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Preface

This book! introduces the main ideas and fundamental methods of differ-
ential and integral calculus for functions of several variables.

In Chapter 1 we discuss differential calculus for functions of several
variables with a short excursion into differential calculus in Banach spaces.

In Chapter 2 we present some of the most relevant results of the
Lebesgue integration theory, including the limit and approximation theo-
rems, Fubini’s theorem, the area and coarea theorems, and Gauss—Green
formulas. The aim is to provide the reader with all that is needed to use
the power of Lebesgue integration. For this reason some details as well as
some proofs concerning the formulation of the theory are skipped, as we
think they are more appropriate in the general context of measure theory.

In Chapter 3 we deal with potentials and integration of differential
1-forms, focusing on solenoidal and irrotational fields.

Chapter 4 provides a sufficiently wide introduction to the theory of
holomorphic functions of one complex variable. We present the fundamen-
tal theorems and discuss singularities and residues as well as Riemann’s
theorem on conformal representation and the related Schwarz and Poisson
formulas and Hilbert’s transform.

In Chapter 5, we discuss the notions of immersed and embedded sur-
face in R™, and we present the implicit function theorem and some of its
applications to vector fields, constrained minimization, and functional de-
pendence. The chapter ends with the study of some notions of the local
theory of curves and surfaces, such as of curvature, first variation of area,
the Laplace-Beltrami operator, and distance function.

In Chapter 6, after a few preliminaries about systems of linear ordi-
nary differential equations, we discuss a few results concerning the sta-
bility of nonlinear systems and the Poincaré-Bendixson theorem in or-
der to show that dynamical systems with one degree of freedom do not
present chaos, in contrast with the one-dimensional discrete dynamics or
the higher-dimensional continuous dynamics.

I This book is a translated and revised edition of M. Giaquinta, G. Modica, Analisi
Matematica, IV. Funzioni di pit variabili, Pitagora Ed., Bologna, 2005.



vi Preface

The study of this volume requires a stronger effort compared to that of
[GM1],[GM2],and [GM3]? both because of intrinsic difficulties and broad
scope of the themes we present. We think, in fact, that it is useful for the
reader to have a wide spectrum of contexts in which these ideas play an im-
portant role and wherein even the technical and formal aspects play a role.
However, we have tried to keep the same spirit, always providing exam-
ples, illustrations, and exercises to clarify the main presentation, omitting
several technicalities or developments that we thought to be too advanced.

We are greatly indebted to Cecilia Conti for her help in polishing our
first draft and we warmly thank her. We would like to thank also Paolo
Acquistapace, Timoteo Carletti, Giulio Ciraolo, Roberto Conti, Giovanni
Cupini, Matteo Focardi, Pietro Majer, and Stefano Marmi for their com-
ments and their invaluable help in catching errors and misprints and Ste-
fan Hildebrandt for his comments and suggestions concerning especially
the choice of illustrations. Our special thanks also go to all members of
the editorial and technical staff of Birkhduser for the excellent quality of
their work and especially to Rebecca Biega and the executive editor Ann
Kostant.

Note: We have tried to avoid misprints and errors. But, as most authors,
we are imperfect. We will be very grateful to anybody who wants to inform
us about errors or just misprints, or wants to express criticism or other
comments. Our e-mail addresses are

giaquinta@sns.it giuseppe.modica@unifi.it

We shall try to maintain any errata and corrigenda at the following web
pages:
http://www.sns.it/“giaquinta

http://www.dma.unifi.it/ "modica

Mariano Giaquinta
Giuseppe Modica
Pisa and Firenze
July 2007

2 We shall refer to the following sources as [GM1], [GM2], and [GM3], respectively:
[GM1]: M. Giaquinta, G. Modica, Mathematical Analysis, Functions of One Variable,
Birkhauser, Boston, 2003; [GM2]: M. Giaquinta, G. Modica, Mathematical Analysts,
Approzimation and Discrete Processes, Birkhduser, Boston, 2004; [GM3]: M. Gia-
quinta, G. Modica, Mathematical Analysis, Linear and Metric Structures and Con-
tinuity, Birkh&user, Boston, 2007.
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1. Differential Calculus

In this chapter we discuss the basic notions of differential calculus of func-
tions of several variables.

1.1 Differential Calculus of Scalar
Functions

1.1.1 Directional and partial derivatives, and
the differential

a. Directional derivatives
Given zp € R™ and a direction v € R™, the map r(t) := zo+uvt, t € R, is the
parameterization of the line through x¢ and x + tv, called the parametric
equation of the line through xo with direction v. It represents the motion
of a point that at time ¢ = 0 is at 0 and moves with constant velocity v.
Let A C R™ be an open set, xg € A, and suppose that the ball B(xg, €g)
of center zp and radius € is contained in A. For each v € R™, then r(¢) :=
xo + tv belongs to A for |t| < ep/|v] if v # 0 or for all t € R if v = 0.
Consequently, given f : A — R, the composite function

Gu(t) := f(zo +tv),  ter (A, (1.1)

called the restriction of f to the line through x with direction v is well
defined in the interval || < ¢o/|v] (R if v = 0).

1.1 Definition. We say that f has a directional derivative at xg in the
direction v if the following limit exists and is finite

L o) = fwo) _ L gu(t) — 6,(0)

t—0 t t—0 t ’ (12)

i.e., if ¢y is diferentiable at 0. The number ¢ (0) is called the derivative
of f at xg in the direction v and is denoted by one of the following symbols

M. Giaquinta and G. Modica, Mathematical Analysis: An Introduction to Functions 1
of Several Variables, DOI: 10.1007/978-0-8176-4612-7 1,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009



2 1. Differential Calculus

Figure 1.1. The restriction of the graph of f to a line.

0
T Dt o hulw)
v
Notice that gi (x0) =0if v =0.
Let (e, €2,..., e,) be a basis of R™ and let (z!, 2,..., 2) be the
corresponding system of coordinates. For i = 1, ..., n the partial derivative

of f in the direction 2’ is defined as the derivative of f in the direction of
the corresponding direction e; of the basis,

0 0
8:51' (z0) := ai (o),

if this directional derivatives exists. The partial derivative g gf (z0) is also
denoted by
Dif(xo)  or  fui(xo)

1.2 9 Fermat’s theorem. Suppose that f: A — R has a maximum point or a mini-
mum point at an interior point zg € A and that f has a derivative at x¢ in the direction
v. Show that

of

S (z0) = 0.

b. The differential

The mere existence of all directional derivatives has no further conse-
quences such as continuity. The following example illustrates the situation
and motivates the introduction of the stronger notion of differentiability
of functions of several variables.

1.3 Example. (i) The function f : R? — R, which is defined to be zero at points
in the coordinate axes and one outside, has zero derivatives in the directions of
the axes and is not continuous at (0, 0).
(ii) The function
1 ify=2a2 z#£0,

0 otherwise

f(z,y) =

is discontinuous at (0, 0) even though all its directional derivatives vanish at (0, 0).
Similarly, the function
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Figure 1.2. The graph of a function similar to the graph of the function in (ii) Exam-
ple 1.3.

(L) it @) £ 0.0)
x4+y2 1 x,y ’ ’
0 if (z,y) = (0,0)

fz,y) =

has vanishing directional derivatives at (0,0) and is not continuous, see Figures
1.2 and 1.3.
(iii) The function
zzy .
Fla,y) = { o2 +v? ifx#0,
0 ifxe=0

is continuous at (0, 0), all its directional derivatives vanish at (0,0), but the so-

called tangent map v — gﬁ (z0) is not linear since the partial derivatives of f are
zero at (0, 0)

_., of
B 13(1,0)

see Figure 1.4.

(iv) It can happen that all directional derivatives of a function f vanish at (0, 0), the
function f is continuous, and there exist two different paths through (0,0) that
are tangent at (0,0) and, along those paths, we arrive at (0,0) with different
slopes. For instance, all directional derivatives at (0,0) of the function

(0,0) +

of o 00 =1p,

! a(0,1) (0,0) # a(1,1)

x ify=a2,
f(z,y) = Y

0 otherwise

vanish and f is continuous at (0, 0); however, along the curves x — (x,2) and
z — (x,0) we find
im 2702 9
z—0 a(1,0)
In particular, there is no way of defining the slope of the graph of f at (0,0) in
the direction (1,0).

(0,0) = 0.

1.4 Definition. Let f : A — R be a function with domain A C R™, and
let xg be an interior point of A. We say that f is differentiable at xo if
there exists a linear function L : R™ — R (depending on xo) such that

i {0+ 1) = (o) = L(h)

=0. 1.
h—0 || 0 (13)
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Figure 1.3. Moving along a straight line toward the precipice, we end up at the top.
Moving instead along a sufficiently curved path, we end up at the bottom.

Here |h| denotes the Euclidean norm of h.

The linear map L is unique provided it exists, by Proposition 1.5 below.
L is called the differential or the linear tangent map of f at xg and will
be denoted by df,, or df (xp). Whenever a domain A is given, we say that
f is differentiable in A if f is differentiable at every point of A.

1.5 Proposition. Let f: A — R, A C R", and let xg be an interior point
of A. If f is differentiable at ¢, then

(i) f is continuous at xo,
(ii) f has derivatives at xo in every direction and

gi (x0) = dfzo(v) Vv € R". (1.4)

In particular,

o the tangent map v — gi (z0), v € R™, is linear,
o the differential is unique, if it exists.

Proof. (i) Let h € R™, h # 0. We have

zo + h) — f(zo) — L(h)
IR

and, since L(h) — 0 as h — 0 (since linear maps of R™ are continuous), we conclude

that f(zo + h) — f(zo) — 0.

(ii) Let L be a differential of f at z¢ and let v € R™, v # 0. From the definition of
differential and because of the theorems of the limits of composite function, we infer

that
Flao +t0) = f(@o) _ ;1 | o+ ) = f(zo) — Lito)
t t

as t — 0. Therefore f has derivative at x¢ in the direction v; moreover,

7 (w0) = Lo,

and the uniqueness of the differential follows at once from the uniqueness of the direc-
tional derivatives. 0O

70+ 1) = 1(a0) ~ 2| < 1al| |~ 000,
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Figure 1.4. The restriction of the graph of f(x,y) = (z® — 3zy?)/(z? + y?) to a line
through the origin is a line; nevertheless, G has no tangent plane at (0,0).

1.6 Remark. We can write (1.3) in Landau’s notation as
)+

flzo+h) = f(zo

As we have just seen, if (1.5) holds, f is continuous. Therefore we can
assume that o(|h|) is defined and continuous at 0 by setting o(0) := 0.

dfuo(h) +o(|h]) — |h| = 0. (1.5)

For functions of one variable, differentiability is equivalent to existence
of the derivative, see [GM1]. For functions of two or more variables, Propo-
sition 1.5 shows that differentiability implies continuity of the function,
existence of all directional derivatives, and linearity of the thangent map,
i.e., (1.4). None of the opposite implications holds. This should not be
surprising. In fact, differentiability is a property of approximation with a
linear map expressed by a limit in several variables, whereas a directional
derivative involves the restriction of f along a line through xg and a limit in
one variable. Finally, we repeat, in general the behavior of a function along
a curve v through zg and along the tangent line to v at x¢ can be very dif-
ferent. Indeed, the function in (ii) Example 1.3 has directional derivatives,
but it is discontinuous; the function in (iii) Example 1.3 has directional
derivatives but does not satisfy (1.4); the function in (iv) Example 1.3 is
continuous at (0,0), has vanishing directional derivatives, satisfies (1.4),
but is not differentiable at (0,0).

c. The gradient vector

Suppose that R™ is endowed with an inner product e . By Riesz’s theorem,
see [GM3], to every linear map L : R® — R we can associate a unique
vector 7, € R™ characterized by

L(h) = hex;,  VheR™

In particular, to the differential of f at xy we can associate a unique vector
of R™, called the gradient of f at x¢ and denoted by V f(xq) or grad f(z¢),
such that
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HENRI CARTAN

CAHIERS SCIENTIFIQUES
FONDEMENTS DE COURS DE
L’ANALYSE MODERNE CALCUL
e DIFFERENTIEL

Trasket -
Mile D, HUET

rrmans Qb Collection
_"_J_\---. b e

Figure 1.5. Frontispieces of two well-known treatises on the differential calculus of func-
tions of several variables.

dfzo(h) = heV f(x9) = hegrad f(xo) Vh € R™. (1.6)

Notice that
ker df,, = grad f(xo)*.

d. Direction of steepest ascent

Let f: A C R™ — R be differentiable at an interior point ¢y of A. Cauchy’s
inequality yields

0
o )| = 10+ ¥ o) < ol 195l
and, if Vf(zg) # 0, with equality
0
o (o) = oll 19 £ Geo)l

holding if and only if v is a positive multiple of V f (x¢); here ||z|| := /z ez
is the norm induced by the inner product. In other words, the maximum of

the tangent map v — dfy, (v), when v varies in {v||[v|| = 1} is ||V f(x0)]|
and, if V f(zg) # 0, the maximum is attained at
V(o)
v = . (1.7)
IV £ (o)l

Let v :] —1,1[— A be a differentiable curve with 7(0) = z¢ and 7/(0) =
v. It is easily seen that if f is differentiable at x¢, then the curve t — f(vy(t))
is differentiable at 0 and
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d(fony

V27 0) = V(o) o7/ 0). (1.9
see also Theorem 1.22. In particular, the growth of f at z(¢ along every
regular curve v through zy depends on 7 only through its velocity at zero,
~'(0) = v. Consequently, for a differentiable function f at zy, we may
introduce the notion of slope at xqy in the direction v as the real number

g{] (x0) = dfy,(v), and state, compare Example 1.3 (iv), the following.

1.7 Proposition. Let f : A C R® — R be differentiable at an inte-
rior point xo of A and suppose that ¥V f(xg) # 0. Then the direction of
maximum slope of f at xy among all directions v such that |[v|| = 1 is

V£ (xo)/IV f(xo)ll.

1.1.2 Directional derivatives and differential
in coordinates

a. Partial derivatives

Let (e1, €2, ..., e,) be a basis of R and let (z!, 22,..., 2™) be the corre-
sponding coordinate system.

1.8 Definition. The derivative of f at xq in the direction e; is called the
partial derivative of f with respect to &’ and will be denoted by one of the
symbols

of 0 of
P (z0) = 8:Lﬂ-f(flfo) = D;f(wo) = foi(20) := de; (o)
By (1.2) the partial derivative of f with respect to 2! at zp =
(2}, 22,..., 2B) is the derivative of the function of one variable
t— flzg, ..oz Lt ot )

at t = xf. In other words, the partial derivative with respect to 2’ is com-
puted by taking the remaining variables (2, ..., 271 2" 2™) as constant
and differentiating with respect to x°.

1.9 Example. If we want to compute g£ (1,1) where f(z,y) := 22 + y2, we consider
o(z) := f(x,1) = 22 + 1 and then gi (1,1) = Zi (1) =2.
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b. Jacobian matrix

Recall that if (eq, e2,..., e,) is a basis of R", and L : R™® — R is a linear
map, then L(h), h € R™, can be written as the product rows by columns
of the 1 x n matrix L := (L(e1), L(e2),...,L(e,)) and the vector of the
coordinates of h,

hl

n ) n h2

L(h) =LY _h'e;) =Y L(e)h' =L :
i=1 =1 .

A"

In particular, if f: A C R™ — R is differentiable at an interior point
2o of A and if we introduce the 1 x n matrix,

Dffan) = ( ) o). 0 ),

called the Jacobian matriz of [ at xo, (1.4) can be rewritten as
n ; n af ;
dfag(h) = dfuy(ei)h’ = oy (T0)h' =D (o) h (1.9)
i=1 i=1

for all h = (h!, B2,..., k)T € R™.

1.10 9. Notice that f : A C R2 — R is differentiable at an interior point zg of A if
and only if there exist a,b € R such that

Fluo + hyvo + k) — F(uo,v0) = ah + bk + o(V/h2 + k2)  as (h, k) — (0,0)
and moreover,
16) 4]
a= 8£(u0,v0), b= ai(uo,vo).
c. The differential in the dual basis

Let (e1, e2,..., e,) be a basis of R” and let 2* : R® — R be the linear
maps that associate its ith component to each h € R". Since the map z*
is linear, it agrees with its differential (at any point),

dz’ (h) = z'(h) = h', Vh € R™.

Zo

Therefore, for and any linear map L : R®™ — R we can write
L(h) = Z L(e;)h' = ZL(ei) dz’(h)
i=1 i=1

or, equivalently, as maps



1.1 Differential Calculus of Scalar Functions 9

n

L=> Lle)da'. (1.10)

i=1
In particular, if f is differentiable at xg, then

i (wo)dz". (1.11)
=1

dfxo -

d. The gradient vector in coordinates

Writing (1.6) in coordinates with respect to a basis (e, ea,..., €,), we
find the relation between the components of the gradient vector and the
components of the Jacobian matrix. If we denote by G = (G;;) the metric
tensor defined by G;; := e; e¢€;, see, e.g., [GM3], then we find

Vf(xo) = G 'Df(20)".

In particular, if (eq, es,..., e,) is an orthonormal basis, then G = Id,
hence -
of of of
Vi) = (gt g0 ) )

e. The tangent plane

1.11 Graphs of linear maps. Recall that the graph of f: A CR®” — R
is the subset of R"*! defined by

Gy = {(x,y) € R"™ x ]R‘ TEA y= f(m)},
and trivially
Gy = { (@, f(x) €R" x R’x € A} =Im(1d x f)(4)

i.e., Gy is the image of the injective map z — Id x f(z) := (z, f(x)), z € A.
The graph Gy, of a linear map L : R” — R, {(x,y) |y — L(x) = 0} is

therefore a linear subspace of R” xR of dimension n, and, if (e1, ea, ..., ey
is a basis of R", then the vectors
(61’ L(el))’ (62’ L(e2))> ey (ena L(en))

of R™ x R form a basis of Gy,.

Let f: A C R" — R be differentiable at an interior point zy € A.
The graph of the tangent map to f at x( is called the tangent space to the
graph of [ at xo and denoted by

Tan (mo,f(xo))gf = {(x,y) S R"™ xR ‘ y= dfzo(x)}
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Figure 1.6. (Vf(x0),—1) is perpendicular to the tangent plane to the graph of f at
(z0, f(z0))-

If we choose a basis (e1, e2,..., ;) of R, Tan (; ¢(z,))Jy is a linear space
of dimension 7 since a basis is given by the column vectors of the (n+1) xn
matrix

1 0 0
0 1 0
: : L (1.13)
0 0 1
5{1 (xo) 3@ (300) <o é’ﬁn (300)
The translate to (2o, f(x0)) of Tan () ¢(20))9f
{(@.9) €R" xR|y = f(z0) + Df(wo)(w —x0)}  (114)

is called the tangent plane to the graph of f at xq.

f. The orthogonal to the tangent space
Let o denote the inner product in R™. Then

9((w1,91), (22,92)) = T1eT2 + Y172

for all (z1,y1), (z2,y2) € R™ x R defines an inner product g( , ) in R” x R
for which the factors R™ and R are orthogonal. If x € R™ is given and
L(h) := weh Vh € R", clearly the vector in R"+!

v:=(x,—1)

is g-orthogonal to the graph of L, i.e., to all vectors of the form (h, L(h)) €
R™ x R, h € R™, since

g(v, (h, L(h))) = zeh — L(h) = L(h) — L(h) = 0.

We therefore conclude the following.
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Figure 1.7. (e;, L(e;)), i = 1,...,n, is a basis for Gr,.

1.12 Proposition. Let f: A C R"™ be differentiable at an interior point
of A. Then the vector

Vi i= (Vf (o), —1)T e R

is g-orthogonal to the tangent space to the graph of f at xq.

g. The tangent map

Suppose that f : A C R®™ — R possesses a directional derivative at an
interior point zp of A in the direction v. From (1.2), we easily infer that
for all A # 0 we have

of
d(Av)

i.e., f has directional derivative in the direction Av. In other words, the
set S of directions with respect to which f has directional derivative is a
cone, and the map p

v = 8£(x0)> UGS,

of

(1'0) — lim f(xO +t)\’l)) - f(l’o) _ )\av (1,0)’

t—0 t

called the tangent map to f at xq, is defined on S and is homogeneous of
degree one. Its graph

f

v

{(v,t) €S x R’t: g (xo)}

is a (piece of) cone S x R and trivially reduces to a (piece of) plane if and
only if the tangent map is linear. This does not always happen, see (iii)
Example 1.3 and Figure 1.4.

When f has directional derivative in any direction and the tangent map
is linear, we say that f is Gateaux-differentiable and the tangent map is also
called the Gdteaux-differential of f at xy and is still denoted by dfy, (v).
There is no ambiguity in doing that since the Gateaux-differential agrees
with the ordinary differential if f is differentiable, see Proposition 1.5.
Notice that the converse is instead false, see (iv) Example 1.3.

Of course, the Gateaux-differential can be written in coordinates and,
for a Gateaux differentiable map, the Jacobian matrix, the gradient vector,
and the tangent plane are well defined and we have



12 1. Differential Calculus

dfzy(h) = Df(zo)h = Vf(zo)eh, h e R™;

moreover, the column vectors of the matrix (1.13) form a basis of the
graph of the Géateaux-differential of f at o, and the vector (V f(zo), —1)
is orthogonal to the graph of the Gateaux-differential of f at xg.

h. Differentiability and blow-up

The difference between Gateaux-differentiability and ordinary differentia-
bility is not geometric but analytic: it has to do with the meaning we
may attribute to the claim “the tangent plane is a good approximation
of the graph of f”. The directional derivatives are the result of a blow-
up procedure, see [GM1]: we imagine looking at the graph of f through
a microscope of higher and higher power centered at (zq, f(xo)). In the
observer’s coordinates,

X = Mz — x0), Y =My — o),

where A is the magnification factor, the graph y = f(x) of f looks like the
graph of the map

F\(X) = A(f(xo + )/\() - f(xo))-

1.13 9. Show the following.
(i) f has a directional derivative g£ (z0) in the direction v if and only if F(v) —
g£ (z0) as A — +oo. Therefore f has directional derivative in all directions if
and only if Fy(v) — gi (z0) pointwise in R™ as A — oo.
(ii) The limit map of F(v) for A — oo, that is, by (i), the tangent map of f, is linear
if and only if f is Gateaux-differentiable at xg.
(iii) f is differentiable at z¢ if and only if the limit map as A — oo of F)(v), i.e.,
v — gi (z0), is linear, and the maps {F)(v)}, converge uniformly on compact

sets of R™ to v — g£ (z0) as A — oo.

Therefore it is the way the blow-ups F)(v) converge to g£ (zo) that
distinguishes the Gateaux-differentiabity from the differentiability. Finally,
we notice that the notion of slope is meaningless for Gateaux-differentiable
functions, see also the discussion that precedes Proposition 1.7. As a conse-
quence, the chain rule Theorem 1.22 does not hold in general for Gateaux-
differentiable functions.

1.2 Differential Calculus for
Vector-valued Functions

The notions of calculus discussed in the previous section easily extend to
maps from an open set A C R" into R™, n,m > 1. Examples of vector-
valued maps, m > 2, are
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Y tiass
////;;;”’;’;’;’l";';"
iy

Figure 1.8. One sees a rectangular mesh pulled into the upper hemisphere: on the
left, (i), by the graph map, i.e., (z,y) — (2,9, /1 —22 —2), 22 + 3y < 1 and on
the right, (ii), by the spherical coordinates, i.e., (0, ¢) — (cosf sin¢,sin@ sin ¢, cos )
where 0 € [0, 27| and ¢ € [0, 7/2].

(i)
(i)

(iii)

maps from an interval I C R into R™, m > 1, i.e., curves in R™,
maps A C R? — R? that parameterize 2-dimensional surfaces in R3,
as for instance,

(m,y)%(m,y, \/171’27y2), (I7y)€B(0a1)CR27

which parameterize the unit upper hemisphere in R? centered at the
origin, or the map

0,0) — (z,y,2), T =cosflsinp, y=sinfsiny, 2z = cosp,

which, when defined on [0, 27[x [0, 7], parameterizes the unit sphere of
R3, § having the meaning of longitude and ¢ of latitude, see Figure 1.8,
in general, transformations R” — R", n > 1, or nonlinear changes of
coordinates as

(p,0) — (z,y), T = pcosb, Yy = psinb,

which, when defined in [0, +00[x [0, 27|, yield the polar coordinates in
R2?, see Figure 1.10, or as the map

x = rcosfsin p,
(r,0,0) — (2,y,2), y = rsinfsin g,

Z=cosyp

which transforms the parallelepiped [0, 1[x[0, 27 [x [0, 7] into the unit
ball B(0,1) of R3.
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Real and Complex

Analysis | waler tudiin Functions of
frroheaor of Mathematies -
iversity of Wissonsi
SSUERL Several Variables
MeG raw-Hill
Book Company WENDELL H. FLEMING
New York St Louis Bevas Univervity
San Franciseo Toronke
London  Sydney
A
Yy

ADDBCH-WISLIY FUBISHING COMPANY, WNE. BEASSG. MASLACMASITIL 044
ADDISCN-WESLEY (CAMADA) UMITED, DON MALS, SHTARD

Figure 1.9. Frontispieces of two books about functions of several variables.

1.2.1 Differentiability

a. Jacobian matrix

1.14 Definition. A map f : A C R* — R™, n,m > 1, is said to be
differentiable at an interior point xo of A if there exists a linear map
L :R"™ — R™, called the tangent linear map of f at xy such that

f(zo+h) = f(zo) — L(h)

Ih] — 0 as h — 0. (1.15)

When A is open and f is differentiable at every point of A, we say that f
is differentiable in A.
If we fix an (ordered basis) in R™, (1.15) is in fact the system of m
limits
fHzo +h) — f1(zo) — L(R)
fA(@o + h) — f3(z0) — L?(h)

(|h]) as h — 0,

0
o(|hl) as h — 0,

f(@o +h) = f"(xo) — L™(h) = o(|h])  ash—0

for the components fi(z), f2(x),..., f™(z) of f and L*, L2, ..., L™ of
L. Therefore f is differentiable if and only if all components of f are
differentiable at xg, and, in this case, the tangent map to f is L =
(LY, L?,..., L™)T where for every i = 1,...,m, L' : R® — R is the
differential of f¢ at . In particular, the differential is unique, if it exists,
and for all h = (h', 2 ..., h™) we have
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Figure 1.10. Polar coordinates in the unit disk 22 + 32 < 1.

aft NI ,
LY (h) = dfy,(h) = ), (20) = (o),
oh T £ 020
af? "L f? ,
L2(h) = df3,(h) = ), (20) = (o),
Oh " e 00l (1.16)
_ofm - O™ (o).

L7 () = dfzy(h) = ) @) =3

In terms of the Jacobian matriz of f at xg defined by

oft oft oft
) ) o )
af2 af2 of?
i (o) (zo) . (To)
Do) = [0 ()] = | 2 0 o
afm afm afm
aj;l (%) a{ﬂ (@0) .- 3{U” (%)

the system of equations (1.16) can be rewritten as

L(h) = : = Df(.%‘o)h
Lm(h)

Summarizing we have: if f : A C R™ — R™ is differentiable at xq, then
the linear tangent map to f at xo defined by (1.15) and denoted by one of

the symbols
dfzo Ty, f,
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1S uNique; moreover,
dfzo (h) = Df(x0)h, h € R™. (1.17)
If we choose an inner product in R™, so that
Dfi(xo)(h) = Vfi(zo)eh  Yi=1,...,m,

then we have

in particular,
1
ker L = ker D f(zo) = Span {Vfl(xo), ce me(xo)}

Finally, in the case n = m, the determinant of the Jacobian matrix
D f(xo) is called the Jacobian determinant or simply the Jacobian of f at
2o and is denoted by one of the symbols

1 2 n
Ji(zo) = J(Df(x0)) = ggl’ £277 ini (x0) := det D f(zp).

b. The tangent space
Let f: A CR"™ — R™ be a differentiable map at an interior point zy of
A. As in the scalar case, we call the graph of the linear tangent map to f
at zo the tangent space to the graph of f at (xo, f(xo))

Tan (2, £(20)) 91 = Gdfay

and its translate at (xq, f(z0)),

{@y) eR" xR™ |y = [(w0) + dfay (@ — 70)},
the tangent plane to the graph of f at xg.
Clearly, the tangent space to the graph of f at zq is the image of the

injective linear map x — (z, df,x), hence its dimension is n. With respect
to bases respectively in R™ and R we have

Tan (g, f(20)) 91 = {(a?,y) ER"XR™ |y = Df(xo)x},

and the n-tuple of column vectors of the (n +m) x n matrix
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Id

A= (1.18)

D f(z0)

form a basis of the tangent space to the graph of f at (xq, f(z0)).
1.15 The normal space. Clearly
Tan (4 f(z0))9f = {(:E,y) ER"XR™ |y —Df(xg)x = 0} =ker B

where B is the n x (n + m) matrix
Bi= | Df(z) -1

If the target R™ and the product space R™ x R™ are endowed with inner
products, then by the alternative theorem,

L
(Tan (zo’f(xo))gf) = kerBL =Im B*,

i.e., the m column vectors of the (n 4+ m) x n adjoint matriz B* span the
orthogonal subspace to Tan (. ¢(40))9f-

1.16 9. Assuming that R” and R™ are endowed with inner products respectively g1 (, )
and g2( , ), then
g((xv Z)7 (yv w)) = 91(37, y) + 92(Z7w) Ve, S an Vz,w € Rm7

is an inner product on R™ X R™ for which the factors R™ and R™ are orthogonal.
Choose now an orthonormal basis in the target R™ to compute the components of

f="Y f2,..., f™). Show that

W

...‘Vf’"

B* =

—1Id

where V f? denotes the gradient of the component f* of f with respect to metric gi.
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T

|

\>

Figure 1.11. A curve in R2.

1.17 Example (Curves in R™). The maps r : [a,b] C R — R™, m > 1, r(t) =
(r1(t),...,r™(t)) in the standard basis are called curves in R™. The map r parameterizes

the image or the trajectory of the curve r. The map r is differentiable at to if and only

if its components r = (7"1, 2., r™) in a given basis are differentiable at tg, and in

this case the Jacobian matrix is the m x 1 matrix
V' (to)
Dr(tg) = =:7"(to),
™ (o)
i.e., Dr(top) is the velocity vector at the time tg. The linear tangent map is the map
t — 1'(to)t and yields the parametric equation of the tangent line to the curve r(t) at

each point r(tg) at which r is injective and r’(to) # 0.
The graph of r is the curve in R x R™ given by

“(b)
()

and its tangent space at tg is the line in R X R™ through the origin image of the map

t— t = 1 t
r’(to)t r'(to)

while the normal plane to the graph at (¢,7(t)), assuming we are using an orthonormal
basis in R™, is generated by the m row vectors of the matrix

Y -1 0 0
24 0 -1 0
) 0 0 ... -1

1.18 Example (Immersed surfaces). A map r: A C R? — R3,

r(u,v) = (2(u, v), y(u, v), 2(u, )7,

may be regarded as a parameterization of the surface r(A) C R3, see Figure 1.12.
If r is differentiable at (uo,vo), its Jacobian matrix is

Ty Ty
Dr(uo,v0) = | yu o
Zu  Zv
where we shortened
ox ox
Tq 1= 6u(uo,vo), Ty 1= o (uo,v0),
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Figure 1.12. The hemisphere parameterized by (u,v) — (coswusinwv,sinusinv, cosv),
u € [0,2n], v € [0,7/2].

The column vectors of the Jacobian matrix ry := (Zu, Yu, 2,)T and 7y := (T, Yo, zv)T
are the velocity vectors respectively, of the curves u — r(u,vg) at u = up and v —
r(up,v) at v = vg. In turn the curves u — r(u,vg) and v — r(ug,v) are the images
respectively of the lines u — (u,vo) and v — (ug,v) di R?.

The tangent space to G, at (uo,vo) is the 2-dimensional subspace of R? x R? given

x Ty T
2 3 “ v u
(u,v,2,y,2) €ER* xR yl=1vu wo ,
z Zu 2w

and a basis of it is given by the two column vectors of the matrix

1 0
0 1
Ty To
Yu Yo
Zu Zy

while the three rows of the matrix

form a basis of the normal space (assuming that we are using orthonormal bases).

1.19 Example. Affine transformations, i.e., maps of the form
f(z) :==x0 + L(x) L:R™ — R" linear

provide simple examples of transformations from R"™ into R™. They are differentiable
with dfz, = L.

1.20 Example (Vector fields). A vector field in A C R™ is the datum of a vector
f(z) € R™ at every point x of A; it can be regarded at first glance as a map f: A C
R™ — R™, f = (f1,..., ™). The field of velocities of particles in a fluid, the electrostatic
field, or the gravitational field are all examples of vector fields. Two operators acting
on vector fields are particularly important: the divergence operator

divf=Vef:=> ",
= Oz
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and, for n = 3, the curl operator, denoted by curl or rot

ard ofr aft  of® afr 8f1)

curlf=rot f =V f:= (812 0x3’ 923 Ozl Ozl  Ox2

We say that a field f: A C R® — R™ is solenotdal if div f = 0, and irrotational, if
curl f =0.

1.2.2 The calculus

The following is easily verified.

1.21 Proposition. Let f and g : A — R be two differentiable maps at an
interior point xo of A and let ¢ € R. Then cf, f + g, fg, and f/g provided
g(z0) # 0, are also differentiable at xo and we have

o D(cf)(xo) = cDf (o),
D(f + g)(x0) = Df(x0) + Dg(zo),
D(fg)(xo) = Q(JEO)I))f(QEO) ;r f(ﬂzo)I))g(x(o),)
_ g(zo)Df(x0) — f(zo)Dg(z0
o D(f/g)(x0) = o .
It is also easily seen that if f and g: A C R™ — R™ are differentiable,
then fori=1,...,mand j =1,...,n, we have

oNf+9) . of . g
o @)= o @+ @),

or in matrix notation
D(f +g)(z) = Df(z) + Dg(x).

Similarly, if f: A C R* — R™ and A : A C R" — R are differentiable,

then fori=1,...,mand j=1,...,n, we have
O\ af’ iy OA
o @ =@ @+ ) @),
D(\f)(x) = Az)Df () + f(z)DA(x). (1.19)

Notice that f(z) € R™ is a column vector and DA(z¢) is a row vector with
n entries, hence f(x)DA(z) is an m X n-matrix.
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1.2.3 Differentiation of compositions

1.22 Theorem. Let U C R™ and V C R™ be open sets, and let [ : U —
R™ and g : V. — RP be such that f(U) C V. Suppose that f and g are
differentiable respectively, at xo € U and f(xo). Then go f is differentiable

at g and
d(go f)zo = d9f(ao) © dfzo (1.20)
or, in terms of Jacobian matrices,
D(g o f)(zo) = Dg(f(z0))Df(zo). (1.21)

Notice that (1.21) is the natural extension of the formula (1.8) for the
calculus of the derivative of a function along a curve. Notice also that
in order for (1.21) to hold, g needs in general to be differentiable, see
Example 1.3 (iv).
Proof. Since f(U) C V, the map go f: U — RP is well defined and, by assumption,
f(z) = f(wo) + Df(zo)(x —x0) + o(|x —x0|)  as z — =0,
9(y) = 9(f(x0)) + Dg(f(z0))(y — f(z0)) + o(ly — f(z0)])  asy — f(zo).
‘We then infer, since f is continuous at xg, that
9(f(@)) = g(f(z0)) + Dg(f(z0))Df(x0)(z — z0) + Dg(f(x0))o(lx — zol)
+ o(|Df(xo)(x — xo) + o(|z — @o|)|),
hence, noticing that |Bh| = O(|h|) as h — 0 for any matrix B, we have
9(f(@)) = g(f(z0) + Dg(f(z0))Df(x0)(x — x0) + ol — zol).  as z — zo.
]

1.23 Chain rule. Suppose that y: A C R” — R™ and g : R™ — R are
differentiable at, respectively, 2o and y(x¢). If y(z) = (y'(2),...,y™(x))T,
computing row by columns, (1.21) yields

dgoy, . 0 12 my] _
oo @) = o [awtRy™)] = Dy(y(@)Dy(a) (1.22)
B zm: dg 0y dg dy' | 9g Oy dg oy™
N “~ Oy’ Oz’ Oyl ozt Oy? Oxd Oy™ Oz’
for j =1,...,m, where, of course,
dg _ 9g dy' oy
oyt = oy (y(x)) and i = O ().

Formula (1.22) is the so-called chain rule for the calculus of the derivatives
of the composition.

1.24 Example. Let r:[0,1] — R and g : R™ — RP. If s(t) := g(r(¢)), then
s'(t) = Dg(r(t)) r'(t).

Consequently, if 7/ (t9) and s’(¢9) are nonzero, the Jacobian matrix of g maps the tangent
line at to to the curve 7(¢) into the tangent line to the curve image s(t) at to.
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Dy

r'(t) s'()

Figure 1.13. The map ¢ and its tangent map.

1.2.4 Calculus for matrix-valued maps

Of course, the calculus for functions ¢ — A(t) with values m x n matrices
can be subsumed to the calculus for curves in R™"™. However, for its rele-
vance it is convenient to state a few formulas explicitly. Operating on the
entries, one can easily prove:

AlDa(t)) = A(@)a(t) + Al (1),
ey - AR + AR (123
(DAY = X(DAG) + MDA’ (1),

(tr A(t)) = tr A'(t), (1.24)
(e y(t) = (1) y(t) + 2(1) 4/ (1)

We also have the following.

(i) Starting from A(t)A(t)~! = Id, we infer, on account of (1.23), that
A(t)~! is differentiable if A(¢) is differentiable, and

(AN = -A@M) A ()AMD T (1.25)
(ii) By induction, from (1.23) and (1.24) we infer that

D(tr A(t)%) = tr (2A() A (1)),
D(tr A(t)*) = tr (3A(t)*A’(t)),

D(tr A(t)") = tr (nA(t)" 1A (1))
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Therefore, if p is a polynomial, then

c(lit(trp(A(t)) =tr (P/(A(t))A’(t)). (1.26)

(iii) Again from (1.23) and (1.24) we infer that, if A(t) and A’(¢) com-
mute, we have

D(A(t)"™) =nA®)"'A'(t)  Vn;
hence for any polynomial p we have
D(p(A(t))) = p'(A(t)) A'(t) (1.27)
provided A(t) and A’(t) commute. Notice that the chain rule does
not hold in general; in fact, (A(t)?) = A(t)A’(t) + A’(t)A(t). Hence
(A(t)?) = 2A(t)A’(t) if and only if A(t) and A’(t) commute.
(iv) Since the determinant of a matrix A is multilinear in the columns of
A, we infer for A(t) = [A1(t) | A2(t) | ... | An(t)] € M, ,, that
d
@t det A(t) = det[A] | Aa| ... | An]
+det[Ay | AL | ... | Ap] 4+ -+ det[Ay | Ao | ... | AL).
Thus, if A(0) = Id, we have

det[A](0) [ A2(0) | ... | An(0)] = (A1)'(0),

det[A1(0) [ A2(0) | ... [ AL(0)] = (43)(0),

from which

ddegf‘(t) 0)=trA'(0) if  A(0) = Id. (1.28)
More generally, if Y(s) € M, , is invertible at s = ¢, then (1.28)
yields
1 ddetY(s) ddet(Y(t)~1Y(s)) o~
detY(@®) ds D ds ®) tr( ®) (t))

(1.29)

1.25 9. Some typical facts relative to real-valued functions extend to matrix-valued
functions. For instance, we have:

(i) If A(t) is self-adjoint, then A’(t) is self-adjoint.

(ii) If A’(t) > 0, then A(s) < A(¢t) if s < t.

(iii) If R and S are self-adjoint, and 0 < R < S, then R~! > S~! and VR < V/S.

(iv) If A and B are self-adjoint, A > 0 and AB + BA > 0, then B > 0; notice

however that A, B > 0 does not imply AB + BA > 0.

[Hint: To prove (iii), apply (ii) to A~L(t), where A(t) := R+ ¢(S —R), t € [0,1]. To
prove (iv), consider B(t) := B + tA and S(t) := AB(¢) + B(¢)A, and apply (iii).]
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1.3 Theorems of Differential Calculus

1.3.1 Maps with continuous derivatives

a. Functions of class C'(A)

As we have seen, the existence of partial derivatives does not imply dif-
ferentiability. We shall see later that the existence of partial derivatives
in conjunction with convexity does imply differentiability, see Section 2,
Chap. 2 of Vol. V. Here we state a general theorem.

1.26 Theorem (of total derivative). Let f : B(xg,r) CR* - R, r >
0, be a map. Suppose that all partial derivatives of f exist at every point
of B(zo,r) and are continuous at xo. Then f is differentiable at xy.

Proof. We shall deal with the case n = 2, leaving to the reader the task of convincing
himself that the argument extends to any dimension. It is convenient to slighty change
notation: we assume that f is defined in B(Pp,r) where Py := (x0,y0) and we let
P :=(z,y) € B(Po,r). We have

f(P) = f(Po) = f(=,y) — f(zo,y0) = f(=z,y) — f(z,v0) + f(z,90) — f(z0,y0). (1.30)

Since by assumption the function g1 (t) := f(¢, yo) is differentiable in the closed interval
with extremal points z¢ and z, Lagrange’s theorem yields a point £ = &(x) with 0 <
|€ — xo| < |z — x0| such that

f(@,y0) = f(z0,90) = fo (& yo)(z — z0) (1.31)
= fa(@o,y0)(@ — z0) + [f2(&,y0) — fu(wo, yo)l(z — zo).
Similarly, for any « the function g2(t) = f(z,t) is differentiable in the interval of
extremal points yg and y, and again Lagrange’s theorem yields n = n(z,y) with
0 < |n—wol| < |y — yol| such that
F@@y) = f(@,y0) = fy(e,m)(y—yo) = fy(xo,y0)(y —yo) + [fy (2, 1) — fy (20, y0)](y = yo)-
Of course the distance of the points (£,y0) and (x,n) from Py = (z0,y0) is less than
|P — Pyl, hence
(& v0) = (§(@),30) = (z0,%0),  (z,n) = (z,n(z,y)) = (zo,y0),  as P — P,

and, on account of the continuity of the partial derivatives at (zo,yo),

$2(€ y0) = fu(@0,90)| I = 2ol + |fy (@, m) = F4(0,90)] Iy = yol = o(|P = Pol)
as P — Py. We therefore conclude from (1.30), (1.31) that

f(P) = f(Po) = fa(Po)(x — wo) + [f2(&,y0) — fa(z0, yo)](x — z0)
+ fy(Po)(y — o) + [fy(z,n) — fy(zo,y0)(¥ — vo)
= fu(Po)(z — x0) + fy(Po)(y —yo) + o(|P — Po|)  as P — Py.

1.27 Remark. Notice that in Theorem 1.26 the function f as well as the
derivatives of f may not be continuous in any neighborhood of xy. However,
the partial derivatives g xf, (!, 22%,..., a™) are assumed to be continuous

at o not only as functions of the variable of differentiation z?, but as
functions of several variables.
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(z,y)

(330’ yO) (177 yO)

Figure 1.14. Illustration of the proof of the theorem of total derivative.

1.28 9. Let xp be an interior point of the domain A of a function f : A C R® — R.
Suppose that f is continuous at xg, all partial derivatives of f exist in A\ {zo}, and,
for alli = 1,...,n, we have f i(x) — a; € Rasz — 29, Show that f is differentiable
at zo and dfz, (v) = > 7, a;v".

1.29 9. Show that

(i) polynomials in several variables are everywhere differentiable,
(ii) if L : R™ — R is linear, then dLg, = L,

(ili) if A = (A;;) is an n x n-matrix, then the quadratic form ¢(x) = Azex =
i Aijz'e?, x € R", is a homogeneous polynomial of degree 2 and D¢(z) =
(A +AT)z.

1.30 Definition. We say that f : A C R® — R™ is of class C! in the
open set A and we write f € CH(A,R™), or f € CY(A), if all partial
derivatives of f exist and are continuous in A.

Every map f € C*(A) is differentiable in A by Theorem 1.26, hence
continuous by Proposition 1.5, i.e.,

CH(4) C C(A);

moreover, by Proposition 1.21, C1(A) is a vector space over R.

b. Functions of class C'(A)

1.31 Definition. Let A be an open subset of R™. We say that f: A — R
is of class C1(A) if there exists an open set U D A and an extension
F:U—RofftoU, F=f onA, of class C*(U).

The differential of f in « € A is defined as the differential at = of one of its
C'-extensions, as the differentials of two different C''-extensions necessarily
agree at x.

Hassler Whitney (1907-1989) has given a definition of function of class
C"' that is less naive than Definition 1.31 and that it is worth mentioning.

1.32 Definition (Whitney). Let E be a closed set in R™ without isolated
points. We say, according to Whitney, that f : E — R is of class C*(E) if
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(i) f s differentiable at every point of E, i.e., for every x € E there is
a linear map L, : R™ — R such that

lim R(y;x) =0
yeE
e F) = F(@) = Loy = o)
y) = f(z) = Loy —
R(y;z) =
ly — =
(i) the gradient vector V f(x) associated to Ly is continuous in E,
(iii) R(y;xz) — 0 as y — x uniformly on the compact sets of E.

b

It is easily seen that if A is an open set and f : A — R has a C!
extension in a neighborhood U of A, then f is of class C'(A) according to
Whitney’s definition. A celebrated theorem of Whitney’s claims that the
converse also holds. We state it without proof.

1.33 Theorem (Whitney). Let E C R™ be a closed set without isolated
points. Suppose that f : E — R is of class C*(E) in the sense of Whitney.
Then there exists F : R” — R of class C*(R™) that extends f, i.e., F = f
in E. Moreover, the extension has the following properties:

(i) if Ly is the Whitney differential of f at © € E, then DF(z) = L,,
(ii) we have

[[F|loo,gn < C|flloo,E

IDF|| s zv < C max (HLIHOO o, max @) *f(y)l)
7 Tyl |z —y

where C' is a constant depending only on the dimension n.

c. Functions of class C2(A)

Suppose that f : A — R, where A C R"” is open, has first derivatives
in a neighborhood of xy € A, and that the first derivatives have par-
tial derivatives at xg, then we say that f has second derivatives at zq. If

(2, 2%,..., 2") are the coordinates in R™, the partial derivative of f first
with respect to x7 and then to x’ is denoted by one of the symbols:
0% f

Owidi (z0), DiDjf(xzo),  or  Dijf(xo).

The n x n matrix of the second derivatives of f,
Hf(zo) := [DiD; f(z0)],

is called the Hessian matriz of f at xg.
In general it may happen that

DZDJf 7é DJDZf for ¢ 7é j,
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as for instance with the function

y? arctan g if y £ 0,

flx,y) = _
0 ify=20

for which éfgy (0,0) =0 and azzgx (0,0) = 1. However, the following holds.

1.34 Theorem (Schwarz). Let f : B(zg,r) C R"™ — R, r > 0. Suppose
that for i # j the mized derivatives
0% f
0z 0xI

o f

(2) and 9 i (2)

exist in B(xzo,r) and are continuous at xo, then they agree at xg.

Proof. We deal here with functions of two variables, leaving to the reader the task of
convincing himself that the proof extends to functions of more than two variables.

Let Py := (z0,y0) and P = (x,y) € B(Py,r). Consider the so-called second differ-
ential quotient

_ flzo+tiyo +1) — flzo +t,yo) — f(wo,y0 + 1) + fzo,y0)
Alt) = y

that is well defined for 0 < [t| < r. Now introduce

9(@) = f(z,y0 +1t) — f(z,90), h(y) := f(zo +t,y) — f(zo,y),
so that
A(t) =t72(g(mo +t) — g(x0)) =t~ 2(h(yo +t) — h(y0))-

As a consequence of the mean value theorem for functions in one variable, we can
write

A) =t""9"(€) = t7 (fa (& w0 + 1) — f2 (€, 0))

for some & between xg and xg + t; again the mean value theorem then yields

o%f
At) = ,
0=, 5. En
where 7 is between yo and yo + t, and, similarly we can write
9% f
A@t) =t R/ (B) = ,
® )= g0y @

where « is between zg and zg + ¢, and S is between yo and yo + t.

When ¢t — 0, both points (o, 3) and (§,n) (that depend on t) tend to (zg,yo). On
account of the continuity of the mixed derivatives at (zo, o), we conclude when ¢t — 0
that

8% f o f
(zo,90) =

Oyox oxdy (20, y0)-

O

1.35 Definition. If all second derivatives of a function f exist and are
continuous in an open set A, we say that f is of class C*(A) and we write

feCc?A).



28 1. Differential Calculus

1.36 q. Let |z| := \/Z?:1 x2. Compute for = # 0 the first and second derivatives of

T
|z|, and, more generally, of |z|%, a € R.

1.37 4. Let A € My, n. Compute the first and second derivatives of the linear map
r — Az and of the quadratic form z — Azex.

A trivial consequence of Schwarz’s theorem is the following.

1.38 Corollary. Every function f € C?(A), A open in R™, has equal
mized second derivatives, D;jf(x) = Dj;if(x) Ve € A, ¥i,j=1,...,n. In
other words, the Hessian matriz Hf (z) is symmetric Vx € A.

d. Functions of classes C*(A) and C*°(A)

By induction we now define the partial derivatives of order k. We say that
a function f : A — R has partial derivatives of order k, k > 2, at an
interior point xg of A if f has first partial derivatives in a neighborhood
of g that in turn have partial derivatives of order k — 1 at xg. The partial
derivatives of order k of f are defined as the derivatives of order k — 1 of
the first-order partial derivatives of f. By taking into account at each step
of the induction the theorems of total differentiation and of Schwarz, we
easily infer if f has derivatives of order k at xg that

o f has all partial derivatives of order less than k in a neighborhood of
T, and these derivatives are continuous at xg,

o the derivatives of order h with 2 < h < k—1 do not depend on the order
of differentiation.

1.39 Definition. If all derivatives of order k of a function exist and are
continuous in an open set A, we say that f is of class C¥(A) and we write
f € C*(A). If f has continuous derivatives of any order in an open set A,
we say that f is of class C*°(A) and we write f € C*°(A).

Clearly,
C>®(A) c C*(A) c C*1(A) c --- c C*(A) c CH(A) c C°(A),

and again by Schwarz’s theorem we have:

1.40 Corollary. Let A be an open set of R™ and let f € C*(A). Then the
derivatives of f of order less than or equal to k do not depend on the order
they are taken.

Consequently, in order to specify a derivative of order k of a function of
class C*, it suffices to specify the number of derivatives we take in each
variable; for instance, if f € CS(R?), its sixth derivative 3 times with
respect to x, 2 times with respect to y, and one time with respect to z at
(0, Yo, 20) is denoted by

f

0130y202 (20, Yo, 20)-
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1.3.2 Mean value theorem

a. Scalar functions

1.41 Theorem. Let A C R™ be open and let f : A — R be a function
that has directional derivatives at all points of A. Suppose that xg,x are
two points of A such that the line segment joining xo to x is contained in
A, and let h:= x — xo. Then the function g(t) := f(xo + th), t € [0,1], is
well defined and differentiable in [0,1] and

af

gt = ah(xo +th)  Vtelo,1]. (1.32)

Moreover we have:

(i) (MEAN VALUE THEOREM) There exists s €]0,1[ such that

of

Flao+ h) = £ o) = 9(1) ~ 9(0) = )

(xo + sh), (1.33)

(ii) (INTEGRAL MEAN VALUE THEOREM) If ¢(¢), t € [0,1], is continuous,
then

fzo + h) — f(zo) = /0 g£ (xo + th) dt. (1.34)

Proof. (i) If z := xo + th we have
g(t+7) = g(t) = f(zo + (t +7)h) — f(zo + th) = f(z + Th) — f(2);

hence

glt+7)—g(t) _ f(z+7h) = f(2) _ Of

T - T oh
Therefore g is differentiable and (1.32) holds.

(i) and (ii) follow respectively from Lagrange’s theorem and the fundamental theorem
of calculus, see [GM1], applied to g(t), t € [0, 1]. O

(2) as T — 0.

Theorem 1.41 applies of course to functions that are Gateaux-differen-
tiable. In this case

of " of
on (@) = DIDh =3 . o)

for all A € R™. For future use we restate it as follows.

1.42 Corollary. Let f: A — R be Gateauz-differentiable in an open set
A CR" and let xy € A. Then for all © € B(xg,r) we have

(i) f(x) — f(zo) =Df(xo + s(x — x0))(x — o) for some s €]0,1],
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(i) if the functions s — gj (xo +sh), s€[0,1],i=1,...,n, are contin-
uous, then

f(xo+h)—f(a:0):/0 Df (o + s — 20))(x — o) ds  (1.35)

= zf: (/01 gjl (w0 + s(x — x0)) ds) (z — x0)".

A trivial consequence, see also Corollary 1.51, is the following.

1.43 Proposition. Let f: A — R, where A C R™ is open, be a function
that has directional derivatives at every point of A and let

M := sup o7

x } < +00.
xeA,\ﬂgl‘av( )

Then f is continuous in A. Moreover, if A is convex, then f is Lipschitz-
continuous i A and

If(y) = fx)| <My —z|  Vo,yecA (1.36)

1.44 9. Show that (1.36) does not hold in general if A is not convex. Show instead the
following.

Corollary. Let f € C1(Q), Q C R™ open. Then f is Lipschitz-continuous in every
compact subset K of Q.

1.45 Corollary. Let f : A — R, where A C R™ is open, be a function
that has directional derivatives at every point of A. If A is connected and

gfj () =0 Vv € R" and Vx € A, then f is constant in A.

Proof. Let xg € Q and let

Bi={z € Q|f@) = f@a0)}.

By Theorem 1.41 B is open, while Proposition 1.43 yields that f is continuous, hence
B is closed. Hence B = A since A is connected. O

1.46 Remark. Of course, in Corollary 1.45 the assumption A connected
is essential. We notice also that the assumption A open is needed. In fact
one can show, though this is not trivial, the existence of a nonconstant
function in a connected set with zero differential.!

L H. Whitney, A function not constant on a connected set of critical points, Duke
Math. J. 1 (1935), 514-517.
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For all z,y € A, where A C R™ is open, let 7 : [0, 1] — A be a curve of
class C! such that v(0) = z and (1) = y, and assume that f: A — R is
as above. Then

fo) = @) = [ e = [ Drowm o,
hence L
F) - f(@)] < / IDF(v ()] |7 (1) dt < M L(%)

where M := sup,c 4 |Df(x)| and L(7) is the length of 7. If 6 4 (2, y) denotes
the infimum of the lengths of the curves in A joining x to y, i.e., the minimal
connection of x to y in A, we then have

|f(y) = f@)] < Mda(z,y).

Consequently, we infer the following.

1.47 Proposition. Let f € CY(A) with |Df(z)] < M Vx € A. If there
exists C' > 0 such that

da(z,y) <Clz—y|  Vr,y€A,
then f is Lipschitz-continuous in A.
If A= B(xzg,r) or A is convex, then clearly d4(z,y) = |z —y| Va,y € A.
1.48 4. Show that for any compact F C A there exists Cp such that d4(z,y) <

Cr |z — y| Vz,y. In particular, every function of class C'!(A) is Lipschitz-continuous on
the compact subsets of A.

b. Vector-valued functions

The mean value theorem in the form (1.33) does not hold for vector-valued
maps f: A—R™ m>1.

1.49 Example. For instance, if f(t) = (cost,sint), t € [0,27x], we have 0 = f(27) —
£(0) but f'(s) # 0 Vs € [0, 27] since |f/(s)] = 1.

It instead holds in the integral form (1.34). In fact, recalling that for f €
C%[a,b],R™), f:=(f', f2,..., f™)T, we have

/abf(S)ds = (Lbfl(s)ds,/abf2<s)ds,...,/abe(s)ds)T,

we easily infer the following.

1.50 Theorem (Mean value). Let f : B(xzg,r) C R® — R™ be a map of
class C*. Then for all x,y € B(xo,r) the following integral mean formula
holds

1
f(@) — f(y) = /0 DF(y+ tx — ) (x — y) dt.
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This allows us to estimate finite increments of f in terms of the Jacobian
matrix of f. For A € M, »(R) recall that

|A(R)] ’
All = h#0
e i )
is a norm in M,, ,(R) and that |Ah| < ||A]|||h| Vh € R™.

1.51 Corollary. Let f : B(xg,7) C R™ — R™ be a map that has direc-
tional derivatives at every point of B(xzo,r) and let

K = sup{HDf(z)H ’z € B(mo,r)}.
Then
[f(x) = f(y)l < Kz —yl. (1.37)
Proof. Of course,
IDf ()W) <IDfEI|h < K[k VheR™
Thus

1 1
\f(xwf(y)\s\/o Df(y+t(:vfy))(wfy)dt‘§/0 Dy + t(z — v))(@ — v)|di

1
s/ IDf(y + t(z — )| dt |z — y] < K |z — .
0

1.3.3 Taylor’s formula

Let A be an open set in R™ and let f : A — R be a function of class C*,
k > 1. Suppose that the segment joining two points xg,z is contained in
A and let h := 2 — x¢. The function

F(t) := f(a" + th)

is well defined for ¢ € [0,1] and F(0) = f(xo) e F(1) = f(x). Moreover
F € C¥([0,1]), and we may compute for € [0, 1]

F/(t) = Z aa:‘cf (.Z‘() + th)hz = ZDif(xO + th)hz
i=1 "

i=1
n

F"(t) =Y [Dif(zo + th)'hi = Y D;Dif(xo + th)hsh;

i=1 i,j=1
F"(t)= Y DyD;D;f(xo+ th)hihjhy, (1.38)
i,7,k=1
n
F®@)y= Y DiyDi_, ...Di fxo+th)hi i, ... hi,
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Here, as in the rest of this section, we denote the components (hq, ..., hy)
of h with lower indices.

Notice that F (j)(O) is a homogeneous polynomial of degree j in the
components hi,...,h, of h.

a. Taylor’s formula of second order
We can write F and F” in (1.38) as

F'(t) = Vf(zo+th)eh, and  F"(t) = Hf(zo +th)heh, (1.39)

where Vf and Hf are respectively the gradient and the Hessian of the
function f, and zey is the standard inner product in R™.

1.52 Theorem (Taylor’s formula). Let f € C?(B(xg,7)), r > 0. For
h € R", |h| < r, we have

(i) (TAYLOR’S FORMULA WITH INTEGRAL REMAINDER)

Flzo +h) = f(wo) + V(zo)eh +/0 (1—s) {Hf(:coqtsh)h.h} ds
= f(zo) + Vf(fvo)

+ Z (/ %) o 2({ (zo + sh) ds)hihj,

3,7=1

(ii) (TAYLOR’S FORMULA WITH LAGRANGE’S REMAINDER)

f(x() + h) = f(it()) + Vf(x()) oh + L Hf((L'O + Sh)hoh

2
= fa0) + Vi)eh + 3 aaa (20 + sh)hih,

3,j=1

for some s €]0,1],
(ii) (TAYLOR’S FORMULA WITH PEANO’S REMAINDER)

f(zo+h)— f(x0) — Vf(zo)eh 7; Hf(zo)heh = o(|h|?) ash — 0.

Proof. (i) and (ii) are Taylor’s formulas for F(t) := f(zo + t(z — z0)), t € [0, 1], see
[GM1], taking into account (1.39). Then (iii) follows at once from (ii). O
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b. Taylor formulas of higher order

It is convenient to rewrite (1.38) in a more convenient form. An n-tuple of
nonnegative integers is called a multiindex

a=(ay, ag,..., ay), a; € N,
The length of « is the number
laf == a1 +ag + -+ an,

and it is convenient to define

al:=aylas!. .. ay!,
and, for © = (21, za,..., ) € R™,

=t ag? o al.
Notice that |z®| < |z|l*!. Finally, if o = (a1, ag,..., ay) is a multiindex
with n elements, the derivative of f of order a; times with respect to 1,
a times with respect to xo, ..., a, times with respect to x,, is denoted
by

oled
Do f or /

« « Qg
0x{"'0xy” ... 0xy"

Grouping in each of the equations in (1.38) the terms containing the
derivatives of order «, |a| < j, we may rewrite the equation in (1.38) as

FO@) =" CaDf(zo+th)h*,  j=1,....k, (1.40)

lee|=4

where Cy, is the number of lists of || differentiations, ay times with respect

to x1, ag times with respect to xa, ..., a, times with respect to .
Computing C,, is now a combinatorial problem, see, e.g., [GM2, 3.2.4].

There are (071) ways of disposing a;; objects of type 1 in a list of n elements;

hence (071) (”;;‘1) ways of disposing a; objects of type 1 and as objects of

type 2 in a list of n, .... Thus

C _ |Ot| |a| — Q] |Oé| — o1 — Q2 (079 _ |C¥|' _ |Oé|'
¢ a1 Qo as T \ay, arlas!. Loy al’

and (1.40) becomes

1'F<j>(t) -y D f(=o Z(x*"”‘)))(xfxo)a, G=1,.. k. (141)
jal=s
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1.53 Definition. Let f € C*(B(xo,7)), r > 0. Taylor’s polynomial of f
centered at xg of order k is the polynomial in R™ of order at most k

Py(z;30) = Z D‘ngo) (z — x0)%.
|al<k

Taylor formulas for F(t) := f(xo + t(z — x0)), t € [0,1], give rise, on
account of (1.41), to Taylor formulas for f.

1.54 Theorem (Taylor’s formula with Lagrange’s remainder). Let
f be a function in C*(B(xg,r)), r > 0. Then

D f(xo + s(xz — xp))

f(x) = Py—q(x;20) + Z ol (x —x0)”
|| =k
for some s €]0, 1[. Moreover, if we set
Ri—1(z;20) == f(2) — Pe—1 (x5 20),
Mj, := sup sup \Da (2)],
|a|=k z€B(zq,r)
we have -
n
’Rk,l(:c;xo)| <" e —aolt. (1.42)
Proof. Taylor’s formula for F(t) := f(zo + t(x — z0)), t € [0, 1], yields
i OO L o)

for some s €]0, 1[. This yields the result computing F()(0) with (1.41). From F)(s)
in (1.38), we infer for ¢ € [0, 1]

n

PO (1] < Mk\mk( >

1409, i =1

1) = M, |h|Fn*.
O

1.55 Corollary (Taylor’s formula with Peano’s remainder). Let f
be a function in C*(B(zq,7)), 7 > 0. Then

f(x) = Z Daf(xO)(x—xo)a+0(\x—xo|k) as x — x.

al
| <k

Proof. In fact,

a) = Z DQ‘QEIO)(QZ*JZ())OC+ Z D f(xo +a;9($—$0))(xfzo)a
la|<k—1 : o=k '
_ Z D« fxo —20) + Z D f(zo + s(=z ;TO))*Daf(xO)(m—xo)a

|| =k la|=k
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for some s = s(x) with |s — zg| < |z — 20|. When z — ¢, also g + s(z)(z — z0) — 20,
hence
|D® f(zo + s(x — z0)) — D f(z0)| — 0.

Since |h®| < ||l this yields

> D f(zo + s(z — wo)) — D f(z0)

al

(x—xo)a:0(|x—xo|k) as * — 9.

|al=k

]

1.56 . Show that Taylor’s polynomial Py (x;xo) of degree k centered at xg of f is the
unique polynomial Q(z) of degree less than or equal to k such that

f@) = Q(z) = of|z — z0|*)  asz — 0.

1.57 9. Show the following.

Proposition (Taylor’s formula with integral remainder). Let f be a function in
Ck+1(B(zo,7)), 7 > 0. Then

1
f@) = Pt Y ([a-0r e peortta-sopar) © T )

lal=k+1

1.58 9. Applying Taylor’s formula with integral remainder with £ = 0 and k& = 1, show
the following.

Lemma (Hadamard). If f is of class C*° near 0 € R™, then there exist functions
gi(x) and g;;(x) of class C*° such that

n

f@) = £0) =D gi(@a’,  fl@)=f0) = fu(0a'+ > gij(x)a’a’ (1.44)
=1

i=1 i,j=1

in a neighborhood of zero.

c. Real analytic functions

Let f be a function of class C* in an open set A of R™. Then f has Taylor
polynomials of any order at every point zg of A. The sequence of Taylor
polynomials Py (z;xg) of f, equivalently the series of functions

kio (lgz:k Daﬁ%) (z — xo)a),

is called the Taylor’s series of f centered at zg € A.

1.59 Definition. We say that f € C*°(A) is an analytic function if every
point xg € A has a neighborhood in which f agrees with the sum of its
Taylor’s series with center xg.
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There exist functions of class C'*° in an open set that are not analytic.
For instance, compare [GM1], the function

e ifr >0
f(z) = ’
0

ifx <0

is of class C'*° and nonzero, but all its derivatives exist and vanish at zero,
consequently the sum of its Taylor’s series is zero. However, the following
holds.

1.60 Proposition. Let A be an open set of R™ and f € C*(A). Suppose
that for every xo € A there exist C' and r > 0 such that B(xg,7) C A and

sup sup |D%f(z)| < C*k! Vk e N,
|a|=k B(xo,r)

then f(x) is analytic in A.

1.61 9. Prove Proposition 1.60. [Hint: Use (1.42).]

d. A converse of Taylor’s theorem
The following theorem may be read as a converse of Corollary 1.55.

1.62 Theorem (Marcinkiewicz—Zygmund). Let Q be an open set of
R™ and let f(x) and an(x), |a| < k, be continuous functions in §2. Suppose
that, for x € Q and |h| < dist (x,00Q), we have

fa+n) =3 “”;f!"”) he + g(z, h) (1.45)

|l <k

where g(z,h)/|h|* — 0 as h — 0 uniformly with respect to x on the compact
subsets of Q. Then f is of class C*(£2).

Proof. We convolute the two sides of (1.45) by means of a family of mollifiers, see
Section 2.3 Chapter 2, to get

fel@+h)y=>" (“a @) ey g, h).
|al<k
Since fo € C*(Q) for all @ CC Q and
llge(z, Ml & < llg(@, b0,
we infer from Exercise 1.56
Dofe(@) = (aa)c(z) VzeQ, Va, |a| <k

and letting € — 0, see Section 2.3 Chapter 2, we conclude D®f(z) = aq(z) Vz € Q.
This concludes the proof as Q is arbitrary. [}
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1.3.4 Critical points
Let AC R™ and let f: A — R be a function. A point zy € A such that
flao) < fz) VaeA (1.46)

is called a minimum point or an absolute minimizer of f in A, the value
of f at a minimum point

flxo) = min{f(x) ‘x € A}

is called the minimum (value) of f in A. In case the inequality in (1.46) is
strict (except for x = x¢) we say that xg is a strict absolute minimizer. As
we know, functions may or may not have minimizers: for a given f : A — R,
they exist if A is bounded and closed and f is lower semicontinuous in A,
see, e.g., [GM2, Chapter 2] and [GM3, Chapter 4].

We say that z is a local (or relative) minimizer for f : A — R if there
is a neighborhood Uy, of z¢ in which it is a minimizer for f, i.e.,

f(zo) < f(2) Ve Uy, NA.

If the previous inequality is strict for x # xg, we say that x( is an iso-
lated local minimizer for f. Similar definitions of course hold for maximum
points. Local minimizers and local maximizers of f are both called extremal
points and the values of f at extremal points are called extremal values.

Sometimes the research of extremal points reduces to a simple inspec-
tion. For instance, clearly f(x) := |x|, z € R™, has an absolute minimizer
at 0, as well as the function log(1 + 22 + 2y?): since both functions are
nonnegative and vanish if and only if (z,y) = (0,0). In other cases it is
easy to conclude by looking at the level lines of the function. However, it
is useful to develop some general remarks.

Suppose xg is an extremal for f. Then x( is also an extremal for the
restriction of f to any line through xg. It follows from Fermat’s theorem:
Suppose that xg is interior to A and that f has directional derivative in
the direction v at xg. Then D, f(x¢) = 0. Of course, both assumptions
xo interior to A and f has directional derivative in the direction v are
essential as shown by the function f(z) = |z|.

When A is an open set of R and f € C'(A), we can state more.

1.63 Proposition. Let f: A — R be a function that is differentiable at
an interior point xo to A. Then xg is an extremal point for f if

dfwy =0 equivalently Vf(zp) =0. (1.47)

1.64 Definition. Let A be an open set of R™ and let f : A — R be
differentiable in A. The points x € A such that df, = 0 (equivalently
Vf(z) =0) are called critical points of f in A.
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Figure 1.15. Two saddle points.

As for functions of one variable, whereas all interior extremal points are
critical points, not every critical point is an extremal point. For instance,
(0,0) is a critical point of the function f(x,y) = 22 — 2, (z,y) € R?, but
it is not a local minimizer or a local maximizer for f. Looking at level lines
of f, one readily infers that (0,0) is a saddle point for f.

At this point we should warn the reader that the intuition relative to
critical points for functions of several variables is not as reliable as for
functions of one variable. The following example may be useful.

1.65 Example. The function f(z,y) = y(y — 22), (z,y) € R?, has a critical point
at (0,0). The point (0,0) is a minimizer for the restriction of f to any straight line
through the origin, but it is a maximum point for the restriction of f to the parabola,
see Figure 1.16.

1.66 Example. The function
fla,y) =2 =3z + (¥ — o), (z,9) €R?,
has a unique critical point at (1,0) that is a local minimizer, see Figure 1.17, moreover

1nff(z,y) = —09,
R2

though f has no relative maximum point.

Figure 1.16. Illustration for Example 1.65.
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0 - i

Figure 1.17. f(x,y) = 22 — 3z + (e¥ — z)2 has a local minimizer at (1, 0), tends to —oo
along the curve y = z° as * — —oo, and has no relative maximizers.

Let f € C%(A), with A open in R", and let xyp € A be a critical point
of f. Taylor’s formula with Peano’s remainders tells us that

Flo+h) = f(ao) + 5 Hf(ro)hah +o(?)  as Wl —0,  (1.43)
Hf(xo) = [D;j f(z0)] being the Hessian matrix of f at zo.

1.67 Proposition. Let f € C?(A), with A open in R™, and let o € A be
a critical point of f. Then

(i) if zo is a local minimizer, then Hf(xo)e& > 0 VE € R™,

(i) of Hf(zg) e& > 0 VE £ 0, then o is an isolated local minimizer.

Proof. (i) From (1.48) we have
02 fle+26) — flzo) = , [HF o))« (A6) ] +0(0?)

as A — 0, A € R, and, dividing by A2 we get
Df(z9)e& +0(1) >0 as A — 0,

i.e., the claim.
(ii) Let ¢(&) := Hf(z0){ o €. Since ¢(£) is a homogeneous polynomial of degree two in
the components of £, the restriction of & — Hf(z0)¢ o€ to the unit sphere S"~! :=
{€| €] = 1} C R™ is continuous. Weierstrass’s theorem then yields a point & € S™~1
such that

Hf(z0)e& > Hf(zo)éoeéo =:mo  VE€ S™ (1.49)
while the assumption implies that mg > 0 and, using 2-homogeneity of { — Hf(z0)€ e &,
we get the estimate

Hf(zo)¢e& > mol€]?  VEER™

From Taylor’s formula we then infer
1
f@) = flao) = , Hf@@o)heh +o(n?) 2 b (") +o(1),  hi=z—a0.

Since mgo > 0, the theorem of constancy of sign provides us with a ball B(zo,d) on
which mg/2 + o(1) > 0, so that f(z) > f(zo) for all x € B(zo, ), « # xo. o
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Figure 1.18. The Hessian matrix of the paraboloid on the left has two positive eigenval-
ues, the Hessian matrix of the saddle has eigenvalues of opposite sign, and the Hessian
matrix of the cylinder has a positive and a vanishing eigenvalue.

1.68 Quadratic forms. We recall that the positivity of a quadratic
form ¢(h) = Aheh associated to a symmetric matrix A € M, , can
be checked in terms of the signature of the metric (h,k) — Ahek, see
[GM2, Chapter 2], that is, writing ¢ as a sum of squares

Aheh = zn:me
=1

Several methods are available to do this: for instance by computing the
eigenvalues of A. Since A is symmetric, the spectral theorem tells us that
there exist an orthonormal basis (u1, ua,..., u,) of R” and real numbers
A1, A9, ..., A, such that

Ah:i/\lhoulul Vh,

i=1
which says in particular that uq, uso,..., u, are eigenvectors of A and, for
every i = 1,...,n, \; is the eigenvalue of A corresponding to u;. Conse-

quently,
m
Aheh = Nheuju;  Vh.
i=1

Since |h|* =30 | heu; |2, we get
Ao ||> < Ahoh <My B> VheR"

where A, := min;(\;) and Ay = max;()\;). We can therefore restate
Proposition 1.67 as follows.

1.69 Proposition. Let f € C?(A), with A open in R™ and let xg € A
be a critical point of f and let Hf(xq) be the Hessian matriz of f at xg.
Then we have the following.

(i) If zo is a local minimizer for f, then the eigenvalues of Hf(xo) are
nonnegative,
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(ii) If the eigenvalues of Hf (xg) are positive, then xq is an isolated local
minimaizer.

1.70 9. Show that, in R?, the quadratic form Ah e h is positive if and only if tr A > 0
and det A > 0.

1.3.5 Some classical partial differential
equations

1.71 The Laplace operator. The differential operator

n
Au :=divgradu = ZDiDiu

=1
is called the Laplace operator or Laplacian. The functions u € C*(Q) for
which Au =0 in  are said to be harmonic in Q.
1.72 9. Show that, in dimension two, and in polar coordinates (p, 0), Au writes as
1 1 170 0,1
Au=1up, + up+ ugg = +
R R FACATSAWA]
whereas, in dimension n = 3 and in spherical coordinates, Au writes as

u= o oy @l (0 g+ ines) |

Jr
psin? @ 90 “sin O

1.73 9 Laplacian and gravitational forces. The gravitational force acting on a
unit mass at the point (z,y, z) due to the interaction with a mass placed at the origin
is given, according to Newton’s gravitational law, by

M r
szg 2 ) g>07T1=(17y7Z)-
2 |r|
If o
v="4
2 r
denotes the gravitational potential, observe that F' = —V V. Moreover, show that

(i) V is harmonic in R3\ {(0,0,0)}, i.e., AV =0 in R?\ {(0,0,0)}.
(ii) The unique spherical symmetric harmonic function in R™ \ {0}, i.e., the unique
harmonic functions of the type u(z) = ¢(|z|), are
logr ifn=2,
Ay(lz|]) + B where A,B€R and ~(r):=
if n > 3.
rne

(iii) The functions e** cos ky and e** sin ky are harmonic in R2.
(iv) The function e3#+4¥ sin 5y is harmonic in R3.

(v) If f(z,y) is harmonic in R2, then also f(aﬂiy?’ 121y2) is harmonic.

1.74 9. Show the following theorem.
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Figure 1.19. Frontispieces of two works respectively by Constantin Carathéodory (1873—
1950) and Richard Courant (1888-1972).

Theorem (Maximum principle). Let u € C°(Q) N C?(Q) be harmonic in Q. Then

sup |u| = sup |u.
Q o0

[Hint: Let zo € 2 and, for € > 0, let uc(z) := u(z) — €|z — zo|?. We then have
Ay — €|z — z0)|?) = —2ne < 0;

hence xo cannot be a maximum point for u. since in this case Huc(zg) > 0.]

1.75 q. Consider the following problem, called Dirichlet’s problem: find u € C2(Q) N
C%(2) such that

Au=f in Q,

u=g on 99,

where g is a given continuous function on 9f2. Infer from the maximum principle, see
Exercise 1.74, that it has at most one solution.

1.76 §. Functions u : 2 C R™ — R such that —Au < 0 in Q, are called subharmonic,
whereas functions u such that —Aw > 0 in 2 are called superharmonic. Show that

(i) subharmonic functions in  have no (interior) maximum point in Q,
(ii) superharmonic functions in 2 have no (interior) minimum point in €,
(iii) if w is subharmonic in €, and v is superharmonic in  and v < v on 9%, then
u <wvin Q.
Finally, show that, if u is harmonic and f € C?(R) satisfies f”(t) > 0, then f(u) is
subharmonic.
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Figure 1.20. Frontispieces of two monographs respectively by Joseph Fourier (1768-
1830) and Jean d’Alembert (1717-1783).

1.77 The wave equation. If f and g are two functions of class C?, the
function

u(t,z) = f(x —ct) + g(z + ct) (1.50)

satisfies the 1-dimensional wave equation

*u  ,0%u
=c )
ot? ox?

This equation is supposed to describe the vibrations of a string pulled tight
between fixed ends: u(z, t) represents the height at time ¢ and it is assumed
that the longitudinal displacement is negligible. Notice that f(z — ct) and
g(x + ct) represent waves that propagate respectively, to the left and to
the right with velocity c.

1.78 §. Show that by the change of variables r = z + ct, s = x — ct, the wave equation
transforms into
9%u
=0
Jros
Infer from this that (1.50) represents a general solution of the 1-dimensional wave
equation.

1.79 q. Show that the initial value problem

’U,tt(ﬁ?, t) = CQUII(x7 t)7
u(z,0) = p(z),
ut(z,0) = q(z)

admits as solution the function
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Figure 1.21. Olga Ladyzhenskaya (1922—
2004) and the first page of a celebrated
paper by Jean Leray (1906-1998) on
Navier—Stokes equations.

Ttct
u(z,t) = ; (p(:v —ct) +plz+ ct)) + 210 / q(s)ds.

x—ct

1.80 The heat equation. The heat diffusion in a bar is described ac-
cording to Joseph Fourier (1768-1830), by the heat or diffusion equation

Ut = Ugq-

Here u(t, x) is the temperature in = at time ¢ in suitable units. One checks
that the function ¢~1/2e=%"/4t is a solution for ¢ > 0 and z € R.

1.81 Schroédinger’s equation. A complex variant of the heat equation
is Schrddinger’s equation in quantum mechanics

ih

po e = =D+ V (@),

where V() is a potential, / is Planck’s constant, and ¢ = v(x,t), x € R?,
t >0, is a “wave function”, i.e., 1 € C?(Q x R,C) with [ |[¢(2,t)|?dz =1
for all t > 0.

1.82 Euler’s equation. The velocity field of a perfect fluid solves Eu-
ler’s equation

1
v+ (veV)v=f— pr
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where p is the pressure, f the exterior force and p the density of the fluid.
The density is transported by the velocity field according to the continuity
equation

pt + div (pv) = 0.

In particular, for incompressible fluids, p(t) =cost, Euler’s equation reduces
to
dive = 0.

1.83 The Navier—Stokes equations. If the fluid is viscous, Euler’s
equation modifies into Navier—Stokes equations in which the diffusion term
vAv appears, v being the viscosity coefficient

1
thr(voV)vfyAv:ff Vp.
P P

In both Euler’s and Navier—Stokes equations the notation is v = (v!,v?, v?),

(U oV )1} = (1} oDUi )i=1’273, v oDUi = Z?:l UijUi.

1.4 Invertibility of Maps R" — R"

Let f: Q C R® —» R” be a map. When f is linear, f(z) = Az, A €
M, o (R), its invertibility, i.e., the possibility of solving in z the system
Az = y for all y € R", is equivalent to the invertibility of the matrix A,
and, in turn, this is equivalent to det A # 0.

When f: R — R is a differentiable function of one variable, we know,
see, e.g., [GM1], that the condition f’ > 0 (or f’ < 0) implies monotonicity,
consequently invertibility of f, and also the differentiability of the inverse
function. Actually, if f is of class C* and f’(zg) # 0 at some point zg,
there exists an interval I(zo,r) in which f/(z) has the same sign of f'(x¢),
consequently (f| 7)1 is strictly monotone, continuous with differentiable
inverse, and

Yy € f(I(zo,7)).

In Section 1.4.2, we state and prove (another proof will be presented
in Section 1.4.4) a similar local invertibility theorem, known as the Inverse
Function Theorem, for mappings f of class C': the condition f’(xg) # 0
will be replaced by the nondegeneracy condition det D f(z¢) # 0, which
may be seen as an invertibility condition for the linear tangent map to f
at g, or as the nondegeneracy of the first-order Taylor expansion of f at
T

f(x) = f(wo) + Vf(x0)e(x —20) + 0|z — 20]) as r — x.
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1.4.1 Banach’s fixed point theorem

For the reader’s convenience we begin by stating a few facts about Banach’s
fixed point theorem, see, e.g., [GM3, 9.5.1].

Let X be a metric space with distance d. A map T : X — X is said to
be a contraction or a contractive map if there is a constant k, 0 < k < 1,
such that d(T'(z), T (y)) < kd(z,y), Yo,y € X. In this case we also say that
T is k-contractive. In other words a contraction is a Lipschitz-continuous
map with Lipschitz constant strictly less than one. A point = € X for
which T'(z) = « is called a fized point for T.

1.84 Theorem (Banach’s fixed point theorem). Let X be a complete
metric space and let T : X — X be k-contractive, 0 < k < 1. Then T has
a unique fized point x. Moreover, given xo € X, the sequence {z,}, n >0,
defined recursively by x,+1 := T(x,), converges with an exponential rate
to the fixed point x, and the following estimates hold:

kn

d(zp, ) < d(z1, o),

—_
>~

d($n+1,1’) S d(anrl?xn)?

1—k
d(xps1,2) < kd(x,,x).

Proof. (i) (Uniqueness) If x and y are two fixed points, from d(z,y) = d(Tz,Ty) <
kd(z,y) we infer d(z,y) = 0 since 0 < k < 1.

(ii) (Ezistence) Let o € X and for n > 0 let xy 41 := T'(zn). We have
d(znt1,2n) < kd(zn, 2n—1) < k"d(z1,20) = k" d(T'(z0), 20),

hence, for p >n

p—1 p—1
. km
d(zp,xn) < Z d(zjy1,25) < Z k' d(x1,z0) < 1 kd(a:h:co).
j=n j=n

Therefore d(xp,zn) — 0 as n,p — oo, i.e., {xn} is a Cauchy sequence, hence it has a
limit € X and « is a fixed point as it is easily seen passing to the limit in z,, 41 = T(zn).
We leave the proof of the convergence estimates to the reader. O

Notice that the first estimate in Theorem 1.84 allows us to evaluate the
number of iterations that are sufficient to reach a desired accuracy; the sec-
ond estimate allows us to evaluate the accuracy of z,11 as an approximate
value of x in terms of d(x,41,2n).

1.85 Example. Let ¢ : X — X be a (nonlinear) map, X being a Banach space. Given
y € X we would like to solve
(@) = y. (1.51)

We may write this equation as x = z — ¢(z) + y so that, setting g(z) ==z — ¢(z) + v,
(1.51) is equivalent to finding a fixed point of g. If g is a contraction, we infer from the
Banach fixed point theorem the existence of a fixed point and exponential convergence
of the sequence {zn} defined by
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X
o €& (1.52)

Tn+1 = Tn — d)(xn) +y

to the fixed point of g, hence to the solution of (1.51).

In the special case of X = R™ and ¢(z) = Lz, i.e., ¢ is linear, we have g(z) =
(Id—L)z+y and g is a contraction if and only if L is close to the identity, || Id —L]|| < 1;
in fact,

wp 9@ =0t D)@ el
x1,x0 ER™ |ze — 21| x1,x2ER™ |z2 — 21|

Moreover, (1.52) can be written as

n

Tnp1 = (Id = L)" zo = ) " (Id — L)*y;

k=0
hence, when n — oo, we have
oo}
z=> (Id—L)"y.
k=0

1.86 Example. A slight variant of the previous remark is the following. Suppose as
in Example 1.85 we want to solve ¢(z) = y given y € X. For any invertible map
M : X — X, the equation ¢(z) = y can be written as Mz = Mx — ¢(x) + y; thus =
solves ¢(z) = y if and only if x is a fixed point for

T(x) :=a— M 1o(z)+ Mty

Assuming T a contraction on X, we then infer that ¢(z) = y has a unique solution
defined as the limit point of the sequence {zy} defined by

o € X,

Tyl = Tn + M*1¢>(xn) + M1y
1.87 4. Let X be a Banach space and let T : X — X be a Lipschitz-continuous map.
Show that, for p sufficiently large, the equation

Te+pxr =y

has, for any y € X, a unique solution.

1.4.2 Local invertibility

Let f = (f', f2,..., f™) be a map of class C'! from an open set 2 C R",
n > 1. We recall that the Jacobian of f at xo € Q is the determinant of
the Jacobian matrix

det Df(xo),
that fjy denotes the restriction of f to U C €, and, finally, that zo + U
stands for {z € R" |z — x¢ € U}; for instance, x¢ + B(0,7) = B(xo,T).

1.88 Definition. We say that f : 2 C R™ — R" is locally invertible if
for every x € Q) there is a neighborhood U of x such that fiy is injective.
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1

Comprehensive Introduction TOPOLOGY FROM THE
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DIFFERENTIAL GEOMETRY VIEWPOINT
Revised Edition
VOLUME ONE
Secend Edition
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BASED ON NOTES BY DAVID W. WEAVER
MICHAEL SPIVAK
PRINCETON UNIVERSITY PRESS
Pulish or Farish e oidn 1970 PRINCETON, NEW JERSEY

Figure 1.22. Frontispieces of two celebrated volumes.

1.89 Theorem (Inverse Function Theorem). Let f : Q@ — R” be a
map of class C*, k > 1, from an open set Q C R™ into R™, let zo € Q and
assume det D f(xg) # 0. Then there exists an open neighborhood U of xg
such that

(i) fiu is injective,

(ii) V := f(U) is open, (f‘U)_1 : V. — U is continuous, i.e., fiy is an

open map,
(iii) (fiu)~':V = U is of class C*, moreover, V y € V

D(fo) ) = [Df@)]  w= ()W) (053)

Therefore a map f : Q2 — R™ from an open set of R™ into R™ of class
Ck, k> 1, such that det D f(z) # 0 Yo € Q is locally invertible, open with
local inverses of class CF.

Proof. Without loss of generality we may assume xg = 0 and f(zo) = 0.
Step 1. We set
M:=Df(0)"' M:=[M|| and F(z):= f(z) - Df(0)z,
and we write the equation f(z) =y as
2 =2 +M(~f(z) +).
Therefore f(x) =y if and only if x is a fixed point of the map
Ty(z) == —Mf(z) + My = —MF(z) + My.
Since f € C1(Q,R™) by assumption, there exists r > 0 such that

1
D —Df(0
s IDF) DO <
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and, from the mean value theorem, see Corollary 1.51,
1
|[F(z) — F(2)| < 4M|mfz\ Vz,z € B(0,r). (1.54)

We now set X := B(0,r) C R™ and prove that Ty is a contraction in X for every
y € B(0, ,},)- In fact, Ty maps X into X since for all z € X we have

|Ty(2)| = My — MF(z)| < [My|+ [MF(z) — DF(0)]
r n T 3

= r
2

<M M
< Mly| + e

1
|z —0] =
4M

and, for all z,z € B(0,r), we have
ITy(@) ~ Ty(2)| = [MF() - MF(:)| < M | fz—2 = [z~
y(x y(2)| = x A<M o lx—2= |z—al

Therefore for all y € B(0,7/(2M)) the map * — T,z is 1/4-contractive with image in

B(0,3r/4) C X. Since X is a complete metric space, Banach’s fixed point theorem yields

a unique point « € B(0,3r/4) such that = Tyx, equivalently, such that f(z) = y.
Setting U := f~!(B(0,7/(2M))), V := B(0,7/(2M)), we have proved that f|; is

invertible, thus (i).

Step 2. Let us show that (f|U)_1 : V. — U is continuous. For y,w € V set = :=

(fiv)™'(y) and z := (fijy) "' (w). From (1.54) we infer

Df(O)(z —2)[ = [ = f(z) + Df(0)z + f(z) = Df(0)z + f(z) — f(2)]

<|F(z) = F(2)| + | f(z) — £(2)]
1
< 1T A @ 1)
Hence N
w2 < o2+ Mf(@) - £(2)]

)™ @) — o)l < Yy wl. (1.5)

Step 3. It remains to prove that g := (f|U)*1 is differentiable at every y € V = f(U).
Without loss of generality we assume y = 0 and g(0) = 0. Setting = = g(z), we have

g(z) =Mz =z — Mf(z) = —MF(x)
and, on the other hand, by (1.55), |f(x)| > 31” |z| hence

lg(z) —Mz| _ [M(f(z) —Df(0)z)| ||
|| || £ ()]
oal) fol _ 4,2 oflal)
[z [f(=)] ~ 3 ||
If z — 0, then = = g(2) — 0 since g is continuous. Consequently the right-hand side of

the last inequality tends to zero as z — 0. This yields that g is differentiable at 0 with
Dg(0) = M = Df(0)~".

Step 4. Finally, if f is of class C*, the formula (1.53) yields at once that the local inverse
is of class C*. O
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(z,y)

Y

Figure 1.23. From the left: (i) Polar coordinates in R? and (ii) Spherical coordinates in
R3.

1.90 Remark. With the notations of Theorem 1.89, we in fact have
proved that for any y € B(0,r/(2M)), the sequences defined by

{xo € B(0,r),
Try1 =z — Mf(21) + My,

exponentially converge to the unique solution of

1.4.3 A few examples

1.91 Polar coordinates. The transformation ¢(p, ) = (pcosf, psinf),
(p,0) € R%, which yields the polar coordinates in R?, has Jacobian matrix
and Jacobian

cosf) —psinf
sinf  pcosd

Do(p,0) = . detDg(p,0) = p.
( )

By the inverse function theorem, Theorem 1.89, ¢ is locally invertible
in R?\ {0}, but ¢ is not (globally) invertible as ¢(p,8 + 27) = é(p, ).
However, the restriction of ¢ to the strip S, :=]0,4o00[x]a — m,a + 7,
a € R, is injective, hence globally invertible from S, onto its image ¢(S,)
(with inverse of class C'°°). Notice that, since

-y
x )

D¢(p,0) = <

DEeT R

we have
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Figure 1.24. Polar coordinates in R2.

_ 1 Ty
D¢~ '(z,y) = ( ) ;
( y) \/,’1?2 + y2 -y T
and ¢(S,) is R? minus the half-line from the origin that forms an angle a+m

with the positive half-line of abscissa. The inverse of ¢, can be written
explicitly. For example, when a = 0, we can solve in (p, 8) €]0, co[x] —7, 7]

the system

= 0
TP p>0, 0¢€la—ma+mn
y = psinf

for all (z,y) € ¢(S,), finding p = /22 + y? and

7 + arctan ¥ ifx <0,y >0,

5 ifx =0,y >0,
0= arctan ¥ if x>0,
T ifex=0,y <0,

2
—5 +arctan? if x <0,y <0,

i.e., the angle formed by the positive half-line of abscissa and the half-line
from the origin through (z,y) measured in radians anticlockwise from —m

to m.

1.92 Cylindrical coordinates. Similar considerations may be devel-
oped for the transformation that yields cylindrical coordinates in R3

x = pcosd,
(z,y,2) = ¢(p, 0, 2), y = psind,
z=z.

Its Jacobian matrix and its Jacobian are given by
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Figure 1.25. Spherical coordinates.

cosf —psinf 0
D¢(p,0,2z) = | sind pcos® 0],  detDg(p,0,z) = p.
0 0 1

Thus ¢ is locally invertible from R3 \ {p = 0} into R® \ {z = 0}
with local inverses of class C'°°. Moreover, the restriction of ¢ to Q =
10, +00[x]0, 2w[x R is injective, thus globally invertible.

1.93 Spherical coordinates. For the transformation ¢ : (p,0,¢) —
(z,y,z) from R3 into itself that yields the spherical coordinates

x = pcosfsinp,
y = psinfsin @,
Z=pCcosy

we have

cosfsinp —psinfsing pcosfcosp
Do(p,0,¢) = | sinfsing pcosfsing psindcosy
cos 0 —psine

and det Dg(p, 0, p) = p? sin . Therefore det Dé(p, 6, ) # 0 for all (p, 0, )

" Q::R?’\{(p,e,ga)‘p;éo,¢¢(2k+1)w,kez}:

we conclude that ¢|q is locally invertible.

The restriction of ¢ to A :=]0, 00[X]0, 27[x]0, 7[C € is instead injec-
tive with image R? minus the half-plane generated by the z-axis and the
positive half-line of abscissa; thus ¢ is globally invertible with inverse of
class C'°.

When writing (z,v,2) = ¢(p,0,¢), (p,0,p) € A, the new variables
p, 0, @ are, respectively, the distance p of (z,y, z) from the origin, the longi-
tude 6 of (x,y, z) measured in radians from the half-plane generated by the
z-axis and the positive half-line of abscissa, and the latitude ¢ measured
in radians from 0 corresponding to the North Pole to 7, corresponding to
the South Pole, see Figure 1.25.
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P/

y

Figure 1.26. The inversion map.

1.94 The inversion in a sphere. This is the transformation that maps
each point P = (x,y) # (0,0) in the plane to the point P’ that lies in the

half-line from 0 through P in such a way that OP- OP =1.Tt maps points
inside the circle 22 + y? = 1 outside and vice versa. In formula it is given

by ¢ : R?\ {(0,0)} — R?\ {(0,0)},

_ z Y
d)(x?y) - (m2+y2)m2+y2>7

or, in complex coordinates z = x + iy,

o(z) =1/z.

It is a globally invertible map from R? \ {0} onto itself of class C°° with
inverse of class C*°.

1.95 9 Cofocal elliptic coordinates. Show that the map ¢ : Q@ C R? — R? given
by

(z,y) — (cosh z cosy, sinh x siny)
with domain Q := {(z,y) |z > 0} is locally, but not globally, invertible. Show that its
restriction to Q := {(z,y) |z > 0, 0 < y < 2w} is invertible. [Hint: Show that vertical
segments are taken to ellipses with foci at £(1, 0) whereas horizontal half-lines are taken
to hyperbolas with the same foci (£1,0).]

1.96 The exponential map. Let f : C — C be the complex expo-
nential map f(z) = e*, or in Cartesian coordinates (u,v) = f(z,y) =
(e* cosy, e”siny). Its Jacobian matrix is

Df(z,y) = (ezcosy e“’siny) _ (u v)

—e®siny  e”cosy —v U

and its Jacobian is det Df(x,y) = u? + v? = e%*. Therefore f is locally
invertible with C*° inverses and

Df (u,v) = <“ _“>.

w2+v2 \v wu
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Since f is 2m-periodic in y, it is not globally invertible. However, the
restriction of f to Q := Rx]0, 2| is injective thus globally invertible, and
its inverse is the principal determination of the complex logarithm, see
[GM2] and Chapter 4.

Vertical segments in ) are taken by f into circles around the origin,
whereas horizontal lines are taken to half-lines from the origin.

1.4.4 A variational proof of the inverse
function theorem

We give here an alternative variational proof of Theorem 1.89 in which the
fixed point argument is replaced by the Weierstrass theorem.

Another proof of Theorem 1.89. (i) Set L := D f(zo) and, as usual, denote by ||A]| the
norm of the matrix A in such a way that |Az| < ||A]| |z|, Vz. For all z,y € R™ we have

e—y=L"'L—y) hence |o—y| < [IL7Y Lz - ). (1.56)

On the other hand, the map f(z) — L(z — x0) is of class C! and its Jacobian matrix
Df(z) — L vanishes at zg. It follows that for any e > 0 there exists a ball B(xq,r) such
that

IIDf = Llloo,B(zg,r) = sup  |[Df(z) — L|| <e
z€B(zq,T)

and, on account of the mean value theorem, for all z,y € B(xo,r) we get
|f(x) = Le — f(y) + Lyl < |IDf = Llloc, Bz, |z =yl < elz —yl,
in particular,
IL(x — y)| < |f(@) = f(W)] + elz = y|,Va,y € B(zo, 7). (1.57)
From (1.56) and (1.57), we easily conclude that for all z,y € B(zo,r) we have
(L=elL=) le =l LM @) = FO),
and, choosing e sufficiently small, we can find a constant C > 0 and a ball B(zg, r) such

that

eyl < L 1F@) -~ f@)]  Vay € Blao,r), (1.58)

Therefore, f is injective in U := B(zo, ).

(ii) Let us show that V := f(U) is an open set, i.e., that every y € V has a neighborhood
V(y) such that V(y) C V = f(U). By (i) there is a unique = € U with f(z) = y. We
now observe that, if U(z) is a neighborhood of z with U(z) CC U and I" := 9U(x),
since f is injective and z ¢ T", we have y ¢ f(I"); moreover, since f is continuous, f(I")
is a compact set, hence the distance of y from f(I") is positive. Let

- ; dist (y, £(I")),

and V(y) := B(y, o). We now show that V(y) C V, i.e., that for every y € V(y) there
is € U(x) such that y = f(x). In order to do that, for any y € V,,, we show that the

function
(@) =y - f@)?, zeU(x)

has an interior minimum point in U(z) with value zero. In fact,
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Figure 1.27. Illustration of the proof of Theorem 1.89 in Section 1.4.2.

Y(x) =y —yl> <o®
while for any x € T
20 =dist (y, f(I) < ly = f@)| < |y —yl + |y — f(@)] <o+ [y — fz)]

i.e.,
p(x) > o Vael.

Weierstrass’s theorem allows us to conclude that ) has a minimizer € U(x) with
minimum value less than o2. Tt follows that z necessarily belongs to U(z) and, by
Fermat’s theorem D (z) = 0, i.e.,

2Df(2)(y — f(x)) = 0.

Since det D f(z) # 0 we conclude that y = f(z), that is ¢(z) = 0.

Of course, we can repeat the same argument replacing U with any open set A C U
and V with f(A), concluding that f(A) is open if A is open. In other words, (f‘U)*1 is
continuous.

(iii) We shall now show that f~! is differentiable at every point y € V and that (1.53)
holds.

We set g := (f|U)_1 and we assume without loss of generality that y = 0 and
f(0) =0.If L :=Df(0) and for y € V we set = := g(y), we have

9) - L 'y =x— L' f(z) = L7 ' (f(z) — La).

When y — 0 we have z = g(y) — 0 since g is continuous by Step 2. Moreover, from

(1.58) we have
[f (@) = [f(z) = £(0)| = C|=l,
for all € U hence
lg(y) =9(0) = L7y = 0)| _ 1\ [f(2) - La|
<L
|yl 1f ()]
that yields at once the differentiability of g at 0 with Dg(0) = L~1.

(iv) Finally, from (1.53) one easily deduces that (f‘U)_1 € CY(V) and that (f|U)_1 is
of class C*(V) if f is of class C¥. O

o(lz[)

<IN G

— 0 per y — 0,

1.4.5 Global invertibility

Let Q C R™ be an open set and let f : Q — R™ be of class C'. We have
seen that the nondegeneracy condition det D f # 0 in € is equivalent to the
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local invertibility of f and that local invertible maps are not necessarily
globally invertible. Of course injectivity plus local invertibility is equivalent
to global invertibility.

In the category of homeomorphisms, the following theorem holds, see
[GM3, 8.54].

1.97 Theorem. Let$) C R™ be an open and connected set and let f : ) —
R™ be a local homeomorphism. If [ is proper and f(2) is simply connected,
then f is injective hence a homeomorphism between  and f(2).

An immediate consequence of this and of Theorem 1.89 is the following.

1.98 Theorem (of global invertibilty). Let 2 be an open and connec-
ted set of R™ and let f : Q — R™ be a map of class C¥(Q), k > 1, with
detDf(x) # 0 for all x € Q. Suppose that f is proper and that f(£2)
is simply connected. Then f is globally invertible from 0 onto f(Q2) with
inverse of class C*, and (1.53) holds.

Another theorem of global invertibility is the following one. We state
it without proof since it would need more advanced means.

1.99 Theorem. Let$) be an open and connected set of R™, let f : Q — R”
be of class C°(2) N CF(Q), k > 1, with positive Jacobian det Df(z) > 0
Vo € Q, and let g : Q — f(Q) be a homeomorphism from Q onto f(Q).
If f = g on 09, then f is an homeomorphism from Q onto f(Q), fiq is
globally invertible from Q onto f(2) with inverse of class C* and (1.53)
holds.

1.5 Differential Calculus in Banach

Spaces

The notions of directional derivative and of differential easily extend to
mappings between Banach spaces.

1.5.1 Gateaux and Fréchet differentials

The notions of directional derivatives and of differential extend at once to
mappings between normed spaces. But their use is relevant in the setting
of complete normed spaces, i.e., Banach spaces, see [GM3].

In this section X and Y will always denote real Banach spaces.
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1.100 Definition. Let A C X and xzg € int A. We say that f : X —
Y is Gateaux-differentiable at xg if there exists a continuous linear map
Of(xg) € L(X,Y) such that

t —
lin flao+ ”t) 1@0) _ gtag)0)  woe x.
Of (xg) is the Gateaux-derivative of f at xo, and O, f(xo) := 0f (xo)(v) €Y
is the directional derivative of f in the direction v € X.

1.101 Definition. We say that f : A C X — Y is Fréchet-differentiable
at xo € int A if there exists a continuous linear map ., € L(X,Y), called
the Fréchet-derivative or Fréchet-differential of f at xg, such that

N f(@o +h) = f(zo) = Loy (M)ly _
lim bl = 0. (1.59)

The Fréchet-derivative at xq is denoted by

f/(x())a Df(l’o) or T:I:ofa
if we want to emphasize its aspect of linear tangent map to f at xg.

When A is an open set in X, we say that f is Gateaux-differentiable (re-
spectively, Fréchet-differentiable) in A if f is Gateaux-differentiable (re-
spectively, Fréchet-differentiable) at every point of A.

When X is finite dimensional, all norms on X are equivalent and all
linear maps ¢ : X — Y are continuous. Thus, when X = R”", Fréchet-
differentiability is just differentiability and Gateaux-differentiability is the
requirement of existence of all directional derivatives and of linearity of
the tangent map h — g£ Therefore the two notions of differentiability in
Definitions 1.100 and 1.101 are different even if X has finite dimension,
X =R" n>2 and Y =R, see Example 1.3.

1.102 9. Prove the following claims.

(i) There exist Gateaux-differentiable maps that are not continuous.
(ii) There exist continuous and Gateaux-differentiable functions that are not Fréchet-
differentiable,
(iii) If f is Fréchet-differentiable at g, then f is Gateaux-differentiable at zog and the
two differentials agree, Ty, f = 0f(z0),
(iv) If f is Fréchet-differentiable at o, then f is continuous at zg.

1.103 9. Suppose that f is continuous at zg and that (1.59) holds for some linear map
lyg : X — Y. Prove that £;, is continuous and that f is Fréchet-differentiable.

1.104 §. Show the following.

(i) If f : X — R has a maximum or a minimum point at 29 and f is Gateaux-
differentiable at xo, then df(zo) = 0.
(ii) Every linear continuous map ¢ : X — Y is Fréchet-differentiable and T, ¢ = £.
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Figure 1.28. Two volumes on calculus in Banach spaces.

(iii) Let X1,X2,Y be three Banach spaces and let b : X; X X2 — Y be a bi-
linear continuous map. Show that b is Fréchet-differentiable at every point
z = (z1,22) € X1 X X2 and Tyb(u,v) = b(vi, z2) + b(z1, v2).

1.105 9. State and prove the theorem about Fréchet-differentiability of the composite
of functions, see Theorem 1.22.

1.106 § The Dirichlet integral in dimension one. Consider the function

1 1
D(u) = / ! ()2 dt
2 Jo
defined on the functions u in the Banach space C'1([0, 1], R) of functions with continuous
derivatives normed by
lJuller = |ulloo,o,1] + 114 ]oo,j0,1-

Show that D is Gateaux-differentiable in C1(]0,1]) and that for all u,v € C'*([0, 1])

1
BUD(U):/O u'(B)v (t) dt.

a. Gradient

Let H be a Hilbert space and let f: A C H — R be Fréchet-differentiable
at xop € int A. Since the linear tangent map T, f is a continuous linear
map from H to R, by Riesz’s theorem, see [GM3], there exists a vector,
denoted by Vf(z¢) € H that represents T, f via the inner product, i.e.,
V f(xo) is defined by

T f(v) = veV f(xg) Vv € H.
V f(xo) is called the gradient of f at xg.
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b. Mean value theorem

1.107 Theorem. Let X,Y be Banach spaces, [ : A — Y a Gateaux-
differentiable map in an open set A C X, and x1,x2 € A. Suppose that the
segment joining x1 to xo is contained in A and set r(t) := x1 +t(xe —x1),
t €[0,1]. Then

[#@2) = s@)||, < sw [jor)|

H%Q*l’lﬂx. (160)
Y tefo,1] )

L(X)Y

Proof. The proof is simple if Y is a Hilbert space. In this case, for all £ € £(Y") the real
function
B(t) =<& f(r() > telo,1],

is differentiable, and for some 0 €]0, 1[ we have
<& f@2) = f(z1) >= F(1) = F(0) =< &, 0zy—2, f(r(0)) >,

hence

zl(X,y)H‘T2 = z1llx [lEllcovim)-

<& f@) = fn) > | < sw (s )]

te[0,1

Since Y is a Hilbert space, we easily conclude by choosing < &, v >:= (f(z2)—f(z1)) ev.

The general case, in which Y is a Banach space, can be treated similarly if we use the
Hahn-Banach theorem, see [GM3]. O

1.108 Integral for mappings C%([a,b],Y). We define the integral of a
map of class CY from the interval [0, 1] into a Banach space Y

/O ) dr

as the limit of the sums Zf\il f(r)(tig1r — ti), 7i € [ti,tiy1], when the
lengths of the intervals of the subdivision tend to zero. This way, the
integral has the same properties of Riemann’s integral, in particular, from

N

N
‘ < Zl\f(ﬂ')(tm —t)ll = DI ftipa — il

=1

H g: f(r)(tigr — 1)
i=1

we infer

1 1
| [ roal < [isona (161)
0 0
1.109 Another proof. If f is Fréchet-differentiable, we have

1
F(@2) — f(a1) = /0 P (s + (1 — t)a1) (w2 — 21) db.

Thus, the use of (1.61) yields another proof of Theorem 1.107, provided we also assume
(and, as we have seen, this is not necessary) that t — f’(tze + (1 — t)z1)(z2 — z1) is
continuous in [0, 1].

Of course, a consequence of Theorem 1.107 is the analogy of the total
derivative theorem.
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1.110 Theorem. Let X and Y be two Banach spaces, B(xg,r) C X,
r >0, and let f : B(xo,r) — Y be Gdteauz-differentiable in B(xo,r). If
x — Of as a map from B(xg,r) into L(X,Y) is continuous at xq, then
f is Fréchet-differentiable at xg.

Proof. In fact, by applying the mean value theorem Theorem 1.107 to h — o(h) :=
f(zo + h) — f(zo) — f'(z0)h, we find

[l = [lo(h) —o(0)|| < sup
z€B(z0,7)

or@)||, . Il

L(X,Y)

c. Higher order derivatives and Taylor’s formula

Let f: Q C X — Y be Fréchet-differentiable in an open set {2 of a Banach
space X and let f': Q — L(X,Y) be the map that associates to z €
the differential of f at z, f/(z) € L(X,Y).

1.111 Definition. Let f : Q@ C X — Y be Fréchet-differentiable in an
open set Q of a Banach space X . If f' is in turn Fréchet-differentiable,
we say that [ has second derivatives ", " = (f"); in this case f" defines
a map from Q into L(X, L(X,Y)).

If we observe that £(X,L£(X,Y)) may be identified with the space of
bilinear continuous forms from X x X into Y denoted by L2(X,Y), via
the identification map

Le (X,L(X,Y)) — BeLyX,Y), B(u,v) := (Lu)(v),

we conclude that the second derivative of f is a bilinear form in Lo(X,Y).
Similarly to the finite-dimensional case, we define the derivatives of
order k. The k-derivative is then a k-linear map from X x X ---x X to Y.

1.112 Definition. Let X,Y be two Banach spaces and let Q C X be an
open set of X. We say that f : @ C X — Y is of class C* (respec-
tively, of class C*) if f has Fréchet-derivatives up to order k included,
(respectively, of any order), and those derivatives as maps from X into
L(X,L(X,...)...) are continuous.

By induction and as in the finite-dimensional case, one proves the fol-
lowing.

1.113 Theorem (Schwarz). The k-derivative of f € C*(X,Y) is a k-
linear symmetric form.

1.114 Theorem (Taylor’s formula). Let X,Y be two Banach spaces,
let Q C X be an open set of X, and let xg,x1 be two points in Q such that
the segment joining them is contained in Q. If f : Q — Y is of class CF,
then we have
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f(x) = Py—1(z — x0; 20)

11 _ k-1
+ </0 (1(k; _t)l)! F® (tzg + (1 — t)(z1 — x0)) dt) (z — x0)*

and
1f(x) = Pz — z0; m0)|| = o(||z — xo||*)  asz — zg

where

1
Py_1(t; o) Z h,f(h) )t

and tM) is the h-tuple t") .= (t,t,...,t).

1.5.2 Local invertibility in Banach spaces

Going through the proof of Theorem 1.89, it is easily seen that it can be
repeated word by word, replacing D f with the Fréchet-differential to get
the following.

1.115 Theorem (Local invertibility). Let X,Y be two Banach spaces,
Q) C X an open subset of X, xo € Q, and f : Q — Y a map of class C*,
k > 1. Suppose that the linear tangent map f'(xo) : X — Y is a continuous
isomorphism, i.e., it is continuous and invertible with continuous inverse.?
Then there exists an open neighborhood U of xg such that, setting V :=
f(U), we have

(i) fiv is a continuous bijection from U onto V,

(ii) (fiy)~':V = U is continuous,

(i) (fip)~" is of class C*(V) and [(fie) ") (4) = [f'(2)] " for all y € V
and x = (fir) = (y)-

1.6 Exercises

1.116 9. When possible compute the partial and directional derivatives and the dif-
ferential of the following functions

2 Actually, the continuity of the inverse of f’(x¢) follows from a theorem of Banach
stating that the continuity of the inverse L~! of a linear map L between Banach
spaces follows from the continuity and invertibility of L, see [GM3].
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(:E ‘ 10)7 |I|7
|=|?, 1612+y27
ry 3/2
1 + x27 x y’
xT zy .
ex2+y + /sin(th) dt, { 22492 if (mv y) 7£ (07 0)7
0 A if (Iv y) = (07 0)7
12 . IES .
z2+1;2 if (z,y) # (0,0), z2+1;2 if (z,y) # (0,0),
0 if (z,y) = (0,0), 0 if (z,y) = (0,0),
zy? . sin(z2 .
AU i (@) #(0,0), ven) i (z,y) # (0,0),
if (z,y) = (0,0), 0 if (z,y) = (0,0),

0

(22.)° it @) # 0,0
22yt Y »Y)s

0 if (z,y) = (0,0).

1.117 §. Write the equation of the tangent plane at (0, 0) to the graphs of the following
functions

zy, e, (2% +y?)log(z® +y7).

1.118 4. Find the points on the surface z = x* — 4xy3 + 6y — 2 in R3 with horizontal
tangent plane.

1.119 9. Write 9 of
v Ov
of f.

in terms of the components of v and of the second derivatives

1.120 . Show that, if A € My, p, then |Az| = O(|z|) as z — 0.

T
1.121 9. Show that H(jz|)(z) = 1| (Id " ) Vi € R™, z #0.

e\ ]2

1.122 4. Let Q C R™ be open, f € C}(Q) and K C Q be compact. Show that f is
Lipschitz-continuous in K.

1.123 § Peano example. Let ¢(t,z) = (12 — 22)/(t2 + x2) and f(t,z) = wtp(x,t).
Show that ) )

o°f o°f

0,0 0,0).

8x8t( )7 8t8m( )

1.124 9. Study the critical points and the graphs of the following functions
x3 - 337:’/27 'y,
=72 =? gin2 x, ! ,
Va2 +y?

2y? — z(z —1)2.
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Figure 1.29. The graph of two homogeneous functions of degree 1. From the left: (i)
z = pcos(20) and (ii) z = pcos(30).

1.125 9. Let a,b,c € R™. Find the critical points of the following functions (if any)

@=L el TER e
fl@)=|z—a|l+ |z —b|+|z—cl|, z € R",
fx) =z —al®> + |z —b)% + |z —¢? z € R",
f(z) = max(|z — al, |z — V|, |z — ¢|), z € R™.

1.126 . Find the variation of the intensity of a field E in R® in time measured by
an observer that moves along the trajectory described by the law = = cost, y = sint,
z=t.

1.127 9. Let y(z) be a differentiable function such that F(z,y(z)) = 0 Vz where
F(z,y) is a differentiable function, too. Show that

oF
dy (x) _ 6$ (J}, y($))
de OF o u(@)
dy Y

F

if Z (z,y(xz)) # 0. Find similar formulas in case yi(z), y2(z), Fi(z,y1,y2) and
Y

Fy(z,y1,y2) are differentiable and

Fy(z,y1(z),y2(x)) = 0,
Fa(z,y1(z), y2(x)) = 0.

1.128 9 Homogeneous functions. Let « € R. We say that f is homogeneous of
degree a, or a-homogeneous, if

f(tz) = t* f(x) V2 #0andt>0.
Of course, the domain of a homogeneous function is a cone with the origin as vertex;
the origin may or may not belong to the domain of f. Show that
(i) the function f:R?\ {(0,0)} — R, f(z,y) := mfiyyz is 0-homogeneous,
(ii) the function f:R3\ {yz —y2 =0} = R, f(z,y,2) := “T¥ 7 is homogeneous of

yz—y
degree —1,
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Figure 1.30. From the left: (i) the graph of the 2-homogeneous function z = p? cos(20)
and (ii) the graph of the 0-homogeneous function z =0 = Y

(iii) every quadratic form Q(z) = Azex =327, A;;x'z is homogeneous of degree
2: hence, if A is positive definite, the function Q(x)®/2

(e

is homogeneous of degree

1.129 9§ Euler’s formula. Show the following.

Theorem (Euler). Let f be a function of class C1 in R™ \ {0}. Then f is a-
homogeneous if and only if

Vi(z)ex = af(x) Vz # 0.
1.130 9 Some useful inequalities. Let A be an open set in R™, zg € A, and let

f+ A — R™ be differentiable at xg. Prove the following claims, see Theorem 1.89.
i) For any e > 0 there exists a neighborhood Uy, of z¢ such that
0

£(@) = f@o)| < (IDf @)l +€¢)le 0] ¥ € Usy.

(ii) For any € > 0 there exists a neighborhood Uy, of zg such that

£@) — fW) < (IDS @)l +€)lz =yl ¥,y € Uy
(iii) If D f(zo) is nonsingular for any € > 0 there exists a neighborhood Uy, of 2o such
that

@) — 1) > <||Df(;o)*1|| —le=ul VaweUs,

[Hint: Notice that, if L = Df(x¢), then |s —t| = |[L~™Y(Ls — Lt)| < ||L71|| |Ls — Lt|.]

1.131 9 Differentiability of functions of matrices. It is also convenient to con-
sider the differentiation of matrix-valued functions via the calculus of functions between
Banach spaces.
(i) Show that the product map, m : My m X Mpyn — Mppn, m(A,B) := AB is
Fréchet-differentiable in My m X My ,n and

TiaymH K)=AK +HB VA, H € M, m, VB, K € My n,

(i) Using (i) show that m* : M, », — My n, mP(A) := AF is Fréchet-differentiable
in Mp,, and

k—1
Tam"(H) =Y A'HAM 1
=0

in particular Tigm*(H) = kH.
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(i) Show that the exponential map exp : Mn,n — Mpn n, exp (A) := > 77 kll AF s
Fréchet-differentiable and
AFHA’

Taexp(H) = 3 (k+ 0+ 1)

k>0
in particular, if AH = HA, we have
Taexp (H) = Hexp (A).

(iv) Noticing that det(Id + eH) =1 + etr (H) + o(e) as € — 0, show that A — det A
is Fréchet-differentiable in the open set of nonsingular matrices and that

T4 det(H) = (det A) tr (A™1H),

in particular we have T'1q det(H) = tr (H).

1.132 9. Let X be a Banach space. The family of isomorphisms of X denoted Isom (X),
is an open set of L(X,X), see [GM3, Exercise 1.50 Chapter 9]. Show that the map
inv : Isom (X) — Isom (X) that to £ € Isom (X) associates its inverse £71, is Fréchet-
differentiable and

Tyinv (p) == —£ topor™t
This formula generalizes the formula D(1/x) = —1/22. [Hint: Compute first (T'1qinv)
using the expansion of the inverse.]

1.133 §. Let X and Y be two Banach spaces, 2 an open set in X, and f: Q — Y
an invertible map. Show that, if f and f~! are Fréchet-differentiable respectively, at
zo € Q and f(zg), then (Tf(zo)f_l) = (Tzof)_l.

1.134 9. Let f: C°([0,1]) — C9([0, 1]) be a map of class C1. Of course, f : C1([0,1]) C
C°(]0,1]) — C°([0,1]) is also Fréchet-differentiable. Show that the map f, regarded as
a map between the Banach spaces C1([0,1]) and C([0, 1]), is Fréchet-differentiable.



2. Integral Calculus

The problems of characterizing the class of functions that are Riemann
integrable and of discussing discontinuous functions, in particular of un-
derstanding for which functions the fundamental theorem of calculus is
valid, as well as the need of integrating new functions, led to a new defini-
tion of integral due to Henri Lebesgue (1875-1941). Though the main ideas
of Lebesgue’s integration theory go back to Henri Lebesgue (1875-1941)
and Giuseppe Vitali (1875-1932) at the beginning of the 1900’s, applica-
tions as well as generalizations and extensions followed each other during
the past century giving measure and integration theory a fundamental role
in mathematical analysis.

Here we follow the approach of first introducing Lebesgue’s measure
and accordingly Lebesgue’s integral. In Section 2.1.1 we collect the main
results of the theory without proofs,! and in the following sections we
develop its basic features.

2.1 Lebesgue’s Integral

2.1.1 Definitions and properties: a short
summary

The area of the subgraph of a nonnegative function can be computed in at
least two different ways, see Figure 2.1. We compute the area of trapezoidal
approximations determined by subdivisions of the = axis and then we pass
to the limit when the lengths of the intervals of the subdivision tend to
zero: this leads to Riemann’s integral, compare [GM1]. Alternatively, we
may subdivide the y axis and proceed similarly. In this second case, by
taking equidistributed subdivisions, we may define

I The reader may find these proofs in, e.g., M. Giaquinta, G. Modica, Mathematical
Analysis: Foundations and Advanced Techniques for Functions of Several Variables,
Birkh&user, to which in the sequel we shall refer to as [GM5].

M. Giaquinta and G. Modica, Mathematical Analysis: An Introduction to Functions 67
of Several Variables, DOI: 10.1007/978-0-8176-4612-7 2,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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N =\

> I ] -

T

Figure 2.1. The integral: on the left Riemann’s approach and on the right Lebesgue’s
approach.

b o)
) 1
| r@de i g > IBpasesl (2.1)
where
E¢y = {x flz) > t}, t e R,

and |Ey 4| denotes the “measure” of Ey ;. Since t — |Ey 4| is nondecreasing,
(2.1) defines Lebesgue’s integral of f via Cavalieri’s formula as

b e
Lebesgue/ f(z)dx = Riemann/ |Ey | dt. (2.2)
a 0

However, in order to proceed this way, we need a “good” notion of “mea-
sure” in R™ that allows us to measure rather wild sets as the sets F;; may
be. This is the role of Lebesgue’s measure.

a. Lebesgue’s measure

An interval I in R™, n > 1, is the product of n intervals, which for conve-
nience we take left-open and right-closed, I = [];",]a;, b;]. The elementary
n-dimensional volume of the interval I is by definition |I| := [T;, (bi — a;).
The outer or external measure of an arbitrary subset F of R™ is defined
by

L (E) = inf{i Ix ]1k intervals, £ C G zk}. (2.3)
k=1 k=1

Of course, L™ defines a map L™ : P(R") — R,. It is easy to see that
L™ extends the elementary volume, in the sense that for every interval I
we have L*(I) = |I|. Intuitively £™*(F) is computed by covering F in an
“optimal” way with intervals {I;} and computing the sum of the series of
the volumes of these intervals.

At this point, we would be done were if not for the fact that the outer
measure L™ is not additive: there exist disjoint subsets E, F' of R™ such
that L"*(E U F) < L"(E) + L™ (F).2 We avoid this by selecting a class
of special subsets, the class of Lebesgue measurable sets, and we define
Lebesgue’s measure as the restriction of L™ to measurable sets.

2 Banach’s paradoz: We can divide a ball in two parts each of the measure of the
entire initial ball.
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2.1 Definition. A subset E C R™ is said to be Lebesgue’s measurable or
simply measurable if, given € > 0, there exists a set P, that is the union
of at most a denumerable set of intervals such that

P.OFE and LY(P.\E)<e.

The class of all Lebesgue measurable subsets of R™ will be denoted by M.
The exterior measure of a measurable set E is its (Lebesgue ) measure and
denoted by L™(E) or simply by |E|.

Intervals and countable union of intervals, as well as sets for which
L™ (E) = 0, are clearly in M. One can also easily see that the interior and
the closure of an interval, as well as the countable union of open or closed
intervals, are measurable sets. Since every open set is the denumerable
union of disjoint intervals, we then infer that open sets are measurable.
Moreover, though we can show that there exist nonmeasurable sets, see,
e.g., [GM5], one shows that M has the following closure properties and
that Lebesgue’s measure is well behaved on measurable sets.

2.2 Theorem. We have

(i) M is a o-algebra, i.c., if E,F € M, then EUF, E\F and ENF are
in M and, if {E} is a sequence of measurable subsets, then Uy E}, e
Ni E). are measurable.

(ii) L™ is o-additive, i.e., if E,F C R™ are measurable, then |E'U F|+
|[ENF|=|E|+|F| and, if { Ex} is a sequence of measurable pairwise
disjoint subsets of R™, then

oo (o)
‘ U Ek’ = | Bl
k=1 k=1

(iil) L™ is continuous on nondecreasing sequences of measurable sets, i.e.,
if {Ex} is a sequence of measurable sets in R™ such that E C Eiy1
Vk, then |Ex| — | Uy Ep| as k — oo.

(iv) L™ is continuous on nonincreasing sequences of measurable subsets
with finite measure, i.e., if {Ex} is a sequence of measurable subsets
such that Ex, D Eyxy1 Yk and if |E1| < 400, then |Ex| — | Ny, En| as
k — oo.

For arbitrary sequences of subsets { )}, one shows:

(i) L™ (UrEr) < X opey L™(Ey),
(ii) if By C Epsy Vh, then £ (Ey) — L™ (UyEy).

Since open sets are measurable, Theorem 2.2 (i) yields that closed
sets are measurable, too. Finally, one shows that a measurable set is the
countable intersection of open sets except for a set of zero measure. One
also shows that it is a countable union of closed sets union a set of zero
measure, compare [GM5].
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Figure 2.2. Henri Lebesgue (1875-1941) and Giuseppe Vitali (1875-1932).

b. Measurable functions

Starting from Lebesgue’s measure in R™ and from the class of Lebesgue’s
measurable sets M we are now able to build a theory of integration for
functions f : E C R™ — R, where F is a measurable set and R = RU
{+00, —c0}.

We begin by selecting the class of measurable functions, with respect
to the L™ Lebesgue measure.

A function f: R™ — R is said to be L"-measurable, in short measurable
when the measure is understood, if for every ¢t € R the set

Epy = (]t +00]) = {x eR"

fz) > t}

is L™-measurable. We then say that f : E C R™ — R is measurable on E if
E is measurable and the extension of f to R as —oo outsides £ produces a
function f: R™ — R that is measurable. Of course, a continuous function
in R™ is measurable, and actually, if £ C R"™ is measurable, a function
f+ EF — R continuous in F is measurable.

As there exist nonmeasurable sets, there also exist nonmeasurable func-
tions. However, on the ground of the fact that measurable sets form a o-
algebra, one shows that all algebraic operations on measurable functions as
well as taking pointwise limits of measurable functions produce measurable
functions.

Finally, the possibility of approximating in measure a Lebesgue mea-
surable set from inside with closed sets and from outside with open sets

yields the following characterization of Lebesgue measurable functions, see,
e.g., [GM5].

2.3 Theorem (Lusin). Let f : E — R be a function defined on a mea-
surable set E C R™. Then f is L™-measurable if and only if for any e > 0
there exists a closed set Fe C R™ such that |E\ F.| < € and the restriction
of [ to F. is continuous.
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c. Lebesgue’s integral

We are now ready to define Lebesgue’s integral of a measurable nonneg-
ative function via Cavalieri’s formula (2.2), using Riemann’s integral and
Lebesgue’s measure:

+o00
/Ef(x)dx ::/ L ({x| f(x) > t})dt.

0

However, we prefer to follow a more direct approach and recover Cavalieri’s
formula later.

Recall that the characteristic (or indicator) function of a subset A of
a set X is defined by

1 ifzeA,
xa(zx) = )
0 ifzeX\A

A simple function is a measurable function that assumes only a finite
number of values all of which are finite. We denote the class of simple
functions by S. If ay, as, ..., ai are the distinct values of a simple function
(p, we can write

o)=Y @)y B = {o|e@) =a}
j=1

where the F; are measurable and pairwise disjoint sets. If ¢ is a simple
nonnegative function, as suggested by intuition, the integral of ¢ is

k
I(p) ==Y a;|Ej|
j=1

with the agreement that a;|E;| = 0if a; = 0 and |E;| = +00. The Lebesgue

integral of a generic measurable and nonnegative function f : F — R is
then defined by

/Ef(:v) dL" (z) (2.4)
= sup{[(go) ’ p€eS, o) < f(x)Vx € E, p(x) =0Vz € EC}.

We also write when necessary [, f(x) dL™(x) instead of [, f(x)dz.

Finally, if f : F — R is measurable (but not of a constant sign) we
decompose f as difference of its positive and negative parts, f(z) = fy(x)—
f—(x) where

fr(@) = max(f(2),0),  f-(z):=max(-f(z),0),

and we set the following.
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Figure 2.3. Beppo Levi (1875-1962) and Guido Fubini (1879-1943).

2.4 Definition. Let f : E — R be measurable on the measurable set
E C R™. We say that f is (Lebesgue )integrable if at least one of the
two integrals | g f+(x)dr and fE x)dx is finite. If f is integrable, its
Lebesgue integral is defined by

/f )dL" (z /f+ )dL" (z /f )dL™ (z).

When no confusion may arise, we write

/E fx)dz  instead of /E F(@)dLm ().

Finally, we say that [ is (Lebesgue-)summable if both the integrals of f4
and of f— are finite. We denote the class of summable functions in E by

LY(E).

Of course, [;, ¢(x)dx = I(p) if p € S. Also, notice that the difference
in the definitions of the Riemann and Lebesgue integrals consists merely
in the choice of the class of simple functions: finite combinations of charac-
teristic functions of intervals in Riemann’s theory, finite combinations of
characteristic functions of Lebesgue’s measurable sets in Lebesgue’s theory.

2.5 9. Let f: E C R™ — R be integrable, and let f: R™ — R denote its extension
with zero values outside E. Show that

/Ef(x)d:v:/Rn f(z) da.

d. Basic properties of Lebesgue’s integral

The basic properties of Lebesgue’s integral are easily inferred from the
analogous properties of the integral of simple functions using the denumer-
able additivity of the Lebesgue measure and the following approximation
lemma.
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2.6 Lemma. Let f : R™ — R be a nonnegative and measurable function.
Then, there exists an increasing sequence {¢} of simple functions such
that

Y — [ pointwise, and Vi (z) de — f(z)da.
RTL RTI,

In this way we can prove the following.

2.7 Theorem. We have

i) (MONOTONICITY) If f and g are integrable on E, and f < g, then
() ( g g ; g

/E f(x)do < /E 9(a) da.

(ii) (LINEARITY) LY(E) is a real vector space, and the integral as a map
from LY(E) into R is a linear operator,

[ af@ +sa@)dr=a [ f@yar+5 [ gla)da

for all a, 3 € R and all f,g € LY(E).
(i) (CoNTINUITY) If f is integrable on E, then

| [ s < [ if@)a.

(iv) (BeEppO LEVI THEOREM) Let E be a measurable set, let fi, : B — Ry

be an increasing sequence of nonnegative and measurable functions in
E, and let f(x) := limy_ fr(x) e the pointwise limit of { fr}. Then

we have
/Ef(x) dx:kli)rfoo/Efk(x) dx.

Beppo Levi’s theorem is also referred to as the monotone convergence
theorem for nonnegative functions.

The following claims are easy consequences of the above.

(i) If f is integrable on E, |f(z)] < M for all z € E and |E| < 400, then
[ is summable on E and [, |f(z)|dx < M |E|.

(ii) f € £'(E) if and only if f is measurable and [}, |f(z)|dz < +o0.
(iii) If E and F are measurable sets, and f is integrable in E'U F, then

/f(x)dﬂﬁ-l-/f(x)dx: flx)dz + f(x)da.
E F BEUF ENF
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e. The integral as area of the subgraph

The Lebesgue integral can be equivalently defined as the area of the sub-
graph or via Cavalieri’s formula. In fact the following holds.

2.8 Theorem. Let f: E C R"™ — R be a nonnegative function. Then, f
s measurable on E if and only if its subgraph

SGy g = {(w,t)‘x EE 0<t< f(x)} c R

is a measurable subset of R"T1. Moreover,
/ f(z)de = L"T(SGy k). (2.5)
E

2.9 Theorem (Cavalieri’s formula). Let f : E C R" — R be a non-
negative measurable function. Then

+oo
/ f(x) da :/ £'({z € E| f(z) > t})dt.
E 0

f. Chebyshev’s inequality

Let f : E — R be measurable in £ C R" and nonnegative. Set Ff; :=
{z € F| f(x) > t}. From the monotonicity of the integral we infer

1
|Ey ] < ; f(z)dx Vit >0 (2.6)
Ef,t

which for its wide use in several contexts has got various names: weak esti-
mate, Markov’s inequality, Chebyshev’s inequality. It estimates the “size”
of f in terms of the integral of f. The nondecreasing function t — |Ey,
is called the repartition function of f.

g. Negligible sets and the integral

We say that the predicate p(x), x € E C R™ is true for almost every x € E,
or almost everywhere in E (in short a.e.), if the Lebesgue measure of the
set

{x ek ‘ p(z) is not true}

is zero. For instance, if f: F C R™ — R is a function, we say “f =0 a.e.
in E” or “f(z) =0 for a.e. z € E” if L"({z]| f(z) # 0}) = 0. Similarly,
we say that “|f(z)| < oo a.e. in E” or “|f(z)| < +oo for a.e. x € E” if
L({z]||f(z)| ¢ R}) = 0. From the denumerable additivity of the Lebesgue
measure we can easily deduce the following.



2.1 Lebesgue’s Integral 75

Eqy

Figure 2.4. The slice E; of E over x.

2.10 Proposition. We have

(i) If f : E — R is summable, f € L} (E), then |f(x)| < +oo for a.e.
rel.

(ii) If f : E — R is nonnegative, then [, f(x)dx = 0 if and only if
f(z) =0 for a.e. v € E.

Let f: E C R™ — R be measurable. The essential supremum of f is
the number (possibly +00) defined by

[|flloo, 2 = esssup f:= inf{t € R’f(x) <t forae. z € E} (2.7)
B

Of course, ||f||oo,e = supg | f(x)| if f is continuous on E, and

[E F@)|dz < ||fller|El Ve L(E).

h. Riemann integrable functions

The Lebesgue integral extends the Riemann integral. In fact, (generalized)
Riemann integrable functions are Lebesgue integrable and the Lebesgue
integral and Rieamnn integral of one of these functions agree, see [GMS5].
This remark gives us a way to compute the Lebesgue integral of a large
class of functions. For instance,

"1 e g
/ dx = 400, / o dv =, ete.
0 T oo 142

On the other hand, the long-standing problem of characterizing Riemann
integrable functions was solved by Giuseppe Vitali (1875-1932) in terms of
Lebesgue integral: A bounded function f : [a,b] — R is Riemann integrable
if and only if it is L' -almost-everywhere continuous.
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2.1.2 Fubini’s theorem and reduction to
iterated integrals

2.11 Example. Let E be a subset of R? whose coordinates are denoted by (z,y). For
every x € R, we define the slice of E at x (actually the projection of) by

Ey = {yeR)(w,y) EE}.

If E =]a,b]x]c,d], then

B, - {}c, d] if x €]a,b],

0 otherwise.

In particular |E;| = 0 if  ¢]a,b] and |Ez| = d — ¢ if © €]a, b]; consequently
b
£2(Ja, bl x]e,d]) = (b—a)(d —¢) = / | By | de.
a

Fubini’s theorem extends the remark of the previous example to arbi-
trary measurable subsets of Fuclidean spaces. Split the coordinate vari-
ables in R™** in two groups, for instance the first n coordinates and the
remaining ones, which we denote by € R™ and y € R* respectively, so
that (x,y) denotes the coordinate variables in R"**. Let E be a subset of
R™** and for z € R™, let

E, = {yERk‘(az,y) EE}

denote the slice of E over z (projected into the coordinate space R¥), see
Figure 2.4.

2.12 Theorem (Fubini). Let E C R"™* be L""*_-measurable in R,
Then the following hold:

(i) For a.e. ¥ € R™ the set E, C R¥ is L*-measurable.
(ii) The function x — L¥(E,) is L™-measurable.
(iii) We have

LR E)= | £ME,)de™ (x).
]Rn

A very useful variant of Fubini’s theorem is the following theorem that
provides a formula that allows us to compute a multiple integral as the
iteration of simple integrals.

2.13 Theorem (Reduction to iterated integrals). Let f : E — R,
E C R"* be an L7 *-integrable function. Then

(i) for a.e. x € E the function y — f.(y) = f(z,y) is L*-integrable in
E,
(ii) the function x — fE¢ flx,y)dy is L™-measurable,
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(iil) we have

[ seacsten= [ ([ @)

We emphasize the fact that the only assumptions in the previous the-
orems are the L£"T* integrability of f in F in Theorem 2.12 and the
Lk _measurability of E in Theorem 2.13. We recall once again that f
is integrable in F' in each of the following cases:

(i) f is measurable and has constant sign;
(ii) f is summable in E; this happens in particular if f is measurable in
E, |f] is bounded, and |E| < +o0.
We observe that Theorem 2.13 reduces in particular the calculus of a

double integral to successively computing two simple integrals, the order
being irrelevant.

/Af(w)dwdy/j(/m f(sc,y)dy) dx
//Ef<x7y>dxdy/_j(/}gyf(w)dm) dy

where

E, = {yeRk’(:v,y)eE}, E, = {xGR”

(z,y) € E}

Of course, Theorem 2.13 can be used iteratively, thus reducing the calcu-
lus of the integral of an integrable function of n-variables to successively
computing n integrals in one variable, the order of them being irrelevant.
In other words we can also state the following.

2.14 Theorem (Tonelli). Let f : E C R? — R be integrable in E. Then,
the three integrals

/ F(,y) AL (2, ),
E

/}R i ( /E ] f(z,y) d/;k'(y)> dL" (), /R ) ( /E y f(z,y) d£”(x)) L™ (y)

exrist and are equal.
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2.1.3 Change of variables

The exterior Lebesgue measure £™* is invariant under isometries; even
more, if T : R™ — R™ is linear, then T maps L"-measurable sets into
L"-measurable sets, and

Lr(T(E)) = |det T| £ (E),  VE C R, (2.8)

in particular, linear maps map set of measure zero into sets of measure
zero. Lipschitz-continuous functions, and consequently C! functions do
the same, however continuous functions do not; in fact, continuous maps
may map null sets into sets of positive Lebesgue measure.

The formula (2.8) extends to diffeomorphisms, i.e., one-to-one trans-
formations of class C'! with inverse of class O, as follows.

2.15 Theorem (Change of variables). Let A be an open set in R™,
and let ¢ : A — R™ be a map of class C*. Then ¢ maps measurable sets
into measurable sets and negligible sets into negligible sets. Moreover, if
E C A is measurable, and ¢ is injective in E, then:

(i) We have
£ /|detD<p( )| da.

(ii) If f: p(FE) — R is any function, then f is integrable on p(E) if and
only if v — f(p(z))|det Dp(x)| is integrable on E and

/ dyf/ flo(x)) | det Dp(z)| da.
w(E)

Notice that there is no need to assume det Dy(x) # 0, yet another relevant
consequence of the Lebesgue integrability.

2.1.4 Differentiation and primitives

Let f, g : R™ — R be two nonnegative and measurable functions. Of course,
Juf(x)de = [, g(x)de YA C R™ if and only if f(z) = g(z) a.e. x € R™.
Is there a way to characterize f(z ) in terms of integrals, or more precisely
in terms of the map A — fA x)dx? The theory of differentiation of
integrals answers this important questlon in measure theory.

Recall that, if f : R — R is continuous, then the integral mean value
theorem yields

xo+T
f(zp) = lim ! / f(t)dt Vo € R.

r—0 2r ro—1

We also have the following.
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MONOGRAFJE MATEMATYCZNE
KOMITET REDAKCYINY
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MARCEL DEKKER. INC NEW YORK AND BASEL

Figure 2.5. Two classic books on Lebesgue’s integration.

2.16 Theorem (Lebesgue’s differentiation). Let f : R" — R be such
that [ |f|Pdz < +o0 for some 1 < p < 4oo. Then, for a.e. x € R" we

have
1

|B($0, )| B(zo,r)

i particular, for a.e. v € R",

lf(y) = f(@)|Pdy —0  asr—0F;

1 n
mr|/zr)f(y)dyéf(:ﬂ) for a.e. x € R™.

Notice that if f € L1(E), E being measurable in R", by applying the
previous theorem to the function

~ xz) ifzekE,
floy= {7
0 if x € E°
we get that for a.e. x € E
1

fy)— f(x)|Pdy — 0 asr — 07;
B0, Jonpenn T T

in particular, for a.e. x € R",

1 Fly)dy — {f(x) for a.e. z € E,

|B(x,7)]| ENB(z,r) 0 for a.e. x € E°.
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2.17 Example. If f € £1(] — 1,1[), then for £'-a.e. z €] — 1, 1] we have

+r
tim > [ p)dy = fGe).

r—0 2r

2.18 Definition. Let f : E C R"™ — R be summable in E. We say that a
point x € E is a Lebesgue point for f if there exists A € R such that

1
lim |f(y) — Al dy — 0. (2.9)
r—0 |B(x,7“)| ENB(z,r)

The set of Lebesgue points is then denoted by L;. Moreover, the value
A = A(z) such that (2.9) holds is unique and it is called the Lebesgue value
of f at the Lebesgue point = of f. Therefore, we have a map A: Ly — R
that is called the Lebesgue representative of f and, with these notations,
the Lebesgue differentiation theorem, Theorem 2.16, reads as follows.

2.19 Theorem (Lebesgue’s differentiation). Let f € LY(E) and let
Ly be the set of Lebesgue points of f. Then E \ Ly has zero Lebesgue
measure, L"(E\ L) = 0.

2.20 Asymmetric differentiation. In the differentiation theorem, The-
orem 2.16, we can replace balls with cubes, and actually differentiate with
respect to bounded sets A such that for instance

AcC B(0,100),  |A| =By

For z € R"” and r > 0, we set A, := x + rA. Trivially A, , C B(z,100r)
and |A, .| = r"|A| = er™|B1| = ¢|B(z, r)|.

Theorem. Let f : E C R" — R be measurable with [, |f|P dz < oo for
some 0 < p < +00. Then for a.e. x € E we have
1

|A | brA |f(y)—f($)|pdy—>0 asr — 07,
z,r NAz -

Example. If f € £L1(R), then for a.e. z € R we have

1 10
tim [ @y = tim [ @y = p@)

r—0t

and also

107
lim / f@)dy = f(z).

r—0t 8r Jo,

We conclude by collecting a few relevant consequences of the differen-
tiation theorem.
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2.21 Theorem (Vitali). Monotone real-valued functions f : R — R are
a.e. differentiable in the classic sense. Moreover, h' € £L'((a,b)) Va,b € R,
h' is nonnegative if h is nondecreasing and

0< /y W) dt < hiy) —h(z) Ve <y,

A function f : R — R is said to be absolutely continuous if for any € > 0
there exists § > 0 such that > -, | f(zr) — f(yx)| < € whenever {z;} and
{yw} are such that >~7, |zr —yx| < 6. Trivially Lipschitz-continuous func-
tions are absolutely continuous, absolutely continuous functions are con-
tinuous, and there exist functions that are continuous but not absolutely
continuous. A celebrated example is the so-called Cantor—Vitali function,
see [GM5]. We have the following.

2.22 Theorem (Vitali). A function f : [a,b] — R is absolutely contin-
uous in [a,b] if and only if f is a.e. differentiable in [a,b], f' € L([a,b])
and

/y R (t)dt = h(y) — h(z) Y,y € [a,b], © <y. (2.10)

The above implies that Lipschitz-continuous functions from R into R
are a.e. differentiable and that the equality (2.10) holds for them. For
Lipschitz-continuous functions of several variables we state the following.

2.23 Theorem (Rademacher). Every Lipschitz-continuous function f :
R™ — R s differentiable in the classic sense for a.e. x € R™. Moreover,
the components of the map © — D f(x) are measurable and

IDf()co,rn = Lip ().

2.2 Convergence Theorems

In many respects and especially for the applications, the main results of
Lebesgue’s integration theory are contained in Beppo Levi’s monotone
convergence theorem, Theorem 2.7 (iv), and in Proposition 2.10. In this
section we discuss some important, useful consequences.

a. Monotone convergence

First we state in a more general form Beppo Levi’s theorem, weakening
the positivity assumption and taking advantage of the fact that a.e. equal
functions have the same integral.
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Come gii in altra min nota (*), noi diremo che un grappo
di intorvalli presi sopra una medesimn retta & un grppo di
interealli distinti, quando doe qualsianst di questi intervalli non
bunne punti interni comuni, od ampiczra di wn groppo di inter-
ralli In somma dello hinghezse dei singoli intervalli dol grappo.

Sia Fir) una funzione Bnita della variabile reale = in un
intervallo (o, 8), &l a<b,

S0 (o, B) & on intervalle parziale di (v 8), o aZa<8<h

Sul problema della misura
dei qrappi di punti di una retta

noi chiamorema inereaiento di Fix) in (3, 3) la differenza Fig) —Fla),
Dircmo poi ineremento di Fix) in un gruppos di intercalli par-

sinli i (1, ) distinti I somma, s0 & doterminatn o fnita, A
gl Snecements 41 #10) I
He por agni numaro ro u=0 ale che
sia minore di @ il modulo 1|r ) in ogni grappo G. VITALTI
di ampiczza minore di u di mlu'\ alli parzinli di {«, &) distinti,
i diri che Flr) & ossodufamente continu,
Infine direwo cho Fiz) & in (3, b) wan funzione integrals se
© soltanto =a esiste in o, ) oon funzione fiz) finita & sommn-
bilo (*¢), per cui Fle) — Fla) =" fizkds, por ogni = tale che
a=zr<h X
Io dimostrert ehe: [
CONDIZIONE NECKSSARIA § SUPFICILNTE PERCIE UNA FUNTIONE Wi
Flz) sia 1% (4. b) USa PUNRIONE INVEGRALE K CHE ESSA 814 ASSO-
LUTAMEXTE CONTINUA 15 (a, b).
1%) G, Vreans, Sui gruppi i punte, § £ * Hewd, del Circoln mates
T £V TROLOGNA
«d il simbslo | {integrale} sono mesti nel TR, SAMNERIN K PARUEALLN
di Le Cintégration ¢n, par Hom L o,
U1uu||er \llllr IW| 1905

Figure 2.6. The first page of the paper Sulle funzioni integrali, Acad. Sci. Torino 1905,
by Giuseppe Vitali (1875-1932) and the frontispiece of the paper, again by Giuseppe
Vitali, where for the first time the example of a set that is not Lebesgue measurable is
presented.

2.24 Theorem (Beppo Levi). Let {fr} be a nondecreasing sequence of
integrable functions on E C R™ such that fi(x) — f(z) for a.e. x € E.
If there exists a function ¢ € LY(E) such that fi(z) > ¢(z) for all k and
a.e. x € E, then

/f = lim Efk() z.

Proof. We apply Beppo Levi’s theorem to the nondecreasing sequence of nonnegative
functions {fx — ¢} to get

| @ =@y s = [ (1) - o(a)) o

The result then follows on account of the fact that ¢ has finite integral. O

2.25 9. Notice that the assumption fp > ¢, ¢ € L}(E), that is, the assumption that
the lower envelope of the f} s is summable, cannot be omitted, as shown by the sequence

-1 ifz >k,
fe(z) ==

0 otherwise.

As a trivial consequence of Beppo Levi’s theorem we can state the
following.

2.26 Corollary (Total convergence of series). Let fr. : E — R, k =
1,2..., be nonnegative measurable functions on E. Then
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Figure 2.7. Frontispiece of the first edition of the treatise on integration by Henri
Lebesgue (1875-1941) and a page from the second edition of 1928.

[Eifk(x)dx=g/Efk(w) d.

k=1

2.27 Corollary. Let fr,: E — R, k=1,2,... be measurable functions on
E. If {fx} is nonincreasing and there exists ¢ € L*(E) such that fi(x) <
o(x) for all k and a.e. x € E, then

/E lim fi(z) dm:klirgo/lﬂfk(m) dx.

k—o0

2.28 9. Notice that the assumption fi < ¢, ¢ € L1(FE) cannot be omitted as shown
by the sequence

1 ifzx < —k,

fr(z) ==

0 otherwise.

2.29 9. Let f: E — R be integrable on F and let {Fy}, k =1,2,..., be a sequence of
denumerable pairwise disjoint measurable subsets such that E = Uy Ej. Show that

/Ef(x) do = g:l/Ek F(x) da.

b. Dominated convergence

2.30 Lemma (Fatou). Let {fx} be a sequence of nonnegative and mea-
surable functions on E. Then
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/hmlnffk( )dx < hmmf/ fr(z
E

k—o0
Proof. The functions gn(x) := infy>,, fr(z), are nonnegative, measurable on E, and
form a nondecreasing sequence; moreover
0< gul®) < fix(@), k>n,  liminf fi(e) == lim_gn(2).
K— 00 n—oo

Thus [5 gn(z) dz < infy>y, [ fr(z) dz, and we infer, using Beppo Levi’s theorem,

/liminffk(x)dm: lim /gn(m)dx§ lim inf/f;C )dx =: llmlnf S (z) dz
E nTxJE E

k—o0 n—oo k>n

O

As previously, we can weaken the positivity condition to get the fol-
lowing result.

2.31 Corollary (Fatou lemma). Let {fi} be a sequence of integrable
functions on E and let ¢ € L} (E).

(i) If fr(x) > ¢(x) for all k and a.e. x € E, then

/liminffk( )dx < hmmf/ fr(zx
E

k—oo

(i) If fr(z) < ¢(x) for all k and a.e. © € E, then

limsup/ fre(z) dx §/ lim sup fi(z) dz.
E E

k—oo k—o0

2.32 Theorem (Lebesgue dominated convergence theorem). Let
{fr} be a sequence of measurable functions on E C R™. If

(i) fu(z) — f(x) for a.e. x € E,
(ii) there exists ¢ € LY(E) such that |fx(z)| < ¢(z) for all k and a.e.

r € F,
/|fk x)| dz — 0,

then
| fitayaa — /E f(z) de

Proof. By the assumptions |f(z) — f(x)| — 0 for a.e. z € E and |fr(z) — f(z)| < 2¢(z)
for all k£ and a.e. z € E. Fatou’s lemma, Corollary 2.31 (ii), then yields

in particular

limsup/ | fr(z) — z)|dw</ li;nsup\fk(ac)—f(ac)\dz:/EOdac:0.

k— oo
| 1au@ - f@)da.

The second part of the claim follows since

| n@do— [ r@as| = | [ (uta) - pia)) da| <
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2.33 €. Notice that the assumption (ii) amounts to requiring that the envelope of the
functions |fx|, defined as ¢(z) := supy, | fi(x)| is a summable function on E. Notice that
(ii) cannot be omitted as it is shown by the sequence

k if0<a<1/k,

0 otherwise.

fr(z) =

Finally, we state the following important convergence theorem for series
of functions.

2.34 Theorem (Lebesgue). Let {f,} be a sequence of measurable func-
tions on E such that

| fn(2)|de < +o0.
%),

Then the series of functions Y oo o fn(x) converges absolutely for a.e. x €
E to a function f € LY(E) and

/ ‘f(x)—zp:fk(x)‘dxﬂo p — 00. (2.11)
B k=0

In particular, -
/| fe)da =3 | filayda.

Proof. For all x € E, we let g(x) € Ry be the sum of the series > 77 o | fr(x)| with
positive terms. From Beppo Levi’s theorem and the assumptions we have

/Eg(:p)dm:];)/E|fk(m)\dx<+oo.

Hence g is summable on E. Proposition 2.10 yields g(z) < +oo for a.e. z € E. Therefore,
for these x the series Y77  fi(x) converges absolutely to a real-valued function f(z) :=
> i fu(x) and for all integers p > 1 we have

> f@)| <3 @, (212)
k=p k=p

hence

[f@) <D (@) = g(@)
k=0

for a.e. x € E. This yields f € £L!(E). Integrating (2.12) we also infer

p—1 oo oo 0o
/E’f(ﬂc)—];)fk(x))dw:/E‘éfk(fc))dwS/Eélfk(w)ldleéflg\fk(w)ldx7

hence the first part of the claim, when p tends to infinity. The second part easily follows

as
p—1 p—1
]Lf(w)dw—é/lgfk(w)dx s/E]fu)—I;)fk(x)]dwo as p — oo,
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c. Absolute continuity of the integral

2.35 Theorem (Absolute continuity of the integral). Suppose f €
LY(E). Then for every ¢ > 0 there exists § > 0 such that for every mea-
surable subset F C E with |F| < § we have [, |f|dx < e. Equivalently

/f(x)dxHO as |E| — 0.
E

Proof. Let € > 0. We set

k if f(z >k,
fu(@) =9 flz) if —k< f(z) <k,
-k if f(zx < —k.
Trivially |fi(z) — f(z)| — O for every € E as k — oo, and |fx(z) — f(z)| < 2|f(z)| €

L1(E); the theorem of dominated convergence, Theorem 2.32, then yields that there
exists N = N¢ such that

/E |f(z) — fn(z)|dz < €/2.
We now choose § := ¢/(2N); clearly for any F C E with |F| < § we find

/IfN(:c>|da:§N|F|§N ‘=2
F N

hence

Jir@idz < [ ipv@last [ 11 pviar< S ] =

2.36 9. Let f be summable in R™. Show that the function
F(x,r) ::/ f(t)dt, z€R™ r>0,
B(x,r)

is continuous on R™ x [0, +o00[.

d. Differentiation under the integral sign

Let E be a measurable set in R™ and let A be an open set in R¥. If f(t,x)
is a function defined in A x E and integrable on E for each fixed t € A,
we may consider the function

F(t) := /Ef(t,x) dz, te A

2.37 Proposition. Let A C R* be open and E C R"™ measurable. If f :
A x E — R is such that

(i) for a.e. x € E the function t — f(t,x) is continuous on A,
(ii) Vt € A the function x — f(t,x) is summable on E,
(iii) there exists ¢ € L1(E) such that

[f(t, z)| < o(x) for allt € A and a.e. x € E, (2.13)
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then the function
F(t) ::/ ft,x) dx, te A,
E

1s continuous on A.

Proof. Let tg € A and let {t}} be a sequence in A converging to to. If g (z) := f(tx, ),
then gi(z) — f(to,z) as k — oo for a.e. * € E and |gi(z)| < ¢(z) € LI(E) for all k
and a.e. z € E. The dominated convergence theorem, Theorem 2.32, then yields

P = [ ftea)do= [ gu@do— [ fito,0)de = Fito),
E E E
i.e., the conclusion since the point ¢y and the sequence {t; } were arbitrary. m]

2.38 9. Notice the following:
(i) The hypotheses of Proposition 2.37 hold if A and E are bounded domains and
FeC(Ax E).
(ii) Consider the family of functions * — fi(z) := f(¢t,2) when ¢ varies in A. The
estimate (2.13) amounts to the summability of the envelope h(z) := sup;¢c 4 | ft(z)|

of the family {|ft(z)|}ica-
(iii) The assumption (2.13) cannot be omitted. Indeed, if

ltl=-lzl ¢ ¢
ftay=4 e Tl
0 if |z > ¢,
we have F'(t) =1 for t # 0 and F(0) = 0.

The following claim is a simple extension of Proposition 2.37.
2.39 Proposition. Let A C R¥ be open and let f : Ax|c,d[— R be a
function such that

(i) x — f(t,x) is summable for allt € A,
(ii) t — f(t,x) is continuous on A for a.e. x,
(iii) there exists ¢ € L*(Jc,d|) such that |f(t,x)| < ¢(z) for all t € A and
a.e. x €]c,d],

Then the function F : Ax]c,d[x]c,d[— R defined by

F(t,rs):= /S f(t,z)dx

is continuous on Ax]c,d[x]c,d|.
Proof. Let t,to € A and r,s,r0, so €]c,d[. According to Proposition 2.37 we have
F(t,ro,s0) — F(to,r0,50) = o(1) as t — to

while

\F(t,r,8) — F(t,r0, 50)| < '/ \F(t,2)] da

s‘/rzqﬁ(x)da:

+'/S: |f(t, )| dx

:‘/S(jqﬁ(x)dac

= o(1),
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uniformly in ¢ as r — rp and s — sg by the absolute continuity of the integral, Theo-
rem 2.35. Therefore we conclude

|F(t,r,s) — F(to,ro, so0)|
< |F(t7rv S) - F(t,r0,50)| + |F(t7T0750) - F(t077‘0780)‘ —0

as (t,r,s) — (to,70,50)- o

Now let us state the theorem of derivation under the integral sign.

2.40 Theorem. Let A C R be open and E C R"™ be measurable. Denote
by t = (t1, to,..., tx) and x = (x1, T2, ..., x,) the coordinates in A and
E respectively. Suppose that f : Ax E — R, f = f(t,x), satisfies the
following:

(i) = — f(t,x) is L"-summable on E for all t € A,

(ii) f has a partial derivative in the variable t; at (t,x) for all t and for

a.e.x €l
(iii) there exists ¢ € LY(E) such that
of
ot (t,x)‘ < ¢(x) forallt € A and a.e. x € E. (2.14)
J

Then the function

:/f(t,x)dx, te A,
E

has a partial derivative with respect to t; att for allt € A and
OF af
t) = t d te A.
o 0= [ o oy e

Proof. Let tg € A and let t;, — to. Since A is open, we assume without loss of generality
that ¢, € B(tog, ) for some § > 0. We have

F(ty) — F(to) :/ f(te,z) — f(to, ) .
th —t

tp — to 0
Also o
t f(t
f(k7 ) (07 )*) (t07x) as k — oo
tr —to at]’

for a.e. x € E, thus gtf_ (to, z) is measurable on E. Applying Lagrange’s theorem and
J
the assumption (iii), we find & € A such that

‘f(tkv f(to, z) ‘_‘

tr — to

(8 2)| < 6(a)

for all k and for a.e. z € E. Therefore, the dominated convergence theorem yields that
T — %{ (to,x) is summable on E and that

F(ty) — F(to) / flti,z) — f(to, / (t
te — to ty — to ot (o 2) 42,

i.e., the conclusion, since the point to and the sequence {t;} were arbitrary. [}
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2.41 Corollary. Let A C RF be open and let f : Ax]c,d[— R be a con-
tinuous function such that

(i) forallt € A, x — f(t,x) is summable on |e,d|,
(i) t — f(t,z) is of class C*(A) for a.e. x €]c,d],
(iii) there exists ¢ € L'(Je,d[) such that

k. af
Z 5t (t, x)‘ < g(x) for allt and a.e. x €]c,d],
J

j=1
Then the function
S
F(t,r,s) ::/ f(t, z)dx
-

is of class Ct(Ax]e,d[x]c,d]). In particular, if o, 3 € C*(A) take value in
le,d[, then the map

B(t)
G(t) :—/(t) f(t,z)dx

is of class C*(A) and, for j =1,..., k we have

ap da

B(1)
o = [ o wmya s pesn ) o o)) o)

ot; ) Otj

Proof. Theorem 2.40 yields the existence of the partial derivatives of F(¢,r,s) with
respect to the t’s variables, which are continuous by Proposition 2.39. On the other
hand, by the fundamental theorem of calculus,

oF oF
s (tv T 8) = f(t7 8)7 or = _f(tv 7’)

that are continuous by assumptions. Thus F(¢,r,s) is of class C1(Ax]c,d[X]ec,d[). The
chain rule yields the second part of the claim, since

G(t) = F(t,a(t), B(t)),  Vte A.

2.3 Mollifiers and Approximations

a. CC-approximations and Lusin’s theorem

From Theorem 2.3 and Tietze’s extension theorem, see [GM3], we readily
infer the following.
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2.42 Theorem (Lusin). Let f : E C R" — R be measurable on E. For
every € > 0 there exists a continuous function g. : R™ — R such that

({zeB[f@) #0@}) < and  llgllee <[|fll.e

Moreover, if f =0 outside an open set Q2 of finite measure, then for every
€ > 0 there exists a function g € C°(Q) such that

{z e Q[ f(z) #g(@)} <e,  and  |lgllec < |Iflloc.0-

Proof. Theorem 2.3 yields a closed set C' C E such that f|¢ is continuous and L™ (E\
C) < e. By Tietze’s theorem f|- admits a continuous extension g : R™ — R with

llglloo,rn < sup |F(@)] = [|flloo,c < [|flloo,
zeC
and, since {z € E| f(z) # g(z)} C E\ C, we have

Hx € E‘f(x) ;ﬁg(x)H <e.

The second part of the claim can be proved similarly. Since €2 has finite measure,
Lusin’s theorem, Theorem 2.3, yields a compact set K CC 2 such that |Q\ K| < € and
fk 1s continuous. If €9 > 0 is such that K CC €,, where

Qe := {x € ‘ dist (x, 0€2) > eo},
the function f: K UQZ — R defined by

fl@) =€k,
0 se x € Q)

f() =

is continuous on the closed set K U Q¢ , hence by Tietze’s extension theorem admits a
continuous extension to the whole of R™ with

llglloo,kn < [|Flloo,02, ur < [[fllo0,0-

Clearly g € C2(Q) and, since {z € Q| f(z) # g(x)} C Q\ K, we conclude that

HxEA‘f(x) ;ég(x)}‘ <e

As a consequence we find the following.

2.43 Theorem. Let Q) be an open set in R™ and let f : Q@ — R be
summable on Q2. There exists a sequence {@y} of functions of class C2(Q)
such that

[0 -~ en@las ~0 asn o
Q
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Proof. 1t suffices to show that for any € > 0, there exists g € C2(€2) such that [, |f—g| <
2e. Given € > 0 we choose N large so that, by setting

N if f(z) > N and |z| < N,

flx) if [f(z)] £ N and |z < N,

—N if f(z) < =N and |z| < N,

0 if || > N,

In(z) =

we have [, |f — fn|dz < e. This can be done since [, |f — fn|dz — 0 as N — oo by
the dominated convergence theorem.
According to Theorem 2.42 there exists a function g € C2(Q) such that

€

lglloe < Ilfnlloe N and o € Qlg() # Iv@H < -

Consequently we find

[lr=glae [ 17=gwldo+ [ iy —gldo<eran | =2
Q Q O 2N

2.44 Proposition (Mean continuity). Let f € L1(R"). Then

/ |f(x+h)— f(x)|dx —0 as h — 0.

Proof. (i) If f € C2(R™), spt f C B(0, R), and |h| < 1, we have
|f(x+h)— f(z)] =0 forallz € E
[f(z +h) — f(@)] <2/ fllcoxB(0,R41) (T)-
Therefore, in this case, the claim follows from the dominated convergence theorem.

(ii) In the general case we proceed by approximation. Given e > 0, there exists g €
CO(R™) such that [y, |f — g|dx < e. Since
L et m — f@lde < [ o+ ) —g@lde+2 [ 1 glde

when h — 0, by (i) we conclude

limsup/ |f(x+h)— f(z)|dz < 2e.
h—0 R™

b. Mollifying in R™
A function k(x) € C°°(R™) such that
k(x) =k(—x), k(zr) >0, k(z)=0if|z]>1 and / k(x)de =1,

is called a mollifying (or regularizing) kernel. The family

ke(x) := e_"k(f), € >0,



92 2. Integral Calculus

e
-

-1 1-61 1456

Figure 2.8. The function [ x[—1,11(¥)X[-s,6](z —y) dz, § < 1.

is the family of mollifiers generated by k. Clearly k.(z) = k(—x), ke(x) >
0 and k.(z) = 0 outside B(0,¢€). Moreover, by the change of variables

y:x/e,
/ k(y)dy=1 Ve > 0.

2.45 Example. The function ¢(z) := g(|z|), z € R™, where
1 .
ex - if |[z] < 1,
4]0(3;) = { p( 17|I|2> | |
0

otherwise

is symmetric, nonnegative, of class C°°(B(0, 1)), and nonzero exactly on B(0,1). Con-

sequently, if
c ::/ o(z) de,
IR’VI

the function k(z) := éap(x) is a mollifying kernel in R™.

A function f : R™ — R is locally summable and we write f € £} (R"),

loc

if f € L1(A) for any bounded set A C R™. If f is locally summable in R",
the function

folw) = fokele) = / kel — ) f(y) dy

n

is called the e-regularized, or e-mollified, of f, and the operators Sc(f) := fe
are called the reqularizing operators associated to k. Notice that

fri) = [ ke =pf@d= [ ke =)y

B(z,e€)

= / fle—2)k(z)dz
B(0,¢)

A

Figure 2.9. A convolution kernel and a regularized of f(z) = x[-1,1](®)-
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since k. vanishes outside B(0, €); the last inequality follows by changing y
into z :=x —y.
Finally, given Q C R™ and € > 0, we define

Q= {:c €0 \ dist (z, Q) > e}, 0= {:c eR"

dist (z, Q) < e}.
Of course 2, is nonempty for € small if and only if © has nonempty interior.

2.46 Proposition. Let f: R"™ — R be a summable function. Then

(i) For any e > 0, the function f.(x) := f *k(x), v € R™, is of class
C®(R™). If f is constant in Q, f(x) = ¢, then f(x) = c in Qe. In
particular, if f vanishes outside €, then f. vanishes outside Q_..

(ii) We have

[ f@lds< [ A@lde and [ (g plas—o.

(iii) For every compact K C R™ we have

sup | fe(x)] < [|f oo, 5 _.-
reK

Proof. (i) The theorem of differentiation under the integral sign yields that f * ke(z)
has continuous partial derivatives and for i = 1,...,n,

Du(f ke)(a) = [ Fw)Dike(a —v) dy.

By induction we conclude that fe = f % ke € C°°(R™). The second part of the claim
follows since ke has support in B(0,€).

(ii) Changing the order of integration, Fubini’s theorem, we infer

/Rn |ge ()] dz < /R dx /R l9(¥)| ke(z — y) dy = /R Ig(y)\(/R” ke(z —y) dw)dy-

Since [pn ke(z —y) dz =1 Vy € R™, we conclude that

/R |ge(@)| da < /R ()] dy.

To prove the second part of the claim, first, we notice that we have

@) = 1@1 = | [ ket =nay - @] =| [ G0 = re)ke - a

< [ w@lfe -2 - f@l, (215)

and, integrating we conclude

[t = s@lde< [ k([ 152 - f@) o) ae

Given o > 0, by Proposition 2.44 there exists g > 0 such that

/ @ —2) — f@)]dz < o
R"L
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for all z with |z| < €g. Therefore, for every e < ¢y we have

/n ke(z)(/n f(z = 2) — f(@)] dm) dz < cr/" ke(2) dz = o.

(iii) For all # € R™ we have

mwnsé()wwmwfw@snmmxﬁ/()mwfw@=nmwxﬂ

x,€

c. Mollifying in

Let 2 C R™ be an open set and let f : 2 — R be summable. We can
extend f as a function f defined on all of R” and summable on R™ in
several ways, for example as

o) — flx) ifxzeq,
/e {0 if 2 € Q°. (210

The mollified of f, a priori depend on the value of f on ¢; however, for

every € > 0, if Q. # 0, the value of the e-mollified of f at point z € Q.
depends merely on f, since f = f on B(x,¢) and

fol@) = /B Skl ) dy = /Q FWke—y)dy.  (217)

We therefore define the e-mollified, or e-reqularized, of f in by setting
for x € Q.

/ F kel — y) dy = /B Wkt =) dy

so that (2.17) writes also as f.(z) = f (x) Vz € Q..

2.47 Proposition. Let ) be an open set in R™ and let [ : Q@ — R be a
summable function. For all € > 0, the e-mollified f. := fxk. is well defined
n Q¢ and we have the following.

(i) IfQ cC Q, then

/ﬁ|f4dxs/9\f|dx, fellos < Iflloon Ve < dist (3,00

and
/\fE x)|dx — 0 as € — 0.

(ii) If f € CY(Q), then f. — f uniformly on compact sets of 2.
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(iii) If f € C*(2), then for every a, |a| <k,
DY(f xke)(x) = (DYf) x ke(x) Yz € Q,

and D*f. — D*f uniformly on compact sets of 2.
(iv) If f € Lip(Q), then f. is Lipschitz-continuous in Q. and

wp @) = )

< Lip (£, ).
z,yEQ. |z —yl

V) If o : E = R, ||¢]|co, B < +00 and spt ¢ C Qa, then fo. and fep are
summable on € and

[ 1@ew = [ L@t

Proof. Let f be as in (2.16).
(i) Trivially, it follows from Proposition 2.46.

(ii) Let K be compact and let ep := dist (K, 9€). The set K /7 is again a compact in
Q, and using (2.15) we infer

[fe(x) = f(@)| = |f (@) = f2)] < Sup

0,€

)\f(w—Z)—f(w)l
= sup [f(z—2) - f()] < sup lf() = f@)]  (2.18)

z€B(0,€) TEK,YEK (/o
lz—y|<e

for all € < €p/2. The uniform continuity of f on K., /o yields, for & > 0, a § > 0 such
that |f(z) — f(y)| <o if 2,y € K /2 and |z — y| < §. Therefore we find

[fe(z) — f(x)| <o Ve < min(d, €9/2) and Vz € K,

i.e., fe — f uniformly on K.

(iii) Changing variables, z = x — y, we find
@ = [ -2k s
B(0,¢)
and differentiating under the integral sign,

Dife-2he(dz = [ Difwke(o—y)dy = (Dif) shela).

B(z,e)

Di(f*ke)(x):/B(O )

From (ii) we then infer that D;fe — D;f uniformly on the compact sets of Q.
(iv) In fact, if z,y € Q., then

@) — Felw)] = \/B(O =2 = fly= Dk
s/ f(z = 2) — f(y — 2)|ke(2) d= < Lip (f, )]z — y].
B(0,¢e)

(v) Using (i) we find



96 2. Integral Calculus

/Q\f(w)ll%(w)ldﬂc:/ﬂe |f<x>||we<x>|dx§Hwenoo,m/ﬂwﬂdw

< ||so||oo,Q/Q || dz < +oo
and

/Q\fe(ar)llso(ar)\dx:/Z \fe<w>||¢<w>|dx§||¢||OO,Q/Q|f\dx<+oo.

€

The function f(z)p(y)ke(x —y), (z,y) € Q X Q, is summable; therefore, by changing
the order of integration, we find

[ @ = [ f(a:)( / ga(y)ke(x—y)dy) dz

_ /Q dz /Q F@)p(W)ke( — y) dy

:/gzgp(y)(/ﬂf(a:)ke(a:—y)d$> dy
~ [ et [ s@hety—s)az ) ay

= / o(y) fe(y) dy.
Q

2.4 Calculus of Integrals

The aim of this section is to familiarize the reader with the calculus of
multiple integrals and with the theorem of derivation under the integral
sign.

2.4.1 Calculus of multiple integrals

As we have seen, the calculus of a double integral, i.e., of the integral of
a function of two independent variables, can be reduced to the successive
calculus of two simple integrals, i.e., of a function of one variable, and
this can be done in two different ways that are equivalent. Moreover, if
it is useful, we may at each stage change variables. For the calculus of a
triple integral, i.e., the integral of a function of three variables, there are
12 different ways of using the formula of reduction of integrals, a priori all
praticable, and at each step we can change variables. In short, any strategy
that uses all possible combinations of Fubini’s theorem in one of its forms
and of the theorem of change variables, even the most unlikely, is possible
as long as it leads to the end.
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Ey

Figure 2.10. A normal subset in R?.

The aim of exercises is that of learning how to choose an optimal strat-
egy for the calculus of integrals on the basis, for instance, of symmetries
of the domain of integration and/or of the function to be integrated.

We recall that, for the formula of reduction of integrals to be valid, see
Tonelli’s theorem, Theorem 2.14, the summability of the involved functions
is required.

2.48 9. Show that the assumption of integrability in Tonelli’s theorem is essential. For
instance, show that the following iterated integrals

1 oo oo 1
/ dy/ (e7%Y — 27 2%Y) dg, / dx/ (e7%Y — 2e72%V) dy
0 1 1 0

both exist and are different.

We repeat that f is integrable on E in each of the following two cases.

(i) f is measurable on E and has constant sign, for instance if F is mea-
surable and f is a.e. continuous on E and nonnegative. This applies
in particular for |f].

(ii) f is summable in E, f € L(E), in particular if |E| < +o0o and f is
bounded on FE; for instance if E is compact and f is continuous on
E.

In other cases the measurability of f and the application of the reduc-
tion formula to | f] or to f4 and f_ (that are nonnegative) suffice to decide
on the integrability of f.

a. Normal sets

2.49 Normal sets in R?2. We say that a set £ C R? is normal with
respect to the y axis if E' can be written as

E:={(z,y)|a <z <balx) <y <pB@)}
where «, 3 :Ja,b[— R are functions with a(z) < B(z) Vz €]a,b|, see Fig-

ure 2.10. What makes normal sets useful is the fact that the slice of E over
x is a possibly empty interval
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Jaw), Bz)] if x € A,

0 otherwise.

E; 1{y€R|a(x)<y<ﬂ(x)}{

If E is measurable in R? and f : F — R is an integrable function on F,

Fub1n1 s theorem yields that z — fﬁ((x)) f(x,y)dy is measurable on |a, b|

flzyy)dedy = flz,y)dy |de = | dx o dy.
/ i [ (L, semman)ae=fLos [ Vs

Notice that one also proves that F is measurable if a,0 : A — R are
measurable functions, for instance if o and (§ are continuous, see, e.g.,
[GM5].

2.50 Normal sets in R". Similarly, we say that a set E C R™ is normal
with respect to a coordinate axis, say x,, if ¥ can be written as

E:= {x = (¢ 2,) € R"! x R‘x’ €A al@)<x, < ﬁ(x’)}.

where A C R" ! and o, 8 : A — R are functions with a(z) < 3(z) Vo € A.
The slice of E over 2’ € R"! is a possibly empty interval

Ja(a"), Bl if 2" € A

0 otherwise.

Ey, = {teR|a(z) <t<ﬂ(x’)}{

If F is L"-measurable and f : F — R is an integrable function on F,

Fubini’s theorem then yields that z’ — f Al f 2’ t) dt is measurable on
A and

/Ef(x)dx:/Rn_l dx’( ” f(x’,t)dt> :/Adx’ /:j:/)f(x’,t)dt.

Notice that one also proves that F is L£"-measurable if A is £7 L
measurable and « and 3 are measurable functions on A, see, e.g., [GM5].
A typical case would be the one in which A is an open or closed set in
R™ ! and «, 8 are continuous functions on A.

2.51 Example. Compute fT 22 drxdy where T is the triangle in R? of vertices (0,0),
(0,2), and (1,0).

The function z?2 is continuous and nonnegative, the domain 7" is compact, thus 2
is summable on 7" so that we can use the reduction formulas. The domain 7" is normal
both with respect to the z-axis and the y-axis, as

2

T:{ogxg1,ogyg7zx+2}={0§yg1,ogzgfy/2+1}.

Since the function to be integrated, 22, depends only on the variable z, it is convenient
to leave integration in x as the last, and look at 7" as a normal domain with respect to
the z-axis to obtain

1 —2242 1 1
// 22 dedy = / d:c/ 22 dy = / z2(—2z 4 2)dz =
T 0 0 0 6
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Ve (5,0)

z2 (3,0)

Figure 2.11. Some normal sets or union of normal sets in R2.

2.52 €. Integrate f(z,y) = 22 on each of the domains £ C R? in Figure 2.11.

b. Rotational figures

2.53 Rotational solids. Let f :]a,b[C R — R, be a nonnegative and
measurable (for example, continuous) function. By rotating in R? the graph
of x = f(z) around the z-axis we find the solid

E = {(:E,y,z) ’xQ +9% < fg(z)}.

The slice of E by the plane through (0,0, z) and orthogonal to the z-axis
is

B {(z,y) e R?|2® + y* < f?(2)} ifa<z<b,
. ] otherwise,

i.e., E, is the disk on the plane (z,y) of radius f(z) around the origin if
z €la, b and the empty set otherwise. If E is measurable and g is integrable
on F, Fubini’s theorem yields that z — ffE g(x,y, z) dz is measurable and

b
/g(x,y,z) dxdydz:/ dz// g(x,y, z) dx dy. (2.19)
E a E.

Notice that, since 2 4+ y? — f?(z) is measurable on R? if f is measurable
on Ja,b[, E is £3-measurable if f :]a,b[— R, is measurable.
If g = 1 we get in particular that z — £2(E,) is measurable and

+oo

£3(E):/E1dxdydz:/_oo /JQ(EZ)dz:/abwa(z)dz:ﬂ/ube(z)dz.
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22 +9? < f2(2)

. / E, B
X

Figure 2.12. A rotational solid and E..

Y

Formula (2.19) is particularly convenient when g depends only on z,
9(z,y,2) :=g(2), as

/Eg(z) drdydz = /abg(z) //Ez 1 dzdy

_ /abg(z)EQ(Ez)dz _ W/abg(z)fg(z) dz.

c. Changes of coordinates

2.54 Polar coordinates in R2. The map ¢(p,0) := (pcosf, psind) is
of class C1(R?) with |det Dy(p,0)| = p and is injective on the set A :=
10, +00[x]0, 27[. Moreover £L2(0A) = 0 and £?(p(0A)) = 0. Therefore, for

every measurable F C A = [0 X +00[x[0, 27| and every integrable function
f on ¢(E) we have

/ f(:v,y)d:rdy:/f(pcos@,psin@)pdpd@.
(E) E

Since ¢ is injective on each interval |0, +oo[x]a, a + 27], a € R, the same
conclusion holds for E measurable, E C]0, co[x[a,a + 27].

2.55 Polar coordinates in R3. The map ¢ : R> — R3 given by

x = psingpcosb,
?(p,0,¢) = { y = psinpsinb,
Z = pcosy
is of class C'(R?) with |detDg(p,0,¢)] = p?sing and injective on
A =0, +00[x]0, 27[x]0, 7[. Moreover £3(0A) = 0 and L3(p(0A)) =
[0x +

Therefore, for every measurable set £ C A = oo[x [0, 27] x [0, 7] and
every 1ntegrable function f on ¢(F) we have
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/ flz,y)dedydz
o(E)

/ f(psin@ cos o, psinfsin g, pcos§)p® sin p dp db de.
E

2.56 Cylindrical coordinates in R3. The map ¢ : R® — R3 given by

x = pcosb,
y = psin,
z=2z

is of class C(R3) with |detDg(p,0,2)] = p and injective on A :=
10, +00[x]a, a+2w[xR. Moreover, £3(dA) = 0 and L3(0(dA)) = 0. There-
fore, for every measurable set E C A = [0 X +00[x[a, a4+ 27] xR and every
integrable function f on ¢(F) we have

f(:n,y,z)d:cdydz:/ f(pcosB, psinb, z)pdpdf dz.
B(E) E

2.57 Example. Compute [[, /22 + y2dzdy where E C R? is the disk of radius 1
around (1,0).

We notice that E is compact and \/z2 4 y2 is summable on E, therefore we can
use both Fubini’s and the change of variables theorems. The disk E has equation (z —
1)2 + 22 < 1 that is, 22 + y2 — 2z < 0, and in polar coordinates, we get

p>0, 0€l[-mn], p°—2pcos6 <0,

ie.,
p>0, 0€[-7/2,7/2], p<2cosb.

If ¢ denotes the polar coordinates map and
F = {(p,e) ‘ —n/2<0<71)2,0< p< 2cos9},

then the set F' is contained in a strip of periodicity of ¢ and E = p(F). Therefore by a
change of variables and taking into account that F' is normal with respect to p, we find

2cos 6
// \/x2+y2d:):dy—// P dpd9—/ p /0 p2dp
/2 32
= / cos®0do =
3J )2 9’

2.58 Example (Rotational solids). Let f : [a,b] — R4 be a measurable function
and let E be the set obtained by rotating the subgraph of f in the plane (y, z) around
the z-axis,

Ei={(@y2)|a<z<b 22+ < f2(2)}
By parameterizing E' with the cylindrical coordinates,
x = pcosb,
o(r,0,2) := y = psinb,

zZ=Zz
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-
—

Figure 2.13. Conical coordinates.

7

so that E \ {(0,0, 2)} is the one-to-one image of the set
Fi={(p0,2)|0<0<2m a<2<b 0<p< f()}
and changing variables, we find that E is measurable and

L3(E) = L3(E\{(0,0,2)}) = /F | det Do| dpdfdz

b 27 f(z) b
:/ dz/ d9/ pdp:ﬂ’/ 2(2) d=.
a 0 0 a

2.59 Example (Guldin’s formula). Let f,g : [a,b] — R4+ be measurable functions
with g < f. The set

Ei={(z.9,2)|z € [a,b), () < Va2 +3* < f(2)},
obtained by rotating the set
A={@uy)|e=0 zelab] f(z)<y<g)}
around the z-axis, has as volume
2w = [ 66 - e

The center of mass, or barycenter, of A (the density is assumed to be one) is the point
(z,y) € R? given by

1 1
= dyd = dydz.
YT 24 /Ay YEET ooy /A vez

Guldin’s formula writes as: The volume of the rotational solid E is the product of
section A times the length of the circle of revolution of the barycenter of section A, i.e.,

L3(E) = L2(A) 27 y.

In fact, we have

b (2) b
2ryL2(A) = QTr/Aydydz :/ dz/;] : ydy :7'(/ (6%(2) — f2(2))dz = L3(E).
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2.60 Conical coordinates in R3. Consider R? as the coordinate plane
z =0 of R3 R? = {(x,9,2)]| 2 = 0}, let A be an open set in R? and let
Py := (x0, Yo, 20). By definition, a point P is in the cone C(Fy, A) of vertex
Py and basis A if there are (a, 5,0) € A and t € [0, 1] such that

x @ Zo
y|=0-8)(8]+t|w
z 0 20

The function ¢(a, 3,t) : R?* — R3 defined by

x=(1—-ta+txo,
y=(1—-1)B+tyo,
z=1tz

is a map of class C'(R?) with det Dy(a, 3,t)| = (1 — t)? and one-to-one
from A x [0, 1] onto C'(Py, A) \ {Po}. Consequently,

[ fapdedyda= [ f(o(a,60)( - 0P dads
C(Py,A) Ax[0,1]

—/01(1t2)<[4f(¢(a,ﬁ,t))dadﬂ> dt.

In particular, if f = 1, we get the 3-dimensional measure of the cone
C(Py, A),
LHC(Py, 4) = L2(A).

2.61 Example. Suppose we want to compute the measure of
E:= {(m,y)€R2)0<z<y<Qm, 1<zy<2}.
We set u = 2y and v = y/z; then we have
B =p(F)
where ¢(u,v) := (y/u/v, /uv) and
F::{(u,v)eR2‘1<u<2, 1<v<2}.

Since det Dy = 21U >0 on F, we find

1 1 [ 2 1
£2(E):£2(<p(F)):/ 5, v = /du/ @ _ 1,
F2v 2 /1 1 v 2
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d. Measure of the n-dimensional ball
Let w,, be the n-dimensional measure of the n-dimensional ball

W = L(B™0,1)),  B"0,1):= {z € R" | |z| < 1}.

2.62 Proposition. We have

ﬂ.k 2k+1ﬂ.k (2 20)
W2k = Wok+1 = . .
k' T2k + 1)
Proof. We split the coordinates z = (z1, z2,..., xn) of R™ as © = (y,t) where y :=
(z1, T2,y ..., Tp—1) € R™ ! and t = z,, € R. The unit ball is then described as

B"(0,1) := {(y,t) e R""! x R‘ lyl2 + 2 < 1}

Now we slice R»~! x R with (n — 1)-planes perpendicular to the t-axis. The slice of
B™(0,1) at the level ¢ is then

Br-1 1—1¢2 ift € [-1,1
E = {yeR"_l‘ly\2<1ft2}: ©,v ) iftel-11],
0 if |t] > 1.

By homogeneity B"~1(0,v/1 — #2) = wy—1(1 — t2)("=1/2 and, since B™(0,1) is open,
Fubini’s theorem yields

+o0 1 n—1 1 n—1
wn=/ E”_I(Et)dt:wn_lf 1-)" dt:2wn_1/ (1—)"2" dt.
- 1

oo 0

Since fol(l —2) " dt = foﬁm cos™(t) dt, and

/2 -1 /2
/ cos™(t) dt = " / cos™2(¢) dt,
0 n 0

we find, see [GM2],

/2 2k — )N /2 2k)!!
/ cos2F (1) dt = ( ) TF, / cos?F (1) dt = (2k) .
0 2kt 2 0 (2k + 1)
As w1 =2 and w2 = 7, we get the result. O

As a curiosity, notice that w,, — 0 as n — co. On the other hand the
measure of the n-dimensional cube of side 2 that circumscribes the unit
ball is 2" and tends to infinity as n — oc.

The measure of the n-ball is tied to Euler’'s I' function, see Exam-
ple 2.67.

2.63 9. Let a > 0. Compute the measure of the n-dimensional set

n
E = {$:($17$27---7$n)‘ Zﬂfiﬁfh ﬂCiZOVi}-
im1
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e. Isodiametric inequality

2.64 Proposition (Isodiametric inequality). Let E be a measurable
bounded set in R™. Then

diamE)"
9 .
Notice that, whereas in R every set E is contained in an interval of radius
half the diameter of E, this is not true anymore if n > 2: think of the
equilateral triangle in R2. Of course every set E is contained in a ball of
radius the diameter of E so that

L"(E) < wy(diam E)". (2.21)

But proving the isodiametric inequality requires some effort. However, it is
trivial for special sets. For instance, if E' is symmetric with respect to the
origin, that is # € F iff —z € F, then we have 2|z| = |z — (—z)| < diam E,
hence E C B(0,diam F/2) which yields the isodiametric inequality.

For generic sets, we shall use Steiner’s symmetrization method. Given
a direction a € S"~!, we denote by P(a) the (n — 1)-dimensional subspace
of R™ orthogonal to a so that every z € R™ writes uniquely as x = y + ta
with y € P(a) and ¢ € R. For every y € P(a) we then set

LM(E) < wn(

Eqy= {t cR ‘ ta+y € E} e Lo(y) == El(Ea,y)
and define the Steiner symmetrization of E in the direction a by
Su(E) = {(y,t) e R"! x R‘ It] < E“éy) }
We have

2.65 Lemma. If E is bounded and measurable, then

(i) So(E) is measurable,
(ii) if E is symmetric with respect to a k-plane orthogonal to a, 1 <k <
n — 1, then S,(E) has the same symmetry,
(i) |54 (E)| = |’
(iv) diam (S, (F)) < diam (E).

Proof. After a rotation that does not change the measurability, the measure, and the
diameter of E, see (2.8), we can assume a = (0,0,...,1). Consequently P(a) = {z =
(y,0), y € R"™1}, every point # € R™ writes as 2 = (y,t), and Eq, is the slice
of E over y. Fubini’s theorem then yields that Eq,y is measurable for a.e. y € R*~!
and y — £o(y) := L1(Eq,y) is a measurable function, hence S, (E) is measurable, see
Theorem 2.8, and

Za,(y)/Q
= [ Eaa= [ (/ 1dt)dy = 15u(B)].
Re—1 re=1 \J g, (0)/2)

A symmetry of E with respect to a k-plane orthogonal to (0,0,...,1) yields a
similar symmetry for the function £, (y) hence of S, (E). Finally, from the elementary
inequality

LY (1) + £Y(I2) < diam (I U I2)
for subsets of R, we readily infer that diam (Sq(E)) < diam (E). O
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Proof of Proposition 2.64. Let (e1, e2,..., en) be the standard basis of R™ and let
Ey:=5c,(E), E2 := Sey (E1), ..., En := Se, (En—1). Applying iteratively Lemma 2.65,
we deduce that

|E| = |E1| =...|En|,  diam (BE,) < diam (B, 1) <--- < diam E,

and FEj is symmetric with respect to the plane perpendicular to e1, Fo is symmetric
with respect to the plane perpendicular to e; and esz,..., E, is symmetric with respect
to the coordinate axes, hence with respect to the origin. Therefore, E), is contained in
a ball of radius diam E,, /2, thus concluding

diamEn>n < uJn<diamE)n.

E| = |En| < (
1] = 1] < o (P !

f. Euler’s T function

2.66 Example. We have
+oo 2
/ e " dx = /7. (2.22)

— 00

2 2
In fact, since e~% ~¥" is integrable on R2, using Fubini’s theorem and passing to

polar coordinates, we find

+oo 2 oS} oo
(/ e’ da:) = / e’ d:):/ ey’ dy = // e~V gz dy
—oo —o0o —oo R2
27 oo 2 1 oo
= / d9/ e P pdp=2r / e %do =m.
0 0 2 Jo

If we change variable in (2.22), we also get

“+oo
/ e~ dg = \/’T, A>0. (2.23)
e A

2.67 Example (Euler’s I' function and the measure of B"(0,1)). The function
I" was defined by Euler in 1729,

oo
I'(a) ::/ o et dt, a>0, (2.24)
0

It is an important special function that surprisingly appears in many contexts.
Trivially I'(1) = 1 and, on account of Example 2.66,

R 2
r/2) = 2/ e % ds = /.
0
Integrating by parts we see that
MNa+1)=al(a) Va > 0.

It follows by induction

2n — 1N (2n — 1)1 (2n)!
T'(n+ 1) =nl, T(n+1/2) = on ra/2) =n on =/ anl’
that, by comparison with (2.20) yields
an/2
wn = L™(B™(0,1)) = Vn > 1. (2.25)

F<g+1> B

We presented some of the properties of the I'-function in [GM2]. Further properties
of the I'-function will be discussed in the following Example 2.68 and Section 2.4.3.
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2.68 Example (Euler’s Beta function). FEuler’s Beta function is defined by

1
B(p,q) := /O a1 —x)?tdzs,  p,q>0.

Changing variables y = 1 — x, we see that

B(p,q) = B(¢,p)  Vp,q >0, (2.26)
while, writing
+q—2 +g-1
1 Lpta -2 _ p P ta
za=1 "’ p+qg—1

and integrating by parts, we find

q—
B(p,q) = B(p,g—1) VYp>0,g>1, (2.27)
pt+q—1
and, because of the symmetry,
p—
B(p,q) = B(p—1,9) VYp>1,¢>0. (2.28)
pt+q—1

Changing variables, z = z/(1 4 z), we also find

e} P —1
B(p,q):/o (1+pz)p+q dz. (2.29)

We can compute the B-function in terms of the I'-function as

I'(p)I'(q)

) p,q > 0. (2.30)
L(p+q)

B(p,q) =
To prove this, we begin by noticing that if we change variables x = Az, A > 0, then
F oo oo
(@) = /\_O‘/ 22 e % dr = / 207 e gz, a>0. (2.31)
A 0 0

Now, applying Fubini’s theorem, changing variables (\,y) — z = Ay, y = y, and taking
into account (2.31) and (2.29), we find

T'(p)l'(q) = / / :ppflyqflef(f+y) dz dy
0 0

o0 oo
_ / APt (/ yp+q—1e—(1+/\)y dy) d\
0 0

*© p-1 Tlp+4q)
:A A910+AwﬂdkzF@+®B@ﬂ)

The beta function is useful when computing several interesting integrals. For in-
stance, if

1
Io ::/ (1-2%)%dz, a>-1,
—1

and we change variables, we find

T(a+1)

D(a+3/2) (2:32)

1
1a=/ (1—6)Y2dt = B(1/2,a+1) =/«
0
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Figure 2.14. A tetrahedron.

1/p
2.69 Example. Let p > 1 and ||z||p := <Z?:1 \xi\l’) , x € R™. We want to com-

pute vn,p = L"({z | |[z[|p < 1}.
By slicing with planes orthogonal to a chosen coordinate axis, we find the following
recursive relation for vp,p,

Tn.p = In—1,p - /(1 (n D/p .

By (2.32) we get

p 2 tp—1 1y 2 1F(nl+p)
e _ay(rerot 2y T

Yn—1,p p p

hence, since v; = 2,

Y2,p ’Yn 1,p  Tn,p Yi,p
Tnp =Vp - ’ =M,p H '
T1,p " Y- 2,p Yn—1,p 1 Yi—1,p

w1 p+1

ey 1T ey )
Q)OI ) O )

1
n—1 r

—2(*)"'r 1
e

n L(n/p) -

-
p(2\nT(1/p)"
o

g. Tetrahedrons

2.70 Example (Tetrahedrons, I). Consider the tetrahedron T C R3 of vertices
(0,0,0), (1,0,0), (0,1,0), and (0, 2,2), see Figure 2.14. Let us compute

/ N dz.
1+z

A face of the tetrahedron is on the plane z = 0 and, if we slice the tetrahedron with
planes parallel to the basis, we get slices that are congruent to the basis; moreover, the
function to be integrated depends only on the variable z. Therefore, we decide to slice
with planes orthogonal to the z-axis. If T%, is the slice of T" at the level z, we see that
T. # 0 if and only if 0 < z < 2. Since T is measurable and z/(1 + z) is continuous on
T, Fubini’s theorem yields
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2
/ ® e :/ ® LT dz.
T 1 + z 0 1 + z
Since, by Thales theorem, £2(T.) = £2(To)(2;z )2, we conclude

2 2
/ 7 1/ z2(2—2) dr—
T1+Z 8 0 1-‘1—2

2.71 Example (Tetrahedrons, ITI). Consider the tethrahedron T C R?® of Exam-
ple 2.70 and let us compute
xz
/ dz
T 1 + z

that is well defined since 7" is compact and the integrand is continuous on 7T'. We slice
as in Example 2.70 and, with the same notation, we find

2
/ v dz:/ N [/ z dzxdy.
142 o 1+=2 T.

Now we compute fsz z dzdy. The domain T is a triangle in R? congruent to the
basis of T'. Its vertices P(z), Q(z), R(z) are the projections on the (z,y)-plane of the
intersections of the plane perpendicular to the z-axis through (0,0, z) and the straight
line respectively through (0,2,2) and (0,0,0), (0,2,2) and (1,0,0), and (0,2,2) and
(0,1,0). Again by Thales theorem, the coordinates z(z) and y(z) of P(z) depend linearly
on z, i.e.,

z(z) =mz +q, y(z) =mz+gq,

z(0) =0,z(2) =0, y(0) =0,y(2) =2,
hence P(z) = (0, z). Similarly, one computes Q(z) = (1—2/2,2) and R(z) = (0, 14+2/2).
Points P(z) and R(z) have the same abscissa, hence the triangle T, is normal with
respect to the z-axis. Writing the equation for the straight line through P(z) and Q(z),
and R(z) and Q(z) respectively,

az(x) = z, B:(x)=—(x+2/2-1)+2=1+2/2—ux,
we find
T.i={(@y) eR|0S2 < 1-2/2 ax(e) Sy < Beo))

1-z/2 Bz(x) 1—2/2 1 3
/ :vd:vdy:/ :vd:v/ dy:/ z(1—z/2—a)dx = (1— ) .
T, o a(x) 0 6 2

In conclusion ) 3
1 1—2/2
/ z drdydz = / ( #/2) dz=...
142 6 Jo 1+=z2

We may proceed differently. We regard the tetrahedron as a cone over a face and
let the formula of change of variables operate the details. The map o(t, a,b) : R3 — R3
given by

z=ta+ (1—-1)0,
y=th+ (1 —-1)2
z=t-0+(1—-1)2

maps the prism Ty x [0, 1] onto the cone-tetrahedron 7' with basis Ty defined by the
vertices (0, 0,0), (1,0,0), (0,1,0) and vertex (0, 2,2). It is easily seen that ¢ is one-to-one
from Tpx]0, 1] onto T\ {(0,2,2)} and that det Dep(t, a,b) = —2t2. Thus,

2ta(l —t 43(1 —t
/ e dxdydz:/ a(l —1) 2t2dadbdt:/ )// adadb
142 Tox[0,1] 1+2(1—t) 3—2t Ty

144301 — 1 l1-a 301 _
:/ @ t)/a(/ db)da:Q/ PA=D 4
o 3—2t Jo 0 3Jo 3-2t
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Figure 2.15. Pierre Fatou (1878-1929) and Felix Hausdorff (1869-1942).

2.4.2 Monte Carlo method

Suppose we want to evaluate
fo = /Qf(:v) dz, Q=1[0,1]"

for a function f € C°(Q). We may use the analog of the one-dimensional
Simpson’s rule, see [GM2]. We subdivide the cube @ into k™ subcubes
of side 1/k, on each of those cubes we choose a point x; and then com-
pute kln Ziil f(z;); in particular, we need to compute f in k™ points: an
enormous value already if & = 100 and n = 4.

During the Second World War, Enrico Fermi (1901-1954), John von
Neumann (1903-1957), and Stanislaw Ulam (1909-1984) invented a proba-
bilistic method, nowadays known as the Monte Carlo method. This method
with probability close to 1 allows us to compute the value of the integral
except for a small error by means of relatively few cubes.

Notice that Lebesgue’s measure £™ on @ is a probability measure on
@ and actually the equidistributed probability measure. Let {Xx} be a
sequence of points that are equidistributed and independently chosen on
Q, i.e., a sequence on independent random variables on Q. If f: Q — R,
then the expectation and the variance are defined respectively by

E (f(X;)) :/ f(@)dL™(x) = fq.  Var(f(X;)) = / |f(x) — fol* dx
Q Q
for all integers j. Since the variables {X,} are independent
k k
Var (3 7(X0)) = 3 Var (X)) = & /Q () — fol? de < 4kM?
j=1 j=1

where M := || f||oo. Hence

1 2 1 4
/Qk (kzlf(xj)—fQ) dxl...dxk:Var<ka(Xj)> < 1.
J:

Jj=1
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IfACQx - xQ=Q"is the event

A= {(Xl,...,Xk)Hlchk:f(Xi)fQ’ >e}

then Chebyshev’s inequality yields

1 1 2 4M?
P(Ak) = [:nk(Ak) < 2 /Qk (ka(xj) —fQ> dxy...dzy < 2

J=1

i.e., the probability that, choosing randomly k equidistributed points { X},
the event that iZle f(X;) has distance from fo more than € has a

probability to happen less than 4M?2/ke?. For instance, if M < 1 and we
choose k = 105, in 99% of the cases we find an error less than 2%.

2.4.3 Differentiation under the integral sign
2.72 Example. Let us compute
“+oo
F(t) := / exp (—z? — t2/2?%) dz, teR.
0

It is easily seen that F' is even, F(0) = fooo e_x2/2 da = \/n/2, see Example 2.66, and
we have ,
[f(t,z)] <e™™ Vt € R, Yz > 0.

Therefore F(t) is continuous in R, see Proposition 2.37. Moreover, for ¢ > 0 we have

2
af 2e~ %" 2 42752 _ 2 g2 _ 2 2
ool =" e e =
thus
2
1% )| < 2 e e o'y
ot ee

for all t > € > 0 and = > 0. Theorem 2.40 then yields that F'(t) is differentiable for all
t > €, and therefore for all ¢t > 0, since ¢ is arbitrary, and

© af

Ft) = ot

oo
1
(t,x)de = 72t/ 2exp(f‘TthQ/mQ)dz: —2t F(t) vt > 0,
0 x
where the last equality follows by changing variables y = ¢/z. It follows
F(t) = F(0)e™ 2, t >0,

i.e.,

F(t) = ‘/2“ eI,
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2.73 Example. We shall write in terms of elementary functions the following oscilla-
tory integral
+oo 2
glw) = / e~ /2 cos(wr) d, weR.
— 00

As usual, it is convenient to use the complex notation. Since

+o0
/ e—o/2 sin(wz) dz = 0,

—oo
we have
+oo 2 X
g(w) :/ e~ /27w .
—o0
Since 8
aw(e x /2e uux)

= ’ — ige @ 2emiwn < || em=/2 ¢ LY(R),
the function g(w) is differentiable and

+oo 2 .
g (w) = fi/ e~ /27T .
—oo
Writi _ 712/2 o 71‘2/2 . .
riting —ze = D(e ) and integrating by parts, we find
9' (W) = —wg(w),
hence, by integration,
g(w) = g(0) w2 = Vor w2,

Alternatively, we may also proceed as follows. Since

0 (wx)2n
— n
cos(wz) = nzz:o(fl) @n) z € R,
we consider the functions
(4}2”1‘2” 2
e = O gy

and compute

“+oo w?n oo 2
(=)™ fn(z)de = 2 e~ % 22" dz = (by changing variables y = z.?)
— o (27’1)' 0

_ 2 Ln+1/2) 5 (2n — )N

-Vt (2n)! ’&“%<m!
(W?/2)"

=+2r L

‘We infer
0o 400
Z/ | fn (@) da < +o00
n=0"7

and, on account of Lebesgue’s theorem,

/+0° e—%2/2 cos(wz) dz = /+°° i fn(z)dx = i /+°° fn(z)dx
T n=0 n=0" "

—oo

Il
(]

(-1)"V2r (w?/2)" =2 i (-w?/2)"
0 n! n=0
70.)2/2.

3
I

=+V2me
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2.74 Example (Derivatives of I'). We already observed, see Examples 2.66 and 2.67,
that for Euler’s I'-function

oo
I(a) = / t*"tevtdt,  a>0,
0

we have

MNa+1) =al(a) Yo > 0,

I'(n+1)=nl,

[(1/2) = /.
Moreover, we discussed some characteristic properties of Euler functions in [GM2]. Here
we want to compute the derivatives of T'.

We prove that I' is of class C° in its domain F := {a|a > 0}. Choose o9 > 0
and set h(t) = max(l,taO/Q’l,tQD‘O*l), t > 0. For k = 0,1,..., the functions
h(t)|logt|Fe~t are summable on E and, for all a €]ag/2, 2a0[, we have

t*"V < h(t)  Vt>0,Va, ag/2 < a < 2a0.
If follows for f(a,t) :=t*"le~t t > 0, that
0
|97 (0 t)| < ht) [tog 1) e~
[ole"
and by induction
o f k _—t
| (ant)| < h()]logtl" e
Oak

for all ¢ > 0 and for all a €]ap/2,2a0[. Applying the theorem of differentiation under
the integral sign, we conclude that I" has derivatives of any order at ag, and

oo
) (ag) = / 1901 (log t)ke~* dt, (2.33)
0

consequently,
oo
IM(a) = / t* Llogte tdt Va > 0.
0

Since I'(a) > 0 for @ > 2, T is increasing for « > 2. Since I'(n) — +o00 as n — oo,
also I'(ot) — 400 as @ — +oo. On the other hand, from I'(aw + 1) = aT'(a) we infer
that I'(a) ~ 1/a as o — 0F. Moreover,

oo
M(a) = /0 t* Llogt)2e tdt >0  Va >0,

thus T is strictly convex on [0,00[. Since I'(1) = I'(2) = 1, we conclude that I" has a
unique minimum point and it is contained in the interval |1, 2[. Moreover, as |logt| <
1+ log?t Vt > 0, we also get (IV)?(z) < T'(z)[(z), that is, log () is convex.

2.75 Example. We have

I'(a)(1 —a) = 0<a<l (2.34)

sinma’
In fact, in terms of the Beta function, see (2.29)(2.30), for 0 < o < 1 we have
oo oo ta+1
Na)l'(1—«a)=I1)B(a,1 —a) = / dt.
0 o 1+t

On the other hand, if a := (2m + 1)/(2n), n,m € N, we find by changing variables
t = x2"

oo t27;J1—1 oo me T
dt = Zn/ 5 dr = s
o (1+1) o LAz sin(%;:lﬂ)

see, e.g., [GM2, 5.36]. This yields (2.34) when a = (2m+1)/2n for some n,m € N. The
claim now follows for all o €]0, 1] since the numbers of type (2m +1)/(2n) are dense in
[0,1] and both functions on the left and on the right side of (2.34) are continuous.
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2.5 Measure and Area

We are interested in computing not only volumes of n-dimensional objects
in R™ but also the “k-dimensional area” of “k-dimensional surfaces” in R,
k < n, as for example the two-dimensional area of the graph of a function
f : Rz — R+.

This is a question that can be treated at various levels of difficulty find-
ing formulas that apply to more or less general objects, or using measure
theory to define the k-measure of a subset of R", k < n. In fact, in contrast
with the n-dimensional measure that is essentially unique (one can show
that the L™ Lebesgue measure is the only measure that is invariant under
rotations and translations, is homogeneous of degree n, and for which the
unit cube has measure 1), there are several k-measures suited to measure
subsets of R, k < n: they are different on nonregular subsets but agree
on “regular surfaces”. Among these measures, the Hausdorff k-dimensional
measure appears as the most suited in many contexts.

2.5.1 Hausdorff’s measures

It is convenient to define Hausdorff s-dimensional measure H*(E) of a set
E C R™ also for noninteger s > 0. For s € R, s > 0, we set

b 7.‘.3/2

T4 5/2)
recalling that, if s is an integer, then w, is the L£° measure of the s-
dimensional ball B(0,1) C R®, ws = £5(B(0,1)). For E C R” and § > 0,
we define

oo

H3(E) = inf{ws 3 (diar;Ej>s

E C U;E;, diam (E;) < 5}

and, since H3 is nondecreasing in § > 0, we set

e (E) = lim H3(E).

The set-function H* : P(X) — Ry is by definition the (exterior) s-
dimensional Hausdorff measure in R™. We then say that a set £ C R"”
is H®-measurable if E satisfies the Carathéodory criterion for measurabil-
ity: for any set A C R™ we have

H(A)=H(ANE)+H(A\ E).
Methods of measure theory, see [GM5], allow us to prove the following.

(i) The class M of H*-measurable sets is a o-algebra of sets and H? is
o-addditive on M.
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(ii) Open and closed sets of R™ are H*-measurable.
(iii) In R™, H™ and the Lebesgue n-dimensional measure £" agree.

Moreover, it is not difficult to prove the following.

(i) For 6 > 0,H3(E) < 400 for all bounded sets.

(ii) H* is not necessarily finite on compact sets. For example, if £ C R”
has a nonempty interior and s < n, then H*(E) = +o0.

(iii) In the definition of Hj(E) we may replace the generic sets E; with
closed, or closed and convex sets, or with open sets without changing
the definition of H*. However, we cannot replace the E;’s by balls.
If we do it, for the new measure H, (F) we have HZ, (E) > H*(E)
for some subsets £ C R™.

(iv) HY is the counting measure, H*(E) = # points of E.

(v) H*® is invariant under orthogonal transformations: if £ C R™ and
RTR = Id, then H*(R(E)) = H*(E).

(vi) ‘H® is positively homogeneous of degree s, i.e., for all A > 0 and
E C R", we have H*(AE) = A*H*(E).

(vil) H®* =01if s > n.

(vili)If 0 < ¢ < s < n, then H® < H'. Moreover, H*(E) > 0 implies
H'(E) = 400 and H!(F) < oo implies H*(E) = 0.

(ix) If f: R" — R* is Lipschitz-continuous, then Y0 < s < n we have

H(f(E)) < (Lip f)* H*(E).

2.76 Remark. Notice the following:

(i) The claim in (vii) shows that H*(E), E C R”, is finite and nonzero
for at most one value of s, 0 < s < n, which is called the Hausdorff
dimension of E, defined in general as

dimy(F) : = sup{s ‘ H(E) > 0} = sup{s ‘ H(E) = +oo}
= inf{s ‘ H(E) < oo} = inf{s’Hs(E) =0}

where the equalities follow from (viii).

(ii) The estimate (ix) is useful to estimate from below the Hausdorff
measure of a set. Estimates from above are usually obtained by esti-
mating from above H3 by choosing suitable coverings of E with sets
of diameter less than 4.

Finally, observe that we may construct an integral with respect to
the Haussdorff measure with the same procedure we used to define the
Lebesgue integral from Lebesgue’s measure, compare [GM5]. From now
on, for a given H*-measurable set of R™ and an H°-integrable map, the
symbol

[E f(a) A1 (z)

is well-understood.
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2.5.2 Area formula

We did not need any measure theory to define the length of a curve in R"”.
If v : [a,b] — R™ is a curve, for any subdivision o := {t;}, a =to < t1 <
<o <ty = b, of [0,1] we compute

and define the length of v as
L) = sup{ Y- (ki) =1t [a=to <1 < <ty = b,
i=1

the supremum being taken over all possible subdivisions, see [GM2].

If we want to imitate the previous procedure to define the area of a
C'-image of an open set of R? into R3, we may think of triangularizing
the space of parameters and, associated to it, considering the polyhedral
surface in R3 with triangular faces whose vertices are the images of the
vertices of the triangulation of the space of parameters. Then, we may
compute the area of these approximating polyhedral surfaces and define the
area of the surface as the supremum of the areas of the inscribed polyhedral
surfaces when the triangulation of the parameters varies. The following
example due to Hermann Schwarz (1843-1921) shows how illusory it is to
imagine being able to come to a reasonable definition of the area in this
way.

2.77 Example (Schwarz). Consider the map ¢ : [0,27[x[0,1] — R3 ©(0,2) =
(cos 0,sin 6, z) that maps one-to-one the square [0, 27[x [0, 1] onto a portion of a cylinder
S = {(z,y,2) |22 +y? = 1,0 < z < 1}. Trivially the elementary area of S is A(S) = 2.

We divide the side of the square [0,27] X [0, 1] in n and m parts, respectively, then
we divide each rectangle obtained in this way in four triangles by means of its diagonals,
obtaining a triangulation of [0, 27] X [0, 1] in 4nm triangles. We construct a polyhedral
surface Sy, with triangular faces inscribed to the cylinder using the images of the
vertices of the triangulation as vertices. A tedious computation yields the area A, of
the inscribed polyhedral surface Syn,

A I si ”+1+4m2< i 7r)41/22 in”
= 2nsin nsin -2nsin .
mn 2n 4 n4 2n n

Now, if we choose m = n, then A, — 27 as suggested by intuition; but, if m = n3,
then A;np — +00. The supremum of the areas of all polyhedral surfaces obtained by
triangulations on the space of parameters is therefore +o0o and not the area of S. The
intuitive reason for this behavior is the following: If m, the number of subdivisions of
the z-axis, is large with respect to the number of subdivisions of the angle, then the
triangles of the inscribed polyhedral surface to the cylinder tend to become closer to
the orthogonal to the surface of the cylinder. Consequently, the area of the polyhedral
surface is large.
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This example motivated a flourishing of possible definitions (and, conse-
quently, of treatises) for the area of two-dimensional surfaces in R®. Among
those definitions, the most effective, at least for elementary purposes, has
proved to be the one based on Hausdorff measure.

Let Q C R® and f: Q — RV, n < N, be a map of class C'. For any
measurable set A C R, we say that the image f(A) C RY is parame-
terized by f, and we think of the area of f(A) as of H"(f(A)) when f
is injective. An important formula, called the area formula, allows us to
compute H"(f(A)).

2.78 Theorem. Let Q C R™ be an open set and let f € CY(Q,RYN),
N >n. If A C Q is a L"-measurable set and [ is injective on A, then
f(A) is H™-measurable and

[ 1D @) de =1 ((4) (2.35)

where Ji(x) == J(Df(zx)) = \/det DfT (2)Df(x) is the Jacobian of f.

2.79 Remark. Notice the following:

(i) In=1,then Df = " and J(Df) = |f'|: the area formula (2.35) says
that the length of a curve agrees with the one-dimensional Hausdorff
measure of the trajectory.

(i) If f is linear, f(x) = Lz, (2.35) simply reads as

HM(L(A)) = J(L)L"(A).

Actually, this is the starting point for the proof and follows from the
invariance of the Hausdorff measure under rotations. In fact, using the
polar decomposition of L, and identifying R™ with the n coordinate
plane of the first n coordinates of RN L writes as L = UAS where
S € M, ,, is symmetric, U € My y is orthogonal, and

A= <Id> .
0
Using the invariance of H™ and the change of variable formula for
L™, we find

H"(UAS(A)) = H"(AS(A4)) = H"(S(A4)) = L"(S(4))
=|det AS|L"(A) = |det S|L"(A) = J(L)L"(A).
(iii) The area formula implies that the image of the points at which the
linear tangent map is not injective has zero H™-measure. In fact, for

any T € My, N > n, ker T # {0} if and only if J(T) = 0. Hence
from (2.35) we get H"(f(A)) =0 if

A= {x e Q’ ker Df () #0} - {x € Q’J(Df(x)) - o}.
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(iv) From the area formula we also get the following: Let 2, A be open
sets of R" and ¢ : Q — RN and ¢ : A — RY be two maps of class C*
that are injective, respectively in A C Q) and B C A, A and B being
L"-measurable. If $(A) = ¢(B), then

/ J(D(x)) di = / J(Dy(y)) dy.
A

B
(v) If n = N, then (2.35) is simply the change of variable formula for £".

The area formula extends in several ways. First, we can drop the in-
jectivity hypothesis by introducing the multiplicity function or Banach’s
indicatriz

y— N(f,Ay) =H' (AN (y))

which counts the points of A in the inverse image of y. Under the hy-
potheses that f € C1(€2), one shows that the multiplicity function is H™-
measurable and

/ J(Df)de = / N(f, A y) dH" (y). (2.36)
A RN

Moreover, we can also relax the regularity of the map f: One can in fact
prove that (2.36) holds also if f is Lipschitz-continuous (recall that, if f is
Lipschitz-continuous, then J(D f) is defined £"-a.e. since f is differentiable
L™-almost-everywhere by the Rademacher theorem).

Starting from (2.36), by approximating £"-measurable functions u by
simple functions and then passing to the limit by means of the monotone
convergence theorem of Beppo Levi, we also get the following.

2.80 Theorem (Change of variables formula). Let Q C R™ be open,
let f:QCR*— RN, n <N, be of class C1(Q) (or, more generally,
locally Lipschitz-continuous in §2), and let u : Q@ — R be L™-measurable and
nonnegative, or such that |u| J(Df) is L™-summable. Then the function

y— > ux)
z€f~1(y)

is H™-measurable and

/ ul(w) J(Df)(r)dr = /

. u(:v)) dH" (y). (2.37)

z€f~1(y)

In particular, if v : RN — R is H™-measurable and nonnegative, then

[ ot@ i@ = [ cmNsApare . @)



2.5 Measure and Area 119

a. Calculus of the area of a surface

Parameterizing, at least locally, a k-dimensional surface in R™ by a C*

map, we can easily compute its area by means of the area formula (2.35).
In this procedure we need to compute the Jacobian of the parameteri-

zation, and the following information may be useful.

(i) Let A € My . The alternative theorem yields

Rank (AT A) = Rank AT = Rank A = Rank AA” < min(n, N).
(2.39)
It follows that det AAT =0 if N > n.
(ii) We have ker AT A = ker A, consequently the three claims
(a) J(A) = (det ATA)Y/2 =0,
(b) ker A £ {0},
(¢) Rank A is not maximal,
are equivalent.
(iii) (AREA AND METRIC TENSOR) Let {Ai, As,..., A,} denote the
columns of A; A = [A1]4s]...|A,]. Then

ATA = G, where G = (gij)a 9ij ‘= A,L OA]' .
Consequently, if f:Q C R® — RN, N > n, is of class C', then
J(Df) = Vdet G, G = (9ij), 9ij = foi o fuis
and the area formula becomes

H(f(2)) = /Q Vo@de,  glz) == det G(x).

(iv) (THE CAUCHY-BINET FORMULA) Let A € My ,,, N > n. For every
multiindex o = (a1, ag,..., ap), 1 <o <@z < - < ap, < N, let
A® be the n X n-submatrix of A made of the rows a1, as, ..., a, of
A. Then, see, e.g., [GM5], the following Cauchy—Binet formula holds

JAP = Y (det(A™))%.

acl(n,N)

2.81 Example (Two-dimensional parameterized surfaces in R?). Let n = 2 and
N = 3. Then

where the columns are the vectors with components the partial derivatives of f with
respect to @ and y, fz := (a,b,¢)T and fy := (d,e, f)T. If we set

E=|fo>,  Fi=faoefy, G:=|f?

DfTDf<E F>

we find

F G
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and

2 = X = — i .
H2(F(@) = /Q (D) dedy /Q VEG - F? dudy

Alternatively, we can compute J(Df) and the area of u(£2) by means of the Cauchy—
Binet formula. If

A12 — a d A23 — b e A13 - a d
’ b e)’ ' c f ’ ’ c f ’

J(Df)? = (ae — bd)? + (bf — ec)® + (af — dc)?.

Notice that the three numbers ae —bd, —(bf —ec), and af —dc are the three components
of the vector product
Ja X fy

then

of the columns of D f, hence

H2(F(Q) = / o % fy| dzdy.
Q

2.82 Example (Graphs of codimension 1). Let u: Q C R™ — R be a function of
class C! and

Guai={(@y) € WxR|y=u@)]

be its graph. G, ¢ is the image of the injective map f(z) = (z,u(z)) from Q into R*+1.
Since

i) =| ¢ |,

Du(z)
the Cauchy-Binet formula gives J(Df(z)) = /1 + [Du(x)|2, hence

H™(Gug2) = /Q J/1+ IDu(@)? da.

2.83 Example (Parameterized hypersurfaces). Let v : @ C R® — R™*! be an
injective map of class C''. The Jacobian matrix of u has n -+ 1 rows and n columns, and
its m X n submatrices can be indexed by the missing row. If

Aul, ... ui—t it um)
Oz, z2,..., ™)

denote the determinant of the submatrix obtained by removing the ith row, we then
get

H™ (uw(Q)) = /;2 (Zn: (8(u17é.(;c’lifi;;:%i.fy;;l.).7un)>2> 1/2 .

=1

2.84 Example (Rotational surfaces). A rotational surface around an axis is well
described by its perpendicular sections to its axis that are circles. We can describe its
points P by means of two parameters: the orthogonal projection of P on the rotational
axis and a parameter describing the points on the circle in the perpendicular plane to
the axis through P. This way, if S is a rotational surface around the axis z, S is the
one-to-one image of

A :=a,b] x [0,27]

by a map ¢ : [a,b] X R — R3 of the type
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z = p(z)cos 0,
#(2,0) == § y = p(2)sin,

where p(z) is the radius of the section at level z. Assuming p(z) € C'([a, b]), we have

p'cos® —psinf
D¢(z,0) := | p'sint —pcosb |, (2,t) € A:=[a,b] x [0,27]
1 0

hence, by the Cauchy—Binet formula,

J(DE)(=,0) = p(2)y/1+ p2(2);

therefore

H2(S)=H2(¢(A))=/O2r/a 1+ )de—QTr/ 1+ (0(2))? de.

2.5.3 The coarea formula

Consider a function f : R — RN, N < n and, for y € RY its inverse
image f~1(y). When y varies, the family {f~*(y)} yields a sort of foliation
of R", for example think of f : R? — R, f(z,y) = 22 + y?, for which
f71(t) == {(z,y) = 2% + y® = t}. As we shall see in Chapter 5, if Df(z)
is of maximal rank N, then the leaf f~!(y) is an (n — N)-dimensional
submanifold of R™. The coarea formula provides a formula that allows us
to express the L"-integration on a set A C R"™ as the integration with
respect to y of an H"~N-integration over f~1(y).

2.85 Theorem (Coarea formula). Let Q be an open set and A C
be L"-measurable, let f : Q — RY be a map of class C', and assume
N < n. For LN -a.e. y the set ANf~1(y) is H"~ N -measurable, the function
y— H"N(AN f~Y(y)) is LN -measurable and

[ It = [ e Van st act e eao
here

Jj(@) == J(Df()) = \/det(Df (@)D f (2)")
denotes the Jacobian of f.

Actually the previous theorem can be generalized in several ways. First,
it suffices to assume that f be locally Lipschitz-continuous. Moreover, by
approximating measurable maps u with simple functions, one shows the
following.
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2.86 Theorem. Let Q C R™ be open, let f : Q C R* — RN, N < n,
be a map of class C1(Y) (or merely locally Lipschitz-continuous) and let
u: Q — R be a measurable function on  such that |u| J(Df) is L™-
integrable. Then

/Qu(x) J(DF)(z) dx:/]RN (/fl(y)u(x) dH”_N(x)> AN (). (2.41)

2.87 Remark. We notice the following:

(i) If we split R™ as R” = R~ x RY denoting its coordinates by (z,y),
r € R"N y € RY, and we choose f(z,y) := y, then J(Df)(z,y) =
Df(z,y)| =1, An f~'(y) = {(z,2) € A|z = y} = A,. Therefore,
Theorem 2.85 simply reduces to Fubini’s theorem.

(ii) Let f:R™ — R. Since

J(Df) = \/det(DF)(DF)T = D],

we then obtain

“+oo
/|Df|dx:/ HO AR F1()) dt
A —o00

s@pi@liae= [ ([ s@aeie)
I, Lo, )

for any measurable A C R™ and any measurable g : A — R such that
g(x)|Df(x)| is L -integrable.

and

2.88 Example (Measure of the unit sphere in R™). The volume of the ball of ra-
dius 7 in R™ is wpr™ where w, = L™(B(0, 1)), and the measure of the sphere of radius ¢,
H"~1(0B(0,t)) is positively homogeneous of degree n — 1, in particular it is continuous
in ¢. If we choose f(z) = |z|, then J(Df(z)) = |Df(x)| = 1: from the coarea formula

r+h
/ d:]c:/ H"~1(OB(0,t)) dt
B(0,7r+h)\B(0,r) T

and on account of the fundamental theorem of calculus we infer

r+h
H"~1(0B(0,r)) = lim 1/ H"~1(0B(0,t)) dt = lim ! dx

h—0 h h—0 h /13(0,r+h)\3<0,r)

1

= dLr(B(0,7) (r) = nwpr™ ™.

dr

2.89 Example. Notice that if f(x) := |z|, then f~!(y) = 8B(0, y) and Theorem 2.86
yields the well-known formula of integration on polar coordinates

/ udx :/ (/ u(y) dH"il(y)) dp.
{s<|z|<t} T 9B(0,p)
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In particular, for A # 0 we have

1 1 r+h N
wiz=, [ ( [ uare (y))dp,
h Jir<|o|<r+n} hJ. 2B(0,p)

hence, by the theorem of differentiation of the integral, for L£l-a.e. r (for all r if, for
instance, u is continuous),

d (/ ud:r) :/ wdH™ L.
dr \ JB(o,r) 9B(0,r)

For u = 1 we therefore find again

H"~1(OB(0,r)) = j (WnT™) = nwpr L
r

2.90 Example (Measure of the unit ball in R™). The coarea formula yields also
an alternative way to compute the measure w;, of the unit ball B(0,1) of R™. Using
Fubini’s theorem we find

5 +oo 2 +oo 2 +oo 2 9
/ e 1217 da :/ e "1 dwl/ e "2 da:2-"/ e~ "n day, = 7"/2.
n — oo —o0 —oo

On the other hand, the coarea formula yields

—|z|? too —t? n—1 n too —t2,n—1
/ e de = / / e " dH" T (t) ) dt = _ |B(0, 1)|/ e "t dt
n 0 8B(0,t) 2 0

n too . n n
= \3(0,1)\/0 si7leds = |B(0,1)|F(2)

in terms of Euler’s I'-function. If follows

92 gn/2 an/2
wn = [B(0, 1) = =

nr(n) r(3+1)

2.91 Example. Let f: R™ — R be a function of class C! (or merely locally Lipschitz-
continuous). From the coarea formula, for any positive h we have

|

h Jit<p<t+n}

1 1 [t _

)] Dfldr=, [ H( s = e
{t—h<f<t} h Je—n

hence, by the theorem of differentiation of integral, for £'-a.e. t € R

i = — d — n—1 _
dt /{f<t} DIl = dt /{f>t} DSl de =1 dfr=1t.

t+h
Dflde = [ = e

2.6 Gauss—Green Formulas

In this section, we state the Gauss—Green theorem and discuss the diver-
gence theorem. These topics are of fundamental relevance for the devel-
opment of the calculus for functions of several variables. In particular,
Gauss—Green formulas extend the fundamental theorem of calculus
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PRINCIPIA GENERALIA
THEORIAE
FIGVRAE FLVIDORVM

IN STATY AEQVILIBRII

AVCTORE

CAROLO FRIDERFCO GAVSES

e e ]
GOTTINGAE,

avuTiesvs DIETERICHIANTL
MDEECXXX.

R -

¥bl signnm factorls eos(3, ) spomte decidet, virum mutatle sit ineremen-
fum an decremeatum.

Quum pusctus (§) it polus cirouli maxisi per pencta (7), (8)
ducti, panctumgse (5) faceat in cireilo maximo per puncta (6), (8) dusto,
puncen (), (7), (8) formebunt triangulum in {8) rectengulum, eritqes
adeo coa{5,7) = cos (5, B). con (7, 8): arcus(7, &) autesn est menasra angali
inter duo plizs superficies spatiorum o, & In corum intersections P tan-
gentia, ¢ quiders intor cas horum planorum pliges, quse spatinm vacuum
imeludsnt  Huge sngulum per i denotebimus, vnde 180° — i erit angu-
Bus dster plisorum plagas eas, quae spatium a comtinent, formudeque
mestra (V), cos($,7)} = cos(5,8) o0 i

28
E combinatione formularus I....[V prodit variatio expressionis /7",

Lw:;w.;;,mu.s).[.- +aa(h+ ,L)]

— JAdP . de.cos(s, 8) fam 20 i — da + 268)
vbi istegrele prias extendi debet per omnla elesmesta U partls liberse
smperfeisi apatii o, vel partium Bberaram (s forto plures separatae adsien),
imtegrale posterine awlem per smeds elementa d P linese vel lisearum,
qess illam pariem liberam, vel les parics liberas w reliquis spstio § con-
tguis srparant.

Jam qaura in statu sequiibrii valor ipsius £ debeat esse minimum,
adesque admiltere nequeat mutstiosem segativam pro vila mutsticoe in-
Gnite parua figurae Quidi, pro qua volumen o inusristus manet, ie. pro
ges ds = S U Je.can(d, 5) eunnescit, fuclle perpicietur, fguram sue
perficiti U7 in suts scquibibrii talem esse debere, ¥t iv omoibus eius
panctis dementam varistiondy 38 hoo

AU de.con(a, 5) [- + au ("j + ﬁ’)]

Figure 2.16. Two pages from the paper by Carl Friedrich Gauss (1777-1855), in which
the Gauss—Green formula appears.

b
£(b) — f(a) = / £(t) dt

to functions of several variables.

a.

We begin with a very simple situation.

Two simple situations

2.92 Proposition. Let A C R" be open and f € CL(A). Then

/DJ(w)dazzoz Fal Viel....m
A oA

Proof. We extend f to all R™ as zero outside A; we call it f. It is not restrictive to

assume that its support is contained in the unit cube. Since for every i, ...

Tit1,. .., Tn We have

1
/ Dif(x1,. ., i1, %4, Tiq1,.. ., 2Tn) dr; =
-1

71‘71)_]“(1‘17"

S Ti—1, 1, Tiq, -

:f(xlw'

-71'1'—17_1755@'-9—17---73771) = O,

integrating with respect to the remaining variables we get

/AD,'f(:r)dz:/QDif(z)dz:O.

y Li—1,
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Split R™ as R*™! x R and let 2 = (2/,2,), ' = (21, Z2,..., Tn_1) €
R"~! x, € R, be its coordinates. Let @) be a bounded open set in R"~!
and let o : Q —]a, b[ be a function of class C; set

A= {:L' = (2,z,) € Q X [a,b] |a <z, < a(x')}.

Since the vector (—Va(z'), 1) is perpendicular to the plane tangent to the
graph of a at (2, a(a’)), the exterior normal vector to A at (a/, a(z")) has

components v = (vq, va,..., V) given by
_D,
v = i« 1=1,...,n—1,
V1+ [Da(z)?
1
Up :

~ /14 |Da(@)?

2.93 Proposition. Let f € C'(A) N C°(A) with |Df| € L*(A). Suppose
that f vanishes near 9(Q X [a,b]) N A, trivially

/ADif(x)dx:/aA FoH

Proof. Since f vanishes on 9(Q X [a,b]) N A, trivially
fridH™ 1 = / fridH™ 1
A Go.0

and, since the element of area on Gy, ¢ is dH” ! = /1 + |Da(a’)|2 dz’, we have

—/ f(ac/,oc(ac/))sa (x)dz’ ifi=1,...,n—1,
z;
/ frir™ ! = ? (2.42)
oA / f(@',a(z")) dz’ if i =n.
Q

From the fundamental theorem of calculus, since f = 0 near 9(Q X [a,b]) N A and
|Df| € L(A), we infer

a(z’)
/an(z',zn)da:/dzn:// Dy f(2',x0) depds’
A QJa (2.43)

- / (F@ a(a)) - f(a',a)) da’ = / F@ o)) da.
Q Q

A comparison of (2.42) and (2.43) yields the result for ¢ = n.
Now set

a(z’)
F(z') := / F(@' zp) dan, ' €qQ.
a
Differentiating under the integral sign with respect to x;, we infer

a(z’)

D;F(z') = / D;if(x,zpn) dey, + f(2', a(z’))Dia(x”);

on the other hand
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a(z’)
/ Dif(x/,xn)dac/d$n :/ (/ Dif(ac/,a:n)dacn> dz’
A Q a

(2.44)
:/ DiF(x')dac/—/ f(@',a(@"))D;a(x’) dx’,
Q Q

and, since f vanishes if z € 9(Q X [a,b]) N A, F(z') =0 if 2’ € Q and

/DF(x’)dac */DF(J: Ydzy . ..dzp—1

// / D;F(z') dxl dacl codri_ydrig .. drn—q

:// F(mlv---axi—lvlvmi-ﬁ—la---amnfl)_F(l’h---11'i—17_1737i+17---7$n71))

dry...dr;—1deiyq...drn_1

://del...dxi,1d1i+1...d:):n_l =0.

Therefore, (2.44) becomes
/ D;f(2',zpn) dx'dzy = —/ f(@', a(@"))D;a(x’) dx’. (2.45)
A Q

From (2.45) and (2.42), we infer the result for i =1,...,n — 1. O

b. Admissible sets

In the sequel we shall limit ourselves to prove Gauss—Green formulas for a
class of sets, which we now introduce, sufficiently large for the applications.
Actually, measure theory would allow us to prove them for a much larger
class.

Let A C R™ be an open set. In this context, we say that © € 0A is
a regqular point for OA if there exists an open cube with center at z and
sides parallel to the axes (that we write as @ X [a, b] where @ is a cube on
R™~1) and a function a : Q —]a, b] of class C1(Q) such that

(i) UonA={(, :cn)\a<xn<a( ),x € Q},
(ii) U, NOA = {(x ZTn) | xy = a(a’), 2’ € Q}.

The set r(A) C 0A of regular points for 9A is open relatively to A, and
for every x € 0A, the exterior unit vector to A at z is given by the vector
v = (1, va,..., V) given by

7DiOl . 1

v; 1= Vi=1,...,n—1, Vp = .
V1+ [Da()? V1+|Da(a")?

Obviously |v| = 1, v is perpendicular to the tangent plane to the graph of «
at z = (¢/, a(2’)) and x — tv(z) € A for all t > 0 sufficiently small positive
t. Of course, neither the cube nor the function a are uniquely defined by A
however, it is not difficult to show, compare Chapter 5, that the exterior
unit normal is uniquely defined at the points « € r(A). Moreover, one sees,
compare Chapter 5, that © € 9A is regular if and only if there exist an
open cube ) centered at x and a function ¢ : U, — R of class C! such
that
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(i) UunA={yeU.|p(y) <0},
(i) Uz NOA = {y € U, |p(y) =0},
(iii) Vo # 0 in U, N OA.

In this case the exterior normal vector at x € r(A) at x € r(A) is

Ve(x)

v(z) = .
V()]

2.94 Definition. We shall say that an open set A C R™ is admissible if

A is open, H" 1 (0A) < +o00 and H" 1 (0A\ r(A)) = 0.

For example, an open set in R? whose boundary is the union of a finite
number of closed and disjoint piecewise regular curves is an admissible set
of R2. Also a bounded set whose boundary is a polyhedron with a finite
number of faces is an admissible set. Actually, it is easily seen that A is
admissible if A is bounded and 9A is a finite disjoint union 94 = UN T,
where T is closed with H"1(I'g) = 0, and, for i = 1,...,N, I; is a
(n — 1)-submanifold of R™, see Chapter 5.

c. Decomposition of unity

The decomposition (or partition) of unity is a useful tool when we want to
transfer local information to global ones.

2.95 Theorem. Let {V,,} be a family of open sets in R™ and Q := U, V.
There ezists a locally finite covering of Q0 with balls B; CC Q such that for
every j we have B; C V, for some a.

Proof. For all j = 1,2,..., we choose a sequence {H;} of compact sets contained
in Q with H; CC int(Hj41) and Q = U;Hj; we also set H_1 = H_3 := (. For
j :=0,1,... we consider the compact sets K; := H; \ int (H;_1) and the open sets
Aj = int Hj41 \ Hj—2. We have K; CC Aj, Q@ = UjA;j and A; N Aj = 0 except for
i=j—1,5 037+ 1 Now, for every z € K; choose A = A(x) such that z € V)(,) and
a ball B(z,r(z)) with closure in A; N Vy(,). The family {B(z,r(2))}zck; is clearly
an open covering of the compact set K; from which we can choose a finite covering
{Bj1,Bj2,... Bj,Nj }. The family

B:= {Bjﬂi

J=00, i =1, N

has the required properties. O

2.96 Lemma. The function

exp (17|1m|2) if x| < 1,
0 if || > 1

p(z) =

is of class C*° and nonzero exactly on B(0,1).
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2.97 Theorem. Let {B;} be a locally finite covering of Q@ = U;B;, B;
being balls. There exists functions w; : R™ — R of class C*° such that

(i) 0 < aj(z) <1 Ve eR”,
(i) oj(z) > 0 if and only if x € B,
(iti) 372, aj(z) =1V € Q.

Proof. Forj =1,2,..., wechoose p; € C°(R™) with ¢; > 0 on B; and ¢; = 0 outside
Bj. The function 3372 ¢;(z) is well defined on R" since locally it is a finite sum ({B;}
being locally finite) and positive in Q, since {B;} is a covering of Q. Thus, we readily
see that the functions

@)

})io w;(x)

have the desired properties. 0O

aj(x) = >

We notice that the number of functions «; of the decomposition of
unity that are nonzero at each z is finite and that they are exactly the
nonzero functions of the decomposition of unity that are nonzero at y if y
is suffciently close to z. Consequently, we also have

iDaj(l‘):D(iaj(x)) =0 Ve e Q

and
/iaj(x)dﬂi/aj(l’)dp

j=1
for = L" or H" L.

d. Gauss—Green formulas

2.98 Theorem (Gauss—Green formulas). Let A C R" be an admissi-
ble open set and let f be a function of class C in a neighborhood of A with
IDf| € LY(A). Denote by v : r(A) — R™ the field of exterior unit normal
vectors to A. Then v is defined H" *-a.e. on OA. We have

/Dz‘f(l‘)dx:/ fridH™™'  Vi=1,...,n.
A 0A

Proof. Recall that r(A) is the set of regular points for 9A. We set s(A) := A \ r(A),
A to be an open set so that A D A, and, finally, Q := A\ s(A). Since s(A) is closed, Q
is open. Now, for z € Q2 we can choose an open neighborhood U, of x so that
(i) if z € @\ A, then U, is a cube centered at = and contained in Q \ A,
(ii) if x € ANK, then U, is a cube centered at = and contained in QN A,
(iii) if x € OANQ, i.e., x € r(0A), then we choose U, as in the definition of regular
points and, without loss of generality, we assume that U, is small enough so that
Us C Q.
The family {U,} covers Q. Therefore, there exists a denumerable locally finite refine-
ment {B;} of {Uz}, Theorem 2.95, with the associated decomposition of unity {a;},
Theorem 2.97, and we distinguish the following three cases:
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Figure 2.17. Two pages from the Essay by George Green (1793-1841), which appeared
in 1828 and was reprinted in 1850 in Crelle’s Journal where Gauss—Green formulas
appear.

o Bj is exterior to A. Then a; = 0 in A hence
/ Di(faj)dxz():/ fria; dH™ L.
A DA
o Bj is interior to A. Then from Proposition 2.92 and «; = 0 in 0A
/ Di(faj)dx:()z/ frioy dHL.
A DA

o BjNOA # 0, then Bj is contained in some U, of type (iii) and foy; : Uz — R satisfies
the assumptions of Proposition 2.93. If follows

/Di(faj)da::/ Di(faj)da::/ frio dH™ ! :/ friog dH"
A Uz OANU, A

Summing on j = 1,..., since Z;’il aj =11in Q, {By} is locally finite and
HHOANQ) = H" " (r(A) = H"~1(0A),

we conclude

/ADifdm: /AOQDifd‘” = /Ajz::l(Dif)aj dx:jz::l/ADi(faj)dx
- ;/BA Tuioy a1 = /aA OB :/ fridH"?

= 8ANQ
= / fri dH™ L
OA
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e. Integration by parts

As stated, Gauss—Green formulas may be thought of as the fundamental
theorem of calculus for functions of several variables. Applying them to the
product of two functions f and g, we deduce the formulas of integration
by parts.

2.99 Proposition. Let A be an admissible domain, v : 0A — R™ the field
of exterior unit normal vectors to A, and let f,g € C°(A)NCL(A) be such
that |Df| and |Dg| are summable in A. Then

/Df o= [ f@atm) /f Digle) de

(2.46)
fori=1,2,....n

f. The divergence theorem

Let A be an admissible domain and £ : A — R", E = (E', E?,..., E")
a field of class CY(A4) N C'(A) with summable Jacobian matrix DE. The
divergence of E at x € A is the number

div E(z) := tr DE(z) = gf (x) = > DiE'(x)
— -

Since the functions D;E* : A — R, i = 1,...,n, are summable, if we apply
the Gauss—Green formulas to them, we find in particular

/DiEidx:/ E'v;dH™ ! Vi=1,...,n
A oA

and, summing over i, the divergence theorem

/ div B(z) dx :/ Eev dH™ . (2.47)
A 0A
The quantity
(B, A) = FEev dH" !
0A

is called the flux of E outgoing from A.

g. Geometrical meaning of the divergence

Let E: A — R" be a field that we assume of class C1(A). For every ball
B(x,r) CC A we denote by ¢(F,r) the flux of F outgoing from B(x,r),

o(E,T) ::/ Eev dH" ™, v(z) = x/|x|.
OB (x,r)
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The divergence theorem yields
o(E,r) = / div E(x) dz
B(w,r)
hence, if we divide by |B(z,r)| = w,r™ and let r — 0, we infer

. o(E,T) . 1 / . .
lim = lim div E(y) dy = div E(x),
18] Jan )

r—0 wy,r" r

because of the continuity of div E(x), or
O(E,r) = wpdiv E(x)r™ + o(r™) as r — 0.

In other words, div E(z) represents the (rescaled) flow outgoing from an
infinitesimal ball centered at x.

h. Divergence and transport of volume

Let A C R™ be open and F' : R x A — R™ be smooth. A curve ~(t) :
I — A satisfying the differential equation ~'(¢t) = F(¢,7(t)), i.e., a curve
t — (t,y(t)) with velocity (1, F'(t,~(t))), is called a fluz line or an integral
line of F. As we shall see in Chapter 6, for every x € A there exists a
unique flux line defined for small times that at time ¢ = 0 is at z. If we
denote by ¢(z,t) these flux lines, i.e.,

0
5, 0(t.7) = F(t.0(t,2))

¢(0,2) =,

and set ¢y (x) := @(t, z), then Dog(x) = Id, and, for K CC ) there exists
€o such that ¢(t, z) is defined on | — €p, eg[x K with det D¢ (z) > 0. From
(1.28) with A(t) := D¢y (), we then infer

0

0
0 106t Doy ()](1) = det Doy () tx (Do ()" - Doy ()
= det Dy () tr (D(bt(x)_ngtqb(t,x))

(
= det D¢y (z) tr (qut(a:)_l DF(t, ¢(t,z)) Dey (x))
= det Doy (x) tr DF (¢, ¢(t, x))
= det D¢ (x) div F'(t, (¢, )).

If Q cC A and Q := ¢¢(Q) is the image of Q at time ¢ transported by
the flow, then the area formula says

E”(Qt):/Q|detD¢)t(x)|d:v:/QdethzSt(x)d:v
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and, differentiating under the integral sign,

acr (), [ 0
it (t) = /Q Y det Doy (z)dx

= / det Doy (x) div F(t, ¢(t, x)) de = / div F(t, z) dz.
Q Qy
In the so-called autonomous case, F' = F( , and for ¢t = 0, we get

1 dLr ()
o) a WV E" / div F(

i.e., div E(x) is the percentage variation of the infinitesimal volume when
transported by the flow at time ¢t = 0.

2.7 Exercises

2.100 9. Let C(A) be the cone of basis A = {(z,y) € R? |22 < y < 1}, and vertex
(0,0,1). Compute the volume of C'\ B((0,0,1),1/2).

2.101 9. Prove Schwarz’s theorem, Theorem 1.34, for functions of class C?(Q) by using
the theorem of differentiation under the integral sign. [ Hint: Differentiate at (o, zo) the
identity

f(t,xo + h) — f(t,zo0) / a(ts
for |t — to|, |h| small enough, and then use the fundamental theorem of calculus.]
2.102 9. Show that Airy’s function ¢(t) := \/lw Jo7 cos (t:): + 9533) dz solves the equa-

tion
(1) — t(t) = 0.

2.103 9. Show a sequence {fn} of nonnegative summable functions on [0, 1] such that

1
lim / fn(z)dz =0 and limsup fn(z) = +oo Vz € [0,1].

n—oo Jo n— oo

2.104 9. Show that f’:[0,1] — R is measurable if f : [0,1] — R is differentiable.

2.105 §. Show that

Logl 1 > 9
10 dr = s
/0 1—z g HZ::O (3n + 4)2
[T v =S
? cosv/rdr = —1 s
0 fopur (2n)!
T 2
/' n?sinnz _ _ 2a(1 +a?) Va > 1.
0 (a? —1)2

n=1
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2.106 . Show that for p,q > 0 we have

0 1+ xq n:O + nq
infer that Z =2 (2;2:

2.107 9. Show that for |a| < 1,

Lop—t > a”
/ a=3 ;
o 1—atd = Bn+1)(3n+2)
infer that

oo
To_ Z 1
3v3 = (B3n+1)(3n+2)
2.108 4. Compute [}, ° Y
2.109 9. Show that
/oo ro—1 F(a i
0 e“tfl a® = n+1)0‘

and
1 arctant

s
Vg dt = log(1 + V2).

2.110 9. Let A be a positive n X n symmetric matrix. Show that

/ exp(—AzL’ozL’)da::\/dﬂ;A.
n e

2.111 9. Let f:[0,1] — R be a continuous function. Show that £2(Gy ,1]) = 0.

2.112 q. Let E C R™. Show that E is measurable if £L"*(9F) = 0.

2.113 9. Compute
4 42 1
/ * \/|m| dz, lim / v Vi dx.
tHJroo 1 14t222 t—otJo t4+z

2.114 9. Show that for a > 0

n o0
. T\ _ _
lim (1 - ) ¢ ldx = / e Tz ldz.

133

¥ dwdy where D = {(z,y) €R? |2 >0, 22 <y,0 <y < 2}

2.115 9§ Astroid. Compute the area and the length of the boundary of the astroid

A= {(m,y) €R2)m2/3+y2/3 < 1}.

2.116 9. If S := {(x,y,2) | 22 + 3% + 22 = 1}, compute

/ z2 dH2.
S2
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2.117 9. Let T be the triangle in R with vertices (1,0,0), (0,1,0) and (0,0, 1). Com-
pute
/ xdH?.
T

2.118 9. If G C R3 is the graph of the function f : [0, 1] x [~1,1] — R, f(z,y) = 22 +v,

compute
/ z dH>.
G

2.119 9. For a,L > 0, let C C R3 be the truncated cone
C = {(w,y,z) e R? ‘zQ :a(:52 +92),0<z2< L}.
Compute the volume of C' and the area of the boundary of C.
2.120 9 The Viviani solid. Let
Vis {(@y2) |22 47 + 22 <1, 2 497 <o}
be the intersection of the unit ball in R? with the vertical cylinder {(z,y, z) € R3 |22 +
y? —z < 0}.
(i) Compute the colume of V.
(ii) Show that S : =0V = S1 U S2 where
Sy = {(w,yVZ) € R?"xz +yP+22=1, 2% +y2 < Jr},

So 1= {(x,y,z) € R3‘m2 +y24+22<1, 2242 = :r},

and compute the area of S1 and Ss.
(ili) Show that the curve s(a) := (cos? @, cos asin @, sin @) maps the interval | — 7, 7|

onto S1 N Sz, and compute the length of S1 N Sa.
2.121 §. Compute

1
dx.
Joos 15 oy

2.122 9. Compute H"~(,,_1) where

Yn—1:= {ac € Rn,

n

Sa=1, ogxigwfi}.

i=1

2.123 § Feynman’s formula. Let a € R™ be a point with positive coordinates. Show
that

1 1
danl(x) — .
/Sz—l aex (n—l)!l_hgjgnaj

2.124 9. Let f:R™\ {0} — R be positively homogeneous of degree d, f(tx) = t?f(x)
Vo € R™ \ {0} V¢t > 0. Prove that

/ Af(z)dz =d flx) dH ().
B(0,1) 9B(0,1)
In particular, if x = (z1,...,2n), show that Vj =1,...,n

£7(B(0,1)) :/

Sn—

z2dH™ L.
LT
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2.125 9. If B C R™ denotes the ball of radius R around 0 in R™, show that for every
f € CY(BR) we have

/ (ixiDif(x)Jrnf(z)) de=R[  f@at (@),

Br “iZ3 9Bp
2.126 . If f € C3(Q) and Vf = 0 on 952, show that

/Q(Af)%za::/Q S (DD f)? da.

1<i,j<n

2.127 9. Compute the outgoing flux from the unit ball in R? centered at 0 of the field
E = (2z,y2, 2?).

2.128 §. Compute the outgoing flux from the lateral surface of the cylinder
Co={(@y2eR|s?+y? <1, —1<2 <1}

of the field E = (zy2, 2y, ).

2.129 €. Let 2 be an open admissible set. Then

1
L) = " /E)Q Tovg dH" L.






3. Curves and Differential
Forms

In this chapter we discuss notions such as force, work, vector field, differ-
ential form, conservative vector field and its potential, and the solvability
in an open set 2 C R™ of the equation

gradU = F.

We shall see that the vector field F' is conservative, i.e., the equation
gradU = F is solvable, if and only if the work along closed curves in
Q is zero, and we shall discuss how to compute a solution, a potential.

When n = 3, every function U of class C? satisfies the equation
rot grad U = 0. Therefore, rot F' = 0 in 2 is a necessary condition in order
for the vector field F' € C! to be conservative in . In terms of differential
forms, we shall also see that rot F' = 0 suffices for F' to be conservative in
simply connected domains.

Though Lebesgue’s theory of integration would allow us more general
results, here we prefer to limit ourselves to the use of Riemann integral.

3.1 Differential Forms, Vector Fields,
and Work

a. Vector fields and differential forms

We recall that with respect to a basis (e1, ea, ..., e,) in R" with coordi-

nates (z!, 2%,..., 2™), every linear map ¢ : R™ — R writes as

= Zn:&dxi
i=1

where, for i =1,...,n, {; := {(e;) and for h = >_"" | h'e; € R™ da'(h) :=
h'. From now on we shall denote the action of a linear map over the vector
h by

<, h>:=1Lh).
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We shall also recall that, if e is an inner product in R™, then for every
linear map ¢ : R™ — R, there is by Riesz theorem a unique vector F' € R"”
such that

<l,h>=(h)=Feh  VheR" (3.1)

The coordinates of F' can be easily computed writing (3.1) for h =
€1, €2,..., en, toget F = G7ILT, where G is the metric tensor G := [Gy;],
Gij = e;eej, and L is the row vector L := ({(e1),{(e2), ..., 4(en)).

The structure we have just described is used for instance in mechanics
to model the relationship between force and work. If we think of a force
as a primitive notion, (3.1) defines (F|h) as the elementary work done by
F in the direction h € R™, whereas, if the work h — ¢(h) is our primitive
notion (notice that, in fact, we measure the work and not the force), then
(3.1) provides us with the force F' that does the work, sece [GM3].

3.1 Definition. Let Q2 be an open set of R™.

(i) A vector field in 2 is @ map F : Q — R"™.
(ii) A differential form w in Q is @ map w : Q@ — L(R™,R) that associates
to every x € 2 a linear map w(z) : R™ — R.

Hence, in coordinates a differential form can be written as
n
W(ZL') - Zw’b(m) dl’l? wl(m) =< w(m)aei >, re Qa
i=1

and a vector field as F(z) = (F(z)!, F(z)?,..., F(z)"). If w is a differen-
tial form on €, and F' is the (unique) vector field on 2 such that

<w(z),h>= F(x)eh Vh € R" Vx € Q, (3.2)

we say that F'is the vector field associated to w or that w is the differential
form associated to F. We say that a differential form is of class C* if its
components in a basis are of class C*. Notice that a differential form is of
class C* if and only if its associated vector field is of class C*.

b. Curves

We briefly recall a few facts about curves, see, e.g., [GM3]. Let © be an
open set of R™. A curve in € is a map 7 : [a,b] — Q. Its image v([a, b]) is
the trajectory of the curve, v(a) is its initial point, v(b) is its final point.
A curve v : [a,b] — Q is said to be regular if v'(t) # 0 for all t € [a, ],
closed if y(a) = v(b), and simple if y(t) # v(s) t # s €]a, b]. The length of
v is given by

b
L) = [ We)ds

At a point ¢ where |/(t)] # 0, the unit tangent vector to  is defined by
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t(t) = . (3.3)

Notice that Spant(t) is the tangent line to v([a, b]) at v(¢).

A reparameterization of v is a new curve § € C'([e,d],R™) such that
there exists h : [c,d] — [a,b] of class C! that is one-to-one and such that
0(s) = v(h(s)) Vs € [e,d]. Since either A’ > 0 or A’ < 0 on [¢,d], we say
in the former case that § is an increasing reparameterization of v or that
h is an orientation preserving reparameterization, whereas in the latter
case we say that J is a decreasing reparameterization of v or that h is a
reversing orientation reparameterization. Trivially

1/ (h(s)|
Recall that the length of a curve does not change under reparameterization
of it and also that two simple curves of class C! are reparameterizations
of the same curve if and only if they have the same trajectory.
A natural reparameterization of a regular curve v € C*([a,b], R") is
obtained in terms of the curvilinear abscissa, or arc length, i.e., the pa-
rameterization in terms of the traveled space

awz/wvww

In fact, the function s(¢) : [a, b] — [0, L(7y)] is strictly increasing and of class
Cl with §'(t) = |9/(t)| > 0. Therefore, its inverse ¢(s) : [0, L(7)] — [a, ] is
also of class C! and increasing with #'(s) = 1/|7/(¢(s))| for all s € [0, L].
Consequently, the parameterization of v by arc length

o(s) :==(t(s)),  t€[0,L(v)]

has the same orientation of v and |6'(s)| = 1 Vs € [0, L(v)].

3.2 Remark. Let v : [a,b] — R™ and 0 : [¢,d] — R™ be two simple curves
with the same trajectory, v([a,b]) = §([c,d]). Though in general they are
not one the reparameterization of the other, we have § = v o h where
h:[e,d] — la,b] is a homeomorphism. This suffices to show that v and &
have the same length, see [GM3]. This follows also from the area formula,
Theorems 2.78 and 2.80, since for a simple curve v of class C' we have

b
L) = [ (O]t =1 (2 (la, )
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Figure 3.1. The tangent component of a vector field at a point.

c. Integration along a curve and work

3.3 Definition. Let Q@ C R™ be open and let v : [a,b] — Q be a curve
of class C'. The work, or integral of a differential form w along 7y is the
number, denoted by fvw or L(v,w), given by

b
/w = L(y,w) := / <w(y(s)),7 (s) > ds. (3.4)

Similarly, the work of a continuous vectorfield F' in € is defined as

b
/ (F|ds) = £(, F) == / F(y(s)) o/ (s) ds.

It is easily seen that

o the work functional is linear on forms,

L(uH-n):[YuH-fyn and [y)\w:)\[yw

for all couple of forms w,n and every A € R,

o if <w(x),h>= F(x)eh Vh Vzx € Q, then fvwzf,des,

o the work of w along v does not change if we reparameterize ~ preserving
the orientation and changes sign if we reverse the orientation,

o the definition of work extends to continuous curves that are piecewise
regular.

3.4 §. The use of continuous and piecewise regular curves is useful, but not necessary.
In fact, every such curve admits a reparameterization of class C! with h’ > 0, therefore
with £(6,w) = L(v,w).

If v : [a,b] — Q, i =1,...,k , are k curves of class C*([a,b]) with
~i+1(a) = 7;(b) on an open set 2 C R™, we may and do define a new curve,
traveling successively on 71,72, ..., 7, called the join of vy1,7v92,...,v, as
follows. We choose (n+1) points {¢;} in [a, b], for instance ¢; := j(b—a)/k+
a,j=0,...,k and for i = 1,..., k we reparameterize v; on [t;_1,t;] as
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b—a
(2— =770 (7251 (7251(8) =a -+ " " (8 - tifl).
i bi—1

The new curve +, defined by v(s) := d;(s) if s € [t;—1,;], is also denoted
by

and, for any continuous differential form on €2, we have

k k

E( %,w) = Zﬁ(w, 8i) = Zﬁ(w,%)

i=1 i=1 i=1

since L(v;,w) = L(d;,w) Vi.
Finally, if —v(s) :=v((1 — s)b+ sa), s € [0, 1], then —~ is a decreasing
reparametrization of v and

E(_’ya w) = _ﬁ(’% w)'

3.5 Remark. Let 7 : [a,b] — R™ be a simple curve of class C! in an open
set Q of R™. For every t for which ~/(t) # 0, the unit tangent vector

t’Y<y) = |’}//<t)|) ’y(t) =Y,

is well defined in y. If w is a continuous differentiable form, we wish to
write

b
Liy,w) = / <wly(®) A (1) > di = /R < w1 (1) by (4(8)) > |7/ (0)]

(3.5)
where R := {t € [a,b]|7/(t) # 0}. However, one can show nonnega-
tive scalar continuous functions for which the characteristic function of
{z| f(x) # 0} is not Riemann integrable, hence the right-hand side in
(3.5) is meaningless, in general. However, the difficulty is overcome if we
interpret the integrals as Lebesgue’s integral. In fact, R is open in [a,b],
thus Lebesgue-measurable. Moreover, by the area formula, Theorems 2.78
and 2.80, we have

0= / ! (8)] dt = H(4([a, D]\ R)).
[a,b\R

It follows that t,(y) exists for H'-a.e. y € v([a,b]) and, again by the area
formula,
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b
/ <w(r(t). A (1) > di = /R < wlr(®), b () > (1)) dt
- / W) ta) > M) (36)
Y(R)

_ / < w(y) ty(y) > dH(y).
~([a,b])

As a consequence of (3.6) we can state: if v : [a,b] and ¢ : [¢,d] — R™ are
two simple curves of class C! with the same trajectory A = ([a,b]) =
0([¢,d]) (not necessarily one the reparameterization of the other), then
either t,(y) = ts(y) for H'-q.0. y € A and L(w,7) = L(w, ), or t,(y) =
—t5(y) for H'-ae. y € A and L(vy,w) = —L(J,w).

3.2 Conservative Fields and
Potentials

a. Exact differential forms
3.6 Definition. Let Q2 be an open set of R™.

(i) A continuous differential form w in € is said to be exact in  if there
exists f € C1(Q) such that w(x) = df (x) for all x € Q. The function
f s called a potential of w in Q.

(ii) A continuous vector field, F in Q is conservative in § if there exists
f € CHQ) such that F(z) = Vf(z) for all x € Q. The function f is
called a potential for F' in €.

Trivially, a differential form is exact if and only if its associated vector field
is conservative, and a potential of w is a potential of F' and vice versa. We
notice that two potentials of w (or of F') in a connected open set differ by
a constant, see Corollary 1.45.

3.7 Example. According to Hooke’s law, the pulling force exerted by an ideal spring
fixed at the origin on a point € R™ is given by F'(z) = —kz, where k > 0 is called the
elastic constant of the spring. The vector field F(z) := —kz, x € R™, is conservative,
since F(z) = Vf(xz) where f(z) = —§|:c\2 Vz € R™. In general, a radial vector field
F:R"\ {0} - R",

F(@) = p(jzl)z,  where 9 Ry — R, ¢ € CY(]0, o0]),

is conservative in R™ \ {0} since the function

||
f(z) = / sp(s)ds, , x € R\ {0},

is a potential of F' in R™ \ {0}, as it is easily seen by differentiating f.
A potential of the gravitational field F(z) := — ‘gg z, z € R3, is
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V(x):/‘z‘ Gds: G.

+oo 87 |z

We have chosen as an extremal point +oco since 1/s2 is summable at co. This way the
potential V' vanishes at oco.

Let Q be a connected open set in R, let f € C1(2), and let « : [a,b] —
Q be a curve in Q of class C*. By definition

Ldf/ab < df((5)),7'(s) > ds

b
d
= [ f00s) ds = £ (8) - 16@)
or, in other words, the work of an exact differential form of class C' de-
pends only on the difference of the potential at the extreme points of the
curve.

3.8 €. Show that (3.7) also holds for continuous and piecewise smooth curves.

Actually, the following holds.

3.9 Theorem (Fundamental theorem of calculus). Let w be a con-
tinuous differential form in an open and connected set @ C R™ and let
f:Q — R. The following claims are equivalent.

(i) f is of class C' and is a potential for w in Q.
(ii) For any couple of points xo,x € Q and for any piecewise smooth curve
Vao.w © (@ b] — Q joining zo to x we have

f@) - fao) = [ w

RETES

(ill) For any xo € Q) there exists & > 0 such that for every x € B(xo,?)

e 1@ = fan) = [ w

Txg,x
where r(t) = (1 — t)xo + tx, t € [0,1], is the segment curve going
from zq to x.
Proof. As we have seen in (3.7), (i) implies (ii) and trivially (ii) implies (iii). Let us
show that (iii) implies (i). for z € Q, ¢ =1,...,n and h € R, |h| small, consider the

segment §(s) := x+ she;, 0 < s < 1, joining x to z + he;. On account of the mean value
theorem and of the continuity of w;, we find

[z + hei) — f(x)

1 1
b = h/o < w(x + she;, he; > ds

1
/ wi(z + she;) ds
0

1 h
= / wi(z + te;) dt — wi(x),
h Jo
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Figure 3.2. The proof of Theorem 3.9.

hence the partial derivatives of f at xg exist and

1o}
f_ (z) = wi(z) Vo € Q.
oz’
Since w is continuous, the partial derivatives are continuous in Q, hence f € C*(Q) and
df (z) = w(z) in Q. O

3.10 Theorem. Let w be a continuous differential form in an open and
connected set  C R™. Then w is exact if and only if the work of w along
any closed piecewise smooth curve is zero. In this case, a potential for
w is obtained as follows: fix xog € Q and for any x € Q choose a curve
Vzo.x @, b] — Q joining xo to x with y(a) = xo and y(b) = x; then the
work function

f(z) = / w, x € Q, (3.8)

is a potential of w in €.

Proof. Trivially (3.7) yields fﬂ{w = 0 for any closed piecewise continuous curve, if
w has a potential. Conversely, assume that f,yw = 0 for all closed ~’s. If z,y € Q

and § : [a,b] — Q is a piecewise smooth curve with §(a) = z and §(b) = y, then
Y i=Yzg,x + 0 — Yzq,y 1S a closed curve in €2, hence

0=E('y,w)=[/ er/wa/7 w=/6w+f(z)ff(y)~

=g, @,xq

3.11 9. We ask the reader to state the analogy of Theorem 3.9 for vector fields.

3.12 Exact forms in practice. Theorem 3.9 gives us a necessary and
sufficient condition for a form w to be exact. The necessary condition is
useful to show that a differential form is not exact: if we find a closed curve
along which w does work, then w is not exact. Instead, it is difficult to use
the sufficient condition, as it requires us to verify that the work done on
every closed curve is zero.

To prove that a given differential form is exact, in practice, it is easier
to exhibit a potential, and, to do it, we essentially have two alternatives.

(i) Guess a potential.
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(ii) Suppose 2 is an open connected subset of R™. Fix z¢ € Q, and for
x € Q choose a curve v, from xg to z, for example traveling parallel
to the coordinates axes going from xy to z and compute the work

f(z) := L(w, ) along that curve. If f € C*(2) and gg (z) = wi(x)
for all z € Q, then f is a potential for w in €.
Notice that any two potentials of an (exact) differential form on a connec-
ted open set differ by a constant by Theorem 3.9.

3.13 Example. The differential form w(z,y) := \/y/x dx + \/z/y dy is exact in Q =
{(z,y) ER?*|z >0, y > 0}.
In fact, the function f(z,y) = 2,/zy is a potential of w in Q as

7] 7]
Wy:\/y, VT S0y
oz T oy y

3.14 Example. The differential form

w(z,y) = /Y da + (1 - x)ex/y dy,
Yy

is exact in Q = {(z,y) € R? |y > 0}. In fact, if we fix the point (0, 1) and join it to (z, y)
first traveling from (0, 1) to (0,y) vertically and then from (0,y) to (z,y) horizontally,
the work done is

y x z/y
f(x,y):/l (1—2)60/ydy+/0 ex/ydm:(y—l)-‘,-y/o et dt = y—14y(e®/V—1).

It is easy to show that f € C1(Q) and that df(z,y) = w(z,y) in Q, therefore f is a
potential of w in €.

3.3 Closed Forms and Irrotational
Fields

a. Closed forms
There is another necessary condition for a differential form of class C* to
be exact: If w = df in an open set €2, then f € C?(12), hence

Ow; 0 of 0 Of 0w

Oxi  Oxd Oxt  OxtOxd Ot
for i, 7 = 1, n, by Schwarz’s theorem. Motivated by this remark, we set the
following.

3.15 Definition. Let 2 be an open set of R™. We say that a differential
form w in Q of class C' is closed in Q if

awi
PC)

_ Ow;

= ogi (x) Vi,j =1,n, Vr € Q.
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A wvector field F : Q — R™ of class C" is said to be irrotational in Q if

OF" OF7
i (x) = O (x) Vi,j =1,n, Yz € Q.

The reason for naming it irrotational is that for n = 3, the curl of F' given
by
oy 0z 0z or’ dx Oy
is also called the rotor of F and denoted rot F': F is irrotational if rot F' =
curl F = 0.

Notice that F' is irrotational if and only if its associated differential
form is closed.

3 2 1 3 2 1
Cuﬂfu::(aF _OF? 9F'  OF% OF® OF )

3.16 Proposition. Let 2 C R” be an open set. An exact differential form
of class C1(R) is closed in Q. A conservative vector field of class C1() is
irrotational.

3.17 Example. There are closed forms that are not exact. For instance, the angle

form
Y x
w(z,y) == — dx + d
(z,y) 22 1y 2 g2 W
is closed in © := R? \ {0}, as one sees differentiating. However, w is not exact since

the work of w along the curve t — «(t) = (cost,sint), ¢ € [0, 2] that travels along the
boundary of the unit circle, is nonzero,

27
/w:/ (sint + cos® t) dt = 27 # 0.
v 0

Notice that w is exact in Q := {(z,y) |y > 0}: The function f(z,y) := — arctan(z/y),
(z,y) € Q, is a potential for w in Q.

3.18 9. Let I" be a halfline in R? from the origin. Show that the angle form in Exam-
ple 3.17 is exact on R? \ T'.

Every matrix A € M, ,(R) splits into the sum of its symmetric part
and antisymmetric part

A= _(A+AT)+ _(A-AT).

1 1
2 2
The symmetric part of the Jacobian matrix of a vector field F' is called
the deformation gradient of F and its antisymmetric part the rotational
gradient of F' that coincides with %rot F,

DF = ¢(F) + W(F)

() =) By (o o)
W) = (WL WEy =y (o -0,
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EINFUHRUNG IN DIE THEORIE
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Figure 3.3. George Gabriel Stokes (1819—
1903) and an introduction to differential
forms.

Similarly, if w is a differential form, we call the matrix
W(w) = [W(w)il,  W(w)y= , ; —

the rotation matriz of w. Thus, w is closed if and only if its rotation matriz
is zero.

b. Poincaré lemma

We shall see that the obstruction to the exactness of every closed form in
Q is in the form of . First we consider a class of special domains.

3.19 Definition. We say that an open set  C R™ is star-shaped with
respect to one of its points xq if the segment joining it to any other point
x € Q is contained in Q. We simply say that Q is star-shaped if € is
star-shaped with respect to one of its points.

3.20 Theorem (Poincaré lemma). Let  be a star-shaped domain of
R™. Every closed differential form w in Q of class C' is exact. Equivalently,
every irrotational vector field F in Q0 of class C' is conservative.

Proof. After a translation we may assume that € is star-shaped with respect to the
origin. If we parameterize the segment joining the origin to x as y(t) := ta/|z|, t €
[0, |z|], we need to prove that

|| 1 .
f(z) = E(’y,w):/o < w(th),h > dt:/O > wi(th)h! dt, xeQ,

i=1
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\

\

Figure 3.4. A homotopy with fixed end points between f and g.

is a potential for w in Q. Differentiating under the integral sign, we find

Bf / Zw (tx)x tdt = /1 o [Zn:w(tz)xl] dt
8a:j = 9 = ‘ o OxzJ = ‘
and, using the closedness of w,

of
OzJ

(z) = /01 (wj (tz) + tg:; (tz)xl) dt = /01 (wj (tz) + tg;i (ta:)zz) dt
- /01 (“’j(m) ”iwj(t:v)) dt = /01 ;t(twj (tz)) dt = w; ().

]

Of course, the balls of R™ are connected and star-shaped with respect
to its center, consequently we observe the following.

3.21 Proposition. Every closed form of class C' is locally exact. Every
irrotational vector field of class C* is locally conservative.

c. Homotopic curves and work

Let © be an open connected set in R™. We recall, see [GM3], that two
continuous curves f, g : [0,1] — Q with f(0) = g(0), f(1) = g(1), are said
to be homotopic in  if there exists a continuous map

H:R=[0,1 x[0,1] — Q

such that

m

)
t)

0 f(t), vt €[0,1],
(1, )
(

g(t), Yt e [0,1],
s,a) = f(0) = g(0), Vs € [0,1],
H(s,b) = f(1) = g(1), Vs € [0,1],

see Figure 3.4. In this case, and with the previous notations, f(t) = Hody(t)
and ¢(t) = H 001(t); moreover, vo := H 0ds and y3 := H o003 are constant.

m

H

3.22 Theorem. Let 7,6 : [0,1] — Q be two piecewise curves of class C*
that are homotopic with fixed extreme points and let w be a continuous
locally exact form in Q. Then we have
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Figure 3.5. A homotopy between v and ¢ as closed curves.

L(y,w) =L, w).
Similarly, if F' is a locally conservative continuous field in €2, we have
L(y, F) =L F).

Proof. Let h : [0,1] x [0,1] — © be a homotopy from ~ to § and, for every z € Q,
let F : B(x,e(z)) — R be a potential of w in B(z,e(x)). Since h([0,1] x [0,1]) is
compact, one can suppose that e(xz) > eg > 0 if z € h([0, 1] X [0, 1]). Since h is uniformly
continuous on [0,1] x [0,1], we decompose [0,1] x [0,1] in adjacent squares {R; ;},
1,7 =1,..., N with side length of 1/N, N large, such that h(R; ;) C B(z,¢o) for some
x = x5 € h([0,1] x [0,1]). For every 4,5 =1,..., N, let

Bi,5(5,1) := Fy(s,5)(h(s,1)).

Since two potentials differ by a constant on a connected set, we can add, sequentially
by rows, a constant c; j to ¢; ; in such a way that

¢(t, S) = ¢i,j (t, S) + ¢i,j if (t, S) c Ri’j

is well defined on [0, 1] x [0, 1]. Clearly ¢(¢, s) is continuous on [0, 1] x [0, 1].
Now, let tg =0 < t1 < - <tny-1 <ty =1 be the subdivision of [0, 1] such that

R ; = [tz 1, 6] X [tj—1,t5]. Slnce we have
N
/ Z/ Z <¢w 0,t;) — ¢:,5(0, ti—l))
a=1"Y|[t; _1.t;] i=1
N
=" (60.t:) = 6(0,ti-1)) = ¢(0,1) — $(0,0)
i=1

and, similarly,
e =sa.0-s0.0)
the claim follows being also
¢(0,0) = ¢(1,0) and ¢(1,0) = ¢(1,1). (3.9)
O
We also recall, see [GM3], that two continuous closed curves v and

9 :[0,1] — Q are said to be homotopic as closed curves if there exists a
continuous map H : R —  such that
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o

Figure 3.6. v is homotopic to xg.
H(0,t) =~(t), vt € [0,1],
H(L,t) = §(t), ¥t € [0,1],
H(s,0) = H(s,1), Vs € 0,1],

see Figure 3.5. We have

3.23 Theorem. Let v,d : [0,1] — Q be two piecewise closed curves of
class C1 that are homotopic as closed curves. If w is a locally exact form
in Q, then

‘C(Va w) - ‘C((Sv w)a

and, similarly, if F' is a locally conservative continuous field in 2, then
L(y,F) =L, F).

Proof. We proceed as in the proof of Theorem 3.23. The conclusion then follows since
this time we have ¢(1,1) — ¢(1,0) = ¢(1,0) — ¢(0, 0) instead of (3.9). O

d. Simply connected subsets and closed forms

3.24 Definition. An open connected set is said to be simply connected if
every closed curve in Q is homotopic to a constant curve in §Q.

Since every open and connected set is also arc-connected, €2 is simply
connected if and only if for g € © every closed curve with initial and
final end points at xp is homotopic to the constant curve zy with initial
and final points xg. In other words, an open and connected set €2 is simply
connected if and only if its first homotopy group 71(Q2) vanishes.

As consequence of Theorem 3.23 the following holds.

3.25 Corollary. Let Q be an open, connected and simply connected do-
main. Fvery closed form in § is exact in €, or, equivalently, every irrota-
tional field F in Q is conservative in , i.e., if rot ' =0 in 2, then there
exists f € C*(Q) such that F =V f in .

We now illustrate a few situations in which Corollary 3.25 applies.
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Py

Figure 3.7. R3 \ {xo} is simply connected.

For example R™ and balls in R™ are star-shaped with respect to any
of their points, as well as open convex sets. Instead, R™ \ {0} or the an-
ulus, {x € R"|1 < |z| < 2} are not star-shaped. Notice that star-shaped
domains are necessarily connected.

If Q is star-shaped with respect to xg, then every closed curve f :
[0,1] — Q with f(1) = f(0) = =z is homotopic to zy as the homotopy
H(t,z) = (1—8)zo+sf(t), s €10,1], t € [0, 1], shows. Consequently every
star-shaped domain is connected and simply connected.

3.26 Example. Trivially R? \ {0} is not simply connected at least because the angle
form of Example 3.17 is not exact though closed. Instead, R3\ {0} is simply connected.
In fact, if 7 is a closed curve in R3 \ {0}, there exists § > 0 such that the trajectory of
~ lies outside B(0,d), since ([0, 1]) is compact. The curve 6(¢) := v(¢)/|v(?)], t € [0,1]
is then a well-defined curve of class C1, its trajectory is on S? and necessarily has to
avoid a point, say the North Pole, and consequently, a neighborhood of the North Pole,
again by Weierstrass theorem. In conclusion, « lies outside a cone with axis through
the origin and the North Pole and, therefore, it can be homotoped to the South Pole,
see Figure 3.7.

3.3.1 Pull back of a differential form

Let A and € be open sets respectively in R” and R™. If ¢ : A — Q is
continuous and f € C°(€2), then f o ¢ is continuous on A and, if ¢ is of
class C1 and f € C1(A), then fo¢ € C1(A); therefore, if we think of ¢ as
an operator ¢7, ¢7 (f) := f o ¢, ¥ maps C°(2) into C°(A), C1(Q) into
C1(A). Moreover, if ¢ is of class C*, then ¢# maps C*(Q) into C*(A).

Similarly, we may pull back differential forms in 2 to differential forms
in A.

3.27 Definition. Let ¢ € C1(A,Q) be a map of class C* from an open
set A C R" into an open set Q C R™. The pull back of a continuous
differential form w in Q is the continuous differential form in A defined

by
< ¢Pw(x), h>:=<w(p(z)),Dé(x)h > Vh e R". (3.10)
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3.28 ¢ Inverse image of a vector field. It is less intuitive to pull back a vector
field. Show that if ¢ : A — Q and F' : Q@ C R” — R"™, then the unique definition of pull
back that is compatible with the definition of pull back of the associated form is

¢* F(x) := Do (x)" F(¢(x)),
where D¢(z)* is the adjoint operator of Dg(x).

3.29 ¢#w. We can write ¢7w in several ways.

o Let w =", w;(y)dy’ and let y = ¢(z) = (¢(2), ¢p(x)?,..., ¢p(z)™)7T,

then we have

< ¢Fw(@),h > =< w(d(x)), D(x)h > = sz z))D¢' (z)h

=1
= Zwiw(m)) < d¢'(z),h >

for every h € R™ hence

Z wi(p(x))dg' (z)

and

r

Z w;(@ qu’ Z ( Zz: w; (o 89&3 )dxj

o If we write the components of w as a row vector, w = (wl, W2y wn),
with n components, we can write qb#w as the row vector with r compo-
nents

¢Fw(@) = (¢7w(@))1, (P*w(z))e, ..., ($Fw(@))r)
= (W(@()1, w(d(x))2, - -, w(@())n) De(2).

3.30 Invariance of work. From the definition (3.10) we see that

d(¢™ f)(x) = ™ df () (3.11)

for all f € C*(9), which implies in particular that ¢#w is exact in A if w
is exact in w := ¢(A). Moreover, we have

< pFw(v(s)), 7 (s) >: =< w(B(7(s))), D(7(s))Y () >
=< w(po(s)), (pon)(s) >

for every curve v : [a,b] — A of class C!. Integrating we get

L(v,¢%w) = L(p07,w). (3.12)

In particular, (3.11) (3.12) state respectively the invariance of the differ-
ential of a function and the invariance of work of a differential form under
changes of references in R"”.
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3.31 9. Write the angle form of Example 3.17 in polar coordinates, i.e., compute the
pull back via the transformation = = pcosf, y = psin6.

3.32 Proposition (Differential of the pull back of forms). Letw be
a differential form of class C' in an open set Q@ C R", let H : A C
R"™ — Q be a map of class C? from the open set A into Q and denote by

(u', u?,..., u") the coordinates in R™. Then H#w writes as

,
H#w = Z Pi(u) du’,
i=1

where P;(u) are of class C' and we have

orh 0P, z”: (aw,- awj)aHi OHI (3.13)
Oup  Oul et oxd  Oxt/) Ouh Ouk’ '
i,j=
oP, 0P, OH' OH’ Ow; Ow;
?;(@) Gurs uhs Huh s oue s are evaluated at w € A and 53 and 57 in
w).
In particular, H#w is closed in A if w is closed in .
Proof. 1In fact, computing the derivatives of Pj, := > 7" ; w; gf,: , we find

AP, " Qw; OHI dH* N z": ?H*
= ) w;

ouk Py dxd QuF duh = dukouh

P, " Ow; OHI OH? 92 H'?

oul ”zzzl Oxd Oul Ouk + Z;wz ouhouk’

and (3.13) follows subtracting the two equations, since the Hessian matrices of the
components of H are symmetric. O

3.33 €. Since the rotation matrix of a form is antisymmetric, (3.13) can also be written
as
aph  apPkF 1 z": <8wi Ow; ) (aHi oH’  oHJ oH?

auk ~ fuh 2%,7.:1 dzi 9zt /\guh duk  Buh duk

). (3.14)

3.3.2 Homotopy formula
a. Stokes’s theorem in a square

If R =10,1]x[0,1] C R?, we denote by do, 61, 2,3 : [0, 1] — R? the curves
defined by

)

) tel0,1
) E[7]a
)



154 3. Curves and Differential Forms

\
A

02

do o1

03

fo

\

Figure 3.8. § travels along OR anticlockwise.

in such a way that the curve
6 := 03+ 91 — b2 — Iy, (315)

goes anticlockwise along OR, see Figure 3.8.

As we know, if f : R ¢ R? — R is continuous (or piecewise continu-
ous) and bounded on R = [a,b] X [¢,d], then we can change the order of
integration,

/ab(/Cdf(x,y)dy>dx:/cd(/abf(x,y)dx>dy = /cd/abf(x,y)dxdy.

3.34 ¥. The reader is invited to prove this directly, first showing that the formula holds
for constant functions f(z,y) = X (the value of the two integrals is A\(b — a)(d — ¢)),
then for a piecewise constant function on a squaring of [a,b] X [¢,d] and finally for a
continuous function (approximating it with piecewise constant functions).

3.35 Proposition (Stokes). Let R :=[0,1]x[0,1] and let § : [0,1] — R?
be the curve in (3.15) with trajectory OR oriented anticlockwise. Suppose

that n(s,t) := P(s,t)ds + Q(s,t)dt is a differential form of class C' in a
neighborhood of R. Then

1 1
£(6,7) :/0 /0 (88? - 881;) ds dt.
Proof. In fact, if §;, i = 0,3 are the parameterizations in (3.15), we have
o[ foe o[
:/1Q(l,t)dtf/IQ(O,t)dt+/1P(s,O)dsf/01P(s,l)ds
,/(O (s,)d )dt—/o (/O %Pdt)ds
7/ / ds d at

Here the first two equalities are by definition of work, the third follows from the funda-
mental theorem of calculus and the last by interchanging the integral signs. O
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H

™

Figure 3.9. A linear homotpy between f and g.

b. Homotopy formula

3.36 Proposition (Homotopy formula). Let f,g: [0,1] — R™ be two
curves of class C' and let H : R — R?, H(s,t) = sf(t) + (1 — s)g(t)
be the linear homotopy. Set K := H(R), and denote by L(f) and L(g)
respectively, the lengths of f and g. Then for every differential form w of
class C! in a neighborhood of K we have

L(f,0) = £(9.0)] < W) llesk (B0 + LIS = gllao o

where W (w) is the rotation matriz of w, see (3.14). In particular, L(f,w) =
L(g,w) if w is closed.

Proof. If § is the curve in (3.15), by (3.12) we have
‘C’(f7 w) - L(ng) = ‘C’(Jv H#w)§

thus, we need to estimate £(8, H#w). Writing H#w =: Pds 4+ Qdt, the functions
s — Q(s,t) and t — P(s,t) are piecewise continuous of class C'!, therefore by Stokes’s

theorem
L(6, H" w) / / d dt. 3.16
ot 65 ( )

From (3.13) we infer

oP

o dQ =3 Wii@) (s 70 + (1= 9)a" ) (7 (1) - o (1),

]
thus oP 90
0~ oo | < W@l 1 = glloe fo.1 (1 O] + (1 = 9)lg'@)1)-

We therefore conclude from (3.16)

1/n/\ Tn

1/n

A 4

Y

Figure 3.10. For every C! form, £(yn,w) — L(v,w) though the lengths of 7, do not
converge to the length of ~.
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af : dtd’ //‘ aaf‘dtds
||W(w>||oo,K||f—g||oo,[o,u/0 (/0 |¢'(t)|dt+(1—8)/01|"/(t)|dt)d8

W @)l (ECH) + L) I1F = gllow .11

‘ (4, H#w)‘ =

IN

This proves the first part of the claim. If w is a closed form, then W (w) = 0 everywhere,
and the second part follows at once. [}

As a consequence we find that the work of a differential form is con-
tinuous, contrary to the length, with respect to the uniform convergence.

3.37 Proposition. Let Q2 be an open set in R™ and let v : [0,1] — Q and
k1 [0,1] = R", k=1,2,..., be piecewise smooth curves, say of class C'.
It the lengths of the yi’s are equibounded and v, — v uniformly, i.e.,

Sl;pL(’Yk) <M < 400, 7 = Yllso,j0,11 — O,

then for large k’s both i, and the linear homotopy Hy(s,t) := sy (t)+ (1 —
$)v(t) have image in Q and
L(yk,w) — L(v,w) as k — oo.

Proof. Let us show that for k large, v is a curve in Q and the image Ky, := Hy(R) of
Hj, is contained in Q. Let K¢ be the trajectory of v and do := dist (Ko, 0Q). Since Ko
is compact, we have dg > 0. Since {7x} converges uniformly to ~, there exists ko such
that |y (t) — v(t)| < do for k > ko and therefore

[Hi(t,8) =) < [ () —v(®)] < do,

i.e., the images of the K} ’s and of the trajectories of the 7. ’s are in Q2 for k > kg. From
the homotopy formula we also infer for k > kg

Lk, w) = L7, w)| < W (@)oo, 1y M 17 = Yoo [0,1)

which yields the result when k — co. O

3.4 Stokes’s Formula in the Plane

Let A € © € R? be an admissible set, see Definition 2.94, as for instance
a bounded open set 2 whose boundary is the disjoint union of a finite
number of trajectories of closed curves. For every regular point y € 0A,
an exterior unit normal vector n(y) = (n'(y),n?(y)) is well defined, and

t(y) = (—n*(y),n' (v))

is tangent to 0A at y. We define the work of a continuous differential form
w € C%9A) along the anticlockwise oriented boundary of A as
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/{9+Aw - /a+A <w(y), ty) > dHl(y)~

Notice, see Remark 3.5, that [, , w = L(w,7) if v : [0,1] — R? is a simple
closed curve piecewise of class C'* whose trajectory is the boundary of A
and such that det[y'(¢)|n(y(¢))] < 0.

3.38 Proposition (Stokes). Let A be an admissible open domain of R>
and let w, w(z,y) = P(x,y) dx + Q(x,y) dy, be a differential form of class
C' in a neighborhood of A. We have

[ o [0 oy 1)

Proof. In fact, Gauss—Green formulas yield
[, o= [ Purte)+ewew) ot w)
= [ (PR + e @) dH' 1)

7// o, ) dd.

Formula (3.17) allows us to compute the area of a plane figure as a
boundary integral. In fact, if w is one of the differential forms x dy, —y dx,
%(mdy —ydx) or axdy — Bydx, a + 5 =1, we get

/ w = // 1dzdy.
otA A

3.39 Example. Suppose we want to compute the area of the cardioid

O

C:= {(pcosO,psinO)’O <6<2m,0<p<(1 70059)}.

Its anticlockwise oriented boundary is the trajectory of the curve ~(t) := ((1 —
cosB)cosb, (1 —cosh)sinb), t € [0,2x], thus

1 1 27
LQ(C):/ ldedy = / (xdy —ydz) = / (1 —cosf)?dt = i
c 2 Jo+c 2 Jo

3.40 Example. In general, if p(6), 6 € [0,27], is piecewise of class C! and nonnegative,
the area of the figure defined in polar coordinates by

A= {(p,e)‘o <p<pd), 0c [0,274}

// drdy = / A(:rdyfydm)

= 2/0 (@(9) cos 0(p(6) sin )" — ©(6) sin (0 (6) Cose)') do

1 27
= / ©2(0) db.
2 Jo
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3.5 Exercises

3.41 9. Decide whether the following differential forms are exact:

1
rydx + 3:v2 dy
yzdr + xzzdy + zydz

1 1
( 5 T 2)(yd9v79vdy)7 z#0, y#0.
T Y

3.42 9. A vector field is said to be central if F(z) := f(z) |;|, x € R™\ {0}, where
f:R™\ {0} — R. Prove that F' is conservative if and only if F' is a radial vector field,
ie., F(z):=p(|z|) |2| where ¢ : R — R.

3.43 9. Let Q = R?\ {0}, let y(t) := (cost,sint), t € [0,2n] and let w be a closed
differential form on Q with £(w,~) = 0. Show that w is exact on R?\ {0}. Show that
every closed form w decomposes as

w=Awo + o
where A € R, a is an exact form and wo is the angle form, see Example 3.17.
3.44 9. Let w be a closed differential form in R™\ {0}. Prove that w is exact in R™\ {0}
if

lim w(x)|z| = 0.

z—0

3.45 4. Let Q be an open set in R3. For every u € C?(Q) we have divrotu = 0 in Q,
therefore a necessary condition for the solvability of rotuw = f is that div f = 0 in .
Suppose 2 star-shaped with respect to the origin and prove the following.

(1) Two solutions of rot u = f differ by the gradient of an arbitrary function.
(i) If div f = 0, then

d
rot (tf(@) x ) = (£ (ta),
thus integrating, infer that
1
u(x) ::/ tf(tx) X xdt
0
is a solution of rot u = f. Here a X b denotes the vector product defined by
axb:=(a?® —a®b?, —(a'b® — a®b1), a'b? — a?b')

if a = (a',a?,a®) and b = (b%,2,b3), see [GM5, Chapter 4].



4. Holomorphic Functions

The theory of functions of one complex variable is one of the most cen-
tral and fascinating chapters of mathematics. It has its prehistory with the
works of Leonhard Euler (1707-1783), Joseph-Louis Lagrange (1736-1813),
and Carl Friedrich Gauss (1777-1855), its gold period with Augustin-Louis
Cauchy (1789-1857), G. F. Bernhard Riemann (1826-1866), Hermann
Schwarz (1843-1921), and Karl Weierstrass (1815-1897), and it is the re-
sult of the contributions of many mathematicians in the period 1800-1950.
The ideas, the methods, and the results of the theory of holomorphic func-
tions play a fundamental role in several fields of mathematics both pure
and applied, beyond their essential beauty. Here we shall limit ourselves
to an elementary introduction.

4.1 Functions from C to C

a. Complex numbers

Recall that the correspondence z = a + ib € C to (a,b) € R? identifies
C and R? as vector spaces, and the product in C gives a simple way of
describing oriented rotations in the plane. In fact, for z = a + ib and
w = ¢+ id we have

zw = (a+1b)(c—id) = (ac+bd) +i(bc — ad) = (z|w)r2 + i det(w, z) (4.1)

hence, if 6 is the angle between the two vectors z = (a,b) and w = (¢, d)
measured from w to z, then

wz = |z||w|(cos @ + isin ).

In particular, multiplying z by ¢ means rotating anticlockwise the vector
2 by 7/2:izz = i|z|? = |2]2(0 + il).

b. Complex derivative

4.1 Definition. Let f : Q C C — C be a complex-valued function where )
1s open in C and let zg € Q). We say that f is differentiable in the complex

M. Giaquinta and G. Modica, Mathematical Analysis: An Introduction to Functions 159
of Several Variables, DOI: 10.1007/978-0-8176-4612-7_4,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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sense at zp, in short f is C-differentiable with complex derivative f'(z),
if the following limit

f/(ZO) — lim f(Z) - f(ZO)

Z—20 zZ— 20

exists in C. If f has complex derivative at every point of 2, we say that f
is holomorphic (or analytic) in Q. The class of holomorphic functions on
Q is denoted H().

4.2 9. Show that the following facts hold:

(i) If f is C-differentiable at zp, then f is continuous at zg.
(ii) If f and g are C-differentiable at zo, then f + g and fg are C-differentiable at zg
and

(f+9)(20) = f'(20) +d'(20),  (f9)'(20) = f'(20)g9(20) + £(20)g’ (20)-

(iii) If f and g are C-differentiable at zg and g(z0) # 0, then f/g is C-differentiable
at zp and
I\ _ f'(20)9(20) = 9'(20) f(20)
( ) (20) = o .
g 9%(20)
(iv) Let f be a map from an open set @ C Cinto C and zo0 € Q;let g: ACC — C
be a map with f(zg9) € A. If f is C-differentiable at zp and g is C-differentiable
at f(z0), then go f is C-differentiable at zo and (g o f)'(z0) = ¢’ (f(20))f (20).
(v) Let F € H(Q) and 7 : [0,1] — Q be of class C!, then t — F(v(t)) is differentiable
on [0, 1] and

SFG0) = FGOR @) e,

4.3 9. Let f € H(2) and g € H(A) for Q and A open sets, and let f = g on QN A.

Prove that the function
F) = flz) ifzeQ,
g(z) ifzeA
is holomorphic in Q U A.
4.4 . Show that
(i) Polynomials in one complex variable are holomorphic functions on C.

(ii) A rational function R(z) := P(z)/Q(z) for P and @ polynomials is holomorphic
on Q:={z € C|Q(z) # 0}.

c. Cauchy—Riemann equations

Let us identify complex numbers and vectors of R?, i.e., z = x + iy with
(z,y), and let f: Q C C — C be a function. Clearly, f is R-differentiable
at zo = xg + iyo if

f(zo+w) = f(20) = Df(z0) w+ o|w|) as w — 0, (4.2)
and f is C-differentiable at zq if
f(zo+w) — f(z0) = f'(20) w + o(Jw]) as w — 0. (4.3)

A comparison between (4.2) and (4.3) yields at once the following.
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Figure 4.1. Augustin-Louis Cauchy (1789-1857), Karl Weierstrass (1815-1897), and
G. F. Bernhard Riemann (1826-1866).

4.5 Proposition. The function f: Q) C C — C has complex derivative at
zo € Q if and only if [ is R-differentiable at zy and for some \ € C

() = D (o)) = A, (4.4)

If so, then A = f'(2o).

Condition (4.4) states that the R-differential of a C-differentiable func-

tion f at zg exists and acts on C as a complex multiplication
0
w o — 81{) (20) = df (20)(w) = Aw.

This is quite a restrictive condition. In fact, two vectors wi,wy € C are
mapped by the differential into the vectors Awi, Aws, i.e., into vectors
rotated of the same angle and scaled by |A|. In particular, perpendicular
vectors wy, we of the same length have as images the perpendicular vectors
Awy and Aws of the same length.

Write now f as f(x,y) = u(x,y) + iv(x,y) for z := x + iy, and denote
by f and f, the first and the second column of the Jacobian matrix of

f(@,y)
Up U
Dre) = 1rlfl = (1 ).
Vg Uy
One easily shows that (4.4) is equivalent to

fy(20) = ifz(20) (4.5)
which says that the vector f, is obtained by rotating anticlockwise by /2
the vector f,. In fact, if (4.4) holds, then

fu(z0) = = A(1 +10),

of
a(1,0) (20)

o) = gl 1y (o) = A0+ i),
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and, conversely, if w = a +ib € C, (4.5) yields

Df(z0)(w) = fz(20)a + fy(20)b = fz(20)(a +ib) = fo(z0)w.

Equation (4.5) can also be written as

0 0
(’)Z (T/o, Z/o) = 8: (x(vaO)a
ou ov (4.6)

Ay (T/o, Z/o) = T or (x(vaO)

in terms of the components of f, f =: u+ iv. Moreover, (4.5) is equivalent
to

|fz(20)| = |fy(20)I;
(fz(20)fy(20)) =0, (4.7)
det D f(z9) > 0.

Finally, if one defines the partial derivatives of f with respect to z and
z as

0 1 0 1
8£ =f. = 2(fx_ify)7 8£ =f2 ::2(fx+if’y)7
(4.5) writes also as
gi (ZO) =0. (48)

Summarizing, we can state the following

4.6 Proposition. Let Q be an open set of C. Then f € H(Q) if and only
if it is R-differentiable and one of the following equivalent conditions holds.
(i) fy(z) =ifs(2) V2 €Q,
(ii) gf (2)=0VzeQ,
(iii) f :=u+ v satisfies the Cauchy—Riemann equations

ou ov

o (L) = ay(x,y), ‘
Vz=ux 41y € (Q,

8u( )__811( )

Ay r,Y) = o €,y

(iv) f fulfills the conformality relations

{Ifx(Z)l = 1f,(2)l,
(fo(2)|fy(2) =0,

and preserves the orientation,

detDf(z) >0 Vz € Q.
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If f is C-differentiable, then

re=0=0=5e  veoa

4.7 Remark. Notice that currently holomorphic functions a priori may
not be of class C! and we are not allowed to use theorems that require
the continuity of the derivatives. We shall see in the following that in fact
holomorphic functions are of class C*° and even more.

4.2 The Fundamental Theorem of
Calculus on C

a. Line integrals

Let 2 C C be an open domain, let f : @ — C be a continuous function,
and let v : [a,b] — Q C C be a C* curve in 2. The integral fv f(z)dz of f
along v is defined as

b
/ f(z)dz = / SO (1) dt.

If f:=u+ivand y(t) = z(t)+iy(t), then f(v)y = (ua’—vy')+i(uy +va’)
hence

b b
dz = "—wy')dt 4 "+ va') dt,
Af(Z) z /a(ux vy') z/a (uy’ + va')

is the line integral along v of the differential 1-form (u dz —v dy) +i(v dx +
udy). Notice that if 7 is the segment joining (zp,0) to (z,0), then

L )iz = [ jf(S) ds,

i.e., the usual oriented integral of f on the interval [z, x] of the real line.
By the change of variable formula, one easily sees that, if 4 : [a,b] — Q
is a reparameterization of v, i.e., 6 = v o h where h : [a,b] — [0,1] is of

class O, then
J#era= [ 1e)e

if h is orientation preserving (h’ > 0) and

ez =- / 1(2) dz,
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if h reverses the orientation. Recall also that if v : [0,1] — Q is a simple

curve of class C*,
/ f(z)dz
.

depends only on the trajectory of 4 and on its orientation.
Finally, from the definition we easily get

‘Af(z) iz

where |dz| denotes the element of length, L(v) is the length of v, T' :=
7([a,b]), and

< / 1£(2)]1dz] < || flloo.r L(7)

| flloo,r :=sup|f(2)|.
zel

b. Holomorphic primitives and line integrals

4.8 Definition. Let Q@ C C be an open set and let f, F : Q — C be two
Junctions. We say that F is a holomorphic primitive of f in Q if F' € H(Q)
and F'(z) = f(z) Vz € Q.

Assuming f € C°(Q), we shall now give neccessary and sufficient con-
ditions in order for a function F':  — C to be a holomorphic primitive of
f.

Let zp = o + Yo, 2 = x + iy be two points in C. Denote by 05, ,(¢)
the polygonal line that joins linearly zp to x + iyp and then x + iy to
z = x + 1y. Notice that if €2 is a rectangle with sides parallel to the axis,
the curve d, .(t) is inside the rectangle for every couple zp, z € 2, while
in general, if Q is open, we have §., . C Q if 2y and z are sufficiently close.

4.9 Theorem (Fundamental theorem of calculus). Let f € C°(€,C)
and let F : QQ — C. The following claims are equivalent.

(i) F is a holomorphic primitive of f in Q, F € H(QY) and F'(z) = f(z)
Yz €.

(ii) For every couple of points z,w €  and every curve 7 : [0,1] — Q of
class C* with v(0) = w and v(1) = z we have

F(z) — F(w) = / f(z)d=. (4.9)

(iii) For every z € Q) there exists § > 0 such that for all w € B(z,0) we
have

F(2) - Flw) = /5 £(0) dc.
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Figure 4.2. Illustration of the proof of the fundamental theorem of calculus.

Proof. (i) = (ii). We have f(y(¢))7'(t) = F'(v(¢))y' (¢t) = ;lt (F(v(¢))), see Exercise 4.2.
From the fundamental theorem of calculus for functions of one real variable, we deduce

1 , , B 1 d B
[ serd= [ Fowy @ = [ Eao) d = Fom) - Foo).

(ii) = (iii) is trivial.
(iii) = (i) Fix z € Q. For every h € C, |h| < 4, from the assumption we have
F(z+h)— F(z) = / f(w) dw
5z,z+h

where 0, .y is the polygonal line that joins z to z + h first moving horizontally and
then vertically, see Figure 4.2. Of course, the length of §. . is not greater than V2 |h|
and its image is contained in B(z, |h|). Since

/ dw = h,
Oz 24h

we have

F(z+h) = F(z) - hf(2)] = ] /5 Q= FEd| < sw |10 - £(2)|v2inl

z,z+h CEB(z,|h])
hence
[FEEm=FO e <ve s 150 - s
CEB(z,|h|)
For h — 0, we find F'(z) = f(z), f being continuous in z. O

A continuous, or even holomorphic function in € does not need to have
a holomorphic primitive in €.

4.10 Example. Let f(z) = i, z # 0and let y(t) := e, ¢ € [0, 2n]. Trivially f € H(Q),
Q = C\ {0}. However, if F' were a primitive of f on 2, then by (4.9)

> 27 ieit
0= F(1) — F(1) = F(y(2m)) — F(v(0)) = / ‘i — /0 ©, dt=2ri,  (410)
vy

an absurdity.
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4.11 Theorem. Let Q) be an open connected set of C. A continuous func-
tion f:Q — C has a holomorphic primitive in Q if and only if

/f(z)dzzO (4.11)

for every closed curve 7y piecewise of class C* with image in €.
Proof. If f has a holomorphic primitive, then (4.11) follows from (4.9). Conversely,

suppose (4.11). Fix zg € Q and for every z € Q let 6 : [0,1] — Q a curve piecewise of
class C'1 with §(0) = 29 and §(1) = z. Define F : Q — C by

F(z) ::/5 f(¢)dg, z € C.

We then compute for every z,w € Q and for every curve v : [0, 1] — Q piecewise of class
C! with v(0) = w and (1) = 2

F(z)— F = d¢ — d¢ = d
@ -rw = [ 10w [ s@ac= [ 10w
on account of (4.11). Theorem 4.9 says that F' is a holomorphic primitive of f on Q. O

When Q is a rectangle, a condition weaker than (4.11) suffices. For a
rectangle R we denote by 0T R a simple, regular, piecewise smooth, closed
curve whose oriented trajectory is the boundary of R oriented counter-
clockwise.

4.12 Theorem. Let Q be a rectangle with sides parallel to the axis. A
continuous function f : Q@ — C has a holomorphic primitive in Q if and
only if for every rectangle R CC Q with sides parallel to the sides of Q@ we
have

/ f(z)dz=0. (4.12)
o+R

Proof. Fix zg € Q and for every z € ), denote by 4., . the polygonal line that travels
from zp to z first horizontally and then vertically. Then define F': Q — C by

Pz) :=/6 FO)de,  zeq.

Using (4.12), we infer for every z,w € Q that

FO-Fw = [ j©d- [ Q=[50
8.2 Sag,w Suw,x
thus F' is a holomorphic primitive of f on €2, again by Theorem 4.9. O

It is worth emphasizing the differences between Theorems 4.11 and 4.12.

4.13 Corollary. Let Q2 be a connected open set in C and let f :  — C be
a continuous function. Then



4.3 Fundamental Theorems about Holomorphic Functions 167

(i) f:Q — C has locally holomorphic primitives if and only if for every
rectangle R CC Q) with sides parallel to the axis we have

/3+Rf(2) dz = 0.

(ii) f has a holomorphic primitive in Q if and only if

Lf(z)dz =0

for any curve 7 : [0,1] — Q piecewise of class C*.
Later we shall prove the following.
4.14 Theorem. Let § be a connected open set in C and let f: Q — C be
a function.

(i) f has locally holomorphic primitives if and only if f is holomorphic.
(ii) f has a holomorphic primitive in Q if f holomorphic and § is simply
connected.

4.3 Fundamental Theorems about
Holomorphic Functions

In this section we prove some basic theorems about holomorphic functions,
in particular we shall prove that holomorphic functions are exactly the
functions that locally admit a power series development.

4.3.1 Goursat and Cauchy theorems

a. Goursat lemma
4.15 Lemma. Let Q be an open set of C and f € H(Q). Then

f(z)dz=0
OtR

for every rectangle R CC ). In particular, f has locally holomorphic prim-
1tives.
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Figure 4.3. Illustration of the proof of the Goursat lemma.

Proof. Following Edouard Goursat (1858-1936), suppose that

n(R) = /(9+Rf(z) dz #0, (4.13)

and divide R in four equal rectangles R(ll), . R(14). Since the integrals along the common

segments of the boundaries of every two adjacent rectangles cancel, we find
4 .
n(R) = > n(R{").
i=1

Therefore at least for one of them R := jo ) we have

n(R)| >, (R,

Dividing R in four parts and proceeding in this way by induction, we find a decreas-
ing sequence of rectangles {Ryp} such that R,4+1 C R,, diag(R,) = 2~ "diag(R),
perimeter (R,,) = 2~ "perimeter (R) and

[n(Rn)| > 47" n(R)]. (4.14)

Set z* = Np Ry. Since f is C-differentiable at z*, for every e > 0 there exist 6 > 0 and
n such that for every n > n we have R, C B(z*,d) and

If(2) = f(z") = f'(z")z —2")| S elz— 27| Vz€ B(z",9).

Therefore, for n large we have

el =| [ (56 = 1) - 1 ) as

< 6/ |z — z*| dz < ediag (R, ) perimeter (Ry)
ot Ry,

<cd4 "e.
This together with (4.14) yields |n(R)| < cg, i.e., n(R) = 0. O

b. Elementary domains and Goursat’s theorem

An open and connected set in C is called a domain of C. We recall that a
domain A is said to be regular if its boundary is the union of the images
of a finite number of simple curves of class C'' that meet eventually at the
extreme points. In this case, for all but finitely many points of 0A, the ex-
terior unit normal to 9 A is well defined, and we denote by O+ A a piecewise
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Figure 4.4. An elementary domain A of C for which AN R is not an elementary domain
for R.

smooth and simple curve that travels the boundary dA of A anticlockwise,
i.e., leaving on the right the exterior unit normal to dA. Though 9T A is
not uniquely defined, we call it the counterclockwise oriented boundary of
A as, for any continuous function f : Q — C, the integral

/8+A f(z)dz

does not depend on the parameterization of A (provided it is counter-
clockwise).

Let © be an open set. If A CC ) is a regular domain and R CC  is
a rectangle, in general AN R is not a regular domain of C, see Figure 4.4.
We say that a domain A is an elementary domain of Q if A CC Q, and we
can square off C with squares with sides parallel to the axes in such a way
that for each of its open squares R with RN A # () we have

(i) R CQ,

(i) RN A is a regular domain of C.
We do not dwell any further on this definition, since it is only a technical
means and a posteriori it will be superfluous. We only notice that the

rectangles and the balls inside € are elementary for 2. We use in the
sequel the following.

4.16 Proposition. Let Q be an open set of C, let A, B be elementary
domains for Q with A CC B CC Q, and let zo € A. Then A\ B is an
elementary domain of Q\ {zo}.

4.17 Proposition. Let f : Q — C be a continuous function in an open
set of @ C C. The following claims are equivalent.

(i) For every rectangle R CC Q2 with sides parallel to the coordinate azes
we have [y, p f(z)dz =0.
(ii) For every elementary domain A of Q we have

/M F(z)dz =0,
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A
////
70
) ey %%/’
otA

Figure 4.5. A domain A C C that is an elementary domain of 2.

Proof. 1t suffices to prove that (i) implies (ii). Let R be a rectangle as in (i); from (i)
and Theorem 4.12 we infer that f has a holomorphic primitive Fr in R, hence

1 1 d
[tz = [ s @dt= [ 5 FrG©) dt = FrG0) - FaG0)
¥ 0 0
for every curve 7 in R that is piecewise regular. In particular,

/6+Af(z)dz:0

for every elementary domain A of R, since 9T A is a closed curve. Now, split A as
A= U,N=1Ai where the A;’s are domains with disjoint interiors each contained in a
rectangle R; C €2, the segments common to more than one A; are traveled exactly twice
with opposite orientation when traveling along the boundaries of the A;’s; consequently
the integrals over these segments cancel to get

N
/EHAf(Z) dz = ;/8+Ai f(z)dz=0.

O

From Goursat’s lemma and Proposition 4.17 we then infer the following.

4.18 Theorem (Goursat). Let 2 be a domain of C and f € H(Q). Then

/BJrAf(z)dz:()

for every elementary domain A of Q.

Figure 4.6. Illustration of the proof of Proposition 4.17.
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Figure 4.7. 01 A.

The converse of Theorem 4.18 is also true as we shall prove later on.

4.19 . Let ©Q be a domain of C, let A, B be elementary domains of 2 such that
A CC B and let zg € A. Show that

/ f(2) dz = / f(2)dz Ve HO {z0).

c. Cauchy formula and power series development

4.20 Theorem (Cauchy formula, I). If f is holomorphic in a domain
Q, then for every elementary domain A of Q and every z € A we have

1 f(©)
16 =, | .
T Jo+ra C— 2
Proof. Let §p be such that B(z,00) C A. For every 6, 0 < § < dp, the set A\ B(z,9) is
an elementary domain for Q \ {z} and the function ¢ — f(¢)/(¢ — z) is holomorphic in

Q\ {z}, hence
/ f(©) =0
0+ (A\B(z,6)) C — 2

on account of Goursat’s theorem, Theorem 4.18. Therefore

() ()
d¢ = d;
/59+A (—= ¢ /a+3(z,5) (—= ¢

_ 1 F(Q) = f(2)
=/ /(9+B(z,6) (—z2 d<+/a+3(z,5) (—= 9

7O = )

=2mif(z) +
8+B(z,0) (— %

Vv < 4.

In particular, the function

(O - f(2)

o — d¢
o+tB(z,0) (C—z
is constant and the claim follows if
. FO=FG) e

6—=0Jo+B(z8) (—2

The latter claim is in fact true: On account of the continuity of f at z we have
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/ TO=TE 4 < Lans) sup (£~ F@)l=0()  ass—o0.
9+ B(z,6) g

(—=z CEB(2,5)
]

As a consequence of Cauchy’s formula and of the theorem of differenti-
ation under the integral sign we get that f € C>(Q) if f € H(Q2) and for
every elementary domain A of ) and every z € A

*) 1 1K £(©
F9() = 2mi /3+A 1) dzF (¢ — 2) de = 2mi /{)+A (¢ — z)kt1 dc. (4.15)

Actually, we have more.

4.21 Theorem. Let Q C C be an open set, let f € H(Q), let zo €  and
p = dist (29, 92). Then

f(z):Zak.(z—zo)k, Vz € B(zo,p),
k=0

where for every k € N

ay 1= ! ,/d Q) dg, (4.16)

27 Joea (€ — z0)F+1
A being an elementary domain of Q0 containing zq.

4.22 Lemma. Let f : B(zp,7) C C — C be a continuous function such
that

flz)= ! ) / Q) d¢ Vz € B(zo,T).

270 Jot+ B(zor) € — %
Then

z) = Zak(z — 20)¥, Vz € B(zo,T)

where for every k € N

1 f(€)
ap =, /&)+B(z0,r) (€ — 29)k+1 dag.

Proof. We write for ¢ with [ — 20| =7

11 1 Oo(z—zo)k
C—z C—21-77720  C—z0 = \C~20

z— zOI

with uniform convergence (when ¢ varies) since | ‘z_rz‘)l < 1. By integrating

term by term, we then find

! £©) :
o= 2mi /8+B(ZO ) C -2 d( Z (27” /59+B(zo,r) (= zo)k"'ldC) (== =0)".
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Proof of Theorem 4.21. If z € B(zo, p) and r is such that |z — 20| < r < p, the Cauchy
formula,

fw) = ! / (O d¢ Yw € B(zo,r),

27 Jot B(egr) C— W

then yields f(z) = S22 ax(z — 20)* with

1 f(0)
R o /a+B(z0,r) (¢ — z0)k+1 .

Choose now ¢ > 0 such that B(zp,¢) C A. Since g(¢) := f(¢)/(C—20)*T" is holomorphic
in 2\ {20}, we may apply Goursat’s theorem to g on the elementary domains B(zo, 1)\
B(zo,¢) and A\ B(zog,€) of Q\ {20} to get

d¢ = ¢ = dac.
/8 (7o) g(¢) d¢ /£9+ (0.6) g(¢)d¢ /8 g(¢) d¢
O

4.23 Remark. We have in fact proved that any function for which the
Cauchy formula holds true has locally a power series development.

4.24 Theorem. If S(z) = Y ;= ar(z — 20)%, z € B(zo,7), 7 > 0, is the
sum of a power series, then S is of class C°°(B(zo,7)) and has complex
derivatives S (2) of any order in B(zo,r); in particular, S(z) is holo-
morphic. Moreover, for every k € N we have

S (z) = Z nn—1)...(n —k+1)an(z — 2)"* Vz € B(zo, p),
n=~k

hence S™)(z2) is holomorphic and
S®) (20) = klay  Vk>0. (4.17)

This follows by applying inductively the following.

4.25 Proposition. If S(z) = Y 7o ax(z — 20)*, z € B(zq,7), 7 > 0, then
S € CY(B(z0,7)) N'H(B(20,7)) and

S'(z) = Zkak(z — 7o)t Vz € B(zo,1).
k=1

Proof. Since the radius of convergence of 372 | kay (z—20)* ! is the same as the radius

of %% g ar(z—z0)*, it is at least 7. In B(zo,7) set then T(2) := Y32 | kay, (z—20)* 1.
For every z,w € B(zo,7) and every curve « : [0,1] — B(zo,r) piecewise of class O
with v(0) = w and (1) = z, we have

P

P
Zak(z — zo)k — Zak(w —zo)k :/
k=1

k=1 v

P
D kag(¢—z0)F 7t dC,
k=1

as D((z—20)*) = k(z — 20)*" 1. Since the sequence of the partial sums of a power series
converges uniformly in compact sets of the domain of convergence, when p — oo we get
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Figure 4.8. Joseph Liouville (1809-1882) and Giacinto Morera (1856-1909).

k

NE

ap(z — 20)® — S(z) — ao,

Sl
Il

1

ax(w —z0)F — S(w) — ao,

V-

Q\H
M'ﬁ

kap(C — 20)*~1d¢ — / T(¢) de,

el

k=1

hence

S(2) - S(w) = [ T(©)dc.

~

Since z,w € B(zp,r) and v are arbitrary, Theorem 4.9, says that S is holomorphic in
B(zo,r) with S’(z) = T'(z) Vz € B(zo, 7). ]

4.26 Corollary. Let Q be an open set of C. If f € H(QY), then all the
derivatives of [ exist and are holomorphic functions in €.

Finally, we can state the following.

4.27 Corollary. Let f : Q C C — C be a function. The following claims
are equivalent.

(i) feHrQ),
(ii) f admits locally holomorphic pimitives.
(iit) [+ 4 f(2)dz =0 for every elementary domain A of €,
(iv) Cauchy’s formula holds: for every elementary domain A of Q we have

f(z)—l/ O a veea

C2mi Jogra C— 2

(v) f is locally the sum of a power series.
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Proof. (i) = (iii) is Theorem 4.18, and (ii) and (iii) are equivalent by Proposition 4.17.
The implications (i) = (iv), (iv) = (v), (v) = (i) are, respectively, Theorems 4.20, 4.21

and 4.24.
It remains to prove that (ii) = (i). If (ii) holds, f is locally the derivative of a holo-
morphic function, thus in turn it is a holomorphic function because of Corollary 4.26.
O

4.28 Remark. The implication f holomorphic = f € C'(Q) is known
in the literature as Goursat’s lemma, and the equivalence (i) < (iii) as
Morera’s theorem.

4.3.2 Liouville’s theorem

From (4.17) and (4.16) or from (4.15) we infer the following.

4.29 Proposition (Cauchy’s estimates). If f € H(Q2), then
!

k!
PO < T max (£(2) (418)

for every zo € Q, k € N and r < dist (29, 09).

As a corollary we get the following.

4.30 Theorem (Liouville). The only bounded and holomorphic func-
tions in the whole complex plane are the constants.

Proof. If |f(z)| < M Vz € C, we have for all z € C and r > 0
IF' (@)l <
r

on account of Cauchy’s estimate for f’. Letting r — oo, we infer f/(z) = 0 for all z € C,
i.e., f is constant. 0O

As an application of Liouville’s theorem we find another proof of the
fundamental theorem of algebra.

4.31 Theorem (fundamental of algebra). A complex polynomial of de-
gree n, n > 1, has n roots.

Proof. It suffices to prove that a nonconstant polynomial has at least one root. Suppose
that P(z) is a nonconstant polynomial such that P(z) # 0 Vz. Then 1/P(z) is holo-
morphic in C and bounded by the Weierstrass theorem since lim|,|_ o [P(2)| = 4o0c.
It follows that 1/P(z) =const, a contradiction. O

Actually, we have proved more.

4.32 Theorem. Let f : C — C be holomorphic in C and assume that
liminf, o |f(2)] > 0. Then, either f(z) is constant or f has a zero.
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4.3.3 The unique continuation principle

If f is holomorphic in the open set Q with all derivatives vanishing at a
point zg € £, by (4.17) f vanishes in a neighborhood of zy. In other words,
the set

X(f) = {z cQf®)=0 Vk}

is open. On the other hand X (f) is closed since all derivatives of f are
continuous. Therefore X (f) is the connected component of 2 that contains
zo. This is known as the unique continuation or identity principle.

4.33 Theorem (The identity principle). Let f and g be two holo-
morphic functions in a domain 2. Suppose that at zy € € we have
f®)(29) = g¥)(29) for all k =0,1,..., then f =g in Q.

Denote the set of zeros of a function f in by
Z(f) = {z €0 ‘ f(z) = 0}.

4.34 Theorem. Let Q be a domain of C and f € H(Q). If f is not iden-
tically zero, then Z(f) is discrete and without accumulation points in §).

Proof. Since Z(f) is closed in €, it suffices to prove that Z(f) is discrete. Let 20 € Z(f)
and let k be the first nonnegative integer such that f(*)(z) # 0. In a neighborhood of
zo we have

o (k) (, .
f =37 ) eyt = (o 0)ece)
=k

with g(z0) # 0. Since g(z) # 0 in a neighborhood U of zg, clearly U has no zero other
than zq. O

In conclusion we can state the identity principle as follows.

4.35 Theorem (The identity principle). Let f and g be two holomor-
phic functions in the domain  of C. The following claims are equivalent

(i) f=ginQ
(ii) There exists zo € Q such that f*)(z9) = g™ (20) for all k.
(i) The set {z € Q| f(z) = g(z)} has at least an accumulation point in
Q.

4.3.4 Holomorphic differentials

Let Q be an open set of C and let f := u 4+ v : @ — C be a function of
class C'. It is easy to check that the two differential 1-forms

w1 = udx — vdy, wy = vdx + udy (4.19)
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are closed in 2 if and only if the Cauchy—Riemann equations for f

Vg = Uy,

Uy = —Uy
hold in €. Since holomorphic functions are of class C!, see Corollary 4.26,
on account of Theorem 4.9 we therefore conclude the following.

4.36 Proposition. Let f = u+iv: Q C C — C be of class C'. Then
f € H(Q) if and only if the two differential 1-forms

w1 = udr — vdy, wo = vdx + udy
are closed C* forms.

Suppose now that o, 3 : Q — R of class C'! are potentials, respectively,

of wy and ws, that is,
{az =u, {ﬂz =,
y = —, By = u.

Setting F' := « + i3, we have

F,=a,+ib. =u+iv=f,
Fy=oay+ify = —v+iu=if,

that is F' € H(Q2), and F’ = f in Q. We therefore conclude the following.

4.37 Proposition. The function f = u+ iv € H(Q) has a holomorphic
primitive in Q if and only if the forms wy and we in (4.19) are exact in
Q. Moreover, F € H(Q) and F' = f in Q if and only if o := R(F(z)) and
B :=S(F(2)) are the potentials of respectively, wr and wa.

The theory of differential forms then applies to holomorphic functions.
In particular, the following holds. Since a holomorphic function has locally
holomorphic primitives on account of Goursat’s lemma, we then have the
following.

4.38 Theorem (Homotopy invariance). Let 2 be a domain of C and
feHE). If v,6 : [0,1] — Q are two homotopic curves in Q of class C*,

then
Lf(z)dz:/éf(z)dz.

4.39 Corollary. Let Q) be a simply connected domain. Then every f €
H(Q) has a holomorphic primitive in €.



178 4. Holomorphic Functions

.
20

Figure 4.9. From the left: (a) I(vy,20) = 2 and (b) I(y,20) = 0.

a. Winding number

Let v : [0,1] — Q be a closed curve that is piecewise of class C! and let
z ¢ ~([0,1]). The winding number of v around z or the index of v with

respect to z is i
1
I, 2):= 271 / -z
¥

For example, if v(t) := z + e**, t € [0,27] and k € Z, then

1 [T iketkt
1 = oodt=k.
(,2) 271 /0 etkt
If v : [0,1] — Cis asmooth curve with z ¢ ([0, 1]), then + is homotopic

to

V() — 2

o(t) :=z+

v (t) — 2]

in C\ {z}, a homotopy h being given by

h(t,s) = (1 — s)y(t) + sd(t), t,s €10,1].

Since ¢ — Cdfz is a holomorphic differential on C\{z}, Theorem 4.38 yields

that homotopic curves in C\ {z} have the same index,
I(v,2) = 1(5, 2).

We therefore see that the index of v with respect to z is the topological

degree of the map t — ‘38:; from [0,27] into S* = 9B(0,1) and the

following holds, see [GM3].

4.40 Proposition. Let z,zy € C, z # zo and let 1 (C \ {z}, z0) be the
first homotopy group of C\ {z} with base point zo. The winding number is
surjective and injective as a map from m (C\{z}, z0) into Z. In particular,
we have:

(i) Homotopic curves have the same index.
(ii) The index is an integer.
(iii) For every k € Z there is a curve through zy avoiding z and with index
with respect to z that equals k.
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(iv) Two curves are homotopic if and only if they have the same indez.

(v) Let v : [0,1] — C be a closed curve. The winding number map
z — I(v,2), z € C\ v([0,1]), is continuous, hence constant on each
connected component of C\ v([0,1]).

4.41 9. Prove that
(i) I(v,z) =0 for every z in the unbounded connected component of C \ ([0, 1]).
(i1) I(y, =) is locally constant in C\ Supp (v), hence on each connected component of
C\ spt~.
(i) I(8+B(0,1),2) =0 if z ¢ B(0,1), and I(8+ B(0,1),2) = 1 if z € B(0, 1).

4.42 Theorem (Cauchy formula, IT). Let Q C C be open and let f €
H(Q). For every closed curve «y : [0,1] — Q that is piecewise of class C*
and for all z ¢ ~([0,1]), we have

16:2)7() = / M ac

Proof. Let r > 0 be so that B(z,r) C © and set k := I(, z). The curve v is homotopic
in C\{z} to 8(t) := z+re**, ¢t € [0, 2n] since I (v, 2) = k = (4, z). Using the periodicity
of t — €'t and Theorem 4.18, we then compute

QO . [ F© PR ikt g — i [ et
LC—ZdCisC—ZdC / ikt dtfzk/o flet*t) dt

_ FQ) g — s o0
Jc/a d¢ = 2w ki f(2).

+B(z,r) (—=

b. Stokes’s formula and Cauchy’s and Morera’s theorems

Let Q be an open set of C and let f € H(£). Since f is of class C!, see
Corollary 4.26, we may apply Stokes’s formulas in the plane, see Proposi-
tion 3.38, to the closed differential forms u dx — v dy and v dx + u dy to get
for every regular domain A CC )

/ (udx —vdy) = // 31}7 )dxdy:()
o+ A dy

/ (vdx +udy) = // 8u d dy =0,
o+ A y

hence the following extensions of Cauchy’s and Morera’s theorems hold.

4.43 Theorem (Cauchy formula, III). Let A CC 2 be a reqular do-
main of C and let f € H(Y). We have

/(%Af(z)dz:o

o= I

+4C—2

and, for all z € A,
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4.44 Remark. Actually, if we switch to Lebesgue’s integral, Stokes’s the-
orem holds for every admissible domain, see Section 3.4. Consequently,
switching to Lebesgue’s integral, we infer that Theorem 4.43 holds for ev-
ery admissible domain A CC Q. Furthermore, if we also assume that €2 is
admissible and f € H(Q) N C°(Q) with [Df| € £1(2), then Theorem 4.43
also holds with A = Q.

4.45 Remark. Theorem 4.43 in particular says that Goursat’s lemma for
functions in H () N C1(Q) is a trivial consequence of Stokes’s formula in
the plane. Since a priori it is not evident that holomorphic functions are of
class C', we need a proof that applies to solely holomorphic functions: this
was done in the proof of Theorem 4.18 or can be done by an approximation
procedure, see [GM5].

4.4 Examples of Holomorphic
Functions

4.4.1 Some simple functions
Here we present basic examples of holomorphic functions.

4.46 f(z) = 22. It is a holomorphic function from C to C with f/(z) = 2z. In real
Cartesian coordinates we have

2% = (2% — y?) + i2zy if 2 =z + 4y,

and in polar coordinates ) )
2 = 220 if z = re'?.

2

z

It is easily seen that the transformation z — z
(i) maps lines through the origin into half-lines from the origin,
(ii) maps circles around the origin into circles around the origin,

(iii) maps the hyperbolas 2 — y? = k into vertical lines,
(iv) maps the hyperbolas 2zy = k into horizontal lines.

4.47 The exponential function. The complex exponential is defined as

z

e® = e%(cosy + isiny), z=x+1iy € C.
It is a holomorphic function in C with De®* = e* since, for instance,

0e* 0e* .
=é, = qe”.
ox dy
It is easily seen that the transformation z — e*
(i) maps horizontal lines into half-lines from the origin,
(ii) maps vertical lines into circles around the origin,
(iii) satisfies |e?| = e, in particular e* is bounded on the half-planes {z = z +iy |z <
zo}, zo € R,
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(iv) satisfies e # 0 Vz € C,
(v) satisfies e*Tv = e%e® ¢,w € C,
(vi) is not injective, in fact, e* = e™ if and only if e*~% =1, i.e., if and only if z and
w have the same real part and imaginary part differing for a multiple of 27
e* =ev if and only if z—w=12rk, k€ Z:
we say that e* is periodic of period 27i,
(vii) is the sum of the power series
n

>z
ez:Z zeC
n=0

n!’

that converges uniformly on the compact sets of C.

4.48 Sinus and cosinus and hyperbolic sinus and cosinus. The functions sin z
and cos z, z € C, and the hyperbolic functions sinh z, cosh z, z € C are defined by means

of Euler’s formulas

eiz + 6—iz . eiz _ 6—iz
cos z 1= , sinz = . ,
2 21
z —Zz z —z
e +e . e —e
cosh z := 5 , sinh z = 5 .
They are holomorphic in C with

D sinz = cos z, Dcosz = —sinz,

D sinh z = cosh z, D cosh z = sinh z.

The functions cos z and sin z vanish only at points z = /2 + kn, k € Z and z = km,
k € Z, respectively, of the real axis; moreover they are unbounded in C since we have

lyl — =1yl iTe—y 4 e—iTey VeV
e e ee e e e e
S\cosz\z' | < = coshy
2 2 2
and, similarly,
lyl — e=lyl iTe—y _ g—iTey Y ey
€ e ee e e & e
5 <|sinz| = ! 9 ! < 5 = coshy.

The hyperbolic functions cosh z and sinh z are related to the trigonometric functions by
cosh z = cos(iz), sinh z = —isin(iz).
Therefore they vanish respectively at the points z = i(n/2 + k7), k € Z, and z = ik,

k € Z, on the imaginary axis.
Finally, trigonometric and hyperbolic functions are all sums in C of their power

series, see [GM2],

0 L 22k 0 , 22k
cosz = g (-1) , sinz = E (-1) .
! !
= (2k)! = (2k + 1)!
o 2k > 2k+1
z z
cosh z = g , sinh z = g .
! !
= (2k)! = 2k +1)!
4.49 Tangent and hyperbolic tangent. The map tanz := zg;z is well defined and

holomorphic in C\ {z = 7/2+ kn | k € Z}. Notice that tan z is bounded and away from
zero as far as z stays away from the real axis; in fact, for z = z + iy we have

eV —eTTeY| eV 4 eY

tanz| = . ) = cothy, 4.20
| ‘ |em¢e—y + e—wcey| — e¥Y—e Y 4 ( )
hence |tan z| < cothyg in A := {z||Im (z)| > yo}. Similarly,
1 1T, —Y —iT LY -y Y
| cot z| = _ letervaener] _et¥de = cothy. (4.21)

[tanz| ~ |ei®e—V —e~iTey| ~ eV — e~V
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4.4.2 Inverses of holomorphic functions

Let Q2 C C. We recall that a function f : Q@ — C is locally invertible if
for every xg € () there exists a neighborhood Uy, of xy such that f\UmO is
invertible. We say that h : A — C is a local inverse of f defined on A if
f(h(w)) = w for all w € A. We have

4.50 Theorem (Local inverse of a holomorphic function). LetQ C
C be an open set and let f € H(Q) with f'(z) #0 Vz € Q. Then

(i) f is open and locally invertible with continuous inverses.
i

(ii) If A C C is open and g : A — C is a continuous inverse of f, then
g€ H(A) and

’ o 1 w
= pgayy TR

Proof. (i) By identifying R? with C, we denote by f also the real map f : Q@ C R? — R2.

Since f is holomorphic,
—b
Df(z0) = (“ )
b a

where f; := a + ib. Consequently,
0 # |f'(20)1* = |fa(20)|* = a? + b* = det Df(20)

for any zp € Q. The (real) local invertibility theorem then yields a neighborhood U,
of zg such that f|Uz0 is open and invertible. It then follows that f is an open map and

that g := f\?leo is a continuous local inverse of f.

(ii) For v,w € A we have

g0) —gw) _ g —gw) 1 o
v—w flg)) = flgw))  f'(g(w))
since g is continuous. [}

As already noticed in Chapter 1, the condition detDf(z) # 0 at every
point z €  does not suffice to give the global invertibility of f, the expo-
nential function being an example.

Theorem 4.50 (ii) reduces the existence of a holomorphic inverse of f
to the existence of a continuous inverse of f. Therefore, covering maps
and in particular Theorem 8.47 of [GM3] is a useful tool in discussing the
existence of holomorphic inverses. We have in fact the following.

4.51 Theorem. Let Q be an open set in C and let f : Q — f(Q) be a
covering of f(2) and a holomorphic function with f'(z) # 0 Vz € Q. Then
f has a local inverse ha € H(A) for every connected and simply connected
open set A C f(2). Moreover, the number of distinct inverse maps of f
on A agrees with the number of the connected components of f=(A).
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Proof. First observe that A is path-connected and locally path-connected since it is
open and connected by assumption. Choose now a point zg € € such that yo :=
f(zo) € A and let X be the connected component of f~1(A) that contains xq. Clearly
X is open in C, hence path-connected and locally path-connected.

We now claim that fix, : Xo — A is onto, hence a covering of A. In fact, by
Proposition 8.45 of [GM3], starting from a continuous curve « joining yo to y € A,
there exists a continuous curve 8 on f~1(A) with 8(0) = z¢ and f(b(t)) = a(t) Vt. In
particular we have 8(1) € Xo and f(8(1)) = a(1) = y.

Therefore, Theorem 8.47 of [GM3] yields that fx, is a homeomorphism from Xg
onto A. Thus h := (f\XO)_l is a continuous local inverse of f, and h is holomorphic by
Theorem 4.50 (ii).

By construction the number of continuous inverses defined on A is greater than or
equal to the number of the connected components of f~1(A). On the other hand, if
h: A — C is a continuous inverse of f, then h(A) is connected, hence coincides with a

connected component X of f~1(A), thus concluding h = (f‘)?)*l. O

4.52 Remark. If f is locally invertible but not globally invertible, the
equation w = f(z) may have several solutions for a given w. In other
words, the graph of f(z)

{(z,w) eCxC \ w = f(z)} (4.22)

is not the graph of a function h(w) of the second variable w. However, the
classic literature insists on seeing (4.22) as the graph of a multifunction
f~1, and refers to a local inverse h : A — C of f as to a leaf on A of the
multifunction f~1.

a. Complex logarithm

The previous considerations apply to the complex logarithm.

For z € C, z # 0, every w € C such that ¢* = z is called a complex
logarithm of z. Since z — €* is 2mi-periodic, there are infinitely many
w such that e¥ = z differing by 2knwi, k € Z. In other words, e* is not
globally invertible even, as we know, if it is locally invertible.

Observe that f(z) := e* is a covering map f: C — C\ {0} of C\ {0}.
Therefore, see Theorem 4.51, for any connected and simply connected open
set A C C\ {0}, there exists at least a local inverse log, € H(A) of z — e,
called also a leaf on A of the complex logarithm . By definition we have

exp (loga (w)) = w Yw e A
and by Theorem 4.50 (ii),

1
Dloga(w) = w Yw € A.

The complex logarithm has infinitely many leaves on A. In fact, if h : A —
C is any leaf of the the complex logarithm, then

exp (h(w)) = w = exp (logx (w)) Yw e A
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ie.,

h(w) — loga (w) = 2mik(w) Yw e A

for some integer valued function k(w), actually an integer valued constant,
since the left-hand side of the previous equation is continuous and A is
connected. We therefore conclude the following.

4.53 Proposition. Let A C C\ {0} be open, connected, and simply
connected. Then there exist infinitely many local holomorphic inverses of
z — e* on A. Equivalently, there exist infinitely many leaves on A of the
complex logarithm. Moreover, if p : A — C is one of these inverses, then
the functions p(z) + 27ki, k € Z are distinct leaves on A of the complex
logarithm, and any leaf on A has such a form.

As a special case, let R be the negative real axis,
R:= {z:x—&—iyE(C yzO,xSO},

and let
A:=C\R

which is open, connected and simply connected. The connected compo-
nents of its inverse image

FYA) = {zec]z¢w+2kw, keZ}
are the sets

Sk = {z:eriy,

(2k71)7r<y<(2k+1)7r} ke

Using Theorem 4.51 or directly, we infer that the map z — e* when re-
stricted to Sy has a holomorphic inverse defined on C\ R with values on
Sk, that we call the kth leaf on C\ R of the logarithm; we denote it by
log(k).

The Oth leaf on C\ R is denoted simply by z = logw; we also call it
the principal determination of the logarithm, or the principal logarithm.

By definition, elog™ v — o yw e € \ R and

z € S,

e? = w.

z = log(k) w if and only if {
In particular, log1 = 0 since e = 1 and 0 € Sy. All the leaves of the
logarithm on A agree up to an integer multiple of 27i. In particular,
log®™ (2) = log z + i2km Vze A, Vk € Z.

Moreover,
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& n+1

log(1 + z) = log @ (1 + 2) Z

<1
AR

Notice that the difficulty in inverting the complex exponential is the
same we encounter in inverting the uniform motion map, t — e, t € R.
In fact, for z with |z| = 1, the argument of z is the real number ¢ defined
modulus 27 such that e’ = z. For k € Z and z € C, z # —1, define the kth
leaf on C\ R of the argument of z, as the unique ¢ €] — 7 + 2k, w + 2kn|
such that e = z and denote it by arg *) (2). If z = x4y with —7 4+ 2km <
y <7+ 2km and w € C\ R, then

z T 1Y e’ = |’LU|,
w=e* =e"e", o v v
2k —Dr <y < (2k+)x vl
2k—-1)r<y<(2k+ )7
(4.23)
which yields the polar formula for the logarithm on C\ R
log® w =z + iy = log |w| + iarg %) ( |Z|) (4.24)

Vk € Z and Yw € C\ {0}.
From (4.23) it easily follows that logz has a constant jump of 2mi
through R. In fact, if zg € R, zg = x¢ + 10, z¢ # 0, then
lim log z = log |z0| + i,
Iz>0
lim logz = log |z0| — im.

JIz<0

Finally, since log z takes its values on Sy, a special care is needed in
computing with it: for instance, from the polar formula for the logarithm,
we have

mi if =27 <arg(z) +arg(w) < —,

log(zw) =logz+logw + < 0 if —7 <arg(z)+arg(w) <m,
—mi if m <arg(z) +arg(w) < 2.

b. Real powers

Let A be a connected and simply connected set of C \ {0} and let logx :
A — C be aleaf on A of the logarithm. We define the leaves of 2% : A — C,
a € R, by means of the leaves of the logarithm by

2% 1= eloBaz, z € A.

Of course, each leaf of z¢ is holomorphic on A with
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D(2%) = e™lo8a Zj =z z € A.
In general z® has at most infinitely many leaves as the complex logarithm.
Let us compute the number of distinct leaves of 2% on A. Let hy and hs be
two leaves of the logarithm that, we know, differ by 27ki for some k € Z.
The corresponding leaves of z¢ then agree if and only if a(he(w)—hq(w)) =
a27ki is an integer multiple of 27i, i.e., if and only if ak is an integer.
Therefore, we distinguish three cases:

(i) a € Z. In this case, ak is always an integer; hence, all the leaves of
z“ are the same, and

z-z...-z ifa>0,
< ~ -
|| times
=<1 1 .
.. if a <0.
z Z z
. ~ -
|a] times

(ii) @ € Q, @ = p/q with p,q coprime. In this case, ok is an integer if
and only if k is a multiple of ¢q. Hence, z® has ¢ distinct leaves. If
p = 1, then z'/7 denotes the local inverses defined on A of z — 29,
since z'/% = exp (; loga 2), and

q times
A~ ~ q

(2M1)1 = 212185 exp (L loga(2)
. q
i=1
=exp (loga(2)) = 2 Vz e A.

(iii) « is irrational. In this case there are infinitely many distinct leaves
since ak is not integer for any k.

Finally, notice that in a fixed leaf on A, in general
In fact,

(zaw)a = exp (a(log(zw) —log z — log w))
Zow

exp (mia)  if — 27 < arg(z) +arg(w) <,
=41 if —m<arg(z)+arg(w) <,

exp (—mic) if m <arg(z) + arg (w) < 2.
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Figure 4.10. Two textbooks on holomorphic functions.

4.5 Singularities

Let us begin stating a remark that will be useful for the sequel on the
zeros of a holomorphic function. Let Q C C be an open set, f € H(Q2) and
zo € . As we have seen, f agrees with its power series expansion in a
neighborhood of zy. We say that f has a zero of order m at zg if

oo

f(z)= Z ak(z—zo)k (z — z0) Zaker z—zo

k=m

with a,, # 0.

4.54 Proposition. Let Q C C be an open set, f € H(Y), and zy € Q.
The following claims are equivalent.

(i) f has a zero of order m at z.

(ii) f(z0) = f'(20) = ["(20) = -+ = [0 D(2) = 0 and ™ () # 0.

(iii) There exists g € H(Q) such that f(z) = (z—z0)™g(z) with g(z¢) # 0.

(iv) m is the largest integer k such that f(z)/(z — 20)* extends to a holo-
morphic function on €.

4.55 9. Prove Proposition 4.54.

Let Q@ C C be an open set and let zp € Q. If f € H(Q\ {z0}), we say
that zp is a singularity for f.

We say that f € H(Q\ {z0}) has a continuous (resp. holomorphic)
extension to zg if there is a map ' € C°(Q2) (respectively F € H(Q2)) such
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that F' = f on Q\ {z0}. If f € H(2\ {z0}) has a holomorphic extension to
Q, we say that zg is a removable singularity for f, otherwise, we say that
zo is a singular point for f.

a. Removable singularities

4.56 Theorem (Riemann’s extension theorem). Let @ C C be an
open set, let zo € Q and f € H(Q\ {z0}). The following claims are equiv-
alent

) 2o is a removable singularity for f.

) f has a holomorphic extension to §).
i) f has a continuous extension to ).

) [ is bounded in a neighborhood of zg.

) lim,— (2 — 20)f(2) = 0.

Proof. Trivially (i) = (ii) = (iii) = (iv) = (v). Let us prove that (v) = (i). Set
g(z) == (2= 20)f(2) if z€C\ {20} , and h(z) := (z — 20)g(2).
0 if z =29
The claim (v) is equivalent to the continuity of g(z) at zg, hence
h(z) — h(z0) = h(z) = (2 — 20)9(20) + (2 — 20)0(1) as z — z0.

In other words, h(z) is C-differentiable at zo with h(z0) = 0 and h/(20) = g(z0) = 0. It
follows that h € H(Q2), and, by Proposition 4.54,

h(=) = (2 — 20)2k(2)
for some k € H(£2). Therefore
(z = 20)°f(2) = h(z) = (= — 20)k(2),

and k(z) is a holomorphic extension of f to . O

4.57 Corollary. Let Q C C be an open set, zg € Q and f € H(2\ {z0}).
Then

(i) zo is a removable singularity for f if and only if

limsup |f(2)] < +oo.

zZ—2Q
(ii) zo is a singular point for f if and only if

limsup |f(2)] = +oo.

z—20
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b. Poles

4.58 Definition. Let Q C C be an open set, zo € Q, f € H(Q\{z0}) and
let m be a positive integer. We say that zg is a pole of order m for f if zg
is a removable singularity of (z — 20)™ f(2) but not of (z — 20)™ 1 f(2).

As a consequence of Riemann’s extension theorem we get the following.

4.59 Proposition. Let f € H(Q\ {z0}). 20 s a pole of order m for f if
and only if m is the smallest integer k for which |(z — 20)¥ f(2)| is bounded
in a neighborhood of zy.

Pole singularities are well-characterized.

4.60 Theorem. Let 2 C C be an open set, zo € Q and f € H(Q\ {z}).
Then f has a pole at zy if and only if | f(z)| — +00 as z — z9. Moreover,
for any integer m > 1, the following claims are equivalent.

(i) f has a pole of order m at z.
(ii) There exists g € H(Q) with g(z0) # 0 such that

foy= 9@ Vz e Q\ {z}.

(Z _ Zo)m

(iii) There exists r > 0 such that f(z) = > pe_, ar(z — 20)¥ VB(20,7) \

{z0}-
(iv) There exist a ball B(zo,7) C  and h € H(B(z0,7)), h # 0, such that

f(z)= (z_z(j,ﬂ,h(z) Vz € B(zo,7) \ {20}



190 4. Holomorphic Functions

(v) There exist a ball B(zp,r) C  and positive constants 0 < A < A
independent of r such that

ot <<, !

Iz — zo|m Vz € B(zo,7) \ {20}

|z — zo|™

Proof. Let us prove the second part of the claim, as the first part follows at once from
)

(i) = (ii). Since 2o is a removable singularity for (z — z0)™ f(z), there exists g € H(2)
such that (z—2z0)™ f(z) = g(z) Vz # z0. Moreover, if g(z9) = 0, then g(z) = (2 —20)7(2)
with § € H(Q), hence (z — z0)™ 1 f(2) = g(2), i.e., zo is a removable singularity for
(2 — 20)™ 1 f(2), contradicting the fact that f has a pole of order m at zp.

(ii) is trivially equivalent to (iii).

(if) = (iv). Since g(z0) # 0 and g € H(S2), then there exists 7 > 0 such that B(zo,r) C
and h := 1/g is holomorphic in B(zp,7) C Q.

(iv) = (v) Set

1
= inf , = sup .
2€B(z0.7/2) |h(2)] 2€B(20,r/2) [R(2)]
Then 0 < A < A < oo and, since f(z) = (z—zo)lmh(z) in B(zo,p), we infer
Loo<ipen<a, Vz € B(z0,7/2)\ {z0}
z z 20,T 20}.
|z — zo|™ — |z —z0|™ 0 0

(v) = (i) The estimate |(z—20)™ f(z)| < A implies by Riemann’s extension theorem that
20 is a removable singularity for (z — 20)™ f(z), and the estimate |(z — 20)™ "1 f(2)| >
Az — 20| ™! implies that (z — 20)™ ™! f(z) is unbounded around zp. Again by Riemann’s
extension theorem zg is not a removable singularity for (z — 2z0)™ ! (). O

4.61 . Let P,Q be two polynomials. Suppose that zg is a zero of order m for @ and

P(20) # 0. Show that 2( is a pole of order m for f(z) := ggz;

c. Essential singularities

Let 2 C C be an open set, zg € Q, and f € H(Q2\ {z0}). If 2o is neither a
removable singularity nor a pole for f, we say that zg is an essential singu-
larity. From Corollary 4.57 and Theorem 4.60 z is an essential singularity
if and only if

liminf |f(2)] < +o0, and limsup |f(z)] = +oo.
zZ—20

z—20

Actually, the following holds.

4.62 Proposition. Let Q C C be an open set, zo € 2, and f € H(Q\
{z0}). 20 is an essential singularity for f if and only if

liminf |f(2)] =0, limsup |f(2)] = +oo.
zZ—20 2—20
Proof. In fact, if iminf. .. |f(z)| > 0, then 1/|f(z)| is bounded in a neighborhood of

z0, hence zp is a removable singularity for 1/f. Consequently |f(z)] — L (L = oo or
L € C), and zp needs to be a removable singularity or a pole for f, a contradiction. O
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In other words, f has an essential singularity at zo if, roughly, |f(2)|
oscillates between zero and infinity in every neighborhood of zy. The fol-
lowing theorem is even stronger.

4.63 Theorem (Casorati—Weierstrass). If f € H(Q\{z0}) has an es-
sential singularity at zo, then for all 6 > 0 the set f(B(z0,0) \ {20}) of
values of f|B(zy.5)\{z0} 5 dense in C.
Proof. Suppose that for a ¢ € C and an ¢p > 0 we have |f(z) — ¢| > ¢ for all z €
B(z0,9) \ {z0}. Then
_f@)-c
p(2) :=
zZ— 20
has a pole at zq since |p(2)| = |z — 20| 7! f(2) — ¢| — oo as z — zp. Consequently, there

exists an integer m > 1 such that |z — z0|™|f(z)| — 0, i.e., 2o is a removable singularity
for (z — z0)™ f(z), a contradiction. O

We also state without proof the following celebrated result about es-
sential singularities.

4.64 Theorem (Picard). If f € H(Q\{z0}) has an essential singularity
at zo, then for all § > 0 the set f(B(z0,0) \{20}) of values of fiB(z0,6)\{z0}
leaves out at most one point.

4.65 §. Show that e!/% has an essential singularity at 0.
4.66 . Show that 1/sin(z) has poles at the points z = km, k € Z.

4.67 9. Show that _ ? . has a removable singularity at 0 and poles of order 1 at the

21
points zy := 2k7i, k € Z\ {0}. Consequently show that
oo
z o Bk k
ez—lil;)k!?;’ Vz, |z] < 2m.

The numbers {By} are called Bernoulli’s numbers; they are characterized by the re-

cursive formulas
By :=1,
A (425
j=o ("7)B;j =0 VYn2>1,

see [GM2].

d. Singularities at infinity

4.68 Definition. We say that f : {|z| > R} — C has a removable singu-
larity, a pole, or an essential singularity at infinity if f(1/z) has respec-
tively a removable singularity, a pole, or an essential singularity at 0.

4.69 Example. For example
(i) 2™ has a pole of order n at infinity,
(ii) e® has an essential singularity at infinity,
(iii) 1erz has a removable singularity at infinity.

4.70 9. Show that a nonconstant function f € H(C\ {z1, 22,..., zn}) has at least a
singular point in the plane or at infinity.
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e. Singular points at boundary and radius of convergence

The notion of a singular point extends also to boundary points. For a
holomorphic function f € H() we say that zo € 9Q is a singular point
for f at 09, if there is no nelghborhood B(zp, 6) of zg and no holomorphic

function f € H(B(z0,9)) such that f=Ffon B(zg,6) N Q.

4.71 Theorem. Let [ : B(zo,p) — C be the sum of a power series,

z) = Zak(z —20)k,
k=0

with convergence radius p > 0. Then there exists at least a point ¢ €
0B(zp,1) that is singular for f.

Proof. Let Q@ D B(zo,p) be the largest open set in which f can be holomorphically
extended. Since the extension of f has a power series development around zp with
radius of convergence r := dist (z0,92) and 99 is closed, we find ¢ € 99 such that

|¢ — zo0| = r. By construction ( is a singular point of f. O
4.72 9. Show that f(z) :=> 02, Z:' has a singularity at z = 1.

4.73 9. Show that > >7 fl’; has a singularity at z = 1.

f. Laurent series development

A Laurent series around zg is the sum of a power series in the variable
z — zp with radius of convergence ps and of a power series in the variable
! of radius 1/p; with p1 < po,

zZ—2Zz0
— - . 4.26
k;makz 20)" Zakz 20) +Za kz—zo ( )
We call the series > -, a_g

(4.26).
From the theorems about power series we find:

(27120) » the singular part of the Laurent series

(i) The Laurent series (4.26) converges absolutely in the open annulus

A(zo, p1, p2) == {Z‘m <l|z—z| < p2}7

and uniformly on compact sets K C A(zo, p1, p2).
(ii) The sum of the Laurent series (4.26) is holomorphic in A(zg, p1, p2).

From Cauchy’s formula, we immediately get that every function f €
H(B(z0,7) \ {z0}) with a pole of order m at zp has a Laurent series devel-

opment on the annulus B(zo,r) \ {20},
a_m —m+1 a—1
z) = ap+ai(z — z
f(2) (Z_Zo)m+(z_20)m_1+ +z_zo+ 0+ ai( 0) +

Actually, we have the following.
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4.74 Theorem. Let 0 < p; < ps < 0o and let f € H(A(zo,p1,p2)). Then
f)= Y arlz—20)"  Vz€ A(z0,p1,p2)

where Yk € Z
1 f(©)
_ dc, 4.27
% o /a+B(z0,r) (€ — zo)F+t : (4.27)

r being arbitrary in |p1, p2|.

Proof. The uniqueness of the Laurent series development follows from the identity
principle, and the calculus of the development follows from Cauchy’s formula. For z €
A(z0, p1, p2), choose 71 < 72 such that p1 < 71 < |z — 20| < r2 < p2. From Cauchy’s

formula
) = 1 / f(©) dc

27 Jot+ A(zo,r1,m0) § — Z

o Q1 Q)
C2mi /(9+B(zo,r2) (—=z dc 2m /(9+B(zo,r1) (—=z dc.

If ¢ € 9B(z0,72) we have

(4.28)

where the series converges uniformly on 0B(zo,r2), and, similarly, for z € 9B(z0,71)
-1 i (C_Z())k, -1 i (C—zo>k
(—=z Z—20 =g N2 20 Z—20 =g N2 20
-1
-y
W (G —z0)kFL

uniformly in OB(zo,71). Therefore, by interchanging the series and the integral signs,

from (4.28) we infer
oo

&= arlz—z)

k=—o0

in A(zo,71,72) With

1 / 1)
27 9+ B(zg,r2) (C - ZO)k+1
1 / 1)
27 Jo+ B(zg,r) (¢ — 20)FH!

d¢ itk >0,
d¢ itk <o.

Since

/ f(©)
o+ B(z,r) (€ — z0)F+1
f(©

(€—==20)
the claim in the theorem follows. O

d¢

does not depend on r for p1 < r < p2 (¢ — » is holomorphic in A(zo, p1, p2)),
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4.75 Laurent and Fourier series. Let f be holomorphic on A(0;1 —
6,1+ ¢€), where ¢ > 0, and let

Z enz" = f(2)
be its Laurent series development. As we know,

2
1 / f(é-) dC _ 1 f(eie)efine do.
[¢]=1

"2 ¢ 2

If we set p(t) := f(e) = 527 ¢,e™ then we see that the Laurent

n=—oo
series of f at e is the Fourier series of () at t € R.
Conversely, every trigonometric series in the complex variable z

o0
a20 + ;(ak cos kz + by sinkz)

can be written, by the change of variable e¢?* := (, as the Laurent series

+oo
Z Cngn
—o0

with
n - bn .
ao “ 5 ! ifn>0
Co = y Cp = b
2 ot o

If the last series converges in the annulus {z|r < || < R}, r < 1 <
R, then Efz cp, (™ is a Laurent series with sum a holomorphic function.
Consequently the trigonometric series converges in the strip logr < —y <
log R parallel to the real axis and has a holomorphic function as sum. In

the limit case, r = R = 1, the Fourier series may or may not converge, see
[GM3].

4.76 9. Write the Fourier series of

asint

t) = s
(1) 1—2acost+ a?

la| < 1.
[Hint: Notice that ¢(t) = f(e**) where

1— 22

Je= 2622~ (a+ i)z+1]7

then compute the Laurent series of f(z) to find o(t) = >-72 ;| a™ sinnt.|
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4.6 Residues

Let © be open, zp € Q, and f € H(Q\{z0}). Goursat’s lemma tells us that

the number
/ f(z)dz
Ot B(zo,r)

is independent on r as far as B(zo,r) C £2. The number

1
Res (f,z0) == _ . / f(z)dz
214 J o+ B(zo.r)
is called the residue of f at zo. Of course, by Goursat’s lemma
Res(f,z) =0

if f is holomorphic in a neighborhood of z.
Similarly, if A is bounded and f € H(C\ A), the residue of f at infinity

is the number 1
Res (f,0) := — / f(z)dz
(f,00) 210 Jo+ B(0,r)

where r is such that A C B(0, ). If we change variable, see Exercise 4.145,
we find 1

— . f(z)dz
2m /a+B(o,2r) (2)
1 / 1\ 1
=— f dc (4.29)
270 Jo+B(0,1/(2r)) <C) ¢?

- (1(!) 1)

As a consequence of Goursat’s lemma, we then get the following at once.

Res (f,00) =

4.77 Theorem (Residue theorem, I). LetQ C C be open, z1,..., 2z, €
Q, f e HQ\{z1, z2,..., zn}) and let A CC Q be a regular domain such
that {z1, z2,..., zn} C A. Then

f(z)dz = 2mi ZRes (f.z5).

atA =

4.78 Theorem (Residue theorem, II). Let K C C be a compact set,
let Q:= C\ K, let A C Q be a bounded reqular domain, and let f €
HOQN\ {21, 22,..., 2n}) where z1,...,2, € A. Then

f(z)dz = 72m<Res f,00 +ZR€S (f.z; )

J=1

4.79 Corollary. If f € H(C\ {21, 22,..., 2n}), then

otA

Res (f, +ZR€S (f,2zi) =

=1
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a. Calculus of residues

On account of Theorem 4.74, we have

4.80 Corollary. Let f be the sum of a Laurent series,

oo

f@= Y ax(z—z)*

k=—o0

on B(zo,7) \ {20}, 7 > 0. Then Res(f,z0) = a_1.

Let us discuss a few cases.

(i)

(i)
(ii)

(iv)

Trivially, we have

Res ( 1 ; ) 1 ifm=1,
y <0 | =
(2 —20)™ 0 otherwise.

If f has a removable singularity at zy, then Res (f,z9) = 0.
Suppose that f has a pole of order one at zg,

a_
flz)= Y Yao+ai(z—z20)+....
zZ— 20

Multiplying by z — zg, we find
(z—20)f(z) =a_1 +0O(1) as z — 2
hence
Res (f,z0) = lim (z — 20) f(2).
zZ—Zz0

In the special case f(z) = g(z)/h(z) where g, h are holomorphic and
h(z) has a simple zero at zo we have h/(z9) # 0 and

9(z)  z—z0 ), 9(=0)
G =20)h) = hz) = h(z0) " 7 w(a0)

thus concluding

as z — 2o,

Hes (718 =) = ;f/(éi)) '

If f is holomorphic in B(zo,0) \ {z0} and has a pole of order m > 1
at zg, we have )
A
f(z) = (2 — z)m’
where g € H(B(z0,0)) with g(zo) # 0. It follows that the coefficient
a_1 of the Laurent series of f is the coefficient of (z — 29)™ ! of the
power series development of g. Consequently

D™ (g)(20)
(m—1)!
= ! lim D™ ! ((z - zo)mf(z)>.

(m —1)! 2=z

Res(f,z0) =a_1 =
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(v) If f is holomorphic in B(z,0) \ {20} and has a pole of order m > 1
at zg, we can also proceed by computing inductively the singular part
of the development of f. In fact, if

f)y=, ™ 4 U )

(z — zp)™ z— 20
with h € H(B(zo,9)), then
Gy =lim, ., (2 — 20)™ f(2),
a—m

a i1 =lim, ., (z —29)™ ! (f(z) - (z—zo)’")’

;1:1 =lim, .., (z — 20) (f(z) - Z,ﬁ_m ar(z — Zo)k)7

and we may proceed as follows. For f(z) = g(2)/(z — z0)™ we set

hm(2) := g(2), and inductively when j =m,m —1,...,1
{/\j = 95(20);
gj-1(z) == g(ZZ):ZC()ZO)
Then
g(z) A'ﬂl Al
— — ho(2).
f(Z) (Z*ZO)m (Z*ZO)m—‘r +Z*ZO+ O(z)

(vi) If f is the quotient of two polynomials, one can also use Hermite’s
algorithm to compute the singular part of the Laurent development,
see [GM2].

b. Definite integrals by the residue method

A number of integrals can be computed by means of the residue theorem.
In fact, if the domain of integration is a nonclosed curve v : [0,1] — C
as for instance, an interval, we may think this trajectory as part of the
oriented boundary of a domain A. If f extends as a holomorphic function
with possibly singularities on a domain 2 O A, and we are able to compute
the integral of f on T A\ ([0, 1]), then the method of residues applies for
computing the integral over . In trying to do that, of course, there is no
general rule. Here we collect some significant cases.

4.81 Trigonometric integrands. Consider a definite integral of the
type

2m
/ R(cost,sint) dt,
0

where R is a rational function. We may interpret it as an integral on
0B(0,1). In fact, since
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Figure 4.12. Frontispieces of two treatises on holomorphic functions.

1 1 1 1 .
(er ):cos@, _(zf ):sine, if z := €',
2 z 27 z
by setting
1 1 1y 1 1
= o))
Hz)= (2 SRR TG
we get
2

R(cost,sint) dt = / f(z)dz.
0 a+B(0,1)
If f has no singular point on dB(0, 1), equivalently, if ¢ — R(cost,sint) is

continuous on [0, 27], Theorem 4.77 yields

27
/ R(cost,sint) dt = / f(z)dz = 2mi Z Res (f, z).
0 &+ B(0,1)

2€B(0,1)

4.82 9. If p1, p2, ..., p are the poles of f on 8B(0, 1), compute the integral along the
oriented boundary of the domain B(0,1) \ U; B(p;, €), € << 1. Infer, as in the proof of
the residue theorem, that when € — 0 one has

27
R(cost,sint) dt :/ f(z)dz
0 o+ B(0,1)
=2mi Z Res (f, z) + i Z Res (f, z).
2€B(0,1) 2€0B(0,1)

4.83 Example. Let us show that for a > |b| we have

2m 1
/ . df = 2 .
o a-+bsind Va2 — b2
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Figure 4.13. Path integrations for improper and Fourier type integrals.

iy _,—iy

Writing siny = €
of the unit ball, we get

and rewriting the integral as a line integral on the boundary

/2“ 1 def/ dz 7/ 2dz
o a+bsing a+B(0,1) 1z(a+ bz — z71)/2i) o a+B(0,1) bz? + 2iaz — b

The function bz + 2iaz — b has exactly two zeros

—a+ Va2 —b2 —a— Va2 —b2
z1 = i, 20 1= i
b b
and only z1 belongs to the disk. It is a pole of order one for f(z) = bz2+22iaz—b hence
2 1
Res(f,z1) = == .
2= gt + 2ia iva2 — b2

Therefore, from the residue theorem we get
/27r do _ 2mi _ 27
o a-+bsing  iva2—b2 a2 —b2
4.84 Improper integrals. Consider an integral of the type

+oo T
/ ft)dt .= lim f(t)dt
oo r—-+00 s

where f is continuous on R. Suppose moreover that f extends as a func-
tion f(z) that is holomorphic except for at most finitely many points on
a neighborhood of the upper half-plane A := {z|Sz > 0} and such that
|2f(2)| — 0 as |z] — o0, z € A. Since f is continuous on the real line, sin-
gularities of f(z) do not lie on the real line by assumption, and, moreover,
the singularies of f with positive imaginary part are contained in a ball
B(0, R) for a suitably large R since zf(z) — 0 as z — o0, z € A. Then for
r > R we have

' fl@)de+ [ f(2)dz=2mi Z Res (f, 2)
-r Ir Jz>0

where -, is the counterclockwise oriented boundary of the half-disk C;. in
Figure 4.13. From the assumption,

<M(r)-mr—20 per r — oo

‘ f(z)dz
Fr
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where M(r) := sup,., |f(2)|, hence
/OO f(@)dz = lim /T f(z)de = 2mi Z Res (f, 2).
o S F2>0

4.85 Example. The above applies to compute

/°° dx
0 1 + $6 ’
i(2k+1)m

In fact, if Cy., 7 >> 1, is as above, of the six distinct roots of 264+1 =0, 2z, :=e 6 R
k=0,...,5, that are the (simple) poles of f(z) := 1/(1 + z%), only 20, 21, 22 belong to
Cy. For k= 0,1,2 we have

L 52k + 1)
—1
R , = = 6
() = g = e
Therefore, we have
9 52k + 1)
T dx dz 271 —i 27
—+ = E e 6 = s
1426 v 1+ 26 6 = 3

where 7, (t) := re't, t € [0, ). Since f%v lizzﬁ — 0 when 7 — oo, we conclude

/°° de. 7
0 1+$6_3

4.86 Proposition (Fourier type integrals). Let A := {z = a+iy|y >
0} and let f(z) be a holomorphic function on a neighborhood of A except for
a finite number of singularities none of which is real, such that |f(z)] — 0
per |z| — 0o, z € A. Then, if w > 0, we have

/_OO f(z)e“*de =2mi Z Res (f(2)e™?, 2). (4.30)

2€32>0

4.87 Lemma. Let A={z=ax+iy|y >0} andlet f: ANB(0,R)* — C
be a continuous function such that |f(z)] — 0 as z — o0, z € A. Then, if
w >0,

/ f(z)e“"dz — 0 as r — oo

r

where 7., 1 > R, denotes the counterclockwise oriented upper bound of the
half-disk C,. in Figure 4.13.

Proof. For r > R we have
us
f(z)ezwz dz = / f(,’,eze)ewr cos Ge—wr sin G,L»,r,eze d9,
Yr 0

hence

‘/ f(z)e“* dz SM(T)/ e~wrsint, g9
Ve 0
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€ 7

Figure 4.14. Path integrations for integrating e/t and for Euler’s integral in Exer-
cise 4.91.

where M(r) := sup,c,, [f(2)|. Since from Jordan’s inequality 72T < Sige <1 for0 <
0 < 7, we have
/W e~ wrsinld. gg = 2/*7\'/2 emwrsinggg < T 1—-e")< T
0 0 2w - 2&),
the result follows. O

Proof of Proposition 4.86. Choosing R large enough so that the poles of f with positive
imaginary part lie in Cg, for » > R we infer from the residue theorem

r f(a;)eiwz dx + f(z)eiwz dz = 2mi Z Res (‘}c(z)eiwz7 Z)

Ir I2>0

and, when r — oo, the claim on account of Lemma 4.87. 0

Applying Proposition 4.86 to f(—z) we also have the following.

4.88 Proposition. Let B := {z = z +iy|y < 0} and let f(z) be a
holomorphic function on a neighborhood of B except for a finite number
of singularities none of which is real, such that |f(z)] — 0 as |z|] — oo,
z € B. Then, if w > 0, we have

/jo flz)e ™ dr = —2mi Z Res (f(2)e” %, 2). (4.31)

z€3]2<0

4.89 Example. For k& > 0 we have

o k
/ coskx do — ﬂe_k.
0 1+.’E2 2

The only poles of f(z) := e'*#/(1+ 22) are simple and at z = =i. Integrating along the
curves in Figure 4.13, we find

r ikzd ikz —k
/ ¢ m +/ N dz:Res(f,i):Qm'e  =qe k.
—r 1+ 22 v 14 22 2

Similarly, we find

and, in conclusion,
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> -

c = eim/n

Figure 4.15. The integration curve to integrate Fresnel integrals.

4.90 9 Laplace’s formulas. Prove that for o, 3 > 0

+ + ;
/ ooﬁcos(owc) ds — / Ooﬂsm(ocx) dp = Te—aB.
0 x2 + 62 0 x2 + 62 2

4.91 9 Euler’s integral. For o = 1 and 8 = 0, Laplace’s formulas suggest that

oo s -
sinz . sinx s

/ dr = lim de = .
0 T r—oo Jq €T 2

[Hint: Write sin z = e —e™"* .nd show integrating along the line v, in Figure 4.14

2%
that for e — 0 and r — oo
oo 1z 1T
€ . . € .
/ dz = lim lim dr = mi.]
—oc0 % r—=0e=0 Jecg|<r T

4.92 Example (Fresnel integrals). Let us prove that

oo oo 1
/ sina:Qda::/ cosz? dx = \/W.
0 0 2V 2
o2 I
dr = 1+1).
/0 e i 2\/2( +1)

We first compute

We integrate the function f(z) := et holomorphic on C along the curve in Fig-
ure 4.15, then we split such a curve as the sum of the three curves
t(l+1
'Yl(t):t7 tG[O,T], 'YQ(t): ( )7 tG[O,T]
V2
and 3(t) := ret, t € [0, m/4]. Goursat’s theorem yields
(2)dz — (z)dz + f(z)dz=0 (4.32)

Y1 72 3

/ﬂ f(z)dz = /OT eie” dz,

14+i [7 14+i [ 1
feyde= T [ e P ar - +Z/ et dt = \/W(lJri),
Y2 V2 Jo V2 Jo 2V 2

/4 )
f(z)dz = / irei™?0% i gg.
¥3 0

where
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Figure 4.16. Path integrations to integrate Mellin integrals.

Since i(cos § + isin6)? = i cos(20) — sin 20, we can estimate the modulus of the third
integrals by

/4 ) /4
/ re—r?sin(20) gg < / re " x0dp =" (1- e,T2)7
0 —Jo 4r

thus it converges to zero as r — oco. From (4.32) we conclude when r — oo that the
improper integral of ¢ exists on (0, +00) and

oo ro 1
6”2 dr = lim e””2 dr = T (1+79).
0 r—oo Jq 2 2

< 1
/ e dz = \/ﬂ- (1—19),
0 2V 2

thus the claim, using Euler’s formulas for sinz and cosz. Finally, we notice that the
change of variables x = \/t t > 0, yields also

smtd 7\/ /°° cost \/TI'-
0 2

4.93 Proposition (Mellin integrals). Let f be a holomorphic function
in C minus finitely many points leaving outside Ry := {z = z + iy|y =
0, « > 0} and let « be a real number with 0 < o« < 1. Suppose that
f(x) -0 asx — oo, x € R. Then

e?mior / f@ d:c 27rzZRes< o )
z#0
where z* denotes the leaf of 2* on C\ Ry such that (—1)* = e®1o8(=1) =

IO
€ .

Similarly, we have

o )
in Figure 4.16 where 7 >> 1, e << 1 and § << € in such a way that all singularities of
f but zero are contained in D,. . s. The residue theorem yields

[y (z)dz727rzZRes( (2), )

re,8 240

Proof. Set g(z) := fz(z> z € C\ {0}. Denote by 7, 5 the oriented boundary of D, . 5

for all » >> 1,e << 1 and § << €. Denoting with v4 and y_ the two horizontal parts
of ;. ¢.s and noticing that for z = z 4+ iy, > 0 and y — 0T, we have
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[eY alogz alog xz

2% =e — e =z° asy — 0T

[eY alogz

2 — e alogz+i2ma — e?ﬂ'zaxa

—e asy — 07,

we deduce for § — 0

/ g(z)dz — (1 — 627”0‘)/ z)dx + g(z)dz — / g9(z) dz.
~ o+ B(0,r) o1 B(0,¢)

Consequently, we have

(1—e )/e o dx+/3+B(O,T) z* dz*/a-*-B(o,e) Lo dz_ZﬂzZRes( o ,z).

z2#0
(4.33)
On the other hand, by Lemma 4.87 we have f3+B<0 ” fz(j> dz — 0 as r — oo, and

€8

’/ z‘ < M(e)e”*2me — 0 as € — 0.
o+ B(0,¢) Z“
Letting € — 0 and r — oo in (4.33) we get the result. m]

4.94 9. Show that [ ¢x<leC+x) =

c. Sums of series by the residue method
4.95 Gauss’s sums. For n > 1, Gauss’s sums are defined as

For instance, So = 2, S3 = 1 +iv/3, Sq = 2(1 +14). For large n, consider
the function

. exp (2miz?/n)
f(Z) =2 e2miz ]
which has poles at 0,£1,42,.... All poles are simple with residues

Le e2mik? /n respectively. Using the periodicity of t — e, integrating along

the path in Figure 4.17, and letting w — oo, a long computation® yields

o
Sp = 2i(1+ 23”)\/n/ e 2mit" gt
0

in particular,
2(1414) =85, =8i / o 2mit? gy
0
hence

Ze”*‘ laspasenyn =

4.96 §. Compute the asymptotic development of f;c e~ ttdt.
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n + iw
A
Y
I A
/) NI
A
Y
n — iw

Figure 4.17. Path integration for Gauss’s sums.

4.97 Theorem (Sums of series). Let f(z) be a holomorphic function in
C except on a finite number of isolated singularities at points different from

+1,42,.... Moreover, suppose that for some M, > 1 we have |f(z)] <
+o00o

M/|z|™ for all z with |z| >> 1. Then the series >, |f(n)| converges and
ere

we have

f f(n)=— Z Res( mf(z) z),

£ tan(rz)’
n=-—oo z singularity of f

n#0 or z=0

+o00

E (=1)"f(n) =— E Res < 7rf(z) ,z).

£ sin(7z)
n=—oo 2 singularity of f

n#0 or z=0

To prove the previous theorem, we observe the following.

4.98 Proposition. The functions cot(mwz) and 1/sin(nz) are bounded on
the boundary of the square

1
Qui={z=a+iy|lal.lyl <n+}

independently on n.
Proof. Let z =z + iy € 0T Qy. We distinguish two cases. If |y| > 1/2 then, see (4.21),

14 e 2pilyl 14 e

< h = =
| cot(mz)| < coth(m|yl|) 1 e—2nlyl S 1 omn C1,

whereas, if |y| < 1/2, then necessarily |z| = n + 1/2, hence cot(n(z + iy)) = cot(w/2 +
imy) = tanh(7y), from which
|cot(mz)| < tanh7|y| < 1.

Therefore |cot(mz)| < C := max(C1, 1) on Q. Similarly, one proceeds to prove that
1/ sin(7z) is bounded on Q) independently on n. ]
1 see, e.g., G. Sansone, J. Gerretsen, Lectures on the Theory of Functions of a Complex
Variable, P. Noordhoff, Gréningen, 1960, vol. 1, p. 139-141.
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Figure 4.18. Leonhard Euler (1707-1783) and Gosta Mittag-Leffler (1846-1927).

Proof of Theorem 4.97. The decay at infinity of |f| clearly implies the convergence of
the two series Y o7 1 |f(n)| and > 72 ; | f(—n)|. Let us prove the first equality; one can
similarly prove the second using instead the boundedness of 1/sin(wz). Set g(z) :=
f(z)m cot(mz). Since |cot z| < C on dQ, with C independent on n, we have

M 1
‘/ f(z) cot(mz)dz| < 8¢ a (n + ) —0 (4.34)
1 2
" ()
as n — oo. On the other hand, f has no singularites outside @, for n large and g

has poles only at 0,4+1,42,... or inside @, for n large. From the residue theorem and
(4.34) we infer that

Z Res (wf(z) cot(wz),z) —0 as n — oo.

2€Qn

Since the singular points of cot(wz) different from zero are simple poles and f is holo-
morphic in a neighborhood of those points, we find for &k € Z, k # 0

cos(mz 7 cos(mk
Res (9(2), k) = Res (£(2)n ) 1) = 5y TNy,
sin(7z) m cos(mk)
hence
Z f(k)+ Z Res (g9(2),2) — 0 as n — oo,
ZEQn
k#O zsingularity of f or z=0
i.e., the result. [}

4.99 Theorem (Mittag-Leffler). Let f be a holomorphic function in
C minus a sequence of points {an}, all simple poles for f and without
accumulation points. Set by, := Res (f(2), an). Suppose there is a sequence
of radii {rn} with r, — oo such that the restriction of f to 0B(0,1y) is
continuous and for some M > 0 we have |f(z)| < M Vz € 0B(0,ry,) Vn.
Then for all z and ¢ € C\ {a,}, the series



4.6 Residues 207

converges, and

f(z)—f(C):—an(anl_Zfanl_c) Vz, (€ C\ {an}. (4.35)

Moreover, equality holds in the sense of uniform convergence on compact
subsets of C x C.

Proof. If w # apn Vn, the function g(t) := f(¢)/(t — w)
(i) is holomorphic in C\ {a1,a2,...,w},
(ii) has a simple pole at each a, with residue given by
f(2) 7an) — lim (z —an)f(2) _ bn

z—an zZ—w an —Ww

)

Res (

zZ—w

(iii) has a simple pole at w with residue given by

Res (zfizz)u’w> = lim (== f)f(z) = f(w).

zZ—w z w

From the residue theorem we can deduce

fwy+ ™ 1/a O

an€B0mm) ap —w 21t Jo+B(0,rn) M — W
Evaluating with w = z and ¢ and subtracting we get

-0+ Y w( bt J (4.36)

ap —z ap —
aR€B(0,rn) k k

1 1 1
- 211 /f‘)+B(0,T”)f(t)<t— z B t— C> dt
1 (—z

= omi /mB(o,m TOG e -0

If now rn > max(|z|, |¢|) and [t| = rn, we have |(t — 2)(t — ¢)| > (rn — [2])(Irn] = [C])
hence

dt.

11 M|¢ — z|27ry, _ _
/ms(o,rn)f(t)(t—z t—c)dt‘gm—\zb(m—c) 0 wnme

uniformly on C x C. It follows from (4.36) that for all z and ¢ in C\ {an},

f@-ro+ X owm(, L - )0

ap — =z ap —
ap€B(0,rn) k k

as n — oo uniformly on bounded sets of Cx C, i.e., the convergence of > ; b, (a L

n—=~%

I—C) and the (4.35). O

an
4.100 Example (The Euler formula for cot z). The function
1
f(z) =cotz—
z
has singular points at z = kn, k € Z. Since
1 zcosz —sinz

cotz — = .
z zsinz
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f has a removable singularity at zero, and we may assume that f(0) = 0, has simple
poles at the points zp = kmw, k = £1,£2,... and, by Proposition 4.98, is bounded
independently on n on 0Qn, Qn = {z + iy||z|, |y| < n+ 1/2}; finally,

kmcos(km) —sin(km)

Res (£(2), k) = sin(km) 4 kmcos(km)

Therefore, by Mittag-Leffler’s theorem we have at any point z # kw, k € Z, k # 0,

1 1
cotz— = f(z)— f(0) =— ( — )

R CEEND D (R
n#0
1 1

= X ()
e N e L
n#0
Rearranging the sum by first summing the terms with indices £1, £2,..., we find

cot z — :Z_:(z—nw ! ):2z§: ! (4.37)

b
z+nw — 22 —n?m?

i.e., the celebrated Fuler’s formula for cotangent: the series 0 | L2 }LQWZ converges
for every z # km, k € Z, k # 0, uniformly on bounded sets and

e 2
zeotz—1=23"  ° Vastkm keZ, k#£0. (4.38)
IZ — nNeTm

Integrating (4.37), we get for every z # kmw, k € Z, k # 0,

o (smz) Zlog( 7k§721-2>

uniformly on bounded sets of C. Here log denotes a leaf of the complex logarithm
containing 1 and sin(z)/z with log1 = 0. Finally, by taking the exponential, we get the
Euler formula for sin z

oo 2
sinzzzlj( n27r2> Vz # km, k € Z,

uniformly on bounded sets of C.

d. Z-transform

Let a = {a,} be a sequence that grows at most exponentially, i.e., there
are C' and R such that |a,| < CR™, so that

r = limsup V/]an| < R < +o0.
n—oo

To the sequence {a,} one can associate the power series Y °  a,w",
which, as we know, converges in the disk {z||z| < 1/r} to a holomor-
phic function S(w),

oo
= Zanw” Yw, |w| < 1/r.
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The function S(w), or its unique holomorphic maximal extension, which we
denote again by .5, is sometimes called in the applications the generating
function of the sequence {a,}. Trivially, it is also well possible to consider
the negative power series Y~ ay, ., which in turn converges in {z||z| >
r} to a function A(z)

— 1
2) = Z:Oan i Vz, 2| > (4.39)
which is holomorphic in |z| > r since trivially

A(z) = S(i) Vz, |z| >

The function A(z), or its unique holomorphic maximal extension, which
we denote again by A, is called the Z-transform of the sequence {a, }. The
number 7 is called the radius of convergence of the Z-transform.

The generating function and the Z-transform are trivially equivalent
tools that are useful in many circumstances as for instance in combina-
torics, probability theory, or when studying sampling or digital filters. We
state here a few facts as they follow easily from the theory of power series
and holomorphic functions by changing variable w — z = !

w*

4.101 Proposition. Let A(z) be the Z- tmnsform of {an} and let v, =
limsup,, o ¥/|an|. Then the series > o o an ;

(i) converges absolutely if |z| > rq,

(ii) does not converge if |z| < rq,

(iii) converges to A(z) uniformly on any closed set strictly contained in
{zllz] > ra}.

We have
> n
- _ E Un gy Vz,|z| > ra.
n=0

4.102 Proposition. Let {a,} and {b,} be two sequences and let A(z) and
B(z) be their Z-transforms with radii of convergence respectively r, and
Tp.

(i) (LINEARITY) Let A\, € C. The Z-transform C(z) of {Aa, + pby,} is
defined at least on {z||z| > max(rq, )|} and

C(z) = MA(z) + pB(2).

(ii) (CoNvOLUTION PRODUCT) Let {(a*b),}, (a*b)p = ) _oarbn_k,
be the convolution product of the sequences {a,} and {b,}. The
Z-transform C(z) of {(a % b)n} is defined at least on {z||z]|
max(rq,7p)} and
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(iii) (Probuct) The Z-transform C(z) of the sequence {anby} is defined
at least on {z||z| > rqarp|} and

1 z
= A(w)B

where rq < p < |z|/rp.

4.103 Example. Let us collect a few examples.

(i) Let dx be the sequence with 1 at place k and zero otherwise, often called the
Kronecker sequence. Its Z-transform is A(z) := zlk with r = 0.

(ii) (CONSTANT SAMPLES) The Z-transform of {an} with an :=1 Vn is

= 1 1 z
A(z) = = = s zl > 1.
) T; 2" 1-— i z—1 12l
(iii) (LINEAR SAMPLES) The Z-transform of {an}, an :=n Vn is
oo 2 oo o0
_ _ —n—1 _ -n
A(z)—Z:Zn—zZ:nz —7ZZ:D(Z )
n=0 n=0 n=0
z z
= —zD = — s z| > 1.
z—1 (z —1)2 2

(iv) (EXPONENTIAL SAMPLES) The Z-transform of {¢"} is

oo

1 z/q z
A(z) = mo= = z| >q.
@=3 = =T
For instance A(z) = _ %, if an = einw,

4.104 Example. The following examples illustrate how the action on a sequence op-
erates on the corresponding Z-transform.

(i) (FORWARD SHIFT) Let ar, :={0,...,0,a1,az2,...} be the forward shift of k places
- ~ -

k times
of the sequence {an}. We have r, = 1, and

o0
1 1
B(z) = Z Wi = ok A(z), |z| > raq.
n==k

(ii) (BACKWARD SHIFT) If by := ay 4 defines the backward shifting of k places, then
again r, = rq and
1

a1 ap—1
Zn:zk(A(z)—ao— — = ), |z] > 7.

z zk—1

o0
B(z) = Z An+k
n=0

(iii) (LINEAR SAMPLING) If by, = nay, Vn, then 7, = rq and

oo

1
B(z) = b = —2A'(2), > 7.
(z)=> n " o zA'(2) |z > 7y

n=0

(iv) (EXPONENTIAL SAMPLING) If by, = ¢ an, then r, = |q|rq and

B(z):A(é)7 |z| > 7.
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(v) (PERIODIC SAMPLING) If {by, } is periodic of period p, i.e., by4p = by Vn, and

{bn if0<n<p,
an =

0 ifn>p,
then
0o 0o (k+1)p—1 1 oo p—1

P

- 1 /= 1 1 & 1 z
- kz::O o (;Obnzn) - kz::O e (;::Oanzn) = AR >
Let A(z) be a holomorphic function on {z||z| > r} with a removable
singularity at infinity, i.e.,

A
lim wA(1/w) = lim (2) =0,
w—0 z

zZ—00

then A(1/w) is the sum of a power series A(1/w) = > °°  a,w™ in the
ball B(0,1/r), and

Sanl, s
= Qp, 5 z T.
n=0 z"

According to Theorem 4.74 and (4.29)

1 S(s) S(2) -1
= ds = ,0) = — A(z)z" 7,
a ) /B+B(O,t) bl = Res (an 0) Res (A(z)z 00)

271

where 0 < t < 1/r. Thus we can state the following.
4.105 Proposition. If A(z) = Y0 (an b, |z| > 7, then
an = —Res (A(z)2" 1, 00) vn.

Finally, we notice that if A is holomorphic in C but a finite number
of points {p1,...,pr}, as in the case of the quotient of two polynomials,
Corollary 4.79 yields

an = —Res (2" 1 A(z ZRes (2)2"1,pj).

Notice that for every j, p; is a singularity of A(z)z"~! of order independent
of n, so the computation of all residues Res (A(z)2""1, p;) Vn at p; can be
done in one single step.

The Z-transform is particularly useful when dealing with difference
linear equations.
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4.106 Example (Fibonacci numbers). The sequence {fn} of Fibonacci numbers is
defined by

fn+2:fn+1 +fn1 nZO,

fo=0, fi=1,
and one computes, see [GM2],
L (/14+VB\n 1—+5y\n
fn:=\/5(( ) -0 )) n > 0. (4.40)

We may get the same result by means of the Z-transform. We notice that the Z-
transform of {fn},

FE =D fn
n=0

converges at least at each z with |z| > 2. Multiplying by 1/2™ each equation and
summing on n, we find

22(F(2) = fo— f1l/2) = 2(F(2) — fo) = F(2) =0,
ie.,

F(z) = Vz, |z| > 2.

22 —2z—-1

1 "
fn= . / 5 dz
2t Jo+B(o,r) 27— 2 — 1

Therefore,

where r > 2, or

ZTL

fn = —Res(gn(2),00),  ga(2) = .
ze—z—1

Now the computation of f, is only apparently iterative. The functions g, (z) are holo-

morphic on C\ {a, b} where

1++/5
a =
2

1=

, b
2

are the simple roots of the equation 22 — z — 1 = 0. From Corollary 4.79

—Res (gn(2),00) = Res (gn(z), a) + Res (gn(2),b)

ie.,
f = Res (9n(2),0) + Res (gn(2), D) =a” 1 o !
n = Res (gn(2),a es (gn(2),b) = a 9 — 1 % — 1
1 1
= a” — b,
V5 V5
hence (4.40).
In general, consider the linear difference equation
UnTntk + Ok—1Tntk—1 + -+ Q0Tp = fnt1, n > 0. (4.41)

Suppose that the Z-transform X (z) and F(z) of the sequences x,, and f,
(where fy = 0) have radius of convergence 7, and r¢. Then by the linearity
and the formula for backward shifting we find
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> 1
anJrl n = ZF(Z)a
n=0

o0

1
Z (ak$n+k~ +k—1Tntk—1 + -+ aoxn) n
n=0
ook
=22 aitnni 3 T o
n=0 j=0 7=0n=0
k -1
:Za]z3<X(2)— Z)
ZZ
3=0 =0

hence the equality

Za]z]< Z):zF(z),

where P(z) := Z?:o ajz’ is the characteristic equation of (4.41), which
allows us to compute the Z-transform of the sequence {x,} in terms of
P(z), F(z) and of the first k terms of the sequence.

.
I
o

4.107 Proposition. Let P(z) be the characteristic polynomial of (4.41)
and F(z) the Z-transform of {fn}, fo = 0. If 1/P(2) and F(z) are
holomorphic respectively in {|z| > rp} and {z||z| > r;}, then the Z-
transform X (z) of a sequence {x,} satisfying (4.41) exists at least on
{z||#| > max(rp,rp)} and

k j—1

X(z)= sz) (z F(z) + Zajzj(

=0 i=0

e. Z-transform of a sequence of vectors

The method of Z-transform is not limited to scalar equations. We may
extend it to sequences in a normed space, in particular to sequences in C™.
Consider the series

S fe =Y feech. (4.42)
k=0 k=0

It is easily seen that the series (4.42) converges absolutely for every z with
|z| < p where

= limsup /| fnl-

n—o0

Consequently the series (4.42) converges absolutely to a function F'(z) with
values in CV
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F(z):= kazk ecCV, |z| < p
k=0
or, in coordinates, if fi == (f¢, f2,..., f&¥) and F(z) = (F(2), F%(2),
L FN(),
. i .
Fi) =S fit, lel<p
k=0
foralli=1,...,N.

Consequently, we may apply the theory of residues to conclude for
instance that

) Fi
f;:Res(zn(fl),o) Vi=1,...,N, ¥n >0,

or in vectorial notation

fn = Res <51(f3 , 0) Vn > 0.

Similarly, we may define the Z-transform of a sequence {f,}, f, € C¥,
with |f,| < CR™ for some C' and R > 0, as the series

1

n=0

It converges absolutely at every z with |z| > r where

r := lim sup {L/fn|,

n—oo

to a function S(z),

ZTL

S =S fu L >y
n=0

with values on CV. Each component of S(z) is holomorphic, and by the
residue formula we have

fn = —Res (2"715(2), 00) Yn > 0.

Moreover, if S(z) is holomorphic on C" except for a finite number of sin-
gularities at p1, pa,..., pk, then

k
fn = —Res (2"718(z2),00) = ZRes (z"71S(2),p;).
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4.108 Remark. A special interesting case is the case of series with matrix
coefficients Fy, € My« n(C),

> F2m. (4.43)

The power series (4.43) converges absolutely for all z with |z| < p,

1
= limsup {/|F,|
p

n—oo

where |F| is the norm of the associated operator F', x — Fu, i.e.,

F
|F| := sup [Fz]
zecN |.’L'|
z#0

to a function F : B(0, p) C C — M n(C),

o
F(z) = ZFnzn S MM,N((C), ‘Z‘ < p,
n=0
or, term by term,

oo

Fi(z) = Z(Fn);z”, |z| < p.

n=0

f. Systems of recurrences and Z-transform

Let A € Myyy and {F,} C CF with F, = 0. Consider the system of
recurrences

Xnt1=AX, +Foy1 Vn >0, (4.44)
Xy given.
Here we want to find its solution, given by
n
X, = A"Xo + ZA"—JFj Vn > 1, (4.45)

j=1
by means of the Z-transform.

Let X(z) =77 X, } and F(z) =Y, F, ', be the Z-transforms

of {X,} and {F,} (Fy := 0) with radius of convergence rx and rp, re-

spectively. Multiplying the equations in (4.44) by 21 we find

2(X(2) — Xo) = AX(2) + 2F(2), |z| >> 1

ie.,

<z Id - A)X(z) = 2(F(2) + Xo).
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If 2 is not an eigenvalue of A, in particular if |z| is sufficiently large, then
zId — A is invertible, hence

X(z) =2(z1d - A)il(F(z) +Xo),  le>>1 (4.46)

or, by Cramer’s formula,

1

X(2) = det(z1d — A)

zcof (z1d — A)(F(2) + Xo)
from which
X, = —Res (2" X (2), 0) VYn > 0.

Cramer’s formula shows us that the singularities of X (z) are the eigen-
values of A and the possible singularities of F'(z). In particular, if F(z) is
holomorphic on the whole of C, we get

X, = —Res (2" 1 X(2),0) = > Res (2" 71X (2),\).  (4.47)

A eigenvalue of A

4.109 Example (Fibonacci numbers, IT). Fibonacci’s recurrence can be written as
Fni1=AF, Vn >0,

0 A = 01 .
Fo = 11
1
If F(z):=>7°Fn zln , multiplying by zln each equation we find

2(F(z) — Fo) = AF(z),

ie.,
F(z)=2(z1d — A)"'Fy

if z is not an eigenvalue for A. Now

sd—A= (7% 1
-1 z-1

_ -1 1
d-A)"l= _ ° z .
(z ) z2—z—1< 1 z

and by Cramer’s rule

Thus

and again, see Example 4.106,

n

fn:X}L: 7Res(z2 _Zz_l,oo).
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4.7 Further Consequences of Cauchy’s
Formula

a. The argument principle

4.110 Theorem (The argument principle). Let A CC § be a regular
domain of C, by, ba,..., b € A and let f € H(Q\ {b1, ba,..., br}) be
continuous and nonzero on 0A. Assume that by, ba, ..., by are poles of
order respectively q1, qo, - - ., qr, and let a1, as, ..., ap be the zeros of f in
A with multiplicity respectively p1, p2, ..., pn. Then

h k
1 f(©)
. dc=) pj—) 4
2mi Jo+a f(Q) ; ’ ; !
= # zeros - # poles of f according to multiplicity.

Proof. The residue theorem yields

1 Q) . & AN i

. [9+A o« —;Res ( . a;) +;Res ( ; b5)-
In a neighborhood of a; we have

£(2) = @(2)(z— a;)", ¢ holomorphic, @(az) # 0,
hence

f'(2) _ @' (2)(z = aj)P + @(2) pi(z — aj)Pi ™ ¢/(2) 4+ P
f(z) e(2)(z — az)Ps e2)  z—a;’

therefore Res (J}/ , aj) =Ppj-

Similarly, in a neighborhood of b; we have f(z) = ¥(z)(z—b;)~% for a holomorphic
function v with 1 (b;) # 0. It follows

f'(z) _d'(2) aj

fz) ez z-b
i.e., Res (f/

(i ,b]') = —q;- O

4.111 Theorem. As in Theorem 4.110, suppose moreover that g is a
holomorphic function in Q2. Then we have

1 O, & :
omi /Mg &) = ;pjg (a5) - ;qﬁg (b2)

4.112 §. Prove Theorem 4.111.

4.113 9. Under the assumptions of Theorem 4.110, compute

1 zf!(2) 1 22f(2)
2m'/a+,4 ) 2m'/a+,4 f)
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4.114 9. By means of Theorem 4.111 prove the following.

Theorem (Jensen). Let f be a holomorphic function with singularities in an open

set Q with finitely many poles by, ba, ..., by, of order respectively qi, q2,..., qn con-
tained in a ball B(0, R). Suppose moreover that f is continuous on OB(0, R) and let
ai, az,..., ag be the zeros of f of multiplicity respectively pi1, p2,..., pr on the ball

B(0, R). Suppose that f(0) exists and f(0) # 0. Then

27 . k h
oy [ 10B1A(re )| d6 = 1og 7O + 3 pilos(R/lasl) ~ 3 ailog(R/Ibi):
T Jo i=1

=1

b. Rouché’s theorem

4.115 Theorem (Rouché). Let Q C C be an open set, let f,g € H(Q),
and let A CC Q be a regular domain of C. If

£ —9(OI <lg(O] V(€A

then f and g have the same number of zeros in A counted according to
their multiplicities.

Proof. For ¢ € [0,1] the function h¢(z) := g(z) + t(f(z) — g(2)) belongs to H(2). From
the assumption, we have

1he (O] = 19(¢) + t(f(O) — 9N < V(O] =t f(¢) —9(O)] >0

for all ( € OA. The argument principle yields

h(C) . _ .
/8+A he () d( = # zeros of ht in A.

Since the quantity on the left is continuous in ¢, the number of zeros of h¢ in A (counted
according to their multiplicities) varies with continuity when ¢ varies in [0, 1]. Since the
number of zeros is an integer quantity, it is constant. Thus, we find

# zeros of g = # zeros of hg = # zeros of h1 = # zeros of f in A.

O

4.116 . Let f € H(Q2) be nonconstant and let zg € Q be a root of multiplicty k
of f(z) = a. Show that, for every sufficiently small neighborhood U of zg, there is a
neighborhood V' of a such that for all b € V' the equation f(z) = b has exactly k distinct
solutions in U. [Hint: Notice that there exists p > 0 such that |f(z) —a| > 6§ > 0 on
0B(z0, p) and that

: I'(2) 1
ik = dz = ¢ = 1(v,
" /3‘*'3(207;)) f(z) —a - /y (—a ¢ (@)

where v is the image of 7 B(z0, p) by f and I(y,a) is the winding number of ~ with
respect to a. If b is close to a, we also have |f(z) — b| > §/2 > 0 Vz € 0B(z0,p) and
I(~,b) = I(~,a), see Proposition 4.40. It follows that f(z) = b has k roots in B(zo, p)
when counted according to their multiplicities. They are simple since f’(z) # 0 in a
sufficiently small neighborhood of z.]
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c. Maximum principle
Let © be a bounded domain in C and f € H(Q). If B(z,r) C C, Cauchy’s

formula
1 f(Q)
Zo) = . d
f( O) 2mi /8+B(zo,r) C — 20 C
rewrites as . o
f(z0) = fz0 +re)df, (4.48)
21 Jo

ie., f(z0) is the average of f on dB(zp,r) Vr. This implies, or, better,
is equivalent to saying that f(zo) is the average of f on B(zp,7), as one
can easily prove. This is referred to as the mean property of holomorphic
functions. As a consequence we have the following.

4.117 Theorem (Maximum principle). Let f € H(Q), Q being a do-
main of C. If | f| has an interior local maximum point, then f is constant.
Moreover, if f € H(Q)NC%Q), then

|f(2)| <supl|f(z)] VzeQ
o0

and, if f is not constant,

If(2)] <sup|f(z)]  ze€
09

Proof. Let us prove the first part of the claim, from which the second part follows at
once.

If f(z0) = O the claim is trivial. Otherwise, multiplying by 1/f(z0), we can and do
assume that f(zo) = 1. In this case, we trivially have

R(1—f(z) 2RA - |f(z))) 20  for z € B(zo,70),
R(1— f(2)) =0 if and only if f(z)=1.
We deduce from the mean property that

27
R(1 — f(z0 +re'?)) do = 0;

(4.49)

0

while, from the first of (4.49), that f(z) =1 on dB(z0,r). Since r is arbitrary, f =1 in
a ball B(zp,7r0) C 2, hence in €, since  is connected. O

4.118 Corollary. Let Q be a domain of C, B(zo,7) CC Q, and let f €
H(Q). If

£ (o)l < min{|£(Q)] | € € DB(z0,17)},
then f has a zero in B(zo,T).

Proof. Suppose f # 0 in B(zo,r), then g(z) := 1/f(z) is holomorphic in some open set
Q' with B(zo,r) CC Q. From the maximum principle

lg(z0)] < sup  [g(¢)]
ce )

(z0,7
ie.,
min{|£(O)l| ¢ € 9B(z0,m)} < 11 z0)l,

a contradiction. O
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d. On the convergence of holomorphic functions

From Cauchy’s formula and the maximum principle, we infer at once the
following theorems.

4.119 Theorem (Weierstrass). Let {fir} C H(Q). If {fix} converges
uniformly to f in Q, then f € H(Q).

4.120 Theorem (Morera). Let {fr} C H(Q). If {fx} converges uni-
formly to f on compact subsets of Q, then f € H(Q) and for all integers
J» Djfr — D;f uniformly on compact sets of Q.

Cauchy’s estimates, which give uniform equiboundedness on compact
sets of each sequence of derivatives of a uniformly equibounded sequence
of holomorphic functions, together with the Ascoli-Arzela theorem yields
at once the following.

4.121 Theorem (Montel). Let {fi} be a sequence of holomorphic func-
tions in Q that are uniformly equibounded on the compact sets of Q2. There

exists a subsequence of {fi} that converges uniformly on the compact sets
of Q to a function f € H(Q).

4.122 Theorem (Vitali). Let {fi} C H(Q2) be an equibounded sequence
on the compact sets of Q0 and let {z,} be a sequence converging to zo € ).
If {fr} converges pointwise in {z,} U {20}, then {fr} converges uniformly
on compact sets of Q to f € H(Q).

Another classical theorem concerning the convergence of holomorphic
functions is the following.

4.123 Theorem (Hurwitz). Let {fi} C H(Q) be a sequence that con-
verges uniformly on compact subsets of Q to f € H(Q).

(i) If B(zo,7) CC Q and f(z) # 0 on 0B(zo, 1), then there exists n such
that f, and [ have the same number of zeros in B(zg,1),
(ii) If every f, is injective and f is nonconstant, then f is injective.

Proof. Let ¢ := inf{|f(2)| ||z — 20| = 7} > 0. Since f; — f uniformly on the compact
sets of 2, there exists n such that for all n > n

FOI2 6> ) 21O = F©O ¥ € IBa0, 7).

(i) then follows from Rouché’s theorem. Let us prove (ii). Suppose that f is nonconstant
and noninjective. Then there exist two distinct points z and w such that f(z) = f(w).
Set F(¢) := f(¢) — f(w) and Fr(¢) := fn({) — fn(w). Since F(z) = 0 and F is non-
constant, we infer from Theorem 4.35 that z is an isolated zero of F), i.e., there exists
r < min(dist (z, 99), dist (z, w)) such that F(¢) # 0 for all ¢ € dB(z,r). Since F,, — F
uniformly on compact sets of €2, from (i) we infer that F}, and F' have the same number
of zeros on B(zg,r), a contradiction since Fy, is injective and F(z) = 0. O
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e. Schwarz’s lemma

4.124 Theorem (Schwarz’s lemma). Let f € H(D) where D is the
unit disk D :={z||z| < 1}. If

f(0)=0 and lf(2)] <1 forall z, |z| <1,
then

(i) [/(0)] <1 and [f(2)] < |z V2 € D,
(i) of [f(0)] =1 or |f(20)| = |z0| at zo # 0, then f(z) = az Vz € D for
some a € C with |a| = 1.

Proof. (i) The function
z)/z if z#0,
PRV FICTAR
F1(0)  ifz=0,
is holomorphic in D. Since |f(z)| < 1 Vz € D, we have |g(z)| < r—! on 8B(0,7) Vr,

0 < r < 1, and the maximum principle yields |g(z)| < r—! for all z € B(0,r). When
r — 1, it follows that |g(z)| <1 for all z € D, i.e., |f(z)| < |z| and | f/(0)] = ]g(0)| < 1.

(ii) If | f(20)| = |20| for some z9 € D, zo # 0, or, if |f/(0)| = 1, the function |g| attains
its maximum at an interior point of D. Thus, by the maximum principle, g is constant,
9(2) = a with |a| =1, consequently f(z) = az. O

f. Open mapping and the inverse theorem

The maximum principle yields a self-contained proof of the local invert-
ibility theorem for holomorphic functions. We have the following.

4.125 Theorem. Every nonconstant holomorphic function f € H(Q) is
an open map.

Proof. Let zg € Q and wo = f(z0). We need to prove that for every r» > 0 there exists
6 > 0 such that B(wo,d) C f(B(zo0,7)). Since f is not constant, z — f(z) — wo has an
isolated zero in Q. Therefore, for r small enough, we have f(z) # 0 in 8B(zo,r). Set

0<2:= i - .
ceotim |f(2) — wol

For all w € B(wo, d) and all ¢ € dB(zo,r) we have
[£(Q) —wl = [£(¢) — wo| — |wo —w| > 6

while |f(z0) — w| < §. Consequently, for the holomorphic function F,,(2) := f(z) — w
we have

Fu(z0)| < min Fu .
[Fu(zo)l < _min  Fu(C)

This implies that F,, has a zero in B(zo,r), i.e., for every w € B(wo,¢€) there exists
z € B(z0,r) such that f(z) = w. In other words, B(wo,d) C f(B(z0,1)). O

4.126 Theorem. Let f € H(Q2) be one-to-one. Then f' never vanishes,
() is open, and f~1: f(Q) — Q is holomorphic with

@ () =1 Ywe f(Q).
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Proof. Since f is open by Theorem 4.125, f(2) is open and f is a homeomorphism
from Q into f(£2). Suppose now that f’(z9) # 0 at some zp €  and let g = f~! and
wo = f(20). We have

g(w) —g(wo) _ g(w) —g(wo) _ 1
w — wo flg(w)) = f(g(wo))  f'(g(wo))

since w — g(w) is continuous. This proves that g = f~! is holomorphic on the open

set S :={z € Q| f'(z) # 0} and
Y@ () =1 Vvzes. (4.50)

Let us show finally that f’ # 0 in Q. Since f is nonconstant, the zeros of f’ form a
closed and discrete subset of Q. Therefore, f(S) is closed and discrete, too. Moreover,
as we have seen, f~! is holomorphic on f(Q2\ S) = f(Q) \ f(S), thus f~!: f(Q) — Q
is a holomorphic function with eventually a closed, discrete set of point singularities,
which are, in fact, removable since f~! is continuous on f(2). Finally, passing to the
limit, we extend (4.50) to all points zg € f(Q). O

4.8 Biholomorphisms

Let © be an open set of C. A function f : Q@ — f(Q) C C is called a
biholomorphism between Q and f(Q) if f is holomorphic, invertible with
holomorphic inverse. Of course, a biholomorphism is also a homeomor-
phism and, as we stated in Theorem 4.126, f is a biholomorphism between
Q and f(Q) iff f is holomorphic and injective. A biholomorphism with
Q= f(Q) is called an automorphism of 2. We now discuss automorphisms
of the unit disk D = B(0, 1).

4.127 Definition. Let a € C, |a| < 1. The map

zZ—aQa

Pal2) = 4

T 1—az’
is called a Mobius transformation.

It is easy to show that

(i) @q is holomorphic in {z # 1/a}, in particular, ¢, € H(D),
(ii) ¢, maps D one-to-one into D, and ¢, = p_, since @u(p_qo(2)) =
2= 6o altalz),
(iil) |pa(e?)| = |Le_miai| =1, le., ¢4 : 0D — 0D is injective and surjec-
tive.

(iv) ¢'(0) =1~ laf?, 4(a) = (1 —[al*)~".

Essentially, Mobius transformations are all and the sole automorphisms
of D.
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4.128 Theorem. If f : D — D is an automorphism of D, then f = a p,
for some a € D and « € C with |o| =1, i.e., every automorphism of D is
the composition of a Mdbius transformation with a rotation. In particular,
f extends to a biholomorphism in a meighborhood Q of D, which is in
particular a homeomorphism from D into D.

Proof. Suppose that f(0) = 0. Schwarz’s lemma applied to f and f~! yields

IF) <zl = 1f T @) < Uf(2)] Vze D,

hence |f(z)| = |z|. Now, again by Schwarz’s lemma f(z) = cz. For the general case it
suffices to consider F := fop_q, a = f~1(0). m]

The following also holds, but we shall not prove it.

4.129 Theorem. We have

(i) All and the sole automorphisms of C are the maps
z—az+b, ae€C\{0}, beC,

(ii) All and the sole automorphisms of C\ {0} are the maps of the type
z—az or z — b/z with a,b € C\ {0}.

a. Riemann mapping theorem

A natural question to ask is whether or when two given domains 2 and
Q' are biholomorphic. Of course, they need to be homeomorphic, but this
does not suffice. We have the following.

4.130 Proposition. C and the unit disk {|z| < 1} are not biholomorphic.

Proof. In fact, if f: C — D is holomorphic, f is constant by Liouville’s theorem. O

We could also prove the following, but we shall not do it.

4.131 Proposition. The annuli {r1 < |z| < R1} and {rs < |z] < Ra}
are biholomorphic if and only if Ry/r1 = Ra/rs; in this case, a family of
biholomorphisms is given by z — e Az, X :==ry/r1, w € R.

We shall only discuss the case of simply-connected domains  and '.

4.132 Theorem (Riemann). Every simply connected domain  # C is
biholomorphic to the unit disk. More precisely, for every zg € € there exists
a unique f € H(Q) with f(z0) =0, f'(20) real with f'(z0) > 0 such that f
is a biholomorphism between Q and the unit disk {|z| < 1}.
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Proof. Uniqueness: The uniqueness is proved by contradiction: if fi and f2 are two
biholomorphisms between 2 and the unit disk D, then fz o f;~ Lis an automorphism of

the unit disk, and by Schwarz’s lemma, fs o ffl(z) =zVz € D,ie, f1 = fa.

Ezistence: The existence is proved by successive steps. Following Koebe2, one considers
the family

F = {g € H(Q), g injective, |g(2)| <1, g(z0) =0 and ¢'(20) € R, ¢'(20) > O}

We then show that there exists f € F that maximizes |f’(z0)| and that such a function
has the requested properties.

Step 1 F # 0. Choose a ¢ Q and, Q being simply connected, consider in Q a leaf
of v/z —a, which we denote by h(z). The image h(2) is open hence covers a disk
B(h(z0), p) of sufficiently small radius. Moreover, h(£2) is contained in one of the two
connected components of f~1(Q), f(z) = 22 + a. Thus h(z0) and —h(zg) belong to
different connected components of f~1(£), hence for a sufficiently small p we also have
B(—h(z0),p)) NQ =0, i.e., |h(z) + h(z0)| > p Vz € Q, in particular 2|h(z0)| > p. We
now claim that the function

go(z) =" W' (20)] h(z0) h(z) — h(z0)
© 4 |h(20)]? B/ (20) h(2) + h(z0)
belongs to F. In fact, it is holomorphic, go(z0) = 0, ¢’(20) € R and is positive, and
lgo(z)] < 1 Vz € Q, since
h(Z)*h(ZO)‘ :|h(zo)|‘ 1 B 2 §4|h(z0)|.
h(z) + h(20) h(z0)  h(z)+ h(z0) P

Step 2. Let {gn} C F be a sequence such that |g;,(z0)| — supyc |9’ (20)|. Since {gn}
is equibounded, it has a subsequence, which we still denote by {gn}, which converges
uniformly on compact sets of €2 to a holomorphic function f. Clearly, in Q we have
f(z0) = 0and f(20) =, || = sup e+ 19'(20)| < +o0 and f is not constant. Moreover,
f is injective. In fact, for g € F with g(z) — g(z1) # 0 in Q \ {z1}, Hurwitz’s theorem
grants that for the limit f we also have f(z) — f(21) # 0 in Q \ {z1}. This proves that
f € F, f maximizes |g’(z0)| among the functions in g € F, and, by Theorem 4.126, f
is a biholomorphism between © onto f(£).

Step 8. We claim that the function f constructed in Step 2 maps onto the disk. Suppose
this is not the case and let wg with |wo| < 1 be such that f(z) # wo Vz € Q. Then we

can define a leaf in € of
F(z):= Fz) = wo
1—wof(z)
that is again injective with |F'| < 1. Now set
F’ F —F
Gy o IF/GON (&)~ Flao)
F'(20) 1— F(20)F(z)

that belongs to F since it vanishes at zp and has positive derivative at zg. It turns out

that
1+ |wol

¥ >,
24/ Jwo

a contradiction. [}

G (20) =

2 See L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1966.
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We may ask what happens when z — 25 € 9Q. It can be shown that
in this case f(z,) converges to the boundary of the disk and that, if f :
Q — ' is a biholomorphism and 92 and 9’ are Jordan curves, then f
extends to a homeomorphism from Q2 to /. In general, the study of the
boundary values of holomorphic functions is quite complicated and we skip
this topic.

b. Harmonic functions and Riemann’s mapping theorem

Consider the problem of solving the Dirichlet problem in a simply connec-
ted domain €2 for the Laplace equation

Au=0 1in Q,
u=g su 0f).

If f:Q — Q' is a biholomorphism that extends continuously to © and
U(z) :=u(f(2), z€4,

it is easy to show that u is harmonic in @ if and only if U is harmonic
in Q and U(z) = g(f(z)) on 9. Therefore Riemann’s mapping theorem
transforms in this case the problem of solving the Dirichlet problem in a
simply connected domain €2 into the problem of solving on the unit disk
D the corresponding Dirichlet problem

Av=0 in D,
v=g(f) ondD

for which an explicit solution is available, see Poisson’s and Schwarz’s
formulas.

According to Riemann there is a strong connection between solving in
the simply connected domain 2 the Dirichlet problem

Au=0 1in
u=g su 0N
for all g and constructing a biholomorphism of 2 onto the unit disk.
In fact, let f : @ — D be a biholomorphism with only a zero at zg,

ie., f(z0) = 0, and suppose that zy is a simple zero, f'(z9) # 0. In a
neighborhood of zy we then have

f(z)=c(z—20)+..., c1 = f'(20) # 0.
Consequently
1) =c+cz—20)+...
zZ— 20

is holomorphic near zp, hence in 2, and nonzero (since f vanishes only at
z0), therefore
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f(2)

F(z) := —log P

is holomorphic in §2, and its real part

C]

u(z) == 12— 2|

is harmonic. Therefore we conclude that, if a biholomorphism from €2 to
D has to exists, then |f(z)] =1 on 9D, and u has to solve

Au=0 in Q,
u(z) = log |Z_IZO| on 0N.

Conversely, if we are able to solve this problem, defining the conjugate
harmonic of u as a primitive v of the differential form

—Uy dr + Uz dy

according to Cauchy—Riemann equations, u + tv is holomorphic and actu-
ally f(z) := u(2) 4 iv(z) is the biholomorphism we were looking for.

c. Schwarz’s and Poisson’s formulas

Let f € C°(B(0,R)) NH(B(0, R)), f(2) = u(z,y) +iv(z,y), 2 = x +iy.
As we know functions u and v are harmonic. Moreover, the function v,
called the harmonic conjugate of u, is determined apart from an additive

constant by the values of u on B(0, R), and, actually, by the values of u
on 0B(0, R).

4.133 Theorem. Let B := B(0,R) and let f € H(B) N C°%(B), f(z) =
u(r,0) + iv(r,0), (r,0) being the polar coordinates in B. Then

u(r, 0) = 217r /OQWU(R,W)(CCZ — Ciz)d%

iv(r,@)iv(0)+21ﬂ/02wu(R,cp)(<C . )d(p.

— C_Z

Consequently we get Schwarz’s formula

1 27 <+Z
- d
fE =)+, [ ur)
, or, equivalently, Poisson’s formula
1 2m R2 o 7,.2
R d
27 /0 u(R¢) R2 — 2Rrcos(0 — ¢) + r2 2

1 2Rrsin(0 — ¢)
v(r,0) = v(0) + 27 /0 u(R ) R? — 2Rrcos(0 — ¢) + r?

where ( = Re*¥, z = re®

u(r,d) =
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Proof. For ¢ := Re'? and B := B(0, R), we have

_ 1 f©Q 1P ¢
1@ =g [ ac= [T a (451)
if z € B and 1 ¢
. /Wf(o“z dp=0 (4.52)
if z ¢ B. Now for )
<
T LT
(4.52) gives
1 %7 z
0=, | 10,7 a
and subtracting from (4.51)
B 1 27 C z
0=y [0 -7 e (4.5

while summing to (4.51)

0= [Tr0( S v 7 )

1 27 C z
— f(0 - de, 4.54
g0+, [0 - ) (4:54)
from which Schwarz’s formula follows at once. [}

4.134 Remark. We notice that for every continuous function u € C°(D)
Schwarz’s and Poisson’s formulas yield a holomorphic function f € H(D)
with R(f) = w on 0D.

4.135 1. Develop g i as a geometric series to find
0) = ! ap + E "\ a, 6 + b nvo
u\r, < ) Cos Vv sin v )
( ) 2 0 i—1 R ( v Y )

v(r, 0) = v(0) + Z (;)V(—by cos v + a, sinvh),
i=1

where

1 27 1 27
ay = / u(R, ) cos(ny) dp, by = / u(R, ) sin(ny) dep.
™ Jo ™ Jo

d. Hilbert’s transform

4.136 Theorem. Let H := {z|Sz > 0}, f € H(H)NC°(H) and let u
and v denote respectively the real and the imaginary part of f on the real
azis, f(z+1i0) =:u(x) +iv(x). If

&)y

(i) hmlz|~>oo
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I'r
De,R FR
r. Te
PR m ..... | M 1. - R ...
X X

Figure 4.19. The domain D, g.

(i) f € C% locally in H, i.e.,
|[f(z) = flx+i0)| < Cl|z — z|* forallz+i0,z€ H, |[v —2| <1

for some constant C > 0,

then
fx+10) / f@) dt,
or, equivalently, N
1 ot
u(z) = — / v(t) dzx,
T ) o T—1
L0 u(t
v(x) = / u(t) dx,
T ) o T—1
where the integrals have to be interpreted as Cauchy’s principal integrals®
+oo
t t
/ u(t) dxr = lim u(t) dx.
oo T =0 Jjt—g|>ep T —

Proof. Set g(z) := & sen \ {z} and let 0 < € < R. Since g is holomorphic in H

z—x’
and continuous in H \ {z}, we have

/ g(z)dz =0,
8t D, g

where D, g is the domain in Figure 4.19. Therefore,

f(2) ft) f(
/E;+FRZ—1'dZ_/f‘)+[‘Ezfxd +/Rt71dt+/ =0. (4.55)

From the growth of f at infinity, we infer
/ Fz) dz — 0 as R — oo,
9trp 2 — X
and from the Holder-continuity of f at x, we infer
1 _
/ PG g, = f(:c)/ dz+/ F@=F@ 4 in @) + 0())
ot+tr. 2 —x ot+tr. 2 — otT. zZ—x

as € — 0, and the claim follows from (4.55) when R — oo and € — 0. O

3 In the sense, for instance,

too g €1 too g
/ Bdm: lim </ da:—i—/ dm) =0.
oo T e—0+t \J_oo @3 . 3
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w/2
fx

0 f(20)

x
o
-

Y

Figure 4.20. A C-linear transformation.

4.9 Exercises

4.137 9. Let f:Q C R? — C be differentiable. Prove that

(folfy)rz = =28(f=f2),  detDf =|fz|* — | ]
[Hint: Infer from (4.1)
(folfy)re +idet Df = fy fa. ]

4.138 §. Let f:Q — C be C-differentiable. Prove that
[f(20)|* = det D f(z0).

4.139 9. Let f € H(2) where Q is a connected open set. Prove that f is constant if
f'(z) =0VzeC.

4.140 9. Let f € H(Q2). Then f is constant in € iff one of the following conditions
holds:
(i) Rf(z) is constant in €,
(ii) Sf(z) is constant in €,
(iif) |f(z)| is constant in Q.

4.141 9. Let £: C ~ R? — C ~ R? be a R-linear map with associated matrix A. Prove
that ¢ is C-linear, £(z) = az, a € C, if and only if

AJ =JA

where J is the matrix ( 0 1) associated to the counterclockwise rotation of an angle

/2.

4.142 €. A matrix A € My 2(R), A = <‘; 2) is called conform if

a2+b2:cz+d2, ac+ bd = 0.

Prove that, if A is conform, then there exist A € R and a rotation matrix R, RTR = 1d,
det R = 1, such that A = AR. Moreover, prove in the case A # 0 that A is conform iff
A preserves the cosinus of the angle between two generic vectors:

(Au|Av) _ (ulv)

Au, Av) = _
cos( At A) = pl |Aw] = Jul o

= cos(u, v).
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4.143 §. Check that
9%u 0%u

Y

4 = Au.
020z v

4.144 9. Let f : 0B(z0, R) — C be a continuous function. Prove that

/ f(z)dz = —/ f(=z)d=.
8+ B(z0,R) 0t B(—z0,R)

4.145 9. Let f : 0B(0, R) — C be a continuous function. Prove that

1 1
/ f(2)dz :/ f( ) , duw.
o+ B(0,R) o+B(0,1/R) W/ w

4.146 §. Let Q C C be open and let A be an elementary domain for 2. Prove

1‘/ f(©) ¢ = f(z) ifz€A,
21t Jo+a C—2 0 if 2 ¢ A.

4.147 9. Prove the following.

cos(z1 + z2) = cos z1 cos zg — sin 21 sin 22, cos?z +sin z = 1,
sin(z1 + z2) = cos z1 sin z2 + cos z2 sin 21, cosh? z — sinh? z = 1,
. . ™ .
cos(—z) = cos z, sin(—z) = —sinz, cos(z—, ) =sinz,
e” = cosh z + sinh z, e"”” =cosz +isinz,
sin(z + 4y) = sinz cosh y + i cos x sinh y, cos(x + 4y) = cosz coshy — isin x sinh y.

4.148 §. Compute the derivatives of the trigonometric and hyperbolic functions and
try to find relationships among those functions.

4.149 9. Prove that the restriction of sinz to {z = z+iy | |z| < m/2} is invertible with
inverse given by sin~1z = 1 log(iz + /1 — 22).

4.150 9. Prove that the restriction of tanh z to {z = = + iy | |h| < 7/2} is invertible

. . . —1 _ 1 1+z
with inverse given by tanh™" z = ; log ;77

4.151 9. Prove the following.

27 k 0o iax
/ cos k6 dQ:I(_l) 7r7 / e dp = T e—alal
o 543cosh 2 3k oo @2 22 |a|

4.152 4. Compute the asymptotic development of [ et dt.

4.153 §. Compute the residues of

22— 22 e

f(z) = (o4 1)2(:2 4 4)° and f(z) =

both directly or by means of their Laurent development.
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4.154 §. Compute
1 zt
27 /8+B(0,3) 22(22 + 2z + 2)

4.155 9. Prove that

2m dt 2m if |p| < 1,
/ L ,=157 P p€C\B(0,1),
0 —2pcost+p pzfl if |p| > 1,
2 dt 2
/ g = ™ s p>1.
0 (pcost? T (y/p2 - 1)

4.156 §. Prove that

too g2 T
/ dr = s
oo 1t V2
/+°° dx 32w

- 7 >07
oo (zt+a)? 8 a” “

oo .’172

/ dzx,
Coo @2+ 1)2(22 +22+2)

/+°° x2P 1 ™

dr = s
0 1+ 229 q sin (2p+1 71_)
2q
forall p,g e N, 0 <p <gq.

4.157 §. Prove that, if a > 0 and b > 0, then
“+ oo eiuz “+ oo eiuz
/ _dx = 2mie” P, / _dx =0.
oo X —1b oo T+b
Summing and subtracting, find again Laplace’s formulas
oo oo 1
B cos az / :csmoax me—ab @.8>0.
0 .1,2 + 52 562 + ﬁ2 2

4.158 §. Compute

+o° rsinz
5 2 dx
oo T2 —0O

231
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4.159 §. Prove that

2 - b
—n 6
4 - b
—_n 90
> 1 s
Z = cotha, a >0,
< n?2+a? a
n=-—oo
i (_l)n—l B 7[_2
— a2 12’
> 1 7 ¢ sinh 27a + sin 27wa
Z 4 47 443 ( >’ a>0.
ni— ot t4a 4a® \cosh 2wa — cos 2ma

4.160 §. Prove that

> log(1 + z?) /°° (log )2 w3
dx = mlog 2, dx = .
/0 T2 07708 o 14227 8

4.161 §. Prove the following identities.

1 1 = (=D
= 42 ,
sinz 2 z I; 22 — k272
1 > 2k +1
=7y (-1F ) .
cosz k=1 ((Qk + 1)’5) — 22

4.162 9. Prove that, if g is holomorphic around 0 and 7. is the path given by the
upper half-circle oriented anticlockwise with center 0 and radius € > 0, then

.1 9() ,, _ 9(z0) _ g (9(2)
lim /7 dz = - R ( : ,o).

e—0 273 z 2 2

4.163 §. Show that
00 gin2
/ sin?(mx) de = 2,

oo X2

o sin?(7x) w 9 w2
de="(1—e 2"
/,Oo (a+22)(1 —22) * 8( e+ 4’

oo e T TQ
dr = _cot .
Lo €2 —1 2 2

4.164 §. Show that
2 o 1

sin?(7z) - n:z;oo (z —n)2’

4.165 §. Compute

1 1
F@) = o /83+(0,1) - —a)®

for a € C, |a| # 1.
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4.166 9. Show that the functions F(z) below are holomorphic in the respective do-
mains.

00 etz oo 4z—1
F(z) = dt, ® 0 F(z) = dt, 0 <R 2
= [, pdt R >0 (= [, 0<RE) <2
L cot tz L ¢sinz
F(z) = dt, ® ~1,0], F(z) = dt, R 0.
()= [ an ) ¢ 1.0 ()= [ G e Re) >

4.167 §. Show that 0 is a removable singularity for the function

sin z z 1 1 1
s s cotz — - . .
z tan z z e —1 sin z

4.168 §. Show that z = 0 is a pole for the functions

z z
1—cosz’ (e —1)27
while z = oo for )
sin z, e, e *
and z = 0 for
22cos z(e'/* — 1)

are essential singularities.

4.169 9§ Schwarz’s lemma. Let f : D — D, D = B(0,1), be holomorphic. Prove

that )
f) = f(z0) | o |z =0 = [f(20)
1= f(2)f(20)! 11 = 220] 1= lzof?

[Hint: Use a Mobius transformation both in the domain and the target disk.]

(o)l < '

4.170 9. Let f be holomorphic in the strip ®(z) < 7/4, and such that |f(z)| < 1 and
£(0) = 0. Prove that |f(z)| < |tanz|.

4.171 § Schwarz’s reflection principle. Let Q be an open set, Q C {z+iy|y > 0},
let Q* be symmetric to 2 with respect to the real axis. Suppose that the intersection
of Q with the real axis is an interval I. Prove that, if f € CO(QUI) N H(Q), then

flz) ifzeQUI,

F(z):=
) f(z) ifzeQ*

is holomorphic on QU I U Q*.

4.172 9. Let D be the unit disk and f € C°(D) NH(D). Prove that f is constant if
|f(2)] =1 for every z with |z| = 1. [Hint: Extend f with f(z) := f(1/z), z € C\ D to
the entire C.]

4.173 9 A representation formula for the inverse. Let f € H(B(0, R)) be holo-
morphic in |z| < r with f(0) = 0, f/(0) # 0 and f(z) # 0in 0 < |z| < r and let
p<r.

(i) Show that

1 zf'(2)
glw) = 2mi /8+B(0,p) f(z) —w @

defines a holomorphic function on {w | |w| < inf,cap(0,p) [f(2)[}-



4.9 Exercises 235

(ii) Prove that f(g(w)) = w if |w| < infgp(0,p) [f].
[Hint: Notice that |f(z)| > |w| if |w| < infgp(g,p) |f|, consequently f(z) and f(z) —w
have the same number of zeros in B(0, p) by Rouché’s theorem. From Theorem 4.111,
infer that g is the inverse of f.]

4.174 § Hadamard’s three circles theorem. Let f be holomorphic in an open set
0 < R1 < |z| < Ry that contains the annulus Ry < |z| < Ra. Set

M(R) := max{|f(2)|||z|] = R},
and prove that for Ry < R < Ra,

Ro R R
M(R)'® F1 < M(Ry1)"°8 F M(R2)'*® 1,

or in other words, prove that log M (R) is a convex function of log R. [Hint: Notice that
for all z, R1 < |z| < Ra2, we have

|21°17(2)] < max{|2|°1£ ()| | 2] = R or |2 = Rz }

and choose
M(R2)

_ 198 r(ry) ]

a:
Ry
log Ry

4.175 9. Let f be holomorphic in H := {z|SJ(z) > 0} and continuous in {J(z) > 0}.

Prove that f identically vanishes if it vanishes in {z =z +diy|y =0,z € [0,1]}.

4.176 9. Let f(z) = u(z,y) + iv(x,y) be holomorphic in a neighborhood of [0,1] x
[0,1] € R2. Suppose that u(x,y) = 0 in [0, 1] x {0} and [0, 1] x {1} and that v(z,y) =0
in {0} x [0,1] and {1} x [0, 1]. Show that f =0 in Q. [Hint: Consider f2(z).]






5. Surfaces and Level Sets

In the first two sections of this chapter we discuss the notion of surface and,
related to it, the inverse and the implicit function theorems. Applications
as well as some aspects of the local theory of surfaces will be discussed in
the last two sections.

5.1 Immersed and Embedded
Surfaces

An important step for the development of analysis and geometry is the
realization of the intuitive idea of a reqular surface in R™. A sphere and a
cylinder are regular surfaces in R3, the cone is not, at least near the vertex.
The idea of a surface develops around the concept of a diffeomorphism and
its analysis uses the inverse function theorem.

5.1.1 Diffeomorphisms

5.1 Definition. Let X CR" and Y C R" be two sets. A map ¢ : X — Y
18 called a diffeomorphism if

(1) ¢ is injective and surjective between X and Y,
(ii) ¢ has an extension ¢ : 2 — R™ of class C* to an open set QD X,
(iii) ¢! has an extension ¢ : A — R" of class C' to an open set A DY.

Of course, ¢ is a diffeomorphism from X to Y if and only if ¢! is a

diffeomorphism from Y to X. Therefore, we say that X and Y are diffeo-
morphic if there exists a diffeomorphism between X and Y. Moreover, if
amap ¢ : X — Y can be chosen in such a way that both ¢ and ¢! are
of class C*, k > 1, respectively, in suitable open sets Q@ D X and A DY,
we say that X and Y are C*-diffeomorphic.

In the literature, the definition is somewhat different, as in general one
refers to intrinsic differential structures on X and Y. However, Defini-
tion 5.1 is more suitable when discussing submanifolds of R"™.

M. Giaquinta and G. Modica, Mathematical Analysis: An Introduction to Functions 237
of Several Variables, DOI: 10.1007/978-0-8176-4612-7_5,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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—_—(

N

Figure 5.1. A regular noninjective map.

5.2 9. Let ¢ : X C R" — R™ be a diffeomorphism between X and Y = ¢(X). Observe
the following.

(i) ¢ and o~
and Y.
(ii) ¢ is also a diffeomorphism between A and p(A) for every A C X.

I extend to C'' maps, in particular, ¢ is a homeomorphism between X

5.3 €. Show that being diffeomorphic is an equivalence relation, i.e.,
(i) X is diffeomorphic to X, VX C R",
(ii) if Y C R™ is diffeomorphic to X C R", then X is diffeomorphic to Y,
(iii) if Z C R is diffeomorphic to Y C R™ and Y is diffeomorphic to X C R", then Z
is diffeomorphic to X.

If Q ¢ R" is an open set, a map ¢ : Q@ — R” of class C! is a diffeo-
morphism onto ¢(£2) if there exists an open set W O () and a map
Y : W — R" of class C*(W) such that ¢(¢(z)) = x Vo € Q. In this case
we say that ¢(Q2) is an embedded submanifold of R™. The chain rule then
yields

Dy (p(x))De(x) = Id  for all x €

hence Dyp(z) is injective and we have proved the following.

5.4 Proposition. Let ¢ : Q@ C R" — R" be a diffeomorphism from an
open set Q C R” into R™, then r < n, and for every x € Q) the linear map
Dy(z) is injective or, equivalently, Dp(x) has maximal rank r.

5.5 9. Let p: Q C R" — R™, Q open, be a diffeomorphism. Prove that, if ¢(2) is open
in R", then r = n and D f(z) is nonsingular.

A typical diffeomorphism from an open set of R” is the projection of a
graph.

5.6 Proposition. Let Q C R” be an open set and let f : QQ — R™ be a
map of class C*. Then the map ¢ : Q — R"xXR™ given by p(x) = (z, f(z))
18 a diffemorphism from € onto the graph of f

Gri={(wy) eR" xR" |2 €Q, y = f(a)}.

Proof. In fact, ¢ is injective, Imp = G, and the inverse of ¢ : Gy — € has a C*
extension as, for instance, the orthogonal projection on the first factor 2 x R" — Q
defined by (z,y) — x. O
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Figure 5.2. Two books on surfaces.

a. Tangent vectors

5.7 Definition. Let Q@ C R” be an open set and let ¢ :  — R"™ be a
diffeomorphism with 1 < r < n. For xg € ¢(Q), let ug € Q be the unique
point with p(ug) = 9. The tangent space to p(Q) at xg € p() is the
linear subspace of R™ image of the tangent map of ¢ at uy,

Tan ;, () := Im (Dp(up)).

Since ¢ is a diffeomorphism, Dp(ug) has maximal rank 7, hence Tan 4, ¢(€2)
has dimension 7.

As it is defined, the tangent space depends on the parameterization
¢ and not just on its image ¢(£2), meaning that there may exist another
diffeomorphism 1 : A — R"™ defined on another open set A C R*® with
PY(A) = () such that Im (Dy(x0)) # Im (Dy(ug)) at some point g =
©(ug) = 1(vg). But this cannot happen. In fact, from Proposition 5.8
below we have r = s and ¢ = ¢ o h for a diffeomorphism A : A — Q, thus
h(vg) = up and

D) (vo) = D (x0)Dh(vo).

Since h is nonsingular, we conclude Im (D) (v)) = Im (D¢(ug)). This also
shows that the dimension of a parameterized surface depends only on the
surface and not on the particular parameterization.

5.8 Proposition. Let Q and A be two open sets respectively in R" and R?,
and let ¢ : Q@ — R™ ¢ : A — R™ be two diffeomorphisms. If o(Q) = ¥ (A),
then there exists a diffeomorphism h: A — € onto Q such that 1» = poh.
In particular r = s.
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CyS
Figure 5.3. C;S and Tan ,.S.

Proof. Of course, h := ¢~ 101 does it: we only need to show that h and h~! are of class
CL.IfW D ¢(Q) is open and f : W — Q is the Cl-map that extends ¢!, then we have
h(z) = ¢  o1h(2) = f(¥(2)) Yz € 1 (W). Therefore h is of class C'! as composition
of two maps of class C''. Similarly, one shows that ="' is of class C''. In conclusion, h
is a diffeomorphism from €2 onto A, in particular r = s, see Proposition 5.4. O

We conclude with a few remarks on the tangent space to a surface. Let
S C R™ be a set. We say that a vector v € R" is tangent to S at x € S if
there exists a curve s :] — 6, 6[— S of class C! with 5(0) = 0 and s'(0) = v.
As M, A € Ry is tangent to S at x if v is tangent to S at x, the set of
tangent vectors to S at x form a cone with vertex at 0 denoted

C,S.

5.9 Proposition. Let Q be an open set in R". Let p : Q C R" — R"™, Q
open, be a diffeomorphism. Then the tangent cone to () at x¢ = @(uo)
is the tangent space to o(2) at xo,

Cxo L)O(Q) = Tan xo L)O(Q)

Proof. Let r(t) := vt + ug, v € R", be the line in R” through ug. The curve s(t) :=
(r(t)) is well defined for ¢ near zero, lies in () and is of class C''; moreover s(0) = z¢
and s'(0) = Dy(zo)v. Since v € R” is arbitrary, we then infer

Im (Dp(u0)) € Crgp ().
Let s :] — §,5[— S be a curve of class C! with trajectory in () with s(0) = zo and
let r(t) := ¢~ 1(s(t)) be the corresponding curve in Q. Since ¢ is a diffeomorphism, r(t)
is of class C'! in ©, and we have 7(0) = ug and s'(0) = Dg(ug)(r’(0)), therefore

Caop(©2) C Im (Dgp(uo)).
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5.1.2 r-dimensional surfaces in R"”

The image of an open set 2 of R" by a diffeomorphism ¢ : Q@ — R”
into R", 1 < r < n, realizes only partially the intuitive idea of a surface,
since several surfaces cannot be parameterized on a open set of R", as, for
instance, the circle S := {22+ y? = 1} in R?, which is not homeomorphic
to any interval of R.

Roughly an r-dimensional surface in R", 1 < r < n, is a subset that is
locally diffeomorphic to an open set of R". However, there are two possible
ways of localizing: in the space of parameters or in the target space. This
leads to two notions of surface, both useful.

a. Submanifolds

Localizing the definition of diffeomorphism in the target space yields the
following.

5.10 Definition. A r-submanifold of R™ of class C* is a set M C R™ all
points of which have an open neighborhood W C R™ such that M N'W is
C*-diffeomorphic to an open set of CT.

Of course, if p : Q2 C R", Q open, is a diffeomorphism, then ¢(2) is trivially
a r-submanifold of R™. We say that ¢(Q) is an embedded submanifold of
R™ of dimension r. In particular, the graph of a map f: Q2 C R" — R™ of
class C' is an r-dimensional embedded submanifold of R,

As a consequence of Proposition 5.9 we easily get

5.11 Corollary. Let M be an r-submanifold of R™. Then Tan M has
dimension r and C, M = Tan .M Va € M.

5.12 9. Show the following.
(i) In R?, the hyperbolas z2 — y? = 1, the parabola y = x2, the ellipse 2 +2y% =1

define 1-dimensional submanifolds of class C> of R2.

(ii) The unit sphere R™

snl= {m e R"™ ‘ \x\Q = 1}

is a (n — 1)-submanifold of R™ of class C'*°.

(iii) The set {(z,y) € R? | 22 = 32} is not an r-submanifold of R™.

(iv) An r-submanifold of R™ is locally homeomorphic to an open set of R".

b. Immersions

Localizing the definition of diffeomorphism in the space of parameters we
instead set the following.

5.13 Definition. An immersion is a map @ : Q — R", where Q C R” is
open, 1 < r < n, that is locally a diffeomorphism, i.e., any uy € Q has
an open neighborhood Uy, such that P, s a diffeomorphism from U,,
onto @(Uy,). An r-dimensional immersed submanifold in R™ is the image
©(Q) of an immersion ¢ : Q C R" — R™.
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Figure 5.4. From the left: (i) and (ii) are two injective immersed 1-surfaces in R?, and
(iii) is a 1-submanifold in R2.

Notice that, if ¢ : @ — R™ is an immersion, then Dg(u) has maximal rank
r at every u € ).

Let ¢ : Q C R" — R”™ be an immersion. Of course, the noninjectivity of
 is an obstruction for ¢ to be a diffeomorphism from 2 onto ¢(£2). More-
over, an injective immersion is not yet a diffeomorphism, see Figure 5.5.
Also the tangent cone at a point is in general a real cone and not a plane,
see Figure 5.3. However, the obstruction for ¢ to be a diffeomorphism is
purely topological. We in fact have the following.

5.14 Theorem. Let p: Q CR" — R", 1 <r < n be an injective immer-
ston. The following claims are equivalent.

(i) o is open, equivalently, p=' : () — Q is continuous.

(ii) ©(92) is an r-dimensional embedded submanifold of R™.
(i) ¢ is a diffeomorphism.

Proof. Trivially (iii) implies (i) and (ii).

Let us prove that (i) implies (ii) and (iii). Let 2o € ¢(Q2), up € Q be such that ¢(ug) = zo
and let Up be an open neighborhood of ug such that ¢y, is a diffeomorphism. Since
© is open, we have p(Ug) = W N () for an open set W C R™ that contains zg, thus
2o has an open neighborhood W such that W N () is diffeomorphic to Uy, . Since xg
is arbitrary, (ii) holds. Moreover, on account of Theorem 2.95 we have a locally finite
covering {B;} of ©(Q) by open balls, and corresponding maps ¢; : R" — U; C R" of
class O such that ;(¢(u)) = u Yu € U;. Let {a;} be an associated partition of unity
to {B;}, see Theorem 2.97. Set A := U;B; and let ¢ : A — R” be defined by

P@) =D (@), zEA,
1=1

where we think of the ’s as defined on the whole space. Trivially, A is open, A D (),
1 is of class C'! and for all u € 2 we have

Ule(w) =Y ailp)bilew) = > aile(w)vilp(w))
=1

{ilp(w)eB;}
oo
= Y ale@pu= > (Y alew))u=u
{ile(uw)eB;} {ilp(u)eB;} =1

It remains to prove that (ii) implies (i). For that, fix z¢ € €, let ug be such that ¢(ug) =
zo, and let W C R™ be an open neighborhood of zg, let A CR",let h: A — W N ()
be a diffeomorphism and k : W — R” be such that k(h(y)) =y Vy € A. Then the map
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B

Figure 5.5. On the left an injective immersion that is not a homeomorphism since
©(Q) N B is connected whereasep™!(B) is not; nevertheless, ¢|v is a diffeomorphism as
shown on the right.

g:=kop:p (W) — A is injective, of class C! and trivially, o~ = g~! o h. Now, by
the chain rule Dg(u) = Dk(p(u))De(u), hence Dg(u) is nonsingular. It then follows
from the local invertibility theorem that g has a C'! inverse, in particular, ¢! = g~ loh
is continuous. O

5.1.3 Parameterizations of maximal rank

5.15 Theorem. Let ¢ : 2 C R" — R™ be a function of class C*, k > 1,
where Q is an open set in R", 1 < r < n. If Dp(ug) has mazimal rank v
at ug € 2, then there exists an open neighborhood U of ug such that oy is

a C*-diffeomorphism. Moreover, p(U) is the graph of a map of class C*
defined on an open set of a coordinate r-plane of R™.

Proof. Let o = (o', ©%,..., ¢",...,¢"). By reordering the coordinates we
may assume that

det At 9" (uo) # 0.

ou
Split R™ as R™ = R" xR™™", and denote by (z,y), x € R",y € R" ", its co-
ordinates; finally, set 1) := (¢!, p?,..., ¢") and ) := (p"+1 ... ©").

Since the Jacobian of the map ¢ : Q — R” is nonzero at ug, the local
invertibility theorem yields an open neighborhood U C R" of ug such that

the restriction v := go‘((lj) is an open map with inverse h : v(U) — U of class

k .
C", ie.,

z =W (u), u = h(z),
Y= 90(2) (u), if and only if Y= s0(2)(h($)),
uelU x €~y(U).

In other words, the map ¢ : y(U) x R" " — U, 9(x,y) := h(x) is of
class C* and inverts @|u; finally p(U) is the graph of the function k(z) :=

0@ (h(x)), z € y(U). 0
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Figure 5.6. Illustration of the proof of Theorem 5.15.

5.16 Definition. Let ¢ : Q — R™ be a map of class C' defined on an
open set Q CR", 1 <r < n. If Dp(ug) has mazimal rank r at every point
ug € Q, we say that ¢ is a regular parameterization of ¢(€2).

Theorem 5.15 then yields the following.

5.17 Corollary. Let ¢ : Q C R" — R", Q open, 1 < r < n, be a map of
class C*, k > 1. The following claims are equivalent.

(i) ¢ is a regular parameterization of ¢(§2),
(ii) ¢ is an immersion,
(iii) for every ug € Q there exists a neighborhood U of ug such that o(U)
is the graph of a C*-map k : W — R™" defined on an open set W
of a r-dimensional coordinate plane.

5.18 4. Let N be an r-dimensional linear subspace of R™, 1 < r < n. We say that
> C R™ is a graph with respect to N or over N if there exist an open set W C R” and
amap k: W — R™ " such that

R(X) = {(u,v) ER"XR" " |ueW, v= k(u)}

where R : R™ — R"™ maps linearly N onto {(u,v) € R” x R"~"|v = 0}.

Show that each of the claims in Corollary 5.17 is actually equivalent to saying that
for every ug € 2 there exists a neighborhood U of ug such that ¢(U) is a graph of a
CF-map over Tan ()P (U). [Hint: Observe that Dp(ug) and D(R o ¢)(ug) have the
same rank and use Theorem 5.15.]

The next theorem is a consequence, actually is equivalent to Theo-
rem 5.15. It claims that if ¢ : @ C R” — R” has maximal rank at some
point ug € €2, then we can deform the target space with a diffeomorphism
in such a way that ¢(£2) becomes flat. Here we present a direct proof:
Instead of factorizing ¢, we apply the local invertibility theorem to an
extension of .

5.19 Theorem. Let ) C R" be an open set and let ¢ : Q@ — R™, r < n,
be a reqular C*-map, k > 1. For every xg € § there exist a neighborhood
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»(z0) ()
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s e
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goy R™
R’I’

(w0,0)
Figure 5.7. Illustration of the proof of Theorem 5.19.

U of xg in R", a ball B(0,6) C R™™", an open neighborhood W of ¢(xq)
in R" and a diffeomorphism g: W C R® — U x B(0,r) C R™ of class C*
such that

g(p(x)) = (2,0) Vo € U. (5.1)

Therefore, the maps h := (g',...,g") and k := (¢"*,...,g") defined on
W are of class C* and

’ Vo e U.

Moreover, the map h extends (7))~ to the open set W, o(U) is the zero-
set of k,

P(U) = {w e W|k(w) = 0}, (5.2)
and, finally, the Jacobian matrices of h and k have mazximal rank.
Proof. By reordering the variables of R™, we can assume

et 0"

det 0.

“ o) D7

Let f be the extension of ¢ to Q x R*™" f = f(z'... 2" t1,...,tn—y) given by
f=" 2, ™) with

(5.3)

i@ 1) = ¢i(a) fi<n -
fi(z,t) == @' (x) + tiyp ifr<i<n.

‘We have
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(et ")
A(zl...,x™) 0
8 1 . 7
det Df(z,0) = det = det (o e )(a:),
A(zt... x")
AT e™)
a(xl...,am) Idn—r

hence det D f(x0,0) # 0. By Theorem 5.15 there exist a neighborhood Z := U x B(0, §)
of (z0,0) in R"” x R™~", an open set W := f(Z) in R", and a map g: W — Z of class
C* that inverts f1z- Therefore, g is a diffeomorphism from W to Z and for all x € U
and ¢t € B(0,r) we have

g(f(z, 1)) = (z,¢t) Yz € U, Vt € B(0,0); (5.4)
in particular g(f(z,0)) = (z,0), i.e, (5.1).

The relation (5.1) can be written as

h(p(z)) = =,
k(p(2)) =0

Ve e U

if g =: (h,k). The first equality says that h : W — R” extends (@‘U)*l to W. The
second relation implies that ¢(U) C {w € W |k(w) = 0}. On the other hand, if w € W,
there exists (x,t) € U x B(U, d) such that f(x,t) = w. If k(w) = 0, then ¢t = 0 and in
conclusion there exists z € U such that ¢(z) = f(z,0) = w, that is,

{w ew ) k(w) = 0} C p(U),

and (5.2) is proved.
Observing that D f(z0,0) is the block matrix

Df(20,0) =
B Id
with det A # 0, we deduce that Dg(¢(zo)) has the form
A1 0
Dy(p(z0)) =
—BA! Id

Consequently, the Jacobian matrices of the maps h and g at ¢(xg) are given by the two
matrices of maximal rank
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N O
NN

Figure 5.8. From the left: (a) y = —v/1 — 22 or & = /1 —¢2, and (b) z = /1 — 2.

Dh = A1 o |, and Dk:(BAl Id > (5.5)

O

5.20 §. Deduce Theorem 5.19 from Theorem 5.15.

5.2 Implicit Function Theorem

5.2.1 Implicit functions
The linear implicit equation in R?
ar +by =0

rewrites as y = (—a/b)x if b # 0, i.e., its solutions are the points of the
graph of a real function of one variable. If we consider nonlinear implicit
equations as for instance

(ﬁ(.’l},y) = xQ +y2 - 17

the situation is more complex. For instance, the solutions of 22 +y%—1 =0
are the points of the unit circle of R? which is not a graph. However, pieces
of it are graphs. We say that the circle is locally a graph, see Figure 5.8.

A theorem due to Ulisse Dini (1845-1918) states that the solutions of a
generic nonlinear implicit equation or system are locally a graph provided
some qualitative conditions hold. Let

o(x) =0, r=(z 2% ..., 2") eR"

be a nonlinear equation, ¢ : R — R of class C! and let x be a solution.
If Dg(xo) # 0, then the solutions of ¢(z) = 0 are locally the points of the
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graph of a Cl-function of (n — 1) variables defined on an open set of a
coordinate (n — 1)-plane of R™. In other words, the set of solutions

o(z) = 0}

is near zp a (n — 1)-submanifold. In particular, the tangent space to I" at
To exists and

F::{xER”

Tan ,,,T" = ker Do(o) = V(xo)*.

As stated the theorem also holds for systems of implicit equations

(5.6)
o™ (zt, ..., 2") =0

and it is known as the implicit function theorem. Again the linear case is il-
luminating. Let C' € M,, »,(R) be a matrix of maximal rank. By reordering
the variables we may assume

c-(a B)

where A € M, n—m(R) and B € M, ,»n(R) and det B # 0. Denoting by
z = (x,y), x € R*™ y € R™, the coordinates in R", the system Cz = 0

rewrites as
(o B) (x) — Az +By = 0.
Y

Since det B # 0, we may write the m-variable y as function of the n — m-
variable x
y=—-B lAz.

Therefore, if C has maximal rank n, the solutions of Cz = 0 are the points
on the (linear) graph of y = —B~'Aux.

The implicit function theorem extends the previous claim to the case
of a system of nonlinear equations.

5.21 Theorem (Implicit function theorem, I). Let 29 € R" be a so-
lution of ¢(xo) = 0 where ¢ := (¢, ¢?,..., ¢™), m < n, is of class C* in
an open neighborhood U C R™ of xg. Suppose that Dp(xg) has maximal
rank m. Then the zero set of ¢, T' := {x € U|¢(x) = 0} is near zo the
graph of a function of class C' of n—m coordinate variables defined on an
open set of an (n —m)-dimensional coordinate plane of R™. In particular,
the tangent space at xg to I' is the kernel of the linear tangent map of ¢
at x

Tan ;,[' = ker D¢(x¢) = Span {qul (z0), Vo*(20), - - - ,qum(xo)}L.

Actually, a more precise statement holds. We present it in the next
paragraph together with a few examples.
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fte) U R”

Figure 5.9. The implicit function theorem.

a. The theorem

Let ¢ : Q CR® = R™ m < n, ¢ = (¢*,...,¢™) be of class C*, k > 1,
and let us consider the system

p(xt, 2%,..., 2") = 0. (5.7)

Suppose that the variables in R™ are split in two groups of respectively
r and m variables r +m = n, which we reorder in such a way that x =

(x',...,2") € R" and y = (z"*,... 2") € R™. Denote now by
gq; (z,y) € My, »(R) and gz (@,y) € Mym(R)

respectively the m X r submatrix of the first » columns and the m x m-
submatrix of the remaining m-columns of D¢ at (x,y). We have

B ¢ ¢
D¢ = ox oy

5.22 Theorem (Implicit function theorem, II). Let ¢ : Q C R" —
R™ be a map of class C*(Q), k > 1, where Q is open. With the previous
notations, suppose that R™ = R" x R™,

0
d(x0,90) =0 and det 3;;/5 (z0,y0) # 0
at some (x9,y0) € Q. Then there exist open neighborhoods W of (xo, yo)
m R” X R™, U of xg in R” and a map ¢ : U — R™ such that

(i) ¢yw : W — R™ is open,
(i) ¢ is open and of class C*,
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(iii) finally,

{(x,y) €W, if and only if {x €y,
o(z,y) =0 y = o(@).

We again postpone its proof until we state an apparently more general
version of it, Theorem 5.29, and we instead discuss a few consequences.
Set

ri={(@.y) € Q|olw,y) = 0}

for the zero level set of ¢.

5.23 Corollary. Under the previous hypotheses and notations, the follow-
ing holds.

(i) TNW is the graph of the map ¢ : U — R™,

rw ={@uy) e W |o@y) =0} = {@y) [z €U, y=o(@)}.
(ii) By differentiating the system ¢(x,p(x)) =0 Vo € U, we get

Dole) = - (37) (wp@) ) (wpe)  VecU. (53)

and for every z€e T NW

i
Tan .I' = ker D¢(z) = Span {V(/bl (2)y..s V¢m(z)} . (59)

Proof. (i) It is a rewriting of Theorem 5.22 (iii).
(ii) On account of (i), we have ¢(z, p(z)) = 0 Vz € U. Differentiating (recall the chain
rule) we get

Dé(z, p()) =0, (5.10)
Dy()
that one can rewrite as

2 &, () Diple) =0,
Y

i.e., (5.8). Moreover, the tangent space to ' N W at z = (z,p(z)) € W is the tangent
space to the graph of ¢ at (z,p(x)), which is spanned by the linearly independent
columns of the right matrix in (5.10), hence by (5.10)

Tan (5, ()" C ker Dé(z, p(x));

o
o @ 0(@) +

(5.9) then follows since Tan (, ,(5))I" and ker Dé(z, p(z)) have the same dimension
n—m. [m]
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Tan I

I'={¢(x) = 0}

Vo(z)

Figure 5.10. The tangent and normal planes to I'.

5.24 Remark. We emphasize that, in the scalar case, m = 1, ie., ¢ :
Q — R, for every z € 'NW, the tangent space Tan .I" is the perpendicular

hyperplane to V¢(z), as we recall, ker D¢(z) = Span Vqﬁ(z)l.

5.25 Example. Trivially, the point (zo,y0) := (1/v/2,1/4/2) is on the unit circle
d(x,y) =2>+y*—1=0  inR>

and (z — xo0) + (y —yo) = 1 and = + y = 1 are respectively the tangent line and the
tangent space to the circle at (zo, o).

Let us discuss this simple situation in terms of the implicit function theorem. We
have Do(x,y) = (2x,2y), hence Do (xo,y0) = v2(1,1). Therefore, near (zo,yo), the
circle is both the graph of a function y = ¢(x) and = ¥(y) of class C°°, and the
tangent space is

ker Do(xo0,y0) = {(ac,y) ‘ V2(1,1) <z> = ()}7
ie,xz+y=0.

Once we assume that ¢(x,y) = 0 is the graph of a C'! map y = ¢p(z) near 1/v/2, in
order to compute the tangent space, we may also write

2?24+ o%(z) =1 for & near to 1/v/2.
Differentiating with respect to x we get 2z + 2¢(z)¢’(z) = 0, hence ¢'(z¢) = —1; in

other words, (1, —1) is the velocity vector of the curve x — ¢(x), thus (1, —1) spans the
tangent space to the circle at (zo, o).

5.26 Example. Let T' C R3 be the set of solutions of

r+logy+22—-2=0,
20 +y?+ef—1—e=0

and let ¢(z,y, 2z) := (z +logy + 22 — 2,2z +y? +e* — 1 —e). We have (0,1,1) € T and

Do(0,1,1) = (; ! 2)

Since det <; 2) = e—4 # 0, there is an open neighborhood W C R3 of (0, 1, 1) such
e

that I' N W writes as
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XN

Penioal impllcite di usa o pii variabili indipeadest|

Figure 5.11. Ulisse Dini (1845-1918) and
a page of his Lezioni di Analisi Infinites-
imale, Pisa, 1909.

FOW:{(x,y,z)‘y:oc(ac),z:ﬁ(a:)} (5.11)

where ¢ := (a, 8) is of class C°°, i.e., 'NW is the trajectory of the parameterized curve
z — (x,a(x), B(x)). Moreover, the tangent space (i.e., the tangent line) to the curve is
the kernel of D¢(0,1,1), i.e., the solutions of

z+2y=0,
2x + 2y + ez = 0.

Notice that these solutions are orthogonal to the two rows (1,1,2) and (2,2,e) of
Dy(0,0,1).
Alternatively, once we assume (5.11), i.e.,
z +loga(z) + 208(z) —2 =0,
2z +a?(x) +ePE) —1—-e=0
near zero, differentiating and taking into account that a(0) = 8(0) = 1, we find
2 +24/(0) +45'(0) = 0,
24 2a/(0) +e8'(0) =0
ie, o/(0) = —1, B/(0) = 0. As (1,a/(0),8'(0)) is the velocity vector of the curve

z — (z,a(z), B(x)), we conclude that the parametric equation of the tangent line to I'
at (0,1,1) is

T 1 0
y =t -11+11
z 0 1

Notice that (1, —1,0) is perpendicular both to (1,1,2) and (2,2,e).
Finally, notice that the tangent line to I is the intersection of the tangent planes
at (0,1,1) to the surfaces of equations
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z+logy+2z—2=0 and 2w+y’4+ef—1—e=0

corresponding to the rows of ¢.

5.27 9. Prove that the level set ze¥ + ye® = 1 is the graph of a smooth function
y = ¢(z) in a neighborhood of (1,0). Compute ¢’ (0).

5.28 €. Prove that the subset of R3 of solutions of

22+ y? +22 =1,
ze¥ +ycosz+axz =1

is the graph of a curve = z(z),y = y(z) in a neighborhood of (1,0,0), and compute
its acceleration at (1,0,0).

b. Foliations

Let ¢ :  — R™ be a function of class C! defined on an open set Q C
R"™ x R™. For every ¢ € R™ the c level set of ¢ is the set

rei={(@.y) € 2| ole,y) = cf,

with evident analogy with the level lines of a geographic map in which
¢ models the altitude over the sea. The implicit function theorem states
that, if
o
¢(.’Ifo, yO) =0 and det 8y (Z‘O, ZUO) 7é 07
then the zero level line is the graph of a function y = () of class C* near
(20, y0). What can we say about the close level lines, i.e., about

I := {(x,y) ‘ oz, y) = c}, c € R™, |c| small?

Of course, det gi (x,y) # 0 in a neighborhood of (g, yo). Since ¢ is of class

C", the implicit function theorem applies to close level sets. Actually, there
is a Cl-map (x,c) — ¢(z,c) such that for ¢ close to zero, the c level line
is near (zg,yo) the graph of © — ¢(x, ¢), see Figure 5.12, as it is stated in
the following.

5.29 Theorem (Implicit function theorem, IIT). Let ¢ : 2 — R™ be
a function of class C*, k > 1, where Q C R” x R™ is an open set, m < n
and r:=n —m. Suppose that at (xo,yo) € Q we have

0
d(x0,y0) =0 and det 8j(x0,y0) #0.
Then there exist an open connected neighborhood U of xo € R” a ball
B(0,8) in R™, an open set W C R"™™™ and a function ¢ : U x B(0,8) —
R™ such that
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¢ € R™
U x B(0, )
z eR”
U
Figure 5.12. Illustration of the implicit function theorem.
(i) ¢yw is open,
(ii) ¢ is an open map of class C*,
(iii) finally,
(z,y) € W, zeU,
c € B(0,0), if and only if c e B(0,0),
P(z,y) = c, y = ().

Consequently, we have the following.

5.30 Corollary. Under the hypotheses and with the notation of Theo-
rem 5.29, we have
(i) for all ¢ € B(0,4), the c level line T of ¢ is the graph of the map
x— p(x,c), z €U,

FCQW:{(x,y)‘xGU, y:cp(x,c)}, (5.12)

in particular T N W is a (n — m)-submanifold in R™.
(ii) We have ¢(x, p(x,c)) = ¢ ¥(z,c) € U x B(0,9), and, differentiating,
we get

0«2 erte)] Btoste

2 )= 00 et 0)]

In particular, for every z € TNW

(5.13)

Tan , ' N W = ker D¢(z) = Span {Vr,zbl (2),..., ng)m(z)}l.
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Proof. (i) is a rewriting of Theorem 5.29 (iii); this yields also that ¢(z,¢(z,c)) = ¢
Y(z,c) € U x B(0, §). Thus, differentiating the previous identity we get

Id, 0
D(z, p(z,¢)) = o d,
¢ ¢
ox dc
i.e., (5.13) and the last part of the claim. O

Proof of Theorem 5.29. The function f(z,y) := (, ¢(z,v)), (z,y) € Q, is of class C*
and its Jacobian (r +m) x (r + m)-matrix is given by

Id, 0
Df =

oé 0¢

ox dy

We have det Df = det g;’j, hence det Df is nonzero at (zo,yo). From the local invert-

ibility theorem, Theorem 1.89, there exists an open neighborhood V of (zg,yo) such
that Z := f(V) is open and fiv is a diffeomorphism of class C* from V onto Z. Now
we choose an open connected neighborhood U of z¢ in R” and a ball B(0,d) in R™
such that U x B(0,9) C Z. If W := f~1(U x B(0,9)), then f is also a diffeomorphism
of class C* from W onto U x B(0,6). In particular, fiw is open, hence ¢y is open
as composition of f with the orthogonal projection onto the second factor. The inverse
map g : U x B(0,0) — W of fjy is of class C* and open. Let us write g as g =: (¢, ¢)
where

Yi=(g"9%...,9") and  p:i=(¢"",...,g""™).
The maps 1, ¢ are clearly of class C* and open since they are the compositions of g
with an orthogonal projection. This concludes the proof of (i) and (ii).

(iii) then readily follows. We only notice that the identities

Fg(@,0)) = (z,¢) V(w,c) € U x B(0,6),
9(f(z,y)) = (z,y) V(z,y) e W
are clearly equivalent to
Y(z,c) =x V(z,c) € U x B(0,9),
d(b(z, ), p(x,c)) =c V(z,c) € U x B(0,6), (5.14)
ez, ¢(z,y)) =y V(z,y) € W
because of the form of f and g, and z € U if (z,y) € W and ¢(z,y) = c. O

5.31 Remark. We have in fact proved that f : W — Z = U x B(0,0)
is a diffeomorphism from the ambient space R™ into R™ that maps each
level set T'. = {(x,y) € W|¢(z,y) = ¢} of ¢ onto the planar surface
{(z,c),x € U} if c € B(0,9).
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5.32 9. Theorem 5.29 generalizes Theorem 5.22. Prove that the two theorems are ac-
tually equivalent. [Hint: Under the assumptions of Theorem 5.29, apply Theorem 5.22
to the function

PR XR™ x R™ — R™, Pz, c,y) == d(z,y) — ¢
to get the conclusion of Theorem 5.29.]

5.33 Example. The hypotheses of Theorem 5.22 are only sufficient to prove the
smoothness of the zero level set. In fact, if ¢ : U x R™ is of class C! and ¢ : U x R — R

2
is defined by ¢(z,y) := y — p(x), we have det gi (z,y) =1 and det 8;; (z,y) = 0 while
the zero level set of both functions ¢ and ¢? is given by the graph y = ¢(z).

5.34 An algorithm for the level sets. Let € be open in R” x R™ and
let ¢ : O — R™ be a map of class C' with

o

¢(0,0)=0 and det dy

(0,0) # 0.

Near (0,0) the zero level set is the graph of a C'-function y = ¢(x).
Thinking of the proofs of the inverse and the implicit function theorems,
we may design an algorithm for the approximation of ¢. Let

0¢ 0¢

L =
Ox dy

(0,0), M := _"(0,0).

From the first-order Taylor formula, we infer
0= f(z,y) — £(0,0) = Lz + My + R(z,y)
with |R(x,y)| = o(|z| + |y|); therefore, since M is invertible,
y=—-M""Le — M 'R(z,y).
Hence, for a given x, ¢(x) is a fixed point of
y — F(y):=—-M 'Ly — M 'R(x,y).

For |z| sufficiently small, F' is a contraction on a suitable defined Banach
space. Therefore, an approximation scheme for p(x) is given by

yo := F(0),
Y1 = F(yr)

as k — 0o, and one sees that, for |z| sufficiently small, {yx} converges to
p(z) at least exponentially.

5.35 9. Prove Theorem 5.22 in the case m = 1 and n = 2 developing the following
steps that use only the one-dimensional calculus.
(i) Show that there exists ¢ > 0 such that ¢(zo,y) < 0 if yo — e < y < yo and
¢(wo,y) > 0if yo <y <yo +e
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Figure 5.13. Intersection of two transversal surfaces.

(ii) Show that there exists § > 0 such that ¢(z,yo —€) < 0 and ¢(z,yo +¢€) > 0 if
|z — o] < 6.

(iii) Set R := {(z,y)| |z—z0| < 6, [y—yo| < €}, and observe that one can choose € and
0 in such a way that ¢y, (x,y) > 0V (x,y) € R. Then show that for [x1 — xg| < ¢
the equation ¢(z1,y) = 0 has a unique solution y1 with (z1,y1) € R: This defines
a function y = ¢(z) such that ¢(z, p(z)) = 0 for all x € (zg — §, zo + ).

(d) Finally, show that ¢ is of class C and

bz(2,0(x)) + by (@, o(x))¢' () = 0.

Extend the previous proof to the case m =1, n > 2.

5.36 . Assume that the implicit function theorem, Theorem 5.22, holds true. Infer
from it the local invertibility theorem, Theorem 1.89. Conclude that the statements of
Theorems 1.89 and 5.22 are equivalent. [Hint: Consider the equation y — ¢(z) = 0.]

c. Submersions

5.37 Definition. Let Q be an open set of R™. A map ¢ : @ — R™ of
class C1 for which m < n and Rank D¢(z) = m for all x € Q is called a
submersion.

If ¢ : Q C R® — R™ is a submersion, at every point z €  an m X m
submatrix of the Jacobian matrix has nonzero determinant. After eventu-
ally reordering the variables, we can apply the implicit function theorem
to state the following.

5.38 Theorem. Let ¢ : Q C R" — R™ be a submersion of class C*,
k > 1. Then ¢ is an open map, and every level line of it is a (n — m)-
submanifold of R™ of class C'; moreover, Tan ,I'y;) = ker Dp(z) Vo €
QN Ty where I'y := {y | d(y) =t} is the t level set of ¢.

For future use, we explicitly restate the case m = 1.

5.39 Proposition. Let ¢ : O C R® — R be a submersion of class C*.
Then for every x € ), the level set of ¢ through x,

I, = {y € 2lo(y) = ¢(x)}
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Figure 5.14. From the left: (a) 22 —y2 = 0, (b) p? —2a2 cos§ = 0 and (c) p = sin 6 cos 20.

is an (n — 1)-submanifold of R™ and
Tan I, = ker Dé(z) = Vo(z)* Vo € .

5.40 9 Intersections of submanifolds. Let M and N be two submanifolds of di-
mension 2 of R? with N N M # (. Show that if the tangent planes of M and N at each
point do not agree, then M N N is a Cl-curve.

In general, prove that, if M and N are submanifolds of R™ of dimension respectively
r and s, with r+s > n, and if Tan z, M NTan 3, N has dimension r+s—n at o € MNN,
then there exists an open neighborhood W of zg such that M " NNW is an r+ s — n-
submanifold of R™. [Hint: Write M and N locally as level sets and apply the implicit
function theorem.|

5.2.2 Irregular level sets

The study and actually the behavior of the level set of a function near a
point at which its Jacobian matrix does not have maximal rank is more
complicated. A theorem that goes in this direction is in Section 5.3.8. Here
we confine ourselves to showing a few examples of irregular level sets in
two variables

{@y) e R |é(e,y) = dlwo, 10) |
in a neighborhood of a critical point (zq, yo).

5.41 Example. For ¢(z,y) = 22 + y2, the zero level set ¢(z,y) = 0 is just the point
(0,0).

5.42 Example. Let ¢(z,y) := 22 — y°. The zero level set is the union of two lines
y = *xz, see Figure 5.14. Near the origin we have a similar situation for Bernoulli’s
lemniscate

(@2 4+ y?)? —2a%(z? —y?) =0 a >0,

e., in polar coordinates, p? — 2a2 cos@ = 0, see Figure 5.14.
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5.43 Example. The zero level set of
¢($7y) = ('1‘2 + y2)2 - y($2 - y2)7
that in polar coordinates is the graph of p = sin 6 cos 20 has a double knot at the origin,
see Figure 5.14.
5.44 Example. The cissoid of Diocles is the zero level set of the function
d(z,y) = a(e® +y?) — 202,

It has a cusp at the origin with the positive z-axis as tangent cone, Figure 5.15.

5.45 Example. The zero level set of
(2? +y%)? = 32y =0,
has a triple point at the origin, see Figure 5.15.

5.46 Example. A famous example is the family of algebraic curves
y? =2 (z+ )

that depend continuously on the parameter A. They have the form in Figure 5.16. When
A moves from positive to negative values, we are in the presence of a drastic change of
form, a “catastrophe”.

5.3 Some Applications

The local invertibility theorem and the implicit function theorems are use-
ful tools in several contexts. In this section we shall illustrate some of their
applications.

5.3.1 Small perturbations

This is a typical situation that appears quite often: Quadratic terms are
smaller than linear terms if the variable is small.

Figure 5.15. From the left: (a) The cissoid of Diocles and (b) (z2 + y?)? — 3zy? = 0.
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Figure 5.16. y2 = 22(x + A\): From the left (a) A >0, (b) A =0 and (c) A <O0.

a. Quadratic systems

Suppose we want to solve the following system of n equations in n un-
knowns

Za”x,x]—l—thxz—&—c =0, h=1,n (5.15)
ig=1
or in brief
XTAX +BX+C=0
where X € R", A € M, ,(R"), A .:( ) B € M, ,, and C € R™.
The map ¢ : R — R™ defined by ¢( )= XTAX + BX is of class C*,
moreover, ¢(0) = 0, and

n n
dox (v)h = Z (a?j + a?i)Xivj + ZB?vi
i,j=1 i=1
so that dgo(v) = Bu. If B is invertible, the local invertibility theorem says

that there are two neighborhoods U and V of 0 € R™ so that (5.15) is
uniquely solvable in U for every C € V.

b. Nonlinear Cauchy problem
Suppose we want to solve the Cauchy problem

{u’(t) = F(u(t)), te[0,T], (5.16)

u(0) = ug

where F': Q C R" — R" is of class C!, F(0) = 0, and (0, ug) € Q. Observe
that if ug = 0, then w(¢) = 0 is the unique solution to the problem.
Counsider the transformation ¢ : X — Y, f(u) := (¢« — F(u),u(0)),
between the Banach spaces X := C1([0,b]) and Y := C°([0,b]) x R. It is
easily seen that ¢(0) = (0,0), ¢ is of class C with differential at 0 given
by the linear map d¢o : X — Y, dpo(v(t)) = (v'(t) —DF(0)v(t),v(0)). The
theory of linear systems yields a unique solution for the Cauchy problem
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{v’(t) ~DF0)u(t) = f(t), te[0,T]
v(0) = v
)

for any f € C°([0,T]) and vy € R for which

V]| e o,y < C’(Hf”oo,[@,T]ﬂO)

see [GM3], or, in other words the map d¢y : X — Y is an isomorphism
of Banach spaces. The local invertibility theorem (in Banach spaces) then
yields the unique solvability of (5.16) in a neighborhood of 0 in C*([a, b])
provided ug is sufficiently small.

c. A boundary value problem

Suppose we want to solve the following boundary value problem

u’(t) + F(u(t)) = ¢(t), tel0,1],

where F : Q C R"® — R” is of class C1, F(0) = DF(0) = 0 and ug, u;
are given real numbers. We consider the transformation ¢ : X — Y from
the Banach spaces X := C?([0,1]) and Y := C°([0,1]) x R x R given by
o(u(t)) == (W'(t) + F(u(t)),u(0),u(1)). It is not difficult to check that
»(0) = (0,0,0), ¢ is differentiable at every v € X with differential given
by

dfu(v(t) = (v"(8) + DF (u(®)v(t), v(0),0(1) )

in particular, dfo(v(t)) = (v (¢),v(0),v(1)). Since dfy : X — Y is invert-
ible, the local invertibility theorem tell us that, for ug,u; small enough
and for ¢(t) close to zero in the uniform norm, there is a unique function
close to zero in norm C? that solves (5.17).

d. C'-dependence on initial data

Let F(t,y) be a function of class C! in a neighborhood of (¢, yo) € RxR™.
As we know, see, e.g., [GM3, Chapter 3], the Cauchy problem

{y’(t) = F(t,y(1), (5.18)

y(to) = yo

has a unique local solution in a neighborhood of (to,yo); moreover, the
solution y(¢;yo) depends continuously on the initial datum yo. Fix yo and
shorten y(t;yo) as y :Jto — 0, to + [— R™.

Consider the map ¢ : X — Y between the Banach spaces X :=
Cl(Jto — 4,0 + 6[,R") and Y = C°(ty — d,t0 + §[) x R™ given by
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d(u) == (u' — F(t,u),u(to)). Trivially, ¢(y) = (0,yo); one also checks that
¢ is differentiable with differential d¢, : X — Y given by

gy (v(t)) = (v/(8) = F(t, y(®)v(), v(to)).

The theory of linear systems of ODE says that d¢, : X — Y is an isomor-
phism of Banach spaces. Then the local invertibility theorem states that
¢ has an inverse ¢! of class C!. In particular, for every choice (e(t),£),
where €(t) is a continuous function sufficiently close in the uniform norm
to 0 and ¢ a vector close to yg, the problem

{y'(t) = F(t,y(t) +(t), (5.19)
y(to) = €
has a unique solution close to y(t) in X. Such a solution y(t,¢&) =

¢~ 1(e(t),€) has a Cl-dependence on &. In particular, we have proved the
following.

5.47 Theorem. Let F(t,y) be a function of class C* in a neighborhood
of (to,yo) in R x R™. There exist & > 0 and p > 0 such that for every
¢ € B(yo, p) there exists a solutiony = y(t,&) € C(Jto—5, to+36[x B(yo, p))
that is of class C' in the variables (t,&).

5.48 . Let F(t,y,)\) be of class C! in a neighborhood of (to,yo, Ao). Prove that the
local solution of

y(t7 A) = F(t7 y(t, )‘)7 )‘)7
y(to, A) = yo

has a Cl-dependence on the parameter A, and infer Theorem 5.47 from this. [Hint:
Consider the local solutions to

52t N) = G5 (Lt 2), M)zt A) + 3T (6 y(8 1), )
z(to,A\) =0

and the differential increments wuy, ; := h1 (z(t7 A+ hej) —2(t, /\))7 and prove by means

of Gronwall’s lemma that uj ; — z as h — 0.

5.3.2 Rectifiability theorem for vector fields

Let Q be an open set of R” and let a(z) := (a'(z),...,a"(z)), x € Q, be
a vector field of class C'. In a neighborhood of every point of Q the local
(in time) flow of a, denoted by ¢(x), is defined as the unique solution of
the Cauchy problem

{ft%(x) — ap(x)),

wo(z) = .
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For ¢ sufficiently small, the system being autonomous, we have
©s 0 i (T) = Pres(T) = 1 0 s().

5.49 Definition. Two vector fields a € C'(Q,R™) and b € C1(Q*,R")
are said to be equivalent if there is a diffeomorphism u : Q* — Q such that

b(y) = (Du)~ ! (y)a(u(y)) Vy € Q*.

The relation of equivalence among vector fields is symmetric, reflexive,
and transitive. Moreover, a and b are equivalent if and only if there is a
diffeomorphism that transforms the flow of a into the flow of b. In fact, if
b(y) = (Du) Y (u(y))a(u(y)), and ¢ (), 1 (y) are the flows respectively of
a and b, then

Yie(y) =u"" o prou(y),

since for the map v;(y) := u~! o ¢; o u(y), we compute vo(y) = y and

(1) = Du ) 7 () = (D) (wuly)alpeuly)) = bun(y)),

thus v, = v; because of the uniqueness of the Cauchy problem. Conversely,
differentiating 1, = u~! o ¢; o u we see that a and b are equivalent.

5.50 Definition. We say that x( is a singular point, or a point in equi-
librium or a stagnation point for the vector field a(x) if a(xg) = 0.

5.51 Theorem (Rectifiability of vector fields). Leta be a vector field
of class O in Q. Suppose a(xg) # 0. Then in a neighborhood of xo, the
vector field a(x) is equivalent to the parallel vector field eq := (1,0,...,0).
Consequently, two vector fields without stagnation points are locally equiv-
alent.

Proof. After an affine transformation, we may assume zo = 0, and even a(zg) = e1. Let
¢ be the flow generated by a. In a neighborhood of y = 0, the map = = u(y) defined
as

uy) = 9,1(0,9%,...,y")
is a local diffeomorphism since det Du(0) = 1; moreover, from
er(u(y)) = pr oo (0,47, .., y") = 0,14(0,9%,. .., y")
= u(t+yl7y27" '7yn)’

we conclude
uoprou(y) =y +ter.
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5.3.3 Critical points and critical values:
Sard’s lemma

Let Q be an open set in R™ and let f : 2 — R™ be a map of class C*.

5.52 Definition. We say that x € ) is a critical point for f if the rank
of Df(z) is not mazimal, i.e., Rank D f(z) < m. A point y € R™, whose
counterimage f~Y(y) contains a critical point, is called a critical value for

The set of critical points of f is closed in €2. In terms of the new terminology
we can state the following.

5.53 Theorem (Local invertibility theorem). Let f: Q C R” — R"
be a map of class C. If y € R™ is not a critical value for f, then the level
set f~Y(y) is a discrete set.

5.54 Theorem (Implicit function theorem). Let f: Q C R — R™,
m < n, be a map of class C'. If y € R™ is not a critical value for f, then
the level set f=1(y) is a (n — m)-submanifold of R™.

A natural question to ask is how large the set of critical values can be.
If m > n, then all points of  are critical for f, hence all points of f(2)
are critical values for f. Instead, if m < n, critical values are rare.

5.55 Theorem. Let f: Q C R™ — R™ be a function of class C'.

(i) If n < m, then the set of critical values has zero Lebesgue measure in
R™.

(ii) (SARD) If m < n and f is sufficiently smooth, for instance f € C¥,
k>mn—m+1, then the set f(A) has zero Lebesque measure in R™.

In particular, in both cases the set of moncritical values is dense in the
image of f.

The proof of Theorem 5.55 goes beyond the goals of this book. However,
we notice that the result (i) is contained in the area formula, and actually,
it is part of its proof, compare Chapter 2 and [GMS, Vol. 5]. The claim (ii)
is instead more delicate.! Nontrivial examples show that the smoothness
of f is essential. For the reader’s convenience we prove Theorem 5.55 (i)
only in the case n = m.

L The proof, see, e.g., J. MILNOR, Topology from the Differentiable Viewpoint, Prince-
ton Univ. Press, 1965, uses both the implicit function theorem and Fubini’s theorem
and consists in showing, by induction on n, that, if C; denotes the set of points
at which the partial derivatives of f or order < i vanish, then successively the sets
F(Q\C1), f(Cit1\ Ci), and f(Cy), k large, have zero measure.
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Proof. The open set 2 is a denumerable union of bounded closed cubes, see, e.g., [GM2];
therefore we can assume that @ = [0,1] X --- X [0,1] is contained in © and that f(A)
has zero measure for

A= {z €Q ‘ x is a critical value for f}
Set M :=sup,cq |[Df(z)|], so that

I[f(@) = fyl <Mz —y| Vz,y€Q,

consequently, f(y) € B(f(z), M |x —y|) for all z,y € Q. Also notice that, by Taylor’s
formula, we have

|f (@) = f(y) =Df W)z —y)| <w(jz —y]) [z -yl
with w(t) nondecreasing, 0 < w(t) < M and w(t) — 0 ast — 0F.

Let a be a critical point for f. The image of the linear tangent map is a linear
subspace of dimension strictly less than n. If x € @, then

dist (f(x), f(a) + Df(a)(R™)) < [f(z) — f(a) = Df(a)(z —a)| < w(|z —al) |z — al
ie., if H := f(a) + Df(a)(R™),
dist (f(z), H) < w(|z — a|) |z — al.
We then infer for n > 0 and € Q N B(a,n)
dist (f(z), H) <w(m)n
while |f(z) — f(a)] < Mn. Therefore f(Q N B(a,n)) is contained in the intersection of
the ball B(f(a), n) with the strip parallel to H of width 2w(n) n, thus in a parallelepiped
of volume at most
2 M T 20(n) 0 = 2" M " w(n).
Now divide @ in equal cubes of side 1/k. If one of these cubes contains a critical

point, then it is contained in the ball B(a,+/n/k) and its image lies in a parallelepiped
of volume at most

2”M"_1n"/2k_"w<\2n>.

Since there are at most k™ cubes in @, we have covered f(A) with a finite union of
cubes of total measure at most

Q"M”_ln”/2w<\2n>.

The result follows since w(*é") — 0 as k — oo. O

5.56 Corollary. Let f : Q) C R™ — R™ be a map of class C'. The set of
noncritical values of f is dense in f(). In particular, the counterimage
F~Y(y) of y is made of a finite set of points for a.e. y € f(Q).
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5.3.4 Morse lemma

5.57 Proposition (Morse lemma). Let f be a smooth function defined
in an open set of R™. Suppose that 0 € ) is a nondegenerate critical point of
f,i.e, Df(0) =0, det Hf(0) # 0. Then there exist an open neighborhood
U of 0 and a diffeomorphism ¢ : U — R"™ such that

€)== = = (P + (") 4 4 ()2

where k is the dimension of the largest eigenspace on which the quadratic
form associated to the Hessian matriz Hf(0) «& is negative.

Proof. We recall that by Hadamard’s lemma we have

n

flz) = Z hij(x)a'zd

ij=1

in a ball around 0.
Let us prove the claim by induction on the dimension. After a linear transformation
we may assume that h11(0) = 1. Consider now the trasnformation y := () defined by

Yyt =at if 1 #£ 1,
yt=al + 35 hi(z)zt

Since Dv(0) # 0, v is invertible in a neighborhood of zero and it is not difficult to show
that

FO W) = 22+ S0 hD vty
i,7>1

Now, assume that in a neighborhood of 0 we have in suitable coordinates
n . .
F) =@ @)+ @)+ D Hy@)y'y/,
1,j=r
then by a linear change of coordinates we may achieve H,,.(0) # 0; the transform
yt =t ifi#r,
Yy =" + Zi>r HW(I)"L”

is then invertible near zero and again

f)=>_ @)+ > Hiwy'y’

i<r 1,7>r

5.58 Corollary. The nondegenerate critical points of a C?-function are
isolated.
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Figure 5.17. The gradient flow.

5.3.5 Gradient flow

Let A be an open set in R” and let f : A — R be a function of class C%(A).
For every initial position that is not critical for f the (local in time) unique

solution of
a'(t) = Vf(x(t)),
x(0) =z,
is called a trajectory of the gradient flow through x. We have:

(i) The trajectories of the gradient flow are orthogonal to the level sets

of f.

(ii) f is increasing along the trajectories of the gradient flow of f, in fact,
d

g T @®) = Vi) e (t) = [Vf((0))

5.59 Proposition. If a trajectory of the gradient flow exists for all times
t > 0 and has a limit xo when t — oo, then ¢ is a critical point for f.

Proof. On the contrary, suppose V f(xzg) # 0. Then there exists a bounded neighbor-
hood U of ¢ such that |V f(z)| > m > 0 Vz € U for some m > 0. We may also assume

that |f(z)] < M for some M > 0 and that for ¢ > ¢ the trajectory lies in U, z(t) € U.
For all t > t we then infer

t
Fa(t) — Fa(t) = /

ie., f(z(t)) — +oo, in contradiction with f(z(t)) — f(zo). O

d

O )

5.60 Proposition. Let xg be a critical point for f with Hf(zg) < 0.
Then there exists a neighborhood U of xg such that every trajectory of the
gradient flow that begins at time t =0 in U ends at xg.

Proof. We have
Vi@ e(@—20) = Y foue; (@0 + sz —20))(z — 0)i(z — 20); < —T; |z — ol
ij=1

for all  in a ball B(zo,d) in which Hf(z)vev < —(m/2)|v|?. If we set ¥(t) := |z(t) —
x0|?, we find
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W' (t) = 2 (a(t) —zo) o' (t) < —mla(t) — zo|® = —m(t),

and, after integration,
log(1(t)) — log(¥(0)) < —mt (5.20)
for all times for which the trajectory is contained in B(zo,0). Thus the trajectory z(t)

is contained in B(xzq,r), r := |2(0) — zo|. Therefore, x(t) is defined for all ¢ > 0 and,
passing to the limit as ¢ — oo in (5.20), one concludes that z(t) — zo. O

Proposition 5.60 motivates the terminology of stable critical point for a
point for which V f(x0) = 0 and Hf (z9) < 0. The above provides us with
a method for finding critical points of f. It is called the gradient method,
or the method of steepest descent (ascent, in our case).

5.3.6 Constrained critical points: the
multiplier rule

In this section, we discuss some necessary conditions for the extremals of a
smooth function in presence of constraints for the independent variables.

Let 2 be an open set in R™ and let .S C R™ be a set. We say that o € S
is a relative or local mazimum (minimum) point for f constrained to S if
there exists an open neighborhood W of ¢ in R™ such that f(xg) > f(x)
(f(xo) < f(x)) for all x € SNW. Maximum and minimum points are also
called extremal points.

We shall only discuss extremals relative to smooth bilateral constraints,
i.e., submanifolds. For more general situations, see, e.g., [GM5].

Our considerations are purely local. Thus, we assume that ¢ : U C
R"™ — R"™ is a diffeomorphism and the constraint is given by the embedded
submanifold ¢(U). Let © D ¢(U) be an open set and let f : @ — R
be a Cl-map. If 29 = ¢(ug) is a relative maximum or minimum point
constrained to ¢(U), then ug is a relative internal maximum or minimum
point for f oy : U — R. By Fermat’s theorem

D(f o ¢)(uo) =0
i.e., using the chain rule,
D f(x0)De(uo) = 0.

Since the columns of the Jacobian matrix Dy(ug) span the tangent space
to (U) at xg, the derivatives in the tangential directions of I" vanish,

Df(zo)(v) =0 Vv € Tan ,, T’

or, equivalently,
Vf(xo) L Tan ., (U).

The above motivates the following definition.
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5.61 Definition. Let Q be an open set in R™, let f : Q — R be a C*'-
function, and let I' be an r-dimensional submanifold, 1 < r < n. We say
that o € T is a critical point of f constrained (or relative to) I' if

V f(zo) L Tan ., T. (5.21)

In other words, zq is a critical point of f relative to I if the derivatives in
the tangential directions of I' vanish,

af

5 (x0) =D f(x0)(v) = Vf(xo)ev =0 Vv € Tan 4, T

5.62 Theorem (Lagrange multiplier rule). Let ¢ : Q@ — R™, ¢ =
(¢, ¢2,..., &™) be a function of class C* where Q is an open set of R™
and m < n. Let xg € Q be a point for which Rank D¢ (zg) = m and let
I:={x € Q|¢g(x) = d(xg)}. Finally let f: Q — R be a function of class
C'. The following claims are equivalent

(i) xo is a critical point for f constrained on T.

(ii) There exist constants Ay, ..., A0 such that
Df(z0) = >  A/D¢ (o). (5.22)
i=1
(iii) There exist constants \Y, ..., A% such that
m .
Vi(zo) =Y AV (0). (5.23)
i=1

(iv) There exists \° € R"™ such that (zo, \°) is an unconstrained critical
point for the function F : Q x R" — R,

F(z,)\) = f(z) — Z g (z).

(v) We have V f(xo) € InD¢(x0)*, where Dp(xo)* denotes the adjoint
matriz of Do(xg) computed using an arbitrary scalar product in R™.

The numbers A, ..., A0 are called the Lagrange multipliers.

Proof. (i) < (ii). We have
Tan ;o' = ker D¢(x0)

and
Df(xzo)(v) =0 Vv such that D¢(zo)(v) = 0.

If we introduce the (n —r + 1) X n matrix
Dg(zo)

Df(zo)
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then (i) holds if and only if dimker G = dimker D¢(zo) = r. Since the rows of D¢(zq)
are linearly independent, (i) holds if and only if D f(xg) is a linear combination of the
rows of D¢(zg).

(ii) < (iii) is trivial, since for any map f: Q — R Df(v) = Vfev Vv € R™.
(ii) ¢ (iv) since ker Dg(z0)* = Im D¢(x)* by the alternative theorem.
(ii) < (v). The vanishing of the gradient of F(x,\) at (0, A°) is in fact equivalent to
(ii),
Df(z0) = X2i—1 A{Dé' (z0),
¢(x0) = 0.
O

5.63 §. Notice that in Theorem 5.62 the assumption that I' is a submanifold is essen-
tial. If f(x,y) =y in R? and T := {(z,y) |y — 2? = 0}, show that (0, 0) is an absolute
minimizer for f constrained to T'; however, F(z,y, \) := y + A(y®> — 22) has no critical
point.

5.3.7 Some applications

Several relevant inequalities, which are obtained by linear algebra meth-
ods or by Jensen’s inequality, can also be proved by means of Lagrange’s
multiplier rule. We conclude this section with a few examples.

a. Orthogonal projection and eigenvectors

5.64 Orthogonal projection. Let S be a linear subspace of R™, ( | ) an inner prod-
uct on R™, ||z||2 := (z|z) the induced norm, and b € R™. The function f(z) := ||z —b||?,
x € S, is continuous and nonnegative; moreover, f(||z||) — 400 as ||z|| — +o0, z € S.
Therefore, f has at least a minimum point zg constrained to S for which

V(||zo — b]|?) = 2(zo — b) L Tan 4,S = S,
i.e.,
2(xg — blv) =0 Yv € S.
In other words, ¢ is the foot of the perpendicular to S through b.

5.65 The method of least squares. In the least mean square method and in the
linear regression, we need to find the minimizers of the function z — ||Ax — y||2 where
y € RY and A € My n(R). As we have seen, using linear algebra x is such that
y— Az L ImA, ie., once we fix an inner product also in RF, A* (Az —y) = 0. This

last equation is easily found using Fermat’s theorem since
Az —y||> = |lyl[* — 2y o Az +||Az|]?,
V(yeAz)=V(A¥yez)= A"y,
V||Az||? = V(A*Azez) = 2A* Az
hence
V|[|Az —y||* = A*(Az —y).

Of course, we may proceed similarly if the data model is nonlinear as for instance
if the data model is built upon a diffeomorphism ¢ : @ C R¥ — R”™ of class C!. In this
case we minimize
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z — ||¢(z) — bl = V/ ($(x) — b) o (d(x) — 1),

and by Fermat’s theorem, we get

_ olls(e) — bl
Oxt

N

(0) =2 (¢(z0) — b)' D’ (o),

i=1

0

e, ¢(x) —y L Tan ;) p(Q).

5.66 Eigenvalues of a self-adjoint matrix. Let A € M, »(R™) be a self-adjoint
matrix. In linear algebra, see, e.g., [GM3], one sees that for the largest eigenvalue L one
has
L = max Azex
|z|=1
and the maximum is attained at the corresponding eigenvectors. We can find again such
a result by means of the Lagrange multiplier rule applied to the problem

Maximize Az ex

on the constraint |z|2 = 1.

Since S := {z | |z| = 1} is compact, Az ex attains its maximum at some zg € S. Since
S is a submanifold of R™,

V(Azex)(xo) = 2Azo L Tan 4,5, and z?—=1=0
i.e.,
2Azx0 = 2) xp,
|zo| =1

for some A € R. In other words, xzp is an eigenvector, and A is the corresponding
eigenvalue. Since Azpexo = A|zo|?2 = A, and zp maximizes Az ez on S, we conclude
that A is the largest eigenvalue and zg a corresponding eigenvector of norm one.

5.67 Least distance between two surfaces. Let S and T be two compact and
boundary-less submanifolds of R™. We want to describe the minimizers of |z — y| with
the constraint € S and y € T'. Since the function |z — y|, (z,y) € R™ x R", is con-
tinuous, and S x T' C R™ x R™ is compact, S and T" being compact, the existence of a
couple (z0,Y0), zo € S and yo € T, which realizes the least distance between S and T'
follows at once from Weierstrass’s theorem. Clearly, S N'T # ) if and only if the least
distance between S and T is zero, and, in this case, all points (z,z), = € SN T, are
minimum points. Otherwise, i.e., if SNT = 0, if (zo,y0), o # Yo, is a point of least
distance, then y — |zo — y|, y € T, has a mimimum at yo, and © — |z — yo|, z € S
has a minimum at zg. Therefore, see 5.64, the vector xo — yo is both perpendicular to
Tan z,.S and Tan 4,7

5.68 q Linear programming. Let {c;}, {a;;} and {b;}, i =1,...,m, j =1,...,n
be given constants. Consider the problems
. n o .
Minimize }77_; ¢;z; — min (5.24)
under the constraints -7 ; ajjz; =b;, i=1,...,m,
and
Maximize Y /", bjw; — max

(5.25)
under the constraints » ™, aj;w; =c¢j, j=1,...,n.

Prove that (5.24) is solvable if and only if (5.25) is solvable.



272 5. Surfaces and Level Sets

5.69 Boltzmann’s distribution. Let E be the energy of a system of N particles, let
FE1, Ea, ... E}y be the possible energetic levels of the particles, and let n; be the number
of particles with E; as energy. The most probable distribution is the one that maximizes
the quantity

(N)(anl) <N77L1*7L2"'*nk—2)_ N!

ni no ng — 1

under the constraints . .
i=1 i=1

Assuming N and n;, ¢ = 1,...,k large enough and using Stirling’s formula to approxi-
mate the form of the distribution energy, we need to minimize

k

Z (ni(log n; — 1)+ ; log nl)

i=1

under the constraints (5.26). If we further simplify, assuming that the n; are continuous
variables, and set

F(ni,na,...,ng, A, 1)
k k

= Zk: (m(logm —1)+ ;logm) +)‘<Z"i - N) +#<ZmEi 7E)7

i=1 i=1 i=1
differentiating we get

1

1
n; +logn; —1+
; 2n

+ A+ pE; =0, i=1,...,k
ng i
and, neglecting the term 1/n;,
logn; = uE — A,
concluding that the Boltzmann distribution is given by
n; = Ce MFi
where C and p are constants to be found so that (5.26) holds.

5.70 9. Taking the asymptotic development of log I and of its derivative, substantiate
the procedure we followed.

b. Inequalities

5.71 Young’s inequality. If a,b > 0 and p~ ! + ¢~ ! = 1, then ab < “; + bqq, see
[GM1]. To prove it we can also proceed by minimizing the function (a,b) — f(a,b) :=

app + bqq under the constraints ab =1, a > 0, b > 0. Since when ab = 1, for
aP a=?
¢(a) := f(a,b) = f(a,1/a) = p T g

we have p(t) — 400 as t — 0T and ¢t — +oo, the function f has at least a minimizer
(z,y) in S ={ab =1, a >0, b > 0}. The multiplier rule says that

Vi(z,y) = AV(zy — 1),
zy =1
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for some A € R, i.e.,
Pl = Ay,
yi =t =,
zy=1, >0, y> 0.
This system has (z,y,A) = (1,1,1) as unique solution, thus the unique constrained

minimizer is (1,1), and f(1,1) = 1.

5.72 Arithmetic and geometric means. Recall that, for positive numbers x1, x2,
., Tn, we have

1 n
Yarwg - on <Y w
n <
i=1

with equality if and only if z1 = xo = -+ = zn, see [GM1]. We may find it again by
minimizing the function

1 n

flzi,za,... 2n) = " le
i=1
constrained to
S = {x:(acl,acz,.., xn)‘ T1T2 Ty = 1, T >O}

and proving that the unique minimizer is z := (1,1,...,1).

First, S is a submanifold. Next, it is easy to see that f(x) — 400 when z tends
to a boundary point of S. Therefore, Weierstrass’s theorem implies the existence of a
minimizer x = (z', 22,..., ™) for f. The multiplier rule yields

Vf(z) =AV(z1z2 - 20 — 1),

122 Ty = 1, @; >0,

for some A € R, i.e.,
T1 = NAT2L3 - Tn,

T2 = NAT1X3 - Tn,

Tpn = NAL1T2 Tp—1.

Multiplying the ith row by z;, we find x? = nA for all 4, hence :):% = m% = ... = :1:%,

thus 1 = 1 for all 4. Finally, A = 1/n.
The inequality between geometric and arithmetic means follows at once. In fact, if
z = (z1, x2,..., Tn) € R™ and z122 ... 2y = k™, then x/k € S, hence

1<z
o>,

"3

B

that yields

1 n
in > k= Y12 Tn.
nis

5.73 Hadamard’s inequality. Let A € M, »(R) and let A, As,... A, be its
columns. The Hadamard inequality

(det A)? < T 1441 (5.27)
=1
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holds with equality if and only if the columns of A are orthogonal.

The following proof uses only linear algebra and the inequality between geometric
and arithmetic means.

First, suppose that A is symmetric with nonnegative eigenvalues. A1, A2, A\p, so that
det A = AjX2---Ap and tr A = 37 | ;. From the inequality between geometric and
arithmetic means we get

detA:Al,\g---Ang(izn:,\i)"=<trA)n (5.28)

i=1 n
with equality if and only if A = A1d, A > 0.

Now, we observe that (5.27) is trivial if one of the columns is zero, otherwise, we
can assume that each column has length 1, |A;| = 1. In this case it suffices to prove
that

(det A)? <1,
with equality if and only if A; e A; = §;;. Since AT A is symmetric, with nonnegative
eigenvalues, we get from (5.28)

tr ATA\n
(det A)? = det ATA < ( g ) -1
n

with equality if and only if AT A = Id, i.e., A; o A;j =0;;.
An alternative proof of Hadamard’s inequality can be done using the multiplier
rule. It suffices to show that the function

fiMan(®) =Ry, f(A)=detA,

constrained to
S i={A € Man ) |Ail =1Vi=1,n},

A; being the columns of A, has a constrained maximum point, and all such constrained
maximum points X satisfy XTX = Id.

Since ¥ is compact and f is continuous, both maximizers and minimizers exist in
3. ¥ is defined by the equations

2 2 2 _
ap; +ajp, +---+ay, =1,
2 2 2 _
azy tazy +---+az, =1,
2 2 2 _
an1+an2+"'+ann71-

Its Jacobian matrix is the n x n?-matrix given by

ail ain 0 0

0 0 a21 az2n 0 0
2

0 0 anl ... Qnn

Thus it has maximal rank n since its column vectors are nonzero. Consequently, at
points X = [z;;] of constrained maximum or minimum for f we have

ddet X n
= AR i
0w hzz:l ”

for some (A1, A2,..., An) € R™. Since

X cof (X) = det X Id, (5.29)
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we infer dg;tx = cof (X);;, hence the stationarity equations become
ij

cof (X)j; = 2X\iwsj, ifi,j=1,...,n,
(XTX)is = 227 wjiwge = 1
for some (A1, A2,..., An). Multiplying the first equation for zj;, k£ # 4, and summing

on j, we find, using again (5.29),

0 = (Xcof (X))ki = 2XAi 3271 xrjzij = 20 (XXT ),
(XTX);; = 1.
Now, we claim that the multipliers are nonzero. In fact, if one of the \;’s is zero, then
cof (X);; = 0 for all j, hence det X = 0 by (5.29): a contradiction, if X is a maximum
or a minimum point of A — det A restricted to X.
The stationarity equations then say that X7X = Id, and we conclude that, if X

is a maximizer or a minimizer for A — det A constrained to 3, then X7X = Id. For
these matrices we finally have

(det X)? =det XTX =1
hence |det A| < |det X| = 1 YA € %, with equality if and only if AT A = Id.

5.74 Isoperimetric inequality. As a consequence of Hadamard’s formula, using
again the geometric-arithmetic inequality,

n 1 n . _
(det A)2 < [T1A2 < (D0 14f2)" = n Al JIAIG =3 A%,
i=1 i=1 ij

i.e, the isoperimetric inequality for matrices
| det A| <n="/2||Alf2,
with equality if and only if AT A = Id.

5.3.8 Lyapunov—Schmidt procedure

We can make use of the implicit function theorem for the study of nonlinear
equations
¢(z) =0

in a neighborhood of a solution zy also when the linear tangent map of ¢
is not of maximal rank at xg.

Let ¢ : 2 C R® — RY? be a given map of class C'. We assume that
we can split the coordinates of the domain space R™ and the components
of ¢ into two groups, respectively x := (x!,... 2"), y := (2", ... 2")
and ¢ = (¢',..., 77 ™), ¢ := (p?~ ™+ ... %), in such a way that
r=n—m and

(2)
¢($0,y0) = 07 det ag (x()?yo) 7é 0.
Y

Though D¢ is not of maximal rank if ¢ > m, we can apply Theo-
rem 5.22 to ¢ : Q — R™ that is of maximal rank to find the following
formulation of the implicit function theorem.
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_

Figure 5.18. The level set of ¢ is a graph over the level set of g.

5.75 Theorem (Implicit function theorem, IV). Let ¢ : Q C R” x
R™ — R? be of class C*, k > 1, where Q C R"™™ is open and q > m. Set

oM = (g1 1™, ¢ = (gL ).

If at (x0,90) € Q@ CR” x R™ we have
9
dy

then there exist an open neighborhood U of xg, an open set W C R" x R™,
and a map ¢ : U — R™ that is open and of class C*(U) such that

¢($an0) = Oa det (I'O,yo) 7é 07

(z,y) € W, . . m(i v
oz y) = 0 if and only if oW (z, p(x)) =0,
’ y = o().

In other words, if I' = {(z,y) € Q| ¢(z,y) = 0} is the zero level set of
¢, then

PW = {2 e U[6M (@, p@) =0,y = o)}
i.e., 'NW s a graph over the zero level set A,

A= {x cU ‘ oW (2, p(x)) = o},

of the function (x) := ¢V (x, p(z)). This way, the analysis of the level
set I' € R™™ is reduced to the analysis of the level set A C R” defined
with less equations and less unknowns, thus potentially easier. Notice that
I'NW and A are diffeomorphic.

5.76 Remark. Notice that the number of equations and independent
variables of 1 := ¢! (x, p(z)) is smaller and at most m. Therefore, the
best we can do is choose coordinates so that m = RankD¢(z). In this
case the residual implicit equation

oW (x, p(z)) = 0, x €U CR", r:=dimker Dp(xq, yo)

is called the bifurcation equation of the level ¢(x,y) = 0. Of course, when
D¢(xo,yo) has maximal rank, we have no bifurcation equation, and The-
orem 5.75 reduces to Theorem 5.22.
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Theorem 5.75 is the finite dimensional version in coordinates of the so-
called Lyapunov—Schmidt reduction procedure that has its natural context
in Banach spaces. First, we recall that we can decompose the domain and
the range of a linear map L : X — Y between vector spaces of finite
dimension into supplementary spaces

X:=kerL&® S, Y =ImL&T
so that all x € X, y € Y uniquely decompose as

r=x1+x9, 11 EkerL, x5 € S,
y=vy1+y2 y1 €ImL, yo €T.

and the map L|g : S — Im L is one-to-one and onto.

If we choose coordinates in X in such a way that the first group de-
scribes ker L and the remaining y the supplementing space S, and we
choose the coordinates in Y in such a way that the first ¢ describe Im L,
then ¢ = dim .S and det ‘gL = 0. Moreover, the previous decomposition
identifies L|g as the invertible factor of L.

Secondly, we recall that the previous construction can be done for every
linear continuous map L : X — Y between Banach spaces X and Y
provided L has closed range (this is always true if Y is finite dimensional,
see [GM3)]). The implicit function theorem takes then the following form.

5.77 Theorem (Lyapunov—Schmidt procedure). Let ¢ : X — Y be
a map of class CF, k > 1 with ¢(0) = 0 between the Banach spaces X and
Y. Suppose that the Frechét differential at 0 of L := ¢'(0) has closed image.
Then X =ker L® S, i.e., every x € X uniquely decomposes as x = x1+ T2,
x1 € ker L, xo € S; moreover, there are two open sets U W € X and two
maps p:UNkerL — X and ¥ :UNker L — Y such that

r=x1+x2,71 € UNkerL,
xeW, . .
{ if and only if (xy) =0,
d(x) =0
xo = p(x1).

(5.30)

In other words, for
F:{weX’¢(m):0},

the piece I' N W of the level set I' is the graph of the C*-map ¢ over the
level set {z1 € ker L | ¢(z1) = 0}. The equation ¢(z1) =0, z1 € UNker L,
is called the bifurcation equation of T'NW.

Since 'NW and A = {x € Unker L| ¢(x) = 0} are diffeomorphic, the
invariants under diffeomorphisms of 'MW are described by the invariants
under diffeomorphisms of A C ker L.



278 5. Surfaces and Level Sets

Proof. Step 1. As already stated, since the Fréchet differential of ¢ at 0 has closed
range, there exist closed subspaces S C X and T' C Y supplementing respectively, ker L
and Im L,

X :=kerL® S, Y =ImL®T,

so that every x € X and y € Y uniquely decompose as

r=x1+x2, 1 €Eker L, x5 € S,

y=y1+y2, y1 €ImL, y2 €T
and the restriction L is one-to-one, onto, continuous as map form S to Im L, and its
inverse (L|S)*1 :ImL — S is continuous by Banach’s theorem, see [GM3]. Now we
extend (Ljs)~! to a continuous linear map M : Y — S by M(y1 +y2) := L™ (y1). By
construction ker M =T and ImM = S.

Now we repeat the proof of the implicit function theorem. Let F' : X — X be the
map defined by
F(z) =z1 + M¢(x).
For v € X we have
F'(0)(v) = v1 + ML(v) = v1 + ML(v1 +v2) = 21 + ML(v2) = v1 +v2 = v.

Then, the local invertibility theorem implies that F' is locally invertible near 0. There
exists an open neighborhood W of 0 such that F|y is a diffeomorphism with inverse

G:U — W, U = F(W) of class C*. Finally, we set for 21 € U Nker L
p(1) = G(@1)2,  Y(z1) = $(G(21))2. (5.31)
Step 2. We have
G(z1)1 = =1 and z1 + @(x1) = G(z1) (5.32)

for all 1 € U Nker L. In fact, for 1 € U, we have G(z1) € W and z1 = F(G(z1)) =
G(z1) + M¢(G(x1)). Since the image of M is S, we have (My); = 0 Vy, thus

x1 = (ml)l = G(Z‘l)l hence G($1) = G(ml)l + G(Z‘l)g =x1 + w(ml).

Step 3. Finally, let us prove (5.30). If x € W and ¢(x) = 0, then
= G(F(2) = G(x1 + Mo(x)) = G(x1),

in particular, 1 € U. From the first equality of (5.32) we infer z; € ker L, and from
the second one of (5.32) that z1 + z2 = z = G(z1) = z1 + ¢(x1), e, z2 = p(z1).
Moreover,
Y(z1) = ¢(G(x1))2 = ¢(x)2 = 02 = 0.

Conversely, from

r=ux1 +x2, x € UNKker L,

Y(x1) =0,

w2 = ¢(z1)

and the second equality of (5.32) we get ¢ = z1 + x2 = z1 + ¢(z1) = G(z1). In
particular, € G(U) = W. Also F(z) = z1 + M¢(x) = z1, thus M¢p(x) = 0 and, M
being invertible, ¢(z)1 = 0. Since ¢(x)2 = ¢(G(x1))2 = ¥(x1) = 0, we conclude

o(z) = ¢p(x)1 + ¢(x)2 = 0.
O

5.78 Remark. We conclude this section with some remarks. We refer to
the notation in the statement and the proof of Theorem 5.77.
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Suppose ¢’(0) is surjective. We then have T' = {0}, and the bifurca-
tion equation ¥ (z1) = 0 holds for every 1 € ker L by definition of
1. Therefore, in this case, the level set {x € W |¢(z) = 0} is a graph
over ker L.
An interesting case in which the Lyapunov—Schmidt procedure ap-
plies is that of maps whose Fréchet differential L = ¢/(xz¢) is a Fred-
holm operator. Recall that L is a Fredholm operator if ker L and
the supplementary space to Im L are both finite-dimensional; Fred-
holm operators have closed range. In this case the set of solutions
of ¢(x) = 0 is, near xg, a graph over a level set contained in ker L,
hence of finite dimension. This way, the study of a large class of
infinite-dimensional equations transforms into the study of a system
of finitely many equations in a finite number of unknowns.
A special case arises when X =Y = H is a Hilbert space and L :=
@’'(0) is a compact perturbation of the identity, see [GM3], as L has
closed range because of the alternative theorem. In this case, it is
convenient to choose S := ker L, T := Im L and to repeat the proof
of the Lyapunov—Schmidt theorem by choosing as M the adjoint L*
of L instead of L‘_Sl, since ker L* = Im L+, ker L = Im L** and
F(x):=x1+ L*¢(x)

is also a local diffeomorphism. This last claim deserves an expla-
nation. The function L*L : ker Lt — ker L is an isomorphism of
Hilbert spaces by the alternative theorem. It follows that F”(0)(v) =
vy + L*L(v) = v1 + L*L(vy) is an isomorphism of H onto itself and
F(z) := x1 + L*¢(x) is a local diffeomorphism because of the local
invertibility theorem.

Since the inverse G of F(x) = x; + M¢(x) is obtained via local
invertibility, we can set for G a scheme of successive approximations
that allow us to work in quite an explicit way on the bifurcation
equation ¥ (z1) = ¢(G(x1))2 = 0.

The critical points of a map V' : 2 C R™ — R are the solutions
of the system of n equations ¢(x) := DV (z) = 0 in n unkowns;
assume 0 is one of the critical points. We have D¢(0) = D?V(0) and
the bifurcation equation ¢ (z1) = [DV(G(x1))]2 = 0 is defined on
ker D¢(0), i.e., on the null space of D2V (0).

5.3.9 Maps with locally constant rank and
functional dependence

Suppose that the n x n matrix of the linear system

Axr=0

has rank smaller than n. Then some of the equations are linear combi-
nations of the others and therefore they can be eliminated as irrelevant.



280 5. Surfaces and Level Sets

In the spirit of the implicit function theorem, a similar result holds for
nonlinear equations ¢(x) = 0 when D¢ has constant rank.

5.79 Theorem. Let ¢ : Q C R” x R™ — RY? be a function of class C*,
k> 1 where Q is open and q > m. Set ¢ := (¢, ¢(?)) where

oW = (907, 9P = (¢ )
and suppose that at (xg,yo) € @ CR" x R™ we have

I
(b(x(]v yO) = 07 Rank (9 (an ZUO) =m,
Y
and, moreover, that Rank Do (x,y) is m in all points of a neighborhood of
(x0,y0). Then there exist an open neighborhood W of (xg,yo) € R™™ a
ball B(0,6) C R™, an open set Z C R™, and a map k : Z — RI™™ of class
C* such that ¢(W) is the graph of k over Z,

o(W) = {(u,v) € RY

weRI™ ye Zu= k(v)}. (5.33)
In particular,

oW (z,y) = k(P (2,y))  V(z,y) € W. (5.34)

In particular, (5.33) states that ¢(W) is an m-submanifold of R?, and
(5.34) states the functional dependence of the first components »M from
the second ¢(® according to the following.

5.80 Definition. Let ¢',...,¢7 be q functions of class C' defined in the
open set @ C R", and let ¢ : Q — RY, ¢ := (¢',...,¢9). We say that
o', ..., 9 are functionally dependent if there exists a submersion F : A —
RP, where A is open, ¢(2) C A C R?, and p < q, such that

F(¢'(x), ¢*(x),...,¢%(x)) =0  VaxecQ.

Proof of Theorem 5.79. Step 1. We repeat once again the proof of the implicit function
theorem. The function f(x,y) := (x, ¢ (z,y)) is a local diffeomorphism near (zo,yo)
since det D f(z0,y0) # 0. Therefore, there exist an open connected neighborhood U of
zo and a ball B(0,8) C R™ such that for W := f~1(U x B(0,6)), the map fiw is
invertible with inverse g : U x B(0,8) — W of class C*. The map ¢ : U x B(0,5) — R™
defined by g(z,c) =: (x, p(z, c)), is then open, of class C¥, and

(m’ y) € W: S U,
c € B(0,9), if and only if c € B(0,9),
¢ (z,y) =c y = ¢(z,c).

In particular, ¢(2)(z, p(z,c)) = ¢ ¥(z,¢) € U x B(0,d). Differentiating in x, we get
Do (2, p(z,¢))T(z,c) =0 Ve eU (5.35)

where
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o]
on (7€)

96(2)
4 (@,) # 0 near (w0, 0),

we may assume, possibly with smaller U and B(0,¢), that the rows of Do (z,y)

linearly depend on the rows of D¢(*) (z,y) at every point of W. Consequently, there is
R(Ivy) € Mmfv‘,m such that

Step 2. Since Rank D¢ is constantly m near xzg and det

D(b(l)(x,cp(ac,c)) = R(z, p(z,c)) D¢ (z, p(z, 0)), Vz € U, Ve € B(0,6). (5.36)

By differentiating the function ¥ (z,c) := ¢ (2, p(z, c)) with respect to z, we infer
from (5.36) and (5.35)

Dy (z) = D (2, (=, ¢)) T(z, ) = R(z, p(z, ) D) (2, p(x, c)) T(=,c) = 0.
Therefore 1) is constant in x,
P(z,c) = k(c) = ¢ (z,0(z,c))  V(z,c) € U x B(0,6),

consequently, if Z := ¢(2) (W) C R™, we have that Z is open, k is of class C¥(Z), and
6D (@, 9(x,) = k(¢ (@, 9(x,0))) V() €U x B(0,6),

or, equivalently, ¢(1>(z) = k<¢(2>(z)) VzeW. O

5.4 Curvature of Curves and Surfaces

5.4.1 Curvature of a curve in R"

Let 7 : [0, L] — R" be a curve of class C? parameterized by its arc length so
that |7/(s)| = 1. The unit vector (s) := ~/(s) is tangent to the trajectory of
v at s, and the acceleration vector, v”(s), i.e., the variation of the tangent
unit vector f(s) to 7, is perpendicular to ¢ since

d / 2 / "
= = 2 .
0= 1 WO =20/(s)"(s)
The vector
Soodt

Fs) = ) (5)=7"(5)

is also called the curvature vector of v. When E(s) is nonzero, the vector
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Ck(s)  A(s)
lk(s)]  1"(s)

is called the principal normal to v at s, the nonnegative number |E(s)| is
called the scalar curvature of v, its inverse, p(s) := 1/|k(s)| is called the
radius of curvature of y at s, and, finally, the circle of center v(s)+p(s)7i(s)
and radius p(s) in the plane generated by ((s),7(s)) is called the osculating
circle to v at s.

5.81 q. Prove that a circle of radius R in R? has 1/R and R respectively, as curvature
and curvature radius.

Writing Taylor’s formula (s + h) = v(s) +7/(s)h + 7" (s)h? /2 + o(h?)

as
2

s+ B) =) +hils) + ') Fs) +o(hP)  ash—0;

we see that the curvature vector points in the direction in which the curve
turns, and its modulus is a measure (up to second order) of how regularly

the curve deflects from its tangent line in the plane spanned by #(s) and

7i(s).

5.82 €. Prove that Taylor’s developments of v and its osculating circle (both parameteri-
zed by the arc length) agree up to second terms included.

Let v : [a,b] — R™ be a regular and simple curve of class C! with
v(a) # ~(b). At each of its points p there are two unit tangent vectors £(s)
and ft_’(s) corresponding to the parameterization of v by the arc length and
to the opposite reparameterization respectively, § : [0, L] — R™, §(s) :=
Jo W (®)|dt, and 61 : [0,L] — R", 61(s) = 6(L — s). In both cases the
curvature vector at p = d(s) depends only on the trajectory of the curve
(independently of its parameterization). Therefore, we may also refer to
the curvature vector, the scalar curvature, and the osculating circle of
at a point p = d(s) of its trajectory and write

—

Fp)=FK(s) i p=r(s).

5.83 Curvature for a parameterized curve. Let v : [a,b] — R™ be
a curve of class C? parameterized by an arbitrary parameter ¢. Then,

- v (t)
t(t) :=
=)
hence
- di  dtdt d/A(t) 1 1 /., ey ,
kt = — — — —
0= g5 = aras = at (i) o) = e 0" e )

By denoting with [v]", v € R™, the orthogonal projection of v into the
normal space to t,
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Figure 5.19. Frontispieces of two books on curves and surfaces.

WY = — (vel)t,

we also have N

E L " [y"(t)} . (5.37)

MO = e

The curvature is strongly related to the first variation of the length
with respect to deformations.

5.84 Proposition (First variation of the length). Let v : [a,0] —
R™ be a regular curve of class C? and let ¢ : [—1,1] x R® — R"™ be a
deformation of v for which the end-points remain fixed, i.e., a map of
class C% with ¢(0,r) = x Yo and

o(e,v(a)) =v(a),  &(e,y(b)) =~(b) Ve
If L. denotes the length of the curve v.(t) := ¢(e, t), then

1
dg B / RV dH (5.38)

where V() 1= gf (0,z) is the velocity of the flow ¢(e,x) at e = 0.
Proof. Without loss of generality, we assume that v is parameterized by the arc length,

v :[0,L] — R™, L = length of v and |y/(t)| = 1, so that &(t) = v'(¢) and k(t) := 7" (t).

We set
h(6,t) = e (t) = ¢(67’Y(t))
and notice h € C2(] — 1, 1[x[a, b]). For every e we have

L
Le :/ ah(e, t)‘ dt
0 ot
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and, differentiating under the integral sign, with respect to € we infer

P T SR G T
Since
TOH=70,  HOI=1,
if (0.6)= Z‘f(ow» = Vo),

),

Integrating by parts, since V' is zero at the extreme points of the curve, we conclude

we find

L
ddL; = |0 v a

ie., (5.38). O

a. Moving frame for a planar curve

5.85 Moving frame and oriented curvature. For planar curves the
following alternative presentation can be useful. Let v : [0, L] — R? be a
simple plane curve of class C? parameterized by the arc length and let f(s)
be its velocity vector. We choose the unit vector 7i(s) perpendicular to #(s)
so that (£(s),7(s)) is positively oriented, meaning that det[t(s)|7(s)] = 1.
In coordinates, if £(s) = (2(s),y(s)), set 7i(s) := (—y(s), z(s)). Thus,

-

E(s) = k(s)fi(s)  where  k(s) := k(s) eii(s) = ~"(s)ei(s);

the sign of k(s) depends on the choice of 7, accordingly k(s) is called the

oriented curvature of +, and the vectors (f(s), fi(s)) are called the moving
frame along ~.

5.86 9. Show that £ > 0 if v “turns left”.

5.87 €. Prove that the oriented curvature of the graph of f : [a,b] — R, z — (z, f(x)),

) I 7 A AN
MO = g Py T <\/1+f’2) )

In particular, k(z) > 0 Vz if and only if f is convex.

Formula (5.37) writes with respect to the moving frame as the Huygens
formula

— -

V() = (" (t) o 1(2) ) £(t) + |7 (1) k(t) 7i(2)
from which we deduce

A _ detly/ ()" (1)

- "Y/(t)|2 v (t)'ﬁ(’)/(t)) = |’Y/|3 (5.40)
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or, in terms of the components (z(t),y(t)) of v(t),

bty = © OV O~y B0 (5.41)
(' ()" +y'(t)°)3/2

5.88 Serret—Frenet formulas. Let vy be a curve in R? of class C2, and
let (¢(s),7i(s)) be its moving frame. The curvature vector of +y is a multiple
of  and by the definition of oriented curvature

' (s) = k(s) = k(s) 7i(s).
On the other hand, since 7i(s) and 7’(s) are perpendicular and n = 2, we
have 7i'(s) = a(s)t(s). We may compute the proportionality coefficient
a(s) from

d
= t

0= ts)eii(s) = (k(s)ii(s))iils) + (t(s))a(s)t(s) = k(s) + als),

hence

In conclusion, the moving frame ((s),7(s)) along « and the oriented cur-
vature k(s) are related by the Serret—Frenet formulas for planar curves

{E"(s) = k(s)i(s) (5.42)

which can be written as the system of first-order differential equations

[# )| ()] = A [fs)]iCs)]. A(s):<_:(8) kg”)

Integrating these equations twice, we see that the curvature vector of
a curve determines the curve apart from an isometry. More interesting is
the fact that the oriented curvature of a curve suffices to determine the
curve (modulus rigid motions of the plane).

5.89 Theorem. For any given continuous function h : [0,L] — R there
exists a curve 7y : [0, L] — R? parameterized by the arc length with oriented
curvature h; moreover, v is unique modulus isometries of the plane.

Proof. Uniqueness. Suppose 71,72 : [0, L] — R? with respectively, (£1,71), (f2,72) as
moving frames, have the same oriented curvature. Let R be the rotation that moves
the vectors ¢1(0) and 71 (0) respectively into ¢2(0) and 7i2(0), and let

73(s) == R(y2(s) — 72(0)) + 1(0), Vs € [0,1]

be the curve (obtained by a rigid motion of y2) so that its moving frame agrees at s = 0
with the moving frame of v;. We claim that v3(s) = v1(s) Vs.
It is easily seen that
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B'(s) = k(s)ia(s), mplics t5'(s) = k(s)is(s),
iz’ (s) = —k(s)) t2(s) iz’ (s) = —k(s)) t3(s).

Therefore the matrices X (s) = [ﬂ(s)\ﬁl(s)] and X3(s) = [E;(s)\ﬁg(s)] both solve
the Cauchy problem

X()=AGXE), Ay ::< 0 h(s))
X(0) = X1(0), ~h(s) 0

hence agree for all s. In particular, v4(s) = #3(s) = 1(s) = 7} (s) Vs and, since v3(0) =
~1(0), we conclude y3(s) = y1(s) Vs.

Existence. Let A := ( Oh

g) . The Cauchy problem for X (¢) € M2 2(R)

X'(s) = A(s)X(s),
X(0) = Id

has a unique global solution X(s), s € [0, L], see [GM3]. Moreover, since A is antisym-
metric, we have

(XTX) =XTATX + XTAX = XT(AT + A)X =0,

hence X7 X is constant. Since X(0) = Id, we conclude that the columns u, v of X = [u|v]
are orthonormal det[u|v] = 1. If we define

~v(s) == /OS u(T) dr, s € [0, L],

~ is parameterized by its arc length with (u, v) as moving frame and oriented curvature.
O

b. Moving frame of a curve in R3

We can proceed similarly for curves in R™. For the sake of brevity, we only
deal with curves in R3.

5.90 Moving frame and torsion. Let v : I — R? be a curve of R? of
class C3 parameterized by the arc length with 4/(s) # 0 and 4" (s) # 0. The
unit vectors #(s) = 4/(s) and 7i(s) := v"(s)/|7"(s)| are orthonormal, and
we call 7"/ (s) the (vector) curvature of v at s, and denote by k(s) := |7"(s)]
the scalar curvature so that v/ (s) = k(s) 7i(s).

=

We now choose a third unit vector b(s), which is called the binormal
vector, perpendicular to both £(s) and 7i(s) such that det [ﬂs)\ﬁ(s)\g(s)] =
1, or, in terms of cross product,

-

b(s) := t(s) x 7i(s).

The triplet (£(s),(s),b(s)) is called the moving frame along v and the

=,

plane generated by ¢(s) and 7i(s) is called the osculating plane to v at
~(s). Trivially,
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—

ii(s) x b(s) = i(s),  b(s) x t(s) = 7i(s).

Since |7i(s)| = 1 and 7i(s) and 7’(s) are perpendicular,

while the function 7(s) := —8(s) = —7'(s) e b(s) is called the torsion of
at y(s).

5.91 Serret—Frenet formulas. Since

-,

W (s) = (Hs) x 7i(s)) = k(s)i(s) x 7i(s) + {(s) x i@ (s)
= B(s)E(s) x b(s) = —B(s)i(s),

the moving frame (Z, 7, B) along v satisfies the system of Serret—Frenet
ordinary differential equations

t(s) =—k(s)i(s),
i'(s) = —k(s)f(s) +7(s)b(s),
b'(s) = —7(s)ii(s),
equivalently,
, 0 E(s) 0
)7t| 7] () = A [T]7] A5 A= |-k 0 ()
0 —7(s) 0

We notice that the torsion of a planar curve is null. Moreover, if v € C3,
since

¥ (s) = ls),
7(s) = k(s)i(s), )
7" (s) = (k(s)iA(s)) = K (s)7i(s) — K2(s)E(s) + k(s)7(s)B(s)

Taylor’s formula of third order writes as

(s 4+ h) = 7(s) + (h - ]“62 h3) Hs) + (k(s) pt 4 FG) h3) 7(s)

2 6
k:(s)GT(s) K3 b(s) + o(h®) per h — 0.

Jr
Therefore we can state: k(s) measures the deviation of the curve at v(s)
(up to second-order terms) from the tangent direction #{s) in the oscu-
lating plane, while the torsion, together with the curvature, measures the
deviation of the curve (up to third order) from the osculating plane.
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Figure 5.20. The frontispiece and the first page of a celebrated paper by G. F. Bernhard
Riemann (1826-1866) on geometries.

5.92 €. Prove that the curvature and the torsion of a curve v : I — R3 parameterized
by a generic parameter ¢ are given by

A () x A" (t
o=
det [v'(6) [ (1) [+ )]
Iy (£) x " (t)|?
The curvature and the torsion form a complete set of invariants for

curves in R? according to the following fundamental theorem of the local
theory of curves.

5.93 Theorem. For any couple of given continuous functions k(s) > 0
and 7(s), s € [0, L], there exists a curve 7y : [0, L] — R3 parameterized by
the arc length with curvature k(s) and torsion 7(s) at s; moreover, such a
curve is unique modulus rigid motions of R3.

5.94 €. Prove Theorem 5.89. [Hint: Repeat the argument for planar curves.]

5.4.2 Curvature of a submanifold of R"

In this section, we define the curvature of an m-submanifold M in R”™
and discuss some basic facts related to it. All our considerations will be of
local nature, therefore it is not restrictive to assume that M is an embed-
ded submanifold, i.e., the image of a diffeomorphism ¢ : B — R"™, B =
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B(0,1) € R™, m < n, of class C'. We shall denote with u!, u?, ..., u™
the coordinates in B and with 2', 2%, ..., ™ the coordinates in R™. As

we know, the tangent space T,M to M at p = ¢(u) is the image of Dy (u)
and, since Dp(u) has maximal rank m, (g;’j (u), ..., ai‘fn (u)) is a basis

for T,,(M). Finally, we shall denote N, M the normal subspace to T, M in
R™.

a. First fundamental form

Let M be an embedded submanifold of R™, let ¢ : Q — M, Q open in R™,
be a diffeomorphism, and let p = p(u) € M. The norm of R™ induces by
restriction a quadratic form on T, M

L(a) :=la|* VaeT,M

called the first fundamental form of M at p. In coordinates, if p = ¢(u)
and a =" £ 9% (u) € T,M, then

(a) = Y gap(p)s*e” = ¢"Ge¢

a,B=1
where the matrix G = (Go3) = (gag),

Gos(p) == % (u)e 0% ).

The matrix G(u) = (gag(v)) € Mpy.m(R) is called the metric tensor of
the parameterization ¢ at u. The metric G(u) is symmetric, moreover

G(u) = De(u) Dy (u).

Since Dp(u) is injective, all eigenvalues of G(u) are positive, and G(u)
and G (u)'/? are invertible with symmetric inverses. The entries of G (u) ™
are denoted as G~! = (g°7).

The metric and the first fundamental form appear in the calculus of
the area of M and of the length of curves on M. Indeed, the area formula
of Chapter 2 states that

H™ (M) = /B VgdL™ (u), g :=det G.

Moreover, if v : [a,b] — M is a C'-curve in M, then

Y (O = Ly (' (#)
and

L(v) = /ab \/Iv(t) (v (1)) dt.
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5.95 Orthonormal bases of the tangent plane. Let Xi,...,X,, be
m vectors in R™ and for every ¢ = 1,...,m, let a; := Dy(u)X;. Denote
by X the m x m matrix X := [X1|Xs]...|X,,]. Then

(aiea;)en = Dp(u)X; e Dp(u)X; = (X'GX);;.
Therefore the following claims are equivalent.

(i) (a1, a2,..., @) is an orthonormal base in R™,
(i) XTGX = Id,
(iii) G'/2X is an isometry of R™,
(iv) XXT =G~ L

b. Second fundamental form

Let M be an embedded submanifold of R", let ¢ : 2 — M, Q open in R™,
be a diffeomorphism, and let p = p(u) € M. For any vector v € R™ denote
by vV the orthogonal projection of v on N, M.

The second fundamental form of M at p is the map I, : T,M — N, M

defined for a = > 1" £~ 9% (u) e T,M by

ou®

I (a) == %21 L7e o) e (5.43)

If we introduce the matrix ® € M, ,,,(R™) whose entries are vectors in R™

D= (Bop), Dop:i= [8u8a§uﬁ (0)}1\/7 (5.44)

we shorten (5.43) as

]Ip(a) :gT(I)ga 5: (513 523"'3 gm)

A priori, I, depends on the parameterization of M as we have used the
components of a in local coordinates for its definition. However, we have
the following.

5.96 Proposition. The second fundamental form is intrinsic on M, i.e.,
it does not depend on the parameterization of M.

Proof. Let ¢ : B(0,1) — M and v : A — M be two diffeomorphisms with image
M. Denote by u', u?,..., ™ the coordinates in B(0,1) and by v', v2,..., v™ the
coordinates in A. We may and do asssume that ¢(0) = ¢(0) = 0. From Proposition 5.8
¥ = @ oh where h : A — B(0,1), h := ¢~ 09 is a diffeomorphism between A and

B(0,1). We infer that Dy(v) = Dg(h(v))Dh(v) Yv € A, i.e., by writing Do f for 0f, |
m P Vi )
Dat'(v) =3 0% (h(v)) Dahi(v),

i
im Ou

hence
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82t At

4 7 7

DgDat* = > i s Do D5h7+§: i DaDah’.
ij=1 i=1

Now, ifa € T,M, a =314 I 5’;’; =>" n%Dqa, or, equivalently,

m
El = Z ﬂaDahia
a=1

we get
m m
2y ¢ :
2 : B8 _— 2 : i B
Bvaavﬁn = o Outdu JDah Dh’nn
a,B=1 1,j,0,8=1

+ Z S"D[,D hin®
,le

m

8 1
= 2 o882 (3 Pabattar)

VeSS a,B=1
Since the last term on the right-hand side is tangent to M, the vectors
m 2¢ m 82<p o
and S Toogted
Z v v " TI Z outoul &
a,B=1 i,j=1

have the same normal component to T, M. O

5.97 Remark. For v € B and h small, the length of the vector (¢(u +

h)—(u))Y is the distance of ¢(u+h)—@(u) from T, M, p = p(u). Taylor’s
formula yields

1 & 9% N

o N _ N 2

(pluth) =) = 5 3" (i @) H0 +o(lA)

= _T,(h) + o(|h]?) as h — 0.

c. Curvature vector
5.98 Definition. Let a € T,M. The curvature vector in the direction a
of M at p is the normal vector E(a) € N, M defined by

]Ip(a) - 1 a
= L) ~ o™

in particular k(a) = I,(a) if la] = 1.

We have k(Aa) = k(a) for all A # 0. Moreover, it is easily seen that

E(a) is the orthogonal projection into N,M of the curvature vector of a
curve y(t) on M with v(0) = p and +/(0) = a.
We may also regard the curvature as a variation of the normal plane.

Let a € T,M with components a = (a', a?,..., a®) € R™. For every vector



292 5. Surfaces and Level Sets

field X = (X1, X2,..., X™) of class C'(M), not necessarily tangent to M,
we set

" 0X?
= Z a'd’ i (p). (5.45)

ij=1

5.99 Proposition. Let vq,...,Vqp_m : M — R™ be n — m vector fields of
class CY(M) that form an orthonormal basis at p € M of N,M. Then for
every a € T, M

n—m

k(a) == (a- Dava) Va. (5.46)

a=1

Proof. Let a € TpM with |a| =1 and let v :] — 1, 1[— M be a curve of class C? on M
parameterized by the arc length with v(0) = p and 4/(0) = a. Then k(a) = I,(a) =
~"(0)N. On the other hand, for every a = 1,...,n —m, va(y(t)) is orthogonal to 7/ (t)
for every t, (7/(t)|va(v(t))) = 0. Differentiating and evaluating at 0 we find

& Olva ) + 3 a'ad 0% () = 0,

=1

hence .
(k(a)lva) = (v"(0)|va) = —a - Dava

which proves the claim, since {vq(p)} is an orthonormal basis of N, M. O

d. Mean curvature vector
Let (a1, ag, ..., am,) be an orthonormal basis of T, M. The normal vector

_ ; 3 Fai) (5.47)

i=1

is called the mean curvature vector of M at p.

By definition, the mean curvature vector is independent of the choice
of the parameterization on M. Moreover, we can easily prove that it does
not, depend on the chosen basis we use in its definition. In fact, for every
i =1,...,m let X; be such that a; := Dyp(u)X; € T, M, and let X be
the m x m-matrix X = [X1]|X3]...|X,n]. We have XTX = G!
consequently,

1
m

1
= G~

l

i XloXx; = ! b (XToX) = ! tr (@XXT)
i=1 mn (5.48)
tr( h

where @ is defined in (5.44).
Another useful expression for the mean curvature vector follows from
(5.46):
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GEOMETRIC
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Figure 5.21. Two fascinating beginner’s guides to differential geometry and geometric
measure theory.

n—m m
mH = — Z Z(ai Do, Vo )Va, (5.49)
a=1 i=1
where (v1, va,..., v, —m) are orthonormal vector fields at p that span
N, M and (a1, ag, ..., am) are orthonormal vectors that span T, M.

e. Curvature of surfaces of codimension one

Let M be an m-dimensional submanifold in R™*! and, as before, let ¢ :
Q — M be a diffeomorphism, @ C R™ open, 0 € Q and p = ¢(0). Its
normal space N,M has dimension 1 and, if v is a normal vector of norm
one, the second fundamental form of M at p takes the form

I,(a) = (L,(a)ev)v, a € T,M,
consequently,
m
Iy(a)ev = ) Rapt"¢’ =¢TRE
a,f=1
where ¢ is such that a = Dp(0)¢, € = (&1, &2, .., &m), and R denotes the

m X m matrix with real entries

32
R = (Raﬁ), Raﬁ = <8uo‘§uﬂ (O)ol/)

The number 1
(a)ev = ]2 I,(a)ev

o

k(a) :=
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is called the curvature of M at p in the direction a, and the number
H:= Hev

the mean curvature of M at p. Notice that in correspondence of the two
possible choices of the unit normal v, the sign of the curvature changes.

The matrix R is real symmetric, and its eigenvectors and eigenvalues
are called respectively, the principal directions of curvature and the prin-
cipal curvatures of M at p, since, if a := Dp(0)¢ where £ € R™ is an
eigenvector of R of length 1 with eigenvalue A, then

A= AP = €TRE = k(a).

By the spectral theorem, we can choose in T, M a basis (e1, €2, ..., €n),
such that e; = Dp(0)¢; where &; is an orthonormal basis in R™ of eigen-
vectors of R. The corresponding eigenvalues are then the principal cur-
vatures ki := k(e1), ..., km = k(em). If a = ;" a'e; € T,M, then
a=Dy(0)Y ", a'¢ and

k(a) = (Zaiéi)TR(Zaid =) d'd¢RG
i=1 1=1 i,j=1
= f:aiajéijk(ei) = zm:kz(az)z
i=1 =1

known as the Gauss formula for the curvature.
Common standard choices for the sign of v are the following:

o If M is given in parametric form, ¢ : B — M, v is chosen in such a way
that (D1p, Dag, ..., Dy_1p,v) has positive determinant.

o If M is the boundary of an open set, v is chosen as the interior normal
in such a way that 92 has nonnegative curvature if € is convex.

5.100 9. Let Q C R2 be an open set whose boundary 0 is a 1-submanifold of R?.
Prove that 2 is convex if and only if the curvature of 0f2 is nonnegative.

5.101 4. Prove that the sphere of radius p in R™ has mean curvature 1/p.

5.102 €. Let
Ty := {(967%2) ’ (V22 +y? —R)? + 2% = pQ}
be a two-dimensional torus in R3. Prove that its mean curvature is
R+ 2pcose
= 2p(R + pcos p)
where ¢ is the angle shown in Figure 5.22. Notice that H > 0 if R > 2p. This shows

that the boundary of a nonconvex set in R™, n > 3, can have positive curvature. Finally,
compute the principal curvatures of Ts.
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Figure 5.22. A two-dimensional torus.

5.103 Example (The graph of a function). Let M be the graph of the function
f:Q — R, Q open in R™. A parameterization of M is given by the map p(u) :=
(u, f(u)), u € Q, and, for p := (u, f(u)), we have:

(i) The vectors of R?*1
dp of _
aua_<O""’O’1’0""’0’aua(“))’ a=1,...,n

where 1 is at the ath place, form a basis of Tp M.
(ii) The metric tensor of M is given by

af of

— T _ —
G=1d+Df"Df o, G=(9ap): Gas =dapt o0 -

(iii) We have DfDfT = |Df|2.
(iv) The n x n matrix DfTDf has rank one, all its eigenvalues are zero except one
that is tr (DfTDf) = |Df|2. Therefore, the eigenvalues of G = Id +DfTDf are

1+|Df?,1,1,...,1,

and
Vo= Vdet G = /14 [DfP2.

(v) The inverse of the metric tensor is given by

G l=1d- DfTD
1+ Df? DI

since for every ¢ € R we have

(Id+DfTDf)(1d - cDfIDf) = [d+ (1 — )DfIDf — ¢|DfI’DfTDf

=Id+ (1—c—c|Df>)DfTDy.

(vi) The unit vector
1
V=
V1+Df(u)?
spans Tp M and points upward; moreover, det[D1¢)|...|Dnplv] = /1 + |Df|2.
(vii) Since p(x) = (z, f(x)), we have Do Dge = (0,0,...,0,DaDgf), hence

(_Df(u)7 1)

N DuaDsf
DoD = .
[PaDs¢] J1+ o ”
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(viii) For all o, 8 =1,...,n we have
N DaDgf 1
@B DoD N DafDsf) v.
o7 [Dabpe]” = T e (M= pe PefDaf)
Equation (5.48) then yields

n

=2 1+ \Df| )3/2 <(1 +Df*)dap — DafD@fDaDgf) v
a,f=1

Xi: <\/1+\]J;f|2) '

(ix) Finally, the (scalar) mean curvature is given by

2:: (\/1+|1fo\2)

f. Gradient and divergence on a surface

Let M be an embedded submanifold of R", and, as usual, let ¢ : Q@ — M,
 open in R™, be a diffeomorphism, let 0 € © and let p = ©(0). Let f €
C'(M), meaning that f is a function of class C! in an open neighborhood
of the embedded submanifold M of R™. The orthogonal projection onto
T,M of the gradient Vf of f at p in R" is called the tangential gradient
of fin M at p and is denoted by V f,

Vuf=Vf—(VHY

If T := Dy(0), then Vj, f = T¢ for some £ € R™ and, since Vf -V f €
N, (M), by the alternative theorem we have

T*(Vf — T¢) = 0.

This yields
£=(T"T) 'T*Vf
ie.,

Vuf=T(TT) 'T*Vf(p) = TG 'T*Vf

or, more explicitly,
a aﬁ )
Vuf= Z 3 aua ), Zg auﬁ (0). (5.50)

5.104 Definition. Let X : M — R™ be a vector field of class C* (M), not
necessarily tangent to M. The divergence on M of X at p is the number

div ;X (p Zaz D, X(p

see (5.45), where (a1, ag, ..., ay) is an orthonormal basis of T, M.
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5.105 Remark. Using the divergence operator, we rewrite (5.49) as

n—m

Z (div prva ) Ve

a=1

1
m

H=-

5.106 Proposition. div 3; X does not depend on the chosen orthonormal
basis in its definition. Moreover, we have

(i) If X : M — T,M is a tangent vector field to M, X(p(u)) =
Dop(u)é(u), where &€ = (€4, €2,..., &™) € CY(Q), is its local repre-
sentation, then

div 7 X (¢(u)) = tr (GT'Dp’ DXDy)

m m
Jp 3(X op)
_ af _ a
a%;g oue " oub EZ: (\/gE )
(5.51)
(ii) If X : M — N,M is a normal vector field, then

div ;X (p) = —m X(p) « H(p) (5.52)

where H is the mean curvature vector of M at p.

Proof. (i) If (a1, a2,..., am) is an orthonormal basis of T, M, then a; = Dg(0)¢;, i =
1,...m for some (51, £2,..., &m) € R™ such that the n x m matrix B = [£1|&2] ... |&m]
satlsﬁes BB7” = G~!. Therefore,

div pr X (p) = tr (DeB)TDXDyB) = tr (DT DXDypBBT)
=tr (DT’ DXDpG™ ) = tr (G DT DXDy).

This proves the independence of div 5y X on the chosen orthonormal basis a1, ...,am.
Alternatively, we may compute more explicitly, shortening 65@ with Dqg,

Xk
div X = Zal Do, X Z Z €069 Dok Dy’ oot

i=1 i,0,8=14,k=1

axk
= 303 g nut o
=14,k=1
n m m
= Z 9P Do Dg(XF o) = > g*¥ DapeDs(X o)
k=1a,8=1 a,f=1

recalling also that > 7™, £6Y = goh.
Let us prove (5. 51) Wlth the convention that repeated indices are summed, we

compute
1 1
Da(Vg€™) =, €*Dag+ Dat®
V9 29
and taking into account the formula of differentiation of determinants and the symmetry

of G™1 L 1 1
Dag= 9" Dagys = , §"° (Dan¢' D¢’ + Dy Das’)
2 ag = 9" Dagys = , 9 ayp Dsp™ + Dyp Dasep (5.53)

= 9" Dy¢' Dase’
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Therefore,

\;g Da (x/gﬁa) = Da&® + g7 Dy¢' Dosep’e®
= Do&” + g7 Dyo (D5(6" Dag’) — Ds” D’
= Da&® + g7’ Ds(X 0 9)* — g7° gya DsE™
=g’ Dy¢" D5 (X 0 p)".

ie., (5.51).

(ii) From the definition of divergence, if (v1, va,..., Vn—m) are vector fields that form
at p an orthonormal basis for N, M, we have

mH(p) = — i (div prva) Ve (5.54)
a=1

On the other hand, since X is normal, we have X = > " "1"( X e v )Va, hence

n—m
div s X = Z (div ppva) va o X .
a=1
By comparison with (5.54), we get div py X = —m He X . O

5.107 Corollary. Let X : M — R" be a vector field of class C*(M) that
vanishes near ¢(0B) = OM. Then

/ div yy X dH™ = —m/ X o HdH™.
M M

Proof. We split X in its tangential and normal components
X=Xt+XxT.

Since the operator div j; is linear, we have div ;X = div s X+ + div uX T and by
(5.52)

divy Xt =—-mXteH =—-m XeH,
hence

div y XtdH™ = —m HeX dH™.
M M

Finally, by writing X T (¢(u)) = 3.7, €%(u) 86% (u), using the area formula and

a=1
Gauss—Green formulas in B = B(0, 1), we infer from (5.51)

3 m =z 8 @ mo__
/deMXTdH 7/]5;%&(\/%)% =0

since £ = (%) vanishes near the boundary of B. O
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Figure 5.23. The first page of a paper by Carl Friedrich Gauss (1777-1855) where the

“theorema egregium” appears, and the frontispiece of Lecons sur la théorie générale
des surfaces by Gaston Darboux (1842-1917).

g. First variation of the area

The mean curvature and the divergence operator are tightly related to the
first variation of the area of a surface.

5.108 Proposition (First variation of area). Letp: B(0,1) C R™ —
R™ be a map of class C?, M := p(B(0,1)), and let ¢ : [-1,1] x R* — R"
be a map of class C? that is the identity at ¢ = 0 and does not move
#(0B(0,1)),

o(e,x) =z, Vo € ¢(0B(0,1)), Ve.

Let M, be the surface image of v — p.(x) := ¢(e, ). Then

dH™ (M,

) :/ divMVde:—m/ HeV dH™,
d6 |e:0 M M

where V(p) := g‘f (0,p) is the velocity of the flow ¢(e,x) at e = 0.

Proof. For all e the area formula yields

H™(Ac) = V/ge(u) dL™ (u)

B(0,1)
where ge(u) := det Ge(u) and G, (u) := D! Dep,. Differentiating the determinant,

0v/ge 1 o A(ge)
\/ _ Ge g B ( af

de ~ 2VUTE (u) Oe

and setting g := det Gy, Ggl = (g*P), we compute at € = 0
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a\/ge >t a 0
b )= maﬁzﬂg P () ( Dad(0.u)s - Dpo(0,w))
=./g Z g"‘ﬂ(Daga-D/g(V o <p)) =div »yV(u).
a,B=1

Therefore, differentiating under the integral sign we get

™ (Al dy/9e
dH™( ):/ Ve gpm ::/ diva\/gdLm:/ div pfV dH™.
de B Oe B M

and the result follows from Corollary 5.107. [}

h. Laplace—Beltrami operator and the mean curvature
5.109 Definition. As usual, let ¢ : Q@ — R™, Q C R™, be a diffeomor-
phism, M = () and p = @(u). The differential operator on M

Ay fri=divy(Vaf),  feC*(M)
is called the Laplace—Beltrami operator on M, and functions f with
Ajsf = 0 harmonic functions on M.

For f € C?(M), Ajrf is a continuous real valued function defined on
M. Taking into account (5.50) and (5.51),

_ 1l 9 ap0(f o)
(AMf)wwa;laua(Vggﬁ duP )

5.110 Proposition. For i = 1,n let f* := @' oo™t : M — R. Then
A f(p) :== (A fH(p), ..., A f™(p)) belongs to NyM and

Ay f(p) =mH (p).

Proof. In fact, we compute

i _ 1 - el 2
Bufyop= Q;IDQ (Vo Dge')

and

1 L
AppeDap = /o D; (\/gg”Dij)Dawe

1 .
= D9 = 5" Dj¢'DiDag’ =0
by recalling (5.53). The second claim follows, since
1 . . .
Ay = 2 Digg” Dje + Di(g"7)Dje + g7 DiDje

where the first two terms are tangential to M. Therefore, since we proved that A f is
orthogonal to M,

N N _ij —1 77
Apf= (AMf) = (DiDjp)" g% =tr(®G™") = mH(p),
see (5.48). m]
Surfaces with vanishing mean curvature are called minimal surfaces.

Proposition 5.110 then reads: the coordinates of an embedded minimal sur-
face are harmonic functions on the surface.
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i. Distance function

Let © be a bounded open domain, the boundary of which is an (n — 1)-
submanifold of class C*, k > 2. For all z € Q, we set d(z) := dist (x, 9),
Qe :={z € Q|d(z) < €} and we denote by v(§) the interior unit normal
to 002 at € € O€L.

5.111 Theorem. Let Q) be a bounded open domain in R™ with 02 of class
CF, k > 2. Then there exists € > 0 such that the following holds.

(1) For all x € Q. there is a unique point &(z) € OQ of least distance
d(x) from x; moreover, x — &(x) is normal to 0L,

r = €(2) + d(2) V().

(ii) The functions x — &(z) is of class C*~1 and the function x — d(z)
is of class C*. Moreover, d(x) solves the eikonal equation |Dd| = 1
mn Qe and

Dd(z) = v(&(x)) in Q..

(iii) Consider for 0 < t < d(x) the t-level set of the distance function
M, = {y € Q|d(y) =t}. Then M, is of class C* and

1 n—1 k:
—A —(n—1H = ! .
d) == DEw@ =, D 3 Ty 65)
where ki, ko, ..., k, — 1 are the principal curvatures of 02 evaluated

at the least distance point £(x). In particular,
H, (z) > Hoa(§(2)).

The coordinates (§,t) for x = £ + tv(§) € Q. are often called Fermi’s
coordinates of x.

Proof. Step 1. Let B(z,€) be a ball centered at z € 9. Since the distance function is
continuous, for every x € QN B(z, €), there exists a point y € 9 of least distance from
z. As we have seen, Fermat’s principle implies that = — y spans the normal line to 02
through y. Thus, if v(y) denotes the inward normal to 9Q at y € 9Q, and d(z) is the
least distance of z from 0%, we have x = y + d(x)v(y).
Step 2. We prove that for every z € 9 there is a neighborhood U(2) such that, for all
z € U(z) N Q there is a unique £(z) € U(z) N IN of least distance d(z) from z, d is of
class C* and Dd(z) = v(n(z)) Vz € U(2).

Since the claim is invariant by rigid motions, we can suppose that z is the origin,
and that in an open neighborhood U C R"™ of 0

(i) 92NU is the graph of a function h of class C* defined on a ball B(0,7) of R*~!
with h(0) = 0 and VA(0) =0,
(ii) the inward normal to 92 at 0 € R™ is (0,...,0,1),
(iii) the axes of R"~1 are directed as the eigenvectors of D2h(0).
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By our choice of the coordinate system, we have
D?h(0) = diag (k1, k2, .., kn-1),

where ki,...,kn—1 are the principal curvatures of 92 at 0. Consider now the map
¢ : B(0,7) x R — R™ defined by

z = ¢y, 1) := (y,h(y)) + tv(y, h(y))
that is,
{mi =y; +tN;(y) fori=1,...,n—1,
zn = h(y) + tNn(y)
where N(y) := v(y, h(y)). We have

) _ —D;h(y) . _
Ni(y) = IV fori=1,...,n—1,
— 1
NnW) = 1y onre:

and, since Dh(0) = 0, we infer

DjNi (0) = 7’%6,']‘,

(5.56)
D, Np(0) =0,
hence
D¢(0,t) = diag (1 — tk1,...,1 — thkyp—1,1). (5.57)

In particular det D¢(0,0) = 1, hence ¢ is a locally invertible map of class Ck—1in
a neighborhood of 0 € R™. Its inverse ¢ : B(0,e) — R"™ defined on a ball centered
at zero is of class CF~1. We now set for z € B(0,¢) 7(z) := (¥'(z),...,v" 1 (z)),
&(x) = (n(x), h(n(x))) and t(x)) = ™ (z). Trivially £(z) and t(x) are of class C*~1
&(z) € 0N and ¢(¢(x)) = x rewrites as

z=¢(z) +t(x)v(E(x) Ve eU(), (5.58)

from which we conclude that £(z) is the unique point in B(0, €) such that z — £(z) is
perpendicular to €, thus the least distance point by Step 1, and that d(z) = |[z—&(z)| =
t(z). Consequently, d(z) is of class C*—1.

From (5.57) we easily get

Dy(z) = diag (1 _ltkl S tlkn,l , 1) (5.59)
where t = d(z) provided 7(z) = 0. In particular Dd(z) = (0,0,...,1) = v({(z)) when
7I-(:E)leeo.above construction can be repeated at each point z € 912, hence we conclude
thet Dd(z) = v(&(x)) Vz € B(0,¢). (5.60)

In particular Dd(z) is of class C*~1. This concludes Step 2.

Step 3. For all z € 9Q the results in Step 2 hold in B(z,€(z)). Since 92 is com-
pact, covering it with finitely many balls B,  c(z;), ---, Bz, c(z,) and choosing € =

iminizl,...,k €(z;), we conclude that the results in Step 2 hold in Q.. This proves (i)

and (ii).
Step 4. (5.49) and (5.60) yield for z € M;

(n—1)Hu, (z) = = Y Div'(é(x)) = ~tr (Dr(£(2))) = —tr (D2d(x)) = —Ad().
=1
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On the other hand, assuming that m(z) = 0 and « € My, we get from (5.59) and (5.56)
D?d(z) = D(v(¢(x))) = Dv(n(x))DE(x)

—k1 0 0 0
0 —k2 O 0 0
1 1
= : . "L : Cldi 0
. . : . . lag(l—tk:l’ "1 —thp_1’ )
0 0 coe kpo1 O
0 0 0 0
. —k1 —kn—1
=d .
la‘g(l—tlﬁl7 ,l—tk:n71)

thus concluding that for = € Q.,

n—1

ki
Ad(z) = —
@==2. Ty,
=1
where t = d(z) and k1, ka2, ..., kn —1 are evaluated at the least distance point £(z). O

5.112 Remark. Notice that the assumption that 0f2 is at least of class
C? is truly necessary. In fact, let 0 < o < 1 and consider the open set

Q= {(rv,y) eR? ‘y = [a>~*, y < 1}

the boundary of which is of class C1'1=% near (0,0). It is easy to see that
if P = (0,y) € Qis close to the curve {y = |z[*~®}, then P has two
least distance points differing from (0, 0). Moreover one can show that the
distance function is not differentiable at P, see Exercise 5.143.

5.5 Exercises

5.113 9. Study the transformations

(2 — y?,zy), (Vz/y, /zy), =,y >0,
(e” cosy, e” siny), (2 — ay,y — x),
(sin(x + ), cos(x + y)).

5.114 9. Investigate the solvability in (x,y) of the system
z+y+uv=0,
ury +v =10
when (u,v) is small, and of the system
T +xyz = u,
y+zy=mv,
2424322 =w

in (z,y,2) when (u,v,w) is small.
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5.115 9. Prove that the relation
22 4 log(1 + 2y) + zye* =0

defines a function z = ¢(z, y) in a neighborhood of the point (0, 1,0). Write its Taylor’s
polynomial of second degree with center (0.1) of ¢(z,v).

5.116 9. In thermodynamics one considers the equation ¢(p,V,T) = cost, where p, V/,
and T are respectively the pressure, the volume, and the temperature of a gas. In case
we express one variable as function of the remaining two,

p=p(\V,T), V =V(p,T), T=T(p,V),
with p, V', and T sufficiently regular, prove that
Op OT oV

T oV op
5.117 9. Prove that M := {(z,y, 2) | 22 = 2 4+ y?} is not an r-submanifold of R3.

5.118 €. Prove that the maps defined on R? by

2u 2v |
u2+v2+17u2+v2+17u2+v2+1)

2u 2v 1—u? —92?
u2+v2+17u2+v2+17u2+v2+1)

wo) — (
wo) — (
parameterize respectively S2 \ {North Pole} and S? \ {South Pole} with R?.

5.119 9. Prove that the standard torus, obtained by rotating around the z-axis a circle
of radius 7 around a point on the y axis at distance R > 7, is a 2-submanifold of R3.
Write it as a zero level set and find local parameterizations.

5.120 9. Let ¢ : R — R be a function of class C! with |¢/(t)| < 1/2 V t. Let f: R? —
R? be the map defined by f(z,y) = (z + ¢(y),y + ¢(x)). Prove that f(R?) = R? and
that f is globally invertible.

5.121 9. Visualize the sets C = {(z,y,u,v) € R* |22 + 32 = 1, u? +v? = 1} and
K = {(z,y,u,v) € R* | 2% +y? < 1, u? +v? < 1} by describing their three-dimensional
slices and prove that C' and K \ C' are submanifolds of R%.

5.122 9. An ideal pointwise mass is constrained to move on the circle of center 0 and
radius 1 and is connected to the point (1,0) by means of an ideal spring of elastic
constant k. Find its equilibrium positions.

5.123 €. A particle is constrained to move on the ellipse 422 4+ 32 = 4 and attracts
another particle constrained to move on the line 3z + 2y = 25. Find their equilibrim
positions if they exist.

5.124 9. Find the maximum and minimum points of the function > 7 ; a;x* con-
strained to 1", [z!|P = 1, p > 1, and infer Holder inequality.
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5.125 9. Given n + 1 points P; = (x4,v:), ¢ = 0,1,...,n, we denote with [Py ... Py]
the closed polygonal line connecting successively Py, Pi, ..., Py, Py. The length of this
polygonal is

L:=

-

@
I
<}

|P; — Piti| + |Pn — Po|
and its enclosed area is
=~ 1
A= oriented area of [0P;_1 P;]| =
; [ 1—1 z] 9 i

n
S det Tio1 Yio1
i=1 T '

Show that this area is maximum among polygonals with n sides and given perimeter
when the polygon is regular, in particular,

1
A< cot(ﬂ-)L2.
4 n

For n — oo deduce that for any polygon with n sides we have the isoperimetric inequal-
ity
L
A< L=,
4am

5.126 9 Simple roots. Prove that the simple zeros of a polynomial are C°° functions
of the coefficients of the polynomial. [Hint: If zg is a simple root for P, then P(xzo) =0
and P’(zo) # 0.]

5.127 9. Prove that the simple eigenvalues of a matrix A are C°° functions of the
entries of A. Then infer the following.

Proposition. Let A(t) be a differentiable curve in the space of nXn matrices. Suppose
that Ao is a simple eigenvalue of A(0). Show that for t small A(t) has an eigenvalue
A(t) that depends in a C'-way from t and moreover Ao = \(0).

[Hint: In order to prove the first claim, consider f(z,u, A) := (Az — pz, |z|? — 1), prove

O (@A A)=2 lim det(A — p1d)
a(x, \) s SR

and use the fact that X is a simple zero of det(A — X1d).]

det

5.128 9. The equations
2 — yu =0,
zy +uv =0
implicitely define (u,v) as functions of (x,y) in a neighborhood of (xo,yo, uo, vo) with
(yo,uo) # 0. If o(z,y) := (u,v), compute det Do(z, y).
5.129 9. Prove that the system

1 +x2 + 23 + x4 = u1,
T2 +x3 + T4 = uru2,
T3 + T4 = uru2u3,
T4 = ULU2U3U4
implicitely defines the x’s as functions of the u’s, and that

o(z1,...,24) 3,2

det
A(u1, ..., ua)
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5.130 9. Prove that the equations

u=x+y+z,
v=u?4 v+ 22

w = u(3v — u?)/2

define a 2-submanifold in R3.

5.131 €. Find the maximum and minimum points of 22 +y2422 in each of the following
sets

{(ac,y,z) € Rs‘x—&-y—i—z:i’)a}, {(ac,y,z) € R3 |zy +yz + x2 :3(12},
{($,y,z) € R:’"xyz = a3}.
and of 22 + y? — 3z + 5y in the set

{@y.2) € R |@+1)? = 4z —p)}.

5.132 9. Prove that the special group SL(n,R) of n X n matrices with determinant 1
identified with points in R"’ is a submanifold of R"” of dimension n2 — 1.
5.133 9. Identify the group of symmetric n X n matrices Sym,, (R), with R", r = (”'2“),

and let f : My, — Sym,,(R) be the map f(X) := XTX. Then the orthogonal group is
the counterimage of the identity, i.e., O(n) = f~1(1d). Prove that

dfx(H)=HTX +XTH VX € O(n), YH € My,

and infer that O(n) is a submanifold of R"” of dimension () = én(n —1).

5.134 9. Let A, B be two self-adjoint matrices in M, »(R). Find the critical values of
Az ez constrained to Brex = 1.

5.135 9. Prove that a graph over [0, 1] has zero mean curvature if and only if it is a
straight line. Prove also that a graph over [0,1] has constant mean curvature & > 0
provided k£ < 2 and, in this case, it is a piece of a circle of radius larger than or equal
to 1/2.

5.136 9. As we have seen, there exists a unique (up to rigid motions) planar curve
~(s) parameterized by the arc length with given positive scalar curvature k(s). Prove
that the same result holds if k(s) > 0 provided k is analytic. Finally, show examples of
nonuniqueness if k(s) vanishes and is not analytic. [Hint: Compare scalar and oriented
curvatures.]

5.137 9§ Envelopes. Let Q be an open set of R? and let T be an interval around 0.
Let f: QxT — R f = f(x,y,¢), be a map of class C1, with f(z,y,c) = 0 at some
point and Vf(z,y,c) # 0 in Q x I'. Consider the 1-parameter family of curves

M. = {(Ly)EQ)f(ac,y,c):O}, cel.
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(i) A curve ¢ — ¢(c) := (£(¢),n(c)), ¢ € T, is such that

f&(e),n(c),c)=0  and  Vf(&(c),n(c),c) L ¢'(c)
for all ¢ € I' if and only if

FE@ e, =0 and O (e n(e),0) =0

for all ¢ € T'. In this case, the curve ¢(c) is called the envelope of the family {M.}.
(ii) Prove that, if f(zo,yo0,c0) =0 and fee(z0.y0,c0) # 0, then locally, i.e., for small
|c — col|, the family {M.} has an envelope.
(iii) Finally, show that, if moreover,

facfcy_fyfcac #0 in (3?0190100)

then the envelope curve ¢(c) is regular, i.e., ¢’(c) # 0.

5.138 9 Evolute. Let v : I — R2 be a curve with k(t) # 0 for all ¢t. The curve
1
(t)

is called the evolute of v. Prove that the tangent to o(t) is the normal to v at ¢.

o(t) ==t + |, nt)

5.139 9. Prove that if all normal lines to a planar curve meet at the same point, then
the trajectory of the curve is a circle.

5.140 9. Let v(s) : I — R3 be a curve parameterized by the arc length. Suppose that
7(s) # 0 and k’(s) # 0. Prove that the trajectory of 7 lies in a sphere if and only if

R/(s)\2 1
R2(s) + ( (s) ) = cost, R(s) := k()"

5.141 q. Show that a curve in polar coordinates p = p(f) has curvature given by
2 12 " 2
k(o) = 2 PP +p
(0 + )32
5.142 § Evolute. Let X € C*(I,R?), k > 3, be a simple regular curve with k(t) as
curvature, p(t) as radius of curvature, and n(¢) as normal at X (¢). The evolute of X(t)
is the curve Y (t) := X(¢t) + p(t)n(t) If X(t) = (x(t), y(¢)) and Y (¢) = (£(¢), n(t)), prove
that
m/2 + y/?
x’y” _ y/x// :

J;l2 +y/2
zy —y'x
Prove that the evolute of a cycloid z(t) = R(t + sint), y(t) = R(1 — cost), is again a

cycloid (Christiaan Huygens (1629-1695)) and the evolute of the parabola y = z2/2 is
Neile’s parabola 8(y — 1)2 = 2722 (William Neile (1637-1670)).

)=z —y . nt) =y+a

5.143 9. For 1 < a < 2, let M, C R? be the graph of fo(z) = 2, 2 € R. Prove that
fa € C1(R) and that f, € C2(R) if and only if a = 2. If

Ma,e := {(I,y) ‘ y >z, dist (2, y), Ma) = 6}7

prove that

(i) Ma,e is a submanifold for all € > 0 if o = 2,
(ii) Ma,e is singular for all € > 0 at the point (0,y) € Ma,c if 0 < a < 2.
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5.144 9. Let f: R™ — R be a function of class C! and Q := {z| f(x) < 0}. Suppose
that 0Q = {z| f(z) = 0} and that Df(z) # 0 Vz € 9. Prove that 9Q is a (n — 1)-
dimensional submanifold of R” with exterior normal v(z) = V f(z)/|V f(z)| at = € 9,

and that
/Afdac:/ |V fldH™ 1.
Q o0

5.145 9. Let Q be a bounded open domain of R™ with boundary of class C3, let d(z)
be the distance function between x and 0€2 and let

Qe :=QU {a: € Q°d(z) < e}.

Prove that for e small, we have

H'~1(09) — H 1 (99Q) :/ Addz.

e



6. Systems of Ordinary
Differential Equations

The system of ordinary differential equations

vy = filt,z1, T2, .., Th),
ry = fa(t,z1, T2y .., Th),
al, = fo(t,z1, T2, ..., xp)

or, in short,
o =f(t,x), telCR, z=ua(t):1—R",

where f is a map from a domain 2 C R x R™ into R", needs not have
solutions defined on the entire interval I, even in the case 2 = R x R™ and
f smooth. For instance, see [GM1], for n = 1 all solutions of 2’ = x? are
of the form x(t) = 1/(c—1t), ¢ € R, thus defined either for ¢t < cort > c. If
flt,x) : Q C R® — R™ is continuous in ¢ and locally Lipschitz in Q, then

the Picard-Lindeldf theorem says, see [GM3], that the Cauchy problem

{x’ = f(t, x),

.T(t()) = X0

has a unique local solution, indeed on a maximal interval containing ¢y in
the sense that the trajectory (¢, x(t)) reaches the boundary of Q. Actually,
local solvability holds for continuous functions f, but uniqueness does not
in general. Finally, under the assumption of the Picard—Lindel6f theorem
the solution depends continuously on the initial datum, see [GM3], and,
as we saw in Chapter 5 Section 5.3, f depends in a C* way on the initial
datum if f is of class C*.

In this chapter we discuss a selection of classic results from the basic
theory of ODE with the partial motivations of illustrating structures and
techniques we have introduced. Of course, we refrain from any attempt of
completeness and systematicity both for reasons of space and because this
would lead into the theory of ODE and the theory of dynamical systems
that have their autonomous development.

M. Giaquinta and G. Modica, Mathematical Analysis: An Introduction to Functions 309
of Several Variables, DOI: 10.1007/978-0-8176-4612-7_6,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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6.1 Linear Systems

a. Linear systems of first-order ODEs
If for f: I xR™ — R™ we have

[f(t, )] < a(t)]x] + b(t)

where a(t) and b(t) are bounded and continuous functions in I, then every
local solution of 2’ = f(t,z) extends as a solution in the whole interval I,
see [GM3]. In particular, for every (tg,zo) € I x R™, the system of linear
differential equations in normal form

o =At)r+b(t), AecC’I,M,,(R)), beC'(I,R"),

has a unique solution z(t) = z(¢; to, z¢) defined on I, of class C*, and such
that z(to) = 0. In other words, if we denote by & € C*(I,R™) the set of
solutions of «' = f(¢t, ),

S := {y € CY(I,R™) |y is a solution of 2’ = f(t,x)}

and by F : R” — S the map that associates to the initial data xg at time
to the unique solution x(t; to, xo), we infer that F is well defined, injective,
and onto.

In the linear homogeneous case,

' = A(t)z, A € C°(I, M, (R)), (6.1)

F is also linear, hence we can state the following.

6.1 Proposition. The space S of all solutions of the linear system (6.1)
s a real vector space of dimension n.

6.2 Definition. We say that a map t — Z(t) € M, ,(R), t € I is a
fundamental system of solutions of (6.1) if Z(t) has as columns n solutions
of (6.1) that form a basis for the space S of all solutions of (6.1).

Again from the linearity of F, we infer at once the following.

6.3 Proposition. A map t — Z(t) € M, ,(R), t € I, is a fundamental
system of solutions of (6.1) if and only Z(t) has as columns n solutions of
(6.1) and det Z(s) # 0 at some to € I (and therefore det Z(s) # 0 at every
s € 1); in matriz notation

Z'(t) =At)ZL(t) Vtel,
detZ(s) #0 Vs el
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In the linear case, for every ¢,tg € I also the map z¢g — x(t,;to, zo)
is injective and linear from R"™ onto itself; therefore there is a nonsingular
matrix W (¢, tp) such that

.Z‘(t;to,xo) = W(t,to)l‘o = W(t,to)l‘(to;to,l‘o), (62)

called the transition matriz (from the value of o at “time” ¢y to the value
of £ = W(t, tg)zo at “time” ¢). By definition

Wi(s,s)=1d
and for every j = 1,...,n, the j-column w’(t) of W(t,s), j = 1,...,n

solves the Cauchy problem

wi(t,s) = A(t)w (t,s),
wl(s) = ej,
(e1, €2,..., e,) being the canonical basis of R™. Therefore we infer that

for fited s € I, t — W(t, s) is the fundamental system of solutions of (6.1)
for which W (s,s) = 1d,

{Wt(t, s) = A(t)W(t), (6.3)

W(s,s) = Id.

According to (6.2) the map ¢t — Z(t) : I — M, , is a fundamental
system of (6.1) if and only if

Z(t) = W(t, s)Z(s).

In particular, we may compute W (¢, s) from a given fundamental system
of solutions t — Z(t) as

Wi(t,s)=Z(t)Z(s)""'  Vt,scl. (6.4)

since in this case Z(s) is invertible.

6.4 Proposition. Let W (t, s) be the transition matriz associated to A(t).
Then we have:

(i) W(t,t) = 1d for allt € 1.
i) W(t,s)W (s,r) =W(t,r).
) W(t,s)"! = W(s,t).

) We have

(i
(iii

(iv

OW (t, s)
ot

OW (t, s)

=A(t)W(t,s), 9s

=-W(t,s)A(s).
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(v) Liouville’s equation holds

gt det W(t,s) = tr (A(t)) det W(t, s),

in particular Abel’s formula holds

t
det W (t, s) = exp (/ tr A(7)dr |.
S
Proof. We leave to the reader the proofs of (i), (ii),..., and (iv), and we prove (v).

Since

W(t+es)=W(ts)+ ow (t,s) e+ o(e)

ot
=W(t,s)+ecA)W(t, s) + o(e) == (Id + eA(t))W(t, s) + o(e)
we have
det W(t + €,s) = det(Id + eA(t)) det W(t, s) + o(e)
= (14 etr A(t) + o(e)) det W (¢, s) + o(e)
=det W(t,s) + etr A(t) det W (¢, s) + o(e)
hence (v). O

6.5 9. Noticing that W (t,s) = W (t,t9)W (to, s), prove that W (t, s) is of class C'! in
(¢, s).

Either by a direct check or by the method of variations of constants,
that is, looking for a solution of the type u(t) := W(¢, s)c(t), ¢ : I —€ R™,
we easily get the following.

6.6 Theorem. The unique solution of the Cauchy problem
{x' = Az + f(0),
Z‘(to) = 20
is given by
t

x(t) = W(t, to)xo+ [ W(t,7)f(r)dr

to

where W (t, s) is the transition matriz associated to A(t).

Now, define by induction

{Wo(t, s) = Id, t ©5)
Wigi(t,s) = [, A(T)Wg(r,s)dr, k>0,

ie.,
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Wo(t, S) = Id,
Wi(t,s) = [L A(r)dr,

Wit,s) = [ [T [T Alr) - A(n) dry - dmy,, k> 2,

By applying the contraction theorem as for proving existence, see [GM3],
and using the linearity we easily infer the following.

6.7 Proposition. For every interval J CC I, we have
|t — s|*
k!

where ||Al|ls,s := sup,c; ||A(t)||. Therefore, the series > oo Wi(t,s)
converges uniformly on the compact sets of I x I to the transition ma-
trix,

(Wi(t,s)l < [|AlIS Vt,s € J,

oo

Wi(t,s) = Z Wy(t, s),

k=0

and the following estimate holds

[[W(t,s)|| < eltslAlles vyt s e g,

b. Linear systems with constant coeflicients
Suppose that A(t) commutes with

t
B(t, s) ::/ A(r)dr
S
for every t € R and fixed s. For instance, this happens if A(¢) and A(7)
commute for all ¢t and 7,
[A(t), A(T)] :== A(t)A(T) — A(T)A(t) =0,

in particular when A(t) := A is a constant matrix.
If A(t) and B(t, s) commute for every ¢ and fixed s, then

0
ot

and we infer by induction from (6.5) that Wy (t,s) = },BF(t,s) Vk > 0,
hence

BF(t,s) = kB*1(t, s)%}? (t,s) = kB*1(t,s)A(t)

[M]¢
T =

Wi(t,s) = B*(t,s)

L[ Ao = oo [ ).

i
(=)

(6.6)

M

=~
Il
<]
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The exponential of a matrix:
() e* =370 A =limnoo (10 + 1A)"
(i) ||eA]| < e,

-1
(iii) If AB = BA, then eAB = Be#, eA1TB = ¢AeB, (eA) =e A, jt etA =
Aeth,
(iv) If B is invertible, then eBAB™! — BeAB-1L,
(v) dete® =etrA,

. Rk .
(vi) Oaexp (A)(H) =32, 15 (‘2+I};I+A1>! (= He® if AH = HA).

Figure 6.1. Some properties of the exponential of a matrix, see Chapter 1 and [GM3].

Therefore for systems with constant coefficients, A(¢t) = A, we conclude
W(t,s) = elt=5)A
Notice that this implies that
W(t,s) = W(t—s,0)

and by (6.4)
' ZZ(s) ' = Z(t — s)Z(0)~*

for every fundamental matrix Z(t) of 2’ = Ax. These formulas can also
be proved by direct computation. As a consequence of Theorem 6.6 we get
the following.

6.8 Corollary. The unique solution of the Cauchy problem

{x/@) = Ax(t) + f(t),

x(to) = X0

s given by

t
z(t) = elt"t0) Ay, —|—/ =94 £ () ds.

to

c. More about linear systems

Consider a linear system with constant coefficient 2/ = Az where A €
M, ,(R). By a change of variables z = Py, it tranforms into the equivalent
linear system 3y’ = P~'APy with coefficient matrix B := P~ AP that is
similar to A. Of course, if we are able to find the solutions of 3’ = By,
then the solutions of the original system are given by x(t) = Py(t), that is

et = Pe!BP L
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For instance, if (u1, ug,..., u,) is a basis of R™ made by eigenvectors
of A, then

diag (\i,...,\n) =P 'AP

with P = [u1|u2| . |un} Therefore, we find

e = exp (thiag (A, Aayeney )\n)Pfl)
— Pexp (tdiag(/\l, Aoy )\n))P‘l
= Pdiag (eM?t et ... Pl

= [ule)‘lt|uze’\2t| e |une)‘"t} Pl

6.9 Example. We can find the same result by noticing that z(t) = e u solves o/ =
Az with initial data z(0) = w if u is an eigenvector of A with associated eigenvalue

. Therefore, if (u1, ug,..., un) is a basis of eigenvectors of A with corresponding
eigenvalues A1, A2,..., Ay, then the matrix

Z(t) = [e)‘ltul ‘e)‘ztuz ‘ ’ek"btun}
is a fundamental matrix for 2’ = Az with Z(0) = [ul lua| ... |un]7 hence

A = W(t,0) = Z(t)Z(0)" ' = Z(t)PL.

In the general case, one considers A as a complex valued matrix and
uses one of its Jordan canonical forms.

Let A1, A2, ..., Ax be the distinct eigenvalues of A with relative alge-
braic multiplicities my, ma, ..., mg. For every i, 1 < i < k, let p; be the
dimension of the eigenspace relative to A;. Then, see [GM3], there exists a
linear change of basis P € M,, ,,(C) such that J := P~ AP has the form

Jia 0 0 ... 0
J
J_ 0 1,2 0 0
0 0 0 ... Jip.

wherei=1,...,k, j=1,...,p; and
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i if J; ; has dimension /; ; = 1,

if fi,j = dimJ,’,j > 1.

i

i

If 3 = J; ; = () has dimension 1, then e? = . Instead, if J' = J;; is
one of the blocks of dimension ¢ > 2,

A1 o0 ... 0
0 A 1 0

J =
0 0 A 1
0 0 0 A

then
J' =\Id + N, Nij = 0iy1,5-

Since N and Id commute, we have

’
ot AT tN _ At N

On the other hand, since

(Nk)y‘,j _ {6z’+k,j if k<,

0 ifk>¢
we have
=1 ‘1
N k_ k
¢ *Zk!N *Zk!N )
k=0 k=0
hence
2 -1
1 ¢ t ¢
2 (¢ —1)!
t[—Z
0 1 ¢
(£ —2)!
exp (tJ') = eM N = M
0 0 1 t
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In conclusion, we have

exp (tA) = PeP~! (6.7)
with
etdia 0 - 0
ot 0 etz L. 0
0 0 e et‘]k,;vk

We observe that every entry of the matrix e has the form
k
3" ps(texp (gt)
j=1

where p;(t) is a polynomial of degree at most p; —1 and A1, Ag,..., A, are
the eigenvalues of A. Tt follows that for every p > max(RA;, RAa, ..., R\,)
there is a constant C), such that

‘exp (tA)’ < Cpe'?, 0<t<o0.
In particular, we infer the following stability result.

6.10 Theorem. Suppose that all eigenvalues of A have negative real part.
Then every solution of x' = Ax converges to zero when t — +oo. Indeed,
if max;=1.,(R\;) < —o <0, then there exists a constant C, such that

lz(t)] < Coe™ ", t>0.

6.11 9. Let z(t) solve 2’ = Az + f. Prove that x(¢) does not grow more than expo-
nentially at 400 if f does not grow more than exponentially at +oco.

6.12 9. Let Z(t) be a fundamental system of solutions of the n x n first-order system
of ODE v/ = Av, A € My, »(R). Prove that

det Z(t) = det Z(¢o)exp (/t tr A(T) dT)

to

for all t,to € I. [Hint: Use Abel’s formula.]
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6.1.1 Higher-order equations

a. Higher-order equations and first-order systems
A linear differential equation of order n in normal form,

u™ 4 ap ()Y 4y (D + ao(t)u = f(1), (6.8)

is equivalent to a system of linear differential equations of first-order in
the unknown v := (u,u’, ..., u™"Y). Indeed, if u solves (6.8) and we set

v=(v1, V2, ..., vp) = (..., u""D), (6.9)

then v solves the system

vy = 1,
v = g,
vl = —ao(t)vg — a1 (t)vy + -+ — an—1(t)vp—1 + b(t)

that has the vector form

vV =A(t)v+ f(t) (6.10)
with
0 1 0 0
0 0 1 . 0
A(t) := (6.11)
0 0 0 . 1
—ap(t) —ai(t) —as(t) ... —an—1(t)
and

F(t)=1(0,0,...,0,0(1))".
Conversely, if v : I — R™ solves (6.10) with A as in (6.11) and f(t) =
f(t) = (0,0,...,0,b(t))T, then the first component u := vy of v solves
(6.8) and v = (u,u', ..., u""D).
Therefore we can apply the theory of systems of linear first-order equa-
tions to represent the solutions of an equation of order n.

6.13 Proposition. Let W(t,s) be the transition matriz of the system
(6.10), then the solutions of (6.8) are given by

n t
u(t) :Zle(t,to)cj + | Wy, (t,7)f(r)dr, c=(c1,...,cn) €R™
i=1 o

(6.12)
In particular, if f(t) = 0 Vt, then the space of solutions is an n-dimensional
vector space.
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If w1, us, ..., u, are n solutions of the homogeneous equation
u™ 4 an 1 ()Y 4y (D) 4 ao(t)u =0 (6.13)

associated to (6.8), then the columns of the n x n-matrix

uy (15) e Unp
Z(t) = uf uy ool (6.14)
u(ln—l) uén—l) . USLn_l)

are solutions of the system v = A(t)v. Therefore the following claims are
equivalent

(i) w1, ug,..., u, are linearly independent functions that solve (6.13),
(ii) the columns of Z(t) are linearly independent V¢,
(iii) Z(t) is a fundamental system of solutions of v/ = Aw,
(iv) det Z(to) # 0 for some tg € I.

In this case uq1, us, ..., u, form a basis for the vector space of the solutions
of (6.13). The function w(t) := det Z(t) is called the Wronskian of the
solutions uy, Uz, ..., Un,.

6.14 9. Let ui, ug,..., un be n solutions of the homogeneous equation (6.13) and let
w(t) := det Z(¢) as in (6.14). Prove that w'(t) = —an—1(t)w, hence

w(t) = wito)exp ( - /t: an_1(7) df).

b. Homogeneous linear equations with constant coefficients

When the coefficients ag, ..., a,_1 are constant, we can compute a basis
of solutions of the homogeneous equation

w4+ ap_ 10 4 a +agu =0 (6.15)

in terms of the roots of the characteristic polynomial
n
p(A) = Zak)\k.
k=0

But, it is more convenient to work with complex-valued solutions of (6.15).

6.15 Theorem. Let A1, Ao, ..., A\; be the distinct roots of the characteris-
tic polynomial p(\) of (6.15) with multiplicity, respectively, ri, ra,..., ri,
so that Zle r; = n. Then the functions

theet 1<h<wr, 1<i<k,

form a basis of solutions for the homogeneous equation (6.15). In particular
the vector space of solutions of (6.15) has dimension n.
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Proof. Let ' = Ax be the n X n first-order system associated to (6.15). One shows,
proceeding for instance by induction on the dimension n, that p(A) = det(AId — A),
so that the roots of p(\) are precisely the eigenvalues of A. Denote by wu;1,...u;p, a

basis of the eigenspace associated to A; and, for j = 1,...,p; by £; ; the dimension of
the Jordan block associated to u; ;. Then A = PJP~! and from (6.7) we infer that
PetY

is a fundamental system of solutions of #/ = Axz. Recall that

etd11 0 0
ot 0 etJi,2 0
0 0 etk.py
and ) ’ L
t thii—
1t ’
2 (0,5 — 1)!
flii—2
0o 1 t
(ti,; — 2)!
it

exp (tJi’j) =€

o 0 ... O 1

Therefore the n functions in the first row of Pe??,

ui(t) i= (Pe“)i i=1,...,n (6.16)

3

form a basis of solutions for (6.15). Since e is a block-triangular matrix, (6.16) rewrites
as
ul (t)
© | =Cy(t)
un (t)

where y(t) denotes the vector made by the functions in the first rows of the Jordan
blocks

£1,1 1.1
(A1t At ThL Nt At o At Art
y(t).-(el,tel,..., 'el,...,...,el,tel,..., 'el,
11! C1,py !
25 42,92
Aot 4 Aot 2 Not Aot 4 Aot P2 ot
e"2t te”2t ., '62,...,...,62,t62,..., '62
1! 2,p,!
Ekp L. p T
Aot Aot TP o At 1At TR st
ez,tez,...,Z '62...,...,ek,tek,..., 'ek
k,p1- k.pg*
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and
C11 0 0
Co— 0 C1,2 0
0 0 ... Cip

where each block is triangular with the same constant in its diagonal.

Since u1, w2, ..., un are linearly independent, C is nonsingular and the components
of y(t) are linearly independent, too. In particular, for every ¢ = 1,. .., k there is a unique
Jordan block corresponding to A;, hence p; =1, £;,1 = r; and the functions

theret, 1<h<r, 1<i<k, (6.17)

are the components of y, hence are linearly independent. Finally, since C is nonsingular,
the functions in (6.17) are solutions of (6.15). O

c. Nonhomogeneous linear ODEs
Now let us consider the nonhomogeneous equation

u™ 4+ a1 u™Y 4 a4 agu = b(t) (6.18)

As we have already solved the corresponding homogeneous equation
(6.15), it suffices to find a particular solution.

6.16 Theorem (Duhamel’s formula). Let v(t) be the solution of the
homogeneous equation (6.15) with initial data

u(0) =0, v/(0)=0, ..., u" D) =1.

- /tk:(t —)b(r)dr
0

solves (6.18) with initial data

Then the function

uw(0) =0, «/(0) =0, ..., u" P (0) = 0.

Proof. Let o’ = Az + f(t) be the linear system of first-order associated to (6.18). The
last column of W (t, 0) := e!2 solves 2/ = Az with initial value z(0) = (0,0,...,0,1)T,
and the first component of x, x!(t) = Wi, (t), solves the homogeneous equatlon (6. 15)
with initial data

u(0) =0, v (0) =0, ..., u® D) =1,

so that v(t) = Win(t) Vt. Since W (t,s) = W (t —s,0) = e(!=9)A the result follows from
(6.12). o
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6.2 Stability

In this section we consider autonomous systems of ordinary differential
equations, i.e., systems of the type

' = f(z) (6.19)

where f : R™ — R™ is a smooth vector field, possibly defined in an open
domain 2 C R". Clearly, those systems are invariant by time-translation,
and every solution describes in ¢ an orbit or trajectory that can be inter-
preted as the path of a particle that moves with velocity f(z) at the point
x; finally, for every € R™ there is an orbit going through it. The whole
family of orbits of (6.19) is sometimes called the fluz generated by f.

We are interested in local and global behavior of the whole family of
orbits more than on each orbit, i.e., as one says, we want to look at (6.19)
as a dynamical system. Then, we should expect in general, see [GM2],
sensitive dependence from the initial conditions, strange attractors, chaotic
behavior, etc., and even an introductive study would not be possible both
for space reasons and as it would force us to deviate too much from our
path: we refer the interested reader to any of the many monographs about
ODE’s and dynamical systems.

Here and in the next section, we confine ourselves to illustrating some
classical results relative to 2 x 2-systems, or, as one says in physics, with
one degree of freedom, with the goal of showing absence, in this case, of
chaotic behavior. Such a chaotic behavior appears instead for 3 x 3-systems,
but we shall not dwell on this.

6.2.1 Critical points and linearization

As we saw in Chapter 5, in a neighborhood of a point zy for which
f(xo) # 0, the orbits of the system (6.19) are trivial, meaning that they
are diffeomorphic to a bundle of parallel straight lines.

6.17 Definition. A point xo € R™ for which f(x¢) = 0 is called a critical
or equilibrium point for (6.19).

If ¢ is a critical point, then the constant vector z(t) := xg is a solution
with orbit the point x(. In physics, critical points correspond to equilibrium
states: For the pendulum,

0" + z sinf = 0,

that is equivalent to the system
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Figure 6.2. On the left: (a) A nodal point asymptotically stable with A1 < A2 < 0, and,
on the right (b) a nodal point unstable with 0 < A1 < Aa.

the equilibrium points are (nm,0), n = 0,£1,42,....

We begin by classifying the behavior of the orbits of the linearization
of a 2 x 2-system in a neighborhood of a critical point. Such a linearization
in general has the form

r_
o' =ar+by, (6.20)
y =cx+dy

where ad — bc # 0. The behavior of its orbits near zero is classified by the

“ b). In fact, a linear isomor-
c d

phism of R? transforms the system (6.20) in one of the following canonical
forms in the variables (£, 7).

eigenvalues A1, Ao of the matrix A := (

(i) Nodal points and saddle points. They correspond respectively to real,
distinct, and nonzero eigenvalues of the same sign and to real, dis-
tinct, and nonzero eigenvalues of opposite signs, A\; < 0 < Az. In both
cases the canonical form is

5/ = Alga
7 = Aan.

(ii) Degenerate nodal points. They correspond to a double eigenvalue.
There are two possibilities:

(a) Rank <a —A b
c

J )\) = 0. In this case, the canonical system is

¢ =X,
n = .
a=A b ) = 1. In this case, the canonical system
¢ d— A\
takes the form

(b) Rank (
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{5’ = “3Pe+,

77/ _ a;dn-

(iii) Centers. They correspond to purely imaginary eigenvalues. In this
case, the canonical system takes the form

{5’ = ag - fn,
n' = B¢+ om.
(iv) Foci. They correspond to complex conjugate eigenvalues with nonzero

real part.

6.18 Definition. We say that a critical point xq for the system x' = f(x)
is stable if for every open neighborhood U(xg) of xq there exists another
open neighborhood V(xo) C Ul(xg) of xg such that every orbit passing
through V (xo) at to remains in U(xg) for all t > to.

We say that xo is asymptotically stable if it is stable and there is
an open neighborhood W (xzg) of xo such that every orbit through W (xg)
converges to xo when t — oo.

An isolated critical point that is not stable is said to be unstable.

Now, consider the nonlinear 2 x 2-system

{x/ = P(z.y), (6.21)
y/ = Q(x’ y)

and assume that (0,0) is a critical point, and actually that
Pa,y) = az + by + o V/a* +92),
Q(z,y) = ca +dy + 0<\/962 + y2)

with ad — be # 0. Then the following result, which we state without proof,
holds.

N7

Figure 6.3. A saddle point (always unstable) A1 < 0 < Aa.
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(a

Figure 6.4. On the left: (a) A asymptoticallly stable with A < 0, and on the right: (b)
a degenerate nodal point unstable with A > 0.

6.19 Theorem (Linearization theorem). Suppose that (0,0) is a fo-
cus, or a nodal or a saddle point for the linearized system. Then the be-
havior of the orbits of (6.20) and (6.21) is similar, meaning that the orbits
are stable (respectively, asymptotically stable or unstable) for both systems.

Notice that nothing is stated for centers of degenerate nodal points. In
fact, in both cases a small perturbation of the coefficients of the linearized
system moves the eigenvalues out of the imaginary axes or, respectively,
separates double eigenvalues, modifying the nature of the critical point. In
this case, the higher-order terms are decisive to establish stability.

6.2.2 Lyapunov’s method

A different approach to determine the stability of a nonlinear suystem
is due to Aleksandr Lyapunov (1857-1918); the idea behind it being the
following classic result of Lagrange: The equilibrium position of a conser-
vative mechanical system is stable if and only if its potential energy has a
local minimum at this point.

Figure 6.5. The case of conjugate complex eigenvalues: respectively, from the left, (a)
R <0, (b) RA =0, and (c) RA > 0.
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6.20 Example. The equation of motion of a one-dimensional conservative system with
a potential energy U is

dU
ma’ =—
dx
or, equivalently,
) = xa,
dUu
mah = — (z1)
dxq

where z(t) = z1(¢). If we introduce the function total energy
1 1
H(z1,z2) := (U(x1)+ x%),
m 2

the equation of motion of a one-dimensional conservative system with a potential energy
U takes its Hamiltonian form, see [GM5],

OH
x] = (z1,22),

Ox2
OH
Il2 = - ($17$2)7
ox1

and one easily finds that the orbits that lie on the level sets of H are closed lines that
retract to zero if U has a minimum at 0. Therefore, 0 is a stable equilibrium point.

We begin with a few simple remarks coming from the existence and
unicity theorems for the Cauchy problem for ODE, see [GM3]. We leave
the details to the reader.

(i) The orbits of the system 2’ = f(x) through a noncritical point cannot
reach in finite time a critical point, i.e., if x(t) is a solution and
x(t) — xo when t — tg, then xq is not a critical point.

(ii) An orbit of 2/ = f(z) through a noncritical point has no self-
intersections, except when it is a simple and closed curve, correspond-
ing to a periodic solution.

Let z(t) be a solution of 2’ = f(z) and let V : R™ — R be a scalar
function. We have

d

gV @) = VV (1)« f(2(1)),

and it is convenient to set
V*(z) := VV(x)e f(x).

6.21 Theorem (Lyapunov). Let 0 be a critical point for ' = f(x).

(i) Suppose that there exist v > 0 and V : B(0,r) — R with V(0) = 0,
V(z) > 0 for x # 0 for which V*(x) < 0 Va € B(0,r). Then 0 is a
stable critical point. Moreover, if V*(0) = 0 and V*(x) < 0 for x # 0,
then 0 is asymptotically stable.
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Figure 6.6. Illustration of the proof of Lyapunov’s theorem.

(ii) If there exists V : B(0,r) — R with V(0) = 0 and either V(z) > 0
for all x #£ 0 or V(z) < 0 for all x # 0 and if, moreover, in every
neighborhood of 0 there exists x # 0 such that sgnV(x) = sgn V*(z),
then 0 is an unstable critical point.

Theorem 6.21 applies to many interesting situations that we are not
going to specify. But, of course, it also has limitations. It does not tell
us how to construct the function V or find V, often called a Lyapunov
function of the system; it provides us with only sufficient conditions and,
finally, it gives no estimate of the region of asymptotic stability. Further
inquiries are needed and could be done, but we will not dwell on this topic.

Proof. The idea of the proof is contained in Figure 6.6. Formally, we proceed as follows:

(i) By assumption there is 7 > 0 such that
V(z) >0Vz € B(0,r) \ {0} and V*(x) <0 Vz € B(O,r).

For 0 < e < r we set
= in V(x).
= i,V
Trivially pe > 0 and, by the continuity of V, there exists § > 0 such that V(z) < pe for
all |z| < 8. Now we shall show that for |zg| < & the solution z(¢; o) of 2’ = f(z) with
z(0; z0) = zo is well defined for every ¢t > 0 and |z(t)| < e V.
Let [0,t1] be the maximal interval of existence of x(¢;z¢). Since C‘litV(ac(t)) =
V*(x(t)) < 0, we have

0 < V(z(t)) <V(zo) < pe for0 <t <t

hence |z(t)| < eVt € [0,t1[, because of the definition of p.. Now we claim that t; = +o0.
Otherwise, there is t2 such that |z(t2;z0)| = € hence

pe < V(x(t2;20)) < V(xo) < e,

a contradiction.

To prove the second part, it suffices to show that z(¢;x9) — 0 as ¢ — +o0, or,
equivalently, V(z(¢t;z0)) — 0 as t — +oo. If not, since t — V(z(¢;z0)) is monotone,
there is > 0 such that V(z(t;xz0)) > n > 0 for all ¢t > 0. If 0 < 61 < r is such that
V(z) < n for |z| < 1, then |z(t;z0)| > §1 VE. We set

= i -V
élgllgllgp( (),
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then p > 0 and
d
—dtV(ac(t)) =-V*(zt)>up for t > 0.

By integration we finally get V(z(t)) < V(xzo) — pt, which is absurd for ¢ large.

(ii) Suppose V*(z) > 0 on B(0,r) and, without loss of generality, |V (z)| < M for some
M > 0 on B(0,r). If V(z) > 0, we choose 6 > 0 so that V(z) < V(z) if |z| < §, and
we denote by z(t; z) the solution of 2’ = f(x) with 2(0;z) = z defined in its maximal
interval [0, ¢1[. Since ;t\/(x(t; z)) = V*(z(t;x)) > 0, we have

V(xz(t;z)) 2 V(z)

from which xz(t,z) > § Vt € [0, t1[. Therefore, if we set

*i:= min V*(y),
W= dnin ()

we have p* > 0 and
V(z(t;z)) > V(x) + p*t.

On the other hand, t; cannot be oo as, otherwise, we would have V(z(¢,z)) — +oo,
which contradicts |V (z)| < M. Consequently, there exists t2 such that |z(t2,z)| = 7. In
this way we find a sequence of points that converges to zero whose orbits leave B(0,r)
in finite time, i.e., 0 is an unstable critical point. O

6.22 ¢ Nonlinear damped oscillator. Let p: R? — R and ¢ : R — R be continuous
functions such that p(u,s) > 0, uq(u) > 0 for all (u,s) € R? and

y
/ q(u) dz — 400 as |y| — oo.
0
Prove the following.
(i) the solutions of the homogeneous equation
2"+ p(z,2")z’ +q(z) =0

remain bounded in time, i.e., there exists K = K (z(0),2’(0)) such that |z(t)| +
|2/ (t)] < K Vt > 0.
(ii) For all zg, 1 € R, the Cauchy problem

@ +p(x,2")a’ + q(z) =0,
z(0) = zo, z/(0) = x1

has a unique solution.
[Hint: Consider the Lyapunov function

22 (%)
V() = 2(1:)+ /0 p(u) du]

6.3 Poincaré—Bendixson Theorem

In this section we deal with the behavior of orbits of first-order differential
systems in the plane; in particular, we shall see that no complications such
as infinitely many periodic orbits, invariant Cantor type sets and many of
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the phenomena common to map iterations or to difference systems, or dif-
ferential systems in 3 or more dimensions can occur for differential systems
in the plane. The reason for that is in the Poincaré-Bendixson theorem,
which states that, outside the stationary points, the most complicated or-
bit that a planar system can have is an orbit converging when ¢t — +oo
and t — —oo to a closed orbit.

After a few preliminaries in Section 6.3.1, we prove the Poincaré-
Bendixson theorem in Section 6.3.2, and finally, in Section 6.3.3 we shall
discuss the behavior of the orbits of a differential system on a torus without
critical points.

6.3.1 Limit sets and invariant sets
From now on, we shall assume that for every p € R? the solution £(¢; p) of
{Ff@%
§0)=p

exists for all t € R. We denote by y(p) the orbit of p,
v(p) == {fc ‘ = §(t;p), —o0 <t < +OO},

and with v (p) and v~ (p) respectively the positive and negative semiorbit
through p,

7) = {o|r = gtp).0 < t < oo},
7 (p) = {x’w = &(t;p), —00 < t < 0}.

We say that a point ¢ belongs to the w-limit or positive limit set of w(7)
of v if £(tx;p) — ¢ for some sequence {t;} such that ¢, — +o00; similarly,
q belongs to the a-limit or negative limit a(vy) of v if v(ty; p) — ¢ for some
sequence {t;} such that ¢, — —oo .

It is easily seen that the w-limit and the a-limit of « are given respec-
tively by

wp)=) Ustp)  ap) =) ).

TER t>71 TeR t<r
Finally, we say that M C R? is an invariant (respectively positively
invariant) set for the system & = f(£) if v(p) € M (respectively v*(p) €
M) for all p € M. An orbit is invariant by definition.

6.23 9. Prove the following.
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(i) For the system

or, equivalently, for the equation z’ = z, the w-limit is empty, and the a-limit is

(95) < Yy ) (1 2 y2) <95> ,
Y -z Yy

(ii) For the system
the w-limit of all trajectories, except the O-trajectory, is the unit circle.

6.24 Proposition. We have:

(i) w(p) and a(p) are closed and invariant. For all ¢ € w(p) we have
v(q) C w(p); in particular, w(q) C w(p) and a(q) C w(p).

(ii) If vT(p) (respectively, v~ (p)) is bounded, then w(p) (respectively,
a(p)) is nonempty, compact, and connected, and dist ({(t; p),w(p)) —
0 as t — 400 (respectively dist (£(¢;p), a(p)) — 0 as t — —o0).

Proof. (i) The closure is trivial. Let ¢ € w(p) and t € R. There exists {t;}, tx — +oo,
such that £(tx;p) — ¢. It follows that (¢t + tr;p) = £(t; E(tk,p)) — &£(t;q) because of
the continuous dependence on the initial data, hence the orbit through ¢ is contained

in w(p).

(ii) Let us prove the claim for the w-limit. If 4+ (p) is bounded, clearly w(p) is bounded,
hence compact. In particular, since w(p) is made of limit points of v+ (p), it is nonempty.
Finally, we trivially have

dist (£(¢, p),w(p)) — 0 as t — +oo0.

It remains to prove that w(p)) is connected. If it is not connected, we can find two
compact sets K1 and K» such that w(p) = K1UK2 and K1NK2 = (0, and, consequently,
two disjoint open sets U; and Uz such that K1 C Uy and Ko C Us. Since

dist (§(t, p),w(p)) =0  ast — oo,

~(t; p) € U1 UUs for ¢ large. Since v(t; p) € Ui and ~(s;p) € Uz for some t, s, it follows
that the set {z = v(t; p) | ¢ large} is not connected, and this is absurd. m]

By using Zorn’s lemma one can show the following.

6.25 Proposition. FEvery compact and invariant set contains a minimal
mvariant set.

6.26 Example. The circle {r = 1} is an invariant set for the system in (ii) Exer-
cise 6.23 that in polar coordinates reads as

0’ =sin?0 — (1 —r)3,

r'=r(l—r),
and the minimal invariant sets in {r =1} are § =0 and 0 < .

Finally, we prove the following.



6.3 Poincaré-Bendixson Theorem 331

6.27 Proposition. If K is a positively invariant set and K is homeomor-
phic to the unit ball, then K contains at least a critical point.

Proof. For any 71 > 0, consider the map K — K taking p € K to &(71;p). From
Brouwer’s fixed point theorem there is p; € K such that £(71;p1) = p1, hence a periodic
orbit of period 7i. Similarly, for 7,, > 0, 7, — 0 as m — 400, we find p,, with
&(Tm;Pm) = Pm, and we may assume that p,, — p*, by taking a subsequence. For all ¢
and all integers m, there exists an integer km, (t) such that km (6)7m <t < km(t)Tm +7Tm
and £(km (t)Tm;pm) = pm for all ¢, since &(t,pm) is periodic of period 7, in t. We
therefore find

[E(t;p™) — | < [EWt; ") — £(t pm)| + [EE; Pm) — Pl + [Pm — D7
= [€(t;p*) — E@Epm)| + [E(E — km (£)Tm; Pm) — Pml| + [Pm — 7],

and, the right-hand side being infinitesimal as m — oo, we conclude £(t; p*) = p*, i.e.,
p* is a critical point. 0O

6.3.2 Poincaré—Bendixson theorem

6.28 Theorem (Poincaré—Bendixson). Let p be a point in R? such
that the solution &(t;p) of & = f(€) is defined for allt > 0 and is bounded.
The following holds.

(i) Pither w(p) is a closed orbit, or for all ¢ € w(p), f vanishes on w(q).
Consequently, if w(p) does not contain any zero of f, w(p) is a closed
orbit; moreover,

(a) either v*(p) = w(p),
(b) orw(p) =~"(p) \ v (p), i-e., v (p) spirals w(p).

(ii) Similarly, either a(p) is a closed orbit, or for all ¢ € a(p), f vanishes
on «(q). Consequently, if a(p) does not contain any zero of f, a(p)
is a closed orbit; moreover,

(a) either v~ (p) = a(p),
(b) or a(p) =~v=(p) \ v (), i-e., v (p) spirals from a(p).

The following lemmas are useful to prove Theorem 6.28.

6.29 Lemma (Monotonicity). Let I C R? be a transversal segment to
fIfE(t) is a solution of &' = f(€) that meets I in three points, A; = £(t;)
with t1 < to < t3, then As is in between Ay and Az in I.

Proof. The set £([t1, t2]) union the segment of extreme points A1 and Az forms a closed
curve in R2. From Jordan’s theorem, this curve bounds a region U. The vector field f
along I either enters or exits the region; by possibly changing sign to f, we can assume
that it enters. Then, £([t2, 00|) lies in U and the part of I \ Az containing A; is on the
boundary of U or outside U. Therefore, A3 is on the connected component of I\ Az
that does not contain Aj. O

6.30 Lemma. Let I be a transversal segment to f and let A € I. For all
€ > 0 there exists v > 0 such that every orbit that at time t = 0 is in
OB(A,r) goes through I in a time to with |to] < e.
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Proof. We may assume that A is the origin and [ is along the z-axis. If £(¢; (z0,y0)) =
(z(t, zo,y0), y(t, ®o,y0)) is the trajectory through p := (zo,yo0), then by assumption
?S?t! (0,0,0) # 0, since the z-axis is transversal to the trajectory at y(0,0,0) = 0. The
implicit function theorem yields the result. O

6.31 Lemma. Letp € R™ and let I be an open segment that is transversal
to f at p. Then I Nw(p) contains at most a point.

Proof. Since z € w(p), there exists a sequence {t;}, t; — oo such that £(t;;p) — z. On
the other hand, since z € I Nw(p), for any ¢ > 0, we can find a neighborhood V¢ of I
such that every point in V¢ flows to I in a time less than €, by Lemma 6.30. Therefore,
we find {t;} with t; — 400 such that E(t;;p) € I and f(t;;p) — z. But by Lemma 6.29,

E(t;;p) — z monotonically. Thus I Nw(z) cannot contain more than one point. O

Proof of Theorem 6.28. Let p be as in the claim, ¢ € w(p) and z € w(q) with f(z) # 0.
We can find a segment I, transverse to f. We take a sequence {t;} — oo such that
&(tj;9) — z, and moving along the flow, we find a sequence {t;} with t;- — +o0,
&(tj;q) € I, and E(t;; q) — q. Thus, vt (q) intersects I, in particular

0#~yT(q)NI. Cwlp)Nlis.

Since I. N w(p) contains at most one point by Lemma 6.31, v*(g) intersects I. at a
unique point that must be z since z € w(q)N I, C w(p)NI.. Hence, there exists ¢, s € R,
t > s, such that £(¢t;q) = £(s;q) = 2. If we set 7:=¢ — s, we have

z=&(1+s;9) = &(1;6(s59)) = &(73 2),

i.e., v+ (g) is periodic of period .

It remains to show that w(p) = v4(q). We notice that v4(q) is closed, since it is
periodic; hence w(p) \ vt (q) is open in w(p). If w(p) # ~v+(q), we find a sequence of
points {zn} C w(p) \ v7(¢) such that z, — z € v¥(q). Since w(p) is invariant, the
orbits through z, are all contained in w(p); moreover, moving along the flow, we find
{yn} with y, € w(p)NI, and yn — z. But Lemma 6.31 yields y, = z for large n, hence
2n € 7T (q) for large n, a contradiction. O

The Poincaré-Bendixson theorem can be used to prove the existence
of periodic solutions of an autonomous system 2’ = f(z) in the plane,
provided one is able to find a domain © C R? possibly invariant and
without critical points.

6.3.3 Systems on a torus
In this section we deal with the trajectories of a first-order system

¢ = ®(p,0),

(6.22)
0 = 6(907 0)
where ® and © are doubly periodic given functions with

(I)(QO + 179) - (I)(QD,H) - (I)(QD,Q + 1)7
O(p+1,0) =0(p,0) =0(p,0 + 1),
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Figure 6.7. Jurgen Moser (1928-1999)
and a book by Vladimir Arnold
(1937- ) on ODEs.

®(z,y) and O(z,y) are continuous in R? and never zero, hence bounded
and bounded away from zero. Moreover, we shall assume that for every
given initial condition, (6.22) has a unique solution. Since ® never vanishes,
t — o(t) is strictly monotone, hence invertible. Therefore, the trajectory
of every solution ¢ — (¢(t),0(t)) of (6.22) is the graph of a function that
we denote by 6 = () and solves the first-order equation

do O(p,0)

do = A(p,0),  A(p,0) = (g 6)° (6.23)

Of course,
Alp+1,0) = A, 0+ 1) = A(, ) (6.24)

and A(6,¢) is bounded and bounded away from zero. In particular the
orbits § = 6(p) are defined for all ¢ € R.

By identifying the opposite sides of a square of size 1 in the plane (¢, 0),
we may interpret the system (6.22) as a system of differential equations
on a flat torus.

6.32 9. Suppose ® =1, © = w constant, hence A(p, 0) = w. Prove that the orbits are
closed, equivalently, the solutions of (6.23) are periodic, if w is rational. Prove that the
orbits are dense in the torus if w is irrational.

6.33 9. Suppose A(p,0) := sin 270. Prove that 6 = 0 and 6 = 1/2 are two closed orbits
and that every orbit through 6y with 0 < p < 1 has # = 1/2 as w-limit and § = 0 as
a-limit.

Every orbit goes through the meridian C' := {(¢, 0) | ¢ = 0}, therefore,
it suffices to restrict to the initial values (0,¢), £ € R. Let 0(¢, ) be the
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solution through (0, &). On account of uniqueness 6(p, £) is increasing in &
for every fixed ¢ and

O(p. & +m) =0(p, &) +m,  Voel,
0(m,0(n,£)) =0(n,0(m,§)) =0(m+n,§)  Yn,meZ, VE€R.

In particular, the map T := R — R, given by £ — 6(1,¢), is continuous
and increasing, hence a homeomorphism of R, and

T =¢  TUE) =&,  TTTE) =TMIT™(E)),
for all n,m =0,+1,4+2,....

6.34 Theorem. The limit, called the rotation number of (6.22),
. n
o BE) T

p =

9
n—00 n n—o0o n

ezists and is independent of £&. Moreover, p is rational if and only if a
power of T has a fized point, i.e., if and only if (6.22) has a periodic orbit.

Proof. For 0 < &,& <1, we have
0(p;€ —1) =0(p,§ = 1) <0(,§) < O(p,§+ 1) =0(p,§) + 1;
this implies that p is independent of £. If 0 < & —m < 1, m € N, we have
0(,0) < 0(p,8) —m < 0(p,0) + 1,
0(p,0) =1 < 0(p, &) — £ < 0(p,0) + 1,
in particular,
0(m,0) — 1 < 6(m, &) — € < O(m,0) + 1,
nf(m,0) —n < 0(nm,0) < nb(m,0) + n,
nf(—m,0) —n < 0(—nm,0) < nf(—m,0) + n,
from which we get
‘O(nm, 0) 0(m, 0)‘ - 1
nm m = |m|’
‘G(nm, 0) O(n,O)‘ < 1
n 17 |n|

nm
and, finally,
‘G(n, 0) 0O(m, 0)‘ - 1 1

n m 17 |n|  |m|’

The existence of the limit p and the estimate
1
‘p ~ 0(m,0) ‘ <
m m|

now follow at once.
If T™¢ = &, then there exists an integer k such that O(m,§) = £+ k and
. 0(nm, &) . &+ nk k
p= lim = lim =
|n|—oco nm |In|—co mm m
i.e., p is rational. Conversely, suppose p = k/m and that 7™ has no fixed point, in
particular, 0(m, §) # £+ k. Suppose 0(m, &) > £+ k VE € [0, 1], equivalently, let a > 0 be
such that 0(m, &) —&—k > a > 0VE € [0,1]. For all ¢ € R we deduce O(m,{)—C—k > a
and, iterating, 6(rm,&) — & > r(k 4+ a) Vr. Dividing by rm, and letting r — oo, we
conclude p > T’; + 7%’ a contradiction. O
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Figure 6.8. The orbits of the pendulum equation.

6.35 Theorem. If the rotation number p of the system (6.22) is rational,
then every orbit of (6.22) on the torus is either periodic or converges to a
closed curve.

Proof. Since p is rational, there exists a closed trajectory - that intersects every merid-
ian of the torus T'. Therefore, T \ v is equivalent to an annulus I" and the differential
system is equivalent to a differential system on I' without critical points. The result
then follows from the Poincaré—Bendixson theorem. [}

One can carry on the analysis to cover the case of irrational rotation
numbers. For every £ € R, i.e., for every point P = (0,¢) in the meridian

{(p,0) | =0}, we set

D(§) = {17

nGZ}CR,

and denote by D(&)’ the set of limit points D(§). We state the following
without proof.

6.36 Theorem. Suppose the rotation number p is irrational. Then the set
F := D(E) is independent of £ € R and is invariant under T, T(F) = F.
Moreover, only one of the following two situations can occur

(i) (ErcopIC CASE) F' =R,
(ii) F is a Cantor type set, i.e., F' has no isolated points and its closure
has no interior point.

Finally, in the case that T has continuous first derivative, T" > 0 and T
has bounded variation, then F' = R.

For further information the reader is referred to one of the monographs in
the final bibliographical remarks.
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Figure 6.9. The trajectories of z(t) = (asin(yt+¢), Bsint) with « =9, 8 = 8 and from
the top-left (a) ¢ =0, v =1/2, 1/3, 2/3, 1/4, 3/4, 1/5. (b) ¢ =7, v = 1/4, 3/4, 1/5,
2/5, 3/5, 4/5.

6.4 Exercises

6.37 9. Find the general integral of the equation

r_ Y
m+2y'

6.38 9. The solutions of
2

r_
4 _m+1—|—x2

are globally defined in R. Find their asymptotic development when x — +o00 modulus
o(1/x) terms.

6.39 4. Let f: R™ — R be of class C2(R). Prove that, if Vf(0) = 0 and Hf(0) < 0,
then 0 is a point of stable equilibrium for the system z’/ = V f(z).

6.40 9. Let A € My, »(R) be a nonnegative symmetric matrix. Prove that the behavior
of every solution of #”/ = Az in a suitable orthonormal basis is a simple harmonic
motion. When n = 2, the trajectories of the solutions of =z’ = Az form the so-called
Lissajous figures, see Figure 6.9.

6.41 9. Consider the equation
2
3v3

z’ =z — x4 Asint, [A] <

Prove the following.
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(i) If a(t) is a solution in [0, T] with |=(0)| < 1/v/3, then |z(¢)| < 1/v/3 ¥t € [0,T).
(ii) For all zg with |zo| < 1/v/3, there is a solution of the Cauchy problem in [0, +oo|
with initial condition x(0) = z¢ in [0, col.
(iii) There is a periodic solution with period 2.

6.42 €. Consider the differential system

ol =~y + (2 +y?)z,

(6.25)
Y =z + (@ +y?)y
and its linearization

/I
r ==Y,

Yy ==
that has the periodic solutions z(t) = z(t) +iy(t) = iAe’, A € C. Prove that (6.25) has
no periodic solution near the origin. [Hint: Notice that (;lt é(ac2 +y2) = (2 +y2)4]
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admissible open sets, 127
almost everywhere, 74

Banach’s indicatrix, 118
bifurcation equation, 276, 277
Boltzmann’s distribution, 272
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— principal integral, 228
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coarea, 121
conformality relations, 162
contraints
— smooth bilateral, 268
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— cofocal elliptic, 54
— conical, 103
— cylindrical, 52, 101
— Fermi’s, 301
— polar, 51, 100
— spherical, 53
critical
— point, 258, 264, 322
—— center, 323
—— constrained, 269
—— contrained, 268
—— degenerate, 323
—— focus, 323
—— nodal, 323
—— saddle, 323
— stable, 268, 323
—— unstable, 323
— value, 264
curl, 19, 146, 158
curvature, 281, 282
— in polar coordinates, 307
— moving frame, 284, 286
curve, 18
— binormal, 286
— curvature, 281, 286
—— oriented, 284

envelop, 306

evolute, 307

frame

— positively oriented, 284, 286
normal, 286

osculating circle, 281, 286
principal normal, 281
radius of curvature, 281
scalar curvature, 281
torsion, 287

winding number, 178

decomposition of unity, 127
derivative

calculus rules, 20

complex, 159
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of matrix-valued functions, 65
of the determinant, 23

of the determinant map, 66

of the exponential map of matrices, 66

— partial, 7

diffeomorphism, 237, 241
difference equations

Z-transform
— for systems, 213

differentiable

Fréchet, 58
Gateaux, 58
Whitney, 25

differential, 4, 14

blow-up, 12
Fréchet, 58
Gateaux, 11

differential form, 138

angle, 146

closed, 145

exact, 142
potential, 142

pull back, 151, 153
work, 140

differentiation
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— of composition, 21 — homotopy, 155

— of matrix-valued maps, 22 — Huygens, 284

Dirichlet’s integral, 59 — integration by parts, 130

divergence, 19, 130 — Laplace, 231

— geometrical meaning, 130 — Poisson, 226

— on a submanifold, 296 — reduction to iterated integrals, 76

domain, 168 —— Tonelli, 77

— elementary, 169 — Schwarz, 226

— regular, 168 — Serret—Frenet, 285, 287
— Stokes, 154

eigenvalues, 271 — Taylor, 34, 61

equation —— integral remainder, 36

— bifurcation, 276
— Cauchy—Riemann, 162

—— Lagrange’s remainder, 35
—— Peano’s remainder, 35

Gauss—Green, 128, 154
Guldin, 102

— Euler, 45 Fourier series, 194
— heat, 45 function
— Laplace, 42 — absolutely continuous, 81
— Liouville, 312 — Airy, 132
— Navier—Stokes, 46 — analytic, 36
— Schrodinger’s, 45 — Banach’s indicatrix, 118
— wave, 44 — characteristic, 71
example — differentiable, 3, 14
— Peano, 63 — differential, 3
— Schwarz, 116 — distance, 301
exponential — Euler’s I', 106, 113
— complex, 54 — Euler’s Beta, 107
— of a matrix, 65 — exponential, 54
extremal — Fréchet-differentiable, 58
— point — Gateaux-differentiable, 11, 58
—— constrained, 268 — harmonic, 42

—— maximum principle, 43
first variation — holomorphic, 159
— of area, 299 —— Cauchy’s estimates, 175
— of the length, 283 —— identity principle, 176
flux, 130 —— power series development, 172
— line, 131 — homogeneous, 64
foliation, 121, 253 — integrable, 72
formula — Lebesgue
— Abel, 312 —— point, 80
— area, 117, 119 —— representative, 80
— Cauchy, 171, 179 —— value, 80
— Cauchy-Binet, 119 — Lipschitz, 30
— Cavalieri, 68, 74 — locally invertible, 48
— change of variables, 78, 118 — locally summable, 92
— coarea, 121 — measurable, 70
— Duhamel, 321 — multiplicity, 118
— Euler, 64, 65, 181 — of class C?, 25
—— for sin z, 208 — of class C1, 25
—— for cotangent, 207, 208 — of class C1(A), 25
— Euler’s integral, 202 — of class C2, 27
— Feynman, 134 — of class C°°, 28
— first variation — of class C*, 26, 28, 61
—— of area, 299 — repartition, 74
—— of the length, 283 — simple, 71
— Fresnel’s integrals, 202 — subharmonic, 43
— Gauss for curvature, 294 — summable, 72

— superharmonic, 43
functional dependence, 280
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Gauss’s sums, 204
generating function, 209
gradient, 5, 59
— deformation, 146
— flow, 267
—— trajectory, 267
— in coordinates, 6
— rotational, 146
graph 9
area, 120
— normal space, 17
— normal vector, 10
— of tangent map, 10
— over a set, 276
— tangent plane, 9, 10, 16
— tangent space, 16
— with respect to a given subspace, 244

harmonic function

— Dirichlet’s problem, 225
— maximum principle, 219
Hausdorff

— dimension, 115

— measure, 114

Hessian matrix, 26
holomorphic differential, 176
holomorphic function

— automorphisms

—— of C, 223

—— of C\ {0}, 223

—— of the disk, 223

— exponential, 180

— hyperbolic, 181

— local inverse, 182

— local invertibility, 182

— logarithm, 183

— maximum principle, 219
— mean property, 219

— real powers, 185

— representation formula for the inverse,

234
— residues calculus, 196
— Schwarz’s reflection principle, 234
— singularity
—— essential, 190
—— pole, 189
—— residue, 195
— trigonometric, 181
holomorphic primitive, 164

immersion, 241
inequality

— between means, 273
— Chebyshev, 74

— Hadamard, 273

— isodiametric, 105
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isoperimetric, 275
Jordan, 201
Markov, 74
Young, 272

integral

absolute continuity, 86

as the “size” of the subgraph of f, 74
Cauchy’s principal, 228

formula

— change of variables, 78

— reduction to iterated integrals, 76
Fourier type, 200

Fresnel, 202

improper, 199

Lebesgue’s, 71, 72

Mellin type, 203

of a differential form, 140

— of simple functions, 71

integration by parts, 130

Jacobian, 16

determinant, 16
matrix, 8, 15

Lagrange multipliers, 269
Laplacian, 42

Laurent series, 192

law

Newton’s gravitational, 42

lemma

Fatou, 83, 84

Goursat, 167, 175
Hadamard, 36

Hadamard’s three circles, 235
Morse, 266

Poincaré, 147

Sard, 264

Schwarz, 221, 234

level set, 253

linear programming, 271

Lissajous figures, 336

local inverse, 234
Lyapunov—Schmidt procedure, 277

map

affine, 19
diffeomorphism, 237
tangent, 3, 10, 14

matrix

fundamental, 311
Hessian, 26
Jacobian, 8, 15
transition, 311

mean property

for holomorphic functions, 219

measure

countable additivity, 69
external, 68
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— Hausdorff, 114

— Lebesgue, 69

— monotone convergence, 69

— of the n-dimensional ball

—— in the p-metric, 108

—— in the Euclidean metric, 104, 123
— outer, 68

method

— gradient, 268

— of steepest descent, 268

— Steiner’s symmetrization, 105
mollifiers, 91

mollifying kernel, 91
multiindex, 34

— factorial, 34

— length, 34

— power, 34

Newton’s gravitational law, 42
normal plane, 10

numbers

— Bernoulli, 191

— Fibonacci, 212

ODE

— O dependence on data, 262

— o-limit, 329

— w-limit, 329

— Abel’s formula, 312

— critical point, 322

—— asymptotically stable, 324

center, 323

—— degenerate, 323

—— degenerate nodal, 323

—— focus, 323

—— nodal, 323

—— saddle, 323

—— stable, 323, 324

—— unstable, 323, 324

— Duhamel’s formula, 321

— fundamental matrix, 311

— fundamental system, 310

— invariant set, 329

— Liouville’s equation, 312

— orbits on the torus, 335

— rotation number, 334

— solution

—— linear Cauchy problem, 312

—— linear higher order equations, 319

—— nonhomogeneous Cauchy problem,
314

— theorem

—— linearization, 325

—— Lyapunov, 326

—— Poincaré—Bendixson, 331

— transition matrix, 311

— Wronskian, 319

operator

— curl, 19

— divergence, 19, 296

— Fredholm, 279

— Laplace, 42

—— in polar coordinates, 42
—— in spherical coordinates, 42
— Laplace—Beltrami, 300
regularizing, 92

orthogonal projection, 270

point

— absolute minimum, 38
critical, 38

—— constrained, 269

— Lebesgue, 80

— local maximum, 38

— maximum, 38

— minimum, 38

— regular, 126

— saddle, 39

principle

— identity, 176

— maximum

—— for holomorphic functions, 219
— Schwarz’s reflection, 234
— unique continuation, 176
problem

— Cauchy

—— (Cl-dependence on data, 262
— Dirichlet

—— uniqueness, 43

residue, 195

rotor, 146, 158

rule

— Lagrange multiplier, 269

o-additivity, 69
o-algebra, 69

series

— Fourier, 194

— Laurent, 192

— Mittag-Leffler, 206
— Taylor’s series, 37
set

— admissible, 127

— diffeomorphic, 237
— invariant, 329

— Lebesgue measurable, 69
— measurable, 69

— normal, 97

— rotational solid, 99
— simply connected, 150
— star-shaped, 147
sets

— diffeomorphic, 237
singularity

— at infinity, 191



Laurent series development, 193

Steiner’s symmetrization method, 105
submanifold, 241

area, 289

curvature vector in a direction, 291
dimension, 241

divergence, 296

embedded, 241

first fundamental form, 289
harmonic functions, 300

immersed, 241, 244

intersection, 258

Laplace—Beltrami operator, 300
mean curvature vector, 292

metric tensor, 289

minimal surface, 300

of codimension one

— Gauss’s formula for curvature, 294
— principal curvatures, 294

— principal directions of curvature, 294

— scalar curvature in a direction, 293
— scalar mean curvature, 293

second fundamental form, 290
tangential gradient, 296

variation of the normal plane, 291

submersion, 257
surface

area, 119

immersed, 18

metric tensor, 289

minimal, 300

regular parameterization, 244
submanifold, 241

tangent cone, 240

tangent space, 239

tangent plane, 9, 10
Taylor’s polynomial, 35
tensor

metric, 9

theorem

absolute continuity of the integral, 86
argument principle, 217

Banach’s fixed point, 47

Beppo Levi, 73, 82
Casorati—Weierstrass, 191
characterization of exact forms, 143
differentiation

— Lebesgue, 79

— under the integral sign, 86, 88
divergence, 130, 298

Euler, 65

Fermat, 2

Fubini, 76

fundamental of algebra, 175
fundamental of calculus, 81, 143, 164
fundamental of the local theory of
curves, 285, 288
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— Gauss—Green, 154

— global invertibility, 57

— Goursat, 175

— homotopy invariance, 177

— Hurwitz, 220

— identity principle, 176

— implicit function, 248, 249, 253, 257,
264, 276

— integration of series, 85

— inverse function, 49

— Jensen, 218

— Lagrange multiplier rule, 269

— Lebesgue, 85

—— differentiation, 79

—— dominated convergence, 84

— linearization, 325

— Liouville, 175

— local invertibility, 62, 243, 264

— locally constant rank, 280

— Lusin, 70, 90

— Lyapunov, 326

— Marcinkiewicz—Zygmund, 37

— mean continuity, 91

— mean value, 29, 31, 60

— Mittag-Lefller, 206

— monotone convergence, 73

— Montel, 220

— Morera, 175, 179, 220

— open mapping, 221

— Picard, 191

— Poincaré—Bendixson, 331

— Rademacher, 81

— rectifiability of vector fields, 263

— residue, 195

— Riemann mapping, 223

— Riemann’s extension, 188

— Rouché, 218

— Sard, 264

— Schwarz, 27, 61

— Stokes, 154

— submersion, 257

— Taylor’s formula, 33

— Tonelli, 77

— total convergence, 82

— total derivative, 24

— unique continuation, 176

Vitali, 220

— differentiability of absolutely
continuous functions, 81

—— differentiability of monotone

functions, 81

— Weierstrass, 220

— Whitney, 26

transformation

— inversion in a sphere, 54

— Mobbius, 222

vector field, 19, 138, 262
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— conservative, 142
— critical point, 263
— curl, 146

— equivalence, 263
— flow, 262

— flux, 130

— irrotational, 20, 145
— of forces, 138

— point

—— equilibrium, 263
—— singular, 263
—— stagnation, 263
— potential, 142

— pull back, 152

— radial, 142

— solenoidal, 20

— work, 140

vector product, 158

weak estimate, 74
winding number, 178
‘Wronskian, 319
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