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László Márkus, N. Miklós Arató, and Vilmos Prokaj . . . . . . . . . . . . . . . . . . . . . 219
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
20.2 Data description, model building, and a tool for fit diagnosis . . . . . . . . . 220
20.3 Model estimation, implementation of the MCMC algorithm . . . . . . . . . . 223
20.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Part VI Neural Networks and Self-Organizing Maps

21 The FCN Framework: Development and Applications
Yiannis S. Boutalis, Theodoros L. Kottas, and Manolis A. Christodoulou . . . 231
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
21.2 Fuzzy cognitive maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

21.2.1 Fuzzy cognitive map representation . . . . . . . . . . . . . . . . . . . . . . . . . 234
21.3 Existence and uniqueness of solutions in fuzzy cognitive maps . . . . . . . . 236

21.3.1 The contraction mapping principle . . . . . . . . . . . . . . . . . . . . . . . . . . 236
21.3.2 Exploring the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
21.3.3 FCM with input nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

21.4 The fuzzy cognitive network approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
21.4.1 Close interaction with the real system . . . . . . . . . . . . . . . . . . . . . . . 244
21.4.2 Weight updating procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
21.4.3 Storing knowledge from previous operating conditions . . . . . . . . . 245

21.5 Controlling a wastewater anaerobic digestion unit (Kottas et al., 2006) 248
21.5.1 Control of the process using the FCN . . . . . . . . . . . . . . . . . . . . . . . 250
21.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
21.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

21.6 The FCN approach in tracking the maximum power point in PV arrays
(Kottas et al., 2007b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
21.6.1 Simulation of the PV system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
21.6.2 Control of the PV system using FCN. . . . . . . . . . . . . . . . . . . . . . . . 259
21.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

21.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

22 On the Use of Self-Organising Maps to Analyse Spectral Data
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de Caen Basse-Normandie, Caen, France

Márkus, L.
Department of Probability Theory and
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et Moléculaire, INSERM UMR-S726/
Université Denis Diderot Paris 7, Paris
F-75005, France
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Université Lyon 1; IFR 128; CNRS, UMR
5086; IBCP, Institut de Biologie et Chime
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Assessing the Stability of Supplementary Elements
on Principal Axes Maps Through Bootstrap
Resampling. Contribution to Interpretation in
Textual Analysis
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Abstract: Bootstrap resampling is commonly used to assess the stability of the con-
figurations issued from principal axes methods. In the case of textual analysis, the
interpretation is usually supported by the characteristics of the individuals, used as
supplementary variables. To assess the stability of these variables gives information
about the global structure stability.

An example issued from a wine guide illustrates the interest of computing confi-
dence regions for supplementary categorical or quantitative variables in correspondence
analysis applied to lexical tables.

Keywords and phrases: Correspondence analysis, bootstrap, textual analysis,
free-text comments

1.1 Introduction

Bootstrap resampling has shown its potentiality to assess the stability of the configu-
rations issued from principal axes methods. It allows for computing confidence regions
for the elements represented on the principal subspaces (Efron and Tibshirani, 1993;
Lebart et al., 2006). In many cases, the supplementary rows and/or columns provide
essential information to interpret the results. In textual studies, when correspondence
analysis (CA) is performed on a lexical table crossing individuals and words, the in-
terpretation is usually supported by the characteristics of the individuals, used as sup-
plementary variables. To assess the stability of these variables gives information about
global structure stability.

Section 1.2 presents the data. Section 1.3 reviews the principles of bootstrap, and
Section 1.4 offers some results obtained in the example data. Finally, Section 1.5 con-
cludes with some remarks.
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1.2 Data

Wine tasting is becoming an increasing domain for textual data analysis. The wine
guide El Mundo (El Mundo, 2005) has analysed 522 wines from ‘Castile and Leon’.
This region (94.273 km2) is located in the northwest of Spain and comprises five AOC
designations (Bierzo, Cigales, Ribera del Duero, Rueda, and Toro).

Here, we only focus on the 364 red wines. Every wine is described by free-text
tasting notes and complementary information such as score (between 70 and 97), price,
type of grape, vintage, etc. (ten Kleij and Musters, 2003) (Table 1.1).

Table 1.1. Free-text tasting notes example

— Wine 30 Tares P3-2001 premium. Score = 91.
A lot of ‘terroir’ stands out in this great red wine bouquet; hint of minerals, silex, slate,
warm roasted character with a contrast of damp soil and much ripe fruit, concentrated, fatty
finish on the palate, impressive viscosity on the tongue, again, flavours of damp soil and
minerals in the lengthy end.

A lemmatization step has been carried out (Labbé, 1990; Muller, 1977–1992). Then
the nouns, adjectives, verbs, and adverbs have been selected and, among these cate-
gories, only the words used at least eight times in the whole of the tasting notes are kept.
Thus, the resulting lexical table crosses 364 wines (rows) and 222 words (columns).

1.3 Methodology

To assess the stability of the configurations issued from CA, partial or total bootstrap
can be considered. In the former case, the principal subspace issued from the analysis
performed on the original table is considered as a reference space and the rows or
columns of the replicated tables are considered as supplementary elements. In the
latter case, a new analysis is performed on every replicated table and the resulting
configurations are compared (Lebart, 2004). In this work, we only focus on partial
bootstrap.

In the following, we use the terms of the example. Thus, the statistical units
(rows) refer to the wines, the active columns represent the words, and the supple-
mentary columns correspond to the characteristics of the individuals (quantitative or
categorical).

One basic principle of bootstrap consists in reproducing the process that is used to
extract the random sample from the population, but using the distribution of the
observed sample as an approximate distribution of the parent population (Lebart,
2006). In our case, the wine sample selection does not follow any random method, but
is explicitly chosen by the expert owing to its qualities. Thus, no actual sampling error
exists. Nevertheless, bootstrap resampling can be performed, by means of drawing with
replacement a sample of size 364 out of the initial wine sample. It allows for studying
the stability of the results facing perturbations in the wine choices by the expert.
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The replicated tables have the same columns (words) as the original table (although
the word frequencies can be different) and 364 bootstrapped rows. For a particular
replication, some wines may not appear whereas others may be present more than
once. This step is repeated B times (in our case B = 500); from every B bootstrap
sample, a replicated wines × words table is built up. At every stage, the margins can
differ from the original table margins. Nevertheless, as usual in CA, the latter are used
as reference to compute the coordinates of rows and columns of the replicated table,
considered as supplementary elements.

Depending on the replication, the coordinates of the wines remain constant, but
the coordinates of the columns vary. We can compute these coordinates for the active
and supplementary columns (frequency, quantitative or categorical) and the confidence
regions (Lebart, 2006; Beran and Srivastava, 1985).

1.4 Results

1.4.1 CA results

Table 1.2 shows the highest five eigenvalues as well as the proportion of total inertia
that they explain.

Table 1.2. Eigenvalues and proportion of inertia

Axes Eigenvalue Proportion of inertia Cumulative proportion

1 0.22929 0.02046 0.02046
2 0.19946 0.01780 0.03826
3 0.17162 0.01531 0.05357
4 0.17034 0.01520 0.06877
5 0.16495 0.01472 0.08349

As usual in a sparse table, the first eigenvalues of the CA express a very small part
of the total inertia (Lebart et al., 1998, pp. 120–126).

Despite the low percentage of inertia explained by the first axis (2.046%), the high
correlation between the initial score and the first axis of CA (0.70) shows that the main
dimension induced by the words expresses the score, at least for a large amount. Thus,
we interpret the first axis as a score level axis (Figure 1.1).

The wines with the highest scores have positive coordinates while the wines with
lowest scores have negative coordinates. On Figure 1.1, the wines located on the right
have a higher score than 88 whereas the wines located on the left of the vertical show
a lower score than 82.

Furthermore, to make the relationship precise between the first axis (and eventually,
the second axis) the values of the score are grouped into six categories (or score levels)
and projected onto the first principal plane (Figure 1.2). Except for the lower score
level (level 1), the categories follow the natural order along the first axis.

The information given by the relationship between the score and the first axis allows
for disclosing the meaning of the words in the context of a wine guide. For example,
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Figure 1.1. First principal plane. Excerpt of the wines

concerning the words related to hedonic features, the first axis contrasts words such
as impressive, fatty, nutty, gun powder, and modern on the right, with amiable, easy,
traditional, consistency, and young on the left (Figure 1.3). The latter words, albeit
positive in current language, present here a negative reading. We are able to assert this
remark thanks to the relationship between the score and the first axis.

1.4.2 Stability

As the interpretation mainly relies on the supplementary columns, we have to combine
the study of the stability of the words and the supplementary variables by means
of the bootstrap procedure. Here, we favor the latter. To address this problem, 500
bootstrap resamplings on the 364 wines have been performed. For each replicated
table, the coordinates of each score category are computed using the CA transition
formula.
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Figure 1.2. First principal plane. Score levels projected as supplementary categories

Table 1.3 shows the means and the standard deviations of the score levels. A high
value of the standard deviation of the coordinates of the lower category is observed
(only five wines with the lowest scores)

Figure 1.4 shows the confidence regions of every score level. The highest score levels
(6:score ≥ 89, and 5:score 86–88) present confidence regions that do not overlap with the
others. On the contrary, the confidence region, as well as the high standard deviation
of the lower score level on the first principal plane, shows that the first category does
not hold any relationship with the first two axes.

Referring to the score as a quantitative variable, Table 1.4 shows that its correlation
with the first original axis varies between 0.63 and 0.78 among the replicated tables,
presenting a low deviation standard. The interpretation of the first axis as a score level
axis is stable (Figure 1.5).
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Figure 1.3. First principal plane. Excerpt of the words

Table 1.3. Mean and standard deviation of bootstrap coordinates of the score levels

Score Count Original Mean of Standard Original Mean of Standard
levels coordinates coordinates deviation coordinates coordinates deviation

Axis 1 Axis 1 Axis 1 Axis 2 Axis 2 Axis 2

1 5 0.4976 0.5108 0.24806 −0.3900 −0.3909 0.16586
2 77 0.5395 0.5401 0.04206 0.0290 0.0261 0.06591
3 61 0.2702 0.2719 0.04626 0.0214 0.0181 0.04568
4 57 0.1330 0.1339 0.04863 0.0928 0.0948 0.05581
5 85 −0.1358 −0.1373 0.03733 0.0367 0.0402 0.04920
6 79 −0.4252 −0.4272 0.03292 −0.1019 −0.1008 0.05093
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Figure 1.4. Bootstrapped regions of score levels

Table 1.4. Descriptive values of bootstrapped correlations between the score and the first
principal coordinate vector

Original Minimum Maximum Mean Standard
correlation bootstrap bootstrap bootstrap deviation

correlation correlation correlation correlation

Correlation F1-Score 0.7013 0.6271 0.7760 0.7027 0.0230
Correlation F2-Score −0.0596 −0.2623 0.1308 −0.0566 0.0632

1.5 Conclusion

Using the external variable ‘score’ as a supplementary variable, the bootstrap resam-
pling proves the stability of the relationship between the first principal coordinate
vector and the wine score. The latter has been considered as a quantitative variable
but also as a categorical variable, through grouping the values into categories.

The analysis of a lexical table through CA benefits from the validation of the
structure by using the bootstrap procedure on both active and supplementary columns.

Software note
Bootstrap simulations as well as statistical computations have been carried out by
means of specific software developed by the authors called SIMTEXT. This software
run under Windows and can be downloaded free from:

http://www3.unileon.es/personal/wwdderae/simtext/publish.htm
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Figure 1.5. Replicated correlations between the score and the first principal coordinate vector
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Abstract: This chapter aims to show how external information contributes in analysing
a lexical table by enriching the readability of factorial maps. The theoretical frame is
given by principal component analysis onto a reference subspace, a method based on
the orthogonal projection of a correlation structure on the space spanned by an ex-
ternal set of explanatory variables. In previous papers the idea of a projected lexical
analysis has been introduced by using a single reference space for terms. Here we con-
sider a double projection strategy by involving external informative structures both on
documents and terms, i.e., on rows and columns of a lexical table.

Keywords and phrases: External information, orthogonal projectors, factorial maps

2.1 Introduction

The necessity of introducing additional information in exploring multivariate struc-
tures, by means of Principal Component Analysis (PCA) and related techniques, has
been a recurring topic in the literature since C. R. Rao introduced a set of q instru-
mental (explanatory) numerical variables in PCA (Rao, 1964).

In textual data analysis this state is particularly pressing, due to the nature of the
data. A preprocessing step is always necessary in analysing a document collection from
a statistical standpoint. This process often allows one to reduce the linguistic variability
in the data, considered in terms of noise for analysis purposes, but on the other hand
it leads to a loss of information for comprehension of the phenomenon.

We often have information dealing with the document categorisation process and
the context in which terms have been used. This external information (also known as
metadata) can be used both in an informal way to aid subjective interpretations of the
results and in a formal way by incorporating it in the data.

It is possible to consider two different kinds of information in a textual analysis:

• Intratextual information, usually quantitative and corpus-driven, that takes into
account the relationships between terms and documents

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 13
and Technology, DOI 10.1007/978-0-8176-4799-5 2,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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• Extratextual information, usually qualitative, involving all those aspects strictly
linked to the context in which the documents are produced not directly readable
from the dataset

The introduction of additional information both on individuals and variables, by
considering two external informative matrices, was proposed by Takane and Shibayama
(1991) combining features of regression analysis and PCA. The method was devel-
oped afterwards by Takane in the so-called Constrained Principal Component Analysis
(CPCA) (Takane, 1997).

Sharing the data structure and having in mind CPCA properties and metrics
considerations, in the following we choose as our methodological starting point an-
other method, i.e., Principal Component Analysis onto a Reference Subspace (PCAR)
(D’Ambra and Lauro, 1982), in order to emphasise the geometrical approach in terms
of orthogonal projectors. After reviewing the main issues on the topic, in the following
we propose a double projection strategy, simultaneously using orthogonal projectors
on the spaces spanned by the additional variables related to documents and to terms.

The effectiveness of the proposed strategy is shown by analysing the educational
offerings of the Italian University.

2.2 Some methodological recall

In geometry an orthogonal projection of a k-dimensional object onto a d-dimensional
subspace spanned by the d columns linearly independent of a matrix P(n,d), is obtained
by considering a projection operator P(P′P)−1P′, symmetric and idempotent. From
a statistical viewpoint projecting a data structure onto a reference subspace means to
analyse the relations between the rows and the columns in the frame of the information
listed in P.

2.2.1 Constrained principal component analysis

CPCA data structure is given by an individual-by-variable matrix Z, and two external
information matrices, G (on individuals) and H (on variables). According to Takane a
wide variety of multivariate statistical analyses different from PCA are considered as
interesting special cases of CPCA, including, e.g., correspondence analysis.

It has been thought of as a comprehensive method. For that reason there are no
prescriptions in terms of distributional assumptions, preprocessing, or metric choices.
The individual empirical interests suggest the proper behaviour to researchers. CPCA
consists in two main analytical steps. In the first one, the so-called external analysis, Z is
orthogonally projected onto the spaces spanned by G and H, in order to decompose the
influence of the “external” variables into the sum of four terms: the first one pertains
to what can be jointly explained by G and H, the second one and the third one,
respectively, pertain to what can be explained by G and H, while the fourth one is a
matrix of residuals. This solution is achieved in a least square estimation framework by
minimising the residual matrix. In the second step the internal analysis is performed
on the decomposition matrices by means of one or more PCA.



2 Doubly Projected Analysis 15

2.2.2 Principal component analysis onto a reference subspace

PCAR data structure is given by two individuals-by-variables matrices Z and X. PCAR
aims at visualising, in a proper geometrical framework, the dependence of Z on X.

Namely PCAR looks for the principal components of the orthogonal projection of Z
on the space spanned by the columns of X. It can be seen as a special case of a CPCA
internal analysis, when only the first term of the decomposition is considered and we
want to introduce external information only on variables. Moreover the variables in
Z are centered and frequently standardised. In this sense it is a proper PCA. The
advantages of PCAR are strictly connected to graphical aspects and interpretation. In
fact factorial maps show both the correlations within the same set of variables and the
correlations between the two sets.

2.3 Basic concepts and data structure

External information on both documents and terms can help in explaining the use of
some keywords under defined conditions. We can focus our attention on the residual uses
in order to enhance peculiarity in the terms used in single documents, not connected
to the main interpretation keys.

Suppose we are considering two indicator matrices I (n,I) and J (n,J), representing
two categorical variables observed on the same set of individuals. Let N (I,J) be the
contingency table cross-classifying the variables in I and J . In the frame of a textual
statistics viewpoint N = I′J is a lexical table having I documents in rows and J terms
in columns. Correspondence Analysis (CA) is usually performed on this table (Lebart
et al., 1997) in order to analyse and graphically represent the latent lexical relationships
between documents and terms.

Frequently in analysing document collections we dispose of additional information
concerning a possible categorisation scheme for documents and about the context in
which terms are used. Let us consider therefore an indicator matrix Y (I,K), assigning
each document to a category k (k = 1, . . . , K). It is possible to perform a CA on the
so-called aggregated lexical table T (K,J) obtained as the dot product of Y and N, in
order better to read the relationships between groups of similar documents and the
terms.

In previous papers, e.g., Balbi and Giordano (2000) and Balbi et al. (2002),
the introduction of external information on documents and terms has already been
performed for emphasising the different role played in the analysis. Here we focus
mainly on an internal analysis in the sense of CPCA, stressing the geometrical fea-
tures proper of PCAR. In other terms, by means of orthogonal projections we want
to visualise on factorial maps the association structure in N due to the external
information.

Additionally to the introduced matrices Y (containing information on documents)
and N (the lexical table), let us consider a matrix X (J,L) containing information on
the vocabulary of the corpus we want to analyse. By using the residual part a context-
independent representation is obtained. In Figure 2.1 the complete data structure is
shown.
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Figure 2.1. Data structure

2.4 A doubly projected analysis

Let PY = Y(Y′Y)−1Y′ and PX = X(X′X)−1X′, the orthogonal projectors considered
both in CPCA and in PCAR. Our proposal consists in analysing the residual matrix
A = (Iy − PY)′N(Ix − PX).

If we consider the matrices I′ and J cross-tabulated in N it could be possible to split
the matrix A in a first term (X′X)−1X′I′ and in a second one given by JY(Y′Y)−1, the
profile matrices containing the conditional distribution of I on X and the conditional
distribution of J on Y , respectively. Those two matrices are the basic matrices of
PCAR or more properly in its version developed for categorical variables, known as
NonSymmetrical Correspondence Analysis (NSCA) (Lauro and D’Ambra, 1984).

In other terms, we jointly study the residual part of dependence of the terms’
distribution, with respect to the external information in Y, and the residual part of
dependence of the documents’ distribution, with respect to the external information
in X. Dealing with elementary elements (i.e., each single occurrence in the corpus) it
is worth noting that the dimensions of the two matrices are very huge, therefore this
approach is infeasible in practice but would be useful in understanding results. In a
similar way we can decide to carry out our analysis on any of the matrices considered
by Takane for internal analysis.

The reference to PCAR is very useful in graphically visualising the results, because
it makes it possible to represent on the factorial maps all the elements taken into
account, the association structure in N together with the distribution of the terms
conditioned to the information on Y and the distribution of documents conditioned to
the information on X.

2.5 The Italian academic programs: A study on skills and
competences supply

In the frame of the European Union harmonisation policies the Italian university system
has been reformed in 2000/2001 by introducing a new academic organisation. Two
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different kinds of degree have been introduced, a first-level three-year course (Laurea
Triennale) followed by a specialising two-year course (Laurea Specialistica). All the
courses are classified in 47 and 109 categories, respectively, divided among four general
areas (humanities, social, scientific, and medical issues). The Ministry for Research
and University has prepared for each course an explanatory declaration with the main
contents and matters, used as a model by the University for planning their specific
academic programs.

According to a request of the National Board for University System Evalua-
tion, an official advisory body named by the ministry, the entire collection of aca-
demic programs has been analysed for investigating the correspondence between
the competences and the skills supplied in the different courses and the employing
outlets.

In this work we focus on the first-level academic programs. We have extracted 2812
declarations involving the different courses and in particular the fragments related to
the competences offered have been selected. In this way the corpus of interest contains
about 800,000 occurrences with a 17,200-term vocabulary. The lexical richness is not
very wide, because in many cases the universities have decided to follow exactly the
original declarations in drawing up the course programs.

The external information we introduce is the 47 ministerial course classes for the
declarations (documents) and an eight-class competences categorisation obtained by
previous analyses (terms).

Results of the PCA are strictly dependent on the choices of preprocessing proce-
dures (centering, standardising, etc.) on the metrics used for computing distances and
on the weighting systems. In this case we want to read the nontrivial uses of terms for
describing competences in a context-independent framework, so that in the decomposi-
tion we assume an Euclidean metric and unitary weights. By introducing in the factorial
coordinates a weighted Euclidean metric it is possible to recover the comparability in
a common scale.

In Figure 2.2 we try to examine the peculiarities in the single courses’ descrip-
tions, independent of both the kind of competences offered and on the courses’ na-
ture. It is interesting to note how the first factorial axis (≈11%) opposes general and
abstract nouns (attività, competenze, formazione) on the right side, to terms describ-
ing more practical activities (predisposizione di progetti, ambiti differenziati, azioni
di pianificazione, uso di tecnologie). This can be seen as a proper characterisation of
the different university programs, in terms of a teaching frame oriented to “techni-
cal knowhow” or to a “way of thinking”, which is a much-discussed topic in Italy. A
deeper insight on this question is given by the second axis (≈7%), where we can see
an opposition, from the top to the bottom, between basic and professional/technical
competences.

The interpretation of this map is coherent with the European debate about the new
role of the university, in which it is necessary to include in the academic programs not
only theoretic knowledge (to know) but more and more technical skills (to know how).
It can be possible to perform the same analysis also on the specialising courses and to
compare the two configurations of points in order to evaluate the internal coherence
of the formative projects offered by the universities in terms of general and specific
competences.
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Figure 2.2. Factorial representation on the first two axes (≈18% of explained inertia)
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Abstract: Results obtained from surveys are often a mixture of quantitative, ca-
tegorical, and textual data that leads to a mixed multiple table. Multiple factor analysis,
extended to consider textual variables, can be applied to this kind of table. When sur-
vey questionnaires are filled in two (or more) languages, an additional difficulty arises.
The aim of this work is to adapt the extended multiple factor analysis to these mul-
tilingual data. The methodology is applied to the analysis of a survey including both
closed and open-ended questions in two languages, Basque and Spanish.

Keywords and phrases: Open-ended questions, free answers, multilingual texts,
multiple mixed tables, multiple factor analysis, clustering

3.1 Introduction

Survey questionnaires frequently include both closed and open-ended questions about
the same topic. The closed questions lead to quantitative or categorical individuals ×
variables tables and the open-ended questions to individuals × words frequency tables,
also called lexical tables. To simultaneously take into account the closed and open-ended
questions as active questions in a principal axes method, Bécue and Pagès (2008) have
proposed an extension of multiple factor analysis. When different languages are used
in the free answers a new problem arises which is the target of this work. Section 3.2
presents the application data and objectives. Section 3.3 sets out the notation and
Section 3.4 our methodological proposal. Section 3.5 offers some of the results obtained
in the application. As a conclusion (Section 3.6), we point out some perspectives.

3.2 Data and objectives

The data are extracted from a survey carried out at the University of the Basque Coun-
try (UPV/EHU) to know its members’ perceptions about the institution better. Thus,
the success of a shop selling objects exhibiting the university logo could be forecast.

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 21
and Technology, DOI 10.1007/978-0-8176-4799-5 3,
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The Basque Country is a cultural area in southwestern Europe with an extension
of 20,864 km2 and 2.9 million inhabitants, divided between France and Spain. The
UPV/EHU answers the demand for higher education in the Autonomous Community
of the Basque Country. This political entity has an extension of 7542 km2 and 2.1
million inhabitants and is divided into three provinces (Bizkaia, Gipuzkoa, and Araba;
see Figure 3.1), each with its own campus. About 30% of the inhabitants are speakers
of Basque, a non-Indoeuropean agglutinative language. Spanish, Romanic languages,
and Basque show very different structures.

Figure 3.1. The Basque Country (grey) and the Autonomous Community of the Basque
Country (striped)

The survey was performed during one month in 2005 on a sample of university mem-
bers. The sample has been extracted by using a proportional stratified method, consid-
ering three strata (teaching and research staff, administrative staff, and students). The
questionnaire was available at an Internet website, only accessible by e-mail invitation.
The response rate has been, respectively, 50.3%, 40.0%, and 23.9% in the three strata,
producing 1742 effective answers.

The questionnaire was mostly composed of closed multiple choice questions con-
cerning:

• Different aspects of the institution
• The interest about buying 26 corporate products
• Classical demographic aspects

This questionnaire also included two open-ended questions. Only the second, the
propensity to buy corporate products with the university logo, has been included in
this analysis. Respondents answered either in Basque or in Spanish at their own conve-
nience. Table 3.1 presents the questions used in this work. Only the respondents having
answered the open-ended question are kept: 304 Basque-speaking and 1243 Spanish-
speaking.

The main objective is to identify the different patterns with respect to the university
corporate products. We propose to determine these patterns by building homogeneous
clusters of individuals:
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• In such a way that the closed and the open-ended questions relative to this topic
are both taken into account

• But providing that the process resolves the different language problem in an auto-
matic and transparent way

Table 3.1. Questions, possible answers, and type of variables

Question Possible answer Type

1 = completely unsatisfied, rather
I am satisfied about being unsatisfied or neither safisfied or categorical,
a member of this university unsatisfied active

2 = rather satisfied
3 = very satisfied

Would you be interested in 1 = yes categorical,
buying a product featuring 2 = no active
the university logo?
−→ Could you state why? (open answer) text, active
Gender male, female cat., sup.
Age 1=17–22,2=23–29,3=30–44,4=+44 cat., sup.

Campus Araba, Bizkaia, Gipuzkoa cat., sup.

Link Student, Admin., Teach.-Research cat., sup.

3.3 Notation

The closed categorical questions lead to an Individuals × Indicator Variables table. For
every language, a lexical table, that is, an Individuals × Words table is built up by
counting up the occurrences of every word in every answer. Both lexical tables have
as many rows as the total amount of individuals but the cells corresponding to the
respondents who did not use the corresponding language are filled with zeroes.

There are I1 Basque-speaking and I2 Spanish speaking; I1 + I2 = I. There are
three subtables corresponding to, respectively, the categorical set (j = 1;K1 indicator-
columns) and to the two lexical tables (Basque words, j = 2,K2 word-columns; Spanish
words, j = 3,K3 word-columns). Figure 3.2 shows the structure of the resulting multiple
mixed table.

Categorical Open-ended Open-ended
variables question in Basque question in Spanish

Indicator Vars. Word frequency Word frequency

Individuals fik2 0
zik1

0 fik3

K1 cat.-columns K2 word-columns K3 word-columns

Figure 3.2. Multiple table resulting from juxtaposing the indicator and the lexical tables
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In the case of the individuals × indicator variables table, zik1 indicates if respondent
i (i = 1, . . . , I) presents (zik1 = 1) or not (zik1 = 0) the k column-indicator, k =
1, . . . ,K1. In the case of the lexical tables fikj indicates the frequency with which
individual i (i = 1, . . . , I), answering in Basque (j = 2) or Spanish (j = 3) uses the
column-word k, k = 1, . . . ,Kj in his or her answer. This frequency is relative to the
corresponding table grand total. Thus,

∑
i∈I

∑
k∈K1

fikj = 1; j = 2, 3.

We also consider the row-margins of every separate lexical table:

fi.2 =
K2∑
k=1

fik2 fi.3 =
K3∑
k=1

fik3.

We note that the global row-margin of the juxtaposed table, fi.. =
∑3

j=2

∑Kj

k=1 fikj

is equal either to fi.2 (for i = 1, . . . , I1) or to fi.3 (for i = I1 + 1, . . . , I1 + I2).

3.4 Methodology

We want to identify the various patterns with respect to attitudes and opinions about
the university corporate products. Thus, we aim at clustering the individuals starting
with the answers given to the corresponding closed and open-ended questions. However,
a principal axes method is used as a preprocessing step and clustering starts from the
first principal coordinate vectors (Lebart, 1994; Lebart et al., 2006, pp. 295–311).

The principal axis method has to simultaneously include categorical and frequency
sets (one frequency table = one set). Extended MFA (Bécue and Pagès, 2008) allows
for this property while maintaining a MCA-like approach to the categorical sets as well
as a CA-like approach to the frequency sets and balancing the influence of the different
sets (Escofier and Pagès, 1998).

Clustering is performed over the principal axes, which are in fact quantitative vari-
ables, and then a suitable algorithm can be used. The elimination of the last axes, far
from being a drawback, acts as a filter for the random fluctuations that could mask
important features (Lebart, 1994; Lebart et al., 2006).

Hereafter, we comment on the main points of the extended multiple factor analysis.

3.4.1 Principle of multiple factor analysis

Multiple factor analysis (MFA), proposed by Escofier and Pagès (1998), deals with
mixed data while keeping a PCA-like and a MCA-like approach to, respectively, the
quantitative and the categorical sets. MFA balances the influence of the different sets
by dividing the weight of its columns by the first eigenvalue of its separate analysis.
Thus, the inertia of every set on the first principal axis is standardized to 1.
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3.4.2 Integrating categorical sets in MFA

To integrate categorical sets into MFA (Pagès, 2002), in particular when the individu-
als present nonuniform weights, the equivalence between MCA and a nonstandardized
weighted PCA is used (Bécue and Pagès, 2008). In that case the weight for the indi-
vidual i is denoted by pi. MCA can be performed as PCA:

• Applied to the table with the general term (zik1 − wk1)/wk1, where zik1 = 1 if i
belongs to the category k and 0 if it does not, and wk1 =

∑
i∈I pi · zik1 (

∑
k wk1 =

Q1) the number of categorical variables in set 1)
• Giving the weight wk1/Q1 to column j of the categorical set
• Giving the weight pi to row i

3.4.3 Integrating frequency tables in MFA

Abdessemed and Escofier (1996) have extended MFA to include one frequency table
(or several frequency tables but with the same margins). Bécue and Pagès (2008)
have generalized this extension to several frequency tables with different margins (one
frequency table = one set), keeping as far as possible the CA characteristics for these
tables.

Extended MFA relies on the equivalence between CA and a particular PCA (Escofier
and Pagès, 1998, pp. 95–96). As in classical MFA, the overweighting is obtained by
dividing the initial weight of the columns by the first eigenvalue issued from the CA
applied to the lexical table, always smaller than 1.

The proposal by Bécue and Pagès can be applied as shown in the presentation of
the global process hereinafter.

3.4.4 Extended MFA performed as a weighted PCA

The MFA applied to a table juxtaposing one categorical set (with K1 columns-
indicator) and the two lexical tables corresponding to the answers in the two lan-
guages (with, respectively, K2 and K3 columns-word) is equivalent to perform a non-
standardized weighted PCA on the multiple table presented in Figure 3.3, using:

Units Indicator variable k Word k in Word k in
(=category) Basque lexical table Spanish lexical table

in categorical set (set=2) (set=3)
(set=1)

1

i
zik1 − wk1

wk1

fik2 − fi.2f.k2/f..2

pif.k2
0

I1

I1 + 1

i
zik1 − wk1

wk1
0

fik3 − fi.3f.k3/f..3

pif.k3

I = I1 + I2

Figure 3.3. Mixed multiple table issued from the original table by convenient transformations
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• {pi i = 1, . . . , I} as row-unit weights (and as metric in the column space)
• The initial weights of the columns but divided by the first eigenvalues of the separate

analysis of every table as column weights (and as metric in the row space), that is,(
(wkj/Qj)/λ

j
1

)
in the case of a categorical set,

(
f.kj/λ

j
1

)
in the case of a frequency

set). λj
1 denotes the first eigenvalue issued from the separate PCA of subtable j

To choose the row weights pi, different criteria can be used. To adopt those im-
posed by CA (either {fi.2; i = 1, . . . , I1; fi.3; i = I1 + 1, . . . , I1 + I2} or {fi.2/2f..2, i =
1, . . . , I1; fi.3/2f..3, i = I1 + 1, . . . , I1 + I2}) favors the respondents with long answers,
generally with a richer vocabulary. Other options could be considered, such as uniform
weights, provided that the rows keep the same weight through all the tables. The for-
mer option is considered in the application, thus giving the same importance to every
sample.

MFA provides the classical results of any PCA, mainly the principal components
that can be viewed as good compromises between those obtained in the separate anal-
yses (CA for the frequency table and MCA for the categorical table).

3.5 Results

3.5.1 Clustering from closed questions only

First, we cluster the respondents from only their answers to the closed questions. We
follow the strategy “principal axes method-clustering step.”

A multiple correspondence analysis is performed on the categorical table. The first
principal axis opposes the respondents intending to buy corporate products and very
satisfied about their UPV membership to those with the opposite categories. Thus
we find a tight link between interest in buying these items and satisfaction about
the university, as previously shown in Fernández-Aguirre et al. (2008). This axis also
opposes, as supplementary categories, “over 44” and “administrative staff” to “23–29”
and “students”, showing that the interest is more intense in the former categories than
in the latter ones.

The two supplementary categories Basque-speaking (B) and Spanish-speaking (S)
lie close to the centroid. A classical test (Lebart, 1994) allows for assessing that the
coordinates are not significantly different from null value on the three first factor axes
(p-value < 0.05). To complete this test, we also assess the stability of these categories
on the first principal plane through partial bootstrap (Lebart, 2006). In this case, the
coordinates of the supplementary categories are computed from the replicated boot-
strap samples (1000 bootstrap replications in our case). Means and standard deviations
of these coordinates are shown in Table 3.2 and the 95% confidence ellipses of both
categories are displayed in Figure 3.4. Both Basque and Spanish-speaker centroids are
not significantly different from the global centroid and thus they have the same behav-
ior with respect to buying intention as well as satisfaction about the institution. Then,
clustering is performed starting from the three first factors (Lebart, 1994) leading to
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Table 3.2. Mean and standard deviations of bootstrap replicates of Basque and Spanish
respondents’ coordinates

Basque Spanish

Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

Original 0.0254 −0.0560 0.0049 −0.0257 0.0565 −0.0050
Mean −0.0216 −0.0036 0.0601 −0.0230 −0.0094 0.0629
Standard deviation 0.0869 0.0859 0.0877 0.0410 0.0442 0.0436
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Figure 3.4. Bootstrap of language categories projected on the main plane as supplementary
categories with 95% confidence ellipse: (A) projections of Basque replicates; (B) projections
of Spanish replicates

four clusters. The clustering method combines, first, a K-means algorithm followed
by a generalized Ward’s hierarchical method to reduce the number of clusters and,
finally, a consolidation of the partition by reassignment of the individuals to the closest
clusters.

For every cluster, the significantly over- and underrepresented categories (Lebart
et al., 1998) are selected and shown in Table 3.3.

3.5.2 Clustering from closed and open-ended questions

In order to cluster the individuals from closed and open-ended questions, we apply the
sequence “extended MFA-clustering” to the table presented in Figure 3.2.

Thus we consider three active sets: the categorical variables used in the former
section (set 1), the Basque lexical table (set 2), and the Spanish lexical table (set 3).
The variables listed in Table 3.1 form a supplementary set.
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Table 3.3. Clusters formed over main factors and their description

Cluster Size Active Cat./Grp. Cat./All Supplementary
no. (%) categories (%) (%) categories

1 27.29 Rather satisfied 99.63 42.36 Teaching-research,
Would buy 99.37 59.63 male

2 15.40 Rather satisfied 98.47 42.36 Gipuzkoa campus
Would not buy 99.28 39.35

3 33.63 Very satisfied 97.94 32.94 Female,
Would buy 72.07 59.63 age 30–44

4 23.67 Little or not satisfied 98.64 23.35 Students, age 23–29,
Would not buy 64.22 39.35 age 17–22

Language preprocessing

We have considered as equivalent the words with the same root (for instance, prefer
and preferred correspond to the same word prefer). We have decided to keep not only
the words but also the repeated segments (Lebart et al., 1998, pp. 35–38), and to use
the same frequency threshold for both lexical units, equal to 4 in the Basque corpus
and to 15 in the Spanish corpus. Thus we obtain, respectively, 223 and 247 total lexical
units in these corpora.

Extended MFA performed on the global table including the frequency
tables

We perform an extended MFA on the table shown in Figure 3.2. Partial first eigenvalues
are equal to, respectively, 0.6451 (closed questions), 0.1858 (Basque free answers), and
0.1937 (Spanish free answers). The largest influence, in terms of inertia, that could
have the closed questions set, is corrected by MFA overweighting.

The three sets contribute to the first global axis with, respectively, 53.4%, 24.3%,
and 22.3% of the total inertia. This dispersion direction is common to the three sets.
The global first eigenvalue (1.49), far from its maximum (equal to 3 in this case), has
a value similar to those that are usually observed in the case of mixed tables including
textual data (Bécue and Pagès, 2008).

The first set loses importance in the second global axis (the textual groups con-
tribute more to the inertia of this axis) but recovers importance on the third global
axis. The correlations between canonical variables and the global axes, on the one hand,
and the contributions of the partial axes to the global axes, corroborate this result.

Clustering is performed from the coordinates on the three principal axes of this
global analysis. Selecting a larger number of axes’ results would lead to a considerable
instability favoring one of the textual groups to the detriment of the other. By means
of a mixed cluster algorithm (similar to the one used above) we obtain a well-balanced
partition solution in four clusters whose interpretation (Table 3.4) is very close to the
interpretation of the former partition in Table 3.3.

Characteristic words and answers of the four clusters

The over – and underrepresented words of each cluster are identified by using a statis-
tical criterion (Lebart et al., 1998, pp. 130–136). The modal answers are also extracted
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Table 3.4. Clusters: closed and open-ended questions, Basque and Spanish respondents’
global analysis

Cluster Size Active Cat./Grp. Cat./All Supplementary
no. (%) categories (%) (%) categories

1 29.63 Rather satisfied 97.39 42.36 Teaching-Research,
Would buy 92.17 59.63 Male

2 30.51 Very satisfied 79.30 32.94 Age +44,
Would buy 97.25 59.63 Female

3 16.23 Rather satisfied 67.74 42.36 Students,
Would not buy 94.18 39.35 Gipuzkoa Campus

4 23.63 Little or not satisfied 57.06 23.35 Age 23–29,
Would not buy 90.57 39.35 Students

Table 3.5. Overrepresented words in cluster 4 (Little or not satisfied, Would not buy) with
both internal and global frequencies

Basque Spanish

Word Int. Glob. Word Int. Glob.
segments freq. freq. segments freq. freq.

ez dut uste – I don’t think 11 15 no – not 418 737
asko – much 8 13 no me gusta – I don’t like 91 96

jende – people 6 13 ningún – none 47 59
diru – money 5 10 propaganda – advertising 41 56
behar – need 14 47 con logotipos – with logo 22 24

ez nuke erosiko – wouldn’t buy 3 5 nada – at all 29 37
logotipoa duen – with logo 3 5 pagar – pay 20 22

zalea – keen on 4 9 hacer publicidad – to advertize 14 22
logo – logo 23 100 no me parece – I don’t think 25 38
erosi – buy 21 100 comprar – buy 118 271

kontsumismo – consumerism 3 5

Table 3.6. Overrepresented words in cluster 2 (Very satisfied, Would buy) with both internal
and global frequencies

Basque Spanish

Word Int. Glob. Word Int. Glob.
segments freq. freq. segments freq. freq.

ikasi – learn, teach 23 37 pertenecer – belong, membership 68 124
arro – proud 5 5 de pertenecer – about belonging 37 61

euskal – basque 6 7 a la upv – to the upv/ehu 46 84
publikoa – public 5 6 pertenecer a la upv – be upv member 19 32

egon – be 23 37 para regalar – to make a gift 48 100
bat – one 36 93 orgulloso – proud 37 63

bertako – from here (w. pride) 11 13 profesores – teachers 21 37
unibertsitatea – university 27 70 visitar – visit 14 17
herriko – of the ... country 6 8 a conocer – (to make) known 31 51

prezio – price 7 11 universidad – university 117 267
detaile – gift 4 5 tambien – too 31 51

zergatik ez – why not 10 17 detalle – gift 22 36
polita – beautiful 12 25 imagen – image 49 100

zerbait – something 11 22 ehu – (upv/ehu) 60 132
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(Lebart et al., 1998, pp. 137–141) for showing the actual context in which these words
are used.

We present (Tables 3.5 and 3.6) the clusters formed at both extremes of the principal
axis.

The cluster including the individuals satisfied with the university and intending to
buy corporate products is very similar to the corresponding cluster obtained in the
former clustering. The characteristic words and segments show that some expressions
located close to the centroid in the partial CA applied to the lexical table do appear, for
instance, visit (a mention of visiting professors), Why not or to make a gift (Table 3.6).
We can see that many terms appear simultaneously in both languages, related to being
very satisfied and proud of their university.

In the case of the cluster including the individuals not favorable to buying corporate
products, we observe negative terms reflecting the ideas of not buying or not paying
or not liking, supposedly referring to these products.

Table 3.7 shows some actual full responses featuring some of the most frequent lex-
ical terms, cited above. We then conclude that we have automatically got two opposite
clusters internally equivalent with respect to both languages.

Table 3.7. Some modal sentences in extreme clusters; Basque and Spanish answers

Cluster Basque Spanish

ez dut uste erabiliko nuenik no me gustan
(I don’t think I’d use it) (I don’t like)

Little or not ez dut holakorik erosten porque no me llama la atención
satisfied, (I don’t buy such things) (because it doesn’t draw

Would not buy ez dut nire dirua holako my attention)
gauzetan xahutu nahi No acostumbro

(I don’t waste money in such things) (I usually don’t)

porque me siento orgullosa de
ikasten dudan lekuaz arro nagoelako pertenecer a la UPV/EHU
(because I am proud of learning here) (because I am proud of

my UPV/EHU membership)
Very satisfied, karrera ikasten egon naizeneko porque se favorece la expansión

Would buy detailetxo bat oroigarri gisa de la UPV
(as a gift from where I have studied) (because it favours UPV expansion)
ongi deritzot bertako logotipodun por sentir a la UPV/EHU

zerbait erabiltzea como nuestra
(I like to wear something (to feel the UPV/EHU as ours

with logo from here – with pride) – with pride)

3.6 Conclusion

We propose a methodology that allows for clustering individuals according to a battery
of questions on a specific topic, formulated as either closed or open-ended questions,
the latter being eventually answered in different languages.
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We apply this methodology to a survey in which two different languages, Basque
and Spanish, are used.

Thus, we offer a new way for the automatic treatment of open-ended questions in
multilingual surveys, which is of prime interest for international and/or multilingual
area surveys.
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Number of Frequent Patterns in Random Databases
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Abstract: In a tabular database, patterns that occur over a frequency threshold are
called frequent patterns. They are central in numerous data processes and various ef-
ficient algorithms were recently designed for mining them. Unfortunately, very little
is known about the real difficulty of this mining, which is closely related to the num-
ber of such patterns. The worst case analysis always leads to an exponential number
of frequent patterns, but experimentation shows that algorithms become efficient for
reasonable frequency thresholds. In order to explain this behaviour, we perform here a
probabilistic analysis of the number of frequent patterns. We first introduce a general
model of random databases that encompasses all the previous classical models. In this
model, the rows of the database are seen as independent words generated by the same
probabilistic source (i.e., a random process that emits symbols). Under natural con-
ditions on the source, the average number of frequent patterns is studied for various
frequency thresholds. Note that the source may be nonexplicit since the conditions
deal with the words. Then, we exhibit a large class of sources, the class of dynamical
sources, which is proven to satisfy our general conditions. This finally shows that our
results hold in a quite general context of random databases.

Keywords and phrases: Data mining, models of databases, frequent patterns,
probabilistic analysis, dynamical sources

4.1 Introduction

Data mining, which applies to various fields (astronomy, fraud detection, market-
ing, biology, . . .), aims at extracting new knowledge from large databases. We con-
sider here tabular databases where knowledge is represented by a collection of pairs
(column, value), also called a pattern.

Patterns that occur frequently at the same time in several rows are of great interest
since they indicate a correlation between the columns that compose the pattern. A
pattern is said to be frequent if it occurs over a frequency threshold, which is defined by
users. Frequent patterns intervene in numerous data processes such as classification or
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clustering (Goethals, 2003). They are also essential (Agrawal et al., 1993) for generating
the well-known association rules that apply in bioinformatic, physics, or geography.

The frequent pattern mining problem was first described in Agrawal et al. (1993)
and during the last decade, several algorithms have been designed to solve it (Agrawal
et al., 1996; Savasere et al., 1995; Toivonen, 1996; Han et al., 2000; Zaki, 2000). Their
complexities are closely related to the number of frequent patterns which is, in the
worst case, always exponential with respect to the number of columns. But the actual
behaviour appears to be quite different. The algorithms fail when the frequency thresh-
old is too small, which suggests an exponential behaviour and, they become efficient for
reasonable frequency thresholds, which suggests a polynomial behaviour. There already
exist bounds for the number of frequent patterns in Geerts et al. (2001), but they are
involved and do not elucidate the influence of the frequency threshold on the number
of frequent patterns.

In this chapter we perform a probabilistic analysis that elucidates the real be-
haviour of the number of frequent patterns. There exist such analyses dealing with
the maximal size of the frequent patterns (Agrawal et al., 1996), or the fail rate of
the Apriori algorithm (Purdom et al., 2004). But the previous analyses dealt with a
model based on column independence, whereas the algorithms are precisely designed
for searching correlations between columns. We introduce a general model of random
databases which avoids this contradiction. In our model, the rows of the database
are independent words generated by the same source. A source is a probabilistic pro-
cess that emits a symbol at each unit time, and the complete process builds a word.
Since successive emitted symbols may be correlated, the columns are no longer inde-
pendent. Under natural conditions on words produced by the source (Conditions 1
and 2-γ), we obtain two main results (Theorems 1 and 2) on the number of fre-
quent patterns in two main cases: the first one is related to a fixed frequency thresh-
old, whereas the second one deals with a linear frequency threshold (with respect
to the number of rows). We then describe a large class of sources, called dynamical
sources, which are proven to satisfy Conditions 1 and 2-γ (Theorem 3). This class
contains all the classical sources (memoryless sources and Markov chains), but also
many other sources which may possess a higher degree of correlations. It then follows
that Theorem 1 and Theorem 2 apply to various models of databases (classical or
not).

4.2 Model of databases

4.2.1 Frequent pattern mining

Frequent pattern mining is often described in the framework of market basket analysis,
but we adopt here the more general framework of the multiple-choice questionnaire. In
this context, a set of persons (of cardinality n) answers to a number m of multiple-choice
questions. The set E of possible answers to each question is the same, and is called the
alphabet. The word Em formed by the answers of one person to all the questions is
called a transaction. A natural data structure for storing all the transactions is an n×m
matrix over E .
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Questions

persons q1 q2 q3 q4 q5 q6 q7

p1 2 1 2 1 2 1 1
p2 1 2 2 1 2 1 3
p3 2 3 2 1 2 1 1
p4 2 1 3 2 1 2 1

Pattern Support Frequency

(q1, 2), (q3, 2) p1, p3 2
(q4, 1), (q7, 3) p2 1
(q5, 2) p1, p2, p3 3

Figure 4.1. On the left, an instance of a database with seven questions and four persons
whose answers to the questionnaire belong to E = {1, 2, 3}. On the right, instances of patterns
with the associated support and frequency

A pattern is a set of pairs (question, answer) where each question appears at most
once. A person p supports a pattern X if for all pairs (q,a) in X, the answer of p to the
question q is the answer a. We also say that the transaction contains the pattern X.

The support of a pattern X is the set of persons that support X, and the frequency
of X is the size of its support. Figure 4.1 gives instances of patterns with their support
and frequency. A pattern is said to be γ-frequent in a database B, with a frequency
threshold γ ≥ 1, if the cardinality of its support is greater than γ. In the table of
Figure 4.1, the pattern (q5, 2) is 1; 2-, or 3-frequent since its frequency is 3.

When the database contains at least γ copies of each possible transaction (this
means that n ≥ γ · |E|m), all possible patterns are γ-frequent. In this case, the num-
ber of frequent patterns equals (1 + |E|)m − 1 (for m questions). Now, if the matrix
coefficients are all equal to v, all the patterns that contain pairs only of the form
(question, v) are frequent (for any frequency threshold less than n). In this case, the
number of frequent patterns equals 2m − 1. In particular, the worst case is always at
least exponential.

However, the previous situations are rare and do not correspond to real applications.
This is why we propose a probabilistic analysis of frequent patterns under a general
model that we now introduce.

4.2.2 Model of random databases

Our model considers all the transactions as different words produced by the same prob-
abilistic source defined on the alphabet E . For instance, the word associated with the
first transaction (or row or person) in Figure 4.1 is 2121211. Since frequent patterns
aim at describing correlations between questions, we always suppose that the transac-
tions are independent, even if the persons themselves may not be independent. Finally,
we are interested in asymptotics when the databases become large, with a number of
persons and a number of questions which are polynomially related. The next definition
summarises these three hypotheses.

Definition 1. We call a random database a probabilistic database that satisfies the
three following conditions.

(i) Each transaction is a word produced by the same probabilistic source over a finite
alphabet E.

(ii) The transactions form a family of independent random variables.
(iii) The number n of persons and the number m of questions are polynomially related,

namely of the form log n = Θ(logm).
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4.3 Main results

We study the average number of frequent patterns in random databases (Definition 1)
for two types of frequency thresholds: the linear frequency threshold and the constant
threshold (with respect to n). A general result which would hold for all existing sources
is certainly unexpected. This is why we introduce a condition on the source for each
frequency threshold. Both conditions only concern the words produced and not the
way they are produced. Hence, the source may be nonexplicit. In addition, we show in
Section 4.4 that both conditions are natural since they are verified by a large class of
sources, classical or not. In the whole section, m and n, respectively, denote the number
of questions and persons in a random database B.

4.3.1 Linear frequency threshold

A frequency threshold γ is said to be linear if it satisfies, γ ∼ r ·n (for some r ∈]0, 1[) as
n tends to infinity. The probability that a person, or equivalently a word, supports the
pattern X is noted pX . The quantities pX are essential in our different conditions. One
has clearly pY ≤ pX as soon as X ⊆ Y . The next condition considers sources whose
pattern probability is exponentially decreasing with the size of the pattern.

Condition 1 There exist M > 0 and θ ∈]0, 1[ such that for any pattern X, the prob-
ability pX satisfies:

pX ≤ M · θ|X|.

In practice, Condition 1 implies that questions discriminate persons.

Theorem 1. Let B be an n × m random database generated by a probabilistic source
that satisfies Condition 1 with parameters M and θ. For a linear frequency threshold
γ ∼ r · n, the average number Fγ,m,n of γ-frequent patterns is polynomial with respect
to the number m of questions,

Fγ,m,n = O
(
mj0

)
with j0 = max{j ≥ 0 | Mθj ≥ r}.

This polynomial behaviour explains the efficiency of the algorithms for reasonable fre-
quency thresholds. It is also possible to obtain an estimate of Fγ,m,n under the weaker
condition(1 − θ) · min(m,n) → ∞, but, in this case, the asymptotic behaviour is no
longer polynomial with respect to m.

4.3.2 Constant frequency threshold

Here, the frequency threshold γ is now constant and does not evolve with the number
of persons. Given γ random transactions over m questions, the probability that the γ
transactions support X is pγ

X . Hence, the average number of patterns supported by the
γ transactions is

Σγ,m =
∑
X

pγ
X .
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The sum Σγ,m is proven to be greater than 1 and it admits a closed form for various
(classical) sources (see Sections 4.4 and 4.5). The next condition implies that, for γ
constant, Σγ,m is exponential with respect to the number m of questions.

Condition 2-γ There exists θγ > 1 such that, for large m,

Σγ,m > θm
γ ·Σγ+1,m.

With Condition 2-γ, we prove our second main result.

Theorem 2. Fix γ ∈ N
� and consider an n × m random database B generated by a

probabilistic source that satisfies Condition 2-γ with parameter θγ . The mean number
of γ-frequent patterns verifies

Fγ,m,n =
(
n

γ

)
Σγ,m ·

[
1 + n ·O

(
1
θm

γ

.

)]
.

In other words, for a constant frequency threshold, the number of frequent patterns is
exponential with respect to the number m of questions, and polynomial with respect
to the number n of persons. This result explains why the algorithms fail for small
frequency thresholds.

4.3.3 Sketch of proofs

For a given frequency threshold γ, the average number of frequent patterns is the sum
over all possible patterns X and all possible supports S, of the probability that X has
support S. Now, the size of the support of X follows a binomial law with parameter
pX , so that

Fγ,m,n =
∑
X

Fγ,m,n,X with Fγ,m,n,X :=
n∑

k=γ

(
n

k

)
pk

X(1 − pX)n−k.

The fundamental step transforms Fγ,m,n,X into an integral. Developing (1 − pX)k,
doing a change of variable, inverting two signs sum and using a recurrence lead to the
alternative formula

Fγ,m,n,X = γ

(
n

γ

)∫ pX

0

tγ−1(1 − t)n−γdt.

The proofs for constant and linear thresholds separate here.
For a constant threshold, we use the bounds 1− (n− γ)t < (1− t)n−γ < 1 and get

a lower bound of Fγ,m,n that involves the sums Σm,γ and Σm,γ+1, whereas the upper
bound only involves Σm,γ . Condition 2-γ is then used to conclude.

For a linear threshold γ ∼ r ·n, we prove that Fγ,m,n,X tends to 0 if pX < r− ε for
some positive ε (with an explicit error term). Otherwise, it is bounded by 1. Hence, the
sum Fγ,m,n only involves patterns with probability greater than r− ε and Condition 1
ensures that the number of such patterns is at most polynomial.
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4.4 Dynamical databases

The results of the previous section are valid for any database generated by any source,
provided that it satisfies Conditions 1 and 2-γ. In this chapter, we prove that a large
class of sources satisfies these conditions. We now present this class, formed by a large
subset of dynamical sources introduced by Brigitte Vallée (2001), and further used
in Clément et al. (2001), Bourdon (2001), and Bourdon et al. (2001). The model of
dynamical sources gathers classical sources such as the Bernoulli sources or the Markov
chains, as well as more correlated ones. It is sufficiently general and can yet be precisely
analysed. This class is then a good candidate for generating general databases that we
call dynamical databases. We prove the following.

Theorem 3. A (Markovian and irreducible) dynamical source satisfies Condition 1
and, for all γ ≥ 1, Condition 2-γ. Moreover, Σγ,m is of the form:

Σm,γ = κγ · λm
γ (1 + O(θ−m

γ )), κγ > 0, λγ > 1, θγ > 1 and λγ > λγ+1.

In particular, Theorems 1 and 2 hold for (Markovian and irreducible) dynamical
databases.

4.4.1 Dynamical sources

A dynamical source is defined by six elements:

(i) An interval I
(ii) An alphabet E
(iii) A topological partition (Iα)α∈E of I (i.e., α 
= β ⇒ Iα ∩ Iβ = ∅ and ∪αIα = I)
(iv) A coding function σ : I → E such that σ(Iα) = α
(v) A shift function T on I, of class C2 and strictly monotone on each interval Iα, and

strictly expansive (namely there exists ρ with 0 < ρ < 1 and |T ′| > ρ−1 > 1)
(vi) An initial density f0 on I

Figure 4.2 describes some instances of dynamical sources. A dynamical source emits
symbols in the following way. (i) First a random real x is chosen in I according to the
initial density f0, (ii) then, the emitted symbol at the ith step is the symbol associated
with the interval that contains the ith iterate of x [αi = σ(T ix)], so that the (infinite)
word M(x ) produced by the source is M(x ) := α1α2α3 · · · .

A dynamical source is then similar to a pseudorandom generator, where a proba-
bilistic seed is used to initialise the process, and after this random choice, the process
is completely deterministic.

There exist several types of dynamical sources according to the geometric or analytic
properties of T . The simplest family occurs when T is affine and surjective on each
interval of the partition. Such sources model the classical memoryless sources that
emit symbols independently from the previous ones, but always following the same
probabilistic law. When such a source is used for generating a database, the questions
are not correlated. Figure 4.2 gives an example of a Bernoulli source.

In order to introduce some correlations between questions, we first consider sources
with bounded memory, such as Markov chains. A Markov chain emits a new symbol
according to a constant probabilistic law that depends on a bounded number of previous
symbols. Used to generate databases, it entails that close questions are correlated.
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A Markov chain is a particular dynamical source. In this case, T is piecewise affine
and the image of an interval of the partition is the union of intervals of the partition.
Figure 4.2 gives an instance of a Markov chain.

In this chapter, we deal with more general sources, called Markovian dynamical
sources. A Markovian dynamical source has the same geometry as a Markov chain (the
image by T of the interval Iα is a union of such intervals), but the shift function is not
necessary affine. Moreover, we suppose that the process is irreducible; i.e., the matrix
M = (mα,β) with mα,β = 1 if T (Iβ)∩Iα 
= ∅, and mα,β = 0 elsewhere, satisfies Mk has
strictly positive coefficients for some positive integer k. Figure 4.2 presents a Markovian
source. More general dynamical sources are not used in this chapter.

Figure 4.2. Instances of dynamical sources (without the initial density). From left to right : a
Bernoulli source, a Markov chain, a Markovian dynamical source, a general dynamical source

4.4.2 Main tools

Fix w = α1 · · ·αm a word of length m over E . The set of real x ∈ I such that the word
M(x ) begins with w forms an interval noted Iw. The image by the mth iterate Tm of
Iw is also an interval Jw and the inverse function hw : Jw → Iw of Tm is called an
inverse branch of depth m. Note that hw admits the alternative formula

hw = hα1 ◦ hα2 ◦ · · · ◦ hαm .

The main tools for analysing a dynamical source are functional operators. As does
the transition matrix for Markov chains, the density transformer G describes the evo-
lution of the density under iteration of the shift. If f0 is the initial density of the source,
the new density after m iterations of T is fm = Gm[f0], with

Gm =
∑

w∈Em

Gw and Gw[f ](x) = |h′
w(x)| f ◦ hw(x)1Jw(x).

where 1E(x) equals 1 if x belongs to E, and is zero elsewhere. The operators Gw are
fundamental since the probability pw that a word begins by w satisfies

pw =
∫

Iw

f0(t)dt =
∫

I

Gw[f0](t)dt.

In particular, the probability pw1·w2 (here · is the concatenation) expresses with the
operator Gw1·w2 = Gw2 ◦ Gw1 . Note that this functional relation replaces the well-
known properties pw1·w2 = pw1 · pw2 valid only for memoryless sources.
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Now, fix W1 and W2 two sets of words. By additivity, the probability that a word
belongs to W1 ·W2 [words w1 ·w2 with (w1, w2) ∈ W1 ×W2] is related to the operator

GW1·W2 = GW2 ◦ GW1 with GW =
∑
w∈W

Gw. (4.1)

Moreover, if W1 and W2 are disjoint, the probability of belonging to W1 ∪W2 involves
the operator

GW1∪W2 = GW1 + GW2 . (4.2)

Equations (4.1) and (4.2) are just the “dynamical source version” of the following
equalities valid for memoryless sources

pW1·W2 = pW1 · pW2 and pW1∪W2 = pW1 + pW2 [disjoint union].

The previous operators are all relative to one random transaction (or word). Various
generalisations exist, but in the sequel we only deal with operators that generate the
sum Σγ,m. Precisely, a γ-word of length m, noted w, is a γ-tuple of words of same
length m. If w = (w1, . . . , wγ), we define the applications

Hw(t1, · · · , tγ) = hw1(t1) · · ·hwγ (tγ) and 1Jw(t1, . . . , tγ) = 1Jw1
(t1) · · ·1Jwγ

(tγ).

For instance, the probability pw that γ independent and identical dynamical sources
emit simultaneously the words w1, . . . , wγ satisfies

pw =
∫

Iγ

Gw[F ](t1, . . . , tγ)dt1 · · · dtγ with Gw[F ] = Jac[Hw] F ◦Hw 1Jw
,

and F (t1, . . . , tγ) = f0(t1) · · · f0(tγ). Of course, the previous properties with the oper-
ators G extend to the operators G and one has

GW :=
∑

w∈W

Gw, GW 1·W 2
= GW 2

◦ GW 1
, GW 1∪W 2

= GW 1
+ GW 2

. (4.3)

For a fixed γ-word w = (w1, . . . , wγ), a natural question is how many patterns are
contained at the same time in the words w1, . . . , wγ? We define the cost function cγ(w)
by the number of positions where the γ words of w have exactly the same value. Then,
the number of patterns contained at the same time in w1, . . . , wγ is 2cγ(w) − 1. If w1

and w2 denote two γ-words, the following additive property is satisfied

cγ(w1 · w2) = cγ(w1) + cγ(w2).

Now, the sum Σγ,m admits the alternative form

Σγ,m + 1 =
∑

w∈(Em)γ

2cγ(w)pw

=
∫

Iγ

∑
w∈(Em)γ

2cγ(w)
Gw[F ](t1, . . . , tγ)dt1 · · · dtγ
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with F = (t1, . . . , tγ) = f0(t1) · · · f0(tγ). The additive property of cost cγ and relations
(4.3) entail a new expression of the sum in the integral that involves the operator Gγ

defined by
Gγ :=

∑
w∈Eγ

2cγ(w)
Gw.

Precisely, the sum Σγ,m satisfies

Σγ,m =
∫

Iγ

G
m
γ [F ](t1, . . . , tγ)dt1 · · · dtγ (4.4)

with F = (t1, . . . , tγ) = f0(t1) · · · f0(tγ).

4.4.3 Proof of Theorem 3

Condition 1. The set of words (or transactions) that support a pattern X is of the
form E1 · E2 · . . . · Em with Ei := E if the ith question qi is not a question in X and
Ei := {α, (qi, α) ∈ X} in the other case. Then with Relation (4.1), the probability pX

satisfies
pX =

∫

I

GEm ◦ · · · ◦ GE1 [f0](t)dt.

Note that if Ei is replaced by the whole alphabet E , one obtains a upper bound of pX .
To prove Condition 1, it is then sufficient to carefully replace some of the subalphabets.

On a convenient functional space (for instance, the Banach space of Lipschitz func-
tions), the density transformer admits a unique dominant eigenvalue 1, separated from
the remainder of the spectrum by a spectral gap. In addition, the dominant eigenvector
g is strictly positive on I. This spectral property entails the decomposition

Gk[f ] :=
(∫

I

f(t)dt
)
· g + Nk[f ]

with N[g] = 0 and N an operator with spectral radius strictly less than 1. In particular,
for all positive ε1, there exist k0 such that on I, Gk0 [f ] ≤ (1 + ε1)g. Replacing the first
k0 subalphabets in the expression of pX by the whole alphabet E yields the inequality

pX ≤ (1 + ε1)
∫

I

GEm
◦ · · · ◦ GEk0+1 [g](t)dt = (1 + ε1)

∫

I

GEm
◦ · · · ◦ GEk1

[g](t)dt

with k1 = min{k ≥ k0 + 1 : Ek 
= E}. Note that k1 exists as soon as |X| > k0.
There exist ε2 = ρmin · infI g with ρmin = minm∈E infJm |h′

m| such that for all
subalphabets E ′, the function GE′ [g] satisfies

GE′ [g] ≤ g − ε2 on EE′ :=
⋃

α/∈E′
Jα

and GE′ [g] ≤ g elsewhere. For all positive integers k, one also has

Gk ◦GE′ [g] =
∑

w:Iw⊂EE′

Gw[g] +
∑

w:Iw �⊂EE′

Gw[g] ≤ g − ε2 ·
(

min
w∈Ek

min
Jw

|h′
w|
)
·

∑
w:Iw⊂E′

E

1.
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Since the source is irreducible, there exist k2 such that the last sum is strictly
positive and then, we have found θ < 1 such that on I,

Gk2 ◦ GE′ [g] ≤ g − ε2 ·
(

min
w∈Ek

min
Jw

|h′
w|
)

≤ θ · g.

Applying this relation recursively to the expression of pX , we prove that Condition 1
is satisfied.

Condition 2-γ. The sum Σm,γ is the average number of patterns supported by γ
random transactions. We recall the alternative expression for Σm,γ , namely

Σm,γ =
∫

Iγ

G
m
γ [(f0, . . . , f0)](t1, . . . , tγ)dt1 · · · dtγ .

Here, Gγ is a multidimensional functional operator that admits a unique dominant
eigenvalue λ(γ), separated from the remainder of the spectrum by a spectral gap, and
λ(γ) > λ(γ + 1). This spectral property entails a decomposition of Gγ of the form

G
m
γ [F ] = λ(γ)m

P[F ]
(
1 + O

(
rm
γ

))
,

with P a projector and rγ < 1. Theorem 3 follows with θ−1
γ = max(rγ , rγ+1, ((λ(γ + 1))/

λ(γ))).

4.5 Improved memoryless model of databases

All the existing databases are not a particular case of dynamical databases. Consider,
for instance, a quite simple one, which is called the improved memoryless model in
Lhote et al. (2005). Persons and questions are independent, and each question has its
own probabilistic behaviour. More precisely, the answer to the ith question follows a
Bernoulli law Bi = (pi,α)α∈E over the alphabet Ei, where the Bis and the Eis may
depend on the index i. In the “simple” memoryless model, used for the classical prob-
abilistic analyses, the Bis were the same.

Let p denote the maximum of all the probabilities pi,v. When p < 1, the relation
pX ≤ p|X| holds and ensures Condition 1. Moreover, the sum Σγ,m admits the closed
formula

Σγ,m =
m∏

j=1

(
1 +

∑
v∈E

pγ
j,v

)

and Condition 2-γ is clearly satisfied with θγ = (1 + |E|−γ)/(1 + p|E|−γ).

4.6 Experiments

This section presents some experiments realised with classical databases of the FIMI
website (Frequent Itemset Mining Implementations). In Figure 4.3, the plain line in the
graphics represents the number of frequent patterns in the function of the frequency
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threshold for two real databases (Chess.dat and Mushroom.dat) and a synthetic one
(T10I4D100K.dat). The dotted (resp., dashed) line represents the average number of
frequent patterns of the simple (resp., improved) Bernoulli model naturally associated
with the real database.

In the graphics, the improved model gives very good estimations whereas the simple
model is quite bad. This result is not surprising for synthetic data since they have, by
construction, few correlations. However, such closed results were unexpected for real-life
databases.
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Figure 4.3. Number of frequent patterns in the function of the frequency threshold in the real
database (plain line), in the associated simple Bernoulli model (dashed), and in the associated
improved Bernoulli model (dotted)

4.7 Conclusion

Frequent pattern mining is a fundamental task in data mining but its complexity is
closely related to the parameters (frequency threshold, size of the database, etc.). In this
chapter, we have introduced a general model of random databases that are generated by
sources. Under natural conditions on the words produced by the sources, we elucidate
(for the first time) two different behaviours for the average number of frequent patterns
in large databases. First, if the frequency threshold is constant, the mean number of
frequent patterns is exponential with respect to the number of columns. That explains
why in practice the algorithms fail for small frequency thresholds. On the other hand,
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for linear frequency thresholds, the mean number of frequent patterns is polynomial
with respect to the number of columns. That explains the efficiency of the algorithms
for reasonable frequency thresholds.

In the second part, we introduced the large class of dynamical sources that en-
compass various classical sources (simple Bernoulli sources, Markov chains). We prove
that they satisfy the natural conditions which implies that our results apply in a quite
general context.

However, frequent patterns are not the only patterns useful in data mining. One
can cite, for instance, the closed patterns, the minimal nonfrequent patterns, the
general constrained patterns, and so on. Future work will consist in the analysis of
such patterns. The analysis of the associated algorithms will also be of great inter-
est since it is not rare that several authors claim that their algorithms are the most
efficient.
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5.1 Introduction

Part II is based upon three papers that were presented in the Special Session Infor-
mation Theory and Statistical Applications of the 12th International Conference on
Applied Stochastic Models and Data Analysis (ASMDA 2007) which was held in May
2007 in Chania, Greece. Information theory includes research dealing, among others
with statistical inference, association, prediction, and modelling of statistical data.
The last two or three decades are characterised by a vigorous growth in the use of
information-theoretic ideas and methods in statistics. The reason is that Statistical
Information Theory (SIT) provides a number of measures which obey nice probabilis-
tic and statistical properties and moreover can be used to formulate and solve a great
variety of statistical problems. In this sense SIT contributes to the advancement in
probability theory and statistics in particular, and progress in almost all areas of sci-
ence and engineering.

Entropy and divergence measures are the main constitutive elements of statisti-
cal information theory (cf. Vajda, 1989). The concept of entropy, although introduced
in the context of classical thermodynamics, has become a major tool in information
theory and in almost every branch of science and engineering after the seminal work
of Shannon in the mathematical theory of communication (Shannon, 1948). One of
the most powerful techniques, which is based on Shannon entropy, is the maximum
entropy principle, a method of constrained inference that generalises the principle of
insufficient reason. It has been introduced by Jaynes (1957) and provides the unknown
probabilistic model which describes a set of statistical data. On the other hand the con-
cept of divergence between two probability distributions and the respective measures
of divergence (cf. Csiszar, 1963; Ali and Silvey, 1966) are used for the development
of information-theoretic ideas and methods in problems of estimation and testing sta-
tistical hypotheses. In this context, a measure of divergence between the empirical
and the true model can serve as a test statistic for testing goodness-of-fit. In a simi-
lar manner, the minimization, in respect to the unknown parameter, of a divergence
measure between the true and the empirical model leads to nice alternatives of the
maximum likelihood estimators. For a comprehensive discussion on the development
of information-theoretic methods in statistics the reader is referred to the monographs
by Read and Cressie (1988) and Pardo (2006), among others.

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 49
and Technology, DOI 10.1007/978-0-8176-4799-5 5,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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The section starts with two chapters with direct applications of divergence measures
in statistics while the third chapter focuses on applications of divergences to actuarial
science and in particular to the problem of graduating mortality rates. All the papers
include methodological developments and relevant applications. In particular, in the
chapter by Prof. A. Karagrigoriou and Dr. K. Mattheou, a model selection criterion,
the Divergence Information Criterion (DIC), is proposed by means of a generalised
family of divergence measures. Furthermore, a lower bound for the mean squared error
of prediction is furnished. This criterion generalises, in a sense, the well-known Akaike
Information Criterion (AIC) (cf. Akaike, 1973). A simulation study is used to illustrate
that the proposed model selection criteria are at least comparable to the well-known
and used model selection criteria such as AIC, BIC, and so on. The second chapter, by
Prof. M. C. Pardo, deals with the influence or leverage of points in the fitted value of a
generalized linear model for ordinal multinomial data. For this purpose the family of the
phi-divergence measure is used. The minimum phi-divergence estimator is applied and
a generalized Hessian (hat) matrix is introduced as a diagnostic tool for measuring the
influence. Residuals based on the phi-divergence measure are introduced for detecting
outliers. The third chapter, by Dr. A. Sachlas and Prof. T. Papaioannou discusses
extensions of the classical divergence measures so as to be useful and applicable for the
study of graduating mortality rates. The properties of the proposed divergences are
studied and moreover used to formulate the problem of graduating mortality rates via
Lagrangian duality theory. Numerical examples are also given to illustrate the theoretic
results.
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Abstract: In this chapter a number of measures of divergence are presented and the
way model selection criteria are constructed via measures of divergence is discussed.
The construction of the divergence information criterion based on a new family of
measures of divergence is presented and the lower bound of the mean squared error of
prediction is established. Some illustrative simulation results are also given.

Keywords and phrases: Measures of divergence, model selection, AIC, BIC, DIC,
MSE of prediction

6.1 Introduction

The measures of divergence are powerful tools used in measuring the distance or affinity
between two probability distributions for the purpose of association, clustering, or
classification of the distributions involved. The measures of divergence together with
the measures of information have a very long history since the fundamental work of
Fisher, Shannon, and Kullback. Such measures have numerous applications in statistical
inference and can be applied in various fields such as signal processing and pattern
recognition, analysis of contingency tables and tests of fit, model selection, finance and
economics, approximations of probability distributions, etc.

The aim of this chapter is to present some recent developments on measures of
information in connection with model selection criteria. In particular, in Section 6.2
we present a number of measures of divergence while in Section 6.3 we review the
model selection criteria. In Section 6.4 we discuss the construction of the Divergence
Information Criterion (DIC) and in Section 6.5 we discuss some of its asymptotic
properties. Finally, in Section 6.6 we use an illustrative example for the use of DIC.

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 51
and Technology, DOI 10.1007/978-0-8176-4799-5 6,
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6.2 Measures of divergence

In what follows assume that f(·) and g(·) are probability density functions (pdfs)
corresponding to some random variable X which may or may not depend on some
unknown parameter of finite dimension. The divergence is a functional which expresses
the dissimilarity between two functions and it should be such that its value increases
if the two functions are considered to be “less similar.” The most popular measure of
(directed) divergence is considered to be the Kullback–Leibler divergence (Kullback
and Leibler, 1951) known also as a relative measure of information which is based on
the likelihood ratio and is given by

IKL
X (f, g) =

∫
f(z)ln(f(z)/g(z))dz.

Observe that the measure is not symmetric as opposed to the J-divergence (Jeffreys,
1946) given by IJ

X(f, g) = IKL
X (f, g) + IKL

X (g, f).
A general divergence-type measure is the family of “convex likelihood-ratio expec-

tations” introduced by Csiszar, Ali, and Silvey (Csiszar, 1963; Ali and Silvey, 1966)
which is also known as ϕ-divergence, often denoted by CAS (Csiszar–Ali–Silvey) and
based on a convex function ϕ that unifies the above-mentioned as well as many other
measures of divergence. The CAS measure is defined by

IC
X(f, g) =

∫
ϕ(f(z)/g(z))g(z)dz,

where ϕ is a convex function in [0,∞) such that 0ϕ(0/0) = 0, ϕ(u) →
u→0

0 and 0ϕ(u/0) =

uϕ∞ with ϕ∞ = limu→∞[ϕ(u)/u].
Observe that the CAS measure reduces to Kullback–Liebler divergence if ϕ(u) =

u lnu. If ϕ(u) = (1 − u)2 or ϕ(u) = sgn(a − 1)ua, a > 0, a 
= 1 CAS’s measure
yields the Kagan (Pearson’s X2, Kagan, 1963) and Renyi’s divergence, respectively
(Renyi, 1961). Another member of the CAS family of divergence measures with ϕ(u) =(
uλ+1 − u − λ(u − 1)

)
/(λ(λ + 1)), λ 
= 0,−1, is the power divergence introduced by

Cressie and Read (1984) which is given by

ICR
X (f, g) =

1
λ (λ + 1)

∫
f (z)

[(
f (z)
g (z)

)λ

− 1

]
dz, λ ∈ R,

where for λ = 0,−1 is defined by continuity. Note that the Kullback–Leibler divergence
is obtained for λ ↓ 0.

A recently proposed measure of divergence is the Basu, Harris, Hjort, and Jones
(BHHJ) power divergence between f and g (Basu et al., 1998) which is indexed by a
positive parameter a, and defined as

Ia
X (g, f) =

∫ {
f1+a (z) −

(
1 +

1
a

)
g (z) fa (z)+

1
a
g1+a (z)

}
dz, a > 0. (6.1)

This family of measures was proposed by Basu et al. (1998) for the development of
a minimum divergence estimating method for robust parameter estimation. Indeed, if
{Fθ} a parametric family of probability density functions fθ indexed by an unknown
parameter θ, then the estimation method consists of choosing parameter values in a
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hypothesized set Θ that minimize Ia
X(g, f). The index a controls the trade-off between

robustness and asymptotic efficiency of the parameter estimators which are the quan-
tities that minimize (6.1). It should be also noted that the BHHJ family reduces to
the Kullback–Leibler divergence for a ↓ 0 and as it can be easily seen, to the square of
the standard L2 distance between f and g for a = 1. As a result, for a ↓ 0 the family,
as an estimating method, reduces to the traditional maximum likelihood estimation
while for a = 1 it becomes the mean squared error estimation. In the former case the
resulting estimator is efficient but not robust while in the latter the method results in
a robust but inefficient estimator. The authors observed that for values of a close to
0 the resulting estimators have strong robust features without a big loss in efficiency
relative to the maximum likelihood estimating method. As a result one is interested
in small values of a > 0, say between zero and one, although values larger than one
are also allowed. One should be aware though of the fact that the estimating method
becomes less and less efficient as the index a increases.

6.3 Model selection criteria

Since the measures of divergence are used as indices of similarity or dissimilarity be-
tween populations and for measuring mutual information concerning two variables they
can be used for the construction of model selection criteria. Irrespectively of the strat-
egy used to select the best model among a set of candidate models, the true and the
model ultimately fitted differ in a number of aspects. This lack of fit can be measured
by some measure of divergence. The resulting discrepancy between the two models is
known as the expected overall discrepancy (EOD) which is a random variable. The dis-
tributional characteristics of the EOD are playing the key role in comparing different
fitting strategies. Since one should prefer a strategy which on the average, results in
a low EOD, it is natural to judge a strategy by its mean expected overall discrepancy.
In many cases some of the terms of the mean EOD are omitted since they do not
involve the fitted model. Since this quantity depends on the true model an appropriate
estimator is required. The estimator of the mean expected overall discrepancy (or the
essential part of the mean expected overall discrepancy after the irrelevant terms are
omitted) is traditionally referred to as a model selection criterion. If the value of the
criterion is small then the approximated or fitted model is good.

The Kullback–Leibler measure was the divergence used by Akaike (1973) to develop
the Akaike Information Criterion (AIC). Let x = (x1, . . . , xn) a realization of a random
vector X = (X1, . . . , Xn) and assume that the Xis are independent and identically dis-
tributed each with true unknown density function g(·, θ0), with θ0 = (θ01, . . . , θ0p)′ the
true but unknown value of the p-dimensional parameter of the distribution. Consider a
candidate model fθ(·), the log-likelihood l(θ;x), and let θ̂ be the maximum likelihood
estimator (MLE) of θ0 in some hypothesized set Θ, i.e.,

l(θ̂;x) =
n∑

i=1

log(fθ̂(xi)) = max
θ∈Θ

l(θ;x)

so that fθ̂(·) is an estimate of g(·, θ0). The divergence between the estimate (candidate
model) and the true density can be measured by the Kullback–Leibler measure:
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IKL
X (g, fθ̂) =

∫
g(z, θ0)log

(g(z, θ0)
fθ̂(z)

)
dz

which is a special case for a ↓ 0 of the BHHJ measure

Ia
X

(
g, fθ̂

)
=
∫ {

f1+a

θ̂
(z) −

(
1 +

1
a

)
g (z, θ0) fa

θ̂
(z)+

1
a
g1+a (z, θ0)

}
dz. (6.2)

Observe that IKL
X (g, fθ̂) can be written in the form

IKL
X (g, fθ̂) = Eg[log(g(X, θ0))] − Eg[log(fθ̂(X))].

Note that the first term is independent of the candidate model and therefore the di-
vergence can be evaluated using only the second term, usually known as the expected
loglikelihood. Akaike proposed the evaluation of the fit of fθ̂(·) using minus twice the
mean expected loglikelihood (i.e., the essential part of the mean expected overall dis-
crepancy) given by

−2Eg

[
Eg[log(fθ̂(X))]

]
= −2

∫
. . .

∫
Eg[log(fθ̂(X))]

n∏
i=1

g(xi, θ0)dx1 · · · dxn (6.3)

since the candidate model is close to the true model if the above quantity is small.
Furthermore, Akaike provided an unbiased estimator of (6.3) given by

[−2l(θ̂;x) + 2p]/n

so that the resulting AIC is defined to be

AIC = −2l(θ̂;x) + 2p.

A general class of criteria has been introduced by Konishi and Kitagawa (1996)
which also estimates the Kullback–Leibler measure where the estimation is not neces-
sarily based on maximum likelihood and the specified family of candidate distributions
does not contain the distribution generating the data.

Following the early work of Akaike, other model selection proposals include Bayesian
approaches with the Bayesian Information Criterion (BIC; Schwarz, 1978) and the De-
viance Information Criterion (DIC; Spiegelhalter et al., 2002; van der Linde, 2005)
being the most popular. The BIC criterion has a number of advantages worth men-
tioning. More specifically, it has been shown to be consistent (Schwarz, 1978; Wei,
1992) which means that it chooses the correct model with probability 1 as n tends
to infinity. The second advantage is that the criterion depends on logn (BIC =
−2l(θ̂;x) + p log n) and therefore it downweights the effective sample size which
in some cases prevents the erroneous rejection of null hypothesis for small sample
sizes.

Other model selection proposals inspired by or related to the pioneer work of Akaike
include among others approaches based on bootstrapping (Shang and Cavanaugh, 2008)
and on Monte Carlo simulations (Shang, 2008), approaches for high-dimensional med-
ical data (Koukouvinos et al., 2008), as well as variations of AIC (Cavanaugh, 2004;
Bengtsson and Cavanaugh, 2006).
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6.4 The divergence information criterion

Here we apply the same methodology used for AIC to the BHHJ divergence in order
to develop a new criterion, the divergence information criterion. Note that the DIC
proposed here is not related to the above-mentioned deviance information criterion
which is a Bayesian criterion for posterior predictive comparisons.

Consider a random sample X1, . . . , Xn from the distribution g (the true model) and
a candidate model fθ from a parametric family of models {fθ}, indexed by an unknown
parameter θ ∈ Θ, where Θ is a one-dimensional parametric space. To construct the new
criterion for goodness-of-fit we consider the quantity:

Wθ =
∫ {

f
1+a

θ (z) − (
1 + a−1

)
g (z) f

a

θ (z)
}
dz, a > 0, (6.4)

which is the same as the BHHJ divergence Ia
X(g, fθ) given in (6.1) without the last

term that remains constant irrespectively of the model fθ used. Observe that (6.4) can
also be written as

Wθ = Efθ

(
f

a

θ (Z)
)
− (

1 + a−1
)
Eg

(
f

a

θ (Z)
)
, a > 0. (6.5)

The target theoretical quantity that needs to be later approximated by an unbiased
estimator is given by

EWθ̂ = E
(
Wθ

∣∣∣θ = θ̂
)
, (6.6)

where θ̂ is any consistent and asymptotically normal estimator of θ. This quantity can
be viewed as the average distance between g and fθ up to a constant and is the essential
part of the mean expected overall discrepancy between g and fθ equivalent to (6.3).

Observe that the mean expected overall discrepancy can be easily evaluated by using
a Taylor expansion around θ0. The necessary derivatives of (6.5) in the case where g
belongs to the family {fθ} are given by (see Mattheou et al., 2009)

∂Wθ

∂θ
= (a + 1)

[∫
uθ (z) f

1+a

θ (z) dz − Eg

(
uθ (Z) f

a

θ (Z)
)]

and

∂2Wθ

∂θ2
= (a + 1)

{
(a + 1)

∫
[uθ (z)]2 f

1+a

θ (z) dz −
∫

iθf
1+a
θ (z) dz = 0

+ Eg

(
iθ (Z) f

a

θ (Z)
)
− Eg

(
a [uθ (Z)]2 f

a

θ (Z)
)

= (a + 1)J(θ0)
}

,

where uθ (z) = (∂/∂θ) (log (fθ (z))), iθ (z) = −(∂2/∂θ2) (log (fθ (z))), θ0 represents the
best fitting value of the parameter, and J(θ0) =

∫
[uθ0 (z)]2 f

1+a

θ0
(z) dz.

Using a Taylor expansion of Wθ around the true point θ0, we can show that the
mean expected overall discrepancy at θ = θ̂ is given by

EWθ̂ = Wθ0 +
(a + 1)

2
E

[(
θ̂ − θ0

)2

J(θ0)
]

+ ERn, (6.7)

where Rn = o((θ̂ − θ0)2).
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As in the case of the AIC criterion we construct now an unbiased estimator of the
mean expected overall discrepancy (6.7). First we deal though with the estimation of
the unknown density g. An estimator of (6.5) with respect to g is given by replacing
Eg

(
f

a

θ (Z)
)

by its sample analogue

Qθ =
∫

f
1+a

θ (z) dz −
(

1 +
1
a

)
1
n

n∑
i=1

f
a

θ (Xi) , (6.8)

with derivatives given by

∂Qθ

∂θ
= (a + 1)

[∫
uθ (z) f

1+a

θ (z) dz − 1
n

n∑
i=1

uθ (Xi) f
a

θ (Xi)

]

and
∂2Qθ

∂θ2
= (a + 1)

{
(a + 1)

∫
[uθ (z)]2 f

1+a

θ (z) dz

−
∫

iθf
1+a
θ (z) dz +

1
n

n∑
i=1

iθ (Xi) f
a

θ (Xi) − 1
n

n∑
i=1

a [uθ (Xi)]
2
f

a

θ (Xi)

}
.

It is easy to see that by the weak law of large numbers, as n → ∞, we have:
[
∂Qθ

∂θ

]

θ=θ0

P−→
[
∂Wθ

∂θ

]

θ=θ0

and
[
∂2Qθ

∂θ2

]

θ=θ0

P−→
[
∂2Wθ

∂θ2

]

θ=θ0

. (6.9)

The consistency of θ̂, the continuity of J(θ), expressions (6.8) and (6.9), and a
Taylor expansion of Qθ around the point θ̂ can be used to evaluate the expectation of
Qθ at θ = θ0 and Wθ at θ = θ̂:

EQθ0 = EQθ̂ +
a + 1

2
E

[(
θ0 − θ̂

)2

J(θ0)
]

+ ERn ≡ Wθ0

and
EWθ̂ = E

{
Qθ̂ + (a + 1)

(
θ̂ − θ0

)2

J(θ0) + Rn

}
(6.10)

so that the quantity within the brackets is an unbiased estimator of the mean expected
overall discrepancy. Recall that the estimator θ̂ is a consistent and asymptotically
normal estimator of the parameter θ. For such an estimator one could select the value
of θ that either maximizes the loglikelihood function (θ̂, MLE method) or minimizes
the BHHJ discrepancy or equivalently the quantity Wθ (θ̂a, Basu method). In the latter
case the consistency as well as the asymptotic normality of the estimator θ̂a is verified
by Basu et al. (1998).

The previous results can be easily extended to the multivariate case. This extension
is possible since under certain regularity conditions (Basu et al., 1998) the p-dimensional

estimator θ̂a =
(
θ̂a1, . . . , θ̂ap

)′
is consistent for θ0 = (θ01, . . . , θ0p)

′ and
√

n(θ̂a − θ0) is
asymptotically multivariate normal with vector mean 0 and variance–covariance matrix
J−1(θ0)K(θ0)J−1(θ0) where

J (θ0) =
∫

uθ0 (z)u′
θ0

(z)f
1+a

θ0
(z) dz
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and
K (θ0) =

∫
uθ0 (z)u′

θ0
(z)f

1+2a

θ0
(z) dz − ξξ′, (6.11)

ξ =
∫

uθ0 (z) f
1+a

θ0
(z) dz, uθ (z) = (∂/∂θ) (log (fθ (z))), and ψ′ the transpose of the

vector ψ.
As a result, for a p-dimensional parameter θ, we can see that the p-dimensional

unbiased estimator of the mean expected overall discrepancy takes the form:

Qθ̂a
+ (a + 1)

(
θ̂a − θ0

)′
J (θ0)

(
θ̂a − θ0

)
+ o(||θ̂a − θ0||2) (6.12)

which for p = 1 reduces to the corresponding univariate estimator (see (6.10)).
Consider now the case that the candidate model fθ comes from the family of the

p-variate normal distribution where θ is the mean vector and θ̂a is obtained by mini-
mizing (6.2) (Basu method). Then, it can be shown that (see Basu et al., 1998)

J (θ0) = (2π)−(a/2) (1 + a)−(1+(p/2))
Σ−(1+(a/2))

and

Var
(
θ̂a

)
=
(

1 +
a2

1 + 2a

)1+(p/2)

Σ

so that

J (θ0) = (2π)−(a/2)

(
1 + a

1 + 2a

)1+(p/2)

Σ−(a/2)
[
Var

(
θ̂a

)]−1

,

where Σ is the p×p asymptotic covariance matrix of the maximum likelihood estimator
of the p-dimensional parameter θ0. Taking into consideration the fact that n · o(||θ̂a −
θ0||2) = oP (1) since

√
n(θ̂a − θ0) is asymptotically normal, we have that

n
(
θ̂a − θ0

)′
Σ−(a/2)

[
Var

(
θ̂a

)]−1 (
θ̂a − θ0

)
(6.13)

has approximately a X 2
p distribution for a small. Then, the divergence information

criterion defined as the asymptotically unbiased estimator of the mean expected overall
discrepancy is introduced in the theorem below which is due to Mattheou et al. (2009).

Theorem 1. Assume that the candidate model comes from the family of the p-variate
normal distribution with θ the mean vector and θ̂a the estimator obtained by minimiz-
ing (6.2). An asymptotically unbiased estimator of n-times the mean expected overall
discrepancy evaluated at θ̂a is given by

DIC = nQθ̂a
+ (a + 1) (2π)−(a/2)

(
1 + a

1 + 2a

)1+(p/2)

p. (6.14)

The DIC criterion as it has been derived in the above theorem uses as an estimator
of the unknown parameter the estimator obtained by minimizing (6.2) (Basu method).
As mentioned earlier, the researcher may alternatively choose to use the maximum
likelihood method (θ̂, MLE method) in which case the correction term is adjusted
accordingly. Indeed, in this case
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J (θ0) = (2π)−(a/2) (1 + a)−(1+(p/2))
Σ−(1+(a/2))

= (2π)−(a/2) (1 + a)−(1+(p/2))
Σ−(a/2)

[
Var

(
θ̂
)]−1

since Var
(
θ̂
)

= Σ is the covariance matrix of the maximum likelihood estimator. Using

(6.12) and the fact that (6.13) follows again approximately a X 2
p distribution it is easy

to see that the adjusted DIC is given by

DICMLE = nQθ̂ + (2π)−(a/2) (1 + a)−(p/2)
p. (6.15)

By comparing the correction terms of DIC and DICMLE we observe that they are
similar in the sense that for small a

(1 + a)
(

1 + a

1 + 2a

)1+(p/2)

� (1 + a)−(p/2) < 1.

In order to put into the proposed criterion some extra penalty for too large models
(models with large number of parameters) we can replace the above term(s) by a
(common) quantity larger than 1. Observe that for small values of a the denominator
of the left-hand side of the above expression can be assumed to be close to 1 and
therefore it can be disregarded. As a result both of the above terms can be replaced
in DIC and DICMLE by the remaining part of the expression on the left-hand side,
namely (1 + a)2+(p/2). Observe that the above quantity is now larger than 1 so that
the penalty term of the criterion will be larger for large values of p. Both criteria are
adjusted accordingly, and in fact now they are both given by the same corrected formula
(although θ̂ is obtained by different estimating methods), namely

DICc = nQθ̂ + (2π)−(a/2) (1 + a)2+(p/2)
p. (6.16)

Both the MLE and the Basu estimating methods have a number of advantages. In
particular, in linear models the MLE method is computationally faster than the Basu
method. This is due to the fact that the MLE method is given in closed form for such
models as opposed to the Basu method which is not in closed form and as a result we
rely on a numerical method to obtain the desired estimator. On the other hand the Basu
estimating method as mentioned earlier has been proved to work better than the MLE
in some contexts due to its robust features. Theoretically speaking both estimating
methods result in equally good estimators since both satisfy the standard properties
required by such estimators, namely the consistency and the asymptotic normality.
The practical implications of these two forms of the DIC criterion become evident in
Section 6.6 where simulations are performed.

6.5 Lower bound of the MSE of prediction of DIC

One of the main issues in model selection is the notion of asymptotic efficiency (Shibata,
1980, 1981). The asymptotic efficiency deals with the selection of a model with finitely
many variables that provides the best possible approximation of the true model with
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infinitely many variables with respect to the mean squared error (MSE) of prediction.
The issue of asymptotic efficiency is of great interest whenever the object of the analysis
is a model selection that yields a good inference. Here we provide a lower bound for
the mean squared error of prediction and in particular we show that the MSE of
prediction of DIC is never below the so-called Average Mean Squared Error (Average
MSE) of prediction. For the evaluation of the MSE the original set of n observations
is used for the estimation of the parameters and the one-step-ahead prediction is used
for measuring the accuracy of the selection. Following Shibata’s assumption (Shibata,
1981) infinitely many independent variables are assumed so that the design matrix X
is an n×∞ matrix.

Let X be the design matrix of the model

Y = Xβ + ε,

where β = (β0, β1, . . .)
′, the vector of unknown coefficients, ε ∼ N(0, σ2I), the error

sequence, and I the infinite-dimensional identity matrix.
Let

V (j) =
{
c (j) , such that c (j) =

(
c0, 0, . . . , cj1 , 0, . . . , cjkj

, 0, . . .
)′}

be the subspace that contains the kj + 1 parameters involved in the model and let

β(n) =
(
β0, 0, . . . , βj1 , 0, . . . , βjkj

, 0, . . .
)′

be the projection of β on V (j).
The prediction Ŷ = (Ŷ1, . . . , Ŷn)′ is given by Ŷ = Xjβ̂, where the estimator of β(n)

obtained through a set of observations (Xij1 , . . . , Xijkj
, Yi), i = 1, 2, . . . , n and for the

model selected by DIC, is denoted by

β̂ =
(
β̂0, 0, . . . , β̂j1 , 0, . . . , β̂j2 , 0, . . . , β̂jkj

, 0, . . .
)′

.

Observe that the design matrix Xj is an n×∞ matrix where only the columns j1, . . . , jkj

have entries different from zero.
The mean squared error of prediction (up to a constant) and the average MSE of

prediction are defined, respectively, by

Sn(j) = E
[(

Ŷ − Y |Xj

)′ (
Ŷ − Y |Xj

)]
− nσ2

and
Ln(j) ≡ E (Sn(j)) .

We now prove that the above two quantities take the form given in the following lemma.
It is not difficult to see that

E(Ŷ − Y |Xj )′(Ŷ − Y |Xj ) = E
(
(β̂ − β)′X′

jXj(β̂ − β) + ε′ε− 2ε′Xj(β̂ − β)|Xj

)

so that under the notation and conditions of this section we have that
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Sn(j) =
∥∥∥β̂ − β

∥∥∥
2

M(j)
and Ln(j) = E

∥∥∥β̂ − β
∥∥∥

2

M(j)
,

where M (j) = X′
jXj and ‖A‖2

R = A′RA.
The lemma below provides a lower bound for the MSE of prediction. In particular,

we show that Sn(j) is asymptotically never below the quantity

Ln (j∗) = min
j

Ln(j).

Let Ln (j∗) = minj Ln(j). Assume also that for 0 < δ < 1,

lim
n→∞

∑
j

[(1 − δωn (j)) exp (δωn (j))](kj+1)/2 = 0,

where ωn (j) =
Ln (j)

(kj + 1)g (α, kj + 1)σ2

and g(a,m) =
(
1 + a2/(1 + 2a)

)((m/2)+1). Then, for every 0 < δ < 1,

lim
n→∞P

[
Sn (j)
Ln (j∗)

> 1 − δ

]
= 1.

Proof. For every 0 < δ < 1 and for every j and using the fact that

‖β̂ − β‖2
M(j) = ‖β̂ − β(n)‖2

M(j) + ‖β(n) − β‖2
M(j)

we have

P

[
Sn (j)
Ln (j∗)

≤ 1 − δ

]
≤ P

[
Sn (j)
Ln (j)

≤ 1 − δ

]
≤
∑

j

P

⎡
⎢⎢⎣

∥∥∥β̂ − β
∥∥∥

2

M(j)

Ln (j)
≤ 1 − δ

⎤
⎥⎥⎦

=
∑

j

P

⎡
⎢⎢⎣

∥∥∥β̂ − β(n)
∥∥∥

2

M(j)
+
∥∥β(n) − β

∥∥2

M(j)

Ln (j)
≤ 1 − δ

⎤
⎥⎥⎦

=
∑

j

P

[∥∥∥β̂ − β(n)
∥∥∥

2

M(j)
≤ (1 − δ)Ln (j) −

∥∥∥β(n) − β
∥∥∥

2

M(j)

]
.

(6.17)

The limiting covariance matrix of n1/2θ̂ is a multivariate normal random variable

Np (θ0, g(α, p)Σ) ,

where

g (α, p) =
(

1 +
α2

1 + 2α

)p/2+1

.

Then, in this case we have
∥∥∥β̂ − β(n)

∥∥∥
2

M(j)
=
(
β̂ − β(n)

)′ {
σ2g (α, kj + 1)M (j)

}−1
(
β̂ − β(n)

)
σ2g (α, kj + 1)

∼ σ2g (α, kj + 1)X 2
kj+1

(6.18)
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and

Ln(j) = E
∥∥∥β̂ − β

∥∥∥
2

M(j)
=
∥∥∥β − β(n)

∥∥∥
2

M(j)
+ E

∥∥∥β̂ − β(n)
∥∥∥

2

M(j)

=
∥∥∥β − β(n)

∥∥∥
2

M(j)
+ (kj + 1) g (α, kj + 1)σ2,

where X 2
k is a chi-square distribution with k degrees of freedom. Using (6.18) we have

that (6.17) is bounded by
∑

j

P
[
X 2

kj+1 ≤ (kj + 1) − δ(kj + 1)ωn(j)
]

≤
∑

j

[exp (δωn (j)) (1 − δωn (j))](kj+1)/2

where the last inequality follows from the fact that for k > δ (see Shibata, 1981)

P
[X 2

k ≤ k − δ
] ≤ exp

(
δ

2

)(
1 − k−1δ

)(k/2) ≤ exp
(−δ2

4k

)
. (6.19)

The result follows immediately.

6.6 Simulations

In order to check the performance of the DIC criterion proposed in Section 6.4 we
performed a simulation study using (a) the divergence information criterion based on
the Basu method, (b) the corrected DICc based on the MLE method, (c) the Akaike
information criterion, (d) the Bayesian information criterion, (e) the AIC for small
sample sizes, and (f) the AIC with the estimator of the variance obtained by the
minimization of the BHHJ measure.

The simulation study has the following characteristics. Fifty observations of 4
variables X1,X2,X3,X4 were independently generated from the normal distributions
N(0, 3), N(1, 3), N(2, 3), and N(3, 3), correspondingly. Sample correlation coefficients
between these variables were less than 0.13 (in absolute values) in all cases and the
independence is verified since the test of independence gives a p-value <0.05 in all
cases. The first two of these variables were planned to be used to generate values of Yi,
i = 1, . . . , 50 using the following model specification,

Yi = a0 + a1X1,i + a2X2,i + εi

with a0 = a1 = a2 = 1 and εi ∼ N(0, 1). Due though to contamination of the above
model by 10% from the model

Yi = 1 + X1,i + X2,i + ε∗i

with ε∗i ∼ N(5, 1) the simulated values were generated from the model
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Yi = 0.9(a0 + a1X1,i + a2X2,i + εi) + 0.1 (a0 + a1X1,i + a2X2,i + ε∗i ) .

The reason for introducing contamination into the simulation study was to put into
a test the robust features of the BHHJ measure. In other words, we wanted to force
the DIC to perform to the fullest extent and activate its prime feature according to
which when a > 0, observations significantly discrepant with respect to the model get
an almost zero weight and therefore their contribution to the final selection is minimal.

With a set of four possible regressors there are 24 − 1 = 15 possible specifications
that include at least one regressor. These 15 possible regression specifications constitute
the set of candidate models for the experiment. As a result the candidate set consists
of the full model (X1,X2,X3,X4) given by

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + ε

as well as all 14 possible subsets of the full model consisting of one (Xj1), two
(Xj1 ,Xj2), and three (Xj1 ,Xj2 ,Xj3), with ji ∈ {1, 2, 3, 4}, i = 1, 2, 3 of the four re-
gressors X1,X2,X3,X4. Fifty such experiments were performed with the intention to
select the best model among the available candidate models.

First we consider the standard AIC criterion given by

AIC = n log σ̂2
p + 2 (p + 2) ,

where n is the sample size, p the number of variables of the model, and σ̂2
p the estimate

of the variance of the model with p variables.
We also consider the corrected AIC criterion introduced by Hurvich and Tsai (1989)

and used in small sample situations. The corrected AIC is given by

AICc = n log σ̂2
p +

n(n + p + 1)
n− p− 3

.

Another variant of the AIC criterion used in the simulations is the one given by

AICa = n log σ̂2
p,a + 2 (p + 2) ,

where σ̂2
p,a is the estimator of the variance σ2

p,a of the model with p variables which
is obtained by the minimization of the BHHJ measure. AICa is evaluated for a =
0.01, 0.05, and 0.10.

From the various Bayesian approaches we have chosen to include in the simulations
the Bayesian information criterion (Schwarz, 1978) because of its consistency property.
The BIC is given by

BIC = n log σ̂p
2 + (p + 2)log n.

Finally the DIC is used with both corrected and uncorrected penalty terms and
with both estimating methods, namely the Basu and the MLE methods. The original
DIC (uncorrected) based on the Basu method (expression (6.14)), is used with index
a = 0.01, 0.05, and 0.10 and the corrected DICc based on the MLE method (expression
(6.16)), with a = 0.01, 0.05, 0.10, and 0.15. To make the notation precise we use in the
sequel, DICBHHJ for the former and DICMLE

c for the latter case.
For each of the 50 experiments the value of each of the above model selection criteria

was calculated for each of the 15 possible regression specifications under consideration.
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As a result, for each of the 50 experiments and for each model selection criterion
the 15 candidate models were ranked from 1st to 15th according to the value of the
criterion. Recall that the model chosen by a criterion is the one for which the value of
the criterion is the lowest among all 15 candidate models. Table 6.1 presents for each
selection criterion, the proportion of times each candidate model has been selected
by the criterion. Notice that only 4 of the 15 candidate models have been ranked
1st and therefore selected, namely the true model (X1,X2), and the “larger” models
(X1,X2,X3), (X1,X2,X4), and (X1,X2,X3,X4). Obviously, all selections contain the
correct variables of the model, namely X1 and X2.

Table 6.1. Proportion of the selected models by model selection criteria (n = 50)

Criteria Variables % Variables % Variables %

AIC AIC X1, X2 80 X1, X2, X4 20
AICc X1, X2 88 X1, X2, X4 12

BIC BIC X1, X2 96 X1, X2, X4 4

AICa AIC0.01 X1, X2 80 X1, X2, X4 16 X1, X2, X3 4
AIC0.05 X1, X2 76 X1, X2, X4 16 X1, X2, X3 8
AIC0.10 X1, X2 68 X1, X2, X4 16 X1, X2, X3 or

X1, X2, X3, X4 16

DICBHHJ DIC0.01 X1, X2 80 X1, X2, X4 20
DIC0.05 X1, X2 76 X1, X2, X4 20 X1, X2, X3 4
DIC0.10 X1, X2 72 X1, X2, X4 16 X1, X2, X3 or

X1, X2, X3, X4 12

DICMLE
c DIC0.01 X1, X2 80 X1, X2, X4 20

DIC0.05 X1, X2 80 X1, X2, X4 20
DIC0.10 X1, X2 88 X1, X2, X4 12
DIC0.15 X1, X2 96 X1, X2, X4 4

Observe that the DICBHHJ criterion has the same rate of success as the AIC
criterion, namely 80%. The AICc has a higher success rate (88%) which could
be attributed to the relative small sample size used (n = 50). The AIC crite-
rion with index a has the smaller rate of success (less than 80%). In fact observe
that the larger the value of the index a the worse the performance of the resulting
criterion.

On the other hand both BIC and DICMLE
c with a = 0.15 have the best selec-

tion rate (96%) among all competing selection criteria. It should be noted that for
DICBHHJ the selection rate improves as a tends to 0 while for DICMLE

c the rate
improves as a increases up to a maximum value. This behavior is due to the different
form of the correction term. Indeed, DICBHHJ decreases as a function of the index a
while DICMLE

c is an increasing function of a. As a result and as a (and p) increases,
the DICMLE

c criterion puts a heavier penalty in large models (in models where the
dimension p of the parameter is large) and therefore for too large values of a (and p)
we end up underestimating the true model. Recall that for a tending to zero the BHHJ
measure on which the DIC is based reduces to the Kullback–Leibler measure on which
the AIC criterion is based. As a result, it is natural that AIC, DICBHHJ for a = 0.01
and DICMLE

c for a = 0.01 produce similar results.
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The performance of DICMLE
c seems to be superior to that of DICBHHJ not only

because of its higher rate of success but also because it is based on the MLE method
which is computationally faster than the Basu method since the former is provided in
closed form while the latter relies on a numerical method for obtaining the required
estimator.

In conclusion, the DICBHHJ expresses a good medium sample size performance
which is comparable to the traditional AIC criterion while the DICMLE

c is very pow-
erful and comparable to BIC.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. Proc. of the 2nd Intern. Symposium on Information Theory (Petrov, B. N.
and Csaki, F., Eds.), Akademiai Kaid’o, Budapest.

Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one
distribution from another. J. R. Statist. Soc. B, 28, 131–142.

Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998). Robust and efficient
estimation by minimising a density power divergence. Biometrika, 85, 549–559.

Bengtsson, T. and Cavanaugh. J. E. (2006). An improved Akaike information criterion
for state-space model selection. Comput. Statist. Data Anal., 50, 2635–2654.

Cavanaugh, J. E. (2004). Criteria for linear model selection based on Kullback’s sym-
metric divergence, Austral. N. Zeal. J. Statist., 46, 257–274.

Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. J. R. Statist.
Soc., 5, 440–454.

Csiszar, I. (1963). Eine informationstheoretische ungleichung and ihre anwendung auf
den beweis der ergodizitat von markoffischen ketten. Magyar Tud. Akad. Mat. Kutato
Int. Kozl., 8, 85–108.

Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in
small samples. Biometrika, 76, 297–307.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
Proc. Roy. Soc. A, 186, 453–561.

Kagan, A. M. (1963). On the theory of Fisher’s amount of information (in Russian).
Doklady Academii Nauk SSSR, 151, 277–278.

Konishi, S. and Kitagawa, G. (1996). Generalised information criteria in model selec-
tion. Biometrika, 83, 875–890.

Koukouvinos, C., Mylona, K., and Vonta, F. (2008). A comparative study of variable
selection procedures applied in high dimensional medical problems. J. Appl. Prob.
Statist., 3 (2), 195–209.

Kullback, S. and Leibler, R. (1951). On information and sufficiency. Ann. Math. Statist.,
22, 79–86.

Mattheou, K., Lee, S., and Karagrigoriou, A. (2009). A model selection criterion based
on the BHHJ measure of divergence. J. Statist. Plan. Infer. 139, 128–135.

Renyi, A. (1961). On measures of entropy and information. Proc. 4th Berkeley Symp.
on Math. Statist. Prob., 1, 547–561, University of California Press, Berkeley.



6 Measures of Divergence in Model Selection 65

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6, 461–464.
Shang, J. (2008). Selection criteria based on Monte Carlo simulation and cross valida-

tion in mixed models. Far East J. Theor. Statist., 25, 51–72.
Shang, J. and Cavanaugh, J. E. (2008). Bootstrap variants of the Akaike information

criterion for mixed model selection. Comput. Statist. Data Anal., 52, 2004–2021.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian

measures of model complexity and fit. J. R. Statist. Soc. B, 64, 583–639.
Shibata, R. (1980). Asymptotically efficient selection of the order of the model for

estimating parameters of linear process. Ann. Statist., 8, 147–164.
Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68, 45–54.
van der Linde, A. (2005). DIC in variable selection. Statist. Neerlandica, 59, 45–56.
Wei, C. Z. (1992). On predictive least squares principles. Ann. Statist., 20, 1–42.



7

High Leverage Points and Outliers in Generalized
Linear Models for Ordinal Data

M.C. Pardo

Department of Statistics and O.R (I), Complutense University of Madrid, Spain

Abstract: A generalized hat matrix based on φ-divergences is proposed to determine
how much influence or leverage each data value can have on each fitted value to a
generalized linear model for ordinal data. After studying for evidence of points where
the data value has high leverage on the fitted value, if such influential points are
present, we must still determine whether they have had any adverse effects on the fit.
To evaluate it we propose a new family of residuals based on φ-divergences. All the
diagnostic measures are illustrated through the analysis of real data.

Keywords and phrases: Generalized linear models, ordinal multinomial data, min-
imum φ-divergence estimation, hat matrix, leverage points, outliers

7.1 Introduction

Generalized linear models for ordinal multinomial data (Green, 1984; McCullagh, 1980;
McCullagh and Nelder, 1989; Fahrmeir and Tutz, 2001; Liu and Agresti, 2005) are
a powerful technique for relating a dependent ordered categorical variable to both
categorical and continuous independent variables. In practice, however, the model-
building process can be highly influenced by peculiarities in the data. For univariate
generalized models, Cook (1986), Cook and Weisberg (1982), McCullagh and Nelder
(1989), Thomas and Cook (1990), Pregibon (1981), and Williams (1987) have discussed
diagnostic tools for detecting outliers and leverage points. Lesaffre and Albert (1989)
have extended Pregibon’s regression diagnostics to the case where several groups are
envisaged. A wider extension was made by Fahrmeir and Tutz (2001) for multivariate
extensions of generalized linear models.

There has been extensive development of diagnostic measures for models fitted by
maximum likelihood. Bedrick and Tsai (1993) used the family of power divergence
statistics (Cressie and Read, 1984) to construct a diagnostic for dose-response models.
In this chapter we focus on ordinal multicategorical response variables and multino-
mial models. We show that maximum likelihood and deviance-based diagnostics for
multivariate extensions of generalized linear models (Fahrmeir and Tutz, 2001) extend
naturally to the φ-divergence family defined by Ali and Silvey (1966).

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 67
and Technology, DOI 10.1007/978-0-8176-4799-5 7,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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In Section 7.2, we introduce the generalized linear models for ordinal multinomial
data (GLM), the relevant notation, and an alternative to the maximum likelihood which
is the usual method of fitting these models. Measures for detecting leverage points are
presented in Section 7.3, and residuals in Section 7.4, both based on the φ-divergence
measure. For illustration, the diagnostics are applied to a dataset in Section 7.5.

7.2 Background and notation for GLM

Let Y be the response variable with J possible values, which for simplicity are labeled
1, ..., J, which is observed together with m explanatory variables xT = (x1, ..., xm) ∈
R

m. Given x, Y is a multinomial random variable with probability vector πT =
(π1, ..., πJ−1) and πr = P (Y = r | xT ), r = 1, ..., J − 1.

Suppose that the xT
i takes N different values,

xT
i = (xi1, ..., xim) , i = 1, ..., N,

the multinomial generalized linear model supposes that μi = E
[
Y | xT

i

]
is related to

the linear predictor
ηi = ZT

i β

by
μi = h (ηi) = h

(
ZT

i β
)
, i = 1, ..., N,

where h is a vectorial response function, Zi is a p × (J − 1)-design matrix obtained
from xi and β is a p-dimensional vector of unknown parameters.

Let n (xi) be the number of observations considered when the explanatory variable
xT has the value xT

i , in such a way that if xT is fixed at xT
i we have a multinomial

distribution with parameters
(
n (xi) ;π1

(
ZT

i β
)
, ..., πJ−1

(
ZT

i β
))

.
Different models are obtained when we specify the response function and the design

matrix such as cumulative models and sequential models among others (see Fahrmeir
and Tutz, 2001).

Suppose we observe the sample Y 1 = y1, ...,Y N = yN jointly with the explanatory
variables x1, ...,xN ; the usual way to estimate the vector β of unknown parameters is
using the maximum likelihood estimator (MLE). To obtain it, we maximize the log-
likelihood function which is equivalent to minimizing the Kullback–Leibler divergence,
DKullback, between

p̂ =
(y11

n
, ...,

yJ1

n
,
y12

n
, ...,

yJ2

n
, ...,

y1N

n
, ...,

yJN

n

)T

,

with ysi the number of observations that takes value s, s = 1, ..., J given the explanatory
variable xT

i , i = 1, ..., N, n = n (x1) + · · · + n (xN ) and

p (β) =
(

n (x1)
n

π̃
(
ZT

1 β
)T

, ...,
n (xN )

n
π̃
(
ZT

Nβ
)T
)T

being π̃
(
ZT

i β
)T

=
(
π1

(
ZT

i β
)
, ..., πJ

(
ZT

i β
))

. Therefore, the MLE, β̂, can be rewrit-
ten as
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β̂ = arg min
β∈Θ

DKullback (p̂,p (β)) (7.1)

with
Θ =

{
βT = (β1, ..., βp) : βs ∈ R, s = 1, .., p

}

and

DKullback (p̂,p (β)) =
J∑

l=1

N∑
i=1

yli

n
log

yli

n

πl

(
ZT

i β
)

n(xi)
n

.

A wide generalization of the Kullback–Leibler divergence measure is the φ-divergence
measure defined by Ali and Silvey (1966),

Dφ(p̂,p(β)) =
J∑

l=1

N∑
i=1

πl

(
ZT

i β
) n(xi)

n
φ

⎛
⎝ yli/n

πl

(
ZT

i β
)
n(xi)/n

⎞
⎠ (7.2)

where φ ∈ Φ and Φ is the class of all convex functions φ (x) , x > 0, such that at
x = 1, φ (1) = φ′ (1) = 0, φ′′ (1) > 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) =
p limu→∞ φ (u) /u. For more details about φ-divergences see Vajda (1989) and Pardo
(2006). As a particular case, the Kullback–Leibler divergence is obtained for φ (x) =
x log x− x + 1.

Therefore, as a natural extension of the MLE we define now the minimum φ-
divergence estimator replacing the Kullback–Leibler divergence in (7.1) by the φ-
divergence measure; that is to say

β̂φ = arg min
β∈Θ

Dφ (p̂,p (β)) . (7.3)

Pardo (2008), under mild regularity conditions and assuming that n (xi) → ∞,
i = 1, ..., N such that n (xi) /n → λi > 0, i = 1, ..., N, proved that

√
n
(
β̂φ − β0

)
L→

n→∞ N
(
0, IF,λ

(
β0
)−1

)

where β0 is the true value of the parameter β, IF,λ (β) = limn→∞ IF,n (β) being

IF,n (β) = ZVn (β) ZT

where Z = (Z1, ...,ZN ) and V n (β) = Diag (V n,1 (β) , ...,V n,N (β)) being

V n,i (β) =
n (xi)

n

∂π
(
ZT

i β
)

∂
(
ZT

i β
) Σ−1

i (β)
∂π

(
ZT

i β
)

∂
(
ZT

i β
)T

(7.4)

and Σ−1
i (β) = (vsr (β))s,r=1,...,J−1 with

vsr (β) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

πr

(
ZT

i β
) +

1

πJ

(
ZT

i β
) r = s

1

πJ

(
ZT

i β
) r 
= s

.
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7.3 The hat matrix: Properties

In what follows, we assume that we have fitted a GLM by minimum φ-divergence
estimation. After fitting the model and prior to drawing inferences from it, it is very
useful to determine how much leverage each datum can have. In this section we consider
a generalized form of the hat matrix based on minimum φ-divergence estimation. The
hat matrix yields a measure for the leverage of data.

Definition 1. The GLM hat matrix, where the parameters are estimated by using the
minimum φ2-divergence estimator defined in (7.3) with φ = φ2 ∈ Φ, is given by

H
(
β̂φ2

)
= V n

(
β̂φ2

)1/2

ZT IF,n

(
β̂φ2

)−1

ZV n

(
β̂φ2

)1/2

.

The square matrices H and M = I − H are projection block matrices, where
each block Hij

(
β̂φ2

)
and M ij

(
β̂φ2

)
(i, j = 1, ..., N) is (J − 1)-dimensional. Some

properties of the GLM hat matrix are given in the following proposition.

Proposition 1. It holds that

(i)
0 ≤ Det

(
M ii

(
β̂φ2

))
< 1, i = 1, ..., N

(ii)
Trace

(
H
(
β̂φ2

))
= p

Proof. (i) We denote by Z(i) the matrix,

ZT
(i) =

(
ZT

1 , ...,ZT
i−1,Z

T
i+1, ...,Z

T
N

)
(J−1)(N−1)×p

,

and by Ṽ
(i) (β) the matrix

Diag
(
Ṽ 1 (β) , ..., Ṽ i−1 (β) , Ṽ i+1 (β) , ..., Ṽ N (β)

)

with

Ṽ j (β) = n(xj)
∂π

(
ZT

j β
)

∂
(
ZT

j β
) Σ−1

j (β)
∂π

(
ZT

j β
)

∂
(
ZT

j β
)T

.

The dimension of Ṽ
(i) (β) is (N − 1) (J − 1) × (N − 1) (J − 1) . Then Z(i) and

Ṽ
(i)
(
β̂φ2

)
are the matrices obtained from Z and

Ṽ
(
β̂φ2

)
= Diag

(
Ṽ 1

(
β̂φ2

)
, ..., Ṽ N

(
β̂φ2

))

by deleting the parts Zi and Ṽ i

(
β̂φ2

)
corresponding to the ith observation.

Since
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Z(i)Ṽ
(i)
(
β̂φ2

)
ZT

(i) =
N∑

j=1
j �=i

ZjṼ j

(
β̂φ2

)
ZT

j

= ZṼ
(
β̂φ2

)
ZT − ZiṼ i

(
β̂φ2

)
ZT

i

then

Det
(

Z(i)Ṽ
(i)
(
β̂φ2

)
ZT

(i)

)
= Det

(
ZṼ

(
β̂φ2

)
ZT

)

× Det
(

I−
(
ZṼ

(
β̂φ2

)
ZT

)−1 (
ZiṼ i

(
β̂φ2

)
ZT

i

))

= Det
(
ZṼ

(
β̂φ2

)
ZT

)
Det

(
I−Ṽ i

(
β̂φ2

)1/2

ZT
i

×
(
ZṼ

(
β̂φ2

)
ZT

)−1

ZiṼ i

(
β̂φ2

)1/2
)

= Det
(
ZṼ

(
β̂φ2

)
ZT

)
Det

(
I − Hii

(
β̂φ2

))

= Det
(
ZṼ

(
β̂φ2

)
ZT

)
Det

(
M ii

(
β̂φ2

))
.

Therefore,

Det
(

Z(i)Ṽ
(i)
(
β̂φ2

)
ZT

(i)

)

Det
(
ZṼ

(
β̂φ2

)
ZT

) =
(

Det
(
M ii

(
β̂φ2

))
(J−1)×(J−1)

)
, i = 1, ..., N.

The matrix M ii
(
β̂φ2

)
is idempotent and hence its eigenvalues are either 0 or 1

(Rao, 1973, p. 72). But this matrix is also symmetric and

Diag(d1, ..., dJ−1) = QT M ii
(
β̂φ2

)
Q

(Harville, 1997, p. 535), where Q is orthogonal and d1, ..., dJ−1 are the eigenvalues
of M ii

(
β̂φ2

)
. Then

0 ≤ Det(Diag(d1, ..., dJ )) = Det
(
QT M ii

(
β̂φ2

)
Q
)

= Det
(
M ii

(
β̂φ2

))
.

The matrix M ii
(
β̂φ2

)
=
(
mrs

(
β̂φ2

))
r,s=1,...,J−1

is idempotent and symmetric,

such that
mjj

(
β̂φ2

)(
1 − mrs

(
β̂φ2

))
=
∑
i�=j

mij

(
β̂φ2

)2

and 0 < mjj

(
β̂φ2

)
≤ 1. Then (Rao (1973), page 74) we have

Det
(
M ii

(
β̂φ2

))
≤

J−1∏
i=1

mii < 1.
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(ii) The matrix H
(
β̂φ2

)
is idempotent since

ZV
(
β̂φ2

)1/2

V
(
β̂φ2

)1/2

ZT

coincides with IF,n

(
β̂φ2

)
. From a result in Rao (1973, p. 28)

Trace
(
H
(
β̂φ2

))
=

N∑
i=1

Trace
(
Hii

(
β̂φ2

))
= range

(
H
(
β̂φ2

))
= p.

The diagonal elements M ii
(
β̂φ2

)
can be used to find leverage points. A leverage

point is characterized by the fact to increase significantly the variability of the estima-
tions when it is removed from the sample. The variability of β̂φ2 is given by the volume
of the asymptotic confidence ellipsoid for β0 which (see Cramér, 1946, Section 11.2) is
proportional to

(
Det

(
ZṼ

(
β̂φ2

)
ZT

)−1
)1/2

.

If the explicative variable xi is deleted, then the volume of the confidence ellipsoid
is proportional to

(
Det

(
Z(i)Ṽ

(i)
(
β̂φ2

)
ZT

(i)

)−1
)1/2

where the subscript (i) indicates that the xi contribution to the corresponding matrix
has been removed. A point with a value near zero of

Det
(
M ii

(
β̂φ2

))
=

Det
(

Z(i)Ṽ
(i)
(
β̂φ2

)
ZT

(i)

)

Det
(
ZṼ

(
β̂φ2

)
ZT

)

indicates that the deletion of xi substantially increases the volume. Therefore, a point
with a value of

Det
(
M ii

(
β̂φ2

))

near 0 has a stabilizing effect on the estimated coefficients and it is defined as a leverage
point for the GLM.

On the other hand, taking into account the second property, the average size of an
element of the diagonal of the hat matrix will be p/N . A reasonable rule of thumb for
detecting leverage points is to consider that xi is a leverage point if

Trace
(
Hii

(
β̂φ2

))
> 2p/N.
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7.4 Outliers

If leverage points are present, we must still determine whether they have any adverse
effects on the fit, that it is to say, whether they are outliers. In that case, such a
leverage point will be influential. The generalized residuals frequently used are the
Pearson residuals defined by Jorgensen (1983) as RT =

(
rT

1 , ..., rT
N

)
with

ri = n (xi)
−1/2 Σ−1/2

i

(
β̂
)(

yi − n (xi)π
(
ZT

i β̂
))

with yi = (y1i, ..., yJ−1i)
T. A generalization of ri is obtained substituting the MLE by

the minimum φ2-divergence estimator

rφ2
i = n (xi)

−1/2 Σ−1/2
i

(
β̂φ2

)
e φ2

i , i = 1, ..., N

with

e φ2
i =

(
yi − n (xi)π

(
ZT

i β̂φ2

))
, i = 1, ..., N.

If we denote by

Si

(
β̂φ2

)
=
(
n (xi)Σi

(
β0
))−1/2

eφ2
i ,

where Σi (β) = (σsr (β))s,r=1,...,J−1 with

σsr (β) =

⎧
⎨
⎩

πr

(
ZT

i β
)(

1 − πr

(
ZT

i β
))

r = s

-πr

(
ZT

i β
)
πs

(
ZT

i β
)

r 
= s
(7.5)

being n (xi)Σi (β) the covariance matrix of Y i and

eφ2
i = I(J)ẽ

φ2
i ,

being
ẽ φ2

i =
(
ỹi − n (xi) π̃

(
ZT

i β̂φ2

))

with ỹi = (y1i, ..., yJi)
T and I(J) the matrix obtained from the identity matrix IJ×J

by deleting the last row, then we have

Cov
(
Si

(
β̂φ2

))
= Cov

(
n (xi)

−1/2 Σi

(
β0
)−1/2

I(J) Diag
(
π̃
(
ZT

i β0
)1/2

)

× Diag
(
π̃
(
ZT

i β0
)−1/2

)
ẽφ2

i

)

= Cov
(
Σi

(
β0
)−1/2

I(J) Diag
(
π̃
(
ZT

i β0
)1/2

)
r̃φ2

i

)

≈ Σi

(
β0
)−1/2

I(J) Diag
(
π̃
(
ZT

i β0
)1/2

)(
Diag

(
π̃
(
ZT

i β0
)−1/2

)

× Σ
π̃
(
ZT

i β0
)Diag

(
π̃
(
ZT

i β0
)−1/2

)
− (

C0
λ,i

)T
ZT

i IF,λ

(
β0
)−1

× ZiC
0
λ,i

)
Diag

(
π̃
(
ZT

i β0
)1/2

)
IT

(J) Σi

(
β0
)−1/2
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= Σi

(
β0
)−1/2

I(J) Σ
π̃
(
ZT

i β0
)IT

(J)

︸ ︷︷ ︸
Σi(β0)

Σi

(
β0
)−1/2

−Σi

(
β0
)−1/2

I(J) Diag
(
π̃
(
ZT

i β0
)1/2

)(
C0

λ,i

)T

︸ ︷︷ ︸
ZT

i IF,λ

(
β0
)−1

Zi×

(
λ

1/2
i

) ∂π
(
ZT

i β
)

∂
(
ZT

i β
)T

C0
λ,iDiag

(
π̃
(
ZT

i β0
)1/2

)
IT

(J)

︸ ︷︷ ︸
(

λ
1/2
i

) ∂π
(
ZT

i β
)

∂
(
ZT

i β
)

Σi

(
β0
)−1/2

= I(J−1)×(J−1)−V λ,i

(
β0
)1/2

ZT
i IF,λ

(
β0
)−1

ZiV λ,i

(
β0
)1/2

where C0
λ,i = limn→∞ C0

n,i with

C0
n,i = (Cn,i)β=β0 =

⎡
⎢⎣
(

n (xi)
n

)1/2 ∂π̃
(
ZT

i β
)

∂
(
ZT

i β
)T

Diag
(
π̃
(
ZT

i β
)−1/2

)
⎤
⎥⎦

β=β0

,

i = 1, ..., N,

Σ
π̃(ZT

i β0)
=
(
πs(ZT

i β0)
(
δst − πt

(
ZT

i β0
)))

s,t=1,...,J
, i = 1, ..., N

and V λ,i

(
β0
)

= limn→∞ V n,i

(
β0
)

with V n,i given in (7.4).
Therefore, the residuals rφ2

i can be standardized

rφ2
i,S = M ii

(
β̂φ2

)−1/2

rφ2
i .

However, the calculation of the square root of the matrix Σ−1
i

(
β̂
)

can be avoided
redefining ri as

r̃i = n (xi)
−1/2 Σ̃−1/2

i

(
β̂
)(

ỹi − n (xi) π̃
(
ZT

i β̂
))

where Σ̃i (β) = (σsr (β))s,r=1,...,J with σsr (β) defined in (7.5). A generalized inverse
of Σ̃i (β) is given by

Diag
(
π̃
(
ZT

i β
)−1

)
.

Therefore, a generalization of r̃i is obtained substituting the MLE by the minimum
φ2-divergence estimator

r̃φ2
i = Diag

((
n (xi) π̃

(
ZT

i β̂φ2

))−1/2
)

ẽ φ2
i .

Finally, a further generalization of residuals follows.
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Definition 2. The (φ1, φ2)-divergence residuals with φ1, φ2 ∈ Φ are defined as the
J-dimensional vector r̃φ1,φ2

i with sth coordinate

√
2n (xi)
φ′′

1 (1)
sign

(
ysi − n (xi)πs

(
ZT

i β̂φ2

))
⎛
⎝πs

(
ZT

i β̂φ2

)
φ1

⎛
⎝ ysi

n (xi)πs

(
ZT

i β̂φ2

)
⎞
⎠
⎞
⎠

1/2

.

Denoting by

R̃
φ2

=
((

r̃φ2
1

)T

, ...,
(
r̃φ2

N

)T
)T

and

R̃
φ1,φ2

=
((

r̃φ1,φ2
1

)T

, ...,
(
r̃φ1,φ2

N

)T
)T

,

for φ1 (x) = 1
2 (x− 1)2 and φ2 (x) = x log x− x + 1 we obtain R̃ = (r̃1, ..., r̃N ).

The asymptotic distribution of R̃
φ2

and R̃
φ1,φ2

is given below.

Theorem 1. The asymptotic distribution of R̃
φ2

and R̃
φ1,φ2

is normal with mean vec-
tor 0 and covariance matrix

Diag
(
pλ

(
β0
)−1/2

)
Σpλ(β0)Diag

(
pλ

(
β0
)−1/2

)
− J

(
β0
)

with pλ (β) = limn→∞ p (β) and

J
(
β0
)

= Diag
((

C0
λ,i

)T

i=1,...,N

)
ZT IF,λ

(
β0
)−1

Z Diag
((

C0
λ,i

)
i=1,...,N

)

Proof. The asymptotic distribution of

R̃
φ2

=
((

r̃φ2
1

)T

, ...,
(
r̃φ2

N

)T
)T

coincides with the asymptotic distribution of

Diag
(
p
(
β0
)−1/2

)√
n
(
p̂ − p

(
β̂φ2

))

that can be easily obtained. Therefore

R̃
φ2 L→

n→∞ N (
0JN×1,Σ5

(
β0
))

,

where

Σ5

(
β0
)

= I−Diag
(
pλ(β0)1/2

)
X
(
β0
)
Diag

(
pλ(β0)−1/2

)

−Diag
(
pλ(β0)1/2

)
Lλ

(
β0
)T

Diag
(
pλ(β0)−1/2

)

being

X
(
β0
)

= X0

(
XT

0 Diag
(
pλ

(
β0
))

X0

)−1

XT
0 Diag

(
pλ

(
β0
))
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with

X0 =

⎛
⎜⎜⎝

1J 0 · · · 0
0 1J · · · 0
. . · · · .
0 0 · · · 1J

⎞
⎟⎟⎠

JN×N

, (7.6)

being 1J the unit vector J × 1-dimensional and Lλ

(
β0
)

= limn→∞ Ln

(
β0
)

with

Ln

(
β0
)

= Sn

(
β0
)
Z

T
IF,n

(
β0
)−1

Z Diag
((

C0
n,i

)
i=1,...,N

)

× Diag
(
p
(
β0
)−1/2

)
.

Taking into account

I−Diag
(
pλ(β0)1/2

)
X
(
β0
)
Diag

(
pλ(β0)−1/2

)

= Diag
(
pλ

(
β0
)1/2

) (
I − X

(
β0
))

Diag
(
pλ

(
β0
)−1/2

)

= Diag
(
pλ

(
β0
)−1/2

)
Diag

(
pλ

(
β0
)) (

I − X
(
β0
))

Diag
(
pλ

(
β0
)−1/2

)

= Diag
(
pλ

(
β0
)−1/2

)
Σpλ(β0)Diag

(
pλ

(
β0
)−1/2

)

so
Σ5

(
β0
)
= Diag

(
pλ

(
β0
)−1/2

)
Σpλ(β0)Diag

(
pλ

(
β0
)−1/2

)
−J

(
β0
)

with J
(
β0
)

= Diag
(
pλ(β0)1/2

)
Lλ

(
β0
)T Diag

(
pλ(β0)−1/2

)
or equivalently by the def-

inition of Lλ

(
β0
)

and the relation

(
∂p

∂β

)T

β=β0

= Z Diag
((

C0
n,i

)
i=1,...,N

)
Diag

(
p
(
β0
)1/2

)

we obtain the expression of J
(
β0
)
.

The result for R̃
φ1,φ2

holds from

2n (xi)
φ′′

1 (1)
πs

(
ZT

i β̂φ2

)
φ1

⎛
⎝ ysi

n (xi)πs

(
ZT

i β̂φ2

)
⎞
⎠ =

(
ysi − n (xi)πs

(
ZT

i β̂φ2

))2

n (xi)πs

(
ZT

i β̂φ2

) +oP (1) .

7.5 Numerical example

As an illustration of the new diagnostic tools presented in the previous sections we
consider data on the perspectives of students. Psychology students at the University
of Regensburg, Germany were asked if they expected to find adequate employment
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after getting their degree. The response categories were ordered with respect to their
expectation. The responses were ‘don’t expect adequate employment’ (category 1), ‘not
sure’ (category 2), and ‘immediately after the degree’ (category 3). The data are given
in Fahrmeir and Tutz (2001). As these data do not have any leverage point we modify
the last observation to be this kind of point.

We fit a cumulative logistic model to the data taking the link function g = h−1 =
(g1, g2) with

g1

(
π1

(
ZT

i β
)
, π2

(
ZT

i β
))

= log

⎛
⎝ π1

(
ZT

i β
)

1 − π1

(
ZT

i β
)
⎞
⎠ ,

g2

(
π1

(
ZT

i β
)
, π2

(
ZT

i βi

))
= log

⎧
⎨
⎩log

⎛
⎝ π1

(
ZT

i β
)

+ π2

(
ZT

i β
)

1 − π1

(
ZT

i β
)
− π2

(
ZT

i β
)
⎞
⎠

− log

⎛
⎝ π1

(
ZT

i β
)

1 − π1

(
ZT

i β
)
⎞
⎠
⎫
⎬
⎭ ,

βT = (α1, α2, β1) and the design matrix

ZT
i =

(
1 0 xT

i

0 1 xT
i

)
.

To fit the model we consider the minimum φ-divergence estimator based on the power-
divergence family. The power-divergence family, introduced by Cressie and Read (1984),
is obtained from (7.2) considering the family of functions

φ(a) (x) = (a (a + 1))−1 (
xa+1 − x− a(x− 1)

)
; a 
= 0, a 
= −1,

with

φ(0) (x) = lim
a→0

φ(a) (x) = x log x− x + 1

φ(−1) (x) = lim
a→−1

φ(a) (x) = − log x + x− 1.

It is interesting to note that for a = 0, we get the MLE which is obtained using Dφ(0) ,
that is, the Kullback–Leibler divergence and a = 1, the minimum chi-squared estimator
which is obtained using Dφ(1) , that is, the Kagan divergence (Kagan (1963)).

After fitting a cumulative logistic model, we check for the adequacy of fit. For
displaying diagnostic tools, index plots are generally suggested. Figure 7.1 gives the
trace of the diagonal submatrices of the generalized hat matrix, Trace(Hii(β̂φ(a))),
that we have defined as an indicator of the leverage of the points for a = 0 (MLE,
the classical way) and a = 1 (minimum chi-squared estimator), plotted against the
index i. Both measures identify Observations 2 and 3 as those having the highest
leverage values. However, Fahrmeir and Tutz (2001) pointed out that they are not
leverage points since their leverage values are primarily caused by the relatively local
sample sizes. Observation 13 (this is the observation modified by us) is also detected
as a leverage point but only by the measure corresponding to a = 1 not for that
corresponding to a = 0.
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Figure 7.1. Index plot of Trace
(
H ii(β̂φ(a))

)
as a function of a. Shown are (a = 0, solid line),

(a = 1, dashed line)

After this, to study if Observation 13 has an adverse effect on the fit we calculate,
for example, the standardized residuals based on φ(a)-divergences also for a = 0 and
a = 1. From the index plot of Figure 7.2, it can be seen that this observation with high
leverage is only fitted poorly by the model for a = 0 not for a = 1. This means that the
cumulative logistic fit is sensitive to the estimation method. This can be seen clearly
in a χ2-probability plot drawn in Figure 7.3. The global fit of the model for a = 1 is
better (it approximates more to the straight line) than for a = 0 and the influence of
Observation 13 diminishes for a = 1. Therefore, we prefer a = 1 because no observation
is fitted poorly or highly influential. That is to say, using the minimum φ(1)-divergence
estimator the influential points over the fit are smoothed.

Figure 7.2. Index plot of
(
r

φ(a)
i,S

)T (
r

φ(a)
i,S

)
as a function of a. Shown are (a = 0, solid line),

(a = 1, dashed line)
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Figure 7.3. χ2(2)-probability plot of
(
r

φ(a)
i,S

)T (
r

φ(a)
i,S

)
. Shown are (a = 0, points), (a = 1,

squares)

7.6 Conclusion

In this chapter, we extend some diagnostic tools using the φ-divergence measure for
generalized linear models with ordinal multinomial data. This has been done by Bedrick
and Tsai (1993) only for the power-divergence parameter family that is a particular case
of the φ-divergence measure and for binomial response models. The new tools intro-
duced were diagnostics for detecting leverage points. In addition, residuals for detecting
outliers were obtained. Their effectiveness was shown with real data but a simulation
study would be necessary to make conclusions about choosing the best member of the
family of diagnostic tools for the best fit or about measuring the sensitivity of the diag-
nostics. Finally, note that to implement the tools proposed the software requirement is
a program for obtaining the minimum φ-divergence estimator which is similar to that
for obtaining the MLE taking into account the expression (7.1).
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On a Minimization Problem Involving Divergences
and Its Applications

Athanasios P. Sachlas and Takis Papaioannou
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Abstract: In this chapter, motivated by the seminal paper of Brockett, “Information
theoretic approach to actuarial science: A unification and extension of relevant theory
and applications,”Transactions of the Society of Actuaries, Vol. 43, 73–135 (1991), we
review minimization of the Kullback–Leibler divergence DKL(u,v) between observed
(raw) death probabilities or mortality rates, u, and the same entities, v, to be graduated
(or smoothed) subject to a set of reasonable constraints such as monotonicity, bounded
smoothness, etc. Noting that the quantities u and v, involved in the above minimiza-
tion problem based on the Kullback–Leibler divergence, are nonprobability vectors, we
study the properties of divergence and statistical information theory for DKL(p,q),
where p and q are nonprobability vectors. We do the same for the Cressie and Read
power divergence between nonprobability vectors, solve the problem of graduation of
mortality rates via Lagrangian duality theory, discuss the ramifications of constraints,
tests of goodness-of-fit, and compare with other graduation methods, predominantly
the Whittaker and Henderson method. At the end we provide numerical illustrations
and comparisons.

Keywords and phrases: Kullback–Leibler divergence, Cressie–Read divergence,
divergence with nonprobability vectors, graduation of mortality rates

8.1 Introduction

Measures of divergence appear everywhere in mathematics, probability, and statistics.
They express the “distance” between two functions or vectors. There are several mea-
sures of divergence or diversity in the literature. The most well known are those of
Kullback–Leibler, Csiszar (otherwise called φ-divergence), and Cressie and Read (oth-
erwise known as power divergence). A less well-known divergence is Jensen’s difference.

A measure of divergence is not a metric as it does not satisfy the antisymmetric
property and for that reason it is sometimes called a measure of directed divergence.

A bivariate function D(f, g) of two functions or vectors f , g is a measure of diver-
gence if D(f, g) ≥ 0 with equality if and only if f = g (c.f. Basu et al., 1998). This
is the minimal requirement for a measure D(f, g) to be a “kind” of distance between

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 81
and Technology, DOI 10.1007/978-0-8176-4799-5 8,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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f and g. Pardo (2006) mentions that a coefficient with the property of increasing as
the two distributions involved move “further from each other” is called a divergence
measure between two probability distributions. For other requirements see Read and
Cressie (1988) and Mathai and Rathie (1975).

There are situations where measures of divergence involve nonprobability distribu-
tions, either pdfs or probability vectors. One such situation is the graduation of mor-
tality rates which is discussed in this chapter and is a minimization problem involving
divergences.

Minimization of a metric or a distance or a divergence has a dominant position
in statistics. It appears almost everywhere and this justifies the strong connections
among statistics and mathematical programming and operations research. Some exam-
ples are least squares, L1, L2, L∞ optimization, minimum discrimination information,
AIC, minimum divergence estimation, Hellinger distance estimation, and Bayes prior
estimation.

All these problems involve divergences with probability distributions either pdfs or
finite/infinite probability vectors. The usual setup is as follows: g0 is a known or empir-
ical (i.e., data-based) distribution and we seek f to minimize the directed divergence
D(f, g0) of f from g0 subject to some necessary constraints on f because otherwise
the solution is f = g0. There are situations where the setup is reversed: f is known,
data-based, or estimated; i.e., f = f0, g is unknown, and the objective is to minimize
D(f0, g) with g satisfying some constraints.

What happens if f and g are not probability distributions? In this chapter we
address this problem. In Section 8.2 we discuss principles, ideas, and techniques of
divergence minimization. In Section 8.3 we present the properties of divergences without
probability vectors. In Section 8.4 we present the problem of graduating mortality rates
via divergences. In Section 8.5 we present a numerical illustration involving primarily
Jensen’s difference while in Section 8.6 we give concluding remarks.

8.2 Minimization of divergences

The minimization of divergences follows two patterns. One may be called parametric
and the other nonparametric.

For the first we have f(x) known and g(x, θ) ≡ gθ known but depending on an un-
known parameter θ, scalar or vector valued. Then we seek to estimate θ by minimizing,
without or with constraints,

D(f, gθ).

This leads to minimum divergence or distance estimation. For example, if D(f, gθ) is
the Kullback–Leibler divergence and f is taken to be f̂ (i.e., empirical or data based)
we have to minimize over θ,

∫
f̂(x) ln

[
f̂(x)/g(x, θ)

]
dμ,

where μ is an appropriate measure. In this way we obtain minimum Kullback–Leibler
divergence estimators which coincide (a.s.) with the maximum likelihood estimators
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for discrete (e.g., multinomial) models. If the divergence is the Kolmogorov distance or
the L∞ metric, then again we try to minimize over θ,

sup |Fn(x) − F (x, θ)| ,
where F is the cdf of X and Fn the corresponding empirical cdf. A classical example
of minimum distance estimation is the least squares estimation in linear models which
has been handled in the literature algebraically and geometrically. Chi-square, Hellinger
distance, Csiszar’s φ divergence, and Cressie and Read’s power divergences have been
used for minimum distance or divergence estimation of θ.

Here one observes the use of “divergence of the data from the model.” There is no
particular reason to try to minimize D(f̂ , gθ) over θ. We could minimize D(gθ, f̂) and
this leads to different estimators of θ. These estimators have not been investigated in
the literature. For references on this topic see Read and Cressie (1988), Vos (1992),
Cutler and Cordero-Brana (1996), and Pardo (2006).

For the nonparametric problem we have minimization of D(f, g) with constraints
on f for the purpose of determining f which is as close as possible to known g. If g = ĝ
(i.e., data based), then we try to estimate the stochastic model that is closest to the
data. A classical example is the minimum discrimination distribution that is obtained
by minimizing the Kullback–Leibler divergence

∫
f ln(f/g) dx,

with constraints on f , and leads to the minimum discrimination information.
Kullback’s solution is obtained via Lagrangian and calculus of variation while in the

discrete case we may employ mathematical programming results. The optimal solution
f� is exponential.

In model selection, through various model fittings, we seek to find the model ĝ,
which is as close as possible to the true hypothesized distribution f of the data. Thus
we try to minimize

D(f, ĝ) over ĝ.

A classical example is the Akaike information criterion, AIC (Akaike, 1973).
Another important paradigm of variational use of divergences in statistics is through

the concept of information or divergence statistics: we have the usual divergence statis-
tics D(f̂ , g) with g known or D(f, ĝ) with f known or D(f̂ , ĝ). But we also have min-
imum discrimination information statistics (c.f. Kullback, 1959, pp. 82, 85) which are
derived for various classes of probability models. For many problems the two approaches
coincide. There is a large literature on the topic and divergences provide the tool to
develop test statistics, confidence intervals, to compare and select models, and in gen-
eral develop an applied statistical inference. For an important recent reference on the
topic see Pardo (2006).

8.3 Properties of divergences without probability vectors

In this section we list some of the properties of the Kullback–Leibler and the Cressie–
Read divergences without probability vectors. Details can be found in Sachlas and
Papaioannou (2009).
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The Kullback–Leibler directed divergence between two n× 1 nonprobability vectors
p and q, is defined by

DKL(p,q) =
n∑

i=1

pi ln
pi

qi

where p = (p1, . . . , pn)T > 0, q = (q1, . . . , qn)T > 0 with
∑n

i=1 pi 
= 1 and
∑n

i=1 qi 
= 1.

Proposition 1. (The nonnegativity property) For the Kullback–Leibler directed diver-
gence we have

DKL(p,q) ≥ 0, (8.1)

if one of the following conditions holds,

(i)
n∑

i=1

pi ≥
n∑

i=1

qi, (ii)
n∑

i=1

pi <
n∑

i=1

qi and ln k > −DKL(p∗,q∗),

where k =
∑

pi/
∑

qi and p∗, q∗ are probability vectors whose elements are the
normalized elements of p and q; i.e., p∗i = pi/

∑n
i=1 pi and q∗i = qi/

∑n
i=1 qi,

i = 1, ..., n. Equality in (8.1) holds if p = q or ln k = −DKL(p∗,q∗). Moreover if∑n
i=1 pi =

∑n
i=1 qi then DKL(p,q) ≥ 0 with equality if and only if p = q.

The minimal requirement for using DKL(p,q) as a measure of divergence is∑n
i=1 pi =

∑n
i=1 qi. The Kullback–Leibler directed divergence between two bivariate

nonprobability functions p1, p2 is

DKL
X,Y (p1, p2) =

∑
x

∑
y

p1(x, y) ln
p1(x, y)
p2(x, y)

.

Conditional divergence can now be defined in an analogous way as in the case of
probability vectors (see Kullback, 1959).

Proposition 2. (Strong additivity) Let p1, p2 be two bivariate nonprobability func-
tions associated with two discrete variables X, Y in R2, with

∑
x

∑
y pi(x, y) 
= 1.

Then

DKL
X,Y (p1, p2) = DKL

X (f1, f2) + DKL
Y |X(h1, h2) = DKL

Y (g1, g2) + DKL
X|Y (r1, r2),

where fi = fi(x), hi = hi(y|x), gi = gi(y), ri = ri(x|y), i = 1, 2 are the corresponding
marginal and conditional nonprobability functions.

Proposition 3. (Weak additivity) If hi(y|x) = gi(y) and thus pi(x, y) = fi(x)gi(y),
i = 1, 2, we have that the random variables X∗, Y ∗, produced by normalizing X, Y ,
are independent, and it holds that

DKL
X,Y (p1, p2) = DKL

X (f1, f2) + DKL
Y (g1, g2) − ξ ln η,

where ξ =
∑

y g1(y) =
∑

x f1(x) and η =
∑

y g1(y)/
∑

y g2(y) =
∑

x f1(x)/
∑

x f2(x).

It is easy to see that weak additivity holds if
∑

x f1(x) =
∑

x f2(x) or
∑

y g1(y) =∑
y g2(y).
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Proposition 4. (Maximal information and sufficiency) Let Y = T (X) be a measurable
transformation of X, then

DKL
X (p1, p2) ≥ DKL

Y (g1, g2),

with equality if and only if Y is “sufficient,” where pi = pi(x), gi = gi(y), i = 1, 2.

A basic property of measures of information and divergence is the limiting property.
This property means that the series of random variables converges when n → ∞ if and
only if IXn → IX , where I denotes the information measure. Under some conditions
(Kullback, 1959) the limiting property holds for the Kullback–Leibler divergence. For
Csiszar’s measure of divergence (φ-divergence) see Zografos et al. (1989).

The next proposition investigates whether the limiting property holds in the case
of the Kullback–Leibler divergence with nonprobability vectors.

Proposition 5. (The limiting property) Let {pn} be a bounded from above sequence of
nonprobability vectors. Then pn → p if and only if DKL(pn,p) → 0; i.e., the limiting
property holds for the Kullback–Leibler divergence with nonprobability vectors.

As expected the Kullback–Leibler directed divergence DKL(p,q) with nonproba-
bility vectors p, q does not in general share the properties of the Kullback–Leibler
directed divergence with probability vectors p∗, q∗. Under certain conditions, some of
them are satisfied. More precisely DKL(p,q), is nonnegative, additive, invariant under
sufficient transformations, and greater than DKL(p∗,q∗). It also satisfies the property
of maximal information and the limiting one. So, DKL(p,q), in general terms, can be
regarded as a measure of divergence and therefore can be used whenever we do not
have probability vectors, provided that

∑
i pi =

∑
i qi.

The Cressie–Read power divergence of order r for nonprobability vectors is given
by

DCR(p,q) =
1

r(r + 1)

∑
i

pi

[(
pi

qi

)r

− 1
]
, r ∈ R

where p = (p1, . . . , pn)T > 0 and q = (q1, . . . , qn)T > 0 with
∑

i pi 
= 1 and
∑

i qi 
= 1.
In the sequel we assume that r 
= 0 and r 
= −1.

Proposition 6. (The nonnegativity property) Let

k =
∑

i

pi/
∑

i

qi and m =
1 − kr

kr

1
r(r + 1)

.

Then for the Cressie–Read power divergence with nonprobability vectors we have

DCR(p,q) ≥ 0,

if one of the following conditions holds.

(i)
∑

i pi =
∑

i qi;
(ii)

∑
i pi >

∑
i qi and r /∈ (−1, 0).

(iii)
∑

i pi >
∑

i qi and m < DCR(p∗,q∗);
(iv)

∑
i pi <

∑
i qi and r ∈ (−1, 0).

(v)
∑

i pi <
∑

i qi and m < DCR(p∗,q∗).
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As for the equality part we have the following.

(a) If
∑

i pi =
∑

i qi equality holds if p = q.

(b) If
∑

i pi >
∑

i qi or
∑

i pi <
∑

i qi equality holds if m = DCR(p∗,q∗).

Finally if
∑

i pi =
∑

i qi then DCR(p,q) ≥ 0 with equality if and only if p = q.

Here again we have that the minimal requirement for using DCR(p,q) as a measure
of divergence is

∑
i pi =

∑
i qi regardless of the value of r.

Proposition 7. DCR(p,q) ≥ DCR(p∗,q∗) when one of the following conditions holds.
(i)

∑
i pi =

∑
i qi, (ii)

∑
i pi >

∑
i qi and r /∈ (−1, 0), (iii)

∑
i pi <

∑
i qi and r ∈

(−1, 0). Equality holds if m = DCR(p∗,q∗) independently of the value of r, where m
is as in Proposition 6.

Bivariate and conditional Cressie–Read divergence are defined in a similar way
as before. Strong additivity is not satisfied for the power divergence with probability
vectors as one can easily see with a numerical example involving two trinomial distri-
butions. A further numerical investigation reveals that when r > 0 the subadditivity
property holds, while when r < 0 the superadditivity property holds. Equality holds
only when r = 0, which is the case of the Kullback–Leibler divergence.

No convenient expression was obtained in the case of nonprobability vectors. For
weak additivity we have the following proposition.

Proposition 8. (Weak additivity) If hi(y|x) = gi(y) and thus pi(x, y) = fi(x)gi(y),
i = 1, 2, we have that the random variables X∗, Y ∗, which are the “standardized” values
of X,Y , are independent, then

(a) DCR
X,Y (p1, p2) = DCR

X (f1, f2) + DCR
Y (g1, g2) + p1·· (1 − ηr) 1/(r(r + 1))

+p1··ηrr(r + 1)DCR
X∗ (f∗

1 , f
∗
2 )DCR

Y ∗ (g∗1 , g
∗
2), where pi·· =

∑
x

∑
y pi(x, y), i = 1, 2,

(b) DCR
X,Y (p1, p2) = DCR

X (f1, f2)+DCR
Y (g1, g2) if η = 1 and if one of the marginal pairs

(f∗
1 , f

∗
2 ) , (g∗1 , g

∗
2) is identical where η = p1··/p2··.

Proposition 9. (Maximal information and sufficiency) Let Y = T (X) be a measurable
transformation of X; then

DCR
X (p1, p2) ≥ DCR

Y (g1, g2),

when b > 1, where b = (
∑

x p1(x)/
∑

x p2(x))r, with equality if and only if Y is “suffi-
cient,” where pi = pi(x), gi = gi(y), i = 1, 2.

Zografos et al. (1989) proved that, under some conditions, the limiting property
holds for Csiszar’s measure of divergence (φ-divergence) defined as

DC(f1, f2) =
∫

f2(x)φ
(

f1(x)
f2(x)

)
dx,

where φ is a real-valued convex function satisfying certain conditions. Cressie and
Read divergence can be obtained from Csiszar’s measure by taking φ(x) = [r(r +
1)]−1(xr+1− x) (Pardo, 2006). So the limiting property holds for the Cressie and Read
divergence as well. The next proposition states that the limiting property holds in the
case where we do not have probability vectors.
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Proposition 10. (The limiting property) It holds that pn → p iff DCR(pn,p) → 0
with r 
= 0,−1; i.e., the limiting property holds for the Cressie–Read divergence with
nonprobability vectors.

Summarizing, the power-directed divergence DCR(p,q), under some conditions is
nonnegative, additive, greater than DCR(p∗,q∗), and invariant under sufficient trans-
formations. It also shares the property of maximal information and the basic limit-
ing property. So, we can regard DCR(p,q) as a measure of divergence, provided that∑

i pi =
∑

i qi.
In mathematics and statistics there exist many divergences (see, e.g., Read and

Cressie, 1988; Liese and Vajda, 1987; Mathai and Rathie, 1975). One of them, which
has a special appeal since it originates from Shannon’s entropy (a well-known index of
diversity) and the convexity property is Jensen’s difference as it was called by Burbea
and Rao (1982). The Jensen difference between two nonprobability vectors is given by

J(p,q) ≡ H
(

1
2 (p + q)

)− 1
2 [H(p) + H(q)] ,

where H(p) = −∑i pi ln pi is the Shannon entropy between the nonprobability vectors
p = (p1, . . . , pn)T and q = (q1, . . . , qn)T .

Proposition 11. Let
∑

i pi =
∑

i qi. Then J(p,q) ≥ 0 if and only if p = q, where p
and q are nonprobability vectors.

The above proposition means that p = q is again the minimal requirement for
J(p,q) to be a divergence measure. Further properties of J(p,q) are under investiga-
tion.

8.4 Graduating mortality rates via divergences

In this section we describe how measures of divergence can be used in order to smooth
raw mortality rates. We first start with some basic notions of actuarial graduation while
in the sequel we provide a numerical illustration.

8.4.1 Divergence-theoretic actuarial graduation

In order to describe the actual but unknown mortality pattern of a population, the
actuary calculates from raw data crude mortality rates, death probabilities, or forces of
mortality, which usually form an irregular series. Because of this, it is common to revise
the initial estimates with the aim of producing smoother estimates, with a procedure
called graduation. There are several methods of graduation classified into parametric
curve fitting and nonparametric smoothing methods. For more details on the topic the
interested reader is referred to Benjamin and Pollard (1980), Haberman (1998), London
(1985), Wang (1998), and references therein.

A method of graduation using information-theoretic ideas was first introduced by
Brockett and Zhang (1986). More specifically, Zhang and Brockett (1987) tried to
construct a smooth series of n death probabilities {vx}, x = 1, 2, . . . , n which is as close
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as possible to the observed series {ux} and in addition they assumed that the true but
unknown underlying mortality pattern is (i) smooth, (ii) increasing with age x (i.e.,
monotone), and (iii) more steeply increasing in higher ages (i.e., convex). They also
assumed that (iv) the total number of deaths in the graduated data equals the total
number of deaths in the observed data, and (v) the total age of death in the graduated
data equals the total age of death in the observed data. By total age of death we mean
the sum of the product of the number of deaths at every age by the corresponding age.
The last two constraints imply that the average age of death is required to be the same
for the observed and graduated mortality data.

Mathematically the five constraints are written as follows: (i)
∑

x

(
Δ3vx

)2 ≤ M ,
where M is a predetermined positive constant and Δ3vx = −vx +3vx+1−3vx+2 +vx+3;
(ii) Δvx ≥ 0, where Δvx = vx+1 − vx; (iii) Δ2vx ≥ 0, where Δ2vx = vx − 2vx+1 + vx+2;
(iv)

∑
x

lxvx =
∑
x

lxux, where lx is the number of people at risk in the age x; and

(v)
∑
x

xlxvx =
∑
x

xlxux. In matrix notation the constraints can be written as: (i)

(Av)T (Av) = vT AT Av ≤ M , where A is an (n − 3) × n matrix with rows of the
form (0− 1 3 −3 1 0 . . . 0); (ii) Bv ≥ 0, where B is an (n− 1)×n matrix with rows of
the form (0−1 1 0 0 . . . 0); (iii) Cv ≥ 0, where C is an (n−2)×n matrix with rows of
the form (0 1 −2 1 0 . . . 0); (iv) dT v = dT u, where d = (lx, lx+1, . . . , lx+n−1)T ; and (v)
eT v = eT u, where e = (xlx, (x+1)lx+1, . . . , (x+n−1)lx+n−1)T , respectively. For more
details see Zhang and Brockett (1987). It is easy to see that the constraints (i)–(v) may
be written in the form of gi(v) = 1

2v
T Div + bT

i v + ci ≤ 0, i = 1, 2, . . . ,m, where, for
each i, Di, bi, ci are a positive semidefinite matrix and constants, respectively, easily
written down from (i)–(v) and in this case we have m = 2(n + 1) constraints, where n
is the number of ungraduated values.

In order to obtain the graduated values, Brockett (1991) minimizes the Kullback–
Leibler divergence between the crude death probabilities u = (u1, u2, . . . , un)T and the
new death probabilities v = (v1, v2, . . . , vn)T ,

DKL(v,u) =
∑

x

vx ln
vx

ux
,

subject to the constraints (i)–(v).
However, the mortality rates (death probabilities) u and v are not probability vec-

tors since we have
∑n

x=1 ux > 1 and
∑n

x=1 vx > 1. Brockett (1991, p. 104) states that
“DKL(v,u) =

∑n
x=1 vx ln(vx/ux) is still a measure of fit even in the nonprobability

situation because the mortality rates are nonnegative and because of the assumed con-
straints.”In view of the discussion and results in Section 8.3 the appropriate constraint
to be used here is (vi)

n∑
x=1

vx =
n∑

x=1

ux

and not conditions (iv) and (v). It is easy to see via counterexamples that conditions
(iv) and (v) do not imply (vi). It may be necessary, however, to use them on actuarial
grounds. Constraint (vi) can be written in notation form and thus in the form of gi(v)
as eT v = eT u, where e = (1, 1, . . . , 1)T .

A new and unifying way to obtain the graduated values vx is to minimize the
Cressie–Read divergence
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DCR(v,u) =
1

r(r + 1)

∑
x

vx

[(
vx

ux

)r

− 1
]

for given r subject to constraints (i)–(v) and/or (vi); i.e., v ≥ 0 and gi(v) = 1
2v

T Div+
bT

i v + ci ≤ 0, i = 1, 2, . . . ,m + 1, where m = 2(n + 1). The minimization is done
for various values of the parameter r and in this way we can interpret the resulting
series of the graduated values, as the series that satisfies the constraints and is least
distinguishable in the sense of the Cressie–Read directed divergence from the series of
the crude values {ux}.

Another method to obtain the graduated values is to minimize the Jensen’s differ-
ence

J(u,v) = −
n∑

i=1

1
2
(ui + vi) ln

(
1
2
(ui + vi)

)
+

1
2

[
n∑

i=1

vi ln vi +
n∑

i=1

ui lnui

]

between the crude and the graduated mortality rates u and v under the constraints
(i)–(v) and/or (vi).

8.4.2 Lagrangian duality results for the power divergence

It is easily seen that the minimization of either the Kullback–Leibler measure or the
power divergence is a difficult task as a lot of constraints are involved on it. For this
reason, Zhang and Brockett (1987) derived duality results for the quadratically con-
strained problem by using an approximation technique. More specifically, they first
converted the problem of minimizing the Kullback–Leibler divergence into a sequence
of nonlinear programs with linear constraints and then by taking a limit they were
led to a dual problem. Teboulle (1989) produced the same dual problem by a simple
application of Lagrangian duality (Boyd and Vandenberghe, 2006).

The quadratically constrained Cressie–Read graduation problem was defined before.
We restate it as primal problem: Find v ∈ Rn which solves the primal problem

(P ) min
1

r(r + 1)

n∑
j=1

vj

[(
vj

uj

)r

− 1
]

subject to

gi(v) =
1
2
vT Div + bT

i v + ci ≤ 0, i = 1, 2, . . . ,m, v ≥ 0.

One may solve (P ) using constrained optimization methods or revert to its
Lagrangian dual problem given below which does not involve constraints.

The Lagrangian dual problem of the DCR(v,u) minimization under constraints
gi(v) is given by

(D) sup
λ∈Rm

+ ,yi∈Rni

⎧
⎨
⎩

n∑
j=1

uj

(
1

r + 1
− r

m∑
i=1

(λibT
i + yT

i Ai)j

)1/r

·
(
r(r + 1)

m∑
i=1

(λibT
i + yT

i Ai)j − 1

)
− 1

2

m∑
i=1

‖yi‖2

λi
+ λT c

}
.

The justification and solution of the problem (D) is given in the theorem below.
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Theorem 1. (a) If (P ) is feasible then inf (P ) is attained and min(P ) = sup(D).
Moreover, if there exists a v ∈ Rn satisfying v > 0, gi(v) < 0, i = 1, . . . ,m, then
sup (D) is attained and min (P ) = max (D).

(b) If v∗ solves the primal problem (P ) and y∗
i ∈ Rni , λ∗ ∈ Rm

+ solve the dual problem
(D), then

v∗j = uj

[
1

r + 1
− r

m∑
i=1

(λ∗
i b

T
i + y∗T

i Ai)j

]1/r

, j = 1, 2, . . . , n.

It is obvious that if we choose r = 0, we perform graduation through the Kullback–
Leibler directed divergence that Zhang and Brockett (1987) described. In the following
section we provide a numerical illustration.

8.5 Numerical investigation

As mentioned above, the problem of graduation is to find the best fitting values vx

that satisfy the mathematical and actuarial constraints (i)–(v) and are the least dis-
tinguishable from the initial estimates ux. In this section we illustrate the constrained
minimization of Cressie–Read divergence, which can be easily solved by using any of
the readily available nonlinear programming codes.

For the illustration, we use a dataset of death probabilities from London (1985,
p. 20). It consists of 15 death probabilities belonging to ages 70–84 (computed
from a total of 2073 observations). The raw data along with the graduations made
by London and Brockett are presented in Table 8.1a. We note that London per-
formed his graduation by graphic means and then revised his results by a linear
transformation of the graduated values. Brockett computed the graduated values
via the minimization of the Kullback–Leibler divergence subject to constraints (i)–
(v). He also graduated the raw data without the constraint of convexity (iii). In
the same table we present, for comparison reasons, the results obtained via the
Whittaker–Henderson method of graduation. The Whittaker–Henderson method (Lon-
don, 1985) is a well-known and frequently used method of graduation, where a func-
tion F + hS is minimized without constraints. The value of the smoothness measure
S and the goodness-of-fit measures (F , deviance, log-likeilihood and χ2) are given in
Table 8.1b.

We first graduated the crude values via the minimization of the Jensen difference.
The minimization was conducted subject to constraints (i)–(v), proposed by Brockett
(1991), the additional constraint (vi) that Sachlas and Papaioannou (2009) proposed,
and finally subject to constraints (i)–(iii) and (vi). The relevant results are presented
along with the raw data in Table 8.2a. The results are equivalent to those presented
by London and Brockett. The value of the smoothness measure and the goodness-of-fit
measures are given in Table 8.2b.

Finally we conducted graduation via the minimization of the Cressie–Read power
divergence subject to constraints (i)–(v) and using the dual results of Section 8.4.2. The
results for the values of r = 0.2, 2/3, 1, and 1.5 are given in Table 8.3a. For comparison
reasons we give the values of smoothness and goodness of fit measures in Table 8.3b.
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Table 8.1. Graduations by London, Brockett, and Whittaker–Henderson

(a) Graduated values

x ux vx (London) vx (Brockett w/o convexity) vx (Brockett) vx (W–H)

70 0.044 0.065 0.071 0.068 0.049

71 0.084 0.068 0.072 0.068 0.068

72 0.071 0.072 0.073 0.072 0.070

73 0.076 0.076 0.074 0.075 0.065

74 0.040 0.080 0.076 0.079 0.065

75 0.104 0.085 0.077 0.083 0.079

76 0.160 0.090 0.083 0.088 0.089

77 0.058 0.095 0.098 0.093 0.088

78 0.110 0.103 0.111 0.103 0.093

79 0.093 0.114 0.123 0.118 0.105

80 0.139 0.130 0.135 0.135 0.127

81 0.154 0.153 0.152 0.156 0.153

82 0.183 0.185 0.174 0.179 0.181

83 0.206 0.213 0.206 0.207 0.210

84 0.239 0.240 0.249 0.244 0.239

(b) Smoothness and goodness-of-fit values

London Brockett w/o convexity Brockett W–H

S 0.0002 0.00023 0.000099 0.00094

F 17.53 21.67 18.49 15.72

Deviance 17.02 20.41 17.77 14.35

log-likelihood –713.43 –715.13 –713.81 –712.10

χ2 17.49 21.63 18.46 15.74

Concluding the numerical illustration, we can say that all the above mentioned
graduation methods give almost the same results. From Tables 8.1b, 8.2b, and 8.3b we
see that all the graduations are equivalent in terms of smoothness. The graduations
are also equivalent as far as goodness-of-fit is concerned. The overall winner is the
graduation through the minimization of the Jensen difference subject to constraints
(i)–(v).

For a related numerical investigation see Sachlas and Papaioannou (2009). Grad-
uation methods are usually compared in the literature by applying them to a specific
small or large dataset and employing or using several bestness criteria (Debon et al.,
2005, 2006).

8.6 Conclusions and comments

The Kullback–Leibler DKL(p,q) and the Cressie–Read power divergence DCR(p,q)
involving nonprobability vectors share some of the properties of Kullback–Leibler and
Cressie–Read power divergence, with probability vectors. Under some conditions, they
are nonnegative, additive, and invariant under sufficient transformations. The property
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Table 8.2. Several graduations through Jensen difference

(a) Graduated values

x ux vx (5 constraints) vx (6 constraints) vx (4 constraints)

70 0.044 0.062 0.054 0.059

71 0.084 0.066 0.061 0.064

72 0.071 0.071 0.068 0.069

73 0.076 0.075 0.075 0.073

74 0.040 0.080 0.082 0.078

75 0.104 0.086 0.089 0.085

76 0.160 0.093 0.097 0.092

77 0.058 0.099 0.104 0.098

78 0.110 0.106 0.112 0.105

79 0.093 0.113 0.119 0.112

80 0.139 0.131 0.138 0.132

81 0.154 0.156 0.159 0.157

82 0.183 0.182 0.180 0.184

83 0.206 0.209 0.201 0.212

84 0.239 0.238 0.222 0.242

(b) Smoothness and goodness-of-fit values

5 constraints 6 constraints 4 constraints

S 0.000199 0.0002 0.0002

F 16.62 16.70 16.93

Deviance 16.40 16.89 16.48

log-likelihood −713.12 −713.37 −713.16

χ2 16.59 16.68 16.93

of maximal information and the limiting property are satisfied as well. Thus, we may
regard DKL(p,q) and DCR(p,q) as measures of information. A minimal requirement
for DKL(p,q) and DCR(p,q) to be measures of divergence is

∑
i pi =

∑
i qi. The

Jensen difference between nonprobability vectors can also be regarded as a measure of
divergence provided that

∑
i pi =

∑
i qi.

As an application of the previous results we explored the use of the Jensen dif-
ference and the general Cressie–Read power divergences in order to obtain gradu-
ated values. The minimization of the Jensen difference and the power divergence for
various values of r, with constraints (i)–(v) and/or (vi), gave equivalent results, in
terms of smoothness, to those of other methods of graduation such as the widely used
Whittaker–Henderson method. For our numerical investigation, the overall winner is
the graduation through the minimization of the Jensen difference subject to constraints
(i)–(v).

The similarity of results between the methods of Whittaker–Henderson and power
divergence or Jensen’s difference minimization under the said constraints allows us to
claim that the two graduation methods are nearly equivalent. This is supported not
only by the numerical investigation but also from the fact that in Whittaker–Henderson
we minimize a form of the Lagrangian function F + hS, while in power divergence we
minimize F subject to, among others, a constraint on S which in turn leads to a similar
Lagrangian.
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Table 8.3. Several graduations through power divergence

(a) Graduated values

x ux vx (r = 0.2) vx (r = 2/3) vx (r = 1) vx (r = 1.5)

70 0.044 0.058 0.062 0.065 0.067

71 0.084 0.063 0.066 0.067 0.069

72 0.071 0.068 0.070 0.070 0.071

73 0.076 0.073 0.073 0.073 0.073

74 0.040 0.078 0.077 0.076 0.074

75 0.104 0.086 0.084 0.082 0.081

76 0.160 0.094 0.091 0.089 0.088

77 0.058 0.101 0.098 0.096 0.094

78 0.110 0.109 0.107 0.106 0.105

79 0.093 0.118 0.118 0.117 0.118

80 0.139 0.138 0.139 0.139 0.140

81 0.154 0.160 0.161 0.161 0.162

82 0.183 0.181 0.183 0.184 0.185

83 0.206 0.202 0.206 0.206 0.208

84 0.239 0.224 0.228 0.229 0.231

(b) Smoothness and goodness-of-fit values

r = 0.2 r = 2/3 r = 1 r = 1.5

S 0.00019 0.00019 0.00017 0.00019

F 16.99 17.29 17.90 18.35

Deviance 16.79 16.84 17.17 17.42

log-likelihood −713.32 −713.34 −713.51 −713.63

χ2 16.97 17.27 17.87 18.31
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Abstract: The results obtained and the methods used in the chapters included in
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Keywords and phrases: Stochastic models, input-output systems, branching process
in random environment, asymptotics of time compression in queueing systems, cost
approach, asymptotically optimal policies, dependent random fields, central limit
theorem, approximation accuracy, branching random walks, conditional limit theorems

9.1 Introduction

Part III is devoted to analysis of models arising in various domains comprising some
biological systems, queueing networks, insurance, interacting particles systems, and
others. All these diverse models are described by stochastic processes or random fields.

Two chapters treat the branching processes. Namely, Afanasyev studies the asymp-
totic behaviour of the conditional branching process in a random environment (BPRE).
The novel feature of his chapter is the assumption that the population size exceeds a
high level whereas the usual hypothesis is the process survival. New types of invari-
ance principles are established for the critical BPRE. In the chapter by Yarovaya the
combinations of random walks on a lattice Z

d and a branching process with a single
source (a point where births and deaths can occur) are considered. Limit behaviour of
critical and subcritical branching random walks is studied in this setting. An important
problem considered is the effect of lattice dimension on reaching the critical regime.
The above-mentioned research direction admits various applications in biological and
physical as well as queueing models.

Two other chapters deal with the so-called input-output systems. Afanas’eva as-
sumes the input flow to be an integer-valued stochastic process with nondecreasing
trajectories (in particular, a doubly stochastic Poisson or a regenerative process), the
output being a renewal one. As usual in queueing theory, the main object of interest is
the system state q(t), i.e., the number of customers present at time t. The asymptoti-
cally Gaussian behaviour of q(t) is proved under appropriate time compression. Bulin-
skaya studies the problem of stochastic control to optimize the system performance in
the framework of the cost approach. The principal advantage of this approach proposed
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by the author for using in actuarial sciences is the possibility to study more realistic
insurance models taking into account the investment activity and dividend payment
(thus going beyond the traditional ruin problems). Asymptotically optimal controls are
also introduced and their explicit form is established along with sensitivity analysis.

The remaining two chapters are concerned with the central limit theorem (CLT) for
dependent random fields comprising positively or negatively associated ones. Bulinski
proves the CLT for a two-scale procedure when a dependent random field is defined on
subsets of R

d growing in the Van Hove sense and simultaneously the grids of observa-
tions become increasingly dense. To this end a generalisation of the dependence condi-
tion for random fields on a lattice Z

d is proposed. The statistical versions of the CLT
obtained under the random normalisation (different from studentisation) are impor-
tant for applications to dependent data analysis. Shashkin studies a (BL, θ)-dependent
random field on a graph. Such a model has a number of interesting applications dis-
cussed in Section 9.3 below. Moreover, the convergence rate in the CLT is estimated
(the Berry–Esseen type theorem).

Thus, each chapter emphasizes a different aspect of limit behaviour; consequently,
various methods for the study of asymptotics are demonstrated. The results obtained
are not only important from a theoretical viewpoint but they are useful for applications
as well.

9.2 Results and methods

Now we dwell on the contributions of the authors of this part in alphabetical order. The
list of references accompanying these introductory remarks contains only the sources
supplementing those mentioned by the authors.

In Afanasyev (Chapter 10) the popular model of BPRE is considered. Its basic dis-
tinction from the classic Galton–Watson model consists in discarding the homogeneity
requirement that the reproduction laws are identical for all generations. Moreover, in
the model of BPRE it is supposed that these laws are generated by a random mecha-
nism with given probabilistic characteristics.

Let ξn be the size of the nth generation of BPRE. Originally the process {ξn}
was investigated under the condition that the population survives for a long time; i.e.,
ξn > 0, n → ∞. The asymptotics of the nonextinction probability was obtained and
different limit theorems were proved including invariance principles which are similar to
the Donsker–Prohkorov one for a random walk. For a critical BPRE (the most difficult
to study from a mathematical point of view) one can refer in this regard to Afanasyev
et al. (2005).

The present chapter studies the population assuming that its size becomes arbitrar-
ily large. The author concentrates on new invariance principles for a critical BPRE {ξn}
and for the hitting time T (x) = min{n : ξn ≥ x} entailing the conditional limit theo-
rems proved in Afanasyev (1999, 2006) for occupation and hitting times. The processes
are considered in two timelines: absolute and relative (in which the process lifetime is
taken as a unit). Weak convergence technique in D[0,∞) and the invariance princi-
ple previously obtained by the author (under condition that the population survives
for a long time) are used to establish the new ones. The distributions of the limit
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processes are expressed in terms of the laws for certain functionals in Brownian excur-
sion (see, e.g., Borodin and Salminen, 2002 for definitions). Moreover, the author gives
the explicit form of the finite-dimensional distributions for one of the limit processes.

The chapter by Afanas’eva (Chapter 11) is devoted to analysis of a multichannel
queueing system in asymptotics of time compression (i.e., instead of a function X(t)
where t ≥ 0 one uses XT (t) = X(tT ) as T → ∞). Under some natural assumptions
weak convergence of one-dimensional distributions of the normalized customer’s num-
ber (in an infinite-channel system) to the Gaussian law is established. Normalising
coefficients are expressed in terms of input flow moments, such as mean and covariance
function, and the service time distribution. As an interesting illustration, systems with
input given by a doubly stochastic Poisson process (DSPP) and a regenerative one are
considered. It is also proved that the loss system with nT servers behaves in the same
way as an infinite-channel one if nT grows fast enough, as T → ∞. The author ap-
plies the characteristic functions technique and properties of the regenerative, doubly
stochastic, and Markov-modulated processes.

We mention in passing that DSPP is also called a Cox or conditional Poisson process.
For basic definitions one can use, e.g., Thorisson (2000), Serfozo (1999), Daley and
Vere-Jones (1988), and Brémaud (1981).

Chapter 12 by Bulinskaya develops a cost approach in actuarial sciences introduced
by the author in 2003. It is well known that up to now the reliability approach (i.e.,
the study of the ruin probability) prevailed because the insurance companies were
created to share and transfer risks. However, during the last decade the investments
and dividend payments attracted the attention of many researchers (see, e.g., Taksar
and Hunderup, 2007; Gerber et al., 2007;Bulinskaya et al., 2007;Dickson and Waters,
2004, and references therein).

The optimal policies of an insurance company minimizing its expected losses during
a fixed planning horizon are found under the realistic assumptions of boundedness of
assets and loan amounts. The Bellman method is used for this purpose. The optimal
policies obtained are of threshold nature and depend on cost parameters and planning
horizons. For users’ convenience the asymptotically optimal policies are proposed as
well. Their main advantage is stationarity (critical levels are the same for each step). To
prove these results the properties of renewal processes are employed. It is worth men-
tioning that the sensitivity analysis with respect to fluctuations of the cost parameters
and perturbation of the underlying process distribution is also carried out. Here the dif-
ferential importance measure, Sobol decomposition and probability metrics (see, e.g.,
Zolotarev, 1997; Rachev, 1991) are involved. The so-called empirical asymptotically
optimal policies based on observations are indicated as a future research direction.

The study of dependent random fields became a very important branch of modern
probability theory. Starting from the pioneering papers by Harris, Lehmann, Esery,
Proschan, Walkup, Fortuin, Kastelein, and Ginibre the theory of positively or neg-
atively dependent random systems and their modifications was developed. The main
sources of interest here are mathematical statistics, reliability theory, statistical physics,
and percolation (see the quite recent book by Bulinski and Shashkin, 2007 and refer-
ences therein). In the chapter by Bulinski (Chapter 13) the new CLTs for random fields
are established comprising the classical Newman theorem for associated fields. Namely,
the author uses the (BL, θ)-dependence, i.e., the specified inequalities for covariances
of the test (bounded Lipschitz) functions in observations. For random fields on a lattice
Z

d this approach was introduced and employed in Bulinski and Suquet (2001). Now the
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generalisation of this dependence condition is proposed to study random fields defined
on subsets of R

d. The author uses a two-scale procedure mentioned in the Introduction.
An important achievement of this research is the new version of the CLT for station-
ary random fields with random normalization. The main tools here are characteristic
functions, covariance inequalities, and truncation of initial random variables.

The chapter by Shashkin (Chapter 14) contains interesting results for random fields
defined on a graph. Likewise for the random fields defined on an Euclidean lattice, the
first results in this domain describe the phase transition and cluster existence properties
for interacting particle models. In probability theory there are a number of deep results,
having various statistical applications, concerned with the limit behaviour of sums of
random variables.

As in practice all the sets of observations are finite, one has not only to prove the
CLT but also to establish an estimate of accuracy of the Gaussian approximation,
so a Berry–Esseen type theorem is provided. To prove the main result for a (BL, θ)-
dependent random field on a graph the Stein–Tikhomirov technique is applied.

Numerous traditional applications of branching processes (see, e.g., Athreya and
Ney, 1972) in various areas of natural science have demonstrated the necessity of de-
veloping more realistic stochastic models in which population evolution depends on
the structure of a medium (see, e.g., Molchanov, 1994). Chapter 15 by Yarovaya is
concerned with one such model taking into account that the particles multiply obeying
a branching process and simultaneously move in space according to a specified ran-
dom walk. The important problem considered there is the study of particle population
evolution. As known (see, e.g., Gartner and Molchanov, 1990), the inhomogeneity of
a medium plays an essential role in the formation of abnormal properties of transport
processes. Consequently, interest in branching random walks under the assumption that
the birth and the death of particles occur at a single lattice point (i.e., a source) has
increased, see, e.g., Vatutin and Xiong (2007).

Behaviour of branching random walks depends on reproduction intensity at the
source. In this connection, the definition of criticality for a branching random walk is
introduced. Special attention in this chapter is paid to critical and subcritical processes.
The asymptotic behaviour of survival probability is obtained and used to prove condi-
tional limit theorems for the population size (under assumption of the process survival).
The results differ for low (d = 1, 2) and high (d ≥ 3) dimensions. The Laplace trans-
forms and subsequent application of Tauberian theorems are heavily exploited in proofs.

9.3 Applications

We start with applications in domains mainly related to economics.
Queueing and insurance models, as well as those arising in finance, dams, invento-

ries, reliability, or evolution of biological populations belong to the class of input-output
models. Thus the results obtained for one research domain are of value for the others.
Sometimes it is enough to give another interpretation to underlying processes; see, e.g.,
Bulinskaya (2007a). For decision making it is necessary to compare various strategies
(policies) to control the system (see, e.g., Bulinskaya, 2007b) and therefore it is desirable
to choose that which is rather simple and not too sensitive to fluctuations of various
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parameters (see also Pappenberger et al., 2008). In particular, due to climate changes,
the problem of floods and dam construction becomes quite important. Using the loss
functions one can formalise the problem and establish the specified critical levels.

Evidently investigation of queueing systems with complicated input flows is motiva-
ted by applications. Thus the number of calls to flying control officers from aircraft in
the airport area are well described by a Markov modulated process. Another example
is a Poisson process with periodic intensity having a random amplitude (see, e.g.,
Afanas’eva, 1984). One can also recall the models for road traffic in cities. Consideration
of multiphase service leads to complex input processes even if the input to the first phase
is Poissonian. Note that the greater part of results in queueing theory is proved for the
case of Poisson input flow. It cannot be explained only by simplicity of such models. In
fact, due to well-known theorems concerning the sums of large numbers of independent
flows, many real situations are well approximated by systems with Poisson inputs (see,
e.g., Grigelionis, 1963). On the other hand, if input flow is complicated then, with rare
exception, one cannot obtain explicit formulae for a system’s operational characteristics
(mean waiting time, loss probability, average queue length). Hence, in the study of
such systems one can indicate the following two directions. The first one deals with
estimation of various important characteristics of the model (see, e.g., Rolski, 1986).
The second one comprises the investigation of extreme regimes, namely, heavy and
light traffic. We mention only pioneering works by Kingman, Rise, Prokhorov, Viskov,
and Borovkov in the heavy-traffic case, and Kovalenko, Assmussen, Daley, and Rolski
in the light-traffic one, referring for details to Gnedenko and Kovalenko (2005). The
critical and subcritical queues are considered in Peköz and Blanchet (2006), whereas
the martingale approach is treated in Pang et al. (2007).

Due to inequalities q0(t) ≤ q(t) ≤ q∞(t), for any t, with q(t), q0(t), and q∞(t)
denoting the customer’s number in an infinite-channel system, a loss system, and a
system with unbounded waiting time (possessing n channels), respectively, investigation
of infinite-channel systems provides the upper or lower bound for the n-channel systems
(with loss or unbounded waiting time). These facts are also useful for applications.

BPRE is applied to model evolution of biological populations. In particular, biolo-
gists and mathematicians use it nowadays to solve the problem of the nearest mutual
ancestor of humans (see, e.g., O’Connel, 1995). Note that the study of conditional pro-
cesses assuming that the population size becomes large is connected with new applied
areas of this research. So, for example, a challenging problem is to reveal the asymp-
totic properties of a Galton–Watson branching process given that its total progeny is
equal to n, n → ∞. This is connected directly with the theory of random trees (see,
e.g., Vatutin and Dyakonova, 2002; Geiger and Kauffmann, 2004). It seems that this
scheme could be useful in some stochastic models related to medicine (concerning im-
munology). As has been shown recently various types of branching random walks are
used as approximations of catalytic superprocesses (see, e.g., Topchii et al., 2003); their
theory forms a domain of active development (see Fleishman and Le Gall, 1995; Greven
et al., 1999). It is worth mentioning that the concept of “strong centers” is used for the
interpretation of the intermittency phenomenon in the theory of random media. This
research may also attract attention due to possible applications in the survival analysis
of cell populations.

The mathematical models in radiobiology and oncology are of great importance.
This is a vast domain for stochastic and statistical analysis of very complicated prob-
lems. Recall that there are various stochastic models describing the tissue (or organ)
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response under irradiation. One uses, e.g., the single-hit, multiple-hit, or LQ-models
for probability that a cell after irradiation of a certain dose will be alive. Due to
Withers et al. (1988) the idea of independent functional subunits (FSUs) was introduced
for biological modeling. The approach based on this idea and involving the binomial
distribution was developed during the last two decades; see, e.g., Stavrev et al. (2001)
and references therein. Namely, the tissue (or organ) consists of N functional subunits
that behave “statistically independently” under irradiation (it is also possible to con-
sider the irradiation of part of the tissue or organ). One assumes that there exists “the
functional reserve” M (or critical volume), i.e., the number of structural elements that
must be damaged to cause a failure in the structure of interest.

In Bulinski and Khrennikov (2005) a generalization of the critical volume model was
proposed. The idea of the dependent (in particular, independent) FSUs was expressed
in terms of dependent (mixing) random fields defined on a lattice Z

d. In Bulinski
(Chapter 13) the next important step is made. Namely, the author considers the de-
pendence structures based on positive or negative association (comprising independent
random variables) and dwells on general (BL, θ)-dependence. The impact of the irradi-
ation on the FSU can be described now not only in terms of the indicator functions to
take into account the intermediate cases between the killed and alive FSUs. Moreover,
the general case of growing in the van Hove sense domains in R

d with increasing density
of grids of observations is investigated. The results obtained show that the approxima-
tion of random sums describing the collective effects of the summand behaviour should
involve the possible dependence structure of FSUs. Hence, instead of the traditional
normal approximation for independent summands other explicit formulae are proposed.
Thus for strictly stationary random fields one can construct the approximate confidence
intervals for unknown mean value. The problem of nonindividual, say, population re-
sponse and the problems of nonuniform irradiation are interesting and important for
further development.

Dependent random systems indexed by points of a regular graph are an important
instrument in the study of natural or social phenomena; see, e.g., Newman et al. (2002).
They include such classical notions as the Ising model and percolation on the finite-
dimensional Euclidean lattice, which are useful as models for ferromagnetic materials
and liquid distribution in a porous medium. Thus it is interesting to obtain theorems
concerning the behaviour of such systems.

In recent years much attention has been drawn to Ising models, contact process,
and similar dependent systems indexed by graphs which cannot be embedded in an
Euclidean lattice. Besides pure mathematical interest, this is also enforced by applica-
tions in new models coming into consideration (see, e.g., the overview in Schonmann,
2001). For example, in physics and chemistry the structure of some newly analysed
molecular formation is so complicated that it should be considered as a nonamenable
transitive graph. In theoretical radiotherapy it is important to study the formation of
the vascular system in a tumour (which can also be represented as an interacting sys-
tem on a graph), since its dimension is the crucial characteristic of the proliferation and
destruction of the tumour under irradiation (Sabo et al., 2001). Finally, in economic ap-
plications a regular graph may serve as a good model of producer–salesman–customer
relations. This construction is known as a Petri net which is a graph made of actors
and transactions; see, e.g., Artigues and Roubellat (2001). In the mathematical version
of all these models it is natural to impose some dependence conditions. It is known
that association of random variables arises naturally if the random variables involved
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are positively dependent, as in the classical Ising model. Associated random systems
exhibit behaviour similar to that of independent ones if their covariance function de-
creases rapidly at infinity. The latter condition is usually easily verifiable. Moreover, if
that is the case then an associated system has a property called (BL, θ)-dependence,
which appears also in negatively associated systems, as well as in some other natural
situations. For example, such a simple process as autoregression (possibly a nonlinear
one but Lipshitz) often satisfies this definition; see the book by Bulinski and Shashkin
(2007). The same is true for its multiparametric extensions. So, if autoregression is used
to describe the graph-indexed system, then its main characteristics can be estimated
via the central limit theorem for (BL, θ)-dependent systems whereas the Berry–Esseen
type theorem allows us to estimate the accuracy of approximation.

Consequently, the results obtained are useful for practice.
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Formulae, 2nd ed., Birkhäser, Basel-Boston-Berlin.
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New Invariance Principles for Critical Branching
Process in Random Environment

Valeriy I. Afanasyev

Department of Discrete Mathematics, Steklov Institute, Moscow, Russia

Abstract: The invariance principles are proved for a branching process in a random
environment provided that the size of its population reaches a high level.

Keywords and phrases: Galton–Watson branching process, branching process in a
random environment, conditional invariance principles and limit theorems, Brownian
meander, Brownian excursion

10.1 Introduction

In a classical Galton–Watson branching process particles of any generation split inde-
pendently of the others and the history of the process according to the same reproduc-
tion law. Suppose now that particles of the nth generation, n ∈ N0 := { 0, 1, . . .}, have
their own reproduction law Πn =

{
p
(n)
0 , p

(n)
1 , . . .

}
. It means that

P (a particle of nth generation splits into k particles) = p
(n)
k

for any k ∈ N0. The set {Π0,Π1, . . .} is called a varying environment in contrast to an
invariable environment for a Galton–Watson branching process.

This model of the branching process in a varying environment has a shortcoming.
It is difficult to keep the information about the countable set of reproduction laws.
Therefore, it is convenient to suppose that these laws are created by means of some
random mechanism and if these laws are fixed, the particles split as stated above.

Suppose henceforth that the random sequences Π0, Π1, . . . are independent and
identically distributed. The set {Π0,Π1, . . .} is called a random environment.

To formalize the above description of the process, introduce the generating functions
of Πn:

ϕn (s) =
∞∑

k=0

p
(n)
k sk, s ∈ [−1, 1] , n ∈ N0 .
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In the case of a branching process in a varying environment the generating function of
the number of particles in the nth generation equals ϕ0 (ϕ1 (ϕ2 (. . . ϕn−1 (s) . . .))) .

A branching process in a random environment (BPRE) is defined by the relation

E
(
sξn

∣∣ Π0,Π1, . . . , Πn−1

)
= ϕ0 (ϕ1 (ϕ2 (. . . ϕn−1 (s) . . .)))

for s ∈ [−1, 1], n ∈ N, where ξn is the number of particles in the nth generation,
ξ0 = 1. Hence, if the random environment is fixed, we get a branching process in a
varying environment.

At present BPRE is a popular model to study the evolution of biological popula-
tions. This model reflects many important features of biological populations that do
not occur in the classical Galton–Watson branching process.

Consider the random variables

Xn = lnϕ′
n−1 (1) , ηn =

ϕ′′
n−1 (1)(

ϕ′
n−1 (1)

)2 , n ∈ N.

Suppose the process {ξn} to be critical, i.e., EX1 = 0, and satisfy the following condi-
tions:

0 < EX2
1 := σ2 < +∞, E lnq (η1 ∨ 1) < +∞, (10.1)

for some q > 2.
It is proved in Afanasyev et al. (2005), for a critical BPRE {ξn} satisfying the

conditions (10.1), that, as n → ∞,

P (ξn > 0) ∼ c1√
n
, (10.2)

where c1 is a positive constant and
{

ln ξ
nt�
σ
√

n
, t ∈ [0, 1]

∣∣∣∣ ξn > 0
}

D→ {
W+ (t) , t ∈ [0, 1]

}
,

the random process {W+ (t)} is a Brownian meander ; the sign D→ means the conver-
gence in distribution in the space D [0, 1] with the Borel σ-algebra in the Skorokhod
topology.

As a consequence of these results we can get (see Afanasyev, 2006) the following
two invariance principles, as n → ∞, for a critical BPRE {ξn} satisfying the conditions
(10.1).

(1) In the absolute timeline:
{

ln
(
ξ
nt� ∨ 1

)
σ
√

n
, t ∈ [0,+∞)

∣∣∣∣∣ ξn > 0

}
D→
{

W+
0

(
α2t

)
α

, t ∈ [0, 1]

}
; (10.3)

(2) In the relative timeline (depending on T := min {n : ξn = 0}, the lifetime of the
process {ξn}):
{

ln
(
ξ
tT� ∨ 1

)
σ
√

n
, t ∈ [0,+∞)

∣∣∣∣∣ ξn > 0

}
D→
{

W+
0 (t)
α

, t ∈ [0, 1]
}

, (10.4)
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where the random process
{
W+

0 (t)
}

is a Brownian excursion (W+
0 (t) = 0 for t > 1);

α is a random variable uniformly distributed in (0, 1) and independent of
{
W+

0 (t)
}
.

Sign D→ in relations (10.3), (10.4) means the convergence in distribution in the space
D [0,+∞) with the Borel σ-algebra in the Skorokhod topology.

10.2 Main results

Let T (x) be the hitting time of the semi-axis [x,+∞), x ∈ [0,+∞), by the process
{ξn}; i.e.,

T (x) = min{n : ξn ≥ x} .

In some probability theory problems a necessity can arise to consider the process {ξn}
conditioned by T (x) < +∞ (it means that the size of some BPRE generation is not less
than x). In Afanasyev (1999, 2006) for a critical BPRE {ξn} satisfying the conditions
(10.1), it is shown that, as x → +∞,

P (T (x) < +∞) ∼ c2
lnx

, (10.5)

where c2 = c1σ
√

π/2, and the limit theorems are proved for the random variables
T/ ln2 x, T (x) / ln2 x, T (x) /T , μ (x) / ln2 x, ν (x) / ln2 x, μ (x) /T , ν (x) /T (here μ (x),
ν (x) are the capacities of the sets {i : ξi > x} and {i : ξi ≤ x}, respectively) conditioned
by T (x) < +∞.

The aim of the chapter is to obtain the invariance principles for the critical BPRE
conditioned by T (x) < +∞ entailing all these theorems.

Introduce the functionals for a Brownian excursion
{
W+

0 (t)
}
:

(1) The maximum
h+

0 = sup
t∈[0,1]

W+
0 (t) .

(2) The hitting time of the semi-axis [x,+∞),

τ+
0 (x) = inf

{
t : W+

0 (t) ≥ x
}
, x ∈ [0,+∞) .

(3) The local time at the level t,

l+0 (t) = lim
ε↓0

1
ε

1∫

0

I[t,t+ε]

(
W+

0 (s)
)
ds, t ∈ [0,+∞) ,

where I[t,t+ε] (·) is the indicator function of the set [t, t + ε].

Theorem 1. Let {ξn} be a critical BPRE satisfying the conditions (10.1). Then, as
x → +∞,

{
ln
(
ξ
tx2σ−2� ∨ 1

)

x
, t ∈ [0,+∞)

∣∣∣∣∣ T (expx) < +∞
}

D→ {Y (t) , t ∈ [0,+∞)} ,
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where {Y (t)} is a random process with continuous trajectories and distribution given
by

P ({Y (t)} ∈ A) =

√
2
π

+∞∫

0

P

({
W+

0

(
tv2
)

v

}
∈ A, h+

0 > v

)
dv

for any Borel set A of the space D [0,+∞).

Theorem 2. Let {ξn} be the critical BPRE satisfying the conditions (10.1). Then, as
x → +∞,{

ln
(
ξ
tT� ∨ 1

)
x

, t ∈ [0,+∞)

∣∣∣∣∣ T (expx) < +∞
}

D→
{
Ỹ (t) , t ∈ [0,+∞)

}
,

where
{
Ỹ (t)

}
is a random process with continuous trajectories and distribution given

by

P
({

Ỹ (t)
}
∈ A

)
=

√
2
π

+∞∫

0

P

({
W+

0 (t)
v

}
∈ A, h+

0 > v

)
dv

for any Borel set A of the space D [0,+∞).

The absolute timeline is considered in Theorem 1, while Theorem 2 deals with the
relative timeline. It is interesting to mention that the invariance principle for the crit-
ical Galton–Watson branching process has a similar form. Let Zn be the number of
particles in the nth generation of this process. It turned out that (see Afanasyev, 2005)
if VarZ1 := 4λ ∈ (0,+∞), then, as n → ∞,{

Z
nt�
λn

, t ∈ [0,+∞)
∣∣∣∣ Zn > 0

}
D→ {

Y + (t) , t ∈ [0,+∞)
}
,

where {Y + (t)} is a random process with continuous trajectories and distribution given
by

P
({

Y + (t)
} ∈ A

)
=

√
2
π

+∞∫

0

P
({

l+0 (tv)
v

}
∈ A, h+

0 > v

)
dv

for any Borel set A of the space D [0,+∞).
If we depict the graph of the process {ξn} in the co-ordinate system yOz (n on

the axis Oy, and ξn on the axis Oz), then the condition ξn > 0 means that we are
interested in trajectories of this process elongated along the axis Oy, whereas in re-
lations (10.3) and (10.4) their form along the axis Oz is considered. The condition
T (x) < +∞ means that we are interested in trajectories elongated along the axis Oz.
If we are interested in their form along the axis Oy, then we need the next two invari-
ance principles (the first one is for the absolute timeline and the second one is for the
relative timeline).

Theorem 3. Let {ξn} be a critical BPRE satisfying the conditions (10.1). Then, as
x → +∞,{

σ2T (ux)
ln2 x

, u ∈ [0,+∞)
∣∣∣∣ T (x) < +∞

}
D→ {H (u) , u ∈ [0,+∞)} ,
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where {H (u)} is a random process with trajectories from the space D [0,+∞) and
distribution given by

P ({H (u)} ∈ A) =

√
2
π

+∞∫

0

P

({
τ+
0 (uv)
v2

}
∈ A, h+

0 > v

)
dv

for any Borel set A of the space D [0,+∞).

Theorem 4. Let {ξn} be a critical BPRE satisfying the conditions (10.1). Then, as
x → +∞,

{
T (ux)

T
, u ∈ [0,+∞)

∣∣∣∣ T (x) < +∞
}

D→
{
H̃ (u) , u ∈ [0,+∞)

}
,

where {H̃ (u)} is a random process with trajectories from the space D [0,+∞) and
distribution given by

P
({

H̃ (u)
}
∈ A

)
=

√
2
π

+∞∫

0

P
({

τ+
0 (uv)

} ∈ A, h+
0 > v

)
dv

for any Borel set A of the space D [0,+∞).

10.3 Proof of Theorem 1

Introduce for x ∈ (1,+∞) the random process Yx:

Yx (t) =
ln
(
ξ
tσ−2 ln2 x� ∨ 1

)

lnx
, t ∈ [0,+∞) ,

and for v ∈ (0,∞) the random process Zv:

Zv (t) =
W+

0

(
v2t
)

v
, t ∈ [0,∞) .

It is required to show that, for arbitrary Borel set A from D [0,+∞) satisfying the
condition P(Y ∈ ∂A) = 0 (∂A is the boundary of the set A, Y = {Y (t)}), the following
equality is valid. . .

lim
x→+∞P (Yx ∈ A | T (x) < +∞) = P (Y ∈ A) .

By the definition of the process Y this relation can be written as follows,

lim
x→+∞P (Yx ∈ A | T (x) < +∞) =

√
2
π

+∞∫

0

P
(
Zv ∈ A , h+

0 > v
)
dv. (10.6)
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Note that for arbitrary ε > 0

P (Yx ∈ A , T (x) < +∞) = P1 (x, ε) + P2 (x, ε) , (10.7)

where

P1 (x, ε) = P
(
Yx ∈ A , T (x) < +∞, T > εσ−2ln2 x

)
,

P2 (x, ε) = P
(
Yx ∈ A , T (x) < +∞, T ≤ εσ−2ln2 x

)
.

The essential role further is played by the following statement which is proved in
Afanasyev (2006).

Lemma 1. If the conditions (10.1) hold, then

lim
ε↓0

lim sup
x→+∞

P
(
T ≤ ε ln2 x

∣∣ T (x) < +∞)
= 0.

Since
P2 (x, ε) ≤ P

(
T (x) < +∞, T ≤ εσ−2ln2 x

)
,

it follows from Lemma 1 that

lim
ε↓0

lim sup
x→+∞

P2 (x, ε)
P (T (x) < +∞)

= 0. (10.8)

Obviously,

{T (x) < +∞} =

{
sup

t∈[0,1]

ξ
tT� > x

}
=

{
sup

t∈[0,1]

ln
(
ξ
tT� ∨ 1

)
> lnx

}
,

therefore we conclude, letting n = εσ−2ln2 x, that

P1 (x, ε)

= P

({
√

ε
ln
(
ξ
nt/ε� ∨ 1

)
σ
√

n
, t ≥ 0

}
∈ A , sup

t∈[0,1]

(
ξ
tT� ∨ 1

)
>

σ
√
n√
ε

, T > n

)
. (10.9)

It follows from (10.2) and (10.5) that if n = εσ−2ln2 x, then

lim
x→+∞

P (T > n)
P (T (x) < +∞)

=
σc1√
εc2

=

√
2
επ

. (10.10)

Applying to the right-hand side of relation (10.9) the invariance principle (10.3) and
using (10.10), we obtain that

lim
x→+∞

P1 (x, ε)
P (T (x) < +∞)

=

√
2
επ

P

({
√

ε
W+

0

(
α2t/ε

)
α

, t ≥ 0

}
∈ A , sup

t∈[0,1]

W+
0 (t)
α

>
1√
ε

)
. (10.11)
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Transform the probability in the right-hand side of relation (10.11), taking into
account that the random variable α is uniformly distributed in (0, 1) and independent
of
{
W+

0 (t)
}
:

P

({
√

ε
W+

0

(
α2t/ε

)
α

, t ≥ 0

}
∈ A , sup

t∈[0,1]

W+
0 (t)
α

>
1√
ε

)

=

1∫

0

P

({
√

ε
W+

0

(
u2t/ε

)
u

, t ≥ 0

}
∈ A , sup

t∈[0,1]

W+
0 (t)
u

>
1√
ε

)
du

=
√

ε

1/
√

ε∫

0

P

({
W+

0

(
v2t
)

v
, t ≥ 0

}
∈ A , sup

t∈[0,1]

W+
0 (t) > v

)
dv.

Thus we have, recalling the definitions of the random process Zv and the random
variable h+

0 , that

lim
x→+∞

P1 (x, ε)
P (T (x) < +∞)

=

√
2
π

1/
√

ε∫

0

P
(
Zv ∈ A , h+

0 > v
)
dv.

Passing to limit as ε ↓ 0, we obtain that

lim
ε↓0

lim
x→+∞

P1 (x, ε)
P (T (x) < +∞)

=

√
2
π

+∞∫

0

P
(
Zv ∈ A , h+

0 > v
)
dv. (10.12)

The validity of relation (10.6) follows from (10.7), (10.8), and (10.12). However in
these reasonings there is a defect as the key relation (10.11) is valid if

P
({√

εW+
0

(
α2t/ε

)
/α, t ≥ 0

} ∈ ∂A
)

= 0,

but we know only that P(Y ∈ ∂A) = 0.
To overcome this difficulty, first we consider the cylinder subsets of D [0,+∞):

A = {y : y (ti) ≤ ai, i = 1, . . . ,m} ,

where m ∈ N, t1, t2, . . . , tm ∈ [0,+∞) and a1, a2, . . . , am ∈ R. For these subsets re-
lations (10.11) and (hence) (10.6) are valid because of the absolute continuity of the
finite-dimensional distributions of a Brownian excursion.

Now we consider the following subsets of D [0,+∞),

A = {y : wy (δ; a, b) ≥ ε} ,

where 0 ≤ a < b < +∞, ε, δ are positive numbers, wy (δ; a, b) is the standard modulus
of continuity of a function y (t) , t ∈ [0,+∞); i.e.,

wy (δ; a, b) = sup
t,s: |t−s|≤δ

|y (t) − y (s)| (t, s ∈ [a, b]) .

It is clear that the mapping y → wy (δ; a, b), y ∈ D [0,+∞), is continuous if y (t) is
a continuous function on [0,+∞). Whence, taking into account that trajectories of a
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Brownian excursion are continuous a.s., we are convinced of the validity of relation
(10.11) for all sets A under consideration and for all positive ε with the exception of no
more than a countable set. But it means the validity of relation (10.6), which in this
case has the following form,

lim
x→+∞P (wYx (δ; a, b) ≥ ε | T (x) < +∞)

=

√
2
π

+∞∫

0

P
(
wZv

(δ; a, b) ≥ ε , h+
0 > v

)
dv. (10.13)

It is well known (see Durrett and Iglehart (1977)) that

+∞∫

0

P
(
h+

0 > v
)
dv = Eh+

0 =
√

π

2
.

Since trajectories of the process Zv are continuous a.s.,

lim
δ→0

P (wZv (δ; a, b) ≥ ε ) = 0.

Hence by the dominated convergence theorem we obtain from (10.13) that

lim
δ→0

lim
x→+∞ P (wYx (δ; a, b) ≥ ε | T (x) < +∞) = 0. (10.14)

It is well known (see Billingsley, 1968), that the convergence of the finite-dimensional
distributions of the process Yx and relation (10.14) mean the validity of Theorem 1
(including the statement about the continuity of trajectories of the process Y ).

10.4 Finite-dimensional distributions

Note that the distributions of the limit processes in Theorems 1 and 2 are determined
by means of the joint distribution of a Brownian excursion

{
W+

0 (t)
}

(with some scale
changes) and its maximum h+

0 . We can consider the process
{
τ+
0 (x) , x ∈ [0,+∞)

}
as

(in some sense) the inverse process for a Brownian excursion. The distributions of the
limit processes in Theorems 3 and 4 are determined by means of the joint distribution
of the inverse process for a Brownian excursion and h+

0 .
However, there are other examples of the limit processes description. For instance, it

is possible to determine the finite-dimensional distributions or to express these processes
in terms of known random processes. We give here the finite-dimensional distributions
of the limit process in Theorem 1.

We introduce some notations:

(1) for t > 0, x > 0, y > 0
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f (t, x) =

√
2

πt3
x exp

(
−x2

2t

)
,

g (t, x, y) =
1√
2πt

[
exp

(
− (y − x)2

2t

)
− exp

(
− (y + x)2

2t

)]
;

(2) for t > 0, y ∈ (0, 1]

p1 (0, 0; t, y) =
+∞∑

k=−∞
f (t, 2k + y) ,

for 0 < s < t, x ∈ (0, 1], y ∈ (0, 1]

p1 (s, x; t, y) =
+∞∑

k=−∞
g (t− s, x, 2k + y) ;

(3) for t > 0

p2 (0, 0; t, y) =

⎧
⎨
⎩

∑
k∈Z\{0}

f (t, 2k − y) , y ∈ (0, 1],

f(t, y), y > 1,

for 0 < s < t, x ∈ (0, 1]

p2 (s, x; t, y) =

⎧
⎨
⎩

∑
k∈Z\{0}

g (t− s,−x, 2k + y) , y ∈ (0, 1],

g(t− s, x, y), y > 1.

Then for arbitrary numbers m ∈ N, t1, t2, . . . , tm ∈ [0,+∞) (t1 < t2 < · · · < tm)
and a1, a2, . . . , am ∈ [0, 1)

P (Y (ti) > ai, i = 1, . . . ,m)

=
m∑

j=0

∫
· · ·

∫

Gj(a1,...,am)

j−1∏
i=0

p1 (ti, xi; ti+1, xi+1) p2 (tj , xj ; tj+1, xj+1)

×
m−1∏

i=j+1

g (ti+1 − ti, xi, xi+1) dx1, . . . , dxm, (10.15)

where t0 = 0, x0 = 0, tm+1 = +∞, xm+1 = +∞, p2 (tm, xm; tm+1, xm+1) = xm, and

for j = 0, 1, . . . ,m,

Gj (a1, . . . , am) = {(x1, . . . , xm) : ai < xi ≤ 1, i = 1, . . . , j; ai < xi, i = j + 1, . . . ,m } .

We note that as usual a product over an empty set of indices is equal to 1. In
relation (10.15) for the finite-dimensional distributions of the process Y there are the
m + 1 summands each of which is similar to the finite-dimensional distributions of a
Markov process and p1 (s, x; t, y), p2 (s, x; t, y), g (t, x, y) play the role of the transition
densities.
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But if even one of the numbers a1, . . . , am is more than or equal to 1 then

P (Y (ti) > ai, i = 1, . . . ,m)

=
∫

· · ·
∫

G0(a1,...,am)

f (t1, x1)
m−1∏
i=1

g (ti+1 − ti, xi, xi+1) dx1, . . . , dxm. (10.16)

As the state 0 is absorbing for the process Y it is reasonable to consider for positive
numbers a1, . . . , am the probability P (Y (ti) > ai, i = 1, . . . ,m− 1; Y (tm) = 0) .

It is obvious that this probability is equal to

P (Y (ti) > ai, i = 1, . . . ,m− 1) − P (Y (ti) > ai, i = 1, . . . ,m− 1; Y (tm) > 0) ,

and the last two probabilities can be found from (10.15) and (10.16).

10.5 Conclusion

Finally, we indicate how to find the finite-dimensional distributions of the process Y .
The main role is played here by the following relation,

P (Y (ti) > ai, i = 1, . . . ,m)

=
√

2
πtm

P
(
W+ (ti/tm) > ai/

√
tm, i = 1, . . . ,m; h+ > 1/

√
tm
)
,

where a1, . . . , am are nonnegative numbers, h+ = supt∈R
W+(t). In addition we use

here the formulas for the joint distribution of minimum, maximum, and location at the
last moment of a Brownian motion on time interval [0, 1] (see Billingsley, 1968) and the
joint distribution of maximum and location at the last moment of a Brownian meander
on a time interval [0, 1] (see Durrett and Iglehart, 1977), as well as the following result.
On time interval [0, t], t ∈ (0, 1] (see Durrett and Iglehart, 1977), as well as the following
result.

Lemma 2. For any t1, t2 ∈ (0, 1] (t1 < t2), positive x1, x2 and Borel set A from the
space D [t1, t2],

P
(
W+ ∈ A

∣∣ W+ (t1) = x1, W+ (t2) = x2

)

=P

(
W ∈ A

∣∣∣∣ W (t1) = x1, W (t2) = x2, inf
t∈[t1,t2]

W (t) ≥ 0
)

.
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Gaussian Approximation for Multichannel Queueing
Systems

Larisa G. Afanas’eva

Department of Mathematics and Mechanics, Moscow State University, Russia

Abstract: For queueing systems with a large number of channels we prove convergence
of one-dimensional distributions of the customer’s number in the system to the Gaussian
ones. Convergence conditions are given in terms of moments of the input flow, which is
of a rather general character. We find normalising coefficients considering regenerative
and doubly stochastic Poisson flows.

Keywords and phrases: Gaussian approximation, doubly stochastic Poisson process,
regenerative process

11.1 Introduction

Asymptotic analysis of queueing systems under the assumption that the number of
customers in the system grows attracted the attention of many researchers; see, e.g.,
Afanas’eva (1984), Afanasieva and Bashtova (2004), Asmussen (1991), and references
therein. The A. A. Borovkov monograph (Borovkov, 1984) develops the theory of limit
behaviour of the processes describing the operation of such systems under the most
general restrictions on an input flow, service times, and a structure of such a system.
An arrival process, after a certain normalisation, is required to converge in one or an-
other sense to a stochastic process ξ(t). Then the normalised number of customers q(t)
in the system converges to a stochastic process ζ(t) related to ξ(t). It is established
that if the number n of servers in the system grows rather fast then asymptotic prop-
erties of q(t) for loss systems or those with unbounded waiting time are the same as for
infinite-channel systems. Applying these theorems to systems with input flows usual
in queueing theory (such as doubly stochastic Poisson, Markov-modulated, regenera-
tive, semi-Markov, and others) causes the following problems. Firstly, one has to prove
convergence of an input flow to a stochastic process ξ(t), secondly, to find normalising
coefficients, and finally, to express normalising coefficients for the process q(t) in terms
of input flow and service characteristics. This chapter provides sufficient conditions for
convergence of one-dimensional distributions of the process q(t), normalised in a special
way, to the Gaussian ones in terms of moments of the input flow (mathematical expec-
tation, correlation function, and the third mixed moment); normalising coefficients are

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 117
and Technology, DOI 10.1007/978-0-8176-4799-5 11,
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also obtained with the help of these characteristics. We study an infinite-channel sys-
tem. However, it follows from Borovkov (1984) that similar statements are also true for
systems with n channels, if n grows fast enough. The approach proposed can be utilised
as well for proving convergence of finite-dimensional distributions. Difficulties that arise
are of a technical character. As an illustration, systems with a doubly stochastic Poisson
flow and a regenerative input process are considered. In the former case normalising
coefficients are expressed by means of the average intensity and correlation function
of a stochastic intensity, while the moments of the cumulative process specifying the
regenerative one are involved in the latter case.

11.2 Model description

Let the arrival process {X(t), t ∈ (−∞,+∞)} be an integer-valued stochastic process
having nondecreasing trajectories and X(0) = 0. If s < t the increment X(s, t) =
X(t)−X(s) determines the number of customers arriving at the system on time interval
(s, t). An increasing sequence {tj}+∞

j=−∞ where t0 ≤ 0, t1 > 0 defines the jump times
of the process X(t). Assume that the system contains an infinite number of channels.
Service times are independent random variables not depending on the input flow with a
common distribution function B(x). We suppose that the service time is not a constant
and has a finite mean b =

∫∞
0

B̄(x) dx < ∞, where B̄(x) = 1 − B(x). The asymptotic
behaviour of process q(t) that equals the number of customers in the system at time t
under the assumption that the system operation started in the infinitely remote past
is studied. The asymptotic case of time compression is considered when the input flow
is defined by the relation

XT (t) = X(Tt) and T → ∞.

Let us assume E|X(t)|3 < ∞ and introduce functions H(t) = EX(t), R(t, s) =
EX̂(t)X̂(s), G(t, y, u) = EX̂(t)X̂(y)X̂(u), where X̂(t) = X(t) − H(t). We suppose
that ∞∫

0

∞∫

0

|R(s, t)| dB(t) dB(s) < ∞. (11.1)

This condition provides the existence of all integrals that are introduced below in the
mean square sense. They exist a.s. due to the process X(t) properties. Let qT (t) be the
process q(t) for the system with the input flow XT (t). The following theorem establishes
that, for every fixed t, the r.v. qT (t) is asymptotically Gaussian, as T → ∞.

11.3 The basic theorem

Theorem 1. Let the following conditions hold.

(1)
√|t| ((H(t)/t) − λ) → 0, as |t| → ∞, for a certain λ ∈ (0,∞),

(2) There exists limT→∞ T−1R(Tt, Ts) = g(t, s) with g(t, s) satisfying (11.1),
(3) limT→∞ T−3/2G(Tt, Tu, Tv) = 0.
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Then for any t the distribution of

q̂T (t) =
qT (t) − λbT√

T σ̃(t)

weakly converges to the Gaussian one with parameters (0, 1) and

σ̃2(t) = λb− λ

∫ ∞

0

[B̄(y)]2dy + u(t),

where

u(t) = g(t, t) − 2

t∫

0

g(t, t− y) dB(y) + 2

∞∫

0

y∫

0

g(t− y, t− s) dB(s) dB(y). (11.2)

Proof. We consider the generating function

P (z, t) = Ezq(t) = E
∏
tj≤t

(1 + (z − 1)B̄(t− tj)) = Ef(z), |z| < 1. (11.3)

Let us introduce the following integrals

JT
k (t) =

t∫

−∞
(B̄(t−y))kdXT (y) = X(tT )−k

∞∫

0

X(T (t−y))(B̄(y))k−1 dB(y), k = 1, 2, 3.

(11.4)
First we prove an auxiliary proposition.

Lemma 1. Let the following conditions be fulfilled, as T → ∞.

1.
√

T
(
T−1EJT

1 (t) − λb
)→ 0.

2. T−1VarJT
1 (t) → σ2

J(t) > 0.

3. T−1EJT
2 (t) → a2.

4. (a) T−3/2
(
E
(
JT

1 (t) − EJT
1 (t)

)3)→ 0.

(b) T−3/2cov
(
JT

1 (t), JT
2 (t)

)→ 0.

Then for any t the distribution of

q̂T (t) =
qT (t) − λbT√

Tσq(t)

weakly converges to the Gaussian one with parameters (0, 1) and

σ2
q (t) = λb + σ2

J(t) − a2. (11.5)

Proof. Since t is fixed, sometimes we omit it, writing, for example, JT
k instead of JT

k (t).
From the relation (11.3) we find
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PT

(
eis/

√
T , t

)
=EeisqT /

√
T = 1 −

(
1 − eis/

√
T
)

EJT
1

+
(1 − eis/

√
T )2

2

(
E
(
JT

1

)2 − EJT
2

)
− (1 − eis/

√
T )3

3!
Ef ′′′

T

(
θeis/

√
T
)
,

|θ| ≤ 1

where

f ′′′
T (z) =

∑
tj ,tk,tm≤Tt

PT
j PT

k PT
m1{Aj,k,m}

∏
ts≤Tt

(
1 + (z − 1)PT

s

)
1{s 
= j, k,m}

and PT
j = B̄(t− tj/T ). Here Aj,k,m means that all the indices j, k,m are different.

With the help of rather complicated calculations one can obtain the estimate

Ef ′′′
T (θeis/

√
T ) =

(
E
(
JT

1

)3 − EJT
1 JT

2 + 2EJT
3

)
(1 + ε1(θs/

√
T )), (11.6)

where ε1(s) → 0, as s → 0.
Now we write the expansion of

ϕT (s) = ln Eeis((qT −λbT )/
√

T )

as follows

−isλb
√

T + is
HT (t)√

T
− s2

2T
(
VarJT

1 − EJT
2 + EJT

1

)− s3

T 3/2
gT (θs/

√
T ). (11.7)

The estimation of gT (θs/
√

T ) is based on relation (11.6) and inequalities

|1 − e−β + β| ≤ |β|2
2

, |1 − e−β + β − β2

2
| ≤ |β|3

6
(Reβ ≥ 0).

We give here the final result

|gT (s/
√

T )| ≤ C
(
|E (JT

1 − EJT
1

)3 | + 3|cov (JT
1 , JT

2

)
+ 2EJT

3 |
)

(1 + uT (s/
√

T )),
(11.8)

where uT (s/
√

T ) → 0, as T → ∞. From (11.7), (11.8), and conditions of Lemma 1 we
get

ϕT (s) → − s2

2σ2
q (t)

(T → ∞),

where σ2
q (t) is given by (11.5).

We complete the proof of the theorem by the following lemmas.

Lemma 2. Under condition (1) of Theorem 1,

lim
T→∞

√
T
(
T−1EJT

1 − λb
)

= 0; (11.9)

lim
T→∞

T−1EJT
2 = λ

∫ ∞

0

[
B̄(y)

]2
dy. (11.10)
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Proof. The proof immediately follows from the inequality
√

T

∣∣∣∣
EJT

1

T
− λb

∣∣∣∣ ≤
∫ ∞

0

y
√

T
∣∣T−1H(−yT ) − λ

∣∣ dB(y)

and relation (11.4) for JT
2 .

Lemma 3. Under condition (2) of Theorem 1

lim
T→∞

T−1VarJT
1 (t) = u(t),

where u(t) is given by relation (11.2)

Proof. From (11.4) and condition (2) we get, as T → ∞,

T−1VarJT
1 = T−1[R(Tt, T t) − 2

∞∫

0

R(Tt, T (t− y)) dB(y)

+ 2

∞∫

0

y∫

0

R(T (t− s), T (t− y)) dB(s) dB(y)] → u(t).

Lemma 4. Under conditions (1)–(3) of Theorem 1

T−3/2gT (s/
√

T ) → 0 (T → ∞).

Proof. In view of (11.9), (11.10), and (11.8) it is sufficient to verify that

lim
T→∞

T−3/2E
(
JT

1 − EJT
1

)3
= 0. (11.11)

Since

E
(
JT

1 − EJT
1

)3
= G(Tt, T t, T t) + 3

∞∫

0

G(Tt, T t, T (t− y)) dB(y)

+ 6

∞∫

0

y∫

0

G(Tt, T (t− y), T (t− s)) dB(s) dB(y)

+ 6

∞∫

0

y∫

0

u∫

0

G(T (t− y), T (t− v), T (t− u)) dB(u) dB(v) dB(y)

relation (11.11) follows from condition (3) of the theorem.

Combination of these lemmas proves the theorem.
Corollary 1. If conditions of Theorem 1 hold and

g(t, s) =
(
σ2

X min(|t|, |s|) + C
)
1{ts ≥ 0} (11.12)

then q̂T (t) has the asymptotically Gaussian distribution with

σ̃2
q = λb +

(
σ2

X − λ
) ∞∫

0

(B̄(y))2 dy. (11.13)

Proof. It is sufficient to calculate u(t) using (11.2) and (11.12).



122 L.G. Afanas’eva

11.4 A limit theorem for a regenerative arrival process

We begin by introducing notation for a regenerative input flow.
We say that input flow {X(t), t ∈ (−∞,+∞)} is regenerative if there exists a

nondecreasing sequence of r.v.s {θj}+∞
j=−∞ (θ0 = 0) such that

{θj+1 − θj ,X(θj + t) −X(θj), t ∈ [0, θj+1 − θj)}+∞
j=−∞,

is a sequence of i.i.d. random elements. As usually, we introduce the following r.v.s.

τj = θj+1 − θj , κj(t) = X(θj + t) −X(θj), ξj = κj(τj)

and set

a = Eξi, μ = Eτi, σ2
ξ = Var ξi, σ2

τ = Var τi, rξ,τ = cov(ξi, τi).

This class of processes is rather broad. In particular, it includes recurrent, semi-
Markov, Markov-modulated, Markov arrival processes, and others.

To apply some renewal theory results we assume that the distribution of τi has an
absolutely continuous component.

Theorem 2. Let {X(t), t ∈ (−∞,+∞)} be a regenerative flow and Eξ4
j < ∞,

Eτ4
j < ∞. Then the distribution of q̂T (t) weakly converges to the Gaussian one with

parameters (0, 1) and σ2
q is given by (11.13) where

λ =
a

μ
, σ2

X =
σ2

ξ

μ
+

a2σ2
τ

μ3
− 2arξ,τ

μ2
. (11.14)

Proof. It is sufficient to verify conditions (1)–(3) of Theorem 1 for {X(t), t ≥ 0}.
Consider stochastic processes

N(t) = max{j ≥ 0: θj ≤ t}, γt = t− θN(t).

Process XT (t) can be represented as

XT (t) = Z(Tt) + κN(Tt)(γTt), (11.15)

where Z(u) =
∑N(u)

j=0 ξj . It is well known (see, e.g., Cox (1963)) that r.v.s γt, κN(t)(γt),
and τN(t) have a limit distribution as t → ∞. If F (x, y) = P (ξi ≤ x, τi ≤ y) then

lim
t→∞P (ξN(t) ≤ x) = μ−1

∞∫

0

yF (x, dy) = F (x). (11.16)

Taking into account that κN(t)(γt) ≤ ξN(t) we get from relation (11.15)

EZ(t) ≤ H(t) = EX(t) ≤ EZ(t) + EξN(t).

Now condition (1) of Theorem 1 follows from asymptotic results for EZ(t) (see,
e.g., Cox, 1963; Smith, 1955) and (11.16). For the correlation function we find
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R(Tt, Ts) = cov(Z(Ts), Z(Tt)) + cov
(
Z(Tt),κN(Ts)(γTs)

)
+ cov

(
Z(Ts),κN(Tt)(γTt)

)

+ cov
(
κN(Ts)(γTs),κN(Tt)(γTt)

)
= g1 + g2 + g3 + g4.

Since cov(Z(Ts), Z(Tt) − Z(Ts)) ≤ C (t ≥ s) one can obtain that

lim
T→∞

T−1cov(Z(Ts), Z(Tt)) = σ2
Xs (t ≥ s ≥ 0),

where σ2
X is defined by (11.14) (see, e.g., Cox, 1958; Smith, 1958), C is a constant.

Besides,
|g2| =

∣∣cov(ξN(Ts),κN(Ts)(γTs)
)∣∣ ≤ C2 < ∞

and similarly |g3| ≤ C3 < ∞, |g4| ≤ C4 < ∞. It means that condition (2) holds and
g(t, s) is given by (11.12).

Concerning condition (3) we note that

G(y, u, v) = Gz(y, u, v) + d(y, u, v) + d(u, y, v) + d(v, y, u) + Eη̂uη̂v η̂y, (11.17)

where Gz(y, u, v) is a function G(y, u, v) for process Z(t) and

η̂y =κN(y)(γy) − EκN(y)(γy), Ẑ(y) = Z(y) − EZ(y),

d(y, u, v) =E[η̂yẐ(u)Ẑ(v) + η̂yη̂vẐ(v)].

We have
|Eη̂yẐ(u)Ẑ(v)| ≤

√
Eη̂2

y
4
√

E(Ẑ(u))4E(Ẑ(v))4 ≤ C5

√
uv + C̃6

and condition (3) follows from the asymptotic behaviour of moments of Ẑ(t), as t → ∞;
see, e.g., Cox (1958, 1963), and Smith (1958).

The general case when the coordinate origin is not a point of regeneration can be
reduced to the previous one.

11.5 Doubly stochastic poisson process (DSPP)

To begin with we recall the definition of a DSPP. Let {Λ(t), t ∈ (−∞,+∞)} be a
stochastic process with nondecreasing trajectories and values in R. All trajectories
also have limits on the right, are left continuous, and Λ(0) = 0. The random time
substitution with the help of Λ(t) leads to a DSPP (Grandell, 1976); i.e.,

X(t) = A(Λ(t))

where {A(t), t ∈ (−∞,+∞)} is a standard Poisson process not depending on Λ(t).
Assuming E|Λ(t)|3 < ∞ we introduce functions

HΛ(t) = EΛ(t), RΛ(t, s) = EΛ̂(t)Λ̂(s), GΛ(t, y, u) = EΛ̂(t)Λ̂(y)Λ̂(u).
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Theorem 3. Let {X(t), t ∈ (−∞,+∞)} be a DSPP with integrated intensity function
Λ(t). If for HΛ(t), RΛ(t, s), and GΛ(t, y, u) conditions (1)–(3) of Theorem 1 hold, then
distribution of q̂T (t) weakly converges to a Gaussian one, for any t. The normalising
constant is given by the relation

σ̃2(t) = λb + uΛ(t)

∞∫

0

[
B̄(y)

]2
dy,

where λ = limt→∞(HΛ(t)/t) and uΛ(t) is a function u(t) for the process Λ(t).

Proof. Theorem 3 follows from Theorem 1 as there are explicit relations among func-
tions HΛ(t), RΛ(t, s), GΛ(t, y, u) for Λ(t) and the corresponding functions for the pro-
cess X(t). For example, HΛ(t) = H(t) and

R(t, s) = RΛ(t, s) + H(min(|s|, |t|))1{ts ≥ 0}.
The expression for G(t, y, u) being more complicated is not given here.

Furthermore we assume that

Λ(t) =
∫ t

0

λ(y) dy,

where λ(y) is a nonnegative locally integrable stationary stochastic process in a wide
sense with mean λ; moreover, P (λ(t) ≤ λ∗, t ∈ (−∞,+∞)) = 1, λ∗ < ∞.

We write λ = Eλ(y), λ̂(y) = λ(y) − λ and introduce the functions

r(y) = Eλ̂(0)λ̂(y), Gλ(u, v) = Eλ̂(0)λ̂(u)λ̂(v).

Corollary 2. If, for T → ∞,

|r(tT )| ≤ C|tT |−α, where α > 2, 0 < C < ∞; (11.18)

T−3/2Gλ(Ts, T t) → 0 (T → ∞), ts 
= 0, (11.19)

then q̂T (t) is asymptotically normal and

σ2
q = λb + 2

∞∫

0

(B̄(y))2 dy

∞∫

0

r(u) du. (11.20)

Proof. We use Lemma 1 to prove this proposition. Since Hλ(t) = λt and condition
4. (a) follows from (11.19), it is sufficient to verify condition 2. To this end we write

T−1Var JT (t) = 2T

t∫

−∞

y∫

−∞
B̄(t− u)B̄(t− y) r(T (y − u)) du dy

= 2T

t∫

−∞
B̄(t− y)

y∫

y−T−β

B̄(t− u) r(T (y − u)) du dy

+ 2T

t∫

−∞
B̄(t− y)

y−T−β∫

−∞
B̄(t− u) r(T (y − u)) du dy = Iβ

1 + Iβ
2 .
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For β ∈ (0, 1), by virtue of condition (11.18),

Iβ
2 → 0 (T → ∞)

and for Iβ
1 we get

Iβ
1 = 2T

∫ t

−∞
B̄(t− y)B̄(t− y − θT−β)

∫ y

y−T−β

r(T (y − u)) du dy,

where |θ| < 1. Changing variables v = T (y − u) and passing to the limit as T → ∞
proves (11.20).

For a Markov-modulated process (see, e.g., Asmussen, 1991), the intensity has the
form

λ(t) =
∞∑

k=1

λk1{U(t) = k}, (11.21)

where U(t) is a homogeneous Markov chain with a finite or a countable set of states
and {λk, k = 0, 1, . . . } is a collection of nonnegative numbers such that λk ≤ λ∗ for
any k. Let Pij(t) = P (U(t) = j|U(0) = i) for t ≥ 0.

Corollary 3. Let λ(t) be specified by (11.21) where U(t) is a stationary ergodic Markov
chain and

πj = P (U(t) = j), j = 0, 1, . . . .

If

|Pij(t) − πj | ≤ Cπj

tα
, α > 2, 0 < C < ∞, (11.22)

then q̂T (t) is asymptotically normal and

σ2
q =λb + 2

∞∑
k=0

∞∑
j=0

λkλjπk

∞∫

0

(Pkj(y) − πj) dy
∫ ∞

0

(
B̄(u)

)2
du, (11.23)

λ =
∞∑

k=0

λkπk.

Proof. We have to verify (11.18) and (11.19). In view of the relation

r(y) =
∞∑

k=0

∞∑
j=0

λkλjπk(Pkj(y) − πj)

(11.18) follows from (11.22). Since

Gλ(s, t) =
∞∑

k=0

∞∑
j=0

∞∑
m=0

(λk − λ)(λj − λ)(λm − λ)πkPkj(s)Pjm(t)

from inequality (11.22) one can easily obtain the estimate

|Gλ(s, t)| ≤ 8CT 3−α(λ∗)3(t−α + s−α + (Tst)−α)

for s > 0, t > 0, and T → ∞.
A similar estimate is valid for negative s and t and for the case st < 0. It means

that (11.19) is fulfilled.
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Another example of applying Corollary 2 is given for a stationary regenerative
process λ(t). Let {θi}+∞

i=−∞ be the moments of regeneration for λ(t), θ0 ≤ 0 < θ1, and
τi = θi+1 − θi, λi(t) = λ(θi + t) for t ∈ (0, τi). We suppose τi (i 
= 0) to have a common
d.f. F (x) and τ = Eτ1 < ∞. Consider stochastic processes

N(t) = max{j : θj ≤ t}, t ∈ (−∞,+∞),

and
γt = t− θN(t), χt = θN(t)+1 − t.

If the distribution of (γ0, χ0) satisfies the following condition

P (γ0 > x, χ0 > y) = τ−1

∞∫

x+y

F̄ (u)du (11.24)

then the process N(t) has stationary increments. Besides, the distributions of τN(t) and
of (γt, χt) do not depend on t and

P (τN(t) > x) = P (τ0 > x) = τ−1

⎡
⎣xF̄ (x) +

∞∫

x

F̄ (y)dy

⎤
⎦ . (11.25)

It follows from (11.24) and (11.25) that the conditional distribution of γt for a fixed
τN(t) is uniform on (0, τN(t)).

Corollary 4. Let λ(t) be a regenerative process satisfying (11.24). Then λ(t) is a sta-
tionary process. If also Eτ3

1 < ∞ then conditions (11.18) and (11.19) are fulfilled.

Proof. Due to stationarity of (τN(t), γt, χt) we have Eλ(t) equal to

EλN(t)(γt) = E
(
E(λN(t)(γt) | τN(t))

)
=

1
τ

∞∫

0

x∫

0

E(λ0(u) | τ0 = x) du dF (x) = λ.

(11.26)

Since λ(u) and λ(v) are independent if v and u fall into different regeneration periods,
it is easy to see that for v > u

r(u, v) = E
(
λN(u)(γu) − λ

) (
λN(u)(γu + v − u) − λ

)
1(v − u < χu)

=
1
τ

∞∫

v−u

x−(v−u)∫

0

E ((λ0(y) − λ)(λ0(y + v − u) − λ) | τ0 = x) dy dF (x) = r(v − u).

(11.27)

It means that λ(t) is a stationary process in a wide sense. As far as λ(t) is bounded
a.s. and Eτ3

i < ∞, estimates (11.18) and (11.19) take place.

If λi(t) and τi are independent, relations (11.26) and (11.27) can be rewritten as

λ = τ−1

∞∫

0

Eλ0(y)F̄ (y) dy, r(t) = τ−1

∞∫

0

E(λ0(x) − λ)(λ0(x + t) − λ)F̄ (x + t) dx.

(11.28)
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For illustration let {ξi}+∞
i=−∞ be a sequence of i.i.d. nonnegative random variables not

depending on {θi}+∞
i=−∞ and a = Eξi, a2 = Var ξi. Assuming λ(t) = ξi on the ith

regeneration period, one can easily deduce from (11.28) that

λ = a, r(t) = a2τ
−1

∫ ∞

t

F̄ (x) dx

hence σ2
q is determined by the equality

σ2
q = λb +

aEτ2
1

τ

∫ ∞

0

(
B̄(y)

)2
dy.

Now consider a loss system and let nT be the number of servers in it. If q0
T (t) is the

number of customers in the system at time t, the following assertion is true.

Theorem 4. Let conditions (1)–(3) of Theorem 1 hold and

nT −mT√
T

→ ∞ (T → ∞) (11.29)

for some m ∈ (0,∞). Then

q̂0
T (t) =

q0
T (t) − λbT√

T σ̃(t)

is asymptotically normal with parameters (0, 1).

The proof is almost evident as random variables qT (t) and q0
T (t) are asymptotically

equivalent when (11.29) is true.

11.6 Conclusion

Considering queueing systems with a rather complicated input flow, in particular, a
doubly stochastic Poisson process (DSPP), one cannot, with rare exceptions, obtain
explicit expressions for their operation characteristics (average length of the queue,
loss probability, etc.). The study of such systems develops in two directions. One of
them is to estimate these characteristics (see Afanas’eva, 1984; Asmussen, 1991; Rolski,
1986, 1989), and the other one is to study the extreme cases: heavy and light traffic
situations (see Afanasieva and Bashtova, 2004; Iglehart and Whitt, 1970). We have
considered systems with an arbitrary input flow in asymptotics of time compression.
The asymptotical behaviour of qT for an infinite-channel queueing system has been
studied. Under some natural conditions convergence of one-dimensional distributions
of the process qT (t), normalised in a special way, to Gaussian ones was proved. Nor-
malising coefficients were given in terms of the first and second moments of the input
flow.

The results concerning the systems with an increasing number of channels nT are
based on Theorem 4 or on the following inequalities

q0
T (t) ≤ qT (t) ≤ q∞T (t).
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Here q0
T (t) and q∞T (t) denote the number of customers, at time t, in queueing systems

with nT channels and loss or unbounded waiting time, respectively.
For application of our results it is necessary to calculate the normalising coefficient

σ2
q . It is not so easy a problem even for DSPP. However, it is possible to obtain statistical

estimates for σ2
q when we investigate a real situation.
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Stochastic Insurance Models, Their Optimality
and Stability

Ekaterina V. Bulinskaya

Department of Mathematics and Mechanics, Moscow State University, Russia

Abstract: A class of discrete-time stochastic insurance models is investigated in the
framework of cost approach, the aim being maximization of profit (or minimization
of loss) during a finite or infinite time interval. Optimal and asymptotically optimal
controls are established under the assumption that probability distributions of the
claim process and premium inflow are known. Sensitivity analysis of the models with
respect to cost parameter fluctuations and distribution perturbations is also provided.

Keywords and phrases: Stochastic insurance models, cost approach, optimal and
asymptotically optimal policies

12.1 Introduction

Many centuries ago insurance companies were created for risk sharing and transferring.
By paying a fixed money amount a risk averse policyholder obtains the guarantee of
indemnification in case of an insured event (or risk) realization. According to legislation,
fulfillment of liabilities to its clients is the primary task of any insurance company.
Therefore by the beginning of the twentieth century the study of ruin probability was
initiated by F. Lundberg and H. Cramér in the framework of collective risk theory.
This subject was further developed by many researchers. Thus during the last century
the reliability approach dominated in actuarial sciences.

Being a corporation, an insurance company has obligations to its shareholders as
well. So, the secondary but very important task is to get profit and pay dividends. This
problem has also attracted the attention of actuaries. The pioneering work of de Finetti
(1957) was followed by many others, especially during the last decade. Investment
policies and borrowing were treated as well; see, e.g., Schmidli (1994), Bulinskaya (2004,
2005). In particular, the company functioning after its “ruin” and reinstatement of
solvability by shareholders, using their money to raise the company capital to some
positive level, was treated, e.g., in Dickson and Waters (2004).

Investigation of insurance models in the framework of cost approach was initiated in
Bulinskaya (2003). We concentrate below on a class of discrete-time insurance models

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 129
and Technology, DOI 10.1007/978-0-8176-4799-5 12,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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generalizing those introduced in Bulinskaya (2007a,b). Namely, we take into account
that asset amounts to sell and money amounts to borrow cannot be infinite. It is
reasonable to study discrete-time models since the financial balance is struck by the
end of a calendar year and the duration of a reinsurance treaty is usually a year as
well.

12.2 Model description

The aim of this research is to establish the optimal (and asymptotically optimal) policies
of an insurance company minimizing its expected losses during a fixed planning horizon
of n years, n ≤ ∞.

Suppose that {ξi}i≥1 is a sequence of i.i.d. nonnegative r.v.s with a finite mean and
a density ϕ(s) > 0 for s belonging to some finite or infinite interval [κ, κ] ⊂ R+. The
corresponding distribution function F (t) = P(ξi ≤ t) =

∫ t

0
ϕ(s) ds. Here ξi is the excess

of claims over premiums in the year i.
Assume that by the end of a year the company can make one of the following

decisions: I, sell some assets (immediately); II, borrow some money, the loan being
available by the end of the next year; III, sell assets and borrow money.

Let x be the initial capital (if x < 0 its absolute value is the company debt) whereas
c1 is the loss incurred by selling the assets unit, c2 is the interest rate while borrowing,
r is the penalty for delay of a claim unit payment, and h is the inflation rate. For
simplicity, we set the discount factor α = 1. In contrast with the above-mentioned
papers, here we take into account the following parameters: a1, the assets amount
available for sale, and a2, the upper bound for a loan. Thus we have zi ≤ ai, i = 1, 2,
where z1 is the amount sold and z2 is the amount borrowed.

12.3 Optimal control

Denote by fn(x) the minimal expected n-year costs. According to the Bellman opti-
mality principle (see, e.g., Bellman, 1957), for n ≥ 1,

fn(x) = min
0≤zi≤ai i=1,2

[c1z1 + c2z2 + L(x + z1) + Efn−1(x + z1 + z2 − ξ1)]

where f0(x) ≡ 0, L(v) = E[h(v − ξ1)+ + r(ξ1 − v)+] and E stands for expectation.
Putting v = x + z1, u = v + z2, and

Gn(u, v) = (c1 − c2)v + c2u + L(v) +
∫ ∞

0

fn−1(u− s)ϕ(s) ds

one gets
fn(x) = −c1x + min

(u,v)∈Dx

Gn(u, v). (12.1)
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The minimum in (12.1) can be attained either inside or on the boundary of the opti-
mization set Dx = {(u, v) : x ≤ v ≤ x + a1, v ≤ u ≤ v + a2}. Therefore to establish an
optimal control, that is, u and v providing the minimum, we introduce the following
notation,

Kn(v) =
∂Gn(u, v)

∂v
= c1 − c2 + L′(v) := K(v),

Sn(u) =
∂Gn(u, v)

∂u
= c2 +

∫ ∞

0

f ′
n−1(u− s)ϕ(s) ds.

Moreover, Tn(v) = Sn(v)+K(v) and Bn(v) = Sn(v+a2)+K(v) represent dGn(v, v)/dv
and dGn(v, v + a2)/dv, respectively, while

Ha(u) = c2 − c1 +
∫ u−v̄

0

K(u− s)ϕ(s) ds +
∫ ∞

u+a−v̄

K(u + a− s)ϕ(s) ds.

We introduce v, un, vn, wn, and ûa as the roots of the following equations,

K(v) = 0, Sn(un) = 0, Tn(vn) = 0, Bn(wn) = 0, Ha(ûa) = 0, (12.2)

provided the solutions exist for a given set of cost parameters. Otherwise, if K(v) > 0
for all v, set v = −∞, and if K(v) < 0 for all v, set v = +∞; the same agreement
holds for Sn(u), Tn(v), Bn(w), and un, vn, wn, n ≥ 1. Also let t and t̂ be defined by
F (t) = r/(r + h) and F 2∗(t̂) = r/(r + h), respectively.

Theorem 1. For ai = ∞, i = 1, 2, the optimal behaviour at the first step of an n-step
process has the form:

(I) If c2 < c1 − r, (k − 1)r < c2 ≤ kr, k ≥ 1, then u = v = x for n ≤ k and
v = x, u = max(un, x) for n > k. The sequence {un} is bounded, increasing, and
limn→∞ un = t̂.

(II) If c2 ≥ c1, (l − 1)r < c1 ≤ lr, l ≥ 1, then u = v = x for n < l and u = v =
max(vn, x) for n ≥ l. The sequence {vn} is bounded, increasing, and limn→∞ vn =
t.

(III) If max(c1 − r, (m− 2)c1/(m− 1)) ≤ c2 ≤ (m− 1)c1/m, m ≥ 2, (l − 1)r < c1 ≤ lr,
l ≥ 1 (hence m ≥ l and un ≥ v for n ≥ m), then u = v = x for n < l and v =
max(v, x), u = max(un, x) for n ≥ m. The sequence {un} is bounded, increasing,
and limn→∞ un = û∞.

If l ≤ n < m, then the optimal decision may be determined either by parameters
(un, v), or vn, moreover, if vn0 is optimal for some n0, then vn is also optimal for
l ≤ n < n0.

The proof can be found in Bulinskaya (2007a). A more thorough analysis, under-
taken below, allows us to refine statement (III) of Theorem 1 and to obtain new results
under restrictions a1 < ∞ and/or a2 < ∞.

First of all, it is useful to establish that all the functions under consideration are
nondecreasing. Since Sn+1(u) = Sn(u) + Hn(u), Tn+1(v) = Tn(v) + Hn(v), Bn+1(v) =
Bn(v) + Hn(v + a2), where Hn(u) =

(
f ′

n − f ′
n−1

) ∗ F (u), to prove that the sequences
{un}, {vn}, {wn} are increasing we check that Hn(u) < 0 for u = un, vn, wn, n ≥ 1.

For given r and h consider Γ− = {(c1, c2) : c2 < c1 − r}, Γ+ = {(c1, c2) : c2 >
c1 + h}, Γ = {(c1, c2) : c1 − r ≤ c2 ≤ c1 + h}, Γ−

n = {(c1, c2) ∈ Γ : Sn(v) < 0},
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Γ+
n = {(c1, c2) ∈ Γ : Sn(v) > 0} and Γ 0

n = {(c1, c2) ∈ Γ : Sn(v) = 0}. Put also
Δk

l = {(c1, c2) : (l − 1)r < c1 ≤ lr, (k − 1)r < c2 ≤ kr}, k ≥ 1, l ≥ 1, Δl = {(c1, c2) :
(l−1)r < c1 ≤ lr}, Δ>l = {(c1, c2) : c1 > lr}, Δk and Δ>k are defined, for c2, similarly.
Clearly R2

+ = ∪l≥1 ∪k≥1 Δk
l = Γ− ∪ Γ ∪ Γ+ and Γ = Γ−

n ∪ Γ+
n ∪ Γ 0

n , for any n ≥ 1.
As K(v) = 0 is equivalent to F (v) = (r + c2 − c1)/(r + h), it follows immediately

that v, existing if and only if (c1, c2) ∈ Γ , increases from κ to κ, as c2 − c1 increases
from −r to h. Obviously, Sn(v) = Tn(v) and K(v) < 0 for v < v, whereas K(v) > 0
for v > v. Moreover, it is possible to verify that v < vn < un in Γ−

n , v = vn = un in
Γ 0

n , v > vn > un in Γ+
n , similarly, −∞ = v < vn < un in Γ− and +∞ = v > vn > un

in Γ+.
Now we formulate one of the new results.

Theorem 2. Let a1 < ∞, a2 = ∞; then the optimal decision at the first step of the
n-step process has the form:

z
(n)
1 = min[a1, (min(vn, v) − x)+], z

(n)
2 =

(
un − x− z

(n)
1

)+

.

The sequences {un} and {vn}, defined by (12.2), are nondecreasing. There exist
limn→∞ un equal to ûa1 in Γ and t̂ in Γ−, whereas limn→∞ vn ≥ t in Γ+.

The proof is by induction on n. At first take n = 1. Since S1(u) = c2 > 0, u1 = −∞
and it is optimal to take u = v. On the other hand, T1(v) = c1−r+(r+h)F (v) therefore
v1 = −∞ in Δ>1 and in Δ1 there exists v1 ∈ [0, v] such that F (v1) = (r − c1)/(r + h).
In the latter case the optimal decision is u = v = x + a1 for x < v1 − a1, u = v = v1,
for x ∈ [v1 − a1, v1), and u = v = x for x ≥ v1.

For further investigation we need only to know f ′
1(x) which is equal to L′(x) =

−r + (r + h)F (x) in Δ>1 whereas in Δ1

f ′
1(x) = −c1 +

⎧
⎨
⎩

T1(x + a1), x < v1 − a1,
0, x ∈ [v1 − a1, v1),
T1(x), x ≥ v1.

(12.3)

It is obvious that f ′
1(x) is nondecreasing, hence the same is true of S2(u) and T2(v)

taking values in [c2 − r, c2 + h] and [c1 − 2r, c1 + 2h], respectively. Hence, u2 = −∞
in Δ>1, v2 = −∞ in Δ>2, and, for n = 2, the optimal decision is u = v = x if
(c1, c2) ∈ A2 = Δ>2 ∩Δ>1.

Proceeding in the same way we establish that un = vn = −∞, n ≤ k, in Ak = Δ>k∩
Δ>k−1, k > 2, u = v = x is optimal for all n ≤ k and f ′

n(x) = −nr+(r+h)
∑n

l=1 F l∗(x).
Moreover, in Δk

k+1 there exist uk+1 ≥ κ satisfying
∑k+1

l=2 F l∗(uk+1) = (kr− c2)/(r+h)
and vk+1 ≥ κ satisfying

∑k+1
l=1 F l∗(vk+1) = ((k + 1)r − c1)/(r + h).

Since Γ− ⊂ ∪k≥1Ak, it is not difficult to see that, for n > k,

f ′
n(x) = −c2 + L′(x) +

{
0, x < un,
Sn(x), x ≥ un,

if (c1, c2) ∈ Γ− ∩ Δk. Verifying that f ′
n(x) − f ′

n−1(x) < 0 for x < un, one obtains
un+1 > un. Furthermore, for all u and n > k, Sn+1(u) is given by

∫ ∞

0

L′(u− s)ϕ(s) ds +
∫ u−un

0

Sn(u− s)ϕ(s ds) ≥ −r + (r + h)F 2∗(u),

therefore un ≤ t̂, for all n. Obviously, there exists limn→∞ un and it is not difficult to
show that it is equal to t̂.
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Next, consider the set Γ . For each k > 1, it is divided into subsets Γ−
k and Γ+

k by a
curve c2 = gk(c1) defined implicitly by equality Sk(v) = 0. The point (kr, (k − 1)r) on
the boundary of Γ , corresponding to v = κ, belongs to gk(c1), since Sk(κ) = Tk(κ) = 0,
for such (c1, c2). Moreover, according to the rule of implicit function differentiation and
the form of Sk(·) in Δk−1

k ,

g′k(c1) =
k∑

l=2

ϕl∗(v)

/
k∑

l=1

ϕl∗(v), (12.4)

whence it is obvious that 0 < g′k(c1) < 1. The last result is valid for other values of c1,
although the expression of g′k(c1) is more complicated than (12.4).

For n > k and (c1, c2) ∈ Γ−
k ,

f ′
n(x) = −c1 +

⎧
⎪⎪⎨
⎪⎪⎩

K(x + a1), x < v − a1,
0, x ∈ [v − a1, v),
K(x), x ∈ [v, un),
Tn(x), x ≥ un.

It is easy to verify that Γ−
n ⊂ Γ−

n+1 and

Sn+1(u) = Ha1(u) +
∫ u−un

0

Sn(u− s)ϕ(s) ds ≥ Ha1(u), (12.5)

entailing un ≤ ûa1 , for all n.
Since H∞(u) ≥ Ha1(u) ≥ H0(u) = −r + (r + h)F 2∗(u), for any u and a1 > 0, one

has û∞ < ûa1 < û0 = t̂. It is not difficult to establish that limn→∞ un = ûa1 .
On the other hand, if (c1, c2) ∈ Γ+

k , then

f ′
k(x) = −c1 +

⎧
⎪⎪⎨
⎪⎪⎩

K(x + a1), x < uk − a1,
Tk(x + a1), x ∈ [uk − a1, vk − a1),
0, x ∈ [vk − a1, vk),
Tk(x), x ≥ vk.

It follows immediately that uk+1 > uk, vk+1 > vk, and Γ+
k+1 ⊂ Γ+

k . Thus, for any
(c1, c2) ∈ Γ , there exists such n0(c1, c2) that (12.5) is valid for all n ≥ n0.

Finally, for Γ+ it is optimal to take v = x + a1, u = un for x < un − a1, u = v =
x + a1 for x ∈ [un − a1, vn − a1), u = v = vn for x ∈ [vn − a1, vn), and u = v = x for
x ≥ vn, if un and vn are finite. � Below we study the influence of the other restriction.

Corollary 1. If a1 ≤ ∞, a2 < ∞, and (c1, c2) ∈ Γ+, then

z
(n)
1 = min[a1, (vn − x)+], z

(n)
2 =

(
un − x− z

(n)
1

)+

.

Proof. Being similar to that of Theorem 2 it is omitted.

Theorem 3. Suppose that a1 ≤ ∞, a2 < ∞, and (c1, c2) ∈ Γ−. Then the optimal
decision at the first step of the n-step process is given by

z
(n)
1 = min[a1, (wn − x)+], z

(n)
2 = min

[
a2,

(
un − x− z

(n)
1

)+
]
,

where wn and un are defined by (12.2). There exist limn→∞ un = t̂ and limn→∞ wn ≤ t.



134 E.V. Bulinskaya

Proof. Begin by treating the case a1 = ∞, a2 < ∞. It follows easily from assumptions
that un > max(vn, wn + a2) ≥ min(vn, wn + a2) > wn. Moreover, v1 = w1 = −∞ and
f ′
1(x) = L′(x). Then, if (c1, c2) ∈ Δ1

2, it is not difficult to verify that there exist finite
un and wn, n ≥ 2. Hence it is optimal to take v = wn, u = wn + a2, for x < wn, v = x,
u = x + a2, for x ∈ [wn, un − a2), v = x, u = un, for x ∈ [un − a2, un), and v = x,
u = x, for x ≥ un. Consequently, one gets

f ′
n(x) = −c1 +

⎧
⎪⎪⎨
⎪⎪⎩

0, x < wn,
Bn(x), x ∈ [wn, un − a2),
K(x), x ∈ [un − a2, un),
Tn(x), x ≥ un

= −c2 + L′(x) +

⎧
⎪⎪⎨
⎪⎪⎩

−K(x),
Sn(x + a2),
0,
Sn(x),

(12.6)

and Bn(v) ≥ L′(v). That means, wn ≤ t for all n and a2. Using (12.6) one also obtains
limn→∞ un = t̂.

If (c1, c2) ∈ Δ1
l , l > 2, there exists wl > −∞, whereas wm = −∞, for m < l. Thus

f ′
n(x) = −c1 +

⎧
⎨
⎩

Bn(x), x < un − a2,
K(x), x ∈ [un − a2, un),
Tn(x), x ≥ un,

for 1 < n < l, and f ′
n(x) has the form (12.6) for n ≥ l.

The subsets Δk
l corresponding to k ≥ 2 are treated in the same way giving also

z
(n)
1 = (wn − x)+, z

(n)
2 = min

[
a2,

(
un − x− z

(n)
1

)+
]
.

Changes necessary under assumption a1 < ∞ are almost obvious so the details are
omitted.

Remark 1. If c2 > c1 the optimal behaviour for a1 = ∞, a2 < ∞ has the same form
as that for a1 = a2 = ∞ given in Theorem 1.

12.4 Sensitivity analysis

We begin studying the impact of model parameters on the optimal decision by the
motivating

Example 1. Assume κ = 0, κ = d, and ϕ(s) = d−1, s ∈ [κ, κ]; that is, distribution of
ξi is uniform. Obviously, F (u) = u/d, u ∈ [0, d], and v = d(r + c2 − c1)/(r + h), while
F 2∗(u) = u2/2d2, u ∈ [0, d], F 2∗(u) = 1− (u− 2d)2/2d2, u ∈ [d, 2d]. Suppose also that
a1 < ∞.

According to (12.3) the form of g2(c1), given by the relation S2(v) = 0, depends
on a1 for (c1, c2) ∈ Δ1

1. Moreover, c2 − r + (r + h)F 2∗(u) = S
(0)
2 (u) ≤ S

(a1)
2 (u) ≤

S
(∞)
2 (u) = c2 +

∫ u−v1

0
L′(u−s)ϕ(s) ds, whence it follows that the domain Γ−

2 decreases
as a1 increases.

On the other hand, the curve g2(c1) is the same for all a1 if (c1, c2) ∈ Δ1
2. It is de-

termined by equation S
(0)
2 (v) = 0, which can be rewritten in the form 2(r + h)(r − c2)

= (r + c2 − c1)2, for h ≥ r. Thus, g
(0)
2 (c1) does not depend on d. It starts from the

point c1 = 2r, c2 = r and crosses the line c1 = r at c2 = −(2r + h) +
√

5r2 + 4rh + h2
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and then the line c2 = c1 at c2 = r[1 − r/2(r + h)]. For h = r these values of c2
are equal to r(

√
10 − 3) and 3r/4, respectively. Next, if c1 = 0 one has c2 = (r + h)

[
√

1 + 2r(r + h)−1 − 1] equal to r(2
√

3 − 3) for h = r. However, Γ−
2 ∩ {c2 > c1} = ∅

when a1 = ∞.
The assumption a1 = ∞, a2 = ∞ of Theorem 1 is a limiting case of those in

Theorems 2 and 3. In contrast to the case without restrictions where all the decisions
I, II, and III are used, in the case a1 < ∞ (resp., a2 < ∞) decision I (resp., II) is
excluded.

As usual for dynamic programming the optimal control depends on the planning
horizon n. Moreover, for n fixed there exist the stability domains of cost parameters(
Γ−

n , Γ+
n , Γ− ∩Δk, Γ+ ∩Δl

)
where the optimal behaviour has the same type, that is,

determined by the same set of critical levels un, vn, wn, or v.
Fortunately, using the asymptotically optimal stationary controls one can reduce

the number of stability domains and exclude the dependence on n.

Definition 1. A control is called stationary if it prescribes the same behaviour at each
step of the process. It is asymptotically optimal if

lim
n→∞n−1f̂n(x) = lim

n→∞n−1fn(x),

where f̂n(x) represents the expected n-step costs under this control.

We prove below only the simplest result.

Theorem 4. If a1 = ∞, a2 ≤ ∞, and c2 > c1 it is asymptotically optimal to take
z
(n)
1 = (t− x)+, z

(n)
2 = 0 for all n.

Proof. Denote by f l
n(x) the expected n-step costs if t is applied during the first l steps,

whereas the critical levels vk, k ≤ n− l, optimal under the assumptions made, are used
during the other steps.

It is clear that fn
n (x) = f̂n(x) and f0

n(x) = fn(x), hence

f̂n(x) − fn(x) =
n∑

l=1

(
f l

n(x) − f l−1
n (x)

)
. (12.7)

Suppose for brevity that c1 < r; that is, v1 is finite.
Since vn ≤ vn+1, n ≥ 1, and vn → t, as n → ∞, one can find, for any ε > 0, such

n̂ = n(ε) that t− ε < vn ≤ t, if n ≥ n̂. Furthermore, we have

max
x

∣∣f l
n(x) − f l−1

n (x)
∣∣ ≤ max

x

∣∣f1
n−l+1 − f0

n−l+1(x)
∣∣

and

f1
k (x) − f0

k (x) =

⎧
⎨
⎩

c1(t− vk) + L(t) − L(vk) + R(vk), x < vk,
c1(t− x) + L(t) − L(x) + R(x), x ∈ [vk, t),
0, x ≥ t,

where R(x) =
∫∞
0

(fk−1(t− s) − fk−1(x− s))ϕ(s) ds. Obviously, k − 1 = n− l ≥ n̂ for
l ≤ n− n̂, therefore

max
x

∣∣f1
k (x) − f0

k (x)
∣∣ ≤ dε with d = 2(c1 + max(r, h))

and
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n−n̂∑
l=1

∣∣f l
n(x) − f l−1

n (x)| ≤ (n− n̂)dε. (12.8)

On the other hand,
n∑

l=n−n̂+1

∣∣f l
n(x) − f l−1

n (x)
∣∣ ≤ n̂b(x) (12.9)

where b(x) = maxk≤n̂

∣∣f1
k (x) − f0

k (x)
∣∣ ≤ L(v1) + dt < ∞, for all x.

It follows immediately from (12.7), (12.8), and (12.9) that

n−1(f̂n(x) − fn(x)) → 0, as n → ∞.

To complete the proof we have to verify that there exists, for all x,

lim
n→∞n−1f̂n(x) = c1μ + L(t), μ = Eξk, k ≥ 1. (12.10)

This is obvious for x ≤ t, since in this case

f̂n(x) = c1(t− x) + c1

n−1∑
k=1

Eξk + nL(t).

Now let x > t. Then we do not sell (or borrow) during the first νx steps; here

νx = inf

{
k :

k∑
i=1

ξi > x− t

}
.

In other words, we wait until the capital falls below the level t proceeding after that
as in the previous case. Hence,

f̂n(x) = L(x) + E

νx−1∑
i=1

L

(
x−

i∑
k=1

ξk

)
+ c1E

[
ζx +

n−1∑
i=νx+1

ξi

]
+ E(n− νx)L(t);

here ζx =
∑νx

i=1 ξi − (x− t) is the overshot of the level x− t by the random walk with
jumps ξi, i ≥ 1.

Thus, it is possible to rewrite f̂n(x) as follows,

f̂n(x) = n(c1μ + L(t)) + B(x).

Using Wald’s identity and renewal processes properties, as well as the fact that L(t)
is the minimum of L(x), it is possible to establish that |B(x)| < ∞ for a fixed x. So
(12.10) follows immediately.

The same result is valid for c1 ≥ r. The calculations being long and tedious are
omitted.

Since t = g(r, h), with g(x1, x2) = F inv(x1/(x1 + x2)), it is useful to check its
sensitivity with respect to small fluctuations of parameters r and h and perturbations
of distribution F . For this purpose we recall some definitions.

Denote by R = g(x) a valuation criterion (objective function, decision made, or
optimal control), x = (x1, . . . , xn) being a vector of model parameters. As usual in
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sensitivity analysis, R is called the system output, g(·) the model, and xi the ith input
parameter (or factor).

At first we apply the local technique, more precisely, differential importance measure
(DIM) introduced in Borgonovo and Apostolakis (2001). Let x0 =

(
x0

1, . . . , x
0
n

)
be the

base-case values of parameters, reflecting the decision-maker knowledge of assumptions
made. The DIM for parameter xi, i = 1, n, is defined as follows,

Di(x0, dx) = g′xi
(x0) dxi

⎛
⎝

n∑
j=1

g′xj
(x0) dxj

⎞
⎠

−1

(= dgi(x0)/dg(x0))

if dg(x0) 
= 0. Whence, for uniform parameters changes: dxi = u, i = 1, n, we get

D1i(x0) = g′xi
(x0)

/ n∑
j=1

g′xj
(x0). (12.11)

Theorem 5. Under assumptions of Theorem 4, DIMs for parameters r and h do not
depend on distribution F .

Proof. Follows immediately from (12.11) and the definition of function g. Since

g′x1
(x0) = ϕ−1(t0)x0

2/
(
x0

1 + x0
2

)2
, g′x2

(x0) = −ϕ−1(t0)x0
1/
(
x0

1 + x0
2

)2
,

it is clear that

D11(x0) =
x0

2

x0
2 − x0

1

, D12(x0) = − x0
1

x0
2 − x0

1

= 1 −D11(x0);

that is, they are well defined for x0
1 
= x0

2 and do not depend on F . �
Note that D11(x0) > 1, D12(x0) < 0 for x0

2 > x0
1, and D11(x0) < 0, D12(x0) > 1

for x0
2 < x0

1; for an illustration see Figure 12.1.
Next use the method proposed in Sobol’ (1990) for global sensitivity analysis.
Although the system parameters are some (often unknown) constants it is useful

to treat them as r.v.s. Assume that X = (X1, . . . , Xn) is uniformly distributed in
Kn = [0, 1]n and the function g(x), x ∈ Kn, is integrable.

Theorem 6 (Sobol’). The following decomposition of variance holds for a square in-
tegrable random variable R = g(X):

V [R] =
n∑

i=1

Vi +
∑
i<j

Vi,j +
∑

i<j<k

Vi,j,k + · · · + V1,2,··· ,n, (12.12)

where V [R] =
∫

Kn g2(x) dx− g2
0 and partial variances are calculated by way of

Vi1,...,is =
∫ 1

0

. . .

∫ 1

0

g2
i1,...,is

(xi1 , . . . , xis)
∏

k=i1,...,is

dxk. (12.13)
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Figure 12.1. Differential importance measure D11(x
0) for t

Here

g0 = ER =
∫

Kn

g(x) dx,

gi(xi) =
∫ 1

0

· · ·
∫ 1

0

g(x)
∏
k �=i

dxk − g0,

gi,j(xi, xj) =
∫ 1

0

· · ·
∫ 1

0

g(x)
∏

k �=i,j

dxk − (g0 + gi(xi) + gj(xj)),

. . . . . . .

Now we can formulate further definitions assuming V [R] 
= 0.

Definition 2. Sensitivity index Si1,i2,...,is
for a group of parameters (xi1 , xi2 , · · · , xis

),
1 ≤ i1 < i2 < · · · < is ≤ n, is given by Vi1,i2,...,is/V [R], whereas the sensitivity index
of order s is

∑
1≤i1<···<is≤n Si1,i2,...,is .

So, Si is the first-order contribution of the ith parameter to the output variance,
while Si1,i2,...,is represents the parameter interaction.

Definition 3. Global sensitivity index GI(xi) of parameter xi is the sum of all indices
Si1,...,is

, s ≥ 1, containing i,

GI(xi) =

⎛
⎝Vi +

∑
j �=i

Vi,j + · · · + V1,2,...,n

⎞
⎠ /V [R].

Thus, GI(xi) represents the total contribution of parameter xi to variance of output.
That enables us to answer the following questions. Which of the uncertain input factors
is so uninfluential that we can safely fix it (them)? If we could eliminatethe uncertainty
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in one of the input factors, which should we choose to reduce most the variance of
output?

Remark 2. Variance decomposition (12.12) is valid (with obvious changes) for any
distribution of X.

Turning to our model suppose the ith parameter to be uniformly distributed on(
x0

i (1 − k), x0
i (1 + k)

)
, 0 < k < 1, i = 1, 2.

Unfortunately, it is impossible to obtain the explicit form of GI(xi), i = 1, 2. How-
ever, using Maple 8 it is not difficult to get numerical results. Thus, Figure 12.2 gives
the form of global indices as functions of k (for g(x) = t and x0

1 = x0
2 = 0.5). It

is easily seen that IG(x1) (lower curve) decreases, whereas IG(x2) (upper curve) in-
creases, as k increases, the parameter x2 being more influential. For k = 0.25 one has
IG(x1) = 0.4949060035 and IG(x2) = 0.5077327062; that means, even if the relative
error in parameters estimation is 25%, the model behaves “almost additively,” V12 giv-
ing only 0.2% of total variance. Moreover, for k = 0.5 one has IG(x1) = 0.4775592923
and IG(x2) = 0.5334429254 and V12 gives 1.1% of total variance. Hence, parameter
interaction is higher for larger errors in their estimation.

0.7

0.6

0.5

0.4

0.3

0.80 0.2 0.6 0.8 1

Figure 12.2. Global indices

Finally, we establish that the asymptotically optimal policy based on t is stable
with respect to small perturbations of distribution F .

Denote by tk the value of t corresponding to distribution Fk(t). Moreover, set

γ(Fk, F ) = sup
t

|Fk(t) − F (t)|;

that is, γ is the Kolmogorov (or uniform) metric.

Proposition 1. Let distribution function F (t) be continuous and strictly increasing.
Then tk → t, provided γ(Fk, F ) → 0, as k → ∞.

Proof. According to assumptions Fk(tk) = F (t) and |Fk(tk)−F (tk)| ≤ γ(F, Fk). Hence
|F (t) − F (tk)| ≤ γ(F, Fk). That means, tk → t, as k → ∞.

Remark 3. This result is also important for construction of asymptotically optimal
policies under assumption of no a priori information about distribution F .
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12.5 Conclusion

Assuming the underlying distribution laws to be known, we established the optimal
controls for a class of discrete-time insurance models and found the stability domains
in the parameter space. The notion of asymptotically optimal policy was introduced
and such a policy was constructed. Its stability with respect to small fluctuations of
parameters and perturbations of distributions was proved.

Thus, we realized the first two steps of the algorithm for dealing with unknown dis-
tributions proposed in Bulinskaya (2007a). The third step, that is, construction of the
empirical asymptotically optimal policy for our models will be treated elsewhere.

The results pertaining to the case of incomplete information, without restrictions
on amounts sold and borrowed, can be found in Bulinskaya (2007b).

It can be shown that in other applications such as inventory theory, queueing,
finance, etc., the results obtained for insurance models are of interest and methods
employed can be used as well; compare with Bulinskaya (2003).
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Central Limit Theorem for Random Fields and
Applications

Alexander Bulinski

Department of Mathematics and Mechanics, Moscow State University, Russia

Abstract: A new variant of the CLT is established for random fields defined on R
d

which are strictly stationary, with a finite second moment and weakly dependent (com-
prising cases of positive or negative association). The summation domains grow in the
van Hove sense. At the same time the indices of observations form more and more dense
grids in these domains. Thus the effect of combining two scaling procedures is studied.
A statistical version of this CLT is also proved. Some stochastic models in radiobiology
based on dependent functional subunits are discussed as well.

Keywords and phrases: Random fields, dependence conditions, CLT, stochastic
radiobiological models

13.1 Introduction

There is a vast literature devoted to the central limit theorem (CLT) for random fields
defined on a lattice Z

d and to its various applications. The researchers use different
dependence and moment conditions and impose some restrictions specifying the sum-
mation domains (usually blocks).

We concentrate on strictly stationary real-valued random fields having a finite sec-
ond moment. Their dependence structure is more general than positive or negative asso-
ciation intensively studied and used in mathematical statistics, reliability theory, perco-
lation theory, and statistical physics (where one applied the classical FKG-inequalities);
see, e.g., Bulinski and Shashkin (2007) and references therein.

The random fields under consideration are defined on a space R
d; more exactly,

we deal with a sequence of measurable bounded sets Vn ⊂ R
d (n ∈ N) growing to

infinity in the van Hove sense as n → ∞. At the same time we consider the so-called
infill asymptotics (see Cressie, 1991) when the observations Xt are given for finite sets
Un = Vn ∩ Tn where Tn is a grid of points in R

d with a step 1/Δn over each axis and
Δn → ∞ as n → ∞. Thus we consider the combination of the effects concerning two
scalings.

Theorem 1 below can be viewed as an extension of the beautiful Newman CLT; see
Newman (1980). The statistical version of the established CLT develops, in the above

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 141
and Technology, DOI 10.1007/978-0-8176-4799-5 13,
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mentioned setting, the approach proposed for mixing stochastic processes in Peligrad
and Shao (1996) and for associated random fields or their modifications in Bulinski
and Vronski (1996) and Bulinski (2004); see also Bulinski and Shashkin (2007).

As a domain of applications we mention the interesting stochastic models which
arose in radiobiology in the 1990s. We discuss a generalization of these critical vol-
ume models using the concept of dependent functional subunits introduced in Bulinski
and Khrennikov (2005) to provide the base for further development in this research
direction.

13.2 Main results

Let X = {Xt, t ∈ R
d} be a real-valued wide-sense stationary random field with co-

variance function R(u) = cov(Xt,Xt+u), u, t ∈ R
d. For positive Δ consider a lat-

tice T (Δ) := (Z/Δ)d, i.e., a collection of points of the form (j1/Δ, . . . , jd/Δ) where
j = (j1, . . . , jd) ∈ Z

d. The cardinality of a finite set U is denoted by |U |. Let

S(U) =
∑
t∈U

Xt, U ⊂ R
d, |U | < ∞.

For Δn > 0 put Tn = T (Δn), n ∈ N.

Lemma 1. Assume that a wide-sense stationary random field X has the covariance
function absolutely directly integrable in the Riemann sense and also

σ2 :=
∫

Rd

R(u)du 
= 0. (13.1)

Then, for any sets Vn → ∞ in the van Hove sense (Vn ⊂ R
d) and every sequence

(Δn)n∈N of positive numbers such that Δn → ∞, one has

var S(Un)
cn|Un| → 1 as n → ∞ (13.2)

where Un = Vn ∩ Tn and cn = σ2Δd
n (n ∈ N).

Proof. Set
bn :=

∑
t∈Tn

cov(X0,Xt) =
∑
t∈Tn

R(t).

In view of the hypotheses concerning the integrability of the covariance function R
we obtain that bn ∼ cn as n → ∞. For a > 0 consider a partition of R

d by cubes
Bj(a) = B0(a) + (aj1, . . . , ajd), j = (j1, . . . , jd) ∈ Z

d, where

B0(a) = {x ∈ R
d : 0 < xk ≤ a, k = 1, . . . , d}.

Put J−
n (a) = {j ∈ Z

d : Bj(a) ⊂ Vn}, J+
n (a) = {j ∈ Z

d : Bj(a) ∩ Vn 
= ∅}, and

V −
n (a) =

⋃

j∈J−
n (a)

Bj(a), V +
n (a) =

⋃

j∈J+
n (a)

Bj(a).
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Then

mes
(
V −

n (a)
)→ ∞ and mes

(
V +

n (a)
)
/mes

(
V −

n (a)
)→ 1, n → ∞. (13.3)

As usual, the Lebesgue measure of a (measurable) set B is denoted by mes(B). For
U−

n (a) = V −
n (a) ∩ Tn one has

An := bn|U−
n (a)| − varS

(
U−

n (a)
)

=
∑

s∈U−
n (a), t/∈U−

n (a)

cov(Xs,Xt).

Take p ∈ (0, a/2) and let Λj(a, p) = (uj,1, vj,1]×· · ·× (uj,d, vj,d] be a cube in R
d having

the same center as Bj(a) and the edge length a− 2p, j ∈ Z
d. Set

Gn =
⋃

j∈J−
n (a)

((Bj(a) \ Λj(a, p)) ∩ Tn), Wn =
⋃

j∈J−
n (a)

(Λj(a, p) ∩ Tn); (13.4)

clearly Gn = Gn(a, p) and Wn = Wn(a, p). Then, for all n large enough,
|An| (bn|U−

n (a)|)−1 admits an upper bound

1
bn|U−

n (a)|

⎛
⎝∑

s∈Gn

∑

t/∈U−
n (a)

|cov(Xs,Xt)| +
∑

s∈Wn

∑

t/∈U−
n (a)

|cov(Xs,Xt)|
⎞
⎠

≤ 4
σ2

(
pd

a

∫

Rd

|R(u)|du +
∫

‖u‖≥p

|R(u)|du
)

where ‖ · ‖ is a maximal norm in R
d. For any ε > 0 one can choose p large enough and

then a large enough to obtain |An| (bn|U−
n (a)|)−1

< ε when n ≥ N = N(ε, p, a).
Note that

varS
(
Un \ U−

n (a)
) ≤ |Un \ U−

n (a)|
∑
t∈Tn

|R(t)| ≤ 2|Un \ U−
n (a)|Δd

n

∫

Rd

|R(u)|du (13.5)

for all n large enough. Let B be a cube (of the form (u, v], u, v ∈ R
d) with the length

of edge a > 0. Then it is easily seen that |B ∩ Tn| ∼ (aΔn)d as n → ∞. Thus using
(13.3), (13.5) we establish the following relation

varS (U−
n (a))

bn|U−
n (a)| → 1, n → ∞,

and come to (13.2). This completes the proof. �
Remark 1. Relation (13.2) is an extension of the lemma proved by Bolthausen for
stationary random field X = {Xj , j ∈ Z

d} and regularly growing Un ⊂ Z
d.

Now we have to generalize the concept of (BL, θ)-dependence introduced for random
fields on Z

d in Bulinski and Suquet (2001) to capture random fields defined on R
d.

Definition 1. A field X = {Xt, t ∈ R
d} is called (BL, θ)-dependent if there exists a

sequence of positive numbers θn ↘ 0 as n → ∞ such that whenever Δ is large enough,
then for any finite disjoint sets I, J ⊂ T (Δ) and any bounded Lipschitz functions
f : R

|I| → R, g : R
|J| → R,

|cov(f(Xs, s ∈ I), g(Xt, t ∈ J))| ≤ Lip(f)Lip(g)(|I| ∧ |J |)Δdθr (13.6)

where r = dist(I, J) := min{‖s− t‖, s ∈ I, t ∈ J} and
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Lip(f) := sup
x�=y, x,y∈Rd

|f(x) − f(y)|∑d
k=1 |xk − yk|

.

In Bulinski and Shabanovich (1998) it was shown that, for any positively or neg-
atively associated (PA or NA) random field X = {Xt, t ∈ T} with a finite second
moment, for arbitrary finite disjoint sets I, J ⊂ T and the above-mentioned functions
f and g, the left-hand side of (13.6) has the upper bound

Lip(f)Lip(g)
∑

s∈I, t∈J

|cov(Xs,Xt)|. (13.7)

Thus, in particular, for a wide-sense stationary PA or NA random field X with covari-
ance function absolutely directly integrable in the Riemann sense one can use in (13.6)
as θr an analogue of the Cox–Grimmett coefficient, namely,

θr = 2
∫

{u∈Rd:‖u‖≥r}
|R(u)|du, r > 0.

There are a number of important stochastic models possessing PA or NA properties or
their modifications (see, e.g., Bulinski and Shashkin, 2007 and references therein).

Theorem 1. Let X be a strictly stationary (BL, θ)-dependent random field with con-
tinuous function R satisfying conditions of Lemma 1. Then, for any sets Vn → ∞ in
the van Hove sense (Vn ⊂ R

d) and any sequence (Δn)n∈N, 0 < Δn → ∞, one has

S(Un) − |Un|EX0√
Δd

n|Un|
→ N(0, σ2) in law as n → ∞ (13.8)

where Un = Vn ∩ Tn and σ2 is defined in (13.1).

Proof. Without loss of generality we can assume that this field X is centered. We have
to prove that, for every λ ∈ R,

E exp
{
iλ
(
Δd

n |Un|
)−1/2

S(Un)
}
→ exp{−σ2λ2/2} as n → ∞; (13.9)

here i2 = −1.
Let a > 0 be fixed. Using the same notation as in the proof of Lemma 1, first of all

note that

|E
{
iλ
(
Δd

n|Un|
)−1/2

S(Un)
}
− E exp

{
iλ
(
Δd

n|U−
n (a)|)−1/2

S
(
U−

n (a)
)} |

≤ |λ|Δ−d/2
n

(
|Un|−1/2E|S(Un) − S

(
U−

n (a)
) | + δn(a)E|S (U−

n (a)
) |
)

where δn(a) = ||Un|−1/2 − |U−
n (a)|−1/2|. For all n large enough

(
E|S (U−

n (a)
) |)2 ≤ E(S(U−

n (a)))2 ≤ 2Δd
n|U−

n (a)|
∫

Rd

|R(u)|du. (13.10)

Thus in view of (13.3), (13.5), and (13.10) it suffices to verify that, for every λ ∈ R,

E exp
{
iλ
(
Δd

n

∣∣U−
n (a)

∣∣)−1/2
S
(
U−

n (a)
)}→ exp{−σ2λ2/2} as n → ∞. (13.11)
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Taking p ∈ (0, a/2) set Yn(a, p) =
(
Δd

n |Wn(a, p)|)−1/2
S(Wn(a, p)) where Wn(a, p)

appeared in (13.4), n ∈ N. Thus we are going to deal with normalized sums taken over
the sets belonging to separated cubes Λj(a, p), j ∈ J−

n (a).
The same reasoning that was used to prove Lemma 1 leads, for any ε > 0 and

arbitrary fixed λ ∈ R, to the estimate
∣∣∣E exp

{
iλ
(
Δd

n

∣∣U−
n (a)

∣∣)−1/2
S
(
U−

n (a)
)}− E exp{iλYn(a, p)}

∣∣∣ < ε

provided that p/a is sufficiently small and n is large enough.
For any L = (v, v+a−2p ] ⊂ R and all n large enough there are Mn = [(a−2p)Δn]

points vm = z + mΔ−1
n ∈ L, m = 1, . . . ,Mn, and z = qΔ−1

n for some q ∈ Z (here [·]
stands for the integer part of a number). For each j ∈ Z

d let us find a cube Γj(a, p) =∏d
l=1

(
zl, zl + MnΔ

−1
n ] ⊂ Λj(a, p), (z1, . . . , zd) ∈ Tn. Thus |Γj(a, p) ∩ Tn| = Md

n, j ∈
Z

d. Write Nn = |J−
n (a)| and enumerate a family of random variables

{(
Δd

n |Γj(a, p) ∩ Tn|
)−1/2

S(Γj(a, p) ∩ Tn), j ∈ J−
n (a)

}
,

to obtain a collection ζn,1, . . . , ζn,Nn (Nn = Nn(a, Vn), ζn,k = ζn,k(a, p,Δn, Vn)). For
any fixed λ ∈ R

d we have

E exp{iλYn} − E
{
iλN−1/2

n Zn

}
→ 0, n → ∞,

where Zn :=
∑Nn

k=1 ζn,k. Due to (13.6) one has, for any ε > 0, n ∈ N, and λ ∈ R,

∣∣∣ E
{
iλN−1/2

n Zn

}
−

Nn∏
k=1

E exp
{
iλN−1/2

n ζn,k

}∣∣∣

≤
Nn∑
q=1

∣∣∣ cov

⎛
⎝exp

{
iλN−1/2

n ζn,q

}
, exp

⎧
⎨
⎩−iλN−1/2

n

Nn∑
k=q+1

ζn,k

⎫
⎬
⎭

⎞
⎠
∣∣∣ ≤ 4λ2θp < ε

if p is large enough. In view of the strict stationarity of X we see that, for every n ∈ N,
the random variables ζn,1, . . . , ζn,Nn are identically distributed. Applying the Lindeberg
condition to the independent copies of these random variables one finds that N

−1/2
n Zn

converges in law as n → ∞ to the Gaussian random variable with mean zero and
variance close enough to σ2 under appropriate choice of a and p. Whence the desired
statement follows. �

If we have a sequence
(
σ̂2

n(Un)
)
n∈N

of consistent estimates for σ2 
= 0 constructed
by means of Xt, t ∈ Un, then under the conditions of Theorem 1 we can use instead of
(13.8) the following statistical variant of the CLT:

S(Un) − nEX0

σ̂(Un)Δd/2
n |Un|1/2

→ N(0, 1) in law as n → ∞ (13.12)

(when σ̂(Un) = 0 we set formally z/0 := 0 for z ∈ R). Thus we obtain a possibility to
construct the approximate confidence interval for unknown mean value EX0.
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For a point t ∈ Tn (n ∈ N) and any r > 0 put

Kt(r) = {s ∈ Tn : ‖s− t‖ ≤ r}.
For a finite set Un ⊂ Tn and positive value rn introduce

σ̂(Un)2 =
(
Δd

n|Un|
)−1 ∑

t∈Un

|Qt|
(

S(Qt)
|Qt| − S(Un)

|Un|
)2

(13.13)

where Qt = Kt(rn) ∩ Un (these Qt and σ̂(Un) depend on Un and rn), n ∈ N.

Theorem 2. Let X be a strictly stationary PA or NA random field with continuous
covariance function R satisfying the conditions of Lemma 1. Then, for any sets Vn → ∞
in the van Hove sense (Vn ⊂ R

d) and any sequence (Δn)n∈N, 0 < Δn → ∞, there exists
a sequence (rn)n∈N of positive numbers such that relation (13.12) holds with σ̂(Un)
defined in (13.13).

Proof. Due to (13.3) we can find a sequence (an)n∈N such that 0 < an → ∞ as n → ∞
and

mes
(
V −

n (an)
)→ ∞, mes

(
V +

n (an)
)
/mes

(
V −

n (an)
)→ 1, n → ∞.

At first we consider U−
n (an), σ̂ (U−

n (an)) and to simplify the notation write below Un

instead of U−
n (an) = V −

n (an) ∩ Tn and σ̂n instead of σ̂ (U−
n (an)), n ∈ N.

Observe that

E|σ̂2
n − σ2| ≤ (

Δd
n |Un|

)−1
E

∣∣∣∣∣
∑
t∈Un

|Qt|
((

S(Qt)
|Qt| − S(Un)

|Un|
)2

−
(

S(Qt)
|Qt|

)2
)∣∣∣∣∣

+
(
Δd

n |Un|
)−1

E

∣∣∣∣∣
∑
t∈Un

|Qt|−1
(
S(Qt)2 − E(S(Qt))2

)∣∣∣∣∣

+

∣∣∣∣∣
(
Δd

n |Un|
)−1 ∑

t∈Un

|Qt|−1E(S(Qt))2 − σ2

∣∣∣∣∣ =: Rn,1 + Rn,2 + Rn,3.

For r > 0 set Un(r) = Un \ (Tn \ Un)(r) where G(r) denotes the r-neighbourhood of a
finite set G ⊂ Tn; i.e., G(r) := {t ∈ Tn : mins∈G ‖t− s‖ < r}.

The simplest part is to check that Rn,3 → 0, n → ∞. Let rn < an/4, n ∈ N. In
view of the stationarity of X, one has E(S(Qt(rn)))2 = E(S(K0(rn)))2 for t ∈ Un(2rn).
Consequently,

(
Δd

n |Un|
)−1 ∑

t∈Un

|Qt|−1E(S(Qt))2

≤ E(S(K0(rn)))2

Δd
n|K0(rn)| +

(
Δd

n|Un|
)−1 ∑

t∈Un\Un(2rn)

|Qt|−1E(S(Qt))2 =: Ln,1 + Ln,2.

By Lemma 1 one has Ln,1 → σ2 as rn → ∞. For all n large enough

Ln,2 ≤ 2|Un|−1|Un \ Un(2rn)|
∫

Rd

|R(u)|du.
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Applying the arguments used in the proof of Theorem 1 (concerning the concentric
cubes) one can infer that |Un|−1|Un \ Un(2rn)| ≤ 4drn/an for all n large enough. Now
we choose rn = o(an), n → ∞.

For M > 0 and t ∈ Tn (n ∈ N) write ξt =
(
Δd

n |Qt|
)−1/2

S(Qt) and introduce the
auxiliary random variables νt = H2

M (ξt), Yt = νt − Eνt, Zt = ξ2
t − Eξ2

t − Yt where

HM (x) = −MI{x < −M} + xI{|x| ≤ M} + MI{x > M}, x ∈ R,

and I{A} is the indicator of a set A. Then we may write

Rn,2 ≤ |Un|−1E

∣∣∣∣∣
∑
t∈Un

Yt

∣∣∣∣∣+ |Un|−1E

∣∣∣∣∣
∑
t∈Un

Zt

∣∣∣∣∣ =: R(1)
n,2 + R

(2)
n,2.

Furthermore,
(
R

(1)
n,2

)2

≤ |Un|−2
∑

s,t∈Un

cov(νs, νt)

≤ |Un|−2
∑

s∈Un

∑
t∈Un,‖s−t‖≤3rn

|cov(νs, νt)| + |Un|−2
∑

s∈Un

∑
t∈Un,‖s−t‖>3rn

|cov(νs, νt)|.

The first summand at the right-hand side of the last inequality admits an upper bound
M4|Un|−1(6rn + 1)d → 0 as rn = o(an), n → ∞. To estimate the second summand we
use relation (13.7) to obtain the upper bound

Jn :=4M2Δ−d
n |Un|−2

∑
t∈Un,‖s−t‖>3rn

|Qs|−1/2|Qt|−1/2|cov(S(Qs), S(Qt))|

≤4M2Δ−d
n |Un|−2

∑
t∈Un,‖s−t‖>3rn

|Qs|−1/2|Qt|−1/2(|Qs| ∧ |Qt|)
∑

r∈Tn,‖r‖≥rn

|R(r)|.

Therefore, for any b > 0 and all n large enough

Jn ≤ 8M2

∫

‖u‖≥b

|R(u)|du.

Consequently, for any fixed M > 0, one has Jn → 0 as n → ∞.
For M > 0 and all n large enough

R
(2)
n,2 ≤|Un|−1

∑
t∈Un(2rn)

E|Zt| + |Un|−1
∑

t∈Un\Un(2rn)

E|Zt|

≤2E

(
S(K0(rn))2

Δd
n|K0(rn)| I

{
S(K0(rn))2

Δd
n|K0(rn)| ≥ M2

})
+ 4

|Un \ Un(2rn)|
|Un|

∫

Rd

|R(u)|du.

Theorem 1 implies that a family
{
S(K0(rn))2/|K0(rn)|, n ∈ N

}
is uniformly integrable.

Thus R
(2)
n,2 can be made arbitrarily small by an appropriate choice of M .

In view of Lemma 1 for all n large enough one has

Rn,1 ≤Δ−d
n |Un|−3ES(Un)2

∑
t∈Un

|Qt| + 2Δ−d
n |Un|−2E |S(Un)

∑
t∈Un

S(Qt)|
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≤2σ2|Un|−2
∑
t∈Un

|Qt| + 2Δ−d
n |Un|−2

∑
t∈Un

(
E(S(Un))2E(S(Qt))2

)1/2

≤2σ2|Un|−1|K0(rn)| + 4
(
σ2|Un|−1|K0(rn)|

∫

Rd

|R(u)|du
)1/2

.

Therefore Rn,1 + Rn,2 + Rn,3 → 0 as n → ∞.
To complete the proof for the general case of Vn → ∞ in the van Hove sense one

can verify that E|σ̂(Un)2 − σ̂ (U−
n (an))2 | → 0, as n → ∞, with an appropriate choice

of an and rn. �

In fact we have obtained the following more general result.

Theorem 3. Let the conditions of Theorem 1 be satisfied. Then for any Vn → ∞ in
the van Hove sense

(
Vn ⊂ R

d
)

and any sequence (Δn)n∈N such that 0 < Δn → ∞,
there exists a sequence (rn)n∈N of positive numbers which satisfies relation (13.12)with
σ̂(Un) defined in (13.13).

Proof. The proof follows the lines used to establish Theorem 2. We have to modify

only the estimate
(
R

(1)
n,1

)2

. Namely,

Δ−d
n |Un|−2

∑
s∈Un

∑
t∈Un:‖s−t‖>3rn

|cov(νs, νt)|

≤ |Un|−2
∑

s∈Un

∑
t∈Un:‖s−t‖>3rn

4M2|Qs|−1/2|Qt|−1/2(|Qs| ∧ |Qt|)θ‖s−t‖−2rn

≤4M2θrn → 0, n → ∞.

The proof is complete.

Remark 2. Thus if the conditions of Theorem 2 or 3 are met then in the particular
important case Vn = (un, vn]d and vn − un → ∞ one can take rn = o(vn − un) as
n → ∞.

13.3 Applications

There are various stochastic models describing tissue (or organ) response under irradi-
ation. One uses, e.g., the single-hit or multiple-hit or LQ-models for probability that
a cell after irradiation of a certain dose will be alive. Due to Withers et al. (1988) the
idea of independent functional subunits (FSUs) was introduced for biological modelling.
The approach based on this idea and involving the binomial distribution was devel-
oped in the papers by Niemierko and Goitein (1993), Jackson et al. (1993), and York
et al. (1993); see also Stavrev et al. (2001), Warkentin et al. (2004), and references
therein. Namely the tissue (or organ) consists of N functional subunits that behave
“statistically independently” under irradiation (one can consider also the irradiation of
a part of the tissue or organ). One assumes that there exists “the functional reserve”
M , i.e., the number of structural elements that must be damaged to cause a failure



13 Central Limit Theorem for Random Fields 149

in the structure of interest. For tumours it is equal to the total number of clonogens
(M = N) meaning that all clonogens (tumour cells) should be destroyed to cause the
tumour collapse. For “Critical Element” organs M = 1 meaning that all FSUs consti-
tuting the organ are critical to its normal functioning. It is clear that Tumours and the
Critical Element are special (end term) cases of the “Critical Volume” response when
1 ≤ M ≤ N .

Let pFSU = pFSU (−→parFSU ,D) be the probability of damaging a FSU when irradi-
ated to dose D and −→parFSU be the vector of parameters describing the response of the
FSU to radiation. For example, in the single-hit model

pFSU (−→parFSU ) = (1 − e−αD)N0

where N0 is the number of cells in a subunit (or the number of clonogens) and α de-
scribes the radiosensitivity of a cell. Thus here −→parFSU = (N0, α) and the model param-
eters are N,M, pFSU (−→parFSU ,D). Consequently, for the “individual” tissue (or organ)
the probability corresponding to the critical volume model is given by the formula

Pind(N,M, pFSU (−→parFSU ,D) =
N∑

k=M

(
N
k

)
pk

FSU (1 − pFSU )N−k.

Thus if νN subunits (1 ≤ νN ≤ N) are irradiated then (see Stavrev et al., 2001) the
following well-known approximation is used for the binomial distribution

νN∑
k=M

(
νN
k

)
pk

FSU (1 − pFSU )νN−k ≈ Φ

( √
N(νpFSU − μcr)√
νpFSU (1 − pFSU )

)
(13.14)

where Φ is a distribution function of the standard normal random variable and μcr =
M/N .

In Bulinski and Khrennikov (2005) a generalization of the critical volume model
was proposed. The idea of the dependent (in particular independent) FSUs was ex-
pressed by invoking dependent (mixing) random fields defined on a lattice Z

d. In this
chapter we go further. Namely, we consider the dependence structures based on posi-
tive or negative association (comprising independent random variables) and dwell on
(BL, θ)-dependence. Moreover, here we study the general case of growing in the van
Hove sense domains in R

d with increasing density of grids of observations. The impact
of the irradiation on the FSU can be described not only in terms of the indicator func-
tions to take into account the intermediate cases between the killed and alive FSUs.
And finally Theorems 2 and 3 show that the approximation of S(Un) describing the
collective effects of the summands’ behavior should involve the possible dependence
structure of FSUs. It should be also emphasised that the approximation (13.14) will
take a different form due to the possible dependence of FSUs. We do not tackle here
the problem of nonindividual, say, population response, the problems of nonunifom ir-
radiation. To conclude we indicate a very important problem concerning the accuracy
of various approximations. It seems that this problem was not discussed yet in the spe-
cial biomedical papers. In this regard we refer to Bulinski and Kryzhanovskaya (2006)
where the convergence rate of the (vector-valued) statistics with self-normalisation was
established for dependent observations defined on subsets of Z

d.
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model in the radiobiology. Université Pierre et Marie Curie. Paris-6. CNRS U.M.R.
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A Berry–Esseen Type Estimate for Dependent
Systems on Transitive Graphs

Alexey Shashkin

Department of Mathematics and Mechanics, Moscow State University, Russia

Abstract: Dependent random systems indexed by transitive graphs are studied. The
dependence structure generalizes the ideas of positive and negative association. For
such random systems the CLT is proved and the rate of convergence is established.

Keywords and phrases: Local dependence, transitive graphs, association, Stein–
Tikhomirov techniques.

14.1 Introduction

This chapter is devoted to the proof of the central limit theorem for a dependent random
system indexed by points of a graph that is more general than Z

d. The interest in such
problems has arisen in connection with interacting particle systems (see Häggström
et al., 2000; Doukhan et al., 2008, and references there). The dependence condition we
study was considered recently in Doukhan et al. (2008). In contrast with that paper
we allow the random variables to be unbounded requiring only that they possess a
moment of order higher than two. Also we weaken the condition on stationarity.

Let G = (V,E) be some locally finite graph with countable vertex set; i.e., the degree
of any vertex t ∈ V is finite. Introduce standard metric d on V, agreeing that d(x, y) =
n ∈ N if and only if there exist pairwise different points t0 = x, t1, . . . , tn−1, tn = y ∈ V
such that ti−1 is connected to ti (i = 1, . . . , n), but there is no set of points with the
same property having length less than n. We assume that the degree of a vertex is
uniformly bounded; i.e., there exists such ρ > 0 that |{y : d(x, y) = 1}| ≤ ρ. Clearly,
in that case the cardinality of a ball of radius r is bounded by ρr, r ∈ N. Denote by
Br(x) the ball of radius r centered at x ∈ V. As usual, |A| is the cardinality of a finite
set A.

Recall that a bijection a : V → V is called an automorphism of the graph G if any
two vertices x, y ∈ V are connected if and only if a(x) is connected to a(y). Suppose that
the graph G is transitive; i.e., the group of its automorphisms Aut(G) acts transitively
on G. That property means that for any x, y ∈ V, there exists such an automorphism
a of G that a(x) = y. Note that in this case there exists such ρ ∈ N that |B1(x)| = ρ
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for any x ∈ V (Godsil and Royle, 2001). Clearly, the lattice Z
d is a transitive graph

with automorphisms acting as translations.
As usual, a function F : R

n → R is called Lipschitz if

Lip(F ) := sup
x,y∈Rn, x �=y

|F (x) − F (y)|
|x1 − y1| + · · · + |xn − yn| < ∞.

Definition 1. (Bulinski and Suquet, 2001). Let {Xt, t ∈ V } be some system of square-
integrable random variables. This system is called (BL, θ)-dependent if there exists a
nonincreasing sequence θ = (θr)r∈N, θr → 0 as r → ∞, such that for any finite disjoint
sets I, J ⊂ V with dist(I, J) = r ∈ N, and any pair of bounded Lipschitz functions
f : R

|I| → R, g : R
|J| → R one has

|cov(f(Xi, i ∈ I), g(Xj , j ∈ J))| ≤ Lip(f)Lip(g)(|I| ∧ |J |)θr. (14.1)

The assumption that f and g are bounded is inessential and can be avoided
via an easy application of the dominated convergence theorem. Recall that the sys-
tem X is called wide-sense stationary if the group Aut(G) contains a subgroup H
that acts transitively on G and for any different t, v ∈ V and all a ∈ H one has
cov(Xt,Xv) = cov(Xa(t),Xa(v)), EXt = EXa(t). Stationary associated and negatively
associated random systems satisfy the definition (14.1) provided that they satisfy the
finite susceptibility condition of Newman; that is,

∑
v∈V cov(Xt,Xv) ∈ R, t ∈ V. The

proof (Bulinski and Shabanovich, 1998) is usually given for V = Z
d, but remains true

also on the general graph G. In that case one can take

θr =
∑

v∈V, d(v,t)≥r

|cov(Xt,Xv)|.

Associated random processes and fields and their modifications form an important
class which appears with increasing frequency in statistics, statistical physics, random
graphs, and random measures theory. An independent random system is always asso-
ciated. In 1980 Newman (1980) proved the central limit theorem for strictly stationary
associated random fields. Since that time a lot of other limit theorems (invariance
principles, Berry–Esseen type estimates, laws of the iterated logarithm, etc.) have been
established; see Bulinski (1995), Bulinski and Shashkin (2007), and references pro-
vided there. There are also examples of random fields that are neither positively nor
negatively associated but possess the property (14.1) (Shashkin, 2004; Bulinski and
Shashkin, 2007). In particular, they arise in the theory of interacting particle systems
indexed by Z

d.

14.2 Main result

Now we formulate the Berry–Esseen type theorem.

Theorem 1. Suppose that X = {Xt, t ∈ V } is a centered (BL, θ)-dependent random
system such that Ds = supt∈V E|Xt|s < ∞ for some s > 2. Assume also that the
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sequence (θr) admits the bound θr = O(e−λr) as r → ∞, with some λ > log ρ. Finally,
suppose that there is a class of finite sets U such that for some d > 0 and all U ∈ U
one has DS(U) ≥ d|U |. Then there exist such C > 0 and μ > 0 determined by d, s, ρ,
and λ that for any U ∈ U one has

sup
x∈R

|P(S(U) ≤ x
√

DS(U)) − P(Z ≤ x)| ≤ C|U |−μ/2,

where Z ∼ N(0, 1). In particular, if D3 < ∞ and λ > 4 log ρ, then one can take

μ = κ(1 + κ)/(9κ
2 + 20κ − 12),

where κ = λ/ log ρ.

Remark 1. Thus, the exponent in the Gaussian approximation estimate tends to 1/9
when the third moment is finite and λ tends to infinity. If the field is wide-sense station-
ary and its covariance function is nonnegative (as will be the case if X is associated),
then for any finite W ⊂ V one has DS(W ) ≥ |W |DXt, t ∈ V. So in this case class U
contains all finite sets U ⊂ V.

14.3 Proof

Note that the condition imposed on λ ensures that the series

σ2
0(t) :=

∑
t∈V

|cov(Xt,Xv)|

converges uniformly, since this sum does not exceed some positive value multiplied by∑∞
k=1 ρke−λk < ∞. In particular, for any finite set W ⊂ V we have

ES2(W ) ≤ sup
t∈V

σ2
0(t)|W |. (14.2)

The proof adapts the local sectioning (Stein–Tikhomirov) method of the analysis
of characteristic functions (Tikhomirov, 1981). For associated random processes and
fields it was applied, respectively, in Birkel (1988) and Bulinski (1995, 1996). Let m =
m(U) ∈ N be some quantity specified later. For t ∈ R, l ∈ {1, 2}, and j ∈ U denote

σ = σ(U) =
√

DS(U), τ = t/σ, f(t) = E exp{iτS(U)},
U0

j = U, U l
j = {q ∈ U : d(q, j) > lm}, W l

j = U l−1
j \ U l

j ,

Sl
j = σ−1S

(
U l

j

)
, Zl

j = S
(
W l

j

)
, ξl

j = exp
{
iτZl

j

}− 1.

By c we denote various positive factors which may depend on the field X, but not on
j and m.

We intend to prove that f(t) → e−t2/2 when σ(U) → ∞. To this end we establish
a differential equation that f(t) satisfies and make use of the formula of its solution.
Write the following differential equation:
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f ′(t) = iσ−1EXj exp{iτS(U)}
= iσ−1f(t)

∑
j∈U

EXjξ
1
j + iσ−1

∑
j∈U

EXj exp
{
itS1

j

}

+ iσ−1
∑
j∈U

EXjξ
1
j

(
exp

{
itS2

j

}− f(t)
)

+ iσ−1
∑
j∈U

EXjξ
1
j ξ

2
j exp

{
itS2

j

}
(14.3)

=: A(t)f(t) + B1(t) + B2(t) + B3(t).

The following lemma is a counterpart of Lemmas 1 and 2 in Bulinski (1995). It
allows us to estimate A(t), B1(t), and B3(t).

Lemma 1. For any j ∈ U and all t ∈ R,

|A(t) + t| ≤ c|U | (|t|σ−2θm + (|t|ρm)s−1σ−s
)
, (14.4)

B1(t)| ≤ c|U ||t|σ−2θm, (14.5)

E|Xjξ
1
j ξ

2
j | ≤ c|τ |ρm(|τ |ρm/2 + (|τ |θm)(s−2)/(s−1)). (14.6)

Proof. Let α0(x) be a function such that eix − 1 − x = α0(x)|x|s−1 for x ∈ R. Then
one clearly has |α0(x)| ≤ 2, x ∈ R. Hence, using that S(U) = S

(
Z1

j

)
+ S

(
U1

j

)
for all

j ∈ U, we have

|A(t) + t| = iσ−1
∑
j∈U

EXjiσ
−1tZ1

j + t + iσ−1
∑
j∈U

EXjσ
1−s|t|s−1

∣∣Z1
j

∣∣s−1
α
(
τZ1

j

)

= tσ−2cov(Xj , S
(
U1

j

)
) + iσ−s|t|s−1

∑
j∈U

EXj

∣∣Z1
j

∣∣s−1
α
(
τZ1

j

)
.

Now the relation (14.4) follows after applying (14.1) to the first summand and the
Hölder inequality to the second one.

The bound (14.5) is the direct consequence of (14.1). Furthermore, take the function
hM (x) = (x ∧M) ∨ (−M), with M > 0 selected later, and write

E
∣∣Xjξ

1
j ξ2

j

∣∣ ≤
(
E
∣∣ξ1

j

∣∣s)1/s (
E
∣∣Xjξ

2
j

∣∣s/(s−1)
)(s−1)/s

≤ D1/s
s |τ |ρm

(
E|Xj |s/(s−1)E

∣∣ξ2
j

∣∣s/(s−1)
+
∣∣∣cov

(
|Xj |s/(s−1),

∣∣ξ2
j

∣∣s/(s−1)
)∣∣∣
)(s−1)/s

≤ D1/s
s |τ |ρm

(
E|Xj |s/(s−1)E

∣∣ξ2
j

∣∣s/(s−1)
+
∣∣∣cov

(
|hM (Xj)|s/(s−1),

∣∣ξ2
j

∣∣s/(s−1)
)∣∣∣

+
∣∣∣cov

(
|Xj |s/(s−1) − |hM (Xj)|s/(s−1),

∣∣ξ2
j

∣∣s/(s−1)
)∣∣∣
)(s−1)/s

.

Since Lip(|hM (·)|s/(s−1)) = (s/(s− 1))M1/(s−1), the first covariance can be estimated
using (14.1). The second covariance is bounded via the Hölder inequality due to the
fact that |hM (x) − x| ≤ |x|I{|x| > M}. It remains to minimize the obtained bound in
M to get (14.6).

Lemma 2. For any j ∈ U one has

|B2(t)| ≤ c|U |σ−1
(
|τ |2ρ3m/2 + |τ |ρmθm + (|τ |2ρmθm)(s−1)/s

)
.
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Proof. Note that
∣∣EXjξ

1
j

(
exp

{
itS2

j − f(t)
})∣∣ ≤ ∣∣cov (Xjξ

1
j , exp

{
itS2

j

})∣∣
+
∣∣EXjξ

1
j

(
E exp

{
itS2

j

}− E exp{iσ−1tS(U)})∣∣ . (14.7)

To estimate the second summand in the right-hand side of (14.7) use Lemma 1 and
note that by relation (14.2) we have

∣∣E exp
{
itS2

j

}− E exp{iσ−1tS(U)})∣∣ ≤ |τ |
(
E
(
Z1

j + Z2
j

)2)1/2

≤ C|τ |ρm.

As for the first summand, again let M > 0 be a number picked later and set hM (x) =
(x ∧M) ∨ (−M). Then

∣∣cov (Xjξ
1
j , exp

{
itS2

j

})∣∣ ≤ ∣∣cov (hM (Xj)ξ1
j , exp

{
itS2

j

})∣∣
+
∣∣cov ((Xj − hM (Xj))ξ1

j , exp
{
itS2

j

})∣∣ ≤ (2 + M |τ |)|τ |ρmθm + 4DsM
1−s,

where we used (14.1) for the first term and the Markov inequality for the second one.
On minimizing the last expression in M > 0 we get the lemma.

The final step of the proof is based on Esseen inequality and picking the appropriate
values of m (they may depend on t). For simplicity we consider the case s = 3, but the
proof can be easily transmitted to the case when s ∈ (2, 3), only x and y below need to
be chosen in another way. Denote g(t) = f(t)− e−t2/2. Lemmas 1 and 2 and expansion
(14.3) yield a bound for the derivative of g.

Let us take

m =
[
x log t + y log σ

log ρ

]

where positive numbers x and y are selected later. Recall that by the Esseen inequality
for any T > 0 one has

sup
x∈R

|P(S(U) ≤ x
√

DS(U)) − P(Z ≤ x)| ≤ cT−1 +
∫

|t|≤T

|t|−1|g(t)|dt.

Inserting here the bound for g′ and taking the integral over [−T, T ] we obtain that

sup
x∈R

|P(S(U) ≤ x
√

DS(U)) − P(Z ≤ x)| ≤ cT−1 + c
(
T 2−2κ/(2+κ)σ−yκ + T 3+4/(2+κ)σ2y−1

+ T 4−(κ−2)/(κ+2)σ−1/2−y(κ/2−1) + T 3+3/(2+κ)σ3/2y−1

+ T 7/3−4(κ−1)/(6+3κ)σ−1/3−2y(κ−1)/3
)
.

Now we take
x =

2
2 + κ

, y =
κ + 6

9κ2 + 20κ − 12
.

Finally, select T = σμ where μ appears in the statement of theorem.
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14.4 Conclusion

Clearly, the argument above allows us to establish the rate of convergence to normal
law (in the regular case when σ2(U) ≥ C|U |). Note that in Doukhan et al. (2008) the
central limit theorem is established for the sets U ⊂ V which tend to infinity in a regular
way; that is, |U | → ∞ but |∂U |/|U | → 0. Here, as usual, ∂U = {y ∈ V : d(x, y) = 1}.
However, this condition is usually not true in the case of graphs more general than Z

d.
For example, in the paper cited above the authors mention the graph G = (V,E) whose
vertices are elements of a noncommutative free group with generators {g1, . . . , gL}
having order 2 (L > 2). The vertices x, y ∈ V are connected by an edge if and only if
there exists such i ∈ {1, . . . , L} that x = giy. For that graph |∂Bn(x)| = L(L− 1)n−1,
hence |Bn(x)| ∼ Ln and |∂Bn(x)|/|Bn(x)| does not tend to zero when n → ∞. The
theorem given above does not need such a restriction on U.
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Critical and Subcritical Branching Symmetric
Random Walks on d-Dimensional Lattices
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Abstract: We study a symmetric continuous time branching random walk on a
d-dimensional lattice with the zero mean and a finite variance of jumps under the
assumption that the birth and the death of particles occur at a single lattice point. In
the critical and subcritical cases the asymptotic behavior of the survival probability of
particles on Zd at time t, as t → ∞, is obtained. Conditional limit theorems for the
population size are proved. The models of a branching random walk in a spatially inho-
mogeneous medium could be applied to the study of the long-time behavior of objects
in a catalytic environment.

Keywords and phrases: Branching random walks, survival probability, limit theo-
rems, critical case, subcritical case.

15.1 Introduction

Numerous applications of branching processes in various areas of the natural sciences
have demonstrated the importance of developing more realistic mathematical models in
which the evolutionary processes depend on the structure of a medium. It is well known
that the inhomogeneity of a medium plays an essential role in the formation of abnormal
properties of particle transport processes. It is worth mentioning that the concept of
“strong centers” is used for the interpretation of the intermittency phenomenon in the
theory of random media; see Gartner and Molchanov (1990) and Molchanov (1994).
Consequently, interest in branching random walks under the assumption that the birth
and the death of particles occur at a single lattice point (i.e., the source) has increased.
This chapter is devoted to the study of continuous-time branching symmetric random
walks on d-dimensional lattices with a reproduction of particles at the origin. The
model is of interest mainly in connection with the following two circumstances: the
branching medium (i.e., the set of branching characteristics at points of the phase
space) is inhomogeneous, and the phase space in which the walk occurs is unbounded
(see Bogachev and Yarovaya, 1998a).
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A similar model on a one-dimensional lattice has been studied in the paper by
Vatutin et al. (2005). In this model an additional parameter controlling the behavior
of a process at a branching source was introduced, but simultaneously the introduction
of this parameter destroyed symmetry of an infinitesimal transition matrix of a ran-
dom walk. As has been shown by Vatutin and Xiong (2007), similar types of branching
random walks with a single source are used as approximations of catalytic superpro-
cesses, the theory of which has recently undergone active development in papers by
Fleischmann and Le Gall (1995) and Greven et al. (1999).

One of the main problems in such models is the study of the evolution of populations
of particles. The offspring reproduction intensity at the origin exerts essential influence
on the asymptotic behavior of a branching random walk. In connection with this, the
definition of criticality for a branching random walk is introduced. Particular attention
in this chapter is paid to critical and subcritical processes. Then conditions of reaching
a critical regime and their dependence on the lattice dimension are formulated and
analyzed.

15.2 Description of a branching random walk

We consider a branching random walk on Zd with a single source. The population of
individuals is initiated at time t = 0 by a single particle. Being outside the origin the
particle performs a continuous time random walk with infinitesimal transition matrix
A =| a(x, y) | x,y∈Zd . The random walk is assumed to be symmetric, homogeneous,
irreducible, and having the zero mean and a finite variance of jumps: a(x, y) = a(y, x),
a(x, y) = a(0, y − x) = a(y − x) with a(x) ≥ 0, x 
= 0, a(0) < 0,

∑
x a(x) = 0, and∑

x∈Zd x2a(x) < ∞. In particular, this class includes the simple symmetric random
walk defined by a(x, y) = a(0)/2d for |y − x| = 1, a(x, x) = −a(0), and a(x, y) = 0
otherwise. The branching mechanism at the source is governed by the infinitesimal
generating function f(u) :=

∑∞
n=0 bnu

n (0 ≤ u ≤ 1), where bn ≥ 0 for n 
= 1, b1 < 0,
and

∑
n bn = 0. It is supposed that the particle spends at the origin an exponentially

distributed time with parameter −(a(0) + b1) and then either jumps to a point y ∈ Zd

(distinct from the origin) or dies producing just before the death a random number
of offspring. The newborn particles behave independently and stochastically in the
same way as the parent individual. This model was first introduced (for the case of a
simple symmetric random walk without the death of particles: b0 = 0) by Yarovaya
(1991).

Under these conditions, the random walk transition probabilities p(t, x, y) satisfy
the system of differential-difference equations (Kolmogorov’s backward equations)

∂p

∂t
= Ap, p(0, x, y) = δy(x), (15.1)

where the (linear) operator A acts with respect to the variable x in accordance with
the following rule,

Ap(t, x, y) :=
∑
x′

a(x, x′)p(t, x′, y),
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while y is treated as a parameter. By Schur’s test (see, e.g., Halmos, 1982), A is a
bounded operator on lq(Zd) for any 1 ≤ q ≤ ∞.

Set

φ(θ) =
∑

x

a(x, 0)ei(x,θ), θ ∈ [−π, π]d,

then the long-time asymptotics of the transition probability is given by

p(t, x, y) ∼ γd · t−d/2, t → ∞, (15.2)

where γd =
√

(2π)d |det φ′′
θθ(0)| is a constant depending on the space dimension. The

main tool in proving (15.2) is the Fourier transform with respect to the space variable
x. Namely, for the function p̃(t, θ, y) :=

∑
x∈Zd p(t, x, y)ei(x,θ) defined for θ ∈ [−π, π]d

where [−π, π]d is the d-dimensional cube, the Cauchy problem (15.1) can be rewritten
in the form

∂p̃

∂t
= φ(θ)p̃(t, θ, y), p̃(0, θ, y) = ei(θ,y).

Hence, p̃(t, θ, y) = eφ(θ)tei(θ,y), and by applying the inverse Fourier transform we obtain
the representation

p(t, x, y) =
1

(2π)d

∫

[−π,π]d

eφ(θ)t+i(θ,y−x) dθ, t ≥ 0, x, y ∈ Zd. (15.3)

Note that by the symmetry of the matrix A the function (15.2) is real-valued and
symmetric:

φ(θ) =
∑

x

a(x, 0)cos(x, θ), θ ∈ [−π, π]d.

Furthermore, the function φ is twice continuously differentiable and has a unique non-
degenerate maximum φmax = φ(0) = 0; see Yarovaya (2007). Thus, (15.3) is the Laplace
integral and its asymptotics has the form (15.2), which is obtained as in the book by
Fedoruk (1987).

By setting x = y = 0 in (15.3) we can write

p(t, 0, 0) =
1

(2π)d

∫

[−π,π]d

eφ(θ)t dθ, t ≥ 0.

This implies the monotonicity of the transition probability p(t, 0, 0).
Denote the Green function of the random walk by

Gd
λ(x, y) :=

∫ ∞

0

e−λtp(t, x, y) dt,

where the right-hand side is the Laplace transform of p(t, x, y) with respect to t. Also
put βc := 1/Gd

0(0, 0); then βc = 0 for d = 1, 2 and βc > 0 for d ≥ 3.
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15.3 Definition of criticality for branching random walks

Suppose that f (r)(u)|u=1 < ∞ for all r ∈ N, where β := f (1)(u)|u=1 = f ′(1) and
f (2)(u)|u=1 := f ′′(1). The point βc is critical since the asymptotic behavior of the
branching random walk is essentially different for β > βc, β = βc, and β < βc; see
Bogachev and Yarovaya (1998a) and Albeverio et al. (1998). Let us introduce the
definition of criticality for a continuous time branching random walk.

Definition 1. If β < βc then the infinitesimal offspring generating function f(u) of a
continuous time branching random walk on Zd is subcritical, if β = βc then the function
f(u) is critical, and if β > βc then the function f(u) is supercritical.

Hence, in dimensions d = 1, 2 the average number of offspring of a particle in a source
should be equal to 1 (β = βc = 0) to reach a critical regime. Thus, if d = 1, 2 then
the definition of a critical branching random walk is equivalent to the definition of a
critical branching process at the origin (i.e., f ′(1) = 0).

If d ≥ 3 then the average number of offspring should exceed 1 to reach a critical
regime (β = βc > 0), and simultaneously with increase of the dimension of a lattice an
average number of offspring should also increase to reach a critical regime. Therefore,
the subcritical case in dimensions (d ≥ 3) is possible even without the death of particles
at the source (b0 = 0).

Let μt(y) be the number of particles at a point y ∈ Zd; then μt :=
∑

y μt(y) is the
total number of particles at time t > 0.

Definition 2. If μt vanishes at some finite time t then a branching random walk is
called extinct.

We denote by Px(μt = 0) the probability of extinction at time t. The survival proba-
bility of the particles’ population on Zd at time t is equal to

Q(t, x) := 1 − Px(μt = 0) = Px(μt > 0).

Set mn(t, x) := Exμ
n
t , n ∈ N, where Ex denotes the mathematical expectation

under the condition μ0(·) = δx(·). The long-time asymptotics of all the moments for
the μt has been studied in Bogachev and Yarovaya (1998a). If β > βc then in the
sense of convergence of the moments the random variable μt has a limit distribution,
as t → ∞, (see Bogachev and Yarovaya, 1998b) under the normalization e−λ0t where
exponent λ0 is determined by the equation

βGd
λ0

(0, 0) = 1.

In the case β ≤ βc, the growth of the moments for μt appears to be irregular with
respect to n; see Yarovaya (2007). This means that the behavior of the random variable
μt, as t → ∞, substantially differs from the behavior of the moments. For that reason
the asymptotic behavior of the survival probability Q(t, x) of the particles on Zd at
time t is of great importance. The aim of the present chapter is to study the asymptotic
behavior of the survival probabilities Q(t, x) and to establish conditional limit theorems
for μt in critical and subcritical cases.
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15.4 Main equations

Denote the generating function of the total number of particles μt at time t > 0 by

F (z; t, x) := Exe
−zμt , z ≥ 0.

From this definition it follows that

F (z; t, x) = Px{μt = 0} +
∞∑

n=1

Px{μt = n}e−zn.

If z = ∞, we set F (∞; t, x) := Px{μt = 0} = 1 −Q(t, x).

Lemma 1. The generating function F (z; t, x) for every 0 ≤ z ≤ ∞ is continuously
differentiable with respect to t uniformly with respect to x, y ∈ Zd. It satisfies the
inequalities 0 ≤ F (z; t, x) ≤ 1 and the following evolution equation

∂F (z; t, x)
∂t

= (AF (z; t, ·))(x) + δ0(x)f(F (z; t, x)),

with the initial condition F (z; 0, x) = e−z .

The inequalities 0 ≤ F (z; t, x) ≤ 1 follow from the definition of the generating function.
The continuous differentiability of the function F (z; t, x) with respect to t can be proved
by standard methods of the analysis of evolution of the system on an interval (t, t+ h)
by using the Markov property of the process; see Yarovaya (2007).

Corollary 1. The generating function F (z; t, x) satisfies the following integral equa-
tion,

F (z; t, x) = e−z +
∫ t

0

p(t− s, x, 0)f(F (z, s, 0)) ds. (15.4)

Since Q(t, x) = 1 − F (∞, t, x), then (15.4) implies the following proposition.

Corollary 2. The survival probability of the process Q(t, x) at time t for x ∈ Zd sat-
isfies the following integral equation

Q(t, x) = 1 −
∫ t

0

p(t− s, x, 0)f(1 −Q(s, 0))ds. (15.5)

For an arbitrary dimension d and an arbitrary regime the function F (z, t, x) is non-
decreasing with respect to t for every z and x, and simultaneously the survival probabil-
ity of the process Q(t, x) is nonincreasing with respect to t for every x. This statement
is a corollary of known theorems on positive solutions of differential equations with
off-diagonal positive right-hand part in Banach spaces.

Let us reduce auxiliary results about the infinitesimal generating function f(u) in
the critical and subcritical cases β ≤ βc to the barest essentials:

Lemma 2. If β ≤ βc then f (r)(u) =
∑∞

n=r(n!/(n− r)!)bnu
n−r (r ≥ 0), where the

series converges for all u ∈ [0, 1]. Furthermore, for d = 1, 2 and u → 1,

f(u) =

{
f ′′(1)

2 (1 − u)2 + o((1 − u)2) for β = βc,

−β(1 − u) + o(1 − u) for β < βc.
(15.6)
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Proof. From the condition
∑

n nbn ≤ βc it follows that
∑∞

n=2 nbn ≤ βc − b1. Hence,
the series with positive elements in the left-hand side converges. Therefore, the series∑∞

n=0 bn absolutely converges. Then the function f(u) =
∑∞

n=0 bnu
n has the ra-

dius of convergence not smaller then 1, and so it converges as u ∈ [0, 1]. Then,
as it is known from the theory of analytical functions, for every r ≥ 1 the series∑∞

n=r(n!/(n− r)!)bnu
n−r also has the radius of convergence not smaller then 1. Con-

vergence of this series follows from the condition f (r)(u)|u=1 < ∞.
If
∑

n bn = 0 and β =
∑

n nbn then b0 = −b1 −∑∞
n=2 bn = −β +

∑∞
n=2 nbn −∑∞

n=2 bn = −β +
∑∞

n=2(n− 1)bn, and so

f(u) = −β(1 − u) +
∞∑

n=2

bn (un − nu + n− 1) .

If d = 1, 2 then β = βc = 0 and the function f(u) can be presented in the form
f(u) =

∑∞
n=2 bngn(u), where gn(u) = un − nu + n− 1. According to Taylor’s formula

gn(u) = gn(1)+g′n(1)(u−1)+
1
2!

g′′n(1)(u−1)2 +
1
3!

g(3)
n (θn(u))(u−1)3, 0 ≤ θn(u) ≤ 1.

Here
gn(1) = g′n(1) = 0, g′′n(1) = n(n− 1),

and
g(3)

n (θn(u)) = n(n− 1)(n− 2)θ3
n(u) ≤ n(n− 1)(n− 2).

Thus,

f(u) =
∞∑

n=2

bngn(u) =

( ∞∑
n=2

n(n− 1)
2

bn

)
(1 − u)2 + f∗(u) =

f ′′(1)
2

(1 − u)2 + f∗(u),

(15.7)
where

|f∗(u)| ≤
∞∑

n=2

n(n− 1)(n− 2)
3!

bn(1 − u)3 =
f (3)(1)

3!
(1 − u)3. (15.8)

From the relations (15.7) and (15.8) the proof of Lemma 2 follows for β = βc in
dimensions d = 1, 2. The statement of Lemma 2 for β < βc in dimensions d = 1, 2 is
proved similarly.

15.5 Asymptotic behavior of survival probabilities

Some results for the critical case were obtained for the branching symmetric random
walk in Yarovaya (2005).

Lemma 3. If β ≤ βc then for every z > 0 and x ∈ Zd

limt→∞ F (z, t, x) = 1, limt→∞ Q(t, x) = 0 for d = 1, 2,
limt→∞ F (z, t, x) = 1 − cd(z, x), limt→∞ Q(t, x) = cd(x) for d ≥ 3,
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where limz→∞ cd(z, x) = cd(x) > 0 and cd(z, x) is the least nonnegative root of the
equation

1 − cd(z, x) − e−z

Gd
0(x, 0)

= f(1 − cd(z, 0)). (15.9)

Lemma 3 can be derived directly from equations (15.4) and (15.5) by using the
facts that the function F (z, t, x) is nondecreasing with respect to t for every z > 0 and
x ∈ Zd and hence the survival probability of the process Q(t, x) is nonincreasing with
respect to t for every x ∈ Zd.

Theorem 1. If β ≤ βc then the survival probabilities Q(t, x) have the following asymp-
totics, as t → ∞,

Q(t, x) ∼
{
Cd(x)v(t), if β = βc,

Kd(x)u(t), if β < βc,

where the functions v and u are of the form:

v(t) = t−1/4, u(t) = t−1/2 for d = 1,
v(t) = (ln t)−1/2, u(t) = (ln t)−1 for d = 2,
v(t) ≡ 1, u(t) ≡ 1 for d ≥ 3,

and
C1(x) =

√
2 (f ′′(1)γ1π)−1/2

, K1(x) = (−βγ1π)−1 for d = 1,
C2(x) =

√
2 (f ′′(1)γ2)

−1/2
, K2(x) = (−βγ2)

−1 for d = 2.

Both the functions Cd(x) and Kd(x) for every x ∈ Zd (d ≥ 3) are determined by

1 − βcG
d
0(x, 0) (1 − cd(0)) ,

where cd(0) is the least nonnegative root of the equation

βc(1 − cd(0)) = f(1 − cd(0)). (15.10)

15.6 Limit theorems

Here we establish conditional limit theorems for the total number of particles μt existing
on Zd at time t using the asymptotics of the survival probabilities of the process Q(t, x)
at time t.

Theorem 2. Let β = βc and d = 1, 2; then for any z > 0 and x ∈ Zd,

lim
t→∞Ex

[
e−zμt |μt > 0

]
= 1 −

√
1 − e−z.

Theorem 3. Let β < βc and d = 1, 2; then for any z > 0 and x ∈ Zd,

lim
t→∞Ex

[
e−zμt |μt > 0

]
= e−z.
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Theorem 4. Let β ≤ βc and d ≥ 3; then for any z > 0 and x ∈ Zd,

lim
t→∞Ex

[
e−zμt |μt > 0

]
=

(1 − βcG0(x, 0)) e−z + βcG0(x, 0) (cd(0) − cd(z, 0))
1 − βcG0(x, 0) (1 − cd(0))

.

Furthermore,

lim
t→∞Ex

[
e−zμt

]
=
(

1 − G0(x, 0)
G0(0, 0)

)
e−z +

G0(x, 0)
G0(0, 0)

(1 − cd(z, 0)) ,

where cd(z, 0) and cd(0) are the least nonnegative roots of equations (15.9) and (15.10),
respectively.

Theorems 1–4 can be proved by applying the Laplace transform with respect to λ to
equations (15.4) and (15.5). Then we study the asymptotics of the Laplace transforms
of the functions F (z, t, x) and Q(t, x), as λ → 0, using the asymptotic representation
for the Laplace transforms of the Green functions Gd

λ(x, 0). The asymptotic behavior
of F (z, t, x) and Q(t, x), as t → ∞, can then be derived from the Tauberian theorems;
see, e.g., Feller (1971). It should be noted that these theorems require the monotonicity
of the originals F (z, t, x) and Q(t, x) in t. Since Px{μt = 0| μt > 0} = 0 then

Ex[e−zμt | μt > 0] =
∞∑

n=1

e−znPx{μt = n| μt > 0}

= P−1
x {μt > 0}

∞∑
n=1

e−znPx{μt = n}

= P−1
x {μt > 0}(F (z, t, x) − Px{μt = 0}).

Whence

Ex[e−zμt | μt > 0] =
F (z, t, x) − F (∞, t, x)

1 − F (∞, t, x)
= 1 − 1 − F (z, t, x)

Q(t, x)
. (15.11)

Using the asymptotic behavior of the functions F (z, t, x) and Q(t, x), as t → ∞, the
statements of the theorems are proved. If d ≥ 3 then the proof of Theorem 4 follows
from the statement of Lemma 3.

Below we present the detailed proof of Theorems 1, 2, and 3 for dimensions d = 1, 2
in critical and subcritical cases.

15.7 Proof of theorems for dimensions d = 1, 2 in critical and
subcritical cases

Equation (15.5) for the survival probability Q(t, x) at the point x = 0 has the following
form

1 −Q(t, 0) =
∫ t

0

p(t− s, 0, 0)f(1 −Q(s, 0)) ds. (15.12)
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Hence, by applying the Laplace transform to (15.12) we get the representation

1̂ −Q = Gd
λ(0, 0) ̂f(1 −Q), (15.13)

where the left part of (15.13) is the Laplace transform of the extinction probability
P0{μt = 0} = 1 − Q(t, 0). By Lemma 3, if β ≤ βc then the extinction probability
P0{μt = 0} tends to 1, as t → ∞. Therefore, the asymptotics of the Laplace transform
of the extinction probability, as λ → 0, has the following form, 1̂ −Q ∼ (1/λ). With
the help of the representation (15.2) of the monotone decreasing transition probabil-
ity p(t, 0, 0) and the Tauberian theorem (see Feller, 1971), it can be shown that the
asymptotics of the Green function Gd

λ(0, 0), as λ → 0, has the following form

Gd
λ(0, 0) ∼

{
γ1
√

πλ−(1/2) for d = 1,
γ2ln

(
1
λ

)
for d = 2.

(15.14)

From (15.13) and (15.14) we deduce that

̂f(1 −Q) ∼
{

(γ1
√

π)−1
λ−(1/2) for d = 1,

(γ2λ)−1ln−1
(

1
λ

)
for d = 2.

Hence, due to the monotonicity of the function f(1 − Q) and the Tauberian theorem
“for densities” (see Feller, 1971), we obtain the following asymptotic equality as t → ∞,

f(1 −Q) ∼
{

(γ1π)−1
t−(1/2) for d = 1,

(γ2)−1 ln−1 t for d = 2.
(15.15)

If d = 1, 2 and β ≤ βc = 0 then by Lemma 3 the survival probability Q(t, 0) → 0, as
t → ∞, and 1 −Q(t, 0) → 1, as t → ∞, respectively. Thus, by Lemma 2 the function

f(1 −Q) =
∞∑

n=0

bn(1 −Q)n

has the representation (15.6). If β = βc then having used (15.15) we obtain, as t → ∞,

Q2(t, 0) ∼
{

2(f ′′(1)γ1π)−1t−(1/2) for d = 1,
2(f ′′(1)γ2 ln t)−1 for d = 2.

Hence, when x = 0, we get the statement of Theorem 1 for the critical case in low
dimensions:

Q(t, 0) ∼
{√

2(f ′′(1)γ1π)−(1/2)t−(1/4) for d = 1,√
2(f ′′(1)γ2 ln t)−(1/2) for d = 2.

(15.16)

In the same manner, using asymptotic equalities (15.15) and the representation (15.6)
for β < βc we get in the subcritical case that

Q(t, 0) ∼
{(−βγ1π

√
t
)−1

for d = 1,
(−βγ2ln t)−1 for d = 2,

(15.17)

as t → ∞.
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Since the first term of the asymptotic expansion of transition probabilities (15.2)
does not depend on x as t → ∞ then the first term of the asymptotic expansion of its
Laplace transform Gd

λ(x, 0) for λ → 0 also does not depend on x. Therefore, the first
term of the asymptotic expansion of survival probabilities Q(t, x) does not depend on
x as t → ∞ and has the representation (15.16) for the critical case and (15.17) for the
subcritical case. This immediately implies the assertion of Theorem 1 in the critical
and subcritical cases for dimensions d = 1, 2 and every x ∈ Zd.

The Laplace transform of integral equation (15.4) at the point x = 0 has the
following form

F̂ =
e−z

λ
+ Gd

λ(0, 0)f̂(F ).

By Lemma 3 if β ≤ βc and d = 1, 2 then the function F (z, t, 0) tends to 1 as t → ∞.
So the asymptotics of the Laplace transform of the function F (z, t, 0) when λ → 0 has
the form F̂ ∼ 1/λ. Hence we get for d = 1, 2:

f̂(F ) ∼ (
1 − e−z

) (
λGd

λ(0, 0)
)−1

, as λ → 0.

On the other hand, from (15.13) we have the following representation for ̂f(1 −Q):

̂f(1 −Q) ∼ (
λGd

λ(0, 0)
)−1

, as λ → 0.

Thus,

f̂(F ) ∼ (
1 − e−z

)
̂f(1 −Q), as λ → 0. (15.18)

Applying the Tauberian theorem (see Feller, 1971) the monotonicity of the function
F (t, z, 0) in t required by this theorem and the representations (15.15), as t → ∞, we
obtain for β ≤ βc and d = 1, 2

f(F (z, t, 0)) ∼ (1 − e−z)f(1 −Q(t, 0)).

By Lemma 3 if d = 1, 2 then F (t, z, 0) → 1, as t → ∞, for every z > 0. Thus, the
representation (15.6) for F takes the form

f(F ) =

{
f ′′(1)

2 (1 − F )2 + o((1 − F )2) for β = βc,

−β(1 − F ) + o(1 − F ) for β < βc.

From (15.18) we get the following representation, as t → ∞,

(1 − ez)f(1 −Q(t, 0)) ∼
{

f ′′(1)
2 (1 − F (z, t, 0))2 for β = βc,

−β(1 − F (z, t, 0)) for β < βc,

from which one can show that

1 − F (z, t, 0) ∼
{√

(1 − ez)Q(t, 0) for β = βc,

(1 − ez)Q(t, 0) for β < βc,
(15.19)

as t → ∞.
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Now, using (15.19) we have for d = 1, 2 and x = 0

lim
t→∞

1 − F (z, t, 0)
Q(t, 0)

=

{√
1 − ez for β = βc,

1 − ez for β < βc.

Since the first term of the asymptotic expansion of the Laplace transform for Gd
λ(x, 0),

as λ → 0, does not depend on x so the first term of the asymptotic expansion of the
function F (z, t, x) as t → ∞ does not depend on x. Let us note that this fact is valid
only in the case when d = 1, 2. Hence, if d = 1, 2 then for every x ∈ Zd

lim
t→∞

1 − F (z, t, x)
Q(t, x)

=

{√
1 − ez for β = βc,

1 − ez for β < βc.

By (15.11) we immediately obtain the statements of Theorems 2 and 3.

15.8 Conclusions

In conclusion we formulate some results for the simple model where we can find the
explicit solutions of equations (15.9) and (15.10).

Theorem 5. Let β = βc, d ≥ 3, and f(u) = b0 + b1u + b2u
2; then for any z > 0 and

x ∈ Zd,

lim
t→∞Ex

[
e−zμt |μt > 0

]
=

(
1 − βcG

d
0(x, 0)

)
e−z + βcG

d
0(x, 0)

√
βc

b2
(1 −√

1 − e−z)

1 − βcGd
0(x, 0)

(
1 −

√
βc

b2

) .

Furthermore,

lim
t→∞Ex

[
e−zμt

]
=
(

1 − G0(x, 0)
G0(0, 0)

)
e−z +

G0(x, 0)
G0(0, 0)

(
1 −

√
(1 − ez)

βc

b2

)
.

Proof. For every finite n by Lemma 2 we have the representation

f(u) = −β(1 − u) +
f (2)(1)

2
(1 − u)2 + · · · + (−1)nbn(1 − u)n.

Therefore, by applying this representation for n = 2 to the right-hand side of equation
(15.10) we get

βc(1 − cd(0)) = −βcd(0) +
f ′′(1)

2
c2d(0).

Putting β = βc in this equation we have

βc =
f ′′(1)

2
c2d(0). (15.20)
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The positive solution of (15.20) has the form cd(0) =
√

βc/b2. In the same manner, the
solution cd(z, 0) of equation (15.9) is obtained by cd(z, 0) =

√
1 − e−zcd(0) for every

z > 0. Therefore, the statements of Theorem 5 follow immediately from Theorem 4.
Note that for the particle starting from the origin at time t = 0 we get the following

corollary from Theorem 5 valid for all dimensions d.

Corollary 3. Let β = βc; then for any z > 0 on Zd,

lim
t→∞E0

[
e−zμt |μt > 0

]
= 1 −

√
1 − e−z.
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Abstract: Patterns with “unusual” frequencies are new functional candidate patterns.
Their identification is usually achieved by considering an homogeneous m-order Markov
model (m � 1) of the sequence, allowing the computation of p-values. For practical
reasons, stationarity of the model is often assumed. This approximation can result
in some artifacts especially when a large set of small sequences is considered. In this
work, an exact method, able to take into account both nonstationarity and fragmentary
structure of sequences, is applied on a simulated and a real set of sequences. This
illustrates that pattern statistics can be very sensitive to the stationary assumption.

Keywords and phrases: stationary distribution, pattern Markov chain, biological
patterns, finite Markov chain embedding.

16.1 Introduction

It is well known that selection can affect the frequencies of functional patterns in bio-
logical sequences (DNA, proteins, etc.). It is hence natural to search for new functional
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candidate patterns among patterns with “unusual” frequencies. This is usually achieved
by considering an homogeneous m-order Markov model (m � 1) of sequence allowing
pattern p-value computation. For practical reasons, stationarity of the model is often
assumed.1 As the marginal distribution of the usual encountered Markov model quickly
converges toward its stationary distribution, this assumption is false only for a small
portion of the sequence. The error done is usually harmless when considering long bi-
ological sequences such as DNA. But things could be quite different when large sets of
short sequences are considered. For instance, considering a large set of protein sequences
(of some hundred residues) can result in an accumulation of side effects and lead to
erroneous conclusions. In this work, an exact method, able to take into account both
nonstationarity and fragmentary structures of sequences, is proposed. First, mathemat-
ical notions as patterns of Markov chain and finite Markov chain embedding needed to
obtain exact p-value computations, are introduced. Then, the exact approach is used
and compared with two classical approximations (considering one single sequence and
stationarity hypothesis) on a simulated and a real set of sequences. This illustrates
that pattern statistics can be very sensitive to these approximations and that our ex-
act method allows us to improve pattern extraction by avoiding artifacts on particular
sets of biological sequences.

16.2 Methods

16.2.1 Notations

We consider a set of r sequences over the finite alphabet A. For 1 � j � r we denote by
xj = xj

1 · · ·xj
i · · ·xj

�j
the jth sequence. Let us now consider a pattern on A and denote

by nj its number of occurrences in the sequence xj . The question then is: how to
associate an overrepresentation (or underrepresentation) p-value to these observations.

The classical framework to answer that question consists in studying the distribution
of N j , the random number of pattern occurrences in the random sequence Xj assuming
that all sequences are independently drawn according to an homogeneous order m
Markov model. For each sequence, it is hence possible to compute pj = P (N j � nj)2

and one can combine all these probabilities to get a global overrepresentation p-value:∏r
j=1 pj .
If this approach is quite natural, it is seldom used in practice for two reasons: first,

most available methods to compute the pj are asymptotic approximations which are
hence not suitable on short sequences; second, one may not be interested in taking into
account local fluctuations in each sequence and prefer rather to consider some more
global statistic. This is why we usually compute

p = P
(
N1 + · · · + N j + · · · + Nr

︸ ︷︷ ︸
N

� n1 + · · ·nj + · · ·nj

︸ ︷︷ ︸
n

)

instead of the pj product.
As the computation of p remains a difficult task, two approximations are commonly

done in order to ease it:
1 The starting distribution is the stationary distribution
2 This concerns the overrepresented case. Replace all � by � in the underrepresented case.
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Type I: If N ′ is defined as the number of pattern occurrences on a single sequence of
length  =  1 + · · · +  r, then p′ = P(N ′ � n) � p.

Type II: It is also classical to assume both ergodicity3 and stationarity of the con-
sidered Markov chains. If ergodicity is in general a harmless assumption,
stationarity is rarely achieved in practice.

As we show later with simulations and applications, the more numerous and short are
the considered sequences the more erroneous are the results obtained through both
these approximations. Let us now see how to overcome this problem.

16.2.2 Pattern Markov chains

Theorem 1. Let X = X1 · · ·X� be an order m Markov chain4 over the finite alphabet
A and let W be a pattern on this alphabet. It is then possible to build an order 1 Markov
chain Y = Ym · · ·Y� over the finite state space Q such as

∀m � i �  W ends in position i in X ⇐⇒ Yi ∈ F
where F ⊂ Q. A Markov chain Y having these properties is called a Pattern Markov
Chain (PMC).

Proof. The proof is constructive and uses results from pattern matching theory. The
technique consists in building a deterministic finite state automaton that recognizes the
language, Nuel (2008) L = A∗W from which the PMC is derived. Check Nuel (2006),
Nuel (2008) and Nuel and Prum (2007) for more details.

Thanks to Theorem 1 and without loss of generality we consider now the following
framework: for all 1 � j � r, N j is the random number of occurrences of F in the
PMC Y j = Y j

m · · ·Y j
�j

; we denote by νj
m the distribution of Y j

m
5 and by Π its transition

matrix.

16.2.3 Exact computations

Moments

Proposition 1. For all 1 � j � r we have:

E[N j ] =
∑
f∈F

Ej(f) with Ej(f) =
�j∑

i=m

νj
mΠi−meT

f ∀f ∈ F

and
V[N j ] =

∑
f,f ′∈F

Ia=b × Ej(f) + Cj(f, f ′) + Cj(f ′, f)

with

Cj(f, f ′) =
�j−1∑
i=m

(
νj

mΠi−meT
f

) �j∑
j=i+1

(
efΠ

j−ieT
f ′
)

where eq is the indicatrix row-vector of q for all q ∈ Q.
3 The marginal distribution converges towards the stationary distribution.
4 Homogeneous or heterogeneous Markov chain.
5 For computations using the stationary assumption, simply build νj

m from the stationary
distribution of the Markov chain Xj . Please note that, even in this case, νj

m is in general
not the stationary distribution of Y j .
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Proof. We simply use the decomposition N j =
∑�

i=m IY j
i ∈F and the fact that νj

mΠi−1

is the marginal distribution of Y j
i .

We can use Proposition 1 to compute the first two moments of N over a sequence
of length  with complexities O( ) in space and time. Both complexities can be reduced
to O(log  ) using the convergence of Y towards its stationary distribution. See Nuel
(2006), Nuel (2008) and Nuel and Prum (2007) for more details.

As we assume that our r sequences are independent, it is hence possible to compute
the exact expectation and variance of N = N1 + · · ·+ Nr by computing and summing
each individual one.

Finite Markov Chain embedding

The PMC introduced above allows us to monitor step by step the formation of the
next pattern occurrence but does not have memory of the previous ones. In order to
study the distribution of N we hence need to keep track of the accumulated number of
pattern occurrences. This is exactly the purpose of the new Markov chain we introduce
here.

For all c ∈ N and for all 1 � j � r we define the Finite Markov Chain Embedding
(FMCE, first proposed by Fu and Koutras (1994) in the field of pattern statistics)
Zj = Zj

m · · ·Zj
�j

by:

Zj
i =

{(
Y j

i , N j
i

)
if N j

i < c

c+ if N j
i � c

where N j
i is the number of occurrences of F in Y j

m · · ·Y j
i . We denote by T its transition

matrix which is naturally defined by blocks, using the transition matrix Π = P + Q,
where Q contains all transitions ending in F and P all other ones:

T
(
(q, n), (q′, n′)

)
=

⎧
⎨
⎩

P if n′ = n
Q if n′ = n + 1 and n′ < c
0 else

Proposition 2. For all c � 1 and 1 � j � r we have6

P(N1 + · · · + N j � c) = M j
mT �j−mET

c+

where M j
m is defined by recurrence for all (q, n) ∈ Q× {0, . . . , c− 1}:

{
M1

m(q, n) = In=0 × ν1
m(q) and M1

m(c+) = 0
M j

m(q, n) = M j−1
m T lj−mET

n × νj
m(q) and M j

m(c+) = M j−1
m T lj−mET

c+

where En (resp., Ec+) is the indicatrix row-vector of (Q, n) (resp., of c+).

Proof. As we start with 0 occurrence of the pattern, the starting distribution of Z1
m

is necessarily concentrated on the n = 0 block, which explains the expression of M1
m.

At the end of the first sequence, the distribution of Z1
�1

is given by M1
mT �1−m and can

6 This result holds with the event N1 + · · · + N j < c when replacing Ec+ by
∑

n<c En.
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hence be used to get the distribution of N . At the beginning of the second sequence,
Y 2

m is distributed according to ν2
m. We hence first compute the weight of each block

using the distribution of Z1
�1

and then distribute this weight within the block according
to ν2

m. We simply repeat the process until we reach the end of the last sequence.

Using Proposition 2 and the computational algorithms and techniques proposed in
Nuel (2008) it is hence possible to get the exact value of P(N � n) in O(n) in space
and O(n×  ) in time.

All these methods have been implemented in the Statistics for Patterns (SPatt)
software which is freely available.7

16.3 Data

16.3.1 Simulated data

To illustrate the effect of type I and II approximations, sequences are simulated over
the alphabet A = {A, B} with initial distribution μ0 =

(
0.0 1.0

)
and transition matrix

π =
(

0.7 0.3
0.4 0.6

)

Numerical convergence towards the stationary distribution is achieved after six steps.
Different datasets are characterized by different sequence lengths uniformly distributed
in the range [L−50%, L+50%]. The number of sequences, N , is chosen so as to obtain
equivalent dataset sizes: N varies from 1 to 1000 and L from 10, 000 to 10.

16.3.2 Real data

Exon databank: 139, 416 exons of Caenorhabditis elegans genome are obtained from
the query-oriented data management system Biomart (Durinck et al., 2005). The
exon average size is 221.61, 5th percentile = 57 and 95th percentile = 598.

Protein databank: A protein databank of 1,100 protein sequences presenting less than
50% of sequence identity is used. The protein sequences are translated into a sim-
plified alphabet A = {M, O}: M is methionine and O regroups other amino acids, as
it is well known that the majority of protein sequences begin with a methionine.
The sequence average size is 237 residues and 5th percentile = 66 and 95th per-
centile = 516.

Protein loop databank: A set of 3,152 tridimensional protein structures presenting
less than 50% of sequence identity is considered. Each structure is simplified into
a string sequence using the structural alphabet HMM-27 (Camproux et al., 2004;

7 http://stat.genopole.cnrs.fr/spatt.
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Regad et al., 2008). HMM-27 is a library of 27 structural letters which are 4
residue prototype fragments. From the simplified protein structures, 34, 267 sim-
plified loops8 are extracted (Regad et al., 2006). The average size of the simplified
loops is 8.72 structural letters, 5th percentile = 4, and 95th percentile = 20.

16.4 Results and discussion

In this section, we compare the exact approach with type I (considering a single se-
quence) and type II approximations (assuming stationarity) under an homogeneous
order 1 Markov model. Over- and underrepresentations are defined using a 5% thresh-
old including the Bonferonni correction. Global measures of the approximation effects
are: False Positive Rate (FPR), False Negative Rate (FNR), and Kendall’s tau (Myles
and Douglas, 1973) using exact computations as reference.

16.4.1 Simulation study

We study the statistics of three-letter patterns on trials of 5, 000 datasets. A p-value
under H0 being, by definition, uniformly distributed between 0.0 and 1.0, the resulting
Z-score9 should be distributed according to an N (0, 1) distribution in our simulations.
Using type I approximation, we observe that Z-scores of all patterns are strongly biased
towards negative values when the dataset contains several sequences (data not shown).
On a global point of view, it results in the identification of many false positive under-
represented patterns. Table 16.1 reports the effect of the sequence number on this
FPR. On a dataset with only 10 sequences, 22.9% of underrepresented patterns are
false positives. This proportion rapidly increases with the sequence number: with 100
sequences, nearly all underrepresented patterns are artifacts. Type I approximation is
thus clearly inappropriate when dealing with several sequences.

Table 16.1. FPR in underrepresented patterns using type I approximation. N is the number
of sequences

N 1 10 20 40 50 100

FPR 0 22.9 40.2 69.6 80.7 95.9

Type II approximation is studied in more detail. Results are shown in Figure 16.1.
Using the exact approach, all Z-scores are N (0, 1) distributed whatever the sequence
length. Type II approximation results in non normal distributions on short sequences.
As shown in Figure 16.1a, the effect depends on the considered pattern: Z-scores of
BAA are biased towards positive values and those of ABA are biased towards negative
values. This is related to the difference between the actual initial distribution

(
0 1

)

8 Unlike helices and strands, loops are nonperiodic regions in protein structures and they are
less conserved during evolution.

9 The Z-score is given by (E(N)−Nobs)/
√

V(N) where E(N) and
√

V(N) denote, respectively,
the expectation and standard deviation of the pattern occurrence, and Nobs denotes its
observed number of occurrences.
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Figure 16.1. Effect of type II approximation on pattern statistics. (a) Z-score distributions
of two patterns, BAA and ABA. Dashed curved: normal distribution, black histograms: exact
Z-scores, gray histograms: type II Z-scores. (b) FPR as a function of the proportion of the
dataset that is not stationary. Dashed line with crosses: FPR for overrepresentation, plain
line with circles: FPR for underrepresentation. (c) Kendall tau correlation of the 200 most
extreme Z-scores as a function of the proportion of the dataset that is not stationary. Dashed
line with crosses: tau obtained on the 200 higher Z-scores, plain line with circles: tau obtained
on the 200 lower Z-scores

and the stationary distribution
(
0.57 0.43

)
. Patterns starting with B are falsely seen

as overrepresented because B stationary frequency is 0.43 but all sequences start with
a B. Then, on short sequences, there is a risk of falsely concluding that pattern BAA is
overrepresented.

The evolution of FPR over all patterns is shown in Figure 16.1b. It can be seen
that over- and underrepresented FPR have similar evolution when the sequence length
decreases. When only 1.5% of the dataset is not stationary (L = 400), about 40%
(resp., 30%) of overrepresented (resp., underrepresented) scores are false positives. The
last analysis, shown in Figure 16.1c, concerns the pattern ranking. The Kendall’s tau
correlation coefficient rapidly decreases when sequences are short. This illustrates that
not only the scores become falsely significant, but the pattern ranks also become rapidly
meaningless.

16.4.2 Illustrations on biological sequences

The simulations are made using a two-letter alphabet. Such an alphabet can be observed
in biology. For example, protein sequences can be translated into an alphabet A =
{M, O}. In this case, initial distribution (0.44 0.55) clearly differs from the stationary
distribution (0.02 0.98). On this simple real case, errors occur when considering six-
letter patterns. Indeed, among the four overrepresented patterns obtained with type I
approximation, two are false positives (FPR = 0.5) (cf. Table 16.2). Two false positives
are counted among six overrepresented patterns (FPR = 0.33) extracted by type II
approximation (cf. Table 16.2). Moreover, the type I and type II Kendall’s tau are
0.67, so even ranks are badly conserved (cf. Table 16.2).

Another example, maybe more realistic, is exon sequences which are portions of
DNA (A = {A, C, G, T}). Statistics of three-letter patterns are computed in the exon
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Table 16.2. Overrepresentation results of statistic computation in the biological data

Databank Approximation FPR FNR Kendall’s tau

Protein sequence type I 0.5 0.033 0.667
type II 0.333 0 0.667

Exon sequence type I 0 0.064 0.939
type II 0.028 0 0.946

Loop structure type II 0.126 0.004 0.73

databank. Even if the difference between the initial distribution (0.49 0.13 0.12 0.25)
and stationary distribution (0.30 0.21 0.28 0.21) seems not very high, type I and type
II approximations lead to some errors. When type II approximation is used, 2.8% of
overrepresented patterns are false positives and no false negatives are observed. Using
type I approximation, 6.4% of overrepresented patterns are false negatives and no false
positives are observed. The Kendall’s tau for the two approximations is close to 1, so
the pattern ranks are mostly the same.

Figure 16.2. Illustration of an overrepresented pattern YUOD extracted from simplified
loops. (a) The tridimensional structure of the protein 1g3uA (PDB code). (b) The series of
structural letters obtained after translation of the protein 1g3uA into the structural alphabet
space. (c) The statistic of YUOD pattern, and the superposition of fragments corresponding
to this pattern

Our last example deals with structural motifs in protein loop structures. We sup-
pose that a structural pattern is overrepresented because its structure was conserved
during evolution, suggesting a biological functional implication. In order to test that
hypothesis, we used a simplification of loop structures as strings. In that case, the al-
phabet cardinality is 27. We compute statistics of 16, 977 four-letter patterns. When
type II approximation is used, 12.6% of the four-letter overrepresented patterns are
false positives and 4.0% of nonsignificant patterns are false negatives. The Kendall’s
tau is 0.73 indicating that ranks are also affected by this approximation (cf. Table 16.2).
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Moreover, among the 50 most overrepresented patterns, 12% (= 6 patterns) are ranked
below 50 using type II approximation. On these 50 patterns, the Kendall’s tau (0.64)
is lower than the global one.

Figure 16.2 presents an illustration of the overrepresented pattern YUOD. This pat-
tern is extracted from the series of letters corresponding to the tridimensional structure
of the protein 1g3uA (Figure 16.2a). The structure superposition of the YUOD different
occurrence shows that these fragments correspond to the same shape.

16.5 Conclusion

In this chapter we present a new method allowing to fully take into account the speci-
ficity of a large set of sequences when computing pattern statistics. For exact p-value
computations, the method adapts classical results on finite Markov chain embedding
to our particular framework. One should note that while the method is proposed for
an homogeneous Markov model, it also can be easily extended to heterogeneous ones
(with no further computational cost).

On simulated data, we show that the more numerous and short are the considered
sequences the more erroneous are the results obtained through both these approxi-
mations, even with a small alphabet and short patterns. On real data, also, classical
approximations lead to many errors. In particular, the identification of exceptional
structural patterns within loops is strongly affected by the used method. Indeed, both
statistical values and pattern ranking are modified by usual approximations. It is of
prime importance since it has been shown that extraction of overrepresented structural
patterns in protein loops is a new promising direction for loop analysis and mining
(Regad et al., 2006). Current development deals with the particular characteristics of
these patterns.
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Abstract: The evolution of a discrete-time Markov Chain (MC) is determined by the
evolution equation pT (t) = pT (t − 1) · P, where p(t) stands for the stochastic state
vector at time t, t ∈ N, P interprets the stochastic transition matrix of the MC, and
the superscript T denotes transposition of the respective column vector (or matrix).
The present chapter examines under which conditions concerning the stochastic matrix
P, a set of stochastic vectors, {p(t − 1)}, representing a hypersphere on the set of
the attainable structures of the MC, is transformed into a stochastic set {p(t)} also
representing a hypersphere of the MC. The results concerning the form of the transition
matrix P are derived by means of the product PPT . The set of the matrices P turns
out to be a subset of the set of the doubly stochastic matrices.

Keywords and phrases: Discrete-time homogeneous Markov chains, discrete-time
homogeneous Markov systems

17.1 Introduction

Basic results associated with Markov chains (MCs) in discrete or continuous time,
concern among other topics the variation of the probability state vectors p(t) = (pi(t)),
where pi(t) represents the probability of the chain to possess state i at time t. The
evolution of a MC is usually examined by studying the evolution and the asymptotic
behaviour of the probability state vectors p(t).

In Section 17.2 we present the evolution equation of a MC. In Section 17.3 we
evaluate the equation of the image of a hypersphere of the MC under the one-step
transformation expressed by pT (t) = pT (t − 1) · P, where P stands for the transi-
tion matrix of the system, and we examine the kind of the respective hypersurface.
The motivation for the study of this problem is to investigate by means of the MC’s
transition probabilities, the variability of the distance of the stochastic structures p(t),
t = 0, 1, . . . (considered also as points of R

n) from any structure point. Especially, if
the points p(t − 1) belong to a hypersphere whose center is the stability point of the

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 181
and Technology, DOI 10.1007/978-0-8176-4799-5 17,
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(convergent) MC, then the shape of the deformed hypersphere {p(t)}, at time t, ob-
viously characterizes the evolution of the MC and the way it approaches the stability
point. Thus, if the image {p(t)} is also a hypersphere, then all the initial points p(t−1)
tend to the limit as t → ∞, in a somewhat uniform way, in the sense that their new
distances from the center-stability point remain equal; in other words, every sequence
{p(t) : pT (t) = pT (t − 1) · P, t = 1, 2, ...} converges to the chain’s stability point
by the same rate of convergence, i.e., independently of the direction from which the
associated trajectory {p(t), t = 0, 1, ...} approaches the stability point.

In Section 17.4, the equation which represents the image of the hypersphere derived
in Section 17.3, is given in matrix notation.

In Section 17.5, we pay attention to the problem of Section 17.3 by deriving condi-
tions for a hypersphere of R

n−1 to be the image of a hypersphere under the stochastic
transformation pT (t) = pT (t − 1) · P. These conditions concern the transition matrix
P of the MC by means of the product PPT . As a byproduct of our analysis, results
are derived concerning the matrix equation PPT = aI+ bJ,with a > b ≥ 0, where J is
a matrix with its main diagonal entries equal to 0, and all the other entries equal to 1.

17.2 The homogeneous Markov chain in discrete time

For a discrete-time MC let t, t = 0, 1, ..., be the time variable and S = {1, 2, ..., n} the
state space of the chain. Denote by pij the one-step (conditional) transition probability
of moving from state i to state j, and by P = (pij) the respective transition matrix.
Also, denote by pi(t) the probability that the MC is in state i at time t, and by
p(t) = (pi(t)), i = 1, 2, ..., n, the (column) probability state vector. It is known that
(Iosifescu, 1980)

pT (t) = pT (t− 1) · P. (2.1)

The results which we present in Sections 17.3–17.5 can be applied (among other
topics) directly to the homogeneous Markov systems, whose evolution equation is ex-
actly (2.1) (Bartholomew, 1982). These systems are met in manpower planning (Gani,
1963), Bartholomew (1982), Tsaklidis (1994), and Vassiliou (1982, 1997)), in demog-
raphy (Bartholomew, 1982), biology (Patoucheas and Stamou, 1993), or in order to
describe the patients’ flows and costs in a hospital (McClean et al., 1998), Taylor et al.
(2000)) etc.

17.3 The equation of the image of a hypersphere under
the transformation (2.1)

We consider the general case, where the matrix P is a nonsingular n × n stochastic
matrix. In order to simplify the notation of the previously mentioned equation pT (t) =
pT (t− 1)P, we adopt the notation y = p(t) and x = p(t− 1), and thus we have
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yT = xT ·P. (3.1)

Under the assumption that P is a nonsingular matrix, equation (3.1) leads to

xT = yT ·Q, (3.2)

where Q = (qij) = P−1, or, written in analytical form,

xi =
n∑

j=1

yjqji, i = 1, 2, ..., n. (3.3)

Let x = (x1, x2, ..., xn)T represent the radius vector of an arbitrary point X of the
stochastic simplex Sn−1

simplex; that is, X ∈ {(x1, x2, ..., xn) ∈ R
n\x1 + x2 + · · · + xn = 1,

x1, ..., xn � 0}. As the coordinate system of reference we consider the Cartesian coordi-
nate system {O, e1, e2, ..., en}. Now, assume that X also belongs to a hypersphere with
radius R and center at some point K ∈ Sn−1

simplex with radius vector k = (k1, k2, ..., kn)T .
Then the coordinates of X satisfy the equation

(x1 − k1)2 + (x2 − k2)2 + · · · + (xn − kn)2 = R2. (3.4)

We evaluate the equation of the hypersurface to which the image y = (y1, y2, ..., yn)T

of x belongs, under the transformation (3.1). From (3.4) we get that

n∑
i=1

x2
i − 2

n∑
i=1

kixi +
n∑

i=1

k2
i = R2.

Then, due to (3.3), we have

n∑
i=1

⎛
⎝

n∑
j=1

yjqji

⎞
⎠

2

− 2
n∑

i=1

ki

n∑
j=1

yjqji +
n∑

i=1

k2
i = R2,

and
n∑

i=1

n∑
j=1

n∑
s=1

yjqjiysqsi − 2
n∑

j=1

yj

n∑
i=1

kiqji + ‖k‖2 = R2,

or
n∑

j=1

n∑
s=1

yjys

n∑
i=1

qjiqsi − 2
n∑

j=1

yj

n∑
i=1

kiqji + ‖k‖2 = R2,

where ‖k‖ =
√

(k1)2 + (k2)2 + · · · + (kn)2 represents the Euclidean norm of k.

Now, denote by qT
i the ith row of the matrix Q, to get

n∑
j=1

n∑
s=1

yjys 〈qj ,qs〉 + 2
n∑

j=1

yj 〈qj ,−k〉 + ‖k‖2 = R2,
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and by isolating in every sum the term yn there follows

n−1∑
j=1

n−1∑
s=1

yjys 〈qj ,qs〉 + 2yn

n−1∑
s=1

ys 〈qn,qs〉 + y2
n 〈qn,qn〉

+ 2
n−1∑
j=1

yj 〈qj ,−k〉 + 2yn 〈qn,−k〉 + ‖k‖2 = R2. (3.5)

Denote by 1 the n × 1 vector of 1s, and note that yT 1 = xT P1 = xT 1 = 1; that

is, y1 + y2 + · · · + yn = 1. Then yn = 1 − y1 − y2 · · · − yn−1, and by substituting yn

into (3.5) we have,

n−1∑
j=1

n−1∑
s=1

yjys 〈qj ,qs〉+ 2

⎛
⎝1 −

n−1∑
j=1

yj

⎞
⎠

n−1∑
s=1

ys 〈qn,qs〉 +

⎛
⎝1 −

n−1∑
j=1

yj

⎞
⎠

2

〈qn,qn〉

+ 2
n−1∑
j=1

yj 〈qj ,−k〉 + 2

⎛
⎝1 −

n−1∑
j=1

yj

⎞
⎠ 〈qn,−k〉 + ‖k‖2 = R2,

or

n−1∑
j=1

n−1∑
s=1

yjys 〈qj ,qs〉 + 2
n−1∑
s=1

ys 〈qn,qs〉 − 2
n−1∑
j=1

yj

n−1∑
s=1

ys 〈qn,qs〉 +

⎛
⎝1 − 2

n−1∑
j=1

yj

+

⎛
⎝

n−1∑
j=1

yj

⎞
⎠

2
⎞
⎟⎠ 〈qn,qn〉 + 2

n−1∑
j=1

yj 〈qj ,−k〉 + 2 〈qn,−k〉

− 2
n−1∑
j=1

yj 〈qn,−k〉 + ‖k‖2 = R2,

or

n−1∑
j=1

n−1∑
s=1

yjys 〈qj ,qs〉 + 2
n−1∑
j=1

n−1∑
s=1

ysyj 〈−qn,qs〉 + 2
n−1∑
s=1

ys 〈qn,qs〉

+ 〈qn,qn〉 − 2
n−1∑
j=1

yj 〈qn,qn〉 +
n−1∑
j=1

n−1∑
s=1

yjys 〈qn,qn〉

+ 2
n−1∑
j=1

yj 〈qj ,−k〉 + 2 〈qn,−k〉 − 2
n−1∑
j=1

yj 〈qn,−k〉 + ‖k‖2 = R2.

By renaming some indices, last equation becomes
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n−1∑
j=1

n−1∑
s=1

yjys 〈qj ,qs〉 + 2
n−1∑
j=1

n−1∑
s=1

ysyj 〈−qn,qs〉 +
n−1∑
j=1

n−1∑
s=1

yjys 〈qn,qn〉
︸ ︷︷ ︸

+ 2
n−1∑
s=1

ys 〈qn,qs〉 + 2
n−1∑
s=1

ys 〈qs,−k〉 − 2
n−1∑
s=1

ys 〈qn,qn〉 − 2
n−1∑
s=1

ys 〈qn,−k〉
︸ ︷︷ ︸

+ 〈qn,qn〉 + 2 〈qn,−k〉 + ‖k‖2

︸ ︷︷ ︸ = R2,

and finally

n−1∑
j=1

n−1∑
s=1

yjys 〈qj − qn,qs − qn〉 + 2
n−1∑
s=1

ys 〈qs − qn,qn − k〉 + ‖qn − k‖2 = R2, (3.6)

where 0 ≤ yi ≤ 1, i = 1, 2, ..., n− 1, and y1 + y2 + · · · + yn−1 ≤ 1.

17.4 Representation of equation (3.6) in matrix form

In order to identify the kind of hypersurface expressed by equation (3.6), we observe
that the coefficient of yiyj is αij = 〈qi − qn,qj − qn〉 , i, j = 1, 2, ..., n − 1. Moreover,
it is obvious that αij = αji, so the matrix A = [αij ] of the second-order hypersurface
(3.6) is symmetric. Then,

A = [αij ] =

(n−1)×n⎡
⎢⎢⎣

qT
1 − qT

n

qT
2 − qT

n

..........
qT

n−1 − qT
n

⎤
⎥⎥⎦·

n×(n−1)[
q1 − qn q2 − qn · · · qn−1 − qn

]
.

Thus A is representable in the form A = CCT , with

C = [cij ] =

⎡
⎢⎢⎣

qT
1 − qT

n

qT
2 − qT

n

..........
qT

n−1 − qT
n

⎤
⎥⎥⎦ ∈ Mn−1,n,

where Ms,r denotes the set of s × r matrices (s, r ∈ N
+). Especially for s = r, we use

the notation Ms.
Now, let ys = (y1, y2, ..., yn−1)T , r = qn − k, and B = C · r. Then, (3.6) can be

written as
yT

s Ays + 2BT ys + ‖r‖2 = R2,

or
yT

s CCT ys + 2rT CT ys + rT r = R2, (4.1)
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and, since rT CT ys = yT
s Cr, we get

(
CT ys + r

)T · (CT ys + r
)

= R2,

where the vectors ys are substochastic.

The augmented matrix Aε = Aε(R) of A is

Aε = [(αε)ij ] =

n×(n+1)⎡
⎢⎢⎢⎢⎣

qT
n − kT R

qT
1 − qT

n 0
qT

2 − qT
n 0

........... ...
qT

n−1 − qT
n 0

⎤
⎥⎥⎥⎥⎦
·

(n+1)×n[
qn − k q1 − qn q2 − qn ... qn−1 − qn

−R 0 0 ... 0

]
,

or

Aε =

⎡
⎢⎢⎣
〈qn − k,qn − k〉 −R2 〈qn − k,q1 − qn〉 ... 〈qn − k,qn−1 − qn〉
〈qn − k,q1 − qn〉 〈q1 − qn,q1 − qn〉 ... 〈q1 − qn,qn−1 − qn〉
....................... ................... ... ....................

〈qn − k,qn−1 − qn〉 〈q1 − qn,qn−1 − qn〉 ... 〈qn−1 − qn,qn−1 − qn〉

⎤
⎥⎥⎦ .

Thus,

Aε = Aε(R) =
[

(αε)11 bT

b A

]
, (4.2)

where (αε)11 = 〈qn − k,qn − k〉 −R2, and

bT =
( 〈qn − k,q1 − qn〉 , . . . , 〈qn − k,qn−1 − qn〉

)
.

Proposition 4.1. For the matrix A of the hypersurface (3.6) and for the corresponding
augmented matrix Aε it holds that

rank A = n− 1

and

rank Aε(R) =
{

n− 1 when R = 0
n when R 
= 0 ,

and
detAε(R) = −R2 detA.

Proof. In order to evaluate the rank of the matrix A, we consider A in the above-
mentioned form A = CCT , where

C = [cij ] =

⎡
⎢⎢⎣

qT
1 − qT

n

qT
2 − qT

n

..........
qT

n−1 − qT
n

⎤
⎥⎥⎦ ∈ Mn−1,n.

Under the assumption that detP 
= 0, we get detQ 
= 0, and so the rows qT
i

of the matrix Q are linearly independent. Thus the rows of the matrix C are linearly
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independent and consequently rankC = n−1. Since rank(CCT ) = rank C, we conclude
that

rankA = rank(CCT ) = rankC = n− 1.

Hence the (n− 1) × (n− 1) matrix A is nonsingular.
Taking into consideration the form of the augmented matrix Aε given in (4.2) we

get
detAε(R) = (αε)11 detA − bT (Adj(A))b,

or

detAε(R) = (〈qn − k,qn − k〉) · detA−R2 detA − bT (Adj(A))b. (4.3)

Let

Cε(R) =

⎡
⎢⎢⎣

qT
n − kT R

qT
1 − qT

n 0
........... ...

qT
n−1 − qT

n 0

⎤
⎥⎥⎦ ∈ Mn,n+1.

Then Aε(R) can be written in the form

Aε(R) = Cε(R) · CT
ε (−R),

and especially for R = 0 it becomes

Aε(0) = Cε(0) · CT
ε (0).

Let k0 = (k01, k02, ..., k0n)T be the radius vector of the image K0 of the point K
under the transformation (3.1). Then k0 satisfies the equation kT

0 = kT P, and thus
kT = kT

0 Q. Since the point K0 belongs to the stochastic (n− 1)-simplex, we get

− k01

(
qT

1 − qT
n

)− k02

(
qT

2 − qT
n

)− · · · − k0n−1

(
qT

n−1 − qT
n

)

= −k01qT
1 − k02qT

2 − · · · − k0n−1qT
n−1 + (k01 + k02 + · · · + k0n−1)qT

n

= −k01qT
1 − k02qT

2 − · · · − k0n−1qT
n−1 + (1 − k0n)qT

n

= −k01qT
1 − k02qT

2 − · · · − k0n−1qT
n−1 − k0nqT

n + qT
n

= qT
n − kT .

Thus qT
n − kT is a linear combination of the n − 1 linearly independent vectors

qT
1 − qT

n , qT
2 − qT

n ,...,qT
n−1 − qT

n . So:

(1) If R = 0, then rank(Cε(0)) = n− 1, and

rankAε(0) = rank(Cε(0) · CT
ε (0)) = n− 1,

hence

detAε(0) = 0.

Then,

detAε(0) = (〈qn − k,qn − k〉) detA − bT (Adj(A))b = 0,

and consequently
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(〈qn − k,qn − k〉) detA = bT (Adj(A))b.

Now, due to (4.3), we arrive at

detAε(R) = −R2 detA.

(2) If R 
= 0, and since A is nonsingular, detAε(R) = −R2 detA 
= 0. Hence

rankAε(R) = n. ��

Remark 4.1. (a) Taking into account Proposition 4.1, we conclude that equation (3.6)
defines a second-order hypersurface with one center.

(b) In the special case R = 0, the hypersphere given by equation (3.4) becomes the
single point K, and consequently its image via equation (3.1) is the single point K0.

By using the singular value decomposition of the matrix C, we have C = VΣWT ,
where V ∈ Mn−1 , W ∈ Mn are unitary matrices and Σ = (σij) is an (n − 1) × n
matrix with σij = 0, i 
= j, i = 1, 2, ..., n − 1, j = 1, 2, ..., n, and there are exactly
n − 1 nonzero (positive) elements at the positions (i, i), i = 1, 2, ..., n − 1. The main
diagonal entries of Σ are σii =

√
λi , where λi, i = 1, 2, ..., n− 1, are the eigenvalues of

the (positive definite) matrix CCT . Now, via (4.1), we have

yT
s VΣWT (VΣWT )T ys + 2rT (VΣWT )T ys + ‖r‖2 = R2,

or

yT
s VΣWT WΣT VT ys + 2rT WΣT VT ys + rT r = R2,

or

yT
s VΣΣT VT ys + 2rT WΣT VT ys + rT r = R2,

or

yT
s VΣΣT VT ys + 2rT WΣT VT ys + rT WWT r = R2.

Then (
ΣT VT ys + WT r

)T (
ΣT VT ys + WT r

)
= R2,

and by setting z = VT ys we get

zT ΣΣT z + 2rT WΣT z + rT WWT r = R2,

or, in analytical form,

n−1∑
i=1

λiz
2
i + 2

n∑
i=1

(
n∑

k=1

rkwki

)(
n−1∑
l=1

σT
ilzl

)
+

n∑
i=1

(
n∑

k=1

rkwki

)2

, (4.4)

where z = (zi), i = 1, 2, ..., n− 1, and W = (wij), i, j = 1, 2, ..., n.
In order to achieve a more useful form of equation (4.4), the following lemma is

proved.



17 Discrete-Time Homogeneous Markov Chain 189

Lemma 4.1. The nth column, wn, of the unitary matrix W = (w1,w2, ...,wn) is the
vector (

1√
n
,

1√
n
, ...,

1√
n

)T

.

Proof. Since
C = VΣWT ,

then
C1 = VΣWT 1,

or
0 = VΣWT 1.

Furthermore, taking into account that V ∈ Mn−1 is a unitary matrix, and thus invert-
ible, we get

ΣWT 1 = 0.

Hence,

n∑
j=1

√
λiw

T
ij = 0, i = 1, 2, ..., n− 1,

or

√
λi·

n∑
j=1

wT
ij = 0, i = 1, 2, ..., n− 1,

or
n∑

j=1

wji = 0, i = 1, 2, ..., n− 1.

Thus, the sum of the elements of each one of the n−1 columns w1 ,w2 , . . . ,wn−1 of
the matrix W is equal to zero. By combining this result with the fact that W is a
unitary matrix, it results that

wn =
(

1√
n
,

1√
n
, ...,

1√
n

)T

. ��

According to the previous lemma, and taking into account that rT 1 = (qn−k)T 1 =
0, we have

n∑
k=1

rkwkn = 0.

Moreover, since σij = 0 for i 
= j, while σii =
√

λi for i = 1, 2, ..., n− 1, the equation of
the hypersurface (4.4) becomes

n−1∑
i=1

λiz
2
i + 2

n−1∑
i=1

(
n∑

k=1

rkwki

)(√
λizi

)
+

n−1∑
i=1

(
n∑

k=1

rkwki

)2

= R2,
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or
n−1∑
i=1

(√
λizi +

n∑
k=1

rkwki

)2

= R2. (4.5)

Relation (4.5) is the equation of the image of the intersection of hypersphere (3.4)
with the hyperplane x1 + x2 + · · ·+ xn = 1, by means of the transformation (3.1), and
it represents a hyperellipsoid of R

n−1.

17.5 Conditions for a hypersphere of R
n−1 to be the image

of a hypersphere under the stochastic transformation
pT(t) = pT(t − 1) · P

Let us express the state vector p(t) of a HMS in the form

pT (t) = kT (t) + εT (t), (5.1)

where k(t) is the radius vector of some point K(t) of the stochastic (n − 1)-simplex
Sn−1

simplex moving according to (2.1); i.e., kT (t) = kT (t− 1) · P. Then, we have

pT (t) · 1 = kT (t) · 1 + εT (t) · 1,

thus
n∑

i=1

εi(t) = 0, t ∈ N. (5.2)

By combining the relation expressing the evolution of the HMS

pT (t) = pT (t− 1) · P (5.3)

with (5.1), we get

kT (t) + εT (t) = (kT (t− 1) + εT (t− 1)) · P

and since kT (t) = kT (t− 1) · P, we are led to

εT (t) = εT (t− 1) · P. (5.4)

Now, assume that the (stochastic) state vectors pT (t) of the transformation (5.3) satisfy
the equation

(pT (t) − kT (t)) · (pT (t) − kT (t))T = R2; (5.5)

i.e., the corresponding points lay on the surface of a hypersphere of Sn−1
simplex with radius

R, R ∈ R
+, and center at some point K of radius vector k(t).

In order to find the equation of the hypersurface to which the points with radius
vector p(t − 1) belonged before being transformed (according to (5.3)) to the points
p(t) of the hypersphere (5.5), we combine equations (5.1) and (5.5) to get
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εT (t)·ε(t) = R2, (5.6)

where
∑n

i=1 εi(t) = 0 (by (5.2)).

In what follows, while referring to equation (5.6) we still assume the validity of
(5.2). By combining equations (5.4) and (5.6), we have

εT (t− 1) · PPT · ε(t− 1) = R2. (5.7)

The symmetric matrix PPT is positive definite, and consequently it has positive eigen-
values. So it obeys the Jordan canonical form

PPT = VΛVT , (5.8)

where V is a unitary matrix and Λ = diag{λ1, λ2, ..., λn}, with λi ∈ R
+, i = 1, 2, . . . , n.

Consequently (5.7) can be written as

εT (t− 1) · VΛVT · ε(t− 1) = R2.

Now, let VT =
(
vT

ij

)
and z = VT · ε(t− 1). Then, the latter equation becomes

zT Λz = R2,

or
n∑

i=1

λiz
2
i = R2, (5.9)

where zi =
∑n

j=1 vT
ijεj(t− 1), i = 1, 2, ..., n. Written in analytical form, (5.9) becomes

n∑
i=1

λi

⎛
⎝

n∑
j=1

vT
ijεj(t− 1)

⎞
⎠

2

= R2,

or
n∑

i=1

λi

⎛
⎝

n∑
j=1

vT
ijεj(t− 1)

⎞
⎠ ·

⎛
⎝

n∑
j=1

vT
ijεj(t− 1)

⎞
⎠ = R2,

or
n∑

i=1

n∑
j=1

n∑
s=1

λiv
T
isv

T
ijεs(t− 1)εj(t− 1) = R2,

or
n∑

j=1

n∑
s=1

εs(t− 1)εj(t− 1)
n∑

i=1

λiv
T
isv

T
ij = R2. (5.10)

Equation (5.9) and its equivalent form (5.10) represent a hyperellipsoid of R
n and

they express the analytical equation of a hypersurface the image of which, via (5.4), is
a hypersphere.

Since (5.10) was derived from (5.7) by decomposing the matrix product PPT ,
we focus attention on the matrix PPT , aware that P is a stochastic matrix. The fol-
lowing lemma and proposition lead us to a necessary condition for (5.10) to represent
a hypersphere.
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Lemma 5.1. The eigenvalues and the singular values of PPT are identical, and if P
is a doubly stochastic matrix, its eigenvalue 1 is also an eigenvalue (singular value) of
PPT .

Proof. Since the symmetric matrix PPT is the product of a matrix with its trans-
posed matrix, then it is positive semidefinite. In the case that P is nonsingular, then
PPT is positive definite. By using Takagi’s factorization theorem, it appears that the
eigenvalues and the singular values of PPT are identical. If P is doubly stochastic, then

PT 1 = 1,

hence
PPT 1 = P1 = 1 · 1.

Based on Lemma 5.1 we can prove the following proposition.

Proposition 5.1. Let P be an n×n nonsingular doubly stochastic matrix. If the eigen-
values λ2, λ3,...,λn of the matrix PPT satisfy the condition

λ2 = λ3 = · · · = λn = λ, λ ∈ (0, 1],

while λ1 = 1, then (5.10) represents the equation of a hypersphere with radius R/
√

λ.

Proof. Taking into account Lemma 5.1 and assuming – without loss of generality –
that λ1 = 1, we derive from (5.10)

n∑
j=1

n∑
s=1

εs(t− 1)εj(t− 1)vT
1sv

T
1j +

n∑
j=1

n∑
s=1

εs(t− 1)εj(t− 1)
n∑

i=2

λiv
T
isv

T
ij = R2,

or
(

n∑
s=1

εs(t− 1)vT
1s

)2

+
n∑

j=1

n∑
s=1

εs(t− 1)εj(t− 1)
n∑

i=2

λiv
T
isv

T
ij = R2. (5.11)

We have by (5.8) (which we used to prove (5.10) and (5.11)), that PPT V = VΛ;
that is, the columns of the matrix V are right eigenvectors of PPT . Let us denote by
v1 the first column of V, and note that PPT v1 = λ1v1 = v1. Then taking into account
the form of the right eigenvector of PPT (according to the proof of Lemma 5.1), in
combination with the fact that V is a unitary matrix, we conclude that

v1 =
(

1√
n
,

1√
n
, ...,

1√
n

)T

.

Then,
n∑

s=1

εs(t− 1)vT
1s = 0,

and (5.11) becomes
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n∑
j=1

n∑
s=1

εs(t− 1)εj(t− 1)
n∑

i=2

λiv
T
ijv

T
is = R2. (5.12)

Now, since λi = λ for i = 2, 3, ..., n, (5.12) yields

λ

n∑
j=1

n∑
s=1

εs(t− 1)εj(t− 1)
n∑

i=2

vT
ijv

T
is = R2,

or

λ

n∑
i=2

n∑
j=1

n∑
s=1

εs(t− 1)εj(t− 1)vT
ijv

T
is = R2,

or

λ

n∑
i=2

⎛
⎝

n∑
j=1

εj(t− 1)vT
ij

⎞
⎠

2

= R2. (5.13)

By combining the equalities zi =
∑n

j=1 vT
ijεj(t − 1), i = 1, 2, ..., n, with (5.13), we

arrive at

λ
n∑

i=2

z2
i = R2. (5.14)

Equation (5.14) represents an orthogonal transformation of (5.6) and (since the
coordinate system of reference is considered to be Cartesian, then) it represents a
hypersphere of R

n−1. Now, by means of (5.2), we have from (5.13) that

λ

n∑
i=2

⎛
⎝

n−1∑
j=1

εj(t− 1)vT
ij −

n−1∑
j=1

εj(t− 1)vT
in

⎞
⎠

2

= R2,

or
n−1∑
j=1

n−1∑
s=1

εs(t− 1)εj(t− 1)
n∑

i=2

(
vT

ij − vT
in

) (
vT

is − vT
in

)
=

R2

λ
.

Thus, when the image of a hypersurface via the transformation pT (t) = pT (t-1)·
P is a hypersphere of the stochastic (n − 1)-simplex Sn−1

simplex with radius R, and the
transition matrix P is a nonsingular doubly stochastic matrix having its n − 1 singu-
lar values λ2,...,λn equal to some λ (where λ ∈ (0, 1] and λ1 = 1), then the initial
hypersurface is a hypersphere of Sn−1

simplex with radius R = R/
√

λ. �
Remark 5.1. In the special case that λ = 1 (in Proposition 5.1), the symmetric
matrix PPT has all its eigenvalues equal to 1, thus PPT = I. Hence the transition
matrix P is a permutation matrix. In other words, P is a periodic stochastic matrix of
period n.

In order to derive more inferences from the equation (5.10) we focus more attentively
on the matrix product PPT . So we observe that PPT = (〈pi,pj〉), i, j = 1, 2, ..., n,
where pi are the row-vectors of the transition matrix P. Since the elements of PPT

represent inner products of the vectors pi, i = 1, 2, ..., n, we formulate the following
lemma.
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Lemma 5.2. Assume that the nonnegative vectors pi ∈ R
n, i = 1, 2, ..., n, satisfy the

relation
〈pi,pi〉 = a > b = 〈pi,pj〉 , i, j = 1, 2, ..., n, i 
= j.

Then the vectors pi, i = 1, 2, ..., n, are linearly independent.

Proof. Let
k1p1 + k2p2 + · · · + knpn = 0, k1, k2, ..., kn ∈ R.

By multiplying this equation by the nonnegative vectors pi, i = 1, 2, ..., n, we get
the linear system

k1 〈p1,pi〉 + k2 〈p2,pi〉 + · · · + kn 〈pn,pi〉 = 0, i = 1, 2, ..., n, (5.15)

with coefficient matrix

K = (〈pi,pj〉) =

⎡
⎢⎢⎣

a b .. b
b a .. b
... .. .. ..
b b .. a

⎤
⎥⎥⎦ ∈ Mn(R).

Then, by Graybill (1983, p.204),

detK = (a + (n− 1)b)(a− b)n−1
.

Since a > b ≥ 0, detK cannot be equal to zero, thus the system (5.15) has the
unique solution k1 = k2 = · · · = kn = 0, and as a result the vectors pi, i = 1, 2, ..., n,
are linearly independent. �

Moreover, referring to the matrix PPT and equation (5.10) the following lemma is
established.

Lemma 5.3. A necessary condition for the surface of a hypersphere of Sn−1
simplex to be

via (5.4) the image of a hypersphere of Sn−1
simplex, is that the transition matrix P satisfies

a relation of the form

PPT = (〈pi,pj〉) = aI + bJ, with a > b ≥ 0, (5.16)

where J is an n× n matrix with its main diagonal entries equal to 0, and all the other
entries equal to 1. Then, if we denote by ct the radius of the hypersphere at time t, it
results that

ct−1 =
ct

α− b
.

Proof. By hypothesis

εT (t)ε(t) = ct, (5.17)

which, due to (5.4), yields

εT (t− 1)PPT ε(t− 1) = ct. (5.18)
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If the transition matrix P satisfies (5.16) (i.e., the rows pi, i = 1, 2, ..., n, of P
satisfy 〈pi,pi〉 = a, 〈pi,pj〉 = b for i 
= j), then from (5.18) we get

εT (t− 1)(αI + bJ)ε(t− 1) = ct,

or
εT (t− 1)(αIε(t− 1) + bJε(t− 1)) = ct,

or
εT (t− 1)(αε(t− 1) − bε(t− 1)) = ct,

or
(α−b)εT (t− 1)ε(t− 1) = ct,

or
εT (t− 1)ε(t− 1) =

ct

α− b
. (5.19)

By setting ct−1 = ct/(α− b), we arrive at the formula εT (t − 1)ε(t − 1) = ct−1,
thus the hypersphere expressed by (5.17) is the image of the hypersphere (5.19) via the
transformation (5.4). �
Remark 5.2. The condition α > b of Lemmas 5.2 and 5.3 is not particularly restrictive.
Since 〈pi,pi〉 = a, for every i ∈ {1, 2, ..., n}, then

α = 〈pi,pi〉 = |pi|2 ≥ |pi| |pj | · cos(φij) = b, i, j = 1, 2, ..., n,

where φij stands for the angle of the vectors pi and pj . Thus, the conditions α > b and
α 
= b are equivalent. Moreover, by Lemma 5.2, the rows of the matrix P are linearly
independent and consequently P is nonsingular.

Based upon the Remark 5.2, we derive the following proposition.

Proposition 5.2. Let P be an n×n stochastic matrix for which equation (5.16) holds.

(i) If a 
= b, then P is a nonsingular, doubly stochastic matrix and a + (n− 1)b = 1.
(ii) If a = b, then P is a stable matrix and

a =

n∑
j=1

(
n∑

i=1

pij

)2

n2
.

Proof. (i) From (5.16) we infer 〈pi,pi〉 = a and 〈pi,pj〉 = b, i, j = 1, 2, ..., n, with
i 
= j. Moreover, by Remark 5.2, the condition a 
= b is equivalent to a > b, and
consequently the vectors pi, i = 1, 2, ..., n, are linearly independent (by Lemma
5.2). Thus, detP 
=0 and consequently Q = P−1 exists.
By multiplying (5.16) from the left side with the matrix Q = P−1, we get

Q · PPT = Q · (aI + bJ)

or
PT = aQ + bQJ.

Then



196 I. Kipouridis and G. Tsaklidis

PT 1 = aQ1 + bQJ1.

Since P1 = 1 then QP1 = Q1, and 1 = Q1. Hence,

PT 1 = (a + (n− 1)b)1; (5.20)

that is, the sum of the elements of each column of P is constant, equal to a+(n−1)b.
From the relation yT = xT P we have for x = (1/n)1 that

yT =
(

1
n

)
1T P

or

yT =
(

1
n

)
(PT 1)T .

Then, based on (5.20) we get

yT =
(

1
n

)
(a + (n− 1)b)1T ,

and consequently
yT 1 = 1 = a + (n− 1)b.

Thus, P is doubly stochastic.

(ii) By assuming that 〈pi,pi〉 = 〈pi,pj〉 = a, i, j = 1, 2, ..., n, we have that |pi|2 =
|pi| · |pj | · cos(φij) = a for i, j = 1, 2, ..., n , where φij stands for the angle formed
by the vectors pi and pj . Since |pi|2 = a, for i = 1, 2, . . . , n, we conclude that
cos(φij) = 1, so the rows of P are parallel vectors. Since two stochastic parallel
vectors are identical, we conclude that the rows of P are equal. Moreover, from
(5.16) we have

PPT = a(I + J).

By multiplying the latter equation from the left and the right side with the vectors
1T and 1, respectively, we get

1T PPT 1 = 1T a(I + J)1

or
n∑

j=1

(
n∑

i=1

pij

)2

= an2,

or

a =

n∑
j=1

(
n∑

i=1

pij

)2

n2
.

��
Remark 5.3. Proposition 5.2 is not valid in the inverse direction; i.e., the assumption
that the stochastic matrix P is doubly stochastic is necessary for (5.16) to be valid,
but not sufficient. For example, the stochastic matrix
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P =

⎡
⎣

0.4 0.2 0.4
0.4 0.5 0.1
0.2 0.3 0.5

⎤
⎦ ,

is doubly stochastic, but

PPT =

⎡
⎣

0.36 0.3 0.34
0.3 0.42 0.28
0.34 0.28 0.38

⎤
⎦ ,

is not of the form (5.16). So the doubly stochastic matrices P which satisfy (5.16)
constitute a subclass of the class of the doubly stochastic matrices. Moreover, note
that the class of the matrices PPT of the form (5.16) is single-parametric because of
the condition a + (n− 1)b = 1 proved in Proposition 5.2 (i).

Lemma 5.4. If an n× n stochastic matrix P satisfies formula (5.16), with a > b ≥ 0,
n > 1, then we have

a =
1 + (n− 1)(detP)2/(n−1)

n
, (5.21)

and

b =
1 − (detP)2/(n−1)

n
. (5.22)

Proof. It is known (Graybill, 1983) that

det(aI + bJ) = (a + (n− 1)b)(a− b)n−1
.

Since a + (n− 1)b = 1 (by Proposition 5.2(i)), we get by (5.16),

det(PPT ) = (detP)2 = det(aI + bJ) = (a− b)n−1
,

and using again the result a + (n− 1)b = 1, (5.21) and (5.22) follow readily. �

We can perceive that the last two relations are valid also if a = b, since thereupon
it results by Proposition 5.2(ii) that P is a stable matrix and consequently detP = 0.
Moreover they are valid in the case a − b = 1, since then, in combination with the
relation a + (n− 1)b = 1, we get PPT = I and therefore (detP)2 = 1.

Lemma 5.5. Sufficient and necessary conditions for an n × n stochastic matrix P to
satisfy 5.16, that is,

PPT = (〈pi,pj〉) = aI + bJ, with a > b ≥ 0,

is for P to be nonsingular, doubly stochastic, and the product PPT to have the eigen-
values λ2, λ3,...,λn equal to some λ ∈ (0, 1], while λ1 = 1.

Proof. (i) Necessary conditions:
By Proposition 5.2(i), P is nonsingular and doubly stochastic. It is also known
(Graybill, 1983) that

det(PPT − λI) = (a + (n− 1)b− λ)(a− b− λ)n−1
,

and since a+(n−1)b = 1, the eigenvalues of PPT are λ1 = 1, and λ2 = λ3 = · · · = λn

= 1−nb = λ. Now, using (5.22), we get λ = (detP)2/(n−1) and consequently λ ∈ (0, 1].
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(ii) Sufficient conditions:
Let P be an n×n nonsingular, doubly stochastic matrix and PPT have the eigen-
values λ1 = 1 and λ2 = λ3 = · · · = λn = λ ∈ (0, 1]). It is known by Lemma 5.1 that
PPT has 1 as an eigenvalue and that its eigenvalues are identical with its singular
values. Now, consider the Jordan canonical form (5.8) of PPT ; i.e.,

PPT = VΛVT ,

where

Λ =

⎡
⎢⎢⎣

1 0 .. 0
0 λ .. 0
... .. .. ..
0 0 .. λ

⎤
⎥⎥⎦ .

Since PPT is symmetric, the matrix V = (vij) can be chosen to be unitary; that
is, V−1 = VT . Then

PPT = VΛVT =

⎡
⎢⎢⎣

v11 v12 .. v1n

v21 v22 .. v2n

... .. .. ..
vn1 vn2 .. vnn

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 0 .. 0
0 λ .. 0
... .. .. ..
0 0 .. λ

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v11 v21 .. vn1

v12 v22 .. vn2

... .. .. ..
v1n v2n .. vnn

⎤
⎥⎥⎦ ,

or

PPT = VΛVT =

⎡
⎢⎢⎣

v11 λv12 .. λv1n

v21 λv22 .. λv2n

... .. .. ..
vn1 λvn2 .. λvnn

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v11 v21 .. vn1

v12 v22 .. vn2

... .. .. ..
v1n v2n .. vnn

⎤
⎥⎥⎦ ,

or

PPT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v2
11 + λ

n∑
i=2

v2
1i v11v21 + λ

n∑
i=2

v1iv2i .. v11vn1 + λ
n∑

i=2

v1ivni

v11v21 + λ
n∑

i=2

v1iv2i v2
21 + λ

n∑
i=2

v2
2i .. v21vn1 + λ

n∑
i=2

v2ivni

... .. .. ..

v11vn1 + λ
n∑

i=2

v1ivni v21vn1 + λ
n∑

i=2

v2ivni .. v2
n1 + λ

n∑
i=2

v2
ni

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

or

PPT

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − λ)v2
11 + λ

n∑
i=1

v2
1i (1 − λ)v11v21 + λ

n∑
i=1

v1iv2i .. (1 − λ)v11vn1 + λ
n∑

i=1
v1ivni

(1 − λ)v11v21 + λ
n∑

i=1
v1iv2i (1 − λ)v2

21 + λ
n∑

i=1
v2
2i .. (1 − λ)v21vn1 + λ

n∑
i=1

v2ivni

... .. .. ..

(1 − λ)v11vn1 + λ
n∑

i=1
v1ivni (1 − λ)v21vn1 + λ

n∑
i=1

v2ivni .. (1 − λ)v2
n1 + λ

n∑
i=1

v2
ni

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since V−1 = VT =
(
vT

ij

)
or equivalently VVT = I, we have

n∑
i=1

vkiv
T
is =

n∑
i=1

vkivsi = δks,
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thus

PPT =

⎡
⎢⎢⎣

(1 − λ)v2
11 + λ (1 − λ)v11v21 .. (1 − λ)v11vn1

(1 − λ)v11v21 (1 − λ)v2
21 + λ .. (1 − λ)v21vn1

... .. .. ..
(1 − λ)v11vn1 (1 − λ)v21vn1 .. (1 − λ)v2

n1 + λ

⎤
⎥⎥⎦ .

Given that the vector v1 = (v11, v21, ..., vn1)T is a left and right eigenvector of PPT

for the eigenvalue 1, and V is a unitary matrix, we conclude that

v1 =
(

1√
n
,

1√
n
, ...,

1√
n

)T

(as stated in the proof of Proposition 5.1), therefore

PPT =

⎡
⎢⎢⎣

(1 − λ) 1
n + λ (1 − λ) 1

n .. (1 − λ) 1
n

(1 − λ) 1
n (1 − λ) 1

n + λ .. (1 − λ) 1
n

... .. .. ..
(1 − λ) 1

n (1 − λ) 1
n .. (1 − λ) 1

n + λ

⎤
⎥⎥⎦ ,

or

PPT =
(

(1 − λ)
1
n

+ λ

)
I +

(
(1 − λ)

1
n

)
J.

Thus, for a = (1−λ)(1/n)+λ and b = (1−λ)(1/n) we have PPT = (〈pi,pj〉) = aI+
bJ, with a > b ≥0. ��

A numerical example. Let a homogeneous discrete-time MC with state space
S = {1, 2, 3, 4}, transition matrix

P =

⎡
⎢⎢⎣

0.161452 0.113666 0.584123 0.140759
0.541301 0.299853 0.126677 0.032169
0.013071 0.543429 0.166215 0.277285
0.284176 0.043052 0.122985 0.549787

⎤
⎥⎥⎦ ,

and consider the equation of the hypersphere

(x1 − 0.2)2 + (x2 − 0.3)2 + (x3 − 0.4)2 + (x4 − 0.1)2 = 0.0144. (5.23)

For xi ≥ 0, i = 1, ..., 4, the radius vectors of the points (x1, x2, x3, x4) in (5.23),
are assumed to represent probability state vectors of the MC at some time point t− 1,
t ∈ N

+. We are interested in the form of the image, via P, of the set of the points
(x1, x2, x3, x4) lying on the hypersphere (5.23). We note that P is doubly stochastic
and that

PPT =

⎡
⎢⎢⎣

0.4 0.2 0.2 0.2
0.2 0.4 0.2 0.2
0.2 0.2 0.4 0.2
0.2 0.2 0.2 0.4

⎤
⎥⎥⎦ = 0.4I + 0.2J;

i.e., PPT obeys the form aI + bJ, a > b ≥ 0.
The image via P of the hypersphere (5.23) is
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4x2
1 + 4x2

2 + 4x2
3 + 4x2

4 − 2x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x2x4 − 2x3x4

− 0.283267x1 − 1.34366x2 − 0.336121x3 − 0.0369534x4 + 0.2856 = 0. (5.24)

and the points (x1, x2, x3, x4) in (5.24), now express for xi ≥ 0, i = 1, ..., 4, points whose
radius vectors are the state vectors of the MC at time t. Equation (5.24) represents, by
Proposition 5.1 and Lemma 5.5, a hypersphere. This fact can be easily verified, since
(5.24) can be written as

(x1 − 0.228327)2 + (x2 − 0.334366)2 + (x3 − 0.233612)2 + (x4 − 0.203695)2 = 0.00288.
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Comparing the Gompertz-Type Models with a First
Passage Time Density Model

Christos H. Skiadas1 and Charilaos Skiadas2

1 Technical University of Crete, Greece
2 Hanover College, Indiana, USA

Abstract: In this chapter we derive and analyse Gompertz-type probability density
functions and compare these functions to a first passage time density function. The
resulting Gompertz-type pdfs are mirror images of each other, each skewed in a specific
direction, whereas the first passage-type model gives functions with both left and right
skewness depending on parameter values. We apply these pdfs to the life table data
for females in the United States, 2004, and to the medfly data provided in Carey et al.
(1992). Our application shows that the mortality data in the two cases have opposite
skewness. The results support that the underlying mortality mechanism is qualitatively
different in the cases.

Keywords and phrases: Gompertz, dynamic model, probability density function,
life table data, Carey data, Weibull

18.1 Introduction

There is an extensive bibliography concerning the famous Gompertz model and its
applications to life table data. The questions raised by Robine and Ritchie (1993) in
response to Carey et al. (1992) suggest comparing the medfly life span modelling data
to the human life span data.

As Carey et al. (1992) state, the experiment was mainly designed to explain
longevity. However, the majority of the data collected, for more than 1, 200, 000 med-
flies, are not appropriate to support longevity studies, but instead are mainly to be
used for explaining the mortality law for medflies. It is worth noting that the medfly
data were easily verified as following the Gompertz probability density function. Later
on, Weitz and Fraser (2001) suggested a first passage probability density function
to model the medfly data. The proposed model type was first derived independently
by Schrödinger (1915) and Smoluchowsky (1915), and in a more recent form by Siegert
(1951), and it is known as the inverse Gaussian distribution. In recent years we can find
various applications of this model to lifetime data analysis and reliability, and other
fields.

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 203
and Technology, DOI 10.1007/978-0-8176-4799-5 18,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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A more general first passage density function was proposed by Janssen and Skiadas
(1995) to model the human life table data. This model was applied to the data provided
from the life table records of Belgium and France, and it gave a very good fitting.
However, it was a model difficult to work with, as it contained many parameters. A
simpler first exit time density function was proposed by Skiadas (2006) and Skiadas
and Skiadas (2007), with applications to life table data from Greece. The special case
of a quadratic health state function was discussed in Skiadas et al. (2007). The first
exit (or hitting) time density has the form:

gDM(t) = c(kt) − ((3/2)e)−
(
(�−(kt)b)2

/2t
)
, (18.1)

where c,  , and k are parameters, and b is a constant mainly related to the skewness
of the probability density function. The (simpler) inverse Gaussian distribution model
corresponds to the case where b = 1.

The model (18.1) was tested using the life table data from Greece (1992–2000), and
it showed very good fitting. More important, the term

H(t) =  − (kt)b
, (18.2)

called the health state function in Skiadas and Skiadas (2007), provides useful informa-
tion on the mortality data applied. Namely, it describes the perceived average health
state of an individual for a given age. Equation (18.2) indicates a health state that
decays over time, slowly at first and faster as the age of individuals approaches its
natural limits.

18.2 The Gompertz-type models

The Gompertz model was first proposed by Gompertz (1825), and a thorough analysis
of it can be found in Winsor (1932). In differential equation form, the model has the
equation

(lnx)′ = −b lnx, (18.3)

or equivalently
ẋ = −bx lnx, (18.4)

where x is a function of time t, and b is a positive parameter expressing the rate
of growth of the system. Without loss of generality the function x can be assumed
bounded (0 < x ≤ 1, with x = 1 corresponding to the entire population), so that ẋ
is the probability density function of the growth process. Direct integration of (18.4)
gives as solution the Gompertz function:

x = eln(x0)e
−bt

(18.5)

The probability density function of the Gompertz model is then given by

g(t) = ẋ = −b ln(x0)e−bteln(x0)e
−bt

. (18.6)
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An interesting variant of the Gompertz function arises when we replace x by 1− x
in the right side of the Gompertz differential equation, resulting in a mirror image of
the Gompertz model:

ẋ = −b(1 − x) ln(1 − x). (18.7)

Direct integration gives as solution the mirror Gompertz function:

x = 1 − eln(1−x0)e
bt

. (18.8)

The probability density function of the mirror Gompertz model is then given by

gMGM(t) = ẋ = −b ln(1 − x0)ebteln(x0)e
bt

. (18.9)

This model arises by considering the relative decay of the system, instead of the
relative growth. It has skewness opposite that of the Gompertz model, as now the
maximum growth rate is achieved when

x = 1 − 1
e

instead of when x = 1/e. A comparison of the two models is given in Figure 18.1,
with the mirror Gompertz model appearing in gray. Both models are referred to in
the literature as “the Gompertz model”, with different disciplines preferring one model
over the other. The second variant is favoured in the actuarial sciences, as it is more
intimately related to mortality.

x

0

b
e

1  e 1 – 1  e 1

x⋅⋅

Gompertz

Mirror Gompertz

Figure 18.1. The two Gompertz-type models
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18.3 Application to life table and the Carey medfly data

The Carey data are provided in his famous Science paper (Carey et al., 1992). Since
then, several papers with further analyses and applications have appeared. The data
used in this study are selected from a laboratory experiment where the life span of
1, 203, 646 medflies was measured.

Weitz and Fraser (2001) used the medfly data to test the inverse Gaussian distri-
bution as a model resulting from the first exit time theory. The fitting of this model
was quite good. In the present study we fit the more general model given by equa-
tion (18.1) to the data, and we test whether the exponent b diverges from unity (b = 1
being exactly the case studied in Weitz and Fraser, 2001). In the same study we test the
argument of Robine and Ritchie (1993) regarding a comparative study of the medfly
life span and the human life span. The United States 2004 life table data for females
was used for the comparative study. Four models are tested. The equations used for
the data fit are:

gDM(t) = c(kt)−3/2e−(�−(kt)b)2/2t (dynamic model)

gG(t) = ce−kte−�e−kt

(Gompertz model)

gMG(t) = cekte−�ekt

(mirror Gompertz)

gW(t) = c(kt)�−1e−(kt)�

. (Weibull)

For the dynamic model, the parameter b was 1.4 for the Medfly data and b = 5.76 for
the life table data for females 2004 in the United States.

Table 18.1. Fit comparison for USA 2004, females

USA Data Females 2004 Fit

Model c k 	 MSE (10−4)

Dynamic Model 0.0724 0.01875 17.318 5.85

Mirror Gompertz 0.0000221 0.09776 0.000241 13.71

Weibull 0.09095 0.01167 8.64 20.17

The results are summarized in Table 18.1 for USA 2004 females. As can be seen from
Table 18.1, the best fit is done by the dynamic model with parameter b = 5.76 and a
mean squared error MSE = 5.85, followed by the mirror Gompertz with a MSE = 13.71,
and finally the Weibull model with MSE = 20.17.

Table 18.2. Fit comparison for Carey medfly data

Carey Medfly Data Fit

Model c k 	 MSE (10−4)

Dynamic Model 0.396 0.2085 8.193 11.56

Gompertz 1.31335 0.13715 9.61624 9.68

Weibull 0.1197 0.046596 2.656 16.91

For the Carey medfly data the fitting results are summarized in Table 18.2. The
best model fit is now given by the Gompertz model, followed closely by the dynamic
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model with b = 1.4. The Weibull model performs much worse. Regarding the Weitz and
Fraser (2001) application with b = 1, the resulting fitting error is MSE = 13.59, that
is, higher than both the Gompertz and the dynamic models. The estimated parameters
for the Weitz and Fraser application are c = 1.32336, k = 0.47726, and  = 10.2200 by
following the method of nonlinear least squares estimation applied here. The Weibull
model, in both cases presented here, did not give results as good as the Gompertz and
the dynamic models.

Figure 18.2 illustrates the fit comparison between the medfly data and the USA
2004 females data by using the Gompertz and mirror Gompertz models, respectively
(gray lines), as well as the proposed dynamic model (black line). The timescale was
rescaled according to the method proposed by Robine and Ritchie (1993). It is clear
that the medfly data are very well presented by the Gompertz model, whereas the
human mortality data are well expressed by the mirror Gompertz.

0 20 40 60 80 100 120

0.00

0.01

0.02

0.03

0.04

0.05

t

Medfly Data

USA Data

Dynamic Model

Gompertz Models

Figure 18.2. Gompertz, mirror Gompertz, and dynamic models applied to the medfly and
USA 2004 female data

18.4 Remarks

According to a theory based on the tangent approximation (see Jennen, 1985; Jennen
and Lerche, 1981) the hitting time distribution for the case of the Health State Process
H(t) presented above, is approximated by:
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g(t) =
|H(t) − tH ′(t)|

t
p(t)

=
|H(t) − tH ′(t)|√

2πσ2t3
exp

(
−H(t)2

2σ2t

)
,

(18.10)

where p(t) is the transition probability density function. Based on this distribution, we
propose that the life table data be modelled with the function:

g(t) =

∣∣ + (b− 1)(kt)b
∣∣

√
2πσ2t3

exp

(
−
(
 − (kt)b

)2
2σ2t

)
. (18.11)

This function offers fits very similar to those of the model suggested here, and has
better simulation properties, that will be examined in upcoming papers.

18.5 Conclusion

In this chapter we presented a comparative study including two Gompertz-type models
and a dynamic model. The Weibull model was also tested in the applications. The
application of the Gompertz and mirror Gompertz, and of the dynamic model, to
explain the behavior of mortality data was very promising, both from a fitting point of
view, but also from an explanatory point of view.
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Abstract: The chapter considers recent approaches to testing homogeneity in a finite
mixture model, the modified likelihood ratio test (MLRT) of Chen et al. 2001, and
the D-tests of Charnigo and Sun (2004). They are adapted to Weibull mixtures with
and without a Weibull-to-exponential transformation of the data. Critical quantiles are
calculated by simulation. To cope with the dependency of quantiles on the unknown
shape parameter, a corrected D-statistics is implemented and explored. First results
are given on the power of these tests in comparison with that of the ADDS test by
Mosler and Scheicher (2008).

Keywords and phrases: Mixture diagnosis, survival analysis, unobserved hetero-
geneity, overdispersion, goodness-of-fit

19.1 Introduction

A practically important problem is to decide whether for given data a Weibull mixture
specification should be preferred over a nonmixed Weibull model, that is, whether
the data contain unobserved parameter heterogeneity. Various procedures have been
proposed in the literature for this specification problem, among them graphical devices
(Jiang and Murthy, 1995) and statistical tests (Mosler and Scheicher, 2008). For a
comparison of these tests in exponential mixtures, see Mosler and Haferkamp (2007).

In this chapter we consider three recent approaches to testing mixture homogeneity:
the modified likelihood ratio test (MLRT) of Chen et al. 2001, the D-test of Charnigo
and Sun (2004), and the ADDS-test. The ADDS test is due to Mosler and Seidel (2001)
for exponential and Mosler and Scheicher (2008) for Weibull mixtures.

The subsequent discussion focuses on Weibull scale mixtures that have at most two
components and common shape parameter, i.e., on densities

f(x;β1, β2, π1, γ) (19.1)

= π1
γ

β1

(
x

β1

)γ−1

e−(x/β1)
γ

+ (1 − π1)
γ

β2

(
x

β2

)γ−1

e−(x/β2)
γ

,
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for x ≥ 0 and parameters γ, β1, β2 > 0, 0 < π1 < 1. If γ = 1, an exponential mixture
arises.

To test for mixture homogeneity, consider a random sample X1, . . . , Xn from (19.1).
The alternative hypothesis corresponds to β1 
= β2, while the null is signified by β0 =
β1 = β2 and an arbitrary π1 ∈]0, 1[, say π1 = 1

2 .

19.2 Three approaches for testing homogeneity

The MLRT of Chen et al. 2001 is a penalized likelihood ratio test. It is based on the
usual log-likelihood plus a penalty term,

lM (β1, β2, π1, γ) =
n∑

i=1

log f(β1, β2, π1, γ) + C log[4π1(1 − π1)] . (19.2)

Here, C > 0 is a constant that weighs the penalty. Following previous authors
(Charnigo and Sun, 2004) we use a fixed constant C = log 10. In a first step,
lM (β1, β2, π1, γ) is maximized to obtain estimators β̂M

1 , β̂M
2 , π̂M

1 , and γ̂M . Similarly,
under H0, lM (β0, β0,

1
2 , γ0) is maximized to obtain estimators β̂M

0 , γ̂M
0 . In a second

step, the test statistic

MLRT = 2
[
lM (β̂M

1 , β̂M
2 , π̂M

1 , γ̂M ) − lM (β̂M
0 , β̂M

0 ,
1
2
, γ̂M

0 )
]

(19.3)

is evaluated. Asymptotically, under H0 and some regularity conditions, MLRT is dis-
tributed as the fifty–fifty mixture of a χ2

1 variable and a constant at 0 (Chen et al.,
2001). Note that in the special case of exponential mixtures, the MLRT statistic is
(19.3) with both γ̂M and γ̂M

0 substituted by the constant 1.
To solve the Weibull homogeneity problem, the MLRT can be used in two different

ways, as described above and after a Wei2Exp transformation of the data. Either the
four parameters under H1 and the two under H0 are estimated via penalized likelihood
(19.2) and the statistic (19.3) is used as it stands, or, alternatively, γ0 is estimated
under H0, and the estimate γ̂0 is used to transform the data, Xi  → X γ̂

i . Then, from the
transformed data, the parameters β1, β2, and π1 are estimated via penalized likelihood
(19.2) with γ = 1 and the MLRT statistic is evaluated.

The D-test, in its original form, measures the area between two densities, one fitted
under H0, and the other fitted under H1. Firstly, the parameters of the null distri-
bution and the alternative distribution are estimated by some consistent estimators
β̂0, γ̂0, β̂1, β̂2, π̂1, and γ̂. Then the D-statistic

D =
∫ ∞

0

[
f(x; β̂1, β̂2, π̂1, γ̂) − f(x; β̂0, β̂0,

1
2
, γ̂0)

]2

w(x)dx (19.4)

=
2∑

i=0

2∑
j=0

π̂i π̂j
γ̂iγ̂j

β̂γ̂i

i β̂
γ̂j

j

×
∫ ∞

0

xγ̂i−1xγ̂j−1 exp

⎛
⎝−

(
x

β̂i

)γ̂i

−
(

x

β̂j

)γ̂j
⎞
⎠w(x)dx , (19.5)

where the notation π̂0 = −1 and π̂2 = 1 − π̂1 is used.



19 Weibull Mixture Testing 213

In the special case of an exponential mixture model, D is the same with the constant
1 in place of γ̂0 and γ̂1. In this case, as Charnigo and Sun (2004) show, D has an
asymptotic null distribution which is equivariant to β0. They provide tables of critical
quantiles and report that, in the diagnosis of exponential scale mixtures, the simple
D-test is slightly outperformed by the MLRT when n is small (n ≤ 100). Charnigo and
Sun (2004) therefore propose weighted forms of the D-test which put more weight to
differences in the tails of the two densities: in place of the differential dx in the integral
formula (19.5) they use x dx or x2 dx. In the sequel, these weighted variants of the
D-test are signified by ‘w1D’ and ‘w2D’, respectively.

Like the MLRT, the D-test can be employed either to the original data from a
Weibull mixture model or to transformed data that have been subject to a Wei2Exp
transformation with an estimated shape parameter γ̂0. In Section 19.3 we investigate
the effect of estimating γ0 on the critical regions of the D-tests and the MLRT.

The ADDS test combines a dispersion score (DS) test with a classical goodness-of-fit
test. The DS statistic,

DS =
(

n(n− 1)
n + 1

)1/2 1
(X)2

[
S2 − 1

2n

n∑
i=1

T 2
i

]
, (19.6)

is combined with a goodness-of-fit statistic of Anderson–Darling type,

AD =
(

1 +
0.6
n

)(
n− 1

n

n∑
i=1

(2i− 1)
(

log
(
1 − e−T(i)/X

)
+

T(i)

X

))
, (19.7)

where X and S2 denote the sample mean and variance and T(i) is the ith order statistic.
Reject H0 if either DS or AD is too large.

Under H0, both test statistics do not depend on the scale parameter β. Mosler
and Seidel (2001) have demonstrated that the power of the ADDS test for exponential
mixtures is always at least comparable to that of a bootstrap LRT, a moment LRT,
and a DS test. On large classes of alternatives the tests are outperformed by the ADDS
test.

19.3 Implementing MLRT and D-tests with Weibull
alternatives

In order to avoid estimation of all Weibull parameters under H0 and H1, we first
employ Wei2Exp forms of the MLRT and the D-test. That is, the data x1, . . . , xn

are transformed to xγ̂
1 , . . . , x

γ̂
n, and MLRT and D-tests for homogeneity in exponential

mixtures are done with the transformed data. We simulated the quantiles of each test
with estimated γ under H0.

In our second approach we apply the D-tests and the MLRT directly to the data.
Chen et al. 2001 and Charnigo and Sun (2004) report implementations of their tests
for exponential mixtures.1 However, when implementing the D-tests in a Weibull
1 We thank these authors for kindly giving us their computer codes.
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mixture model, severe difficulties arise. One difficulty is in choosing a good esti-
mation method for the parameters of a Weibull mixture distribution. The other is
to find an approximate functional dependency of the relevant quantiles of the D-
test statistic and the parameters of the null hypothesis to calculate proper critical
values.

The statistic (19.5) was calculated by numerical integration.2 Three weightings of
the D-test were investigated, w1(t) = t, w2(t) = t2, and wg(t) = tγ̂ . In estimating the
parameters under H0 and H1, we used the Nelder–Mead simplex algorithm (Olsson,
1979).3 The Nelder–Mead simplex algorithm is included in R and works together with
some methods of the MASS package (Venables and Ripley, 2002). We used a multiple
initial value procedure to avoid being trapped at local maxima. The procedure was
also applied with the MLRT to estimate the parameters of the penalized likelihood
function.

After all we found from our simulations that the critical quantiles of the D-test
depend heavily on shape parameter γ0 under the null (see Figure 19.1). The same
is partially true for the MLRT. The ADDS test, in comparison, shows no relevant
dependency on γ0; with increasing γ0 it becomes only slightly more conservative. To
cope with this observed dependency on γ0 and with an additional combined dependency
on scale β0 and level α, we introduced corrected statistics as follows,

T ∗ = T · h(β̂0)
i(γ̂0, α)

.

Here, h(β0) is a function that is specific to each test, and i(γ0, α) is an interpola-
tion function obtained from simulation (with n = 1000) of the (1 − α)-quantiles of
the statistic with different shape parameters γ0. The value of i(γ0, α) has been de-
termined by linear interpolation of the simulated quantiles of the shape parameters
γ0 ∈ {1, 1.5, 2, 3, 5}. We chose h(β) as a linear function:

h(β) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β, D-test,
1 + 0.3(β − 1), w1D,

1, w2D,
1 + 0.3(β − 1), wgD,
1 + 0.2(β − 1), MLRT.

This function has been determined from simulated 95% quantiles of the various tests.
With the corrected statistics, critical quantiles have been determined by simulation

for n = 100, 1000 and α = 0.1, 0.05, 0.01. The number of replications was always
5000.

2 The integration was done in the interval [0.5xmin, 2xmax] by using the QUADPACK R-
routines (adaptive quadrature of functions) from Piessens et al. (1983). xmin and xmax

denote smallest and largest observations.
3 We also tried the methods of Kaylan and Harris (1981) and Albert and Baxter (1995). The

Nelder–Mead algorithm proved to be the fastest one; its likelihood comes near to that of the
method of Kaylan and Harris. The PAEM of Albert and Baxter yielded a worse likelihood.
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Figure 19.1. Dependency of critical quantile Qα on the true shape parameter γ, for the
D-test, the weighted D-tests (w1D, w2D), and the MLRT (without Wei2Exp transformation);
n = 1000, α = 0.01, 0.05, 0.10

19.4 Comparison of power

In a power simulation study we considered both forms of the MLRT and the D-tests,
with and without employing a Wei2Exp transformation. In addition we used several
weighted versions of the D-test. The power of these tests was evaluated under different
alternatives and contrasted with that of the ADDS test.
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Figure 19.2 exhibits the power of the nonweighted D-test, the w2D-test, and the
MLRT, each being applied to Wei2Exp transformed data, and the ADDS test. The
alternatives are lower contaminations, that is, mixtures of a Weibull distribution with
another Weibull distribution having smaller scale. The main result of the simulation
study is that under lower contamination the ADDS is the only one that develops

Figure 19.2. Power under lower contaminations: D-test, w2D-test (quadratically weighted
D-test), and MLRT with Wei2Exp transformation, ADDS test. Comparison of power under
the alternative S(t) = 0.9 exp(−tγ) + 0.1 exp(− (vt)γ), depending on scale ratio v ≥ 1
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reasonable power, while the other three tests break completely down. It has been further
shown that under upper contaminations, that is, mixtures with larger scaled Weibull
distributions, the ADDS test is only slighty less powerful than the others.

A similar power comparison has been done for the MLRT and two D-tests that are
applied to the nontransformed data. Here, it came out that under lower contaminations
the nonweighted D-test outperforms the other three tests when the sample size is small
(n = 100), while for larger samples (n = 1000) the four tests develop similar power.
Under upper contaminations, the ADDS test proves to be better than the others, which
develop poor power only. This holds true even for fifty–fifty mixtures.

The relatively poor performance of the MLRT and the D-tests may be attributed
to parameter estimation on the alternative and, in addition, to the dependency of
quantiles on parameters. The power of these tests will possibly improve if correction
factors are determined in a less simple way. In particular, instead of employing the same
linear function h for all α, one could employ some nonlinear interpolations depending
on α. Also the number of replications (R = 5000) could be increased to obtain more
precise results. However, it is rather obvious that the qualitative results of this chapter
will not change.

19.5 Conclusion

In a nutshell: While the MLRT and the D-tests perform well in other models (Chen
et al., 2001; Charnigo and Sun, 2004), their application appears to be not recommend-
able for homogeneity testing in a Weibull mixture model. Here, the ADDS test provides
a reasonable diagnostic alternative.
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Abstract: We analyse here the spatial dependence structure for the counts of certain
type of claims occurring in household insurance in Hungary. We build up a Bayesian
hierarchical model for the Gaussian Markov random field driven nonhomogeneous spa-
tial Poisson process of claims counts. Model estimation is carried out by the MCMC
technique, by applying sparse matrices, and a novel approach for updates by radial
and angular components to obtain better mixing in over 3000 dimensions. We design a
procedure that tailors the acceptance rate automatically during burn-in to a prescribed
(optimal) value while updating the chain.

Keywords and phrases: Bayesian hierarchical models, disease-mapping, Gaussian
Markov random fields, household insurance risk, Markov chain Monte Carlo (MCMC),
spatial statistics

20.1 Introduction

It is a common practice in household, automobile, etc. insurance to charge the risk pre-
mium per unit exposure time according to the geographical area to which the contract
belongs. It means the premium changes geographically even when all risk factors (other
than location) are the same. However, companies apply various principles leading to
very different spatial dependences in premium rating. More often than not these prin-
ciples reflect common sense approaches, rather than exact risk estimations. In view of
customer sensitivity to “unjustly” increased premiums it is highly desirable to estimate
the spatial variation in risk and to price accordingly. Nevertheless, judging by the few
available publications, the problem attained relatively little attention in the past.

One of the early works is due to Taylor (1989), who links two-dimensional splines
on a plane to the map of the region, in order to assess spatial variability in Australian
household contents insurance. Boskov and Verrall (1994) elaborate premium rating by
postcode area, suggesting a Bayesian spatial model for the counts of claims. Their ideas
are closely related to those of Besag et al. (1991), who allow for both spatially struc-
tured and unstructured heterogeneity in one model. One set of error components are

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 219
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i.i.d. reflecting an unstructured pattern of heterogeneity, while the other set exhibits
spatial correlation among neighbouring areas and remains uncorrelated otherwise. This
construction is usually referred to as structured heterogeneity. The model is substan-
tially refined in Brouhns et al. (2002), where geographically varying unobserved factors
cause an unknown part of variation of the spatial parameters. The model identifica-
tion mixes a frequentist approach to estimate the effect of all risk factors, other than
location, with a Bayesian approach to evaluate the risk of each district.

Dimakos and Frigessi di Rattalma (2002) propose a fully Bayesian approach to
nonlife premium rating, based on hierarchical models with latent variables for both
claim counts and claim size. In this way they avoid the removal of the effect of all
nonspatial risk factors by data preprocessing. Inference is based on the joint posterior
distribution and is performed by Markov chain Monte Carlo (MCMC). They show that
interaction among latent variables can improve predictions significantly.

Denuit and Lang (2004) incorporate spatial effects into a semiparametric additive
model as a component of the nonlinear additive terms with an appropriate prior re-
flecting neighbourhood relationships. The functional parameters are approximated by
penalised splines. This leads to a unified treatment of continuous covariates and spa-
tially correlated random effects.

The spatial estimation of insurance risk is very much the same as risk estimation
for disease mapping in spatial epidemiology. The risk-categorisation of the localities is
equivalent to the colouring of a map and statistical techniques are well elaborated for
that; see, e.g., Green and Richardson (2002) and references therein.

20.2 Data description, model building, and a tool for fit
diagnosis

We have household insurance data at our disposal from the Hungarian division of
a certain international insurance company, who initiated the present study. In order
to illustrate our methods and findings, the company allowed us to use the data of a
frequent and not expensive claim-type (we were required to avoid further specifica-
tion), from 628,087 policies. We analyse the counts of claims occurring in the period
of 16-Sept-1998 to 30-Sept-2005; that means 171,426 claims originating from 1,877,176
policy-years. The data record of the jth policy consists of the observed number of claims
zj , the exposure time τj (given as the number of days the policy was valid within the
studied period), the location of the insured property (given as one of 3171 postcode ar-
eas of the country, hereinafter referred to as localities), the categorised population size
of the localities, and the building-, wall-, and roof-types. The locations are classified
into one of the ten categories according to population size. We have four categories of
buildings, three categories of walls and six categories of roofs. In what follows we refer
to these four categorical variables as risk factors. Our goal is to estimate the expected
number of claims per unit exposure time (one year) for all 3171 localities. The naive
estimation (observed counts/exposure) is obviously unreliable, especially in localities
with no policy, or with just a few. So, the estimation must rely heavily on the spatial
structure of the data, meaning the information available in the neighbouring locations.
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At policy level we assume that the claim counts datum zj of the jth individual
policy is the observed realisation of the random variable Zj , which is conditionally
Poisson distributed, given the intensity. The Poisson intensity parameter λZj of Zj

depends on τj the exposure time (the time the policyholder spent in risk), which is
known to us as data. Furthermore, the intensity depends on a general risk factor effect
κj derived from the above-defined (nonspatial) risk factors, characterising the policy.
Finally, the intensity parameter depends on the locality to which the contract belongs
through the spatial relative risk, that we write in an exponential form as eϑi . It is the
same for every policy belonging to location i. Suppose in addition that interdependence
among claim counts is created solely through the intensity parameters; i.e., Zjs are
conditionally independent Poisson variables, given the values of the intensities. Our
final assumption is that the effects of the exposure time, risk factors, and the spatial
relative risk are multiplicative on the intensity. To give an appropriate form for the
intensities it is convenient to single out a joint scale parameter λ, and thus keep the
mean of the exponents ϑi in the spatial relative risk at zero. So, we have for the intensity
λZj = λ · τj · κj · eϑi . where i stands for the location of policy j.

If we were to build a fully Bayesian model we should put priors on all possible
nonempty risk classes created from the localities and the values of risk factors, and
sample from a posterior of dimension well over 106. Clearly, the estimation of that
high-dimensional model would not be viable. On the other hand, aggregating to regions
would reduce the dimension of the problem, but the request of the company was to
carry through an analysis on location level in order to avoid the pooling effect of the
regions. So, we proceed to estimate separately the risk factor effect and the spatial
relative risk.

For the first instance suppose λ and all eϑis to be equal to 1. Then the κjs are
easily estimable by a generalised linear model. Regarding the estimated κjs as if they
were given data, we proceed further with the estimation of the spatial relative risk.
Once we’ve done so, we renew the estimation of κjs treating the estimated λ and eϑi as
known and refit the generalised linear model. By iterating these steps better prediction
of the claim counts can be achieved.

When aggregating the claims from policy to location level the conditional inde-
pendence induces that the claim counts Yi at the ith location are distributed as
Poisson(λ · eϑi ·∑j (τj · κj)), where the summation in j goes over all policies belonging
to location i. The quantity

∑
j (τj · κj) can be interpreted as the modified exposure

of location i and we denote it by ti. So, in the first stage of model hierarchy we are
dealing with a nonhomogeneous spatial Poisson process with intensities dependent on
an overall scale, modified exposures, risk factors, and locations. As τjs are given and
the estimated κjs are treated as data, the modified exposure is also regarded as a
known quantity for every location. Hence, the two components λ and ϑi of the Poisson
intensities remain to be estimated.

At the next hierarchical stage of model building we prescribe a structure on the
logarithm of the spatial relative risks (log-srr. for short), that is, the exponents ϑi. These
location-dependent components of the Poisson rates comply with a Gaussian Markov
random field (GMRF) model. That means we have the vector Θ = (ϑi) of dimension
equalling the number of localities (3171), that has a zero mean multidimensional normal
distribution with spatially structured covariance matrix. The covariance between ϑi and
ϑj depends on the neighbourhood relationship of the ith and jth localities.



222 L. Márkus, N.M. Arató, and V. Prokaj

In order to determine neighbourhoods for the localities we used the Hungarian Ad-
ministrative Boundaries database as provided by the Hungarian Geodesic and Remote
Sensing Institute. We choose localities to be neighbours when sharing a common piece
of boundary, and call them adjacent to each other. Neighbourhood is then summarised
either in the adjacency matrix A, or the adjacency graph A. The i, jth element of A is
one or zero according to the ith and jth localities being neighbours or not, respectively.
The ith and jth nodes of the adjacency graph A are connected by an edge when the
ith and jth localities are adjacent to each other. The indirect kth-order neighbourhood
(i is the second-order neighbour of j if there is at least one neighbour of i neighbouring
j as well, and so on for higher order) is represented (with multiplicity) by the appro-
priate power of the A matrix. In the graph representation it corresponds to a path of
length k leading from i to j. The i, jth element of Ak, the kth power of the adjacency
matrix, counts the paths of length k from i to j.

To proceed with the model building we suppose for the log-srr.-s Θ a conditional
autoregression (CAR) model, as described, e.g., in Clayton and Kaldor (1987), Cressie
(1993) or Banerjee et al. (2004, Chapter 3). Remark here that other GMRF specifi-
cations as in Besag et al. (1991), or Arató et al. (2006) would also be possible, but
the analysis of model choice is subject to further study, so we do not elaborate on it
here. The CAR model in a slightly modified form as we use it prescribes the correlation
matrix Σ of the Gaussian vector Θ as Σ = τ−2 · D(I − "A)−1D, with I denoting the
unit matrix as usual, and D is an arbitrarily chosen diagonal matrix, with all-positive
diagonal elements. The assumption " < "max, with "max being reciprocal to the maxi-
mal eigenvalue of A, guarantees that the covariance defined this way is valid; that is,
the matrix (I − "A)−1 is positive definite and remains so when multiplied from both
sides with the same positive diagonal matrix. We restrict " to be positive, as it is not
particularly meaningful to suppose a negative spatial association for adjacent regions.
A heuristic explanation of the chosen covariance structure decomposes the covariance
of the log-srr.-s between two localities according to the degree of neighbourhood. That
means only part of the covariance is due to the immediate neighbourhood relation, a
smaller part inherited from neighbours of the neighbour, and then an even smaller part
from their neighbours, and so on. These “parts” decrease exponentially with base ",
and summed up, give the actual covariance between the ith and jth location. Multi-
plying Ak by "k, one gets the part of the covariance stemming from the kth degree
neighbourhood relations, as Ak counts those ones. Summing up for all ks we get the full
covariance in the form of a power series of " · A equalling (I− "A)−1. The diagonal D
matrix serves to assign different uncertainties (i.e., variance) to the log-srr at different
locations. In terms of the adjacency graph D assigns weights (of uncertainty) to the
vertices. This may help to deal with overdispersion in the first-level Poisson model. A
short exposure time creates more uncertain information on the parameters of a locality
than a longer one. It may be worth while to reflect it in the setup by weighting the vari-
ances of θi according to the modified exposure through the D matrix, further justifying
its introduction. As the lsrr. θi is on the logarithmic scale, it is natural to chose di,i to
be inversely proportional to the logarithm of the modified exposure time. While doing
so, we have to take care of the localities with zero exposure by perturbing the zeros
randomly with V , a very small positive variable, setting d−1

i,i = log(ti + V · χ{ti=0}). It
is not meaningful, however, to estimate di,i, as it reflects prior knowledge.

We use the probability map (Cressie, 1993, formula (6.2.1) Chapter 6.) for diagnos-
ing model fit, which, in our case, is created from the estimates of the Poisson intensity
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λ̂i at location i, equalling the expected number of claims there. Hypothesising the es-
timated intensity λ̂i to be the true one, we compute the probability of deviation of
the observed values yi from the expected one. To be more specific, when the expected
is less than the observed (i.e., λ̂i ≤ yi), compute the probability of exceedance of the
observed sample P(Yi ≥ yi), whereas when the expected is greater than the observed
(λ̂i > yi) compute the probability of shortfall to the sample P(Yi ≤ yi), under the
hypothesis Yi ∼ Poisson(λ̂i). This procedure is analogous to the computation of the
p-value in hypothesis testing. Finally, after categorising, we display these probabilities
for every location on a map. Small values in the probability map mean that the ob-
served value is unlikely at the given estimated intensity, that questions the goodness of
the estimation. High probabilities, on the other hand, do not necessarily mean a good
estimate; it may reflect overfitting, when the estimator “learns” the sample too well. To
recognise overfitting determine the distribution of the values in the probability map.
When, e.g., expected is greater than observed, λ̂i ≥ yi, the computed P(Yi ≤ yi) equals
F (yi), where F (.) is the probability distribution function of Yi, i.e., the Poisson(λ̂i)
distribution. Had Yi a continuous distribution, F (Yi) would be uniform on [0,1]. The
effect of the discrete (Poisson) sample can be eliminated by perturbing the values with
an appropriately tailored uniform random variable.

20.3 Model estimation, implementation of the MCMC
algorithm

We estimate the model parameters ", τ , and Θ by Markov chain Monte Carlo simu-
lation. The challenge in the implementation of the MCMC algorithm is the very high
dimension. We have to reach convergence and mixing in a 3173-dimensional state space.
All the papers mentioned in the introduction addressed significantly lower dimensional
problems and their publicly available programs did not seem to work in our case.

The base " of the exponential decay in correlation is a crucial hyperparameter of
the third level of hierarchy, to be estimated. In line with the Bayesian setup we put
a prior on " and in order to fulfil the requirement 0 < " < "max suppose "/"max is
distributed according to a beta(p, q) law. Choosing p = 1, q = 1 results in a vague prior.

In Bayesian parameter estimation of Gaussian vectors a gamma-prior is usual for
τ2 the precision parameter of the covariance. This choice is often favoured because
it results in a gamma-posterior, allowing for Gibbs sampling. However, the precision
parameter τ2 is strongly related to the radius ||LT Θ||2 = 〈Σ−1Θ,Θ〉 of the transformed
Gaussian vector LT Θ = Θ̃, where LT comes from the Cholesky decomposition of the
inverse of the covariance matrix: LLT = τ2 ·D−1(I− "A)D−1. In the very high (3171)
dimension the density of the length of Θ̃ has a very narrow bandwidth, centered at√

d− 1/τ−1, resulting in a very narrow environment around the Gaussian ellipsoid
of Θ, where the values of Θ are likely. It is a simple geometrical consideration, that
if we add to a vector in high dimension another vector of fixed length with uniform
random angle, then with high probability it will increase the length of the original
vector and decrease it with only a very small probability (unlike in two dimensions,
where each of these probabilities hardly differs from 1/2). This means, random walk
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Metropolis updates will lengthen the vector, whereas the precision in the likelihood
tries to keep its length in the narrow band. If we were to avoid frequent rejection, most
of the updates have to be of very small length in order to remain within the mentioned
narrow environment of likely values. To allow for longer updates in order to achieve
better mixing and faster convergence we suggest updating the length r of the Gaussian
vector, Θ̃ separately from the direction of Θ̃ represented by the unit vector U . Instead
of parametrising our model with the triplet of (τ, ",Θ), we reparametrise it by four
parameters (τ, ", r,U ), sample from their posterior via the MCMC, and obtain samples
of the original triplet by backtransforming.

The probability distribution of the squared length r2 of Θ̃ is Γ ((d/2), δ), where
d is the dimension, d = 3171, and δ = τ2/2. We choose this Gamma distribution
as the prior for length r, given τ , but (similarly to Green and Richardson, 2002) the
distribution of the precision τ2 can be integrated out from the conditional one of r,
and that is how we use it in the acceptance – rejection step. The update of r goes by
a geometric normal random walk.

The unit vector U = Θ̃/r representing the direction of Θ̃ has a uniform distribution
on the unit sphere. To obtain Un, the nth update of U we first generate the zero mean
Gaussian random vector Tn of dimension d with i.i.d components: Tn ∼ Nd(0, σ2I).
Then we compute Un as the unit vector in the direction of Θ̃n−1 + Tn, where Θ̃n−1 is
the actual value of Θ̃. The spread parameter σ2 plays an important role in tailoring
the acceptance rate, as we describe below.

Next we backtransform the updated Θ̃ to obtain the new value for Θ in the actual
iteration step. That means we have to compute (LT )−1Θ̃, with the Cholesky decompo-
sition LLT of the updated inverse covariance matrix. These are computationally very
demanding operations, so efficient computing is essential at this point. As one locality
has on average six or seven neighbours, the adjacency matrix is a sparse matrix, so we
can invoke sparse matrix operations to accelerate significantly the computations; that
is why we utilise the Cholesky decomposition (cf., e.g., Knorr-Held and Rue, 2002 and
references therein). With this we compute Θ as Θ = r(LT )−1U . By introducing r into
the computation, we simplify the computation of the quadratic form ΘΣ−1Θ in the
likelihood. On the other hand, whenever " changes we have to recompute the Cholesky
decomposition.

For the joint scale parameter λ of the Poisson intensities there is a way to derive
an estimation without MCMC sampling. For given ", τ , and Θ it is straightforward to
maximise the log-posterior in λ. The maximum is attained at

λ̂ML =

(∑N
i=1 yi

)

∑N
i=1 eϑiti

providing for the conditional maximum likelihood estimator of λ, given the rest of
the parameters. Though the use of this conditional maximum likelihood estimator is
more natural in the frequentist setup, it can also be regarded as the limit of Bayesian
estimates in the following sense. Put a usual gamma-prior on λ with some α shape and
β rate. When β is negligible compared to the sum

∑N
i−1 eϑi · ti, then the

λ0 =
λ∑N

i=1 eϑi · ti
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variable is conditionally independent of the rest of the parameters, and when β tends
to 0, then the joint distribution of " and Θ given λ tends to the joint distribution of "
and Θ given λ̂ML. After a new proposal is obtained for Θ (or, to be more precise, either
for its length, or for its direction as we proposed above) the conditional max-likelihood
estimator λ̂ML of λ is plugged in to compute the updated log-posterior.

We carried out about 2.8 million full iteration steps in a three-hour run (meaning
ca. 280 iterations per second) on a PC, with a program written as a C/C++ addin
to R. The first 0.8 million was regarded as burn-in, and we applied a thinning by 200
steps.

The MCMC algorithm renews the sampled values of ", r,U by random walk updates.
The spread, the variance of the Gaussian steps in the walk, allows for automatic control
of the acceptance rate in the following way. At the nth step during burn-in only, when
a proposal is accepted, we increase, whereas when rejected, decrease the logarithm of
the spread by constant times 1/n. As is usual in stochastic approximation we choose
the pair of accept – reject constants so that the average change in the spread is zero
if the acceptance rate is equal to the prescribed rate we are bound to achieve. As the
24% acceptance rate is optimal, we set this as the target value. The deviance of the
acceptance rates from the 24%, the chain produced after the 800,000 iteration burn-in
period, was below 1% in the application, indeed.

Storing all or a substantial part (of order 10,000 at least) of the 2.8 million simulated
values for the 3171 coordinates θi, is not viable, because it requires a lot of memory
and hampers the computation. So we could not determine quantiles or histograms for
the majority of the parameters (a few, of course, can always be singled out).

To present a detailed diagnostic analysis of the convergence and mixing of the
proposed MCMC procedure exceeds by far the frame work of the present chapter.
Every 200th iteration is selected to display in Figure 20.1 a 10,000-step-long trace plot
of the log-posterior, indicating that the chain reached convergence. The autocorrelation
function (ACF) of the trace of the first coordinate θ1 of Θ is also presented there,
showing that the 200th values are practically uncorrelated. Observing that the same
is true for traces of the other coordinates, and parameters ", τ, λ̂ML (not shown), we
conclude that the mixing of the chain is quite acceptable.

Another topic is model choice and the goodness of fit that can only be addressed
very briefly in the present chapter, and that we intend to return to and come up with a
detailed analysis in a follow-up paper. Here in Figure 20.2 we only present the residuals
(first graph), that is, the difference of the observed claims and the estimated Poisson in-
tensities for every locality, and the p-values of the probability map. The distributions of
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Figure 20.1. Simple diagnostic plots for MCMC convergence and mixing
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Figure 20.2. Residuals of predicted claims from the spatial model: comparison of p-values
for the spatial and the constant-intensity model

the p-values are compared for the homogeneous spatial Poisson process (localities have
all equal intensities) and our suggested spatial model, in terms of density histograms
(second and third graphs). Clearly, the distribution deviates from the theoretical in
the homogeneous case, and follows it for our model. Finally we compare on two maps
the naive estimate of the intensities (left) with the estimate from our suggested model
(right) in Figure 20.3. Our model decreases the range of intensities substantially, and
smooths them into more homogeneous areas, showing a clearer spatial pattern, very
much as we expected.
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Figure 20.3. Maps of naive (left) and spatial (right) estimations of intensities

20.4 Conclusion

We presented a locationwise estimate of the Poisson intensities of claim counts for a
certain type of claims in household insurance, and addressed the territorial dependence
of risk through the lsrr. parameter of the model. We fitted our very high-dimensional
model via an MCMC algorithm where we proposed a novel updating for the GMRF of
the lsrr.-s. We invented an automatism for obtaining a prescribed (optimal) acceptance
rate while updating the chain. Detailed convergence and mixing diagnostic and com-
parison with different MCMC implementations can be subjects for further discussion.
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The comparison of different GMRF models for the lsrr. such as, e.g., the BYM one, is
our immediate goal and we intend to present our findings in a follow-up paper.

Acknowledgements. This research was partially supported by the Hungarian National Re-
search Fund OTKA, grant No.: T047086.

References
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Abstract: The Fuzzy Cognitive Network (FCN) framework is a proposition for the
operational extension of fuzzy cognitive maps to support the close interaction with
the system they describe and consequently become appropriate for adaptive decision
making and control applications. They constitute a methodology for data, knowledge,
and experience representation based on the exploitation of theories such as fuzzy logic
and neurocomputing. This chapter presents the main theoretical results related to the
FCN development based on theorems specifying the conditions for the uniqueness of
solutions for the FCN concept values. Moreover, case application studies are given,
each one demonstrating different aspects of the design and operation of the framework.

Keywords and phrases: Fuzzy cognitive networks, fuzzy cognitive maps, uniqueness
of solutions, contraction mapping theorem

21.1 Introduction

Fuzzy Cognitive Maps (FCM) are inference networks using cyclic directed graphs that
represent the causal relationships between concepts (Kosko, 1997; Kosko, 1986a). They
use a symbolic representation for the description and modeling of the system. In or-
der to illustrate different aspects in the behavior of the system, a fuzzy cognitive map
consists of nodes where each one represents a system characteristic feature. The node
interactions represent system dynamics. An FCM integrates the accumulated experi-
ence and knowledge on the system operation, as a result of the method by which it is
constructed, i.e., by using human experts who know the operation of the system and its
behavior. Different methodologies to develop FCM and extract knowledge from experts
have been proposed in (Stylios and Groumpos, 1999, 2004).

Fuzzy cognitive maps have already been used to model behavioral systems in
many different scientific areas. For example, in political science (Axelrod, 1976),
fuzzy cognitive maps were used to represent social scientific knowledge and describe
decision-making methods (Kottas et al., 2004, Zhang et al., 1989, Georgopoulos et al.,
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2003). Kosko enhanced the power of cognitive maps considering fuzzy values for their
nodes and fuzzy degrees of interrelationships between nodes (Kosko, 1986a, 1997).
He also proposed the differential Hebian rule (Kosko, 1986b) to estimate the FCM
weights expressing the fuzzy interrelationships between nodes based on acquired data.
After this pioneering work, fuzzy cognitive maps attracted the attention of scientists
in many fields and they have been used in a variety of different scientific problems.
Fuzzy cognitive maps have been used for planning and making decisions in the field
of international relations and political developments and to model the behavior and
reactions of virtual worlds. FCMs have been proposed as a generic system for deci-
sion analysis (Zhang et al., 1989, 1992) and as coordinators of distributed cooperative
agents.

An extension of FCM called the Dynamic Cognitive Network (DCN) appears in
Miao et al. (2001), where the concepts are also allowed to receive values from multival-
ued sets and the weights of the interconnection arcs are replaced by transfer functions
to account for causal dynamics. DCNs are also used for decision support tasks. The
fuzzy causal network (Liu and Zang, 2003; Zhang et al., 2006) is another extension
of traditional FCM, which is also used for decision support based on the principle of
causal discovery in the presence of uncertainty and incomplete information. Neutro-
sophic cognitive maps (Smarandache, 2001; Kandasamy and Smarandache, 2003) are
generalisations of FCMs and their unique feature is the ability to handle indeterminacy
in relations between two concepts. Recently, Fuzzy Cognitive Networks (FCN) (Kottas
et al., 2007a) were presented as a complete computational and storage framework to
facilitate the use of FCM in cooperation with the physical system they describe.

Regarding FCM weight estimation and updating, recent publications (Huerga, 2002;
Papageorgiou and Groumpos, 2004; Papageorgiou et al., 2004; Aguilar, 2002) extend
the initially proposed differential Hebbian rule (Kosko, 1986b) to achieve better weight
estimation. Another group of methods for training FCM structure involves genetic algo-
rithms and other exhaustive search techniques (Koulouriotis et al., 2001; Papageorgiou
et al., 2005; Khan et al., 2004; Stach et al., 2005), where the training is based on a
collection of particular values of input–output historical examples and on the definition
of the appropriate fitness function to incorporate design restrictions.

Traditionally, FCMs are used for decision support or diagnosis tasks without im-
mediate interaction with the system they describe. Once the graph is constructed and
the arc weights are estimated based on either experts’ opinion gathering or acquired
data, the FCM is left to operate alone and produce its results without interaction with
the physical system. In recent years, the use of FCM to control physical processes has
been proposed in Stylios and Groumpos (1999, 2004), Stylios et al. (2006), Kottas et al.
(2005), and Kottas et al. (2007a), where the FCM is used either as a direct controller
of the physical process or as an expert supervisor of a traditional controller. The oper-
ation of the FCM in close cooperation with the real system it describes remains still an
open issue. Such an on-line interaction with the real system might require continuous
changes in the weight interconnections, which reflect the experts’ knowledge about the
node interdependence. This knowledge might not be entirely correct or, perhaps, the
system has undergone changes during its operation. Moreover, as shown in this chapter,
different operation conditions might require different weight assignments. The motiva-
tion for supporting such kind of operation comes from the success of FCMs in their
traditional fields of applications and from the fact that traditional control problems
from the field of electrical and mechanical engineering are successfully tackled using
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conventional fuzzy systems and fuzzy controllers. As shown in this chapter, the fuzzy
cognitive network approach can serve as a reliable approach for these problems too.

One issue that needs more theoretical investigation is the conditions under which
the concept values of FCM reach an equilibrium point and if this point is unique.
According to Kosko (1997), starting from an initial state, simple FCMs will follow
a path that ends in a fixed point or limit cycle, while more complex ones may end
in an aperiodic or “chaotic” attractor. These fixed points and attractors could repre-
sent meta rules of the form, “If input then attractor or fixed point.” The relation
of the existence of these attractors or fixed points to the weight interconnections
of the FCM has not been fully investigated. This is, however, of paramount impor-
tance if one wants to use FCMs in reliable adaptive system identification and control
schemes.

In this chapter, we study first the existence of the above fixed points by using an
appropriately defined contraction mapping theorem. It is proved that when the weight
interconnections fulfill certain conditions, related to the size of the FCM, the concept
values will converge to a unique solution regardless of their initial states. Otherwise the
existence or the uniqueness of equilibria cannot be assured. In view of these results meta
rules of the form, “If weights then fixed point,” are more appropriate to represent the
behavior of an FCM. Fuzzy cognitive networks can work on the basis of such meta rules.
The FCN framework is an attempt to operationally extend FCMs to support the close
interaction with the system they describe and consequently become appropriate for
control applications and adaptive decision making (Kottas et al., 2007a, 2005; Boutalis
et al., 2005). The framework consists of (a) the representation level (the cognitive
graph), (b) the updating mechanism that receives feedback from the real system and
(c) the storage of the acquired knowledge throughout the operation. This way, a fuzzy
cognitive graph representation obtains dynamic features aiming at the control of real
systems and presents a modeling and control alternative, when a precise mathematical
model of the system is not available. To distinguish the proposed operational framework
from traditional FCMs we call it fuzzy cognitive network.

In FCNs the nodes are labeled as control (or input), reference, output, and simple
operation nodes. In the proposed operational framework, the FCN reaches its equi-
librium point using direct feedback from the node values of the real system and the
limitations imposed by the reference nodes. The interconnection weights are adjusted
on-line during this operation by using an extended delta rule, which exploits system
feedback and provides smooth and fast convergence, preventing at the same time weight
values from being saturated. Moreover, the updating procedure is further enhanced and
accelerated by using information from previous equilibrium points of the system opera-
tion. This is achieved by dynamically building a database, which, for each encountered
operational situation, assigns a fuzzy if-then rule connecting the involved weight and
node values. The range of the node and weight variables is dynamically partitioned to
define appropriate membership functions. This way, the weight updating using system
feedback gradually starts from values that are closer to the desired ones and therefore
the procedure is significantly sped-up.

The chapter is organized as follows. Section 21.2 describes the representation
and mathematical formulation of fuzzy cognitive maps. Section 21.3 presents the-
oretical results, where the proof of the existence solution of the concept values of
a fuzzy cognitive map is given. FCNs are invoked in Section 21.4 where the main
components of the framework, its updating, and storage mechanism are presented.
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Selected application case studies are presented in Sections 21.5 and 21.6 demon-
strating the various aspects of the framework. Finally Section 21.7 concludes the
chapter.

21.2 Fuzzy cognitive maps

Fuzzy cognitive maps is a modeling methodology for complex systems, originated from
the combination of fuzzy logic and neural networks. The graphical illustration of an
FCM is a signed fuzzy graph with feedback, consisting of nodes and weighted intercon-
nections. The nodes of the graph are related to concepts that are used to describe main
behavioral characteristics of the system. Nodes are connected by signed and weighted
arcs representing the causal relationships that exist among concepts. Graphical rep-
resentation illustrates which concept influences other concepts, showing the intercon-
nections between them. This simple illustration permits thoughts and suggestions in
reconstructing FCM, such as the adding or deleting of an interconnection or a con-
cept. In conclusion, an FCM is a fuzzy-graph structure, which allows systematic causal
propagation, in particular forward and backward chaining.

C2

C4

C5

C3

C1

Figure 21.1. An FCM with five nodes

21.2.1 Fuzzy cognitive map representation

A graphical representation of FCMs is depicted in Figure 21.1. Each concept represents
a characteristic of the system; in general it represents events, actions, goals, values, and
trends of the system. Each concept is characterized by a number Ai that represents its
value and it results from the transformation of the real value of the system variable
represented by this concept, in the interval [0,1]. All concept values of the form Vector
A which is expressed as

A=
[
A1 A2 · · · An

]T
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with n being the number of the nodes (in Figure 21.1 n = 5). Causality between
concepts allows degrees of causality and not the usual binary values, so the weights of
the interconnections can range in the interval [−1, 1].

The existing knowledge of the behavior of the system is stored in the structure
of nodes and interconnections of the map Each node-concept represents one of the
key factors of the system. Relationships between concepts have three possible types;
either express positive causality between two concepts (Wij > 0) or negative causality
(Wij < 0) or no relationship (Wij = 0). The value of Wij indicates how strongly concept
Ci influences concept Cj . The sign of Wij indicates whether the relationship between
concepts Ci and Cj is direct or inverse. The direction of causality indicates whether
concept Ci causes concept Cj , or vice versa. These parameters have to be considered
when a value is assigned to weight Wij . For the FCM of Figure 21.1 matrix W is equal
to:

W =

⎡
⎢⎢⎢⎢⎣

0 0 0 W41 W51

W12 0 W32 0 W52

0 0 0 0 W53

0 W24 W34 0 0
W15 0 0 W45 0

⎤
⎥⎥⎥⎥⎦

.

The equation that calculates the values of concepts of fuzzy cognitive map, according
to Stylios et al. (2006) is equal to:

Ai(k) = f

⎛
⎜⎝

n∑
j=1
j �=i

WT
ijAj(k − 1) + Ai(k − 1)

⎞
⎟⎠ (21.1)

where Ai(k) is the value of concept Ci at discrete time k, Ai(k−1) the value of concept
Ci at discrete time k− 1, Aj(k− 1) the value of concept Cj at discrete time k− 1, and
Wij is the weight of the interconnection from concept Cj to concept Ci. f is a sigmoid
function used in the fuzzy cognitive map, which squashes the result in the interval [0,1]
and is expressed as

f =
1

1 + e−x
.

Equation (21.1) can also be written as

A(k) = f(W ext ·A(k − 1)) (21.2)

where W ext is such that:

W ext
ij =

i�=j
Wji, W ext

ij =
i=j

dii,

where dii is a variable that takes on values in the interval [0, 1], depending upon
the existence of “strong” or “weak” self-feedback to node i. Note that the case dii

close to 0 is generic, while the dii close to 1 is an exception. See among other ex-
amples, the virtual undersea world example in Kosko (1997, p. 513) where only two
out of 24 nodes are using self-feedback. For the FCM of Figure 21.1 matrix W ext is
equal to:
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W ext =

⎡
⎢⎢⎢⎢⎣

d11 0 0 W41 W51

W12 d22 W32 0 W52

0 0 d33 0 W53

0 W24 W34 d44 0
W15 0 0 W45 d55

⎤
⎥⎥⎥⎥⎦

.

From now on, in this chapter the matrix W ext is just called W . Equation (21.2) can
be rewritten as

A(k) = f(W ·A(k − 1)). (21.3)

In the next section we derive conditions that determine the existence of a unique
solution of (21.3).

21.3 Existence and uniqueness of solutions in fuzzy cognitive
maps

In this section we check the existence of solutions in equation (21.3). We know that the
allowable values of the elements of FCM vectors A lie in the closed interval [0, 1]. This
is a subset of ! and is a complete metric space with the usual l2 metric. We define the
regions where the FCM has a unique solution, which does not depend on the initial
condition since it is the unique equilibrium point.

21.3.1 The contraction mapping principle

We now introduce the contraction mapping theorem (Rudin, 1964).

Definition 1. Let X be a metric space, with metric d. If ϕ maps X into X and there
is a number c < 1 such that

d(ϕ(x), ϕ(y)) ≤ cd(x, y) (21.4)

for all x, y ∈ X, then ϕ is said to be a contraction of X into X.

Theorem 1. Rudin (1964) If X is a complete metric space, and if ϕ is a contraction
of X into X, then there exists one and only one x ∈ X such that ϕ(x) = x.

In other words, ϕ has a unique fixed point. The uniqueness is a triviality, for if
ϕ(x) = x and ϕ(y) = y, then (21.4) gives d(x, y) ≤ cd(x, y), which can only happen
when d(x, y) = 0.

Equation (21.3) can be written as

A(k) = G(A(k − 1)) (21.5)

where G(A(k − 1)) is equal to f(W ·A(k − 1)).
In FCMs A ∈ [0, 1]n and it is also clear according to (21.3) that G(A(k−1)) ∈ [0, 1]n.

If the following inequality is true,

d(G(A), G(A′)) ≤ cd(A,A′)
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then G has a unique fixed point A such that:

G(A) = A.

Before presenting the main theorem we need to explore the role of f as a contraction
function.

Theorem 2. The scalar sigmoid function f , (f = 1/(1 + e−x)) is a contraction of
metric space X into X, where X = [a, b], a ≤ 0, b ≥ 1 according to Definition 1, where:

d(f(x), f(y)) ≤ cd(x, y). (21.6)

Proof. Here f is the sigmoid function, x,y ∈ X, X is as defined above, and c is a real
number such that 0 ≤ c < 1.
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Figure 21.2. Inclination of sigmoid function f

The inclination l of a sigmoid function f is equal to:

l =
∂f

∂x
=

e−x

(1 + e−x)2
=

1
ex

(
1

1 + e−x

)2

=
1
ex

f2 (21.7)

for x ∈ X. Equation (21.7) is plotted in Figure 21.2. According to Figure 21.2 one can
see that the inclination l of f(x) in the bounded set X is always smaller than 1/4, as
follows,

1
4
≥ l (21.8)

and l also equals
d (f(x), f(y))

d (x, y)
= l. (21.9)

From (21.8) and (21.9) we get:

d (f(x), f(y))
d (x, y)

= l < 1. (21.10)
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Thus there is always a number c for which 0 ≤ c < 1, such that (21.10) is:

d (f(x), f(y))
d (x, y)

< c < 1. (21.11)

Theorem 3. There is one and only one solution for any concept value Ai of any
FCM, if: (

n∑
i=1

‖wi‖2

)1/2

< 4 (21.12)

where wi is the ith row of matrix W and ‖wi‖ is the l2 norm of wi.

Proof. Let X be the complete metric space [0, 1]n and G : X → X be a map such that:

d(G(A), G(A′)) ≤ cd(A,A′) (21.13)

for some 0 ≤ c < 1.

Vector G is equal to:

G =

⎡
⎢⎢⎢⎢⎢⎣

f(w1 ·A)
f(w2 ·A)
f(w3 ·A)

...
f(wn ·A)

⎤
⎥⎥⎥⎥⎥⎦

(21.14)

where n is the number of concepts of the FCM, f is the sigmoid function defined above,
wi is the ith row for matrix W of the FCM, where i = 1, 2, ..., n, and by · we denote
the inner product between two equidimensional vectors which both belong to !n.

Assume A and A′ are two different concept values for the FCM. Then we want to
prove the following inequality,

‖G(A) −G(A′)‖ ≤ c ‖A−A′‖ . (21.15)

But ‖G(A) −G(A′)‖ according to (21.14) equals

‖G(A) −G(A′)‖ =

(
n∑

i=1

(f(wi ·A) − f(wi ·A′))2
)1/2

.

According to Theorem 2 for the scalar argument of f(.) which is wi ·A in the bounded
and closed interval [−a, a] with a being a finite number it is true that:

|f(wi ·A) − f(wi ·A′)| ≤ c′i |(wi ·A) − (wi ·A′)|

for every i = 1, 2, ..., n. Thus

|f(wi ·A) − f(wi ·A′)| ≤ c′ |(wi ·A) − (wi ·A′)|

where c′ = max(c′1, c
′
2, ..., c

′
n).
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By using the Cauchy–Schwartz inequality we get:

c′|(wi ·A) − (wi ·A′)| = c′|wi · (A−A′)| ≤ c′‖wi‖‖A−A′‖.

Subsequently, we get:

‖G(A) −G(A′)‖ =
(

n∑
i=1

(f(wi ·A) − f(wi ·A′))2
)1/2

≤
(

n∑
i=1

(c′ ‖wi‖ ‖A−A′‖)2
)1/2

.

Finally:

‖G(A) −G(A′)‖ ≤ c′ ‖A−A′‖
(

n∑
i=1

‖wi‖2

)1/2

.

A necessary condition for the above to be a contraction is:

c′
(

n∑
i=1

‖wi‖2

)1/2

< 1 (21.16)

From equation (21.8) we have that:

c′ ≤ 1/4

so that the condition of equation (21.16) now becomes:

(
n∑

i=1

‖wi‖2

)1/2

< 4. (21.17)

21.3.2 Exploring the results

FCM with two concepts

Suppose that we have an FCM with two nodes. The weight matrix W2 of this FCM is:

W2 =
[
d11 w21

w12 d22

]
.

According to Theorem 3 in order that an FCM with two nodes has a unique concept
solution inequality (21.12) must be true. In this case (21.12) is written as

d11 + w2
21 + w2

12 + d22 < 16.

Since |w21| ≤ 1, |w12| ≤ 1 and dii can at most both take the value of 1, one can easily
see that the above inequality is always true and particularly:

1 + w2
21 + w2

12 + 1 ≤ 4 < 16.



240 Y.S. Boutalis, T.L. Kottas, and M.A. Christodoulou

FCM with three concepts

Suppose that we have an FCM with three nodes. The weight matrix W3 of this FCM
is:

W3 =

⎡
⎣

d11 w21 w31

w12 d22 w32

w13 w23 d33

⎤
⎦ .

Taking into account that the magnitude of every weight value of W3 is less than
one equation (21.12) is now written:

d11 + w2
21 + w2

31 + w2
12 + d22 + w2

32 + w2
13 + w2

23 + d33 ≤ 9 < 16

where it is obvious that, for an FCM with three concepts, the condition for the unique-
ness is always true.

FCM with four concepts

Suppose that we have an FCM with four nodes. The weight matrix W4 of this FCM is:

W4 =

⎡
⎢⎢⎣

d11 w21 w31 w41

w12 d22 w32 w42

w13 w23 d33 w43

w14 w24 w34 d44

⎤
⎥⎥⎦ .

The square root of the sum of the square l2 norm of each row of matrix W4 is equal
to: √√√√ 4∑

i=1

‖wi‖2 =
√

‖w1‖2 + ‖w2‖2 + ‖w3‖2 + ‖w4‖2
. (21.18)

The l2 norm of each row is equal to:

‖wi‖ =

√√√√
4∑

j=1

w2
ij ,

where i denotes the ith row of matrix W4 and j denotes the column index. Equation
(21.18) is now:

√√√√ 4∑
i=1

‖wi‖2 =
√

‖w1‖2 + ‖w2‖2 + ‖w3‖2 + ‖w4‖2

⇒
√√√√ 4∑

i=1

‖wi‖2 =

√√√√√
√√√√

4∑
j=1

w2
j1

2

+

√√√√
4∑

j=1

w2
j2

2

+

√√√√
4∑

j=1

w2
j3

2

+

√√√√
4∑

j=1

w2
j4

2

⇒
√√√√ 4∑

i=1

‖wi‖2 =

√√√√
4∑

j=1

w2
j1 +

4∑
j=1

w2
j2 +

4∑
j=1

w2
j3 +

4∑
j=1

w2
j4 =

√√√√
4∑

j=1

(
4∑

i=1

w2
ji

)

⇒
√√√√ 4∑

i=1

‖wi‖2 =

√√√√√
4∑

j=1

(djj) +
4∑

j=1

⎛
⎝

4∑
i=1,i �=j

w2
ji

⎞
⎠
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Since for the nondiagonal elements |wji| < 1, then : w2
ji < 1.

Finally the above equation concludes:
√√√√√

4∑
j=1

(djj) +
4∑

j=1

⎛
⎝

4∑
i=1,i �=j

w2
ji

⎞
⎠ ≤ √

4 + 12 = 4

Subsequently, we get:
√√√√ 4∑

i=1

‖wi‖2 ≤ 4.

According to Theorem 3 in order that only one solution exists for the concepts of
an FCM the following inequality must be true,

√√√√ 4∑
i=1

‖wi‖2
< 4.

We finally get the next conclusion: since generically most of the dii will be zero,
“an FCM with four concepts has a unique solution generically.”

FCM with more than four concepts

Suppose that we have an FCM with more than four nodes. The weight matrix Wn of
the FCM is:

Wn =

⎡
⎢⎢⎢⎢⎣

d11 w21 w31 ... wn1

w12 d22 w32 ... wn2

w13 w23 d33 ... wn3

... ... ... ... ...
w1n w2n w3n ... dnn

⎤
⎥⎥⎥⎥⎦

where n > 4. The square root of the sum of the square l2 norm of each row of matrix
Wn is given by:
√√√√

n∑
i=1

‖wi‖2 =
√

‖w1‖2 + ‖w2‖2 + · · · + ‖wn‖2 =

√√√√
n∑

j=1

(
n∑

i=1

w2
ji

)

⇒
√√√√

n∑
i=1

‖wi‖2 =

√√√√√
n∑

j=1

(djj) +
n∑

j=1

⎛
⎝

n∑
i=1,i �=j

w2
ji

⎞
⎠ ≤

√√√√
n∑

j=1

(djj) +

√√√√√
n∑

j=1

⎛
⎝

n∑
i=1,i �=j

w2
ji

⎞
⎠.

Finally we conclude that for an FCM with n > 4 concepts Theorem 3 is true when:
√√√√√

n∑
j=1

⎛
⎝

n∑
i=1,i �=j

w2
ji

⎞
⎠ ≤ 4 −

√√√√
n∑

j=1

(djj). (21.19)

Therefore, when n > 4 the condition for the uniqueness of solution of (21.3) depends
on the number of diagonal dii elements of the FCM that are nonzero and the size of the
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FCM. However, equation (21.19) provides us with an upper bound for the weights of
the FCM. When the weights are within this bound the solution of (21.3) is unique and
therefore the FCM will converge to one value regardless of its initial concept values.
This in turn gives rise to a meta rules representation of the FCM having the form
“If weights then fixed point”. This representation is employed by fuzzy cognitive
networks, which are presented in Section 21.4.

21.3.3 FCM with input nodes

So far we have not considered the existence of input nodes. This kind of node is also
called “steady” node in Kottas et al. (2007a) in the sense that they influence but are
not influenced by the other nodes of the FCM. We now show that the results obtained
in the previous section are still valid. For the FCM of Figure 21.3 C1 is such an input
(or steady) node. Its weight matrix W is equal to:

W =

⎡
⎢⎢⎣

0 0 0 0
w12 d22 0 w42

w13 w23 d33 w43

0 w24 w34 d44

⎤
⎥⎥⎦

while vector A containing the node values is:

A =
[
U1 A2 A3 A4.

]T
.

C2 C3

C4

C1

Figure 21.3. FCM with one input node

For the FCM of Figure 21.3, matrix G in equation (21.14) assumes now the following
form,

G =

⎡
⎢⎢⎣

U1

f(w2 ·A)
f(w3 ·A)
f(w4 ·A)

⎤
⎥⎥⎦
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where U1 is the input to FCM nodes. In a more general form matrix G can be written
as

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

...
Um

f(wm+1 ·A)
f(wm+2 ·A)
f(wm+3 ·A)

...
f(wm+n ·A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21.20)

corresponding to vector A =
[
U1 U2 · · ·Um Am+1 Am+2 · · · Am+n

]T , where m is the
number of inputs and n is the number of the other concept nodes in FCM. Under this
definition equation (21.5) assumes the same form:

A(k) = G(A(k − 1)). (21.21)

The next theorem proves that for matrix G and vector A defined above the results of
Theorem 3 are still valid.

Theorem 4. For an FCM with input nodes, with its concept values driven by (21.21),
where A and G are described in (21.20), there is one and only one solution for any
concept value Ai if equation (21.12) is fullfiled; that is,

(
n∑

i=1

‖wm+i‖2

)1/2

< 4

where wm+i is the (m + i)th row of matrix W and ‖wm+i‖ is the l2 norm of wm+i.

Proof. Assume A and A′ are two different concept values for the FCM having one or
more inputs. Then we want to prove again inequality (21.15); that is,

‖G(A) −G(A′)‖ ≤ c ‖A−A′‖ .

But since input node values are not influenced by the other nodes of the FCM
‖G(A) −G(A′)‖ according to (21.20) is equal to:

‖G(A) −G(A′)‖ =

(
m∑

i=1

(Ui − Ui)2 +
n∑

i=1

(f(wm+i ·A) − f(wm+i ·A′))2
)1/2

where m is the number of inputs and n is the number of the other nodes in the FCM.
The above equation is equivalent to the following,

‖G(A) −G(A′)‖ =

(
0 +

n∑
i=1

(f(wm+i ·A) − f(wm+i ·A′))2
)1/2

.



244 Y.S. Boutalis, T.L. Kottas, and M.A. Christodoulou

Therefore, ‖G(A) −G(A′)‖ assumes quite the same form with that appearing in The-
orem 3 leading to the same condition; that is,

(
n∑

i=1

‖wm+i‖2

)1/2

< 4.

21.4 The fuzzy cognitive network approach

As shown in Section 21.3 the concept values of the FCM with a specified matrix W
have a unique solution as far as (21.12) and consequently (21.19) are fulfilled. The
perspective of transforming FCMs into a modeling and control alternative requires
first to update its weight matrix W so that the FCM can capture different mappings
of the real system, and second to store these different kinds of mappings. The fuzzy
cognitive network (Kottas et al., 2007a) has been proposed as an operational extension
framework of FCM, which updates its weights and reaches new equilibrium points
based on the continuous interaction with the system it describes. Moreover, for each
equilibrium point a fuzzy rule based storage mechanism of the form “If weights then
fixed point” is provided, which facilitates and speeds up its operation. The components
of FCN are briefly presented below.

21.4.1 Close interaction with the real system

The operation of the FCN in close cooperation with the real system it describes might
require continuous changes in the weight interconnections, depending on feedback re-
ceived from the real system. Figure 21.4 presents the interactive operation of the FCN
with the physical system it describes. The weight updating procedure is described
below.

SystemFCN

A (k–1)system

A (k)FCNdesiredvalues

Figure 21.4. Interactive operation of the FCN with the physical system

21.4.2 Weight updating procedure

The updating method takes into account feedback node values from the real system.
Using the updated weights the FCN reaches a new equilibrium point. In this approach
the updating is made based on the conventional delta rule, which is described by the
following equations,

pj = Asystem
j (k) −Gi(AFCN (k − 1)) (21.22)

Wij(k) = Wij(k − 1) + Rij(apj(1 − pj))AFCN
i (k) (21.23)
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where pj is the error, a is the learning rate (usually set at a = 0.1), Gi is the ith
element of matrix G, and Rij is a calibration variable which prevents the FCN node
and weight values from being driven in their saturation point. Rij can be computed by
the following formula (Kottas et al., 2005)

Rij = η

i=n∑
i=1

|Wij |
|Wij | if Wij 
= 0 and Rij = 0 if Wij = 0

where constant value η is used to drive values Rij in the range [0, 1]. In most practical
situations η = 0.1. The vector AFCN in equation (21.22) refers to the response of the
FCN, after it receives feedback from the system. In the case where the control objective
is that one or more nodes reach a desired value then for these nodes equation (21.22)
is rewritten as

pj = Adesired
j (k) −Gi(AFCN

i (k − 1)). (21.24)

After the weights updating, equation (21.1) will give new equilibrium concept values
to the FCN. If the weights are chosen such that they meet the condition derived in
Section 21.3, these values will be unique. The calculated node values will be applied
to the real system, which in turn provides feedback to the FCN to be used by the new
updating cycle according to Figure 21.4. Error pj appearing in equations (21.22) and
(21.23) is actually estimated for each one of the nodes j of the FCN, regardless of its
label. Equation (21.24) is used for calculating the error of desired value nodes, while
equation (21.22) is used for the errors of all other node values. When the real node values
coming as a feedback from the system are fed to the FCN, this may present nonzero
error in all of its nodes. The error becomes zero only when the weights are updated so
that the node values of the FCN match exactly the values of the corresponding physical
quantities.

21.4.3 Storing knowledge from previous operating conditions

The procedure described in the previous subsection modifies FCN’s knowledge about
the system by continuously modifying the weight interconnections and consequently
the node values. During the repetitive updating operation the procedure uses feed-
back from the system variables. This means that in each iteration all the intermediate
weight and node values, some of which are control values, are fed to the real system
and its response is used to give the new updating direction. It is obvious that this
procedure continuously annoys the physical system, something that in many cases is
undesirable. In the sequence we propose a methodology that alleviates this annoyance
and further speeds up the updating procedure. This is done by storing the previous
acquired operational situations in a fuzzy if-then rule database, which associates in a
fuzzy manner the various weights with the corresponding equilibrium node values. This
storage mechanism actually creates meta rules of the form “If weights then equilibrium
point” in accordance with the results of Section 21.3. The procedure is explained as
follows.

Suppose for example that the FCM of Figure 21.1 has a unique equilibrium point

A=
[
A1 A2 A3 A4 A5

]T
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which is connected with the weight matrix W :

W =

⎡
⎢⎢⎢⎢⎣

d11 0 0 a41 a51

a12 d22 a32 0 a52

0 0 d33 0 a53

0 a24 a34 d44 0
a15 0 0 a45 d55

⎤
⎥⎥⎥⎥⎦

.

In order that A is a unique solution of equation (21.1) weight matrix W has to be such
that inequality (21.12) is fulfilled. For weight matrix W inequality (21.12) takes the
form:

a2
41 + a2

51 + a2
12 + a2

32 + a2
52 + a2

53 + a2
24 + a2

34 + a2
15 + a2

54 < 16 −
√√√√

5∑
j=1

(djj)

where n = 5 is the number of concepts of the FCN.
Suppose also that the FCN in another operation point is related to the following

weight matrix W , which also fulfills (21.12),

W =

⎡
⎢⎢⎢⎢⎣

d11 0 0 b41 b51
b12 d22 b32 0 b52
0 0 d33 0 b53
0 b24 b34 d44 0
b15 0 0 b45 d55

⎤
⎥⎥⎥⎥⎦

with the unique equilibrium point being:

A=
[
B1 B2 B3 B4 B5

]T
.

Inequality (21.12) for the weight matrix W has now the form:

b241 + b251 + b212 + b232 + b252 + b253 + b224 + b234 + b215 + b254 < 16 −
√√√√

5∑
j=1

(djj).

The fuzzy rule database, which is obtained using the information from the two
previous equilibrium points, is depicted in Figures 21.5 and 21.6 and is resolved as
follows.
There are two rules for the description of the above two different equilibrium situations:
Rule 1
if node C1 is mf1 and node C2 is mf1 and node C3 is mf1 and node C4 is mf1 and
node C5 is mf1
then w12 is mf1 and w15 is mf1 and w24 is mf1 and w32 is mf1 and w34 is mf1 and
w41 is mf1 and w45 is mf1 and w51 is mf1 and w52 is mf1 and w53 is mf1
Rule 2
if node C1 is mf2 and node C2 is mf2 and node C3 is mf2 and node C4 is mf2 and
node C5 is mf2
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Figure 21.5. Left-hand side (if-part)
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Figure 21.6. Right-hand side (then-part)

then w12 is mf2 and w15 is mf2 and w24 is mf2 and w32 is mf2 and w34 is mf2 and
w41 is mf2 and w45 is mf2 and w51 is mf2 and w52 is mf2 and w53 is mf2

The number and shape of the fuzzy membership functions of the variables of both
sides of the rules are gradually modified as new desired equilibrium points appear to the
system during its operation. To add a new triangular membership function in the fuzzy
description of a variable, the new value of the variable must differ from one already



248 Y.S. Boutalis, T.L. Kottas, and M.A. Christodoulou

encountered value more than a specified threshold. The threshold comes usually as a
compromise between the maximum number of allowable rules and the detail in fuzzy
representation of each variable.

21.5 Controlling a wastewater anaerobic digestion unit (Kottas
et al., 2006)

Rapid industrialization has resulted in the generation of a large quantity of effluents
with high organic contents. These effluents, if treated properly, can contribute in envi-
ronmental protection and energy recovery (Forster and Wase, 1987; Miyamoto, 1997).
Sewage sludge, food industry wastes, and wastewater are attractive substrates for the
production of biogas (Marchaim, 1992). In recent years, considerable attention has been
paid toward the development of reactors for the anaerobic treatment of wastes leading
to the conversion of organic molecules into biogas (Nemerow and Dasgupta, 1991).
Within the most popular designs are the upflow anaerobic sludge bed (UASB) and the
expanded granular sludge bed (EGSB) reactors. Successful operation of both reactors
relies on the occurrence of granular sludge with excellent settling properties and high
activity (Skiadas et al., 2003). Furthermore, the growth of anaerobic microorganisms
depends on numerous factors, including residence time, temperature, redox potential,
pH, and nutrient composition (Aivasidis and Diamantis, 2005). Monitoring and control
of the anaerobic process is essential for stable operation, prevention of process failure,
and utilization of maximum reactor capacity. In this section we present a method for
controlling such an anaerobic process using FCN. The experiments were carried over
an experimental pilot plant reactor.

The pilot plant is a unit of anaerobic sludge bed reactor. The system was equipped
with pH and temperature control. The reactor was used for methanization of preacid-
ified food industry wastewater and operated continuously at an increasing volumetric
organic loading rate by increasing wastewater flowrate. The experimental unit is pre-
sented in Figure 21.7. The original wastewater (diluted peach pulp) was acidified using
a continuous stirred tank reactor (CSTR) at hydraulic residence time (HRT) equal to
6–8 h. The pilot plant was monitored daily for biogas and methane production, pH, and
temperature. Additionally, at steady-state conditions samples were obtained from the
influent and effluent of the reactor and analyzed for total and soluble COD, ethanol,
and acetic, propionic, and butyric acid.

The graph shown in Figure 21.8 represents a fuzzy cognitive network for the anaer-
obic digestion process. This graph was produced based on the experience gained from
the operation of the experimental unit. The graph has 11 nodes, where nodes C1, C2,
C3, and C11 stand for wastewater flowrate, reactor pH, reactor temperature, and wa-
ter’s reactor reflow, respectively. These nodes are steady value (input) nodes and at
the same time control nodes, since a change of their values affects the values of the
output nodes. Nodes C4, C5, C6, C7, C8, C9, and C10 are output nodes representing
HRT, soluble COD inflow, soluble COD outflow, flow of CO2, flow of the rest gases
of the gas flow, gas flow, and flow of the CH4, respectively. The volume of the sludge
bed is not considered to be a control node in this graph because it is kept constant
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Figure 21.7. Schematic representation of the pilot plant used for anaerobic wastewater treat-
ment: (1) raw wastewater, (2) acidification tank, (3) sedimentation tank, (4) pH conditioning
tank, (5) recycle stream, (6) UASB reactor, (7) biogas measurement and analysis, (8) treated
effluent

(1)-Qin

(2)-pH

(3)-T

(4)-HRT

(5)-CODin

(6)-CODout

(7)-QCO2

(8)-Qresgas

(9)-gasflow

(11)-Qrec

(10)-QCH4

Figure 21.8. The FCN designed for the control of the anaerobic digestion process
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by regularly subtracting sludge. With this graph representation W and A assume the
following form.

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 W5,4 0 0 0 0 0 0

W1,5 W25 W3,5 W4,5 1 0 0 0 0 0 W11,5

W1,6 W2,6 W3,6 W4,6 W5,6 1 0 0 0 0 W11,6

W1,7 W2,7 W3,7 W4,7 0 W6,7 1 0 0 0 W11,7

W1,8 W2,8 W3,8 W4,8 0 W6,8 0 1 0 0 W11,8

W1,9 W2,9 W3,9 W4,9 0 W6,9 W7,9 W8,9 1 0 W11,9

W1,10 W2,10 W3,10 W4,10 0 0 0 0 W9,10 1 W11,10

0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and A =
[
U1 U2 U3 A4 A5 A6 A7 A8 A9 A10 U11

]
.

21.5.1 Control of the process using the FCN

Once the FCN has been trained using experimental data, it is capable of adjusting the
values of the control nodes in order to drive the real system to a new desired equilibrium
point. The control mechanism is described below.

Suppose that the system is in a specific equilibrium point with node values given
from the next D vector:

D =
[
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

]
.

In that specific point the designer-engineer demands to move the real system to a new
equilibrium point, which is different from the one that the system already has. Once
the desired values of the node or nodes have been determined, the control system must
decide the values of the control nodes (C1, C2, C3, and C11) in order to drive the real
system to the desired equilibrium point. Suppose, for example, that the specifications
require the desired value of node C10 to be E10. The error p10 for the value of node
C10 is:

p10 = E10 −G10(Asystem) = E10 − 1

1 + e
−
(

n∑
i=1,i�=10

Asystem
i Wij+Asystem

10

) .

By taking the partial derivative of the above equation in respect to the control node
values the following delta rule is derived, which determines the required change of the
control nodes’ values:

A1(k) = A1(k − 1) + p10(1 − p10)W1,10

A2(k) = A2(k − 1) + p10(1 − p10)W2,10

A3(k) = A3(k − 1) + p10(1 − p10)W3,10

A11(k) = A11(k − 1) + p10(1 − p10)W11,10.

In a more general form the above equations can be rewritten as follows,
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pj = Adesired
j (k) −Gi(Asystem(k − 1)) (21.25)

Acontrol
i (k) = Acontrol

i (k − 1) + pj(1 − pj)Wij (21.26)

where the “control” superscript is used to indicate that the updating is performed only
to the control nodes.

By using the fuzzy rule database of the already trained FCN we calculate the values
of the interconnections related to the new control nodes’ values. We repetitively apply
equations (21.25) and (21.26) in order to minimize the error p10. Once the error p10

reaches zero (actually becomes sufficiently small), the FCN control mechanism sends
the new control nodes’ values to the physical system. When the real system is triggered
by the control values it returns feedback from the measurable nodes’ values. In the case
where the feedback value of node C10 is not the desired one, this means that the FCN
is facing an operational condition not encountered during its training stage. It can
enrich its knowledge by using the mechanism described in the previous section. First,
equations (21.22) and (21.23) are repetitively executed in order to adjust the FCN
weights, which in turn reflect the new operational knowledge for the FCN. Next, the
fuzzy rule database is updated according to the procedure described in the previous
section so that it incorporates the new acquired knowledge. A pictorial representation
of the above procedure is given in Figure 21.9.

The method presented here presents some advantages in comparison to traditional
control methods. The most important innovation of the FCN control mechanism is that
it does not require any mathematical knowledge for the description of the real system.
Actually FCNs combine the knowledge of experts and the operational knowledge (data)
derived from the operation of the system. The experts’ knowledge is mostly used to
construct the cognitive graph and probably to give initial weight sets. Experimental
data from the real system are used to enrich the knowledge of the FCN on the sys-

Weight updating

Fuzzy rule database

FCN

desired values
from experts

NO
YES

0pj

Update control node’s

Figure 21.9. Control structure in order to achieve the desired equilibrium point defined from
the experts
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tem’s operating conditions. Moreover, during its set points control actions, the FCN
adapts its knowledge. Therefore the proposed control mechanism is an adaptive control
scheme.

21.5.2 Results

To test the proposed methodology off-line we used data obtained from the operation of
the experimental anaerobic digestion unit of the laboratory of wastewater management
and treatment technologies of Democritus University of Thrace (DUTH). For various
representative values of the control nodes, the resulting steady-state values of the other
nodes were measured. The 11 node values obtained this way form a vector representing
a real operational condition of the system and can be used to train or test the FCN. A
number of 142 such data vectors were experimentally obtained. There 98 of these data
vectors remaining selected to initially train the FCN using the procedure described
above. The were 44 data vectors were used to test the generalization ability of the
trained FCN.

Figure 21.10 shows 28 of the 44 test data values of the three control nodes Qin, T,
and pH. These values were selected randomly. However, they are arranged and displayed
in respect to the time (in days) they were measured. Figure 21.11 shows the production
of CH4 (node 10) when the above control node values are imposed on the real system
and on the FCN alone, respectively. The dotted spots represent the measured CH4

values, while the solid line connects the values of CH4, which are estimated by the
FCN. It can be observed that the estimation error produced by the off-line training
procedure is relatively small having a mean value of 7.4. However, Figure 21.11 clearly
demonstrates that the FCN can provide relatively accurate results even for operational
conditions about which it has not been taught.
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Figure 21.10. A part of the experimental data used to test FCN: (a) Qin, inflow to the
UASB reactor; (b) T , reactor temperature; (c) pH: reactor pH
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Figure 21.11. A comparison between estimated and measured QCH4 values for the experi-
mental anaerobic digestion process

The above procedure tests only the approximation and generalization ability of the
FCN. To test the proposed control mechanism introduced in the previous subsection we
perform the following experiment. Suppose we want to regulate Qin, T, and pH in order
to change the value of QCH4. Let us select the time instant 33,52d, where according
to our measurements QCH4 is equal to value 6,87158. At that specific time the values
of control nodes are: Node 1(Qin): 9,85, node 2(pH): 6,79, node 3(T): 36,5 and node
11(Qrec): 58. Suppose now, that we require raising QCH4 to 8,072414 (this value is one
of the already measured experimental values, not used for training) in a relatively small
time interval. The latter implies that control node 11 cannot actually affect the process
and therefore we should rely only on changes in the other three control nodes. The
control mechanism must regulate the values of control nodes (Qin, T, and pH) in order
to reach the desired value of QCH4. By applying equation (21.25) with the desired
value of QCH4, we calculate p10 which is equal to 1,200834. For node 11 (Qrec) there
is no need to change its value because we assumed that practically it is kept constant.
Applying p10 to equation (21.26) (with i = 1, 2, 3 and i 
= 11 ), the FCN regulates,
according to the procedure described in the previous section, the values of nodes 1, 2,
and 3 to the values: Node 1(Qin): 11,79, node 2(pH): 6,60, node 3(T): 36,7, and node
11(Qrec): 58. It has to be noted here that the experimental data for nodes 1, 2, 3, and
11 associated with QCH4 = 8,072414 are: Node 1(Qin): 11,7835, node 2(pH): 6,5912,
node 3(T): 36,727, and node 11(Qrec): 58. Therefore, the control procedure provides
realistic estimations for the desired values of the control nodes. Various control case
studies have been applied. In the sequel we refer to one of these in order to describe in
detail the methodology followed.

The control paradigm is aiming at driving the produced gas flow from the initial
value 6.22 l/d to 5.34 l/d by regulating Qin without regulating pH. Figure 21.12 shows
characteristic graphs. Due to the slow process variations the FCN does not respond
immediately to the measured values unless a certain time period has elapsed since its
last control action. This period was selected to be 400 sec, that is, almost 7 min.

Looking at Figure 21.12 we observe that the control actions can be divided into three
phases. Phase A–B (400 sec): although Qin was changed from 4.22 l/d to 2.87 l/d gas
production was changed only slightly, while pH was kept constant. This new situation
drove FCN to further changing Qin from 2.87 l/d to 3.87 l/d.
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Figure 21.12. Characteristic graphs of a control experiment

Phase B–C (800 sec): after 800 sec of operation with the new value Qin = 3.87 l/d
the gas flow reaches the desired value. However, since the pH value is not one of the
values that the FCN knows from its initial training it proceeds to again change Qin

from 3.87l/d to 2.24l/d. Finally, after 3800 sec without further changes in Qin the ex-
perimental unit reaches the desired equilibrium point and the FCN stores the new
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acquired knowledge. In this experiment, in order to avoid producing frequent useless
control commands, apart from the use of the 400 sec time interval between consecutive
control actions, the following strategy was found to give the best results.

• If the FCN observes a rapid change in one of the process characteristic quantities
(slope of change grater than 50 percent) it considers the new operation situation as
a new equilibrium situation.

• If the observed slope is less than 50 percent then the FCN postpones the application
of any control action for the next 400 sec. After this time elapses then it checks again
for the existence of a new equilibrium situation.

21.5.3 Discussion

This example presents a highly nonlinear system, where the initial mathematical knowl-
edge about it is practically nonexistent or not used at all. The particular structure of the
network gave us the opportunity to determine an alternative procedure for determining
the values of the control nodes. Since the control nodes are steady nodes, and therefore
they cannot be influenced by other nodes of the FCN, their values, appropriate for
driving the real system in a desired operation condition are not determined indirectly
by the weight updating of the entire FCN, but rather by using a procedure similar to
weight updating applied now to control node value updating (equation (21.26)). This
is a useful extension of the proposed updating mechanism to cover the applications
where the control nodes are steady value nodes.

21.6 The FCN approach in tracking the maximum power point
in PV arrays (Kottas et al., 2007b)

The studies on the photovoltaic systems are increasing extensively because they can be
considered as a large, secure, essentially inexhaustible and broadly available resource as
a future energy supply. However, the output power induced in the photovoltaic modules
is influenced by the intensity of solar cell radiation and temperature of the solar cells.
Therefore, to maximize the efficiency of the renewable energy system, it is necessary to
track the maximum power point of the PV array. A PV array is by nature a nonlinear
power source, which under constant uniform irradiance has a current–voltage (I–V)
characteristic like that shown in Figure 21.13.

There is a unique point on the curve, called the maximum power point (MPP),
at which the array operates with maximum efficiency and produces maximum output
power. It is well known that the MPP of a PV power generation system depends
on array temperature, solar insolation, shading conditions, and PV cells ageing, so it
is necessary to constantly track the MPP of the solar array. A switch-mode power
converter, called a maximum power point tracker (MPPT), can be used to maintain
the PV array’s operating point at the MPP. The MPPT does this by controlling the
PV array’s voltage or current independently of those of the load. If properly controlled
by an MPPT algorithm, the MPPT can locate and track the MPP of the PV array.
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Figure 21.13. PV array I–V and P–V characteristics
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Figure 21.14. PV array I–V characteristics at various insolation levels

However, the location of the MPP in the I–V plane is not known a priori. It must be
located, either through model calculations or by a search algorithm. Figure 21.14 shows
a family of PV I–V curves under increasing irradiance, but at constant temperature.
Needless to say there is a change in the array voltage at which the MPP occurs. For
years, research has focused on various MPP control algorithms to draw the maximum
power of the solar array (Hiyama et al., 1995; Ro and Rahman, 1998; Miyatake et al.,
2002; Bahgat, 2005; Salameh and Taylor, 1990; Koutroulis et al., 2001; Masoum et al.,
2002; Won, 1994; Simoes and Pranceschetti, 1999).

FCNs can also be used for MPP quite efficiently (Kottas et al., 2007b; Karlis
et al., 2007). The FCN can be designed so that its nodes represent essential opera-



21 The FCN Framework: Development and Applications 257

tional(voltage, current, insolation, temperature) and control (current) variables of the
PV system. The node interconnection weights are determined using data which are
constructed so that they cover the operation of a PV system under a wide range of
different climatic conditions. Once the FCN is trained it can be mounted on any PV
system. The performance of the method using climatic data for a specific PV system
of the market, such as changing insolation and temperature and seasonal variations is
very satisfactory.

The graph shown in Figure 21.15 is the FCN representation of the components
of a photovoltaic system, which are involved in its operation and can determine its
maximum power point performance. The graph has six nodes, which are related to the
following physical quantities of the photovoltaic system.

S(1) T(2)

V(3) I(4) W(5)

Equilibriumnode
(6)

Figure 21.15. An FCN designed for the photovoltaic project

Node C1 represents the irradiation with range in the interval [0 1]. Zero is the
minimum point of the irradiation (usually 0mW/cm2) and one is the maximum point,
corresponding to 100mW/cm2.

Node C2 represents the temperature which also must be in the interval [0 1]. Zero
is the minimum point of the temperature (usually −30 ◦C) and one is the maximum
point, usually 70 ◦C.

Node C3 represents the optimum voltage of the photovoltaic system for the clima-
tological data obtained at the specific point of time, which also must be in the interval
[0 1]. Zero is the minimum point of the voltage (usually 0 Volt) and one is the maximum
point Vmax.

Node C4 represents the optimum current of the photovoltaic system for the clima-
tological data obtained at the specific point of time, which also must be in the interval
[0 1]. Zero is the minimum point of the current (usually 0 Ampere) and one is the
maximum point Imax.

Node C5 expresses the optimum output power of the photovoltaic system for the
climatological data obtained at the specific point of time, which also must be in the
interval [0 1]. Zero is the minimum point of the power (usually 0 Watt) and one is the
maximum point Wmax, where Wmax is a characteristic given from PV operational data
under Tmin and Smax.
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Node C6 is an artificial design node, the value of which is used to regulate the
equilibrium point in the nodes C3, C4, and C5. The value of C6 is steady and equals
1. The weights W63, W64, and W65 are originally set to zero and are allowed to change
only when one or more weights affecting nodes 3, 4, and 5 exceed the value of absolute
1. For example, the value of weight W63 is allowed to be updated when the weights
that affect node C3 (W13, W43, and W53 ) are going to take values larger than the
absolute value 1. In this situation weight W63 is activated and its value is no longer
set to zero. By using equilibrium node C6 and the weights connecting this node with
nodes C3, C4, and C5, we manage to regulate the values of nodes C3, C4, and C5 by
always keeping values of the graph weights below absolute value 1.

In this configuration nodes C1, C2, and C6 are steady value nodes and nodes C3,
C4, and C5 could be control nodes, but only node C4 is chosen to be the control node.
Its value is used to regulate the current of the system. The regulation of the current of
the system means that a different power is now the output power of the photovoltaic.
Control nodes are the nodes the values of which will be used by the real system as
control actions. Node C4 is used to calculate the optimum current needed to regulate
the output power of the photovoltaic in the maximum point.

21.6.1 Simulation of the PV system

Using the equivalent circuit of a solar cell (Figure 21.16) the nonlinear I–V character-
istics of a solar array are extracted, neglecting the series resistance (Hua and Shen,
1998):

I0 = Iph − Irs(e(qV0)/(kTA) − 1) − V0

Rsh
(21.27)

where I0 is the PV array output current (A); V0 is the PV array output voltage (V); q
is the charge of an electron; k is Boltzmann’s constant in J/K; A is the p–n junction
ideality factor; T is the cell temperature (K); and Irs is the cell reverse saturation
current. The factor A in equation (21.27) determines the cell deviation from the ideal
p–n junction characteristics.

The photocurrent Iph depends on the solar radiation and the cell temperature as
stated in the following equation,

Iph = (Iscr + ki(T − Tr))
s

100
(21.28)

where Iscr is the PV array short circuit current at reference temperature and radiation,
ki is the short circuit current temperature coefficient (A/K), and S is the solar radiation

Ip

ID

IA

Rs

Rsh

I0
V0

Figure 21.16. Equivalent circuit of a solar cell
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(mW/cm2). The reverse saturation current Irs varies with temperature according to
the following equation,

Irs = Irr

(
T

Tr

)3

e(1.115/k′A)((1/Tr)−(1/T )) (21.29)

where Tr is the cell reference temperature, Irr is the reverse saturation current at Tr,
and k′ is the Boltzmann’s constant in eV/K and the bandgap energy of the semicon-
ductor used in the cell is equal to 1.115.

Finally, the next equation was used in the computer simulations to obtain the open
circuit voltage of the PV array:

Voc =
AkT

q
ln
(

Iph + Irs

Irs

)
. (21.30)

From equations (21.28), (21.29), and (21.30) we get:

Irr =
(Iscr + ki(T − Tr)) s

100

e
Vocq
AkT − 1

[(
Tr

T

)3

e−(1.115/k′A)((1/Tr)−(1/T ))

]
(21.31)

and from equation (21.27):

Rsh =
Voc

−Irs(e(qVoc)/(kTA) − 1)
. (21.32)

The required data for identifying the maximum operating point at any insolation level
and temperature are the following.

(i) ki

(ii) Open circuit voltage Voc (for initial conditions Tr = 25◦C, S = 100mW/cm2)
(iii) Short circuit current Iscr (for initial conditions Tr = 25◦C, S = 100mW/cm2)
(iv) Maximum power voltage Vmpp (for initial conditions Tr = 25◦C, S = 100mW/cm2)
(v) Maximum power current Impp (for initial conditions Tr = 25◦C, S = 100mW/cm2)

all given by the PV array manufacturer

21.6.2 Control of the PV system using FCN

The FCN is first trained off-line by appropriately constructed meteorological data and
using ideal node values based on the equations of Section 21.6.1. The off-line training
is performed in an incremental manner. This means that for each training data vector
which contains PV value variables corresponding to different operation conditions, the
FCN weights are updated to comply with the data vector. Moreover, this new acquired
knowledge is stored in a fuzzy rule database.

Once the FCN is trained off-line it can be connected to the PV system according
to Figure 21.17. The FCN receives feedback from the PV system. The FCN weights
appropriate for these feedback values are extracted by using the fuzzy rule database.
Using these weights the FCN reaches a new equilibrium point using equation (21.21).
The control node value of the FCN is then used to regulate the PV system in order
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Figure 21.17. Simplified flowchart of the control process of the PV array using FCN

to give maximum power for the current conditions. The control method was tested for
one year (climatological data from the year 2002 of the area of Xanthi, Greece, were
given to the off-line training of the algorithm of Figure 21.17, while the PV array used
for the simulated tests was the BP270L PV array). In Figure 21.18a climatological
data derived from the day 14/01/2002 were tested in the algorithm of Figure 21.17, in
order to test the trained FCN. The climatological data of the specified day were not
given for off-line training. One can observe that the FCN trained by climatological data
can offer highly efficient control laws in order to track the maximum power point of a
PV array as can be seen in Figure 21.18b, where the estimated MPP from the FCN
presents only 3.09% with respect to the ideal MPP values. This specific day was one
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Figure 21.18. Comparison between (a) evaluated and (b) achieved using FCN MPP of the
PV array for the least sunny day of the year 2002
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of the less sunny days of the year, while the day at 09/07/2002, was one of the sun-
niest days of the year, but not the one with maximum power production, because the
power produced depends not only on solar irradiation but also on temperature. Look-
ing at Figures 21.18a and 21.18b, where the estimated MPP from the FCN presents a
2.24% error, one can conclude that the FCN MPP method can better estimate the
MPP when irradiation and temperature are at high levels and the power tracked
from the PV array is at high levels too. Finally, the average annual error of the FCN
MPP method was estimated to be 2.01% when the method was tested for all days of
year 2002.

21.6.3 Discussion

In this application the FCN was trained off-line to optimally control a PV array so
that it reaches its MPP of operation. After the FCN is trained, its adaptive ability is
unplugged and it operates based only on its already acquired and stored knowledge. An
adaptive version of the same application is presented in Kottas et al. (2007b), where
the FCN is combined with a conventional fuzzy MPP controller increasing the method
further. The particularity appearing in this application is related to the structure of the
cognitive graph itself and especially with the introduction of an equilibrium node (node
6). It was initially observed that if the FCM were designed based only on the other five
nodes and on their interdependencies, there are operating conditions where the FCN
weights cannot be kept under their saturation values. This implies that the cognitive
graph, based only on the five nodes, is not sufficient for representing this particular
system. Therefore, using artificial node(s) to extend the graph, the representation is
more realistic. This observation demonstrates the need for devising new techniques,
which will extend the initial structure of the cognitive graph, based on some measures
of its inefficiency.
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Figure 21.19. Comparison between (a) evaluated and (b) achieved using FCN MPP of the
PV array for the sunniest day of the year 2002
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21.7 Conclusions

The fuzzy cognitive network (FCN) framework is a proposition for the operational
extension of fuzzy cognitive maps to support the close interaction with the system they
describe and consequently become appropriate for adaptive decision making and control
applications. Aspects related to its development and its application were presented in
this chapter. Basic theoretical results based on theorems specifying the conditions for
the uniqueness of solutions for the FCN concept values were initially given. These
results give rise to a special form of knowledge representation through FCN, expressed
with the help of a special form of meta rules. Two selected successful applications
of FCN were presented. The first one is concerned with the control of a wastewater
treatment unit and the second with the regulation of a PV system to reach its MPP
operation. In the discussion subsection of these applications some specific aspects of
the use of FCN in applications are shown.
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Spectral Data
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Abstract: Self-organizing maps (som) have been widely used in different data analy-
sis fields for both their clustering and visualisation properties. However, dealing with
spectral data, artificial neural networks (ann) have generally been applied within a
supervised context rather than unsupervised one. In this chapter, we present how the
use of self-organizing maps may help end-users to visualise spectral data. While rep-
resenting the Kohonen map, external characteristics associated with spectra can be
projected on the map. Dealing with high-dimensional data, a dimension reduction is
proposed to provide synthetic representation of the map to the most relevant variables.

Keywords and phrases: Spectral data, self-organising maps, visualisation

22.1 Introduction

In many analytical applications, samples are characterised by digitised signals such
as spectra or chromatograms. A collection of samples is described by a matrix X in
which the rows represent the samples and the columns the measures. When data come
from digitised curves, the variables are logically ordered and possibly labelled by the
wavelength values or the time. The number of variables may be very large and often
greater than the number of samples. Moreover, two contiguous variables in the signal
share almost the same information and X presents a high degree of colinearity.

Applications of ann methods on spectral data have mainly focused on a supervised
approach. In most studies, qualitative analysis (unsupervised approach) was reduced
to principal component analysis or a classical cluster analysis (see Alonso-Salces et al.,
2005; Zhang et al., 2006). To our knowledge, the first implementations of som on spec-
tral data were due to Caceres-Alonso and Garcia-Tejedor (1995) and Vandeerstraeten
et al. (1998). In the last study, the authors showed how the Kohonen map enabled us
to determine starch clusters based on their infrared spectra. More recently, a clustering
of strawberry varieties was performed with the som method (see de Boishebert et al.,
2006). Input data consisted in chemical signatures belonging to different varieties. It
was confirmed that the map topology guaranteed the varieties’ properties: signatures
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corresponding to the same variety were kept in contiguous cells and different varieties
were never mixed in the same unit. In Rossi et al. (2004), application of som on spectral
data was discussed. The main contribution lays in a functional preprocessing to anal-
yse such high-dimensional data. Finally, another study investigated the polyphenolic
profiles of cider apple cultivars (see Alonso-Salces et al., 2005) using a first clustering
analysis with som.

This study fits in the scope of som applications to spectral data since it offers both
clustering and visualisation tools which may help end-users to analyse data curves.
Here, we focus on different ways to visualise som results given spectral data:

• Representation of the codebooks, e.g., the patterns, onto the map
• Projection of external characteristics associated with the spectra
• Dimension reduction of spectra given external characteristics

The chapter is organized as follows. In Section 22.2, we outline the main steps of som
and we introduce visualisation tools to interpret clustering results. In Section 22.3,
we present the two different datasets: apple and mixture. We discuss the main results
obtained using the som method. Finally, Section 22.4 presents further investigations
in our work.

22.2 Self-organising map clustering and visualisation tools

Let us denote X the spectral dataset consisting of n rows (spectra) and p dimensions
(wavelengths). The Kohonen algorithm is a particular clustering method which pre-
serves the topology of a grid map (see Kohonen, 1995). The som consists of a regular,
generally two-dimensional (2-D), grid of map neurons. Each neuron i is represented by
a codebook mi = (mi1, . . . ,mij , . . . ,mip) where mij is the codebook value computed
for the variable xj . Each codebook corresponds to the prototype vector of individuals
belonging to the neuron i. The neurons are linked one to another according to the
map topology. During the som steps, this topology is taken into account through a
neighbourhood function. First, the codebook’s initialisation is performed through a
principal component analysis applied to the spectral data instead of a random initiali-
sation. Then, som is trained iteratively. At each training step, a sample vector x(t) is
randomly chosen from the input dataset. Then Euclidean distances between x(t) and
all the codebooks are computed.

The winner neuron, noted i∗, is defined as the closest of x(t) given the Euclidean
distance. To preserve the topology structure, all codebooks are next updated according
to the proximity with the winning one:

mi(t + 1) = mi(t) + ηi∗(i, t)(x(t) −mi(t)) (22.1)

where t is the time and η is the gain term based on a Gaussian function centered on
neuron i∗ which decreases during training. A standard neighbourhood function is the
following,

ηi∗(i, t) = e−d(i∗,i)/2r2(t) (22.2)
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where d is the distance on the som map between the winner i∗ and the neuron i and r(t)
denotes the neuron radius, decreasing during training. At the end of the som process,
the partition of individuals is built up. Each individual is affected to the neuron which
minimises the distance between this individual and its codebook.

Visualisation of the map. After som processing, different visualisation tools can
be investigated in order to help end-users to interpret the results:

• Representation of the distance-matrix (called U-matrix) giving the codebooks’ dis-
tances between contiguous neurons.

• Projection of the output map grid onto the principal components space. It provides
a visualisation of the grid distortion after som process.

• Representation of the codebooks’ map. Since spectral data correspond to curves, a
convenient way to present clustering results is to visualise the prototype curve of
each cluster, e.g., the codebooks.

• Representation of external characteristics associated with the spectra which are
not used in the clustering process. For example, dealing with the apple dataset (see
(22.3)), end-users may study the correspondence between the output map grid –
based on spectra – and the development stage of apples. This is performed by
labelling each neuron with the category mostly shared by the individuals belonging
to it. Dealing with the mixture dataset, information on the composition of the
powdered materials is provided for each sample. This information can be projected
onto the map grid: each neuron value is equal to the mean computed on the set of
individuals belonging to it.

• Visualisation of the map onto the different variables. Dealing with high-dimensional
data, this leads to the representation of thousands of component planes. To bypass
this problem, we propose a dimension reduction based on the codebooks’ data
matrix. In order to include external characteristics, we look for a small number of
variables which provide the best correlation with them. This is performed through
a partial least squares (pls) regression (see Stahle and Wold, 1987 and Wold, 1995)
performed on the codebooks’ data matrix.

22.3 Illustrative examples

The two examples (namely mixture and apple) deal with near infrared (nir) spectral
data. Each observation is characterised by a set of variables representing the intensity
of absorbed light as a function of the wavelength of the light.

The mixture collection has been built up for testing the linearity of a nir spectrome-
ter. Mixtures of powdered materials (wheat, pea, soya bean, maize) have been prepared
according to a factorial design by varying the proportion of the different ingredients.
The spectra of the mixtures have been acquired with a NIR instrument between 400
and 2498 at 2 nanometre intervals. The final data matrix had dimensions 354 rows
(mixtures) and 1050 columns (wavelengths). A preliminary inspection of the data re-
veals that spectra mainly differ according to their height, e.g., their global intensity. In
order to reduce this effect, usually due to instrumental condition variations, a standard
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normal deviate (snv) correction (see Barnes et al., 1989) was applied. Original and
corrected spectra are shown in Figure 22.1.
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Figure 22.1. Initial mixture spectra and transformed ones using SNV

To apply the som algorithm, the Matlab package, available at http://www.cis.hut.fi/
projects/somtoolbox/, has been used. A 3 × 7 som map is built up on the mixture
corrected dataset. Figure 22.2 shows the distortion of the map on the first plane of
the pca while Figure 22.3 presents the codebooks’ map grid. As with many spectral
data, the mixture collection is mostly one-dimensional due to high colinearity. This is
confirmed in Figure 22.2. After som training, there is a small map distortion on the
first pca plane. Moreover, studying the representation of the neurons’ codebooks in
Figure 22.3, one can observe the main curves’ gradient on the first direction of the map.
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Figure 22.2. SOM map distortion on the first plane of the PCA

In a second stage, we are interested in studying the distribution of an external
characteristic, namely the powdered materials, on the organised map. In Figure 22.4,
the homogeneity of the map according to the proportions of wheat, maize, pea, and soya
bean is revealed. In the center of the map, clusters correspond to complete mixtures.
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Figure 22.3. Representation of the neurons’ codebooks

On the bottom-left of the map, clusters are characterised by high wheat proportion. On
the right side, they are characterised by a higher maize proportion. Similarly, on the
bottom-right (resp., top-right), a greater pea (resp., soya bean) proportion is observed.

In Figure 22.4, global information on ingredients’ proportions is provided. In order
to identify a small number of relevant spectral variables based on the correlation be-
tween their component planes and the ingredients’ proportions, we propose to apply a
pls regression. The Y matrix is defined as the component planes of the wheat, maize,
pea, and soya bean ingredients while the X matrix is the spectral component planes.
As far as we deal with a map organisation, each component plane is first vectorised.
Then, the som map is represented on the first pls component planes. The first three
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Figure 22.4. Map representation onto the composition external characteristics

components explain 85% of the inertia of Y. Figure 22.5 shows the organization of the
map on these three component planes.

The apple collection is related to the measure of the maturity of apples according
to the time of ripening and the variety (cultivar) of the fruits. During ripening, it
is supposed that the fruits may have a continuous evolution which can be detected
from the spectral analysis. The fruits have been collected and analysed at six different
dates which correspond to different development stages. This collection includes 1066
observations recorded at 550 wavelengths from 1100 to 2200 at 2-nanometre intervals.
This dataset has been described in Guillermin et al. (2001). A snv correction and
second-order derivative are first applied to the data collection and a 2 × 6 map is
built up.
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As with mixture, the apple collection is highly unidimensional (see Figure 22.6). To
visualise the apple variety, the composition of each neuron is presented on the map
(see Figure 22.7). This map reveals the varieties’ (Elstar (E), Gala (G), Fuji (F),
Smoothee (S), and Douce Moen (D)) properties: signatures corresponding to the same
variety were kept in contiguous cells.

22.4 Conclusion

In this chapter, we have presented how to visualise a large number of spectral data
through som. Further works can be investigated:

• Testing other spectra corrections and mapping distances which would provide a
better organisation of the map, especially with high-dimensional spectral data
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• Spectral dimension reduction based on the som map in order to visualise a small
set of component planes corresponding to a combination of initial variables (for
example, intervals of wavelengths)

• Fuzzy membership of individuals to neurons in order to take into account the map
topology
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Neuro-Fuzzy Versus Traditional Models for
Forecasting Wind Energy Production
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Chania, Crete, Greece

Abstract: It is a well-known fact that the process of forecasting wind energy pro-
duction is very popular with many researchers who are involved with RES (renewable
energy sources). This chapter presents a wind energy production forecasting method,
which was carried out with the use of an adaptive neural network with a fuzzy inference
system (ANFIS). The model is tested with two different inputs: lagged values of the
average speed of wind and the maximum speed of wind. The value of one-step-ahead
energy production represents the output of the model. ANFIS uses a combination of
the least-squares method and the backpropagation gradient descent method to estimate
the optimal parameters of the model. The model is applied to a plant on the island of
Evia, Greece. The results are compared with those of the autoregressive (AR) model
and those of the autoregressive moving average (ARMA) model. The superiority of
ANFIS is revealed.

Keywords and phrases: M11, ANFIS, wind energy production forecasting, renew-
able energy forecasting, soft computing forecasting

23.1 Introduction

In the very near future, wind energy will be welcomed by society, industry, and politics
as a clean, practical, economical, and environmentally friendly alternative. After the
1973 oil crisis, renewable energy (RE) started to appear on the agenda and, hence, wind
energy gained significant interest. As a result of extensive studies on this topic, wind
energy has recently been applied in various industries (for instance, industries which
produce electrical energy through the contribution of wind-turbines; Sahin, 2004).

This chapter specifically looks into wind energy forecasting with neuro-fuzzy tech-
niques, which have been applied in many fields such as model identification of linear
and nonlinear systems. In addition, wind energy forecasting is examined and is com-
pared with different approaches in terms of performance, along a time series that is
considered difficult to predict.

The wind energy and speed change are not continual throughout the entire year.
For this reason, during the planning, design, operation, and maintenance of wind farms,
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the sudden velocity variations are significant. If someone wants to calculate the veloc-
ity of wind for a specific region, a very good way is to use the known wind velocity
maps, which are very useful forecasting tools for the meteorologists. Wind velocity
maps provide a common basis for regional assessments and interpretations without
regional prediction. The difficulty in predicting this meteorological parameter arises
from the fact that it is a result of the complex interactions among large-scale forcing
mechanisms such as pressure and temperature differences, the rotation of the earth,
and local characteristics of the surface (Nielsen et al., 1999).

Furthermore, the installed wind energy capacity in Europe today is 20 GW, while
the projections for 2010 according to the Kyoto protocol and the EC directives are up
to 40–60 GW (Giebel, 2000). The continual development of wind energy creates the
need to generate better forecasting tools for short-term forecasting of wind production
in subsequent hours for the following 2–7 days. End-users (independent power produc-
ers, electric companies, transmission system operators, etc.) recognize the contribution
of wind prediction for a secure and economic operation of the power system. More
specifically, in a liberalised electricity market, prediction tools enhance the position
of wind energy compared to other forms of dispatchable generation. Thus it is widely
accepted that wind energy has come of age. It is remarkable to notice that as the elec-
tric companies become more skilled in this branch (wind energy forecasting), there are
many benefits for themselves as well as for the customers. In some areas, wind energy
delivers 20% or more of the electricity demand (Navarra in northern Spain, the Jutland
part of Denmark, or the German land of Schleswig-Holstein). The minimum load can,
at certain times, be covered solely from wind energy. It is hoped that many states of
Europe will be connected to a great extent, in order to provide energy to one another.
The lower variability of wind energy on the European scale has another benefit. Since
wind energy is strong especially during winter, in the period with the highest demand,
it can replace fossil fuel power plants without affecting the loss-of-load probability. The
extent to which this is possible is called the capacity credit of wind energy (Giebel,
1996).

23.2 Related research

Recently more modern techniques that have come from the field of soft computing have
been applied in energy forecasting. Artificial neural networks (a common engineering
approach) were previously employed by Kalogirou (2000) for wind speed prediction.
Other modern short-term techniques are the following: (1) Feedforward neural net-
works: simpler network types than the feedforward are the linear networks (LN). These
networks have no hidden layer and the activation function of the output layer is linear
(Hush and Horne, 1993). The weights and biases of this network can be trained using
the Widrow–Hoff rule, which is a variation of the least mean squares algorithm. These
networks produce linear approximations. (2) Radial basis function neural network: the
parameters of the radial basis function networks can be determined in three steps:
(a) using clustering algorithms detecting unit centres, (b) using the method of nearest
neighbour founding widths, and (c) using weights found in the third layer by minimizing
the sum squared error between the output and the actual data (Rnaweera et al., 1995).
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(3) Elman recurrent network: the type of network used here was introduced by Elman
and introduces additional input neurons called context (Connor et al., 1994).

Atsalakis and Ucenic (2006a,b), and Atsalakis et al. (2005) proposed a one-step-
ahead neuro-fuzzy energy forecasting system. A genetically involved neural network
proposed by Atsalakis is to forecast next-day wind energy (Atsalakis, 2007).

The paper of Cadenas and Rivera (2008) presents the short-term wind speed fore-
casting in the region of La Venta, Oaxaca, Mexico, by applying the technique of an
artificial neural network (ANN) to the hourly time series representative of the site. The
data were collected by the Comision Federal de Electricidad (CFE) through a network
of measurement stations located in the place of interest. Diverse configurations of ANN
were generated and compared through error measures, guaranteeing the performance
and accuracy of the chosen models. The developed model for short-term wind speed
forecasting indicated a very good accuracy to be used by the Electric Utility Control
Centre in Oaxaca for the energy supply.

In the paper of Riahy and Abedi (2008), a new method, based on linear predic-
tion, is proposed for wind speed forecasting. The method utilizes the ‘linear prediction’
method in conjunction with ‘filtering’ of the wind speed waveform. For verification
purposes, the proposed method is compared with real wind speed data based on ex-
perimental results. The results show the effectiveness of the linear prediction method.

A novel approach for the simultaneous modelling and forecasting of wind signal
components is presented by Goh et al. (2006). This is achieved in the complex domain
by using novel neural network algorithms and architectures. First, a signal nonlinearity
and component-dependent analysis are performed, which suggest the use of modular
complex-valued recurrent neural networks (RNNs). This RNN-based modelling rests
upon a combination of nonlinearity, complexity, and internal memory and allows for
the multiple-steps-ahead forecasting of the wind signal in its complex form (speed and
direction).

Another interesting paper on wind forecasting has been written by More and Deo
(2003). Their work employs the technique of neural networks in order to forecast wind
speeds at two coastal locations in India on a daily, weekly, as well as monthly basis.
Both feedforward as well as recurrent networks are used. They are trained based on
past data in an autoregressive manner using backpropagation and cascade correlation
algorithms. A generally satisfactory forecasting as reflected in its higher correlation
and lower deviations with actual observations is noted. The neural network forecasting
is also found to be more accurate than traditional statistical time series analysis.

A useful study using Kalman filtering as a postprocessing method in numerical pre-
dictions of wind speed was presented by Louka et al. (2008). Two limited-area atmo-
spheric models have been employed, with different options/capabilities of horizontal
resolution, to provide wind speed forecasts. The application of the Kalman filter to
these data leads to the elimination of any possible systematic errors, even in the lower
resolution cases, contributing further to the significant reduction of the required CPU
time. The results obtained showed a remarkable improvement in the model forecasting
skill.

Apart from these forecasting techniques, there are some very interesting forecasting
tools, which are proposed by some universities or scientific communities. This model,
was developed at the University of Oldenburg (Beyer et al., 1999) and was named
Previento (Focken et al., 2001). The Deutschlandmodell or the Lokalmodell (LM) of
the German Weather Service (DWD) was used as the NWP model (Numerical Weather
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Prediction (NWP)) and is the simulation of atmospheric processes on a computer with
the aim of predicting the future development of the atmosphere based on knowledge of
the actual state.

Monnich focused on the parameters that influence the accuracy of the results of
a short–term forecasting method. After many trials and tests he formed the model to
assess atmospheric stability. It was deemed better than some other models, as it receives
as contributing factors, roughness, rotation of the earth, and others (Monnich, 2000).
The use of MOS (model output statistics) was deemed very useful. However, since the
NWP model changed frequently, the use of a recursive technique was recommended.
Sometimes, it is observed that the theoretical and actual calculations of the power curve
are inversely related because the wind turbines are repaired in regular time margins.
It has been proven that the largest influence on the error came from the NWP model
itself.

Mart́ı Perez (2002) has developed a family of tools, which were called LocalPred and
RegioPred. He involves adaptive optimisation of the NWP input, time series modelling,
mesoscale modelling with MM5, and power curve modelling.

A new approach is described by Jorgensen et al. (2002). He integrated the power
prediction module within the NWP itself and called it HIRPOM (HIRlam POwer
prediction Model). Moreover, he attempted to attain better results than the initial
model and for this reason, changed the parameter of horizontal model analysis, but
did not manage to improve the overall effectiveness of the model. However, peak wind
speeds were closer to the measured values for the high-resolution forecasts. For the
higher resolution forecasts, the best model layers were ones closer to the ground than
in the coarser models. For the errors, the author points out that phase errors (the
timing of the frontal system) has a much larger influence on the error scores (and
eventual payments) than level errors. For the same reason, Jorgensen carried out some
interesting experiments, whereby he measured 25 bad forecasted days throughout the
duration of 15 months for the Danish TSO Eltra and he proved that the data and results
of the NWP posed a problem as they negatively influenced the forecasting results of
his model.

Landberg (1994) developed a short-term prediction model based on physical rea-
soning similar to the methodology developed for the European Wind Atlas. It is the
perfect example for the model chain in the introduction. He found that for the MOS
to converge, about four months’ worth of data were needed. If the wind from one of
the upper NWP levels is used, the procedure is as follows: from the geostrophic wind
and the local roughness, the friction velocity u* is calculated by using the geostrophic
drag law. This is then used in the logarithmic height profile, together with the local
roughness. If the wind is already the 10 m wind, then the logarithmic profile can be
used directly.

The Institute for Informatics and Mathematical Modelling (IMM) of the Technical
University of Denmark developed a popular model, which is called The Wind Power
Prediction Tool (WPPT) (Morales and Sipreolico, 2002). Initially, they used adaptive
recursive least squares estimation with exponential forgetting in a multistep setup to
predict from 0.5 up to 36 hours ahead. However, due to the lack of quality in the
results for the higher prediction horizons, the forecasts were only used operationally
up to 12 hours ahead. WPPT is a modelling system for predicting the total wind
power production in a larger region based on a combination of online measurements of
power production from selected wind farms, power measurements for all wind turbines
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in the area, and numerical weather predictions of wind speed and wind direction. If
necessary, the total region is broken into a number of subareas. The predictions for the
total region are then calculated using a two-branch approach: the first model, by using
online measurements of power production as well as numerical weather predictions as
input, makes calculated predictions of wind power for a number of wind farms. The
prediction of the total power production in the area is calculated by upscaling the
sum of the predictions for the individual wind farms. The second model, by using
offline measurements of area power production to the numerical weather predictions,
calculates the area power production. For both model branches the power prediction
for the total region is calculated as a sum of the predictions for the subareas. The final
prediction of the wind power production for the total region is then calculated as a
weighted average of the predictions from the two model branches. A central part of this
system is statistical models for short-term predictions of the wind power production in
wind farms or areas.

Recent research has indicated that conditional parametric models (nonlinear model
formulated as a linear model in which the parameters are replaced by smooth, but oth-
erwise unknown, functions of one or more explanatory variables) present a significant
improvement of the prediction performance. For online applications it is preferable to
allow the function estimates to be modified as data become available. Furthermore, be-
cause the system may change slowly over time, observations should be down-weighted
as they become older. For this reason, a time adaptive and recursive estimation method
is applied. The time-adaptivity of the estimation is an important property in this appli-
cation of the method as the total system consisting of wind farm or area, surroundings,
and the numerical weather prediction (NWP) model will be subject to changes over
time. This is caused by the effects incurred by factors such as wind turbines, changes in
the monitors of those turbines, and most important, changes of atmospheric processes
and the number of operating wind turbines in the wind farm.

Since 2000 the ISET (Institut für Solare Energieversorgungstechnik) has operatively
worked with short-term forecasting, using the DWD model and neural networks. It
came out of the German federal monitoring program WMEP (Wissenschaftliches Mess-
und EvaluierungsProgramm), where the growth of wind energy in Germany was to
be monitored in detail (Durstewitz et al., 2001). Their first customer was E.On, who
initially lacked an overview of the current wind power production and therefore wanted
a good tool (Ernst et al., 2000). Then their model was called the Advanced Wind Power
Prediction Tool (AWPT).

EWind is an U.S.-American model by TrueWind, Inc. (Bailey et al., 1999). Instead
of using a once-and-for-all parametrisation for the local effects, like the Ris approach
does with WAsP, they run the ForeWind numerical weather model as a mesoscale model
using boundary conditions from a regional weather model. This way, more physical
processes are captured, and the prediction can be tailored better to the local site.

Finally, the University Carlos III of Madrid developed the Siprelico tool, which
was used by the popular electric company in Spain, called Red Eléctrica de Espa (the
Spanish TSO). There are nine different models, depending on the availability of data.
One is a time series analysis model, which does not use NWP input at all. Three more
include increasingly higher terms of the forecasted wind speed, while another three also
take the forecasted wind direction into account. The last two are combinations of the
other ones, plus a nonparametric prediction of the diurnal cycle. These nine models
are recursively estimated with both a recursive least squares (RLS) algorithm and a
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Kalman filter. For the RLS algorithm, a novel approach is used to determine an adaptive
forgetting factor based on the link between the influence of a new observation, using
Cook’s distance as a measure, and the probability that the parameters have changed.

This chapter encourages the use of neuro-fuzzy models and offers an open forecasting
technique to calculate the daily wind energy production.

23.3 Methodology

Fuzzy logic theory was first formulated by Zadeh (1965) as a new means of character-
ising no probabilistic uncertainties. In contrast to the Boolean 1–0 logic, fuzzy logic
also permits in-between values for any judged statement; i.e., it applies a continuous,
multivalued logic between 0 and 1. A fuzzy inference system (FIS) is a computing
framework that combines the concepts of fuzzy logic, fuzzy decision rules, and fuzzy
reasoning (Jang, 1993). The fuzzy decision rules are the way a FIS relates an input
variable x to an output variable y. In the case where more than one variable is involved
on the premise side, the structure of the rule takes the form:

If x1 is A and x2 is B, then y is Z,

where x1 andx2 are the input variables and A, B, and Z are linguistic values (small
or big, etc.) defined as the membership function (MF) in the input and output spaces.
The steps to create a fuzzy inference model are as follows:

(a) Fuzzification: the input variables are compared with the MFs on the premise
part of the fuzzy rules to obtain the probability of each linguistic label.

(b) Combine (through logic operators) the probability on the premise part to get
the weight (fire strength) of each rule.

(c) Application of firing strength to the premise MFs of each rule to generate the
qualified consequent of each rule depending on its weight.

(d) Defuzzification: Aggregate the qualified consequents to produce a crisp output.

In early examples of fuzzy modeling, attempts were made to extract the fuzzy rules
directly from the expert’s knowledge. Later, new methods have been developed that use
an automatic process to generate the fuzzy rules, taking advantage of neural network
algorithms.

Neural networks try to imitate the function of the brain and for this reason the
connections between neurons determine the function of the network. Layers of neurons
form a neural network. A layer includes the weight matrix, the summations, the bias
vector, the transfer function, and the output vector. A layer whose output is the network
output is named the output layer. All the others are called hidden layers. A neuro-fuzzy
system is defined as a combination of neural networks and fuzzy inference system. Jang
and Sun (1993) introduced an adaptive neuro-fuzzy inference system (ANFIS) where
the MF parameters are fitted to a dataset through a hybrid-learning algorithm. The
basis of the ANFIS model is the theory of artificial neural networks (ANN). An example
of ANFIS consists of a first-order Sugeno type FIS, with two input variables (x and
y), one output (z), and two if-and-then rules. Each input space has been characterised
by two intuitively labelled bell MFs, drawn separately for clarity and for graphical
representation of each rule (Jang and Sun, 1993).
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The structure of the ANFIS is considered for simplicity as a fuzzy system with
only two inputs and one output of first-order Sugeno type. The output of each layer is
the input of the next layer. The first layer is the input layer that is adaptive for the
nonlinear parameters and carries out the fuzzification of each numeric input variable
and the output is the value of each membership function. The second layer that is
nonadaptive makes T-norm operations of each combination of the defined fuzzy sets. Its
output is the firing strength value of each T-norm operation. Layer 3 that is nonadaptive
carries out the normalisation of all firing strengths and this output is normalised firing
strengths. Layer 4 that is adaptive for the linear parameters calculates the product of
each normalised firing strength by each of the Sugeno first-order crisp function values.
Layer 5, which is not adaptive, derives the summation of all incoming signals (products)
and gives as an output the desired prediction.

23.4 Model presentation

The forecasting of wind energy production is carried out by an ANFIS model, which
uses a first-order Sugeno-type FIS (Jang, 1993). The model forecasts the daily energy
production one step ahead (next day). The method of trial and error is used in order
to decide the type of membership function that best describes the model and provides
the lowest error. An estimate of the mean square error between observed and modeled
values is computed for each trial, and the best structure is determined by considering
a trade-off between the mean square error and the number of parameters involved
in computation. The trapezoidal membership function derived better results than the
Gauss2mf, gbell, triangular, and Gauss membership functions. Finally, two-membership
functions of trapezoidal shape are chosen for each input variable, of the following form,

trapmf(x, a, b, c, d) = max
(

min
(

x− a

b− a
, 1,

d− x

d− c

)
, 0
)

Once the ANFIS structure is identified, the parameters of the trapezoidal MFs and
the output constants are fitted by the hybrid learning algorithm (Jang, 1993). ANFIS
applies a mixture of the least squares method (for the consequent part of the rules)
and the backpropagation gradient descent method (for the premise part of the rules)
for training the fuzzy inference system membership function parameters to emulate a
given training dataset. Also, it uses a checking dataset for checking the model over
fitting.

Four ANFIS models are developed using different input variables for each model.
Table 23.1 presents the models and the different input variables. The inputs of each of
the models are lagged values (k − 1, k − 2, or k − 3) of the independent variables. In
fact, the inputs represent the wind speed value one day before and two or three days
before. The output of the models is the next day wind energy production value.

The linguistic labels of each input are ‘low’ and ‘high’. After training the models
the rules are automatically created by the ANFIS and they have the following form.

R1:If x is A1 and y is B1 then f1 = p1 × x + q1 × y + r1

R2:If x is A2 y is B2 then f2 = p2 × x + q2 × y + r2
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Table 23.1. Input variables for each model

Models Description of inputs No. of MFs

ANFIS 1 M S AVG: the average speed of wind at time k − 1 2
M S AVG: the average speed of wind at time k − 2 2

ANFIS 2 M S AVG: the average speed of wind at time k − 1 2
M S AVG: the average speed of wind at time k − 3 2

ANFIS 3 M S MAX: the maximum speed of wind at time k − 1 2
M S AVG: the maximum speed of wind at time k − 2 2

ANFIS 4 M S MAX: the maximum speed of wind at time k − 1 2
M S AVG: the maximum speed of wind at time k − 3 2

Table 23.2 reports the four rules that the ANFIS models use to reach a conclusion.
ANFIS 2 uses the same rules as ANFIS 1 but with different lagged days (k−3). ANFIS
3 uses the same rules as ANFIS 1 but with different input variables. ANFIS 4 uses the
same rules as ANFIS 3 but with a different lagged day (k − 3).

Table 23.2. The rules of the ANFIS 1 model

Rule Rule’s description

R1: If M S AVG (k-1) is low and M S AVG (k − 2) is low then output is out1mf1

R2: If M S AVG (k-1) is low and M S AVG (k − 2) is high then output is out1mf2

R3: If M S AVG (k-2) is high and M S AVG (k − 1) is low then output is out1mf3

R4: If M S AVG (k-2) is high and M S AVG (k − 1) is high then output isout1mf4

The model is tested many times by using a different number of epochs. Finally, good
results are obtained after 300 epochs. Figure 23.1 represents the initial membership
functions of each input variable before the training of the model. Figure 23.2 presents
the final form of membership functions after the completion of the training process.

Figure 23.1. MFs before training

Figure 23.3 depicts a graphical representation of the fuzzy reasoning mechanism.
The rows represent the rules and the columns represent the membership functions of
each input and the output (i.e., if the value of the first input is 12.5 and the value of
the second input is 12.5 then the output value is 11.3).

Finally, 21 notes and 28 parameters are created in this version of ANFIS. Twelve
parameters are linear and 16 are nonlinear.
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Figure 23.2. MFs after the training

Figure 23.3. A view of the rules and the decision mechanism

23.5 Results

The data are real-world data and have been derived from the wind plant island of Evia.
A total of 365 samples was collected from 9 March 2005 until 22 March 2006. The first
68.5% (248 samples) of data are used for training and 31.5% (113 samples) for testing.
Four types of ANFIS models have been trained and tested. ANFIS 1 has as input, the
values of the average speed of the wind at times k − 1 and k − 2, ANFIS 2, has as
inputs the values of the average speed of the wind at times k− 1 and k − 2. ANFIS 3,
has as inputs the values of the maximum speed of the wind at times k − 1 and k − 2,
and ANFIS 4, has as inputs the values of the maximum speed of the wind at times
k − 1 and k − 3. The parameter k symbolizes the time (lagged days) of the values of
the variables. The disposition of the values is determined by the phases of training and
testing data, which have been defined by the algorithm.

A graphical comparison between actual values and ANFIS 1 estimated values (a part
of the samples) is illustrated in Figure 23.4. The line with square boxes illustrates the
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Figure 23.4. ANFIS prediction and actual values

observed values and the line with asterisks illustrates the estimated values by ANFIS.
To compare the ANFIS models an autoregressive (AR) and an autoregressive moving
average (ARMA) model have been estimated using the same data.

Four main types of errors carried out the analysis of the model quality: mean square
error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). Table 23.3 summarizes the error results obtained
by comparing the observed values with the estimated values by the four types of ANFIS
models and the AR and ARMA models.

Table 23.3. Forecasting results

Errors ANFIS 1 ANFIS 2 ANFIS 3 ANFIS 4 AR ARMA

MSE 15.79 24.95 91.27 65.81 17.07 16.04

RMSE 3.97 4.99 9.95 8.11 4.13 4.05

MAE 2.73 3.28 6.84 6.13 2.82 2.79

MAPE 36.04 41.33 36.98 37.00 37.61 37.17

As the above table of errors indicates, the model with the best results is the ANFIS
1 model, as it has the same average speed of wind as an input with lagged values k− 1
and k−2. It gives the lowest value (in bold numbers) of error in all error measures and
reveals the superiority of ANFIS versus to the traditional models.

23.6 Conclusion

This chapter presents an ANFIS model to forecast the next day wind energy production.
The results are presented and compared based on four different kinds of errors: MSE,
RMSE, MAE, and MAPE. Using various input variables, four types of ANFIS models
are estimated and their results are compared with the results that are calculated by
the AR and ARMA models. ANFIS 1 outperforms the other models.
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ANFIS is a model-free, easy to implement approach. In contrast to traditional time
forecasting methods, little training is needed to calculate wind energy predictions. It
implements a single-fitting procedure to nonlinear situations, without the need of es-
tablishing a formal model for the problem being resolved. Thus, no a priori information
is required to determine the empirical relationship between the explanatory and pre-
dicted variables, and the method suitability is always tested a posteriori. Moreover,
the transparent rule structure of ANFIS allows the researcher to extract information
about the empirical relationship between the wind speed and the energy production
over time and to provide concise explanations.

Despite the above advantages, the ANFIS must be implemented very carefully. The
minimum number of data samples must be at least 150, and the number of model
parameters should not exceed one fourth of the number of samples in the training sets,
in order to avoid the risk of overfitting and losing generality.
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Nonparametric Comparison of Several Sequential
k-out-of-n Systems

Eric Beutner
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Abstract: Sequential order statistics have been introduced to model sequential k-out-
of-n systems which, as an extension of k-out-of-n systems, allow the failure of some
components of the system to influence the remaining ones. Here, we consider nonpara-
metric hypothesis testing for making the decision whether the baseline distributions of
several sequential k-out-of-n systems are equal. The asymptotic distribution of the test
statistics are derived for the case of known model parameters and for the case where
the model parameters of the systems are unknown.

Keywords and phrases: k-out-of-n systems, sequential k-out-of-n systems, counting
processes, nonparametric K-sample tests

24.1 Introduction

An n component system functioning as long as k (1 ≤ k ≤ n) components work is called
a k-out-of-n system. Particular cases are parallel and series systems corresponding to
k = 1 and k = n, respectively. The failure times Ti, 1 ≤ i ≤ n, of the n components are
often assumed to be iid random variables; see, for example, Barlow and Proschan (1981),
Meeker and Escobar (1998), and Navarro and Rychlik (2007) for the exchangeable case.
The particular probabilistic model in which it is supposed that the failure times Ti,
1 ≤ i ≤ n, of the n components are iid random variables is hereinafter referred to as
the common k-out-of-n model. Implicit in this assumption is that the failure of any
component of the system does not affect the remaining lifetime of the components that
are still at work. In many situations, however, the assumption of the failure times being
iid random variables may not be reasonable. For example, the failure of a high-voltage
transmission line will increase the load put on the remaining high-voltage transmission
lines, thus violating the iid assumption.

In this context, extended models have been proposed in the literature; see Kamps
(1995a) for the sequential k-out-of-n model as well as Hollander and Peña (1995) for an
extension using a counting process approach. Both models are flexible in the sense that
they allow for the distribution of the residual lifetime of the remaining components,
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after the failure of some component, to change; i.e., the underlying failure rate of the
remaining components is adjusted according to the number of preceding failures.

The sequential k-out-of-n model is defined via random variables X∗
1 , . . . , X

∗
n−k+1,

which are called sequential order statistics. These random variables describe the failure
times of a k-out-of-n system. Thus, in the sequential k-out-of-n model, the life length
of a k-out-of-n system is given by X∗

n−k+1. In the particular setting of sequential or-
der statistics chosen here, the distribution of the random variables X∗

1 , . . . , X
∗
n−k+1 is

determined by a distribution function F , called the baseline distribution, and model
parameters α2, . . . , αn−k+1, which describe the adjustment of the failure rate of the
remaining components according to the number of preceding failures. It is worth men-
tioning that, if we take α2 = · · · = αn−k+1 = 1, the random variables X∗

1 , . . . , X
∗
n−k+1

are distributed as order statistics from a random sample of size n with underlying dis-
tribution function F . Hence, the sequential k-out-of-n model comprises the common
k-out-of-n model. For general theoretical properties and applications of sequential or-
der statistics, one may refer to Cramer and Kamps (2001b, 2003), and Balakrishnan
et al. (2008). Belzunce et al. (2003) consider conditions for certain aging properties
of a vector of sequential order statistics (see also Hu and Zhuang, 2006). Comparison
results for sequential order statistics can be found in Belzunce et al. (2005) and Zhuang
and Hu (2007).

In this chapter, we discuss the problem of testing whether the underlying distribu-
tion functions of several sequential k-out-of-n systems are equal. Formally, the problem
is to decide if K different sequential k-out-of-n systems have the same underlying dis-
tribution function, i.e., to test

H0 : F1 = · · · = FK = F0.

There is a large literature on parametric methods for the same testing problem in
the common k-out-of-n system; one may refer to Kalbfleisch and Prentice (1980) and
Lawless (2003). Parametric statistical inference for sequential order statistics in the
K sample case may be found in Cramer and Kamps (2001a). We concentrate here
on nonparametric methods. The special case of K = 2 and a special weight function
nonparametric method for the above problem are treated in Beutner (2008). Here we
extend these results to arbitrary K and a much wider class of weight functions.

In Section 24.2, we give a short description of sequential order statistics, derive
the test statistics, and state some properties of counting processes based on sequential
order statistics. Next, in Section 24.3, we derive the asymptotic distribution of the
test statistic in the case where the model parameters α2, . . . , αn−k+1 are known. Fi-
nally, in Section 24.4 the results are extended to the case where the model parameters
α2, . . . , αn−k+1 are unknown.

24.2 Preliminaries and derivation of the test statistics

24.2.1 Sequential order statistics: Introduction and motivation

A definition of sequential order statistics with a view to the motivation given in the
introduction can be found in Cramer and Kamps (1996). As shown in Cramer and
Kamps (2003) they can also be defined as follows.
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Definition 1. Let F1, . . . , Fn be distribution functions with F−1
1 (1) ≤ · · · ≤ F−1

n (1),
and let V1, . . . , Vn be independent random variables with Vr ∼ Beta(n − r + 1, 1), 1 ≤
r ≤ n. Then the random variables

X∗
r = F−1

r (1 − VrRr(X∗
r−1)), 1 ≤ r ≤ n, X∗

0 = −∞,

are called sequential order statistics (based on F1, . . . , Fn), where Rr denotes the relia-
bility function 1 − Fr.

Assumption 1 In the following we restrict ourselves to a particular choice of the
distribution functions F1, . . . , Fn, namely

F1(t) = F (t), and Fi(t) = 1 − (1 − F (t))αi , i = 2, . . . , n (24.1)

for positive real numbers α2, . . . , αn.

Remark 5.3. The restriction to the choice F1(t) = F (t), and Fi(t) = 1 − (1 −
F (t))αi , i = 2, . . . , n, has two advantages. The first advantage is that the distribu-
tion of X∗

1 , . . . , X
∗
n depends only on the distribution function F , called the baseline

distribution, and the parameters α2, . . . , αn, thus, reducing the model uncertainty. The
second advantage is that, in this case, the model of sequential order statistics coincides
with the model of generalized order statistics in the distributional theoretical sense.
The model of generalized order statistics contains, for example, order statistics and
progressively Type-II censored order statistics. For nonparametric estimation and hy-
pothesis testing with progressively Type-II censored order statistics see Bordes (2004),
Alvarez-Andrade and Bordes (2004), Alvarez-Andrade et al. (2007), Guilbaud (2001,
2004), Balakrishnan (2007), and Balakrishnan et al. (2007).

From the above definition of sequential order statistics or from Kamps (1995b, p. 4)
we can derive the following property. For t > s we have

P (X∗
i > t|X∗

i−1 = s) =
(

1 − (1 − (1 − F (t))αi)
1 − (1 − (1 − F (s))αi)

)n−i+1

=
(

1 − F (t)
1 − F (s)

)(n−i+1)αi

.

Hence, the conditional hazard rate function λ̃i of the ith failure time given that the
(i− 1)th failure occurred at time s is given by

λ̃i(t) = (n− i + 1)αi
f(t)

1 − F (t)
, t > s.

The last equation is suitable to explain why the sequential k-out-of-n model is more
flexible than the common k-out-of-n model. Recall that in the common k-out-of-n
model the conditional hazard rates are given by

λ̃i(t) = (n− i + 1)
f(t)

1 − F (t)
, i = 1, . . . , n− k + 1.

Thus, in the common k-out-of-n model a failure does not affect the conditional hazard
rate functions of the components still at work, whereas in the sequential k-out-of-n
model they jump to
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αi
f(t)

1 − F (t)
after a failure. Here, the parameters αi, 2 ≤ i ≤ n − k + 1, allow the researcher to
model the adjustment of the load put on the remaining components.

24.2.2 Sequential order statistics and associated counting processes

Our test statistics are based on the following data. For each of the K sequential ki-
out-of-ni systems we have mi, 1 ≤ i ≤ K, independent observations during the time
interval [0, T ]. The associated vectors of failure times are denoted by

X∗
i,j = (X∗

1,i,j , . . . , X
∗
ni−ki+1,i,j), 1 ≤ i ≤ K, 1 ≤ j ≤ mi.

To facilitate the presentation we introduce the following notations where 0 ≤ t ≤ T .

Ni,j(t) =
ni−ki+1∑

�=1

I{X∗
�,i,j≤t}, 1 ≤ i ≤ K, 1 ≤ j ≤ mi,

N̄mi
(t) =

mi∑
j=1

Ni,j(t), 1 ≤ i ≤ K,

N̄m(t) =
K∑

i=1

N̄mi(t),

ρi,j(t) = (ρ1,i,j(t), . . . , ρni−ki+1,i,j(t))

=
(
I{X∗

0,i,j<t≤X∗
1,i,j}, . . . , I{X∗

ni−ki,i,j<t≤X∗
ni−ki+1,i,j}

)
,

1 ≤ i ≤ K, 1 ≤ j ≤ mi,

Yi,j(t) = (Y1,i,j(t), . . . , Yni−ki+1,i,j(t))
= (ni, ni − 1, . . . , ki) ∗ ρi,j(t), 1 ≤ i ≤ K, 1 ≤ j ≤ mi,

Ȳmi(t) = (Ȳ1,mi(t), . . . , Ȳni−ki+1,mi(t))

=
mi∑
j=1

Yi,j(t), 1 ≤ i ≤ K,

Ȳm(t) =
K∑

i=1

Ȳmi(t),

αi = (1, α2,i, . . . , αni−ki+1,i), 1 ≤ i ≤ K,

νmi
(αi, t) =

1
αiȲ′

mi
(t)

αi ∗ Ȳmi
(t), 1 ≤ i ≤ K,

ei(t) = (e1,i(t), . . . , eni−ki+1,i(t))
= (E[Y1,i(t)], . . . , E[Yni−ki+1,i(t)]) , 1 ≤ i ≤ K,

Ψi(αi, t) =
∫ t

0

[
D
(

αi ∗ ei(s)
αie′i(s)

)
−
(

αi ∗ ei(s)
αie′i(s)

)′
·
(

αi ∗ ei(s)
αie′i(s)

)]
αie′i(s)λi(s)ds,

1 ≤ i ≤ K.
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Here and in the following, I denotes the indicator function, $ represents component-by-
component multiplication for vectors, ′ denotes the transpose, and λi is the hazard rate
function of Fi. Given a vector ζ we denote by D(ζ) a diagonal matrix with diagonal
elements ζ.

The processes Ni,j describe the number of failures of the jth, 1 ≤ j ≤ mi, obser-
vation of the ith, 1 ≤ i ≤ K, system up to time t; the processes N̄mi

describe the
number of failures of the ith, 1 ≤ i ≤ K, system up to time t if we combine all ob-
servations of the ith system; and N̄m gives us the number of failures up to time t if
all systems and observations are combined. The processes Yi,j represent for the jth,
1 ≤ j ≤ mi, observation of the ith, 1 ≤ i ≤ K, system the number of the risk set at
time t.

We have the following result, a proof of which can be found in Beutner (2008).

Lemma 1. Let λi be the hazard rate function of Fi. Then, for every i, 1 ≤ i ≤ K, and
every j, 1 ≤ j ≤ mi, the processes

Mi,j(t) = Ni,j(t) −
∫ t

0

αiY′
i,j(s)λi(s)ds, 0 ≤ t ≤ T,

are square-integrable martingales with respect to the natural filtration denoted by F i,j
t .

Hence, we obtain that the processes

M̄mi(t) = N̄mi(t) −
∫ t

0

αiȲ′
mi

(s)λi(s)ds, 0 ≤ t ≤ T, i = 1, . . . ,K,

are square-integrable martingales with respect to the filtration F i
t = ∨mi

j=1F i,j
t and that

M̄m(t) = N̄m(t) −
K∑

i=1

∫ t

0

αiȲ′
mi

(s)λi(s)ds, 0 ≤ t ≤ T,

is a square-integrable martingale with respect to the filtration Ft = ∨K
i=1F i

t .
Suppose that the parameter vectors αi = (1, α2,i, . . . , αni−ki+1,i), 1 ≤ i ≤ K, are

known. Since the M̄mis, 1 ≤ i ≤ K, are martingales, an obvious estimator for the
cumulative hazard rate function Λi of the underlying baseline distribution Fi of the ith
system (based on mi observations) is given by

Λ̂mi(t) =

t∫

0

Jmi(s)
αiȲ′

mi
(s)

dN̄mi(s), 0 ≤ t ≤ T, (24.2)

where Jmi(s) = I{αiȲ′
mi

(s)>0}. Notice that under the hypothesis each Λ̂mi(t), 1 ≤ i ≤
K, is also an estimator for the cumulative hazard rate function Λ0 of the common
baseline distribution F0. Moreover,

Λ̂m(t) =

t∫

0

Jm(s)∑K
q=1 αqȲ′

mq
(s)

dN̄m(s), 0 ≤ t ≤ T,
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where Jm(s) = I{∑K
q=1 αqȲ′

mq
(s)>0

} is also an estimator for Λ0. Please note that Λ̂mi ,

1 ≤ i ≤ K, and Λ̂m are generalized Nelson – Aalen estimators.
Following the derivation of k-sample tests (cf. Andersen et al., 1993, Chapter V)

our test statistics are based on the processes

Zmi
(t) =

∫ t

0

W̃mi
(s)d(Λ̂mi

− Λ̆mi
)(s), 0 ≤ t ≤ T, 1 ≤ i ≤ K,

where

Λ̆mi(t) =

t∫

0

Jmi(s)∑K
q=1 αqȲ′

mq
(s)

dN̄m(s), 0 ≤ t ≤ T.

Notice that the processes Zmi , 1 ≤ i ≤ K, are the accumulated weighted differences in
the increments of Λ̂mi and Λ̆mi . Using weight functions of the form

W̃mi
(t) = Wm(t)αiȲ′

mi
(t), 0 ≤ t ≤ T, 1 ≤ i ≤ K,

where Wm is a predictable and locally bounded process, we have under the hypothesis

Zmi(t) =
K∑

�=1

∫ t

0

Wm(s)

(
δi� −

αiȲ′
mi

(s)∑K
q=1 αqȲ′

mq
(s)

)
dM̄m�

(s), 0 ≤ t ≤ T, (24.3)

where δil denotes a Kronecker delta.
Obviously, the basis of our test statistics depends on the parameter vectors αi,

i = 1, . . . ,K. In the case where the parameter vectors are unknown we propose to
proceed as follows. First notice that Zmi

can be written as

Zmi
(t) =

∫ t

0

Wm(s)dN̄mi
(s) −

∫ t

0

Wm(s)
αiȲ′

mi
(s)∑K

q=1 αqȲ′
mq

(s)
dN̄m(s), 0 ≤ t ≤ T. (24.4)

According to Jacod (1975) for every i, 1 ≤ i ≤ K, the full likelihood of the counting
processes Ni,j , 1 ≤ j ≤ mi, is, up to a factor, given by

mi∏
j=1

⎡
⎣ ∏

0≤s≤T

[
αiY′

i,j(s)dΛi(s)
]dNi,j(s) · exp

(
−
∫ T

0

αiY′
i,j(s)dΛi(s)

)⎤
⎦ , (24.5)

which has the same mathematical structure as the likelihood derived by Kvam and Peña
(2005) for a dynamic reliability model. Here, the second product in (24.5) denotes
the product-integral. Hence, following Kvam and Peña (2005) we may estimate αi,
1 ≤ i ≤ K, by solving the ni − ki equations

Umi(T,αi) = 0. (24.6)

Here Umi(·,αi), 1 ≤ i ≤ K, is the profile (partial) score process of the ith system.
We denote by α̂mi the estimator obtained from (24.6) for αi, 1 ≤ i ≤ K. In the
case where the parameter vectors αi, 1 ≤ i ≤ K, are unknown, we replace them in
the representation (24.4) of the processes Zmi

by their estimates α̂mi
to obtain the

following processes which will be the basis of our test statistics for unknown α’s:
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Z̃mi(t) =
∫ t

0

Wm(s)dN̄mi(s) −
∫ t

0

Wm(s)
α̂mi

Ȳ′
mi

(s)∑K
q=1 α̂qȲ′

mq
(s)

dN̄m(s), 0 ≤ t ≤ T. (24.7)

24.3 K-sample tests for known α’s

In order to derive the asymptotic distribution of the test statistics in this and the next
section we assume that the following assumptions are satisfied

Assumption 2 There exist κi ∈ (0, 1) such that
∑K

i=1 κi = 1, and for every i, 1 ≤
i ≤ K, we have

lim
m→∞

mi

m
→ κi, where m =

K∑
i=1

mi.

Assumption 3 F0(T ) < ∞.

Assumption 4 There is a deterministic function w defined on [0, T ] such that

sup
t∈[0,T ]

|Wm(t) − w(t)| P→ 0, as m → ∞.

The following lemma from Beutner (2008) is useful when deriving the asymptotic
distribution of the basis of the test statistics. By ||.||T0 we denote the supremum norm
on [0, T ].

Lemma 2. Under Assumption 3 with probability 1, (1/mi)αiȲ′
mi

converges to αie′i
uniformly on [0, T ] as mi → ∞.

Therefore, under Assumptions 2 and 3 we have that

1
m

K∑
i=1

αiȲ′
mi

(t)

converges with probability 1, uniformly on [0, T ] as m → ∞ to e(α, t) =
∑K

i=1 κiαie′i(t).
Here, and in the following α = (α1, . . . ,αK).

In the following, we denote by D[0, T ]K the cadlag functions on [0, T ]K , and by ⇒
weak convergence.

Theorem 1. Let Assumptions 2, 3, and 4 be satisfied. Then under the hypothesis F1 =
· · · = FK = F0:

(i) For the process Zm(t) = (Zm1(t), . . . , ZmK
(t)) we obtain

1√
m

Zm ⇒ (G1, . . . , GK) as m → ∞,

in D[0, T ]K , where Gi, i = 1, . . . ,K, are zero-mean Gaussian martingales with
covariance matrix function Σ(α, t) = (σij(α, t))1≤i,j≤K given by

σij(α, t) =
∫ t

0

w2(s)
κi · αie′i(s)

e(α, s)

(
δij −

κj · αje′j(s)
e(α, s)

)
e(α, s)λ0(s)ds. (24.8)
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(ii) Moreover, σij may be estimated unbiasedly by

σ̂ij(α, t) =
1
m

∫ t

0

W 2
m(s)

αiȲ′
mi

(s)∑K
q=1 αqȲ′

mq
(s)

·
(
δij −

αjȲ′
mj

(s)
∑K

q=1 αqȲ′
mq

(s)

)
dN̄m(s).

(24.9)

Proof. In order to apply Rebolledo’s theorem (see Andersen et al., 1993, Theorem
II. 5.1) to the martingale (1/

√
m)Zm we have to show that

(a)
〈

1√
m
Zmi

, 1√
m
Zmj

〉
(t) P→ σij(t) for all 1 ≤ i, j ≤ K and t ∈ [0, T ] as m → ∞,

(b) For all ε > 0
〈

1√
m

Zε
mi

〉
(t) P→ 0 for all 1 ≤ i ≤ K and t ∈ [0, T ] as m → ∞

where

Zε
mi

(t) =
K∑

�=1

t∫

0

Wm(s)

(
δi� −

αiȲ′
mi

(s)∑K
q=1 αqȲ′

mq
(s)

)

× I{∣∣∣∣∣
Wm(s)√

m

(
δil−

αiȲ
′
mi

(s)
∑K

q=1 αqȲ′
mq

(s)

)∣∣∣∣∣>ε

}dM̄�(s).

To prove (a) notice that under the hypothesis

〈
1√
m

Zmi ,
1√
m

Zmj

〉
(t) =

1
m

t∫

0

W 2
m(s)

αiȲ′
mi

(s)∑K
q=1 αqȲ′

mq
(s)

·
(
δij −

αjȲ′
mj

(s)
∑K

q=1 αqȲ′
mq

(s)

)

×
(

K∑
q=1

αqȲ′
mq

(s)

)
λ0(s)ds

=

t∫

0

W 2
m(s) · mi

m
· αi

Ȳ′
mi

(s)

mi∑K
q=1 αq

Ȳ′
mq

(s)

m⎛
⎜⎝δij − mj

m

αj

Ȳ′
mj

(s)

mj

∑K
q=1 αq

Ȳ′
mq

(s)

m

⎞
⎟⎠×

(
K∑

q=1

αq

Ȳ′
mq

(s)
m

)
λ0(s)ds.

The result follows now from the fact that the processes

αiȲ′
mi∑K

q=1 αqȲ′
mq

, 1 ≤ i ≤ K, and
∑K

q=1
αq

Ȳ′
mq

m

are bounded on [0, T ], Assumptions 2 and 4, and Lemma 2.
To show that condition (b) is satisfied notice that

〈
1√
m

Zε
mi

〉
(t) =

K∑
�=1

t∫

0

W 2
m(s)

(
δil −

αiȲ
′
mi

(s)∑K
q=1 αqȲ′

mq (s)

)2

I{∣∣∣∣∣
Wm(s)√

m

(
δil−

αiȲ
′
mi

(s)
∑K

q=1 αqȲ′
mq

(s)

)∣∣∣∣∣>ε

}

× α�Ȳ
′
m�

(s)

m
λ0(s)ds.
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Since for m sufficiently large

I{∣∣∣∣∣
Wm(s)√

m

(
δi�−

αiȲ
′
mi

(s)
∑K

q=1 αqȲ′
mq

(s)

)∣∣∣∣∣>ε

}

is equal to zero, condition (b) is satisfied and the assertion follows.
(ii) The result follows by an application of Lenglart’s inequality and Lemma 2.

�
Remark 5.3. (i) In the above theorem we may allow the weight function Wm to

depend on the known parameters αi, 1 ≤ i ≤ K, without changing either the
result or the proof.

(ii) Assumption 4 may be replaced by: there is a deterministic function w defined on
[0, T ] and a sequence of nonnegative numbers (am)m such that

sup
t∈[0,T ]

|am ·Wm(t) − w(t)| P→ 0, as m → ∞.

In this case the above theorem remains valid if we replace the normalizing constant
1/
√

m by am/
√

m.

Since
∑K

i=1 Zmi(t) = 0, 0 ≤ t ≤ T , the test statistics are based on Zm,K−1 =
(Zm1 , . . . , ZmK−1). By Σ̂(α, ·) we denote the K × K matrix with elements given by
(24.9), and by Σ̂(α, ·)K−1 the matrix obtained by deleting the last row and the last
column of Σ̂(α, ·). From Theorem 1 we then obtain that for every 0 < t ≤ T the test
statistic

Zm,K−1(t) · Σ̂−1(α, t)K−1 · Z′
m,K−1(t)

converges to a χ2 distribution with K − 1 degrees of freedom as m → ∞.
Alternatively, in order to avoid the problems arising from the choice of exactly one

time point, one can proceed as follows. Let t = {0 = t0 < t1 < · · · < t� = T} be a par-
tition of the time interval [0, T ]. Then, it follows from Theorem 1 that Zm,�(K−1)(t) =
(Zm,K−1(t1)−Zm,K−1(t0),Zm,K−1(t2)−Zm,K−1(t1), . . . ,Zm,K−1(t�)−Zm,K−1(t�−1))
has, as m → ∞, a normal distribution with covariance matrix Σ̂(α, t)�(K−1) =
diag(Σ̂(α, t1)K−1 − Σ̂(α, t0)K−1, . . . , Σ̂(α, t�)K−1 − Σ̂(α, t�−1)K−1). Hence,

Zm,�(K−1)(t) · Σ̂−1(α, t)�(K−1) · Z′
m,�(K−1)(t)

has asymptotically a χ2 distribution with  · (K − 1) degrees of freedom.

24.4 K-sample tests for unknown α′s

In this section, we extend the results to the case where the parameter vectors αi,
1 ≤ i ≤ K, are unknown. In the following, we denote the true parameter vectors by
α0

i = (1, α0
2,i, . . . , α

0
ni−ki+1,i), 1 ≤ i ≤ K. Furthermore, as mentioned in Remark 5.3,

part (i) the weight function may depend on the αis. Since, in this section, they are
assumed to be unknown this dependency is made explicitly by denoting the weight
function by Wm(α, s), where α ∈ R

(n1−k1)·(n2−k2)·...·(nK−kK). Finally, Assumption 4 is
replaced by
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Assumption 5 The weight function Wm is differentiable with respect to α, there
is a deterministic function w defined on [0, T ] such that in a neighborhood of α0 =(
α0

1, . . . ,α
0
K

)

sup
t∈[0,T ]

|Wm(α, t) − w(α, t)| P→ 0, as m → ∞,

and the derivative of Wm with respect to α is bounded on [0, T ] in a neighborhood of
α0.

Theorem 2. Let Assumptions 2, 3, and 5 be satisfied. Then under the hypothesis F1 =
· · · = FK = F0: For the process Z̃m(t) = (Z̃m1(t), . . . , Z̃mK (t)) we obtain

1√
m

Z̃m ⇒ (G̃1, . . . , G̃K) as m → ∞,

in D[0, T ]K , where G̃i, i = 1, . . . ,K, are zero-mean Gaussian processes with covariance
matrix function Σ̃(α0, t) = (σ̃ij(α0, t))1≤i,j≤K given by

Σ̃(α0, t) = Σ(α0, t) + b(α0, t)D(α0)Ψ−1(α0, T )D(α0)b(α0, t)

where

Ψ
−1

(α
0
, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
κ1

· Ψ−1
1

(
α0

1, t
)

0(n1−k1)×(n2−k2)·...·(nK−kK )

0(n2−k2)×(n1−k1)
1

κ2
· Ψ−1

2

(
α0

2, t
)

0(n2−k2)×(n3−k3)·...·(nK−kK )

...
...

...
0(nK−kK )×(n1−k1)·...·(nK−1−kK−1)

1
κK

· Ψ−1
K

(α0
K , t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 0�×k denoting the zero matrix with  rows and k columns, and b is given by

b(α0, t) =
∫ t

0

w(α0, s)A′(α0, s)e(α0, s)λ0(s)ds,

where A(α0, s) is given by (24.14) (see below).

Proof. Using the above notation for the weight function, the ith component of Z̃m

(cf. (24.7)) is given by

Z̃mi
(t) =

∫ t

0

Wm(α̂m, s)dN̄mi
(s) −

∫ t

0

Wm(α̂m, s)
α̂miȲ

′
mi

(s)∑K
q=1 α̂mqȲ′

mq
(s)

dN̄m(s),

where α̂m = (α̂m1 , . . . , α̂mK ) ∈ R
(n1−k1)·(n2−k2)·...·(nK−kK).

The derivative of
α̂mi

Ȳ′
mi

(s)∑K
q=1 α̂mq

Ȳ′
mq

(s)

with respect to the vector α = (α1, . . . ,αK) = (α2,1, . . . , αn1−k1+1,1, . . . , α2,K , . . . ,
αnK−kK+1,K) = (αpr)2≤p≤nr−kr+1,1≤r≤K is given by the vector value process

Ami (α, s) =

⎧
⎪⎪⎨
⎪⎪⎩

−αiȲ
′
mi

(s)Ȳp,mr (s)

(
∑K

q=1 αqȲ′
mq

(s))2
, for 2 ≤ p ≤ nr − kr + 1, r �= i,

Ȳp,mi
(s)·

(∑K
q=1 αqȲ′

mq
(s)

)
−αiȲ

′
mi

(s)Ȳp,mi
(s)

(
∑K

q=1 αqȲ′
mq

(s))2
, for 2 ≤ p ≤ ni − ki + 1, r = i.
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Thus, expanding
α̂miȲ

′
mi

(s)∑K
q=1 α̂mqȲ′

mq
(s)

in a first-order Taylor series around α0, the ith component of (1/
√

m)Z̃m becomes

1√
m

Z̃mi(t) =
1√
m

[∫ t

0

Wm(α̂m, s)dN̄mi(s) −
∫ t

0

Wm(α̂m, s)
α0

i Ȳ
′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dN̄m(s)

]

−√
m(α̂m − α0)

∫ t

0

1
m

Wm(α̂m, s)A′
mi

(α̃m, s)dN̄m(s), (24.10)

where α̃m lies in the line segment connecting α0 and α̂m.
Expanding Wm in the first line of (24.10) in a first-order Taylor series around α0

we obtain that the first line in (24.10) equals

1√
m

[∫ t

0

Wm(α0, s)dN̄mi(s) −
∫ t

0

Wm(α0, s)
α0

i Ȳ
′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dN̄m(s)

]
(24.11)

+(α̂m − α0)
1√
m

[∫ t

0

∂W ′
m(ᾰm, s)
∂α

dN̄mi(s)

−
∫ t

0

∂W ′
m(ᾰm, s)
∂α

α0
i Ȳ

′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dN̄m(s)

]
,

where ᾰm lies in the line segment connecting α0 and α̂m. Notice that the term in
brackets in the second and third line of (24.11) are equal to

∫ t

0

∂W ′
m(ᾰm, s)
∂α

dM̄mi(s) −
∫ t

0

∂W ′
m(ᾰm, s)
∂α

α0
i Ȳ

′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dM̄m(s).

Hence, the second and third line in (24.11) are equal to

√
m(α̂m − α0)

[∫ t

0

1
m

∂W ′
m(ᾰm, s)
∂α

dM̄mi
(s)

−
∫ t

0

1
m

∂W ′
m(ᾰm, s)
∂α

α0
i Ȳ

′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dM̄m(s)

]
. (24.12)

From Kvam and Peña (2005, Theorem 2) we have that
√

m(α̂m − α0) (see also
below) converges to a normal distribution, and from Lenglart’s inequality, Assumption
5, and Lemma 2 we obtain that the term in brackets in (24.12) converges uniformly on
[0, T ] to zero in probability. Thus, we have that the first line in (24.10) is equal to

1√
m

[∫ t

0

Wm(α0, s)dN̄mi
(s) −

∫ t

0

Wm(α0, s)
α0

i Ȳ
′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dN̄m(s)

]
+ oP (1).

In the same way it can be proved that the second line in (24.10) equals

√
m(α̂m − α0)

∫ t

0

1
m

Wm(α0, s)A′
mi

(α̃m, s)dN̄m(s) + oP (1).
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Hence, the ith component of (1/
√

m)Z̃m can be written as

1√
m

[∫ t

0

Wm(α0, s)dN̄mi
(s) −

∫ t

0

Wm(α0, s)
α0

i Ȳ
′
mi

(s)∑K
q=1 α0

qȲ′
mq

(s)
dN̄m(s)

]

−√
m(α̂m − α0)

∫ t

0

1
m

Wm(α0, s)A′
mi

(α̃m, s)dN̄m(s) + oP (1).

Thus, we have that (1/
√

m)Z̃m is equal to

1√
m

Zm(t) −√
m(α̂m − α0)

∫ t

0

1
m

Wm(α0, s)A′
m(α̃m, s)dN̄m(s) + oP (1),

where the ith row, 1 ≤ i ≤ K, of the matrix Am is given by Ami . According to
Theorem 1 we have that (1/

√
m)Zm(t) converges to a zero-mean Gaussian martingale

with covariance matrix function given by (24.8). Moreover, it follows by an application
of Lenglart’s inequality, the structure of Am, Lemma 2, and the fact that α̃m = α0 +
oP (1),

∫ t

0

1
m

Wm(α0, s)A′
m(α̃m, s)dN̄m(s) P→

∫ t

0

w(α0, s)A′(α0, s)e(α0, s)λ0(s)ds, (24.13)

where the ith row, 1 ≤ i ≤ K, of the matrix value function A(α0, t) is given by

1
e2(α0, t)

(
κ1κiα

0
i e

′
i(t)e1,1(t), . . . , κ1κiα

0
i e

′
i(t)en1−k1+1,1(t),

...

κi−1κiα
0
i e

′
i(t)e1,i−1(t), . . . , κi−1κiα

0
i e

′
i(t)eni−1−ki−1+1,i−1(t),

κie1,i(t)e(α0, t) − κ2
i α

0
i e

′
i(t)e1,i(t), . . . , κieni−ki+1,i(t)e(α0, t) − κ2

i α
0
i e

′
i(t)eni−ki+1,i(t),

κi+1κiα
0
i e

′
i(t)e1,i+1(t), . . . , κi+1κiα

0
i e

′
i(t)eni+1−ki+1+1,i+1(t),

...

κKκiα
0
i e

′
i(t)e1,K(t), . . . , κKκiα

0
i e

′
i(t)enK−kK+1,K(t)

)
. (24.14)

From Kvam and Peña (2005) we have for i, 1 ≤ i ≤ K, that
√

mi(α̂mi
− α0

i ) has a
representation of the form

D(α0
i )
(

1
mi

∫ t

0

[D(νmi(α
0
i , s)) − νmi(α

0
i , s)

′ ∗ νmi(α
0
i , s)]dN̄mi(s)

)−1

× 1√
mi

mi∑
j=1

∫ t

0

[ρi,j(s) − νmi
(α0

i , s)]dMi,j(s) + oP (1),

and that
√

mi(α̂mi
−α0

i ) converges to a normal distribution with expectation equal to
0 and covariance matrix given by
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D(α0
i )Ψ

−1
i (α0

i , T )D(α0
i ).

From the independence assumption and Assumption 2 it follows that
√

m(α̂m − α0)
converges to a normal distribution with expectation equal to 0 and covariance matrix
given by

D(α0)Ψ−1(α0, T )D(α0).

Therefore, we only have to determine the covariance process between Zm and
⎛
⎝

m1∑
j=1

∫ t

0

[ρ1,j(s) − νm1(α
0
1, s)]dM1,j(s), . . . ,

mK∑
j=1

∫ t

0

[ρK,j(s) − νmK (α0
K , s)]dMK,j(s)

⎞
⎠ .

A direct calculation shows (cf. Kvam and Peña, 2005, Lemma 1) that the covariation
process is equal to 0. This finishes the proof. �

It is worth mentioning that the covariance matrix Σ̃ can be consistently esti-
mated by the following steps: plugging in the estimator α̂m into the estimator Σ̂,
using b̂(α̂m, t) =

∫ t

0
(1/m)Wm(α̂m, s)A′

m(α̂m, s)dN̄m(s) as an estimator for b(α0, t)
(cf. (24.13)), and using (1/mi)

∫ t

0
[D(νmi(α̂mi , s))−νmi(α̂mi , s)

′ ∗νmi(α̂mi , s)]dN̄mi(s)
as an estimator for Ψi(α0

i , t). Using Theorem 2 we can then construct test statistics
according to the discussion following Theorem 1.
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Adjusting p-Values when n Is Large in the Presence
of Nuisance Parameters
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Abstract: A precise null hypothesis formulation (instead of the more realistic interval
one) is usually adopted by statistical packages although it generally leads to excessive
(and often misleading) rates of rejection whenever the sample size is large. In a previous
paper (Migliorati and Ongaro, 2007) we proposed a calibration procedure aimed at
adjusting test levels and p-values when testing the mean of a Normal model with
known variance. We now address the more complicated calibration issues arising when
a nuisance parameter (e.g., the variance) is present. As procedures for testing the
interval null hypothesis available in the literature are shown to be unsatisfactory for
calibration purposes, this entails, in particular, the construction of suitable new tests.

Keywords and phrases: Precise versus interval null hypothesis, nuisance parameter,
calibration, large sample size

25.1 Introduction

Very often the null hypothesis is formulated as a precise one specifying an exact value
for the parameter(s) of the model. However, in many practical situations it is more
realistic to test an interval hypothesis stating that the parameter is “close” enough to
a given value. In other words a distinction between statistical significance and practi-
cal (or substantial) significance should be made (Berger and Sellke, 1987; Berger and
Delampady, 1987).

The approximation of the true null (interval) hypothesis by a precise one does not
lead to strong inconsistencies as long as the sample size n is small; on the contrary, when
n is large the use of precise hypotheses can be heavily misleading. This is because in the
presence of huge statistical information even a very small departure from the precise
null is detected (leading to rejection) due to the high power of the test. Such a problem is
well known both in the literature (Hodges and Lehmann, 1954) and in empirical studies
where an anomalously high rejection rate is a widely reported experience whenever the
available data are extensive.

In Migliorati and Ongaro (2007) a practically oriented calibration procedure has
been proposed, which is theoretically well grounded and easily implementable as well.

C.H. Skiadas (ed.), Advances in Data Analysis, Statistics for Industry 305
and Technology, DOI 10.1007/978-0-8176-4799-5 25,
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More precisely, starting from the interval hypothesis formulation, such a procedure
enables us to adjust (precise null hypotheses based) standard package outputs so as to
reconcile the two concepts of statistical and practical significance.

The aforementioned procedure has been developed for dealing with the no nuisance
parameter case. Here we tackle the calibration problem in the presence of nuisance
parameters taking as the motivating example the Normal mean problem when the
variance is unknown. In this more interesting setup new issues arise calling for suitable
modifications of the calibration method. Such a method is based on the comparison of
the (traditional) precise null hypothesis test with a test for the interval null having the
same structure. If no nuisance parameters are present, such a comparison is, in principle,
simple to be performed as one can use the same type of test. This is not usually the
case when the model includes nuisance parameters. In particular, in the Normal setup,
the traditional t-test turns out to be inadequate for testing an interval null hypothesis.
Besides, other known tests specifically built for the interval null hypothesis framework
are shown not fully appropriate for calibration. Consequently we develop alternative
new tests and assess their properties.

The chapter is organized as follows. In Section 25.2 the calibration for the Nor-
mal model with known variance is briefly summarized and a new in-depth study of
the extent of the adjustment needed and of the accuracy of some of its approxima-
tions is given. Section 25.3 contains the main results which enable us to tackle the
nuisance parameter presence (specifically the Normal model with unknown variance).
Furthermore both exact and approximate formulas as well as numerical tables neces-
sary to implement calibration and to assess accuracy of approximations are given and
discussed. Finally a brief discussion, including further examples of application of the
calibration method, is presented in Section 25.4.

25.2 Normal model with known variance

Let x be a vector of i.i.d. observations from a Normal random variable (r.v.) with
unknown mean μ and known variance σ2. The UMPU level α∗ test for the precise
hypothesis H∗

0 : μ = μ0 versus H∗
1 : μ 
= μ0 rejects if |z| ≥ z1−α∗/2 where z is the

observed value of Z =
√

n(X̄ − μ0)/σ, X̄ is the sample mean, and zq is the standard
Normal quantile of level q.

Suppose now that δ represents the smallest departure from μ0 which is considered
practically significant for the problem under consideration. Then the precise hypothesis
should be replaced by the more realistic interval one: H0 : |μ− μ0| ≤ δ versus H1 :
|μ− μ0| > δ.

If an exact value for δ can be specified, a level α rejection region for the interval
hypothesis based on the same statistic used for testing the precise one is given by
{|z| ≥ kα}, where kα is such that α = sup|μ−μ0|≤δ Pμ,σ2(|Z| ≥ kα) = 2 − [Φ(kα −√

nδ/σ) + Φ(kα +
√

nδ/σ)] and must be computed numerically. Here Φ denotes the
standard Normal distribution function (d.f.) and Pμ,σ2 is the distribution of x when μ
and σ2 are the true values of the parameters.

The relationship between the (nominal) level α∗, that is, the level implicitly consid-
ered by standard package outputs, and the (real) level α can be obtained by equating
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the two rejection thresholds, that is, by imposing kα = z1−α∗/2. Consequently, the
nominal level to be used in order to achieve a given real level α is the following,

α∗ = 2[1 − Φ(kα)]. (25.1)

Notice that for any given α the nominal level α∗ is a decreasing function of δst =
√

nδ/σ
ranging from α to zero. This is in agreement with the common intuition that for large
sample sizes an adjustment is needed which reduces the rejection rate. Moreover, in
general the extent of the required adjustment is substantial even for small values of δst:
it is easy to verify numerically that the nominal level can be considered approximately
correct (less than 10% error) only for values of δst smaller than 0.2 or 0.1. Such an
aspect becomes more evident if one just considers the following approximations for the
relationship between α and α∗. First of all, if n, and therefore δst, is large enough one
can neglect 1 − Φ(kα +

√
nδ/σ) = Φ(−kα − δst) in the computation of the level of the

test, so that the threshold kα can be approximated by

kα ≈ z1−α + δst. (25.2)

The precision of such an approximation can be evaluated purely on the basis of the
values of δst. More precisely, by inspection of the Normal d.f. a precision up to any
desired digit can be achieved by asking that kα + δst > c for an appropriate positive
constant c. For example, c = 4 leads to a precision up to the fourth digit, c = 5 to the
sixth, and so on. Thus, being kα > δst for any reasonable value of α (i.e., α < 0.5), the
chosen precision can be reached for δst > c/2.

The above approximation leads to the following (approximate) calibration formula

α∗ = 2[1 − Φ(z1−α + δst)] (25.3)

which corresponds to a real level α test with precision up to the desired digit. For
example, suppose one wishes to test at level α with absolute error lower than 0.0001,
which is negligible to any practical purpose. This means that c = 4, implying that (25.3)
can be resorted to whenever δst > 2. Actually a numerical investigation shows that
(25.3) gives a very accurate approximation also for smaller values of δst. In particular
if δst > 0.5 the relative error on α∗ is lower than 10% for any α ≤ 0.1 and if δst ≥ 1 it
is even lower than 1%.

A further approximate value for α∗ can be obtained through the asymptotic series
relative to the tail values of the d.f. Φ (Johnson et al., 1994). More precisely, if x >> 1
then

Φ(x) = 1 − e−x2/2

√
2π

(x−1 − x−3 + 3x−5 − 15x−7 + · · · ). (25.4)

Therefore if δst is large enough, truncating (25.4) and replacing it into (25.3) gives rise to
a new expression for α∗. Notice that (25.3) provides an approximation by excess which
can be compensated by truncating (25.4) to an even term given that the remainder
term in brackets of expansion (25.4) is less in absolute value than the last term taken
into account. For example, a truncation to the second term leads to the following
expression,

α∗ = 2e−(δst+z1−α)2/2 (δst + z1−α)2 − 1√
2π(δst + z1−α)3

. (25.5)
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Figure 25.1. α∗ as a function of δst for fixed α = 0.05: exact values (bottom line), first
approximation (equation (25.3), top line) and second approximation (equation (25.5), middle
line)

In Figure 25.1 the two approximations (25.3) and (25.5) together with the exact α∗ as
a function of δst for fixed α = 0.05 are compared.

The accuracy of the two approximations for large values of δst is confirmed by
graphical inspection and a similar behaviour can be observed for other values of α.
Expression (25.5), though less straightforward than (25.3), shows that the nominal
level decreases at an exponential rate as a function of δst – and thus of

√
n – which

confirms the severity of the adjustment required when large sample sizes are taken into
consideration.

Let us now focus on the practical application of the calibration procedure. In order
to test at a given real level α, it is enough to compare the p-value p∗ reported by the
package, that is, the one relative to the precise hypothesis, with the nominal level α∗

computed according to (25.1) (or to the approximations given by (25.3) or (25.5) for
sufficiently large values of δst). Rejection should then be chosen only if p∗ is smaller
than α∗.

As far as the p-value calibration is concerned (i.e., the computation of the correct
value p which should be used instead of p∗), one can resort to the following

p = 2 − [Φ(z1−p∗/2 − δst) + Φ(z1−p∗/2 + δst)]. (25.6)

In many contexts it is difficult to determine an exact value for δst, only partial
information on it being available instead.

Let us now examine, then, how the calibration can be achieved in this new and
more widespread setup.

First suppose one is interested in testing at a given real level α. Equation (25.1)
gives the nominal level α∗ as a function of the desired real level α and of the value of
δst, which we write as α∗ = g(α, δst). Let us denote by δ′st the value of δst such that
the corresponding nominal level equals the reported nominal p-value p∗; that is,

p∗ = g (α, δ′st) . (25.7)
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Then according to the procedure developed for the δst known case, for any given δst

one should reject if g(α, δst) is greater than p∗ and accept otherwise. This means that
rejection has to be chosen if and only if δst < δ′st. It follows that to take a decision it is
sufficient (and necessary) to know whether δ′st belongs to H0. In other words to decide
whether to accept we simply need to tell whether δ′st has to be considered a practically
significant departure from the precise null.

Finally, let us focus on the question of p-value calibration. If the exact value of
δst is unknown, then it is not possible to determine exactly the p-value. In this case
we believe that, from a practical point of view, the relevant objective is to position
p with respect to some standard critical values of α (e.g., 1, 5, or 10%). This can be
achieved by performing level α tests for increasing values of α greater than p∗. More
precisely, for each test level the value δ′st given by (25.7) can be judged practically
not significant (corresponding to acceptance), unclassifiable, or practically significant
(corresponding to rejection). The lower and upper bounds for p coincide therefore with
the last (greatest) value of α leading to acceptance and with the first (smallest) value
of α leading to rejection. It is noteworthy that the information required by this simple
procedure is quite straightforward to retrieve: everything boils down to classifying a
small set of δst values.

25.3 Normal model with unknown variance

Let us now focus on the more realistic problem of testing the mean of a Normal distri-
bution with unknown variance σ2. The UMPU level α∗ test for the precise hypothesis
H∗

0 : μ = μ0 versus H∗
1 : μ 
= μ0 rejects for sufficiently large values of the statistic

|Tn| =
∣∣√n(X̄ − μ0)/Sn

∣∣ where S2
n is the sample (unbiased) variance. Therefore the

rejection region has the form
{|Tn| ≥ tn−1,1−α∗/2

}

where tν,q is the q quantile of a Student’s t-distribution with ν degrees of freedom.
Consider now the interval hypothesis H0 : |μ− μ0| ≤ δ versus H1 : |μ− μ0| > δ. In

order to apply the calibration procedure we need a level α test for H0 which is based
on the same type of rejection region; i.e., {|Tn| ≥ k} where k ≥ 0. Unfortunately this
approach is not feasible as any test of this type has level 1. This can be seen as follows.
First notice that |Tn| is stochastically increasing with respect to |μ− μ0|. Therefore for
any given σ2 we have

sup
|μ−μ0|≤δ

Pμ,σ2(|Tn| ≥ k) = P|μ−μ0|=δ; σ2(|Tn| ≥ k) = g(σ2).

It is then possible to show (see Result 1 in the Appendix) that g(σ2) is decreasing with
respect to σ2 with limit 1 as σ2 goes to zero.

In such a context we are therefore forced to look for tests with a different structure.
In particular, to our purposes an interesting class of tests is obtained by letting the
threshold k depend on data. As this class of tests rejects for large values of |Tn| as well,
even in this case calibration formulas can be derived by comparing the two thresholds.
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Notice that in general it is quite difficult to build tests for the interval null hypothesis
with good minimal properties such as unbiasedness (see Hodges and Lehmann, 1954;
Schervish, 1995).

The solution proposed in Hodges and Lehmann (1954) is rather intricate and its
form is not suitable for calibration. A standard solution for this problem can be found
by combining two separate one-tailed t-tests, i.e., rejecting if {TA ≤ tn−1,α/2} or {TB ≥
tn−1,1−α/2} where TA =

√
n[X̄n − (μ0 − δ)]/Sn and TB =

√
n[X̄n − (μ0 + δ)]/Sn. Such

a test can be written in the more compact form
{
|Tn| ≥ tn−1,1−α/2 +

√
n

δ

Sn

}
(25.8)

which is of the type required for calibration. Nonetheless, in practice such a test has
some serious drawbacks. The test has exact level α, but such level is obtained by
letting σ2 → ∞. Actually, the power of the test can be proved to be equal to α/2
for small values of σ2 (see Schervish, 1995). Furthermore, simulation studies show
that its level is close to α/2 for a range of σ2 values including relatively large ones.
As a consequence its use for calibration purposes is questionable given that it is not
clear what level should be used. Some further remarks about it are given later in this
section.

An appealing method to obtain a different data-dependent threshold is to replace
the nuisance parameter σ2 with a suitable estimate in the distribution Pμ,σ2 used to
compute the level of the test. In other words the threshold is derived by acting as if σ2

were known and equal to its estimate.
More precisely, let k′

α(σ2) be the level α threshold when σ2 is known, i.e., such that

α = P|μ−μ0|=δ;σ2

(|Tn| ≥ k′
α(σ2)

)
.

Then, if the nuisance parameter σ2 is estimated by the sample variance S2
n, the new

test will have rejection region

R′
n =

{|Tn| ≥ k′
α(S2

n)
}
. (25.9)

The threshold k′
α(σ2) can be computed numerically by solving the equation

α = 1 − Fn−1,δst
(k) + Fn−1,δst

(−k) (25.10)

where Fν,λ is a noncentral Student’s t-distribution with ν degrees of freedom and non
centrality parameter λ.

For large n one can replace the Student’s t distribution with the Normal as Fn−1,λ →
N(λ, 1). This implies that k′

α(σ2) is approximately equal to the Normal threshold
kα(σ2) derived in the previous section. One can therefore consider the more tractable
rejection region

Rn =
{|Tn| ≥ kα

(
S2

n

)}
. (25.11)

Moreover for sufficiently large values of δ̂st =
√

nδ/Sn an even simpler expression can
be given by replacing the threshold kα

(
S2

n

)
with

kα

(
S2

n

) ≈ z1−α + δ̂st (25.12)
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(see approximation (25.2)).
Clearly the proposed method leads to a simple and easily interpretable solution:

it behaves as if the nuisance parameter were equal to its estimate and it can be im-
plemented employing the formulas relative to the σ2 known case. Although its level
cannot be determined explicitly, both analytical results and simulation studies show
that, for large n, it is approximately equal to α.

Proposition 1. The test with rejection region Rn given by (25.11) is consistent with
asymptotic level α. More precisely, for any given σ2 > 0 we have:

lim
n→∞Pμ,σ2(Rn) =

⎧
⎨
⎩

α |μ− μ0| = δ
0 |μ− μ0| < δ
1 |μ− μ0| > δ

.

The same asymptotic result does hold if in Rn the threshold kα

(
S2

n

)
is replaced by

(25.12).

For the proof see the Appendix.

In order to investigate the rate of convergence of the Rn test level to α we performed
a simulation study for various sample sizes n and δ/σ values. Simulations for the level
are obtained by taking 40,000 samples of size n (similar results can be obtained by
resorting to the simple approximate formula (25.12), slight differences emerging only
when δst =

√
nδ/σ is smaller than 1). Table 25.1 shows that the real (simulated) level

is relatively close to α even for moderate sample sizes; in particular it is quite accurate

Table 25.1. Simulated levels (based on 40, 000 replications) for different values of n and of
δ/σ with α = 0.05

δ/σ n = 30 n = 100 n = 500 n = 1000

0.1 0.05545 0.05218 0.05105 0.04963

0.5 0.05423 0.05213 0.05113 0.05020

1 0.05418 0.05230 0.04960 0.04978

3 0.05403 0.05210 0.04980 0.05022

for n ≥ 100. The different δ/σ values do not appear to influence the goodness of the
approximation, only a slight improvement emerging essentially for small sample sizes
as δ/σ increases. Moreover, further simulations performed with different α values and
larger δ/σ deserve similar remarks.

Notice that if in Rn we use approximation (25.12) the resulting test coincides with
test (25.8) provided that we substitute z1−α with tn−1,1−α/2. As tn−1,1−α/2 converges
to z1−α/2 as n → ∞, Proposition 1 implies that for large n such a test has level α/2 for
any given σ2 > 0. To sum up, the test (25.8) has level α/2 when n diverges and σ2 > 0
is fixed or for small σ2 and fixed n. On the other hand it has level α when σ2 → ∞
and n is fixed. As a consequence when both n and σ2 are large the choice of the level
to be used for calibration is particularly difficult.

On the contrary, the test Rn does not suffer from this limitation as for sufficiently
large but fixed n, its level is approximately equal to α both when σ2 → 0 and when
σ2 → ∞ as stated in the following proposition.
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Proposition 2. Let Vn have a central Student’s t-distribution with n degrees of free-
dom. Then for any given μ we have:

lim
σ2→∞

Pμ,σ2(Rn) = P
(|Vn| ≥ z1−α/2

)
.

Furthermore it holds that

lim
σ2→0

Pμ,σ2(Rn) =

⎧
⎨
⎩

P (Vn ≤ zα) |μ− μ0| = δ
0 |μ− μ0| < δ
1 |μ− μ0| > δ

For the proof see the Appendix.

As the central Student’s t-distribution converges to the standard Normal, Propo-
sition 2 implies that the level of the test Rn is rather close to α both when σ2 tends
to zero and when it diverges to infinity provided that n is large. In particular even for
moderate values of n, say larger than 50, a good accuracy is obtained for the usual α
levels.

As far as calibration is concerned, for large n it is then legitimate to perform it by
equating the two thresholds tn−1,1−α∗/2 and kα(S2

n), obtaining the following expression

α∗ = 2
{
1 − Φ

[
kα(S2

n)
]}

, (25.13)

which can be simplified by using approximation (25.12), thus getting

α∗ = 2
{

1 − Φ
[
z1−α + δ̂st

]}
. (25.14)

If we employ the test given by R′
n instead of Rn the calibration becomes

α∗ = 2
{
1 − Fn−1,0

[
k′

α(S2
n)
]}

. (25.15)

Notice that in expression (25.15) α∗ depends both on n and on δ̂st whereas in (25.13)
and (25.14) α∗ is given purely in terms of δ̂st.

Table 25.2 compares the nominal levels α∗ computed on the basis of R′
n (formula

(25.15)), Rn (formula (25.13)), and the approximation (25.14). From a practical point
of view all the α∗ values reported in the table can be considered quite similar for any
given positive δ̂st. In particular, the two tests R′

n and Rn are nearly equivalent when
n ≥ 100 giving very close α∗ values. Moreover the approximate formula (25.14) for the
test Rn is rather accurate for δ̂st ≥ 0.5, perfectly fitting the behaviour of α∗ computed
with (25.13) for δ̂st ≥ 1 as already shown in Figure 25.1.

Expressions (25.13) and (25.15) give rise to the following calibration formulas for
the p-value:

p = 1 − Φ(z1−p∗/2 − δ̂st) + Φ(−z1−p∗/2 − δ̂st) (25.16)
p = 1 − Fn−1,δ̂st

(t1−p∗/2) + Fn−1,δ̂st
(−t1−p∗/2). (25.17)

Let us now focus on the more common case where one is unable to specify exactly the
critical value δ which defines the interval null hypothesis. As we have shown in Section
25.2 any calibration procedure in this case is crucially based on the ability of testing
at a given level α, which can be performed by finding the value δ̂′st of δ̂st which solves
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Table 25.2. Nominal levels α∗ for different values of n and of δ̂st when α = 0.05: equation
(25.15) (columns 2–5), equation (25.13) (column 6), and equation (25.14) (column 7)

δ̂st n = 30 n = 100 n = 500 n = 1000 Equation (25.13) Equation (25.14)

0 0.05 0.05 0.05 0.05 0.05 0.1
0.5 0.03236 0.02950 0.02922 0.02918 0.02914 0.03196
1 0.00958 0.00856 0.00823 0.00818 0.00814 0.00817
1.5 0.00244 0.00188 0.00170 0.00168 0.00166 0.00166
2 564·10−6 342·10−6 282·10−6 274·10−6 268·10−6 268·10−6

2.5 122·10−6 53·10−6 37·10−6 36·10−6 34·10−6 34·10−6

3 253·10−7 70·10−7 40·10−7 37·10−7 34·10−7 34·10−7

3.5 516·10−8 80·10−8 34·10−8 30·10−8 27·10−8 27·10−8

4 1052·10−9 82·10−9 24·10−9 20·10−9 17·10−9 17·10−9

4.5 2171·10−10 76·10−10 13·10−10 10·10−10 8·10−10 8·10−10

5 4581·10−11 65·10−11 6·10−11 4·10−11 3·10−11 3·10−11

the analogue of equation (25.7). This can be accomplished by substituting α∗ with the
(nominal) p-value p∗ into equation (25.13) and subsequently solving it with respect
to δ̂st (on which the threshold kα(S2

n) does depend). Obviously a similar method can
be applied to the test R′

n, using equation (25.15) instead of (25.13). Moreover, it is
noteworthy that approximation (25.14) relative to the test Rn gives rise to the explicit
solution

δ̂′st = z1−p∗/2 − z1−α. (25.18)

Such a simple solution is virtually perfect when δ̂′st > 1, which is often the case when
n is large. The performance for smaller values of δ̂′st is shown in Table 25.3. Clearly
the approximation improves as α decreases, being quite accurate for values bigger than
0.4–0.6 depending on α levels.

Table 25.3. Approximate δ̂′st values (see formula (25.18)) for different α levels (the first
column reporting the exact values)

δ̂′st α = 0.10 α = 0.05 α = 0.01 α = 0.001

0 0.3633 0.3151 0.2495 0.2003
0.1 0.3715 0.3249 0.2623 0.2165
0.2 0.3959 0.3537 0.2993 0.2623
0.3 0.4359 0.4002 0.3571 0.3309
0.4 0.4902 0.4621 0.4310 0.4143
0.5 0.5572 0.5366 0.5159 0.5063
0.6 0.6346 0.6205 0.6077 0.6026
0.7 0.7199 0.7110 0.7036 0.7011
0.8 0.8110 0.8056 0.8016 0.8004
0.9 0.9058 0.9027 0.9007 0.9002
1 1.0029 1.0013 1.0003 1.0000

In practice one can use the test Rn and determine the crucial δ̂′st values as follows.
Use the value obtained by (25.18) if it is bigger than say 0.6, otherwise deduce an
approximate value on the basis of Table 25.4. For a given α, one has to look for the
α∗ value closest to the observed p∗ and then choose as approximate δ̂′st value the one
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Table 25.4. Nominal levels α∗ derived from equation (25.13) for different values of α and
of δst

δst α = 0.10 α = 0.05 α = 0.01 α = 0.001

0 0.100000 0.050000 0.010000 0.001000
0.1 0.098318 0.048870 0.009637 0.000944

0.2 0.093449 0.045657 0.008649 0.000801
0.3 0.085897 0.040850 0.007286 0.000624
0.4 0.076429 0.035118 0.005828 0.000457
0.5 0.065952 0.029148 0.004480 0.000323
0.6 0.055350 0.023489 0.003345 0.000222
0.7 0.045341 0.018481 0.002446 0.000150
0.8 0.036392 0.014267 0.001760 0.000100
0.9 0.028719 0.010847 0.001251 0.000066
1 0.022344 0.008141 0.000879 0.000043

which entitles the corresponding row. Such approximation is sufficiently precise to most
practical purposes as its absolute error is smaller than 0.1, which implies an absolute
error in terms of δ/σ smaller than (10

√
n)−1.

25.4 Conclusion

We proposed a simple procedure to calibrate p-values when nuisance parameters are
present. Such a calibration is based on the comparison between the traditional t-test
and a new test specifically developed for testing interval null hypotheses having the
form required to perform calibration. The level of the latter has been investigated both
from a theoretical and from a practical perspective and a comparison is made with the
standard proposal which combines two one-tailed tests.

The implementation of the procedure depends on the specification, for a given set
of standard α levels, of crucial values δ̂′st. The actual calibration of a given p-value can
then be simply accomplished by deciding whether a departure from the precise null
model of size |μ− μ0| = δ̂′stSn/

√
n has to be considered practically significant (the

possibility one is unable to decide is accounted for by the procedure, obviously leading
to a less accurate evaluation of the correct p-value).

Exact formulas and tables for the determination of δ̂′st are given together with the
explicit approximation δ̂′st = z1−p∗/2 − z1−α, whose simplicity and great accuracy for
large sample sizes make it a benchmark value for most practical situations.

Our calibration procedure was conceived for the Normal mean testing problem,
but it can be extended to more general frameworks. In particular, the method can be
directly applied to the family of Student’s t type test statistics, such as those arising
in the two-sample problem and in regression coefficient testing within Normal models.

As far as the former is involved, suppose that two i.i.d samples of size n1 and n2

are drawn independently from X1 ∼ N(μ1, σ
2) and, respectively, from X2 ∼ N(μ2, σ

2)
to test the precise null H∗

0 : μ1 = μ2. The usual test statistic takes the form
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|Tn| =
√

n
∣∣X̄1 − X̄2

∣∣
Sn

√
n−1

1 + n−1
2

where S2
n =

[
(n1 − 1)S2

1 + (n2 − 1)S2
2

]
/(n1 + n2 − 2) and S2

1 and S2
2 are the two

unbiased sample variances. The distribution of Tn is noncentral Student’s t with n1 +
n2 − 2 degrees of freedom and noncentrality parameter

√
n1n2/(n1 + n2) |μ1 − μ2| /σ.

Even in this case the correct null hypothesis can be more realistically formulated as
an interval one; namely H0 : |μ1 − μ2| ≤ δ. It follows that, in terms of calibration, this
setup is equivalent to the one of Section 25.3, and all calibration formulas derived there
do apply.

Analogously, the problem of testing the generic ith regression coefficient is formally
identical to the Normal mean testing problem provided that in the expression of δ′st

the quantity
√

n is replaced by c
−1/2
ii where cii is the ith element of the diagonal of

(X ′X)−1, X being the design matrix.
The calibration procedure proposed here can also be directly applied in the very

general case where the test statistic has an asymptotic Normal distribution. If H∗
0 :

θ = θ0 and θ̂ is an asymptotic Normal estimator with standard error se, then the
calibration formulas relative to the Rn test still hold if we set δ̂st = δ/se.

Finally, the logic underlying the present approach can be fruitfully employed for
dealing with more general models with nuisance parameters which will be shown in
forthcoming work.

25.5 Appendix

Result 1. In the setting of Section 25.3, the function

g(σ2) = P|μ−μ0|=δ,σ2 (|Tn| ≥ k)

is decreasing with respect to σ2 with range (q, 1) where q is the probability that the
absolute value of a central Student’s t-distribution with n − 1 degrees of freedom is
greater than k.

Proof. The distribution of Tn =
√

nX̄/Sn is noncentral Student’s t with n− 1 degrees
of freedom and noncentrality parameter δst =

√
nδ/σ, which we denote by Fn−1,δst .

Let Y and W be two independent r.v.s where Y is a standard Normal and W =√
χ2

n−1/(n− 1). Then

g(σ2) = P|μ−μ0|=δ,σ2

(∣∣∣∣
Y + δst

W

∣∣∣∣ ≥ k

)
= 1 −GY −kW (−δst) + GY +kW (−δst)

where GZ denotes the distribution function of the r.v. Z. Therefore it is easy to show
that limσ2→0 g(σ2) = 1 and limσ2→∞ g(σ2) = P (|Tn−1,0| ≥ k). Furthermore we have
that

g(σ2) = E

{
P|μ−μ0|=δ,σ2

[(∣∣∣∣
Y + δst

W

∣∣∣∣ ≥ k

)
| W

]}
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and

P|μ−μ0|=δ,σ2

[(∣∣∣∣
Y + δst

W

∣∣∣∣ ≥ k

)
| W

]
= 1 − Φ (kW − δst) + Φ (−kW − δst) .

By differentiating with respect to σ the latter expression can be shown increasing in
σ2 which implies monotonicity of g(σ2).

Lemma 1. Let Xi be i.i.d. N(μ, σ2) r.v.s and let X̄n and S2
n be the sample mean and

variance. Then for any given σ2 we have that

√
n

Sn

(∣∣X̄n − μ0

∣∣− δ
) d→

⎧
⎨
⎩

N(0, 1) |μ− μ0| = δ
−∞ |μ− μ0| < δ
+∞ |μ− μ0| > δ

where d→ means convergence in distribution.

Proof. Let us first derive the asymptotic distribution of

Wn =
√

n

σ

(∣∣X̄n − μ0

∣∣− δ
)
.

We have

Pμ,σ2(Wn ≤ w)

= Pμ,σ2

(
−w −√

n
δ + μ− μ0

σ
≤ √

n
X̄n − μ

σ
≤ w +

√
n
δ − μ + μ0

σ

)

which implies that

lim
n→∞Pμ,σ2(Wn ≤ w) =

⎧
⎨
⎩

Φ(w) |μ− μ0| = δ
1 |μ− μ0| < δ
0 |μ− μ0| > δ

i.e., convergence of Wn to N(0, 1) if |μ− μ0| = δ, to −∞ if |μ− μ0| < δ, and to +∞ if
|μ− μ0| > δ.

The result then follows by applying the Slutsky theorem to the ratio Wn/(Sn/σ).

Proof of Proposition 1. In the notation of the previous lemma, let pσ(k) be defined
as

pσ(k) = P|μ−μ0|=δ,σ2

(√
n
X̄n − μ0

σ
≥ k

)
= 1 − Φ

(
k −

√
nδ

σ

)
+ Φ

(
−k −

√
nδ

σ

)
.

It is easy to check that for any given σ2 > 0 and α

{k ≥ kα(σ2)} = {pσ(k) ≤ α}.
It follows that Rn can be equivalently written as

Rn = {pSn
(|Tn|) ≤ α}.

Let us now study the asymptotic behaviour of
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pSn(|Tn|) = 1 − Φ

[√
n

Sn

(∣∣X̄n − μ0

∣∣− δ
)]

+ Φ

[
−
√

n

Sn

(∣∣X̄n − μ0

∣∣+ δ
)]

.

Clearly, for any μ and σ2 we have that Φ
[−(

√
n/Sn)

(∣∣X̄n − μ0

∣∣+ δ
)]

converges to
zero. Furthermore by the previous lemma we have

1 − Φ

[√
n

Sn

(∣∣X̄n − μ0

∣∣− δ
)] d→

⎧
⎨
⎩

U(0, 1) |μ− μ0| = δ
1 |μ− μ0| < δ
0 |μ− μ0| > δ

(where U(0, 1) is a uniform r.v. with range (0, 1)), which proves the asymptotic result
for Rn.

The rejection region obtained by replacing kα(S2
n) with z1−α +

√
nδ/Sn can be

written as {√
n

Sn

(∣∣X̄n − μ0

∣∣− δ
) ≥ z1−α

}
.

The asymptotic behaviour of such a region is then a direct consequence of the lemma.

Proof of Proposition 2. As shown in the proof of Proposition 1, the rejection region
Rn can be written as Rn = {pSn(|Tn|) ≤ α} where

pSn
(|Tn|) = 1 − Φ

[√
n

Sn

(∣∣X̄n − μ0

∣∣− δ
)]

+ Φ

[
−
√

n

Sn

(∣∣X̄n − μ0

∣∣+ δ
)]

.

It is then not difficult to check that, for any given μ, as σ2 → ∞ pSn(|Tn|) converges
in distribution to 1 − Φ(|Vn|) + Φ(− |Vn|). Therefore

lim
σ2→∞

Pμ,σ2(Rn) = Pr [2 (1 − Φ(|Vn|)) ≤ α] = Pr
(|Vn| ≥ z1−α/2

)
.

Let us now consider the case σ2 → 0. The term Φ
[−(

√
n/Sn)

(∣∣X̄n − μ0

∣∣+ δ
)]

in
pSn(|Tn|) is easily seen to converge to 0 for any given μ. Let us then derive the behaviour
of

Un =
√

n

Sn

(∣∣X̄n − μ0

∣∣− δ
)
.

Its distribution function can be written as

Pμ,σ2(Un ≤ u)

= Pμ,σ2

(
−u−√

n
δ + μ− μ0

Sn
≤ √

n
X̄n − μ

Sn
≤ u +

√
n
δ − μ + μ0

Sn

)
.

Since Sn
d→ 0 for σ2 → 0 and, for any given σ2,

√
n((X̄n − μ)/Sn) is distributed as a

central Student’s t with n− 1 degrees of freedom, it then follows that as σ2 → 0,

Un
d→
⎧
⎨
⎩

Vn |μ− μ0| = δ
−∞ |μ− μ0| < δ
+∞ |μ− μ0| > δ

.

Finally this implies

pSn
(|Tn|) d→

⎧
⎨
⎩

Φ(Vn) |μ− μ0| = δ
1 |μ− μ0| < δ
0 |μ− μ0| > δ

which proves the result.
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Fitting Pareto II Distributions on Firm Size:
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Abstract: We propose here a new implementation of the forward search, which is a
powerful general method usually suitable for detecting extreme observations and for
determining their effect on fitted models (Atkinson and Riani, 2000). Through the for-
ward search we iteratively fit the Pareto II distribution to firm size data. In particular,
a threshold is fixed to the fit of the Pareto II distribution through a progressive adap-
tation technique, performing at each iteration the χ2 test to check for the acceptance of
the null hypothesis. Yearly Zipf-plots of the truncated empirical distribution with su-
perimposed theoretical Pareto II distribution highlight the adherence of the estimates
to data for different size ranges. Possible economic interpretations of the results are
then provided, referring in particular to the role of the stock market in shaping firm
size distribution and to the firm size effect (Banz, 1981; Reingaum, 1981). More in gen-
eral, we discuss possible implications of introducing our methodology in macroeconomic
models.

Keywords and phrases: Firm size distribution, forward search, Pareto II, stock
market, firm size effect

26.1 Introduction

The existence of a recurrent probability model of firm size distribution has been inves-
tigated in statistical as well as in economic literature since Pareto (1897) and Gibrat’s
(1931) influential works (for an exhaustive survey see Kleiber and Kotz, 2003). In early
as well as in recent literature firm size has been mostly modeled by means of the log-
normal and Pareto I distributions (see for example, Hart and Prais, 1956; Steindl, 1965;
Quandt, 1966; Ijiri and Simon, 1977; Stanley et al., 1995; and Axtell, 2001). Both dis-
tributions have been derived as the outcome of stochastic models of growth, based on
the law of proportionate effect which postulates no effect of size on percentage growth
rates (Gibrat, 1931). In particular, the goodness-of-fit of the Pareto I distribution is
generally assessed on the right tail only, where the lognormal distribution fit is not
satisfactory (Stanley et al., 1995; Hart and Oulton, 1997). In this chapter we start
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from these stylized facts, proposing an alternative Paretian model, the Pareto II distri-
bution. This model incorporates the Pareto I as a particular case, modeling therefore
what Pareto I models, but presenting the relevant advantage of extending the potential
range of firms to capture, on the same time maintaining a low number of parameters.
We fit the Pareto II distribution to the Italian chemical sector (1999–2004) through the
forward search, which carries on the estimation and goodness-of-fit procedures on an
iterative basis. The methodology proposed in this chapter can be profitably employed
as an analytical method in several research fields and “economic puzzles,” such as the
(lack of) empirics in new industrial economics models (i.e., the class of models postulat-
ing endogenous market structure as a result of strategic interaction among firms), the
issue of microfoundation and aggregation, the firm size effect (Banz, 1981; Reingaum,
1981), and the impact of financial markets on firm size and growth. The chapter is or-
ganized as follows: in Section 26.2 we briefly describe the dataset; Section 26.3 regards
the application of the forward search technique to the fit of the Pareto II distribution.
Empirical results are presented in Section 26.4, in Section 26.5 we discuss economic
implications of results, and Section 26.6 gives some conclusions and suggestions for
further research.

26.2 Data description

Our analysis is based on the AIDA dataset, processed and managed by Bureau van
Dijck Electronic Publishing (http://www.bvdep.com/en/aida.html). AIDA is a large
dataset which records company accounts and activities for 500,000 Italian companies
with sales greater than 500,000 Euros, plus ownership and management for the top
20,000 companies. The dataset goes back to 1995. We first derive a panel for Italian
manufacturing sectors, tracking their accounts from 1999 to 2004. Second, we focus
on the chemical sector, which presented one of the largest number of firms listed in
the Italian stock market (5), obtaining a panel of 1344 firms. Table 26.1 reports the
trend of total assets in the six considered years, both on absolute values and in terms
of growth rates.

Table 26.1. Total Asset (TA) trend (1999–2004)

Year Total Mean 1st Qrt Median 3rd Qrt

Absolute Values (TA, Millions of Euro)

1999 31,390 23,355 1.722 3.701 11.077
2000 34,986 26,031 1.950 4.427 12514
2001 37,148 27,640 2.021 4.684 13.053
2002 38,613 28.730 2.235 4.964 14.137
2003 36,617 27.245 2.343 5.152 13.826
2004 36,635 27.258 2.447 5.575 14.978

Growth (Index Numbers)

2000 11.458 – 13.229 19.590 12.975
2001 6.180 – 3.665 5.797 4.311
2002 3.944 – 10.595 5.978 8.304
2003 −5.169 – 4.834 3.795 −2.199
2004 0.047 – 4.435 8.211 8.328
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26.3 Fitting the Pareto II distribution by means of the forward
search

The Pareto II distribution is the second model Pareto proposed (Pareto, 1897) to
describe empirical income distributions, and was studied in particular by D’Addario
(2003). Its distribution function is given by C.D.F.

F (x) = 1 −
(

1 +
x− μ

σ

)−α

As can be seen, it is defined by three parameters, respectively, of location (μ), of
scale (σ), and of shape (α). The Pareto I distribution is the special case of Pareto II
where μ = σ. Due to the augmented flexibility, the threshold of goodness-of-fit, usually
constrained by the Pareto I to fall from the 75th percentile onwards, is pushed further
on the left by the Pareto II.

Our goal is precisely to find the smallest leftmost firm size unit starting from which
the Pareto II distribution shows a satisfactory fit. Through the forward search, we
iterate the fitting procedure composed by parameter estimation and goodness-of-fit
tests.
The steps of the algorithm are the following.

(1) The first step consists in reverse-ordering the vector X := {x1, x2, . . . , xn} which
contains the size of each firm.

(2) Then we make the left queue of the data our initial subset: we start by considering
only the three rightmost observations, i.e., the three largest firms. This choice is
intentional given the nature of the Pareto II distribution, the adaptation of the
curve to the largest firms being usually good. Therefore, this becomes the robust
subset of firms from where the Forward Search starts.

(3) We start fitting the Pareto II distribution to the data included in the initial subset.
In order to estimate the unknown θ̂ vector whose components are μ̂, α̂, and σ̂
parameters, we choose the maximum likelihood method (Arnold, 1983). Given that
the likelihood will have maximum at μ̂ = x1:n (where μ̂ = x1:n is the first-order
statistic) the α̂ and σ̂ estimates are given by the following equations.

α̂ =
1
n

n∑
i=1

log
(

1 +
xi − x1:n

σ̂

)
; σ̂ =

α̂ + 1
n

n∑
i=1

(xi − x1:n)
[
1 +

xi − x1:n

σ̂

]−1

For computational purposes, however, it is better to calculate the maximum log-
likelihood of the Pareto II density, in the form of:

 (μ, α, σ) = −(α + 1)
n∑

i=1

log
(

1 +
xi − μ

σ

)
− n log σ + n logα

The R package provides us with the constrained optimization routine collection
nlminb, which we can employ with the following syntax.

par2.y.mle<-nlminb(c(1, 1), objective=function(x) -par2.llik(x,
data=dati, mu=mu), lower=c(1e-07, 1e-07), upper=c(Inf, Inf))

Please note that a starting point x0 = {1, 1}, upper b = {∞,∞}, and lower a =
{−∞,−∞} limits are needed.
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(4) Using θ̂ and employing the method of inversion we can set up simulated datasets.
By using the following inverse C.D.F. equation,

F−1(x) = σ
[
(1 − F (x))−1/α − 1

]
+ μ

we can obtain as many random draws from the PII(x;θ̂) distribution as we like.
(5) We are ready to test if the distribution is Pareto II-type compliant by means of

the χ2 test (Quandt, 1966). If the p-value threshold of 10% is reached then we
accept the H0 hypothesis and proceed to step (6), otherwise the last xk firm size
is removed and the routine jumps to step (7).

(6) A single observation is added from X and the routine goes back to step (2).
(7) At this point we have reached the smallest leftmost firm size which does not force

the empirical distribution to abandon the Pareto II model.

26.4 Empirical results

Among the graphical outcomes derivable from procedure (1) to (7) we draw the Zipf
plots of the truncated empirical firm size distribution with superimposed theoretical
Pareto II distribution (see Figure 26.1a). Furthermore, Figure 26.1b tracks the path of
the χ2-square p-values through the forward search procedure. As can be seen, notwith-
standing the satisfactory fit assessed-through the χ2-test, the Zipf plots point out a
systematic deviation in largest firm empirical size with respect to the estimated one.
Table 26.2 reports the outcome of the forward search corresponding to the final set of
firms satisfactorily modeled by the Pareto II distribution.

As can be seen from the second column of Table 26.2, the percentage of firms covered
by the model is about 96–97% of the totality of firms. The corresponding threshold in
terms of total assets is given by the location parameter μ (see column 3).
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Figure 26.1. (a) P -values threshold (Black line: 5th percentile, gray line: 95th percentile)
and (b) Zipf plot (2004). Gray line: estimated Zipf Plot, black line: empirical Zipf Plot. Large
dots represent firms listed in the stock market
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Table 26.2. Forward search statistics

Year Perc μ α σ χ2 df p-Value

1999 96% 694,105 0.973 3,446,699 42.973 34 0.139
2000 97% 713,494 0.994 4,105,675 41.902 34 0.165
2001 96% 868,204 0.958 3,989,601 43.907 34 0.119
2002 96% 838,834 0.994 4,630,873 43.243 34 0.133
2003 96% 917,986 1.004 4,824,788 43.952 34 0.118
2004 97% 804,792 1.055 5,679,355 44.229 34 0.112

26.5 Economic implications

The first and central result of the analysis is the fact that the firms listed in the stock
market (represented by large dots in Figure 26.1) behave in exactly the same way as
any other firm of the same size class, whether their observable position lies on or below
the Pareto II distribution. Thus the stock market does not seem to play a qualitatively
relevant role in affecting firms’ behavior or strategies, compared to other elements of
financial choice and/or corporate governance.

Second, the methodology proposed here can be fruitfully related to the literature on
the so-called firm size effect, i.e., the empirical evidence suggesting that risk-adjusted
returns are larger for small firms than for large firms. This literature has been associated
with finance and, in particular, with the effect of financial market imperfections. The
Zipf plot of Figure 26.1b could be interpreted as evidence of the firm size effect, to the
extent that the Pareto II systematically overestimates the firm size of the largest firm
classes. Furthermore, as we said, the firms listed in the stock market behave exactly in
the same way as any other firm, for any firm size. Since the stock market is normally
regarded as more efficient than informal financial markets this last point may suggest
that the firm size effect could be rather associated with real phenomena, such as returns
to scale (Crosato and Ganugi, 2007) rather than financial market imperfections.

For what concerns the industrial economics implications, the shape parameter (α)
of the Pareto II distribution, to the extent that it provides information on how the
density varies with firm size, can be interpreted as an observable reduced form of the
outcome of firms’ strategic interactions (collusion, entry/exit, mergers), given a certain
market size. In other words, given, for instance, an oversimplified market demand curve
of the kind P = a− bQ, where P are prices, Q the output, and a and b parameters, the
market size a provides information on how many firms could potentially survive for a
given market configuration and market structure, knowing, of course, that there is a
multiplicity of equilibria in market configuration, as a result of collusion, entry/exit,
and merger decisions of the firms. This point is particularly relevant, to the extent that
a well-known criticism of the limits of the new industrial economics lies in the diffi-
culties of implementing and performing empirical analyses based on the implications
of the models of strategic interaction. Measuring the changes over time of the slope
parameter of the Pareto II distribution (i.e., comparing the different values of its esti-
mates year by year) could provide empirical measures of market structure and market
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configuration. Furthermore, since in standard frontier macromodels for macroeconomic
policy analysis (such as, for instance, the “new Keynesian model for policy analysis” de-
scribed in Walsh, 2003), the concept of output gap is defined as the distance of a given
market structure and configuration from the benchmark case of flex prices/perfectly
competitive equilibrium, suitable algebraic manipulations of the slope parameter of the
Pareto II distribution could be employed in simulations and calibration analyses based
on that class of macromodels.

More in general, firm size distribution, giving explicit measures and approximated
functional form to changes in the frequencies of heterogeneous firms and agents,
also provides a substantial informational contribution to the (lack of) assumptions
on aggregation that characterize models based on any kind of representative agent.
As we know it, heterogeneity in such models is normally introduced in the behav-
ior function characterizing the agent, either with some random shock extracted from
some absolutely naive, and ad hoc distribution function (such as the uniform prob-
ability function or some normal distribution a priori assigned parameters), or, in
the case of overlapping generation literature, by simply introducing a different time
horizon for different classes of agents. Therefore, the logical treatment of the rep-
resentative agent in standard macroeconomics (which, of course, since the Lucas
contributions, belongs to the very basic logical foundation of economic thought) could
probably be seen by “hard” scientists, such as mathematicians, physicists, or statis-
ticians, only as a temporary modeling tool, lacking any serious measure analysis and
any rigorous statistical study of the frequency distribution of different sized agents,
which are likely to be characterized by different features, incentives, and objective
functions.

In this regard, even among mainstream economists the amount of relevant method-
ological contributions is certainly not negligible, and the objections raised on the stan-
dard representative agent modeling approach still have not yet received any answer.
For instance, Forni and Lippi, in a book containing joint papers with L. Reichlin (Forni
and Lippi, 1997), have shown that many statistical features associated with the dy-
namic structure of a model (such as, for instance, Granger causality and cointegra-
tion), when derived from the optimized microeconomic behavior of an agent, do not, in
general, survive aggregation of heterogeneous agents. As a consequence, any dynamic
macroeconomic simulation, calibration analysis, or even macroeconometric analysis mi-
crofounded with some kind of representative agent is very likely to yield biased results.
In addition, Blinder (1986) points out that the microfounded “New Econometrics”
methodology, by assuming that the observable choices of optimizing individuals are
“internal solutions,” returns biased estimates when the choices of a relevant portion of
individuals are corner solutions. Conversely, by estimating and measuring year by year
the parameters of a Pareto II distribution and looking at their changes in time one
can obtain a qualitative measure of the bias induced by macroeconomic models micro-
founded on the basis of a representative agent. In this regard one could argue that any
production function of a representative firm or any utility function of a representative
consumer (even in their naive and elementary transformation, such as the sum of in-
dividual identical behavior function or their integral over a continuum of qualitatively
identical individuals or firms) is not a real and proper microfoundation, but rather
an ad hoc production or utility function. Of course, any mainstream economist would
object to this point by saying that even some kind of “aggregate utility function” or
“aggregate production function” would still allow us to model consumers’ behavior on
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the basis of a rigorous and consistent axiom of preferences and firms’ behavior on the
basis of a set of rigorous and consistent set of assumptions on technology and optimiz-
ing behavior. Still, if one really wants to take Lucas’ critique seriously, one cannot help
observing that naive and ad hoc aggregations of utility functions and production func-
tions fail to account for the endogenous response of different sized agents, which are
likely to be characterized by different features, incentives, and objective functions, not
to mention the fact that the analytical form of standard utility functions (for instance
CRRA) sharply contrast with the actual utility functions measured on the basis of the
actual behavior of real individuals such as those emerging from the seminal contribu-
tions by Kahneman, Tversky, Diamond, and Shafir and yielding as an analytical form
for the utility function the so-called “kinked utility functions,” characterized by the
so-called “status quo bias” (Kahneman and Tversky, 1979; Kahneman, 1994; Benartzi
and Thaler, 1995; Shafir et al., 1997). All that again raises a problem of measure in
microfoundations of macroeconomics, and measuring frequency distributions, which is
the very issue analyzed by the Pareto II analysis of this chapter, could be a first step
in this direction.

26.6 Concluding remarks

In this chapter we propose a forward search (Atkinson and Riani, 2000) approach to
fit a suitable probability model to the firm size distribution of the Italian chemical
sector, from 1999 to 2004. The iterative nature of the forward search permits us to
track the pattern of the χ2-test, identifying the smallest firm which leads to accep-
tance of the null distributional hypothesis (in our case, the Pareto II distribution). Our
research points out that one cannot reject a distributional hypothesis on the basis of
a test performed either only on the whole dataset or on a priori selected subsamples,
without first analyzing the impact of each firm on the estimates and goodness-of-fit.
The first contribution of the chapter is therefore to avoid the common practice of us-
ing an a priori fixed threshold (typically the 75th percentile or over) to model the
right tail of the firm size distribution. Empirical results and graphical outputs confirm
the satisfactory fit of the Pareto II distribution in all considered years, and highlight
some systematic deviations of the largest firms’ empirical size from the estimated one.
These deviations could be connected with the literature on the firm size effect, the
causation going both ways. Our results are broadly consistent with Banz’ (1981) and
Reingaum’ (1981) contributions. On the other hand, the literature on the firm size ef-
fect might suggest, for further research, possible modifications of the Pareto II function
that account for the slightly overestimated firm size of the largest sized firms. Moreover,
quoted firms show the same behavior of unquoted ones, suggesting first that the stock
market does not have a central impact on firms’ behavior or strategies; second, the
firm size effect could be associated with real phenomena rather than financial market
imperfections, given that stock markets are generally judged more efficient than infor-
mal financial markets. We finally argue that our methodology and results indicate that
including empirically grounded distributional hypotheses in new industrial economics
models could help to remove part of the bias induced by representative agent-based
microfoundation.
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Abstract: We are interested in the risk of large losses of certain common financial
portfolios (e.g., credit portfolios with default risk). In these cases, we would like to
estimate a risk statistic called Value-at-Risk (VaRα) at an extremely high risk level α
(typically 99.99%). This high risk level corresponds to rare events for which it is difficult
or impossible to obtain data. We first use Monte Carlo simulation to compute a prob-
ability distribution for the portfolio loss. We then use Extreme Value Theory (EVT)
to study the tail of this loss distribution. Finally we compute the VaR and associated
confidence intervals using bootstrap techniques. For the portfolios under consideration,
we have observed that the EVT-based approach results in narrower confidence inter-
vals and hence less sampling uncertainty in computing the VaR. We have also observed
that the bootstrap replicate’s distribution for the EVT-based method demonstrates a
better shape than the empirical method (which is typically very noisy).

Keywords and phrases: Value-at-risk, EVT, economic capital

27.1 Introduction

Modelling financial losses is one of the key technical challenges in risk management.
In the past couple of decades we have seen significant instabilities in various financial
markets and witnessed several extreme losses (e.g., Barings, Enron, 9/11, Hurricane
Katrina). Hence it is very important for financial institutions to look for better and
sound methodologies to model extreme losses.

A significant problem in modelling these extreme losses is that in reality we get to
see few rare events, and in many cases we don’t have any observations at all. Also,
standard statistical approaches do not fit very well to model extreme observations
because these are typically treated as outliers. Our approach to these issues has been
to use Extreme Value Theory (EVT) to aid the analysis of extreme losses.

In this chapter we apply EVT to compute the Value-at-Risk (VaR) for certain
credit loss portfolios of commercial loans. These credit portfolios typically have highly
skewed loss distributions with potentially large losses occurring with small probabilities.
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Financial institutions typically compute risk measures such as VaR from the tails of
these loss distributions. The ultimate use of such VaR calculations is to help set eco-
nomic capital levels in an appropriate risk-adjusted manner. This economic capital is
intended to protect financial institutions from extreme losses, and hence it is based on
extreme tail risk measures (such as VaR at a high risk level).

27.2 Background mathematics

27.2.1 Risk measure

We model the loss on a financial portfolio as a random variable X on a probability
space (Ω,F,Pr) and let F (x) = Pr(X ≤ x) be its distribution function. For α ∈ (0, 1)
we define the Value-at-Risk of X at the risk level α as the smallest value x such that
the probability that the loss X exceeds x is less than or equal to (1 − α).

V aRα(X) = inf{x ∈ R : Pr(X > x) ≤ 1 − α}
= inf{x ∈ R : F (x) ≥ α}. (27.1)

For a random variable with a continuous distribution VaR is simply a quantile of the
loss distribution.

The use of VaR as a risk measure has been widely criticized in the risk literature (see
Artzner et al. 1997, 1999; Szego, 2004) because of its failure to satisfy a subadditivity
requirement that expresses the notion of diversification. Alternative coherent risk mea-
sures such as Expected Shortfall (ES) have been proposed as reasonable alternatives
to VaR. However, VaR has become engrained in the minds of many risk practitioners
and has been also propagated by the Basel Committee on Banking Supervision as a
regulatory measure of risk. For brevity in the description below, we exhibit formulae
for the use of EVT on VaR estimation, although we have performed the analysis for
Expected Shortfall as well.

27.2.2 Extreme value theory

In this section we provide a brief summary of techniques related to extreme value
theory. There are two popular approaches for modelling extreme observations. The
first approach is called the block maxima method. It is based on observations of the
maximum (or minimum) of large samples of independent, identically distributed ob-
servations. The second approach is known as the threshold exceedances method. In this
case we consider extreme observations which exceed a given threshold. See Embrechts
et al. (2004) and McNeil (2000) for details.

One of the drawbacks of the block maxima method is that it doesn’t use a large
section of the data except the maximum losses from each block. The threshold ex-
ceedances method is a better option for our data, as it uses all the extreme data which
exceed a given high threshold.

We define the distribution Fu(x), of excess losses above a threshold u as follows.

Fu(x) = Pr(X − u ≤ x |X > u) =
F (x + u) − F (u)

1 − F (u)
, (27.2)
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for 0 ≤ x < xF − u, where xF = sup{x ∈ R : F (x) < 1} ≤ ∞ is the right endpoint
of F .

The primary distribution function used for modeling exceedances over a threshold
is the Generalized Pareto Distribution (GPD), defined as

Gξ,β(x) =

⎧
⎨
⎩

1 −
(
1 + ξ x

β

)−(1/ξ)

, if ξ 
= 0;

1 − exp
(
− x

β

)
, if ξ = 0.

(27.3)

where ξ ∈ R, β > 0. We require 0 ≤ x < ∞ if ξ ≥ 0, and 0 ≤ x ≤ −(β/ξ) if ξ < 0.
The fundamental result is a theorem that supports approximating the excess dis-

tribution by a generalized Pareto distribution:

Theorem 1 (Pickands, Balkema, de Haan). For a very rich class of distributions
F , there exists a positive function β(u) such that,

lim
u→xF

sup
0≤x<xF −u

|Fu(x) −Gξ,β(u)(x)| = 0. (27.4)

The technical condition that characterizes the class of distributions F , for which the
above theorem holds is that F should be in the maximum domain of attraction of a
generalized extreme value distribution with parameter ξ. We refer the reader to Em-
brechts et al. (2004) for details but remark that this class of distributions is extremely
rich and includes all commonly used statistical distributions (e.g., Normal, lognormal,
Student-t, Beta, uniform, etc.).

27.2.3 Estimating VaR using EVT

Theorem 1 above says that a GPD is a very natural model for the unknown excess dis-
tribution given a sufficiently high threshold. In practice, this is tantamount to replacing
the excess distribution with a GPD for some ξ and β:

Fu(x) = Gξ,β(x). (27.5)

Writing y = u + x and combining equations (27.2) and (27.5), we obtain:

F (y) = (1 − F (u))Gξ,β(y − u) + F (u) (27.6)

for y > u. This gives us a general parametric estimate of the tail of the distribution of
X provided we have an estimate of F (u). A simple empirical estimate is:

F (u) =
n−Nu

n
, (27.7)

where n is the total number of observations and Nu is the number of observations
exceeding the threshold u. See McNeil et al. (2005) for a discussion of this choice of
F (u).

In equation(27.7) we have assumed that the point probability distribution of X is
specified by a sequence of values X1,X2, . . . , Xn each occurring with the same proba-
bility. For weighted observations we replace the empirical estimate in (27.6) by

F (u) =
w −Wu

w
, (27.8)
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where w is the sum of the weights of all the observations and Wu is the sum of the
weights for those observations which exceed the threshold u.

Using the estimate in (27.7) and maximum likelihood estimates of the GPD param-
eters ξ and β, we obtain the following tail estimate of F for y > u (in the nonweighted
case),

F̂ (y) = 1 − Nu

n

(
1 + ξ̂

y − u

β̂

)−1/ξ̂

. (27.9)

Inverting equation (27.9) we obtain the following estimate for the VaR at risk level α,

V̂ aRα = u +
β̂

ξ̂

((
n

Nu
(1 − α)

)−ξ̂

− 1

)
. (27.10)

For the weighted case, the expression for the VaR is given by:

V̂ aR
wgtd

α = u +
β̂

ξ̂

((
w

Wu
(1 − α)

)−ξ̂

− 1

)
. (27.11)

27.3 Threshold uncertainty

27.3.1 Tail-data versus accuracy tradeoff

A challenging aspect of the threshold exceedance approach is the optimal choice of the
threshold. We need to choose a high enough threshold u, so that equation (27.5) pro-
vides a good approximation to the limiting situation where u → yF in equation (27.4).
But the choice of a very high threshold may lead to a high variance of parameter esti-
mates (due to the lack of data points in the tail). On the other hand, if we choose a low
enough threshold we will get sufficient data points for reasonable parameter estimates,
but the underlying assumption of Theorem 1 that u → yF will be violated.

Therefore the choice of a threshold is a very active area of research. Matthys and
Beirlant (2000) have presented a detailed discussion on an adaptive threshold selection
method. Here we briefly present two diagnostic methods to pick up the optimal thresh-
old. For detailed discussion about threshold selection see also Embrechts et al. (2004)
and McNeil (2000).

27.3.2 Mean residual life plot

The Mean Residual Life (MRL) plot is based on the mean excess function defined as

e(u) = E[X − u|X > u], (27.12)

where 0 < u < xF . In the MRL plot of e(u) versus u, we select the highest threshold
where the plot is nearly linear. We also check the width of the confidence band as we
move to the extreme right: these bands become wider for large u.
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Figure 27.1. Experimental framework

27.3.3 Fit threshold ranges

In the second method we fit the GPD several times, each time using a different threshold
and examine the stability of the parameter estimates. This can be done by plotting
the scale and shape parameters as a function of the threshold (along with a 95%
confidence interval. Ultimately we are interested in VaR estimates given by equations
(27.10), (27.11), and analogous expected shortfall estimates. We choose the threshold
so that both GPD parameters as well as the VaR and expected shortfall behave in a
stable manner (with confidence intervals that are not too wide).

27.4 Experimental framework and results

27.4.1 Data

In this chapter we illustrate the application of EVT to the loss distributions arising
from two sample commercial loan portfolios, labelled portfolio A and portfolio B.

27.4.2 Simulation engine

In Figure 27.1 we have presented the experimental framework to calculate VaR using
EVT. Since it was not possible for us to obtain high-quality loss data directly, we used
Monte Carlo simulations to generate a large number of possible scenarios. The Monte
Carlo engine we used is Portfolio Manager R©, which is a standard commercial software
package from Moody’s KMV, for modelling credit risk portfolios. As input it needs
portfolio data at a detailed obligor and transaction level. It generates a probability
distribution of portfolio losses for a given time horizon (typically one year). It offers
two options to generate Monte Carlo loss distributions. The first option is the usual
Monte Carlo where each separate loss scenario has equal probability. The second option
is an implementation of an importance sampling version of Monte Carlo, which places
more emphasis on the tail of the loss distribution. In this second option, the separate
loss scenarios do not have equal probabilities, but are appropriately weighted.

27.4.3 Threshold selection

After generating the Monte Carlo loss scenarios the next key step is to select an optimal
threshold as we have discussed in Section 27.3. We used a range of 10, 000 equally spaced
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Figure 27.2. Threshold uncertainty analysis for portfolios A and B

thresholds from the 99.5th percentile to the 99.995th percentile. In Figure 27.2 we have
plotted the VaR and ES, based on EVT, as well as the empirical VaR and ES. From
these plots it is clear that except for very high thresholds, the EVT, VaR, and ES are
fairly stable. Based on these plots, we fixed the threshold at the 99.9th percentile. For
this choice of threshold, we have an adequate number of data points in the tail for
estimating the shape and scale parameters of the GPD.

27.4.4 Bootstrap results on VaR stability

Here we compare confidence intervals for the VaR based on EVT with VaR confi-
dence intervals based on direct Monte Carlo simulation without EVT. We performed
a bootstrap exercise where we drew 2000 bootstrap samples with replacement from
the importance sampling Monte Carlo simulation. Based on these bootstrap replicates
we have obtained a 95% confidence interval for the directly computed and EVT-based
VaR. The bootstrap replicate’s distributions are plotted in Figure 27.3 for portfolios A
and B. For both the portfolios the left-hand side plot is for the VaR directly computed
from the Monte Carlo output, whereas the right-hand side plot is for the EVT-based
VaR. The solid lines represent the plug-in estimates and the dashed lines represent the
lower and upper 95% confidence bound.

It is clear from these plots that the quality of the VaR distribution is much noisier
with the raw Monte Carlo simulation than with the EVT-based VaR. In this sense, the
EVT-based VaR is a more robust statistic than the raw Monte Carlo VaR.

27.5 Conclusion

The methods of extreme value theory are a valuable supplement to analyze the tail
behaviour of financial loss distributions. We have exhibited such an application of the
theory, where conventional methods for VaR estimates in the extreme tail are noisy
and unstable. EVT-based methods help cure this difficulty, by providing narrower VaR
confidence bands and a more robust estimate of the VaR. This is important if risk
metrics such as VaR are to be used for important objectives such as estimation of
economic capital for a financial portfolio.
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Figure 27.3. Bootstrap results for portfolios A and B
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Abstract: A new method for estimation of the mean and variance models of the
responses, taking into account the correlation between the multiple responses, to-
gether with the heteroscedasticity of the observations due to errors in the factor lev-
els is proposed. The application of this method gives us the possibility to use raw
industrial data for mean and variance model estimation and leads to reduction of
the predicted variance of the responses in production conditions. Recommendations
for the experimental design sequential generation, based on the proposed method are
made. The introduced new combined method is applied to an electron beam welding
experiment.

Keywords and phrases: Multiresponse robust engineering, heteroscedasticity, errors
in factor levels, combined method, parameter estimation, experimental design

28.1 Introduction

The Robust Parameter Design (RPD) has been an issue of numerous papers in the
literature since 1990 (Box and Jones, 1990; Vining and Myers, 1990), but there are fewer
of them in the area of application of RPD (Myers et al., 2004; Vuchkov and Boyadjieva,
2001) for multiple responses. Some of these articles consider the multiresponse case,
when replicated observations are available (Chiao and Hamada, 2001), while others are
focused on formulation of appropriate optimisation criteria. Examples for such criteria
are: (i) a criterion, representing an appropriate compromise between both the process
economics and the correlation structure among responses (Vining, 1998); and (ii) a new
loss function, incorporating small bias, high robustness, and high quality of predictions
(Ko et al., 2005).

The model-based robust approach for improving the quality of the process (Vuchkov
and Boyadjieva, 2001) can be successfully applied to different industrial processes.
For each of the quality performance characteristics, using their regression models, two
other models are estimated for their mean values and their variances. The quality
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improvement is performed using some overall criterion or simply by the performance
characteristic variance minimisation, while keeping the mean values close to their target
values.

The model of the mean value of the performance characteristic, which is a function
of process parameters that are subject to errors during the industrial production process
is (Vuchkov and Boyadjieva, 2001)

ỹ(p) = [y(z)] = η(p) + θ̂TE(g) (28.1)

where η(p) is a model of the quality performance characteristic, for example a poly-
nomial regression model, obtained by the response surface methodology. The second
term takes into account the bias caused by the errors transmitted from the process
parameters p to the performance characteristic ỹ(p), where θ̂T is the vector of the
estimates of the regression coefficients in the model η(p). E(g) stands for the mathe-
matical expectation of g = h − f, h is a vector of the regressors z in the regression
model, considered as containing errors e (for any process parameter, zi = pi + ei), and
f is the regressor vector of the process parameters p.

The model for the variance of the quality performance characteristic that is due to
errors in factor levels, if the bias that comes from the precision of the estimation of
the regression model (negligible in many cases) is taken into account (by the second
term), is:

ŝ2 = s̃2 − tr[ΨV(θ̂)] = θ̂TΨθ̂ + s2ε

⎛
⎝1 −

k∑
i=1

ψiicii − 2
k−1∑
i=1

k∑
j=i+1

ψijcij

⎞
⎠ (28.2)

where ψ = g−E(g) is defined on the basis of the variances for each process parameter
p, which can be calculated using the tolerance limits of the process parameters or
on the base of replicated observations; Ψ = E(ψψT) depends on the structure of the
regression model and the experimental design; s2

ε is the estimate of the random error
of the performance characteristic; ψii and ψij are correspondingly the diagonal and
nondiagonal elements of Ψ; cii and cij are the diagonal and nondiagonal elements of
the variance – covariance matrix, which become smaller with the growth of the number
N of the experiments (observations); and k is the number of terms in the regression
model. With s̃2 is denoted the variance of the quality performance characteristic, which
is due to the errors in factor levels (θ̂T Ψθ̂) and the random error s2

ε . For a large number
of observations or small values of s2

ε the bias is negligible.
This chapter considers the mean and variance model parameter estimation in the

typical for an industrial process case when there is a correlation between the multiple
responses (Khuri and Cornell, 1996; Khuri, 1990) and there are errors in the factor
levels in the production stage (there is heteroscedasticity (Vuchkov and Boyadjieva,
2001)). Both the correlation and the heteroscedasticity should be taken into account
in order to improve the accuracy of the estimated models. The purpose of this chapter
is to present a new combined method for parameter estimation, which will give us
the possibility to consider the correlation between the multiple responses. Another
big advantage is the possibility to use raw industrial experimental data instead of the
necessary very precise parameter estimation of the regression models without errors
in the factor levels, done, for example, in laboratory conditions. This new method is
applicable in both cases: when there are replicated observations at each experimental
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run and when there are no such replications. If there are no replicated observations
the variance estimation for each experimental run can be done through the tolerance
intervals of the factors in the industrial (or laboratory) production process.

28.2 Combined method for regression parameter estimation

The multiresponse approach (Khuri and Cornell, 1996) gives as a result estimates of
the regression coefficients that take into consideration the correlation between the re-
sponses, which is usually the case. They can be estimated through the equation (Zellner
(1962)) referred as two-stage Aitken estimator. The heteroscedasticity of observations
can be considered through the application of the weighted least square estimates,
(Vuchkov and Boyadjieva, 2001). The two approaches are combined and the overall
algorithm of the new combined method for regression parameter estimation (θ̂ used in
equations (28.1) and (28.2)) is:

Step 1. The ordinary least squares estimates (OLSE) b0 are found for each of the
responses:

b0,i = (XT
i Xi)−1XT

i Yi.

where Xi are the matrices of known functions f (regressor vectors) of the process
parameters p, defined by the regression models and the performed experiments for
each of the responses Yi, i = 1, 2, . . . , r.

Step 2. An estimate of the random error can be found by:

s2
ε,i =

1
N − ki

N∑
u=1

(yu,i − ŷu,i)
2
.

Step 3. The models for the mean equation (28.1) and the variance equation (28.2)
are estimated for each of the performance characteristics.

Step 4. The matrix Σ̃h is estimated:

Σ̃h =

⎡
⎢⎣
σ̃2

1 · · · 0
...

. . .
...

0 · · · σ̃2
N

⎤
⎥⎦ (28.3)

by calculation of the estimates of the variances σ̃2
u at each experimental run u = 1,. . . ,N

for each of the responses, using equation (28.2). The matrix Σ̃h estimates the het-
eroscedasticity of the observations.

Step 5. The variance – covariance matrix Σ̃m of the random error of all performance
characteristics also takes into account their correlation. If it is unknown, its elements
(σ̂ij) can be estimated by:

σ̂ij = Y′
i[IN − Xi(X′

iXi)−1X′
i][IN − Xj(X′

jXj)−1X′
j ]Yj/N,

for i, j = 1, 2, . . . , r.
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Step 6. The combined method variance – covariance matrix is:

Δ̃∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̂σ11,1 · · · 0
...

. . .
...

0 · · · ˜̂σ11,N

. . .

˜̂σ1r,1 · · · 0
...

. . .
...

0 · · · ˜̂σ1r,N

· · · . . . · · ·
˜̂σr1,1 · · · 0

...
. . .

...
0 · · · ˜̂σr1,N

. . .

˜̂σrr,1 · · · 0
...

. . .
...

0 · · · ˜̂σrr,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28.4)

where Δ̃∗ is calculated with elements:

{ ˜̂σii,u = σ̂iiσ̃
2
i,u

˜̂σij,u = σ̂ij σ̃i,uσ̃j,u
.

Step 7. Combined method parameter estimates are calculated by:

θ̃∗ = (Z′Δ̃∗−1Z)−1Z′Δ̃∗−1
Y, (28.5)

where Z= diag(X1, . . . ,Xr) is a diagonal matrix with diagonal elements – the matrices
Xi; and Y=[Y1’, . . . ,Yr’]’ is a vector, consisting of the observations for each of the r
responses.

Step 8. The criterion Cr is calculated by:

Crj =
k1+···+kr∑

i=1

(
θ̃ ∗j,i −θ̃∗j−1,i

)2

θ̃∗2
j,i

, (28.6)

where k1,. . . ,kr are correspondingly the numbers of the regression coefficients in the
regression models for each of the responses i = 1,. . . ,r for j th iteration.

Step 9. The procedure continues from step 2, until Cr ≤ δ, where δ is a small positive
number.

The proposed procedure for regression parameter estimation takes into account
both the heteroscedasticity of the observations and the correlation between the mul-
tiple responses. This is an iteration procedure, the convergence of which depends on
the accuracy of the initial regression OLSE parameter estimates, nonlinearity of the
estimated model, as well as the magnitude of the errors in factor variances, transmitted
to the performance characteristics.

When the responses have different dimensions, in order to avoid this influencing
the obtained results, the responses should be normalised before the regression models
estimation. Lp norms can be used for this purpose. For example, if an L2 norm is used,
the normalized values Y1n,u of Y1 are:

Y1n,u =
Y1,u(∑N

u=1 Y 2
1,u

)1/2
.
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28.3 Experimental designs

A procedure for the sequential generation of experimental designs, applicable to in-
dustrial production processes and based on the proposed combined method and D-
optimality criterion, will provide new experimental runs at factor levels coinciding
with the most inaccurate regression model predictions and with the largest variance
of the observations. The method can also be applied when there is information about
the heteroscedasticity of the experiments from repeated observations or previous runs.
The procedure begins with the choice of an initial experimental design and the pa-
rameter estimation according the combined method parameter estimation procedure,
using equation (28.5). Then, for the sequential generation of additional experiments,
a D-optimal combined criterion that can be applied together with some optimisation
method for finding the maximum of the variance – covariance matrix is:

ϕ ∗′N+1

(
Z′

NΔ̃∗−1
ZN

)−1

ϕ∗N+1 = max
x

ϕ′
N+1

(
Z′

NΔ̃∗−1
ZN

)−1

ϕN+1, (28.7)

where the matrix Δ̃∗ is defined by equation (28.4), ϕN+1 is a vector with elements:
[f1,N+1; · · · ; fr,N+1], where fi,N+1 is the regressors’ vector of the candidate experimen-
tal point N+1 and the response i = 1, . . . , r.

28.4 Experimental application

In the last few decades, electron beam welding (EBW) of the refractory metals and
alloys, of heterogeneous metal junctions, and of heavy engineering components was
widespread. The high joining rate, the deep and narrow weld, and the minimal heat-
affected zone are basic advantages leading to the most frequent use of this process. The
focused electron beam is one of the highest power density sources and that is why high
processing speed are possible; narrow welds with a very narrow heat-affected zone can
be produced accurately.

An investigation of the relationships between geometry parameters (weld depth H
and mean weld width B) and process parameters (electron beam power (P), welding
velocity (v), the difference (dz) between the distances (i) between the magnetic lens of
the gun and the focus of the electron beam and (ii) between the magnetic lens of the gun
and the surface of the sample) is done for stainless steel type 1H18NT and accelerating
voltage 70 kV (Koleva, 2001). Eighty-one experimental runs were performed, forming
a design of experiment, which is not statistically designed. The notations of the factors
as well as their limits (during the experiments), tolerances, and their basic levels p′io
and variation intervals ωi, are given in Table 28.1.

The influence of the process parameters on the estimated geometrical character-
istics of the seam Ĥ and B̂, is investigated by applying the multiresponse regression
model estimation approach and conclusions about these dependencies, as well as some
optimisation procedures can be found in Koleva (2001). In Koleva and Vuchkov (2005)
the estimation of the mean and variance models are estimated for the geometrical char-
acteristics of the welds and optimisation is performed in terms of variance minimization
meeting concrete production requirements.
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Table 28.1. Experimental conditions

Factors Dimensions Coded factors Min Max p′
io ωi Tolerance limits

P – p̃1 kW p1 4.2 8.4 6.3 2.1 P ± 2%

v – p̃2 cm/min p2 20 80 50 30 v ± 3%

dz – p̃3 mm p3 −78 62 −8 70 dz ± 2

The calculated coded variances for the process parameters, using the tolerance
intervals (Koleva and Vuchkov, 2005) are shown in Table 28.2.

Table 28.2. Coded variances

Factors Coded variances σ2
i

p1 0.0004 + 0.00026667 p1 + 0.00004444 p2
1

p2 0.00027778 + 0.00033333 p2 + 0.0001 p2
2

p3 0.0000907

Table 28.3. Regression coefficient estimates for the weld depth H and the weld width B;
(i) ordinary least squares estimates (OLSE), (ii) weighted LSE (WLSE), (iii) multiresponse
estimates (MRE), (iv) combined method estimates (CME)

H OLSE WLSE MRE CME B OLSE WLSE MRE CME

bo 22.80 23.0174 22.9982 23.1942 bo 1.550 1.5691 1.5897 1.5684

b1 4.69 3.5368 4.0933 3.9660 b1 0.265 0.3101 0.2102 0.3061

b2 −6.38 −6.8046 −6.7660 −6.8171 b2 −0.665 −0.6197−0.6441−0.6208

b3 −12.60 −12.4014−11.1480 −9.2928 b3 1.230 1.2819 1.2407 1.2825

b12 −3.16 −2.5419 −2.5153 −2.4707 b12 −0.0785−0.1196−0.1139−0.1201

b13 −1.89 −2.1639 −1.3700 0.5925 b23 −0.1690−0.0955−0.1120−0.0977

b11 −2.48 −1.7729 −1.9951 −1.8504 b11 0.2120 0.1565 0.1720 0.1559

b22 3.90 3.9401 3.7285 3.7374 b22 0.3790 0.4054 0.3959 0.4068

b33 −6.85 −8.3338 −7.2950 −8.3316 b33 1.2800 1.2252 1.1355 1.2264

b133 6.27 8.2416 6.6954 7.1240 b122 0.3470 0.2714 0.3798 0.2770

b113 5.07 4.6156 4.9563 4.9138 b133−1.1000−0.9770−0.9065−0.9772

b333 7.14 7.6706 4.6672 0.6048 b113−0.5530−0.5874−0.5409−0.5874

Table 28.3 presents the regression coefficient estimates for the weld depth H and the
weld width B, obtained by ordinary least squares, weighted least squares, multiresponse,
and the new combined methods.

Figure 28.1 shows the convergence of the combined method presented by the crite-
rion Cr value, equation (28.6).

The mean and the variance models for the two responses are estimated, using all
considered regression coefficient estimation methods in order to perform a visual com-
parison. As an example, Figure 28.2 presents the contour lines of the mean value of the
weld width mean ỹH(P, v) (solid lines) and its variance ŝ2

H (dashed lines). The meth-
ods applied for the regression coefficient estimation are, correspondingly, the combined
and the weighted least squares methods. The models equations (28.1) and (28.2) differ
by the regression parameter estimates θ̂ and by tr(ΨV(θ̂)). It can be seen that the
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Figure 28.1. Convergence of the combined method

variance of the performance characteristic, when the combined method for parameter
estimation is applied, has lower values. In this case the random error s2

ε,H estimate
has a comparatively large value and should be reduced, for example, by performing
additional experiments, applying the criterion in equation (28.7).

[A] [B]

Figure 28.2. Contour lines of the mean value of the weld depth mean (solid) and variance
(dashed): (A) weighted least squares and (B) combined methods for parameter estimation

28.5 Conclusion

The proposed new method for estimation of regression coefficients takes into account
both the correlation and the heteroscedasticity of the performed experiments in order
to improve the accuracy of the estimated regression models, as well as the models for
the means and variances of the multiple responses. This combined approach can be
implemented for the sequential generation of industrial experimental designs.

The application of the proposed approach gives the possibility to use raw industrial
experimental data, instead of the necessary very precise regression model estimations
without errors in the factor levels, done usually in laboratory conditions.
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Inference for Binomial Change Point Data
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Abstract: In this chapter we describe a procedure for detecting a systematic change in
parameter for a sequence of binomial variables. The procedure is based on a goodness-
of-fit argument. Tests for an unknown change point are given. The procedure is found
to be appropriate to problems in which the data series has been subject to a single
discrete change in binomial parameter or where there have been cumulative changes in
binomial parameter, before or after an unknown point.

Keywords and phrases: Binomial parameter, change point, goodness-of-fit

29.1 Introduction

A sequence of independent binomial variables is subject to a change in distribu-
tion after an unknown point. Formally, we can describe this situation as follows.
R1, R2, R3, . . . , Rk are independent random variables, such that, for a value τ ,

Ri is distributed as

B(ni, θ0) (1 ≤ i ≤ τ)
B(ni, θ1) (i ≤ τ + 1, τ + 2, . . . , k) (29.1)

Previous work, with this type of model, has been directed toward (i) estimating
the change-point, τ and (ii) testing the hypothesis that no change in distribution has
occurred.

Most analytical approaches, developed for dealing with binomial change-point data,
assume the θ1 and θ2 parameters, such as τ , to be unknown. Particular attention has
been devoted to the case of the Ri being (Bernouilli) zero-one variables, i.e., with ni = 1
for all i.

The problem has been analysed from a variety of perspectives: Hinkley and Hinkley’s
(1970) likelihood work has been extended by Pettitt (1980) and Worsley (1983), the
latter authors also considering alternative CUSUM-based procedures (see, as well, Page,
1955). In contrast, Smith (1975) and Pettitt (1979) together with Pettitt (1981) offer,
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respectively, Bayesian and nonparametric methodologies. More general techniques, such
as those of Worsley (1986), and Kander and Zacks (1966) provide further scope for
analysis.

The chapter introduces a new procedure for analysing binomial change-point data.
The procedure is more general than many of the techniques developed in this area:
it is not only capable of monitoring problems involving a single change in parameter
level but also those where the change in parameter level has been cumulative after
some unknown point. The technique, based on an unusual ‘goodness-of-fit’ argument is
compared with the maximum likelihood estimation approach of Hinkley and Hinkley
[1970]. Finally, the technique is illustrated on a number of relevant datasets mostly
from the literature.

29.2 Analysis

Referring to model (29.1), we distinguish between the rival sets of assumptions:

H1 : θθ and θ1 are fixed with θ0 
= θ1

H
′
1 : θ0 is fixed and θ1 is a linear function of prechosen scores si which we write

as θ1 = θ1(si) = θ0 + β(si − s)

where β is fixed and s =
k∑

i=1

ni si / N

The choice of scores si can be somewhat arbitrary. Options that have been consid-
ered (Williams, 1988) include in the case of assay experiments, the dose or logarithm
of the dose being tested. Alternatively, si may be taken to equate with its index i or
defined, for example, as

si = n1 + · · · + ni−1 + 0.5(ni + 1)

(the latter choice providing a measure of rank correlation between doses and binary
responses.)

Under the null hypothesis H0 we assume no change in θ0 has taken place and can
therefore write

H0 : τ = k or H0 : θ1 = θ0

Operationally, we assume the data, for which model (29.1) is being considered,
arises from an experiment involving the comparison of k groups. In the ith group,
there are ni independent binary responses, comprising ri ‘successes’ and ni − ri ‘fail-
ures’ (i = 1, 2, . . . , k).

Under H0, the probability of a successful experimental trial is θ0.

Correspondingly, the probability of a trial resulting in failure is 1 − θ0.

The ri can be regarded as realisations of the random variables Ri, described by
model (29.1). These data are conveniently arranged in the form of a 2× k contingency
table (Cochran, 1954) as shown in Table 29.1.
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Table 29.1. Contingency table formulation

Group

1 2 3 .... k Total

Successes r1 r2 r3 .... rk R

Failures n1 − r1 n2 − r2 n3 − r3 .... nk − rk N − R

Total trials n1 n2 n3 .... nk N

where R =
k∑

i=1

ri and N =
k∑

i=1

ni

Furthermore, we write pi = ri/ni (i = 1, 2, 3, . . . , k).
When either H1 or H ′ holds, it is often found from a plot of pi against i (partic-

ularly in the case where not all ni = 1) that there appears to be a linear association
between the two variables. Such an association would normally be investigated using
the procedures, for example, of Cochran (1954) and Armitage (1955). The Cochran –
Armitage statistic (Williams, 1988) provides a measure of the strength of this apparent
relationship. An alternative, which has received much less attention, is the R square
ratio, computed directly from Cochran’s (1954) analysis of variance summary.

As we now show, the latter R square statistic can be adapted to suit the specific
circumstances of the change-point problem.

Let

R
2
t = (S1t / v1t + S2t / v2t) / (T1t / v1t + T2t / v2t) (t = 2, 3, . . . , k − 2) (29.2)

where S1t and S2t correspond with the sums of squares from the regression of the pi

ratios on their index i for the first t and last (k− t) observations, respectively, and T1t

and T2t are the corresponding corrected sums of squares on pi. The quantities v1t and
v2t, given, respectively, by

v1t = N1t p1t q1t /(N1t − 1), v2t = N2t p2t q2t /(N2t − 1) (29.3)

are used to convert sums of squares quantities here to corresponding χ2 values Chapman
and Nam (1968).

Note that

N1t =
t∑

i=1

ni, R1t =
t∑

i=1

ri, p1t = R1t /N1t, q1t = 1 − p1t (29.4)

Similarly,

N2t =
k∑

t+1

ni, R2t =
k∑

t+1

ri, p2t = R2t /N2t, q2t, = I − p2t (29.5)

In addition, it can be shown

S1t =

(
t∑

i=1

ri(i− i1t)

)2 / (
t∑

i=1

ni(i− i1t )2
)

(29.6)

S2t =

(
k∑

t+1

ri(i− i2t)

)2 / (
k∑

t+1

ni(i− i2t )2
)

(29.7)
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Tit =
t∑

i=1

ni(pi − p1t )2 and iit =

(
t∑

i=1

i ni

) / (
t∑

i=1

ni

)
(29.8)

T2t =
k∑

t+1

ni(pi−p2t )2 and i2t =

(
k∑

t+1

i ni

)/ (
k∑

t+1

ni

)
(29.9)

The R2
t statistic is analogous to that used by Freeman (1986) in an analysis of

normal change-point data. Straightforward application of Freeman’s methodology to
model (29.1) confirms the following estimation procedure to be appropriate.

Under hypothesis H1 estimate the change-point τ as the value of t at which R2
t is

minimised.

Under H
′
1 estimate τ as the value of t at which R2

t is maximised.

The distribution of R2
t , which is discrete, can be determined in relation to the

multivariate hypergeometric distribution for the Ri, conditioned on R, the number of
successes across all experiments. (Note that R is sufficient for θ0, under the no-change
hypothesis (Pettitt, 1979).)

Under H0, the latter distribution can be shown to tend asymptotically to

B
(
R2

t |1, (k − 4)/2
)

=
Γ ((k − 2)/2)

Γ1Γ ((k − 4)/2)

(
1 −R

2(k−6)/2
t

)
(29.10)

but this result is known only to be valid if expected frequencies ni pi, and ni(1 − pi)
are sufficiently large, e.g., at least 5 (though this may be conservative (Copas, 1989)).
In many applications, expected frequencies are often too small to allow computation of
accurate critical values from the asymptotic distribution: zero-one data are an obvious
case in hand. Unfortunately, the method usually adopted for overcoming this kind of
technical difficulty, that of amalgamating groups, has little to recommend it in the
context of a change-point analysis (Connor, 1972).

In addition, the R2
t variates themselves are highly correlated.

Notwithstanding this fact, a Type 1 extreme value distribution can be used as an
approximation to the distribution of the maximum value of R2

t . See Freeman [1986] for
details and corresponding critical values, since confirmed using computer simulation
methods by So [1998]. By default, the distribution of the minimum value of R2

t can
also be determined (Kendall and Stuart, 1976).

29.3 Applications

29.3.1 Page’s data

Forty observations were simulated by Page (1955), the first twenty arising from the
N(5, 1) distribution and the remainder from the N(6, 1) distribution. The data were
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subsequently converted to Bernouilli observations by subtracting 5 from each normal
variate and coding the resultant value as 1 if greater than zero, 0 otherwise.

The minimum value of the R2
t statistic for these data is 1.713E − 3 which occurs

for t = 18 but is not significant.
The corresponding Cochran–Armitage statistic for the entire dataset takes the value

2.471. This is a significant result under H0 and the sign here points to an abrupt increase
in probability.

In contrast to the estimated change-point of 18 found here, Page (1955) and Pettitt
(1979) independently suggest the value 17 for the change-point. For a one-sided test
of the hypothesis H0 of no change against change, Page obtained results significant at
the 1% level. Unlike our procedure, however, Page’s relied on the initial mean value 0
being known.

Pettitt’s one-sided nonparametric test, which assumed θ0 unknown, indicated sig-
nificance just short of the 1% level.

Taking a quite different viewpoint, Smith (1975) deduces the odds on a change
having occurred, are about 100 to 1. From a table of posterior probabilities for τ , he
derives the two estimates of τ of 18 (posterior median) and 19.24 (posterior mean).

29.3.2 Lindisfarne Scribes’ data

The Lindisfarne Scribes’ data (Pettitt 1979) refer to the number of occurrences of
present indicative third person singular endings ‘-s’ and ‘- δ’ for different sections of
Lindisfarne. It is believed different scribes used the endings ‘-s’ and ‘- δ’ in different
proportions. A plot of the R2

t statistic against t is shown in Figure 29.1. From this,
it can be seen the R2

t statistic assumes its minimum value of 6.175E-4 at t = 7. We
therefore deduce an abrupt change in binomial probability occurred after the seventh
section. The p-value associated with this result is close to (and slightly greater than) 5%
from a corresponding simulation analysis. Pettitt’s results suggest the change occurred
after the sixth section with a (conservative) significance probability of 0.25%. Note
that the maximum value of R2

t (of 3.657E-1) occurs for t = 5, indicating that an
incremental change in probability may have occurred beforehand. This view that the

Figure 29.1. R2
t plot Lindisfarne Scribes data
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data were subject to two change-points is one shared by Smith (Pettitt, 1979) who
believes changes occurred after the sixth and seventh sections.

The Cochran–Armitage statistic for these data, using the index t as correlate, yields
the significant value of 3.091. From the sign of the coefficient here, we deduce there was
an abrupt increase in the proportion of ‘−s’ endings after the seventh section, preceded
by a cumulative increase before the fifth.

29.3.3 Club foot data

Worsley (1983) presents data on the number of cases of birth deformity talipes or club
foot in the first month of gestation for the years 1960–1976 in a region of northern
New Zealand. It is believed that a change in probability occurred after 1965. Worsley’s
procedure showed that this was indeed the case, confirming the no-change hypothesis
should be rejected at the 5% level.

The R2
t plot for these data is shown in Figure 29.2. The minimum value of R2

t =
1.029E-2 occurs at t = 6. This coincides with Worsley’s estimate of the year an abrupt
change occurred.

Figure 29.2. R2
t plot club foot data

The value of the appropriate Cochran–Armitage statistic for the full dataset is
2.603. This significant result leads to the conclusion that there was an abrupt increase
in the rate of club foot incidence after 1965.

29.3.4 Simulated data

Data were simulated by the author as follows: (k =) 20 pairs of random digits were
drawn from simple random number tables. These were adopted as the ni values.
Assuming a change-point to hold at τ = 7, θ0 was taken as

0.5 (i = 1, 2, . . . , 7)
0.5 + 0.02i (i = 8, 9, . . . , 20)
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Applying these probabilities in turn to each of the binary trials within each exper-
imental group, we obtained the ri data, shown in Table 29.2.

Table 29.2. Simulated data

Group Successes Total trials Group Successes Total trials

1 8 15 11 47 85

2 44 82 12 27 37

3 47 82 13 33 44

4 39 77 14 64 96

5 24 38 15 41 76

6 38 81 16 18 26

7 3 12 17 61 91

8 51 97 18 32 47

9 16 33 19 33 41

10 43 75 20 24 35

The R2
t for these data is shown in Figure 29.3. The maximum value of R2

t ( = 0.556)
occurs at t = 5 which is our estimate of τ under model H1. The p-value for this result
from simulation < 2.5%. The associated Cochran – Armitage statistic for the set is
calculated as 4.361. This is highly significant and we deduce a cumulative increase in
‘success’ probability took place after the fifth group.

Figure 29.3. R2
t plot simulated data

29.4 Conclusion

A novel approach to the identification and testing of an unknown change-point for a
series of binomial variates has been introduced. The approach has been demonstrated
to have the particular advantage of distinguishing between situations where a bino-
mial parameter undergoes an abrupt as opposed to a cumulative value change. Re-
sults obtained using the procedure have been found to compare well with established
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alternatives across a range of archetypal datasets. However, power characteristics may
contrast less favourably – particularly in the special case of Bernouilli observations –
and this is an area for future research.
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