the industry’s aggregate output, L(t) is the total amount of labor
employed by the industry, and K(t) denotes the aggregate stock of capital.
The difference between K(t) and Ka(t) is as follows. When making short-run
output and long-run investment decisions, a competitive firm will ignore the
external effect. Accordingly, the firm will take the industry’s stock of capital
Ka(t) as given. In contrast, a social planner will internalize the externality, and
will therefore impose Ka(t) = K(t) when making these two decisions.

We follow Dixit (1991) to solve the short-run output decision faced by the
competitive industry as a whole, which acts as if to choose an aggregate amount
of output to maximize the private flow surplus. Define the area under the inverse
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demand curve as:

G(Q(t)) =
∫ Q(t)

0
q(t)−edq(t) = Q(t)1−e

(1 − e)
(14.5)

where e is equal to 1/ε and is required to be smaller than one. Denote by w a
given wage rate, then from equation (14.4) the short-run variable cost perceived
by the competitive industry as a whole, wL(t), is given by:

C(Q(t), K(t),Ka(t), Z(t)) = wQ(t)g(Z(t)K(t))1−gKa(t)
−λg (14.6)

where g = 1/γ . The private flow surplus is defined as:

S(Q(t), K(t),Ka(t), Z(t)) = G(Q(t)) − C(Q(t), K(t), Ka(t), Z(t))

(14.7)
Setting the derivative of S(Q(t), K(t),Ka(t), Z(t)) with respect to Q(t) equal
to zero yields the choice of aggregate output as given by:

Q∗(t) = [wg(Z(t)K(t))1−gKa(t)
−λg]

−1
(e+g−1) (14.8)

Define f = eg/(e + g − 1). Substituting Q(t) = Q∗(t) into equation (14.8)
yields the optimal level of private flow surplus as given by:

S∗
1 (K(t), Ka(t), Z(t)) = d0(Z(t)K(t))1−f Ka(t)

(1−e)f λ

e (14.9)

where:

d0 =
(

1

1 − e
− 1

g

)
(wg)

e−1
e+g−1

In contrast, a social planner will internalize the external effect of R&D capital
before investing. Accordingly, the social planner will impose Ka(t) = K(t) into
equation (14.9), thus yielding the optimized value of the social flow surplus as
given by:

S∗
2 (K(t), Z(t)) = d0Z(t)

1−fK(t)
1−f+ (1−e)f λ

e (14.10)

14.3 OPTIMUM INVESTMENT TAX CREDITS

For ease of exposition, we abstract from capital depreciation and assume that
the purchasing and installation price of capital is constant over time, denoted by
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PK . We also assume that the investment costs are either completely reversible
or completely irreversible.

When R&D capital exhibits externality, as suggested by equation (14.2), then
market outcomes will be inefficient. We focus on an investment tax policy to
correct this. We assume that a regulator collects lump-sum taxes from compet-
itive firms, and then returns the proceeds to them in the form of an investment
tax credit once they invest. The rate of this credit is denoted by h so that the
purchase price of capital faced by competitive firms is given by (1 − h)PK .

14.3.1 Costlessly reversible investment

Suppose that investment is costlessly reversible, then K(t) will be a choice vari-
able rather than a state variable. Let ρ denote a given (risk-adjusted) discount
rate. At each instant, the aggregate R&D capital stock chosen by the compet-
itive industry as a whole is found by equating the private marginal return to
capital with the user cost of capital, taking Ka(t) as exogenously determined
(Jorgenson, 1963), i.e.

∂S∗
1 (K(t), Ka(t), Z(t))

∂K(t)
= (1 − h)ρPK (14.11)

The left-hand side of equation (14.11) indicates that the marginal return to capital
is equal to the derivative with respect to K(t) of the optimized private flow
surplus, S1(·) given by equation (14.9). The right-hand side of equation (14.11)
indicates that the user cost is equal to the rental cost of capital, (1 − h)ρPK . In
competitive industry equilibrium, it is required that the solution path K(t) for
equation (14.11) coincides with the given path Ka(t) so that actual and expected
behavior are the same, i.e. K(t) = Ka(t). Substituting this equality into (14.11)
and calling the resulting K(t) Kf1(·, h, t) (the first subscript ‘f’ denotes the case
for a frictionless world, and the second subscript ‘1’ denotes the case for a
decentralized economy) yields:

Kf1(·, h, t) =
[
d0(1 − f )Z(t)1−f

(1 − h)ρPK

] 1

f
(

1− (1−e)λ

e

)
(14.12)

To ensure that Kf1(·, h, t) is decreasing with PK and increasing with Z(t), here
and in what follows, we will assume that e > (1 − e)λ. In other words, we will
assume that as either the cost of R&D is higher or technology shifts upward,
demand for capital stock (i.e. the choice of capital stock) will also be higher.

Similarly, the capital stock chosen by a social planner at each instant, denoted by
Kf2(·, t) (the second subscript ‘2’ denotes the case for a centralized economy), is
found by equating the social marginal return to capital, the derivative with respect
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toK(t) of the optimized social flow surplus, S2(·) given by equation (14.10), with
the user cost of capital, i.e.2

∂S∗
2 (K(t), Z(t))

∂K(t)
= ρPK (14.13)

Evaluating the left-hand side of equation (14.13) at K(t) = Kf2(·, t), and then
rearranging yields:

Kf2(·, t) =

 d0

(
1 − f + (1 − e)f λ

e

)
Z(t)1−f

ρPK




1

f
(

1− (1−e)λ

e

)
(14.14)

The role of externality is to raise the optimal stock of R&D capital. In
other words, in the absence of any investment tax credits (h = 0), the social
marginal return to capital, the term on the left-hand side of equation (14.13),
will outweigh the private marginal return to capital, the term on the left-
hand side of equation (14.11). Consequently, the aggregate R&D capital stock
chosen by the social planner, Kf2(·, t) given by equation (14.14), will be higher
than that chosen by the competitive industry as a whole, Kf1(·, 0, t) given by
equation (14.12). An investment tax credit can abolish this wedge, as suggested
by Proposition 14.1.

Proposition 14.1 Suppose that h∗
f denotes the optimal rate of investment tax

credits for R&D capital that exhibits complete reversibility, then:

h∗
f = λ

(1 − γ + λ)
(14.15)

Proof: h∗
f is the h that satisfies the equality:

Kf1(·, h, t) = Kf2(·, t) (14.16)

Replacing Kf1(·, h, t) in equation (14.12) with Kf2(·, t) in equation (14.14)
yields h∗

f as shown in equation (14.15).

14.3.2 Irreversible investment

When R&D capital exhibits complete irreversibility, then in the long run, through
competition, the competitive industry as a whole will maximize the expected
discounted private flow surplus, net of the costs from purchasing capital (Dixit,
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1991; Lucas and Prescott, 1971). Consequently, the Bellman value function for
the competitive industry as a whole, denoted by V1(K(t), Z(t)), is given by:

V1(·) = max{K(τ)}Et

∫ ∞

t

e−ρ(τ−t)[S∗
1 (K(τ),Ka(τ ), Z(τ))dτ

− 1[dK(τ)>0]PK dK(τ)] (14.17)

where S∗
1 (·) is given by equation (14.9), ρ is a given discount rate, 1[·] is an

indicator function that is equal to one if the condition within [·] is satisfied,
and zero otherwise, and Et{·} denotes conditional expectation taken at time
t . The maximization problem faced by the competitive industry as a whole
amounts to choosing the optimal path for K(t). There are three state variables
in this maximization problem, K(t), Ka(t) and Z(t); Z(t) is exogenous, while
K(t) is subject to control. However, Ka(t) should be equal to K(t) in industry
equilibrium.

As is well known in the real options literature (e.g. Dixit and Pindyck, 1994),
the interaction of the stochastic evolution of Z(t) and capital irreversibility indi-
cates that the competitive industry as a whole solves a one-sided instantaneous
control problem. The optimal policy is to regulate the state variable K(t) at a
lower barrier, denoted by K(t)∗ (see Harrison and Taksar, 1985). In other words,
as long as K(t) > K(t)∗, no action will be taken (i.e. dK(t) = 0). However,
when K(t) hits K(t)∗, a minimum amount of capital stock to be purchased is
chosen to prevent K(t) from falling below K(t)∗ (i.e. dK(t) > 0), the ‘desired’
capital stock coined by Bertola and Caballero (1994).

When K(t) > K(t)∗, the private marginal gain from increasing the capital
stock, ν1(·) = ∂V1(·)/∂K(t), is given by (see appendix, Section 14.6):

ν1(·) = a0Z(t)
δ2A+ d0(1 − f )K(t)−f Ka(t)

(1−e)f λ

e B (14.18)

where A = H(2ηZ(t)/σ 2, δ2, Y (δ2)) [see equation (A14.8)],
B = ∑∞

i=1 ciZ(t)
i−f

c1 = d0(1 − f )

ρ − ηZ̄(1 − f )+ σ 2(1 − f )f/2
,

ci = 2η(i − 1 − f )ci−1

σ 2(i − f − δ2)(i − f − δ1)
(i > 1)

a0 is a constant to be determined, δ2 and δ1 are respectively the larger and
smaller roots of δ in the quadratic equation given by (A14.5), and Y (δ) is
defined in (A14.7). On the right-hand side of equation (14.18), the first term
is the private value of the option to install an additional unit of capital, while
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the second term is the private value of the last incremental unit of installed
capital. Two optimal conditions must be satisfied at K(t) = K(t)∗ (Bertola
and Caballero, 1994; Pindyck, 1988). First, the private marginal gain from
increasing the capital stock must be equal to its marginal costs at the instant of
investing, i.e.

ν1(·) = (1 − h)PK (14.19)

This is the value-matching condition. Second, condition (14.19) must be satis-
fied at the states both just before and just after the investment, thus yielding:

∂ν1(·)
∂Z(t)

= 0 (14.20)

This is called the smooth-pasting condition. The explicit functional form for
equation (14.20) is:

a0Z(t)
δ2−1D + d0(1 − f )Z(t)−1K(t)−fKa(t)

(1−e)f λ

e F = 0 (14.20′)

where D = δ2H(2ηZ(t)/σ 2, 1 + δ2, Y (δ2)) and F = ∑∞
i=1 ci(i − f )Z(t)i−f .

The K(t)∗ chosen by the competitive industry as a whole when the invest-
ment is completely irreversible, denoted by Ks1(·, h, t) (the first subscript ‘s’
denotes the case where the investment costs are fully sunk), is solved as follows.
First, the equilibrium condition K(t) = Ka(t)(j = 1, . . . , N) is substituted into
both conditions (14.19) and (14.20′). Second, equation (14.20′) is multiplied
by −Z(t)A/D and then the result is added into equation (14.19). As a result,
we obtain:

Ks1(·, h, t) =
[
d0(1 − f )(B − AF/D)

(1 − h)PK

] 1

f
(

1− (1−e)λ

e

)
(14.21)

In equation (14.21), as technology shifts upward, i.e. Z(t) is higher, the
‘desired’ capital will also be higher. In other words, a firm’s manager will find
that the firm’s current optimal stock is too low as technology receives a positive
shock. Accordingly, the flow of R&D should increase. Alternatively, the firm
may hedge this by changing a long position of 1Ks1(·, h, t) × β× NASDAQ
index, where β is the regression coefficient between the firm’s R&D value and
an index of high-technology stocks.

Now consider the optimal investment decision for a social planner. In the
long run, the social planner will internalize the external effect when choosing an
optimal path of K(t) to maximize the expected discounted social flow surplus,
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net of the investment costs. The Bellman value function for the social planner,
denoted as V2(K(t), Z(t)), is given by:

V2(·) = max{K(τ)}Et

∫ ∞

t

e−ρ(τ−t)[S∗
2 (K(τ), Z(τ))dτ

− 1[dK(τ)>0]PK dK(τ)] (14.22)
where S∗

2 (·) is shown in equation (14.10). The maximization problem faced
by the social planner has two state variables, Z(t) and K(t); Z(t) is exoge-
nous, while K(t) is subject to control. Note that K(t)∗ has previously been
defined as the lower barrier of the capital stock. When K(t) > K(t)∗, the social
marginal gain from increasing the capital stock, ν2(·) = ∂V2(·)/∂K(t), is given
by (see appendix, Section 14.6):

ν2(·) = b0Z(t)
δ2A+ d0

(
1 − f + (1 − e)f λ

e

)
K(t)

(1−e)f λ

e
−f
B (14.23)

where b0 is a constant to be determined. The value-matching and smooth-pasting
conditions applied to ν2(·) are respectively given by:

ν2(·) = PK (14.24)

and

∂ν2(·)
∂Z(t)

= 0 (14.25)

The explicit form of equation (14.25) is given by:

b0Z(t)
δ2−1D + d0

(
1 − f + (1 − e)f λ

e

)
Z(t)−1K(t)

(1−e)f λ

e
−f
F = 0

(14.25′)
Equations (14.24) and (14.25′) must be satisfied at K(t) = K(t)∗.

The ‘desired’ capital stock K(t)∗ chosen by a social planner when investment
is irreversible, denoted by Ks2(·, t), is solved as follows. First, the left-hand side
of both conditions (14.24) and (14.25′) is evaluated at K(t) = Ks2(·, t). Second,
equation (14.25′) is multiplied by −Z(t)A/D and then the result is added into
equation (14.24). Then, we obtain:

Ks2(·, t) =

 d0

(
1 − f + (1 − e)f λ

e

)(
B − AF

D

)

PK




1

f
(

1− (1−e)λ

e

)
(14.26)
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In the absence of any regulations, the social marginal gain from increasing the
capital stock, the left-hand side of equation (14.24), will outweigh its private
marginal gain, the left-hand side of equation (14.19). Consequently, a social
planner will choose a higher ‘desired’ capital stock than that chosen by the
competitive industry as a whole. An investment tax credit given to competitive
firms will be optimal if it causes both the decentralized and the centralized
economy to have identical lower barriers of capital stocks. Proposition 14.2
derives this optimal rate of investment tax credits.

Proposition 14.2 The optimal rate of investment tax credits for irreversible
investments, denoted as h∗

s , is given by:

h∗
s = λ

(1 − γ + λ)
(14.27)

Proof: h∗
s is the h that satisfies:

Ks1(·, h, t) = Ks2(·, t) (14.28)

Replacing Ks1(·, h, t) given by equation (14.21) with Ks2(·, t) given by equa-
tion (14.26) yields h∗

s as shown in equation (14.27).
In equation (14.27), the optimal investment tax credits for irreversible invest-

ments depend on the ratio λ/(1 − γ ), i.e. the relative magnitude between the
external and internal effects of capital on production, but not on the parameters
that characterize the mean-reverting process, i.e. the speed of mean reversion
(η) and the instantaneous volatility (σ ). The reason is as follows. No matter
whether the economy is centralized or not, a higher speed of reversion (η is
higher) will dampen the long-run variance of the technology-shift factor (see
Metcalf and Hassett, 1995), and therefore it will exhibit a similar qualitative
effect as a lower uncertainty (σ is lower). That is, the incentive to invest will be
raised, or equivalently, the ‘desired’ capital will be lower. However, the propor-
tional decline of the ‘desired’ capital is the same for both the decentralized and
centralized economies. Accordingly, the required tax credit rate on investment
is irrelevant to both η and σ , which characterize the mean-reverting process.

Comparing h∗
f in equation (14.15) with h∗

s in equation (14.27) yields
Corollary 14.1.

Corollary 14.1 An equal rate of tax credits should be given to both costlessly
reversible investments and irreversible ones.

The intuition behind Corollary 14.1 is as follows. Evaluating equation (14.21)
at h = 0, and then dividing each side of equation (14.26) by its counterpart
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of equation (14.21) yields Kf2(·, t)/Kf1(·, 0, t) = Ks2(·, t)/Ks1(·, 0, t). In other
words, in the absence of any regulations, the ratio between the social and private
optimal stocks of R&D capital when investment exhibits complete reversibility
is equal to its counterpart when investment exhibits complete irreversibility.
Consequently, irreversibility is irrelevant to the optimal rate of investment
tax credits.

14.4 NUMERICAL EXAMPLES

We establish a set of central values for the parameters and then investigate a
wide variation around this. The benchmark parameter values are as follows:
the (risk-adjusted) discount rate ρ = 8% per year, the price of capital PK =
1, the wage rate w = 0.8, demand elasticity ε = 2, the size of the internal
effect 1 − γ = 0.4, the size of the external effect λ = 0.1, the technology-
shift factor Z(t) = 1, Z̄ = 1, the speed of reversion η = 10% per year, and
the instantaneous volatility σ = 20% per year.3 Given these parameter values,
Table 14.1 shows that Kf1(·, 0, t) = 10.092, Kf2(·, t) = 14.28, Ks1(·, 0, t) =
1.697, Ks2(·, t) = 2.402, and both the rate of tax credits for costlessly reversible
investments and irreversible ones (h∗) are equal to 20%. It is interesting to
compare the above results with the polar case where the technological-shift
factor is driven by a geometric Brownian motion rather than the mean-reverting
process, i.e. η is equal to zero rather than 10%, while the other parameters are
held at their benchmark values. Under this polar case, both Ks1(·, 0, t) and
Ks2(·, t) decline to 1.542 and 2.182, respectively. These results, which are
not shown in Table 14.1, indicate that increasing mean reversion encourages

Table 14.1 Capital stock and optimal investment tax credit rate. Central case:
ρ = 0 .08 , PK = 1 , w = 0 .8 , ε = 2 , 1 − γ = 0 .4 , λ = 0 .1 , Z̄ = 1 , Z( t) = 1 ,

η = 0 .1 , σ = 0 .2 , h∗
f = h∗

s = 20 %

Variation in σ

0% 10% 20% 30% 40%

Kf1(·, 0, t) 10.092 10.092 10.092 10.092 10.092
Kf2(·, t) 14.280 14.280 14.280 14.280 14.280
Ks1(·, 0, t) 2.002 1.862 1.697 1.510 1.307
Ks2(·, t) 2.833 2.635 2.402 2.136 1.849

Variation in η

6% 8% 10% 12% 14%

Kf1(·, 0, t) 10.092 10.092 10.092 10.092 10.092
Kf2(·, t) 14.280 14.280 14.280 14.280 14.280

(continued overleaf)
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Table 14.1 (continued)

Variation in η

6% 8% 10% 12% 14%

Ks1(·, 0, t) 1.649 1.675 1.697 1.716 1.732
Ks2(·, t) 2.334 2.370 2.402 2.428 2.451

Variation in λ

0 0.05 0.1 0.15 0.2

Kf1(·, 0, t) 8.009 8.936 10.092 11.563 13.474
Kf2(·, t) 8.009 10.630 14.280 19.536 27.394
Ks1(·, 0, t) 1.610 1.651 1.697 1.751 1.813
Ks2(·, t) 1.610 1.964 2.402 2.959 3.687
h∗(%) 0 11.11 20 27.27 33.33

Variation in (1 − γ )

0.3 0.35 0.4 0.45 0.5

Kf1(·, 0, t) 6.082 7.877 10.092 12.855 16.333
Kf2(·, t) 9.215 11.483 14.280 17.762 22.133
Ks1(·, 0, t) 0.850 1.214 1.697 2.346 3.226
Ks2(·, t) 1.288 1.770 2.402 3.241 4.371
h∗(%) 25 22.22 20 18.18 16.67

Variation in ρ

4% 6% 8% 10% 12%

Kf1(·, 0, t) 29.666 15.789 10.092 7.133 5.371
Kf2(·, t) 41.977 22.340 14.280 10.092 7.600
Ks1(·, 0, t) 4.851 2.623 1.697 1.212 0.920
Ks2(·, t) 6.865 3.711 2.402 1.715 1.302

Variation in ε

1.5 1.75 2 2.25 2.5

Kf1(·, 0, t) 6.974 8.347 10.092 12.335 15.255
Kf2(·, t) 9.244 11.422 14.280 18.083 23.219
Ks1(·, 0, t) 1.848 1.773 1.697 1.622 1.546
Ks2(·, t) 2.450 2.426 2.402 2.378 2.353

Variation in h

0% 10% 20% 30% 40%

Kf1(·, h, t) 10.092 11.890 14.280 17.577 22.340
Kf2(·, t) 14.280 14.280 14.280 14.280 14.280
Ks1(·, h, t) 1.697 2.000 2.402 2.956 3.757
Ks2(·, t) 2.402 2.402 2.402 2.402 2.402



Tax credits under mean reversion 263

investment by dampening the long-run volatility of the technological-shift factor
that affects the return to capital.

Table 14.1 also shows the effects of an increase in σ in a region over (0%,
40%), η in a region over (6%, 14%), λ in a region over (0, 0.2), (1 − γ )

in a region over (0.3, 0.5), ρ in a region over (4%, 12%), ε in a region
over (1.5, 2.5) and h in a region over (0%, 40%) on Kf1(·), Kf2(·), Ks1(·)
and Ks2(·). The results of Table 14.1 (see also Figures 14.1–14.6) show that
no matter whether the economy is decentralized or centralized, the optimal
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Figure 14.2 The effect of a change in the speed of reversion
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Figure 14.4 The effect of a change in the size of internal effect

R&D capital stock when R&D investment is costlessly reversible, i.e. Kf1(·) or
Kf2(·), will be larger as (i) the external effect of capital is more significant (λ is
higher); (ii) the size of internal effect is greater [(1 − γ ) is larger]; (iii) the (risk-
adjusted) discount rate is lower (ρ is smaller); or (iv) demand becomes more
elastic (ε is larger). We reach similar results as (i)–(iii) when R&D invest-
ment is completely irreversible. However, the ‘desired’ capital stock, when
the economy is decentralized or centralized, i.e. Ks1(·) or Ks2(·), is greater as
uncertainty (σ ) is smaller, the speed of mean reversion is faster (η is larger),
or demand elasticity is smaller.
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Figure 14.5 The effect of a change in the discount rate
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Figure 14.6 The effect of a change in the demand elasticity

Table 14.1 also shows that the optimal investment tax credit is not related to
either σ , η, ρ or ε, but is increasing with λ, while decreasing with (1 − γ ), thus
confirming Proposition 14.2. Finally, firms should invest more as they receive
more investment tax credits regardless of whether investment is irreversible or
not. As shown in Table 14.1, a more generous tax credit policy (higher h) raises
both the choice of capital stock when investment is costlessly reversible, and the
‘desired’ capital stock when investment is irreversible (see also Figure 14.7).
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14.5 CONCLUSION

This chapter assumes that the return to R&D capital is driven by a technological
factor that follows a mean-reverting process. R&D capital also exhibits both
irreversibility and externality through the learning-by-doing effect. The optimal
paths for R&D capital under both the decentralized and centralized economies
are derived and then compared. It is found that an equal rate of investment tax
credits should be given to both costlessly reversible investments and irreversible
ones, and this common rate is unrelated to the parameters that characterize the
mean-reverting process.

This chapter provides some examples which show how a firm’s investment
decision and how a regulator’s investment tax credit policy should respond to
changes of economic environments. In practical terms, these responses depend
on the value of parameters such as the discount rate (ρ), the demand elasticity
(ε), the internal effect of capital (1 − γ ), the external effect of capital (λ), the
speed of mean reversion (η), and the instantaneous volatility (σ ). Among them,
only the term λ is unobservable (and is thus subjective), and all the other terms
may be calculated (or inferred) from long-term historical data.

Our previous article (Jou and Lee, 2001) allows both investment and disin-
vestment and models the source of technology uncertainty as a geometric
Brownian motion. It is then found that the rate required to subsidize capital
investment is the same as the rate required to penalize disinvestment and
this common rate is irrelevant to investment irreversibility and the parame-
ters that characterize the geometric Brownian process. This chapter strengthens
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the results of our previous article because these results also apply to the more
generalized process, i.e. the mean-reverting process.

14.6 APPENDIX

We follow Metcalf and Hassett (1995) to solve for ν1(·) given by equation (14.18)
first, and later solve for ν2(·) given by equation (14.23). Suppose that K(t) >

K(t)∗. Treating V1(·) as an asset value, using equation (14.3) and applying Itô’s
lemma yields the expected capital gain of this asset as:

Et

dV1(·)
dt

= 1

2
σ 2Z(t)2 ∂

2V1(·)
∂Z(t)2

+ η(Z̄ − Z(t))Z(t)
∂V1(·)
∂Z(t)

(A14.1)

This expected capital gain plus the dividend d0[Z(t)K(t)](1−f )Ka(t)
(1−e)f λ/e,

S∗
1 (·) given by equation (14.9), should be equal to the normal return ρV1(·) to

prevent any arbitrage profits from arising. This yields the differential equation:

1

2
σ 2Z(t)2 ∂

2V1(·)
∂Z(t)2

+ η(Z̄ − Z(t))Z(t)
∂V1(·)
∂Z(t)

− ρV1(·) + d0[Z(t)K(t)]1−f Ka(t)
(1−e)f λ

e = 0 (A14.2)

Let ∂V1(·)/∂K(t) = ν1(·). Differentiating equation (A14.2) term by term with
respect to K(t) yields:

1

2
σ 2Z(t)2 ∂

2ν1(·)
∂Z(t)2

+ η(Z̄ − Z(t))Z(t)
∂ν1(·)
∂Z(t)

− ρν1(·) + d0(1 − f )Z(t)(1−f )K(t)−fKa(t)
(1−e)f λ

e = 0 (A14.3)

A power series solution of the form ν1h(·) = ∑∞
i=0 aiZ(t)

i+δ provides a solution
to the homogeneous part of the quadratic equation (A14.3). Substituting this into
(A14.3) yields:

Z(t)δa0
[ 1

2σ
2δ(δ − 1)+ Z̄ηδ − ρ

]

+ Z(t)δ+1{[ 1
2σ

2δ(δ + 1) + Z̄η(δ + 1) − ρ
]
a1 − ηδa0

}

+ Z(t)δ+2{[ 1
2σ

2(δ + 1)(δ + 2)+ Z̄η(δ + 2)−ρ
]
a2−ηδa1

}+ · · · = 0
(A14.4)

We choose δ as the roots of the quadratic equation:

Q(δ) = σ 2

2
δ(δ − 1) + Z̄ηδ − ρ = 0 (A14.5)
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Figure 14.8 Q(δ) versus δ

Denote δ1(<0) and δ2(>0) as the smaller and larger roots in the quadratic
equation given by (A14.5). Figure 14.8 depicts Q(δ) as a function of δ.

Noting that −σ 2δ(δ − 1)/2 = Z̄ηδ − ρ, we obtain the recurrence relation:

an = (2η/σ 2)(δ + n − 1)

n(2δ + n − 1 + (2Z̄η/σ 2))
an1, n ≥ 1 (A14.6)

Defining Y (δ) = 2δ + (2Z̄η/σ 2), we get:

an = (2η/σ 2)nδ(δ + 1) . . . (δ + n− 1)

n!Y (δ)(Y (δ) + 1) . . . (Y (δ) + n− 1)
a0 (A14.7)

where a0 is determined as a constant of integration. Let H(x, a, b) be the
confluent hypergeometric function:

H(x, a, b) = 1 + a

b
x + a(a + 1)

2!b(b + 1)
x2 + a(a + 1)(a + 2)

3!b(b + 1)(b + 2)
x3 + · · ·

(A14.8)
then a solution for ν1h(·) is given by:

ν1h(·) = A1Z(t)
δ1H

(
2ηZ(t)

σ 2
, δ1, Y (δ1)

)
+ A2Z(t)

δ2H

(
2ηZ(t)

σ 2
, δ2, Y (δ2)

)

(A14.9)
Note that Z(t) equals zero is an absorbing state so that ν1h(·) = 0 as Z(t) = 0.
Hence A1 must be equal to zero since δ1 < 0. Thus:

ν1h(·) = a0Z(t)
δ2H

(
2ηZ(t)

σ 2
, δ2, Y (δ2)

)
(A14.10)

For the particular solution of (A14.3), we try a power series of the form:

ν1p(·) =
∞∑
i=0

ciZ(t)
(i−f )d0(1 − f )K(t)−f Ka(t)

(1−e)f λ

e (A14.11)
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We take the derivative of the power series, and then substitute the result into
(A14.3), and finally group powers of Z(t). This yields:

[ 1
2σ

2f (1 + f )− ηZ̄f − ρ
]
c0

+ [
ηf c0 + ( 1

2σ
2(f − 1)f + ηZ̄(1 − f ) − ρ

)
c1 + d0(1 − f )

]
Z(t)

+
∞∑
i=2

{[ 1
2σ

2(i − f )(i − 1 − f )+ ηZ̄(i − f ) − ρ
]
ci

−η(i − 1 − f )ci−1}Z(t)i = 0 (A14.12)

Equation (A14.12) should be satisfied for any Z(t). Therefore:

c0 = 0, c1 = d0(1 − f )

ρ − ηZ̄(1 − f )+ σ 2(1 − f )f/2
,

ci = 2η(i − 1 − f )ci−1

σ 2(i − f − δ2)(i − f − δ1)
, i = 2, 3, . . . (A14.13)

Summing up, the solution for the value function ν1(·) is given by ν1(·) =
ν1h(·) + ν1p(·), which is also shown by equation (14.18). Following similar
procedures as above yields the solution for ν2(·) = ∂V2(·)/∂K(t) as shown by
equation (14.23).
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NOTES

1. See also the article by Booth et al. (2002) which assumes that a firm’s productivity
follows the mean-reverting process and shows that the degree to which quit rates
affect hiring and training depend on the ratio of firing to hiring costs.

2. The term e is required to be smaller than one such that the private and social
marginal returns to capital will both be positive. We assume this holds in what
follows.

3. As suggested by Dixit (1989), some capital costs arise from depreciation and are
more thought of as recurrent, and some costs are recoverable when disinvestment
occurs. Accordingly, a ratio of w : ρPK = 10 : 1 seems plausible.
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Chapter 15

Genzyme Biosurgery: a virtual
real R&D option case

DEAN A. PAXSON

15.1 INTRODUCTION

Kate Hudson was finishing her MBA education and hoping to work for Genzyme
Corporation in Boston. Having a degree in biochemistry, Kate could relate to
the products that Genzyme developed, and was keen to understand a little more
about the corporate structure, financial results and investment decisions that she
might face on a day-to-day basis.
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15.2 OVERVIEW OF GENZYME CORPORATION

Genzyme Corporation is a biotechnology company that develops and markets
innovative products and services designed to address significant unmet medical
needs. The corporation is comprised of three divisions, each with its own
‘tracking stock’.

Genzyme General develops and markets therapeutic products and diagnostic
products and services. This division has four therapeutic products on the market
and a strong pipeline of therapeutic products in development, focused on the
treatment of genetic disorders and other chronic debilitating diseases. Genzyme
General also manufactures and markets diagnostic products, genetic testing
services and pharmaceutical intermediates.

Genzyme Biosurgery was formed in December 2000 by combining two
Genzyme divisions, Genzyme Surgical Products and Genzyme Tissue Repair
with Biomatrix, Inc. This division develops and markets a portfolio of devices,
advanced biomaterials and biotherapeutics, primarily for cardiothoracic, ortho-
pedic and general surgery markets.

Genzyme Molecular Oncology is developing a new generation of cancer
products, focusing on cancer vaccines and angiogenesis inhibitors. This division
of Genzyme is attempting to integrate its gene discovery, gene therapy, small
molecule drug discovery, protein therapeutic and genetic diagnostic efforts.

15.2.1 Tracking stocks

The equity structure of Genzyme Corporation is relatively unusual. There is
no series of stock that represents Genzyme Corporation as a whole, but rather
three separate series of stock which are known as ‘tracking stocks’ because
they are designed to reflect the value of each division to the shareholders.
A tracking stock was first issued by General Motors in 1984, followed by
USX Corporation, US West, Sprint, AT&T, Georgia Pacific Group, PE Corpo-
ration and The Walt Disney Company. Some authors have previously noted
that tracking stocks (and similar financing arrangements) are appropriate for
biotechnology firms (see Michael E. Solt, ‘SWORD financing of innovation in
the biotechnology industry’, Financial Management, Summer 1993, 173–187
and Michael E. Raynor, ‘Tracking stocks and the acquisition of real options’,
Journal of Applied Corporate Finance, Summer 2000, 74–83).

None of Genzyme’s divisions maintains an ownership interest in any other
division of the corporation. Genzyme Corporation has a single board of directors
that has an equal duty to shareholders in each of Genzyme’s three tracking-
stock divisions to act in good faith and in a manner it reasonably believes to
be in the best interests of the company as a whole. Genzyme Corporation files
consolidated financial statements with the Securities and Exchange Commission,
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and also files separate financial statements for each of its three divisions. Each
of Genzyme’s three divisions reports financial results quarterly and publishes
its own annual report to shareholders.

Each of Genzyme’s divisions operates with its own financial resources. In
addition, each division has access to the shared resources of the corporation,
such as research and development staff and technology, manufacturing facilities,
intellectual property, and clinical and regulatory personnel. The cost of these
resources is allocated to each division based on utilization.

From company information, Kate gathered that Genzyme’s corporate struc-
ture provided some benefits that support the development needs of its
divisions.

It allows each Genzyme business to focus on a specific sector of the health
care marketplace. This strategy allows Genzyme to concentrate its resources
to take advantage of opportunities in four very significant markets: chronic
debilitating diseases, cardiothoracic disease, bio-orthopedics and cancer.

It facilitates the growth of Genzyme’s development-stage businesses.
Genzyme recognizes that the financial and strategic objectives of its three
businesses differ according to their stages of development. Genzyme’s corpo-
rate structure allows its development-stage and emerging businesses (Genzyme
Biosurgery and Genzyme Molecular Oncology) to invest in R&D, while
preserving the capacity of its more established business (Genzyme General)
to generate earnings growth.

It broadens the investor base and provides some financing flexibility. Genzyme
is able to draw on a diversity of investors by offering investments that focus on
differing businesses with varied risk profiles and potential returns. This diver-
sification enables investors to select the investment that most closely fits their
risk and investment preferences. Having its own separate tracking stock also
allows each Genzyme division to raise capital to fund development activities, or
issue stock as an acquisition currency, without diluting the value of shares in the
other divisions.

It may foster an entrepreneurial environment. The organizational structure that
results from having three separate divisions may encourage an entrepreneurial
culture that enables employees of a particular division to make important contri-
butions to the division’s performance and growth. In addition, the use of
tracking-stock options enables Genzyme to reward employees with a share of
the value they may help to produce within a particular division.

It facilitates sharing central resources. By sharing resources among three
divisions, Genzyme may be able to realize the operating efficiencies of a
larger entity, spread the value of its technology and expertise, and provide
its development-stage divisions with access to a broad range of resources that
they might find too costly if they were small, independent companies.
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It offers tax benefits. By filing a consolidated corporate tax return, Genzyme
is able to immediately use any tax benefits from the losses that may arise from
investing in R&D in any division. These benefits reduce the current taxes in
any profitable divisions, rather than deferring the benefits until the division with
the current losses is profitable.

Whilst the tracking stocks are designed to track the financial performance of
a specified subset of the business operations and its allocation of assets, each
tracking stock is actually a common stock of Genzyme Corporation, not of a
division; each division is not a company or legal entity and therefore cannot
issue stock. Consequently, holders of a series of tracking stock have no specific
rights to assets allocated to the corresponding division, but are subject to the
risks of investing in the business, assets and liabilities of Genzyme as a whole.
In respect of voting rights, Genzyme General Stock is entitled to one vote per
share, which is never adjusted. However, the votes per share of the other series
of common stock are adjusted every two years based on that stock’s market
value divided by the market value of a share of Genzyme General Stock. As of
end 2000, each share of Genzyme Biosurgery and Molecular Oncology stock
is entitled to 0.14 votes, respectively.

Genzyme Biosurgery stock (‘Price/10’ = market price divided by 10) had
been quite volatile over the past year, with a 10-day rolling volatility (‘10 Roll
vol’) as high as nearly 120% per annum, and a low of around 24%, with an
average volatility of 64.6% in the first seven months of 2001.
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15.3 FINANCIAL OVERVIEW

At present, the Genzyme General division is the main generator of both revenues
and profits. The majority of products in both the Genzyme Biosurgery and
Genzyme Molecular Oncology divisions are in the early stages of development
(either in the research or preclinical stages) and both divisions are loss-making.

Financial Summary for Genzyme Corporation
1998 1999 2000

Actual Actual Actual
US$’000 US$’000 US$’000

Revenue
Genzyme General 569 319 635 366 752 483
Genzyme Biosurgery 121 075 132 353 145 214
Genzyme Molecular Oncology 19 407 4 619 5 671

709 801 772 338 903 368
Net income/(loss)

Genzyme General 133 052 142 077 85 956
Genzyme Biosurgery (90 242) (78 077) (162 217)
Genzyme Molecular Oncology (19 107) (28 832) (23 096)
Adjustments/eliminations 38 864 35 813 36 867

62 567 70 981 (62 490)

Genzyme General net income is after deducting R&D, which amounted to
around 14.5% of revenue; adjusted net income is around 28% of revenue. Based
on the above allocation of net income/(loss) to each division, basic income/(loss)
per share for each class of tracking stock, compared with the average share price
for each year, is as follows:

Basic diluted income per share 1998 1999 2000

Genzyme General stock $1.48 $1.71 $1.35
Share price $24.19 $21.91 $44.97

Biosurgery stock – – $(2.40)
Share price $8.98

Molecular Oncology stock $(3.81) $(2.25) $(1.60)
Share price $3.25 $6.63 $9.19

Surgical Products stock – $(1.38) $(3.67)
Tissue Repair stock $(1.99) $(1.26) $(0.69)

On the day of Kate’s first look at Genzyme, 5 October 2001, the shares
were quoted at $48.27, $5.10 and $8.15, which valued the Genzyme General,
Biosurgery and Molecular Oncology divisions at $4330 m, $186 m and $130 m,
respectively.
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15.4 REAL OPTIONS

Following some articles, and her classroom education, Kate believed real options
could be applied to Genzyme. The holder of a real option has the right, although
not an obligation, to take a decision at one or more points in the future.
Real option analysis applies some of the theories of financial options to help
a company or investor to decide (i) how much money they should spend to
acquire the particular economic opportunity, and (ii) when (if ever) they should
commit to one of the available decisions.

Kate was aware that R&D was a well-known example of a real option,
whereby a company embarking upon R&D has the option to take a decision
further down the line as to whether to develop or launch a new product, or
conduct further R&D to develop perhaps a secondary product. It was clear that
Genzyme’s management faced a number of real options on a regular basis.
Genzyme effectively regularly purchases a stream of options, including growth,
value-creating investment options and ‘scale-down’ and abandonment options.
Drug development in particular represents ‘options on options’, or a series of
compound options. Kate was aware that mathematical modeling was required
in the evaluation of some of these real options, and she started to study some
plausible theories.

15.5 SIX REAL R&D OPTION MODELS

Kate had studied the Margrabe exchange option in the first year at graduate
business school. A simple real option example assumes that all new product
development investments D + I (D = development, I = product launch costs)
are at the date the option expires (assumed to be product launch date). (See
Sections 15.8.1 for an illustration and 15.8.7 (Table 15.1) for Excel formulas of
the Margrabe exchange option, standardized present value of the R&D discovery
product cash flows, V , and standard D and I .)

A year ago, Kate had attended a Real R&D Options Symposium where several
alternative models for ‘compound’-type real options were presented, where first
there was an R&D expenditure, then a new product development (NPD) expen-
diture. Lint and Pennings (2001) showed that paying for R&D is similar to a
premium paid for a forward start option (with timing decided by management) of
an NPD with deterministic investment costs and uncertain eventual future cash
flows, continuing in perpetuity (see Sections 15.8.2 and 15.8.7 (Table 15.2)).

Telecommunication practitioners had presented a compound options model,
where there is a three-phase life cycle, consisting of research, development
and deployment. Jensen and Warren (2001) adapted the compound option
formula, (see R. Geske, ‘The valuation of compound options. Journal of
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Financial Economics, 7, 63–81) using the bivariate normal distribution (see
Sections 15.8.3 and 15.8.7 (Table 15.3)).

Recently, Martzoukas (2002) noted that real option models should recog-
nize that management can and will add value through (endogenous) actions,
which are similar to jump processes with upward (but stochastic) values (see
Sections 15.8.4 and 15.8.7 (Table 15.4)).

Since it is not clear that there is full current information on the cost of
biotechnology R&D or the value of possible discoveries, Bellalah (2002)
provided for explicit information costs for an R&D project and for options
on the project (see Sections 15.8.5 and 15.8.7 (Table 15.5)).

Finally, an application of a real option model to value speculative develop-
ments, where both investment cost and subsequent product value are stochastic,
was provided by Quigg (1993) (see Sections 15.8.6 and 15.8.7 (Table 15.6)).

15.6 APPLYING REAL OPTIONS TO GENZYME BIOSURGERY

Kate had read the following passage in Howell et al. (2001) Real Options: Eval-
uating Corporate Investment Opportunities in a Dynamic World (pp. 197–198)
‘One interesting evolution will take place inside real options itself, namely
that nature will increasingly imitate art. That is to say, businesses will increas-
ingly structure their deals in order to have them make sense in real option
terms . . . Firms may well float individual business projects (as well as on-
going business projects) on stock markets.’ Kate believed Genzyme had done
exactly that, but she was puzzled as to how the tracking stocks in the loss-
making divisions should be valued by investors and investment analysts. Kate
was particularly interested in the Genzyme Biosurgery division, which had a
number of products in the pipeline, but was still a loss-making operation. The
Genzyme Biosurgery division, which had a loss of $160 million, had a market
capitalization of $186 million. The summary results for the Genzyme Biosurgery
division for the three years ended 31 December 2000 are as follows:

Financial Summary for Genzyme Biosurgery
1998 1999 2000

Actual Actual Actual
US$’000 US$’000 US$’000

Revenue 121 075 132 353 145 214
growth 9% 10%

Operating loss(∗) (81 311) (77 762) (159 371)

Net cash flow from operating activities (73 907) (66 110) (54 818)
% of revenues −61 % −50 % −38 %

R&D costs 29 080 36 075 37 000

Net cash flow from operating (44 827) (30 035) (17 818)
activities pre R&D costs

(∗)Operating loss in 2000 includes $82 m non-recurring write-off of R&D purchased.
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The balance sheet of the division is set out below. As can be seen, the net
assets of the division ($511 m) are primarily represented by intangible assets,
such as goodwill and patents. The division also has debt of $211 m which is
due for repayment after 2004.

Balance Sheet as at 31 December 2000

US$’000
Cash and cash equivalents 78 163
Net receivables 38 952
Inventory 61 574
Other current assets 9 543

Total current assets 188 232

Fixed assets 57 409
Intangible assets 562 635
Investments in equities 1 603
Other non-current assets 1 721

Total assets 811 600

Liabilities

Accounts payable 6 074
Due to Genzyme General 18 645
Other current liabilities 64 694
Long-term debt 211 004
Other liabilities 77

Total liabilities 300 494

Net assets 511 106

Retained earnings
Share capital

Total equity 511 106

Genzyme Biosurgery provided some limited forecasts for the next few years
on the ‘cost to R&D completion’ for certain products, while warning about the
inherent uncertainty of forecasting biotechnological and pharmaceutical prod-
ucts. Genzyme Biosurgery currently had 19 new products in various stages of
development from the late research stage through phase 3 of clinical trials (see
appendix, Section 15.9).

Kate assumed that total R&D costs to completion to the product development
and launch stage (if successful) for the existing portfolio of 19 products would
be $70 m, spread over the next four years. Revenues from the division’s two
current primary profitable products were expected to increase by approximately
10% per annum. Overall, it was expected that the division would move into
a cash-neutral position by 2004, and that operating cash flow from existing
products (excluding R&D and NPD costs) would reach around $20 million in
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2005, increasing by $10 million thereafter for another nine years. The division
had limited cash available, and it was likely that some costs would need to be
funded by further rights issues to the shareholders.

Given the history of the biotechnology industry, Kate made several other
assumptions: (a) that the average success rate of a new product advancing
from the research/preclinical stage through FDA approval for marketing was
12%; (b) that, on average, the new products were 60% through the average
overall development period of 10 years; (c) that 50% of all successful new
products would be ‘blockbusters’, worth at least twice the present value of
an ‘ordinary successful product’, with revenue streams lasting 10 years after
launch; (d) that around $50 m of intangible assets in the accounts represented
patents and intellectual capital that are not part of the current (disclosed)
pipeline; and (e) that the 38% discount rate used by Biosurgery for cash flows
from each future project once it reached technological feasibility is appro-
priate (halved for existing products). These assumptions enabled Kate to focus
on ‘blockbuster equivalents’ (BE), which in this case would be 19 pipeline
new products times 12% probability of success = 2.28 successes divided by
1.33 = 1.71 BE.

An example of a blockbuster was Renagel, a new product in the Genzyme
General division for which the company had strong expectations. The overall
launch costs (D + I ) (including marketing and advertising costs, manufacturing
set-up, packaging and brand development) of this drug were assumed to be
$100 m, spread over the next four years. The hypothetical market size (and
Renagel share of the market) is shown in the appendix, Section 15.10. There
are various forecasts of Renagel annual revenues ranging from $33 m (1999),
$70 m (2002) of Patrick E. Flannigan III and Jonathan R. Moran, ‘GelTex’,
SG Cowen, 19 November 1999 to $164 m (2001), $457 m (2004) of Ronald C.
Renaud, ‘Genzyme General’, Bear Stearns, Inc., 8 October 2001.

Investment analysts have focused on other real options within the Bio-surgery
pipeline, such as currently profitable products like Synvics (synovial fluid treat-
ment for knees) expansion into Europe, and the Sepra anti-adhesion products
(see Robin R. Young, ‘Research Notes’, Stephens Inc., 22 October 2001).

The more Kate thought about the nature of the Biosurgery tracking stock, the
more she realized that the shareholders were likely to be risk-takers, and were
investing in potential future revenues arising from successful product develop-
ments. In addition, these shareholders knew it was likely that investors would
have to invest further cash in the division to allow further R&D, development
of specific products or launch of a new product. In fact, the tracking stock itself
appeared to be a real option for a potential investor, allowing the investor a
right to a future business decision (i.e. the decision to inject further cash if a
new successful product looked likely).
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15.7 CASE QUESTIONS

1. How should the real options in the Genzyme Biosurgery division be
valued, using the six real option-pricing models? Which model is most
appropriate? How sensitive are real option values to Kate’s assumptions?

2. Is the real option value reflected in the current market capitalization?
If not, what is an appropriate corporate finance strategy for the
Genzyme group?

3. Are there further real options within the business that should be consid-
ered and valued, especially put options which reflect the downside risks
of large R&D expenditures, funding problems and product guarantees
and complications?

4. See www.genzyme.com.

15.8 APPENDIX 1: SIX REAL OPTION MODELS
FOR GENZYME BIOSURGERY

15.8.1 Margrabe exchange options

Margrabe, W. (1978) The value of an option to exchange one asset for another.
Journal of Finance, 33, 177–186.

Assume that bio development project present value is V , and the
cost of the investment in year two is I + D, and that both are
stochastic. Margrabe (1978) showed such a European exchange option has
the value F(V, I, D, σV , σI+D, ρ, r, δV , t2) = V e−δV t2N(d1) − (I + D)N(d2),
where V = value of developed system, I = development cost, D = second-
phase R&D expenditure, t2 = time of the development, σV = instantaneous
standard deviation of V , σI+D = instantaneous standard deviation of I +
D, ρ = correlation between V and I + D, r = risk-free interest rate, δV =
0 = income rate of developed system V , σ =

√
σ 2

V − 2ρσV σI+D + σ 2
I+D ,

N(·) = cumulative standard normal distribution function, d1 = ln(V/(I +
D)) + (−δV + 0.5σ 2)t2/σ

√
t2, d2 = d1 − σ

√
t2. The European option model

assumes that I and D cannot occur until t2.

15.8.2 Forward start options

Lint, O. and Pennings, E. (2001) An option approach to the new product devel-
opment process: a case study at Philips Electronics. R&D Management, 31(2),
163–172.
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When the possibility of product launch has been created, the value of the timing
option is:

F(V (TL)) =
{
AV β(TL) V (TL) < V ∗
V (TL) − I V (TL) ≥ V ∗

with:

β = 1

2
− r − δ

σ 2
+
√(

1

2
− r − δ

σ 2

)2

+ 2r

σ 2
, A =

(
(β − 1)β−1

ββIβ−1

)
,

V ∗ = I
β

β − 1

r = riskless rate, δ = dividend yield, σ2 = volatility of V for t < TL, σ1 =
volatility of V for t > TL, µ = value drift, TL is time of NPD launch, I is
launch investment cost. The value of the product launch option OL(tRD) as of
the initial R&D decision is the discounted expected value of the timing option:

OL(tRD) = AV β(tRD) exp
(
βωµ + 1

2β2ω2
σ

)
�(κ1)

+ V (tRD) exp(µ(TL − tRD))�(κ2) − I�(κ3)

where �(·) denotes the cumulative probability distribution function of a stan-
dard normal variable, x∗ = [ln(V ∗) − ln(V (tRD)) − ωµ]/ωσ , ωµ = (µ − 1

2σ 2
1 )

(TL − tRD) and ωσ = σ1
√

TL − tRD, κ1 = x∗ − βωσ , κ2 = −x∗ + ωσ and
κ3 = −x∗.

15.8.3 Compound options

Jensen, K. and Warren, P. (2001) The use of options theory to value research
in the service sector. R&D Management, 31(2), 173–180.

The Geske (1979) formula for a compound option states that the option
value is:

G = M

[
d1

(
V

V ∗ exp(−rt1)
, t1

)
, d1

(
V

I exp(−rt2)
, t2

)
, ρ

]

− I exp(−rt2)M

[
d2

(
V

V ∗ exp(−rt1)
, t1

)
, d2

(
V

I exp(−rt2)
, t2

)
, ρ

]

− D exp(−rt1)N

[
d2

(
V

V ∗ exp(−rt1)
, t1

)]
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where the functions d1 and d2 are defined by: d1(x, t) = (ln(x) + σ 2t/2)/σ
√

t ,
d2(x, t) = d1(x, t) − σ

√
t and G = Geske compound option value, V =

estimated current present value of launch cash flows, I = investment required
at launch stage, D = investment required at development stage, t1 = time of
development decision, t2 = time of launch decision, σ = volatility associated
with the launch value V , r = risk-free interest rate, N = cumulative normal
distribution, M = bivariate cumulative normal distribution, ρ = √

t1/t2 =
correlation coefficient in bivariate distribution, V ∗ = value of V at which
the option at t1 (development) should be exercised, determined by solving
the standard Black–Scholes equation for the option maturing at t2, i.e. V ∗ is the
solution to the equation: FBS(V ∗, I, σ, t2 − t1, r) = 0 where FBS(V, I, σ, t, r) is
the value of a simple European call option on an asset currently valued at V with
exercise price I , volatility σ , time to expiry t and risk-free interest rate r . The
maximum justified value of research expenditure is then given by Rmax = G.

15.8.4 Mixed jump diffusion options

Martzoukas, S.H. (2003) Real R&D options with endogenous and exogenous
learning. In D. Paxson (ed.), Real R&D Options. Oxford: Butterworth-
Heinemann, 111–129.

Suppose that there is the possibility that alert management is capable of affecting
an upward jump of the value of an R&D discovery, with a mean jump proportion
of 10%, and a volatility of 50%; otherwise the underlying value of the discovery
has a gBm at termination, with a volatility of 50%. A European call option C

conditional on activation of i random controls at t = 0 equals:

Ccond(V, I, T , σ, δ, r, γi, σi) = e−rT E[(VT − I )+ | i controls]

The discounted risk-neutral expectation, derived along the lines of the
Black–Scholes model but conditional on control activation equals:

e−rT E[(VT − I )+ | i controls] = V exp

[
−δT +

n∑
i=1

(γi)

]
N(d1)

− I e−rT N(d2)
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where:

d1 ≡
ln(V/I) + (r − δ)T +

n∑
i=1

(γi) + 0.5σ 2T +
n∑

i=1

(0.5σ 2
i )

[
σ 2T +

n∑
i=1

(σ 2
i )

]1/2

and

d2 ≡ d1 −
[
σ 2T +

n∑
i=1

(σ 2
i )

]1/2

with N(d) denoting the cumulative standard normal density evaluated at d .

15.8.5 Incomplete information options

Bellalah, M. (2003) On irreversibility, sunk costs and investment under incom-
plete information. In D. Paxson (ed.), Real R&D Options. Oxford: Butterworth-
Heinemann, 11–29.

The value of the investment timing option C(V ), which has an information
uncertainty cost of λV for the R&D discovery value and λc for the information
cost of the option, is: C(V ) = aV β , where β = 0.5 − (r − δ + λV )/σ 2 + {[(r −
δ + λV )/σ 2 − 0.5]2 + 2(r + λc)/σ 2}0.5, V ∗ = βI/(β − 1) and a = (V ∗ − I )/

(V ∗β). V ∗ corresponds to an optimal timing of the investment.

15.8.6 Stochastic value and cost options

Quigg, L. (1993) Empirical testing of real option-pricing models. Journal of
Finance, June, 621–640.

Assume that both the cost and value of the R&D program are stochastic, the
value is a perpetuity (or nearly so, with a long patent life), there is an agreed
risk premium for both the investment cost and the value, a constant volatility
for both value and cost, and a constant correlation between the two stochastic
processes. Assume there is a ratio (z∗) of value to costs at which it is optimal
to invest, and there are certain other boundary conditions.

One solution is offered by Quigg (1993), among others:

C(V, I) = I (Azj + k)
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where:
j = ω−2(0.5ω2 + νI − νV + [ω2(0.25ω2 − νV − νI + 2r)

+ (νI − νV )2]0.5)

A = (z∗ − 1 − k)(z∗)−j

z∗ = j (1 + k)/(j − 1)

k = βz/(r − νx)

ω2 = σ 2
I − 2ρσIσV + σ 2

V

15.8.7 Tables of Excel formulas

Table 15.1

A B C

1 MARGRABE 1978

2

3 EUROPEAN EXCHANGE OPTION

4

5 INPUT

6 DEVELOPMENT TIME 2

7 INVESTMENT TIME 2

8 INTEREST RATE 0.050

9 VALUE VOLATILITY 0.500

10 COST VOLATILITY 0.500

11 CORRELATION 0.500

12 I 50.000

13 D 50.000

14 I+D 100.000

15 V (PRESENT VALUE) 100.000

16 V-D-I NET PRESENT VALUE 9.516

17

18 OUTPUT

19 REAL EXCHANGE OPTION VALUE 26.025 B15*B23-B14*B24

20 EXCHANGE VOLATILITY 0.500 SQRT(B9^2+B10^2-2*B11*B9*B10)

21 d1 0.707 (LN(B15/B14)+(0.5*B20*B7))/

(B20*SQRT(B7))

22 d2 0.000 B21-B20*SQRT(B7)

23 N1 0.760 NORMSDIST(B21)

24 N2 0.500 NORMSDIST(B22)

25

26 The first six inputs are the D and I timing estimates, the interest rate,

27 and the value and investment cost volatility and correlation.

28 The next three inputs are V, I and D estimates.

29 The Margrabe exchange option values assume I+D is at t2.
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Table 15.2

A B C

1 LINT & PENNINGS 2001

2

3 STOCHASTIC R&D, AND NPD

4

5 INPUT

6 t(R) 0

7 t(D) 1

8 T 2

9 V 100.000

10 I 100.000

11 σ1 0.500

12 σ2 0.250

13 r 0.050

14 δ 0.000

15 µ 0.050

16

17 OUTPUT

18 REAL OPTION

VALUE 65.801 B30*B34*B31+B9*B35*B32-B10*B33

19 ω(µ) −0.150 (B15-0.5*B11^2)*(B8-B6)

20 ω(σ) 0.707 B11*SQRT(B8-B6)

21 x∗ 2.519 (LN(B27)-LN(B9)-B19)/B20

22 κ1 1.639 B21-B29*B20

23 κ2 −1.811 -B21+B20

24 κ3 −2.519 -B21

25 F(V) 54.075 IF(B9<B27,B28*(B9^B29),B9-B10)

26 V-I 0.000 B9-B10

27 V∗ 510.850 (B29/(B29-1))*B10

28 A 0.176 ((B29-1)^(B29-1))/((B29^B29)*B10^(B29-1))

29 β1 1.243 0.5-(B13-B14)/(B11^2)+SQRT(((B13-B14)/

(B11^2)+0.5)^2 + 2*B13/(B11^2))

30 AVβ1 54.075 B28*(B9^B29)

31 φ(κ1) 0.949 NORMSDIST(B22)

32 φ(κ2) 0.035 NORMSDIST(B23)

33 φ(κ3) 0.006 NORMSDIST(B24)

34 O(L)1 1.221 EXP(B29*B19+0.5*(B29^2)*(B20^2))

35 O(L)2 1.051 EXP(B15*(B8-B7))
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Table 15.3

A B C

1 GESKE 1979

2

3 EUROPEAN COMPOUND CALL OPTION

4

5 INPUT

6 DEVELOPMENT TIME 1

7 INVESTMENT TIME 2

8 INTEREST RATE 0.050

9 VALUE VARIANCE 0.250

10 VALUE VOLATILITY 0.500

11 V (PRESENT VALUE) 100.000

12 I 50.000

13 D 50.000

14 V-D-I NET PRESENT VALUE 7.197 B11-B13*EXP(-B8*B6)-B12*EXP(-B8*B7)

15

16 OUTPUT

17 REAL OPTION VALUE 23.001 B11*B32-B12*EXP(-B8*B7)*B33-B13*

EXP(-B8*B6)*B31

18 t2-t1 1.000 B7-B6

19 V∗ 96.381

20 d1 1.663 (LN(B19/B12)+((B8+0.5*B9)*B18))/

(SQRT(B9*B18))

21 d2 1.163 B20-SQRT(B9*B18)

22 N1 0.952 NORMSDIST(B20)

23 N2 0.877 NORMSDIST(B21)

24 FB′ 50.000 B19*B22-B12*EXP(-B8*B18)*B23

25 FB-D 0.000 B24-B13

26 ρ(t1/t2) 0.707 SQRT(B6/B7)

27 d1,t1 0.424 (LN(B11/(B19*EXP(-B8*B6)))+(0.5*B9*B6))/

(SQRT(B9*B6))

28 d1,t2 1.475 (LN(B11/(B12*EXP(-B8*B7)))+(0.5*B9*B7))/

(SQRT(B9*B7))

29 d2,t1 −0.076 B27-SQRT(B9*B6)

30 d2,t2 0.768 B28-SQRT(B9*B7)

31 N2 0.470 NORMSDIST(B29)

32 M1 0.657 BivariateNormal(B27,B28,B26)

33 M2 0.449 BivariateNormal(B29,B30,B26)

34

35 The first five inputs are the D and I timing estimates, the interest rate, and the

36 value variance and volatility from comparable securities.

37 The next three inputs are V, I and D estimates.

38 The call option value assumes V∗ is the value above which the call option will be exercised at t1.

39 USE TOOLS/SOLVER, SETTING B25 = 0 BY CHANGING B19.
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Table 15.4

A B C

1 MARTZOUKAS 2003

2

3 MIXED JUMP DIFFUSION

4

5 INPUT

6 V 100.000

7 I+D 100.000

8 T 2

9 r 0.050

10 δ 0.000

11 σ 0.250

12 POISSON

13 JUMP 1

14 σJ 0.250

15 E[k] 0.105 EXP(B16)-1

16 γ 0.100

17

18 OUTPUT

19 REAL OPTION VALUE 29.013 B6*B22*EXP((-B10)*B8+

B16)-B7*B23*EXP(-B9*B8)

20 d1 0.678

21 d2 0.245 B20-(SQRT((SUM(B14^2))

+(B11^2)*B8))

22 N1 0.751 NORMSDIST(B20)

23 N2 0.597 NORMSDIST(B21)

24 d1=(LN(B6/B7)+SUM(B16)+0.5*SUM(B14^2)+(B9-B10+0.5*(B11^2))*

25 (B8))/(SQRT(SUM(B14^2)+((B11^2)*B8)))

26

27 Assumes one upward jump (R&D discovery) of 10%, with 25% volatility,

28 otherwise 25% volatility ignoring jumps.
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Table 15.5

A B C
1 BELLALAH 2003
2
3 R&D UNDER INCOMPLETE INFORMATION
4
5 INPUT
6 V 100.000
7 I 100.000
8 r 0.050
9 σ 0.500

10 µ 0.100
11 α 0.100
12 δ 0.100
13 λ1 0.020
14 λ2 0.010
15
16 OUTPUT
17 REAL OPTION VALUE 36.501 B18*B6^B19
18 a 0.029 (B22-B7)/(B22^B19)
19 β 1.549731 0.5-B20+SQRT((B20-0.5)^2+B21)
20 1 −0.120 (B8-B12+B13)/B9^2
21 2 0.480 2*(B8+B14)/B9^2
22 V∗ 281.907 B19*B7/(B19-1)

Table 15.6

A B C

1 QUIGG 1993

2

3 REAL DEVELOPMENT OPTION

4

5 INPUT

6 INVESTMENT COST 100.000

7 DEVELOPMENT VALUE 100.000

8 COST DRIFT 0

9 COST VOLATILITY 0.500

10 VALUE DRIFT 0

11 VALUE OTHER INCOME 0

12 VALUE VOLATILITY 0.500

13 CORRELATION 0.500

14 RISK I 0.100

15 RISK V 0.100

16 INTEREST RATE 0.050

17 ASSET CARRY COST 0.000

18

19 OUTPUT

20 REAL OPTION VALUE 37.475 B6*(B27*B21^B28+(B25))

21 z 1.000 B7/B6

22 νI −0.050 B8-B14*B9

23 νV −0.050 B10-B11-B15*B12

24 ω2 0.250 B9^2-2*B13*B9*B12+B12^2

25 k 0.000 B17*B21/(B16-B22)

26 z∗ 2.906 (B28*(1+B25))/(B28-1)

27 A 0.375 (B26-1-B25)*(B26)^(-B28)

28 j 1.525

29 j=(1/B24)*(0.5*B24+B22-B23+SQRT(B24*(0.25*B24-B23-B22+2*B16)+(B22
-B23)^2))
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15.9 APPENDIX 2: GENZYME BIOSURGERY PRODUCT PIPELINE

Clinical Trials

Cardiothoracic Research Preclinical Phase 1 Phase 2 Phase 3

SeprafilmTM II for adhesions

Gene Therapy – peripheral vascular disease

Gene Therapy – heart bypass surgery

Gene Therapy – congestive heart failure

Gene Therapy – restenosis

Cell Therapy – ventricular restoration

Drug Delivery – atrial fibrillation

Bio-Orthopedic

Synvisc for hip in development

Synvisc for other joints

QuickTock

Carticel II

Small Molecule for osteoarthritis

Biosurgical Specialties

Seprapack for sinus surgery cleared for marketing

Sepragel Sinus cleared for marketing

Seprafilm – safety outcomes study post marketing

Seprafilm II

Sepragel Spine

Sepragel – for abdominal and pelvic

TGF-B

15.10 APPENDIX 3: RENAGEL, MARKET SIZE AND SHARE

Increase in
dialysis pop

0.00%

Cost increase 5.00%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

US dialysis pop 220 000 220 000 220 000 220 000 220 000 220 000 220 000 220 000 220 000 220 000 220 000 220 000

Worldwide 600 000 600 000 600 000 600 000 600 000 600 000 600 000 600 000 600 000 600 000 600 000 600 000

Cost per patient
($k)

1.27 1.33 1.40 1.47 1.54 1.62 1.70 1.79 1.88 1.97 2.07 2.17

Percentage of US
market

8.00% 12.00% 30.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%

Percentage of
ROW market

0.00% 2.00% 7.00% 10.00% 20.00% 30.00% 40.00% 40.00% 40.00% 40.00% 40.00% 40.00%

US revenues 22 352 35 204 92 412 161 720 169 806 178 297 187 211 196 572 206 401 216 721 227 557 238 934

ROW revenues 0 16 002 58 807 88 211 185 243 291 758 408 461 428 884 450 328 472 845 496 487 521 311

Annual revenues 22 352 51 206 151 219 249 931 355 049 470 054 595 673 625 456 656 729 689 565 724 044 760 246
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Chapter 16

Selective review of real R&D
options literature

DEAN A. PAXSON

SUMMARY

Real R&D options are perceived processes in R&D that offer flexibility
to the researchers, in terms of timing, commitment, expenditures and
research procedures, which can be valued as options. The literature
on real R&D options is long and distinguished, starting shortly after the
literature on financial options in the 1980s. Articles are cited according
to the assumed diffusion process of the R&D project, by the dynamics
of R&D over time and the empirical basis of illustrated valuations. Real
R&D options have been applied to biotechnology, energy, defense
and telecommunication research.

In the future, real R&D options may become integrated with capital
market prices, so internal and external market valuation using option
theory may be more or less consistent and sometimes useful in making
R&D capital allocation and other corporate finance decisions.

16.1 INTRODUCTION

‘Real R&D options’ are opportunities (and possibly implicit commitments) to
acquire or develop or dispose of real assets related to R&D at an investment
and implementation cost determined (or estimated) in the present with the bene-
fits delivered in the future. Like financial options, there is conceptually an
underlying asset, or liability, that determines the option value at termination.
However, unlike financial options, real R&D options are not (yet) commonly
traded, are often difficult to identify, with possibly few comparables and limited
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public information, and may involve complex methods for valuation. Many
R&D projects are not proprietary (until perhaps patented), so competition and
first-mover advantages/disadvantages must be considered.

Some of the differences between financial and real options have diminished
as R&D ‘tracking stocks’ and ‘synthetic real options’ are traded, sometimes
linked to specific identifiable indices and valued using common option pricing
methodology.

Real R&D option theory has been applied to a wide variety of characteristic
aspects of projects, including timing of investment expenditures in monopoly
and competitive environments, choices in R&D budgets, sequential alterna-
tive actions, follow-on investment opportunities, and flexibility in R&D project
development.

Real R&D call options are opportunities for the holder to benefit from the
upside, while only suffering the loss of premium (equals ‘unrecoverable’ R&D
costs) as a downside. Put options are opportunities for the holder to benefit from
the downside, such as guaranteed reimbursement of R&D expenses. Written
R&D put options may involve real or implicit warranties of the value of R&D,
as well as required future expenditures such as further clinical trials, or liabilities
from harmful products.

Use of real option theory in everyday practices is as old as early Greek
philosophy. Around 550 BC, Thales of Miletus is said (by Aristotle, around
334 BC) to have shown that philosophers can easily be rich if they like. Thales
predicted there would be an abundant harvest of olives in the coming year
(similar to forecasting high future volatility, or lots of upside). Having a little
money, he gave deposits for the use of all olive presses in Miletus (this is
similar to paying an option premium). At the next harvest, which was indeed
abundant, he rented the presses at high prices (this is similar to exercising an
option), capitalizing on pre-emption.

More recently, the University of Manchester economics professor, Jevons
(1871) identified real (environmental) options in the prospective use of a com-
mons, which ‘might be allowed to perish at any moment, without harm, if we
could have it re-created with equal ease at a future moment, when need of it
arises’.

Today, many academics and practitioners have shown that option analysis
is an appropriate valuation technique for a firm’s growth opportunities (call
options) including timing (exercising options) for future investments. Indeed
almost every project competes with itself postponed, in view of the uncer-
tainty in interest rates. Resources that have abandonment or switch use possi-
bilities are equivalent to put options. Sick (1989), Dixit and Pindyck (1994),
Trigeorgis (1996), Paxson (1997), Amram and Kulatilaka (1999), Brennan and
Trigeorgis (2000), Copeland and Antikarov (2001), Grenadier (2001), Howell
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et al. (2001) and Schwartz and Trigeorgis (2001) provide surveys of real option
valuation and applications in property, energy, manufacturing and R&D.

Since most R&D consists of some flexibility over time in terms of budgets,
the number and quality of research personnel, and the nature and direction
of research strategy, real R&D option theory has a wide and varied range of
applications. However, there are usually problems in perceiving that the R&D
processes involve options. First, it is necessary to identify and test the goodness
of fit for the diffusion process of the ‘underlying R&D value’. R&D does not
often result in quantified (and market) values, available in time series.

There is a rich literature on modeling real R&D options, although these
have not always been recognized as real options. Section 16.2 shows some of
the assumed diffusion processes for R&D. Section 16.3 considers some of the
dynamic models for R&D, in particular Roberts and Weitzman (1981), Dixit
(1989), Grenadier and Weiss (1997), Bar-Ilan and Strange (1998) and Childs
et al. (1998). Section 16.4 discusses several pre-emption articles. Section 16.5
surveys some of the empirical inputs provided for real R&D option illustrations.
Section 16.6 discusses some of the practical uses of real R&D option models,
and concludes with some comments regarding potential new models, new solu-
tions, new empirical applications and new uses of real R&D option models.

16.2 DIFFUSION PROCESSES FOR R&D

The diffusion process that the value and cost of R&D is expected to follow in
continuous time is critical in formulating the problem and arriving at a solution
for valuation, possible timing and other problems. A general diffusion process
format is:

dX

X
= κ(µ − aX̄)dt + bσ ξ dz1 + cλ dz2

where X is the value or cost of R&D, X̄ is the long-term mean, κ is the speed
of reversion, µ is the drift, a is 1 for a mean-reverting process and 0 otherwise,
b is 1 for a geometric Brownian motion and 0 for a deterministic process, σ
is the expected volatility, ξ is the power to which volatility is raised (usually
equals 1), c is 0 for a standard geometric Brownian motion and 1 for a jump
process, λ is the number of jumps per unit time (usually with an expected jump
size and volatility), the dz are standard Wiener processes, and ρ is the possible
correlation of value and cost. Several authors believe it is necessary to take
the expectation of future cash flows under a risk-adjusted probability measure,
usually subtracting from the drift a risk-aversion factor times the volatility,
especially where there are no traded securities appropriate as a proxy return



294 Real R&D Options

Table 16.1 Assumed general diffusion processes

dX/X κ µ aX̄ b ξ c X

Samuelson 65 1 µ 0 1 1 0 Value
Merton 76 1 µ λk 1 1 1 Price
Aase 85 1 µ 0 1 1 1 Project
Dixit 89 1 µ 0 1 1 0 Value
Ott 92 1 −i 0 0 0 g(I, i) Investment
Willner 95 1 µ 0 0 0 (γ − δ) Venture PV
Newton et al. 96 1 µ 0 1 1 0 Value, cost
Grenadier & Weiss 97 1 µ 0 1 1 0 Value
Childs et al. 98 1 µ 0 1 1 0 Value
Bar-Ilan & Strange 98 1 µ 0 1 1 0 Price
Schwartz & Moon 00a 1 −i 0 β(i, I ) 0.5 0 Investment
Schwartz & Moon 00b κ µ ū 1 1 0 Sales growth
Schwartz & Moon 00c κ γ γ̄ 1 1 0 Variable cost

Ott 92 I = total R&D investment, i = rate of investment.
Willner 95 γ = size discovery jump up, δ = size competitive jump down.
Schwartz & Moon 00a i = rate of R&D invesment.

for the underlying process. Table 16.1 shows a selection of some of the diffu-
sion processes assumed by authors (for illustration, since some authors choose
different diffusion processes for different R&D elements).

Table 16.1 shows that most authors assume (but seldom test empirically) that
the R&D eventual value, and cost to develop, follow a geometric Brownian
motion, although the early models assumed a deterministic cost. An example of
using two geometric Brownian processes is Newton et al. (1996). These authors
assumed that both R&D values (X) and costs (I ) are stochastic and possibly
correlated, dX = µX dt + σX dz, that is the developed R&D project values
are lognormally distributed, and R&D costs (equal to exercise price) follow
a similar diffusion process, dI = µI dt + σI dz, with a constant correlation
between the processes.

Aase (1985) provided a very general framework for R&D values, including
up and down jumps. Schwartz and Moon (2000a) considered R&D benefits
and costs stochastic with zero correlation, but benefits were also modeled with
a Poisson (surprise success or failure) element. Weeds (2000) incorporated a
stochastic innovation element (Poisson arrival) into the R&D process.

Several authors have modeled the R&D cost to completion as a stochastic
process, often dependent on a maximum investment spend (as in Ott, 1992 and
Pindyck, 1993). Schwartz and Moon (2000a) made a similar assumption and
then related the completion cost volatility to the R&D investment spend, a type
of reducing uncertainty through R&D. Schwartz and Moon (2000b,c) assumed a
mean-reverting process, in the first case for the sales growth, and in the second
case for the variable cost.
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Other models do not necessarily fit these simple general diffusion processes.
For instance, Roberts and Weitzman (1981) modeled the terminal R&D benefits
as a geometric Brownian motion process, where the concern was an optimal
stopping problem. Since costs were deterministic, R&D provided information
learned in stages. Weitzman et al. (1981) used similar assumptions, except that
costs were stochastic, and process volatility decreased over time.

Over a decade ago, Carr (1988), building on Margrabe (1978) and Geske
(1979), provided the valuation of sequential exchange options, that is where
there are stages at which further expenditures are considered. This has been
applied to real R&D options in Carr (1995), Taudes (1997) and Childs et al.
(1998). Childs et al. (1998) assumed that there is a lognormal distribution of
the benefits of any real option process, but then comparable (and possibly
competing) projects can be modeled as either parallel or sequential processes.
Lee and Paxson (2001) extended this approach for real R&D American sequen-
tial exchange options. The analysis was based on the R&D specifications and
timing of initial expenditures and a second phase of R&D expenditures and
final developments, when the project values are realized.

Childs and Triantis (1999) assumed a general diffusion process for R&D
development, so that the volatility and drift of R&D value can depend on a
number of factors. For instance, the volatility could depend on time, either
elapsed or the cumulative time expended on development. Nested within this
model are assumptions such as Pindyck (1993), where technical uncertainty
is resolved through time by investment (as is often characterized in natural
resources), or Weeds (2000), where the possibility of a research breakthrough
(or for Kulatilaka and Perotti, 1998 a pre-emption) is a Poisson process, constant
through time. The Childs and Triantis (1999) solution of such a general model
used a trinomial lattice, so that several alternative R&D strategies can be eval-
uated. Dynamic funding policies are also modeled in this context.

Berk et al. (1999) considered several sources of R&D risk, including technical
uncertainty of value, cost and time, exogenous risk associated with competi-
tors or the environment, and traditional risks of product demand and produc-
tion costs. The cash flows of new ventures are modeled with two stochastic
processes, one conditional on a catastrophic event (termed ‘obsolescence’) and
the other conditional on no obsolescence. The firm ‘learns by doing’, so that
required investments are either successful or not, before moving to subsequent
stages. The authors show a closed-form solution for some limited cases, and
then ‘backward iteration’ solutions for general cases.

Schwartz and Zozaya-Gorostiza (2000) assumed that there are two types of
technology investments, developments and acquisitions. Developments are situ-
ations where the expected cost of completion K follows a controlled diffusion
process, as in Pindyck (1993) (or more complex): dI = −i dt + g(i, I )dz, where
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i is the rate of investment and the stochastic term is dependent on both i and
I , as in Schwartz and Moon (2000a). Then the full model is a second-order
elliptic partial differential equation, solved by successive over-relaxation. Acqui-
sitions are where the investment is instantaneous and the project benefits are
received over time in the future. Under a risk-neutral measure, the solution is a
second-order parabolic differential equation, solved by the alternating direction
implicit method.

Huchzermeier and Loch (2001) provided a dynamic programming model of
R&D, allowing for time-variant transition probabilities of product performance,
where additional information might be incorporated into R&D management
flexibility. Childs et al. (2001) considered several diffusion processes for addi-
tional noise in R&D, including mean-reverting noise, and showed the effect of
noise and noise variability on the value of real options.

In summary, even early real R&D option models considered complex and
combined stochastic processes, usually without first empirically testing whether
the assumed diffusion processes closely fit actual, historical R&D values and/or
costs. The wide range of diffusion processes considered by these many authors
provide a rich menu for future modelers. Some of the most interesting past
choices, and closed-form solutions, are illustrated in the next section.

16.3 DYNAMICS OF REAL R&D OPTIONS

Many of the real R&D option models above assume that the R&D options
are more or less proprietary and that the R&D framework is static over time,
the volatility of R&D cost, value and correlation is constant over time. Of
course, these are particularly inappropriate assumptions regarding the typical
R&D process, where learning occurs, competitors develop superior products, a
sequence of decisions over time are required, and both costs and R&D values
change over time. Some of these models can be made ‘dynamic’ by sequential
changes in the parameters over time, and by inputting different volatilities and
correlations for various stages of R&D.

16.3.1 Sequential decisions and deterministic project volatility

Roberts and Weitzman (1981) and Weitzman et al. (1981) (the ‘Weitzman arti-
cles’) might be regarded (along with Samuelson, 1965) as among the first to
employ the insight that projects are often contingent claims and can be valued
as real options. Perhaps Black and Scholes (1973) and Merton (1973) should
be cited as creators of real option theory, since not all of their imagined appli-
cations were to traded assets. Brennan and Schwartz (1985) and McDonald and
Siegel (1986) were early developers of theory subsequently applied to R&D
and exploration and development in natural resources.
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The Weitzman articles develop the theory of real R&D options in stages, and
provide an empirical application to synthetic oil fuels (‘synfuels’). The model
of sequential development stages assumes that R&D is ‘one-sided’, where the
R&D is required before project completion. Project volatility is assumed to be
a deterministic function of R&D expenditure, reducing by the amount spent.
Let C(s) = costs remaining to completion at state s, σ(s) = volatility of the
project as perceived at state s, then assume σ(s) = kC(s)γ . This is similar
to Cortazar et al. (2001), who assume that technical–geological uncertainty is
reduced proportionally to the exploration expenditures.

The Weitzman articles were concerned with the justified (from a social
viewpoint) subsidy for the development of liquid synfuel from coal, assuming
‘learning externalities associated with reducing cost uncertainty’. Assume one
knows the price (P ) of oil (when the coal liquefaction industry comes on
line) and the estimated mean and volatility of costs to completion. With the
above deterministic volatility (with respect to R&D cost) and a Wiener process
with regard to the underlying project value, the problem of continuing even if
NPV< 0 is an optimal stopping problem. Suppose C = ultimate cost/bbl of coal
liquids, C ≈ N(EC, σ 2) is normally distributed, and EC equals the expected
value of C. If there is a government subsidy for the R&D, the solution for the
optimal stopping problem is: continue subsidy if g(EC, σ, S, P, n, d, T , r) > 0,
else terminate, where:

g(EC, σ, S, P, n, d, T , r) = σ
φ((P − EC)/σ)

1 − '((P − EC)/σ)
− rerT

nd
S

where '(·) = cumulative distribution function, φ(·) = standard normal density,
S = total subsidy to completion, T = time lag until project operation, n =
factory output (bbl/day), d = days per year production and r = riskless rate.

Figure 16.1 shows that given the parameter values of a one million bbl/day
plant, production for 10 years, volatility of $10, synfuel cost of $44 and current
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Figure 16.1 Optimal stopping margin (D∗ = D) that justifies terminating synthetic oil project
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imported oil price of $30, the justified subsidy should be around $4/bbl, where
D∗ = D (D = −P + expected cost of coal liquids, D∗ = −P + minimum
syncost that justifies continued subsidy of R&D).

Another interpretation of this approach is to derive the minimum syncost
that, for a given subsidy, is justified by project volatility. For the same parameter
values, except for volatility, and a subsidy of $5 billion, the current syncost might
be up to ‘min syncost’, if the project volatility is as illustrated in Figure 16.2.

In general the solution shows that: (i) minimal syncost which justifies a set
subsidy increases with σ(s); (ii) similarly D∗ (negative margin) increases with
σ(s); and (iii) D∗ decreases with size of subsidy.

The Weitzman articles did not consider an R&D model with a term struc-
ture of oil prices and oil price volatility, possibly because at that time there
was no established futures and options market for crude oil. Even so, given
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optimal subsidy, and otherwise fixed parameters, Figure 16.3 shows that R&D
net project value [g(·) − present value of investment cost] is a positive function
of project volatility, but at a decreasing rate.

Grossman and Shapiro (1986) specifically addressed the dynamics of R&D
over time, primarily assuming deterministic processes. Given progress of R&D
as a deterministic function, they utilized a hazard rate function regarding the
probability that success will be achieved, given that R&D has progressed along
a certain distance. Under most assumptions, the optimal R&D spend should
increase if the R&D value is high, the closer the R&D is to success. Grossman
and Shapiro (1986) also considered R&D programs with stochastic progress
and noted the importance of a game-theoretic approach, which does not neglect
the aspects of rivalry.

16.3.2 Sequential or parallel R&D development

Childs et al. (1998) examined R&D investment decisions and project values,
where two projects (a and b) can be developed in parallel or in sequence. They
developed closed-form solutions for the value of the investment program and
an optimal strategy for multiple projects (European-style), and analyzed the
optimal decision and the factors that affect the choice between some sequential
and parallel investments, as follows.

Parallel Development

The firm simultaneously invests in both projects at t0 by paying the combined
costs for development.

t0

Invest Ca + Cb  

t1

Receive (xa, xb)+ 

Once development is completed at t1, the firm decides whether to invest Ka or
Kb to implement project a or project b, respectively.

The value of the firm’s investment program at t1 is equal to (xa, xb)
+, where

xi = Xi − Ki

Xi = PV of project i’s future cash flows, Ki = net implementation cost.
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The General Model: Sequential Development

Four feasible sequential investment strategies at t1

V: if the firm does nothing, the cash flow will be zero

VI: if the firm implements project a but does not
develop project b, the value is simply xa

VD: if the firm develops project b but does not implement
project a, the firm will take the maximum value of the
two projects at t2: (xa, xb)+

VID: if the firm implements project a and also develops
project b, the firm may decide to abandon the project a at
t2 if project b proves to be superior.

t0 t1 t2

The value of the program at t0 under sequential development is

VS = e−rt1 E[x+
a ] − Ca − (e−rt1 − e−rt2)E[x+

a |xa ∈ ID]

+ e−rt1 E[e−r(t2−t1)(xb − (δXa − βKa))
+ − Cb|xa ∈ IID]

+ ert1 E[e−r(t2−t1)(xb − x+
a )

+ − Cb|xa ∈ ID]

Interpretation: the first line of the RHS is the value of implementating project
a. The next two lines express the value of a European compound option to
exchange project a for project b. The exercise price of the first stage for the
compound option at t1 is Cb, and the exercise price of the second stage depends
on the decision for project a at time t1.

The parallel development strategy is desirable when the level of correlation
between project values is low, development costs are low, and implementation
costs are large and not easily recovered. If the project values are highly corre-
lated, development costs are high, and implementation costs can be partially
recovered, a sequential strategy would be optimal. Figures 16.4 and 16.5 show
the value at t1 for four strategies: V = no action, which is along the horizontal
axis of xa, the project a ultimate value; VI is implementing a first; VD is
developing b; VID is implementing a and developing b. Figure 16.4 shows that
when the correlation between a and b is positive, VD > V > V ID > V I at
most negative project a values. Figure 16.5 shows that when the correlation
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is negative, at negative project a values, VD > V ID > V > V I , that is ‘do
nothing’ shifts from the second best strategy to the second worst strategy.

Bar-Ilan and Strange (1998) also considered a model of a two-stage sequen-
tial R&D investment, and presented closed-form solutions for a firm’s optimal
sequential investment: (1) without suspension; (2) with suspension; and (3) with
costly suspension. There are two trigger prices, which induce the firm to carry
out the first and second stages of the project.

Consider a project that when completed will provide one unit of output per
unit of time at a variable cost w, where r = riskless rate, θ = time remaining in
the stage, u = price drift and L = abandonment cost. The first stage requires a
payment k1 at the beginning of the stage. The stage is completed h1 years later.
The second stage timing symbols are k2 and h2. If the investment is completely
irreversible, once paid, k1 and k2 can never be recovered. The price of output
(P ) follows a geometric Brownian motion. The solutions for value functions at
various stages, before considering suspension, are:

Solutions for Value Functions (1)

h2h1

Stage 1 Stage 2 Inactive Active 

h1 h2

Assuming no abandonment after stage 2, the value of an active firm:

V3(P) = P

r − µ
− w/r

Solutions for Value Functions (2)

h2h1

Stage 1 Stage 2 Inactive Active 

h1 h2

The value of a firm during the stage 2:

V2(P, θ2) = e−rθ2 E(V3(P(θ2))

= e−rθ2

(
Peµθ2

r − µ
− w

r

)
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Solutions for Value Functions (3)

h1 h2

Stage 1 Stage 2 Inactive Active 

h1 h2

The value of a firm during the stage 1 depends on the value of a firm during
the stage 2:

V1(P, θ1) = e−rθ1 E max[V0(P(θ1) − L, V2(P(θ1), h1) − k2]

The value is composed of two contingent parts: if the project is abandoned at
L and if the investment k2 is made at h2.

Solutions for Value Functions (4)

h2h1

Stage 1 Stage 2 Inactive Active 

h1 h2

For P ≤ P1, the firm will remain inactive, and its value is the option to begin
the investment project, which is a well-known ODE solution:

V0(P) = B0Pβ

For P > P1, the firm begins the project, and the value of an inactive firm equals
a firm beginning stage 1:

V0(P) = V1(P, h1) − k1

With the ability to suspend a project, a firm may be more willing to begin
the project; without suspension the firm’s incentives would be much weaker.
Thus clinical trials might be initiated sooner, if they can be delayed or canceled
as unfavorable results emerge. With suspension, first-stage triggers are rela-
tively low, which encourages ‘exploratory’ investments. A small change in the
suspension cost can have a large effect on investment incentives.

16.3.3 Decisions to enter/exit an R&D venture

Even in a monopoly situation, or with proprietary options, a firm should base
decisions to commence or cease R&D ventures on more than the sign of the net
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present value of expected future cash flows, including the R&D expenditures.
Dixit (1989) provided an elegant approach to the subject, and Grenadier and
Weiss (1997) provided analytical models for the readiness of firms to adopt inno-
vations (enter a business) against inclinations to delay adoption (or instead adopt
earlier innovations), perhaps learning in the process and obtaining lower costs.

Dixit (1989) noted that an idle and an active firm are call options on each
other, since exercising the option to invest creates another option, namely to
abandon the investment and revert to the original situation. Entry/exit decisions
are often not based on present value, resulting in hysteresis, the failure of an
effect to reverse itself as its underlying cause is reversed.

Consider a single discrete project with ρ the rate of interest, κ the sunk invest-
ment (R&D that has no ‘salvage’ value) and ω the avoidable operating cost per
unit time. Define the output flow of the project as a unit, so the revenue for the
project is simply the output priceP . The optimal decision rule consists of two trig-
gersPH and PL, with PH > PL, such that the investment should be made if P rises
above PH and abandoned if P falls below PL. Suppose that the firm does not have
an investment in place and that it believes that P will never change. It will make
the investment if P > ω + ρκ . The right-hand side is the annualized full cost of
making and operating the investment. Alternatively, suppose that a firm has such
an investment in place and that the price falls to a new level P , where the firm
believes it will persist forever. The firm will abandon the investment if P < ω.

Now consider uncertainty, where the current price is ω + ρκ but thereafter
the price will change in equal up or down steps with equal probabilities. If the
firm invests now and continues forever, the NPV will be zero. Suppose that it
waits one period. If at the end of that period the price has gone up, the firm
can invest, having a positive NPV. If it goes down, then it will not invest, so
the expected present value of waiting one period is positive. So at the price PH

the investment is an option that is only just in-the-money, and it is not optimal
to exercise unless it goes deeper in-the-money.

Suppose the market price evolves exogenously over time as a geometric
Brownian motion, with drift µ and volatility σ , and in addition the firm can
suspend operations at a cost λ. Let V0(P ) be the value of starting operations, and
V1(P ) be the value for the active state. The general solution for the idle firm is:

V0 = A0P
−α + B0P

β

where:

β = (1 − m) + [(1 − m)2 + 4r]0.5

2
and

−α = (1 − m) − [(1 − m)2 + 4r]0.5

2

with m = 2µ/σ 2 and r = 2ρ/σ 2.
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The general solution for the active firm is:

V1 = A1P
−α + B1P

β +
(

P

ρ − µ
− ω

ρ

)

The third term of the equation represents the expected present value of the
investment, so that the rest of the equation is the option to abandon. Similarly,
since the idle firm has no current operating profit, V0 must be the value of the
option to become active.

If P is very low, the value of the option to activate is worthless, so A0 = 0
and the option to activate is V0 = B0P

β . As P increases, the value of the
option to abandon has to decrease so B1 = 0. Thus the option to abandon
is V1 = A1P

−α . The firm pays κ to exercise the option to invest and gets an
asset of value V1, so: V0(PH) = V1(PH) − κ . The high-order and smooth-pasting
condition is dV0/dPH = dV1/dPH. The price PL triggers exit. The firm pays the
exit cost and obtains the option to invest: V1(PL) = V0(PL) − λ. The smooth-
pasting condition is dV1/dPL = dV0/dPL. These four conditions result in four
equations with four unknowns A,B, PL and PH.

Hysteresis is:

V1(P ) − V0(P ) = AP−α − BPβ +
(

P

ρ − µ
− ω

ρ

)

Consistence with hysteresis is PH > ω + ρκ = WH and PL < ω − ρλ = WL.
This is the effect of uncertainty. The Marshallian (NPV) trigger prices for
investment and abandonment are WH and WL. The former is the usual full cost
but the latter differs from the variable cost ω, because there are now exit costs.
At a price between these limits, an idle firm does not invest and an active
firm does not exit. Uncertainty widens this Marshallian range of inaction. Some
additional results are that as both κ and λ tend to zero, PH and PL tend to
the common limit ω. If λ ≥ ω/ρ, the project is never abandoned. If σ → 0,
PH → WH, PL → WL. As ω increases, both PH and PL increase. As κ increases,
PL decreases and PH increases, as shown in Figure 16.6, where the R&D invest-
ment costs κ are taken over a range of 0 to 8. Thus R&D might be continued
even if unprofitable, but not necessarily initiated if expected NPV is positive.

Grenadier and Weiss (1997) cast the innovation investment strategy as a
sequence of embedded options. First they identify four potential migration
strategies. Then they compute the probability that a firm will take each of the
four strategies in different technological environments, i.e. the expected arrival
time and the expected profitability of the future innovation. Finally they provide
closed-form solutions for the optimal migration strategies. This is relevant for
the modeling of customers of innovation due to R&D, and also for industrial
patterns of innovating.
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Figure 16.6 Optimal exercise prices

Assume the state of technological progress X(t) follows a gBm. The random
arrival time of the future innovation, T , is the first passage time of X(t) to the
boundary Xh. For α − σ 2/2 > 0, α = drift, σ = volatility, the expected arrival
time E(T ) is equal to:

ln
(
Xh

X

)

α − σ 2/2

There are four potential migration strategies: a compulsive strategy of
purchasing every innovation; a leapfrog strategy of skipping an early innovation;
a buy-and-hold strategy of only purchasing an early innovation; and a laggard
strategy of waiting until a new generation of innovation arrives before
purchasing the previous innovation, as shown below.

Four Potential Migration Strategies

A firm is initially confronted with an opportunity to invest in a current
innovation.

The arrival of current innovation, P0, 
at time zero   

The arrival of future innovation,
     PT, at  uncertain time T 

Upgrade new technology
at upgrade cost, Cu

Hold its current technology

Leapfrog to the new innovation
at a cost, Cl

Purchase the old innovation
at a discounted cost, Cd

Invest

Bypass and

at early adoption cost, Ce 

wait the arrival of future innovation 
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Probabilities of Four Possible Strategies

Current innovation, P0 Future innovation, PT

Invest

Bypass

PC(X) = Pr[Te < T, PT − P0 − Cu ≥ 0]compulsive

Upgrade

PB(X) = Pr[Te < T, PT − P0 − Cu < 0]

Hold

PL(X) = Pr[Te ≥ T, PT − Cl ≥ P0 − Cd]

Leapfrog

PG(X) = Pr[Te ≥ T, PT − Cl < P0 − Cd]

Purchase

buy-and-hold

leapfrog

laggard

The impact of the speed of innovation arrival or the expected arrival time
is shown in Figure 16.7. For markets with rapid innovation [low E(T )], firms
are most likely to adopt the leapfrog and laggard strategies; while the compul-
sive and buy-and-hold strategies dominate for markets with slow innovation
[high E(T )].

The impact of increasing the expected profitability of the future innovation
(µ) is shown in Figure 16.8. For markets with greater µ, the compulsive and
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Figure 16.7 Probability of migration strategies
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leapfrog strategies should become more likely; while the laggard and buy-and-
hold strategies become less compelling. This illustrates an environment where
the speed of innovation arrival is slow, so the leapfrog will be the dominant
strategy if there is very high profitability, and the laggard will be dominant for
low profitability.

The impact of uncertainty (the future evolution of technology) is such that
higher σ increases the likelihood of the leapfrog and laggard strategies, while
reducing the likelihood of the compulsive and buy-and-hold strategies. So,
increasing σ prompts firms to delay investment.

A limitation of this model is that the probability of a migration strategy is
highly sensitive to the expected arrival time. Strategies are sharply changed
for the given parameters around the range E(T ) {1.5 to 2.5}, as is evident in
Figure 16.7.

16.4 FIRST MOVER AND PRE-EMPTION MODELS

Most early real option models show the importance of deferring ‘sunk cost’
expenditures, ‘what is gained by waiting to invest’. Kulatilaka and Perotti (1991,
1998) consider ‘what is lost by waiting to invest’. In a competitive market, early
investment may confer an advantage of a greater share of the market, a type
of pre-emption, as well as early cash flows. Dixit and Pindyck (1994) present
a pre-emption model that is based on Fudenberg and Tirole (1985) and Smets
(1993) for an oligopolistic industry. Lambrecht and Perraudin (1997) extend
standard models of irreversible investment by incorporating strategic entry by
competing firms. Lambrecht (2000) models a competitive R&D stage, where
there is a trade-off between the value of waiting to invest and the cost of
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being pre-empted, and a second stage, where there may be ‘sleeping patents’,
inventions which are not immediately put to use.

First-mover advantages are created by (1) the technological advantages of
being first; (2) patents if innovative and first; (3) the brand image of a first
mover; and (4) organization and location advantage. However, being first may
not be the same as being the best, since it may pay to wait and learn from the
first-mover’s mistakes. One of the challenges is to quantify the first-mover’s
advantages and disadvantages. Frequent and public monitoring is sometimes
feasible, for instance in the cases of public marketing of innovations, FDA
applications and patent applications. However, brand loyalty and differential
pricing for the first mover is not always transparent or measurable. For instance,
for e-banking and internet service providers, only some companies provide
frequent information on new accounts, churn and usage, and seldom provide
detailed frequent information on profits.

Kulatilaka and Perotti (1998) assume a lognormal random demand, and a
deterministic production cost shift, upon first-mover investment. They also
assume that under imperfect competition there will be a ‘lower industry profit’
after subsequent investments, since new competitors may have ‘lower costs’
which will result in reduced profits for the first mover after the follower enters
the scene. They assume P(Q) = θ − Q, where Q = total supply, θ = random
demand, both the leader and the follower(s) may have the same production cost
K at t = 0, both firms invest only in period 0 or 1, and share the market equally
after entry. If θ ≥ K , then QN

1 = (θ − K)/3 and profits = (1/9)(θ − K)2 for
each firm.

The first mover invests early, and the initial investment I reduces unit costs to
κ , where κ < K , due to learning and other improvements. If θ < K , there is
no production. If θ > K , and the leader invests I , it will choose output so that
profits = (1/9)(θ − K − 2κ)2. Point of entry for a competitor is higher, where
θ > 2K − κ . The value of not investing [V N ] is:

V N(θ0, σ ) = 1
9 [θ2

0 eσ
2
N(d1) − 2Kθ0N(d2) + K2N(d3)]

where:

d1 = 2 ln(θ0/K) + 3σ 2

2σ
, d2 = d1 − σ, d3 = d2 − σ

The first mover (pre-emption) value of not waiting to invest [V I ] is:

V I (θ0, σ ) = 1
9 [2Kθ0N(d5) + K2N(d6)] − I + θ2

0 eσ
2
/4
[
1 − 5

9N(d4)
]

where:

d4 = 2 ln(θ0/2K) + 3σ 2

2σ
, d5 = d4 − σ, d6 = d5 − σ
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Both V N and V I increase with increased random demand. At low demand
volatility, V I is more sensitive to increased demand than V N , as shown in
Figure 16.9.

The threshold demand for investment depends on capacity cost advantage
(K − κ). Suppose κ = 0, so that unit cost falls to 0 if there is a first-mover
investment. Then the threshold initial demand that motivates I is θ , so that
V (N) = V (I). Figure 16.10 shows that the random demand θ which justifies
a first-mover’s investment decision declines with an increase of the capacity
cost advantage.

Suppose there is systematic risk aversion, so that increased uncertainty over θ
is not diversifiable. Then the ‘market price of systematic risk’ times the volatility
should be incorporated in V (N) and V (I). At high volatility, V (I) relative to
V (N) is reversed as market price of risk increases, as shown in Figure 16.11.
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Figure 16.9 Effect of increased random demand on V(N), V(I) under imperfect competition
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In Dixit and Pindyck (1994) there are two firms, where the leader after invest-
ment of a sunk cost I will have a profit flow of x1, until a follower also makes the
same sunk cost investment I , when both firms have a profit flow of x2.1 (Other
authors modify the profit flow to reflect market sharing and market growth.)
The real option value for the leader and the follower is established by finding
the optimal T (stopping region), when it is optimal for those firms to invest.

Let V F
1 (x) denote the value of the follower in the stopping region, the region

where it is optimal to invest, r = riskless rate and µ = drift rate, and V F
0 (x)

denote the value of the follower prior to investment. The optimal investment
rule is found by solving for the boundary between the continuation and the
stopping regions. The boundary is the trigger point xF. If the value of the
state variable is smaller than the trigger, the optimal decision for the follower
is not to invest, i.e. to remain in the continuation region. If it exceeds the
trigger, then the follower should invest. At the trigger point, two conditions
must be satisfied: (1) the value-matching that makes explicit that when the state
variable reaches the trigger the follower will invest so that V F

0 (xF) = V F
1 (xF) −

I and (2) the smooth-pasting condition, that requires that the derivatives of the
functions match at the boundary, V ′F

0(xF) = V ′F
1(xF). These conditions imply

that xF satisfies:

x2 = Iβ1(r − µ)

(β1 − 1)

where:

β1 = 1

2
− µ

σ 2
+
√(

µ

σ 2
− 1

2

)2

+ 2r

σ 2
> 1
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Thus we obtain the value function of the follower:

V F(x) =




(
x2

r − µ
− I

)(
x

xF

)β1

if x < xF

x2

r − µ
− I if x ≥ xF

Until the follower enters the market, the leader’s decision either to enter the
market or to wait is identical to the monopoly framework. So following Dixit
and Pindyck (1994), there exists an optimal time to enter that will maximize the
firm’s value. Until that moment the firm should wait to invest and its value is
explained by the option to wait. When that moment is reached, the firm should
invest and its value function is given by the present value of the revenues in
perpetuity. (One problem with the option to wait is that it excludes the case
where companies do not have the possibility of waiting.)

First-mover advantage should make pre-emption attractive, and pre-emption
should lead to early adoption by the leader. There are many examples in R&D of
the advantages of being first. The first company in an industry to have a website
might buy cheaper domain names and obtain lower staff costs and better access
to resources. In orphan drug status, the FDA may award the first mover a pre-
emptive advantage, even prior to the completion of clinical trials. In general,
once a patent is obtained as a result of R&D, the first mover may have an
advantage for the number of years the patent is valid, if not in perpetuity.

Having entered the market, the leader will enjoy monopolistic revenues until
the moment that the follower enters the market, and will share revenues with
the follower afterwards. The general solution for the leader is:

V L(x) =




x1

r − µ

[
1 −

(
x

xF

)β1−1
]

+ x2

r − µ

(
x

xF

)β1

− I if x < xF

x2

r − µ
− I if x ≥ xF

Figure 16.12 shows that the follower’s critical profitability (xF) is higher,
which justifies investment, and the real option value (V ) is lower, the higher
the investment cost I . Figure 16.13 shows that both the follower’s critical prof-
itability and real option value increase with profit volatility.

The Lambrecht and Perraudin (1997) model is dynamic and continuous, and
evaluates the ‘waiting value’ versus ‘fear of pre-emption’. Without pre-emption
the follower’s real option value is similar to the Dixit and Pindyck (1994)
equation above for V F. With pre-emption, the follower’s real option value is
the previous real option value (ROV) adjusted for the pre-emption fear. Firm
i conjectures that firm j will invest when xt crosses some level x, which is
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an independent draw from a distribution Fj [xj ] (assumed to be Pareto), with
a density function F ′

j [xj ]. The conjectured first crossing x(is) is the previous
optimal xF, adjusted for the hazard rate (= x∗), so that the adjustment is ROV∗
{[1 − F(x(is))]/[1 − F(x)]}.

Figure 16.14 shows some comparisons of the cost trigger maps, for NPV
[x(m)], ROV with (x∗ PRE) and without (x∗) pre-emption. For any level of
the investment cost k, the profit level which triggers investment is lowest for
NPV, and highest for x∗, as shown. The spread between these optimal triggers
increases with the investment cost.

There are several other models of pre-emption and hysteresis (see Weeds,
1999a,b, 2000). Some models consider jump processes for new competitive
entry. Other plausible models have a stochastic market share and/or prof-
itability. Followers and leaders might learn from each other, which may affect
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either pricing, or market share, or production cost. Possible pre-emption models
might consider adjusting real option value for convenience yield, or assume
higher/lower implementation costs, as firms enter the market. In general, pre-
emption will be less likely if cash flows naturally are mean-reverting. Huisman
(2001) considers a game-theoretical real options approach, with the introduc-
tion of multiple new technologies. Other applications of pre-emption models
include where creditors may foreclose first, informed investors buy or sell first,
and where some contingent claim holders exercise their options first.

Most imperfect competition real option models are appropriate in an environ-
ment where global presence can be established from any country, such as now
is the case for electronic commerce or internet activities. These markets are not
constrained by national boundaries. On the other hand, the ease of global pres-
ence implies that extreme market penetration achieved possibly by first movers
means extreme profitability. ‘Winner takes all’ models will probably be based
on extreme distributions.

16.5 EMPIRICAL VARIABLES FOR REAL R&D OPTION MODELS

One of the most difficult questions in valuing real R&D options concerns the
empirical basis of the parameters. Many authors including Newton and Pearson
(1994), Newton et al. (1996), Grenadier and Weiss (1997), Childs et al. (1998),
Berk et al. (1999), Childs and Triantis (1999) and Schwartz and Moon (2000a)
simply provided parameter inputs ‘by assumption’.

However, other authors have obtained data from surveys of ‘experts’, engi-
neering estimates, time series of commodity prices, and lately from stock and
traded options markets for R&D-intensive enterprises. Information on R&D
values and cost are often hard to obtain from public sources, and there are large
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transaction and search costs in obtaining private information, which can in any
case be noisy.

Weitzman et al. (1981) used capital cost estimates from process engineers,
operating and maintenance costs from research engineers, and feedstock costs
and conversion efficiencies from scientists; variances were derived from ‘energy
specialists’ for a synthetic crude oil model. Ott (1992) used several deterministic
inputs for current and projected cost of producing electricity over the estimated
life of a power plant, along with maximum R&D spend on a project per year.
He projected US demand for total electricity and relative prices from economic
studies, and based growth rates and new and existing technology variances
on assumptions. Pindyck (1993) obtained expected construction cost (and vari-
ance) for a kilowatt of nuclear generating capacity from ‘survey data’ on actual
individual plant costs over several years.

Lint and Pennings (1997) conducted semi-structured interviews with R&D
and marketing departments with quantitative questions on future prices,
quantities, costs, rate of acceptance of both standards, and capital and marketing
expenditures for creating the available product options. The uncertainty
surrounding both standards and the correlations were from a cross-section
analysis of the interview data. Lint and Pennings (1998) conducted in-depth
interviews with managers (with statements verified by the market intelligence
department) on expected market size, growth rate, expected market share
and profitability of targeted market segments. ‘Unlikely subjective estimates
were returned to involved managers, discussed and adjusted if necessary’.
Pennings and Lint (1997) obtained estimates of future cash flows ‘from senior
management’. Benaroch and Kauffman (1999) also interviewed senior managers
regarding the range of potential revenues, perceived volatility and entry timing.2

Taudes (1997) used estimates from in-house experience regarding the number
of electronic transactions, growth and variance, and estimates from a software
supplier for the implementation costs over various stages.

Lambrecht and Perraudin (1997) suggested using stock market quotations for
a series of biotechnology companies to characterize some of the parameters for
their competitive markets. Lee and Paxson (2001) utilized historical volatilities
from stock prices of R&D-intensive companies in e-commerce, and the implied
volatilities of traded options for some of those companies, in providing esti-
mates for future R&D volatilities, and for the correlation of research costs and
benefits. Ottoo (1998) provided an illustration (however, based on assumptions)
for the type of empirical inputs that might be useful in valuing a biotechnology
company, including probabilities of success for such a company in R&D and
also that of its competitors.

There is a natural development in linking embedded real R&D option
valuation to stock market valuation. Kellogg and Charnes (2000) valued a
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biotechnology company, Agouron Pharmaceuticals, using a simple binomial
approach and some assumed discovery probabilities and investment cost
present values, compared to the market valuation. Schwartz and Moon (2000b)
considered a model for an internet company with stochastic revenues, where
the volatility term is mean-reverting and the drift term is also stochastic and
mean-reverting, with a convergence of the sales growth rate to a long-term
average, and deterministic drift rate volatility. These authors used averages
of historical sales growth and analysts’ estimates of future growth, historical
volatility of sales, implied volatility of stock options (as a proxy for volatility
of sales growth), and balance sheet data for cash flow and burn rates for
Amazon.com. The model solution is through Monte Carlo simulation. The real
option value of Amazon.com market capitalization was compared to the adjusted
real option value.

Schwartz and Moon (2000c) is a similar application to Exodus Communi-
cations, an internet web-page host. The variable cost function was assumed
to follow a mean-reverting process. Using the implied volatility of options
on Exodus stock, plus balance sheet and quarterly income statement analysis
as the basis for parameter estimation, the authors simulate a contingent claim
‘fundamental’ valuation of the stock, compared to the market valuation.

These authors have not (yet) compared alternative per share valuations to
the share price over time, as in Lehocky and Paxson (1998), who also show
the fitted daily risk premiums implied by alternative per share estimates. A
further development is to test whether some trading rules using the embedded
real R&D option approach will result in superior share investment performance
over time.

In the last few years, numerous e-commerce, internet, biotechnology and other
high-technology enterprises have been securitized, and so there is a rich source
of quoted shares and traded options for a wide variety of R&D values and costs,
including more or less pure R&D, software development, internet facilities and
e-commerce applications. Conceivably there will emerge derivative markets
(both futures and options, and exotic options) for direct R&D values and costs,
such as semiconductors, software and broadbands, so that empirical modeling
can be (to a greater degree) based on market variables rather than on broad
assumptions.

16.6 USES OF REAL R&D OPTION MODELS AND FURTHER
RESEARCH

The primary uses of real R&D option models are: (i) determining the appro-
priate R&D strategy and overall budget; (ii) determining the optimal timing
(and likely occurrence) of R&D stages, if the timing is flexible; (iii) allocating
the overall budget among competing research proposals; and (iv) valuing the
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R&D process, either for the purpose of investment budgeting, or for external
sale, joint venture or corporate financial engineering. The applications are to
different levels of working interests, from the Mini level, where the concern is
regarding the incentives, motivations and rewards of individual researchers, to
the Micro level, that is enterprise-level decisions, possibly in competition with
other firms, and finally to the Macro level, that is broad industry, economic and
social policies, including tax and direct subsidies for R&D. First, one always has
to ask, what is required in using these real R&D option models, and then what
are the possible applications, perhaps outside the original focus of the authors.

16.6.1 Expected value and cost

Most of these critical uses require both the estimation of the future cash flows
arising from successful R&D results and the required R&D expenditures to
obtain those results. The overall R&D budget is itself both a valuation and
an optimal ‘timing’ issue, since valuation justifies the investment (or not)
and timing is (usually) a critical aspect of the valuation. Of course, both
value and timing are viewed in the context of market environments, where
the fund-raising capacity (and price) will be apparent (almost) at any time, and
possibly the market implied volatilities of R&D value and cost will be (more
or less) available.

16.6.2 Diffusion processes for value and cost

In the standard R&D option models, there are very broad assumptions as to the
stochastic processes governing R&D values and development costs. The usual
presumption is that both value (and sometimes cost) are lognormally distributed
and stationary. In practice, R&D values are not lognormally distributed, so that
in the future, distributions such as the extreme(s), Student t or stable Paretian
may be considered more appropriate and realistic. Other remaining theoretical
problems include using multivariate distributions that can model several invest-
ment stages over time; volatility and correlation matrices for these sequential
investments; and allowing for variable R&D income and development cost
escalation assumptions over time.

16.6.3 Other parameters

Additional considerations for real R&D options are the chance of success or
failure, usually assumed to be in the family of univariate discrete distribu-
tions such as Poisson or compound Poisson. Finding or devising appropriate
empirical proxies for these ‘discovery’ or failure inputs is an important and
challenging business. Also since R&D discoveries are seldom proprietary (until
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patented, if that is possible), parameters such as the first-mover’s advantages
(and disadvantages) in markets with a time-variant size, and share, have to
be considered.

16.6.4 Capital market variables

At all stages of R&D, there may be several corporate finance issues. For R&D
enterprises already quoted in public markets, there is the possibility of issuing
equity if the R&D enterprise market capitalization exceeds the real option value
adjusted for other enterprise net assets. Other possibilities include cutting R&D
and repurchasing shares in the opposite case, and/or buying other enterprises (or
outsourcing) if the relative real option value to market capitalization of others
is high. For start-up R&D and other ventures not quoted in public markets,
there are the same types of questions with regard to venture funds and social
funds. For purely academic and social ventures, while future cash flows might
be of less concern, there is conceptually the same approach (with perhaps
R&D results measured by reputation standards, such as publications). There
are similar possible actions, that is where external value exceeds R&D cost,
there should be more emphasis on soliciting sponsorship, and in the opposite
case, considerations of abandoning ‘fruitless’ R&D.

16.6.5 Model applications

The primary uses of overall strategy, optimal timing, allocation of resources
among competing projects and external validation can be considered at three
levels. Individuals are, of course, focused on the Mini level, where the concern
is on personal and educational efforts, and the design, implementation (and
acceptance) of suitable risk evaluation and reward systems for individual (or
team) R&D. For instance, researchers in real R&D options will decide: (i) the
time and effort to devote to the subject; (ii) whether to delay or accelerate efforts
until model uncertainty is resolved and better data is available; (iii) which of the
many strands of the topic to pursue, given their own competences and interests,
as well as evaluation of the likely outcomes of their R&D; and (iv) whether
and how to seek external funding, and/or capitalization of the fruits of research,
including publications.

Research managers are focused on the Micro level, where R&D research takes
place in groups or enterprises. The design, implementation (and acceptance) of
suitable risk evaluation and reward systems for group efforts is the primary
concern of most real R&D models. For instance, biotechnology managers will
decide: (i) the (usually) annual overall R&D budget; (ii) whether to delay R&D
emphasis until plausible results emerge or to speed up R&D in anticipation
of competing firms achieving first-mover advantage from the fruits of early
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R&D; (iii) for larger entities, allocating the (usually) annual R&D budget among
competing R&D proposals; and (iv) whether and how to seek external funding,
and/or joint ventures, or cancellation of fruitless, costly or unworthy R&D.
Since typical start-up high-technology investments depend on raising cash in
the future to support negative cash flow operations, this aspect of R&D corporate
funding activity is itself a real option.

It is challenging for accountants and investment analysts to identify and
disclose real R&D assets and liabilities, including potential product defects,
requirements for future R&D expenditures and even first-mover advantages and
disadvantages. Also perhaps one will see more ‘synthetic’ real R&D options
(building on R&D tracking stocks), including R&D venture index futures and
options, so that the synthetic vehicles can be used for ‘hedging’ firms’ delay
or commencement of certain types of R&D in the financial markets, to offset
practical limitations in the physical environment.

Policy makers might be focused on the Macro level, that is how much of
the economy should be devoted to R&D, in the context of evaluating the
cost/benefits of changing the current R&D structure and incentives (subsi-
dies, direct government R&D and taxes). There are the continual issues of:
(i) whether to delay concentration on developments until basic research uncer-
tainty is resolved; (ii) which of the many types of R&D to pursue; (iii) the
appropriate format for R&D, private, government or academic (if there are
externalities); and (iv) how to disseminate (or protect) the fruits of research.

Competition policy might be considered a Macro issue, where pre-emption
might be deemed ‘unfair’ or harmful to investment, or alternatively to be encour-
aged in the case of ‘orphan’ drugs for rare diseases. Debates on generic Aids
drugs for developing countries, the ownership of human genome research, and
the auctioning of 3G licenses indicate the relevance of real R&D option models
in the public arena.

16.6.6 Future developments in real R&D options

What is the future of real R&D option models? The topic is in its infancy, since
published empirical applications are limited, and perhaps have hardly advanced
beyond Weitzman et al. (1981). The vast amount of data from clinical trials
alone is a suitable source of real R&D option information. No doubt many new
models will be developed, with new analytical and numerical solutions, probably
integrating various parts of stochastic control systems and engineering with real
option approaches. The distributions thus far considered for R&D results and
costs are quite limited. Non-normal distributions and associations between costs
and values using various multivariate measures, and copulas, will be some of
the challenges for future researchers.
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Finally, uses of real R&D options theory have been primarily in the Micro
area. However, considerations of industry adoption of innovation, value and
motivation of first movers are extensions into the Macro aspects. In the future
expect employment of real R&D option models in Macro debates on the amount,
direction, type and evaluation of R&D, as well as extensions to Mini concerns
regarding the value of individual researchers.
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NOTES

1 Each firm produces a unit output at zero variable cost, and the price follows a
demand function P = YD(Q), where Q = 0, 1, 2. So x1, xL is the profit function
for YD(1) and x2, xF for YD(2).

2 Schwartz and Zozaya-Gorostiza (2000) use this data as empirical inputs for R&D
development models.
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