
Lecture Notes in Computer Science 1971
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Rajkumar Buyya Mark Baker (Eds.)

Grid Computing –
GRID 2000

First IEEE/ACM International Workshop
Bangalore, India, December 17, 2000
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Rajkumar Buyya
Monash University
School of Computer Science and Software Engineering
C5.10, Caulfield Campus
Melbourne, VIC 3145, Australia
E-mail: rajkumar@csse.monash.edu.au

Mark Baker
University of Portsmouth
Division of Computer Science
Mercantile House, Hampshire Terrace
Portsmouth, Hants, UK, PO1 2EG, UK
E-mail: Mark.Baker@port.ac.uk

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Grid computing : GRID 2000 ; first IEEE/ACM international workshop,
Bangalore, India, December 17, 2000 ; proceedings / Rajkumar Buyya ;
Mark Baker (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1971)
ISBN 3-540-41403-7

CR Subject Classification (1998): C.2, D.1-4

ISSN 0302-9743
ISBN 3-540-41403-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10781129 06/3142 5 4 3 2 1 0

Preface

Welcome to GRID 2000, the first annual IEEE/ACM international workshop on grid
computing sponsored by the IEEE Computer Society’s Task Force on Cluster
Computing (TFCC) and the Association for Computing Machinery (ACM). The
workshop has received generous sponsorship from the European Grid Forum (eGrid),
the EuroTools SIG on Metacomputing, Microsoft Research (USA), Sun Microsystems
(USA), and the Centre for Development of Advanced Computing (India).

It is a sign of the current high levels of interest and activity in Grid computing that
we have had contributions to the workshop from researchers and developers in
Australia, Austria, Canada, France, Germany, Greece, India, Italy, Japan, Korea, The
Netherlands, Spain, Switzerland, UK, and USA. It is our pleasure and honor to
present the first annual international Grid computing meeting program and the
proceedings.

The Grid: A New Network Computing Infrastructure

The growing popularity of the Internet along with the availability of powerful
computers and high-speed networks as low-cost commodity components are helping
to change the way we do computing. These new technologies are enabling the
coupling of a wide variety of geographically distributed resources, such as parallel
supercomputers, storage systems, data sources, and special devices, that can then be
used as a unified resource and thus form what is popularly known as the “Grids”. The
Grid is analogous to the power (electricity) grid and aims to couple distributed
resources and offer consistent and inexpensive access to these resources irrespective
of their physical location. The interest in creating Grids (by pooling resources from
multiple organizations) is growing due to the potential for solving large-scale
problems that typically cannot be solved with local resources. Internationally there are
a large number of projects actively exploring the design and development of different
Grid system components, services, and applications. Pointers to these projects can be
found at the following sources:

� Grid Infoware – http://www.gridcomputing.com
� IEEE Distributed Systems Online – http://computer.org/channels/ds/gc

It is projected that Grids are expected to drive the economy of the 21st century in a
similar fashion to how electrical power grids drove the economy of the 20th century.

Grid systems need to hide complexities associated with the management and usage
of resources across multiple administrative institutions. The following are some of the
key features of Grid infrastructures:

� Flexibility and extensibility
� Domain autonomy
� Scalability
� Global name space

VI Preface

� Ease of use and transparent access
� Performance
� Security
� Management and exploitation of heterogeneous resources
� Interoperability between systems
� Resource allocation and co-allocation
� Fault-tolerance
� Dynamic adaptability
� Quality of Service (QoS)
� Computational Economy

The grid must be designed and created in such a way that their components (fabric,
middleware, and higher-level tools) and applications handle the key design issues in a
coordinated manner. For instance, Grid middleware offers services for handling
heterogeneity, security, information, allocation, and so on. Higher level tools, such as
resource brokers, support dynamic adaptability through automatic resource discovery,
trading for economy of resources, resource acquisition, scheduling, the staging of data
and programs, initiating computations, and adapting to changes in the Grid status. In
addition, they also need to make sure that domain autonomy is honored but still meets
user requirements such as QoS in coordination with other components. The papers
accepted for inclusion in these proceedings address various issues related to the
design, development, and implementation of Grid technologies and their applications.

Program Organization and Acknowledgements

The response to the workshop’s call for papers has been excellent and we expect that
attendance at the actual workshop will be equally impressive. The GRID 2000
program consists of a keynote speech (by Wolfgang Gentzsch on “DOT-COMing the
GRID: Using Grids for Business”), an invited talk, and refereed technical paper
presentations. We have accepted papers from authors of fifteen countries from among
submissions from eighteen countries. We would like to thank all authors for
submitting their research papers for consideration. We have grouped the contributed
papers into five distinct categories, although inevitably there is some overlap:

� Network enabled server systems for the Grid (invited paper)
� Grid resource management
� Grid middleware and problem solving environments
� Grid testbeds and resource discovery
� Application-level scheduling on the Grid

The GRID 2000 meeting would not have taken place without the efforts of Viktor
Prasanna, who has been the main driving force behind the international conference on
High Performance Computing (HiPC). It is our pleasure to acknowledge his efforts
and thank him for encouraging us to organize this annual internal meeting on Grid
computing. The success of the workshop is wholly due to the hard work of the
program committee members and external reviewers. They have donated their

Preface VII

precious time for reviewing and offered their expert comments on the papers. All
submitted papers have been peer reviewed by the technical program committee
members and external referees. We requested four reviews for each paper and ensured
that each paper received a minimum of three reviews. All highly recommended and
promising works have been selected for presentation at the meeting.

We thank our keynote speaker Wolfgang Gentzsch (Director of Network
Computing, Sun Microsystems) and invited speaker Satoshi Matsuoka (Tokyo
Institute of Technology, Japan) for presenting their vision on Grid technologies.

We owe a debt of gratitude to all our sponsors and contributors. In particular, we
would like thank R.K. Arora (C-DAC, Pune), Mohan Ram (C-DAC, Bangalore), and
Wolfgang Gentzsch (Sun Microsystems) for responding to our request for financial
support enthusiastically and being instrumental in obtaining generous donations from
their respective organizations. Our special thanks go to Todd Needham (Microsoft
Research, USA), who has voluntarily come forward to support our Task Force
activities. We would also like to thank Hilda Rivera (ACM) for handling our request
for ACM “in-cooperation” status. We thank Jarek Nabrzyski for his help in gathering
the European Grid forum support for this workshop. Finally, we would like to thank
the Springer-Verlag team, particularly Jan van Leeuwen (LNCS series editor), Alfred
Hofmann (Executive Editor), Antje Endemann, and Karin Henzold. They are
wonderful to work with!

We hope these proceedings serve as a useful reference on Grid computing. We
wish you all the best and hope you enjoy your visit to the Silicon Valley of India!

December 2000
GRID 2000 Co-chairs
http://www.gridcomputing.org

Rajkumar Buyya

Monash University, Australia
Http://www.buyya.com

Mark Baker

University of Portsmouth, UK
http://www.dcs.port.ac.uk/~mab/

GRID 2000 Team

Workshop Chairs

� Rajkumar Buyya, Monash University, Australia
� Mark Baker, University of Portsmouth, England

Program Committee Members

� David Abramson, Monash University, Australia
� Ishfaq Ahmad, Hong Kong University of Science and Technology, China
� David Bader, University of New Mexico, Albuquerque, USA
� Mark Baker, University of Portsmouth, England
� Francine Berman, University of California, San Diego, USA
� Rajkumar Buyya, Monash University, Australia
� Steve Chapin, Syracuse University, New York, USA
� Jack Dongarra, University of Tennessee/ORNL, Knoxville, USA
� Wolfgang Gentzsch, Sun Microsystems, USA
� Jonathan Giddy, Distributed Systems Technology Centre, Australia
� Sergi Girona, Universitat Politecnica de Catalunya, Spain
� Ken Hawick, Adelaide University, Australia
� Hai Jin, University of Southern California, Los Angeles, USA
� William Johnston, Lawrence Berkeley National Lab. / NASA Ames., USA
� Vipin Kumar, University of Minnesota, Minneapolis, USA
� Domenico Laforenza, CNUCE (Inst. of Italian National Research Council)
� Gregor von Laszewski, Argonne National Laboratory, Chicago, USA
� Craig Lee, The Aerospace Corporation, Los Angeles, USA
� Miron Livny, University of Wisconsin, Madison, USA
� Muthucumaru Maheswaran, University of Manitoba, Canada
� Satoshi Matsuoka, Tokyo Institute of Technology, Japan
� Jarek Nabrzyski, Poznan Supercomputing and Networking Center, Poland
� Lalit Patnaik, Indian Institute of Science, Bangalore, India
� Mohan Ram, Centre for Development of Advanced Computing, India
� Alexander Reinefeld, ZIB, Berlin, Germany
� Michael Resch, High Performance Computing Center Stuttgart, Germany
� Les Robertson, European Organization for Nuclear Research, Switzerland
� Mitsuhisa Sato, Real World Computing Partnership, Japan
� Peter Sloot, University of Amsterdam, The Netherlands

X Organization

GRID 2000 Additional Referees

We acknowledge the following external referees for reviewing papers (the list does
not include members of the program committee, who did most of the review work):

� Achim Streit
� Antonio Lagana
� Arthur Maccabe
� Daniele Micciancio
� Dick van Albada
� Franck Cappello
� Gerd Quecke
� Heath James
� Heinz Stockinger
� Henri Casanova
� John Brooke
� Kirk Schloegel
� Mihir Bellare
� Mike Ashworth
� Omer F. Rana
� Paul Coddington
� Rafael Avila
� Spyros Lalis
� Vishwanath P. Baligar
� Walfredo Cirne
� William Leinberger
� Wolfgang Ziegler
� Yuzhong Sun

Organization XI

GRID 2000 Sponsors and Supporters

Institute of Electrical and Electronics
Engineers (IEEE)

http://www.ieee.org

IEEE Computer Society

http://www.computer.org

IEEE Task Force on Cluster
Computing (TFCC)

http://www.ieeetfcc.org

Association for Computing Machinery
(ACM SIGARCH)

http://www.acm.org

EuroTools SIG on Metacomputing

http://www.eurotools.org/

European Grid Forum (eGRID)

http://www.egrid.org/

Centre for Development of Advanced
Computing (C-DAC), India

http://www.cdacindia.com/
Microsoft Research, USA

http://www.research.microsoft.com

Gridware Inc., Germany/USA

http://www.gridware.com

Table of Contents

Keynote and Invited Papers

DOT-COMing the GRID: Using Grids for Business ………………………………. 1
Wolfgang Gentzsch

Design Issues of Network Enabled Server Systems for the Grid ………………….. 4
Satoshi Matsuoka, Mitsuhisa Sato, Hidemoto Nakada, Satoshi Sekiguchi

Grid Resource Management

Architectural Models for Resource Management in the Grid ……………………. 18
Rajkumar Buyya, Steve Chapin, David DiNucci

JaWS: An Open Market-Based Framework for Distributed Computing over the
Internet …………………………………………………………………………….. 36

Spyros Lalis, Alexandros Karipidis

MeSch - An Approach to Resource Management in a Distributed Environment …. 47
Gerd Quecke, Wolfgang Ziegler

Resource Management Method for Cooperative Web Computing on
Computational Grid ……………………………………………………………… 55

Hye-Seon Maeng, Tack-Don Han, Shin-Dug Kim

Architecture for a Grid Operating System ……………………………………….. 65
Klaus Krauter, Muthucumaru Maheswaran

Data Management in an International Data Grid Project …………………………. 77
Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger,
Kurt Stockinger

Grid Middleware and Problem Solving Environments

XtremWeb: Building an Experimental Platform for Global Computing ……….. 91
Cécile Germain, Vincent Néri, Gille Fedak, Franck Cappello

A Grid Computing Environment for Enabling Large Scale Quantum Mechanical
Simulations ………………………………………………………………………. 102

Jack J. Dongarra, Padma Raghavan

XIV Table of Contents

A Web-Based Metacomputing Problem-Solving Environment for Complex
Applications ……………………………………………………………………… 111

Ranieri Baraglia, Domenico Laforenza, Antonio Laganà

FOCALE: Towards a Grid View of Large-Scale Computation Components............. 123
Gaëtan Scotto di Apollonia, Christophe Gransart, Jean-Marc Geib

Web Enabled Client-Server Model for Development Environment of Distributed
Image Processing ………………………………………………………………… 135

Haresh S. Bhatt, V. H. Patel, Akshai K. Aggarwal

An Advanced User Interface Approach for Complex Parameter Study Process
Specification on the Information Power Grid …………………………………… 146

Maurice Yarrow, Karen M. McCann, Rupak Biswas, Rob F. Van der Wijngaart

Grid Test-Beds and Resource Discovery

Mini-Grids: Effective Test-Beds for GRID Application ……………………….. 158
John Brooke, Martyn Foster, Stephen Pickles, Keith Taylor, Terry Hewitt

Configuration Method of Multiple Clusters for the Computational Grid ……….. 170
Pil-Sup Shin, Won-Kee Hong, Hiecheol Kim, Shin-Dug Kim

A Parameter-Based Approach to Resource Discovery in
Grid Computing Systems ………………………………………………………… 181

Muthucumaru Maheswaran, Klaus Krauter

Application-Level Scheduling on the Grid

Evaluation of Job-Scheduling Strategies for Grid Computing ……………………191
Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, Ramin Yahyapour

Experiments with Migration of Message-Passing Tasks ………………………… 203
K. A. Iskra, Z. W. Hendrikse, G. D. van Albada, B. J. Overeinder, P. M. A. Sloot,
J. Gehring

Adaptive Scheduling for Master-Worker Applications on the
Computational Grid ……………………………………………………………… 214

Elisa Heymann, Miquel A. Senar, Emilio Luque, Miron Livny

Authors Index ………………………………………………… 229

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 1-3, 2000.
© Springer-Verlag Berlin Heidelberg 2000

DOT-COMing the GRID: Using Grids for Business

Wolfgang Gentzsch

Sun Microsystems Inc, Palo Alto, California, USA

Abstract: In this presentation, a short outline of the history of past and present Grid
projects in research and industry is given, followed by some near- and long-term Grid
scenarios and visions on how data and compute Grids will complement current Internet
services and thus change our working and living environments and habits. In essence,
implementation and professional exploitation of the complex and highly sophisticated
Grid technologies will still take a couple of years and give us time enough to adapt to
the dramatic changes and potential opportunities Grids will create in the future.

1. Grids in Research

In the early Nineties, research groups all over the world started exploiting distributed
computing resources over the Internet: scientists collected and utilized hundreds of
workstations for highly parallel applications like molecular design and computer
graphics rendering. Other research teams glued large supercomputers together into a
virtual metacomputer, distributing subsets of a meta-application (e.g. the computer
simulation of multi-physics applications) to specific vector, parallel and graphics
computers, over wide-area networks.

The scope of many of these research projects was to understand and demonstrate
the actual potential of the networking, computing and software infrastructure and to
develop it further. This led us to Internet infrastructure projects like Globus and
Legion, which enable users to combine nearly any set of distributed resources into
one integrated metacomputing workbench to allow users to measure nature (e.g. with
microscope or telescope), process the data according to some fundamental
mathematical equations (e.g. the Navier-Stokes equations), and provide computer
simulations and animations to study and understand these complex phenomena.

These projects created a new era in distributed computing, according to the book
’The Grid: Blueprint for a New Computing Infrastructure. Generally speaking, a
computational Grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to computational
capabilities. These Grids, in the near future, will be used by computational engineers
and scientists, associations, corporations, environment, training and education, states,
consumers, etc. They will be dedicated to on-demand computing, high-throughput
computing, data-intensive computing, collaborative computing, and supercomputing,
potentially on an economic basis. Grid communities, among others, are national Grids
(like ASCI), virtual grids (e.g. for research teams), private grids (e.g. a BMW
CrashNet for the car manufacturer BMW and its suppliers, for collaborative crash
simulations), and public grids (e.g. consumer networks).

2 W. Gentzsch

Today, we see the first attempts to more systematically exploit Grid computing
resources over the Internet. Distributed computing projects like SETI@home,
Distributed.Net, and Folderol, let Internet users download scientific data, run it on
their own computers using spare processing cycles, and send the results back to a
central database. Recently, Compute Power Market project has been initiated to
develop software technologies that enable creating Grids where anyone can sell idle
CPU cycles, or those in need can buy compute power much like electricity today.

2. Grids in Industry

Encouraged by the response of thousands of participants on these research initiatives,
new Internet startup companies like Popular Power, Entropia, Distributed Science,
and United Devices are trying to turn this idea into real business that resell untapped
resources for a profit, hoping that computer users will be interested to donating their
extra computing power to projects that crunch a lot of data, such as the search for a
new cancer drug or patterns in the human genome. Other potential candidate
applications are complex financial analysis and generation of intensive graphics.

While this kind of global (and ’wild’) Internet computing will probably be
successful in the future where privacy and security are only minor issues (i.e., mostly
in research-oriented projects), global industries might have some real concerns in
using this Internet computing technology for their strategic businesses. Beside
security of information and data, these companies need guarantees for the availability
and utilization of dedicated resources, high-level quality of services, easy, fast and
authenticated computing portal access to hardware and software, and tools for
accounting, reporting, monitoring, and planning.

Just recently, industry started to experiment with more commercially oriented e-
business models for high-performance and data-intensive computing via the Internet.
For example, debis Systemhaus, a DaimlerChrysler company in Germany, offers its
NEC SX-5 supercomputer power through an Internet e-commerce gateway using a
public web server, a secure web server and a discussion server. The web pages are
based on JAVA applets, CGI scripting and JAVA servlets. In addition an LDAP
customer database is used for the management of security and encryption certificates.
A user can register using HTML forms; the secure Web site requests certificates to
identify user; a hummingbird UNIX desktop from the browser redirects application to
customer desktop; and Pegasus, (the application dependent job submission GUI),
submits the job to the batch system.

3. Grid Resource Management

Most of the underlying sophisticated technologies are currently under development.
Large research communities like the GridForum and EGrid are coordinating all kinds
of Grid research, prototype Grid environments exist like public-domain Globus and
Legion, research in resource management is underway in projects like EcoGrid, and
the basic building block for a commercial Grid resource managers exists with Sun’s
Grid Engine software. Grid Engine is a new generation distributed resource
management software which dynamically matches users’ hardware and software

DOT-COMing the GRID: Using Grids for Business 3

requirements to the available heterogeneous resources in the network according to
predefined policies usually prescribed by the management in the enterprise.

The Grid Engine acts much like our body’s central nervous system (sometimes
called ’The Body’s Internet’). The Grid Engine Master (’the brain’) with its sensors in
every computer (comparable to the sensations of touch, sound, smell, taste, and sight)
dynamically acts and reacts, according to set policies (comparable to move, eat, drink,
sleep) to allow for full control and achieve optimum utilization and efficiency. Grid
Engine has been developed as an enhancement of Codine from former Gridware Inc,
according to well defined requirements from the Army Research Lab in Aberdeen,
and BMW in Munich, where today Grid Engine manages over 800 powerful compute
servers in each of these local Grids. Average usage increased from well under 50% to
over 90%, in both environments.

4. Future Grid Economies

The next step is to enhance Grid Engine, which currently is restricted to manage local
computer resources, towards ’The GRID Broker’, which will be able to match the
user’s compute jobs with the available resources in the network, including invoicing
users for the CPU power they consume, very much like todays electric power
consumption, telephone usage or water supply. The Grid broker will match the user’s
requirements to the best fitting Application Service Provider (ASP) in the universe
which optimally fulfills the user’s hardware, software and service needs.

This GRID Broker belongs to the enabling technologies of the next Internet Age.
The Internet, for a long time, has been used only for information. Only recently,
enabled by several important improvements in hardware infrastructure, security,
authentication, and ease of access, it is used for electronic commerce. And just now,
the next revolutionary step complementing the Internet can be foreseen: The Grid
Computing Infrastructure, i.e. all kinds of dedicated GRIDs used for collaboration and
collaborative computing in industry and research, for application simulation and
animation, for real-time video, on-demand virtual reality presentations, and other
services for consumers and producers.

This high-quality and economically oriented usage of the Internet will be enabled
by several new technologies and achievements made recently. For example, CORBA
offers a standard interface definition to interconnect any distributed object in the
world. JAVA provides a common platform for distributed resources and thus
guarantees full cross-platform portability, and JINI allows to interconnect any
electronic device in a scalable way. And the chaos which potentially can arise with
this wealth of interconnected devices, clusters, subgrids, and grids, will be removed
and brought into a well-organized and well-functioning ’organism’, by the GRID
Resource Broker, supported by intelligent agents which, through the network or
wireless, report to the Central Grid Engine the details on available resources, and the
consumers’ habits and needs for specific resources in the GRID.

Then, eventually, in a next (and final?) step, the central Grid Engine will disappear,
partly as an integrated component of the local operating systems, and partly being
replaced by intelligent mobile agents, which enable a universal and self-healing
environment with potentially infinite compute power available on-demand, and as
easily accessible as our today’s electricity, telephony, roads and water infrastructures.
For URLs to projects referenced the paper see: gridcomputing.com.

Design Issues of Network Enabled Server
Systems for the Grid

Satoshi Matsuoka1,2, Hidemoto Nakada3, Mitsuhisa Sato4, and
Satoshi Sekiguchi3

1 Tokyo Institute of Technology, Tokyo, Japan
matsu@is.titech.ac.jp

2 Japan Science and Technology Corporation, Tokyo, Japan
3 Electrotechnical Laboratory, Tsukuba Ibaraki, Japan

nakada@etl.go.jp
sekiguchi@etl.go.jp

4 Real World Computing Partnership, Tsukuba Ibaraki, Japan
msato@trc.rwcp.or.jp

Abstract. Network Enabled Server is considered to be a good candi-
date as a viable Grid middleware, offering an easy-to-use programming
model. This paper clarifies design issues of Network Enabled Server sy-
stems and discusses possible choices, and their implications, namely those
concerning connection methodology, protocol command representation,
security methods, etc. Based on the issues, we have designed and im-
plemented new Ninf system v.2.0. For each design decision we describe
the rationale and the details of the implementation as dictated by the
choices. We hope that the paper serves as a design guideline for future
NES systems for the Grid.

1 Introduction

A Network Enabled Server System(NES) is an RPC-style Grid system where
a client requests the service of a task to a server. There are several systems
that adopt this as the basic model of computation, such as our Ninf system[1],
Netsolve[2], Nimrod[3], Punch[4], and Grid efforts utilizing CORBA[5,6,7].

NES systems provides easy-to-use, intuitive, and somewhat restricted user
and programming interface, This allows the potential users of Grid systems to
easily make his applications “Grid enabled”, lowering the threshold of accep-
tance. Thus, we deem it as one of the important abstractions to be layered on
top of lower-level Grid services such as Globus[8] or Legion[9].

Since 1995, we have been conducting the Ninf project, whose goal has been
to construct a powerful and flexible NES system [10,11], and have investiga-
ted the utility of such systems through various application and performance
experiments[12]. There, we have gained precious experience on the necessary
technical aspects of NES systems which distinguishes them from conventional
RPC systems such as CORBA, as well as various tradeoffs involved in the de-
sign of such systems[13]. Based on such observations, we have redesigned and
reimplemented version 2.0 of the Ninf system from scratch.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 4–17, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Design Issues of Network Enabled Server Systems for the Grid 5

ServerServer

ServerServer

ClientClient

SchedulerScheduler MonitorMonitor

DB

Manager

DB

Manager

Server inquiry

(Network info)

Suitable Server

Resource

Monitoring

Store resource status

Resource

Monitoring

Store resource statusObtain Server infoObtain Server info

Fig. 1. General Architecture of NES Systems

The purpose of this paper is to discuss the notable technical points which led
to the design decisions made for Ninf v.2.0. In particular, for the latter half of
the paper we focus on the security issues, which is mostly lacking in the current
generation of NES systems.

2 General Overview of NES Systems

In general, NES systems consists of the following components: (Figure 1)

– Clients: Requests execution of grid-enabled libraries and/or applications to
the server.

– Servers: Receives request from clients, and executes the grid-enabled libra-
ries and/or applications on clients’ behalf.

– Scheduler: Selects amongst multiple servers for execution according to the
information obtained from the resource database.

– Monitors: Monitors the status of various resources, such as computing re-
source, communication resource, etc., and registers the results in the resource
database.

– Resource Database: Stores and maintains the status of monitored resour-
ces.

The Monitors periodically “monitor” the status of resources such as the ser-
ver, network, etc., and registers the results in the Resource Database. The users
of Grid systems modifies his applications to utilize the servers with the use of
client APIs, or tools that have been constructed using the client APIs. The Cli-
ent inquires the Scheduler for an appropriate Server. The Scheduler, in turn,
acquires the info on computing resources, and selects the appropriate server ac-
cording to some scheduling algorithm, and returns the selection to the Client.
The Client then remotely invokes the library/application on the selected server
by sending the appropriate argument data. The server performs the computa-
tion, and returns the result data to the client.

6 S. Matsuoka et al.

2.1 Design Issues in NES Systems

There are several design issues regarding the construction of NES systems, in-
cluding the connection methods of client and servers, communication protocols,
and security. Moreover, there is an issue of how we make the system open to
future extensions.

Client-Server Connection Methodologies. The client must first establish a
connection with the selected server. The sub-issues involve 1) continuous connec-
tion versus connection-by-necessity, and 2) usage of proxies.

Continuous Connection versus Connection-by-Necessity: Continuous connection
maintains connection between the server and the client during the time server is
performing the computation. Contrastingly, Connection-by-Necessity makes fine-
grain connection/disconnection between the client and the server on demand.

Continuous connection is typically employed for standard RPC implemen-
tations; it is easy to implement under the current TCP/IP socket APIs, and
furthermore, allows easy detection of server faults via stream disconnection. The
drawback is the restriction on how many parallel tasks that can be invoked by a
client. Since the connection to the server must be maintained, the client process
is requires more file descriptors than the number of parallel tasks being invoked.
However, since the number of file descriptors per process is restricted for most
OSes, this limits the number of parallel tasks. Such has not been a problem for
traditional RPCs, since most transactions are short-lived, and/or the number of
connections were small since the user tasks are sequential.

Moreover, continuous connection requires the client to constantly be on-line,
without any interruption in the communication. Thus, the client cannot go off-
line, neither deliberately nor by accident; even a momentary failure in the com-
munication will cause a fault. This again is a restriction, since some Grid-enabled
libraries may take hours or even days to compute.

By contrast, in Ninf v.2.0 we have adopted Connection-by-Necessity. Basi-
cally, when the client makes an RPC request to the server, it disconnects once
the necessary argument data had been sent. Once the server finishes the com-
putation, it re-establishes a new connection with the client, and sends back the
result. This overcomes the restriction of the Continuous Connection, but a) the
protocol becomes more complex, due to the requirement of server-initiated and
secure connection re-establishment, b) there need to be an alternative method of
detecting server faults, and c) performance may suffer due to connection costs.

Direct Connection versus Proxy-based Connection. Another concern is whether
to connect the client and the server directly, or assume a dedicated, mediating
proxies, for various purposes including connection maintenance, performance
monitoring, and firewall circumvention.

The “old” Ninf system (up to v.1.2.) employed proxy-mediated connection,
for the purpose of simplifying the client libraries. All traffic was mediated by
the proxy; in fact, communication with the Scheduler for server selection was

Design Issues of Network Enabled Server Systems for the Grid 7

performed by the proxy and not by the client itself. On the other hand, routing
the communication through the proxy will result in performance overhead, which
is of particular concern for Grid systems since communication of large bulk of
data is typical.

Communication Protocol Commands for Grid RPC. Communication
Protocol Commands, or simply Protocol Commands are a set of commands that
are used to govern the communication protocol between the client and the server.
They can be largely categorized into binary formats and text-based formats.

Binary formats allow easy and lightweight parsing of command sequences,
but are difficult to structure, debug and extend. Contrastingly, well-designed
text-based formats are well-structured, easy to understand and extent, but are
less efficient and require more software efforts to parse.

Although traditionally text-based commands for communication protocols
were typically simple, involving little structure such as S-expressions, there is
a recent trend to employ XML for such purpose. Although XML requires more
efforts on the software side for parsing etc., we can assign schema in a standard
way using DTD. Since command overhead can be amortized over relative large
data transfer, we believe XML is a viable option given its proliferation as well
as availability of standard tools.

Security Mechanism. Security is by all means an important part of any Grid
system. However, there several options for security, depending on the operating
environment of the system.

If the operating environment is totally local within some administrative do-
main, where all the participants can be trusted, we can merely do away with
security. In a slightly more wide-area and well-administered environment, such
as within a University campus, it suffices to restrict access based on, say, client
IP address. On the other hand, if global usage is assumed, then by all means we
must guard against malicious users, and thus require authentication based on
encryption. Examples are Kerberos, which employs the symmetrical key techno-
logy, and SSL, which utilizes the public key algorithm.

System Openness and Interoperability with Other Grid Systems. One
important design choice is how much we make the system open to customiza-
tion, especially with respect to other, more general Grid software infrastructure,
and/or Grid component with some specific function. More concretely, Grid tool-
kits such as Globus provide low-level communication layer, security layer, di-
rectory service, heartbeat monitoring, etc. Components such as NWS(Network
Weather Service[14]) provides stable monitoring and prediction services for mea-
suring resources on the Grid, such as node CPU load and network communica-
tion performance. Conventional components which had initially not intended
as a Grid services could be incorporated as well, such as LDAP, which provi-
des a standard directory service API; Globus employs LDAP directly with its
MDS(Metacomputing Directory Service), providing a Grid directory service.

8 S. Matsuoka et al.

By using such existing subsystems and components, we can directly utilize the
functionalities which had been tried and tested, and also subject to independent
improvement. On the other hand, because such subsystems are designed for
generality, they have larger footprint, and could be tougher to manage. Moreover
the supported platform would be the intersection of the platforms supported by
individual subsystems.

3 Design and Implementation of the New Ninf System

3.1 Conceptual Design Decision Overview

We designed and implemented a new version of the Ninf system (Ninf version
2.0) with the abovementioned design issues in mind. The new system is designed
to be flexible and extensible, with interoperability with existing Internet and
Grid subsystems in mind. Because NES systems typically involve tasks where
computation is dominant, we made design decisions that gave precedence to in-
teroperability and flexibility over possible communication overhead if such could
be amortized.

Client-Server Connections. In order to accommodate multiple, fault-tole-
rant, long-running calls in Grid Environments, we adopted for connection-by-
necessity over continuous connections. We have also decided to employ proxy-
based connections in order to simplify client structure. However, in order to
avoid bandwidth bottlenecks, proxies only intervene on command negotiations
between the client and server; when the actual arguments of the remote call
is being transferred, the client and the server communicate directly, unless a
firewall must be crossed.

Communication Protocol Commands. For flexibility, extensibility, and in-
teroperability, we decided to adopt the usage of XML-based text commands.
In the latter sections we present an overview of the DTD schema for numerical
RPCs. Free parsers for C and Java are available, which simplified our implemen-
tation.

Security Mechanism. To allow Ninf to be used in a global Grid environment,
we opted to construct a Globus-like, SSL-based authentication and authorization
layer, which allows delegation of authentication along a security chain. Kerberos
was an obvious alternative, but SSL was becoming a commercial standard, and
multiple free library implementations in C and Java are available.

System Openness and Interoperability with Other Grid Systems. This
was the most difficult decision, since advantages and disadvantages of employing
existing Grid components could be strongly argued both ways. As a compromise,
we have decided to provide default implementations of all our basic submodules;

Design Issues of Network Enabled Server Systems for the Grid 9

ClientClient

ServerServer

ExecutableExecutable

ProxyProxy

SchedulerScheduler

DB

Manager

DB

Manager

Network

Monitor

Network

Monitor Server

Monitor

Server

Monitor

Fault

Manager

Fault

Manager

Data

Storage

Data

Storage

Invocation

Request

Monitor Monitor

Report

Report
Report

Invocation

Request Invoke

Data

Transfer

Data

Transfer

query
Answer

Answerquery

Fig. 2. Overview of the New Ninf System

however, we have designed them to have well-defined interfaces, to be pluggable
with existing modules in operating environments where such services are already
available. For example, although the default implementation of the resource da-
tabase lookup service has its own LDAP lookup feature, it could also directly
utilized Globus MDS services where they are available.

3.2 Overview of the New Ninf System V.2.0

The new Ninf system v.2.0 is composed of the following subsystems(Figure 2)

– Client
A user-side component which requests (parts of) computing to be done on
remote servers in the Grid. The client is “thin” in a sense that as little
information as possible is retained on the client side; for example IDL of the
remote call is not maintained by the client, but rather automatically shipped
on demand from the server.

– Server
Receives remote compute requests from the clients and invokes the appro-
priate executable. The server might act as a backend for invoking paral-
lelized libraries on multiple compute nodes, such as a library written in
C/Fortran+MPI served by a Cluster.

– Proxy
Communicates with a Scheduler on behalf of the Client, and decides upon
which server to invoke the remote computation, and forwards the request to
the server. (The behavior of the proxy is similar to Netsolve Agents in this
case.)

10 S. Matsuoka et al.

– Executables
Components which actually embeds each remote applications or libraries to
be invoked. They are invoked by the server, and communicate with the client
to perform the actual computations.

– Data Storage
Temporary storage on the Grid to store intermediate results amongst mul-
tiple servers.

– Scheduler
The scheduler receives requests from the proxy, and selects an appropriate
server under some scheduling algorithm. The scheduler communicates with
the database server in order to drive the scheduling algorithm.

– Database Manager
Manages the Information Stored in the Grid resources database. The da-
tabase itself utilizes existing distributed resource database for the Internet
and/or the Grid (e.g., LDAP or Globus MDS, which in turn uses LDAP
itself); the resource lookup request from the client is delegated through the
manager. This naturally allows other database infrastructure to be utilized.

– Network Monitor/Server Monitor
Monitors the status of the network, servers, and other resources. The result
is reported periodically and automatically to the database manager.

– Fault Manager
Performs recovery action when some fault or error that affects the system in
a global way, is detected. For example, if the server is found to be down (using
heartbeat monitoring), the server is deleted from the resource database.

3.3 Client-Server Communication in the Ninf System 2.0

The new Ninf system manages the client-server communication in the following
manner(Figure 3):

The client first requests the interface information of the executable to be
invoked to the proxy. It then requests the invocation of the executable. The
client immediately disconnects its connection with the proxy, and enters the
state waiting for a callback from the proxy. The client then can proceed to issue
hundreds of simultaneous requests, as there are no other pending connections.

The proxy in turn inquires the Scheduler for selection of an appropriate ser-
ver (or a set of servers) to perform the invocation. The scheduler inquires the
database manager for information on servers and network throughput informa-
tion, as well as other resource information such as location of files used in the
computation. The scheduling algorithm selects an appropriate server (or set of
servers) and returns the info to the proxy. The algorithm itself is pluggable; one
can employ simple algorithm as is employed with netsolve (sorting by server
load), or more sophisticated algorithm such as those employed by Nimrod.

The proxy forwards the invocation request to the selected server. The server
in turn invokes the executable for performing the actual computation. The exe-
cutable then requests to the client the necessary arguments by sending the appro-
priate IDL program for marshalling. When all the arguments have been received,

Design Issues of Network Enabled Server Systems for the Grid 11

Client Proxy

Server

Executable

Invocation Request

Interface Request

Interface Information

Invocation Request Invoke
Invocation Ack.

Invocation Ack.

Command Req.
Calculation Req.

Parameter Req.

Parameter
Parameter Ack.

Result Send
Result Ack.

Command Req.

Calculation End

Computation

Terminate Req.

Terminated
Terminated

Scheduler DBmanager

Scheduler Request
Query request

Schedule
Query Answer

Fig. 3. Invocation Protocol

the executable notifies the client, disconnects the connection, and proceeds to
compute the request. The client again enters the state to wait for callback from
the executable on completion of the invocation.

When the computation is finished, the executable reconnects with the client,
and transmits the result, indicating termination of the invocation. The client
acknowledges the receipt with the termination command.

Finally, the executable notifies the proxy that the invocation has terminated.
The proxy in turn forwards this to the client. The proxy notifies the Database
Manager of the termination, allowing it to update the resource database.

3.4 Communication Protocol Commands in New Ninf

As an example of communication command protocol, we demonstrate the DTD
of the protocol command for specifying and invoking on a server a remote exe-
cutable, in Figure 4. Based on this DTD, here is sample invocation command in
XML(Figure 5).

One may notice that the invocation command embodies two addresses, cli-
ent and observer; here, client is the address used for client callbacks, where as
observer is the address used to notify termination of invocation to the proxy.

3.5 Security Layer in the New Ninf System

Security in a NES system involves Authentication, Authorization, Privacy. Aut-
hentication identifies who is connecting to the server; authorization is what re-
sources to permit to the user that has been identified; and privacy is to make

12 S. Matsuoka et al.

<!ELEMENT invoke executable
(issuer ,function name, client, observer)>

<!ELEMENT issuer EMPTY>
<!ATTLIST issuer process CDATA #REQUIRED>
<!ATTLIST issuer host CDATA #REQUIRED>
<!ATTLIST issuer port CDATA #REQUIRED>
<!ATTLIST issuer session key CDATA #REQUIRED>
<!ELEMENT function name EMPTY>
<!ATTLIST function name module CDATA #REQUIRED>
<!ATTLIST function name entry CDATA #REQUIRED>
<!ELEMENT client (peer)>
<!ELEMENT observer (peer)>
<!ELEMENT peer EMPTY>
<!ATTLIST peer host CDATA #REQUIRED>
<!ATTLIST peer port CDATA #REQUIRED>

Fig. 4. Remote Executable Command DTD

<invoke executable>
<issuer process="nsserver"

host="hpc.etl.go.jp"
port="30000" session key="12345" />

<function name module="test" entry="mmul" />
<client>

<peer host="hpc.etl.go.jp" port="30000" />
</client>
<observer>

<peer host="hpc.etl.go.jp" port="30001" />
</observer>
</invoke executable>

Fig. 5. Example Invocation Command

communication and computation private to other users connecting to the NES
system.

The new Ninf system has the client connect to the server via a shared proxy;
however, server authentication and authorization must be performed with client
identify, with (rather remote but still existing) possibility that the proxy may be
spoofed. Another situation is when server A acts as a client and delegates part of
its work to server B on another machine. There, not only that server A needs to
be authenticated, but the client identity must be authenticated and authorized
at server B as well. Such “delegation of identity” we deem as essential part of a
NES system

Design Issues of Network Enabled Server Systems for the Grid 13

The new Ninf system implements the NAA (NES Authentication Authoriza-
tion) module. NAA employs SSL as the underlying encryption mechanism and
implements delegation of identity and authorization on top of those. Delegation
of identity is done automatically by the NAA, and the client user merely needs to
specify his certificate as is done with SSL. NAA itself is relatively self-contained,
and thus could be used by other NES systems such as Netsolve.

Delegation of Identity. Identity in SSL consists of a certificate certified by a
CA (Certificate Authority). CA’s can be made hierarchical—it is possible to sign
a certificate using another (signed) certificate. In NAA, we have implemented
delegation of identity by not merely directly tying in user identity with his
certificate, but rather, broadened the ‘identity’ to include all the certificates
signed using the user’s certificate.

SSL employs the public key encryption algorithm, where its certificate con-
sists of user’s public key being encrypted by CA’s private key. We can form a
so-called certificate chain by generating another key pair, and encrypting them
with the user’s private key. On authentication, CA’s public key is used to decrypt
the certificate, which reveals the public key of the user. This could be used for
identification (by decrypting data which had been encrypted with the private
key of the user), or for a chain, could in turn be used to obtain the public key
of the next element in the chain. NAA uses such a certificate chain for authen-
tication, in that if the user’s certificate appears somewhere in the chain, it is
regarded as providing the user’s indentity. The security layer of Globus employs
a similar strategy[15].

As an example, let us consider when the client calls server A, which in turn
calls server B as a client. When server A receives a connection request from
the client, it generates a new key pair, and sends back its public key to the
client, which is asked to create a session certificate embodying its identity. The
client generates a session certificate by signing (encrypting) the public key with
its own private key, and sends it back to server A. When server A connects to
server B, server B must 1) authenticate the identity of the client, as well as 2)
identify that the call is being made through server A. This is achieved by server
A connecting with the session certificate received from the client along with the
original certificate of the client. This is shown in Figure 6.

NAA Policies. We have designed NAA policies to be extensible and customiz-
able by the system administrators.

After the client is authenticated, authorization in NAA is performed using a
structure similar to Java 1.2 Policy class. A policy is a set of structures called
grants, which in turn are sets of permissions to the user. The NAA library ma-
nages the policy structures and the identities of current clients of the system. In
addition, NAA namespace is tree-structured according to the X.509 conventions.
Access control is done hierarchically done along this tree using the permissions.

The server program inquires whether the certain permission is applicable to
the client. The library checks the policy if there are grants that contain the

14 S. Matsuoka et al.

Client Server A

User Pub.User Pri.

P1 Pub.P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

P1 Pub. P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

Sign

P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

P1 Pub.

Server B

Server B

Server B

Server B

P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

P1 Pub.

Server B

P2 Pri.

User Pub.

P1 Pub.

P2 Pub.

Key pair

generation

Certificate

request

New

Certificate

Fig. 6. Delegation of Identity

<!ELEMENT policy (grant)*>
<!ELEMENT grant (permission)*>
<!ATTLIST grant userid CDATA #REQUIRED>
<!ELEMENT permission EMPTY>
<!ATTLIST permission class CDATA #REQUIRED>
<!ATTLIST permission target CDATA #REQUIRED>
<!ATTLIST permission action CDATA #REQUIRED>

Fig. 7. Policy DTD

particular permission. Each permission consists of three attributes, class, target,
and action. Class indicates the operation that the permission allows the client to
perform. Target and action designates the subject of the operation, along with
the type of the operation to be performed.

Policies are described using XML in a policy file. We illustrate the policy file
DTD and an example of policy description in Figure 7 and Figure 8, respectively.

Design Issues of Network Enabled Server Systems for the Grid 15

<policy>
<grant userid="c=jp,o=etl">
<permission class = "stubexec"

target = "test/entry0" action="100 20"/>
<permission class = "stubexec"

target = "test/entry1" action="100 20"/>
</grant>
<grant userid="c=jp,o=etl,CN=nakada">
<permission class = "stubexec"

target = "test/entry3" action="100 20"/>
</grant>

</policy>

Fig. 8. Example Policy

In the example, we have defined two grants. The first grant indicates that
the user whose identity includes c=jp,o=etl (meaning the Electrotechnical Lab)
can remotely execute test/entry0 and test/entry1. The second grant restricts
test/entry3 to only be remotely executed by userID c=jp,o=etl,CN=nakada.
Thus, the client c=jp,o=etl,CN=nakada can execute all the remote libraries
(entry0, entry1, and entry3), while the client c=jp,o=etl,CN=sekiguchi
can execute only (entry0 and entry1); furthermore, the client c=jp,
o=titech, CN=matsuoka cannot execute any of the libraries.

We can also grant rights to specific calls made by the client through delegation
of identity; for instance, in the delegation of identity scenario described earlier,
we can specify a certain executable to be invoked only if a particular client
was executing a library in server A which in turn had called the executable in
server B. Such a case is conceivable, when a large compute server B is used as a
backend for a server A, which is more subject to public usage; contrastingly, only
a restricted set of jobs could be run on server B, and users are not allowed to
invoke a remote library on server B directly; rather, they must do so via server
A.

In this manner, the hierarchical namespace, along with the policy structure,
gives fine-grained access control of resources for remote libraries in a NES system.
Preliminary measurement have shown that such mechanisms do not impose sig-
nificant overhead, as long as the calls granularity is large enough such that the
overhead could be amortized (beyond 10s of seconds).

4 Conclusion

We have covered the technical tradeoff points of NES systems, and described
how the new Ninf system v.2.0 had been designed with the tradeoffs in mind,
with descriptions of why a particular choices in the tradeoffs had been made.

16 S. Matsuoka et al.

We hope that most of the design spaces have been covered, and will serve as a
guide for designing future NES systems.

We are currently in the stage of deploying Ninf v.2.0 alongside v.1.0 to com-
pare and verify the effectiveness of the design decisions, along with performance
analysis to assess the their impact as well.

Acknowledgements. Part of this research had been performed under the spon-
sorship of Information Promotion Agency of Japan (IPA), under the program
“The Development of Wide-Area, Distributed Computing Applications”. We also
would like to thank NTT Software and Computer Institute of Japan who had
contributed in the design, our collaborators and users of the Ninf system, and
the rest of the Ninf project team for their technical discussions and support.

References

1. Ninf: Network Infrastructure for Global Computing. http://ninf.etl.go.jp/.
2. Casanova, H. and Dongarra, J.: NetSolve: A Network Server for Solving Compu-

tational Science Problems, Proceedings of Super Computing ’96 (1996).
3. Buyya, R., Abramson, D. and Giddy, J.: Nimrod/G: An Architecture for a Resource

Management and Scheduling System in a Global Computational Grid, Proceedings
of HPC Asia 2000 (2000).

4. Kapadia, N. H., Fortes, J. A. B. and Brodley, C. E.: Predictive Application-
Performance Modeling in a Computational Grid Environment, Proc. of 8th IEEE
International Symposium on High Performance Distributed Computing (HPDC8)
(1999).

5. René, C. and Priol, T.: MPI Code Encapsulating using Parallel CORBA Ob-
ject, Proc. of 8th IEEE International Symposium on High Performance Distributed
Computing (HPDC8), pp. 3–10 (1999).

6. Imai, Y., Saeki, T., Ishizaki, T. and Kishimoto, M.: CrispORB: High performance
CORBA for System Area Network, Proc. of 8th IEEE International Symposium
on High Performance Distributed Computing (HPDC8), pp. 11–18 (1999).

7. Butler, K., Clement, M. and Snell, Q.: A Performance Broker for CORBA, Proc. of
8th IEEE International Symposium on High Performance Distributed Computing
(HPDC8), pp. 19–26 (1999).

8. Foster, I. and Kesselman, C.: Globus: A metacomputing infrastructure toolkit.,
Proc. of Workshop on Environments and Tools, SIAM. (1996).

9. Grimshaw, A., Wulf, W., French, J., Weaver, A. and Jr., P. R.: Legion: The Next
Logincal Step Toward a Natiowide Virtual Computer, CS 94-21, University of
Virginia (1994).

10. Sato, M., Nakada, H., Sekiguchi, S., Matsuoka, S., Nagashima, U. and Takagi, H.:
Ninf: A Network based Information Library for a Global World-Wide Computing
Infrastracture, Proc. of HPCN’97 (LNCS-1225), pp. 491–502 (1997).

11. Nakada, H., Takagi, H., Matsuoka, S., Nagashima, U., Sato, M. and Sekiguchi, S.:
Utilizing the Metaserver Architecture in the Ninf Global Computing System, High-
Performance Computing and Networking ’98, LNCS 1401 , pp. 607–616 (1998).

12. Takefusa, A., Matsuoka, S., Ogawa, H., Nakada, H., Takagi, H., Sato, M., Sekiguchi,
S. and Nagashima., U.: Multi-client LAN/WAN Performance Analysis of Ninf: a
High-Performance Global Computing System, Supercomputing ’97 (1997).

Design Issues of Network Enabled Server Systems for the Grid 17

13. Suzumura, T., Nakagawa, T., Matsuoka, S., Nakada, H. and Sekiguchi, S.: Are
Global Computing Systems Useful? - Comparison of Client-Server Global Compu-
ting Systems Ninf, NetSolve versus CORBA, Proc. of International Parallel and
Distributed Processing Symposium (2000).

14. Wolski, R., Spring, N. and Peterson, C.: Implementing a Performance Forecasting
System for Metacomputing: The Network Weather service, Proceedings of the 1997
ACM/IEEE Supercomputing Conference (1997).

15. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S.: A Security Architecture for
Computational Grids, Proc. 5th ACM Conference on Computer and Communica-
tion Security (1998).

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 18-35, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Architectural Models for Resource Management in the Grid

Rajkumar Buyya
1
, Steve Chapin2, and David DiNucci

 3

 School of Computer Science and
Software Engineering 1

Monash University,
Melbourne, Australia

rajkumar@csse.monash.edu.au

Dept. of Electrical Engineering and
Computer Science 2

Syracuse University,
 Syracuse, NY, USA.

chapin@ecs.syr.edu

Elepar
 3

14380 N W Hunters Dr.
Beaverton, Oregon, USA
dave@elepar.com

Abstract: The concept of coupling geographically distributed (high-end) resources for
solving large-scale problems is becoming increasingly popular, forming what is
popularly called grid computing. The management of resources in the grid
environment becomes complex as they are (geographically) distributed, heterogeneous
in nature, owned by different individuals/organizations each having their own resource
management policies and different access-and-cost models. In this scenario, a number
of alternatives exist while creating a framework for grid resource management. In this
paper, we discuss the three alternative models—hierarchical, abstract owner, and
market—for grid resource management architectures. The hierarchical model exhibits
the approach followed in (many) contemporary grid systems. The abstract owner
model follows an order and delivery approach in job submission and result gathering.
The (computational) market model captures the essentials of both hierarchical and
abstract owner models and proposes the use of computational economy in the
development of grid resource management systems.

1. Introduction

The growing popularity of the Internet and the availability of powerful computers and
high-speed networks as low-cost commodity components are changing the way we do
computing and use computers today. The interest in coupling geographically
distributed (computational) resources is also growing for solving large-scale
problems, leading to what is popularly known as grid computing. In this environment,
a wide variety of computational resources (such as supercomputers, clusters, and
SMPs including low-end systems such as PCs/workstations), visualisation devices,
storage systems and databases, special class of scientific instruments (such as radio
telescopes), computational kernels, and so on are logically coupled together and
presented as a single integrated resource to the user (see Figure 1). The user
essentially interacts with a resource broker that hides the complexities of grid
computing. The broker discovers resources that the user can access through grid
information server(s), negotiates with (grid-enabled) resources or their agents using
middleware services, maps tasks to resources (scheduling), stages the application and
data for processing (deployment) and finally gathers results. It is also responsible for

Architectural Models for Resource Management in the Grid 19

monitoring application execution progress along with managing changes in the grid
infrastructure and resource failures. There are a number of projects worldwide [5],
which are actively exploring the development of various grid computing system
components, services, and applications. They include Globus [7], Legion [9],
NetSolve [10], Ninf [15], AppLes [11], Nimrod/G [3], and JaWS [16]. In [2], all these
grid systems have been discussed.

Figure 1: A Generic View of GRID System.

The current research and investment into computational grids is motivated by an
assumption that coordinated access to diverse and geographically distributed
resources is valuable. In this paradigm, it is not only important to determine
mechanisms and policies that allows such coordinated access, but it also seems
reasonable that owners of those resources, or of mechanisms to connect and utilize
them should be able to recoup some of the resulting value from users or clients.
Approaches to recouping such value in the existing Internet/web infrastructure, where
e-commerce sites use advertising and/or mark-ups on products sold to show revenue,
do not translate well (or are unsuitable) to a computational grid framework, primarily
due to the fact that the immediate user of any specific resource in a computational
grid is often not a human. Instead, in a grid, many different resources, potentially
controlled by diverse organizations with diverse policies in widely-distributed
locations, must all be used together, and the relationship between the value provided
by each resource and the value of the product or service delivered to the eventual
human consumer may be very complex. In addition, it is unrealistic to assume that
human-created contracts can be developed between all potential resource users and
resource owners in these situations, since the potential of computational grids can
only be fully exploited if similar resources owned by different owners can be used
almost interchangeably.

Still, the existing real world must be acknowledged. Grid resources are largely
owned and used by individuals or institutions who often provide "free" access for
solving problems of common interest/public good (e.g., SETI@Home [13]),
prize/fame (e.g., distributed.net [14] response to challenge for breaking RSA security
algorithms), collaborative resources (GUSTO [6]), or by companies that are loathe to
allow others to use them, primarily due to concerns about competition and security.
The existing control over resources is subject to different policies and restrictions, as

20 R. Buyya, S. Chapin, and D. DiNucci

well as different software infrastructure used to schedule them. Any new approach to
manage or share these resources will not be viable unless it allows a gradual layering
of functionality or at least a gradual transition schedule from existing approaches to
more novel ones. Even in the existing cases where money does not actually change
hands, it is often important to provide a proper accounting of cross-organizational
resource usage. In order to address these concerns, we propose different approaches
for modeling grid resource management systems.

2. Architecture Models

As the grid logically couples multiple resources owned by different individuals or
organisations, the choice of the right model for resource management architecture
plays a major role in its eventual (commercial) success. There are a number of
approaches that one can follow in developing grid resource management systems. In
the next three sections, we discuss the following three different models for grid
resource management architecture:

• Hierarchical Model
• Abstract Owner Model
• Computational Market/Economy Model

In the first, we characterize existing resource management and scheduling
mechanisms by suggesting a more general view of those mechanisms. Next, we
suggest a rather idealistic and extensive proposal for resource sharing and economy,
which for the most part, ignores existing infrastructure in order to focus on long-term
goals. Finally, we describe a more incremental architecture that is already underway
to integrate some aspects of a computational economy into the existing grid
infrastructure. Table 1 shows a few representative systems whose architecture
complies with one of these models.

Table 1: Three Models for a Grid Resource Management Architecture.

 MODEL REMARKS SYSTEMS

Hierarchical
It captures architecture model followed in
most contemporary systems.

Globus, Legion,
Ninf, NetSolve.

Abstract Owner

It follows an order and delivery model for
resource sharing, which for the most part,
ignores existing infrastructure in order to
focus on long-term goals.

Expected to
emerge.

Market/Economy

It follows economic model in resource
discovery and scheduling that can co-
exist or work with contemporary systems
and captures the essence of both
hierarchical and abstract owner models.

Nimrod/G, JaWS,
Myriposa,

JavaMarket.

Architectural Models for Resource Management in the Grid 21

The grid architecture models need to encourage resource owners to contribute their
resources, offer a fair basis for sharing resources among users, and regulate resource
demand and supply. They influence the way scheduling systems are built as they are
responsible for mapping user requests to the right set of resources. The grid
scheduling systems need to follow multilevel scheduling architecture as each resource
has its own scheduling system and users schedule their applications on the grid using
super-schedulers called resource brokers (see Figure 1).

3. Hierarchical Resource Management

The hierarchical model for grid resource management architecture (shown in Figure
2) is an outcome of the Grid Forum [20] second meeting proposed in [21]. The major
components of this architecture are divided into passive and active components. The
passive components are:

• Resources are things that can be used for a period of time, and may or may
not be renewable. They have owners, who may charge others for using
resources and they can be shared, or exclusive. Resources might be explicitly
named, or be described parametrically. Examples of resources include disk
space, network bandwidth, specialized device time, and CPU time.

• Tasks are consumers of resources, and include both traditional computational
tasks and non-computational tasks such as file staging and communication.

• Jobs are hierarchical entities, and may have recursive structure; i.e., jobs can
be composed of subjobs or tasks, and subjobs may themselves contain
subjobs. The leaves of this structure are tasks. The simplest form of a job is
one containing a single task.

• Schedules are mappings of tasks to resources over time. Note that we map
tasks to resources, not jobs, because jobs are containers for tasks, and tasks
are the actual resource consumers.

The active components are:

• Schedulers compute one or more schedules for input lists of jobs, subject to
constraints that can be specified at runtime. The unit of scheduling is the
job, meaning that schedulers attempt to map all the tasks in a job at once, and
jobs, not tasks, are submitted to schedulers.

• Information Services act as databases for describing items of interest to the
resource management systems, such as resources, jobs, schedulers, agents,
etc. We do not require any particular access method or implementation; it
could be LDAP, a commercial database, or something else entirely.

• Domain Control Agents can commit resources for use; as the name implies,
the set of resources controlled by an agent is a control domain. This is what
some people mean when they say local resource manager. We expect
domain control agents to support reservations. Domain Control Agents are
distinct from Schedulers, but control domains may contain internal

22 R. Buyya, S. Chapin, and D. DiNucci

Schedulers. A Domain Control Agent can provide state information, either
through publishing in an Information Service or via direct querying.
Examples of domain control agents include the Maui Scheduler, Globus
GRAM, and Legion Host Object.

• Deployment Agents implement schedules by negotiating with domain control
agents to obtain resources and start tasks running.

• Users submit jobs to the Resource Management System for execution.

• Admission Control Agents determine whether the system can accommodate
additional jobs, and reject or postpone jobs when the system is saturated.

• Monitors track the progress of jobs. Monitors obtain job status from the
tasks comprising the job and from the Domain Control Agents where those
tasks are running. Based on this status, the Monitor may perform outcalls to
Job Control Agents and Schedulers to effect remapping of the job.

• Job Control Agents are responsible for shepherding a job through the system,
and can act both as a proxy for the user and as a persistent control point for a
job. It is the responsibility of the job control agent to coordinate between
different components within the resource management system, e.g. to
coordinate between monitors and schedulers.

 We have striven to be as general as is feasible in our definitions. Many of these
distinctions are logical distinctions. For example, we have divided the responsibilities
of schedulers, deployment agents, and monitors, although it is entirely reasonable and
expected that some scheduling systems may combine two or all three of these in a
single program. Schedulers outside control domains cannot commit resources; these
are known as metaschedulers or super schedulers. In our early discussions, we
intentionally referred to control domains as “the box” because it connotes an
important separation of “inside the box” vs. “outside the box.” Actions outside the
box are requests; actions inside the box may be commands. It may well be that the
system is fractal in nature, and that entire grid scheduling systems may exist inside the
box. Therefore, we can treat the control domain as a black box from the outside.

We have intentionally not defined any relationship between the number of users,
jobs, and the major entities in the system (admission agents, schedulers, deployment
agents, and monitors). Possibilities range from per-user or per-job agents to a single
monolithic agent per system; each approach has strengths and weaknesses, and
nothing in our definitions precludes or favors a particular use of the system. We
expect to see local system defaults (e.g. a default scheduler or deployment agent) with
users substituting their personal agents when they desire to do so.

One can notice that the word queue has not been mentioned in this model; queuing
systems imply homogeneity of resources and a degree of control that simply will not
be present in true grid systems. Queuing systems will most certainly exist within
control domains.
Interaction of Components

The interactions between components of the resource management system are shown
in Figure 2. An arrow in the figure means that communication is taking place

Architectural Models for Resource Management in the Grid 23

between components. We will next describe, at a high level, what we envision these
interactions to be. This is the beginning of a protocol definition. Once the high-level
operations are agreed upon, we can concern ourselves with wire-level protocols.

Figure 2: Hierarchical Model for Grid Resource Management.

We will begin with an example. A user submits a job to a job control agent, which
calls an admission agent. The admission agent examines the resource demands of the
job (perhaps consulting with a grid information system) and determines that it is safe
to add the job to the current pool of work for the system. The admission agent passes
the job to a scheduler, which performs resource discovery using the grid information
system and then consults with domain control agents to determine the current state
and availability of resources.

The scheduler then computes a set of mappings and passes these mappings to a
deployment agent. The deployment agent negotiates with the domain control agents
for the resources indicated in the schedule, and obtains reservations for the resources.
These reservations are passed to the job control agent. At the proper time, the job
control agent works with a different deployment agent, and the deployment agent
coordinates with the appropriate domain control agents to start the tasks running. A
monitor tracks progress of the job, and may later decide to reschedule if performance
is lower than expected.

This is but one way in which these components might coordinate. Some systems
will omit certain functionality (e.g. the job control agent), while others will combine
multiple roles in a single agent. For example, a single process might naturally
perform the roles of job control agent and monitor.

24 R. Buyya, S. Chapin, and D. DiNucci

4. Abstract Owner (AO) Model

Where is the grid, and who owns it? These puzzles are not unique to the grid. When
one makes a long distance phone call, who "owns" the resource being used? Who
owns the generators that create the electricity to run an appliance? Who owns the
Internet? Users of these resources don’t care, and don’t want to care. What they do
want is the ability to make an agreement with some entity regarding the conditions
under which the resources can be used, the mechanisms for using the resources, the
cost of the resources, and the means of payment. The entity with which the user deals
(the phone company, power company, or ISP) is almost certainly not the owner of the
resources, but the user can think of them that way abstractly. They are actually
brokers, who may in turn deal with the owners, or perhaps with more brokers. At each
stage, the broker is an abstraction for all of the owners and so it is with the grid.

The grid user wants an abstraction of an entity that "owns" the grid, and to make an
arrangement with that "owner" regarding the use of their resources, possibly involving
a trade of something of value for the usage (which could be nothing more tangible
than goodwill or the future use of their own resources). It is proposed here that each
grid resource, ranging in complexity from individual processors and instruments to
the grid itself, be represented by one or more “abstract owners” (abbreviated as AOs)
that are strongly related to schedulers. For complex resources, an AO will certainly
be a broker for the actual owners or other brokers, though the resource user doesn't
need to be aware of this. (A resource user will hereafter be assumed to be a program,
and referred to as a client. Human clients are assumed to use automated agents to
represent him/her in negotiations with an AO.) The arrangement between the client
and an AO for acquiring and using the resource can be made through a pre-existing
contract (e.g. flat rate or sliding scale depending on time until resource available) or
based on a dialogue between client and AO regarding the price and availability of the
resource.

The remainder of this AO proposal describes what an AO looks like (externally
and internally), what a resource looks like, how a client negotiates with an AO to
acquire a resource, how a client interacts with a resource, and how AOs can be
assembled into other constructs which may more closely resemble traditional
schedulers. This work is still in the high-level design stages, in hopes that it will draw
out refinements, corrections, and extensions that might help it to become viable.

General Structure of AO

At its most abstract, an AO outwardly resembles a fast-food restaurant (see Figure
3a). To acquire access to a resource from an AO that “owns” it, the prospective client
(which may be another AO) negotiates with that AO through its Order Window.
These negotiations may include asking how soon the resource may become available,
how much it might cost, etc. If the prospective client is not happy with the results of
the negotiations, it may just terminate negotiations, or might actually place an order.
After being ordered, the resources are delivered from the AO to the client through the

Architectural Models for Resource Management in the Grid 25

Pickup Window. The precise protocol to be used for acquiring the resources is
flexible and may also be negotiated at order time--e.g. the client may be expected to
pick up the resource at a given time, or the AO may alert the client (via an interrupt or
signal) when the resource is ready. Even if an order is placed (but the resource has not
yet been delivered), the client may cancel the order through the order window.

Figure 3: Abstract Owner Model for Grid Resource Management Architecture.

Little more is said here about the actual form of these “windows” except that they
need to be accessible remotely, and must support a standard procedure-like interface
in which values are passed to and returned from the window. Since interaction with an
AO is likely to be rather infrequent and requires a relatively small amount of
information flow, maximum efficiency is not necessarily required: CORBA or any
number of other remote procedure invocation techniques can be used.

For the purposes of this discussion, a resource is roughly defined as any
combination of hardware and software that helps the client to solve a problem, and a
task is that part of a problem that is specified by the client after the resource has been
delivered ("picked up") from the AO. Note that, unlike some other definitions of
"task", these tasks may be very simple (e.g. a data set to be analyzed or a message to
be sent), more general (e.g. a process to be executed), or very complex (e.g. a
complete multi-process program and/or set of programs or processes to be executed in
some order). While AOs do not specifically deal with entities called "jobs",
techniques for applying the AO approach to traditional job scheduling will be
addressed in the last subsection.

Resources can (and will) be regarded as objects, in the sense that they have an
identity, a set of methods for initiating and controlling tasks, and attributes that serve
to customize the resource. In general, the desired attributes will be determined during
negotiation through the Order Window, when the client requests the resource, and
will only be queried (not altered) after the resource is delivered. The methods may
take many different forms, depending upon circumstances such as the type of

26 R. Buyya, S. Chapin, and D. DiNucci

resource, availability of hardware protections, and whether the method is to be
invoked locally or remotely. For example, access to a local memory resource may
have virtually no method protocol interfering with standard memory access
operations, while initiating a process on a distant processor may require more
substantial method invocation protocol. A resource is relinquished by invoking its
"relinquish" method (or by timing out).

The external structure of an AO was formulated to allow any level of nesting.
Internally, an AO will differ in structure depending on whether it is a broker or an
owner (or a combination). A pure owner of a single physical resource might be very
simple (see Figure 3b), where the "manager" includes the intelligence required to
negotiate, keep the schedule, and deliver the resource. For a higher-level broker, it
might be more complex (see Figure 3c). Here, AO1, AO2, and AO3 represent other
Abstract Owners, each with an Order Window used by the Sales Representative, and a
Pickup Window used by the Delivery representative. Though these subordinate AOs
are shown within a single parent AO, there is no reason that this relation must be
hierarchical; a single AO may provide resources to a number of different parent AOs,
which may assemble these into more complex resources in different ways or for
different clients sets or may support different protocols or strategies or policies.

Grid Resources

Three primary classes are proposed here to represent resources: Instruments,
Channels, and Complexes. An Instrument is a resource which logically exists at some
location for some specific period of time, and which creates, consumes, or transforms
data or information. The term "location" may be as specific or general as the situation
merits. A Channel is a resource that exists to facilitate the explicit transfer of data or
information between two or more instruments, either at different locations, or in the
same location at different times (acting as sort of a temporary file in that case), or
instruments which share space-time coordinates but have different protection
domains. A Channel connects to an Instrument through a Port (on the instrument). A
Complex is nothing more than a collection of (connected) Channel and Instrument
resources.

Some important sub-classes of the Instrument class are the Compute instrument,
the Archival instrument, and the Personal instrument. The Compute instrument
corresponds to a processor or set of processors along with associated memory, temp
files, software, etc. Archival Instruments (of which a permanent file is one sub-class)
correspond to persistent storage of information. Personal instruments are those that
are assumed to interface directly to a human being, ranging from a simple terminal to
a more complex CAVE or speech recognition/synthesis device, and its specification
may include the identity of the person involved. Of course, the Instrument class is
also meant to accommodate other machines and instruments such as telescopes,
electron microscopes, automatic milling machines, or any other sink or source for grid
data.

As stated, an instrument exists in a location, and its methods may need to be called
either locally (from the instrument itself) or remotely. For example, if a (reference to

Architectural Models for Resource Management in the Grid 27

a) Compute instrument is acquired from an AO, the potentially distant process may
want to invoke a "load_software" method to initiate a program on the resource. This
new program may then want to invoke methods to access the temporary files or ports
associated with the resource. Since the latter accesses will be local and must be
efficient, it is desirable to provide separate method invocation protocols for remote
and local method invocation. Moreover, remote method invocations (RMIs) may
themselves require the use of intermediate communication resources between the
client and the resource, perhaps with associated quality of service (QoS) constraints.

To facilitate remote method invocations, any port(s) of an instrument can be
specially designated as an RMI port. Such ports will have the appropriate RMI
protocol handlers assigned to them. This designation is an attribute of the port--i.e.,
specified at resource negotiation time, through the "order window", just as
authorization and notification style are. Methods can be invoked through such a port
either by connecting a channel to the port and issuing the RMI request through the
channel or in a connectionless mode by specifying the object and port. The former
approach is best when issuing repeated RMI calls or when QoS is desired for RMI
calls, the latter is best for one-time-only calls such as initializing an instrument which
has just been acquired from an AO.

Negotiating with an AO

When negotiating through the order window, the client first effectively creates a
"sample" resource object of the appropriate structure and assigns each attribute either
(1) a constant value, (2) a "don’t care" value, or (3) a variable name (which will
actually take the form of, and be interpreted as, an index into a variable value table).
If the same variable name is used in multiple places, it has the effect of constraining
those attributes to have the same value. An example of this is to use a single variable
to specify the "beginning time" attribute on several Instrument objects to cause them
to be co-scheduled. Another is to specify variables for Instruments’ object IDs, then to
use those same variables when specifying the endpoints of the channels between
them. The client may also specify simple constraints on the variables in a separate
constraint list.

Usually, the values in the variable value table are filled and returned by the AO
when the resource is acquired, but the client can designate some subset of those
variables as negotiating variables. For these, the AO will propose values during
negotiation, which the client can then examine to decide whether or not to accept the
resource. (If accepted, these values essentially become constants.) In general, it is
quicker for the client to specify additional constraints instead of using negotiation
variables, allowing the decision on suitability to be made wholly within the AO, but
negotiating variables can help when more complex constraints are required or when a
client must decide between similar resources offered by different AOs.

In all, submissions to the Order Window from the client include the sample object
attributes, the variable constraint list, a Negotiation Style, a Pickup Approach, an
Authorization, a Bid, and a Negotiation ID. The Negotiation Style specifies whether
the AO is to schedule the resource immediately (known as “Immediate”), or is to

28 R. Buyya, S. Chapin, and D. DiNucci

return a specified number of sets of proposed values for the negotiation variables
(known as “Pending”), or is to finish scheduling based on an earlier-returned set of
negotiation variable values (known as “Confirmation”), or is to cancel an earlier
Pending negotiation (known as “Cancel”). The Pickup Approach specifies the
protocol to be used between the AO and client at the Pickup Window—i.e. whether
the AO will alert the client with a signal, interrupt, or message when the resource
becomes available, or the client will poll the Pickup Window for the resource, or the
client can expect to find the resource ready at the window at a specified time. The
Authorization is a capability or key which allows the AO to determine the authority of
the client to access resources (and to bill the client accordingly when the resources are
delivered). The Bid is a maximum price that the client is willing to pay for the
resource, and may denote a pre-understood algorithm (or “contract”) specifying how
much the resource will cost under certain conditions. The Negotiation ID serves as a
“cookie”, and is passed back and forth between the client and AO to provide an
identity and continuity for a multi-interaction negotiation, and continuity between the
negotiation of a resource and the ultimate delivery of the resource through the Pickup
Window. (A zero Negotiation ID designates the beginning of a new negotiation.)

If a Pending negotiation style is specified, the AO returns a value table containing
sets of proposed values for the negotation variables, and an “Ask” price for each set.
The intent of the Ask price is to inform the client of a sufficient Bid price to be used
when requesting the resource, but the AO may conceivably accept even lower Bid
prices depending upon the specific situation. For all negotiations, the AO returns a
return code informing the client of the success of the operation, a Negotiation ID,
(equal to that submitted, if it was nonzero), and an expiration date for the Negotiation
ID. A single negotiation can continue until the Negotiation ID expires or a
Negotiation Style other than “pending” is specified.

On a successful Immediate or Confirm request, the client can then submit the
Negotiation ID to the Pickup Window, (at a time consistent with the Negotiation
Style), to retrieve the resource. The Pickup Window returns the resource object, the
variable value table, and a return code. Although the returned resource is logically an
object, it is assumed that any attribute values that the client is concerned with are
being returned in the Variable Value table, so the resource object just takes the form
of a handle to access the resource object's methods.

Job Shops

AOs apparently perform only part of the standard job scheduling process—i.e.
acquiring a resource—leaving the remainder to the client—i.e. assigning tasks to the
resources and monitoring their completion and/or cleanup, often in sequential and
dependent steps. But this is only partially true. Recall that a Compute Instrument,
exclusive of the task that is eventually assigned to it by the client, may consist of both
hardware and software components. While the software components often serve to
create an environment in which the eventual task will execute (such as libraries or
interpreters), they may also be compilers and/or complete user programs. That is, the
Compute Instrument itself can be defined as a processor executing a specific program.

Architectural Models for Resource Management in the Grid 29

The task assigned to such an instrument may be a data-set or source code to be read
by that program (or compiler), or even nothing at all if the resource is completely self-
contained. Since the AO is responsible for preparing the instrument for delivery
through the Pickup Window and recovering it after it has been relinquished, it is
indeed responsible for initiating this software and cleaning up after it.

The traditional sequential nature of job steps has resulted from the prevalence of
uniprocessors and traditional sequential thinking, but it is already common for parallel
“make” utilities, for example, to exploit potential parallelism in job-like scripts.
Similarly, in an AO resource, compute instruments running the individual “job steps”
can be connected to communicate through channels, allowing them to be scheduled
locally or in a distributed fashion, and scheduled sequentially or in parallel by the AO,
subject to the dependences dictated by the channels and the QoS constraints assigned
to those channels by the client. In this way, a job can be represented as a Complex
Instrument in the AO infrastructure, where it will be scheduled.

Even with these capabilities, there is always the possibility that a more traditional
job scheduler is required. In such a case, consider a new construct called a job shop,
which uses AOs only to acquire resources, as shown in Figure 3d. See Figure 3e for
an example of the internals of a standard job shop. The job shop primarily comprises
“estimator” and “executor”, much like an auto repair shop. The estimator deals with
the customer to help determine how soon the job might be done and how much it
might cost, requests the resources needed from the grid AO (through its order
window), and records what needs to be done (in a job queue) when the resources are
ready. The executor takes ready resources from the AO delivery window, dequeues
the associated work from the job queue, builds any necessary environment for those
tasks (e.g. telling message passing routines which channels to use), initiates tasks,
collects answers, and notifies and returns the answer to the client.

Nesting job shops (or traditional job schedulers in general) is not as natural as
nesting AOs, primarily because a job shop provides little feedback to the client until it
has acquired resources and assigned tasks to them. This means that tasks are often
assigned to some resources even before others have been allocated, and may be
shipped around to where the resources are, long before they are needed there.

AO Summary

There are many remaining gaps in the above description, both in detail and in
functionality. For example, little has been said about how any client, whether an end-
user or another AO, will find AOs that own the desired kind of resources. Certainly,
one approach is to imagine a tree of AOs (as in Figure 3c), with the client always
interacting with the root AO, but it is unrealistic to consider this tree as being
hardwired when residing in an environment as dynamic as a computational grid.
More likely, existing Internet protocols can be adapted for this purpose, and an AO
might have a third “business dealings” window to facilitate them. Before an approach
like AO has any likelihood of acceptance in a large community, it must address many
such challenges. Even a potentially useful and well-defined (successfully prototyped)
AO protocol will not be viable unless it can coexist with other contemporary
approaches. It is therefore important to understand how AOs and constructs in these
other systems can build upon one another and mimic one another.

30 R. Buyya, S. Chapin, and D. DiNucci

5. Market Model

The resources in the grid environment are geographically distributed and each of them
is owned by a different organisation. Each of them has its own resource management
mechanisms and policies and may charge different prices for different users
necessitating the need for the support of computational economy in resource
management. In [34], we have presented a number of arguments for the need of an
economy (market) driven resource management system for the grid. It offers resource
owners better “incentive” for contributing their resources and help recover cost they
incur while serving grid users or finance services that they offer to users and also
make some profit. This return-on-investment mechanism also helps in
enhancing/expanding computational services and upgrading resources. It is important
to note that an economy1 is one of the best institutions for regulating demand and
supply. Naturally, in a computational market environment, resource users want to
minimise their expenses (the price they pay) and owners want to maximise their
return-on-investment. This necessitates a grid resource management system that
provides appropriate tools and services to allow both resource users and owners to
express their requirements. For instance, users should be allowed to specify their
“QoS requirements” such as minimise the computational cost (amount) that they are
willing to pay and yet meet the deadline by which they need results. Resource owners
should be allowed to specify their charges—that can vary from time to time and users
to users—and terms of use. Systems such as Mariposa [17], Nimrod/G [3], and JaWS
[16], architect their user service model based on the economy of computations and it
is likely that more and more systems are going to emerge based on this concept.

Figure 4: Market Model for Grid Resource Management Architecture.

1 We use terms “economy” and “market” interchangeably.

Architectural Models for Resource Management in the Grid 31

The market model for grid resource management captures the essentials of both
hierarchical and AO model presented above. Many of the contemporary grid systems
fit to the hierarchical model and AO appears to be futuristic, but points out the need
for economy in computation implicitly. The issues discussed in the hierarchical model
apply to the market model, but it emphasizes the use of economic based resource
management and scheduling. One of the possible architectures for grid resource
management based on computational market model is shown in Figure 4. Resource
trading model can vary depending on the method/protocol used (by trade manager) in
determining the resource access cost.

The following are the key components of economy-driven resource management
system:

• User Applications (sequential, parametric, parallel, or collaborative
applications)

• Grid Resource Broker (a.k.a., Super/Global/Meta Scheduler)
• Grid Middleware
• Domain Resource Manager (Local Scheduler or Queuing system)

Grid Resource Broker (GRB)

The resource broker acts as a mediator between the user and grid resources using
middleware services. It is responsible for resource discovery, resource selection,
binding of software (application), data, and hardware resources, initiating
computations, adapting to the changes in grid resources and presenting the grid to the
user as a single, unified resource. The components of resource broker are the
following:

• Job Control Agent (JCA): This component is a persistent central
component responsible for shepherding a job through the system. It takes
care of schedule generation, the actual creation of jobs, maintenance of job
status, interacting with clients/users, schedule advisor, and dispatcher.

• Schedule Advisor (Scheduler): This component is responsible for resource
discovery (using grid explorer), resource selection, and job assignment
(schedule generation). Its key function is to select those resources that meet
user requirements such as meet the deadline and minimize the cost of
computation while assigning jobs to resources.

• Grid Explorer: This is responsible for resource discovery by interacting
with grid-information server and identifying the list of authorized machines,
and keeping track of resource status information.

• Trade Manager (TM): This works under the direction of resource selection
algorithm (schedule advisor) to identify resource access costs. It interacts
with trade servers (using middleware services/protocols such as those
presented in [4]) and negotiates for access to resources at low cost. It can
find out access cost through grid information server if owners post it.

• Deployment Agent: It is responsible for activating task execution on the
selected resource as per the scheduler’s instruction. It periodically updates
the status of task execution to JCA.

32 R. Buyya, S. Chapin, and D. DiNucci

Grid Middleware

The grid middleware offers services that help in coupling a grid user and (remote)
resources through a resource broker or grid enabled application. It offers core services
[12] such as remote process management, co-allocation of resources, storage access,
information (directory), security, authentication, and Quality of Service (QoS) such as
resource reservation for guaranteed availability and trading for minimising
computational cost. Some of these services have already been discussed in the
hierarchical model, here we point out components that are specifically responsible for
helping out in offering computational economy services:

• Trade Server (TS): It is a resource owner agent that negotiates with
resource users and sells access to resources. It aims to maximize the resource
utility and profit for its owner (earn as much money as possible). It consults
pricing algorithms/models defined by the users during negotiation and
directs the accounting system to record resource usage.

• Pricing Algorithms/Methods: These define the prices that resource owners
would like to charge users. The resource owners may follow various policies
to maximise profit and resource utilisation and the price they charge may
vary from time to time and one user to another user and may also be driven
by demand and supply like in the real market environment.

• Accounting System: It is responsible for recording resource usage and bills
the user as per the usage agreement between resource broker (TM, user
agent) and trade server (resource owner agent) [19].

Domain Resource Manager

Local resource managers are responsible for managing and scheduling computations
across local resources such as workstations and clusters. They are even responsible
for offering access to storage devices, databases, and special scientific instruments
such as a radio telescope. Example local resource managers include, cluster operating
systems such as MOSIX [18] and queuing systems such as Condor [12].

Comments

The services offered by trade server could also be accessed from or offered by grid
information servers (like yellow pages/advertised services or posted prices). In this
case a trade manager or broker can directly access information services to identify
resource access cost and then contact resource agents for confirmation of access. The
trade manager can use these advertised/posted prices (through information server) or
ask/invite for competitive quotes (tenders) or bids (from trade server/resource owner
agents) and choose resources that meet user requirements.

From the above discussion it is clear that there exist numerous methods for
determining/knowing access cost. Therefore resource trading shown in Figure 4 is one

Architectural Models for Resource Management in the Grid 33

of the possible alternatives for computational market model and it can vary depending
on, particularly, trading protocols like in real world economy. Some of the real-world
trading methods that can also be applied for computational economies include:

• Advertised/posted prices (classified advertisements) through information server
• Commodity exchanges
• Negotiated prices
• Call for (closed) tenders
• Call for (open) bids

Each of these methods can be applied in different situations for computational
economies and they create a competitive computational market depending on the
demand and supply and the quality of service. The mechanism for informing resource
owners about the availability of service opportunities can vary depending on its
implementation. One of the simplest mechanisms is users (buyers) or/and resource
owners (sellers or their agents renting/leasing computational services) make available
or post/publicise their requirements in a known location (for instance, “exchange
centre, share market, or grid information service directory”). Any one or all can
initiate computational service trading. Through these mechanisms one can perform
the following types of actions like in real world market economies:

• Users can post their intentions/offers to buy access to resources/services
(e.g., “20 cluster nodes for 2 hours for $50);

• Resource owners/grid nodes/providers/agents can post offers to sell (e.g.,
systems like NetSolve can announce “we solve 1000 simultaneous linear
equations for $5”);

• Users/resource owners can query about current opportunities including
prices/bids and historical information.

The different grid systems may follow different approaches in making this happen
and it will be beneficial if they are all interoperable. The interoperability standards
can be evolved through grid user/developer community forums or standardization
organisations such as GF [20] and eGRID [22].

6. Discussion and Conclusions

In this paper we have discussed three different models for grid resource management
architecture inspired by three different philosophies. The hierarchical model captures
the approach followed in many contemporary grid systems. The abstract owner shows
the potential of an order and delivery approach in job submission and result gathering.
The (computational) market model captures the essentials of both hierarchical and
abstract owner models and uses the concept of computational economy. We have
attempted to present these models in abstract high-level form as much as possible and
have skipped low-level details for developers to decide (as they mostly change from
one system to another). Many of the existing, upcoming and future grid systems can
easily be mapped to one or more of the models discussed here (see Table 1). It is also
obvious that real grid systems (as they evolve) are most likely to combine many of
these ideas into a hybridized model (that captures essentials of all models) in their

34 R. Buyya, S. Chapin, and D. DiNucci

architecture. For instance, our Grid Economy [4] is developed as a combination of
Globus and GRACE services based on a (hybridized) market model.

The importance of market models for grid computing is also reported in the journal
of Scientific American [23]: “So far not even the most ambitious metacomputing
prototypes have tackled accounting: determining a fair price for idle processor cycles.
It all depends on the risk, on the speed of the machine, on the cost of communication,
on the importance of the problem--on a million variables, none of them well
understood. If only for that reason, metacomputing will probably arrive with a
whimper, not a bang”. We hope that (our proposed) computational market model for
grid systems architecture along with others will help the arrival of computational
grids with a big bang (not a whimper)!

References

1. Ian Foster and Carl Kesselman (editors), The Grid: Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

2. Mark Baker, Rajkumar Buyya, Domenico Laforenza, The Grid: International Efforts in
Global Computing, Intl. Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet, Italy, 2000.

3. Rajkumar Buyya, David Abramson and Jon Giddy, Nimrod/G: An Architecture for a
Resource Management and Scheduling System in a Global Computational Grid, 4th Intl.
Conf. on High Performance Computing in Asia-Pacific Region (HPC Asia 2000), China.

4. Rajkumar Buyya, David Abramson and Jon Giddy, Economy Driven Resource
Management Architecture for Computational Power Grids, Intl. Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2000), USA.

5. Rajkumar Buyya, Grid Computing Info Centre: http://www.gridcomputing.com
6. Globus Testbeds - http://www.globus.org/testbeds/
7. Ian Foster and Carl Kesselman, Globus: A Metacomputing Infrastructure Toolkit,

International Journal of Supercomputer Applications, 11(2): 115-128, 1997.
8. Jack Dongarra, An Overview of Computational Grids and Survey of a Few Research

Projects, Symposium on Global Information Processing Technology, Japan, 1999.
9. Steve Chapin, John Karpovich, Andrew Grimshaw, The Legion Resource Management

System, 5th Workshop on Job Scheduling Strategies for Parallel Processing, April 1999.
10. Henri Casanova and Jack Dongarra, NetSolve: A Network Server for Solving

Computational Science Problems, Intl. Journal of Supercomputing Applications and
High Performance Computing, Vol. 11, No. 3, 1997.

11. Fran Berman and Rich Wolski, The AppLeS Project: A Status Report, 8th NEC Research
Symposium, Berlin, Germany, May 1997. http://apples.ucsd.edu

12. Jim Basney and Miron Livny, Deploying a High Throughput Computing Cluster, High
Performance Cluster Computing, Prentice Hall, 1999. http://www.cs.wisc.edu/condor/

13. SETI@Home – http://setiathome.ssl.berkeley.edu/
14. Distributed.Net – http://www.distributed.net/
15. Hidemoto Nakada, Mitsuhisa Sato, Satoshi Sekiguchi, Design and Implementations of

Ninf: towards a Global Computing Infrastructure, FGCS Journal, October 1999.
16. Spyros Lalis and Alexandros Karipidis, JaWS: An Open Market-Based Framework for

Distributed Computing over the Internet, IEEE/ACM International Workshop on Grid
Computing (GRID 2000), Dec. 2000. http://roadrunner.ics.forth.gr:8080/

Architectural Models for Resource Management in the Grid 35

17. Michael Stonebraker, Robert Devine, Marcel Kornacker, Witold Litwin, Avi Pfeffer,
Adam Sah, Carl Staelin, An Economic Paradigm for Query Processing and Data Migration
in Mariposa, 3rd International Conference on Parallel and Distributed Information
Systems, Sept. 1994. http://mariposa.cs.berkeley.edu:8000/mariposa/

18. Amnon Barak and Oren Laadan, The MOSIX Multicomputer Operating System for High
Performance Cluster Computing, FGCS Journal, March 1998. www.mosix.cs.huji.ac.il

19. Bill Thigpen and Tom Hacker, Distributed Accounting on the Grid, The Grid Forum
Working Drafts, 2000.

20. Grid Forum – http://www.gridforum.org
21. Steve Chapin, Mark Clement, and Quinn Snell, A Grid Resource Management

Architecture, Strawman 1, Grid Forum Scheduling Working Group, November 1999.
22. European Grid Forum (eGRID) – http://www.egrid.org
23. W. Wayt Gibbs, Cyber View—World Wide Widgets, Scientific American, San Francisco,

USA - http://www.sciam.com/0597issue/0597cyber.html

JaWS: An Open Market-Based Framework
for Distributed Computing over the Internet

Spyros Lalis and Alexandros Karipidis

Computer Science Dept.,
University of Crete, Hellas
{lalis,karipid}@csd.uoc.gr
Institute of Computer Science,

Foundation for Research and Technology, Hellas
{lalis,karipid}@ics.forth.gr

Abstract. Harnessing the power of idle personal workstations remains a
challenge for large scale distributed computing. In this paper, we present
the Java Web-computing System (JaWS), which simplifies the connec-
tion of heterogeneous machines in a global computing grid as well as the
development of applications that exploit this computing capacity. Machi-
nes are assigned to applications via a dynamic market-based mechanism
that allows machine owners and clients to change their requirements
even in the midst of a computation. The system takes care of the main
communication issues offering basic programming primitives that can be
extended to develop class hierarchies which in turn support distributed
computing paradigms. Due to the object-oriented structuring of code,
development becomes as simple as implementing a few methods.

1 Introduction

The large growth of the Internet, both in the number of connected devices as well
as in bandwidth, constitutes the distribution of applications over the Internet
appealing. However, in order to exploit the thousands of processors that may be
available at a given point in time, several issues must be addressed.

First of all, there exists the problem of machine heterogeneity, both in terms
of hardware and operating system. Secondly, security considerations arise from
the execution of code from untrusted parties. Programming support must also be
offered through platforms that make development of distributed computations
simple enough to be attractive even for inexperienced programmers. And then of
course, these platforms need to be installed and maintained, a task that if proven
awkward or time consuming may limit their wide deployment in practice.

Large scale distribution of computations over the Internet goes beyond dedi-
cated server machines that are specifically set up for this purpose. It also means
involving powerful yet often under-exploited machines, notably PCs, which may
switch from being available to unavailable anytime. This requires a way of dyna-
mically allocating machines to applications even in the midst of their execution.
In turn, applications must be able to deal with this dynamic environment via

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 36–46, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

JaWS: An Open Market-Based Framework 37

appropriate resource allocation strategies, which may depend not only on the
form of the computation to be performed but also on various parameters that
are supplied by the user interactively at runtime.

In this paper we present the Java Web-computing System (JaWS), which
enables users to effortlessly and safely export their machines in a global market
of processing capacity. Allocation of host machines to applications is dynamic
and tasks can even migrate among hosts without disrupting the ongoing com-
putation. A framework that promotes code reuse and incremental development
through object-oriented extensions is offered to the programmer. Writing com-
putations for the system can be as trivial as implementing a few routines. We
feel that the ease of deploying the system and developing applications is of im-
portance to the scientific community as most of the programming is done by
scientists themselves with little support from computer experts.

The rest of the paper is organized as follows. Section 2 gives an overview
of the system architecture. Details about the resource allocation mechanism are
given in Sect. 3. In Sect. 4 we show how our system can be used to develop
distributed computations in a straightforward way. A comparison with related
work is given in Sect. 5. Section 6 discusses the advantages of our approach.
Finally, future directions of this work are mentioned in the last section.

2 System Architecture

In order to guarantee maximal cross-platform operability the system is imple-
mented in Java. Due to Java’s large scale deployment, the system can span
across many architectures and operating systems. Low administrative cost and
an acceptable degree of security for the providers of host machines is achieved
by having the host runtime system implemented as an applet that is downloaded
over the Internet via a Java enabled web browser.

On the programmer’s side we provide an open, extensible architecture for
developing distributed computations. Basic primitives are provided which can be
used to implement diverse, specialized processing models. Through such models
it is possible to hide the internals of the system and/or offer advanced support
in order to simplify application development.

2.1 Overview of System Components

An overview of the system’s architecture is depicted in Fig. 1. The basic com-
ponents of our system are the market server, hosts, the host agent, schedulers,
tasks and client applications.

The Market Server is the meeting place for trading processing power. Based
on the orders issued by hosts (sellers) and distributed computations (buyers),
the market server produces matches and thus allocates resources.

A Host is a machine made available to be used by clients. A host participates
in the market through the Host Agent, a Java applet that takes care of the
communication with the rest of system in a transparent way. To install the host

38 S. Lalis and A. Karipidis

application
Client

ControlProtocolScheduler

MarketSchedulerProtocol

Market Server UploadProtocol

Host AgentHost Agent
HostAgentTaskProtocol

Task Task

HostAgentTaskProtocol

ComputationProtocol

ComputationProtocol
MarketHostAgentProtocol

Fig. 1. Overview of architecture

agent, the owner of a host machine simply visits a URL with a Java enabled
web browser. From that point onwards, the host agent computes the benchmark
scores needed for the host’s profile and takes care of placing orders in the market
server on behalf of the user. The host agent also downloads, initializes and runs
tasks assigned to the machine, thus acting as a runtime kernel for task execution.

The Client Application is an application which needs to perform computati-
ons that require considerable processing power. Through the system, a computa-
tion may either be distributed as a set of mobile tasks across many machines or
come as a single task to be scheduled on fast machines speeding up its execution.

A computation consists of a Scheduler and one or more Tasks. The scheduler
essentially implements the resource allocation strategy for a given application
by placing respective orders in the market for acquiring machines to complete
the computation. New orders can be issued at any time in order to adapt to
fluid market conditions. When a host is allocated to the application scheduler,
a task is launched in that machine to assist in completing the computation.
Notably, the number of tasks to be created need not be specified a priori; it
can be determined at runtime, as a function of available machines in the system
and/or parameters supplied to the scheduler. Tasks can move between different
machines (host agents) while preserving their state.

2.2 Basic System Protocols

There are six protocols used for communication by the system. The UploadPro-
tocol is a fixed, published Remote Method Invocation (RMI) interface used by
the client application to upload a computation to the market server and to in-
stantiate it’s scheduler. A client application may instantiate multiple schedulers
to simultaneously launch the same code with multiple data.

The ControlProtocol is a published RMI interface for the client application
to control a scheduler. Through this interface it is possible to start a computa-

JaWS: An Open Market-Based Framework 39

tion with new parameters, alter the computation’s budget for acquiring hosts,
instruct the scheduler to kill all tasks and exit, etc. The basic functions are im-
plemented in the system classes. The programmer can introduce computation
specific control functions by extending this interface.

The ComputationProtocol is used within the bounds of a single computation
for communication among tasks and the scheduler. It is application dependent
and thus unknown to the system. We do, however, provide message passing
support, which is not further discussed in this paper.

The MarketSchedulerProtocol is used for local communication between the
market server and schedulers. The market server implements a standard publis-
hed interface for servicing requests from schedulers such as placing orders and
retrieving host and market status information. Respectively, schedulers provide
methods for being notified by the market of events such as the opportunity to
acquire a new lease, a change in the client’s account balance, the completion of
a task’s work and the failure of a host that was leased to them. Similarly, the
HostAgentTaskProtocol provides local communication among a host agent and
the task it is hosting. The agent implements a published interface for servicing
requests from tasks, such as retrieving information about a host’s performance.

The MarketHostAgentProtocol is a proprietary protocol used by the market
server and the host agent. It allows orders to be placed in the market by the
host. It is also used to retrieve tasks from the market, ask for “payment” when
tasks complete and to post benchmarking data to the market server.

3 Resource Allocation

Host allocation is based on machine profiles. Both hosts (sellers) and clients
(buyers) submit orders to the market server, specifying their actual and desired
machine profile respectively. The parameters of an order are listed in table 1.
The performance vectors include the host’s mean score and variance for a set
of benchmarks over key performance characteristics such as integer and floating
point arithmetic, network connection speed to the market server etc. The host
abort ratio is the ratio of computations killed by the host versus computations
initiated on that host (a “kill” happens when a host abruptly leaves the market).
The host performance vectors and abort ratio are automatically produced by the
system. Host profiles can easily be extended to include additional information
that could be of importance for host selection.

A credit based [1] mechanism is used for charging. Credit can be translated
into anything that makes sense in the context where the system is deployed.
Within a non-profit institution, it may represent time units to facilitate quotas.
Service-oriented organizations could charge clients for using hosts by converting
credit to actual currency.

An economy-based mechanism is employed to match the orders that are put
in the market. For each match, the market produces a lease, which is a contract
between a host and a client containing their respective orders and the price of use
agreed upon. Leases are produced periodically using continuous double auction

40 S. Lalis and A. Karipidis

Table 1. Parameters specified in orders

Description
Parameter Sell Orders Buy Orders
price/sec The minimum amount of cre-

dit required per second of use
of the host.

The maximum amount of credit
offered per second of use of the
host.

lease duration The maximum amount of usage
time without renegotiation.

The minimum amount of usage
time without renegotiation.

granted/demanded
compensation

Credit granted/demanded for not honoring the lease duration.

performance
statistics
vectors

The host’s average score and
variance for each of the bench-
marks (measured).

The average performance score
and variance a buyer is willing
to accept.

abort ratio The host’s measured abort ra-
tio.

The abort ratio a buyer is wil-
ling to accept.

[8]. A lease entitles the client to utilize the host for a specific amount of time.
If the client’s task completes within the lease duration, then the buyer transfers
an amount of credit to the seller as a reward, calculated by multiplying actual
duration with the lease’s price per second. If the lease duration is not honored,
an amount of credit is transfered from the dishonoring party to the other.

4 Supporting Distributed Computing Paradigms

Through the set of protocols offered by the system, it is possible to develop a
wide range of applications. More importantly generic support can be provided for
entire classes of distributed computations. Applications can then be developed
by extending these classes to introduce specific functionality. Figure 2 shows
schematically how the various issues of distributed computing are dealt with, in
a layered fashion, in JaWS. Different implementations may exist for each layer,
depending on the desired functionality. Application programmers may either rely
on existing implementations or choose to develop their own solutions based on
more basic primitives. They can also make their implementations available to
others by registering the corresponding archives on the public JaWS web site.

One of our goals in creating the system was to provide APIs allowing for
quick development of classes of computations. As an example, in the following
we briefly indicate how support for embarrassingly parallel computations can
be implemented in JaWS. Other distributed computation paradigms, or even
different approaches to the same problem, can be supported in similar way.

4.1 The Generic Master – Slave Model

In the “Master - Slave”model work is distributed among many processors by
a distinguished processor referred to as the “master”. The other processors,

JaWS: An Open Market-Based Framework 41

Applications

Computing
Patterns

Communications
Mechanisms

Basic Mechanisms

Fractal Application

Master - Slave
Computations

Message-based
Communication

Core JAWS System

Fig. 2. Overview of architecture

referred to as “slaves”, complete the work assigned to them and return the
results to the master. In order to process its workload a slave does not need
to communicate with any other slave. This model is used in image processing,
genetics algorithms, brute force search and game tree evaluation. One possible
implementation of this model is sketched below. For brevity, only the methods
a programmer has to be aware of are shown.

public interface MSControl extends gr.jaws.SchedulerControl {
public void startComputation(Object partitionParams,
Object orderParams) throws java.rmi.RemoteException,
AlreadyStartedException, ExitingException;

public void stopComputation() throws java.rmi.RemoteException,
NotStartedException, AlreadyStoppingException;

public Object[] getResults() throws java.rmi.RemoteException;
public void stopScheduler() throws java.rmi.RemoteException;

}
public abstract class MSScheduler
extends gr.jaws.models.msg.MsgScheduler implements MSControl {

public abstract Object[]
createPartitions(Object partitionParams);

public abstract void placeOrder(Object orderParams);
}
public abstract class MSTask
extends gr.jaws.models.msg.MsgTask {

protected abstract Object processPartition(Object partition);
}

42 S. Lalis and A. Karipidis

A computation is initiated using the MS Control.startComputation method.
The scheduler can execute several computations during its lifetime. An ongoing
computation can be aborted at any time by calling MS Control.stopComputa-
tion. If there is no more need for the scheduler, i.e. the application does not need
to perform any other computations on JaWS, a call to MS Control.stopScheduler
will cause the scheduler to exit releasing all associated resources.

When a computation is started, MS Scheduler.createPartitions produces the
partitions of the computation. These are forwarded to MS Task instances, resi-
ding on hosts allocated to the computation. Once the data arrives an invocation
to MS Task.processPartition is triggered for processing the data. The results are
returned to the scheduler to be retrieved by MS Scheduler.getResults.

The resource allocation strategy employed in this case is simple. The schedu-
ler places a bid in the market using MS Scheduler.placeOrder, as long as there
are still partitions to be processed and all of the hosts allocated so far are busy.
Bid parameters are provided by the programmer to take into account application
specific allocation parameters and may also be supplied by the user at runtime.

It is important to notice that programmers need to implement just three
methods in order to complete a computation following this model. All other
implementation issues, including the resource allocation strategy of the schedu-
ler, remain hidden. The MS Control interface, which defines the primitives for
controlling and retrieving the results of the computation, is implemented by the
base MS Scheduler class and thus does not concern the programmer. This ma-
ster/slave model could be further extended to introduce additional functionality
such as check-pointing and restarting of tasks for fault tolerance. Programmers
would exploit this functionality without effort.

4.2 A Sample Client Application

On top of this framework, we have developed a fractal generator application,
which calculates the Mandelbrot, and Julia sets. It was adopted, within a few
days, from a fractal generation program created by Peter Walser [14].

The fractal generation application consists of two major parts: the application
interface and the computation. The computation is further constituted of two
modules, the scheduler and the task. A scheduler is instantiated for each fractal
requested and tasks are installed on hosts acquired, carrying out the actual work.

For each fractal a distinct control thread is launched in the client application
along with a new scheduler on the market server’s side. The control thread
instructs the scheduler to create the desired fractal and retrieves the results in
order to draw them on screen. Evidentely, several computations may be running
concurrently and competing with each other for resources.

When launching the application, the scheduler and task classes are uploaded
and registered to the JaWS server using the corresponding Upload protocol call
(a RMI invocation):

upIf = (gr.jaws.UploadInterface)
java.rmi.Naming.lookup("//host.domain.gr:1200/" +

JaWS: An Open Market-Based Framework 43

gr.jaws.UploadInterface.upIfName);
upIf.uploadCode(user, passwd, "fractalApp", "fractalApp.jar",
jarContents, "FractalScheduler", false);

After uploading the appropriate classes, it is possible to instantiate several
schedulers in a similar manner, again through the JaWS Upload protocol:

controlInterface = (FractalControl)
upIf.instantiateScheduler(user, passwd, "fractalApp");

Once a scheduler is instantiated and a handle to its remote interface is recei-
ved, computations can be started and controled as already described via calls to
methods startComputation, stopComputation, and getResults.

The process of implementing the scheduler was straightforward. Only two
methods were necessary: one for creating partitions and one for bidding in the
market. The number of partitions created, as well as the bid, are determined
by parameters passed to each method that stem from user input from the client
application. Analogously, the task implementation merely required the program-
ming of a single method. An implementation sketch is given below:

public class FractalScheduler
extends gr.jaws.models.ms.MSScheduler {
public Object[] createPartitions(Object pars) {
FractalPartitionsDef fp = (FractalPartitionsDef) pars;
Object[] partitions =
new FractalPartition[pars.totalPartitions];

for(int i=0; i<partitions.length; i++)
partitions[i] = /* Code for calculating partition i */

return partitions;
}
public void placeOrder(Object orderPars) {
FractalOrderParams p = (FractalOrderParams) orderPars;
placeBuyOrder(p.units, p.price, p.duration,
0,0, null,null, 0.0);

}
}
public class FractalTask extends gr.jaws.models.ms.MSTask {
public Object processPartition(Object partition) {
FractalPartition p = (FractalPartition) partition;
/* Code for calculating fractal partition p */
return myPart;

}
}

It is evident that the amount of work required for creating the computa-
tion was minimal. Using the ”Master - Slave” framework, one can develop any
computation that falls under this computation pattern by implementing just 3
methods and thus the goal of ease of programmability is therefore achieved.

44 S. Lalis and A. Karipidis

5 Related Work
Popular distributed programming environments such as PVM [9] and MPI [9]
lack advanced resource allocation support. PVM allows applications to be no-
tified when machines join/leave the system, but the programmer must provide
code that investigates hosts’ properties and decide on proper allocation. MPI,
using a static node setup, prohibits dynamic host allocation: such decisions are
taken a priori. Both systems require explicit installation of their runtime system
on hosts. A user must therefore have access to them, as she must be able to
login in order to spawn tasks. This is impractical and may result in only a few
hosts being utilized, even within a single organization. Finally, the choice of C
as the main programming language, compared to Java, is an advantage when
speed is concerned, but to be able to exploit different architectures, the user
must provide and compile code for each one of them, adding to the complexity
and increasing development time due to porting considerations. The maturation
of Java technology (“just in time” compilation, Java processors, etc.) could soon
bridge the performance gap with C. Notably, a Java PVM implementation is
underway [6], which will positively impact the portability of the PVM platform.

Condor is a system that has been around for several years. It provides a com-
parative “matchmaking” process for resource allocation through its “classified
advertisement” matchmaking framework [11]. A credit-based mechanism could
be implemented using this framework, but is currently unavailable. Condor too
requires extensive administration and lacks support for easy development.

Systems such as Legion [10] and Globus [7] address the issues of resource
allocation and security. They provide mechanisms for locating hosts and signing
code. However, both require administration such as compiling and installing
the system and thus require administrative access to the host computer. They
do not support the widely popular Windows platform (though Legion supports
NT) and do little to facilitate application development for non-experts. Globus
merely offers an MPI implementation whereas Legion provides the “Mentat”
language extensions. Legion’s solution is more complete but also complicated
for inexperienced programmers. It requires using a preprocessor, an “XDR” style
serialization process and introduces error-prone situations since virtual method
calls will not work as expected in all cases. Stateful and stateless objects are
also handled differently. Finally, adding hosts to a running computation is done
from the command line and additional hosts are assigned to the computation at
random – there is no matching of criteria.

Several other systems using Java as the “native” programming language have
been designed for supporting globally distributed computations, such as Char-
lotte [3], Javelin [4] and Challenger [5]. These systems automatically distribute
computations over machines. However, they do not employ market-based princi-
ples to allocate hosts and do not maintain information about hosts’ performance.

The market paradigm has received considerable attention in distributed sy-
stems aiming for flexible and efficient resource allocation. A system operating
on the same principles as ours is Popcorn [12]. Popcorn also uses auction me-
chanisms to allocate hosts to client computations and exploits Java applet tech-
nology to achieve portability, inter-operability and safety. However it does not
provide “host profiling”, nor promotes incremental development.

JaWS: An Open Market-Based Framework 45

6 Discussion

Besides the fact that the allocation strategies used in most systems don’t take
into account “behavioral patterns” of hosts, there is also virtually no support
for leasing. We argue that both are invaluable for efficient resource allocation in
open computational environments.

Providing information about the statistical behavior of participating hosts
can assist schedulers in task placement decisions, avoiding hosts that degrade
performance (and waste credit). For example, assume a scheduler has two tasks
to allocate. Blind allocation on two hosts is not a good idea; unless two machines
exhibit comparable performance, the faster machine will be wasted since the
computation will be delayed by the slower one. Similarly, using the abort ratio,
unstable hosts can be avoided when placing critical parts of a computation.
Those can be assigned to more “expensive” but stable hosts. Computations
implementing check-pointing and crash-recovery could utilize less credible hosts.

The lack of leasing is also a drawback in open environments: a client could
obtain many processors when there is no contention and continue to hold them
when demand rises. This is unacceptable in a real world scenario where cre-
dit reflects priorities or money. This would imply that prioritized or wealthy
computations can be blocked by “lesser” ones. To guarantee quality of service,
some form of leasing or preemption must be adopted. Leases are also practical
in non-competitive environments. The lease duration allows users to indicate the
time during which hosts are under-utilized. Based on this knowledge, tasks can
be placed on hosts that will be idle for enough time, and checkpoints can be
accurately scheduled, right before a host is about to become unavailable.

Finally, it is generally acknowledged that incremental development increases
productivity by separation of concerns and modular design. Distributed compu-
ting can benefit from such an approach. Modern object-oriented programming
environments are a step towards this direction, but significant programming ex-
perience and discipline are still required. We feel that with our system’s design,
it is possible even for inexperienced programmers to write computations rapidly.

7 Future Directions

New versions of the Java platform will offer more fine grained control in the
security system. Using the new mechanisms we expect to be able to provide
more efficient services, such as access to local storage for task checkpoints, in-
vocation of native calls to exploit local, tuned libraries such as [2] [13]. Logging
mechanisms along with the signing of classes, will further increase security.

We also wish to experiment with schedulers capable of recording the perfor-
mance of previous allocations. Accumulated information can perhaps be conver-
ted into “experience”, leading towards more efficient allocation strategies.

46 S. Lalis and A. Karipidis

Lastly the issue of scalability needs to be addressed. The current architecture
is limited by the market server. A single server could not handle the millions or
billions of hosts connecting to a truly world-wide version of this service. It would
also be impossible to have all schedulers running on the machine. We intend to
overcome this problem by introducing multiple market servers that will allow
traffic to be shared among several geographically distributed servers.

References

[1] Y. Amir, B. Awerbuch, and R. S. Borgstrom. A cost-benefit framework for online
management of a metacomputing system. In Proceedings of the First International
Conference on Information and Computation Economies, pages 140-147, October
1998.

[2] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim. mpiJava: An Object-
Oriented Java Interface to MPI. Presented at International Workshop on Java for
Parallel and Distributed Computing, IPPS/SPDP 1999, April 1999.

[3] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Metacomput-
ing on the web. In Ninth International Conference on Parallel and Distributed
Computing Systems, September 1996.

[4] P. Cappello, B. Christiansen, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D.
Wu. Javelin: Internet-based parallel computing using java. In Proceedings of the
ACM Workshop on Java for Science and Engineering Computation, June 1997.

[5] A. Chavez, A. Moukas, and P. Maes. Challenger: A multiagent system for dis-
tributed resource allocation. In Proceedings of the First International Conference
on Autonomous Agents ’97, 1997.

[6] A. Ferrari. JPVM – The Java Parallel Virtual Machine. Journal of Concurrency:
Practice and Experience, 10(11), November 1998.

[7] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl
J. Supercomputer Applications, 11(2), 1997.

[8] D. Friedman. The double auction market institution: A survey. In D. Friedman
and J. Rust, editors, Proceedings of the Workshop in Double Auction Markets,
Theories and Evidence, June 1991.

[9] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. PVM and MPI: a Comparison
of Features. Calculateurs Paralleles, 8(2):137-150, June 1996.

[10] A. S. Grimshaw and W. A. Wulf. The legion vision of a worldwide computer.
CACM, 40(1):39-45, 1997.

[11] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource man-
agement for high throughput computing. In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, July 1998.

[12] O. Regev and N. Nisan. The POPCORN Market – an Online Market for Com-
putational Resources. In Proceedings of the First International Conference on
Information and Computation Economies, pages 148-157, October 1998.

[13] The Java Grande Working Group. Recent Progress of the Java Grande Numerics
Working Group. http://math.nist.gov/javanumerics/ reports/jgfnwg-02.html.

[14] P. Walser. idx fract home page. http://www2.active.ch/ pro xima/java/-
idxfract/idxfract.htm.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 47-54, 2000.
© Springer-Verlag Berlin Heidelberg 2000

MeSch - An Approach to Resource Management in a
Distributed Environment

Gerd Quecke 1 and Wolfgang Ziegler 1

1 GMD - German National Research Center for Information Technology
SCAI - Institute for Scientific Computing and Algorithms

Sankt Augustin, Germany
{Gerd.Quecke, Wolfgang.Ziegler}@gmd.de

Abstract. Resource management in the typical Grid environment based on
multi-MPP systems or clusters today still is one of the challenging problems.
We will present MeSch, a solution for the problem of resource allocation and
job scheduling in a distributed heterogeneous environment. MeSch has been
implemented and tested successfully in the heterogeneous multi-MPP
environment of GMD’s Institute for Scientific Computing and Algorithms.
MeSch allows users to access simultaneously, through a single request,
heterogeneous resources distributed across the linked systems. This is possible
either through explicit demands for different resources or through implicit
scheduling of resources resulting from interpretation of requests. The
scheduling system is available for both batch and interactive usage of resources.
MeSch is implemented based on locally available scheduling facilities thus
respecting the different scheduling systems and policies of the computing
centers in the Grid.

1 Introduction

Resource management and job scheduling in the typical Grid environment based on
multi-MPP systems or clusters today still is one of the challenging problems.
Especially in a geographically distributed and heterogeneous environment it turns out,
that although scheduling tools and policies are available for each subsystem, there is a
lack of global resource management and thus, resource allocation is far away from
being performed automatically. On the contrary: a substantial amount of human
communication on all levels is necessary to partition the application, locate resources,
and observe the behavior of distributed modules.

We will present MeSch, a light-weight solution for the problem of resource
allocation and job scheduling in a distributed heterogeneous environment. The same
way, a Grid application uses the Grid resources as a metacomputing environment
allowing to make use of more than one MPP system or cluster, MeSch leads to the
idea of building a metascheduler, which takes the burden of resource allocation for a
metajob. The approach here is to build the metascheduler such, that it can use
schedulers of all subsystems involved for all co-ordination and resource allocation
tasks.

We will discuss the requirements, a local scheduler should have in order to be
suitable for global scheduling. In addition, we describe the basic algorithm of a

48 G. Quecke and W. Ziegler

prototype MeSch metascheduler which allows co-ordination of the whole scheduling
process during the application lifetime including resource allocation. The algorithm
was especially designed to allow simultaneous access to the requested resources, a
requirement typically needed by parallel applications.

2 State of the Art

Until now, the only solution to overcome these problems is to use scheduling systems
that are able to completely handle resource management for all resources involved.
However, trying to use heterogeneous environments as they are becomes difficult if
such attempts will be based on a single task approach as a regular service, without any
need to change local administration rules and policies. Or, for example, to introduce
local components like the GRAMs of the Globus [6] system building an additional
encapsulating layer that interfaces to local resource management systems. However,
this approach implies an “overhead” which may not be desirable for smaller
computing centers.

We are well aware that there are other powerful systems like Globus, Legion or
Unicore [6,7,5] providing a broader range of integrated tools. These projects are part
of the foundations of the Grid and will be propagated more and more as the Grid
evolves.

MeSch, however, is directed to a simple and efficient way of bundling distributed
computing resources for the “bigger” parallel jobs of a user without the need to
install one of the systems mentioned above.

3 Requirements for Global Resource Management

3.1 MeSch Scheduler Hierarchy

The MeSch approach handles resource allocation as a global task which can be
divided into subtasks that may be delegated to co-operating schedulers of the
subcomponents of a Grid environment. Ideally, we won’t discard local schedulers;
instead, we build the metascheduler on top of the local ones. This allows us to build a
hierarchy of schedulers.

In the same sense as a traditional scheduler maintains the nodes/processors as
allocatable resources, the metascheduler does with systems (or partitions of systems).
The advantage is, that all subsystems can act in their usual way with their own policy.
Moreover, allocation of processors remains in the responsibility at the local system
level and is not explicitly done by the metascheduler. As subsystems remain
responsible for allocation, the local use of subsystems is not affected. No restriction is
imposed on local scheduling strategies and administrative policies.

The MeSch approach does not impose any restrictions on the type of Grid system:
they may be homogeneous or heterogeneous, geographically distributed, any
combination of MPP, cluster, and dedicated systems.

MeSch - An Approach to Resource Management in a Distributed Environment 49

Fig. 1.

3.2 Requirements for L

However, MeSch requires
over the burden of the ove

In order to provide sim
reliable information abou
enables MeSch to determ
required for a Grid appli
slots in general will not le
able to ask for alternative
time slot for simultaneous

If a commonly suitab
must be able to inform ea
will allocate required reso

MeSch synchronization
subschedulers to find a so
must be (pre-)reserved b
suitability. An allocation
defining a set of states
execution.

System X: Loc

tem:

duler
Meta-Sys

Meta-Sche
Meta-Scheduler as a Hierarchy of Schedulers

ocal Schedulers

 some local scheduler attributes in order to be able to take
rall scheduling task’s global synchronization
ultaneous access to required resources, methods of getting
t suitable time slots must be available. This information
ine a common time slot on all Grid components that are

cation. First subscheduler suggestions about available time
ad to a solution for the complete metajob. Thus, we must be
time slots to have a chance to determine a commonly agreed
 access.
le time slot can be determined, the MeSch metascheduler
ch subscheduler to fix the time slot and to guarantee that it
urces at the agreed start time for the agreed time interval.
 management requires several iterations of interaction with
lution for a suitable time slot. Obviously, offered time slots
y subschedulers, while they are under consideration for

 agreement protocol eases the synchronization process by
a job may have from an scheduling request to its final

al Scheduler System Y: Local Scheduler

50 G. Quecke and W. Ziegler

Fig. 2. Time Agreement P

Each subscheduler, that can be modified to
protocol for metajob scheduling requests, is usa
environment. Of course, if the local scheduler ma
allocation agreement protocol this may be impleme
scheduler at least provides mandatory attributes like
time and to do estimation of future resource allocatio

ML
it

re
ac

could
run

at
should
run

at

L
ocalScheduler

ready
to

run
w

ill
run

at
 go

ru
-subm
-subm
jected
it
cepted
M
eta Scheduler
nning
rotocol

follow the allocation agreement
ble in a MeSch controlled Grid
y not be modified to handle the
nted in a wrapper, given the local
 the ability to start jobs at a given
n.

MeSch - An Approach to Resource Management in a Distributed Environment 51

3.3 Allocation Agreement Protocol

The goal of the allocation agreement protocol is to agree with all local schedulers in
the allocation of local resources simultaneously for the same time interval.

We assume a specialized L-submit operation for each local scheduler, which
accepts requests from the meta M-submit. L-submit knows that incoming requests are
for a metajob, and thus it enables the time agreement protocol. This essentially means,
that some additional information such as state, meta-identifier, etc. are to be
maintained, and that the local scheduler knows about the time agreement protocol for
this job.

M-submit calls the L-submit operation which sets the initial Accepted/Rejected
state. A local preview will calculate a proposed CouldRun time, which the
metascheduler will change to ShouldRun as a result of analyzing all meta
components. The local scheduler will agree with a WillRun answer.

The ReadyToRun state, set by the local scheduler, indicates that local allocation is
being prepared. The local resources are allocated, once the metascheduler has found
common agreement by indicating the Go state.

If the analysis of offered time slots does not yield a solution, the metascheduler
will go back in the protocol line and make better proposals. For the local schedulers:
if they cannot fulfill a metascheduler request for a dedicated time slot, they make new
proposals due to their local schedule policy.

4 A Prototype Implementation

4.1 Using EASY as a Modeling Tool

MeSch has been implemented and tested successfully in the heterogeneous multi-
MPP environment of GMD’s Institute for Scientific Computing and Algorithms. The
available MPP environment allowed to attack the problem in a heterogeneous
environment without having to deal with the problem of geographical distribution.
Our prototype environment consists of an IBM SP2 with 34 nodes and NEC Cenju-4
with 64 processors.

Both systems use an enhanced EASY scheduler [1,2], which has been modified to
fulfill the time agreement protocol.

The EASY concept is basically built on a “backfill” strategy. Our enhancements
ensure, that even if a job has low precedence, it will be started, if its requirements do
not have any implications for jobs of higher priority. The idea is to optimize system
throughput by avoiding idle resources. As a side effect of this full backfill strategy,
for all skipped jobs an estimated start time is available. This allowed us to provide a
complete job estimation list, which is available to users and informs them about worst
case start/stop times.

With this preview feature for each job, we have one basic property necessary to
build MeSch: it enables MeSch to get actual information about scheduled time slots.
In addition, an EASY job may be scheduled with a StartAt option.

52 G. Quecke and W. Ziegler

For our prototype MeSch, EASY as a local scheduler fulfills the basic
requirements for information gathering. The allocation algorithm had to be changed to
support the time allocation algorithm. For the MeSch, in addition to new submit and
release operations, only a previewer had to be implemented, which keeps control of
the states of all local schedulers involved. The prototype allows submission of jobs in
an EASY-like way.

5 An Example

In our prototype implementation, Meta components of the environment are specified
explicitly by referencing the number of nodes of the respective systems, as in the
example
msubmit –n70 –t300 –rSysA[30],SysB[40] -bmyjob
The batch job myjob requires 300 minutes of CPU time, 30 nodes of the SysA, as

well as 40 nodes of SysB system. The command above will be separated by MeSch
into the partial submissions
SysA: lsubmit –n30 –t300 –bmyjob
SysB: lsubmit –n40 –t300 –bmyjob
Each of the local systems will handle the respective request according to its local

policy. Backfilling allows to find worst case time slot. According to the time
agreement protocol MeSch is able to accept proposals from the local schedulers or to
make new proposals until all schedulers involved agree to a common time slot.

As an example of the time agreement protocol, assume SysB accepting the metajob
request. Refer to figure 2 for an overview of the state names and sequence.

With the EASY internal preview facility, the local scheduler of SysB signals a
CouldRunAt time interval starting at time ts. The scheduler assures availability of
requested resources to the metasystem. With the ts information from all local
schedulers, the MeSch scheduler can determine the max(tsi) start time. A
ShouldRunAt proposal to the local scheduler in general signals that for the reason of
simultaneous access a later time than ts is favored by MeSch. A local scheduler may
reject the request, proposing a new time slot and signalling the CouldRunAt state; it
may accept the new time and signal a WillRunAt state for the respective part of the
metajob. This iterative procedure leads to a commonly accepted WillRunAt state for
each part of the metajob.

At arrival of the agreed time slot, the local scheduler will signal a ReadyToRun to
MeSch, which - if everything is right - will allow local scheduling to allocate the
required resources immediately by signalling a Go state.

Each of these states may be rejected: Whenever the metascheduler is not able to
accept a local scheduler proposal, it resets to the WillRunAt proposing an optimal
time slot up to its knowledge about all local scheduler proposals. Whenever a local
scheduler is not able to accept a MeSch proposal, it resets to the CouldRunAt state
proposing the next available time slot for the metajob part, that can be guaranteed
according to the local scheduling strategy and administrative policy.

MeSch - An Approach to Resource Management in a Distributed Environment 53

Fig. 3. MeSch

6 Conclusion

The MeSch approach is a prototyp
environment. Its main advantage is tha
Grid jobs. The meta job scheduling
resource managers in a scheduler hie
allocation agreement protocol, local sc
facility for submitted jobs and accept an

The practicability of the approac
implementation based on an enhanced E

Currently we are investigating how
devices such as a workbench for applica

local resource requests

LC

resource request

Possible
start times

DR

reject
find global

slot

abort

NT

JR

start time
proposal

start time
acceptance

start job

VT

WS

e
 locally

borted

abort

abort

RRrenegotiate

renegotiate
DR – Distribute request
LC – Local queue check
NT – Negotiate start tim
VT – Validate start time
WS – Wait for start time
JR – Job Running
RR - Request rejected/a
 Finite State Machine

e metajob scheduler approach for a Grid
t local scheduling policies are not affected by
can be viewed as using local schedulers as
rarchy. However, for an easy to implement
hedulers must provide a run time estimation
d guarantee dedicated start time specification.
h has been demonstrated by a prototype
ASY scheduler version.
 to implement scheduling for visualization
tions with real-time visualization demand.

54 G. Quecke and W. Ziegler

References

1. Lifka, D.: The ANL/IBM SP scheduling system. Job Scheduling Strategies for Parallel
Processing, Lect. Notes Comput. Sci. 949 (1995) 295–303

2. Grund, H., Link, P., Quecke, G., Ziegler, W. EASY Job Scheduler for Cenju-3. Proc. of
the First Cenju Workshop, HPC Asia '97, Seoul, Korea (1997) 20–34

3. Foster, I., Kesselman, C., (eds): The Grid: Blueprint for a Future Computing
Infrastructure. Morgan-Kaufmann Publishers (1999)

4. Czajkowski, K., Foster, I., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A Resource
Management Architecture for Metacomputing Systems. In Proc. of The 4th Workshop on
Job Scheduling Strategies for Parallel Processing. LNCS, Vol. 1459, Springer Verlag,
(1998), 62-82

5. Romberg, M.: The UNICORE architecture: Seamless access to distributed resources. In 8th

IEEE International Symposium on High Performance Distributed Computing. LNCS, Vol.
949, Springer Verlag, (1999), 287-293

6. The Globus project: Globus Toolkit 1.1.3 System Administration Guide. (2000),
http://www.globus.org/toolkit/documentation/globus_sag1.1.3.pdf

7. The Legion Project: Resource Management in Legion. (1998),
http://legion.virginia.edu/papers/legionrm.pdf

Resource Management Method for Cooperative
Web Computing on Computational Grid

Hye-Seon Maeng1, Tack-Don Han1, and Shin-Dug Kim2

1 Media System Lab., Dept. of Computer Science,
Yonsei University, Seoul, Korea

{carchi, hantack}@kurene.yonsei.ac.kr
2 Parallel Processing Lab., Dept. of Computer Science,

Yonsei University, Seoul, Korea
sdkim@kurene.yonsei.ac.kr

Abstract. Web computing only requires connection to a certain URL
via Java applet supported web browser. Existing Web computing rese-
arch has assumed that the application program can be partitioned into
a lot of independent modules. In this paper a scalable communication
method among distributed processes are proposed. And an analytic mo-
del is devised for Web computing communication time according to the
characteristics of application programs and computing environment ba-
sed on this method. It also provides a decision function to determine the
degree of hierarchy for managing resources. With this function, the users
can determine how the Web computing hierarchy architectures should
be constructed to reduce the communication overhead and achieve the
performance improvement.

1 Introduction

As the computing methods suggested in meta computing [10], clustering compu-
ting [11], and etc. require user account and installation of a certain program to
use the other’s computer as computing resources. Web computing only requires
connection to a certain URL via Java applet supported web browser [1], [2], [3].

Existing Web computing research has assumed that the application program
can be partitioned into a lot of independent modules [2], [3]. So eager scheduling
method has been adapted as a robust scheduling method. Under this assumption
and with this scheduling algorithm, communications among distributed modules
cannot be performed. Though some approaches suggested the communication
method among distributed modules in Web computing, these methods cannot
be scalable to a huge computational environment [1].

In fact, any communication intensive applications cannot be executed with
performance gain on the computational grid. But the applications that consist
of much ratio of computation time to communication time can be effectively
executed in parallel on these environments. So the support for communications
among distributed processes can widen the applicable areas in Web computing.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 55–64, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

56 H.-S. Maeng, T.-D. Han, and S.-D. Kim

In this paper a scalable communication method among distributed processes
are proposed. And an analytic model is devised for Web computing communica-
tion time according to the characteristics of application programs and computing
environment based on this method. It also provides a decision function to de-
termine the degree of hierarchy for managing resources. With this function, the
users can determine how the Web computing hierarchy architectures should be
constructed to reduce the communication overhead and achieve the performance
improvement.

In Section 2, Web computing hierarchy structure is proposed for cooperative
Web computing environment. In Section 3, shared memory mechanism and ope-
rating methods for proposed hierarchy structure are explained. Section 4 provides
an analytic model for the Web computing execution time and communication
time. And also a decision function to determine the degree of hierarchy is in-
troduced. Some real application is analyzed with the analytic communication
model and experiment is performed with this application to show the usefulness
of suggested method.

2 Web Computing Virtual Environment

When application program can be partitioned into the independent jobs, a ma-
nager computer has only a role for job distribution and result gathering. When
it should be partitioned into the cooperative jobs, the manager computer should
have a responsibility of communication among distributed processes in addition
to above roles.

In the latter case, one process assumes a certain process is working normally
and tries to communicate with it. So worker computers cannot be added or dele-
ted during execution time and Web computing environment should be managed
with stationary method.

Arbitrator
computer

Super
manager
computer

Manager
computer

Worker computers

......

Manager
computer

......

...........

Fig. 1. Web computing hierarchy structure.

In the proposed method, worker computers should be registered to Web com-
puting virtual environment via connecting to an arbitrator computer. When a

Resource Management Method for Cooperative Web Computing 57

client computer requires a group of worker computers, an arbitrator selects wor-
ker computers in the pool according to network distance and availability. The
numbers of worker computers and manager computers should be determined by
a client computer. The decision function for the number of manager computers
according to the application characteristics is suggested in next section.

When the needed numbers are fixed, the arbitrator computer constructs vir-
tual computing environment with registered worker computers. As worker com-
puter can open connection to the manager computer under security restriction,
the communication among worker computers is performed through communica-
tion among manager computers. So the connection between worker-manager and
manager-manager is established. The hierarchy structure for proposed Web com-
puting environment is as Figure 1. The super-manager computer is the computer
that is in charge of executing a sequential part for application.

3 Shared Memory Mechanism

In this section, a shared memory system model for communication among worker
computers and manager computers for cooperative work is proposed. The shared
memory space is allocated within the manager computers. As there exist more
than one manager computers, a portion of shared memory distributed to each
manager computer should form a global shared memory, to be managed with
distributed shared memory (DSM) mechanism.

The proposed shared memory mechanism provides two kinds of shared data
types to reduce communication overhead and a shared datum can be declared
as one of these types. The programmers can select a shared data type according
to the access pattern of any data. One shared data type uses data replication
algorithm and is called the multiple copied (MC) type. This type is managed
with full-replication algorithm [7]. For this type of data, all manager computers
have their own copies of data. A read request can be served at its parent manager
computer of a worker computer that raises this read request but a write request
requires data updates for all the manager computers. This writing policy is from
the cache managing method, write-update.

Another data type doesn’t replicate data and is called the single copied (SC)
type. This type is managed with distributed-central algorithm [7]. When a datum
is declared as the SC type, all manager computers create the object for the data
but the latest value of that data is maintained in only one manager computer
as an owner manager computer of that data. Read/write requests can be served
locally in the parent manager computer when the owner manager computer and
the parent manager computer are the same computer. This type of accesses is
called as local accesses. But in another case, these requests should be served
remotely from the owner manager computer and this type of accesses is called
as remote accesses. Figure 2 shows the shared data access mechanism according
to the data types and locations.

58 H.-S. Maeng, T.-D. Han, and S.-D. Kim

Shared Data Access

Read/Write
Read Write

Data Type

MCSC

Data Location
Local Access

Remote Read request
to Parent Manager

Remote Access
Read from

Parent Manager

Remote Read from
Remote Manager

Data Type

Write to
Parent Manager

Write to
Parent Manager

Start

Data Location

SC

Local Access

Remote Access

Remote Write request
to Parent Manager

MC

Write update to
other Managers

Write to
Remote Manager

End

Read from
Parent Manager

Fig. 2. Shared data access mechanism.

4 The Analytic Model for Execution Time and Hierarchy
Level

Parallel execution time is composed of computation time and communication
time. The computation time shows little variation when the computer and pro-
gram are fixed, and it is not shared by any other program. But the communica-
tion time can cause much variation according to the circumference status. In this
section, the application execution time is analyzed in terms of the computation
time and communication time, and then the communication time is analyzed
according to various factors. With the analyzed result, a decision function for
the degree of hierarchy is introduced. This function can be used to determine
the degree of hierarchy to reduce the communication overhead.

4.1 Application Execution Time

The execution time for parallel computing in the Web computing is divided into
the execution time of sequential parts and that of parallel parts. In the proposed
environment, the sequential part is executed on a super-manager computer and
the parallel parts are executed on all the worker computers. The number of
parallel parts can be determined according to any given application program.
When the execution time of the i-th sequential part is denoted as TSi and the

Resource Management Method for Cooperative Web Computing 59

execution time of the i-th parallel part is denoted as TPi, and the execution
time of an application program A is defined as follow.

T (A) = TS0 +
m∑

i=0

(Maxk(TP k
i) + TSi), (1)

In this model,m is assumed to be one for simplicity. This model can be easily
expanded by repetition of a code pair of one parallel part and one sequential
part. When the jobs are well load balanced, Maxk(TP k

i) can be written as TPi
of any worker computer. Now the execution time of A is redefined as follow;

T (A) = TS0 + TP + TSr, (2)

where TS0 is the execution time for the front sequential part and is the same
as in previous definition. TSr is that for the rear sequential part and then can
be represented as follow;

TP = TCP + TCM . (3)

As the number of communications is varied according to the application, the
computation time and the communication time are denoted as follow;

TCP =
t∑

j=1

T jCP and TCM =
t∑

j=1

T jCM , (4)

where T jCM is the j-th communication time for a given parallel part and T jCP
is the j-th computation time which happens just before T jCM . The number of
communications, t, can be more than or equal to one. The communication time is
heavily influenced by a specific computing environment and the communication
overhead can vary depending upon the factors to configure the environment.

4.2 Shared Memory Access Time

In the proposed Web computing environment, communication time is the time to
access any shared data. With one manager computer,i.e. under single managing,
MC type and SC type are managed with the same mechanism and may involve
the same amount of access time. But with more than one manager computers in
hierachy,i.e. with multi-managing, the shared data access time is varied according
to the type of shared data and their locations as indicated in Figure 2. Cost
factors involved in accessing the shared data are defined in Table 1.

With single-managing, the time to access a shared datum from a worker
computer to its manager computer, TW−M can be calculated as follow;

TW−M = |D| · Ut (5)

. To read a shared datum, it is required to send a read request signal. After sen-
ding this signal, the shared datum read is transferred. To write a shared datum,

60 H.-S. Maeng, T.-D. Han, and S.-D. Kim

Table 1. The cost factors for accessing shared data.

Factor Definition Factor Definition
Ut Unit data transfer time P Number of worker computers
|D| Size of transferred data in unit words M Number of manager computers

it is required to send the datum to be written first and then an acknowledge-
ment signal is transferred. The shared data access time should include both the
signal and the datum transfer times but the amount of signal transfer time is
relatively small when the size of the actual data is big. So the signal transfer
time is omitted in Eq. (5).

The condition that there is no communication request simultaneously caused
in this application is assumed. When assuming the existence of each communi-
cation request from n worker computers, the shared data access time should be
redefined as n times of TW−M [4] to represent the worst case. The redefinition
of TW−M with an argument as the number of the worker computers that can
simultaneously cause any communication request is as follow;

TW−M (n) = n · |D| · Ut. (6)

When all the worker computers send the requests to access the shared data
simultaneously, the time to complete all these requests can be TW−M (P). With
Eq.(6), the shared data access time with single-managing can be calculated as
Table 2.

Table 2. Shared data access time with single-managing.

Sync. purpose Access time Ratio
Yes TW−M (P) ρ
No TW−M (1 + b(P − 1) · cc) µ

A shared data access can be performed for the purpose of synchronization,
where simultaneous communication requests from all other worker computers
should be reflected in the shared data access time. A shared data access without
the purpose of synchronization is not interfered by all other worker computers
but by some other worker computers. If a communication request ratio,c, is
defined as the ratio of communication time to computation time for any given
application, the value of b(p−1) ·cc means the number of worker computers that
can request their respective shared data accesses simlutaneously. The values of ρ
and µ are the ratios of data accesses with synchronization purpose and without
synchronization purpose respectively. The sum of them becomes always one.

Though an application program may have a large number of shared data
accesses, the average access time for any single access can be calculated. The

Resource Management Method for Cooperative Web Computing 61

time to access a single shared datum with single-managing,TCM1M is obtained
as follow;

T 1M
CM = TW−M (P) · ρ + TW−M (1 + b(P − 1) · c)c · µ. (7)

To calculate the shared data accesss time with multi-managing, a new cost
factor should be introduced. With Eq.(6), the shared data access time to the pa-
rent manager computer from a worker computer can be claculated. With multi-
managing, the owner manager computer and the parent manager computer can
be different. In that case, any handling time occurred from a particular parent
manager computer to its owner manager computer should be added to the shared
data access time. When there exist n communication requests caused simulta-
neously from a parent manager computer to some owner manager computers,
the completion time of these requests is as follow;

TM−M (n) = 2n · |D| · Ut. (8)

TM−M (n) shows twice as much as TW−M (n) because a parent manager
computer and an owner manager computer are located at different subnets when
requesting any communication. When transfering a datum between two different
manager computers, the datum should be passed from the sourcing subnet to
the target subnet via main network. The transfer time in a subnet is usually
longer than ten times of the transfer time in the main network. So the transfer
time in the main network is omitted in this equation. With multi-managing, the
average number of worker computers is P/M in one subnet. Thus the shared
data access time can be classified according to the data types and the locations
as obtained as Table 3.

Table 3. Shared data access time with multi-managing.

Sync. purpose Type Access Access time Ratio
Yes SC Read/write TW−M (P

M
) + qS · TM−M (P

M
) ρ

No MC Read TW−M (1 + b(P
M

− 1) · cc) µMR

Write TW−M (1 + b(P
M

− 1) · cc) µMW

+TM−M (M − 1 + b(P
M

− 1) · cc)
SC Read/Write TW−M (1 + b(P

M
− 1) · cc) µS

+qN · TM−M (1 + b(P
M

− 1) · cc)

A shared datum in SC type can be accessed by a local access or a remote
access depending on its location and the computer requesting that datum. The
values of qS and qN are the ratios of remote accesses over the overall shared
data accesses with synchronization purpose and without synchronization purpose
respectively.

The values of ρ, µMR, µMW , and muS are the ratios of data accesses for each
type and the sum of them is always equal to one. The time to access a single

62 H.-S. Maeng, T.-D. Han, and S.-D. Kim

shared datum under multi-managing with M manager computers, TMM
CM (M) is

represented as follow;

TMM
CM (M) = {TW−M (

P

M
) + qS · TM−M (

P

M
)} · ρµ

+TW−M (1 + b(P

M
− 1) · cc) · µ

+TW−M (M − 1 + b(P

M
− 1) · cc) · (µ + qN · µS). (9)

From Eq.(7) and Eq.(9), the average reduced overhead for a single shared
data access time with M manager computers, R(M) can be calculated as T 1M

CM −
TMM
CM (M). From the factors of R(M), is always positive and does not influence

any change of the direction curve of R(M), so we can omit this term from the
equation. By this, a decision function for the degree of multi-managing, L(M)
is defined as follow;

L(M) =
R(M)
Ut · |D| = ρ · P (1 − 1 + 2qS

M
) + µ · b(P − 1) · cc

−(µMR + 3µMW + (1 + 2qN) · µS) · b(P

M
− 1) · cc

−2((M − 1)µMW + qM · µS), (10)

assuming that M is more than or equal to two.
To obtain the most reduced communication overhead, the degree of multi-

managing can be determined when L(M) has a maximum value. But the more
manager computers mean the high costs so the degree of multi-managing can be
obtained according to a trade-off between the reduced communication overhead
and the cost of multi-managing.

5 Application Program Analysis and Experiment

An application is analyzed in terms of parameters by using the analytic com-
munication model and the degree of multi-managing is determined. And then
experiments are performed with these applications to show the effectiveness of
multi-managing. The experiment is performed in the Ethernet simulation envi-
ronment with SMPL [Mac87]’s Ether model.

The Jacobi algorithm [8] is an iterative method for solving the linear system
Ax = B for the unknown vector x. As this program involves a lot of data
parallelism, both the computation and communication loads can be well balanced
among the worker computers.

Let an application program A be the probem on which Jacobi algorithm
is applied to K · K grid to determine the next temperation. Figure 3 shows
the shared data portion among the manager computers when using P worker

Resource Management Method for Cooperative Web Computing 63

0

10

20

30

40

50

60

70

1 2 4 8 16 24

8

16

32

64

of WC

of MC

L(M)

Fig. 3. Value of L(M) function.

0

10

20

30

40

50

60

70

1 2 4 8 16 24

8

16

32

64

of WC

of MC

Speedup

Fig. 4. Execution speedup.

computers (WC1 − WCP) and Mmanager computers (MC1 − MCM). All the
worker computers except the both side worker computers have two 1 ·K data in
their shared memory. Each of worker computers located at both sides has only
one 1 ·K data. The whole size of shared data is 1(P −1) ·K. All data accesses are
performed for synchronization purpose and so all shared data are declared as SC
type. When using M manager computers, a(M − 1) · K elements are shared by
each of two manager computers. As all SC type data should be located within
one of two manager computers, the ratio of remote accesses to the whole SC
type data,qs can be calculated as follow;

qs = 0.5 · 2(M − 1)K
2(P − 1)K

=
M − 1

2(P − 1)

As all shared data are declared as SC type, the value of ρ is one and the ratios
of other factors are all zero. With these factors, L(M) function shows the the
result as in Figure 3. It shows that the value of L(M) function increases much
more when the number of worker computers increases because in that case the
overhead of communication becomes much significant. The value of L(M) increa-
ses when the number of manager computers increases because multi-managing
can reduce the communication overhead. The value of L(M) will converge when
the number of manager computers increases much more and the user should
determine the number of manager computers according to a trade-off between
the reduced communication overhead and the cost of multi-managing.

The experiment with 105 · 105 area and 500 iterations is executed. Figure
4 shows the variation of speedup when the number of manager computers va-
ries. The result of the speedup graph looks similar to the result of L(M). When
the number of worker computers is quite big, the speedup is far from the li-
near speedup with single-managing but it becomes near the linear speedup with
multi-managing. High degree of multi-managing can help avoiding this network
contention much more in such an application with high data parallelism especi-
ally when there are a large number of worker computers.

64 H.-S. Maeng, T.-D. Han, and S.-D. Kim

6 Conclusion

In this paper a scalable communication method among distributed processes are
proposed. And an analytic model is devised for Web computing communication
time according to the characteristics of application programs and computing
environment based on this method. It also provides a decision function to de-
termine the degree of hierarchy for managing resources. With this function, the
users can determine how the Web computing hierarchy architectures should be
constructed to reduce the communication overhead and achieve the performance
improvement.

References

1. Arash B., Mehmet K., Zvi K., and Peter W.: Charlotte: Metacomputing on the Web,
International Conference on Parallel and Distributed Computing Systems, (1996)
151-159.

2. Bernd O. C., Peter C., Mihai F. Ionescu,: Javelin: Internet-Based Parallel Compu-
ting Using Java, ACM Workshop on Java for Science and Engineering Computation,
(1997) 30-40.

3. Sarmenta, L.,: Bayanihan: Web-Based Volunteer Computing Using Java, Int’l. Con-
ference on World-Wide Computing and its Applications (WWCA’98), Springer-
Verlag Lecture Notes in Computer Science, (1368), (1998) 444-461..

4. M. J. Clement, M. R. Steed, P. E. Crandall: Network Performance Modeling for
PVM Clusters, Supercomputing, (1996).

5. M. H. MacDougall: Simulating Computer Systems: Techniques and Tools, The MIT
Press, (1987).

6. Holger Karl: Bridging the Gap between Distributed Shared Memory and Message
Passing, Concurrency: Practice and Experience (10), (1998) 1-14.

7. Michael S. and Songnian Z.: Algorithms Implementing Distributed Shared Memory,
IEEE Computer, (1990) 54-64..

8. M.J. Quinn: Parallel Computing:Theory and Practice, McGraw-Hill Book Company,
(1994).

9. D. Zwillinger: Handbook of Integration, Jones and Bartlett, (1992).
10. A. S. Grimshaw and W. A. Wulf: The legion vision of a worldwide virtual computer,

Communication of the ACM, 40(1), (1997).
11. Chungmin C., Kenneth S., Miron L.: The DBC: Processing Scientific Data Over

the Internet, International Conference on Distributed Computing Systems, (1996).

Architecture for a Grid Operating System

Klaus Krauter and Muthucumaru Maheswaran

Advanced Networking Research Laboratory
Department of Computer Science

University of Manitoba
Winnipeg, MB R3T 2N2, Canada

krauter@cs.umanitoba.ca masheswar@cs.umanitoba.ca

Abstract. A Grid architecture is proposed that is motivated by the
large-scale routing principles in the Internet to provide an extensible,
high-performance, scalable, and secure Grid. Central to the proposed
architecture is middleware called the Grid operating system (GridOS).
This paper describes the components of the GridOS. The GridOS in-
cludes several novel ideas including (i) a flexible naming scheme called
“Gridspaces”, (ii) a service mobility protocol, and (iii) a highly decen-
tralized Grid scheduling mechanism called the router-allocator.

1 Introduction

A Grid is a computing and data handling virtual system formed by aggregating
the diverse services provided by distributed resources to synthesize problem sol-
ving environments. Some of the issues in Grid architecture are: (a) supporting
adaptability, extensibility, and scalability, (b) allowing systems with different
administrative policies to inter-operate while preserving site autonomy, (c) co-
allocating resources, and (d) supporting quality of service.

In this paper we present a novel, highly decentralized, architecture for Grid
computing that borrows features from Internet routing architectures. The cen-
tral component of the architecture is the Grid operating system (GridOS). The
GridOS is middleware that runs on all machines constituting the Grid. Because
a Grid can have machines that range from high-performance supercomputers to
handheld personal digital assistants and networks that range from gigabit-rate
fiber networks to low-speed wireless LANs, it is necessary for the GridOS to
be adaptable. The GridOS is designed in a modular fashion around a kernel so
that the resident functionality can be changed on the fly. This design naturally
supports extensibility and adaptability.

The GridOS design includes several novel ideas including (i) a flexible na-
ming scheme called the “Gridspaces”, (ii) a service mobility protocol, and (iii)
a highly decentralized Grid scheduling mechanism called a router-allocator. The
Gridspaces concept supports aggregation of resource names based on attributes.
This enables a hierarchical resource discovery scheme that is more scalable than
a flat scheme. In our architecture, the GridOS runs on each node that partici-
pates in the Grid. Therefore, it is essential that the GridOS is lightweight so

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 65–76, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

66 K. Krauter and M. Maheswaran

that the overhead is minimal and at the same time powerful enough to support
different services. One way of achieving this requirement is to dynamically in-
stantiate services on demand. Our GridOS provides a service mobility protocol
to migrate/replicate services depending on the demand. Another innovation of
the GridOS is the use of request routing to decentralize resource allocation.

Section 2 describes the major features of our Grid architecture. Section 3
presents our approach to naming in the Grid. In Section 4, we examine some
approaches for resource management for our architecture. Section 5 describes the
architecture of the fundamental building block in our GridOS, the Grid Kernel.
Section 6 presents related work.

2 Grid Architecture

In our architecture, the Grid consists of endsystems that provide resources to
the Grid. Heterogeneous networks may connect the endsystems. Endsystems
can range from a wireless PDA to a large cluster of supercomputers. The non-
bandwidth resources such as disk capacity, computing cycles, and database ser-
vices are provided by endsystems. Clients on other endsystems may use these
resources The network links that interconnect the endsystems provide bandwidth
resources. The Grid is responsible for managing endsystem resources, bandwidth
resources, and meeting quality of service levels. Endsystems compose a series of
resource requests that are routed to other endsystems that fulfill the resource re-
quests. Specialized nodes called router-allocators examine resource requests and
route them either directly to another endsystem or to another router-allocator.

Because the Grid in envisioned to scale up to Internet proportions, it is es-
sential for the Grid to have a scalable architecture. This issue is addressed in
our architecture by leveraging some important concepts from Internet routing
[14]. The nodes (endsystems and router-allocators) are grouped into “autono-
mous systems” called Grid Domains. The nodes in a Grid domain have common
resource management polices and are under the same administrative authority.

The resource management protocols are based on a datagram model. Si-
milar to Internet routers the router-allocators do not maintain state for any
resource requests that pass through them. Resource state and scheduling in-
formation is maintained on endsystems rather than on the router-allocators.
Router-allocators route requests to likely endsystems but endsystems are free to
reject the resource request. Resource information from endsystems and band-
width utilization on links is periodically transmitted from the endsystems to the
router-allocators. The router-allocators use this information to construct a soft
state database [21] on resources so they can adapt to resource utilization and
link congestion. This approach provides fault tolerance and self-healing capa-
bilities for the Grid. In addition to this database which is contains short-lived
information the router-allocators also maintain a long-lived resource capability
database. Border router-allocators provide resource aggregation facilities and
implement inter Grid domain resource management polices.

Architecture for a Grid Operating System 67

Router-allocators apply policy rules to resource management and the distri-
bution of resource management information. Border router-allocators implement
inter domain policies and all router-allocators within a domain implement intra
domain policies.o

The endsystems and router-allocators run the GridOS which is middleware
with a modular architecture. The central component of the GridOS is the Grid
Kernel. The GridOS has a base set of components including the Grid Kernel and
additional modules plug into the base environment to provide added functiona-
lity. This approach is similar to the extendable router architecture described
in [5]. The GridOS is not a full-fledged operating system rather it is a set of
processes that runs on each machine to form the middleware. The Grid Ker-
nel is small and lightweight providing basic services for the extension modules.
The Grid Kernel provides protocol processing, module management and coor-
dination framework. The modules provide resource management functions such
as scheduling policies, resource monitoring, resource accounting, and specialized
resource discovery functions. The set of modules that is attached to the Grid
Kernel determines the level of functionality of the corresponding GridOS. Thus
the GridOS for an endsystem differs from the GridOS for a router-allocator.
The security and integrity of the GridOS must be ensured so the loading and
migration mechanisms will be integrated with the security management features.

3 Naming in a Grid System

In distributed systems, a name space is defined as a set of names that conform
to the syntactic and semantic rules of the naming system [23]. This section,
describes generalized name space for Grids called a Gridspace.

The Grid manages a widely distributed set of resources across multiple ad-
ministrative domains. The naming of the objects it manages is important to the
overall scalability and reliability of the Grid. The Gridspace must interoperate
with or extend schemes such as DNS or LDAP. The management of Gridspace
content will be specific to the objects that are being managed, thus the Grid-
space management must be as extensible as the rest of the Grid architecture.
The approaches described in [1] and [24] motivate our approach.

A Gridname is assigned to each object that is managed by a router-allocator.
A Gridname is a set of name specifiers. A name specifier may be either an
attribute-value pair or a hierarchy of attribute-value pairs. When the name spe-
cifier is a hierarchy, the upper level attribute-value pair sets up the context for
the lower level attribute-value pairs. A Gridname reference is a pointer that re-
fers to an object that is managed by another router-allocator, i.e., a reference
to a Gridname in another Gridspace. A summary of the name specifiers asso-
ciated with the corresponding Gridname may be associated with the Gridname
reference.

A Gridspace is defined as a set consisting of Gridnames for managed objects,
Gridname references to objects in other Gridspaces, and references to other
Gridspaces. Gridnames within a Gridspace must be unique to that Gridspace.

68 K. Krauter and M. Maheswaran

Thus all objects in the Grid can be uniquely named using a hierarchical naming
scheme. Each router-allocator has a Gridspace and a Gridspace manager asso-
ciated with it. The Gridspace manager is responsible for effecting operations on
the Gridspace.

A Gridspace manager manages the content and consistency of a Gridspace.
The Gridspace manager enforces no semantics on the contents of a Gridspace
or the operations on those contents other than naming constraints and com-
mon operations on Gridnames. The GridOS on the managed objects will have
Gridspace agents that are responsible for sending management messages to the
Gridspace managers. These agent-manager transactions may be performed on
detecting a change on the managed object or at predefined intervals. The prede-
fined time intervals may be much larger for these transactions compared to the
ones used for status information updates. The agent-manager model we use in
the Gridspaces is similar to the model used in the simple network management
protocol.

At startup, a router-allocator has an associated Gridspace and Gridspace
manager. The Gridspace will be initialized to contain Gridnames for the ob-
jects managed by the router-allocator, i.e., the Gridspace would not have refe-
rences to other Gridnames or references to other Gridspaces at startup. Then
the router-allocators exchange the Gridnames between them. When a router-
allocator receives a foreign Gridspace it will create reference entries to each of
the Gridnames found in the foreign Gridspace. This is only true if the foreign
Gridspace is in the same Grid domain as the receiving router-allocator. At the
convergence of this process, each router-allocator within a Grid domain will
have the complete knowledge of the managed objects within the domain in their
Gridspace. Because the Gridnames describe objects using long-lived attributes
frequent update messages are not needed to keep the Gridspace consistent.

The border router-allocators summarize their Gridspaces and advertise it to
the border router-allocators of the other domains. The summarization process
virtualizes the Gridnames, i.e., the Gridnames in the exported Gridspace may
not have corresponding physical objects. The virtual Gridnames in the exported
Gridspace reference indicate the “capability” of the managed objects to the other
Gridspaces.

The Gridspace can be considered as a persistent distributed database that is
weakly consistent. Suppose a resource is no longer available at an endsystem it
takes the endsystem some time before Gridname entry in the associated Grid-
space is updated. Although other Gridspaces have references to they may have
stale summary of the name specifiers associated with the Gridname references.
This makes the database weakly consistent. The weak consistency is handled by
the resource management protocol that uses the Gridspace information as shown
in the next section.

The approaches described in [1], [18], and [24] are being examined for poten-
tial mechanisms that can be used to efficiently implement our notion of Grid-
spaces. We are also investigating how to interface the Gridspaces to existing
namespaces and databases in an efficient and high performance way.

Architecture for a Grid Operating System 69

4 Resource Management in a Grid System

Resource management in our architecture extends the query routing approach
in [17] to the general resource management problem. The resource management
protocols are based on datagrams that are exchanged between nodes. The pro-
tocols can be functionally split into resource dissemination, resource discovery
and resource scheduling. Dissemination pushes information about resources from
endsystems that have resources to other nodes. Resource discovery pulls resource
information from other nodes to an endsystem. Resource scheduling protocols
are used to assign resources to requests including co-allocation of resources across
different nodes.

The resource management protocols are extensible with extensions provided
by the modules that are loaded on top of the kernel. Extensibility is a problem
for nodes that receive extended message content and do not have the extension
modules. Possible solutions are to dynamically load extensions into the node
across the network or ignore the content altogether.

The endsystems are the sources and sinks of all resource management proto-
col datagrams in the Grid. Resource requests are generated by endsystems that
other endsystems fulfill by providing their resources. Router-allocators route re-
source messages between endsystems and other router-allocators. Border router-
allocators apply domain resource management policies for inter domain resource
messages. The scheduling of resources is performed by the endsystems. All re-
source management information is maintained as soft state.

Figure 1 illustrates the request routing and data dissemination processes in-
side a router-allocator. The two processes while sharing common data structures
are functionally split. The shaded region indicates the components involved in
request routing and allocation and the unshaded region indicates the components
involved in data dissemination.

4.1 Resource Status Dissemination

A large number of nodes may make uniform status dissemination too costly. He-
terogeneity in resource characteristics and resource requests may make it unne-
cessary to uniformly disseminate the status [19].

One of the major overheads of dissemination are messages that keep the
distributed status database consistent. We can use different properties of the
Grid environment to minimize update messages. Resource attributes are split
into two classes: short-lived attributes and long-lived attributes. Short-lived at-
tributes are disseminated through the Grid status registry mechanism shown in
Figure 1. Long-lived attributes are disseminated via Gridspaces. Consequently,
it is possible to have different update policies for Gridspaces and Grid status
registries. One approach is to use frequent update messages for the Grid sta-
tus registry but to restrict the update message propagation area. Alternatively,
Gridspaces may be updated less frequently but on a larger propagation area.
The extent of update message propagation for the Grid status registry may be

70 K. Krauter and M. Maheswaran

Gridspace
Manager

Gridspace
Cache

update
messages out

status update
messages in

Gridspace update
messages in

resource request
messages in

route or allocation
messages out

route or allocation with single choice

Data DisseminatorGrid Status
Registry
Manager

Request
Router/

Allocator (2)

Gridspace
Grid Status

Registry

Request
Router/

Allocator (1)

Fig. 1. Request routing and data dissemination in a router-allocator

decided based on the importance and uniqueness of the resource or based on
administrative policies [19].

In addition to disseminating resource status information it is also necessary
to disseminate information regarding the services offered by the different Grid
nodes. Including the Gridnames that describe the services in the respective Grid-
spaces performs a transparent dissemination of service information. This feature
aids the service mobility that is described below.

To enhance scalability , our architecture divides the overall system into Grid
domains. Border router-allocators are responsible for connecting domains to form
the Grid and disseminating data between domains. Administrative policies are
used to restrict the content of the data dissemination messages. Border router-
allocators also aggregate the Gridspace update messages using the Gridspace
aggregation policies. Updating the Grid status registry dependents on the policy.
One policy may update status only within a Grid domain and another policy
would update based on a dynamically chosen network distance.

4.2 Resource Discovery

Resource discovery in distributed systems is typically based on a distributed
database approach or a mobile agent approach. In our architecture, we use a hy-
brid approach. For example, the Gridspace is maintained as a weakly consistent
distributed database. Because of the way Gridspaces aggregate the attributes of
the managed objects there may not be detailed information for a remote object.
Once a resource discovery query walks through the aggregated Gridspace that
entry is cached in the Gridspace cache. This can be considered as an agent based
approach. However, the benefit of this approach over the agent based approach
is that the subsequent queries that may be interested in the same object need
not incur the full overhead until the cached entries are timed out.

Architecture for a Grid Operating System 71

4.3 Resource Scheduling

Resource scheduling is done in a distributed way using both the router-allocators
and endsystems. Endsystems are responsible for the scheduling of the resources
on their node. Endsystems also generate requests for resources elsewhere in the
Grid. When a resource request arrives at a router-allocator, the router-allocator
consults the Gridspace to determine the best way to handle the resource request.

The router-allocator may process the request in several ways. If it determi-
nes that a remote resource is best for handling the request it will forward the
request to the corresponding router-allocator. Alternatively, the router-allocator
may find a loaded Grid scheduling service and delegate the request processing.
This scheduling service may be implemented using wide-area schedulers such as
Globus, Gallop, or MSHN. The scheduling services are registered with the Grid-
space at the router-allocator and the request routing mechanism will find the
service when it queries the Gridspace. In some situations, it may be necessary
to schedule a request over several different resources (referred to as co-allocation
or multi-scheduling in [8]).

Scheduling uses a three-phase protocol between the endsystems providing the
resources and the endsystems requesting the resources. The protocol also follows
an end-to-end allocation model rather than following an in-core allocation model.
More specifically, the router-allocators just facilitate the resource scheduling by
guiding the resource requests to the most appropriate endsystem. They do not
keep any state information that keep track of the request-to-resource mappings
and make any binding decisions.

When a resource request arrives at a router-allocator, it consults its Grid-
space and Grid status registry as shown in Figure 1 and may decided to split
the original request into a number of smaller requests and route the request
fragments on to other endsystems and other router-allocators. This is a recur-
sive process that can cross Grid domains. The endsystems then send a response
indicating if the resource can be scheduled. The responses then return to the
originating endsystem, which then sends out a scheduling request to the end-
systems that responded to the resource request. This completes the three-way
handshake for scheduling resources.

There are different ways of routing the acknowledgements and scheduling
request messages. The request acknowledgements could be sent directly to the
originating system or via the router-allocators. Sending the messages via the
router-allocators allows the dynamic updating of Grid status registries without
waiting for the periodic resource dissemination messages. There are two diffe-
rent options for the message flow when scheduling resources. The first option is
directly send scheduling messages from the requesting endsystem to the endsy-
stem providing the resources. The second option is to route the messages along
the router-allocators. The first option does not inform the router-allocators of
resource allocation. The second option enables the router-allocator to update
the Grid status registry entries.

72 K. Krauter and M. Maheswaran

4.4 Service Mobility Protocol

The purpose of the service mobility protocol is to provide extensibility and ad-
aptability to the GridOS while maintaining the lightweight nature of the Grid
Kernel so that the Grid can execute on a wide variety of platforms. Consider a
Grid domain with several endsystems and a single router-allocator. This router-
allocator also acts as the border router-allocator because it is the sole router-
allocator for the domain. As the load on the node increases it may be necessary
to off-load some of the work by migrating the router-allocator to another node
or replicating the router-allocator functionality to another node and sharing the
load.

The GridOS provides service mobility as a built-in service at each node. This
service is responsible for monitoring the mobility-enabled services and deciding
when and where they should be replicated or migrated. Although our design does
not allow new migration or replication policies to be added to the system it allows
the Grid domain administrator to set the values of fine-tuning parameters for
the migration and replication logic. In the simplest case, the mobility protocol
module monitors the CPU load at the local node and when a threshold set
by the domain administrator is reached, it will initiate the replication and/or
migration process. It requests other potential nodes for bids for hosting the
service that needs to be moved. Other considerations such as network vicinity
may be considered in deciding the set of potential nodes. All nodes, i.e., the
current node and the potential nodes are in the same administrative domain.

After receiving the bids, the mobility service needs to decide which node it is
going to choose and whether it is going to replicate or migrate. Of it replicates the
service to another node it will need to modify the Gridspaces in the local node
as well as the remote node to reflect this replication. The data dissemination
protocol is used to inform the Gridspaces in the other nodes about the new
instance of the service. Instead of simply monitoring the CPU load at the node, it
may be beneficial to use a combination of fraction of the CPU cycles delivered to
the service under consideration and the demand for the service. The replication
may be made further efficient if the service is replicated to a location closer to
the region where the service is in high demand [25].

5 Grid Kernel Architecture

The GridOS runs on all nodes that are part of the Grid. The GridOS is organized
in a modular fashion with Grid Kernel as the central component. The Grid
Kernel is designed to be small, efficient and lightweight. The Grid Kernel provides
only functions that are absolutely required to have a node be part of the Grid.
The extension modules provide all other functions.

The kernel provides basic functions such as the processing of the resource
management protocols, the module management of the extension modules, and
the Grid security on a node. It is run as a user mode application using the
services of the host operating system to execute and monitor jobs. The Grid

Architecture for a Grid Operating System 73

kernel does not require system mode operating systems privileges but some of
the extension modules may be interfacing with native operating system services
that require extended privileges. The kernel does not require that the module be
written in a particular language only that it provides a standard binary interface
so that the proper functions can be invoked.

The kernel is structured in layers. The bottom layer, the kernel to native
operating system interface is responsible for providing a uniform interface to
native functions. The second layer consists of the resource protocol processing
component, module management component, and a security manager compo-
nent. The top layer, the module to kernel interface layer provides a uniform
interface for extension modules to the services provided by the kernel and the
loaded modules.

The resource protocol processing component is responsible for processing the
protocol messages and protocol events. The processing involves dispatching the
extension modules that handle message content. The module management com-
ponent keeps track of the modules that are currently loaded on top of the kernel.
It also provides the services to dynamically load and unload the modules. The
Grid security manager authenticates the modules that may be loaded dynami-
cally. The security manager implements the generic security mechanisms used
by the modules. There may be a number of different security authorization and
authentication modules specific to the resources used by the node but the secu-
rity manager manages the overall access and control in conjunction with these
modules.

The use of modules and Gridspaces on top of a common kernel provides the
ability to have Grid software that is customized to the needs of individual nodes.
Thus each node in the Grid only runs the modules that are required to manage
the resources specific to the node. This approach reduces the overhead required
for a node to be part of the Grid. For example, a workstation, supercompu-
ter, and bandwidth broker would have very few modules in common since the
resources provided by these nodes to the Grid vary widely.

The module structure for an endsystem and a router-allocator node are so-
mewhat different. The Grid kernel and Grid Manager module are common but
the router-allocator would contain routing and resource routing policy manager
modules whereas the endsystem would contain resource specific manager modu-
les. The Grid Manager module is a mandatory on all nodes since it provides the
basic functions for the node to be part of the Grid.

The endsystem node would have a number of different resource managers
that manage requests for a specific resource such as a specialized database or
computational resource. The request routing and allocation module in the router-
allocator is responsible for handling the resource requests coming in to the router-
allocator. Based on the information it finds in the Gridspace and the Grid status
registry, it may either send the request to another router-allocator or to an
endsystem. Any administrative policies that may determine the outcome of the
resource request processing are also implemented by this module.

74 K. Krauter and M. Maheswaran

The Grid manager module consists of a Gridspace naming module, a node
monitoring module, and a service mobility module. The naming module enfor-
ces the local and global Gridspace naming rules. The node monitoring module
monitors the state of the local node and notifies other modules or the kernel of
state changes. The service mobility module implements the moving of modules
and their associated Gridspaces from one node to another node.

Resource specific manager modules typically consists of a resource manage-
ment component, a Gridspace management agent component, a resource moni-
toring component, and a resource specific security component. The resource ma-
nagement component interfaces with the native resource management functions
to perform the actual scheduling of the resource. The Gridspace management
agent is very similar to the simple network management protocol agent. The
Gridspace management agent is responsible for tracking that status of the ma-
naged object and notifying the Gridspace manager about the relevant changes.
The resource monitoring component is used to track resource utilization rates
and important events for that resource. The resource specific security component
interfaces to the authentication and authorization module that this resource uses
to authenticate and authorize resource requests from another Grid node.

The kernel structure, module management, resource monitoring facilities,
and service mobility make it possible to dynamically change the resources and
behavior of the Grid. For example, there is no significant difference between a
router-allocator and an endsystem node other than the modules that are loaded
on top of the Grid kernel. The node that is hosting different Grid modules to
make up a router-allocator may become heavily loaded. This will prompt the
service mobility protocol to replicate/migrate the router-allocator functionality
to other nodes thus shedding some of the load on the node. Further, the failure
of a router-allocator could be detected by an endsystem and it could then load
the required modules to provide this service. Endsystems may also migrate some
services to other nodes within the Grid.

6 Related Work

Existing Grid computing systems can be divided into two categories, applica-
tion enabling systems and user access systems. The application enabling systems
provide application programmers with tools that allow applications to access
globally distributed resources in an integrated fashion. Examples of such sy-
stems include ATLAS [2], Globe [13], Globus/GUSTO [6], [7], Legion [10], and
ParaWeb [3]. The user access systems provide the end users of the Grid with
transparent access to geographically distributed resources in a location indepen-
dent manner. Examples of such systems include CCS [20], MOL [22], NetSolve
[4], and PUNCH [15].

The Grid Integrated Architecture [9], an extension of the Globus/GUSTO
effort, intends to provide a globally distributed uniform infrastructure. Our Gri-
dOS corresponds to part of the Grid services layer in the architecture. The major
difference between our GridOS architecture and the architecture in [9] is that our

Architecture for a Grid Operating System 75

architecture features a Grid with fine grain adaptability. With the service mo-
bility protocol and the extensible Grid Kernel design, it is possible to adapt the
different nodes of the Grid according to the usage requirements and the node’s
capacity. The Ninja project [11], [12] is building a network computing structure
centered on “network documents” and implemented using Java. There are si-
milarities between their multispaces and our Gridspaces but we focus on using
Gridspaces as a weakly consistent capability database and they use multispaces
as function repository. Their use of XML in network document is for dynamic
application loading rather than for resource specific management extensions.

7 Conclusions

This paper presents a Grid architecture that is motivated by the large-scale
routing principles in the Internet to provide an extensible, high-performance,
scalable, and secure Grid. The central idea of the proposed architecture is to
layer a Grid operating system on top of the resources to construct a Grid. The
resources may have their own schedulers, accounting mechanisms, and security
mechanisms. The GridOS interfaces with the services provided by the local re-
sources and exports them to the Grid level. This paper describes the components
of the GridOS.

The GridOS includes several novel ideas including (i) a flexible naming
scheme called the “Gridspaces”, (ii) a service mobility protocol, and (iii) a highly
decentralized Grid scheduling mechanism called the router-allocator. The com-
bination of flexible naming, service adaptability, service extensibility, and highly
decentralized resource management results in a novel Grid architecture. A Grid
system based on this architecture can execute across a widely varying resource
set that may include wireless PDAs and powerful supercomputers.

References

1. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and
implementation of an intentional naming system”, Operating Systems Review, Vol.
34, No. 5, Dec. 1999, pp. 186-201.

2. J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, “ATLAS: An infrastructure
for global computing”, 7th ACM SIGOPS European Workshop, 1996.

3. T. Brecht, H. Sandhu, M. Shan, and J. Talbot, “ParaWeb: Towards world-wide
supercomputing”, 7th ACM SIGOPS European Workshop, 1996.

4. H. Casanova and J. Dongarra, “Netsolve: A network solver for solving computa-
tional science problems”, Supercomputing, 1996.

5. D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router plugins: A software
architecture for next-generation routers”, IEEE/ACM Transactions on Networ-
king, Vol. 8, No. 1, Feb. 2000, pp. 2-15.

6. I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit”,
Int’l Journal of Supercomputer Application, Vol. 11, 1997.

7. I. Foster and C. Kesselman, “The Globus project: A status report”, 1998 IEEE
Heterogeneous Computing Workshop (HCW ’98), 1998, pp. 4-18.

76 K. Krauter and M. Maheswaran

8. I. Foster and C. Kesselman, eds., The Grid: Blueprint for a new computing infra-
structure, Morgan Kaufmann, San Francisco, CA, 1999.

9. I. Foster, “Building the Grid: Integrated services and toolkit architecture for next
generation networked applications”, www.Gridforum.org/building the Grid.htm,
1999.

10. A. S. Grimshaw, W. A. Wulf, and et. al., “The Legion vision of a world-wide virtual
computer”, Communications of the ACM, Vol. 40, 1997.

11. S. Gribble, M. Welsh, E, Brewer, and D. Culler, “The MultiSpace: an evolutionary
platform for infrastructural services”, 1999 Usenix Annual Technical Conference,
1999.

12. T. Hodes and R. Katz, “A document-based framework for Internet application
control”, 2nd USENIX Symposium on Internet Technologies and Systems, 1999.

13. P. Homburg, M. v. Steen, and A. S. Tennanbaum, “An architecture for a wide area
distributed system”, 7th ACM SIGOPS European Workshop, 1996.

14. C. Huitema, “Routing in the Internet”, 2nd Edition, Prentice-Hall, Upper Saddle
River, NJ, 2000.

15. N. Kapadia and J. Fortes, “PUNCH: An architecture for web-enabled wide-area
network-computing”, Cluster Computing: The Journal of Networks, Software Tools
and Applications; Special Issue on High Performance Distributed Computing. 1999.

16. K. Krauter and M. Maheswaran, “Towards a High Performance Extensible Grid
Architecture”, HPCS 2000, June 2000

17. P. Leach and C. Wieder, “Query routing: Applying systems thinking to Internet
search”, 6th Workshop in Hot Topics in Operating Systems, 1997, pp. 82-86.

18. J. Ordville and B. P. Miller, “Distributed active catalogs and meta-data caching
in descriptive name services”, IEEE Int’l Conference on Distributed Computing
Systems, May 1993, pp. 120-129.

19. M. Maheswaran and K. Krauter, A Parameter-based Approach to Resource Dis-
covery in Grid Computing Systems, TR-CS, Computer Science, University of Ma-
nitoba, under preparation.

20. F. Ramme, “Building a virtual machine-room a focal point in metacomputing”,
Future Generation Computer Systems, Vol. 11, 1995.

21. S. Raman and S. McCanne, “A model, analysis, and protocol framework for soft
state-based communication”, ACM SIGCOMM, 1999, pp. 15-25.

22. A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, F. Ramme, T.
Romke, and J. Simon, “The MOL project: An open, extensible metacomputer”,
1997 IEEE Heterogeneous Computing Workshop (HCW ’97), 1997, pp. 17-31.

23. P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE Press,
New York, NY, 1997.

24. A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal, “Active names: flexible
location and transport of wide-area resources”, USENIX Symposium on Internet
Technologies and Systems, 1999.

25. T. Vaseeharan and M. Maheswaran, “Towards a novel architecture for wide-area
data caching and replication”, First International Conference on Internet Compu-
ting (IC 2000), June 2000

Data Management in an International
Data Grid Project

Wolfgang Hoschek1,3, Javier Jaen-Martinez1, Asad Samar1,4,
Heinz Stockinger1,2, and Kurt Stockinger1,2

1 CERN, European Organization for Nuclear Research, Geneva, Switzerland
2 Inst. for Computer Science and Business Informatics, University of Vienna, Austria

3 Inst. of Applied Computer Science, University of Linz, Austria
4 California Institute of Technology, Pasadena, CA, USA

Abstract. In this paper we report on preliminary work and architec-
tural design carried out in the ”Data Management” work package in
the International Data Grid project. Our aim within a time scale of
three years is to provide Grid middleware services supporting the I/O-
intensive world-wide distributed next generation experiments in High-
Energy Physics, Earth Observation and Bioinformatics. The goal is to
specify, develop, integrate and test tools and middleware infrastructure
to coherently manage and share Petabyte-range information volumes in
high-throughput production-quality Grid environments. The middleware
will allow secure access to massive amounts of data in a universal name-
space, to move and replicate data at high speed from one geographical
site to another, and to manage synchronisation of remote copies. We
put much attention on clearly specifying and categorising existing work
on the Grid, especially in data management in Grid related projects.
Challenging use cases are described and how they map to architectural
decisions concerning data access, replication, meta data management,
security and query optimisation.

1 Introduction

In the year 2005 a new particle accelerator, the Large Hadron Collider (LHC), is
scheduled to be in operation at CERN, the European Organization for Nuclear
Research. Four High Energy Physics (HEP) experiments will start to produce
several Petabytes of data per year over a life time of 15 to 20 years. Since
this amount of data was never produced before, special efforts concerning data
management and data storage are required.

One characteristic of these data is that most of it is read-only. In general,
data are written by the experiment, stored at very high data rates (from 100
MB/sec to 1GB/sec) and are normally not changed any more afterwards. This
is true for about 90% of the total amount of data. Furthermore, since CERN
experiments are collaborations of over a thousand physicists from many different
universities and institutes, the experiment’s data are not only stored locally at
CERN but there is also an intention to store parts of the data at world-wide

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 77–90, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

78 W. Hoschek et al.

distributed sites in so-called Regional Centres (RCs) and also in some institutes
and universities. The computing model of a typical LHC experiment is shown in
Figure 1.

computing

data store

facilities
computing

data store

facilities
computing

data store

facilities

computing

data store

facilities
computing

data store

facilities
computing

data store

facilities

computing

data store

facilities

CERN

Regional
Centre (RC) 1

RC 3RC 2

University
University

University

desk tops

Fig. 1. Example of the network of one experiment’s computing model

These RCs are part of the distributed computing model and should com-
plement the functionality of the CERN Centre. The aim is to use computing
power and data storage in these Regional Centres and allow physicists to do
their analysis work outside of CERN with a reasonable response time rather
than accessing all the data at CERN. This should also help the collaboration to
have many scientists working spread around the world. Regional Centres will be
set up for instance in Italy, France, Great Britain, USA and Japan.

By its nature, this is a typical Grid application which combines two aspects
of today’s Grid technology: Computational and Data Grids. In order to meet
this challenge, the HEP community has established a project called “Research
and Technological Development for an International Data Grid”. The objec-
tives of this project are the following. Firstly, establish a Research Network
which will enable the development of the technology components essential for
the implementation of a new world-wide Data Grid on a scale not previously at-
tempted. Secondly, demonstrate the effectiveness of this new technology through

Data Management in an International Data Grid Project 79

the large scale deployment of end-to-end application experiments involving real
users. Finally, demonstrate the ability to build, connect and effectively manage
large general-purpose, data intensive computer clusters constructed from low-
cost commodity components. Furthermore, the project does not only cover HEP
but also other scientific communities like Earth Observation and Bioinformatics.

The entire project consists of several work packages for middleware develop-
ment, computing fabric and mass storage management, testbeds and applicati-
ons. In this paper we present the data management aspects of the project. The
objectives are to implement and compare different distributed data management
approaches including caching, file replication and file migration. Such middle-
ware is critical for the success of heterogeneous Data Grids, since they rely on
efficient, uniform and transparent access methods. Issues to be tackled within
three years include:

– the management of a universal namespace
– efficient data transfer between sites
– synchronisation of remote copies
– wide-area data access/caching
– interfacing to mass storage management systems.

A major aim of the project is to build on existing experience and available
software systems. For the startup phase we have chosen the Globus toolkit as
the starting point for our middleware research and development. Globus is a
promising toolkit and has already proved several times that it is applicable for
large Grid projects [12].

The paper is organised in the following way. The section on related work
gives an overview of data management in current data Grid projects and discus-
ses related issues of distributed database management systems and distributed
file systems. Section 3 emphases the challenging requirements of data-intensive
Grid applications. In sections 4 and 5 we present the overall architecture of the
data management middleware components and give details on the individual
components. Finally, conclusions and future work are presented.

2 Survey and Discussion of Related Work

Traditional distributed file systems like Network File System (NFS) [18] and
Andrew File System (AFS) [15] provide a convenient interface for remote I/O
with a uniform file name space. However, this approach does not support mul-
tisite replication issues and also cannot achieve good performance due to a lack
of collective I/O functionalities, i.e. batch I/O and scheduled I/O. In contrast,
parallel file systems like Vesta [5] and Galley [16], provide collective I/O but do
not address complex configurations, unique performance trade-offs and security
problems that arise in wide area environments. Finally, remote execution systems
enable location-independent execution of tasks scheduled to remote computers,
but do not support parallel I/O interfaces or access to parallel file systems.

80 W. Hoschek et al.

In distributed database research replication becomes more and more impor-
tant. However, the research emphasis is on update synchronisation of single
transactions on replicas [1] rather than considering the problem of transferring
large amounts of data, which is an issue in our case.

None of these legacy systems are able to satisfy the stringent requirements,
posed by both the scientific community and the industry, of having geographi-
cally distributed users and resources, accessing Petabyte-scale data and perfor-
ming computationally intensive analysis of this data.

The notion of the ”Grid” has been related to having access to distributed
computational resources, resulting in being able to run computation intensive
applications. The concept of having a Grid infrastructure which can support data
intensive applications is new to the Grid community. There are a few projects,
like Globus [4] and Legion [13], which were initially directed towards compu-
tational Grids but are now also adding support for distributed data manage-
ment and integrating this with the computational Grid infrastructure. There is
yet another class of on-going projects which have directed their efforts to sup-
port the distributed-data intensive applications from the very beginning. These
mainly include Particle Physics Data Grid (PPDG)[17], Grid Physics Network
(GriPhyN)[8], Storage Request Broker (SRB)[21] and the China Clipper[11] pro-
ject.

The Global Access to Secondary Storage (GASS) API provided by Globus
is the only component in the latest version of the toolkit which performs tasks
related to data management. The scope of GASS API, however, is limited to
providing remote file I/O operations, management of local file caches and file
transfers in a client-server model with support for multiple protocols [3]. The
Globus group is currently working on some of the data management issues inclu-
ding replica management and optimising file transfers over wide area networks
[4]. The Globus philosophy is not to provide high level functionality, but to deve-
lop middleware which can be used as the base for developing a more complicated
infrastructure on top.

The Legion project does not have any explicit modules working on data
management issues. However, it does provide very basic data management fun-
ctionality, implicitly, using the backing store ”vault” mechanism [13]. High level
issues like replica management, optimised file transfers and data load manage-
ment are not addressed.

The Particle Physics Data Grid (PPDG) project is focussed on developing a
Grid infrastructure which can support high speed data transfers and transparent
access. This project addresses replica management, high performance networking
and interfacing with different storage brokers [17]. This is a one year project and
so the intentions are not to have very high level deliverables but to develop a
basic infrastructure which can fulfill the needs of physicists.

The Grid Physics Network (GriPhyN) project is a new project whose proposal
has been sent to NSF for approval in April 2000. The main goal of the project
is to pursue an aggressive programme of fundamental IT research focussed on
realising the concept of ”virtual data” [8].

Data Management in an International Data Grid Project 81

Storage Request Broker (SRB) addresses issues related to providing a uni-
form interface to heterogenous storage systems and accessing replicated data over
wide area. SRB also provides ways to access data sets based on their attributes
rather than physical location, using the Metadata Catalog (MCAT) [21]. MCAT
is a meta data repository system, which provides a mechanism for storing and
querying system level and domain independant meta data using a uniform inter-
face [14]. The China Clipper project has its high level goals to support high speed
access to, and integrated views of, multiple data archives; resource discovery and
automated brokering; comprehensive real-time monitoring of networks and fle-
xible and distributed management of access control and policy enforcement for
multi-administrative domain resources [11]. The project goals cover most aspects
of a Grid infrastructure and also addresses the middleware development and not
only the high level services.

These are the main initiatives which are looking at data management issues
in a distributed environment. One of the main goals of our project is to work
in collaboration with these on-going efforts, and use the middleware developed
by them if it satisfies our requirements. Our final work aims at a system which
would integrate or interact with these projects so that end-users can benefit from
the efforts being put in, from all over the globe.

3 Use Cases

In our Data Grid initiative three different real-world application areas are inclu-
ded:

– High Energy Physics (HEP)
– Earth Observation
– Bioinformatics

Common to all these areas is the sharing of data in terms of information and
databases, which are distributed across Europe and even further afield. The main
aim is to improve the efficiency and the speed of the data analysis by integrating
widely distributed processing power and data storage systems. However, the
applications offer complementary data models, which allow us to assess how well
a given solution can be applied to a general-purpose computing environment.

HEP is organised as large collaborations where some 2,000 researchers distri-
buted all over the globe analyse the same data, which are generated by a single,
local accelerator. The data access itself is characterised by the generalised dyna-
mic distribution of data across the Grid including replica and cache management.
As for Earth Observation, data are collected at distributed stations and are also
maintained in geographically distributed databases. In molecular biology and
genetics research a large number of independent databases are used, which need
to be integrated in one logical system.

In order to get a better understanding of some of the requirements for the
Data Grid, let us briefly outline the general characteristics of HEP computing.
Experiments are designed to try to understand the physical laws of nature and to

82 W. Hoschek et al.

test the existing models by studying the results of the collisions of fundamental
particles, which are produced after acceleration to very high energies in large
particle accelerators. For example, beams of protons are accelerated in opposite
directions and are forced to collide in all detectors along the accelerator. Each of
these collisions is called an event. The detectors track the passage of produced
particles. Moreover, the analysis of physical contraints of the produced particles
implies computationally intensive reconstruction procedures.

Typical uses in HEP fall into two main categories, namely data production
and end-user analysis:

1. Data production
– central experimental data production at CERN (these data come directly

from the on-line data acquisition system of the detector)
– distributed event simulation
– reconstruction of event data
– partial re-reconstruction of event data

2. End-user analysis
– interactive analysis
– batch analysis on fully reconstructed data
– analysis on full event data including ”detector studies”

A typical interactive end-user analysis job starts with selecting a large initial
collection of independent events. This means that the physics result obtained by
processing the event collection is independent of the sequence of processing each
single event. During the analysis jobs physicists apply some ”cuts” on the data
and thereby reduce the number of events in the event collection. In other words,
a cut predicate is developed which is applied to the event collection in order to
sieve out ”interesting” events.

The process of constructing single cut predicates, i.e. optimisations of physics
selections, can take several weeks or months, where the current version of the
cut predicate is applied to the whole event collection or to subsets of it. One
obvious optimisation for such an analysis job is to keep the most frequently used
subset of events on the fastest storage (for example, in the disk cache).

An analysis job can possibly compute some very CPU intensive functions of
all events, for example, a reconstruction algorithm could create a complex new
event object which has to be stored for later analysis. This new object can be
regarded as some additional information for this particular event.

Other jobs could apply multiple functions to every event. However, a consi-
derable amount of time is spent on reading the objects, i.e. fetching the objects
from the disk cache or from tape. Since all events are independent, a coarse
grained parallelism based on the event level allows for a high degree of freedom
in I/O scheduling and thus the events can be processed on different CPUs in
parallel.

The Data Management tasks are to handle uniform and fast file transfer from
one storage system to another. What is more, by studying the access patterns,
meta data and file copies need to be managed in a distributed and hierarchical
cache. In addition, security issues and access rights of the particular users must
be considered.

Data Management in an International Data Grid Project 83

4 Architecture

The Data Grid is a large and complex project involving many organisations,
software engineers and scientists. Its decomposition must meet a number of chal-
lenges. The architecture must

– be easy to understand in order to be maintainable over time. Complex and
fragile components are discouraged.

– be flexible so that different organisations can plug-in their own packages. A
model based on a layered set of interfaces enables multiple implementati-
ons to coexist. Each implementation of an interface may focus on different
characteristics such as performance or maintainability.

– allow for rapid prototyping. Thus it should leverage previous work as much
as possible.

– be scalable to massive high throughput use cases. Careful design and layering
is necessary to achieve this.

– respect the nature of distributed development. Effort is split between multi-
ple teams, each working on a substantial component. Therefore components
must be well defined and loosely coupled.

Fig. 2. Overall interaction of project work packages

We now sketch the overall architecture of the Data Grid as depicted in Figure
2. WP indicates the work package within the entire project. High Energy Physics,
Earth Observation, and Biology exploit the developments of the project to offer
transparent access to distributed data and high performance computing facilities
to their respective geographically distributed community. Workload Management
defines and implements components for distributed scheduling and resource ma-
nagement. Data Management develops and integrates tools and middle-ware in-
frastructure to coherently manage and share Petabyte-scale information volumes

84 W. Hoschek et al.

in high-throughput production-quality Grid environments. Monitoring provides
infrastructure to enable end-user and administrator access to status and error
information in a Grid environment. Globus services form the core middleware.
Fabric Management delivers all the necessary tools to manage a computing cen-
tre providing Grid services on clusters of thousands of nodes. The management
functions must uniformly encompass support for everything from the compute
and network hardware up through the operating system, workload and appli-
cation software. The Networking work package uses the European and national
research network infrastructures to provide a virtual private network between
the computational and data resources forming Data Grid testbeds. Mass Storage
Management interfaces existing Mass Storage Management Systems (MSMS) to
the wide area Grid data management system.

Fig. 3. Overall interaction of data management components

The Data Management work package which is our primary concern in this
paper consists of a layered set of services as shown in Figure 3. Arrows indicate
”use” relationships. Component A uses component B to accomplish its responsi-
bilities. The Replica Manager manages file and meta data copies in a distributed
and hierarchical cache. It uses and is driven by plugg-able and customisable re-
plication policies. It further uses the Data Mover to accomplish its tasks. The
data mover transfers files from one storage system to another one. To implement
its functionality, it uses the Data Accessor and the Data Locator, which maps
location independent identifiers to location dependent identifiers. The Data Ac-
cessor is an interface encapsulating the details of the local file system and mass
storage systems such as Castor [2], HPSS [10] and others. Several implementa-
tions of this generic interface may exist, the so-called Storage Managers. They
typically delegate requests to a particular kind of storage system. Storage Mana-

Data Management in an International Data Grid Project 85

gers are outside the scope of this work package. The Data Locator makes use of
the generic Meta Data Manager, which is responsible for efficient publishing and
management of a distributed and hierarchical set of objects. Query Optimisa-
tion and Access Pattern Management ensures that for a given query an optimal
migration and replication execution plan is produced. Such plans are generated
on the basis of published meta data including dynamic monitoring and confi-
guration information. All components provide appropriate Security mechanisms
that transparently span worldwide independent organisational institutions.

5 Data Management Components

5.1 Data Accessor

One of the core problems that any data management system has to address is
the heterogeneity of repositories where data are stored. This is even more of a
critical aspect when data management has to be targeted in a wide area network
environment. The main problem to be solved is the variety of possible storage
systems. These can be either mass storage management systems like HPSS,
Castor, UniTree, and Enstore [7], multiple disk storage systems like DPSS [6],
distributed file systems like AFS, NFS [18], or even databases. This diversity
is made explicit in terms of how data sets are named and accessed in all these
different systems. For instance, in some cases data are identified through a file
name whereas other systems use catalogues where data are identified and selected
by iterating over a collection of attributes or by using an object identifier.

To limit the scope of our initial work we will concentrate on data collections
that are stored in either Hierarchical Storage Management (HSM) or local file
sytems, leaving aside the extremely complex case of homogeneous access to data
stored in different database systems. We are targeting specially HSMs because
they provide an automatic and transparent way of managing and distributing
data across a storage hierarchy that may consist of tapes, compressed disk and
high-performance disk. This type of storage system is vital for HEP applications
where the volume of data generated requires the use of tapes as a cost-effective
media, and where data access requirements range from accessing it many times
an hour during analysis to accessing it very infrequently (“cold” data).

Having these assumptions in mind, the problem to be solved within this
component of our system is the definition of a single interface that can be used
by higher level modules to access data located in different underlying repositories.
Thus, this module will have to make the appropriate conversions for Grid data
access requests to be processed by the underlying storage system and to prepare
the underlying storage system to be in the best condition to deliver data in a
Grid environment. For HSMs, strategies like when data should be staged to a
local disk cache before a Grid transfer is triggered, what requests are queued
together to get the best performance in terms of tape mounts, and when files
in the local cache are released to free space for new incoming requests will be
performed by this subsystem in close coordination with the facilities provided by

86 W. Hoschek et al.

the storage system (existing internal catalogues, mechanisms for data transfer
between tapes and local disks, etc).

In summary, this subsystem will hide from higher layers the complexities and
specific mechanisms for data access which are particular to every storage system
manipulating the performance factors which are proprietary for each system.

5.2 Replication

Replication can, on the one hand, be regarded as the process of managing copies
of data. On the other hand, replication is a caching strategy where identical files
are available at multiple places in a Grid environment. The main purpose of re-
plication is to gain better response times for user applications by accessing data
from locally “cached” data stores rather than to transfer each single requested
file over the wide area network to the client application. Fault tolerance, and
hence the availability of data, are key items of replication. Replication yields
performance gains for read operations since a client application can read data
from the closest copy of a file. Update and hence write operations need to be
synchronised with other replicas and thus have a worse performance than upda-
tes on single copies. The performance loss of replication depends on the update
protocols and network parameters of the Grid.

The problem of data replication not only involves the physical transfer of
data among sites and the update synchronisation among the different available
copies, but is also related to the more complex problem of deciding which are the
policies or strategies that should trigger a replica creation. In a Grid environment
replication policies are clearly not enforced by a single entity. As an example,
system administrators can decide for production requirements to distribute data
according to some specific layout, schedulers may require a particular data re-
plication schema to speedup execution of jobs, and even space constraints or
local disk allocation policies may force certain replicas to be purged. Therefore,
the replication subsystem needs to provide adequate services for task schedulers,
Grid administrators, and even local resource managers within clusters to be able
to replicate, maintain consistency, and obtain information about replicas to be
able to enforce any required policies.

The replication domain includes data and meta data to be replicated. These
impose different requirements on the underlying communication system in the
Grid. Since we are dealing with Petabytes of data that have to be transferred
over the network to Regional Centres, there is an essential requirement for fast
point-to-point file replication mechanisms for bulk data transfer. However, in
case of limited available bandwidth and limited efficiency (not all the theoretical
bandwith is available) a solution that replicates everything everywhere may not
be feasible.

The meta data replication requires a client-server communication mechanism
at each Grid site. The Globus toolkit offers two possibilities: sockets and a more
high level communication library called Nexus. The communication subsystem
is required to implement different replication protocols like synchronous and
asynchronous update methods. An important input factor for the decision of the

Data Management in an International Data Grid Project 87

underlying update mechanism is data consistency. A detailed survey of replica
updates can be found in [19].

Once data are in place, the Data Locator is responsible for accessing physical
files, mapping location independent to location dependent identifiers. This map-
ping is required in order to enable transparent access to files within a uniform
namespace.

User requests are not directly handed to the Data Accessor, but are routed
through the Replica Manager. The Replica Manager provides high level access
services and optimises wide-area throughput via a Grid cache. It is an “intel-
ligent” service that knows about the wide-area distribution of files. It analyses
user access patterns in order to find out where and how files are to be accessed
in optimal ways. As a consequence of these access pattern analysis, replicas are
created and purged at remote sites.

The Data Accessor simply accesses files which are selected by the Replica
Manager. With the Replica Manager taking care of wide-area caching, the mass
storage system at each site is responsible for the local caching of files.

5.3 Meta Data

The glue for components takes the shape of a Meta Data Management Service.
Particularly interesting types of meta data are:

– Catalogues comprising names and locations of unique and replicated files, as
well as indexes.

– Monitoring information such as error status, current and historical throug-
hput and query access patterns.

– Grid configuration information describing networks, switches, clusters, nodes
and software.

– Policies enabling flexible and dynamic steering.

The key challenge of this service is to integrate diversity, decentralisation and
heterogeneity. Meta data from distributed autonomous sites can turn into infor-
mation only if straightforward mechanisms for using it are in place.

The service manages a large number of objects referred to by identifiers.
Respecting the loosely coupled nature of the Grid, it must allow for main-
tainance of autonomous partitions and good performance, both over the LAN
and WAN. Thus, the service is build on a fully distributed hierarchical mo-
del and a versatile and uniform protocol, such as Lightweight Directory Ac-
cess Protocol (LDAP) [22]. Multiple implementations of the protocol will be
used as required, each focussing on different trade-offs in the space spanned by
write/read/update/search-performance and consistency.

5.4 Security

Certain security aspects of a Grid infrastructure are tightly coupled to Data
Management. Identifying these issues, and adapting the Data Management com-
ponents accordingly, is of vital importance. Some of these issues are discussed
here.

88 W. Hoschek et al.

An important global security issue is to deal with the Grid cache. The site
which owns the data has to make sure that the remote sites hosting its data
caches provide the same level of security as the owner requires for their data.
This will be a serious issue when dealing with sensitive data where human or
intellectual property rights exist. The fact that different sites will probably be
using different security infrastructures will result in more complications. It is,
therefore, required to evaluate strategies and develop tools which can be used
to ensure the same level of security with heterogenous underlying security infra-
structures.

Synchronous replication strategies, instead of using an on-demand or time
scheduled approach, raise a lot of security concerns for the participating sites.
A synchronous solution would involve giving time indefinite write permissions
to other nodes in the Grid, so that whenever a replica is updated or deleted,
the same operation can be propagated to all the remote replicas. An on-demand
or time scheduled solution (asynchronous) is more secure and less consistent,
though not as responsive.

The replica selection will depend on many factors, including the security
policies of the nodes which contain these replicas. We may want to select a
replica from a node which is more ”friendly” as compared to one which forces
more access restrictions.

The sensitivity levels associated with data and meta data might be different.
The actual data might be more sensitive for some sites than their meta data or
vice versa. This difference has to be incorporated in the overall design of the
Data Management as well as the security system.

Several policy matters which are expected to vary from site to site include

– the usage of a synchronous replication strategy or something more secure,
– the importance of meta data as compared to real data in terms of security
– how much weight to be given to security when selecting a replica.

The intention is not to force all the sites in the Grid to agree on a common
policy, but to design a system which is flexible enough to absorb heterogeneity
of policies and present a consistent yet easy-to-adapt solution.

5.5 Query Optimisation

Queries are one way for an application user to access a data store. In a distributed
and replicated data store a query is optimised by considering multiple copies of
a file. A set of application queries is considered to be optimally executed if it
minimises a cost model such as a mixture of response time and throughput.

The aim of a query execution plan is to determine which replicated files to
access in order to have minimal access costs. We do not want to elaborate much
further on a cost model here. However, the optimal query execution plan is based
on static and dynamic influences like the following [9]:

– size of the file to be accessed

Data Management in an International Data Grid Project 89

– load on the data server to serve the requested file
– method/protocol by which files are accessed and transferred
– network bandwidth, distance and traffic in the Grid
– policies governing remote access

The outcome of a query can be either the result of the query itself or a time
estimate of how long it takes to satisfy a query. The Meta Data Management
service will be used to keep track of what data sets are requested by users, so
that the information can be made available for this task.

Query optimisation can be done at different levels of granularity. The method
stated above is only based on files and also requires a set of files as an input
parameter to the query execution plan. Often files have a certain schema and
users query single objects of a file. This requires an additional instance that does
the mapping between object identifiers (OID) and files by using a particular
index [20] which satisfies the expected access patterns. This introduces another
level of complexity for the query optimisation because objects can be available in
multiple copies of files and the optimal set of files has to be determined to satisfy
the query. Note that the OID file mapping is not an explicit task of the Data
Management work package and needs additional information from Workload
Management and Application Monitoring.

6 Conclusion and Future Work

In this paper we reported on preliminary work and architectural design which has
been carried out in the work package “Data Management” in an International
Data Grid project which has been proposed recently. We motivated our Data
Grid approach by a detailed discussion and categorisation of existing work on
the Grid, especially of data management in Grid related projects. The aim of
our three year project is to provide Grid middleware services for the scientific
community dealing with huge amounts of data in the Petabyte range, whereas
the essential goal is to support world-wide distributed real-world applications
for the next generation experiments in High Energy Physics, Earth Observation
and Bioinformatics.

Basing the initial work on Globus, we have a Globus test bed running and
preliminary promising prototypes are being implemented and tested. First results
will be available by the end of the year. Furthermore, we are in close contact with
the Globus developers concerning evolving Data Grid ideas and implementations.

Acknowledgements. We would like to thank Les Robertson for bootstrapping
this interesting work, and Ben Segal for valuable feedback and contributions to
the paper. Thank you to all Data Grid members for their interesting discussions.

90 W. Hoschek et al.

References

1. T. Anderson, Y. Breitbart, H. Korth, A. Wool. Replication, Consistency, and Prac-
ticality: Are These Mutually Exclusive? Proc. SIGMOD International Conference
on the Management of Data, pp. 484-495 1998.

2. O. Barring, J. Baud, J. Durand. CASTOR Project Status, Proc. of Computing in
High Energy Physics 2000, Padova, Febr. 2000.

3. J. Bester, I. Foster, C. Kesselman, J. Tedesco, S. Tuecke. GASS: A Data Movement
and Access Service for Wide Area Computing Systems. In Proceedings of the Sixth
Workshop on I/O in Parallel and Distributed Systems, May 1999.

4. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke. The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific DataSets. Network Storage Symposium, Seattle 1999.

5. P. Corbett and D. Feitelson. Design and Implementation of the Vesta Parallel File
System. In Proceedings of the Scalable High-Performance Computing Conference,
pages 63-70, 1994.

6. DPSS: Distributed Parallel Storage System, http://www-itg.lbl.gov/DPSS/
7. Enstore: http://www-isd.fnal.gov/enstore/design.html
8. GriPhyN: Grid Physics Network, http://griphyn.org/
9. K. Holtman, H. Stockinger. Building a Large Location Table to Find Replicas of

Physics Objects. Proc. of Computing in High Energy Physics 2000, Padova, Febr.
2000.

10. HPSS: High Performance Storage System, http://hpcf.nersc.gov/storage/hpss/
11. W. Johnston, J. Lee, B. Tierney, C. Tull, D. Millsom. The China Clipper Project:

A Data Intensive Grid Support for Dynamically Configured, Adaptive, Distributed,
High-Performance Data and Computing Environments. Proc. of Computing in High
Energy Physics 1998, Chicago 1998.

12. W. Johnston, D. Gannon, B. Nitzberg. Grids as Production Computing Environ-
ments: The Engineering Aspects of NASA’s Information Power Grid. Eighth IEEE
International Symposium on High Performance Distributed Computing, Redondo
1999.

13. LEGION: http://www.cs.virginia.edu/ ∼ legion/
14. MCAT: A Meta Information Catalog,

http://www.npaci.edu/DICE/SRB/mcat.html
15. J. Morris, et al. Andrew: A Distributed Personal Computing Evironment. Comms.

ACM, vol 29, no. 3, pp. 184-201, 1996.
16. N. Nieuwejaar, D. Kotz. The Galley Parallele File System. In Proceedings of the

10th ACM International Conference on Supercomputing, pages 374-381, Philadel-
phia, ACM Press, May 1996.

17. PPDG: Particle Physics Data Grid, http://www.cacr.caltech.edu/ppdg/
18. R. Sandberg. The Sun Network File System: Design, Implementation and Experi-

ence, Tech. Report, Mountain View CA: Sun Microsystems, 1987.
19. H. Stockinger, Data Replication in Distributed Database Systems, CMS Note

1999/046, Geneva, July 1999.
20. K. Stockinger, D. Duellmann, W. Hoschek, E. Schikuta. Improving the Perfor-

mance of High Energy Physics Analysis through Bitmap Indices. To appear in
DEXA’200, Springer Verlag, Sept. 2000.

21. SRB: Storage Request Broker, http://www.npaci.edu/DICE/SRB/
22. W. Yeong, T. Howes, S. Kille. Lightweight Directory Access Protocol, RFC 1777.

Performance Systems International, University of Michigan, ISODE Consortium,
March 1995.

XtremWeb: Building an Experimental Platform
for Global Computing

Cécile Germain, Vincent Néri, Gilles Fedak, and Franck Cappello

Laboratoire de Recherche en Informatique.
Université Paris Sud

http://www.XtremWeb.net

Abstract. Global Computing achieves highly distributed computations
by harvesting a very large number of unused computing resources connec-
ted to the Internet. Although the basic techniques for Global Computing
are well understood, several issues remain unadressed, such as the ability
to run a large variety of applications, economical models for resource ma-
nagement, performance models accounting for WAN and machine com-
ponents, and finally new parallel algorithms based on true massive par-
allelism, with very limited, if any, communication capability. The main
purpose of XtremWeb is to build a platform to explore the potential of
Global Computing. This paper presents the design decisions of the first
implementation of XtremWeb. We also present some early performance
measurement, mostly to highlight that even some basic performance fea-
tures are not well understood yet.

1 Introduction

The XtremWeb project is dedicated to the study of a particular execution model
in the general framework of Global (or Meta) Computing. In this model, all the
computing power is provided by volunteer computers. These computers offer
some of their time to execute a piece of a very large application, under more or
less severe restrictions on the use of this time.

The XtremWeb environment and the other related ones like Entropia.com,
Distributed.net, Seti@home [3] are Web extensions of cycle stealing concepts
originally intended for networks of workstations. Condor [6], Globus [10], Atlas
[5], Nimrod/G [1] and some other systems have addressed the issues of cycle
stealing in the context of LAN environments. The main characteristics of a LAN
and a Web environment drastically diverge.

– Number of connected machines: hundreds for a LAN; millions for the Web.
– Security and protection: stations inside a LAN are well identified; machines

on the Web could be very malicious.
– Stability : the Mean Time Between Failure (MTBF) on a LAN is several

days, versus several minutes on the Web. Moreover, the LAN stations are
permanently attached to the network and belong to the institutions that
may steal their cycles, while the machines on the Web do not belong to the
project that wants to borrow them. In particular, the owner of a machine
may unplug its machine, either physically, or from the project at any time.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 91–101, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

92 C. Germain et al.

These differences make cycle stealing on Internet much more challenging than
the simple adaptation of existing systems to the Web. However, cycle stealing on
the web may provide unprecedented computing and storage power. It may also
provide a new framework for the study of parallel algorithms, mostly because an
application may use a nearly unlimited number of processors poorly coupled.

The XtremWeb project aims at building a platform for experimenting with
global computing capabilities. The Global computing platform is designed to
be a substrate for plug-in experiments. Some issues to be addressed are: si-
zing of the environment components (servers, network, workers) according to
applications features; high performance and secure execution (relies on program
isolation); modeling resource and workload management as inputs for scheduling
algorithms; and the impact of the application characteristics, either compute- or
data-intensive.

The next section presents main issues of global computing systems. The
XtremWeb architecture is detailed in section 3. The first implementation is pre-
sented in section 4. Section 5 displays some early experiments. The next section
exemplifies a typical application. The last section concludes.

2 Global Computing Issues

All Global Computing systems must exhibit a set of desirable properties. We
quote them and discuss how they specialize in the XtremWeb case.

– Scalability. It must scale to hundreds of thousands nodes, with correspon-
ding performance improvement. The target performance is throughput, not
latency of individual computations.

– Heterogeneity. Target machines are personal computers and workstations.
Load-sharing facilities (LFS, Condor), or batch systems, such as the IBM
Load-Leveler are not considered as a part of the chain of contribution: the
workstations will decide on an individual basis if and when they are willing
to contribute.

– Availability. The owner of a computing resource must be able to define a
policy which limits the contribution of the resource.
The policy is defined by a type of activity at the workstation level, and is
binary: when this type of activity makes a transition from “off” to “on”, the
workstation is immediately released, whatever loss in the global computation
this may imply.

– Fault tolerance. True hardware or software faults, including unplugged lap-
tops, and unexpected computation aborts due to the availability policy, must
be managed identically, as an interrupted computation does not have the
right to use local computer resource to save any of its state or to signal the
event to the global system.

– Security. All participating computers should be protected against malicious
or erroneous manipulations, and the global computation result should not
be exposed to be tampered with.

– Usability. The system should be easy to deploy and to use.

XtremWeb: A Global Computing Experiment 93

3 The XtremWeb Design

3.1 Application Scope

XtremWeb focuses on an important class of applications : the embarrassingly
parallel ones, also coined as multi-parameter. These applications consist of a
large number of instances of the same computation applied to varying input pa-
rameters. In this case, each computation completes independently of the others,
and the information flows only between the worker and the dispatcher. If one
computation fails, because the worker has been preempted, other ongoing com-
putations will not be affected.

3.2 The Pull and Steal Model

The XtremWeb execution model combines a pull model and a cycle-stealing
scheme. In the pull model, workstations (workers) withdraw work from a central
agent (the dispatcher), in opposite to a push model, where workstations are
borrowed by an external agent. The cycle-stealing scheme is characterized by
constraints that can prevent the computation to complete, even without any
computer or network failure.

The paradigm of the pull-and-steal model is the screen-saver scheme, as ex-
emplified by the popular SETI@home project [3] and Nimrod/G [1]. When a
participating workstation is not interactively used, as detected by a screen saver
utility, the workstation participates in the global computation. As soon as the
user comes back to the workstation, the screen saver vanishes and so does the
ongoing computation; all unfinished work is lost.

The pull model is not limited to the screen saver scheme, and not even to
cycle-stealing. It can be extended to a strategy for dynamic load balancing on a
large set of workstations, each of them with a variable level of commitment to
the solution of the global application. For instance, some of them may be willing
to contribute only if their activity is not above a certain, locally determined,
threshold, while other ones may be fully devoted to the application. One of
the objectives of the XtremWeb architecture is to accommodate these various
contributing policies, including the screen-saver one, in an unified framework.

3.3 One-Sided Communication

In the framework of Massively Parallel Processing, one-sided communication has
been exemplified by various implementation of get and put primitives. The main
idea is that one participant can perform all information transfer, either put, (i.e.
writing to a remote partner), or get, (i.e. reading from a remote partner). The
cooperation of the accessed remote partner is not required at the programming
level, even if an underlying infrastructure must ensure the actual access. This
contrasts with message-passing schemes, where both partners must collaborate
through paired send/receive calls. In the distributed computing framework, one-
sided communication is provided by RPC (Remote Procedure Call) or RMI
(Remote Method Invocation), following the programming model.

94 C. Germain et al.

All XtremWeb information transfers are controlled by the workers. They
perform RMI calls to the dispatcher, and no provision is made for the contrary.
The first motivation for this choice is security: with one-sided communication,
the workers security is guaranteed by server authentication and protection of the
data transmission from the server.

Another motivation is ease of deployment. The security policy of the dispat-
cher is configurable, while the one of the worker is not. Callbacks from the
dispatcher to a worker depend on the last one, and can thus be blocked by
firewalls, or require the adoption of very slow protocols such as http.

With this scheme, the dispatcher performance becomes even more critical.
While one part of the communication overhead is distributed across the workers,
all the control cost is centralized on the dispatcher. The abstract dispatcher must
then be instantiated in as many actual dispatchers as necessary to sustain the
throughput required by the expected number of workers.

3.4 Native Code Execution

XtremWeb targets high performance. Thus, although the workers protection
suggests execution in a virtual environment, typically sand-boxed Java bytecode,
performance dictates that the end-user code should remain native.

Like most of the other Global Computing system XtremWeb uses native
code execution. However, in contrary to them, XtremWeb allows any workers to
execute different and downloadable applications.

New applications are made downloadable following a verification process that
is more complicated than the byte code verification of Java virtual machines
but less secure. First, only trusted institutions can propose codes to integrate
in XtremWeb. Second, the code is executed on dedicated workers. Third the
code is encrypted before downloading to workers. Fourth, the code download
procedure uses a private-public key to secure the transaction. This verification
process cannot prevent from any fault case because testing (second phase) may
not execute all code sections with all possible parameters sets. So there is still
a risk of execution error, which is not the case, in principle, with bytecodes and
virtual machines.

A more flexible way to allow downloadable high performance native code
execution is the technique known as Software Fault Isolation [4]. This kind of
approach is necessary to allow the execution of any application without deeply
checking the application before execution. We plan to evaluate this approach in
future version of XtremWeb.

4 Implementation

4.1 Java Based Coordination and Coupling

The first implementation of the XtremWeb infrastructure is completely writ-
ten in Java. The Java language and APIs provide portability (related to the

XtremWeb: A Global Computing Experiment 95

ease of deployment issue). It also provides language-level constructs for concur-
rency through the Java Threads, and parallelism through Java RMI. Integrating
binary high performance code is straightforward through Java Native Interface.
Finally, special-purpose APIs are available for nearly any special functionality
required, in particular authentication and encryption through the Secure Socket
Layer (SSL) system and vendor-neutral database access through Java DataBase
Connectivity (JDBC).

Activity
Monitor

Alive

Control
Request

Application
Finished

Activity Monitor

User mode Worker mode

Daemon treads

Fig. 1. The worker

Figure 1 shows the worker architecture. In user state, a background process
running at low priority monitors the computer activity, following the availability
policy, and also the CPU activity for performance prediction service (see below).
When the computer becomes available, a new process is launched. This process
starts with a control thread, that creates a monitoring thread and a compute
thread, and waits forever for the monitoring thread to terminate. The compute
thread invokes WorkRequest and getWork. This calls register the worker to the
dispatcher and returns a description of the work to be done as well as the needed
work input. Then the compute thread runs the actual computation and invokes
WorkFinished and WorkResult for transferring back the results to the dispat-
cher. It also launches a thread that periodically invokes WorkAlive to signal
its activity to the dispatcher. The dispatcher continuously monitors these calls.
When a worker has not called for a sufficient long time, the worker computation
is considered lost and rescheduled for another worker.

When the monitoring thread detects an increase of the machine load or an
external device activation, it terminates immediately, causing the other threads
to die. The compute and alive threads run as Java daemon threads. This imple-
mentation ensures that whatever synchronization is implied in the invocation of
remote methods on the dispatcher, threads cannot become deadlocked.

5 Early Experiments on Server Throughput

One of the main parameter of the performance for XtremWeb application is the
ability of the server to answer to work requests. Most transactions between the
server and the workers are implemented in terms of Java RMI. RMI overhead for

96 C. Germain et al.

an empty call is more than 500 µs on a 200MHz Pentium, and increases with the
complexity of the objects passed back and forth [11]. This high overhead comes
from the underlying TCP protocol, and from the design of the serialization pro-
cedure, which allows for dynamic class loading. However, the main performance
concern for XtremWeb is throughput, not latency since workers are supposed to
be spread across a very large geographic area.

XtremWeb throughput has two components: the dispatcher throughput and
the aggregate workers throughput. The first one is related to the dispatcher capa-
bility for concurrently handling multiple RMIs, while the second one is related
to the scheduling policy. Early experiments deal with dispatcher throughput.

The XtremWeb architecture requires a large number of short RMI, corre-
sponding to WorkAlive calls. The required RMI throughput is the product of
the number of workstations controlled by the RMI call frequency. Predicting the
actual RMI call frequency when WAN congestion is taken into account will be
the subject of further research. In this section, we report three experiments which
measure the dispatcher capacity in terms of RMI throughput. All experiments
were conducted on idle machines. The Solaris machine is an UltraSparcII bipro-
cessor at 400MHz, running Solaris 2.7 and Solaris JDK1.2.1; the Linux machine
is a Pentium III biprocessor at 500MHz, running Linux 2.2.13 and jdk 1.2.2 from
Blackdown.

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

T
hr

ea
ds

/s
ec

on
d

Number of threads

Thread creation

Solaris
Linux

Fig. 2. Threads creation

Each remote method invocation from different machines creates a Java
thread. Thus a first concern is the thread creation performance. Fig. 2 shows the
result of a simple experiment: a main thread creates a given number of threads,
which are affected with Java MIN PRIORITY before being actually launched.
The thread creation rate is not sensitive to the number of running threads in
the Sun JDK1.2.1 JVM running on Solaris. In the Linux configuration, the rate
rapidly decreases and falls below one thread per second at high load.

The second experiment (fig. 3-A) was conducted so as to isolate the im-
pact of network congestion from RMI calls. A client performs a light RMI call
on a server which concurrently runs a fixed number of MIN PRIORITY Java
threads (in practice, the client iterates over RMI calls to measure an average;
Java RMI is synchronous, so iterating over RMI does not create any network
congestion and averaging makes sense). The remote method is light in the sense
that is has no parameters and does not return a value, and only increments a

XtremWeb: A Global Computing Experiment 97

counter. The behavior of the Solaris configuration is what can be expected: the
average RMI latency is around 1ms and does not change with the number of
adversary threads. The Linux system latency linearly increases with the num-
ber of adversary threads. The RMI latencies in presence of only one adversary
thread are equivalent in both cases, showing that the RMI implementations are
comparable.

Independent experiments have shown that rapid performance degradation
with the number of active threads is shared by other JVM implementations on
Linux, in particular the IBM one. The reason may be that Java threads are
directly mapped to the native Linux threads (one-to-one scheme), which share
the process scheduler, and thus are scanned each time the scheduler computes
its goodness measures for electing the next process to run. However, the steep
curve of fig. 3-A for a low number of adversary threads must reflect a problem
specifically associated with thread creation: the actual thread work is so short
that is very unlikely that it could invoke the kernel function schedule () while
running.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

T
im

e
in

 m
s

Number of background threads

A- RMI Latency in ms

Solaris
Linux

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35

R
M

I/m
s

Number of machines

B- RMI Throughput

Solaris
Linux

Fig. 3. RMI Latency (ms) in presence of adversary theads and RMI Troughput in
RMI/sec

The last experiment (fig. 3-B) simulates at a small scale what could be the
behavior of a complete XtremWeb system. Up to 32 heterogeneous machines
connected through a LAN perform a light RMI call (averaged as before). The
actual RMI throughput is measured. Before entering the RMI loop, the clients are
synchronized, so as to ensure approximate simultaneity of the requests. Although
Solaris neatly overperforms Linux, the difference is much less pronounced than
in the two previous experiments. Two effects are at work here. First, the limited
number of machines, possible network congestion and RMI overhead, all limit
the number of outstanding requests for thread creation to a much lower level
than in the first experiment, where only the thread creation rate was measured.
The second effect is that the invoked method is very short. Thus, even if the
thread associated with the RMI may wait before creation, not many threads will
run concurrently, contrary to the second experiment.

The main conclusions of these early experiment are that server throughput
depends on 1) the Java virtual machine implementation (which in turn depends
on OS) and 2) the performance of all XtremWeb components : the servers, the
workers and the network.

98 C. Germain et al.

So, we must design a complete methodology (benchmark, experimental plat-
form, result storage and interpretation) in order to measure and understand the
respective contribution of each component to the global server throughput.

6 Application Example: The Auger Experiment

6.1 Background

The Pierre Auger Observatory [7] project is an international effort to study the
highest energy cosmic rays, above 1019 eV. The origin of the very high energy
cosmic rays is completely unknown. In fact, until the fortuitous detection of two
events above 1020 eV, the theory did not allow for them to happen.

Such events are extremely rare: above the energy of 1018 eV, only When a
cosmic ray particles (primaries) strike the earth’s atmosphere, collisions with
air molecules initiate cascades of secondary particles, called air showers. Two
giant detector arrays, each covering 3000 km2, will be constructed to measure
the arrival direction, energy, and mass composition of cosmic ray air showers
above 1019 eV over many years.

Air showers must also be numerically simulated, in particular by the Aires
program.

The simulated results will be compared against the actual observations to
infer the physical characteristics (speed, etc.) of the primaries, during the ex-
periments. The inputs of the numerical simulation are the physical parameters
of one primary particle plus parameters related to simulation control. The ou-
tput is the simulated shower particles arriving at the earth level. The number
of independent simulations to be run is very large: the simulation is based on
a Monte-Carlo scheme, requiring many runs with the same input parameters
to compute averages; primaries with various structural and kinetic properties
must be simulated; finally, multiple physical models must be simulated. The re-
quirement in computing power is equivalent to 106 years of a 300MHz PC per
year. At this step of our work and of the Auger experiment, the XtremWeb
project is a tentative resource complementary to the production of the classical
high-performance computing facilities.

6.2 Implementation of AIRES on Top of XtremWeb

Aires provides an excellent testbed for experiments. The execution time can be
predicted with reasonable accuracy from the input parameters. Moreover, with
some modifications, the code can be considered as recursive: the shower particles
can in turn be considered as primaries for smaller showers. Thus, the granularity
can be arbitrarily down-sized [9].

For the Aires simulation, WorkRequest and getWork are merged, because
there are only a few input parameters. Also the decoupling WorkFinished and
WorkResult calls is mandatory. With a typical 10MB result file, the time scale
and disk requirement of WorkResult is not consistent with the one of the other
transactions.

XtremWeb: A Global Computing Experiment 99

Although the first version will include only a crude scheduler of complete
showers based on the time of day, we plan to experiment in particular on the
Rosenberg model [12]. This model considers a fixed startup cost accounting for
network latency and a configurable workload, which is exactly the case of Aires.

XtremWeb and Aires are a good testbed for this model, and its extension to
multiple workers.

7 Related Work

As in all grid-based or metacomputing projects and research, the goal of Xtrem-
Web is to transparently exploit networked resources on a large geographic scale
through the Internet. Contrary to most projects, it does not want to exploit
these resources as a giant distributed computer.

The traditional execution model of MPP is message-passing. MetaCompu-
ting or Grid-enabled infrastructures, such as Atlas [5] Globus [10] and Legion [8]
extend this model to the world scale. They target tightly coupled computations,
even if these cannot be as fined-grained as in a MPP context. In such compu-
tations, the remote resources invoked by the application can, and probably will
have to, communicate between each other. Thus these projects have developed
their own communication environments. For instance, in the canonical model
of Global Computation presented in [2], communication and queuing delays are
considered only between the clients and the server, and not between clients.
However, in these infrastructures, clients are allowed to unlimited access to the
computing resources, which is a push model.

The XtremWeb architecture differs from the various previous projects in two
points. The first one is that it plans to be a multi-application environment, allo-
wing for multiple different multi-parameter applications to run simultaneously.
The second difference is that it targets high performance applications, with re-
latively coarse granularity.

8 Conclusion

In this paper, we have described the main design decisions about XtremWeb, a
platform dedicated to study the capabilities of Global Computing.

Global computing system are much more challenging than existing cycle stea-
ling systems which only run inside a LAN environment. We have presented the
main issues. They are related to the typical number of machines involved in a
Global computing system, the security and protection of the servers and the
workers, the MTBF of the workers and the dynamicity of all these parameters.

Design decisions first concern the application domains considered for Xtrem-
Web. XtremWeb is dedicated to embarrassingly parallel or multi-parameter ap-
plications. The other design decisions which are 1) Pull and Steal model, 2)
One-sided communication and 3) Native code execution correspond to a) the
specificities of cycle stealing on WAN environment and b) high performance

100 C. Germain et al.

requirement. The first implementation of XtremWeb relies on Java based coor-
dination and coupling.

Early experiments have shown the necessity of a performance analysis metho-
dology reflecting the features and interactions of this new “parallel architecture”
components, servers, networks and workers.

Finally, we have described the implementation of Aires on top of XtremWeb.
Aires is a large-scale end-user application used in astrophysics.

Our immediate work is to complete the first XtremWeb version, which will be
available soon. The next work is to define the relevant performance parameters,
which implies to separate the impact of the network, the OS, and the Java infra-
structure, and to define benchmarks that can measure these parameters across
various configurations. With these two tools, we plan to build a performance
model and to experiment on static scheduling. Finally, we will look for other
applications.

The project development can be followed from the project web site:
http://www.XtremWeb.net

References

1. Abramson, D., Buyya, R and Giddy, J. ”Nimrod/G: An Architecture of a Resource
Management and Scheduling System in a Global Computational Grid, Interna-
tional Conference on High Performance Computing in Asia-Pacific Region (HPC
Asia’2000), Beijing, China. IEEE Computer Society Press, USA, 2000.

2. K. Aida, U. Nagashima, H. Nakada, S. Matsuoka and A. Takefusa. Performance
Evaluation Model for Job Scheduling in a Global Computing System. In 7th IEEE
Int. Symp on High Performance Distributed Computing, pages 352–353, 98.

3. Anderson D., Bowyer S., Cobb J., Gedye D., Sullivan W. T. and Werthimer D. A
New Major SETI Project Based on Project Serendip Data and 100,000 Personal
Computers. in Astronomical and Biochemical Origins and the Search for Life in
the Universe, Proc. of the Fifth Intl. Conf. on Bioastronomy, 1997

4. T. E. Anderson R. Wahbe, S. Lucco and S. L. Graham. Efficient Software-Based
Fault Isolation. In Symp. on Operating System Principles, 1993.

5. Baldeschwieler J. E., Blumofe R.D. and Brewer E.A.. Atlas: An Infrastructure
for Global Computing. in Proc. of HPCN’95, High Performance Computing and
Networking Europe, Lecture Notes in Computer Science 918, pp. 582-587, Milano,
Italy, May 1995

6. J.Basney and M.Levy. Deploying a High Throughput Computing Cluster, volume 1,
chapter 5. Prentice Hall, 99. R.Buyya Ed.

7. The Pierre Auger Observatory Cronin J. (University of Chicago) and Watson A.
(University of Leed) http://www.auger.org.

8. A. S. Grimshaw and W. A. Wulf. The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, Volume 40, Number 1, Pages 39–45,
January 1997.

9. G.Fedak. Exécution délocalisée et Répartition de Charge : une Étude
Expérimentale. In RenPar’2000, 2000.

10. I.Foster and C.Kesselman. The Globus Project: a Status Report. in Futur Gene-
ration Computer System, 40:35–48, 99.

XtremWeb: A Global Computing Experiment 101

11. J. Maasen, R. van Nieuwpoort, R. Veldema, H. E. Bal and A. Plaat. An Efficient
Implementation of Java’s Remote Method Invocation. In Proc. ACM Symposium
on Principles and Practice of Parallel Programming. May 1999.

12. Rosenberg A.L.. Guidelines for Data-parallel Cycle-Stealing in Networks of Work-
stations. Journal of Parallel and Distributed Computing, 59:31–53, 99.

A Grid Computing Environment for Enabling
Large Scale Quantum Mechanical Simulations

Jack J. Dongarra1 and Padma Raghavan1

Department of Computer Science
The University of Tennessee

1122 Volunteer Blvd.
Knoxville, TN 37996-3450

{dongarra, padma}@cs.utk.edu

Abstract. This paper describes work-in-progress towards developing
a simulation environment that utilizes recent advances in in the areas
of grid middleware and computational kernels. Our goal is to develop
an environment suitable for composing and deploying an overall high-
performance, flexible and robust software solution for large-scale quan-
tum mechanical simulations.

1 Introduction

Research in recent years has advanced the state of computational technology for
enabling large scale science and engineering applications along two broad fronts.
The first concerns the hardware and middleware infrastructure where the evo-
lution is towards computational grids; disparate ensembles of high-performance
computers, clusters, networks, and storage can now be integrated to form po-
werful unified systems [5,6,10,11]. The second concerns the large number of
fundamental computational kernels that have been developed for parallel and
distributed scientific computing. These have emerged from a variety of research
on new parallel algorithms and software development and include advances in
both dense and sparse matrix computations [1,4,15,20,22]. We plan to develop a
simulation environment that utilizes recent advances in in the areas of grid midd-
leware and computational kernels. Our environment is geared towards composing
and deploying an overall high-performance, flexible and robust software solution
for certain large-scale applications of interest.

We believe the main problem facing application developers is that of compo-
sing an overall high-performance solution by selecting judiciously from the array
of available alternate methods for underlying subproblems. A typical large scale
application requires the solution of several subproblems of differing granularity
with differing amounts of parallelism, computation and communication require-
ments. Consequently, a simple parallel model of computation involving the same
number of processors from start to end cannot result in an efficient solution.
Furthermore, there are a variety of solution techniques for a given problem; the
choice of the best alternative often depends on the problem characteristics as

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 102–110, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Grid Computing Environment 103

well as hardware and network speeds. Additionally, problem characteristics can
change dramatically within the life of the same simulation. Finally, the overall
characteristics of the application may allow various ways of decomposing it into
subproblems further compounding the problems of composing an overall efficient
solution.

We plan to develop a pipelined-parallel software architecture to harness the
power of computational grids to enable large scale simulations. At the University
of Tennessee, NSF has recently funded a five-year effort for building a “Scalable
Intra campus Research Grid,” henceforth called SInRG [8]. Our simulation envi-
ronment will be developed on this grid. Our focus will be simulations involving
large-scale eigenvalue computations associated with sparse matrices. These oc-
cur in a variety of molecular dynamics applications. Quantum nanotechnology
simulations based on a “generalized tight binding molecular dynamics” [16,18,
21] are extremely compute-intensive; for example, each time-step in a simula-
tion may require the solution of the standard eigenvalue problem to compute
all the eigenvalues and eigenvectors of a symmetric, positive definite sparse ma-
trix. Molecular dynamics for restricted closed-shell Hartree-Fock approximation
through the Roothan equations [23] also require similar computations.

2 Computational Problem

The central problem in molecular dynamics applications of interest is that of
computing O(N) eigenvalues and eigenvectors of an N × N symmetric posi-
tive definite matrix. Such computations are intrinsically expensive; for N × N
matrices, the storage requirements grow as N2 while the number of operations
grow as N3 when the matrices are treated as dense. The constant in the N3

cost term is larger for the generalized eigenvalue problem but the solution me-
thods for the two problems are closely related. For molecular dynamics models
of interest with several thousand atoms, the matrix dimension N is in the range
10,000 to 50,000. The eigenvalue problem has to be solved in each time-step of
the simulation and a simulation typically involves a thousand time-steps. Con-
sequently, for matrix dimensions of ≈ 10, 000, a simulation with one thousand
time-steps requires computations in the order of 1015. Making such simulations
tractable is challenging and must necessarily involve utilizing performance gains
from all possible enhancements including those from algorithmic improvements,
efficient utilization of hardware resources, and selective composition of solution
alternatives.

The standard eigenvalue problem can be generically stated as computing:
Hx = λx. Given that our application needs O(N) eigenvalues and eigenvectors,
direct methods are of primary interest. The direct solution process consists of
the following three main steps:

1. Transform the matrix to a tridiagonal matrix T using orthogonal transfor-
mations.

2. Compute eigenvalues and eigenvectors of T .

104 J.J. Dongarra and P. Raghavan

3. The eigenvalues of T are the eigenvalues of the original matrix; the eigen-
vectors of the latter are computed by multiplying the eigenvectors of T by
the orthogonal matrix composed of transforms used in the first step in the
conversion to tridiagonal form.

For a detailed discussion and overview of fundamental eigensolution tech-
niques, two excellent sources are the books Demmel and Parlett [7,19]. Good
serial and parallel implementation exist in form of packages LAPACK [1] and
ScaLAPACK [4].

For the three step solution process described above there are several algorith-
mic choices for each step. The simplest model might be to treat to the matrix as
dense; now the choice of kernels for steps 1 and 3 are obvious. However, step 2
could be performed using at least three broad classes of methods: (a) based on
bisection and inverse iteration, (b) using the QR method, and (c) using divide
and conquer. The performance of each alternative depends to a large extent on
the eigenspectrum of the problem as well as machine characteristics such as the
computation to communication ratio.

The matrices arising from simulations of interest are sparse; i.e., and N ×N
matrix has typically some cN nonzeroes where c is a small constant. Sparsity of
the matrix can be exploited for the first step; if the matrix can be put into a band
form with a bandwidth of b, the intrinsic cost of the first step decreases from N3

to b2N . The best algorithm for converting a banded matrix to tridiagonal form
on parallel computers is still under research.

One interesting aspect of our application is that although O(N) eigenvalues
and eigenvectors are needed, they are not needed all at once. That is, it suffices
to compute and use the eigenvectors one at a time. Hence at the very least ,
by reorganization of the underlying computation, the space requirement could
be reduced from O(N2) to O(bN) when band methods are used for step 1. A
first alternative would be to compute only eigenvalues of the tridiagonal matrix
T in the second step. The computations of eigenvectors could be postponed to
the third step, where as earlier the eigenvectors of T could be calculated and
then used to compute eigenvectors of the original matrix. Furthermore, a key
issue in the parallel implementation of step (2) using divide-and-conquer (al-
ternative c above) relates to the data-distribution of the eigenvectors as well
as their re-orthogonalization. By moving eigenvector computation to the third
step, one can easily explore models where the eigenvalues are divided into se-
veral groups (spectrum slicing) and the eigenvector computation for each group
proceeds independently on a single processor. This could be done using expli-
cit parallelization and LAPACK [1] kernels for eigenvector computation. Yet
another interesting alternative would be to compute eigenvectors of the original
matrix directly using inverse iterations. This could be especially advantageous
when the sparsity of the matrix is utilized. This choice in turn leads to other
alternatives, for example, a wide variety of choices for the sparse linear solution
scheme for inverse iteration [2].

Our development effort is geared towards exploring such alternatives for the
subproblems in order to compose an overall efficient solution. Another aspect

A Grid Computing Environment 105

of our approach relates to overcoming the traditional problem with decreasing
speedups on increasing the numbers of processors using fixed-problem size. Con-
sider for example, the simple solution process which involves treating the matrix
as dense and using the routines from ScaLAPACK to solve the overall problem
on a multiprocessor or a cluster. In our earlier work [17], we took exactly this ap-
proach and enabled a relaxation of a 1061 atom carbon cluster that forms part of
a “knee” junction with interesting metal-semiconductor contact for connecting
nanotubes of different diameters. The matrix dimension was 4244 and using 8-16
processors of a NOW with Intel Pentium-II processors and a Myrinet switch [9],
computation time for a single time-step drops to under several minutes (speed-
ups compared to one processor execution were nearly ideal). However, the overall
simulation which required nearly 800 time-steps took several days of non-stop
execution. Furthermore, this time cannot be reduced by simply increasing the
number of processors; this lowers the per-processor utilization and we observed
a slowdown with as few as 32 processors.

By developing a software pipeline, we can tackle as many different simulations
as the number of pipeline stages. Now the actual time for a single time-step of any
given simulation could be reduced by a factor equal to the number of pipeline
stages. Each pipeline stage will be deployed on disjoint groups of processors.
Parallelism within each stage will be exploited using the message passing model
and MPI. The overall solution will be composed using NetSolve which will also
be used to deploy the application on the SInRG computational grid.

3 Developing a Software Environment

The primary building block of the SInRG architecture is the Grid Service Cluster
(GSC). A GSC is an ensemble of hardware and software constructed and admini-
stered by a single research group but also optimized to make its resources easily
available for the overall user community. A GSC is a concentration of (possi-
bly specialized) computing resources in an advanced local to wide-area network.
Each GSC has three basic hardware components: a high-speed data switch capa-
ble of providing at least 1Gb/s per link, a data-storage unit connected to the
switch, and computational resources customized for specific research. The latter
could be an SMP, an MPP, a cluster of workstations, etc. Six GSCs are being
established, with each one having typically in excess of the raw computing power
of the state-of-the-art cluster of 32-node multiple-CPU computers. The total raw
computing power over all GSCs will be in the range of Teraops/second. We next
describe NetSolve, the software environment on SInRG and then outline our
strategy for developing our simulation environment. We view this project as a
precursor to the development of general-purpose software component technology
based on object-oriented methods, an emerging field of research [12,13].

3.1 NetSolve

High-level access across all GSC’s and to CPUs within each GSC is provided
through NetSolve [5]. NetSolve is a software environment designed to transform

106 J.J. Dongarra and P. Raghavan

disparate computers and software libraries into a unified, easy-to-access com-
putational service. It aggregates the hardware and software resources of any
number of computers that are loosely connected across a network and offers up
their combined power through familiar client interfaces such as MATLAB, and
C. It uses a client-agent-server paradigm to deliver this power to users without
revealing the complexity of the underlying system. The user’s data is sent to the
server, where the programs or numerical libraries operate on it; the result then
is sent back to the user’s machine.

NetSolve provides the user with a pool of computational resources. These
resources are in the form of servers that have access to ready-to-use numerical
software. These computational servers can be running on single workstations,
networks of workstations, or MPP (Massively Parallel Processor) systems. The
user gains access by using any one of the NetSolve client interfaces such as
MATLAB. The main function of the NetSolve agent is to process user requests
and to choose the most suitable server for the underlying computation. An ad-
ded advantage is that the agent performs load-balancing among the different
resources.

When building NetSolve, one of the challenges was to design a suitable model
for the computational servers. Features include uniform access to the software,
configurability, and preinstallation. To make the implementation of such a com-
putational server model possible, NetSolve has a general, machine-independent
way of describing a specific numerical process, as well as a set of tools to ge-
nerate new computational modules. The main component is a descriptive lan-
guage which is used to specify the functionality of a computational server. The
description files written in this language can be compiled by NetSolve into com-
putational modules executable on any UNIX or NT platform. This approach al-
lows machine independence as well as the ability to integrate arbitrary software
components into NetSolve. Additionally, this framework also allows increased
collaboration between research teams across institutions. Description files for
a given numerical library need be written only once. These files can then be
transferred to other locations and then compiled to create a new stand-alone
NetSolve system or to contribute new servers to an existing system. Each time
a new description file is created, the capabilities of the entire NetSolve system
are increased. A number of description files have been generated for the fol-
lowing numerical libraries: ARPACK, FitPack, ItPack, MinPack, FFTPACK,
LAPACK, BLAS, and ScaLAPACK. A Graphical User Interface (GUI) is pro-
vided to simplify generation of description files. This interface performs various
error checking on user input in the form of choices from a menu. Using this
interface is much easier than creating a description file manually, especially as
the complexity of the problem increases.

3.2 A Pipelined Parallel Architecture

As mentioned in Section 2, the underlying eigenvalue computations can be divi-
ded into three main stages. We propose a pipelined parallel architecture in which

A Grid Computing Environment 107

each stage of the pipeline represents a major stage in the underlying computa-
tions. Now each one of the pipeline stages can be made to execute on the right
number of processors such that per-processor efficiency is maintained while the
pipeline stages are kept balanced. The pipeline stages are motivated by the three
stage solution process described earlier. However, they are somewhat different
both to reduce inter-stage communication and to easily allow the use of different
kernels within the stages.

The first stage is responsible for conversion of the matrices to a tridiagonal
matrix T . The second stage computes eigenvalues of the tridiagonal matrix; the
eigenvectors of T are not computed in this stage. The third stage computes
eigenvectors of the original matrix and this may involve using the traditional
method of computing eigenvectors of T or new methods to be developed [2].
Our software will be designed is to select the optimal number of processors
for each stage of the pipeline; each stage uses a disjoint set of processors. By
careful selection of the number of processors per stage, the pipeline can be kept
balanced, i.e., with each stage requiring approximately the same amount of time.
By working on three different simulations at the same time, we can ensure that
one time-step of a simulation will be completed in the time required for a single
pipeline stage. If t units of time are required at most by any pipeline stage, then
after the first 3t units of time, one time-step will be completed for a simulation
every t time units. This pipeline architecture is shown in Figure 1.

We have selected the stages so that amount of information to be communica-
ted between stages is typically O(N). We expect the original sparse matrices to
be transferred from each stage to the next. These matrices are very sparse and
have only O(N) nonzeroes. Additionally, from stage one and two, the tridiagonal
matrix must be transferred and this obviously is O(N) amount of data. From
stage two to three O(N) eigenvalues need be transmitted. In the last stage the
eigenvalues are used to compute the corresponding eigenvectors, however if the
simulation is to proceed for another time step all eigenvectors need not be com-
puted and stored all at once. In the molecular dynamics model, each eigenvector
and eigenvalue can be used as soon as it is computed to calculate its contribution
to the force equations. Only the matrices for the next time-step need to passed
from stage three back to one if the simulation is to proceed.

To implement the pipeline we will develop a NetSolve server which will con-
tain suitably encapsulated kernels from ScaLAPACK, LAPACK and sparse sol-
vers such as DSCPACK. The application interface will be through the MATLAB
interface to NetSolve. We will begin with a static allocation of processors to pipe-
line stages as well as a static choice of kernels for each stage. We will migrate to
dynamic, on-the-fly selection as the capabilities in NetSolve are enhanced. When
resources permit, the three-stage pipelined parallel architecture can be replica-
ted and farmed out to SInRG using NetSolve, thus enabling several independent
groups of simulations. By utilizing the performance monitoring features of Net-
Solve, we will attempt to reduce simulation times through the use of scheduling
strategies. Some recent work on application specific scheduling enhancements has
yielded promising results [3] and these schemes will be integrated into NetSolve.

108 J.J. Dongarra and P. Raghavan

Next Time-Step

Stop ?

Stage 1 Stage 2 Stage 3

Conversion to Tridiagonal Form Compute Eigenvalues of

Update Model

Compute Eigenvectors and

Processor Group 1 Processor Group 2 Processor Group 3

cpu1 cpu2

switch

cpu3 cpu4

Tridiagonal Matrix
cpu1 cpu3cpu2 cpu4 cpu1 cpu2 cpu3 cpu4

cpu5

Simulation A, time-step 1

Simulation A, time-step 1

Simulation A, time-step 1

Simulation B, time-step 1

Simulation B, time-step 1

Simulation B, time-step 1

Simulation C, time-step 1

Simulation C, time-step 1

Simulation C, time-step 1

Simulation A, time-step 2

Simulation A, time-step 2

Simulation A, time-step 2

Simulation B, time-step 2

Simulation B, time-step 2

Simulation B, time-step 2

Simulation C, time-step 2

Simulation C, time-step 2

Simulation C, time-step 2

Simulation A, time-step 3

Simulation B, time-step 3 Simulation A, time-step 3

1t

2t

3t

4t

8t

5t

6t

7t

Time (a pipeline stage requires at most t units)

Fig. 1. A pipelined parallel software architecture to enable molecular dynamics simu-
lations on a computational grid

A Grid Computing Environment 109

There are also plans to incorporate fault-tolerance and visualization capabili-
ties to NetSolve and these features will also be of potential use for our target
applications.

4 Concluding Remarks

We plan to use our simulation environment to enable “generalized tight binding
molecular dynamics” models of Carbon nanotubes developed by Menon. These
nanotechnology simulations concern exploring the properties of complex and
three-point, four-point and hetero-junctions of nanotubes to suggest experimen-
tally feasible transistor-like devices [16,17,18,21]. These simulations are based
on generalized tight-binding molecular dynamics scheme which has been shown
to obtain equilibrium geometries for carbon clusters that are in very good ag-
reement with ab initio and experimental results. Such simulations are essential
for gaining a better understanding of the electronic and material properties of
nanoscale clusters to allow design of nanoscale devices in the near future.

Acknowledgments. This work was supported in part through grants ACI-97-
21361, CCR-98-18334, and CDA-99-72889 from the National Science Founda-
tion.

References

1. E. Anderson, Z. Bai, S. Blackford, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen: LAPACK Users’
Guide, Third Edition. SIAM, Philadelphia, PA (1999)

2. J. Barlow, P. Raghavan, K. Teranishi, C. Yang, and R.C. Ward: Computing Ei-
genvectors of Sparse Matrices Using Inverse Iterations. In preparation

3. F. Berman and R. Wolski: AppLeS: Application Level Scheduling. See
http://apples.ucsc.edu

4. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley: ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA (1997)

5. H. Casanova and J. Dongarra: NetSolve: A Network Server for Solving Computatio-
nal Science Problems. The International Journal of Supercomputing Applications,
11 (1997) 212–223

6. K. M. Chandy, A. Rifkin, P. A. G. Sivilotti, J. Mandelson, M. Richardson, W.
Tanaka, and L. Weisman: A Word-Wide Distributed System Using Java and the
Internet. Proc. of the Fifth IEEE International Symposium of High-Performance
Distributed Computing (1996)

7. J. W. Demmel: Applied Numerical Linear Algebra. SIAM, Philadelphia, PA (1997)
8. J. J. Dongarra, M. W. Berry, M. Beck, J. Gregor, M. A. Langston, T. Moore, J. S.

Plank, P. Raghavan, M. G. Thomason, R. C. Ward, and R. M. Wolski: A Scalable
Intracampus Research Grid. Available at website: http://www.cs.utk.edu/ sinrg,
Funded by NSF-CISE

110 J.J. Dongarra and P. Raghavan

9. J. J. Dongarra, J. S. Plank, and P. Raghavan: Enabling Technology for High-
Performance Heterogeneous Clusters. National Science Foundation, $150,000
(1999)

10. I. Foster and C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputing Applications (1997)

11. G. Fox and W. Furmanski: Web Technologies in High-Performance Distributed
Computing. In Computational Grids (1998)

12. D. Gannon, R. Bramley, S. Diwan, B. Temko, N. Mukhi, K. Chiu, M. Govindar-
aju, M. Yechuri, and J. Villacis: Common Component Architecture. Available at
website: http://www.cs.indiana.edu/ccat.

13. D. Gannon, R. Bramley, J. Villacis and A. Whitaker: Using the Grid to Support
Software Component Systems. SIAM Conference on Parallel Processing (1999)

14. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. J. Dongarra: MPI: The
Complete Reference. The MIT Press Cambridge, MA (1996)

15. G. Karypis and V. Kumar: METIS: Unstructured graph partitioning and sparse
matrix ordering system. Technical Report, Department of Computer Science, Uni-
versity of Minnesota, Minneapolis, MN (1995)

16. M. Menon, E. Richter and K. R. Subbaswamy: Structural and Vibrational Pro-
perties of Fullerenes and Nanotubes in a Non-orthogonal Tight-Binding Scheme.
J. Chem. Phys. 104 (1996).

17. M. Menon, R. Richter, P. Raghavan and K. Teranishi: Large Scale Quantum Me-
chanical Simulations of Carbon Wires. Superlattices and Microstructures 27 (2000)
577–581

18. M. Menon and K.R. Subbaswamy: Non-orthogonal Tight-Binding Scheme for Sili-
con with Improved Transferability. Phys. Rev., 55 (1997)

19. B. Parlett: The Symmetric Eigenvalue Problem. Prentice Hall, Engle-wood Cliffs,
NJ (1980)

20. P. Raghavan: DSCPACK: A Domain-Separator Cholesky Package for solving sparse
linear systems on multiprocessors and NOWs using C and MPI. Available upon
request

21. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S.
Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and
M. S. Dresselhouse: Diameter-Selective Raman Scattering from Vibrational Modes
in Carbon Nanotubes. Science 275(1997)

22. B. Smith, L. McInnes, and W. Gropp: PETSc 2.0 user’s manual. Mathematics
and Computer Science Division, Argonne National Laboratory, Report ANL-95-
11- Revision 2.0.22, (1997)

23. R.C. Ward, Talk on applications of eigenvalue computations (1999)

A Web-Based Metacomputing Problem-Solving
Environment for Complex Applications

Ranieri Baraglia1, Domenico Laforenza1, and Antonio Laganà2

1 CNUCE-Institute of the Italian National Research Council
CNR Research Campus, Via V. Alfieri 1, 56010 Ghezzano, Pisa, Italy
e-mail:(Ranieri.Baraglia,Domenico.Laforenza)@cnuce.cnr.it

2 Dipartimento di Chimica, Università di Perugia
Via Elce di Sotto, 8 - I06123 Perugia (Italy)

e-mail:lag@unipg.it

Abstract. In this paper a kernel of Problem Solving Environment ai-
med at managing complex chemical meta-applications based upon an a
priori simulation of molecular structure and dynamics has been presen-
ted. By considering as a case study the simulation of a molecular beam
experiment (SIMBEX), a metacomputing environment able to facilitate
the SIMBEX execution through the Web has been designed. This choice
is due to the rapid and impressive growth of Internet, Java and, Web
technologies. The current work focus on the architectural aspects of the
implemented environment.

1 Introduction

Modern Computational Sciences increasingly stimulate the development of ad-
vanced computing tools because of their need for realistic simulations of complex
systems relevant to the modeling of several modern technologies and environ-
mental phenomena. This type of simulations usually needs to include, though
not necessarily in a completely rigorous manner, a detailed description of re-
levant molecular structures and processes. As a result, related computational
procedures not only need to be run by coordinating several complementary ex-
pertises but also by integrating several extremely powerful computing platforms
in a metacomputer system. From this derives the need to build smart and user-
friendly Problem Solving Environments (PSE) enabling computational scientists
to carry out their investigations without caring about the complexity of the
computing platform being used. As defined in literature, a PSE is a computer
system that provides all the computational facilities needed to solve a target
class of problems. These features include advanced solution methods, automatic
and semiautomatic selection of solving procedures, easy incorporation tools of
novel approaches [1].

A European COST Initiative has been recently proposed [2] to promote the
gathering of research laboratories having complementary expertises in clusters
grafted on metacomputer systems (Metalaboratories). This action has been re-
cently approved (D23) and a call for cooperative projects is being issued. These

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 111–122, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

112 R. Baraglia, D. Laforenza, and A. Laganà

projects should tackle complex modeling problems without conveying in a single
location all the required laboratories, programs and pieces of hardware. Our pro-
posal focuses on building a Metalaboratory devoted to the a priori simulation of
molecular processes, and in particular of crossed molecular beam experiments.

The metacomputing [3,4] approach harnesses different computational resour-
ces and uses their aggregate power as if it was contained in a single machine.

From a technological point of view, the rapid and impressive growth of the
Internet has generated a rising interest in Web-based parallel computing. In
fact, many worldwide projects are focused on the exploitation of the Web as
an infrastructure for running coarse-grained distributed parallel applications. In
this context, the Web has the capability to become a suitable and potentially
infinite scalable metacomputer for parallel and collaborative work as well as a
technological key to create a pervasive and ubiquitous grid infrastructure [5,7].

As a case study, we should consider here the simulation of crossed molecu-
lar beam experiments whose (on a small scale) prototype numerical procedure
(SIMBEX) has already been discussed in literature [8].

Aim of the present paper is to briefly describe the main features of the si-
mulation and the characteristics of the software tools developed to facilitate the
SIMBEX execution on a metacomputer through the Web. These tools are desi-
gned to supply a completely transparent support to the user who does not have
to care about the localization and the allocation of computing resources. All
the needed functionalities were implemented on a properly extended Web server
using, whenever possible, standard tools. In particular, use of the Java Servlet
[9] and Directory Service facilities of LDAP [10,11] have been made. Moreo-
ver, a modular design has been adopted to guarantee an easy maintenance and
extendibility of the product.

The paper is articulated as follows. In Section 2 is given a short description
of SIMBEX. Section 3 focuses on the architectural aspects of the metacompu-
ting environment. Related work on Web-based metacomputing environments is
presented in Section 4. Finally, we summarize our work in Section 5.

2 A Short Description of SIMBEX

SIMBEX is a computational procedure based on a priori calculations of structu-
res and processes of molecular systems. The procedure is articulated into several
modules derived from the theoretical approach to the problem (see Figure 1).

Each module consists of alternative or coordinated computer codes which
accomplish particular tasks. In particular, in module I the construction of the
potential energy surface is performed (see Figure 2). This procedure may be
bypassed when the potential energy surface is already available or used “on the
fly” during dynamical calculations when a direct approach is chosen. If this step
is not bypassed then the level of accuracy of ab initio calculations, the number
and location of points to be considered, the fitting of calculated ab initio values
to a given functional form have to be performed.

A Web-Based Metacomputing Problem-Solving Environment 113

Fig. 1. SIMBEX: Computational Control Flow

Fig. 2. SIMBEX: Module I Control Flow

In module II dynamics calculations are carried out (see Figure 3). These
calculations too can be performed at different levels of accuracy. For small mole-
cules it is possible to perform exact quantum dynamical calculations that can
be either of the time dependent or of the time independent type. When conside-
ring larger molecules, approximations need to be introduced. This may consist
of dynamics constraints leading to a dimensionality reduction in quantum cal-
culations, or of a mixing of quantum and classical techniques, or of a use of pure
classical methods.

114 R. Baraglia, D. Laforenza, and A. Laganà

Fig. 3. SIMBEX: Module II Control Flow

Finally, in module III (see Figure 4), when scattering matrix elements or
state to state probabilities have already been calculated, an averaging over un-
observed variables needs to be made to reproduce experimental properties and
distributions.

Fig. 4. SIMBEX: Module III Control Flow

More detailed information about SIMBEX can be found in [8,12].

A Web-Based Metacomputing Problem-Solving Environment 115

3 The Metacomputing Environment: Architectural
Aspects

To implement SIMBEX on a Web-based metacomputer platform we have desi-
gned a 3-tier architecture having the following components:

– Client side: a Web browser;
– Middleware: Web servers exploiting Java Servlets and Lightweight Directory

Accesss Protocol (LDAP) functionalities;
– Back-end: the ensemble of computing resources.

Figure 5 shows the architectural scheme singling out the key interactions
among the mentioned components. The user, after being authorized when ac-
cessing the system, is offered a choice of applications available on the back-end.
Next step deals with the handling of input data. In order to satisfy the requests
of the users, the server makes use of the LDAP functionalities to localize availa-
ble computing resources capable to provide requested services. LDAP provides
information about the computing resources by accessing to a Directory Informa-
tion Tree (DIT). The tree is made up of entries which represent the computing
resources by a group of attributes. After collecting related information, the server
activates a remote execution of the application on the selected machine. When
the execution is completed, results are passed to the server that forwards them
to the Client.

Fig. 5. The Architectural Scheme Singling out the key Interactions among the System
Components.

116 R. Baraglia, D. Laforenza, and A. Laganà

3.1 The Client Side

The client is made of a Web browser representing the graphical interface driving
the user in the selection of the required application, inputting the necessary data
and collecting the results. HTML forms ensure the interaction of the user with
the Web server: they activate the execution of the Java servlet that corresponds
to the requested action (application selection, data input, etc.). Obviously, the
address of the Web server providing the service has to be known in advance
to the user. The initial page allows the specification of the userid and of his
password which implies also the process of crediting a user (see Figure 6).

Fig. 6. User Authentication Process.

This implies the transfer on the network of private information that could
be made using HTML forms. In order to check the integrity of the information
transmitted we use a Java applet that implements a HMAC [15] mechanism
which exploits the iterative cryptographic MD5 hash function.

In order to control the access to the system’s resources, it is possible to define
different user profiles according to predefined politics. This has been implemen-
ted using LDAP.

After authentication, the user is offered a list of applications that can be run
on the machines belonging to the back-end system (see Figure 7). The application
selection can be performed by clicking on the hyperlink related to the application.

Each application has an associated profile describing its computational cha-
racteristics (requirements): e.g., name, version, documentation available, type
of input required, sources of data, etc. The application profile is stored in the
LDAP server that is searched by the Web server in order to drive the input

A Web-Based Metacomputing Problem-Solving Environment 117

Fig. 7. Application Selection Process.

process. According to the characteristics of the application, by driving the input
of data by the user, a HTML page is produced.

Fig. 8. Application Input Process.

The input data can be submitted (see Figure 8) to the application according
to three different modalities:

– by a data entry phase;
– by selecting a file resident on the client local disk;

118 R. Baraglia, D. Laforenza, and A. Laganà

– by choosing a link to a remote data source (a file located on a metacomputer
machine).

In general, the application execution is expected to take a significant amo-
unt of time. Consequently, the user can leave its metacomputing session after
submitting the application. At job completion the user is notified by an e-mail
message. The message allows the user to reconnect and access the page of the
results built by a proper Java servlet. Serious difficulties may arise when dealing
with the transfer of large amounts of data due to the limited bandwidth available
on the network. Transfer time and data integrity cannot be guaranteed on the
Internet.

3.2 The Middleware

The middleware layer consists of a Web and a LDAP servers. The Web ser-
ver takes care of the interaction with the client and performs the Java servlets
handling user’s requests. The servlets residing on the Web server are:

serv1. Authentication of the user and his profile. According to the chosen
policy, serv1 handles the various phases of the authentication and the interac-
tion with the client to establish his identity. To achieve this, the list of users
allowed to make use of the services has to be accessed. This can be coded as an
entry set of LDAP (see Figure 6). Among the attributes belonging to the user
object there are those which identify the user profile (i.e. the applications he can
submit for execution plus some auxiliary attributes useful for his identification).
Auxiliary attributes can vary depending on the chosen policy. As an example, if
an algorithm of the Challenge-Response type is implemented, the public key of
the user should be stored (the assumption is that the decision on allowing access
to the system should be hand made and left with the manager of the system).

These user profiles are necessary to state “who can do what” and “where
should the results of a run be stored”.

serv2. Application profiles management. According to the selected applica-
tion, serv2 needs to set the modality for transferring input data. To this end
LDAP services are used too, in order to set input formats. In the DIT section
of LDAP all entries related to a given application implemented in the back-end
are defined. Its attributes define how data to be passed to executables have
to be defined. As already singled out for the Client-end, there are three main
ways of inputting data. According to the characteristics of the application serv2
produces a HTML page that drives the user while inputting data (see Figure 8).

serv3. Validation of input data, resource localization, allocation and con-
figuration, remote execution of the application, recollection and forwarding of
results (see Figure 8 and 9). This is the most complex servlet which takes care
of:

checking data format. Data input by the client need to match requi-
rements set by the application. In case they do not, a HTML page is
generated to inform the user about the error;

A Web-Based Metacomputing Problem-Solving Environment 119

Fig. 9. Application Execution Process.

localizing resources. By interacting with the LDAP server it is figured
out where the executable codes needed by the application are stored.
It is worth noticing that LDAP is intrinsically static. Therefore, some
mechanisms allowing a monitoring of the status of the resources of the
back-end need to be introduced in order to allow also an update of the
DIT entries guaranteeing the consistency of the information stored. This
can be obtained by adding a further attribute to the object describing
the characteristics of each machine. Aim of this attribute is to specify
the date in which the last access to the resource has taken place. When
the difference between the actual time and the time indicated by the
attribute is larger than a predetermined amount, one can reasonably
assume that the machine is available. Otherwise, the check is pushed to
a lower level by using commands like ping, top, procinfo to update the
entry related to the considered machine;
allocating and configuring resources previously localized. To this
end a session is activated on the account of the user made available by
the the back-end machine using remote shell mechanisms. Input files are
transferred into a given directory of the machine and a script to activate
the executable codes of the application is configured;
remote executing of the application. A script is launched to start
the execution of the application. System mechanisms like pvm daemon,
mpirun, Condor, etc, local to the chosen machine, take care of configuring
the virtual machine, of executing the parallel application and of storing
the results on a file;
collecting and forwarding results. serv3 waits until the application
is ended before starting the collections of all its results. Then it opens a

120 R. Baraglia, D. Laforenza, and A. Laganà

HTML page containing them or a link and forwards a mail to the user
so that he can connect and access the desired information.

As already mentioned, the LDAP server, keeps the information about re-
gistered users, the characteristics of the available software and hardware. This
information, initially provided by the systems administrator, due to the static
nature of LDAP, is maintained by the serv3 servlet that periodically updates the
content of the LDAP entries according to the checks performed on the resources
of the back-end. The Web and the LDAP servers interact via JNDI [16,17], an
interface written in Java. This can be easily integrated into Java applications.
The reason why JNDI has been chosen is that it has been developed with the
aim of prividing access to a generic directory service and, at the present, it can
interface not only LDAP but also NIS [16], DNS [18], and CORBA [19]. This
guarantees to the applications that make use of it an easy extensibility.

3.3 The Back-End

The back-end is made by high performing computing resources, multiprocessor
systems, workstation networks which provide computing power to the applicati-
ons of the metacomputer. On these machines the Web server has user accounts
that allow the execution of the applications.

4 Web-Based Metacomputing Environments: Related
Work

There is a growing number of worldwide projects related to metacomputing and
grid computing [6,7]. Some of those focus on the exploitation of Java technology
for Web-based metacomputing.

This section presents some of the most significative projects that are repre-
sentative of the Web-based approach.

Charlotte [20], developed at New York University, was the first environment
that has allowed any machine on the Web to participate in any ongoing compu-
tation. Charlotte is built on top of Java without relying on any native code.

Javelin [21] is a Java-based infrastructure for global computing. The system,
developed at the Department of the University of California, Santa Barbara, is
based on Internet and Web technology.

WebFlow [22], developed at the Northeast Parallel Architecture Center, is
a computational extension of the Web model that can act as a framework for
the wide-area distributed computing and metacomputing. The main goal of the
WebFlow design was to build a seamless framework to publish and reuse compu-
tational modules on the Web so that end users, via a Web browser, can engage
in composing distributed applications using WebFlow modules as visual compo-
nents and editors as visual authoring tools.

NetSolve [23], developed at University of Tennessee and Oak Ridge National
Laboratory, is a client/server application designed to solve computational science

A Web-Based Metacomputing Problem-Solving Environment 121

problems in a distributed environment. Netsolve clients can be written in C and
Fortran, use Matlab or the Web to interact with the server. A Netsolve server
can use any scientific package to provide its computational software.

Although our approach inherits some interesting solutions exploited in the
previous mentioned projects, it is less general. In fact, our project focuses mainly
on the creation of a Web-based metacomputing PSE to supply a completely
transparent support to the user who does not have to care about the localization
and the allocation of computing resources.

5 Conclusions

In this paper we have presented the main features of a PSE designed to facilitate
the execution of a complex chemical application (SIMBEX) on a metacomputer
through the Web. This project is developed in the framework of a European
Communities COST Initiative-Action D23.

Our prototype is based on Web technologies and it is written in Java. The
Java programming language successfully addresses several key issues related to
grid environments. It also removes the need to install programs remotely; the
minimum execution environment is a Java-enabled Web browser.

Many researchers agree with the fact that frameworks incorporating CORBA
services will be very influential on the design of grid environments in the future.
For this, we would like to investigate on the usage of CORBA technology to
enhance some features of our PSE prototype.

Acknowledgments. We would like to thank the Master Thesis students, Fi-
orenzo D’Alberto and Andrea Vasapollo, who worked with us during the design
and the development of this software environment.

References

1. S. Gallopoulos, E. Houstis, and J. Rice, Computer as Thinker/Doer: Problem-
Solving Environments for Computational Science, IEEE Computational Science
and Engineering, Summer (1994).

2. Metachem Workshop, European Community, Brussels, 26-27 November 1999.
3. C. Catlett, L. Smarr, Metacomputing, Communications of the ACM, 35(6), 44

(1992).
4. Baker M., Fox G., Metacomputing: Harnessing Informal Supercomputers, In High

Performance Cluster Computing: Architectures and Systems, R. Buyya Ed., Vo-
lume 1, Prentice Hall PTR, NJ, USA (1999).

5. The Grid: Blueprint for a Future Computing Infrastructure, I. Foster and C. Kes-
selman Eds., Morgan Kaufmann Publishers, USA (1999).

6. W. Gentzsch (editor), Special Issue on Metacomputing: From Workstation Clu-
sters to Internet computing, Future Generation Computer Systems, No. 15, North
Holland, 1999.

122 R. Baraglia, D. Laforenza, and A. Laganà

7. M. Baker, R. Buyya, and D. Laforenza, The Grid: International Efforts in Global
Computing, International Conference on Advances in Infrastructure for Electronic
Business Science,and Education on the Internet (SSGRR’2000), L‘Aquila, Italy,
July 31 - August 6. 2000.

8. O. Gervasi, D. Cicoria, A. Laganà, and R. Baraglia Pixel 10, 19 (1994)
9. A. Patzer, Introduction to Servlets, in Professional Java Programming, Wrox Press

Ltd (1999).
10. M. Wahl,T. Howes, and S. Kille, Lightweight Directory Accesss Protocol , RFC 2251,

December (1997).
11. T.A. Howes, The Lightwweight Directory Accesss Protocol:X.500 Lite, Center for

Information Technology Integration, July (1995).
12. A. Laganà and O. Gervasi,A structured computational approach to chemical reac-

tivity, Chem. Phys., in press.
13. A. Laganà, G. O. de Aspuru, and E. Garcia, J. Chem. Phys. 108, 3886 (1998).
14. A.J.C. Varandas, Multivalued Potential Energy Surfaces for Dynamics Studies,

A. Laganà and A. Riganelli Eds., in Lecture Notes in Chemistry, Springer-Verlag,
in the press.

15. H. Krawczyk, M. Bellare,and R. Canetti, HMAC: Keyed-Hashing for Message Aut-
hentication, RFC 2104, February (1997).

16. M. Wilcox, Server Programming with JNDI, in Professional Java Programming,
Wrox Press Ltd, December (1999).

17. JNDI - www.javasoft.com/products/jndi/index.html.
18. P. Mockapetris, Domain Names - Concepts and Facilities, RFC 1034, November

(1987).
19. Object Management Group, Common Object Request Broker: Architecture and

Specification, OMG Doc. No. 91.12.1 (1991).
20. A. Baratloo, M. Karaul, , Z.M. Kedem, and P. Wyckoff, Charlotte:

Metacomputing on the Web, Special Issue on Metacomputing, Future
Generation Computer Systems, pages 559-570, North Holland 1999.
http://www.cs.nyu.edu/milan/charlotte/index.html

21. M.O. Neary, B.O.Christiansen, P.Cappello, K.E.Schauser Javelin: Parallel compu-
ting on the Internet, Special Issue on Metacomputing, Future Generation Compu-
ter Systems, pages 659-673, North Holland 1999. http://www.cs.ucsb.edu/

22. Haupt T., Akarsu E., and Fox G., Furmanski W, Web Based Metacomputing,
Special Issue on Metacomputing, Future Generation Computer Systems, North
Holland (1999) http://osprey7.npac.syr.edu:1998/iwt98/products/webflow/

23. H. Casanova and J. Dongarra, NetSolve: A Network Server for Solving Computatio-
nal Science Problems, Intl. Journal of Supercomputing Applications and High Per-
formance Computing, 11, 3, (1997). http://www.cs.utk.edu/ casanova/NetSolve/

Focale: Towards a Grid View of Large-Scale
Computation Components

Gaëtan Scotto di Apollonia, Christophe Gransart, and Jean-Marc Geib

LIFL (Laboratoire d’Informatique Fondamentale de Lille),
USTL (University of Science and Technology of Lille),
F-59655 VILLENEUVE D’ASCQ CEDEX, FRANCE

{scottoda, gransart, geib}@lifl.fr

Abstract. In the model of grid computing, we have several views of the
components of the grid. One would prefer a large grid of small data-driven
computations, while another one would rather use coarse grain compo-
nents with great computing power. This paper presents our project, Fo-
cale, which provides genericity for large components interconnection
through Java and Corba.

Keywords: Corba and Java, distributed computing, objects and com-
ponents

1 Motivations

Grid computing is today one of the greatest issue in the world of large-scale
distributed applications. This concept not only promotes the distributed plat-
form research projects, but it also involve major technical improvements, such
as computing centers power, and network throughput and latency. In the United
States, large universities and laboratories are already connected by such high-
speed backbones, and serve as a testbed for the future of large applications and
platforms supporting them. In other countries, whereas it is not as developped,
great steps have been taken to attain that goal. In France, the education admini-
stration has put up a national network joining the major universities and public
laboratories, and this network recently improved its speed with ATM techno-
logy. Some researchers also work on an ambitious program making this network
attain the Gigabit/s bandwith.

However, in the general case, the main projects around a new item involve
creating a new standard, changing everyone’s programming method, and deve-
lopping the applications from scratch. We intend to develop a platform over these
networks permitting to any program, already existing or not, to be connected
to any other, in a tree of connections that will form our distributed applica-
tion. Such an application can be whatever the application provider will want,
as he can either use already known components, or provide newly-created ones.
Applications worth being distributed upon such a large-scale platform include,
but are not limited to, all mathematical and applied mathematics computations,
database management and datamining, virtual reality and visualization.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 123–134, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

124 G. Scotto di Apollonia, C. Gransart, and J.-M. Geib

Our project is named Focale, which stands for Federation of Objects for
Computing on a large scALE1. As a starting step, Focale is being developped
in Java, with use of the Corba standard to permit its future implementation
in any2 language (like C++, for better preformance), and its communication
with clients also written in any language. Corba use is not required from the
computing components, because that would mean rewriting some of the world’s
most used computing libraries, and these libraries are not always written in a
Corba-compliant language, like Fortran.

Let we present some interesting projects, related to ours by the fact that
they manage and use either Java components, computing platforms, Corba
technology or world-wide interconnections.

1.1 Java-Based Execution Platforms

Ajents [6] is an environment for mobile java applications. With its purposes, it
addresses mainly the world of java-written mobile agents. Ajents makes use of
Java possibilities, and RMI for mobility.

ProActive (formerly known as Java//) [1] is a project which provides “seam-
less metacomputing” in Java. It does not use Corba, though, but is based on
a MOP (Meta-Object Protocol) and issues polymorphism between remote and
local objects in a portable Java library.

1.2 Components-Based Environments

NetPebbles [12] is an environment dealing with network components, with the
interesting aspect of a script language with which users can create components
and interact with the system.

Comet [18] is an architecture based on components, for the construction of
distributed applications. It provides means for components to adapt to their
environment, as well as acting on it. The model used here is the separation of
control from functionalities.

Regis [10] is a system which supports configuration programming, that is,
separating the configuration phase from the code. The authors of Regis also made
a graphical user interface, the Software Architect’s Assistant [13] where users can
plug their components one to another, to help the design of the application. They
also have written a specifying language, called Darwin [9], that deals with the
the high-level organisation of components and the interaction between them.

1.3 High-Performance Interconnection

At the hardware level, networks are always increasing their throughput. High-
speed national-wide backbones projects already exist in several countries. It is
one of the aspect of raising technology to higher levels: it is either for technology
itself, or for its users.
1 this has a better meaning in French, but this is close
2 almost any

Focale: Towards a Grid View of Large-Scale Computation Components 125

The Cobra project [19] proposes a runtime based on Corba and working on
top of a network of multiprocessor workstations, interconnected with SCI [2].
The special involvment here is the use of a high-speed local area network.

1.4 World-Wide Projects

Legion [8] and Globus [5] are wide-spread projects, that also aim to provide ease
of use and fast access to metacomputing to end-users. Legion architecture was
designed with computing speed in mind, and multi-language support is, however
present, somewhat limited to C/C++ and Fortran/HPF.

Globus and Legion were born before the recent versions of Corba and their
teams are currently working on the integration of Corba support in them.

Globe [4] is also an object-based framework for developping wide-area distri-
buted applications. Its authors make use of Corba possibilities to implement
worldwide scalable Web documents.

1.5 Incoming Corba Technologies

In the near future, Corba will be enhanced by some aspects that directly interest
us. Some requests for information and proposals have been posted, like Parallel
Corba [15] and Aggregated Computing in Corba [14].

The Advanced Computing Laboratory3 has grouped some of its projects into
a response to these RPFs. Ligature [7], one of them, is a database of software
components designed to interact with each other through programmer-defined
interface.

1.6 Comparing with Us...

All of these projects have very interesting functionalities, but were not designed
with the same ideas as Focale, and as such do not provide the same tools. The
following ideas are present in one or more of the described environments, and
particularly interest us:

– Component description language
Such a language4 is important to help end users manipulate Focale objects,
without entering into the technical part of establishing and maintaining links
between their objects.

– Corba support
“Native” Corba support is usable for the platform itself, and we will see
that our platform makes extensive use of it. The console we developped also
uses Corba to communicate with Focale servers.

– Separation of control and functionalities
To permit a good developpement of the platform, we separated these aspects,
so that developping a control aspect does not hinder the writing of each
level’s code (see next section for a description of Focale architecture’s
levels).

3 Los Alamos National Laboratory
4 whether it is IDL3 or any personally-defined language

126 G. Scotto di Apollonia, C. Gransart, and J.-M. Geib

– Genericity of operations
The Focale project aims to build applications by interconnecting user-
defined computing components. Such components can use Corba to com-
municate, but some of the best-known implemented computing algorithms
don’t. As it is, we prefer a platform that can connect and run generic com-
ponents than focus on one language and/or API and then be stuck with it,
forcing willing users to rewrite their code once more. This aspect is the main
difficulty of our platform development, but this is also what separates us
from most of the previous examples of related work.

By developping these aspects (and others), we do not fit exactly in one of
the previous examples, but it is obvious that some areas overlap.

2 Focale Architecture

The construction of our project was made upon a top-down analysis of Grid-
computing platform needs. This analysis permitted to separate aspects of the
differents execution levels involved. However, in separating levels, we often forget
non-functional capabilities, like the persistence of data, or the event management
in the different levels. As we are building Focale with Corba, we have the
Corba Common Services list in mind not to forget about those capabilities.

Here is a description of the levels, with an brief explanation of how they work,
and of the non-functional capabilities associated to them, when applicable.

2.1 The Federation Level

Under this term, we put a group of machines, each with a Focale server running,
and interconnected (see figure 1). The functionalities of one server are described
in the next paragraph. Users can access this group by any server, although they
would prefer to select the nearest one - in terms of either physical distance
or network latency. The federation management is not centralized, as it would
reduce its global fault-tolerance. Therefore, each server acts as a grid node, with
equal power over its local array of components.

FOCALE server

FOCALE server

FOCALE server

FOCALE server

Interconnected

Trader

ApplicationManager

Interconnected

Trader

ApplicationManager

Interconnected

Trader

ApplicationManager

Interconnected

Trader

ApplicationManager

Fig. 1. A Federation consists of interconnected Focale servers

Focale: Towards a Grid View of Large-Scale Computation Components 127

2.2 The Server Level

A Focale server must be run on a machine for it to be usable with our federa-
tion. Although it is not encouraged to do so, some users can propose more than
one Focale server on one host.

Client Interaction
Our server provides an interaction with the users, through Omg-Idl-defined

contracts. Among these, we defined the following interfaces, which will be ex-
plained in this section:

Interconnected, HasProperties, FactorySet, FactoryTrader and
ApplicationManager.

Server Interconnection
A requested capability of our server is to be interconnected with its peers (see

figure 1). This can be done by two ways: first, a user can launch a server on a
machine, then notify one of the registered servers of its availability; the second
way is more automatic, as a starting Focale server can browse the Corba
Naming Service, and find there its peers.

The technical part of the connection involves the new server asking another
to register, through an Omg-Idl-defined operation register. The requested
server then invokes a notifyRegister on itself and on the asking server, to
permit a bi-directional communication.

Server Properties
An object implementing our Omg-Idl interface HasProperties has a set of

properties, that the user can browse and manipulate. Each of these properties is
defined by a name and a value. Some properties have a meaning, and a Focale
server, by checking its environment, sets values for OS, architecture, ORB and
user, at least.

These default properties are set to permit the management of code execution:
if a server runs on a Sun/Solaris, and a code written for a PC/Windows has to
be run, it will not be done there. These properties can also be checked to tell if
the server’s underlying machine works with little-endian or big-endian integer,
and so on... Speaking of code leads naturally to the following aspect of a Focale
server: the FactorySet.

Factories Set
What is a Factory ? In our project, we used the definition of E. Gamma et al.

[3] for the Factory design pattern. We enter in more details about factories in
the section 2.4. For this paragraph, we talk about a Factory set: each Focale
server implements a way to store many factories, and retrieve them, locally (we
will present the ”remotely” aspect in the following section). Persistence of the
FactorySet is achieved through individual Factory’s persistence, but using a
Cache mechanism delegated to the server level.

128 G. Scotto di Apollonia, C. Gransart, and J.-M. Geib

To create a factory in this set, a user has to submit all the Factory fields
(see section 2.4). Once this is done, the newly-created factory is available for
instanciation or local copy by all servers of the federation.

Trading Service
For a server to be able to retrieve a Factory that is stored somewhere in the

federation, but not locally, we designed a (very) simple trading service. This tra-
der is inspired by the Corba Trading Service, but not fully compliant, because
it is to be used only internally.

How does it work ? First of all, each Factory has a set of properties, for the
code name, job description, version, provider, number of uses, etc. and retrieving
a Factory is made by using these properties as criteria for a Trader search. For
example, you could ask for the most-used matrix inversion component Factory,
or the last version of the Factory named ”Transpose”.

If a corresponding Factory is not present locally, the servers Interconnected
to this one will be asked for it, in a depth-first tree browsing. Although the servers
are interconnected as a graph, cutting the cycles of this graph will form a tree.
The cycles are cut when the search process encounters a server it has already
browsed.

Applications Manager
In the same way as the FactorySet, the ApplicationManager Omg-Idl in-

terface provides ways to create, obtain and remove Applications to a Focale
server. The description of one individual Application follows, in the section 2.3.

2.3 The Application Level

In Focale, an Application follows the Factory design pattern, but at a higher
level: an Application is described as a set of interconnected factories, and is
instanciated by instanciating the described factories, then connect them (one’s
output is linked to the other’s input, see section 2.6 for description of the Connec-
tors) then launch them (see figure 2).

We remark here that instanciating and running a Factory are two different
steps. These had to be separated to permit the interconnection between them, so
that the producer does not start its job before having properly been connected
to its consumer. Therefore, we will introduce a lower level after the Factory level
description: the Instance.

2.4 The Factory Level

Conceptually, a Factory is an object that can create a (possibly) unlimited num-
ber of instances of one class. It can destroy them too, although in Focale, this
could generate some problems: in Java, we are not able to take a snapshot of
the stack trace, to restore it afterwards. So, users wanting a factory to destroy
its instances must be sure of what they are doing.

Focale: Towards a Grid View of Large-Scale Computation Components 129

Fig. 2. Instanciating an Application instanciates all its Factories

In Focale, a Factory consists of a Code structure and methods to manage it
(initializers, instanciate, run...), as well as a HasProperties interface implemen-
tation (see section 2.2 on Properties). The Code structure contains the following
items (see figure 3), which can be accessed independantly — as defined in the
Factory interface — to reduce the amount of unnecessary network traffic.

Fig. 3. The factory’s content, and its console representation

– FactoryTrader entry
This field is a set of properties (see section 2.2, again). Such properties in-
clude the component name, its implementation language, version, provider,
etc. There is no restriction on the properties, so that each user can add the
property he wants, like comments on the code, or its quality of service.

– information about the code execution
In order to be able to launch the given code, the platform must know its
execution command in the case of a process-level component, or the name
of the main method for a class (see the next section, 2.5, for further details).

130 G. Scotto di Apollonia, C. Gransart, and J.-M. Geib

This field includes also the original code path which is mapped locally in the
Focale server’s cache.
We also have included a set of trader entries to define the dependencies of
the code, that is, a description of the codes to load locally before running
this one. In the case of a Java class component, this is not mandatory, as
our implementation of the ClassLoader will do a part of this job.

– basic knowledge of the component input/output channels
An application is not always — in fact, quite rarely — made of a single
component, and to be able to connect the components of an Application,
the platform has to know where the component is reading from, and where
it is writing to. This item contains 2 arrays (one for the input, the other
for the output) of the Resource structure. This structure contains the follo-
wing fields: name, type and location. See section 2.6 for details on how the
connection is achieved.

– the code itself
When uploading the component into the federation for the first time, its
provider has to give its binary form5, so this is a part of the Code structure.
However, as we wanted to be able to transmit all the informations about
a Factory without requiring this field (which is rather big), we grouped all
the Factory fields except this one into a Descriptor, which can be accessed
directly thanks to the Factory interface.

Persistence of a Factory data is done by storing its Code in a file. Of course
this could lead to problems (with quota-enabled users for example), but we
will assume that users proposing their machines as computing resources are not
”just” these machines’ users.

2.5 The Instance Level

When a Factory is instanciated, it produces an object which implements the
Instance Omg-Idl interface. This interface defines (among others) methods to
connect this instance to others, run the created instance and test if its job is
finished. As we wanted the platform to be the most generic possible, we have
factories handling code that can be either Java classes, or processes (including
all other programming languages: C/C++, Fortran, shell scripts, IDLscript pro-
grams, etc.). In the case of a Java class, the initialization of the Instance finds
the given class and its main method, whereas the launch function invokes that
method. In the case of a process, the initialization just keeps the external com-
mand, and the launch function executes it.

To connect an instance to another, users have to call the connectOutput
function on the instance producing data, and connectInput on the instance
consuming it. Each of these functions return a Connector (see next section), that
we have to connect to each other, by calling the connect method on one, giving
the second as argument. As the Interconnected aspect of the Focale server
5 We can also work from a source code, but this will not be presented here.

Focale: Towards a Grid View of Large-Scale Computation Components 131

(see section 2.2 on Interconnection), this will call a notifying method on both
connectors. Once an producer instance output if connected to its consumer, all of
the data going through the output connector’s given resource will be redirected
to the consumer’s input connector’s resource.

If the output connector of an instance is not connected, we will assume that
its data will form the result of this component’s job. If the user is logged to the
federation, he is notified of the termination, and the result is shown. If he logged
out after having submitted his job, he will be notified the result when he will
log back.

2.6 The Connectors

Conceptually, a Connector is like a system pipe, extended to Corba.
A Connector contains a Resource structure (see section 2.4), which is used

to specify which resource is being used to transmit data. These resource can be
the input/output standard streams of the Instance, a file or a socket. It is not
mandatory for an input connector to map the same resource type as the output
connector, as the resource is given for only one of the connectors. Actually, it
is possible for a standard output stream to be linked to a file or a socket, for
example.

We have plans to provide also URL resource (publishing and fetching data
through URLs), and also a Method resource which will be run to fetch data or
send it (mostly for specially designed new components, and more in the style of
the Corba Component Model [16]). An output Connector consists of a thread
watching the given resource, and upon data arrival, sending it to the input
connector. When data arrives, the input connector moves it to its given resource,
so that it is available to the consumer. These steps are illustrated on figure 4.

Producer instance thread

Output connector thread Input connector thread

Consumer instance thread

Producer’s resource Consumer’s resource

watch read

write
sen

d update

Fig. 4. The steps of the communication between two connected Instances, one produ-
cing data and the other consuming it

It is possible that two components cannot communicate directly, because of
the differences of information representation between the produced data and
the consumer input format. In this case, the Application provider can put a
“translation” component between the consumer and the producer, so that the
producer data can be translated into the consumer input format.

132 G. Scotto di Apollonia, C. Gransart, and J.-M. Geib

3 The Console

Using the Focale federation can seem complicated, with all these levels and
interfaces. Even with CorbaScript [17] [11], it is not easy to feed the servers
with new factories, although the manipulating methods are easy to find and
invoke. This fact, along with the end-user availability of our platform, made us
create a console above Focale federation. This console has a graphical user
interface, made with Java/Swing, using different frames to display different le-
vels of the federation. With it, you can create/connect/remove servers from
the federation, add/move/delete factories from the servers (figures 3 and 5),
create/modify/run/destroy applications from the servers (figure 6), and many
other functionalities, like catch events from any item6, or display information on
any level of the federation.

Fig. 5. Console display of a server factories, as a tree and as a window, and the factory
installation wizard window

Fig. 6. Console display of the applications list, and one application factories inter-
connection

6 our implementation of the Observer/Observed design pattern used will not be ex-
plained in this document

Focale: Towards a Grid View of Large-Scale Computation Components 133

Of course, users can develop their own clients, that can access Focale fe-
deration through Corba, by using the Omg-Idl contracts of Focale. In this
case, the console is not needed, but it can always serve to monitor the client
progress.

4 Conclusion

The platform described in this article, as well as its console is now working,
and it is available from http://corbaweb.lifl.fr. Generic components can be
installed, deployed, and run in applications. It is interesting to note that, alt-
hough formerly developped only for scientific applications, Focale uses enough
genericity to permit any form of application to be launched upon it.

The performance of our platform was not discussed here, as it is not the
main issue in Focale: we provide a simple mean to deploy and interconnect
computation components, and when this is done, they run at their own speed.
Actually, the performance of the platform itself does not reside in the running
speed of these components, but in its capacity to deploy, find and connect them.

5 Future Works

Globally, the platform is not very fault-tolerant (although if one server is missing,
others can fetch factories from elsewhere), due to the evident fact that computing
nodes spread over the Internet are not very reliable. One of the main next step
of Focale improvement will then be improving its fault-tolerance and quality
of service.

It has also been noted that the performance of the platform was somewhat li-
mited to loading and connecting components, but if a server becomes too loaded,
there is no way, yet, to reduce it. To deploy components, we will use theoretical
issues such as optimisation and graph theory, that can provide means to speed
up the positioning of components on the federation and the search of those com-
ponents afterwards. For the components’ execution, we intend to include a load
balancing policy to increase the performance of this phase.

To the end-user point of view, it would be interesting to have a “preview” of
the deployment and execution of its application. Therefore, we intend to include
a cost prevision module, which will present a rough measure of time for the
deployment and execution phases. Such a module will obviously display its in-
formation for special use of the platform and the components, as it is not known
beforehand if other users will use it, and if servers will crash during the process.

References

1. Denis Caromel, Wilfried Klauser, and Julien Vayssi re. Towards seamless compu-
ting and metacomputing in Java. In Geoffrey C. Fox, editor, Concurrency Prac-
tice and Experience, volume 10 (11-13), pages 1043–1061. Wiley and Sons, Ltd,
Sep/Nov 1998.

134 G. Scotto di Apollonia, C. Gransart, and J.-M. Geib

2. Paul Sweazey et al. SCI - Scalable Coherent Interface, P1596/D2.00. Technical
report, 1992.

3. E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Westley Professional Com-
puting, USA, 1995.

4. Globe web site.
http://www.cs.vu.nl/globe.

5. Globus web site (papers available).
http://www.globus.org.

6. Matthew Izatt, Patrick Chan, and Tim Brecht. Ajents: Towards an Environment
for Parallel, Distributed and Mobile Java Applications. In ACM 1999, editor, Java
Grande Conference, pages 15–25, June 1999.

7. Katarzyna Keahey, Peter Beckman, and James Ahrens. Ligature: Component
Architecture for High-Performance Applications.

8. Legion web site (papers available).
http://legion.virginia.edu.

9. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-
ware architectures. In Fifth European Software Engineering Conference, September
1995.

10. J. Magee, N.Dulay, and J. Kramer. Regis: A constructive development environment
for distributed programs. Distributed Systems Engineering Journal, 1(5):304–312,
September 1994.

11. P. Merle, C. Gransart, and J.-M. Geib. Using and Implementing CORBA Objects
with CorbaScript. Object-Oriented Parallel and Distributed Programming, 2000.
Ed. Hermes.

12. Ajay Mohindra, Apratim Purakayastha, Deborra Zukowski, and Murthy Devara-
konda. Programming Network Components Using NetPebbles: An Early Report.
In USENIX Conference on Object Oriented Technologies, April 1998.

13. K. Ng, J. Kramer, and J. Magee. A case tool for software architecture design.
14. Object Management Group. Supporting Aggregated Computing in CORBA. OMG

TC Document 1999-01-04, Object Management Group, First Needham Place, 250
First Avenue, Suite 201, Needham, MA 02194, U.S.A., 1999.

15. Object Management Group. Parallel Application Support for CORBA. OMG
TC Document 2000-02-06, Object Management Group, First Needham Place, 250
First Avenue, Suite 201, Needham, MA 02194, U.S.A., 2000.

16. OMG. CORBA Components: Joint Revised Submission. Object Management
Group, August 1999. OMG TC Document orbos/99-07-{01..03,05} orbos/99-
08{05..07,12,13}.

17. OOC and LIFL. CORBA Scripting - Joint Revised Submission. Object Manage-
ment Group, August 1999.

18. Fr d ric Peschanski. COMET, reflective architecture based on components, for the
construction of parallel and distributed applications.

19. Thierry Priol and Christophe Ren . Cobra: a CORBA-compliant Programming
Environment for High-Performance Computing. In Europar’98, Southampton, UK,
pages 1114–1133, September 1998.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 135-145, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Web Enabled Client-Server Model for Development
Environment of Distributed Image Processing

Haresh S. Bhatt1, V. H. Patel1 , and A. K. Aggarwal2

1Space Applications Centre
Jodhpur Tekara,
Satellite Road,

Ahmedabad – 380 053
INDIA

{haresh,vhpatel} @ipdpg.gov.in

2Department of Computer Science
Rollwala Computer Centre

Gujarat University
Ahmedabad – 380 009

INDIA
aka19@hotmail.com

Abstract. Image processing applications (IPA) requirements can be best met by
using the distributed environment. The authors had developed an environment
over a network of VAX/VMS and Unix for distributed image processing. The
efficiency was as high as 90-95%. This paper presents an augmentation and
generalization of the environment using Java and web technology to make it
truly system independent. Although the environment has been tested using
image processing applications, the design and architecture is truly general so
that it can be used for other applications, which require distributed processing.

Keywords: DEDIP, Parallel Image Processing, Distributed image processing

1. Introduction

Image processing applications (IPA) require processing on large volumes of data.
These also require various types of resources like high-resolution graphic displays,
drives for magnetic tape/cartridge/floppies, optical disk, database, etc. The resource
requirement changes with time due to the availability of new and better resources.
Hence, it is not possible to assume the availability of all resources on a single system.
The distributed processing environment not only helps in optimum utilization of such
resources but also helps in achieving better throughput using multiple processors in
parallel. However, if one has to use multiple heterogeneous machines in a network to
execute a set of tasks, one may have to execute a tedious set of commands. It is not
possible to expect an operator to carry out such operations on a regular basis.
Moreover in such a system, any error, occurring either during data transfer or during
processing, creates difficulties for the operator.

Development of an application having built-in automated data transfer, capability
of using multiple machines in parallel, and robust error handling is a challenging job.
This paper presents the authors’ contribution in providing a tool that makes such a
development very easy.

136 H.S. Bhatt, V.H. Patel, and A.K. Aggarwal

The research work carried out by eminent computer professionals [1-10] focused
on the parallel-processing experts’ needs. The image processing applications are
developed by scientists (mathematicians, physicists, remote sensing experts, etc) not
by parallel processing experts. Smooth operational environment, Operational setup,
and ease of use are the critical issues for scientists compared to parallel processing
experts.

We focused on the requirement of this vast community. We presented a full
fledged Development Environment for Distributed Image Processing (DEDIP) that
makes the development & operationalization of distributed applications very easy
[11]. This paper presents a WebDedip, which is redesign and generalization of
DEDIP to make it more user friendly and truly heterogeneous.

2. Generalization and Extension

The WebDedip has a novel design, which explores object oriented modeling
technique in the web domain. The new model uses three-tier architecture instead of
master-slave one. The DEDIP had provided GUI only on the host system. The
WebDedip provides browser based GUI on all nodes connected to the system. It
enables the user to use the WebDedip from any system on Internet. Thus, it provides
the roaming profile to application designers, operation managers and operators. Users
have to edit a few text files to configure their application in DEDIP. WebDedip has
made this task easier by adding new user friendly GUIs. The augmented design
addresses all the important redundancy issues making the WebDedip fault tolerant.

3. WebDedip Overview

The WebDedip has a three tier architecture; GUI, DedipServer and Agents, as shown
in figure-1.

The GUI is the web enabled graphical user interface to make the entire user-
interaction truly system independent. It supports various Java Applets for application
configuration, application building, application operation initiation, application
progress monitoring, and session controlling. The user initiates the interaction by
visiting a predefined site using a standard browser. The standard web server loads the
required GUI on the web browser.

It has a back-end DedipServer running on the web site. When the GUI submits the
request to the DedipServer, it reads the application configuration information from the
configuration file. The DedipServer initiates the execution of the first process in the
interdependency chart. Normally, most of the applications have a single starting
process. If any application has multiple starting processes, it initiates execution of all
such independent processes. It informs the agent(s) on the target node to start the
execution of the process. The agent sends the status information back to the
DedipServer when the process is completed. The DedipServer finds out the dependent
processes on the successful completion of a process and initiates the execution of each
such process. The required files are transferred from one node to another. WebDedip
has a callable library in Java to interface with the FTP server [12] that helps in

Web Enabled Client-Server Model for Development Environment 137

transferring files. The required process is automatically inserted in the configuration
when IP designer inserts the IO dependency information (figure-5) between two
processes.

The DedipServer stores complete information about all the applications configured
on the web site. The DedipServer exchanges information with the
DedipBackupServer making the model fault tolerant.

Fig. 1. WebDedip Model

The task of the agent is very simple. It accepts requests from the DedipServer,
executes them and provides the status information when completed. It has process
building (compilation), execution, and monitoring capabilities. It can schedule
multiple processes in parallel. It does not control the synchronization among the
parallel processes, instead it depends on the DedipServer for this job. It treats each
process as a single independent entity.

The WebDedip not only caters to the requirements of the application designer, but
also addresses all the requirements of the operation manager as well as operators. The
application configuration and building is a privileged task, carried out either by the
application designer or operation manager. During the regular operations, the operator
can initiate any required application, monitor progress, do error handling, and
terminate the application, if necessary. The web server capability is used to provide
the required access control rights.

Object-oriented modeling (implemented in Java) is used for the design of the
WebDedip [13]. The application is modeled as an object while the process is modeled
as an embedded object. The object inter linking capability is used to maintain
interdependency information for an application. Java distributed object architecture is

138 H.S. Bhatt, V.H. Patel, and A.K. Aggarwal

used along with the object serialization for network communication among GUI,
DedipServer and agents. Hence, WebDedip can be used on a LAN, WAN or on
Internet. Agents may run on any system over Internet. On start, an agent makes
connection with DedipServer on a predefined port and volunteers for computation
workload. Java object persistence is used in storing the information, including
dynamic information. The same is explored in communication among the GUI,
DedipServer and agents.

The Windows-explorer is used as a metaphor in developing the navigation GUI
due to its popularity and ease of use (see figure-2).

3.1 Application Configuration

The application designer first decides the configuration of his application. It depends
on the distributed resource requirement, parallel processing requirement, input/output
of each process, etc. The WebDedip supports a nice GUI for the same as shown in
figures 2-5. Figure-2 shows the overview of the application. The typical
interdependency chart, generated interactively, is shown in figure-3. The detailed
information about each process is shown in figure-4 for a typical process. The line
joining two processes shows their interdependency in top-down model. The IO
dependency, if any, is a part of this interdependency and it can be easily configured.
The typical configuration is shown in figure-5. User can modify his application
configuration file any time. The effect of the modification will be applied on next
execution of the application.

Fig. 2 Basic Information of the Application

Web Enabled Client-Server Model for Development Environment 139

Fig. 3 Process interdependency Information

Fig. 4 Process Information

Fig. 5 Data dependency information

140 H.S. Bhatt, V.H. Patel, and A.K. Aggarwal

3.2 Application Building

An application consists of many processes. All these processes need to be compiled
on the target node. The WebDedip has automated all these compilation. The
configuration information has all the required details about each process. The
DedipServer copies the source code & make-file, required to build a process, on the
target node in a predefined temporary area. It then requests the agent on the node to
build the process using the make-file. It carries out this task for each process given in
the configuration. The agent creates designated directory and preserves the executable
in it. The application designer can build the processes externally on all systems in
case he is not willing to give the code. The GUI provides necessary support for such
external readiness indicator.

3.3 Application Execution and Monitoring

The operator can start execution of any application from any machine on the net using
the standard browser. GUI displays the configured applications to the operator for
selection. Operator can start/abort/suspend/resume an application. Figures 6 & 7
show the GUI for session and application progress information.

Fig 6 Session progress information

3.4 Error Handling

In case of abnormal completion, the DEDIP Server displays the error message with
error code to the operator. These error codes and error messages are provided by
application designer. WebDedip keeps this information in the configuration file. The
operator can restart the process after taking the necessary actions. In addition, the
operator has the options of either restarting the entire application or aborting it.

Web Enabled Client-Server Model for Development Environment 141

Fig 7 Application progress information

3.5 Session Management

Each time an operator logs in, DEDIP scheduler starts/restarts a session for him. Each
session has a unique session identification number. It keeps all the information about
the session on the server. The operator has multiple options to log out. He can close
the session, terminate the session, suspend/resume the session, or submit the session
for progress in background before logging out. He can close the session only after
normal completion of all the requests he has submitted. He can terminate the session
immediately in case of emergency. In case of termination, the WebDedip kills all the
processes of all the requests submitted by the operator irrespective of the status. The
background processing is very effective in the case of non-interactive processes. The
WebDedip gives the detailed status to the operator at the next logon.

3.6 WebDedip System Management

The WebDedip system consists of a DedipServer and agents. The DedipServer can
detect the agent termination. It displays the message on operators’ console as well as
operation manager console.
The DedipServer is the most important process in the entire system. Its failure, for
example, due to system crashing, can cause a severe problem. DedipBackServer is
designed to handle the failure of the DedipServer. The software package
DedipbackupServer runs on the machine of the backup server and duplicates the
required information from the DedipServer. An agent sends a trigger to
DedipBackupServer when it fails to communicate with the DedipServer. The
DedipBackupServer validates the DedipServer failure. It takes over the complete
responsibility from that moment onwards and informs the operation manager. The

142 H.S. Bhatt, V.H. Patel, and A.K. Aggarwal

servers are exchanging information only in case of external events like termination of
process, start of new process, initiation of an application by the operator, the start of
new session, etc. The frequency of such possible events is very low. Furthermore, the
volume of the information is negligible. Hence, the communication overhead for
maintaining the back-up server is very low.

4. Case Study

WebDedip functionality and efficiency was tested using Microsoft NT as host and
IRIS workstations as slaves. IIS 4 was used as web server. The front-end GUI is
tested on two most popular browsers IE and Netscape

The WebDedip was tested for three cases [11] using simulated executables by three
operators in ten runs. The simulated processes were generated resembling actual
processes for image processing interaction/processing. The process dependency chart
is given in figures 8-10. The processing node is shown in the bracket if it is different
than host. DTHS stands for Data Transfer from Host to Slave while DTSH stands for
the reverse process. 'T' indicates the tape unit requirement by the process. ‘W’ &
‘W2’ indicates that the process is scheduled on workstation1 and workstation2
respectively. The time (in minutes) required by each process is shown in bracket.

Fig. 8. Simulated case-1 for testing

Fig. 9. Simulated case-2 for testing

Web Enabled Client-Server Model for Development Environment 143

Fig. 10. Simulated case-3 for testing

Case 1: Single package requiring sequential scheduling is shown in figure 8
depicting the simplest case.

Case 2: Single package requiring parallel scheduling is shown in figure 9.

Case 3: Parallel execution of two packages, each package requiring sequential
scheduling, is shown in figure 10.

Table 1 : Results for the case studies (time in minutes)

Case Theoretical Without Dedip WebDedip

1
2
3

 30.0
 23.5

 42.0

32
52
74

32.0
25.0
46.0

The efficiency results are almost the same as those achieved in the earlier version,
ie 90-95%. The page & applet loading time over the network is excluded. The access
time in case of WebDedip is mainly due to two reasons: (1) action communication
delay and (2) DedipServer overheads. This action communication delay was
measured for various actions by repeated exercises. It was found out to be
approximately 10 to 40 seconds on this type of action. The remaining are the
DedipServer overheads.

Recently, a few scientists were engaged in developing web-based project
management & work flow applications [14] like hierarchical progress reporting &
compilation, meeting management, project task management, personal task
management, document authentication, resource booking, complaint management, job
work flow and remote system configuration detection. These applications were having
distributed processing requirement amongst the browser based remote machines, web
server, database server and mail server. They used WebDedip instead of Java
servlets. The used their own GUI could communicate to DedipServer and agents
using RequestObject, a message passing object from WebDedip library [13].

144 H.S. Bhatt, V.H. Patel, and A.K. Aggarwal

5. Related Work

In this section, we summarize the research efforts that are closely related to our work.
JPVM [1], and Java MPI [2] are the Java extensions of PVM and MPI respectively.
JavaParty [3], ParaWeb [4], Charlotte [5], Popcorn [6], and Javelin [7] are Java based
systems for distributed computing using Java. JavaParty provides mechanisms for
transparently distributing remote objects. ParaWeb is an implementation of the JVM
that allows Java threads to be transparently executed remotely. Charlotte provides
high level solution that decouples programming environment from the execution. Its
disadvantage is that the programmer does not have explicit control over resource
utilization. However, its eager scheduling enables the runtime systems to efficiently
provide load balancing. Popcorn provides a Java API for writing parallel programs for
Internet distribution. Applications are decomposed, by the programmer, into small,
self-contained subcomputations, called computelets. The Popcorn is based on buyer-
seller concept. It has a centralized entity called market that determines which CPU
seller executes the computelet. Javelin is an infrastructure for Internet based parallel
computing. Any free computer system can volunteer to execute a task using the
applets supported by the Javelin. It follows a client-broker-server architecture.
Bayanihan [8] and Ninflet [9] are also very similar to the Javelin.

 The methods, reported in most of the above, concentrate in providing computation
power to a large and complex application efficiently. All of them expect efficient
parallel and distributed programming skills. Their definition of ease of use is around
application compilation, scalability, load balancing, fault tolerance, etc. The
WebFlow [10] is closest to our work. It provides Java-Swing based visual
programming environment for metacomputing using Java. It supports Globus [15]
metacomputing toolkit at the backend.

The programmer needs to use Java for metacomputing language in the above
models. Furthermore, the GUIs of the above models support the monitoring and
controlling an application (large & complex) in stand-alone mode. Therefore, they do
not require elegant & easy GUI for simultaneous execution, monitoring and
controlling of multiple applications.

WebDedip (& DEDIP) concentrated on the vast community of scientists rather
than efficient programmers. It made the distributed application development very
easy. It supports all languages like Fortran, C, C++ and Java. Its GUI supports all the
needs of operational environment executing multiple heterogeneous applications
simultaneously. It has its own backend support for process scheduling and
monitoring.

6. Conclusion

The WebDedip provides a useful facility to the designer to develop the distributed
image processing application in a user-friendly environment. The browser based GUI
enables him to use the system functionality from anywhere over the Internet. The
graphical user interface makes it easy to visualize and configure the application.
Furthermore, WebDedip addresses all the critical elements for smooth operations. The
option of back-up server support makes the entire system robust.

Web Enabled Client-Server Model for Development Environment 145

The results obtained from the simulated test cases for the WebDedip match with
those of the earlier version. The communication delay over the network is the only
additional delay. The earlier version of the model was used by 15 scientists for
development and operationalization of 10 distributed image processing applications
for Indian Remote sensing Satellite (IRS). The same is likely to be replaced by the
new WebDedip.

Although the WebDedip has been tailored for the requirement of image processing
applications, its design and architecture is truly general so that it may be used for
other applications also. Collaboration is being worked out with Nirma Institute of
Technology to use WebDedip in field of advanced computing for civil engineering.

A study is being carried out for interfacing WebDedip and PVM.

References

1. A.J. Ferrari, JPVM - The Java Virtual Machine,
http://www.cs.virginia.edu/ajf2j/jpvm.html.

2. S. Taylor, Prototype of Java-MPI package, Available at
http://cisr.anu.edu.au/sam/java/jav.mpi.prototype.html.

3. M. Philippsen, M. Zenger, JavaParty – trasnperent remote objects in Java, Proc. of ACM
1997 PPoPP Workshop on Java for Science and Engineering Computation, (1997).

4. T. Brecht, H. Sandhu, M. Shan, J. Talbot, ParaWeb: towards world-wide supercomputing,
Proc. of 7th ACM SIGOPS European Workshop, (1996).

5. Baratloo, M. Karaul, Z. Kedem, P. Wijckoff, Charlotte: Metacomputing on the Web,
Future Generation Computer Systems, Vol. 15, (1999), 559-570.

6. N. Camiel, S. London, N. Nisan, O. Regev, The POPCORN project: Dsitributed
Computation over the Internet in Java, 6th International World Wide Web Conference,
(1997).

7. M. Neary, B. Christiansen, P. Cappello, K. Schauser, Javelin: Parallel computing on the
internet, Future Generation Computer Systems, Vol. 15, (1999), 659-674.

8. L. Sarmenta, Bayanihan: Web-Based Volunteer Computing Using Java, 2nd International
Conference on World Wide Computing and its Applications, (1998).

9. H.Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, U. Nagashima, Ninflet: a
Migratable Parallel Objects Framework using Java, Proc. of the ACM 1998 Workshop on
Java for High_performance Network Computing, Palo Alto, CA, (1998).

10. T. Haupt, E. Akarsu, G. Fox, W. Furumanski, Web based metacomputing, Furture
Generation Computer Systems, Vol. 15, (1999), 735-743.

11. Haresh Bhatt, CVS Prakash, A K Aggarwal, DEDIP: Development Environment for
Distribute Image Processing, Submitted to DS Online, http://computer.org/channels/ds/

12. Java based client object library for interfacing with FTP servers, Technical report,
DWPIP project, (1999).

13. Design of Web based DEDIP using UML, Technical report, DWPIP project, (2000).
14. Design overview of project & work-flow management automation, Technical report,

CNF/SIIPA, Space Applications Centre, Ahmedabad, India.
15. Globus project- http://www.globus.org/

An Advanced User Interface Approach for Complex
Parameter Study Process Specification on the

Information Power Grid

Maurice Yarrow, Karen M. McCann, Rupak Biswas, and Rob F. Van der Wijngaart

Computer Sciences Corporation, Mail Stop T27A-1, NASA Ames Research Center, Moffett
Field, CA 94035, USA

{yarrow,mccann,rbiswas,wijngaar}@nas.nasa.gov

Abstract. The creation of parameter study suites has recently become a more
challenging problem as the parameter studies have become multi-tiered and the
computational environment has become a supercomputer grid. The parameter
spaces are vast, the individual problem sizes are getting larger, and researchers are
seeking to combine several successive stages of parameterization and computation.
Simultaneously, grid-based computing offers immense resource opportunities but
at the expense of great difficulty of use. We present ILab, an advanced graphical
user interface approach to this problem. Our novel strategy stresses intuitive visual
design tools for parameter study creation and complex process specification, and
also offers programming-free access to grid-based supercomputer resources and
process automation.

1 Motivation and Background

Only a decade ago, the solution of the partial differential equations required for the
evaluation of aerospace vehicle flow-fields typically involved a single discretization
zone and was performed on a single processor of a high-speed compute engine that was
usually situated locally. These compute tasks were so costly in CPU cycles that the notion
of performing parameter studies was usually ignored. Now, however, the flow-solvers
are typically parallel codes. The compute engines are frequently large parallel machines
with multi-gigabyte memories and terabyte disk farms. Researchers have available the
resources not only of their own laboratories but also those at other computer centers
accessible via fast networks. Parameter studies are now quite feasible and are being
performed on a regular basis by researchers who require solution information throughout
a given aerospace vehicle flight regime. The difficulties, however, have shifted to the
manual creation of these parameter studies and to tasks associated with launching and
managing the large number of jobs required by these studies. Modern aerospace flow-
solvers frequently require large sets of discretization grids which describe the geometry
of the aerospace vehicle. They produce as output large collections of data files. Currently,
most parameter studies are performed with two-dimensional flow solvers, but three-
dimensional solvers are also beginning to be used.

Recent developments in grid-based “metacomputing” such as Globus [1]. and Le-
gion [2] have created opportunities for running parameter studies on remote networked

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 146–157, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

An Advanced User Interface Approach 147

high-performance compute servers which constitute a shared resource for participants.
But these opportunities come at a price: the proliferation of job control language (JCL)
to support these capabilities. This has placed an onus on users of these metacomputing
grids, who are typically engineers and researchers not well prepared or enthusiastic ab-
out learning or creating the requisite control language scripts for managing distributed
parameter studies. NASA is currently building a national metacomputing infrastruc-
ture, called the “Information Power Grid” (IPG) [3], intended to provide ubiquitous and
uniform access to a wide range of computational, communication, data analysis, and
storage resources, many of which are specialized and cannot be replicated at all user
sites. However, the interface to the IPG is still under development.

We briefly describe the notion of a “parameter study” by giving two general exam-
ples. Simulation codes produce solutions to scientific or engineering problems for some
set of input values (“parameters”). Varying these parameters through some prescribed
range (the “parameter space”) yields a set of related results, called a “parameter study”
(sometimes written as “parametric study”).As a second example we point to Monte Carlo
simulations. Monte Carlo codes are typically run many times in order to to produce sta-
tistically meaningful ensemble averages. This too can be considered a parameter study,
where the parameter to be varied is merely the seed for random number generation, and
does not actually have any physical significance.

The end product of creating and launching parameter studies is typically a large suite
of result files which must be postprocessed and/or moved to some form of long-term
storage. Furthermore, parameter study users must be able to keep track of these results
and log into a scientific diary such particulars as nature of the solved problem, location
of the result files, history for the individual runs, and any other associated information.
Being able to easily recreate and then modify the parameter study is also an important
need for many users.

We conducted a literature survey to identify existing parameter study capabilities
that fulfilled the need of users at NASA Ames Research Center. The only tools deemed
applicable for these tasks were the historically related Clustor and Nimrod codes [5].
Both are able to generate and launch simple parameter studies. They also implement
an internal “meta-language” for describing parameter study creation. Additionally, they
make it easy to parameterize command line arguments.

However, they did not fully meet the requirements of our users. Some of these are as
follows. Users must have access to multiple job submission environments. These must
include any combination of PBS [6], LSF [7], MPI, Globus, Condor [8], and Legion.
Also, users require the ability to create what we call “multi-stage” parameter studies (a
detailed example appears in section 7). Users also need a “fire-and-forget” capability, i.e.,
once the parameter study suite is created, it should be possible to initiate job launching
and then shut down the parameter study tool entirely. Job submission should continue
autonomously, and without the continued presence of the parameter study tool. Users
also require a fairly comprehensive level of job auditing and scientific diary capability,
the secretarial side of a problem solving environment (PSE). On the development side,
we needed to design a parameter study tool that could be easily extended using a high-
level rapid-prototyping language (such as Perl). This is because we envision using the
tool as a testbed for experiments in parameter study creation models, job submission

148 M. Yarrow et al.

models, and complex process specification models. We also need to be able to use the tool
to generate shell scripts designed for parameter study job submission and for complex
process job submission (visual scripting). It is essential that the script generation process
be very flexible.

2 Problem Definition

Creating and launching parameter studies without the assistance of automating tools
is laborious, tedious, and error-prone. Examining the stages of this task allows us to
discern the nature of the inherent problems. The first stage is to create the parameterized
input files which incorporate the sets of values representing the parameter study. These
sets are the Cartesian product of the individual sets of values over which each of the
parameters of interest varies. The total number of combinations (the parameter space)
can quickly get to be very large, and creating these sets of input files manually is time-
consuming and error-prone. Each of the resultant input files represents a run of the user
program (a job). Launching jobs involves setting up partitioned file spaces in which
they can run, supplying each with all required input files, submitting them, and then
monitoring progress and managing output. Our first design requirement was that all
of these functions be automated and integrated into a single Graphical User Interface
(GUI). The second requirement was that of simplicity of use. We believe that users are
very sensitive to ease-of-use issues, and that they will avoid process automation tools
that are deemed difficult or non-intuitive. The third requirement is that a parameter study
tool be able to self-document its actions. If it cannot, users will quickly be mired in a
morass of hundreds, even thousands, of old runs whose origin and purpose are no longer
obvious; a complete parameter study tool must be part PSE and part scientific diary.
The fourth requirement is that of job submission flexibility in a scientific computation
environment currently in flux. This is because “Grid-based” computing has added new
complexities and layers of JCL to the task of submitting jobs. ILab meets all of these
four user requirements.

3 Basic Assumptions and Requirements for Distributed Processing

We have started with two basic assumptions about NASA’s distributed computing envi-
ronment into which jobs will be launched. The first is the need to maintain production
level capability. This has significant implications, because all compute-intensive appli-
cation processing must occur under the aegis of a job scheduler and queuing system. Any
other manner of submitting to shared computational resources would violate “good neig-
hbor” policy. The second assumption about our distributed computing environment is
that it should be able to leverage the Globus metacomputing middleware currently being
developed at Argonne National Laboratory. It must also be possible for parameter study
users to bypass the Globus layer and still submit jobs into a distributed environment.
This has resulted in a design incorporating several job models for spawning parameter
studies in a distributed fashion.

An Advanced User Interface Approach 149

4 ILab: The IPG Virtual Lab

We describe important features of the ILab parameter study tool, in particular parame-
terization operations and aspects of the internal coding design.

4.1 Parameterization of Program Input Files

In order to minimize the difficulty of building a set of parameterized input files, ILab
includes an integrated, special-purpose text editor. This editor has unusual capabilities: it
allows the user to mark graphically the appropriate parameter data fields and to designate
the set of values for each selected field. This parameterizer is depicted in Fig. 1.Value sets

Fig. 1. ILab parameterization screen

can be specified either as a list or by min/max/increment. The user first selects (highlights)
with the mouse those ASCII text fields within the input file which will be parameterized.
In Fig. 1, “beta” and “reynum” (known to ILab as Parameter1 and Parameter2) have
already been parameterized; their value sets are displayed in the left window. Currently
the user is specifying the third parameter in the “Set Param Values” dialog. If several
fields must be parameterized in tandem (example: multiple occurrences of “timestep”
for each of several related discretization zone input files), that can be indicated at this
stage. After text selection of the appropriate fields, the user enters a list or range of values
for the selected fields. Lastly, the set of parameterized input files is generated. These
files constitute the Cartesian product of the individual parameter sets. As an example, if

150 M. Yarrow et al.

three input values are to be parameterized (a 3-dimensional parameter space), the first
with the set of values {1, 2, 3, 4}, the second with {hello, goodbye}, and the third with
{3.14, 2.718, 1.618}, then a total of 4×2×3 = 24 parameterized files will be produced.

Because the file parameterizer is integrated within the ILab GUI and because its use
is intuitive, the process of parameterization of the input files has been made trivial. Ad-
ditionally, a “most-recently-used” (MRU) capability saves the current parameterization
state for future reference and for reuse or modification.

4.2 Job Masking Capability

One of the necessities of a parameter study program is to provide “masking” capability for
a set of parameterized input files. Users require this ability when they know that certain
parameter combinations will produce an unsuccessful run of the scientific program under
consideration. Typically, they want to specify combinations of parameter values that
will be excluded from the set of input files and their associated script files. ILab’s “Edit
Parameters” screen - the special purpose editor described in section 4.1 - has a pop-up
dialog for this purpose. Users can enter any number of masking rules, and each rule
must specify two or more parameter comparisons. For example, if the user is varying
Parameter1 from 1 to 10, and Parameter2 from 55 to 75, and wants to exclude those
combinations where Parameter1 is greater than 9 and Parameter2 equals 60, the masking
rule would be entered as:

Parameter1 > 9 && Parameter2 == 60

This syntax, which is the same in Perl, C, C++, and Java, was chosen since users are
likely to be familiar with it. The names Parameter1 and Parameter2 are assigned in order
by ILab to the values being parameterized. (ILab, of course, has no way of knowing the
actual names of parameters in the user’s input files since there is no requirement that
the input have labeled data. In the example in Fig. 1, it just so happens that the user is
parameterizing a Fortran “namelist” file with labeled fields, but ILab itself only requires
that the input be ASCII.) By using Perl’s “eval” function, we can easily interpret the
above rule with minimal parsing, and use it to delete job objects from the user’s list of
experiments.

4.3 Coding Model and Language Choice

We have chosen to build our ILab GUI using Perl5 and the Tk user interface construction
tool kit. In addition, we have used the Perl generation capabilities of the “SpecTcl” Tk
GUI generation IDE [9], a free software tool available from Sun Microsystems. Our
choice of Perl5 was based on its strong character string manipulation and built-in regular
expression capabilities, strong list and sortable associative-hashtable datatypes, and its
simple-to-use object-oriented features. Also, Perl is relatively ubiquitous and is amongst
the fastest interpreters commonly available today. Altogether, these features make Perl
an excellent choice for true rapid-prototyping. Though we cannot exactly quantify the
savings in the coding effort, we believe, based on prior experiences, that the equivalent
functionality would require two to three times as much C++ or Java.

An Advanced User Interface Approach 151

4.4 Object-Oriented Data Structures and Strategies

We used Perl “packages” (the equivalent of classes in C++ and Java) to hold all ILab
data, both persistent and transient. Fig. 2 depicts the data structures hierarchy.

An Experiment package

- In files/Out files
Process

Job

- Input-to-Next Files

- ProcList: Array of Process packages

EXPERIMENT

ParamData

- Archive

- all "Global" data and flags

- Archive

Process
- In files/Out files

- Input-to-Next Files

Job Job

Job

ParamDataParamData

ParamData

ParamFile

ParamFile

ParamData ParamDataParamFile

Fig. 2. ILab data structures

holds all persistent data: the data
is serialized (written en masse,
retaining data structure hierar-
chies) to and from disk with the
use of Perl’s Data::Dumper
module. To reduce the size of
the Experiment package,
several other arrays of packa-
ges apportion data that has to
be held in lists or arrays: a
ParamFile package for each
input file to be parameterized,
a ParamData package for each
variable being parameterized in
each input file, and a Job pack-

age to hold run-specific data. ParamFile and ParamData hold file- and variable-specific
data while the Experiment is being created and edited. To run a user’s parameter study
Experiment, a list of Job packages is created: some ParamFile and ParamData data
is transferred to Job packages, and additional data is attached. The organization of data
in ParamFile and ParamData is “orthogonal” to the way the same data is organized
in the array of Job packages: this simplifies script creation, submission, and monito-
ring. Essentially, data is in arrays of arrays during editing/creation, while during sub-
mission/monitoring the same data is flattened out into a one-dimensional array of Job
packages. Both sets of data are serialized when an Experiment package is serialized.

Each window or dialog box is also a package, which holds transient data: user
interface references and data as necessary, and also “mirror” portions of the current
Experiment data. This duplication of data makes it easier and more robust to edit pre-
viously entered data, since a user can make changes and then cancel the changes without
having to restore the original data. Another important advantage is gained from the “mir-
ror” and “orthogonal” approaches: the trade-off is more data, less code. Problems in the
data are easier to find and fix than problems in the code. Debugging is also facilitated by
the following strategies: (1) each package has a “dump” function to print out all varia-
bles and (2) each package error-traps the setting of any variable inside the set portion
of a get/set function. Caveat: data duplication is not a good or dependable strategy,
unless it is closely integrated with code design. This integration means constantly revie-
wing the data members of packages, and moving data members as appropriate to avoid
inconsistencies and incoherencies in the package design.

To keep the code structure simple and intelligible we avoided as much as possible
the use of inheritance. Some of ILab’s dialog packages are derived from existing Tk
packages, but this derivation is only one level deep, and fairly transparent. The only
data structure that requiring inheritance is our JobModel package, because (1) we have

152 M. Yarrow et al.

several “job models” already, and they have enough similarities and differences to justify
the existence of a base class and (2) more derived job models will need to be added in
the future, as ILab is expanded to accommodate more meta-computing environments.
The various job models are described in section 5.

Perl is a highly flexible language. We were able to further simplify our packages
by giving the package members and the get/set functions the same names, since the
Perl interpreter distinguishes the variable from the function syntactically; the variable is
$reference->{name}, and the function $reference->name. Note that Perl already
makes it easy to collapse get and set functions into one function, so that only one
function accompanies each data member.

Here is an example of this approach in our Job package, showing the new (con-
structor) function, two data members, (JobID and Status) and the Status (get/set)
function associated with the Status data member:

package Job;

sub new {
my $class = shift;
my $self = {};
$self->{JobID} = undef;
$self->{Status} = ’NotStarted’;
bless $self, $class;
return $self;

}

sub Status { # Only allow one of six strings for this field
my $self = shift;
my $temp = $_[0] if @_;
if (defined($temp)) # set variable if argument passed in

{
if ($temp eq ’NotStarted’ || $temp eq ’Queued’ ||

$temp eq ’Running’ || $temp eq ’Stopped’ ||
$temp eq ’Failed’ || $temp eq ’Done’)
{ $self->{Status} = $temp; }

else { print "illegal job status = $temp\n"; }
}

return $self->{Status}; # get func. always returns variable
}

In a large program this “same-name” model reduces the number of occurrences where
the programmer has to reference another part of the code to ensure that names are
correct. For those packages that need to be made into base packages (for derivation of
mostly similar but slightly different packages), we extend the object-oriented approach
by putting the package variables into a “closure”, thereby making these data members
less accessible to programming users of the base class.

An Advanced User Interface Approach 153

5 Job Models

We describe the various job models that ILab currently supports in order of increasing
complexity. The simplest represents an entirely local capability, i.e., all jobs making
up the parameter study are submitted for execution on the local machine. The runs
occur without the assistance of a scheduler, but may include a parallel job launcher such
as “mpirun”. ILab generates for each run in the parameter study a single shell script,
which constructs a main directory for the whole study (if one doesn’t already exist),
and then builds its own subdirectory, uniquely named with an automatically generated
parameterization identifier. Files required for input by the user’s executable are copied
into the respective subdirectories. The executable is then started. Because no scheduler
is assumed, jobs are run sequentially to avoid oversubscribing the local system. This is
accomplished by chaining the shell scripts: the first script does its work and then submits
the next script in the chain, etc. This chaining proceeds even if some command within a
script fails (e.g., the user’s primary compute executable).

The second job model launches jobs onto a cluster of machines (which may include
the originating machine), on which the user has accounts and an appropriate “.rhosts”
file. Each job is implemented with a pair of shell scripts. The first remote-copies (Unix
“rcp”) the second script to the remote machine and then executes (Unix “rsh”) it there.
It is the second shell script that creates and organizes directory layout on the remote
host, and which starts the chain of computation. This job model currently makes no
use of schedulers. We have not built in any mechanism for limiting the number of
concurrently running jobs on any individual resource. This implies that the individual
compute resources may become oversubscribed. We are planning to add a non-scheduler-
based job “limiter” into this job model.

The third job model is similar to the second, except that the presence of a scheduler
is assumed. When the scheduler is PBS, the first shell script submits to the scheduler a
script containing PBS directives followed by shell commands.

The fourth job model assumes that the Globus metacomputing middleware is used
for remote job submission and file manipulation and that a scheduler (PBS) is used for
queuing and starting jobs. The remote script is similar to that of the third job model.

None of the above shell scripts need to be provided by the user; they are automatically
generated by ILab. In each of the above cases, a parallel job loader (currently MPI is
supported) may be specified.

Currently files are not cached on the remote systems at the time of job submission.
We assume a production level environment requiring routing through a job scheduler.
This implies that the third and fourth job models will be the most heavily used. The
typical usage scenario is that a suite of jobs is submitted through a scheduler, and that the
compute resource is shared with other users. The time for the parameter study to complete
will often be numbered in days, not hours or minutes. This is based on experience
at NASA research centers and on knowledge of the types of parameter studies users
are contemplating. Such computations frequently utilize volatile scratch file systems
when user allocations of permanent file-system space are insufficient to accommodate
the input and output files of substantial parameter studies. Advance copying of files is
therefore risky, since cached input may have been purged by a file scrubber by the time
an individual job is started by the scheduler. However, we have devised a method for

154 M. Yarrow et al.

just-in-time caching. It guarantees that (1) only one process copies an input file to a
cache, which avoids clobbering (involves lock file), and (2) that files previously cached,
but subsequently deleted by a scrubber, are re-cached on demand by the client job. We
will add these capabilities to the third and fourth job models.

Utilizing shell scripts has several advantages. Unix shell languages are the “lingua-
franca” of Unix JCL. Our choice is the Korn shell [10], a highly expressive language
for constructing sequences of commands, and for error-trapping them. In the Korn shell,
background processes and “co-processes” (background processes that can communicate
with the parent process) are easily created. Processes may also be easily monitored,
and killed if necessary. Another advantage of using shell scripts is that they may be
invoked independently of the GUI. There is no requirement that only the ILab GUI
start user processes. Users may modify the shell scripts for their own purposes; they
are“recyclable.” The commands in the scripts are interleaved with output statements,
which leave a record of their workings which acts as a log.

ILab may, in part, be described as a GUI that collects information on the locati-
ons of the user’s executable and input files, and assembles shell scripts for running this
executable. It is fairly easy to change existing job models or add new ones, which is
accomplished simply by modifying the script generating code within ILab. In order
to simplify the addition of future job models to ILab, we used the object inheritance
capabilities of Perl to create a base JobModel package and several derived packages
(LocalJobModel, GlobusJobModel, etc.). New derived job models, e.g. for the meta-
computing environments Condor and Legion, can be easily inserted into the existing
framework.

It is possible, and easy, to use ILab to launch single jobs (i.e. a singleton parameter
study) into a local or remote compute environment that may require any of Globus, PBS,
and/or MPI. Thus, ILab may be used simply as a convenient Unix JCL script generator
for launching single jobs. This is especially beneficial when a job will be run on a remote
system and requires the migration of input files and executable.

6 Parameter Study Example - A Case Study

Until recently, parameter studies of aerospace vehicle flow characteristics utilized mostly
two-dimensional computational fluid dynamics (CFD) solvers. This was partly dictated
by limitations in the available compute resources (CPU time and memory size). Re-
cently, however, because of the increased availability of multi-processor machines with
large memories, parameter studies based on three-dimensional CFD codes have become
feasible. Nevertheless, the overhead for such large studies remains high. As an exam-
ple, we chose the Overflow three-dimensional Navier-Stokes flow solver [11], which
employs the overset grid method (overlapping curvilinear grids exchange interpolated
boundary information at each time-step). The MPI parallel version of Overflow groups
neighboring grids for solution onto individual processors. We used Overflow to compute
the flow field of the X38 Crew Return Vehicle (CRV), a NASA space vehicle. Fig. 3
depicts the X38 CRV and several of the body-fitted curvilinear grids defining its surface.
The complete configuration consists of 13 curvilinear body-fitted grids and 115 rec-
tilinear off-body grids, totaling approximately 2.5 million points. Overflow uses some

An Advanced User Interface Approach 155

40 double-precision words of memory per grid point, which results in a total memory
requirement of approximately 800 MB per run.

We chose to create a 16× 12 parameter study for two significant flow variables in a
portion of the glide regime of the X38: Mach number (normalized vehicle velocity) and
Alpha (“angle-of-attack”). This results in a two-dimensional parametric study consisting
of 192 runs. Each run for the X38 vehicle requires four processors.

Using ILab involves the following steps. First, the user supplies a name and directory
for the “experiment”, which is where the records for this study will be kept. Then, the
local and remote machines on which the runs will occur are selected. Next, an input file
directory, and the input file(s) to be parameterized, are specified. Input files are displayed
in the special-purpose graphical editor, and parameterized as described in section 4.1,
producing 192 parameterized input files. Next, the user identifies the executable name
and location and also a directory where the run subdirectories will be rooted on each
of the executing hosts. Options for specifying MPI, Globus, and PBS, and number of
processors (four per run, in this case) are set. At this point, the appropriate shell scripts
are generated and then initiated. This entire entry process takes under five minutes.
If starting from a previous experiment, an MRU file may be selected, permitting the
user to make appropriate modifications through the same widgets used to create a new
experiment. For cases like that described above, it usually takes under a minute to create
and start an entire parameter study.

Two machines were selected for running the jobs, each supporting MPI, Globus, and
PBS. The scripts generated by ILab conformed to our fourth job model. ILab submitted
all jobs to PBS queues on the selected machines, and within approximately 24 hours all
jobs completed. From the resulting solutions we constructed a plot of the coefficient of
lift over drag (Cl/Cd) for the X38 CRV. See Fig. 4. Every point in the lattice represents
a complete flow solution.

Fig. 3. X38 Crew Return Vehicle with several
of its computational body grids

1.2

1.3

1.4

1.5

Mach

13

14

15

Alpha

0.034

0.036

0.038

Cl/Cd

1.2

1.3

1.4Mach

Fig. 4. Coefficient of lift over drag for the X38
CRV

7 CAD Tool Process Specification

Currently, all information describing the user’s process is collected through a series of
previous-and-next-wizards, guiding the user through the process specification procedure.
Though this model is acceptable for single stage parameterizations, it quickly becomes

156 M. Yarrow et al.

inadequate for specifying complex user processes. These may include several stages of
parameterization, pre- and post-processing of data, archiving of data, resubmission and
restarting of user programs, feedback loops to accommodate multidisciplinary optimiza-
tion, etc. Currently, we are building a visual capability for complex process specification,
providing an alternative to the wizard mechanism. It consists of a CAD tool for con-
structing a data-flow diagram describing the user’s set of processes. The user creates a
diagram by choosing individual process element icons from a palette and placing them
in the diagram by mouse operations. Each icon represents a basic process building block,
such as input file parameterization, moving, copying, or renaming files, running an exe-
cutable, etc. At each node of the diagram a context-sensitive pop-up dialog queries the
user for the necessary details. Internally, a directed graph representing the entire set of
processes in the Experiment is created, e.g., a parameterization, followed by the execu-
tion of a simulation program, followed by the execution of post-processing program(s)
and archiving. This graph is interpreted, and the required individual shell scripts are
constructed from the information stored at each node. The construction process consists
of assembling the required shell scripts from macros, small groups of ILab-provided
shell commands that perform the requested operation.

Fig. 5 depicts an example of a

file three-fold

each flow input

Gridder

Grid input file

three-fold

Parameterize
grid input file

Gridder

Gridder

Solver

Solver

Parameterize

file four-fold
Replicate
flow input

each grid
file four-fold

Replicate

Solver

sets of

flow

solutions

Twelve

Solver

Solver

Fig. 5. Multi-stage parameterization process

multi-stage parameterization pro-
cess. In the first stage, input to
a grid generation program (Grid-
der) is parameterized, resulting in
three input files. After running the
grid generator, three grid systems
have been created. These grid sy-
stems will be part of the input to a
flow solver (Solver), as will a flow
variables input file. It is this flow
input file which is subjected to the
second stage of parameterization.
In the figure, a four-way parame-
terization has been applied. Each
of these four flow input files must
be replicated three times to be pai-
red with the three grid files, and
each of the grid files must be repli-
cated four times for pairing with

the flow input. The result is essentially a two-dimensional parameter study (3× 4), but it
has resulted from two independent stages of parameterization. This adds a higher degree
of complexity to the user’s process, and consequently, to the mechanisms required for
assembling and running these jobs. It is, in part, for this reason that we are constructing
a more powerful user interface mechanism for specifying and creating parameterization
processes.

An Advanced User Interface Approach 157

Summary

The needs of our user community have triggered the development of ILab, a flexible pa-
rameter study creation and job submission tool. This modern GUI implements a modular
experimental workbench for programming research into local and remote job submission
methods, complex user process specification technology, and for experimentation with
IPG middleware. Our choice of Perl/Tk as a rapid-prototyping development language
strongly facilitates experimentation and anticipated further expansion of the core user
GUI capabilities. We have proven our ILab product with significant parameter study
computations in a distributed environment. We are currently working closely with users
whose parameter study requirements are demanding. We are adding these new capabi-
lities to ILab using an advanced CAD-based user-interface technology.

References

1. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl J. Supercom-
puter Applications, 11(2):115-128, 1997

2. Grimshaw, A., Ferrari, A.,Knabe, F., Humphrey, M.: Legion: An Operating System for
Wide-Area Computing. Dept. of Comp. Sci., U. of Virginia, Charlottesville, Va. Available
at ftp://ftp.cs.virginia.edu/pub/techreports/CS-99-12.ps.Z

3. NASA Information Power Grid:
http://www.nas.nasa.gov/Pubs/NASnews/97/09/ipg fig1.html and
http://www.nas.nasa.gov/Groups/Tools/IPG/

4. Clustor (now called Enfuzion): http://www.turbolinux.com/products/enf/enfuzion.html
5. Abramson, D., Sosic, R.,Giddy, J., Hall, B.: Nimrod: A Tool for Performing Parametised

Simulations using Distributed Workstations. The 4th IEEE Symposium on High Performance
Distributed Computing, Virginia, August 1995

6. Henderson, R., and D. Tweten, D.: NASA Ames Portable Batch System: External Reference
Specification. NASA Ames Research Center, December 1996

7. LSF: http://www.platform.com/
8. Litzkow, M., Livny, M.: Experience With The Condor Distributed Batch System.

IEEE Workshop on Experimental Distributed Systems, Oct. 1990, Huntsville, Al.
http://www.cs.wisc.edu/condor/publications.html

9. SpecTcl: http://dev.scriptics.com/software/spectcl
10. Bolsky, M. I., Korn, D. G.: The KornShell Command and Programming Language. Prentice

Hall, 1989
11. Wissink, A. W., Meakin, R. L.: On Parallel Implementations of Dynamic Overset Grid Me-

thods. Proceedings of SC97, High Performance Computing and Networking, San Jose, CA,
Nov. 15-21, 1997

Mini-Grids: Effective Test-Beds for GRID
Application

John Brooke, Martyn Foster, Stephen Pickles, Keith Taylor, and Terry Hewitt1

MRCCS, University of Manchester, Oxford Road, Manchester M13 9PL,
j.m.brooke@man.ac.uk,

http://www.csar.cfs.ac.uk/staff/brooke

Abstract. We describe a computing environment that we call a “mini-
GRID”. This represents a hetereogeneous group of resources for compu-
tation, data storage, archival and visualization which can be connected
via private or public networks to other resources (called “guest systems”)
on a temporary basis as required. The mini-GRID displays the hetero-
geneity and some of the complexity of a full computational GRID, but
in a more limited environment and can be considered to be under the
control of a few organisations (or even a single organisation) making non-
technical organisational issues less problematic. As such, the mini-GRID
provides a flexible and controllable, but realistic test-bed for trialling
GRID applications, particularly with regard to issues such as accounting
and resource brokering. However, its heterogeneity, the size and comple-
xity of the architectures involved, and its integral connection with local,
national and super-national networks, prevent it from being considered
as a cluster of workstations.

1 What Is a Mini-GRID?

We describe in this paper an environment that we call a “mini-GRID”. This
is a collection of computational and data processing resources that has a hete-
rogeneous structure (multi-architecture, multiple levels of data storage) but is
organisationally simple, e.g. under the control of a single organisation. We con-
sider these mini-GRIDs to be of research interest in two ways. Firstly, a likely
structure for the development of the world-wide GRID is the gradual connection
and integration of such local GRIDs, each serving both its own hinterland and
also acting as a node for wide-area applications. Secondly, because they are of
sufficient complexity to test out key middle-ware components of the GRID, e.g.
coupled applications, resource brokers, accounting and billing systems, without
needing to address questions of local or national autonomy. We follow the line
of thought developed in Chapter 1 of [1] that the development of the GRID in-
volves the simultaneous development of local and remote links, the development
of the railway infrastructure around Chicago being an example. The particu-
lar mini-GRID that we describe is based on services provided at the University
of Manchester for both local and UK-wide use. The UK-wide service is called

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 158–169, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Mini-Grids: Effective Test-Beds for GRID Applications 159

CSAR (Computing Services for Academic Research) and is provided by a con-
sortium CfS (Computation for Science) which is a collaboration between CSC,
the University of Manchester and SGI. From its very conception this service was
envisaged as being multi-component and not necessarily restricted to a particu-
lar vendors hardware. It is a dynamic configuration, that can be added to by the
provision of guest machines based either at Manchester or at other CfS sites (e.g.
CSC Supercomputer Centre at Farnborough). However, because it is intended
to be viewed as a single resource in terms of funding, an internal economy has
needed to be developed that allows for the conversion and trading of resources
between the various components of the service. We describe this economy furt-
her in Section 1. This economy has been operating since late 1998 and provides
valuable lessons for other GRID projects since some sort of GRID economy will
have to emerge to permit the sharing and inter-convertibility of resources. We
show the current CSAR configuration in Figure 1, for more information about
CSAR and CfS see http://www.csar.cfs.ac.uk

Fig. 1. The current CSAR configuration showing the multi-architectural structure.
Guest systems can be added to this as required. There are three levels of data storage,
high-performance attached to the T3E, medium peformance attached to the O2000
and tape-archiving via the tape silo.

Our mini-GRID also includes services provided over a local high-speed net-
work covering the North-West of England. This originally started as a 155-Mbit/s
ATM network covering the Greater Manchester area (G-MING in Figure 1).
This has been extended to other sites in the North-West of England, primarily
educational institutions. These networks allow local colleges, hospitals, local go-
vernment offices and local businesses to access centralised facilities creating a
local GRID. Since this GRID connects through the University of Manchester
which is becoming a node on continental and trans-continental GRIDs, we have
a route by which local access can grow to world-wide access. We briefly describe
in Section 5 a project which has used the local GRID in both of these ways and

160 J. Brooke et al.

we show how this could be integrated into the economy developed under the
CSAR service, to allow the GRID node to recover costs from local users and
give an incentive to expand its service for local access.

The plan of this research note is to present the results of ongoing experiments
designed to explore the exploitation of the mini-GRID structure described above.
In Section 2 we describe work on running coupled simulations across the differing
components of the CSAR configuration. Section 1 describes the development
of the internal mini-GRID resource economy. Section 4 describes experiments
designed to test the usefulness of the Globus toolkit in this context. Section 5
describes the links over metropolitan and regional networks and how this is being
extended to provide global links. Finally we draw some preliminary conclusions
in Section 6 and describe some new projects which will extend the functionality
of the mini-GRID.

2 Running Coupled Applications in a Mini-GRID

We describe work to utilise the core mini-GRID structure of the CSAR service
(Figure 1) for running coupled applications. Since we wish to run between machi-
nes, current vendor-supplied versions of MPI cannot be used and we investigated
both PVM and special MPI libraries for running across machines.

2.1 PVM - Its Continuing Role as a Grid Builder

PVM, Parallel Virtual Machine [2] first made its public appearance as Version
2, back in March 1991. Since then it has expanded and prospered, becoming
available on an ever widening range of machine architectures; until, now, we
have reached Version 3.4.

Being familiar, the virtues of PVM and its usefulness for GRID work is some-
times ignored. PVM lacks some of the ’sophistication’ of MPI, with the latter’s
Derived Datatypes, and support for Cartesian mesh-based communications, for
example. However, PVM’s big strength remains: the fact that is was designed
from the outset for connecting together collections of physically-separated he-
terogeneous machines, something which MPI is only beginning to address with
initiatives like PACX-MPI [3] and STAMPI [4]. PVM’s range of facilities may
be limited to the essentials, but these provide all that is required to send data
back and forth, between different computer systems, including well-defined pro-
cedures for installing the software, starting it up, and building and operating a
desired configuration.

Prompted by the OCCAM [5] group’s need to couple a shared-memory at-
mosphere model running on an SGI Origin2000 with an ocean model running
on a Cray T3E-1200E, (Fermat and Turing respectively in Figure 1), we deve-
loped a demonstrator which proved the PVM concept for this application [6].
It was subsequently successfully developed to harness the two models for real
production runs. Some lessons were learnt along the way.

Mini-Grids: Effective Test-Beds for GRID Applications 161

Firstly, in order to utilise the inter-machine functionality of PVM, it was
sometimes necessary to undo the carefully hand-crafted ’optimizations’ which
manufacturers have included (for performance reasons) in their machine specific
implementations of PVM. For example, in the T3E version, only the first task,
by default, communicates via the daemon, for the others send and receive
are implemented on top of SHMEM. Source and target tasks are identified by
non-portable processor numbers, rather than the standard task identifiers which
would otherwise be allocated by the daemon. This non-standard behaviour pre-
vents any task other than the first from seeing the outside world, completely
opposing one of PVM’s philosophical foundations. But, fortunately, if required,
one can restore full visibility and task identifiers by setting an environment va-
riable, PVM PE LIST, to all.

Secondly, bits may be missing from a particular implementation. For example,
it was necessary to install the public-domain version of PVM over SGI’s for
the Origin2000, before we received a sensible error message which indicated
the true cause of a problem we were having. It turned out that the encoding
PVMDATAINPLACE was not implemented for PVMFINITSEND on SGI machines. This
was absent from the documentation. Subsequent to our notifying the vendor, a
documentation bug report was issued, but the omission remains.

Thirdly, PVM, like any other grid-creating system, relies heavily on the in-
tegrity of the underlying network. Our attempts to extend the demonstrator to
include CSAR’s 8-processor Fujitsu VPP300 (Fuji in Figure 1) were unsucces-
sful, for reasons still unknown. Briefly, communications between ‘Fermat’ and
‘Fuji’ were unreliable, in a non-repeatable way. They may have been affected by
the level of other traffic on the ATM line connecting the two machines, and thus
various internal timeouts came into play, causing ‘hang-ups’.

2.2 Implications for GRID Computing

PVM already has a rudimentary way of measuring and comparing the perfor-
mance of participating machines for the purpose of load-balancing. (This is made
evident when one examines the list of component architectures from the ’con-
sole’.) This is a topic of considerable interest in running distributed applications
over the GRID. It may be that the existing and very much alive PVM could be
enhanced to encompass a more suitably refined description. The work described
here is available at [6]. For a description of using PACX-MPI across a global
metacomputer see [7]. Our experiments here highlight the need for reliable mes-
sage passing libraries that can run across machines of different architectures and
which adhere to internationally agreed standards.

3 Accounting for Resource Usage on a Mini-GRID

The University of Manchester has developed a web-based user registration sy-
stem, which has been used for some years now in the administration of both
local and national computing services. Features that this system provide include

162 J. Brooke et al.

project management, resource allocation, and user self-registration. In 1998, the
advent of the CSAR service, a privately financed initiative, saw extensive en-
hancements to the registration system, especially in the areas of resource mana-
gement and accounting. The new facilities were developed in response to:

1. demand from the UK academic HPC community for the ability to use allo-
cated resources in a more flexible manner, and

2. the need to account to the funding bodies.

We claim that the problems of resource management and accounting will be of
increasing importance to HPC service providers, and that satisfactory solutions
to these problems in the context of grid computing do not yet exist. We therefore
describe our solutions in the simpler context of a mini-GRID, where the issues of
cross-institutional co-operation and site autonomy do not arise. It is our thesis
that many aspects of our solutions must be reflected in solutions to the general,
pan-institutional problem.

When a research council approves a peer-reviewed application for computing
resources on the CSAR service, a new project is set up in the registration system.

The right of a project to utilise computing resources of various types (eg. CPU
time, disk and tape storage on specific machines) is represented by quantities of
specific resource tokens of corresponding types. Tokens are valid for the lifetime
of the project.

In addition to specific resource tokens, we also introduce generic service to-
kens. Generic service tokens have a notional cash equivalent, indicative of the
expected cost of the project to the research councils.1 In agreement with the
research councils, exchange rates between generic and specific resource tokens
are fixed from time to time, to reflect depreciation of the underlying asset. Table
1 shows the exchange rates currently in force.

Table 1. Resource exchange rates in the CSAR service effective as of June 2000.

Resource Token Value in Generic Tokens
1 T3E PE Hour 0.024
1 Gbyte-Year of T3E Disk 6.752
1 Origin 2000 CPU Hour 0.025
1 Gbyte-Year of O2000 Disk 4.292
1 Gbyte-Year of HSM/Tape 0.596
1 Fujitsu VPP CPU Hour 0.345
1 Gbyte-Year of Fujitsu Disk 4.292
1 Day training 3.000
1 Day support 11.364

The computing resources required by a project are listed on a schedule ac-
companying the original grant application. The schedule also lists the amo-
unt of each resource expected to be consumed in each six-month period of
1 The research councils are billed periodically according to actual usage.

Mini-Grids: Effective Test-Beds for GRID Applications 163

the life of the project. The CSAR service provides a web-based resource calcu-
lator http://www.csar.cfs.ac.uk/admin/forms/calculator.shtml to assist
the principle investigator in preparing this schedule. New projects are primed
with sufficient generic service tokens to meet the expected requirements. Before
a project can begin to use the service, the generic tokens must be traded for
specific resource tokens. The initial trade is often performed by CSAR staff, but
may be performed by the principle investigator if desired. A project may subse-
quently trade unused resource tokens of one type for resource tokens of another
type, subject to availability of the desired resource. The flexibility that this pro-
vides is one of the factors that differentiates CSAR from its predecessors in the
UK.

We impose a minimum period between successive trades by any one project
in order to avoid abuses such as exploitation of arbitrage opportunities arising
out of possible rounding errors, or attempts to corner the market in a limited
resource.

The number of specific resource tokens of any type in the trading pool at any
one time is limited so as to reflect the (projected) capacity that the service can
provide.

A project’s cumulative usage of each resource is updated daily in batch mode.
CPU time and tape storage are charged on the basis of actual consumption. Per-
manent disk storage is charged according to integrated disk quota, sampled daily;
note however that the principle investigator is empowered to alter disk quotas
freely between a lower limit of actual usage and an upper limit set by CSAR.
Principal investigators are notified automatically when the project’s usage of
a resource first exceeds 90%, 95% and 100% of the total available; the third
notification is accompanied by a withdrawal of access privileges.

It is in the interest of any HPC provider to optimize the capacity of the service
to meet projected demand. Under-utilized resources are obviously undesirable.
On the other hand, having insufficient resources makes it necessary to turn work
away; but if the increased demand can be anticipated, it is possible to finance
the purchase of additional hardware. We facilitate this by introducing a capacity
plan for each new project, capturing the projected usage from the schedule on
the original grant application, and encouraging principle investigators to review
these capacity plans as their projects develop.

We believe that the regulated micro-economy embodied in our registration,
trading pool, capacity planning and accountancy systems has features that most
providers of pay-as-you-go supercomputing services should find desirable. We
encourage grid developers to take cognizance of the considerations that have
informed our approach, as these are likely to be shared by the supercomputing
centres that will become the major grid nodes of the future. Although we are
not advocating the introduction of resource tokens on a global scale, we think
that the resource brokers of a truly ubiquitous computational grid must embrace
some kind of currency to mediate negotiations, and that grid nodes must not
only be able to advertise availability of resources but also to contract to a pricing
policy when accepting an offered job.

164 J. Brooke et al.

4 Globus on the Mini-GRID

We describe work in progress to evaluate how Globus [8] can be adapted to
serve our mini-GRID environment. We deployed Globus (1.1.2) on a variety of
workstation and server machines including the Cray T3E, Origin 2000, Solaris
and Linux workstations. We found no major obstacle with the installation of the
software on these platforms though some scripts needed tuning to individual sy-
stem requirements. All batch queue systems used were NQE/NQS based. Some
questions were raised regarding the overhead of running Globus on HPC machi-
nes, these are still being studied. Our aim was to develop tools which allowed
a uniform job submission interface to the different machines on the mini-GRID
(see Figure 1). The requirement to make this user-friendly meant that the Glo-
bus command-line interface had to be adapted. We were able to develop software
which was attractive and simpler to use than the default tools supplied by ven-
dors with the batch system. With further effort these tools could be expanded
to provide a much more flexible approach to high performance computing.

An important aspect of the Globus environment is the seamless transition
between scales of computing resource. Globus comes into its own when opera-
tional practice migrates the user from the workstation through super-computing
centre to specialized resource, without changing working practice significantly.
However without developing a uniform job submission interface, the divide bet-
ween HPC and desktop processing will remain in the near future. The job sub-
mission models supported by Globus are insufficiently sophisticated to cope with
typical methods employed by the CSAR user community. There exists other soft-
ware designed for job submission which overcomes some of these limitations, the
UNICORE project being a key example [9]. A rapprochement of the Globus
and Unicore approaches would seem to be very much in the interest of users of
resources such as the mini-GRID described here.

Outside the administrative domain, Globus is found to provide the necessary
infrastructure to enhance utilization of computing resources around the UK.
In particular the local grid environment can be extended to encompass other
major computing facilities in the UK. This activity is mainly centered upon
coupling the T3E machines at Edinburgh (EPCC) and Manchester (CSAR), in
order to balance the job load between the two machines. Initially the mechanism
employed will be to prioritize queues on each machine for different classes of job
and publishing estimates of execution time for various job specification via the
MDS. In the longer term this may be replaced or complemented by a knowledge-
based third party broker.

5 A Metropolitan Area GRID

The computing service at the University of Manchester has an important role
in the provision of networking and high-performance services over metropolitan
and regional networks. These utilise ATM at 155 Mbits/s, allowing the creation
of Permanent Virtual Circuits (PVCs) giving a guarenteed networking Quality

Mini-Grids: Effective Test-Beds for GRID Applications 165

of Service (QoS). We describe here results from two projects that show in dif-
ferent ways how issues arising from provision of services delivered locally via
the mini GRID has implications for the development of global GRID services.
In the RCNET [10] project, a collaboration between a local engineering con-
sultancy (REL) and the University of Manchester allowed REL to move and
coordinate its engineering work on a global scale. This involved connecting the
company network to GMING and thus providing a route to European and global
networks. This is important to REL because their mode of operation means that
they typically establish working offices in areas where their services arise and
these may migrate around the globe according to developments in, for example,
the oil industry. These satellite offices may be very “light” in terms of equip-
ment and so access to remote processing power is essential. Also the company’s
technical experts may be geographically distributed and video-conferencing and
collaborative working are highly desirable.

5.1 Use of GMING

There were two ways in which access to the metropolititan-area network GMING
changed the working practice of REL. Firstly, access to large servers at the Uni-
versity of Manchester allowed REL to run jobs which were too big for their
workstations. These were run on two central machines, a Fujitsu VPX240 vec-
tor processor and an SGI Origin2000. A cost-benefit analysis was carried out
to determine the savings to REL of using the local GRID in this way, rather
than purchasing extra expensive workstations. This analysis is available at the
RCNET WWW site [10].

Secondly the RCNET workstations were networked via an ATM switch and
a link was made to a similar cluster of SG Indy workstations at UoM. The ATM
technology allowed the two ATM switches linking these clusters to be connected
and the two clusters were then both part of the same emulated LAN. This allowed
parallel jobs to be run across the clusters and allowed the possibility of extra
work from REL to be run on the UoM cluster, thus freeing REL workstations
for intensive pre and post processing. LSF was used to manage the load on the
UoM cluster, and account of the performance of the cluster under varying loads
is given in [11].

A different use of GMING is also shown by the NOVICE project in which
a large visualization server available over GMING allows hospitals throughout
the Greater Manchester Conurbation to visualize medical scans from patients
records. The visualization would be impossible on local equipment, since it is
insufficiently powered to perform manipulation of very large datasets and to run
specialist visualization software. An important feature of NOVICE is that images
from the central server are sent to the remote stations using VRML. There are
very delicate issues of security since private medical records are being delivered
via the local GRID. These issues are all very relevant to the wider GRID, more
details can be found via the NOVICE WWW site at [12].

166 J. Brooke et al.

5.2 Extension of the Local GRID to Intercontinental Networks

In the RCNET project videoconferencing experiments were carried out between
the Norwegian National Point of Presence in Oslo and the University of Manche-
ster over the pan-European JAMES ATM network. REL(Manchester) offices are
close to the University and thus a means for collaborative working was establis-
hed. The main aim of the experiments was to test Quality of Service networking
issues by comparing the running of videoconferencing and collaborative working
over two routes, the normal Internet traffic and a dedicated ATM PVC (Perma-
nent Virtual Circuit) which established a guaranteed bandwidth of 2 Mbits/s.
The qualitative results were that videoconferencing and collaborative working
were much better over the ATM PVC even though the bandwidth of the Inter-
net route was potentially greater (34 Mbits/s). Quantitative experiments were
performed to ascertain the reason for this difference.

Table 2. Comparison of the mean time and standard deviation (SD) of files of various
sizes. The files were transferred between Manchester and Norway between identical
machines but via two routes, an ATM PVC of 2 Mbits/s and an internet shared traffic
route at 34 Mbits/s.

File Size ATM Mean ATM SD Internet Mean Internet SD
1 Mbyte 198.0 kbytes/s 2.7 kbytes/s 314.6 kbytes/s 145.9 kbytes/s
5Mbyte 199.5 kbytes/s 5.5 kbytes/s 241.3 kbytes/s 69.2 kbytes/s
10Mbyte 203.3 kbytes/s 3.2 kbytes/s 251.9 kbytes/s 27.2 kbytes/s
50Mbyte 191.3 kbytes/s 0.9 kbytes/s 260.7 kbytes/s 26.1 kbytes/s

A full account of the experiments is available at [10] but the most telling
were the results of sending files of different sizes via ftp. We present these results
in Table 2. It will be seen that the mean rate of transfer for both methods is
comparable but the standard deviation is much lower for the ATM as would
be expected. The size of file transmitted makes a considerable difference to the
standard deviation over the internet route. Our conjecture is that this is be-
cause the file transmission time for sending a large file is much greater than the
time scale on which the shared-traffic internet route bandwith varies. We draw
the analogy with turbulent fluid flow; on length and time scales greater than
those of the turbulence the flow can appear to be smooth. Our qualitative and
quantitative results indicate that for applications such as videoconferencing and
distributed collaborative working, the effects of this “network turbulence” over
shared-traffic routes needs to be taken into account.

Another important factor is latency, which is very low in an ATM PVC. To
test the effect of this factor we performed tests on the startup of the Netscape
browser, both locally and remotely (Figure 2). This latter involves the sending
of many messages of different sizes between the two sites, it thus illustrates in a
simple way some of the performance issues involved in distributed collaborative
working.

Mini-Grids: Effective Test-Beds for GRID Applications 167

Fig. 2. Comparison of Netscape startup for ATM and Internet. The two routes are as
described in Table 2

5.3 The Modular Structure of the GRID

The RCNET project was conceived before the concept of the GRID was drawn
to the international community. However the whole networking and processing of
RCNET is based on a modular structure, going from local to global and indicates
clearly the considerations that we discuss in Sections 1 and 6. What needs to be
supplied for this to be a working model, is a reliable layer of middleware that
can direct jobs on the local GRIDs to centres of computational power, e.g. a
resource broker. Also, there needs to be some means of “costing” this work and
addressing QoS issues (for a commercial firm turnaround time may be crucial to
meet their contracts). The issue of costing is taken up in Section 1. The question
of a resource broker is a subject for future work.

6 Conclusion and Future Plans

As William of Occam pointed out in the 13th century, it is bad scientific practice
to introduce a term unless it helps to reduce and clarify the scientific description
of phenomena. An objection to the term “mini-GRID” as used here would be
that there is scaling at all levels on the GRID, hence the term “mini-GRID”
is meaningless. Our argument in this paper is that there is a natural structural
scale for a mini-GRID, related to the wider GRID as a modular structure. Firstly
the mini-GRID should relate to a particular, defined, networking complex. We
suggest that a good candidate is a metropolitan area network or a node on an
intercontinental GRID. Thus the mini-GRID will have an internal structure. We
think that many academic supercomputing centres are likely to develop in this
way. They can stabilise their funding by using their specialist expertise to attract
income from local industry. In a less quantifiable fashion, by providing services

168 J. Brooke et al.

to schools and civic organisations they can help to make the spending of public
money more politically acceptable. An example of this sort of consideration, is
the siting of large scale computing resources in regions where it is desirable to
stimulate economic and social development. The Federal Swiss supercomputing
centre CSCS is an example [13]. Other reasons why we predict that nodes on
the computational GRID are likely to have a multi-component structure of the
scale we describe here, involve the increased probability that new architectures
are likely to be funded at sites that have proven expertise and a critical mass
of expertise. Running a GRID node requires expertise in networking, hardware
support, maintenance of infrastructure, operating systems, programming, nume-
rical methods and particular scientific disciplines. We return to the analogy of
the growth of Chicago as described in Chapter 1 of [1]. All industrialised so-
cieties develop cities on major infrastructure nodes and the development of a
city involves a feedback loop. As population and infrastructure is attracted to
a transportation node, more local infrastructure is needed to serve this, which
attracts more population and infrastructure, in a positive feedback loop.

We believe that there is strong evidence that nodes on the GRID will need
to be of a certain size and complexity to be self-sustaining. There will certainly
be GRID structure below this size but it will tend to associate with a major
GRID node. The GRID node can regulate an organizational regime that enables
middleware, such as resource brokers, to access its resources on both sub-node
and super-node scales. Between such nodes, there is a layer of political and
organisational complexity and difficulty over and above the technical challenges
involved.

The work we describe here on the scale of our mini-GRID is helping to clarify
some of these issues, both technical and organisational. We seek to open a dia-
logue with other centres who recognize this mini-GRID concept as being useful.
We are encouraged that the work described here is to be continued via a major
European Union project, EUROGRID, which aims to connect major European
sites each of which could be regarded as having the mini-GRID structure as de-
scribed here. The setting up of a GRID structure across the European Union is
of particular interest in the context of a global GRID, since the European Union
is a federation of politically independent states with national funding councils
for scientific research. There is also a strong emphasis in the EU Fifth Frame-
work [14] on improving the quality of life for EU citizens. Thus the local aspects
of the mini-GRID as described in Section 5 become very relevant.

Acknowledgements. The authors are grateful to all those who contributed
to the design and development of the registration system and trading pool,
especially Phil Stringer, Geoff Lane, Victoria Pennington and John Rawlins.
Thanks to Fumie Costen for producing the figures.

References

1. I.Foster and C. Kesserlman, editors. The GRID: Blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers, Inc., San Francisco, California, 1998

Mini-Grids: Effective Test-Beds for GRID Applications 169

2. For PVM details see URL http://www.epm.ornl.gov/pvm/pvm home.html
3. Edgar Gabriel, Michael Resch, Thomas Beisel, Rainer Keller, ’Distributed Com-

puting in a heterogenous computing environment’ in Vassil Alexandrov, Jack Don-
garra (Eds.) ’Recent Advances in Parallel Virtual Machine and Message Passing
Interface’, Lecture Notes in Computer Science, Springer, 1998, pp 180-188.

4. H. Koide, et al, MPI based communication library for a heterogeneous par-
allel computer cluster, Stampi, Japan Atomic Energy Research Institute,
http://ssp.koma.jaeri.go.jp/en/stampi.html

5. The OCCAM group maintain highly-tuned models of global ocean circulation: see
URL http://www.soc.soton.ac.uk/JRD/OCCAM/welcome.html

6. Running PVM Interactively Across Turing and Fermat, K.Taylor, CSAR Technical
Report, 1999. Available at URL http://www.csar.cfs.ac.uk/staff/taylor

7. S. Pickles, F. Costen, J. Brooke, E. Gabriel, M. Müller, M. Resch, S. Ord, The
problems and the solutions of the metacomputing experiment in SC99, in Marian
Bubak, Hamideh Afsarmanesh, Roy Williams, Bob Hertzberger (Eds.) HPCN (Eu-
rope) 2000 Proceedings, Lecture Notes in Computer Science, Springer, 2000, pp
22-31

8. Details of the Globus project can be found at URL http://www.globus.org
9. Details of the Unicore project are at URL http://www.fz-juelich.de/unicore

10. J.M. Brooke and P. Jacob, editors RCNET: Exploiting HPCN in an Engineering
Consultancy Environment Techical Reports and Papers.
See URL: http://www.man.ac.uk/MVC/research/rcnet/

11. F. Costen, J.M. Brooke and M.A. Pettipher Investigation to make best use of LSF
with high efficency In Proceedings of IEEE International Conference on Cluster
Computing, Melbourne 1999, 211-221

12. M. Cooper, editor Network-Oriented Visualization in the Clinical Environment
Espirit EU Project.
see URL http://www.man.ac.uk/MVC/projects/NOVICE/

13. The C3 Communications and Computing Camp is described at
URL://www.cscs.ch (follow links for Education).

14. Details of the EU IST Call for Proposals Information Society Technolgies Pro-
gramme at URL http://www.cordis.lu/ist/

Configuration Method of Multiple Clusters
for the Computational Grid

Pil-Sup Shin1, Won-Kee Hong2, Hiecheol Kim3, and Shin-Dug Kim2

1 Sungmi Telecom electronics co., LTD., Korea
psshin@sungmi.co.kr

2 Parallel Processing Lab., Dept. of Computer Science,
Yonsei University, Seoul, Korea

{wkhong, sdkim}@kurene.yonsei.ac.kr
3 Computer & Communication Eng., Taegu University, Korea

hckim@biho.taegu.ac.kr

Abstract. A Java-Internet cluster platform (JIP) is designed as a com-
puting platform on the computational grid in order to utilize a large
collection of computing resources on the Internet. For this goal, a basic
cluster module of JIP is defined as a cluster of heterogeneous systems
connected to a high-speed network. For a scalable JIP configuration on
the computational grid, the basic cluster module can be expanded into
a logical set of multiple clusters. JIP is featured with a Java based pro-
gramming environment, a dynamic resource management scheme, and
an efficient parallel task execution mechanism. A multiple cluster con-
figuration is applied to decrease communication time, which is a major
bottleneck of performance enhancement. According to the analysis, mul-
tiple cluster configuration can enhance the performance of JIP about 2.5
∼ 3 times depending on any application chosen comparing with a single
basic cluster configuration.1

1 Introduction

The clustering system is considered as a cost-effective system because it is con-
structed with a lot of commodity systems such as PCs or workstations linked
with high speed network [8], [2], [3], [9]. Recently, as the Internet is provided with
powerful high-performance machines and the gigabit networks, it can offer po-
werful infrastructure called computational grid that can solve complex problems,
e.g., Legion [5], Globus [4], and Condor [9]. These make it possible to utilize the
distributed computing resources on the computational grid for efficient parallel
processing.

In this research, a Java-Internet cluster platform (JIP) is designed as a com-
puting platform that makes an efficient link of several computing resources on
the computational grid into a single virtual computer to support parallel pro-
cessing. For this goal, a basic cluster module of JIP is defined as a cluster of
1 This work was partly supported by 1997 Research Fund from Korea Research Foun-

dation.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 170–180, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Configuration Method of Multiple Clusters 171

various computer systems connected to a high-speed network. For a scalable JIP
configuration, the basic cluster module can be expanded into a logical set of mul-
tiple clusters. A basic cluster module of JIP is configured as a client, a collection
of computing nodes, and a cluster management system (CMS). JIP supports a
shared memory system model [1] for communication between any two compu-
ting nodes. A configuration method to allow multiple clusters as a single virtual
system makes the JIP scalable with ease as the number of participating clusters
increases. The JIP is featured with a Java based programming environment,
a dynamic resource management scheme, and an efficient parallel task execu-
tion mechanism. Based on a prototype implementation of JIP, its configuration
method, effectiveness, complexity, and the performance are presented.

The JIP is designed for two primary design issues. The first one is the imple-
mentation method of JIP that is designed by Java language [6] and multithrea-
ding feature. Java enables heterogeneous clusters as well as computing nodes
to be viewed as a single system image and multithreading mechanism allows a
simple and effective way to manage computing resources. The second one is the
design of a CMS that coordinates the supply and demand for clusters of compu-
ting resources. As the CMS plays a role of resource management and resource
allocation, JIP can maintain a global view of scalable systems and construct an
optimal configuration for high performance.

Simulation is performed to show how the ratio of communication causes any
impact on the overall performance of JIP and how the proposed configuration
method is effective. It can be shown that a reasonable speedup can be achieved
for a single basic cluster module when the number of computing nodes increa-
ses especially for data parallel applications. Also the resource management me-
thod is evaluated through the numerical analysis of communication time under
JIP. Simulation results show that the proposed resource management method
can provide the optimal number of clusters for given application characteristics.
According to the analysis, the effective number of clusters can be determined
depending on the ratio of shared write accesses over the overall shared memory
references. Multiple cluster configuration can enhance the performance of JIP
about 2.5 ∼ 3 times depending on any application chosen comparing with a
single basic cluster configuration.

2 Java-Internet Cluster Platform

Java-Internet cluster platform (JIP) is a computing environment extending pre-
vious distributed parallel computing environment into the computational grid
to run parallel applications on multiple clusters at different geographical locati-
ons. JIP is designed based on the Java language for platform independence and
implemented by using existing mechanisms, namely multithreading and remote
method invocation (RMI) mechanisms [6] to create and manage parallelism,
which provides a unified access to system resource, called a single system image.

A basic cluster module of the JIP is constructed as a client, and a collection of
computing nodes connected to a high-speed network, and a cluster management

172 P.-S. Shin et al.

Master Server

Node 0 Node 1 Node 2 Node n - 2 Node n - 1

T
hr

ea
d

T
hr

ea
d

T
hr

ea
d

T
hr

ea
d

T
hr

ea
d

Shared
Memory

Main
Thread

Basic Cluster Module

Cluster Management System

Job QueueClient Client

Fig. 1. Basic cluster module of JIP.

Initialization Parallel execution Finish

Si Pi Si+1

S0 P0 ... Si Pi ... Pn-1 SnSi+1

Fig. 2. Programming model for JIP.

system (CMS) as shown in Fig. 1. Client is a system requesting a particular job
to run on the JIP and a computing node is a system that provides itself as a
computing resource. A cluster is constructed as a master server (host system),
and a collection of computing nodes. A master server in the cluster plays a role
as a master control system, composed of a portion of shared memory for com-
munication among computing nodes. CMS coordinates the supply and demand
for computing resources and is in charge of determining a specific configuration
of clusters. Because CMS also includes a job queue, multiple job requests can be
processed sequentially. For a given Java application, a basic cluster module can
be selected by explicit programming under configuration guideline given by the
JIP. Then the CMS selects the master server as a control system to coordinate
computing nodes of the selected cluster module and sends a Java parallel pro-
gram. Then, the master server starts to execute a given Java application over this
single virtual machine. A requested Java application is run on the top of master
server and a number of threads using Java multithreading are created, where
each thread is associated with one computing node. Specifically each thread is
in charge of executing a block of Java code and data, called as a Java code block,
on a computing node.

In the JIP, a collection of computing nodes is determined according to the
proposed configuration method and its corresponding number of clusters to at-
tain a reasonable performance gain considering communication overhead is de-
termined. This configuration method can be expanded as a hierarchical configu-
ration of multiple clusters to support scalability.

2.1 Effective Parallelism on JIP

As shown in Fig. 2, an application program can be represented as a set of Java
code blocks under the JIP programming model, where code blocks can be divi-
ded into two types, serial code blocks (Si) and parallel code blocks (Pi). For any
chosen basic cluster module the corresponding master server will execute the
serial code blocks, where parallel code blocks are executed by computing nodes
within that cluster. Also the master server is in charge of controlling the overall

Configuration Method of Multiple Clusters 173

program execution. The programmer may specify the boundary of Si and Pi ex-
plicitly at programming time. Two code blocks, Si and Pi, are interleaved for all
i. For a given application, its corresponding system configuration is determined
based on some algorithmic parameters.

In general, parallelism can be classified into function parallelism and data
parallelism. A set of three code blocks, i.e., Si, Pi, and Si+1, is called as a basic
parallel module. Specifically, applications based on function parallelism can be
formed as one basic parallel module or a small number of basic parallel modules.
For data parallelism, a collection of basic parallel modules is usually executed
on a fixed set of computing nodes. The JIP can execute efficiently function par-
allelism as well as data parallelism. For those applications based on the function
parallelism, the number of computing nodes can be determined by the number
of independent or cooperating sub-tasks explicitly at programming time. In the
case of data parallelism, programmers can specify parallelism explicitly based
on a configuration method that can guide to select some system configuration
parameters, i.e., the optimal number of clusters and computing nodes allocated
per cluster. If the performance gain by additional parallelism is smaller than the
overhead resulted from the network traffic incurred for parallel execution, the
overall performance gain cannot be attained. Thus system configuration para-
meters should be chosen based on the trade-off between additional parallelism
and the overhead incurred.

2.2 Configuration of Multiple Clusters

According to the degree of parallelism for any application, tens or hundreds of
computing nodes may be used. If all computing nodes should be connected to
a single master server to communicate with other computing nodes, a moderate
amount of delay time will be occurred per communication and significant bott-
leneck problem will be caused at this centralized master server. To overcome
this problem, JIP is designed for supporting multiple cluster configuration. Ac-
cording to the characteristics of algorithms and the patterns of shared memory
references in parallel applications [7], the number of clusters is determined. Each
cluster consists of one master server and multiple computing nodes.

If all the computing nodes joined for a particular job belong to several clu-
sters, data can be classified into three types, i.e., private, locally shared, and
globally shared. The private data can be accessed only by those dedicated com-
puting nodes within a cluster. Locally shared data are shared only by a set of
computing nodes belonging to a specific cluster. Globally shared data are shared
among a set of chosen clusters. Thus, JIP supports a local shared memory (LSM)
for efficient communication within a cluster. LSM is a block of shared memory
allocated for each cluster and accessed by only computing nodes in the given
cluster. A conventional shared memory space that can be accessed by all joined
computing nodes is named as a global shared memory (GSM) to be distinguished
from the LSM.

While one computing node is accessing its LSM to update data, other com-
puting nodes in the same cluster should wait to access the LSM. However, the

174 P.-S. Shin et al.

Table 1. Variables used in numerical analysis.

Variable Meaning Variable Meaning
SPD Size of Private Data SP Size of a packet in unit words
SSD Size of Shared Data N Number of computing nodes
RM Ratio of SM reference instructions G Number of clusters
RMW Ratio of write-updates to SM references TMR Ratio of read to SM
RMWL Ratio of LSM writes over all SM writes RMWG Ratio of GSM writes over all SM

writes
TSPi Sequential execution time for i-th code A Multicasting Coefficient in master

server
TUL Unit word reference time at master server TUG Unit word reference time at CMS

other computing nodes contained in the other clusters can access their own LSM
or the GSM in parallel without any delay. While a datum of GSM is updated,
no computing node joined in processing can access the GSM until the current
update is completed. For read-only references, LSM and GSM are accessed in the
same way and all computing nodes can read the shared data independently at
the same time. For write references, its procedure becomes different depending
on the target, i.e., LSM or GSM. Because computing nodes in the same cluster
share the LSM, only the computing nodes in the same cluster should wait until
any update is completed. For the case of accessing GSM, all computing nodes
should wait until the GSM is unlocked and the communication is finished to
keep data coherency among GSMs in all master servers.

2.3 Global View of JIP

To accommodate a lot of users in a wide area cluster environment, CMS is
very important. The CMS manages multiple clusters as one’s own global vir-
tual machine. In JIP, a client can construct a hierarchical and scalable system
configuration via CMS. When a client requests a job to the CMS, the client
transfers the Java parallel program with a header including the information of
algorithmic characteristics, such as the degree and type of parallelism and the
ratio of computation to communication. The CMS uses this information and de-
cides the optimal number of computing nodes for achieving the optimal overall
performance and eventually determines the number of clusters. For this, we must
consider a programming model of JIP addressed in prior section.

As shown in Fig. 2, when TSi and TPi denote the times taken to execute the
i-th sequential code block (Si) and the i-th parallel code block (Pi) respectively
in the program model, the total execution time (T) for a parallel program can
be defined as the following equation:

T =
n∑
i=0

TSi +
n−1∑
i=0

TPi . (1)

Sequential code blocks (Si) are executed by the master server and parallel
code blocks (Pi) are executed by computing nodes. Except both the first and

Configuration Method of Multiple Clusters 175

last sequential code blocks, TSi is divided into the three parts, TGSi , T
D
Si

, and
TASi , which are the time to gather the execution results of the prior parallel code
block (Pi−1) from the computing nodes, the time to dispatch code and data
for parallel execution of the posterior parallel code block (Pi), and the time to
execute remaining pure sequential code respectively. The first sequential code
block (S0) does not include the time to collect the results produced by the prior
parallel code block and the last sequential code block (Sn) does not require any
time to prepare for the posterior parallel code block, either. TPi is defined as the
sum of TMPi and TEPi , which are the times taken to execute all the shared memory
reference code and the other parallel code respectively in the i-th parallel code
block.

TSi =

TAS0

+ TDS0
, if i = 0

TGSi + TASi + TDSi , if 0 < i < n
TGSn + TASn , if i = n

TPi = TMPi + TEPi . (2)

Thus, Eq.(1) can be changed as follows:

T =
n∑
i=0

TASi +
n−1∑
i=0

TEPi +
n−1∑
i=0

TCi , TCi = (TDSi + TMPi + TGSi+1
). (3)

According to Eq.(3), T can be classified into the execution times of a master
server and computing nodes, and the three types of communication times (TCi)
such as dispatching time, shared memory accessing time, and gathering time.
To clarify those communication times in terms of low-level communication pa-
rameters, several terms are defined as in Table 1. If data are transferred by the
packet basis in the high-speed network, a burst transfer of data is preferred. TDSi
and TGSi can be obtained as follows:

TDSi =
⌈
SPD + SSD
SP ·N

⌉
· TU , TGSi =

⌈
SSD
SP ·N

⌉
· TU . (4)

For any Pi, the parallel code as well as the shared memory accessing code are
assumed to be distributed equally among all the computing nodes for simplicity.
For a given Pi, all the computing nodes can perform parallel code allocated
concurrently, except for the shared memory accesses that should be processed
sequentially at the master server. Thus TEPi and TMPi can be obtained as follows:

TEPi = (1 −RM) · TSPi
N

,

TMPi = RM · TSPi ·
(

1 −RMW

N
+RMW

)
·AN . (5)

The term of AN in Eq.(5) is multicasting coefficient increasing according
to the number of computing nodes connected to one master server, where AN

176 P.-S. Shin et al.

can represent k · N , the ratio of the time to send the same Java code block to
multiple computing nodes over the time to send to a single computing node.
This equation is obtained from the simulation using smpl and ether model.

For obtaining the optimal number of computing nodes (N), the execution
time of parallel code block, Eq. (5), must be minimized. This equation is as
follows.

MIN (TPi(N)) = MIN
(
TEPi + TMPi) = MIN{(1 −RM) · TSPi

N

+RM · TSPi ·
(

1 −RMW

N
+RMW

)
·AN}. (6)

The execution time of parallel application according to the number of par-
ticipating computing nodes (N) is varied depending on the ratio of total shared
memory references and the ratio of write references among shared memory re-
ferences as Eq.(6). To obtain the optimal number of computing nodes as the
execution time of a parallel application, Eq.(6) is changed into equation with
respect to N. The equation is differentiated by N for getting an optimal number
of computing nodes. Therefore, decision function is derived as Eq.(7).

T ′
Pi(N) = 0, N =

√
(1 −RM) · TSPi

RM · TSPi ·RMW · k , N > 0 . (7)

After the CMS determines the number of optimal computing nodes accor-
ding to the information of algorithmic characteristics of application, it checks if
the number of available computing nodes in multiple clusters is enough. If the
number of available computing nodes in a cluster is smaller than the optimal
number, the CMS constructs a multiple cluster configuration of JIP. For this,
the CMS also needs to have a decision function which can decide the number of
clusters for optimal performance in the multiple cluster configuration of JIP. If
it is assumed that the amount of references to the LSM as well as the GSM is
distributed equally among all the computing nodes, TMPi is changed as follows.

TMPI = RM · TSPi · {
(

1 −RMW

N
+
RMW ·RMWL

G

)
· AN
G

+RMW ·RMWG · TUG ·G}. (8)

For obtaining the optimal number of clusters (G), the execution time of
parallel code block, Eq.(5), must be minimized. Thus, this equation is changed
as follows.

MIN (TPi(G)) = MIN
(
TEPi + TMPi)

= MIN
(
RM · TSPi · {

(
1 −RMW

N
+
RMW ·RMWL

G

)
· AN
G

+(1 −RM) · TSPi
N

+RMW ·RMWG · TUG ·G}
)
. (9)

Configuration Method of Multiple Clusters 177

Rm=0.25

124 8 16 32
64 0

0.25
0.5

0.75
1

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

N

R_mr

Tc

Rm=0.5

124 8 16 32
64 0

0.25
0.5

0.75
1

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

N

R_mr

Tc

Rm=0.75

124 8 16 32
64 0

0.25
0.5

0.75
1

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

N

R_mr

Tc

(a) Communication time (TCi) according to RM .

Rm=0.25

124 8 16 32
64 0

0.25
0.5

0.75
1

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

N

R_mr

Tc

Rm=0.5

124 8 16 32
64 0

0.25
0.5

0.75
1

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

N

R_mr

Tc

Rm=0.75

124 8 16 32
64 0

0.25
0.5

0.75
1

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

2.2e+06

N

R_mr

Tc

(b) Overall execution time (TPi) according to RM .

Fig. 3. Numerical analysis of a basic cluster module of JIP.

If the Eq.(9) is arranged with respect to G and differentiated by G, we can get
the optimal number of clusters. Therefore, when T ′

Pi
(G) = 0, decision function

for the optimal number of clusters is shown in the Eq.(10).

A =
1
2

·
{

2 ·RMWL ·AN
RMWG · TUG

+

√(−2 ·RMWL ·AN
RMWG · TUG

)2

+ 4 ·
(−(1 −RMW) ·AN

3 ·RMW ·RMWG · TUG ·N
)3

 ,

B =
1
2

·
{

2 ·RMWL ·AN
RMWG · TUG

+

√(−2 ·RMWL ·AN
RMWG · TUG

)2

− 4 ·
(−(1 −RMW) ·AN

3 ·RMW ·RMWG · TUG ·N
)3

 ,

G = 3
√
A+ 3

√
B, G > 0 . (10)

After determining the optimal number of clusters, the CMS constructs a mul-
tiple cluster configuration as many as dividing the optimal number of computing
nodes into the number of clusters.

178 P.-S. Shin et al.

number of nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.25

0.5

0.75

1

2
4
8

16

32

48
52

R_m

R_mw

Opt_Nodes(N)

Fig. 4. Optimal number of computing
nodes.

R_MW = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 32
64

128

256

0

2

4

6

8

10

12

14

16

18

R_mwg

N

Opt_Clusters(G)

R_MW=0.5

Fig. 5. Optimal number of clusters.

3 Performance Evaluation

In this section, we simulate the performance of JIP constructed with a basic
cluster module or multiple clusters by using the previous equations. Fig. 3 depicts
the performance of a basic cluster module of JIP using Eq.(4) and (5), when
N = 1 ∼ 64. Fig. 3 (a) shows the variation of communication time, TCi , according
to the ratio of shared memory read references and the y-axis represents the time
in milli-seconds(ms). It says that if N ≥ Opt N , TCi does not decrease any more,
but increases as the number of computing nodes increases. It is derived from the
increased network contention at a master server. Fig. 3 (b) shows the variation
of overall execution time, T . The ratio of performance speedup is decreased more
and more as a program includes higher RM until N becomes Opt N , because of
communication overhead that is increased suddenly, when N ≥ Opt N . It means
that effective parallelism and the scalability of given program vary according to
RM .

Fig. 4 depicts the optimal number of computing nodes according to charac-
teristics of application, such as the ratio of shared memory references (RM) and
the ratio of shared memory write references (RMW), obtained by using Eq.(7).
According to Fig. 4, the optimal number of computing nodes, N , is decreased
as RM and RMW are increased, because communication overhead occurred at
a master server is increased as the RM and RMW are increased. Therefore, if
the CMS constructs basic cluster module with optimal number of computing
nodes by using Eq.(7), each client participating in JIP can be guaranteed by the
optimal performance.

Fig. 5 depicts the optimal number of clusters according to the number of
participating computing nodes (N) and the ratio of global shared memory write
references (RMWG), when RMW = 1 and RMW = 0.5, by using Eq.(10). Accor-
ding to Fig. 5, the optimal number of clusters, GOPT , is increased as RMW and

Configuration Method of Multiple Clusters 179

BASE0.25

24 8 16 32
64 0.05

0.1
0.15

0.2
0.25

0.3

300000

600000

900000

1.2e+06

1.5e+06

1.8e+06

N

RMWG

T

BASE0.50

24 8 16 32
64 0.05

0.1
0.15

0.2
0.25

0.3

700000

1e+06

1.3e+06

1.6e+06

1.9e+06

2.2e+06

2.4e+06

N

RMWG

T

BASE0.75

24 8 16 32
64 0.05

0.1
0.15

0.2
0.25

0.3

1e+06

1.4e+06

1.8e+06

2.2e+06

2.6e+06

3e+06

3.4e+06

N

RMWG

T

(a) Overall execution time in a basic cluster configuration.

OPT0.25

24 8 16 32
64 0.05

0.1
0.15

0.2
0.25

0.3

300000

600000

900000

1.2e+06

1.5e+06

1.8e+06

N

RMWG

T

OPT0.50

24 8 16 32
64 0.05

0.1
0.15

0.2
0.25

0.3

700000

1e+06

1.3e+06

1.6e+06

1.9e+06

2.2e+06

2.4e+06

N

RMWG

T

OPT0.75

24 8 16 32
64 0.05

0.1
0.15

0.2
0.25

0.3

1e+06

1.4e+06

1.8e+06

2.2e+06

2.6e+06

3e+06

3.4e+06

N

RMWG

T

(b) Performance by multiple clusters.

Fig. 6. Performance comparison of a basic model with scalable model.

RMWG are decreased and N is increased. As RMWG is increased, the overhead
derived from data coherency procedure exceeds the gain by parallel memory
writes and GOPT becomes small. When N is increased, contention at the ma-
ster server is also increased and memory latency becomes longer. It means that
GOPT is increased as N increases.

Fig. 6 shows the performance comparison for a basic cluster module with a
multiple cluster configuration when the values of RM are 0.25, 0.5, and 0.75.
Fig. 6 shows that the performances of basic cluster module and multiple cluster
configuration are depicted by comparing the OPT as a multiple cluster confi-
guration with the BASE as the basic cluster module. The number in model,
e.g., OPT0.25 indicate the value of RM . As shown in this figure, in the case of
N = 2, the performance of multiple cluster configuration gets worse because the
preparation time and coherent time is increased. In all cases of RM , if N ≥ 4
and RMWG ≤ 0.15, multiple cluster configuration shows the better performance
than the base cluster module and if N ≥ 64 and RMWG ≤ 0.3, multiple clu-
ster configuration shows the better performance than the base cluster module.
In the case of RMWG = 0.05, multiple cluster configuration can enhance the
performance by 2.5 ∼ 3 times. The performance approaches near to the point
of the basic cluster module as RMWG is increased. If RMWG > 0.3, multiple
cluster configuration causes significant performance degradation. It is due to the
increased overhead from the process of data coherency.

180 P.-S. Shin et al.

4 Conclusion

For building an efficient cluster computing platform using geographically dis-
tributed computing resources on the grid, a Java-Internet cluster platform is
designed in the aspects of high programmability, efficient management for a clu-
ster of computing nodes, system scalability, and code compatibility. The JIP is
implemented with Java language and multithreading mechanisms, which sup-
ports a shared memory system with sequential consistency model. Performance
of multiple clusters is evaluated through the analysis of communication time
under JIP, and verified through the simulation. According to the analysis, the
effective number of clusters can be determined depending on the ratio of shared
memory write references. Specifically, multiple cluster configuration can enhance
the performance of JIP about 2.5 ∼ 3 times in those applications with a reason-
ably high ratio of shared memory references.

References

1. Adve, S.V., Gharachoroloo, K.: Shared Memory Consistency Models : A Tutorial.
IEEE Computer (1996) 66-76.

2. Bal, H.E., Plaat, A., Kielmann, T., et. al.: Parallel Computing on Wide-Area Clu-
sters: the Albatross Project. Proc. of Extreme Linux Workshop (1999) 20-24.

3. Culler, D.E., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Chun, B., Lumetta, S., Main-
waring, A., Martin, R., Yoshikawa, C., Wong, F.: Parallel Computing on the Ber-
keley NOW. Joint Symposium on Parallel Processing (1997) 30-40.

4. Foster, I., Kesselman, C.: The Globus Project: A Status Report. IPPS/SPDP’98
Heterogeneous Computing Workshop (1998) pp.4-18.

5. Grimshaw, A.S., Wulf, W.A., the Legion team: The Legion Vision of a Worldwide
Virtual Computer. Communications of the ACM, Vol. 40(1) (1997).

6. Java Remote Method Invocation Specification. Sun Microsystems, Mountain View,
California (1997).

7. Pinkston, T.M., Baylor, S.J.: Parallel Processor Memory Reference Analysis: Exami-
ning Locality and Clustering Potential. 5th SIAM Conference on Parallel Processing
for Scientific Computing (1992) 513-518.

8. Raman, A., Rajkumar, et. al.: PARDISC: A Cost Effective Model for Parallel and
Distributed Computing. Proc. of Int. Conf. on High Performance Computing, IEEE
Press (1996).

9. Tannenbaum, T., Litzkow, M.: The Condor Distributed Processing System.
Dr.Dobbs’ Journal, Vol. 20 (1995) 42-44.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 181-190, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Parameter-Based Approach to Resource Discovery
in Grid Computing Systems

Muthucumaru Maheswaran and Klaus Krauter

Advanced Networking Research Laboratory
Department of Computer Science

University of Manitoba
Winnipeg, MB R3T 2N2, Canada

{MAHESWAR, KRAUTER}@CS.UMANITOBA.CA

Abstract. A Grid system is essentially an infrastructure that allows location
independent access to the resources and services that are provided by
geographically distributed machines and networks. One of the fundamental
operations needed to support location-independent computing is resource
discovery. Generally, resource discovery schemes maintain and query a
resource status database. Dissemination of the resource status information is
one of the key operations required to keep the resource status databases
consistent. This paper examines several approaches for resource status
dissemination. A new concept called the Grid potential is introduced in this
paper. This concept is used to control the extent of data dissemination in Grid
systems.

1 Introduction

The deployment of faster networking infrastructures and the availability of powerful
microprocessors have positioned network computing as a cost-effective alternative to
the traditional computing approaches. The Grid is defined as a generalized, large-
scale network computing system that is formed by aggregating the services provided
several distributed resources [2, 6]. A Grid can potentially provide pervasive,
dependable, consistent, and cost-effective access to the diverse services provided by
the distributed resources and support problem solving environments that may be
constructed using such resources.

One of the key motivations for constructing Grids is to provide application-level
connectivity among the various machines so that resources and services supported by
the individual systems can be shared in a Global fashion. To enable such sharing, it is
necessary for the Grid architecture to support several services [2, 7] and resource
discovery is one of them.

In a Grid system, the resource discovery service may operate in conjunction with
the resource management service. When a client requests service, along with the
request it presents a set of attributes that should be satisfied by a candidate resource.
The resource discovery process may be responsible for generating a set of best
possible candidates for the given set of attributes. The scheduling heuristics that are
part of the resource management mechanism may allocate the best resource(s) from
the set based on the some criterion. For example, the resource management may

182 M. Maheswaran and K. Krauter

solicit bids from the potential candidates and select the resource with the highest bid
to serve the request. Along with other services, resource discovery is necessary to
support resources going off-line and coming on-line. Further, the cascaded operation
of resource discovery followed by resource allocation can be efficient in an
heterogeneous dynamic system such as the Grid.

Generally, resource discovery services use “status” databases that are maintained
by network-wide information services to fulfill the client requests. For scalable
implementations, it is essential to organize the status databases in a distributed
fashion. With a distributed organization for the status databases, the queries can be
executed very efficiently but the updates to the databases may be costly. Most of the
update costs are caused by the communication operations performed to disseminate
status information across the Grid. This paper focuses on approaches for reducing the
data dissemination overhead.

In this paper, we introduce a concept called the “Grid potential” that encapsulates
the relative processing capabilities of the different machines and networks that
constitute the Grid. We show how the Grid potential can be used to adaptively control
the extent of data dissemination in a Grid.

Section 0 proposes the idea of Grid potential that is used to adaptively to control
the data dissemination overhead. Section 0 discusses the data dissemination
approaches for resource discovery operation in the Grid context. Some results from
simulation studies that compare the different approaches to data dissemination for
resource discovery are presented in this section. Section 0 examines the related work
in the research literature.

2 Grid Potential

The Grid potential concept is similar to the time-to-live idea used in the Internet [5].
Informally, the Grid potential at a point in the Grid can be considered as the
computing power that can be delivered to an application at that point on the Grid. The
computing power that can be delivered to an application depends on the machines that
are present in the vicinity and the networks that are used to interconnect them.
Consequently, a high-performance machine when connected to the Grid will induce a
large Grid potential. This potential, however, will decay as the launch point of the
application moves away from the point at which the machine is connected to the Grid.
The rate of potential decay depends on the network link capacities. The rest of this
section presents a formal definition of the Grid potential idea.

A node in the Grid has several attributes that can be categorized as rate-based
attributes and non rate-based attributes. Examples of rate-based attributes include
CPU speed, FLOP rating, sustained memory access rate, and sustained disk access
rate. A node in a Grid can be characterized by a vector where each element of the
vector is an attribute-value pair.

The Grid potential is based on the computing power or operating rate of a node.
Therefore, to characterize a node for deriving the Grid potential only rate-based
attributes are considered. Let 〉===〈= −− 111100 ,..., NNxxxX ααα , where ix

A Parameter-Based Approach to Resource Discovery in Grid Computing Systems 183

is a rate-based attribute of the system and iα its value at a given time. Let F be a set

of functions },,,{ 110 −kfff K , where if operates on the set X to return a scalar

value),...,(110 −= Nii xxxfλ . Depending on the system, different functions may be

defined for it. The functions essentially form weighted sums of the attributes that can
be interpreted as different types of potentials. For example, the function

),...,(110 −= Ncc xxxfλ may be interpreted as the compute potential of the system

and another function),...,(110 −= Nss xxxfλ may be interpreted as the secondary

storage potential. While the compute potential cf may be based on attributes that

relate to the processing rate of the node the storage potential sf may be based on

attributes that relate to the performance of the storage subsystem. Further, we could
have functions that compute application specific potentials that could be useful if the
Grid is used exclusively for particular sets of applications.

While the above functions characterize the different Grid potentials of a node in
terms of its operating rates, they are not sufficient to measure the different potentials.
Therefore, a suite of corresponding “benchmarking” programs are introduced to
measure the different potentials.

Let iΓ be a suite of benchmark programs meant to measure the potential that

corresponds to function if . In the benchmark suite },...{ 10
i
N

i
i −=Γ ττ , i

jτ is a

program specifically designed to evaluate attribute jx of the node. Designing such

programs is feasible because only rate-based attributes are considered for computing
the potentials of a node. For example, one of the benchmarking programs might be
measuring the rate at which arithmetic operations are being executed.

Definition 1: Node component potential (C
jp) with respect to attribute jx is defined

as the number of operations performed by the node in one second as measured by the

benchmarking program i
jτ .

The performance of a node with respect to an application depends on the rate at
which the basic operations required by the application can be performed by the node,
i.e., the ultimate node performance depends on a weighted average of the individual
node component potentials.

Definition 2: Weighted node potential (Wp) is defined as a weighted average of the

node component potentials }...,,{ 110
C
N

CC ppp − , i.e.,

C
NN

CCW pppp 111100 ... −−+++= ααα

The node potential as expressed by the above equation can be considered as a
function of the weighting factors and the node component potentials. The weighting
factors determine the relative impotance of the different component potentials. In

184 M. Maheswaran and K. Krauter

addition to varying the weighting factors, the component potentials may be varied
under certain situations.

We define the potential induced by a machine i at the point of its attachment to

the Grid as the local induced Grid potential and is defined as WL
i pp µ= where

.10 ≤≤ µ When the machine is exclusively used for Grid computations, 1=µ and

10 <≤ µ otherwise.

Definition 3: Grid potential (Gp) is defined as the maximum of local induced Grid

potentials. Suppose M machines are attached to a given node j , then the Grid

potential at that node is given by

{ })(max]..0[ipp L
jMi

G
∈= .

The Grid potential induced at the point of attachment (node) drops off as we move
away from the node along the Grid. This potential drop is dependent on the network
characteristics. The Grid potential induced by a machine at a node other than its point
of attachment to the Grid is defined as the remote induced Grid potential. Consider a

machine that is attached to the Grid at node i. Let R
ijp denote the remote induced

Grid potential of this machine at node j. The remote induced Grid potential R
ijp can

be considered as the effective processing power of the machine at node j.

3 Data Dissemination for Resource Discovery

3.1 Overview

Maintaining the consistency of the distributed status databases involves disseminating
the status information. Based on the extent of message propagation, we can classify
the data dissemination schemes into three groups.

Universal awareness: This class of data dissemination algorithms distributes the
status information such that a node can learn about every other node in the Grid. For
large network sizes, the approaches in this group cause significant amount of
communication due to large number of message transfers.

Neighborhood awareness: The dissemination algorithms in this group propagate
status information such that a node learns about the other nodes that are less than a
fixed distance away from it. Although the approaches in this class limit the
dissemination overhead and is scalable to very large network sizes, other components
of the resource discovery mechanism should be able to handle the incomplete
information in the status databases that are associated with the different nodes.

A Parameter-Based Approach to Resource Discovery in Grid Computing Systems 185

Distinctive awareness: Because the Grid is a highly heterogeneous system, various
nodes on the Grid have different attributes. The nodes with distinct attributes are more
significant. The extent of a node’s status information propagation is controlled by the
significance of the node. If all nodes are homogeneous, an algorithm in this group
reduces to an algorithm in the neighborhood awareness group. In a highly
heterogeneous Grid, an algorithm in this group should deliver a resource discovery
efficiency close to a universal awareness type algorithm while having a
communication complexity closer to the neighborhood awareness algorithm. One way
of implementing distinctive awareness is to use the Grid potential idea presented in
the previous section.

3.2 Data Dissemination Algorithms

Figure 1 presents the pseudo-code for the dissemination algorithm that executes on
each node. This particular algorithm uses the swamping approach for dissemination.
Once a message comes into the node it is validated. The validation process
implements the different types of dissemination: universal awareness, neighborhood
awareness, and distinctive awareness. In universal awareness, the validation process
permits all incoming messages. In the neighborhood awareness, it checks the distance
from the source to the current node and discards the message if it exceeds the
predefined limit.

while (true) {
 // process incoming message
 receive messsage (X) {

// validate the incoming message: this may depend on the local policy
// if universal awareness this function is always true
// if neighborhood awareness returns true only
// if the distance to source is less than m
// if distinctive awareness returns true only if the local Grid potential
// is less than or equal to remote induced local Grid potential
if (validate(X)) {
 // update the data structures that keep awareness information in the node
 process(X)
}
// if there are no incoming message then break out the loop to send messages

 } or timeout (n)

 if (currentTime > lastSentTime + n) {
lastSentTime = currentTime
// send to logical neighbors
get the list of neighboring nodes Y
foreach node in Y
 send status update message

 }
}

Figure 1: Pseudo-code for flooding based data dissemination.

186 M. Maheswaran and K. Krauter

The distinctive awareness is implemented by the validation routine discarding the
message if the remote induced Grid potential at the local node is less than the Grid
potential at the node. It should be noted that the Grid potential at the local node is the
maximum of all local induced potentials. Therefore, the messages arriving from
remote nodes that induce less remote potential at the local node than its own potential
will be discarded. This creates a “masking problem” for nodes “behind” powerful
nodes in a network. For example, if a network of nodes is connected to the rest of the
network via a powerful node (as explained in earlier sections, we model the Grid as a
connected graph with nodes representing machines), the powerful node will drop all
incoming data dissemination messages. Thus, the powerful node will block the
dissemination of the status information of the “interior nodes.” This masking problem
is there when a flooding-based algorithm is used for data dissemination. A swamping-
based algorithm that increases the neighborhood set as it discovers new nodes will be
able to overcome this problem.

To reduce the high message overhead of the swamping approach, it is possible to
use a random node-based approach such as the Name-dropper algorithm [3]. Using
the random node-based approach instead of the flooding approach avoids the masking
problem. Consider the example situation where a powerful node connects a network
of less powerful nodes to the rest of the network. As part of their update messages
each node will advertise their immediate neighbors to the other nodes. Therefore, the
nodes behind the powerful node will be reachable.

3.3 Experimental Evaluation of the Algorithms

To evaluate the performance of the various data dissemination schemes we devised
the following simulation study. In this simulation study a computational Grid is
modeled by a random graph with the nodes denoting the machines. The data
dissemination scheme is responsible for updating the status database that is
maintained at each node. Depending on the scheme that is under consideration, we
might have a complete database at each node or an incomplete database at each node.
We define data dissemination efficiency to be 100% if the particular data
dissemination algorithm creates local database that is same as an ideal global
database. Higher the value the above parameter is the more accurately the local
database captures the actual global status picture.

In the simulations, we “estimate” the above parameter by scheduling a stream of
jobs onto the Grid using an ideal global database and local database. We use the same
scheduling algorithm in both situations and the differences in the decisions taken
gives a measure of the difference between the two databases. In addition to the above
parameter, we also report another performance measure that is the schedule deviation.
This parameter is, however, more dependent on the scheduling algorithm than the
above parameter, i.e., it is dependent on how far the decisions taken by the scheduling
algorithm is dependent on the completeness of the status information.

A Parameter-Based Approach to Resource Discovery in Grid Computing Systems 187

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

10 50 100 150 200

network size/ (num of machines)

m
es

sa
ge

 c
om

pl
ex

ity

(n
um

 o
f m

es
sa

ge
s)

neighborhood distinctive universal

Figure 2: Variation of message complexity with network size.

0

20

40

60

80

100

120

10 50 100 150 200

network size/ (num. of machines)

di
ss

em
in

at
io

n
ef

fic
ie

nc
y/

 (
%

)

neighborhood distinctive universal

Figure 3: Variation of dissemination efficiency with network size.

188 M. Maheswaran and K. Krauter

Figure 4: Variation of the schedule deviation with network size.

Figure 2 shows the variation of the message complexity with network size for the
different data dissemination schemes. Figure 3 shows the variation of the efficiency of
data dissemination with network size and Figure 4 shows the variation of the schedule
deviation with network size.

From the above results, it can be observed that the message complexity of the
neighborhood and distinctive approaches are about the same and much less than the
universal approach. This is expected because in the universal approach, each node
sends a message to every other node in the network.

4 Related Work

Because resource discovery is a fundamental operation in distributed computer
systems it has been examined in a variety of distributed systems including: mobile
computing, wireless sensor networks [4], high throughput computing [9], naming
systems [1].

Several data dissemination algorithms based on the universal awareness scheme
are examined in [3]. Their paper presents a new algorithm called the Name-Dropper
that is proved to have a better communication complexity when compared with three
other algorithms based on flooding, swamping, and random pointer jumping,
respectively. Our study is different from [3] because we examine the trade-offs
between various data dissemination approaches.

Matchmaking [9] is a distributed resource management mechanism developed as
part of the Condor [8] project for Grid systems. The matchmaking is based on the idea
that resources providing services and clients requesting service advertise their
characteristics and requirements using classified advertisements (classads). A
matchmaker service that may be either centralized or distributed matches the client

A Parameter-Based Approach to Resource Discovery in Grid Computing Systems 189

requests to the appropriate resources. The matchmaking framework includes several
components of a resource discovery mechanism.

The classad specification defines the syntax and semantic rules for specifying the
evaluating the attributes associated with the characteristics and requirements. The
advertising protocol lays down the rules for disseminating the advertisements. Our
study differs from their work because we examine techniques for performing efficient
data dissemination to support resource discovery. It may be possible to use the classad
language as the specification language in the implementation of our scheme.

5 Conclusions

In this paper, we examine various strategies for data dissemination. We introduce a
new class of data dissemination strategies called the distinctive awareness. This class
of strategies can result in algorithms that have improved resource discovery efficiency
with reduced communication overhead. We use a new concept called the Grid
potential for implementing this class of algorithms. The Grid potential quantifies the
relative processing powers of the different machines in a Grid.

We performed simulation studies to examine the performance trade-offs of the
different data dissemination schemes. Several aspects of the Grid potential concept
needs further investigation. One of them is to use application based measurement
strategies for the Grid potential instead of using special benchmarks as proposed in
this paper. Another one would be construct theoretical performance models for data
dissemination algorithms that belong to the distinctive awareness category.

In summary, this paper introduces a new class of data dissemination for resource
discovery in distributed computing systems and in particular for resource discovery in
Grid systems. A novel idea called the Grid potential is also presented.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and
implementation of an intentional naming system,” Operating System Review, Vol.
34, No. 5, Dec. 1999, pp. 186-201.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Fransisco, CA, 1999.

[3] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in distributed
networks,” ACM Symposium on Principles of Distributed Computing, May 1999,
pp. 229-237.

[4] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for
information dissemination in Wireless sensor networks,” ACM Mobicomm, 1999,
pp. 174-185.

[5] C. Huitema, Routing in the Internet, Second Edition, Prentice-Hall, Upper Saddle
River, NJ, 2000.

190 M. Maheswaran and K. Krauter

[6] W. E. Johnston, D. Gannon, and B. Nitzberg, “Information Power Grid
Implementation Plan: Research, Development, and Testbeds for High
Performance, Widely Distributed, Collaborative, Computing and Information
Systems Supporting Science and Engineering,” NASA Ames Research Center,
http://www.nas.nasa.gov/IPG, 1999.

[7] K. Krauter and M. Maheswaran, Architecture for a Grid Operating System,
Technical Report TR-CS-00-12, Department of Computer Science, University of
Manitoba, May 2000.

[8] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - A hunter of idle
workstations,” 8th International Conference on Distributed Computing Systems,
1988, pp. 104-111.

[9] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed resource
management for high throughput computing,” 7th IEEE International Symposium
on High Performance Distributed Computing, 1998, pp. 28-31.

Evaluation of Job-Scheduling Strategies
for Grid Computing

Volker Hamscher1, Uwe Schwiegelshohn1, Achim Streit2, and
Ramin Yahyapour1

1 Computer Engineering Institute, University of Dortmund, 44221 Dortmund,
Germany

2 Paderborn Center for Parallel Computing, University of Paderborn, 33095
Paderborn, Germany

Abstract. In this paper, we discuss typical scheduling structures that
occur in computational grids. Scheduling algorithms and selection stra-
tegies applicable to these structures are introduced and classified. Simu-
lations were used to evaluate these aspects considering combinations of
different Job and Machine Models. Some of the results are presented in
this paper and are discussed in qualitative and quantitative way. For
hierarchical scheduling, a common scheduling structure, the simulation
results confirmed the benefit of Backfill. Unexpected results were achie-
ved as FCFS proves to perform better than Backfill when using a central
job-pool.

1 Introduction

In recent years an increasing number of parallel computers have become part
of so called computational grids or metacomputers [1], [2]. Such a grid typically
contains many computers offering a variety of resources. The scheduling system
is responsible to select best suitable machines in this grid for user jobs. In large
grids it is very cumbersome for an individual user to select these resources ma-
nually. The management and scheduling system generates job schedules for each
machine in the grid by taking static restrictions and dynamic parameters of jobs
and machines into consideration.

The job scheduling for a single parallel computer significantly differs from
scheduling in a metacomputer. The scheduler of a parallel machine usually ar-
ranges the submitted jobs in order to achieve a high utilization. The task of
scheduling for a metacomputer is more complex as many machines are involved
with mostly local scheduling policies. The metacomputing scheduler must the-
refore form a new level of scheduling which is implemented on top of the job
schedulers. Also, it is likely that a large metacomputer may be subject to more
frequent changes as individual resources may join or exit the grid at any time.
Note that many users take a special advantage of a computational grid in the
potential combination of many resources to solve a single very large problem.
This requires the solution of various hardware and software challenges in several
areas including scheduling.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 191–202, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

192 V. Hamscher et al.

In this paper we discuss several architectures and scheduling policies for such
a system. To this end, we are presenting a brief overview on this topic in Section
3. Next, we show a few simple scheduling algorithms for these architectures in
Section 4. These algorithms are subject of the performance evaluation in Section
5 where preliminary simulation results are presented.

2 Background

The term metacomputing was established in 1987 by Smarr and Catlett [11]. The
concept of connecting computing resources has been subject to many research
projects. Some to be mentioned are Globus [5], Condor [10] and Legion [6].

In the area of metacomputing the topic of scheduling is an important part
for building efficient infrastructures. As already mentioned, the requirements
of scheduling in a metacomputing environment significantly deviate from those
for scheduling of jobs on a single parallel machine. One important difference is
the inclusion of network resources. Additionally, metasystems are geographical
distributed and often belong to several institutions and owners. A scheduler on
a single parallel machine must not cope with system boundaries and can manage
the given resources independently of external restrictions.

A scheduling infrastructure in a metacomputing system must take those addi-
tional requirements into account. Therefore special mechanisms for security and
fault-tolerance are needed. Also the independence of resources, especially the
different ownership, requires support for the fine-tuning of scheduling policies
defined by their providers.

In the next section, this paper gives an overview of common structures in
metacomputing environments. The presented topologies are classified into cen-
tralized and decentralized schedulers. The structure of the scheduling infrastruc-
ture, the used algorithms and strategies are very important for the quality and
performance of the system. Many of those scheduling algorithms, starting from
simple FCFS strategies to improvements like backfilling [4] known from schedu-
ling on a single parallel machine, can be adapted to the metasystem level. In this
paper, we concentrate on the discussion of scheduling structures in metasystems
in combination with some common scheduling algorithms.

In the following, example architectures for scheduling infrastructures are pre-
sented. Note, that this list should not be considered complete, but gives an
overview on common structures in computational grids and metacomputing net-
works. Further we do not elaborate on the architecture of the parallel computing
systems itself, but only on the logical structure of the scheduling process. First,
we distinguish centralized and decentralized scheduling architectures.

2.1 Centralized Scheduling

In a centralized environment all parallel machines are scheduled by a central in-
stance. Information on the state of all available systems must be collected here.

Evaluation of Job-Scheduling Strategies for Grid Computing 193

This concept obviously does not scale well with increasing size of the computa-
tional grid. The central scheduler may prove to be a bottleneck in some situa-
tions (e.g. if a network error cuts off the scheduler from its resources, system
availability and performance may be affected). As an advantage, the schedu-
ler is conceptually able to produce very efficient schedules, because the central
instance has all necessary information on the available resources.

This scheduling paradigm is useful e.g. at a computing center, where all
resources are used under the same objective. Due to this fact the lack of com-
munication bandwidth at the central scheduling instance can be neglected.

In this scenario jobs are submitted to the central scheduler (see Figure 1).
Those jobs, that cannot be started on a machine immediately after submission,
are stored in a central job-queue for a later start.

We can further distinguish schedulers by the way how resources are combined
for a job. This applies to centralized schedulers as well as to their decentralized
alternatives that are discussed later.

Single-site scheduling. A job is executed on a single parallel machine. This
means that system boundaries are not crossed. Well known scheduling algorithms
for load balancing (e.g. FCFS, Backfill) can be used. The latency for the in-
job-communication is often not subject to scheduling considerations due to the
fact that communication inside a machine is usually very fast in comparison to
distributed execution.

Multi-site scheduling. The described restriction of single-site algorithms is
lifted. Now a job can be executed on more than one machine in parallel. As
job-parts are running on different machines, the latency for the communication
between those parts must be considered. Further, the scheduling system must
guarantee that the different job-parts are started synchronously on all machines.

Fig. 1. Centralized Scheduling

194 V. Hamscher et al.

Fig. 2. Hierarchical Structure

2.2 Hierarchical Structure

A possible configuration for a computational grid is the usage of a central schedu-
ler to which jobs are submitted, while in addition every machine uses a separate
scheduler for the local scheduling, as shown in Figure 2. Although this structure
shows properties of centralized and decentralized scheduling, we would consi-
der it to be a centralized system as there is a single instance to which jobs are
submitted.

The main advantage is the fact that different policies can be used for local and
global job scheduling. The central scheduler is some kind of a meta-scheduler,
that redirects all submitted jobs to the local scheduling queues on the resources
based on a policy.

2.3 Decentralized Scheduling

In decentralized systems, distributed schedulers interact with each other and
commit jobs to remote systems. No central instance is responsible for the job
scheduling. Therefore, information about the state of all systems is not collected
at a single point. Thus, the communication bottleneck of centralized scheduling
is prevented which makes the system more scalable. Also, the failure of a single
component will not affect the whole metasystem. This provides better fault-
tolerance and reliability than available for centralized systems without fall-back
or high-availability solutions.

The lack of a global scheduler, which knows all job and system information at
every time instant, usually leads to sub-optimal schedules. Nevertheless, different
scheduling policies on the local sites are possible. Further, site-autonomy for
scheduling can be achieved easily as the local schedulers can be specialized on
the needs of the resource provider or the resource itself.

Unfortunately the support for multi-site applications is rather difficult to
achieve. As all parts of a parallel program must be active at the same time,

Evaluation of Job-Scheduling Strategies for Grid Computing 195

the different schedulers must synchronize the jobs and guarantee simultaneous
execution which makes it more difficult to provide optimal schedules.

In the following, we present two explicit cases of decentralized architectures
that were used for the evaluation shown in Section 5. Note that all jobs are
submitted locally.

Fig. 3. Decentralized Scheduling with Direct Communication

Direct communication. The local schedulers can send/receive jobs to/from
other schedulers directly (see Figure 3). Either schedulers have a list of remote
schedulers they can contact or there is a directory that provides information of
other systems.

If a job start is not possible on the local machine immediately, the local
scheduler is searching for an alternative machine. If a system has been found,
where an immediate start is possible, the job and all its data is transferred to
the other machine/scheduler. In our evaluation, the execution length of the job
is modified to reflect this overhead.

It can be parameterized which jobs are forwarded to another machine. Note,
that this affects the local queue. This can also affect the performance of some
scheduling algorithms. E.g. the backfilling algorithms (s. Section 3.2) relies on a
suitable backlog.

Communication via a Central Job Pool. Jobs that cannot be executed
immediately are sent to a central job pool instead of a remote machine (see
Figure 4). In contrast to direct communication the local schedulers can pick
suitable jobs for their schedules. In this scenario, jobs can be pushed into or
pulled out of the pool. A policy is required that all jobs from the pool are
executed at some time to prevent job starvation.

196 V. Hamscher et al.

Fig. 4. Using a Job Pool in Decentralized Scheduling

This method can be modified, so that all jobs are pushed directly in the
job-pool after submission. This way all small jobs requiring few resources can be
used for utilizing free resources on all machines.

3 Scheduling Algorithms

The allocation process of a scheduler consists of two parts, the selection of the
machine and the scheduling over time.

3.1 Selection-Strategies

We define four strategies for selecting suitable machines for a job request. In the
following, Mmax denotes all machines that are able to execute a specific job in
the metacomputer. Mfree is the subset of machines that have currently enough
free resources to start the job immediately.

– BiggestFree takes the machine from Mfree with the largest number of free
resources. A disadvantage of this strategy is a possible delay of a wide job,
as small jobs may take the critical resources necessary for the next wide job.

– Random chooses a machine from the sets Mmax or Mfree by random. On
average it provides a fair distribution of the jobs on the available machines.

– BestFit takes the machine either from Mmax or Mfree that leaves the least
free resources if the job is started. In comparison to BiggestFree this strategy
does not unnecessarily fill up larger machines with smaller jobs.

– EqualUtil chooses the machine with the lowest utilization to balance the
load on all machines [13]. Note, that this strategy does not try to keep larger
machines free for larger jobs which may be a drawback.

3.2 Scheduling Algorithms

Most common algorithms in scheduling are based on list-scheduling. In the fol-
lowing three variants are presented that we used for our evaluation [8].

Evaluation of Job-Scheduling Strategies for Grid Computing 197

– First-Come-First-Serve: The scheduler starts the jobs in the order of their
submission. If not enough resources are currently available, the scheduler
waits until the job can be started. The other jobs in the submission queue
are stalled. This strategy is known to be inefficient for many workloads as
wide jobs waiting for execution can result in unnecessary idle time of some
resources.

– Random: The next job to be scheduled is randomly selected among all
jobs that are submitted but not yet started, therefore the schedule is non-
deterministic. No job is preferred, but jobs submitted earlier have a higher
probability to be started before a given time instant.

– Backfill: This is an out-of-order version of FCFS scheduling that tries to
prevent the unnecessary idle time caused by wide jobs. Two common vari-
ants are EASY- and conservative-backfilling [4,9]. In case that a wide job is
waiting for execution other jobs can be started under the premise that the
wide job is not delayed. Note, that the performance of this algorithm relies
on a sufficient backlog.

4 Evaluation

4.1 Description of the Simulation Environment

For performance evaluation of the different structures and algorithms we used
a simulation environment based on discrete event simulation. It allows the eva-
luation of different configurations by providing results for common evaluation
criteria, like schedule-length (makespan), average response-time and utilization
of the machines.

Information on workload traces from the 430 node IBM RS6000/SP of the
Cornell Theory Center [7] and a workload trace of the Intel PARAGON from
the FZ Jülich were used to generate different Job Sets. Thereby the jobs contain
all relevant information necessary for the scheduling.

The traces were modified to produce larger backlogs, which was done by a
duplication of the jobs.

A job consists of a submission time and a requested number of resources.
Also for some algorithms (backfilling) the actual or estimated execution length
of a job is used.

We use a simple abstract Machine Model of homogeneous resources (nodes).
The communication inside a machine does not prefer any specific communication
patterns. Therefore, jobs can be distributed on a machine in any fashion. Every
machine is capable of starting every job as long as enough resources are available.
The nodes are used in an exclusive manner. After the start of a job, the subset
of nodes cannot be changed and therefore no support for migration is provided
here.

Some machine models used in the simulations are presented in Table 1 with
information on the size of each machine and the total number of resources.
The first Machine Model nrw is based on the machines available in the NRW-
Metacomputing project [3].

198 V. Hamscher et al.

An overview on the evaluated combinations of algorithms and selection stra-
tegies is given in Table 2. Each scheduler is simulated with different job and
machine models.

4.2 Results

The different combinations of configurations, algorithms and structures produced
a large amount of data. In the following, we can only discuss some of the results,
while the complete listing is found in [12].

Single-Site Scheduling. First, we compare FCFS and Backfilling in the Single-
Site scenario, see Table 3.

As expected Backfill is much more efficient than FCFS in single-site sche-
duling and also better than Random. Especially with the BiggestFree strategy,
Backfilling is vastly superior to FCFS. As already mentioned before, large back-
logs cause the Backfill scheduler to be more efficient. Note that, the simple
random strategy performs only slightly worse than Backfill.

In comparison to the other selection strategies (see Section 3.1) BiggestFree
performs worst, because resources are allocated without regard of wide jobs
potentially submitted in near future. BestFit Free unveils the best results in all

Table 1. Resource Configurations

Total Number of
Name Sizes of Machines Resources Machine
nrw 10, 12, 16, 32,48, 192, 512, 512 1334 8
equal 256, 256, 256, 256, 256, 256, 256, 256 2048 8
4small 4big 32, 32, 32, 32, 256, 256, 256, 256 1152 8
2powN 2, 4, 8, 16, 32, 64, 128, 256 510 8

Table 2. Simulated combinations

Selection
Structure Scheduler Strategy

Single-Site FCFS, BestFit Free,
Random, BiggestFree,
Backfill Random Free

Central Multi-Site - -

FCFS, BestFit Max,
Hierarchical Backfill EqualUtil Max,

Random Max
Direct Com- FCFS, -

Decentral munication Backfill
Job Pool FCFS, -

Backfill

Evaluation of Job-Scheduling Strategies for Grid Computing 199

Table 3. Exemplary results of single-site scheduling. Machine model 2powN and job
model are based on trace data from CTC.

Scheduling Selection Average
Algorithm Strategy Makespan Response Time Utilization

BestFit Free 14.878.363 s 12.445 s 66,28 %
Backfill BiggestFree 14.878.363 s 13.060 s 66,28 %

Random Free 14.878.363 s 12.769 s 66,28 %
BestFit Free 16.361.362 s 881.155 s 60,27 %

FCFS BiggestFree 18.086.122 s 1.806.165 s 54,52 %
Random Free 17.033.913 s 1.312.609 s 57,89 %
BestFit Free 14.879.165 s 13.951 s 66,27 %

Random BiggestFree 15.639.085 s 40.166 s 63,05 %
Random Free 15.240.330 s 31.356 s 64,70 %

cases as it leaves less resources idle. Random Free which effectively represents a
mixture of both variants achieves average results.

Multi-Site Scheduling. Four computation methods are used exemplary to
modify the execution length of jobs running on several machines.

1. (1 + p)f

2. maxi[(1 + p)ri]
3. (1 + p) ∗ f
4. maxi[(1 + p) ∗ ri]
– f specifies the number of job segments
– ri specifies the number of requested resources by each job part i
– p denotes a unit value for the partitioning overhead

The segmentation of a job to run in parallel on several machines leads to an
overhead. The size increases are described by the parameter p. Generally a lar-
ger p results in a longer average response time (ART). While the first three
procedures show a monotonous behavior in this context, the last one seems not
to share this trend.

An additional parameter (minJobSize) prevents a job smaller than minJob-
Size from being partitioned in segments. Therefore we expect a larger makespan
and a larger ART for a bigger minJobSize, but obtained different results. Further
research must determine whether there is a turning point at which the originally
expected correlation begins. As to be expected, multi-site scheduling does not
perform as well as single-site scheduling.

Hierarchical Scheduling. The Tables 4 and 5 present the results for different
selection strategies and Machine Models.

In both cases EqualUtil Max performs slightly better than the Random sel-
ection strategy, nevertheless both produce fairly good results. The use of Equa-
lUtil Max proves to be advantageous if machine sizes vary. If all machines in the

200 V. Hamscher et al.

metasystem are equipped with the same number of resources (e.g. 8 machines
with 256 resources each) the differences between both strategies are negligible.

Especially in combination with the EqualUtil strategy and heterogeneous
structures, the Backfill scheduler is much more effective than FCFS as shown in
Table 6.

Direct Communication. The increase of the execution length (see Sec. 2.3)
leads to an expected decrease in performance (see Table 7). But it is negligible
as only few jobs are affected. Overall the results for distributed structures are
highly dependent on the resource configuration. In a configuration where all
machines are similar in size as in set equal, there is no significant difference
between centralized and decentralized scheduling. In an environment of machines
with varying size, decentral scheduling produces much worse results.

Using a Job Pool. The scheduling depends mostly on established (fairness)
policies. For instance, a job is only forwarded to the job pool, if it cannot be
handled locally. Therefore, the balancing between the local and the remote queue
is of major importance to prevent jobs to accumulate in one of them.

Backfill schedulers prefer the local queue for their backfilling, whereas FCFS
based schedulers always use the job-pool to utilize their idle times. Therefore,
FCFS has a wider variety of jobs to choose from, if enough backlog exists. Under
this circumstances FCFS shows a slightly better performance than Backfill. First
simulations verify this effect as presented in Table 8.

The increase of the execution length for the overhead as mentioned in Section
2.3 shows a decrease in performance as to be expected. If enough small jobs are
forwarded to the central pool, the results are comparable to central scheduling.

Besides the scheduling aspect the use of a common job-pool requires certain
management features. Jobs exceeding the maximum size of any resource set of
the system must be rejected.

Table 4. Exemplary utilization results for each machine with different selection strate-
gies in hierarchical scheduling. Machine model equal respectively 2powN and job model
are based on trace data from CTC.

Machine Size 256 256 256 256 256 256 256 256
Random Max 6,85 % 6,47 % 7,27 % 8,16 % 7,53 % 7,84 % 7,38 % 6,94 %
EqualUtil Max 7,28 % 7,35 % 7,28 % 7,35 % 7,49 % 7,30 % 7,30 % 7,30 %

Table 5. Exemplary utilization results for each machine with different selection strate-
gies in hierarchical scheduling. Machine model equal respectively 2powN and job model
are based on trace data from CTC.

Machine Size 2 4 8 16 32 64 128 256
Random Max 3,20 % 3,71 % 35,85 % 21,31 % 21,40 % 16,99 % 17,76 % 40,08 %
EqualUtil Max 14,73 % 14,86 % 24,67 % 24,85 % 24,90 % 24,78 % 24,80 % 28,53 %

Evaluation of Job-Scheduling Strategies for Grid Computing 201

Table 6. Exemplary results for selection strategy EqualUtil Free in hierarchical sche-
duling. Machine model 2powN and job model are based on trace data from CTC.

Scheduling Average
Algorithm Makespan Response Time Utilization
FCFS 120.662.772 s 32.836.642 s 8,17 %
Backfill 16.189.537 s 94.377 s 60,91 %

Table 7. Exemplary results for absolute modification of the execution length using
Backfill-Schedulers with Direct Communication. Machine model 2powN and job model
are based on trace data from CTC.

CTC
extension time of Average
transferred jobs Makespan Response Time Utilization
20 s 28.005.954 s 2.615.614 s 34,27 %
50 s 28.775.899 s 4.167.194 s 35,21 %

KFA
parameter p (relative Average
length modification) Makespan Response Time Utilization
0.1 23.485.345 s 26.135 s 29,31 %
0.2 23.485.635 s 26.154 s 29,31 %

Table 8. Comparing FCFS and Backfill with equal settings of parameters. Machine
model nrw and job model are based on trace data from KFA.

Scheduling Average
Algorithm Makespan Response Time Utilization
FCFS 23.465.816 s 1.036 s 9,55 %
Backfill 23.466.498 s 1.075 s 9,54 %

5 Conclusion

In this paper, we discussed some scheduling structures that typically occur in me-
tasystems or computational grids. As evaluating such structures highly depends
on the used algorithms and strategies of the scheduling itself, a selection of them
has been presented. Besides the discussion of scheduling structures, simulations
were used to evaluate their run-time performance. Discrete-event simulation has
been used with workload from real machine traces and sample machine configu-
rations. The results are not meant to be complete, but give an overview on the
methodology and some interesting relations. Future work will extend the studies
to more architectures and include more detailed parameter and configuration
variation. This is important as the current results show that the performance of
the examined algorithms for the scheduling structure are highly dependent on
the parameters, machine configurations and workload.

202 V. Hamscher et al.

References

1. European grid forum, http://www.egrid.org.
2. The grid forum, http://www.gridforum.org.
3. C. Bitten, J. Gehring, R. Yahyapour, and U. Schwiegelshohn. The NRW-

Metacomputer: Building blocks for a worldwide computational grid. In Hetero-
geneous Computing Workshop 2000 at IPDPS 2000, Cancun, Mexico, May 2000.

4. D.G. Feitelson and A.M. Weil. Utilization and Predictability in Scheduling the
IBM SP2 with Backfilling. In Procedings of IPPS/SPDP 1998, pages 542–546.
IEEE Computer Society, 1998.

5. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
11(2):115–128, 1997.

6. A. Grimshaw, A. Wulf, J. French, A Weaver, and P. Reynolds. Legion: The next
logical step toward a nationwide virtual supercomputer. Technical Report CS-94-
21, University of Virginia, Computer Sciences Department, 1994.

7. S. Hotovy. Workload Evolution on the Cornell Theory Center IBM SP2. In D.G.
Feitelson and L. Rudolph, editors, IPPS’96 Workshop: Job Scheduling Strategies
for Parallel Processing, pages 27–40. Springer–Verlag, Lecture Notes in Computer
Science LNCS 1162, 1996.

8. J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the design and evalua-
tion of job scheduling algorithms. In Fifth Annual Workshop on Job Scheduling
Strategies for Parallel Processing, IPPS’99; San Juan, Puerto Rico; April 1999,
Lectures Notes in Computer Science, pages 17–42, 1999.

9. D.A. Lifka. The ANL/IBM SP scheduling system. In D.G. Feitelson and L. Ru-
dolph, editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel Proces-
sing, pages 295–303. Springer–Verlag, Lecture Notes in Computer Science LNCS
949, 1995.

10. M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In
Proceedings of the 8th Intl Conf. on Distributed Computing Systems, pages 104–
111, 1988.

11. L. Smarr and C. E. Catlett. Metacomputing. Communications of the ACM,
35(6):44–52, June 1992.

12. A. Streit. Evaluation of Scheduling-Algorithms for Metacomputing (in German).
In Diploma Thesis at CEI. University of Dortmund, Germany, 1999.

13. G. D. van Albada, J. Clinckemaillie, A. H. L. Emmen, J. Gehring, O. Heinz,
F. van der Linden, B. J. Overeinder, A. Reinefeld, and P. M. A. Sloot. Dynamite
- blasting obstacles to parallel cluster computing. In P. M. A. Sloot, M. Bubak,
A. G. Hoekstra, and L. O. Hertzberger, editors, High-Performance Computing and
Networking (HPCN Europe ’99), Amsterdam, The Netherlands, number 1593 in
Lecture Notes in Computer Science, pages 300–310, Berlin, April 1999. Springer-
Verlag.

Experiments with Migration of Message-Passing
Tasks

K. A. Iskra1, Z. W. Hendrikse1, G. D. van Albada1, B. J. Overeinder1,
P. M. A. Sloot1, and J. Gehring2

1 Informatics Institute, Universiteit van Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{kamil,zegerh,dick,bjo,sloot}@science.uva.nl

2 Paderborn Center for Parallel Computing,
Fürstenallee 11, 33102 Paderborn, Germany

joern@uni-paderborn.de

Abstract. The combined computing capacity of the workstations that
are present in many organisations nowadays is often under-utilised, as
the performance for parallel programs is unpredictable. Load balancing
through dynamic task re-allocation can help to obtain a more reliable
performance. The Esprit project Dynamite1 provides such an automated
load balancing system. It can migrate tasks that are part of a parallel
program using a message passing library. Currently Dynamite supports
PVM only, but it is being extended to support MPI as well. The Dy-
namite package is completely transparent, i.e. neither system (kernel)
nor application source code need to be modified. Dynamite supports mi-
gration of tasks using dynamically linked libraries, open files and both
direct and indirect PVM communication. Monitors and a scheduler are
included. In this paper, we first briefly describe the Dynamite system.
Next we describe how migration decisions are made and report on some
performance measurements.

1 Introduction

With the introduction of more powerful processors every year, and network
connections becoming both faster and cheaper, distributed computing on stan-
dard PCs and workstations of an organisation becomes more attractive and fea-
sible. Consequently, the interest in special purpose parallel machines is declining
in favour of the clusters of workstations.

In such environments, performance optimisation and load balancing by off-
loading work to other nodes in the cluster is highly desirable. For sequential
programs, this has long been solved (e.g. in Condor [10,9] and Codine [17]).
For tasks in parallel programs, this still is a research issue. Dynamite [1,6,7,8]
provides a dynamic load balancing system for parallel jobs running under PVM
1 Dynamite is a collaborative project, funded by the European Union as Esprit pro-

ject 23499. Of the many people that have contributed, we can mention only a few:
A. Streit, F. van der Linden, J. Clinckemaillie, A. H. L. Emmen.

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 203–213, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

204 K.A. Iskra et al.

[5] when run on clusters of workstations. The load balancing is realised through
the migration of tasks.

Dynamite is an acronym for DYNAMIc Task migration Environment and is
also known as DPVM [11] (Dynamic–PVM), since it is based on PVM, version
3.3.11. Dynamite currently supports PVM-based programs only, but its modular
design greatly facilitates the creation of an MPI [16] version. Work on this is
currently under way in cooperation with the people from Hector [12]. Various
PVM variants supporting task migration have been reported, such as tmPVM
[15], ChaRM [4], DAMPVM [3] and MPVM [2].

Dynamite is currently operational under Sun Solaris/UltraSparc 2.5.1
through 8 (32 bit) and Linux/i386 2.0 and 2.22. It aims to provide a complete
solution for dynamic load balancing, see Section 6. The strengths of Dynamite
are its powerful and versatile checkpointing mechanism, its transparency, its
modularity and its robustness.

New placement

Initial placement

Scheduler/decider Load monitor

Capacity per node

Capacity per node

Dynamite run-time system

Application

Decompose

Place

Run

Migrate

Fig. 1. Running an application with Dynamite. An application has to be decomposed
into several subtasks already, and it must be linked with the Dynamite libraries. The
run-time system places these on nodes in the cluster, starts execution and monitors
the system. If it decides that the load is unbalanced (above a certain threshold), one
or more task migrations may be performed to establish a new and more optimal load
distribution.

The motivation for a continuous optimal task allocation is three-fold:

– overall performance is determined by the slowest task,
– dynamic run-time behaviour of both task (the amount of computational

resources needed by a task) and node (computational resources offered by a
node) may vary in time,

– computational resources used by long-running programs might be reclaimed
on demand.

The Dynamite system (see Fig. 1) consists of three separate parts:

1. The load-monitoring subsystem. The load-monitor should leave the compu-
tation (almost) undisturbed.

2. The scheduler, which tries to make an optimal allocation.
2 Only the libc5 and glibc2.0 libraries are currently supported.

Experiments with Migration of Message-Passing Tasks 205

3. The task migration software, which allows a process to checkpoint itself and
to be restarted on a different host. This also has a significant impact on the
message-passing libraries. An extensive and detailed description of this part
of the system can be found in [8].

Dynamite is required to be as transparent to the user as possible. This implies
that the checkpoint/migration mechanism must be implemented completely in
user-space and no additional changes to the code of the program may be requi-
red. Indeed, the user only has to link to the Dynamite dynamic loader3 (which
contains the checkpoint/restart mechanism and is a shared library itself; it is
based on the Linux ELF dynamic loader 1.9.9) and the DPVM library. From
then on, the complete Dynamite functionality is available. It is also necessary
to use Dynamite’s infrastructure (daemons, group server, console and such) as
functionality has been added and protocols have been adapted.

Users of sequential programs that do not use PVM can merely link their
applications using the Dynamite dynamic loader, thus taking advantage of the
checkpoint facility.

First we will describe the architecture of Dynamite in Sections 2 and 3.
Thereafter quantitative results will be presented, which have been obtained with
Dynamite running on a Linux cluster. These data will be compared to standard
PVM runs. Subsequently, we briefly discuss the limitations of Dynamite and
come to our conclusions.

2 Checkpointing Mechanism

Checkpointing a process boils down to writing the address space of a process to
a file and retrieving its contents afterwards. This includes the shared libraries
which may be used by the process. In addition, the contents of (some of the)
processor registers must be taken care of, such as the program-counter and the
stack pointer. Moreover, a proper implementation must also consider various
communication channels.

In Dynamite, the checkpointing functionality was implemented in the dyna-
mic loader, to which the following changes were made:

1. it can handle a checkpoint signal (SIGUSR1),
2. it can treat a checkpoint file just like any other executable,
3. it wraps certain system and library calls:

– for open files (a.o. open, write, creat),
– for memory allocation (mmap, munmap, mremap4),

4. it preserves certain cross-checkpoint data separately,
5. it provides handles for additional processing before and after checkpoints

(e.g. for communication libaries).
3 The dynamic loader can be specified by using the appropriate compiler option.
4 Linux specific.

206 K.A. Iskra et al.

PVM tasks communicate with each other. During the migration process,
care must be taken to ensure that the communication is retained and that no
messages are lost. Such tasks thus present additional difficulties. A PVM daemon
must run on every node that participates in a PVM environment. The same
holds true for Dynamite. The network of PVM daemons plays a central role
in the communication between tasks and in initiating and co-ordinating the
migration of tasks. Every PVM task has a socket connection with the local
PVM daemon. This connection is used for the indirect routing. PVM tasks can
also establish point-to-point direct TCP/IP communication channels with each
other, to improve the performance. Task migration is mediated by the local
PVM daemon, which sends the checkpoint signal to the task, and subsequently
monitors the checkpointing process. After checkpointing, the daemon on the
target node restarts the process. Extra care must be taken when migrating PVM
tasks to ensure that they do not permanently lose the connection with the rest
of the parallel application, and that the PVM message protocol is not violated.

In Dynamite robust mechanisms for address translation, connection flushing
and connection (re-) establishment have been incorporated that have been de-
monstrated to survive thousands of consecutive migrations.

For a detailed description of the implementation, the reader is referred to [8].

3 Migration Decisions

Slave
monitor

Slave
monitor

Slave
monitor

Master
monitor

Configuration
file

Migration
decider

Fig. 2. Monitoring and migration decision sub-system

On each host of a Dynamite-managed resource pool there runs a small and
lightweight module which we call the slave monitor (Fig. 2). This small program
is responsible for frequently (every minute or as specified by the user) collecting
status information about its host and sending it to a global master monitor.
The master monitor therefore receives incoming messages from all hosts and
uses this data for creating a history of resource consumption and availability of
the complete Dynamite pool. This information is then forwarded to the migration
decider which determines, when a migration becomes necessary, which tasks will
be involved, and where they shall be moved to. Currently, the migration decider
uses the following information:

Experiments with Migration of Message-Passing Tasks 207

N : number of PVM tasks currently managed by
Dynamite

P : number of hosts in the Dynamite pool
CjCPU, CjMem : relative speed and memory capacity of host j

liCPU, liMem : CPU load and memory usage of PVM task i
on a virtual host with CjCPU = CjMem = 1

LjCPU, LjMem : load on host j that is not under the control of
Dynamite

WCPU, WMem, WMig : relative importance of balancing CPU and me-
mory load and minimising migrations as spe-
cified in the configuration file

Hi : host on which task i currently resides
WCPU, WMem, and WMig are provided by the user whereas the remaining

parameters are determined automatically by the system (except for CjCPU, CjMem
which in the current implementation still have to be entered manually).

The migration decider uses two different cost functions for different types of
parallel applications. Below is the default function we use for parallel applications
which depend mainly on the overall performance of all of the nodes they run on.
As a consequence, this cost function steers Dynamite towards an evenly loaded
pool. It defines the costs of placing tasks 1, . . . , N onto hosts h1, . . . , hN as:

Cost(h1, . . . , hN) = WCPU

P∑
j=1︸︷︷︸
(*)

LjCPU +

∑
i∈{1,...,N},hi=j

liCPU

CjCPU

︸ ︷︷ ︸
CPU load on host j

+ WMem

P∑
j=1︸︷︷︸
(*)

LjMem +

∑
i∈{1,...,N},hi=j

liMem

CjMem

︸ ︷︷ ︸
Memory load on host j

+ WMig · Card
{
i ∈ {1, . . . , N} | hi 6= Hi

}
︸ ︷︷ ︸

Necessary task migrations

This cost function has also been used for the experiments presented in Sec. 4.
If tasks have to be managed that show a more synchronous behaviour, it is less
important to achieve an equally balanced situation. Instead, the primary goal
should then be to reduce the load of the mostly loaded host. Hence, in such a
situation the user can choose to apply a second cost function in which the two
sums marked with (*) are replaced by the maximum function.

The problem of mapping an arbitrary set of tasks onto a heterogeneous set
of hosts is known to be NP-hard. Hence, we decided to use a simple hill climbing
heuristics for the first prototype of the migration decider. Unfortunately it turned
out that hill climbing failed in some very common Dynamite scenarios. Fig. 3

208 K.A. Iskra et al.

depicts such a case where two large tasks are running on the same host and one
of these is not under the control of Dynamite. This situation represents a local
minimum to hill climbing.

PVM tasks

Other tasks

Fig. 3. A common local minimum for hill climbing

If Dynamite was to be used for managing large computing environments with
hundreds or thousands of hosts, it probably would be best to use more advanced
search heuristics like for instance genetic algorithms or simulated annealing.
However, since the original design was made with smaller installations in mind,
we decided to take a more problem oriented approach. In our target scenario
it is often possible to do an exhaustive search which then results in an optimal
solution and therefore avoids non-promising but still expensive migration steps.

The search algorithm that is now used in the migration decider is based on
the well known branch and bound algorithm. This technique was adapted to
Dynamite by two modifications:

1. The search tree is ordered in a way that increases the probability of early
cut-offs. To achieve this, the current placement is made the root of the search
tree. This also ensures a very rapid search, if the current situation is already
balanced. Furthermore, the first levels of the tree involve placements of the
heaviest tasks. As a consequence, many wrong decisions can be detected
early in the search.

2. The user can specify an upper time bound for the exhaustive search. If the
global optimum could not be determined in time, the algorithm will then
return the best local optimum it has encountered. Due to the pre-processed
search order, it is likely that the still unexplored areas of the search space
contain mostly placements of small tasks and are therefore less important
for the overall quality of the solution.

4 Performance Measurements

In order to prove that Dynamite delivers what it promises, a number of tests
have been conducted.

Some stability testing has been done. Under Solaris, Dynamite was able to
make over 2500 successful migrations of large processes (over 20 MB of me-
mory image size) of a commercial PVM application Pam-Crash [19] using direct
connections, after which the application finished normally. Similar results have
been obtained under Linux.

A series of performance measurements was made on the selected nodes of the
DAS cluster [18], which run Linux kernel 2.0 and 2.2 on PentiumPro 200 MHz

Experiments with Migration of Message-Passing Tasks 209

CPUs. The scientific application Grail [13,14], a FEM simulation program, has
been used as the test application.

Table 1. Execution time of the Grail application, in seconds.

Parallel environment Execution time
1 PVM 1854
2 DPVM 1880
3 DPVM + sched. 1914
4 DPVM + load 3286
5 DPVM + sched. + load 2564

Table 1 presents the results of these tests, obtained using the internal timing
routines of Grail. Each test has been performed a number of times and an average
of the wall clock execution times of the master process (in seconds) has been
taken. The parallel application consisted of 3 tasks (1 master and 2 slaves)
running on 4 nodes. To obtain the best performance, when using plain PVM, it
would be typical to use a number of nodes equal to the number of processes of
the parallel application. In this example, for DPVM, one node is left idle (DPVM
chooses to put the group server there, but this uses only a minimal amount of
CPU time). Such a decomposition would be wasteful for standard PVM.

In the first set of tests presented in Table 1, standard PVM 3.3.11 has been
used as the parallel environment.

In the second row, PVM has been replaced by DPVM. A slight deterioration
in performance (1.5%) can be observed. This is mostly the result of the fact that
migration is not allowed while executing some parts of the DPVM code. These
critical sections must be protected, and the overhead stems from the locking
used. Moreover, all messages exchanged by the application processes have an
additional, short (8 byte) DPVM fragment header.

In the test presented in the third row, the complete Dynamite environment
has been started: in addition to using DPVM, the monitoring and scheduling
subsystem is running. Because in this case the initial mapping of the application
processes onto the nodes is optimal, and no external load is applied, no migra-
tions are actually performed. Therefore, all of the observed slowdown (approx.
2%) can be interpreted as the monitoring overhead.

In the fourth set of tests an artificial, external load has been applied. This
has been achieved by running a single, CPU-intensive process for 600 seconds
on each node in turn, in a cycle. Since the monitoring and scheduling subsystem
was not running, no migrations could take place. A considerable slowdown of
about 75% can be observed.

The final, fifth set of tests is the combination of the two previous tests: the
complete Dynamite environment is running, and the external load is applied.
Dynamite clearly shows its value: by migrating the application tasks away from
the overloaded nodes, it manages to reduce the slowdown from 75% to 34%. The
following factors contribute to the remaining slowdown:

210 K.A. Iskra et al.

– it takes some time for the monitor to notice that the load on the node has
increased and to make the migration decision,

– the cost of the migration itself,
– the master task, which is started directly from the terminal window, is not

migrated; when the external load procedure was modified to skip the node
with the master task, the slowdown decreased by a further 10%.

0

3000

6000

9000

12000

15000

18000

21000

0 600 1200 1800 2400 3000 3600

St
ep

s

Time

PVM
DPVM + scheduler + load

DPVM + load

Fig. 4. Execution progress of Grail for three cases. Note that the plain PVM run was
made without an external load, whereas both DPVM runs were done with such a load
(see text).

Figure 4 presents the execution progress of Grail for three of the five cases.
For the standard PVM with no load applied this is a straight, steep line. The
other two lines represent DPVM with load applied, with and without the moni-
toring subsystem running. Initially, they both progress much slower than PVM –
because the load is initially applied to the node with the master task, no migra-
tions take place. After approximately 600 seconds the load moves on to another
node. Subsequently, in the case with the monitoring subsystem running, the mi-
grator moves the application task out of the overloaded node, and the progress
improves significantly, coming close to the one of the standard PVM. In the case
with no monitoring subsystem running, there is no observable change at this
point. However, it does improve between 1800 and 2400 seconds from the start:
that is when the idle node is overloaded. After 2400 seconds from the start, the
node with the master task is overloaded again, so the performance deteriorates
in both DPVM cases.

Experiments presented in [7] demonstrate that Dynamite works best for pro-
grams with a moderate to high computation to communication ratio and mode-
rate task sizes.

Initial experiments using the Dynamite scheduler for cluster management
are inconclusive: it functions for small to medium number of tasks, but when
the number of tasks significantly exceeds the number of available nodes, the
scheduler doesn’t seem to be able to balance them properly.

Experiments with Migration of Message-Passing Tasks 211

5 Limitations

The Dynamite system has a number of limitations, most of which are the limi-
tations of the checkpointing mechanism itself. The checkpointer is designed to
preserve the memory image of the process and its open files, but nothing more
than that. For example, processes that use any of the following features will not
be migrated properly:

– pipes,
– sockets,
– System V IPC, like shared memory,
– kernel supported threads,
– mmapping/opening of special files, like /dev/..., /proc/..., etc.

Some of these, like sockets, might eventually be supported, but supporting
shared memory is practically unsolvable in general.

Another limitation, specific to the DPVM subsystem, is an inability to mi-
grate the master PVM task if it is started from the terminal window. Such a task
checkpoints correctly, but in order to restart properly, it would have to be restar-
ted manually from a terminal window, whereas it is started by the PVM daemon
on the destination host, without standard input and with redirected standard
output/error streams. Because of these limitations, the restarted process hangs.

As regards the scheduler, we find that sub-optimal decisions are sometimes
made in complex situations. Further research into scheduling methods for dyna-
mic task re-allocation is needed.

6 Conclusions and Future Prospects

Concluding, task migration in parallel programs has been shown to provide a
viable solution to the load-balancing problem. We have succeeded in implemen-
ting such a system completely in user space. Since the system is stable now, it
can now be used as a research and production tool.

It has also been demonstrated that Dynamite can realise an optimal utilisa-
tion of system resources for long-running jobs (a couple of hours and more).

The mean system load is not always a good criterion for load balancing.
Future experiments will include the maximum load criterion and possible others.

Dynamite is transparent (existing object files can be relinked to create a
Dynamite-enabled executable). Its checkpointing mechanism is easily portable
to other operating systems using the ELF binary format.

Dynamite aims to provide a complete integrated solution for dynamic load
balancing. In order to accomplish this, the following challenges are still to be
solved:

– support for MPI,
– generic support for the migration of the TCP/IP sockets,
– support for Linux GNU libc 2.1 library.

212 K.A. Iskra et al.

Meanwhile, Dynamite will be used as a research tool, in order to do experi-
ments on dynamic task scheduling, which is an area of active research. Currently,
attempts are being made to assess the usefulness of Dynamite as a cluster-
management type software. The results of these experiments will be presented
in the future.

References

1. Albada, G.D. van, Clinckemaillie, J., Emmen, A.H.L., Gehring, J., Heinz, O., Lin-
den, F. van der, Overeinder, B.J., Reinefeld, A., Sloot, P.M.A.: Dynamite – blasting
obstacles to parallel cluster computing. in Sloot, P.M.A., Bubak, M., Hoekstra,
A.G., Hertzberger, L.O., editors, High-Performance Computing and Networking
(HPCN Europe ’99), LNCS 1593 300–310

2. Casas, J., Clark, D.L., Konuru, R., Otto, S.W., Prouty, R.M., Walpole, J.: MPVM
A Migration Transparant Version of PVM. Computer Systems 8 nr 2 (1995) 171–
216

3. Czarnul, P., Krawczyk, H.: Dynamic Allocation with Process Migration in Distri-
buted Environments. in Dongarra, J.J., Luque, E., Margalef, T., editors, Recent
Advances in Parallel Virtual Machine and Message Passing Interface: 6th European
PVM/MPI Users’ Group Meeting, LNCS 1697 (1999) 509–516

4. Dan, P., Dongsheng, W., Youhui, Z., Meiming, S.: Quasi-asynchronous Migration:
A Novel Migration Protocol for PVM Tasks. Operating Systems Review 33 nr 2
(1999) 5–14

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., Sunderam, V.:
PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge, Massachusetts (1994)
http://www.epm.ornl.gov/pvm/

6. Iskra, K.A., Hendrikse, Z.W., Albada, G.D. van, Overeinder, B.J., Sloot, P.M.A.:
Experiments with Migration of PVM Tasks. in ISThmus 2000, Research and De-
velopment for the Information Society, Conference Proceedings, Poznan, Poland
(2000) 295–304

7. Iskra, K.A., Hendrikse, Z.W., Albada, G.D. van, Overeinder, B.J., Sloot, P.M.A.:
Performance Measurements on Dynamite/DPVM. in Dongarra, J., Kacsuk, P.,
Podhorszki, N., editors, Recent Advances in PVM and MPI. 7th European
PVM/MPI User’s Group Meeting, LNCS 1908 (2000) (in press)

8. Iskra, K.A., Linden, F. van der, Hendrikse, Z.W., Albada, G.D. van, Overeinder,
B.J., Sloot, P.M.A.: The implementation of Dynamite – an environment for migra-
ting PVM tasks. Operating Systems Review nr 3 (2000) 40–55

9. Litzkow, M., Tannenbaum, T., Basney, J., Livny, M.: Checkpoint and migration
of Unix processes in the Condor distributed processing system. Technical Report
1346, University of Wisconsin, WI, USA (1997)

10. Livny, M., Pruyne, J.: Managing Checkpoints for Parallel Programs, in Rudolph,
L., Feitelson, D. G. editors: Proceedings IPPS Second Workshop on Job Scheduling
Strategies for Parallel Processing, LNCS 1162 (1996) 140–154

11. Overeinder, B.J., Sloot, P.M.A., Heederik, R.N., Hertzberger, L.O.: A dynamic
load balancing system for parallel cluster computing. Future Generation Computer
Systems 12 (1996) 101–115

12. Robinson, J., Russ, S.H., Flachs, B., Heckel, B.: A task migration implementa-
tion of the Message Passing Interface. Proceedings of the 5th IEEE international
symposium on high performance distributed computing (1996) 61–68

Experiments with Migration of Message-Passing Tasks 213

13. Ronde, J.F. de, Albada, G.D. van, Sloot, P.M.A.: High Performance Simulation
of Gravitational Radiation Antennas, in L.O. Hertzberger, P.M.A. Sloot, editors,
High Performance Computing and Networking, LNCS 1225 (1997) 200–212

14. Ronde, J.F. de, Albada, G.D. van, Sloot, P.M.A.: Simulation of Gravitational Wave
Detectors. Computers in Physics, 11 nr 5 (1997) 484–497

15. Tan, C.P., Wong, W.F., Yuen, C.K.: tmPVM — Task Migratable PVM. Procee-
dings of the 2nd Merged Symposium IPPS/SPDP. (1999) 196–202

16. MPI: A Message-Passing Interface Standard, Version 1.1. Technical Report, Uni-
versity of Tennessee, Knoxville (1995) http://www-unix.mcs.anl.gov/mpi/

17. http://www.genias.de/products/codine/
18. The Distributed ASCI Supercomputer (DAS).

http://www.cs.vu.nl/das/
19. http://www.esi.fr/products/crash/

R. Buyya and M. Baker (Eds.:) GRID 2000, LNCS 1971, pp. 214-227, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Adaptive Scheduling for Master-Worker Applications on
the Computational Grid

Elisa Heymann1, Miquel A. Senar1, Emilio Luque1, and Miron Livny2

1 Unitat d’Arquitectura d’Ordinadors i Sistemes Operatius
Universitat Autònoma de Barcelona

Barcelona, Spain
{e.heymann, m.a.senar, e.luque}@cc.uab.es

2 Department of Computer Sciences
University of Wisconsin– Madison

Wisconsin, USA
miron@cs.wisc.edu

Abstract*. We address the problem of how many workers should be allocated
for executing a distributed application that follows the master-worker paradigm,
and how to assign tasks to workers in order to maximize resource efficiency and
minimize application execution time. We propose a simple but effective
scheduling strategy that dynamically measures the execution times of tasks and
uses this information to dynamically adjust the number of workers to achieve a
desirable efficiency, minimizing the impact in loss of speedup. The scheduling
strategy has been implemented using an extended version of MW, a runtime
library that allows quick and easy development of master-worker computations
on a computational grid. We report on an initial set of experiments that we
have conducted on a Condor pool using our extended version of MW to
evaluate the effectiveness of the scheduling strategy.

1. Introduction

In the last years, Grid computing [1] has become a real alternative to traditional
supercomputing environments for developing parallel applications that harness
massive computational resources. However, by its definition, the complexity incurred
in building such parallel Grid-aware applications is higher than in traditional parallel
computing environments. Users must address issues such as resource discovery,
heterogeneity, fault tolerance and task scheduling. Thus, several high-level
programming frameworks have been proposed to simplify the development of large
parallel applications for Computational Grids (for instance, Netsolve [2], Nimrod/G
[3], MW [4]).

Several programming paradigms are commonly used to develop parallel programs
on distributed clusters, for instance, Master-Worker, Single Program Multiple Data
(SPMD), Data Pipelining, Divide and Conquer, and Speculative Parallelism [5]. From

* This work was supported by the CICYT (contract TIC98-0433) and by the Commission for

Cultural, Educational and Scientific Exchange between the USA and Spain (project 99186).

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 215

the previously mentioned paradigms, the Master-Worker paradigm (also known as
task farming) is especially attractive because it can be easily adapted to run on a Grid
platform. The Master-Worker paradigm consists of two entities: a master and multiple
workers. The master is responsible for decomposing the problem into small tasks (and
distributes these tasks among a farm of worker processes), as well as for gathering the
partial results in order to produce the final result of the computation. The worker
processes execute in a very simple cycle: receive a message from the master with the
next task, process the task, and send back the result to the master. Usually, the
communication takes place only between the master and the workers at the beginning
and at the end of the processing of each task. This means that, master-worker
applications usually exhibit a weak synchronization between the master and the
workers, they are not communication intensive and they can be run without
significant loss of performance in a Grid environment.

Due to these characteristics, this paradigm can respond quite well to an
opportunistic environment like the Grid. The number of workers can be adapted
dynamically to the number of available resources so that, if new resources appear they
are incorporated as new workers in the application. When a resource is reclaimed by
its owner, the task that was computed by the corresponding worker may be
reallocated to another worker.

In evaluating a Master-Worker application, two performance measures of
particular interest are speedup and efficiency. Speedup is defined, for each number of
processors n, as the ratio of the execution time when executing a program on a single
processor to the execution time when n processors are used. Ideally we would expect
that the larger the number of workers assigned to the application the better the
speedup achieved. Efficiency measures how good is the utilization of the n allocated
processors. It is defined as the ratio of the time that n processors spent doing useful
work to the time those processors would be able to do work. Efficiency will be a
value in the interval [0,1]. If efficiency is becoming closer to 1 as processors are
added, we have linear speedup. This is the ideal case, where all the allocated workers
can be kept usefully busy.

In general, the performance of master-worker applications will depend on the
temporal characteristics of the tasks as well as on the dynamic allocation and
scheduling of processors to the application. In this work, we consider the problem of
maximizing the speedup and the efficiency of a master-worker application through
both the allocation of the number of processors on which it runs and the scheduling of
tasks to workers at runtime.

We address this goal by first proposing a generalized master-worker framework,
which allows adaptive and reliable management and scheduling of master-worker
applications running in a computing environment composed of opportunistic
resources. Secondly, we propose and evaluate experimentally an adaptive scheduling
strategy that dynamically measures application efficiency and task execution times,
and uses this information to dynamically adjust the number of processors and to
control the assignment of tasks to workers.

The rest of the paper is organized as follows. Section 2 reviews related work in
which the scheduling of master-worker applications on Grid environments was
studied. Section 3 presents the generalized Master-Worker paradigm. Section 4
presents a definition of the scheduling problem and outlines our adaptive scheduling
strategy for master-worker applications. Section 5 describes the prototype
implementation of the scheduling strategy and section 6 shows some experimental

216 E. Heymann et al.

data obtained when the proposed scheduling strategy was applied to some synthetic
applications on a real grid environment. Section 7 summarizes the main results
presented in this paper and outlines our future research directions.

2. Related Work

One group of studies has considered the problem of scheduling master-worker
applications with a single set of tasks on computational grids. They include AppLeS
[6], NetSolve [7] and Nimrod/G [3].

The AppLeS (Application-Level Scheduling) system focuses on the development
of scheduling agents for parallel metacomputing applications. Each agent is written in
a case-by-case basis and each agent will perform the mapping of the user’s parallel
application [8]. To determine schedules, the agent must consider the requirements of
the application and the predicted load and availability of the system resources at
scheduling time. Agents use the services offered by the NWS (Network Weather
Service) [9] to monitor the varying performance of available resources.

NetSolve [2] is a client-agent-server system, which enables the user to solve
complex scientific problems remotely. The NetSolve agent does the scheduling by
searching for those resources that offer the best performance in a network. The
applications need to be built using one of the API’s provided by NetSolve to perform
RPC-like computations. There is an API for creating task farms [7] but it is targeted
to very simple farming applications that can be decomposed by a single bag of tasks.

Nimrod/G [3] is a resource management and scheduling system that focuses on the
management of computations over dynamic resources scattered geographically over
wide-area networks. It is targeted to scientific applications based on the “exploration
of a range of parameterized scenarios” which is similar to our definition of master-
worker applications, but our definition allows a more generalized scheme of farming
applications. The scheduling schemes under development in Nimrod/G are based on
the concept of computational economy developed in the previous implementation of
Nimrod, where the system tries to complete the assigned work within a given deadline
and cost. The deadline represents a time which the user requires the result and the cost
represents an abstract measure of what the user is willing to pay if the system
completes the job within the deadline. Artificial costs are used in its current
implementation to find sufficient resources to meet the user’s deadline.

A second group of researchers has studied the use of parallel application
characteristics by processor schedulers of multiprogrammed multiprocessor systems,
typically with the goal of minimizing average response time [10, 11]. However, the
results from these studies are not applicable in our case because they were focussed
basically on the allocation of jobs in shared memory multiprocessors in which the
computing resources are homogeneous and available during all the computation.
Moreover, most of these studies assume the availability of accurate historical
performance data, provided to the scheduler simultaneously with the job submission.
They also focus on overall system performance, as opposed to the performance of
individual applications, and they only deal with the problem of processor allocation,
without considering the problem of task scheduling within a fixed number of
processors as we do in our strategy.

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 217

3. A Generalized Master-Worker Paradigm

In this work, we focus on the study of applications that follow a generalized Master-
Worker paradigm because it is used by many scientific and engineering applications
like software testing, sensitivity analysis, training of neural-networks and stochastic
optimization among others. In contrast to the simple master-worker model in which
the master solves one single set of tasks, the generalized master-worker model can be
used to solve of problems that require the execution of several batches of tasks. Figure
1 shows an algorithmic view of this paradigm.

Fig. 1. Generalized Master-Worker algorithm

A Master process will solve the N tasks of a given batch by looking for Worker
processes that can run them. The Master process passes a description (input) of the
task to each Worker process. Upon the completion of a task, the Worker passes the
result (output) of the task back to the Master. The Master process may carry out some
intermediate computation with the results obtained from each Worker as well as some
final computation when all the tasks of a given batch are completed. After that a new
batch of tasks is assigned to the Master and this process is repeated several times until
completion of the problem, that is, K cycles (which are later refereed as iterations).

The generalized Master-Worker paradigm is very easy to program. All algorithm
control is done by one process, the Master, and having this central control point
facilitates the collection of job’s statistics, a fact that is used by our scheduling
mechanism. Furthermore, a significant number of problems can be mapped naturally
to this paradigm. N-body simulations [12], genetic algorithms [13], Monte Carlo
simulations [14] and materials science simulations [15] are just a few examples of
natural computations that fit in our generalized master-worker paradigm.

4. Challenges for Scheduling of Master-Worker Applications

In this section, we give a more precise definition of the scheduling problem for
master-worker applications and we introduce our scheduling policy.

Initialization
Do

For task = 1 to N
PartialResult = + Function (task)

end
act_on_bach_complete()

while (end condition not met).

Worker
Tasks

Master
Tasks

218 E. Heymann et al.

4.1. Motivations and Background

Efficient scheduling of a master-worker application in a cluster of distributively
owned resources should provide answers to the following questions:
� How many workers should be allocated to the application? A simple approach

would consist of allocating as many workers as tasks are generated by the
application at each iteration. However, this policy will incur, in general, in poor
resource utilization because some workers may be idle if they are assigned a short
task while other workers may be busy if they are assigned long tasks.

� How to assign tasks to the workers? When the execution time incurred by the tasks
of a single iteration is not the same, the total time incurred in completing a batch of
tasks strongly depends on the order in which tasks are assigned to workers.
Theoretical works have proved that simple scheduling strategies based on list-
scheduling can achieve good performance [16].

We evaluate our scheduling strategy by measuring the efficiency and the total
execution time of the application.

Resource efficiency (E) for n workers is defined as the ratio between the amount of
time workers spent doing useful work and the amount of time workers were able to
perform work.

n: Number of workers.
Twork,i: Amount of time that worker i spent doing useful work.
Tup,i: Time elapsed since worker i is alive until it ends.
Tsusp,i: Amount of time that worker i is suspended, that is, when it cannot do any

work.

Execution Time (ETn) is defined as the time elapsed since the application begins its
execution until it finishes, using n workers.

 ET = Tfinish,n - Tbegin,n

Tfinish,n: Time of the ending of the application when using n workers.
Tbegin,n: Time of the beginning of the application workers.

As [17] we view efficiency as an indication of benefit (the higher the efficiency,
the higher the benefit), and execution time as an indication of cost (the higher the
execution time, the higher the cost). The implied system objective is to achieve
efficient usage of each processor, while taking into account the cost to users. It is
important to know, or at least to estimate the number of processors that yield the point
at which the ratio between efficiency to execution time is maximized. This would
represent the desired allocation of processors to each job.

∑ ∑

∑

= =

=

−
=

n

i

n

i
isuspiup

n

i
iwork

TT

T
E

1 1
,,

1
,

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 219

4.2. Proposed Scheduling Policy

We have considered a group of master-worker applications with an iterative behavior.
In these iterative parallel applications a batch of parallel tasks is executed K times
(iterations). The completion of a given batch induces a synchronization point in the
iteration loop, followed by the execution of a sequential body. This kind of
applications has a high degree of predictability, therefore it is possible to take
advantage of it to decide both the use of the available resources and the allocation of
tasks to workers.

Empirical evidence has shown that the execution of each task in successive
iterations tends to behave similarly, so that the measurements taken for a particular
iteration are good predictors of near future behavior [15]. As a consequence, our
current implementation of adaptive scheduling employs a heuristic-based method that
uses historical data about the behavior of the application, together with some
parameters that have been fixed according to results obtained by simulation.

In particular, our adaptive scheduling strategy collects statistics dynamically about
the average execution time of each task and uses this information to determine the
number of processors to be allocated and the order in which tasks are assigned to
processors. Tasks are sorted in decreasing order of their average execution time.
Then, they are assigned to workers according to that order. At the beginning of the
application execution, no data is available regarding the average execution time of
tasks. Therefore, tasks are assigned randomly. We call this adaptive strategy Random
and Average for obvious reasons.

Initially as many workers as tasks per iteration (N) are allocated for the application.
We first ask for that maximum number of workers because getting machines in an
opportunistic environment is time-consuming. Once we get the maximum number of
machines at the start of an application, we release machines if needed, instead of
getting a lower number of machines and asking for more.

Then, at the end of each iteration, the adequate number of workers for the
application is determined in a two-step approach. The first step quickly reduces the
number of workers trying to approach the number of workers to the optimal value.
The second step carries out a fine correction of that number. If the application
exhibits a regular behavior the number of workers obtained by the first step in the
initial iterations will not change, and only small corrections will be done by the
second step.

The first step determines the number of workers according to the workload
exhibited by the application. Table 1 is an experimental table that has been obtained
from simulation studies. In these simulations we have evaluated the performance of
different strategies (including Random and Average policy) to schedule tasks of
master-worker applications. We tested the influence of several factors: the variance
of tasks execution times among iterations, the balance degree of work among tasks,
the number of iterations and the number of workers used [18].

Table 1 shows the number of workers needed to get efficiency greater than 80%
and execution time less than 1.1 the execution time when using N workers. These
values would correspond to a situation in which resources are busy most of the time
while the execution time is not degraded significantly.

220 E. Heymann et al.

Table 1. Percentage of workers with respect to the number of tasks.

Workload <30% 30% 40% 50% 60% 70% 80% 90%
%workers (largest tasks similar
size)

Ntask 70% 55% 45% 40% 35% 30% 25%

%workers (largest tasks diff. size) 60% 45% 35% 30% 25% 20% 20% 20%

The first row contains the workload, defined as the work percentage done when
executing the largest 20% tasks. The second and third rows contain the workers
percentage with respect to the number of tasks for a given workload in the cases that
the 20% largest tasks have similar and different executions times respectively.

For example, if the 20% largest tasks have carried out 40% of the total work then
the number of workers to allocate will be either N*0,55 or N*0,35. The former value
will be used if the largest tasks are similar, otherwise the later value is applied.
According to our simulation results the largest tasks are considered to be similar if
their execution time differences are not greater than 20%.

The fine correction step is carried out at the end of each iteration when the
workload between iterations remains constant and the ratio between the last iteration
execution time and the execution time with the current number of workers given by
table 1 is less than 1.1. This correction consists of diminishing by one the number of
workers if efficiency is less than 0.8, and observing the effects on the execution time.
If it gets worse a worker is added, but never surpassing the value given by table 1.
The complete algorithm is shown in figure 2.

1. In the first iteration Nworkers = Ntasks

Next steps are executed at the end of each iteration i.

2. Compute Efficiency, Execution Time, Workload and the Differences of the execution times of the
 20% largest tasks.
3. if (i == 2)

Set Nworkers = NinitWorkers according to Workload and Differences of Table 1.
else

if (Workload of iteration i != Workload of iteration i-1)
 Set Nworkers = NinitWorkers according to Workload and Differences of Table 1

else
 if (Execution Time of it. i DIV Execution Time of it. 2 (with NinitWorkers) <= 1.1)
 if (Efficiency of iteration i < 0.8)
 Nworkers = Nworkers – 1
 else
 Nworkers = Nworkers + 1

Fig. 2. Algorithm to determine Nworkers.

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 221

5. Current Implementation

To evaluate both the proposed scheduling algorithm and the technique to adjust the
number of workers we have run experiments on a Grid environment using MW
library as a Grid middleware. First, we will briefly review the main characteristics of
MW and then we will summarize the extensions included to support both our
generalized master-worker paradigm and the adaptive scheduling policy.

5.1. Overview of MW

MW is a runtime library that allows quick and easy development of master-worker
computations on a computational grid [4]. It handles the communication between
master and workers, asks for available processors and performs fault-detection. An
application in MW has three base components: Driver, Tasks and Workers. The
Driver is the master, who manages a set of user-defined tasks and a pool of workers.
The Workers execute Tasks. To create a parallel application the programmer needs to
implement some pure virtual functions for each component.

Driver: This is a layer that sits above the program’s resource management and
message passing mechanisms. (Condor [19] and PVM [20], respectively, in the
implementation we have used). The Driver uses Condor services for getting machines
to execute the workers and to get information about the state of those machines. It
creates the tasks to be executed by the workers, sends tasks to workers and receives
the results. It handles workers joining and leaving the computation and rematches
running tasks when workers are lost. To create the Driver, the user needs to
implement the following pure virtual functions:
� get_userinfo(): Processes arguments and does initial setup.
� setup_initial_tasks(): Creates the tasks to be executed by the workers.
� pack_worker_init_data(): Packs the initial data to be sent to the worker upon

startup.
� act_on_completed_task(): This is called every time a task finishes.

Task: This is the unit of work to be done. It contains the data describing the tasks
(inputs) and the results (outputs) computed by the worker. The programmer needs to
implement functions for sending and receiving this data between the master and the
worker.

Worker: This executes the tasks sent to it by the master. The programmer needs to
implement the following functions:
� unpack_init_data(): Unpacks the initialization data passed in the Driver

pack_worker_init_data() function.
� execute_task(): Computes the results for a given task.

222 E. Heymann et al.

5.2. Extended Version of MW

In its original implementation, MW supported one master controlling only one set of
tasks. Therefore we have extended the MW API to support our programming model,
the Random and Average scheduling policy and to collect useful information to adjust
the number of workers.

To create the master process the user needs to implement another pure virtual
function: global_task_setup. There are also some changes in the functionality of
some others pure virtual functions:
� global_task_setup(): It initializes the data structures needed to keep the tasks

results the user want to record. This is called once, before the execution of the first
iteration.

� setup_initial_tasks (iterationNumber): The set of tasks created depends on the
iteration number. So, there are new tasks for each iteration, and these tasks could
depend on values returned by the execution of previous tasks. This function is
called before each iteration begins, and creates the tasks to be executed in the
iterationNumber iteration.

� get_userinfo(): The functionality of this function remains the same, but the user
needs to call the following initialization functions there:
- set_iteration_number (n): This is used to set the number of times tasks will be

created and executed, that is, the number of iterations. If INFINITY is used to
set the iterations number, then tasks will be created and executed until an end
condition is achieved. This condition needs to be set in the function
end_condition().

- set_Ntasks (n): This is used to set the number of tasks to be executed per
iteration.

- set_task_retrive_mode (mode): This function allows the user to select the
scheduling policy. It can be FIFO (GET_FROM_BEGIN), based on a user
key (GET_FROM_KEY), random (GET_RANDOM) or random and average
(GET_RAND_AVG).

- printresults (iterationNumber): It allows the results of the iterationNumber
iteration to be printed.

In addition to the above changes, the MWDriver collects statistics about tasks
execution time, workers’ state (when they are alive, working and suspended), and
about iteration beginning and ending.

At the end of each iteration, function UpdateWorkersNumber() is called to adjust
the number of workers accordingly with regard to the algorithm explained in the
previous section.

6. Experimental Study in a Grid Platform

In this section we report the preliminary set of results obtained with the aim of testing
the effectiveness of the proposed scheduling strategy. We have executed some
synthetic master-worker applications that could serve as representative examples of
the generalized master-workers paradigm. We run the applications on a grid platform

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 223

and we have evaluated the ability of our scheduling strategy to dynamically adapt the
number of workers without any a priori knowledge about the behavior of the
applications.

We have conducted experiments using a grid platform composed of a dedicated
Linux cluster running Condor, and a Condor pool of workstations at the University of
Wisconsin. The total number of available machines was around 700 although we
restrict our experiments to machines with Linux architecture (both from the dedicated
cluster and the Condor pool). The execution of our application was carried out using
the grid services provided by Condor for resource requesting and detecting,
determining information about resources and fault detecting. The execution of our
application was carried out with a set of processors that do not exhibit significant
differences in performance, so that the platform could be considered to be
homogeneous.

Our applications executed 28 synthetic tasks at each iteration. The number of
iterations was fixed to 35 so that the application was running in a steady state most of
the time. Each synthetic task performed the computation of a Fibonacci series. The
length of the series computed by each task was randomly fixed at each iteration in
such a way that the variation of the execution time of a given task in successive
iterations was 30%. We carried out experiments with two synthetic applications that
exhibited a workload distribution of 30% and 50% approximately. In the former case,
all large tasks exhibited a similar execution time. In the latter case, the execution time
of larger tasks exhibited significant differences. These two synthetic programs can be
representative examples for master-worker applications with a highly balanced
distribution of workload and medium balanced distribution of workload between
tasks, respectively. Figure 3 shows, for instance, the average and the standard
deviation time for each of the 28 tasks in the master-worker with a 50% workload.

Different runs on the same programs generally produced slightly different final
execution times and efficiency results due to the changing conditions in the grid
environment. Hence, average-case results are reported for sets of three runs.

Tables 2 and 3 show the efficiency, the execution time (in seconds) and the
speedup obtained by the execution of the master-worker application with 50%
workload and 30% workload, respectively. The results obtained by our adaptive
scheduling are shown in bold in both tables. In addition to these results, we show the
results obtained when a fixed number of processors were used during the whole
execution of the application. In particular, we tested a fixed number of processors of
n=28, n=25, n=20, n=15, n=10, n=5 and n=1. In all cases the order of execution was
carried out according to the sorted list of average execution time (as described in
previous section for the Random and Average policy). The execution time for n=1
was used to compute the speedup of the other cases. It is worth pointing out that the
number of processors allocated by our adaptive strategy was obtained basically
through table 1. Only in the case of 30% workload, did the fine adjustment carry out
the additional reduction of the number of processors.

The first results shown in tables 2 and 3 are encouraging as they prove that an
adaptive scheduling policy like Random and Average was able, in general, to achieve
a high efficiency in the use of resources while the speedup was not degraded
significantly. The improvement in efficiency can be explained because our adaptive
strategy tends to use a small number of resources with the aim of avoiding idle time in
workers that compute short tasks. In general, the larger the number of processors the
larger the idle times incurred by workers in each iteration. This situation is also more

224 E. Heymann et al.

remarkable when the workload of the application is more unevenly distributed among
tasks. Therefore, for a given number of processors the largest loss of efficiency was
obtained normally in the application with a 50% workload.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Task number

Tasks Average Execution Time

Fig. 3. Tasks execution times.

Table 2. Experimental results in the execution of a master-worker application with 50%
workload using the Random and Average policy.

#Workers 1 5 8 10 15 20 25 28
Efficiency 1 0,94 0,80 0,65 0,43 0,33 0,28 0,22
Exec. Time 80192 16669,5 12351 12365 13025 12003 12300,5 12701
Speedup 1 4,81 6,49 6,49 6,16 6,68 6,52 6,31

Table 3. Experimental results in the execution of a master-worker application with 30%
workload using the Random and Average policy.

#Workers 1 5 10 15 18 20 25 28
Efficiency 1 0,85 0,85 0,87 0,78 0,72 0,59 0,55
Exec. Time 36102 9269 4255 3027 2459 2710 2794 2434
Speedup 1 3,89 8,48 11,93 14,68 13,32 12,92 14,83

It can also be observed in both tables that the adaptive scheduling strategy obtained
in general an execution time that was similar or even better than the execution time
obtained with a larger number of processors. This result basically reflects the
opportunistic nature of the resources that were used in our experiments. The larger the
number of processors allocated, the larger the number of task suspensions and
reallocations incurred at run time. The need to terminate a task prematurely when the
user claimed back the processor prevented normally the benefits in execution time
obtained by the use of additional processors. Therefore, from our results, we conclude
that, the reduction in the number of processors allocated to an application running in
an opportunistic environment is good not only because it improves overall efficiency,

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 225

but it also avoids side effects on the execution time due to suspensions and
reallocations of tasks.

As is perhaps to be expected, the best performance was normally obtained when
the largest number of machines were used, although better machine efficiencies were
obtained when a smaller number of machines were used. These results may seem to
be obvious, but it should be stressed that they have been obtained from a real test-bed,
in which resources were obtained from a total pool of non-dedicated 700 machines. In
this test-bed our adaptive scheduler used only statistics information collected at
runtime, and the execution of our applications should copse with the effects of
resource obtaining, local suspension of tasks, task reassume and dynamic
redistribution of load.

We carried out an additional set of experiments in order to evaluate the influence in
the order of task assignment. Due to time constraints, this article only contains the
results obtained when a master-worker application with 50% workload was scheduled
using a Random policy. In this policy, when a worker becomes idle, a random task
from the list of pending tasks is chosen and assigned to it. As can be seen when tables
2 and 4 are compared, the order in which tasks are assigned has a significant impact
when a small number of workers is used. For less than 15 processors the Random and
Average policy performs significantly better than the Random policy, both in
efficiency and in execution time. When 15 or more processors are used, differences
between both policies were nearly negligible. This fact can be explained because
when the Random policy has a large number of available processors, the probability
to assign a large task at the beginning is also large. Therefore, in these situations the
assignments carried out by both polices are likely to follow a similar order. Only in
the case of 20 processors, was Random’s performance significantly worse than
Random & Average. However, this could be explained because the tests of the
Random policy with 20 processors suffered from many task suspensions and
reallocations during their execution.

Table 4. Experimental results for Random scheduling with a master-worker application with
50% workload.

#Workers 1 5 10 15 20 25 28
Efficiency 1 0,80 0,56 0,40 0,34 0,26 0,26
Exec. Time 80192 20055 14121 13273 13153 12109 12716
Speedup 1 4,00 5,68 6,04 6,10 6,62 6,31

7. Conclusions and Future Work

In this paper, we have discussed the problem of scheduling master-worker
applications on the computational grid. We have presented a framework for master-
worker applications that allow the development of a tailored scheduling strategy. We
have proposed a scheduling strategy that is both simple an adaptive and takes into
account the measurements taken during the execution of the master-worker
application. This information is usually a good predictor of near future behavior of the
application. Our strategy tries to allocate and schedule the minimum number of
processors that guarantees a good speedup by keeping the processors as busy as

226 E. Heymann et al.

possible and avoiding situations in which processors sit idle waiting for work to be
done. The strategy allocates the suitable number of processors by using the runtime
information obtained from the application, together with the information contained in
an empirical table that has been obtained by simulation. Later, the number of
processors would eventually be adapted dynamically if the scheduling algorithm
detects that the efficiency of the application can be improved without significant
losses in performance.

We have built our scheduling strategy using MW as a Grid middleware. And we
tested the scheduling strategy on a Grid environment made of several pools of
machines, the resources of which were provided by Condor. The preliminary set of
tests with synthetic applications allowed us to validate the effectiveness of our
scheduling strategy. In general, our adaptive scheduling strategy achieved an
efficiency in the use of processors close to 80% while the speedup up of the
application was close to the speedup achieved with the maximum number of
processors. Moreover, we have observed that our algorithm quickly achieves a stable
situation with a fixed number of processors.

There are some ways in which this work can be extended. We have tested our
strategy on a homogeneous Grid platform where the resources were relatively closed
and the influence of the network latency was negligible. A first extension will adapt
the proposed scheduling strategy to handle a heterogeneous set of resources. In order
to carry this out, a normalizing factor should be applied to the average execution
times to index table 1. Another extension will focus on the inclusion of additional
mechanisms that can be used when the distance between resources is significant (for
instance, by packing more than one task to a distant worker in order to compensate
network delays). A second extension will be oriented to the extension of the
scheduling strategy to be applied for applications that are not iterative or that exhibit
different behaviors at different phases of the execution. This extension would be
useful for applications that follow, for instance, a Divide and Conquer paradigm or a
Speculative Parallelism paradigm.

8. References

1. I. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing Infraestructure”,
Morgan-Kaufmann, 1999.

2. H. Casanova and J. Dongarra, “NetSolve: Network enabled solvers”, IEEE Computational
Science and Engineering, 5(3) pp. 57-67, 1998.

3. D. Abramson, J. Giddy, and L. Kotler, "High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?”, in Proc. of IPPS/SPDP’2000, 2000.

4. J.-P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, “An enabling framework for master-
worker applications on the computational grid”, Tech. Report, University of Wisconsin –
Madison, March, 2000.

5. L. M. Silva and R. Buyya, “Parallel programming models and paradigms”, in R. Buyya
(ed.), “High Performance Cluster Computing: Architectures and Systems: Volume 2”,
Prentice Hall PTR, NJ, USA, 1999.

6. F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao, “Application-Level Scheduling
on Distributed Heterogeneous Networks”, Proc. of Supercomputing’96.

Adaptive Scheduling for Master-Worker Applications on the Computational Grid 227

7. H. Casanova, M. Kim, J. S. Plank and J. Dongarra, “Adaptive scheduling for task farming
with Grid middleware”, International Journal of Supercomputer Applications and High-
Performance Computing, pp. 231-240, Volume 13, Number 3, Fall 1999.

8. G. Shao, R. Wolski and F. Berman, “Performance effects of scheduling strategies for
Master/Slave distributed applications”, Technical Report TR-CS98-598, University of
California, San Diego, September 1998.

9. R. Wolski, N. T. Spring and J. Hayes, “The Network Weather Service: a distributed
resource performance forecasting service for metacomputing”, Journal of Future
Generation Computing Systems”, Vol. 15, October, 1999.

10. T. B. Brecht and K. Guha, “Using parallel program characteristics in dynamic processor
allocation policies”, Performance Evaluation, Vol. 27 and 28, pp. 519-539, 1996.

11. T. D. Nguyen, R. Vaswani and J. Zahorjan, “Maximizing speedup through self-tuning of
processor allocation”, in Proc. of the Int. Par. Proces. Symp. (IPPS’96), 1996.

12. V. Govindan and M. Franklin, “Application Load Imbalance on Parallel Processors”, in
Proc. of the Int. Paral. Proc. Symposium (IPPS’96), 1996.

13. E. Cantu-Paz, “Designing efficient master-slave parallel genetic algorithms”, in J. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon D. E. Goldberg, H.
Iba and R. Riolo, editors, Genetic Programming: Proceeding of the Third Annual
Conference, San Francisco, Morgan Kaufmann, 1998.

14. J. Basney, B. Raman and M. Livny, “High throughput Monte Carlo”, Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio
Texas, 1999.

15. J. Pruyne and M. Livny, “Interfacing Condor and PVM to harness the cycles of
workstation clusters”, Journal on Future Generations of Computer Systems, Vol. 12, 1996.

16. L. A. Hall, “Aproximation algorithms for scheduling”, in Dorit S. Hochbaum (ed.),
“Approximation algorithms for NP-hard problems”, PWS Publishing Company, 1997.

17. D. L. Eager, J. Zahorjan and E. D. Lazowska, “Speedup versus efficiency in parallel
systems”, IEEE Transactions on Computers, vol. 38, pp. 408-423, 1989.

18. E. Heymann, M. Senar, E. Luque, M. Livny. “Evaluation of an Adaptive Scheduling
Strategy for Master-Worker Applications on Clusters of Workstations”. Proceedings of 7 th

Int. Conf. on High Performance Computing (HiPC’2000) (to appear).
19. M. Livny, J. Basney, R. Raman and T. Tannenbaum, “Mechanisms for high throughput

computing”, SPEEDUP, 11, 1997.
20. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, “PVM:

Parallel Virtual Machine A User’s Guide and Tutorial for Networked Parallel Computing”,
MIT Press, 1994.

Authors Index

Aggarwal, Akshai K. 135
van Albada, G.D. 203

Baraglia, Ranieri 111
Bhatt, Haresh S. 135
Biswas, Rupak 146
Brooke, John 158
Buyya, Rajkumar 18

Cappello, Franck 91
Chapin, Steve 18

DiNucci, David 18
Dongarra, Jack J. 102

Fedak, Gille 91
Foster, Martyn 158

Gehring, J. 203
Geib, Jean-Marc 123
Gentzsch, Wolfgang 1
Germain, Cécile 91
Gransart, Christophe 123

Hamscher, Volker 191
Han, Tack-Don 55
Henrikse, Z.W. 203
Hewitt, Terry 158
Heymann, Elisa 214
Hong, Won-Kee 170
Hoschek, Wolfgang 77

Iskra, K.A. 203

Jaen-Martinez, Javier 77

Karipidis, Alexandros 36
Kim, Hiecheol 170
Kim, Shin-Dug 55, 170
Krauter, Klaus 65, 181

Laforenza, Domenico 111
Laganà, Antonio 111

Lalis, Spyros 36
Livny, Miron 214
Luque, Emilio 214

Maeng, Hye-Seon 55
Maheswaran, Muthucumaru 65, 181
Matsuoka, Satoshi 4
McCann, Karen M. 146

Nakada, Hidemoto 4
Néri, Vincent 91

Overeinder, B.J. 203

Patel, V. H. 135
Pickles, Stephen 158

Quecke, Gerd 47

Raghavan, Padma 102

Samar, Asad 77
Sato, Mitsuhisa 4
Schwiegelshohn, Uwe 191
Scotto di Apollonia, Gaëtan 123
Sekiguchi, Satoshi 4
Senar, Miquel A. 214
Shin, Pil-Sup 170
Sloot, P.M.A. 203
Stockinger, Heinz 77
Stockinger, Kurt 77
Streit, Achim 191

Taylor, Keith 158

Van der Wijngaart, Rob F. 146

Yahyapour, Ramin 191
Yarrow, Maurice 146

Ziegler, Wolfgang 47

	Front matter
	Lecture Notes in Computer Science
	Springer
	Grid Computing – GRID 2000
	Preface
	The Grid: A New Network Computing Infrastructure
	Program Organization and Acknowledgements

	GRID 2000 Team
	Workshop Chairs
	Program Committee Members
	GRID 2000 Additional Referees
	GRID 2000 Sponsors and Supporters

	Table of Contents
	Keynote and Invited Papers
	Grid Resource Management
	Grid Middleware and Problem Solving Environments
	Grid Test-Beds and Resource Discovery
	Application-Level Scheduling on the Grid

	Chapter 1
	DOT-COMing the GRID: Using Grids for Business
	1. Grids in Research
	2. Grids in Industry
	3. Grid Resource Management
	4. Future Grid Economies

	Chapter 2
	Design Issues of Network Enabled Server Systems for the Grid
	1 Introduction
	2 General Overview of NES Systems
	2.1 Design Issues in NES Systems

	3 Design and Implementation of the New Ninf System
	3.1 Conceptual Design Decision Overview
	3.2 Overview of the New Ninf System V.2.0
	3.3 Client-Server Communication in the Ninf System 2.0
	3.4 Communication Protocol Commands in New Ninf
	3.5 Security Layer in the New Ninf System

	4 Conclusion
	Acknowledgements
	References

	Chapter 3
	Architectural Models for Resource Management in the Grid
	1. Introduction
	2. Architecture Models
	3. Hierarchical Resource Management
	4. Abstract Owner (AO) Model
	General Structure of AO
	Grid Resources
	Negotiating with an AO
	Job Shops
	AO Summary

	5. Market Model
	Grid Resource Broker (GRB)
	Grid Middleware
	Domain Resource Manager
	Comments

	6. Discussion and Conclusions
	References

	Chapter 4
	JaWS: An Open Market-Based Framework for Distributed Computing over the Internet
	Introduction
	System Architecture
	Overview of System Components
	Basic System Protocols

	Resource Allocation
	Supporting Distributed Computing Paradigms
	The Generic Master -- Slave Model
	A Sample Client Application

	Related Work
	Discussion
	Future Directions
	References

	Chapter 5
	MeSch - An Approach to Resource Management in a Distributed Environment
	1 Introduction
	2 State of the Art
	3 Requirements for Global Resource Management
	3.1 MeSch Scheduler Hierarchy
	3.2 Requirements for Local Schedulers
	3.3 Allocation Agreement Protocol

	4 A Prototype Implementation
	4.1 Using EASY as a Modeling Tool

	5 An Example
	6 Conclusion
	References

	Chapter 6
	Resource Management Method for Cooperative Web Computing on Computational Grid
	Introduction
	Web Computing Virtual Environment
	Shared Memory Mechanism
	The Analytic Model for Execution Time and Hierarchy Level
	Application Execution Time
	Shared Memory Access Time

	Application Program Analysis and Experiment
	Conclusion
	References

	Chapter 7
	Architecture for a Grid Operating System
	Introduction
	Grid Architecture
	Naming in a Grid System
	Resource Management in a Grid System
	Resource Status Dissemination
	Resource Discovery
	Resource Scheduling
	Service Mobility Protocol

	Grid Kernel Architecture
	Related Work
	Conclusions
	References

	Chapter 8
	Data Management in an International Data Grid Project
	Introduction
	Survey and Discussion of Related Work
	Use Cases
	Architecture
	Data Management Components
	Data Accessor
	Replication
	Meta Data
	Security
	Query Optimisation

	Conclusion and Future Work
	Acknowledgements.
	References

	Chapter 9
	XtremWeb: Building an Experimental Platform for Global Computing
	Introduction
	Global Computing Issues
	The XtremWeb Design
	Application Scope
	The Pull and Steal Model
	One-Sided Communication
	Native Code Execution

	Implementation
	Java Based Coordination and Coupling

	Early Experiments on Server Throughput
	Application Example: The Auger Experiment
	Background
	Implementation of AIRES on Top of XtremWeb

	Related Work
	Conclusion
	References

	Chapter 10
	A Grid Computing Environment for Enabling Large Scale Quantum Mechanical Simulations
	Introduction
	Computational Problem
	Developing a Software Environment
	NetSolve
	A Pipelined Parallel Architecture

	Concluding Remarks
	Acknowledgments.
	References

	Chapter 11
	A Web-Based Metacomputing Problem-Solving Environment for Complex Applications
	Introduction
	A Short Description of SIMBEX
	The Metacomputing Environment: Architectural Aspects
	The Client Side
	The Middleware
	The Back-End

	Web-Based Metacomputing Environments: Related Work
	Conclusions
	References

	Chapter 12
	Focale: Towards a Grid View of Large-Scale Computation Components
	Motivations
	Java-Based Execution Platforms
	Components-Based Environments
	High-Performance Interconnection
	World-Wide Projects
	Incoming Corba Technologies
	Comparing with Us...
	-- Component description language
	-- Corba support
	-- Separation of control and functionalities
	-- Genericity of operations

	Focale Architecture
	The Federation Level
	The Server Level
	Client Interaction
	Server Interconnection
	Server Properties
	Factories Set
	Trading Service
	Applications Manager

	The Application Level
	The Factory Level
	The Instance Level
	The Connectors

	The Console
	Conclusion
	Future Works
	References

	Chapter 13
	Web Enabled Client-Server Model for Development Environment of Distributed Image Processing
	1. Introduction
	2. Generalization and Extension
	3. WebDedip Overview
	3.1 Application Configuration
	3.2 Application Building
	3.3 Application Execution and Monitoring
	3.4 Error Handling
	3.5 Session Management
	3.6 WebDedip System Management

	4. Case Study
	5. Related Work
	6. Conclusion
	References

	Chapter 14
	Chapter 15
	Mini-Grids: Effective Test-Beds for GRID Application
	What Is a Mini-GRID?
	Running Coupled Applications in a Mini-GRID
	PVM - Its Continuing Role as a Grid Builder
	Implications for GRID Computing

	Accounting for Resource Usage on a Mini-GRID
	Globus on the Mini-GRID
	A Metropolitan Area GRID
	Use of GMING
	Extension of the Local GRID to Intercontinental Networks
	The Modular Structure of the GRID

	Conclusion and Future Plans
	Acknowledgements.
	References

	Chapter 16
	Configuration Method of Multiple Clusters for the Computational Grid
	Introduction
	Java-Internet Cluster Platform
	Effective Parallelism on JIP
	Configuration of Multiple Clusters
	Global View of JIP

	Performance Evaluation
	Conclusion
	References

	Chapter 17
	A Parameter-Based Approach to Resource Discovery in Grid Computing Systems
	1 Introduction
	2 Grid Potential
	3 Data Dissemination for Resource Discovery
	3.1 Overview
	3.2 Data Dissemination Algorithms
	3.3 Experimental Evaluation of the Algorithms

	4 Related Work
	5 Conclusions
	References

	Chapter 18
	Evaluation of Job-Scheduling Strategies for Grid Computing
	Introduction
	Background
	Centralized Scheduling
	Single-site scheduling.
	Multi-site scheduling.

	Hierarchical Structure
	Decentralized Scheduling
	Direct communication.
	Communication via a Central Job Pool.

	Scheduling Algorithms
	Selection-Strategies
	Scheduling Algorithms

	Evaluation
	Description of the Simulation Environment
	Results

	Conclusion
	References

	Chapter 19
	Experiments with Migration of Message-Passing Tasks
	Introduction
	Checkpointing Mechanism
	Migration Decisions
	Performance Measurements
	Limitations
	Conclusions and Future Prospects
	References

	Chapter 20
	Adaptive Scheduling for Master-Worker Applications on the Computational Grid
	1. Introduction
	2. Related Work
	3. A Generalized Master-Worker Paradigm
	4. Challenges for Scheduling of Master-Worker Applications
	4.1. Motivations and Background
	4.2. Proposed Scheduling Policy

	5. Current Implementation
	5.1. Overview of MW
	5.2. Extended Version of MW

	6. Experimental Study in a Grid Platform
	7. Conclusions and Future Work
	8. References

	Back matter
	Authors Index

