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Preface

The AIMSA conference series was first conceived in 1984 as a gathering of AI
researchers and students from Eastern and Central Europe. Since then the confe-
rence has followed a biennial schedule of meetings in Bulgaria, attracting partici-
pants from a wider geographical area. Today, 20 years on, AIMSA is a thoroughly
international conference, with contributions from most European countries and
some from as far afield as the United States, Mexico and Brazil.

The AIMSA organizers are delighted to present you with another exciting
program, covering most areas of Artificial Intelligence. In keeping with its mis-
sion to inform the research community and excite the commercial sector, AIMSA
presents this year two invited contributions from world-leading European resear-
chers working on cutting-edge AI research: Prof. Carole Goble, on the Semantic
Web, and Prof. David House, on integrated speech and gestural synthesis. In
addition, we present 26 contributions on topics covering almost all aspects of
AI and bringing together basic and applied research. One of these, by Milos
Kovačević and his colleagues on “Recognition of Common Areas in a Web Page
Using a Visualisation Approach” was judged by reviewers to be the best sub-
mitted paper, and duly received the accolade of “Best Paper” of the Conference,
with a special slot devoted to it in the program.

As Chair of the Program Committee, I am extremely grateful to those who
so generously agreed to apply their expertise and valuable time to reviewing
papers for the conference, and for their dedication in getting the best possible
job done in what turned out to be a very short period of time.

Special thanks go to the local organizers, Danail Dochev and Gennady Agre,
for their dedication and willingness to cooperate in solving problems each time
it was necessary, and to Anja Wedberg and Jon Herring for their wonderful
efficiency in administering the work of the Program Committee. I also gratefully
acknowledge the role played by the team at Springer-Verlag in the production
of these proceedings, and I thank the European Coordinating Committee for
Artificial Intelligence (ECCAI), for their continued support of the conference.

September 2002 Donia Scott
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Multimodal Speech Synthesis: Improving Information
Flow in Dialogue Systems Using 3D Talking Heads

David House and Björn Granström

Centre for Speech Technology, Department of Speech, Music and Hearing, KTH
 Drottning Kristinas väg 31, 10044 Stockholm, Sweden

{davidh, bjorn}@speech.kth.se

Abstract. This paper describes activities at CTT, Centre for Speech Technol-
ogy, using the potential of animated talking agents to improve information flow
in dialogue systems. Our motivation for moving into audiovisual output is to in-
vestigate the advantages of multimodality in human-system communication.
While the mainstream character animation area has focused on the naturalness
and realism of the animated agents, our primary concern has been the possible
increase of intelligibility and efficiency of interaction, resulting from the addi-
tion of a talking face.

1   Introduction

Spoken dialogue systems, which strive to take advantage of the effective communica-
tion potential of human conversation, need in some way to embody the conversational
partner. A talking animated agent provides the user with an interactive partner whose
goal is to take the role of the optimal human agent.  This is the agent who is ready and
eager to supply the user with a wealth of information, can smoothly navigate through
varying and complex sources of data and can ultimately assist the user in a decision
making process through the give and take of conversation. One way to achieve believ-
ability is through the use of a talking head which transforms information through text
into speech, articulator movements, speech related gestures and conversational ges-
tures.

The talking head developed at KTH is based on text-to-speech synthesis. Audio
speech synthesis is generated from a text representation in synchrony with visual ar-
ticulator movements of the lips, tongue and jaw. Linguistic information in the text is
used to generate visual cues for relevant prosodic categories such as prominence,
phrasing and emphasis. These cues generally take the form of eyebrow and head
movements which we have termed “visual prosody”. These types of visual cues with
the addition of a smiling or frowning face are also used as conversational gestures to
signal such things as positive or negative feedback, turntaking regulation, and the
system’s internal state. In addition, the head can visually signal attitudes and emotions.

In the context of this paper, the talking head is primarily discussed in terms of ap-
plications in spoken dialogue systems which enable the user to access information and
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reach a decision through a conversational interface. Other useful applications include
aids for the hearing impaired, educational software, stimuli for audiovisual human
perception experiments, entertainment, and high-quality audio-visual text-to-speech
synthesis for applications such as news reading. In this paper we will focus on two
aspects of effective interaction: presentation of information and the flow of interactive
dialogue.

Effectiveness in the presentation of information is crucial to the success of an inter-
active system. Information must be presented rapidly, succinctly and with high intelli-
gibility. The use of the talking head aims at improving the intelligibility of speech
synthesis by the addition of visual articulation and also by providing a focus for the
user’s attention. This focus can be the agent’s face or a common object of discussion.
Important information is highlighted by prosodic enhancement and by the use of the
agent’s gaze and visual prosody.

The second issue of effective interaction focuses on facilitating the interactive na-
ture of dialogue. In this area, the use of the talking head aims at increasing effective-
ness by building on the user’s social skills to improve the flow of the dialogue and
engage the user interactively. Visual cues to feedback, turntaking regulation and sig-
naling the system’s internal state by visual facial gestures are key aspects of effective
interaction.

This paper presents a brief overview and technical description of the KTH talking
head explaining what the head can do and how. Examples of experimental applications
in which the head is used are then described, and finally, the two issues of intelligibil-
ity and communication interaction are discussed and exemplified by results from ap-
plications and perceptual evaluation experiments.

2   Development and Technical Description of the Talking Head

Animated synthetic talking faces and characters have been developed using a number
of different techniques and for a variety of purposes during the past two decades. Our
approach is based on parameterized, deformable 3D facial models, controlled by rules
within a text-to-speech framework [1]. The rules generate the parameter tracks for the
face from a representation of the text, taking coarticulation into account [2]. We em-
ploy a generalized parameterization technique to adapt a static 3D-wireframe of a face
for visual speech animation [3]. Based on concepts first introduced by Parke [4], we
define a set of parameters that will deform the wireframe by applying weighted trans-
formations to its vertices. One critical difference from Parke's system, however, is that
we have de-coupled the model definitions from the animation engine, thereby greatly
increasing flexibility.

The models are made up of polygon surfaces that are rendered in 3D using standard
computer graphics techniques. The surfaces can be articulated and deformed under the
control of a number of parameters. The parameters are designed to allow for intuitive
interactive or rule-based control. For the purposes of animation, parameters can be
roughly divided into two (overlapping) categories: those controlling speech articula-
tion and those used for non-articulatory cues and emotions. The articulatory parame-



Multimodal Speech Synthesis         3

ters include jaw rotation, lip rounding, bilabial occlusion, labiodental occlusion and
tongue tip elevation. The non-articulatory category includes eyebrow raising, eyebrow
shape, smile, gaze direction and head orientation. Furthermore, some of the articula-
tory parameters such as jaw rotation can be useful in signaling non-verbal elements
such as certain emotions. The display can be chosen to show only the surfaces or the
polygons for the different components of the face. The surfaces can be made
(semi)transparent to display the internal parts of the model. The model presently con-
tains a relatively crude tongue model primarily intended to provide realism as seen
from the outside, through the mouth opening. A full 3D model of the internal speech
organs is presently being developed for integration in the talking head [5]. This capa-
bility of the model is especially useful in explaining non-visible articulations in the
language learning situation [6]. In Fig. 1 some of the display options are illustrated.

Fig. 1. Different display possibilities for the talking head model. Different parts of the model
can be displayed as polygons or smooth (semi)transparent surfaces to emphasize different parts
of the model

For stimuli preparation and explorative investigations, we have developed a control
interface that allows fine-grained control over the trajectories for acoustic as well as
visual parameters. The interface is implemented as an extension to the WaveSurfer
application [7] which is a tool for recording, playing, editing, viewing, printing, and
labeling audio data.

The parametric manipulation tool is used to experiment with and define different
gestures. A gesture library is under construction, containing procedures with general
emotion settings and non-speech specific gestures as well as some procedures with
linguistic cues. We are at present developing an XML-based representation of visual
cues that facilitates description of the visual cues at a higher level.
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3   Experimental Applications

During the past decade a number of experimental applications using the talking head
have been developed at KTH. Four examples which will be discussed here are the
Waxholm demonstrator system designed to provide tourist information on the Stock-
holm archipelago, the Synface/Teleface project which is a visual hearing aid, the
August project which was a dialogue system in public use, and the Adapt multimodal
real-estate agent.

3.1   The Waxholm Demonstrator

The first KTH demonstrator application, which we named WAXHOLM, gives infor-
mation on boat traffic in the Stockholm archipelago. It references timetables for a fleet
of some twenty boats from the Waxholm company connecting about two hundred
ports [8].

Besides the dialogue management and the speech recognition and synthesis compo-
nents, the system contains modules that handle graphic information such as pictures,
maps, charts, and timetables. This information can be presented as a result of the user-
initiated dialogue.

The Waxholm system can be viewed as a micro-world, consisting of harbors with
different facilities and with boats that be taken between the many harbors. The user
gets graphic feedback in the form of tables complemented by speech synthesis. In the
initial experiments, users were given a scenario with different numbers of subtasks to
solve. A problem with this approach is that the users tend to use the same vocabulary
as the text in the given scenario. We also observed that the user often did not get
enough feedback to be able to decide if the system had the same interpretation of the
dialogue as the user.

To deal with these problems a graphical representation that visualizes the Waxholm
micro-world was implemented. An example is shown in Fig. 2. One purpose of this
was to give the subject an idea of what can be done with the system, without express-
ing it in words. The interface continuously feeds back the information that the system
has obtained from the parsing of the subject’s utterance, such as time, departure port
and so on. The interface is also meant to give a graphical view of the knowledge the
subject has secured thus far, in the form of listings of hotels and so on.

The visual animated talking agent is an integral part of the system. This aims at
raising the intelligibility of the system’s responses and questions. Furthermore, the
addition of the face into the dialogue system has many other exciting implications.
Facial non-verbal signals can be used to support turntaking in the dialogue, and to
direct the user’s attention in certain ways, e.g. by letting the head turn towards time
tables, charts, etc. that appear on the screen during the dialogue. The dialogue system
also provides an ideal framework for experiments with non-verbal communication and
facial actions at the prosodic level, as discussed above, since the system has a much
better knowledge of the discourse context than is the case in plain text-to-speech syn-
thesis.



Multimodal Speech Synthesis         5

Fig. 2. The graphical model of the WAXHOLM micro-world

To make the face more alive, one does not necessarily have to synthesize meaning-
ful non-verbal facial actions. By introducing semi-random eye blinks and very faint
eye and head movements, the face looks much more active and becomes more pleas-
ant to watch. This is especially important when the face is not talking.

3.2   The Synface/Teleface Project

The speech intelligibility of talking animated agents, as the ones described above, has
been tested within the Teleface project at KTH [9], [10]. The project has recently been
continued/expanded in a European project, Synface [11]. The project focuses on the
usage of multimodal speech technology for hearing-impaired persons.

Fig. 3. Telephone interface for SYNFACE
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The aim of the first phase of the project was to evaluate the increased intelligibility
hearing-impaired persons experience from an auditory signal when it is complemented
by a synthesized face. In this case, techniques for combining natural speech with lip-
synchronized face synthesis have been developed. A demonstrator of a system for
telephony with a synthetic face that articulates in synchrony with a natural voice is
currently being implemented (see Fig. 3).

3.3   The August System

The Swedish author, August Strindberg, provided inspiration to create the animated
talking agent used in a dialogue system that was on display during 1998 as part of the
activities celebrating Stockholm as the Cultural Capital of Europe [12]. This dialogue
system made it possible to combine several domains, thanks to the modular function-
ality of the architecture. Each domain has its own dialogue manager, and an example
based topic spotter is used to relay the user utterances to the appropriate dialog man-
ager. In this system, the animated agent “August” presents different tasks such as
taking the visitors on a trip through the Department of Speech, Music and Hearing,
giving street directions, and also presenting short excerpts from the works of August
Strindberg when waiting for someone to talk to.

August was placed, unattended, in a public area of Kulturhuset in the center of
Stockholm. One challenge is this very open situation with no explicit instructions
being given to the visitor. A simple visual “visitor detector” makes August start talk-
ing about one of his knowledge domains.

3.4   The Adapt Multimodal Real-Estate Agent

The practical goal of the AdApt project is to build a system in which a user can col-
laborate with an animated agent to solve complicated tasks [13]. We have chosen a
domain in which multimodal interaction is highly useful, and which is known to en-
gage a wide variety of people in our surroundings, namely, finding available apart-
ments in Stockholm. In the AdApt project, the agent has been given the role of asking
questions and providing guidance by retrieving detailed authentic information about
apartments. The user interface can be seen in Fig. 4.

 Because of the conversational nature of the AdApt domain, the demand is great for
appropriate interactive signals (both verbal and visual) for encouragement, affirma-
tion, confirmation and turntaking [14], [15]. As generation of prosodically grammati-
cal utterances (e.g. correct focus assignment with regard to the information structure
and dialogue state) is also one of the goals of the system it is important to maintain
modality consistency by simultaneous use of both visual and verbal prosodic and con-
versational cues [16]. As described in Section 2, we are at present developing an
XML-based representation of such cues that facilitates description of both verbal and
visual cues at the level of speech generation.
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Fig. 4. The agent Urban in the AdApt apartment domain

These cues can be of varying range covering attitudinal settings appropriate for an
entire sentence or conversational turn or be of a shorter nature like a qualifying com-
ment to something just said. Cues relating to turntaking or feedback need not be asso-
ciated with speech acts but can occur during breaks in the conversation. Also in this
case, it is important that there is a one-to-many relation between the symbols and the
actual gesture implementation to avoid stereotypic agent behaviour. Currently a
weighted random selection between different realizations is used.

4   Improving Intelligibility and Information Presentation

One of the more striking examples of improvement and effectiveness in speech intelli-
gibility is taken from the Synface project which aims at improving telephone commu-
nication for the hearing impaired [10]. The results of a series of tests using VCV
words and hearing impaired subjects showed a significant gain in intelligibility when
the talking head was added to a natural voice. With the synthetic face, consonant
identification improved from 29% to 54% correct responses. This compares to the
57% correct response result obtained by using the natural face. In certain cases, nota-
bly the consonants consisting of lip movement (i.e. the bilabial and labiodental conso-
nants), the response results were in fact better for the synthetic face than for the natu-
ral face. This points to the possibility of using overarticulation strategies for the talk-
ing face in these kinds of applications. Recent results indicate that a certain degree of
overarticulation can be advantageous in improving intelligibility [17].

Similar intelligibility tests have been run using normal hearing subjects where the
audio signal was degraded by adding white noise [10]. Similar results were obtained.
For example, for a synthetic male voice, consonant identification improved from 31%
without the face to 45% with the face. While the visual articulation is most probably
the key factor contributing to this increase, we can speculate that the presence of vis-
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ual information of the speech source can also contribute to increased intelligibility by
sharpening the focus of attention of the subjects. Although this hypothesis has not
been formally tested, it could be useful to test it generally in many different applica-
tions.

Another quite different example of the contribution of the talking head to informa-
tion presentation is taken from the results of perception studies in which the percept of
emphasis and syllable prominence is enhanced by eyebrow and head movements. In
an early study restricted to eyebrows and prominence [18] it was shown that raising
the eyebrows alone during a particular syllable resulted in an increase in prominence
judgments for the word in question by nearly 30%. In a later study, it was shown that
eyebrows and head movement can serve as independent visual cues for prominence,
and that synchronization of the visual movement with the audio speech syllable is an
important factor [19]. Head movement was shown to be somewhat more salient for
signaling prominence as eyebrow movement could be potentially misinterpreted as
supplying non-linguistic information such as irony.

A third example of information enhancement by the visual modality is to be found
in the Waxholm demonstrator and the Adapt system. In both these systems, the agent
uses gaze to point to areas and objects on the screen, thereby strengthening the com-
mon focus of attention between the agent and the user. Although this type of informa-
tion enhancement has not yet been formally evaluated in the context of these systems,
it must be seen as an important potential for improving information presentation.

Finally, an important example of the addition of information through the visual
modality is to be found in the August system. This involved adding mood, emotion
and attitude to the agent. To enable display of the agent’s different moods, six basic
emotions similar to the six universal emotions defined by Ekman [20] were imple-
mented in a way similar to that described by Pelachaud, Badler & Steedman [15].
Appropriate emotional cues were assigned to a number of utterances in the system,
often paired with other gestures.

5   Improving Interaction

The use of a believable talking head can trigger the user’s social skills such as using
greetings, addressing the agent by name, and generally socially chatting with the
agent. This was clearly shown by the results of the public use of the August system
during a period of six months [21]. These striking results have led to more specific
studies on visual cues for feedback [22]. In one experiment the response of the agent
was to be judged as affirmative or negative/questioning. Both acoustic cues, intonation
(F0 contour) and the agent’s delay in responding, and a variety of visual cues were
combined. In Fig. 5 the results of this experiment can be seen along with the most
negative and the most affirmative combination. It is interesting to note that smile was
found to be the strongest cue for affirmative feedback. The fact that the brow frown
functions as a negative cue is not surprising as the frown can signal confusion or dis-
concernment. Brow rise as an affirmative cue is more surprising in that a question or
surprise can also be accompanied by raised eyebrows. In this experiment, however,
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the brow rise was quite subtle, as can be seen in the figure. A larger raising movement
is likely to be interpreted as surprise.

Further detailed work on visual cues for turntaking regulation, for seeking and giv-
ing feedback and for the signaling of the system’s internal state will enable us to im-
prove the gesture library available for the animated talking head and help us continue
to improve the effectiveness of multimodal dialogue systems.
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Fig. 5. The all-negative and all-affirmative faces sampled in the end of the first syllable of the
test word, Linköping, (left). The relative cue strength, i.e. the average response value difference
for stimuli with the indicated cues set to their affirmative and negative value (right)
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Abstract. This work deals with inductive inference of logic programs
– relational learning – from examples. The work is, in the first place,
application-oriented. It aims at building an easy-to-use relational learner
and it focuses on the tasks that are solvable with the tool. Assumption-
based learning, the new learning paradigm is introduced and the ABL
system WiM is described. A methodology for experimental evaluation
of ILP systems is introduced and experiments with WiM are displayed.
Two classes of application – database schema redesign and mining in
spatial data - that have been successfully solved with WiM are described.

Keywords: relational learning, database schema redesign, mining in
spatial data

1 Motivation

Relational learning, or inductive logic programming(ILP) [16] explores induc-
tive learning in first order logic. An inductive system learns if for a given set of
instances of a particular concept it finds a general description of that concept.
The main goal of ILP is then development of theory, algorithms and systems
for inductive reasoning in first-order logic. Informally, for a given example set
and background knowledge we aim at finding a hypothesis in first order logic
that explain those examples using the background knowledge. In the general
setting, examples, background knowledge and hypotheses may be any first-order
formula. The main used setting in ILP is example setting, or ’specification by
examples’ where the evidence is restricted to true and false ground facts called
examples. Background knowledge is a normal logic program.

The computational complexity of ILP algorithm is an important problem. In
general there are three ways how to limit the size of the set generated by a
refinement operator: to define bias (syntactic as well as semantic restrictions on
the search space) [15], to accept assumptions on the quality of examples, or to
use an oracle [21]. Even in the case of a finite relation we assume that the number
of examples is (significantly) less than the number of all instances of the rela-
tion. Bias is usually split into two groups, language bias that narrows the space
of possible solutions and search bias that defines how to search that space and
when to stop. Language bias defines a form of possible solutions. More frequent
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constraints limit the maximal number of clauses in the solution or maximal num-
ber of literals in a clause body [7,14,21]. Languages were developed that enable
to define almost any syntactic feature of the desirable solution. Search bias says
how to search the graph of potential solutions. It also defines validation bias,
the condition under which the search are to stop. Most of characteristics of bias
– like the complexity of the intended solution, or the maximal number of nodes-
hypotheses in the search space – may be expressed via parameters. Usually it is
uneasy to set the parameters optimally. The techniques of the shift of bias can
help.

The development of a new relational learner was motivated by some tasks that
everybody must treat when using ILP. Except of building domain knowledge it
is a selection of learning set (its cardinality and quality), and optimal settings
of bias. Some general drawbacks of relational learners that motivated our work
are as follows. It is very often that cardinality of a training set needed by ILP
systems seems to be too big [2,14] and/or the needed quality of examples is
extremely high [1,7,21] The used negative examples are more dependent on the
used ILP system than on the solved task [7,14,21]. In the case of interactive
systems, the obtained result very often depends on the order of examples [21].
Optimal settings of bias [15] can hardly be automatic. However, it should be as
easy as possible. Finding the optimal parameters of bias is closer to art than to
a science [7].

We focus here on exact learning. It means that no noise in input information
(examples, domain knowledge) is allowed. We employ the generate-and-test top-
down strategy. First a hypothesis is generated that is afterwards tested on ex-
amples. We solve only some of tasks that result in more efficient and more
user–friendly ILP systems. We showed [20] how the number of hypotheses in
generate–and–test paradigm can be lowered with bias settings. By this way, this
’brute force’ top-down learning are becoming quite efficient. Here we bring ex-
perimental proof of it. When looking for the optimal bias settings we will aim
at the minimal need of interaction with a user. As mentioned before, the useful
negative examples are very often dependent on the used ILP system. We de-
scribe a semi-automatic method for finding negative examples. We show that
the examples found are helpful. We describe classes of problems that can be
solved with exact learners. We focus on the traditional class of problems – logic
program synthesis, and database applications. We show that WiM system can
be applied in the field of database schema redesign as well as in the process of
knowledge discovery in geographic data.
Next three section are as a core of this work. Section 2 contains description of
the basic algorithm of assumption-based learning. In Section 3 the WiM sys-
tem, as the first implementation of this general paradigm, is introduced. Section
4 contains experimental results obtained with WiM on benchmark predicates.
Section 5 displays the use of WiM in two application areas – database schema
redesign and mining in geographic data. Props and cons of ABL and WiM are
discussed in Section 6.
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2 Assumption-Based Learning

We developed a new method called assumption-based learning (ABL) based
on [5,10]. A generic scenario of assumption-based learning consists of three parts,
an inductive synthesiser, a generator of assumptions which generates ex-
tensions of the input information and an acceptability module which evalu-
ates acceptability of assumptions. That module is allowed to pose queries to the
teacher. It may happen that the inductive synthesiser have failed for any reason
to find a correct solution (e.g. because of missing examples, insufficient domain
knowledge or because of too strong bias). Then ABL system is looking for such
a minimal extension of the input - called assumption - which allows to find a
solution. The solution has to be correct and consistent with the input extended
by the new assumption. If an assumption is needed, it must be confirmed by
the acceptability module. It is true that a query to user is necessary to confirm
the assumption generated by the system. However, the number of queries, in
general, is smaller comparing to the other interactive systems [2,21]. A generic
algorithm of assumption-based learning is in Fig.1.

Given:
domain knowledge BK, example set E, bias,
assumption A = true
inductive engine I, overgeneral program P
function f , that computes an assumption A
acceptability module AM

1. Call I on BK ∪ P, E ∪ A, bias.
– if I succeeds resulting in program P

′

then call AM to validate the assumption A.
if A is accepted then return(P

′
) else go to (2).

– else go to (2).
2. Call f to generate a new assumption A. If it fails, return(fail) and stop else go to

(1).

Fig. 1. A generic algorithm of assumption-based learning

3 WiM System

In this section, WiM system, the first implementation of the assumption-based
learning paradigm is introduced. Particular parts and functions of ABL are ex-
plained here. WiM [6,20] is a program for synthesis of normal logic programs
from a small example set. It further elaborates the approach of MIS [21] and
Markus [7]. It works in top-down manner and uses shifting of bias and second-
order constraints. WiM is an instance of assumption-based learning. Assump-
tions are ground negative examples generated one-by-one. In every moment,
maximally one assumption is added into the example set. WiM consists of three
modules, inductive engine m+, a generator of assumptions, and an acceptability
module. In the next three paragraphs we briefly describe these three modules.
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3.1 Inductive Synthesiser m+

We implemented m+ that is based on Markus [7]. m+ is a top-down synthe-
siser applying breath-first search in a refinement graph and controlling a search
space with different parameters. A refinement operator is an improved version of
Markus′ one. m+ employs only a subset of Markus’ parameters. Those param-
eters concerns only language bias. We wanted to make the work with WiM as
easy as possible. More advanced users, of course, can tune also other parameters
of Markus . However, for most of tasks it is not necessary. m+ employs shifting
of bias. Four parameters are used for shifting — the maximal number of free
variables in a clause, the maximal number of goals in the body of a clause, the
maximal head argument depth (X, [X|Y ], [X,Y |Z], etc. are of depths 0, 1, 2,
respectively), and the maximal number of clauses in a solution. The user defines
the minimal and the maximal value of the parameters. m+ starts with the mini-
mal values of these parameters. If no acceptable result has been found, a value of
one of the parameters is increased by 1 and m+ is called again. In such a way all
variations are being tried gradually. That choice of parameters implies that m+

finds a simpler clause first. In some situations domain knowledge predicates may
be defined extensionally. However, it is not realistic to assume that those defini-
tions are complete enough. It would be appreciated if such extensional definition
would be replaced by intensional one. We incorporated into WiM a multiple
predicate learning algorithm which is sufficient in most situations for solving
this task. A second-order schema can be defined which the learned program
has to match. This schema definition can significantly increase an efficiency of
the learning process because only the synthesised programs which match the
schema are verified on the learning set.

3.2 Generator of Assumptions

An assumption is generated in the moment when the current example set is not
complete enough to ensure that the inductive synthesiser is capable to find a
definition of the target predicate. As an assumption, a near-miss to a chosen
positive example is generated. The whole process of generation of assumptions
consists of two steps:
Algorithm of assumption generation:
repeat

1. Find the preferable positive example in the example set. 2. Generate
its near-miss.
until a correct and complete program was found
or no more assumptions exist.

A preference relation on the set of examples is defined based on measure of
complexity for atomic formulas (complexity of a list is equal to its length; com-
plexity of terms in Peano arithmetics is equal to the corresponding value, e.g.
s(s(0)) is of complexity 2). It enables to generate near-misses of less complex
examples first. The relation of preference is an ordering on a set of examples.
Thus it has a minimal elements. Now the preferable example can be computed.
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First a complexity is computed for every positive example in the learning set.
Then arbitrary example with a minimal complexity is chosen as preferable for
computing near-misses.

A syntactic approach is used for computing near-misses. A minimal modifica-
tion of the example chosen is computed (adding/removing/replacing one element
in the list; increasing/decreasing by one the complexity of a term in Peano arith-
metics). Whenever a new near-miss has been built, it is added into the example
set as the negative example and learning algorithm is called. If no solution is
found then the near-miss is replaced by another near-miss of the same positive
example. If no near-miss of the example enables to learn a correct definition,
next positive example (following the ordering given by the preference relation)
is chosen for generation of near-misses.

3.3 Acceptability Module

For each assumption which has lead to a new predicate definition, acceptability
module asks an oracle for a confirmation/rejection of the assumption. As WiM
works with ground assumptions, a membership oracle is employed in WiM . The
oracle answers true if the ground assumption is in the intended interpretation.
Otherwise it answers false.

4 Experiments

WiM was examined on list processing predicates and on predicates for Peano
arithmetics. We used both carefully chosen learning sets and learning sets gen-
erated randomly. The learned definitions of predicates were tested on randomly
chosen example sets. Below we first introduce the methodology for generating
random learning set. Then we display the results for the randomly generated
learning sets. The other results can be found in [20].

Positive examples are generated as follows

1. Generate input arguments randomly as terms of depth 0..4 over a domain
of constants ({a,b,c, ... ,z} for lists, 0 for integers).

2. Compute the value of the output argument using the same domain.
3. If the depth of output argument is not greater than 4, and the example does

not appear in the example set, add it there.

The input arguments are installed and then the output argument is computed,
e.g. for append([_],[_,_],_) we may receive ([r],[g,b],[r,g,b]). As the length of
[r,g,b] is not greater than 4, the example append([r],[g,b],[r,g,b]) is added into
the example set. Negative examples are chosen in two steps.

1. Generate all arguments randomly as terms of depth 0..4 over a domain of
constants ({a,b,c, ... ,z} for lists, 0 for integers).

2. If it is a negative example, add it to the example set.
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We used two criteria for evaluation, a success rate and a fraction of test perfect
programs (see [20] for the results) over N learning sessions. For a given logic
program and a test set we define success rate as a sum of covered positive
examples and uncovered negative examples divided by a total number of exam-
ples. We generated a learning set as 2,3 and 5 positive examples and 10 negative
examples. Then WiM was called to learn a program P . 50 positive and 50 neg-
ative examples were generated as a test set and a success rate was computed for
P on this testing set. The whole process was repeated 10-times.

Table 1. Learning list processing predicates by Crustacean and WiM (average accu-
racy from 10 runs for 2,3 and 5 examples).

Crustacean WiM

2 3 2 3 5
member 0.65 0.76 0.80 0.97 0.97
last 0.74 0.89 0.76 0.89 0.94
append 0.63 0.74 0.77 0.95 0.95
delete 0.62 0.71 0.85 0.88 0.97
reverse 0.80 0.86 0.85 0.95 0.99
split 0.78 0.86 0.80 0.88 0.79
extractNth 0.60 0.78 0.74 0.80 0.98
plus 0.64 0.86 0.82 0.92 0.96
noneIsZero 0.73 0.79 0.72 0.46 0.58

4.1 Results

WiM can learn most of the ILP benchmark predicates on the mentioned domains
from 2 positive examples, sometimes extended with one negative example. This
negative example is generated automatically as the assumption. It never needs
more than 4 examples for that class of predicates and more than one negative
example. If the negative example is needed it can be generated with very good
accuracy by WiM itself. We showed that the accuracy of the target definition
increases with a number of positive example in the training set as well as with
weakening of bias. Comparison with CRUSTACEAN [1] is in Table 1. The table
contains average accuracy obtained from 10 runs, for 2,3 and 5 examples that
were generated randomly. For CRUSTACEAN the results was taken from [1];
for 5 examples the results have not been published. We also comparedWiM with
Markus as well as with other ILP systems FILP [2], SKILit [9] and Progol
[14] [20]. WiM outperforms Markus - it never needs more positive examples
than Markus and needs less negative examples; bias is much more easy to set.
WiM has higher efficiency of learning as well as smaller dependency on the
quality of the example set than other exact learners. WiM is quite fast. CPU
time needed for learning without assumptions was smaller than 8 seconds on
SUN Sparc. Assumption-based learning is of course more time-consuming. The
maximal CPU time was smaller than 4 seconds for list processing predicates and
smaller than 33 seconds for Peano arithmetics (≤ /2). Comparing WiM with
MIS , MIS is not able to learn from only positive examples.
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5 Applications

5.1 Inductive Redesign of Object-Oriented Database

Based on WiM , DWiM [19] system has been implemented that can assist in
object-oriented database schema redesign. In the first step, domain knowledge
is being extracted from an object-oriented database schema described in F-logic
[11]. Then positive examples are chosen by user from the database. Negative
examples can be generated automatically as assumptions, using the closed world
assumption, or can be assigned also by user.

japaneseCar:X <-car:X[producer->F[place->
P[country->’Japan’]

factory:X <-carFactory:X
factory:X <-aircraftFactory:X

eVehicle:X <-car:X[power->electricity]
eVehicle:X <-pubTranVehicle:X[power->electricity]

family:F[hu->H,wi->W] <-person:H[spouse->W],
person:W[spouse->H]

person:X[managed->Y] <-person:X[boss->Y]
person:X[managed->Y] <-person:X[boss->Z],

person:Z[managed->Y]

person:X[mother->M] <-not(person:X[father->M]),
person:M[son->X]

person:X[mother->M] <-not(person:X[father->M]),
person:M[daughter->X]

Fig. 2. Class and attribute definitions

Limits of bias are generated automatically, too. The maximum complexity of
head is set on 1 as well as number of free variables. Maximum clause length
is equal to the number of attribute names and values which have appeared in
input objects. Now WiM is run with the collected example set and background
knowledge. DWiM was examined on tasks that cover all frequent types of class
and attribute definitions. DWiM needed from 1 to 5 positive instances(objects)
of classes. The number of the needed examples is small enough for user to be
able to choose them. DWiM program is quite fast so that it can be used in
interactive design of deductive object-oriented databases. Some of the learned
F-logic rules are in Figure 2.

5.2 Mining in Spatial Data

WiM system, is also a powerful tool for mining some of typical patterns in
spatial data [8,13]. The general schema of GWiM [18] system is a modification
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of DWiM described earlier. The GENERATE module is replaced by a module
that compiles rules of a spatial mining language into input of WiM . Then WiM
is called. The inductive query language for spatial mining consists of three kinds
of inductive queries. Two of them, that ask for characteristic and discriminate
rules, are improved versions of GeoMiner [8,3] rules. The dependency rules
add a new quality to the inductive query language. The general syntactic form,
adapted from GeoMiner of the language is as follows. Semantics of those rule

extract < KindOfRule > rule
for < NameOfTarget >
[ from < ListOfClasses >]
[< Constraints >]
[ from point of view < ExplicitDomainKnowledge >] .

Fig. 3. General form of rules

differs from that of GeoMiner. Namely < ExplicitDomainKnowledge > is a list
of predicates and/or hierarchy of predicates. At least one of them have to appear
in the answer to the query. The answer to those inductive queries is a first-order
logic formula which characterises the subset of the database which is specified
by the rule. We experimentally verified usability of the inductive query language
and performance of GWiM . Cardinality of the learning sets is small enough
for user to choose the learning examples. GWiM outperforms in some aspects
GeoMiner. Namely GWiM can mine a richer class of knowledge, Horn clauses.
Background knowledge used in GeoMiner may be expressed only in the form of
hierarchies, GWiM accepts any Horn clause logic program.

6 Discussion

Although Progol is not proposed for logic program synthesis we compared WiM
with it. For a comparison of WiM with PROGOL we used again randomly cho-
sen examples. We focus only on append/3 predicate because the distribution
package of PROGOL contains a training set for this predicate The set contains
17 positive and 8 negative examples. We also display results on this example
set obtained with both systems (last columns - distr). Tab 2 contains the aver-
age success rate for 10 runs. PROGOL never found the correct solution for 2,
3, 5 and 7 examples neither any recursive solution. On the (distr) data and 5
runs, PROGOL did not stop once and 4-times it found an over-general defini-
tion append([A|B],C,[A|D]) ; append(A,B,B). In this case the success rates

Table 2. append/3, PROGOL and WiM

PROGOL WiM

2 3 5 7 distr 2 3 5 7 distr
0.68 0.81 0.89 0.97 0.89 0.77 0.95 0.95 1.00 1.00



Efficient Relational Learning from Sparse Data 19

varied between 0.96 and 0.99. When only positive examples appeared in the test
set , the success rates were 0.39 , 0.69 , 0.79. Progol can also learn from positive
examples only. However, this feature is not usable when learning from very small
learning sets.

WiM overcomes other relational learners in the case that the number of learning
examples is small (≤ 5) and it is not yet applicable for noisy data. We showed
that even under these two conditions there are application areas where ABL
was successfully employed. It is typical for these domains that learning data
are being collected (or at least supervised) with human(in the case of program
synthesis and/or object-oriented schema redesign), or the learning data are ex-
tracted from non-noisy data sources(e.g. some kinds of geographic data). Noisy
data can be, at least partially, run employing oracles already implemented in
WiM . However, this problem needs more exploration.

7 Conclusion

We introduced the new ILP paradigm called assumption-based learning. We ex-
perimentally proved that the implementation of the assumption-based paradigm,
the system WiM, is less dependent on the quality of the learning set than other
ILP systems. We showed how to decrease complexity of the search space in ILP
setting. WiM system extends Markus [7] by shifting bias, multiple predicate
learning, generating negative examples and employing second-order schema. We
showed that even with a very small example set WiM is capable to learn most
of the predicates which have been mentioned in ILP literature. We showed that
WiM is feasible for solving real-world tasks. Our assumption-based approach
can be combined with any existing ILP system.

We addressed the possibilities of ILP methods in object-oriented database
schema modelling, i.e. in database schema design and restructuring. We showed
that inductive logic programming could help in synthesis of those rules to sup-
port database schema redesign. We showed how to use the ABL technique for
spatial data mining. Mining system GWiM was implemented based on WiM .
GWiM overcomes, in expressive power, some other mining methods.
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20 L. Popeĺınský
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19. Popeĺınský L.: Inductive inference to support object-oriented analysis and design.
In: Proc. of 3rd Conf on Knowledge-Based Software Engineering, Smolenice 1998,
IOS Press.
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Abstract. Instance retraction is a difficult problem for concept learning
by version spaces. In this paper, two new version-space representations
are introduced: instance-based maximal boundary sets and instance-
based minimal boundary sets. They are correct representations for the
class of admissible concept languages and are efficiently computable.
Compared to other representations, they are the most efficient practi-
cal version-space representations for instance retraction.

1 Introduction

Version spaces are an approach to the concept-learning task [5]. They are defined
as sets of descriptions in concept languages that are consistent with training data.
Version-space learning is an incremental process [3,4,5,7]:
− If an instance i is added, the version space is revised so that it consists of all
the concept descriptions consistent with the processed training data plus i.
− If an instance i is retracted, the version space is revised so that it consists of
all the concept descriptions consistent with the processed training data minus i.

For the learning process version spaces have to be represented. The standard
representation is by boundary sets [5,7]. They are correct for the class of admis-
sible concept languages [7], but their size can grow exponentially in the size of
training data [1]. To overcome this problem alternative version-space represen-
tations were introduced in [2,3,4,6,7,8,10]. They extended the classes of concept
languages for which version spaces are efficiently computable.

A shortcoming of most version-space representations is that they are ineffi-
cient for instance retraction. They lack a structure that determines the influence
of an individual training instance. Hence, if a training instance is retracted, the
representations are recomputed [7]. To avoid this problem two version-space rep-
resentations were proposed. The first one is the training-instance representation
[3]. By its definition it is efficient for instance retraction. However, the repre-
sentation has only a theoretical value, since the classification of each instance
requires search in the concept language using all the training data. The second
representation is instance-based boundary sets (IBBS) [7,8]. It is correct and
efficiently computable for the class of admissible concept languages. Moreover,
its retraction algorithm is efficient: it does not recompute the representation.
Therefore, at the moment the IBBS are the most efficient practical version-space
representation for instance retraction.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 21–30, 2002.
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In this paper we address the challenging question whether it is possible to de-
sign version-space representations that are more efficient than the IBBS in terms
of computability and retraction. To answer the question we introduce instance-
based maximal boundary sets (IBMBS) as a new version-space representation in
the next sections1. Section 2 provides the necessary formalisation. The IBMBS
are defined in section 3. They are shown to be correct for admissible concept
languages. The condition for finiteness and the complexity of the IBMBS are
given. In section 4 four IBMBS algorithms, including the retraction algorithm,
are presented together with their complexities. Section 5 provides an evaluation
of the IBMBS. The dual representation of the IBMBS, instance-based minimal
boundary sets (IBmBS), is given in section 6. The representations are compared
with relevant work in section 7. Finally, in section 8 conclusions are given.

2 Formalisation

Let I be a set of descriptions of all possible entities. A concept C is defined as
a subset of I. Concepts are represented in a concept language Lc. The language
Lc is defined as a set of descriptions c representing each exactly one concept.

The elements of concepts are called instances. They are related to concept
descriptions by a cover relation M . The relation M(c, i) holds for c ∈ Lc and
i ∈ I iff the instance i is a member of the concept represented by c. A description
c ∈ Lc is said to cover an instance i ∈ I iff the cover relation M(c, i) holds.

As a rule any target concept C is incompletely defined by training sets I+ ⊆ I
and I− ⊆ I of positive and negative instances such that I+ ⊆ C and I− ∩C = ∅.
Hence, the concept-learning task in this case is to find descriptions of C in Lc.

To find the descriptions of a target concept, we specify them by the consis-
tency criterion: a description c is consistent iff c correctly classifies training data.
The set of all consistent descriptions is called the version space [5].
Definition 1. (Version Space) Given training sets I+ and I− of a target
concept, the version space VS (I+, I−) is defined as follows:

VS (I+, I−) = {c ∈ Lc | (∀i ∈ I+)M(c, i) ∧ (∀i ∈ I−)¬M(c, i)}.
To learn version spaces, they have to be compactly represented. It is possible

usually if concept languages are ordered by a relation “more general” (≥) [5]:
(∀c1, c2 ∈ Lc)((c1 ≥ c2)↔ (∀i ∈ I)(M(c1, i)←M(c2, i))).

A concept language Lc with the relation “≥” is partially ordered. In our
study we are interested in sets C ⊆ Lc that have maximal and minimal sets:

MAX (C) = {c ∈ C|(∀c′ ∈ C)((c′ ≥ c)→ (c′ = c))}
MIN (C) = {c ∈ C|(∀c′ ∈ C)((c ≥ c′)→ (c′ = c))}.

The maximal and minimal sets of version spaces are known as maximal and
minimal boundary sets [5]. To refer to them we use the following notation.
1 The paper is a short version of [9] where the omitted proofs can be found.
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Notation 2. MAX (VS (I+, I−)) is denoted by G(I+, I−). MIN (VS (I+, I−)) is
denoted by S(I+, I−).

One sub-class of concept languages ensures that version spaces are bounded
by these sets. This is the class of admissible concept languages given below.
Definition 3. (Admissible Concept Language) A partially-ordered concept
language Lc is admissible iff each subset C ⊆ Lc is bounded; i.e., for each element
c ∈ C there exist g ∈ MAX (C) and s ∈ MIN (C) such that g ≥ c and c ≥ s.

An admissible language has the following computational characteristics used
in complexity analysis. They do not depend on the size of the training-data.

Γn: the maximal size of the set G(∅, {n}) for n ∈ I;
t↑n: the maximal time for generating the set G(∅, {n}) for n ∈ I;
Σp: the maximal size of the set S({p}, ∅) for p ∈ I;
t↓p: the maximal time for generating the set S({p}, ∅) for p ∈ I;
tm: the maximal time of the operator of the relation M(c, i) for c∈Lc, i∈I.

In this paper we perform a worst-case analysis of the representations pro-
posed. The conditions for the worst case are as follows:

– the size of the sets G(I+, {n}) equals the size Γn for all n ∈ I, I+ ⊆ I \ {n};
– the size of the sets S({p}, I−) equals the size Σp for all p ∈ I, I− ⊆ I \ {p}.

3 Instance-Based Maximal Boundary Sets

Definition 4. (Instance-Based Maximal Boundary Sets (IBMBS))
Consider an admissible concept language Lc and nonempty training sets I+ ⊆ I
and I− ⊆ I. Then the instance-based maximal boundary sets of a version space
VS (I+, I−) are an ordered pair 〈I+, {G(I+, {n})}n∈I−〉.

The IBMBS are “instance-based” since each of their elements corresponds
to particular training instances. The IBMBS are “maximal boundary sets” since
each of their elements in {G(I+, {n})}n∈I− is a maximal boundary set.
Theorem 5. (Correctness of IBMBS) Let VS (I+, I−) be a version space
given by IBMBS: 〈I+, {G(I+, {n})}n∈I−〉. If the language Lc is admissible,

(∀c∈Lc)(c∈VS (I+,I−)↔((∀p∈I+)M(c, p)∧(∀n∈I−)(∃g∈G(I+,{n}))(g≥c))).

Given the IBMBS of a version space VS (I+, I−) and an admissible concept
language, theorem 5 states that the descriptions in VS (I+, I−) are those that (1)
cover all the positive instances in I+, and (2) are more specific than an element
of each maximal boundary set G(I+, {n}). Thus, the size of IBMBS is not tied
to the number of descriptions in VS (I+, I−), i.e., the IBMBS are compact.

Since the IBMBS are compact, we can determine when they are finite.
Theorem 6. The IBMBS are finite iff the training sets I+ and I− are finite
and the maximal boundary set G(∅, {n}) is finite for all n ∈ I.

The worst-case space complexity of the IBMBS is O(|I+|+ |I−|Γn).
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Learning Algorithm
Input: i: a new training instance.

〈{I+, {G(I+, {n})}n∈I−〉: IBMBS of VS(I+, I−).
Output:

〈I+ ∪ {i}, {G(I+ ∪ {i}, {n})}n∈I−〉: IBMBS of VS(I+ ∪ {i}, I−) if i is positive.
〈I+, {G(I+, {n})}n∈I−∪{i}〉: IBMBS of VS(I+, I− ∪ {i}) if i is negative.

if instance i is positive then
for n ∈ I− do

G(I+ ∪ {i}, {n}) = {g ∈ G(I+, {n}) | M(g, i)}
return 〈I+ ∪ {i}, {G(I+ ∪ {i}, {n})}n∈I−〉

if instance i is negative then
Generate the set G(∅, {i})
G(I+, {i}) = {g ∈ G(∅, {i})|(∀p ∈ I+)M(g, p)}

return 〈{I+, {G(I+, {n})}n∈I−∪{i}〉.

Fig. 1. The Learning Algorithm.

4 Algorithms of the IBMBS

This section presents algorithms of the IBMBS together with their complexities.

4.1 Learning Algorithm

The learning algorithm of the IBMBS updates the representation given a new
training instance. It is correct for the class of admissible concept languages.
The algorithm consists of two parts for handling positive and negative training
instances. They are based on theorem 7 and theorem 5, respectively.

Theorem 7. Consider a version space VS (I+, I−) represented by IBMBS: 〈I+,
{G(I+, {n})}n∈I−〉, and a version space VS (I+∪{i}, I−) represented by IBMBS:
〈I+∪{i}, {G(I+∪{i}, {n})}n∈I−〉. If the concept language Lc is admissible, then:

G(I+ ∪ {i}, {n}) = {g ∈ G(I+, {n}) |M(g, i)} for all n ∈ I−.

The learning algorithm is given in figure 1. If the new training instance i
is positive, the algorithm forms the maximal boundary sets G(I+ ∪ {i}, {n})
for all n ∈ I−. Each set G(I+ ∪ {i}, {n}) is formed from the elements of the set
G(I+, {n}) covering the instance i. The resulting IBMBS of VS (I+∪{i}, I−) are
formed from the set I+∪{i} and the maximal boundary sets G(I+∪{i}, {n}) for
all n ∈ I−. If the instance i is negative, the algorithm generates the set G(∅, {i}).
The maximal boundary set G(I+, {i}) is formed from the elements of G(∅, {i})
covering the set I+. The resulting IBMBS of VS (I+, I− ∪ {i}) are formed from
the set I+ and the maximal boundary sets G(I+, {n}) for all n ∈ I− ∪ {i}.

The worst-case time complexity of the algorithm, given one positive instance
and one negative instance, is O(t↑n + (|I+|+ |I−|)Γntm).
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4.2 Retraction Algorithm

The retraction algorithm of the IBMBS updates the representation when an
instance is removed from one of the training sets. It is correct for the class of
admissible concept languages when the property G holds [7].

Definition 8. (Property G) An admissible concept language Lc is said to
have property G if for all n1, n2 ∈ I:

{g ∈ G(∅, {n1})|¬M(g, n2)} = {g ∈ G(∅, {n2})|¬M(g, n1)}.

The retraction algorithm consists of two parts for handling positive and nega-
tive training instances. They are based on theorem 9 and theorem 5, respectively.

Theorem 9. Consider a version space VS (I+, I−) represented by IBMBS:
〈I+, {G(I+, {n})}n∈I−〉, and a second version space VS (I+\{i}, I−) represented
by IBMBS: 〈I+ \ {i}, {G(I+ \ {i}, {n})}n∈I−〉, where i ∈ I+. If the concept lan-
guage Lc is admissible and the property G holds, then:

G(I+ \ {i},{n})=G(I+, {n}) ∪ {g∈G(I+ \ {i}, {i})|¬M(g, n)} for all n ∈ I−.

The retraction algorithm is given in figure 2. If an instance i is removed
from the set I+, the algorithm executes two steps by theorem 9. In the first
step it generates the set G(∅, {i}). The set G(I+ \ {i}, {i}) is formed from those
elements of G(∅, {i}) that cover the instances in I+ \ {i}. In the second step the
algorithm forms the maximal boundary set G(I+ \{i}, {n}) for each n ∈ I− as a
union of the corresponding sets G(I+, {n}) and {g ∈ G(I+\{i}, {i}) | ¬M(g, n)}.
The resulting IBMBS of VS (I+ \ {i}, I−) are formed by the set I+ \ {i} and the
maximal boundary sets G(I+\{i}, {n}) for all n ∈ I−. If the instance i is removed
from the set I−, the algorithm forms the resulting IBMBS of VS (I+, I− \ {i})
from the set I+ and the maximal boundary sets G(I+, {n}) for all n ∈ I− \ {i}.

The worst-case time complexity of the algorithm, given one positive instance
and one negative instance, is O(t↑n + (|I+|+ |I−|)Γntm).

4.3 Algorithm for Version-Space Collapse

The algorithm for version-space collapse checks whether a version space given
by IBMBS is empty. It is proposed for admissible concept languages when the
intersection-preserving property holds [7]. The property is given below.

Definition 10. (Intersection-Preserving Property (IP)) An admissible
concept language is said to have the intersection-preserving property if for each
nonempty set C ⊆ Lc there exists a description c ∈ Lc such that an instance
i ∈ I is covered by all the elements of C iff i is covered by the description c.

The property IP is introduced because it guarantees that if the training set
I− is not empty, the version space VS (I+, I−) is not empty iff for each n ∈ I−

the version space VS (I+, {n}) is not empty (see theorem 11).
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Retraction Algorithm
Input: i: a training instance such that i ∈ I+ ∪ I−.

〈{I+, {G(I+, {n})}n∈I−〉: IBMBS of VS(I+, I−).
Output: 〈{I+\ {i},{G(I+ \ {i}, {n})}n∈I−〉: IBMBS of VS(I+ \ {i}, I−) if i∈I+.

〈{I+, {G(I+, {n})}n∈I−\{i}〉: IBMBS of VS(I+, I− \ {i}) if i ∈ I−.
Precondition: |I+| > 1 if i ∈ I+ and |I−| > 1 if i ∈ I−.

if i ∈ I+ then
Generate the set G(∅, {i})
G(I+ \ {i}, {i}) = {g ∈ G(∅, {i})|(∀p ∈ I+ \ {i})M(g, p)}
for n ∈ I− do

G(I+ \ {i}, {n}) = G(I+, {n}) ∪ {g ∈ G(I+ \ {i}, {i}) | ¬M(g, n)}
return 〈I+ \ {i}, {G(I+ \ {i}, {n})}n∈I−〉

if i ∈ I− then
return 〈I+, {G(I+, {n})}n∈I−\{i}〉.

Fig. 2. The Retraction Algorithm.

Theorem 11. Consider an admissible concept language Lc such that the prop-
erty IP holds. If the set I− is nonempty, then:

(VS (I+, I−) �= ∅)↔ (∀n ∈ I−)(VS (I+, {n}) �= ∅).

To check a version space VS (I+, I−) for collapse, by theorem 11 we can check
for collapse of the version spaces VS (I+, {n}) for n ∈ I−. Since VS (I+, {n}) are
given by sets G(I+, {n}) in the IBMBS of VS (I+, I−), we give a relation between
the sets G(I+, {n}) and version spaces VS (I+, {n}) [7].
Theorem 12. (VS (I+, I−) �= ∅)↔ (G(I+, I−) �= ∅).

Theorems 11 and 12 imply corollary 13 below. It states that if the property
IP holds and the training set I− is nonempty, the version space VS (I+, I−) is
nonempty iff for each n ∈ I− the set G(I+, {n}) is nonempty.

Corollary 13. Consider an admissible concept language Lc such that the prop-
erty IP holds. If the set I− is nonempty, then:

(VS (I+, I−) �= ∅)↔ (∀n ∈ I−)(G(I+, {n}) �= ∅).

The version-space collapse algorithm uses corollary 13 and is given in figure
3. If a version space VS (I+, I−), given by IBMBS, is checked for collapse, the
algorithm visits the sets G(I+, {n}) for n ∈ I−. If none of the sets G(I+, {n}) is
empty, by corollary 13 VS (I+, I−) is not empty and the algorithm returns false.
Otherwise, by corollary 13 VS (I+, I−) is empty and the algorithm returns true.

The worst-case time complexity of the algorithm is O(|I−|).
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VS-Collapse Algorithm
Input: 〈{I+, {G(I+, {n})}n∈I−〉: IBMBS of VS(I+, I−).
Output: true if VS(I+, I−) = ∅.

false if VS(I+, I−) �= ∅.
for n ∈ I− do

if G(I+, {n}) = ∅ then
return true

return false.

Fig. 3. The Algorithm for Version-Space Collapse.

4.4 Classification Algorithm

The classification algorithm of the IBMBS implements the unanimous-voting
rule: an instance is classified iff all the descriptions in a version space agree on
a classification [5]. The positive instance classification is based on theorem 14.
Theorem 14 states that all the descriptions of a version space VS (I+, I−) cover
an instance i ∈ I iff the version space VS (I+, I− ∪ {i}) is empty.

Theorem 14. (∀i ∈ I)((∀c ∈ VS (I+, I−))M(c, i)↔ (VS (I+, I− ∪ {i}) = ∅)).
The negative instance classification is based on theorem 15. Theorem 15

states that if the concept language is admissible and the property IP holds, then
none of descriptions of a version space VS (I+, I−) covers an instance i ∈ I iff a
version space VS (I+, {n}) exists of which the descriptions do not cover i.

Theorem 15. If the concept language Lc is admissible such that the property
IP holds, and I− �= ∅, then:

(∀i ∈ I)((∀c ∈ VS(I+, I−))¬M(c, i) ↔ (∃n ∈ I−)(∀c ∈ VS(I+, {n}))¬M(c, i)).

By theorem 15 a negative instance classification can be obtained by the
version spaces VS (I+, {n}) as well. Since VS (I+, {n}) are given with sets
G(I+, {n}) in the IBMBS of VS (I+, I−), we show how to use these sets for
the classification.

Theorem 16. (∀c ∈ VS (I+, I−))¬M(c, i)↔ (∀g ∈ G(I+, I−))¬M(g, i).

Theorems 15 and 16 imply corollary 17 below. Corollary 17 states that if the
concept language is admissible such that the property IP holds, then none of
the descriptions of a version space VS (I+, I−) covers an instance i ∈ I iff there
exists a set G(I+, {n}) of which all the descriptions do not cover the instance i.

Corollary 17. If the concept language Lc is admissible such that the property
IP holds, and I− �= ∅, then:

(∀i ∈ I)((∀c ∈ VS(I+, I−))¬M(c, i) ↔ (∃n ∈ I−)(∀g ∈ G(I+, {n}))¬M(g, i)).
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Classify Algorithm
Input: i: an instance to be classified.

〈I+, {G(I+, {n})}n∈I−〉: IBMBS of VS(I+, I−).
Output: “+” if (∀c ∈ VS(I+, I−))M(c, i).

“−” if (∀c ∈ VS(I+, I−))¬M(c, i).
“?” otherwise.

Precondition: VS(I+, I−) �= ∅.
label i as negative
〈{I+, {G(I+, {n})}n∈I−∪{i}〉 = Learning(i, 〈{I+, {G(I+, {n})}n∈I−〉)
if VS-Collapse(〈I+, {G(I+, {n})}n∈I−∪{i}〉) then

return “+”
for n ∈ I− do

if (∀g ∈ G(I+, {n}))¬M(g, i) then
return “−”

return “?”.

Fig. 4. The Classification Algorithm.

The classification algorithm of the IBMBS is given in figure 4. Given a
nonempty version space VS (I+, I−), it classifies an instance i ∈ I in two
steps. In the first step the algorithm forms the IBMBS of the version space
VS (I+, I− ∪ {i}) using the learning algorithm applied on the IBMBS of
VS (I+, I−) with the instance i labeled as negative. If VS (I+, I−∪{i}) is empty,
by theorem 14 all the descriptions in VS (I+, I−) cover the instance. Hence, the
instance i is positive and the algorithm returns “+”. If VS (I+, I− ∪ {i}) is not
empty, the algorithm executes the second step. It visits the sets G(I+, {n}) for
n ∈ I−. If none of the elements of one of these sets covers the instance i, by corol-
lary 17 all the descriptions in VS (I+, I−) do not cover the instance. Thus, the
instance i is negative and the algorithm returns “−”. Otherwise, the algorithm
returns “?”.

The worst-case time complexity of the algorithm is O(t↑n+(|I+|+|I−|)Γntm).

5 Evaluation of the IBMBS

From the previous sections we conclude that the IBMBS are efficiently com-
putable for the class of admissible concept languages because:

(1) the worst-case space complexity of the IBMBS is polynomial in the compu-
tational characteristic Γn, and the sizes |I+| and |I−|;

(2) the worst-case time complexity of the learning algorithms is polynomial in
the computational characteristics t↑n, Γn, tm, and the sizes |I+| and |I−|.
In addition we note that:

(3) the worst-case time complexities of the retraction algorithm, the algorithm
for version-space collapse and the classification algorithm are polynomial in
the computational characteristics t↑n, Γn, tm, and the sizes |I+| and |I−|;

(4) the retraction algorithm does not recompute the IBMBS.
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6 Instance-Based Minimal Boundary Sets

Instance-based minimal boundary sets (IBmBS) and their algorithms can be
derived by duality from the previous sections2. Due to space limitations we
refrain from providing details. The complexities of the IBmBS representation
and of its algorithms are given in table 1.

7 Comparison with Relevant Work

Below we compare the IBMBS and the IBmBS with the training-instance repre-
sentation [3] and the instance-based boundary-set representation [7,8], i.e., with
version-space representations that are efficient for instance retraction.

The training-instance representation is efficiently computable and efficient
for instance retraction [3]. Nevertheless, it is not practical: the classification of
each instance is realised as a search in the concept language using all the training
data and the instance. This contrasts with the IBMBS and the IBmBS where
the classification process is more based on the representations than on search.

Table 1. Worst-Case Complexities of IBMBS, IBmBS, IBBS and their Algorithms.

IBMBS
Space: O(|I+|+ |I−|Γn)
Time: Learning Algorithm O(t↑

n + (|I+|+ |I−|)Γntm)
Time: Retraction Algorithm O(t↑

n + (|I+|+ |I−|)Γntm)
Time: Version-Space Collapse Algorithm O(|I−|)
Time: Classification Algorithm O(t↑

n + (|I+|+ |I−|)Γntm)
IBmBS

Space: O(|I+|Σp + |I−|)
Time: Learning Algorithm O(t↓

p + (|I+|+ |I−|)Σptm)
Time: Retraction Algorithm O(t↓

p + (|I+|+ |I−|)Σptm)
Time: Version-Space Collapse Algorithm O(|I+|)
Time: Classification Algorithm O(t↓

p + (|I+|+ |I−|)Σptm)
IBBS

Space: O(|I+|Σp + |I−|Γn)
Time: Learning Algorithm O(t↓

p + t↑
n + (|I+|+ |I−|)(Σp + Γn)tm)

Time: Retraction Algorithm O(t↑
n + t↓

p + (|I+|+ |I−|)(Γn +Σp)tm)
Time: Version-Space Collapse Algorithm O(|I+|+ |I−|)
Time: Classification Algorithm O(t↓

p + t↑
n + (|I+|+ |I−|)(Σp + Γn)tm)

The instance-based boundary-set representation (IBBS) is efficiently com-
putable and efficient for instance retraction for the class of admissible concept
languages when both properties G and S hold [7,8]. This is confirmed by the
2 We note that the dual of the property G is the property S, and the dual of the
intersection-preserving property (IP) is the union-preserving property (UP) [7].
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worst-case complexities of the representation and its algorithms given in table 1.
An analysis of these complexities shows that each of them is equal to the sum of
the corresponding complexities of the IBMBS and IBmBS. Thus, the IBMBS and
the IBmBS have two advantages: (1) they are more efficiently computable than
the IBBS, and (2) the IBMBS and the IBmBS have more efficient algorithms for
learning, retraction, version-space collapse, and classification.

8 Conclusion

This paper introduces the IBMBS and the IBmBS as new version-space repre-
sentations. It shows that the representations are compact and efficiently com-
putable. The four most important version-space algorithms are given. These
results of the IBMBS and the IBmBS are compared with those of other existing
version-space representations that are efficient for instance retraction. From the
comparison it is concluded that the IBMBS and the IBmBS are the most efficient
practical version-space representations for instance retraction.
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Abstract. In this paper we propose a machine learning formalism based on gen-
eralized intervals. This formalism may be used to diagnose breakdown situations
in telecommunication networks. The main task is to discover significant tempo-
ral patterns in the large databases generated by the monitoring system. In this
kind of applications, time duration is relevant to the alarms identification process.
The shapes of the decision boundaries are usually axis-parallel with constraints.
The representation of examples in our formalism is similar to the representa-
tion described in the Nested Generalized Exemplar theory [Sal91]. This theory of
generalization produces an excellent generalization with interpretable hypotheses
[WD95] in domains where the decision boundaries are axis-parallel.
Using Allen qualitative relations between intervals, firstly we will give an adapted
organization of the set of relations, then we will define an operator of generaliza-
tion and we will give a table of qualitative generalization. Finally we suggest two
learning algorithms. The second one uses a topologic lattice between relations to
optimize the first one.

1 Introduction

One interesting solution to predict or to explain the behavior of a system is to build
a general model able to imitate the system. It is typically the case in model-based
diagnosis approaches where the problem is to detect, to localize and to identify failures
in the system. In several approaches, breakdown situations are simulated in the model
[Osm99b], and a set of observations is treated, and then archived. These observations are
ordered in time. Sometimes, durations are required: the alarm CT1(technique center) is
happened 5 minutes 3 seconds before the alarm CM2(switch). In other situations only
the order is required: the alarm SCS is observed after CT1. In this paper, we propose a
machine learning approach based on generalized intervals[BCdCO98,Lig91,Lad86] to
treat the observations in order to simplify the identification process.

In 1991, Salzberg [Sal91] proposed a learning theory, using hyperrectangles, and
showed the relevance of this theory in three cases. In the model of representation NGE
(Nested Generalized Exemplar), Salzberg proposed a new way to describe concepts by
using hyperrectangles. He associates a weight parameter for each hyperrectangle He
considers that the function of distance between hyperrectangles can change dynamically
and he takes into account the generalization with exception by using the Thornton
[Tho87] results. The work proposed in [WD95] analyses the performance of the NGE

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 31–40, 2002.
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approach compared to thek−nearest neighbors (knn) approach in 11 domains. He
shows that the performance of the hyperrectangle approach is poor, except when the
application is adapted; in which case the approach presents good performances with
some appreciates advantages like the level of abstraction and the quantity of information
necessary to describe the examples.

It is especially the case with the applications related to the learning of alarm
sequences for the faults discrimination in a telecommunication network. In order to
model the behavior of the telecommunication network when an abnormal operation
occurs, we use the simulator proposed in [Osm99a]. This simulator of breakdown
situations in telecommunication networks can reproduce components behavior and
messages propagation between components in the network. This simulator builds
generalized intervals (see example 2), each generalized interval became a learning
example of an abnormal situation. This application is an excellent example for the use
of the learning approach based on generalized intervals.

In this paper, we introduce a learning approach based on generalized intervals
and which uses both quantitative and qualitative relations between intervals. Our goal
is to implement a global solution of learning using generalized intervals with constraints.

In section 1, we give a real example that justifies our interest in the machine learning
approach using this kind of representation. Section 2 gives some definitions and shows
our relations between intervals extracted from Allen’s relations. Section 3 defines the
operator of generalization and introduces the table of generalization using our relations
between intervals. Section 4 presents two learning algorithms; the first one uses naively
the operator of generalization, the second one uses the property of the relation’s lattice
between interval relations defining a conceptual neighborhood structure to organize
examples in order to optimize the first learning algorithm. Section 5 concludes this
paper.

Related Work

Several works focus on machine learning using intervals and/or rectangles. Methods
that induce logical conjunctions are a good example of orthogonal rectangle bias.
The induction of logical conjunctions is one the early machine learning approaches.
The original idea was presented by Bruner and al. [BA56], while the first popular
implemented IGS (Incremental general-to-specific) algorithm was proposed by Winston
[Win75]. This framework has been extended by Mitchell [Mit77] by combining ISG
and IGS approaches. Langley’s Book [Lan96] gives some complements about this
learning approach.
PAC learning of rectangles, have been also studied because they have been experimen-
tally showed to yield excellent hypotheses for several applied problems [ALS97,WD95,
WK91].
Nested generalized exemplar theory accomplishes the learning task by storing objects
in Euclidian space as hyperrectangle [Sal91]. The hyperrectangles may be nested inside
another to arbitrary depth. Some applications results are presented in [WD95].
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Other works deal with intervals to learn and to classify patterns in Euclidian space:
In Koc[Koc95] an algorithm (COFI) for classification with overlapping feature intervals
is proposed. COFI algorithm is an exemplar-based concept-learning algorithm where
learning concepts are represented as intervals on the class dimensions for each feature.
The knowledge representation is similar to the NGE method, no domain theory is used.
In COFI algorithm, learning task is performed in a dynamic environment. The prediction
step is based on a majority voting taken among individual predictions based on the votes
of the features. The nearest work to the one presented in this paper is the paper presented
by Hoppner[Hop01]. Hoppner uses interval algebra to discover temporal rules behavior
of multivariate time series.

2 Application Example

This section gives some "generalized examples" from the learning database generated
by AutModSim tool1 describing breakdown situations in telecommunication network.
The interpretation of the first line of the matrix is done as follow: if the supervisor of
the telecommunication network receives the alarmsa1 in the interval [2,7],a2 in the
interval [2,4] anda3 in the interval [0,1], probably the network centerPct is in breakdown
situation.

[ a1 a2 a3 ][
p ct
pct

pcm

][
[2, 7] [2, 4] [0, 1]
[1, 2] [3, 4]
[0, 1] [0, 1] [2, 5]

]

CT

CT

CM

1 2 43 5 6 7 8 9

1

2

3

4

5

6

2

1

3

4

5

6

a3

a1

a2

Time

Time

Time

p

p

p

Fig. 1. Illustration.

More generally, the learning database can contain simple examples or generalized
examples2 in the form (breakdown situation, alarm sequence). Initially, we have
m known breakdown situations (m is a subset of possible breakdown situations):
{P1, . . . , Pm} andn types of alarms:{a1, . . . , an}. These alarms define the dimension

1 AutModSim simulates breakdown situations in telecommunication networks and generates
alarm sequences with time intervals [OL].

2 A simple example is represented with point in multidimensional space. A generalized interval
is represented by generalized interval.
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of our Euclidian space. For each breakdown situationPi, we associate a set of
generalized example: the example j of the breakdown situationPi is the sequence
(a1, X

j
i1, . . . , X

j
in) whereXij is an interval. In this paper we consider the generalized

intervalXj
i = (Xj

i1, . . . , X
j
in) as the representative of the example j ofPi.

The learning database will be in the following form:

[ a1 . . . an ]


P1

...
P1

...
Pm

...
Pm







X1
11 . . . X1

1n

...
...

Xm1
11 . . . Xm1

1n

...
...

X1
m1 . . . X1

mn

...
...

Xmm
m1 . . . Xmm

mn




This example gives one possible application of our formalism. In this paper, we will
present the operator of generalization and the training algorithm.

3 Definitions

An interval x can be identified by these two ends[x−, x+]. In this case, it is called:
instantiated interval.

Definition 1. A generalized intervalX is defined by a sequence of instantiated intervals
or by a sequence of intervals and a constraints network between these intervals.

The constraints are expressed by disjunctions of relations representing a subset of
Allen’s thirteen relations [All83]. These relations are{precedes(p), meets(m), over-
laps(o), finish(f), stard(s), during(d)}, their opposites and the relation of equality.

Example 1. Each of the two following examples illustrates the definition of a generalized
interval defined by a sequence of instantiated intervals and a generalized interval defined
by a sequence of intervals and a constraints network.

X = ([1, 2], [3, 5], [2, 6]), X = {(x1, x2, x3), RX}, RX = {x1 px2, x1mx3, x2 dx3}

Definition 2. A generalized example is a set of examples describing the same concept.
If a point represents a training example of a concept in a given space, an interval, a
rectangle, and a cube that describe the same concept are generalized examples3.

Allen’s relations between intervals [All83] are not necessary used for our learning prob-
lem. The figure 2 presents considered relationships between intervals. We consider four
groups of relations: the relation disconnect (disc) which correspond to the relation pre-
cedes, the relation intersect (inter) which corresponds to the Allen’s relationsmeets
and overlaps, the relation contain (cont) which groups together the relationsfinish,

3 A simple example is a particular case of a generalized interval. In the rest of the paper, example
will indicate both simple and generalized example.
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start andduring and the relation of equalityeq. We note the opposite relations of the re-
lationsdisc, inter andcont bydisc−1, inter−1 andcont−1, respectively. The relations
DISC, CONT andINTER indicate the relations(disc∨ disc−1), (cont∨ cont−1),
(inter ∨ inter−1), respectively. The properties of this cutting will be detailed in the
next section.

������������
����������

����������
����������

����������
������������

������

������

�����
�����
�����
�����

��������
����������

����������

����������
����������

Relations                   Topological description
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Inter

cont

eq

Fig. 2. disc, cont andinter relations between simple intervals.

Definition 3. A minimal covering set of parts of the attributes space for a given concept
is a space described by a set of generalized intervals E(X), such that any example
describing the concept is member, at least, a generalized interval and the intersection of
each side of each element of E(X) with one of the examples which it contains is nonempty.
The operator of generalization presented in the next section respect this property.

4 The Operator of Generalization ψ

This section introduces the operator of generalizationψ. This operator allows making
a minimal recovery of the space of the attributes by minimizing the number of gener-
alized intervals characterizing each concept and also by minimizing the recoveries of
counterexamples during generalization.

Notation 1 Let us consider X = (x1..., xn). We note Gxi an unspecified inter-
val which generalizes xi. We note x(i) the generalized interval defined as follow:
X(i) = (x1...xi−1, Gxi, xi+1...xn), and we note X(i1...,ik) the generalized interval
X for which the components xi1 , xik

are generalized before.

Let us considerX = (x1, ..., xn) andY = (y1, ..., yn) two generalized intervals
with the same dimension and defined in the same space.

4.1 ψ(X,Y ) Operator

The operator of generalizationψi(x, y) defines the generalization of the exampleX
compared to the exampleY as follows:ψi(x, y) = x(i) such as:
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– Gxi = [min(x−
i , y

−
i ),max(x+

i , y
+
i )] if X andY are instantiated and

– cont(Gxi, xi) ∧ cont(Gxi, yi) ∧ (∀zi(¬ cont(Gxi , zi) ∨ ¬disc(xi, zi) ∨
¬disc(zi, yi)) ∧(∀zi(¬cont(Gxi , zi) ∨ ¬disc(yi, zi) ∨ ¬disc(xi, yi))).

The application of the operatorψi onX andY makes possible to replaceX in the
database by the generalized exampleψi(x, y).

According to the same principle,ψi1...,ik
(x, y) defines the operator of generalization

of X compared to Y for the sequence of attributesxi1 ..., xik
.

ψi1...,ik
= ψi1 ◦ ... ◦ ...ψik

= ◦ik

l=i1
ψl

Example 2. Let us consider two generalized examplesX = ([2, 3], [5, 6]) andY =
([5, 7], [1, 3]). Figure 3 illustrates the application of the operatorsψ1 andψ1,2.

Y Y

X

1

2

Y

X

(a) initial representation of X et de Y

1

2

X

ψ1(X,Y)

1

2

ψ1,2(Y,X)

(c)     1,2 (Y,X)ψψ representation(b)     1(X,Y) representation   

Fig. 3. Illustration of the operatorsψi etψi1,...,ik .

The operatorψ(X,Y ) generalizes the two generalized examplesX andY and pro-
duces only one exampleZ as follows:

ψ(X,Y ) = Z = ([min(x−
1 , y

−
1 ),max(x+

1 , y
+
1 )]..., [min(x−

n , y
−
n ),max(x+

n , y
+
n )])

Proposition 1. ψ(X,Y ) = GX such that GX = ◦i=n
i=1ψi(X,Y )

Property 1 The operators ψi and ψi1...,ik
are not commutative. The operator ψ is com-

mutative.

Example 3. The figure 3(c) gives an example of generalization ofY with X on two
attributes. If the description space of the examples contains only two attributes then
ψ(x, y) = ψ1,2(y, x).
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4.2 ψ(X,Y, Z) Operator

Generalization process operates in a universe of examples and counterexamples. The
operatorψ(x, y, z) defines the concept of generalization of two examplesX andY of
the same concept, knowing thatZ is a counterexample for this same concept.

Before defining this operator, I will start with the definition of the operatorψi(x, y, z).
This operator defines the generalization of the exampleX compared to the exampleY
describing the same concept by knowing the counterexampleZ.

– dimension 1: it indicates the behavior ofψi(x, y, z) = ψ(x, y, z) in an one-
dimensional space(i=1). Generalization is done as follows:(∀X)(∀Z)(∀Y )

1. (cont(X,Y ) ∨ cont(Y,X) ∨ inter(Y,X) ∨ inter(X,Y )) ⇒ (ψi(X,Y, Z) =
ψi(X,Y ))

2. (∀Z)((disc(X,Z) ∧ disc(Y, Z)) ∨ (disc(Z,X) ∧ disc(Z, Y ))) ⇒ (ψi(X,Y, Z) =
ψi(X,Y ))

If none of the two premises is valid, generalization fails.
– high dimensions The definition ofψi(X,Y, Z) i ∈ {1, .., n} is done as follow:
ψi(X,Y, Z) = ψi(X,Y ) if, and only if, one of the following expressions is checked:
1. (∃j)(j �= i)DISC(xj , zj) or
2. (R(xi, zi) ∧R(yi, zi) ∧R(xi, yi))) = ok in the table 1.

Otherwise generalization fails.

As for the operatorψi1,..,ik
(X,Y ):

ψi1,...,ik
(X,Y, Z) = ◦m=ik

m=i1
ψm(X,Y, Z)

Table 1 gives the list of the possible situations which can occur between the examples
X, Y andZ, knowing thatX andY describe the same concept andZ a different concept.
The table 1 indicates when generalization is possible, i.e.ψi(x, y, z) = ψi(x, y), by the
word: ok, when generalization is not possible, i.e. no modification is brought to the
base of the examples, by the word¬ok and when the relation betweenX, Y andZ is
inconsistency by the word0.
The first column indicates relationsR(X,Z) andR(Y,Z), respectively. The first line
indicates the relationR(X,Y ). The relationscont andeq are not represented in the first
line because the generalization process make no modification forX.

Proposition 2. (∀i)(R(xi, zi)R(yi, zi)R(xi, yi) = ok) → ψ(X,Y, Z) = ψ(X,Y )

Proposition 3. ψ(X,Y, Z) = GX such that:

1. GX = ◦i=n
i=1ψi(X,Y )

2. (∀i) ψi(◦j=i−1
j=1 ψj(X,Y ), Y, Z) = ψi(◦j=i−1

j=1 ψj(X,Y ), Y )

Let us considerS = (Z1, . . . Zl) the ordered set of the counterexamples for the concept
described by the examplesX andY .

ψ(X,Y, S) = ◦i=l
i=1ψ(X,Y, Zi)
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Table 1. Generalization of an example X compared to Y knowing the counterexample Z.

disc inter cont−1 inter−1 disc−1

disc disc ok ok ok ok ok
disc int ok ok ok 0 0
disc cont ok ok ok 0 0
disc eq ok 0 0 0 0
disccont−1 ¬ok 0 0 0 0
discinter−1 ¬ok 0 0 0 0
discdisc−1 ¬ok 0 0 0 0
inter disc 0 0 0 ok ok
inter int 0 ok ok ok 0
inter cont 0 ok ok 0 0
inter eq 0 ok 0 0 0
inter cont−1 ¬ok 0 0 0 0
inter inter−1 ¬ok ok 0 0 0
interdisc−1 ¬ok 0 0 0 0
cont disc 0 0 0 ok ok
cont int 0 0 0 ok 0
cont cont 0 ok ok ok 0
cont eq 0 0 0 0 0
contcont−1 0 0 0 0 0
continter−1 0 ok 0 0 0
contdisc−1 ok ok 0 0 0

disc inter cont−1 inter−1 disc−1

cont−1 disc 0 0 0 0 ¬ok
cont−1 int 0 0 ok ok ¬ok
cont−1 cont 0 0 ok 0 0
cont−1 eq 0 0 ok 0 0
cont−1 cont−1 ¬ok ok ok ok ¬ok
cont−1 inter−1 ¬ok ok ok 0 0
cont−1 disc−1 ¬ok ok 0 0 0
inter−1 disc 0 0 0 0 ¬ok
inter−1 int 0 0 0 ok ¬ok
inter−1 cont 0 0 ok ok 0
inter−1 eq 0 0 0 ok 0
inter−1 cont−1 0 0 0 ok ¬ok
inter−1 inter−1 0 ok ok ok 0
inter−1 disc−1 ok ok 0 0 0
disc−1 disc 0 0 0 0 ¬ok
disc−1 int 0 0 0 0 ¬ok
disc−1 cont 0 0 ok ok ok
disc−1 eq 0 0 0 0 ok
disc−1 cont−1 0 0 0 0 ¬ok
disc−1 inter−1 0 0 ok ok ok
disc−1 disc−1 ok ok ok ok ok

5 Learning Algorithms

This section presents two training algorithms: a naive learning algorithm (NLAGI) and
an optimized learning algorithm (OLAGI) which reduce the training time.

Algorithm OLAGI exploits the lattice structure between interval relations [Lig96]
to define a partial order between the training base of examples. In fact, examples
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are ordered sequentially in the database. To obtain this total ordering starting from the
partial ordering, we take into account the fact that the operatorψ is noncommutative.

Figure 4(a) shows the lattice between interval relations. Figure 4(b) uses this result to
define a lattice between our defined relations. We call the obtained lattice: an increased
lattice. The dotted lines extract a total order between the relations by usingψ previous
defining properties. In the increased lattice,X  Y if there is a path fromX to Y .

instable relation
stable relation

fi

di

o

p

m

s d

f

oisi

eq

mi
    pi

−1

−1

eq

disc

inter

inter

cont cont

disc

Fig. 4. (a) Simplified lattice (b) Lattice of interval relations

The extension of this relation lattice between intervals to a relation lattice between
generalized intervals uses a simplified version of the generalized lattice defined in
[BCdCO98].

The contribution of this property is to make the training local. Indeed, by ordering
the examples of training (cost O(n2), N is the number of examples in the database), we
obtain the following result:
Let us consider X1, . . . , Xm the sequence of training examples of training such that:

(∀i)(� ∃j)/(i < j) and Xj  Xi

Property 2 (∀i)(∀j > i) such that Xi, Xi+1, . . . , Xj describe the same concept, for
all Z in the sequence of learning examples describing another concept than Xi,

ψt,1≤t≤n(Xk,i≤k≤j , Xl,i≤l≤j , Z) = ψt(Xk, Xl)

and more generally : ψ(Xk,i≤k≤j , Xl,i≤l≤j , Z) = ψ(Xk, Xl)

The OLAGI learning algorithm uses this propriety to reduce learning time.

6 Conclusion

In our considered application sequences of alarms are generated by the telecommunica-
tion network. Each sequence describes a particular state of the system. We have proposed
a technique to represent these sequences by generalized intervals each one describing a
generalized example of a breakdown situation. This technique uses temporal CSP and



40 A. Osmani

translates some known results to propose an interesting generalization algorithm. In this
paper we describe our contribution but the developed framework include a large part
of related work (see section 2). The learning techniques are used more and more for
the telecommunication management network. This article presents a formalism to learn
temporal patterns with interval.
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Abstract. Achieving high performance on modern processors heavily
relies on the compiler optimizations to exploit the microprocessor archi-
tecture. The efficiency of optimization directly depends on the compiler
heuristics. These heuristics must be target-specific and each new proces-
sor generation requires heuristics reengineering.
In this paper, we address the automatic generation of optimization
heuristics for a target processor by machine learning. We evaluate the
potential of this method on an always legal and simple transformation:
loop unrolling. Though simple to implement, this transformation may
have strong effects on program execution (good or bad). However decid-
ing to perform the transformation or not is difficult since many inter-
acting parameters must be taken into account. So we propose a machine
learning approach.
We try to answer the following questions: is it possible to devise a
learning process that captures the relevant parameters involved in loop
unrolling performance? Does the Machine Learning Based Heuristics
achieve better performance than existing ones?

Keywords: decision tree, boosting, compiler heuristics, loop unrolling.

1 Introduction

Achieving high performance on modern processors heavily relies on the abil-
ity of the compiler to exploit the underlying architecture. Numerous program
transformations have been implemented in order to produce efficient programs
that exploit the potential of the processor architecture. These transformations
interact in a complex way. As a consequence, an optimizing compiler relies on
internal heuristics to choose an optimization and whether or not to apply it. De-
signing these heuristics is generally difficult. The heuristics must be specific to
each implementation of the instruction set architecture. They are also dependent
on changes made to the compiler.

In this paper, we address the problem of automatically generating such
heuristics by a machine learning approach. To our knowledge this is the
first study of machine learning to build these heuristics. The usual approach
consists in running a set of benchmarks to setup heuristics parameters. Very few
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papers have specifically addressed the issue of building such heuristics. Never-
theless approximate heuristics have been proposed [8,11] for unroll and jam a
transformation that is like unrolling (our example) but that behaves differently.

Our study aims to simplify compiler construction while better exploiting
optimizations. To evaluate the potential of this approach we have chosen a simple
transformation: loop unrolling [6]. Loop unrolling is always legal and is easy to
implement, but because it has many side effects, it is difficult to devise a decision
rule that will be correct in most situations.

In this novel study we try to answer the following questions: is it possible to
learn a decision rule that selects the parameters involved in loop unrolling effi-
ciency? Does the Machine Learning Based Heuristics (denoted MLBH) achieve
better performance than existing ones? Does the learning process really take into
account the target architecture?

To answer the first question we build on previous studies [9] that defined an
abstract representation of loops in order to capture the parameters influencing
performance. To answer the second question we compare the performance of our
Machine Learning Based Heuristics and the GNU Fortran compiler [3] on a set
of applications. To answer the last question we have used two target machines,
an UltraSPARC machine [12] and an IA-64 machine [7], and used on each the
MLBH computed on the other.

The paper is organized as follows. Section 2 gives an overview of the loop
unrolling transformation. Section 3 shows how machine learning techniques can
be used to automatically build loop unrolling heuristics. Section 4 illustrates an
implementation of the technique based on the OC1 decision tree software [10].

2 Loop Unrolling as a Case

The performance of superscalar processors relies on a very high frequency1 and
on the parallel execution of multiple instructions (this is also called Instruction
Level Parallelism –ILP). To achieve this, the internal architecture of superscalar
microprocessors is based on the following features:
Memory hierarchy: the main memory access time is typically hundreds of
times greater than the CPU cycle time. To limit the slowdown due to memory
accesses, a set of intermediate levels are added between the CPU unit and the
main memory; the level the closest to the CPU is the fastest, but also the small-
est. The data or instructions are loaded by blocks (sets of contiguous bytes in
memory) from one memory level of the hierarchy to the next level to exploit
the following fact: when a program accesses some memory element, the next
contiguous one is usually also accessed in the very near future. In a classical
configuration there are 2 levels, L1 and L2 of cache memories as shown on the
figure 1. The penalty to load data from main memory tends to be equivalent to
executing 1000 processor cycles. If the data is already in L2, it is one order of
magnitude less. If the data is already in L1, the access can be done in only a few
CPU cycles.
1 typically 2 gigahertz corresponding to a processor cycle time of 0.5 nanosecond
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Fig. 1. Memory hierarchy

Multiple Pipelined Functional Units: the processor has multiple functional
units that can run in parallel to execute several instructions per cycle (typically
an integer operation can be executed in parallel with a memory access and a
floating point computation). Furthermore these functional units are pipelined.
This divides the operation in a sequence of steps that can be performed in
parallel. Scheduling instructions in the functional units is performed in an out-
of-order or in-order mode. Contrary to the in-order, in the out-of-order mode
instructions are not always executed in the order specified by the program. When
a processor runs at maximum speed, each pipelined functional unit executes one
instruction per cycle. This requires that all operands and branch addresses are
available at the beginning of the cycle. Otherwise, functional units must wait
during some delays. The processor performance depends on these waiting delays.

The efficiency of the memory hierarchy and ILP are directly related to the
structure and behavior of the code. Many program transformations reduce the
number of waiting delays in program execution.

Loop unrolling [6] is a simple program transformation where the loop body
is replicated many times. It may be applied at source code level to benefit from
all compiler optimizations. It improves the exploitation of ILP: increasing the
size of the body augments the number of instructions eligible to out-of-order
scheduling. Loop unrolling also reduces loop management overhead but it has
also some beneficial side effects from later compiler steps such as common sub-
expression elimination. However it also has many negative side effects that can
cancel the benefits of the transformation:

– the instruction cache behavior may be degraded (if the loop body becomes
too big to fit in the cache),

– the register allocation phase may generate spill code (additional load and
store instructions),

– it may prevent other optimization techniques.

As a consequence, it is difficult to fully exploit loop unrolling. Compilers are
usually very conservative. Their heuristics are generally based on the loop body
size: under a specific threshold, if there is no control flow statement, the loop is
unrolled. This traditional approach under-exploits loop unrolling [5] and must
be adapted when changes are made to the compiler or to the target architecture.

The usual approach to build loop unrolling heuristics for a given target com-
puter consists in running a set of benchmarks to setup the heuristics parameters.
This approach is intrinsically limited because in most optimizations such as loop
unrolling, too many parameters are involved. Microarchitecture characteristics
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(for instance the size of instruction cache, ...) as well as the other optimizations
(for instance instruction scheduling, ...) that follow loop unrolling during the
compilation process should be considered in the decision procedure. The main
parameters, but not all (for instance number instruction cache misses), which
influence loop unrolling efficiency directly depend on the loop body statements.
This is because loop unrolling mainly impacts code generation and instruction
scheduling. As a consequence, it is realistic to base the unrolling decision on the
properties of the loop code while ignoring its execution context.

3 Machine Learning for Building Heuristics

Machine learning techniques offer an automatic, flexible and adaptive framework
for dealing with the many parameters involved in deciding the effectiveness of
program optimizations. Classically a decision rule is learnt from feature vectors
describing positive and negative applications of the transformation. However,
it is possible to use this framework only if the parameters can be abstracted
statically from the loop code and if their number remains limited. Reducing the
number of parameters involved in the process is important as the performance
of machine learning techniques is poor when the number of dimensions of the
learning space is high [10]. Furthermore learning from complex spaces requires
more data.

To summarize the approach, the steps involved in using a machine learning
technique for building heuristics for program transformation are:

1. finding a loop abstraction that captures the “performance” features involved
in an optimization, in order to build the learning set,

2. choosing an automatic learning process to compute a rule in order to decide
whether loop unrolling should be applied,

3. setting up the result of the learning process as heuristics for the compiler.

In the remainder of this section, we present the representation used for abstract-
ing loop properties. The next section shows how to sort the loop into winning
and loosing classes according to unrolling. Finally, the learning process based on
learning decision trees is overviewed.

3.1 Loop Abstraction

The loop abstraction must capture the main loop characteristics that influence
the execution efficiency on a modern processor. They are represented by integer
features which are relevant static loop properties according to unrolling. We
have selected 5 classes of integer features:

Memory access: number of memory accesses, number of array element reuses
from one iteration to another.

Arithmetic operations count: number of additions, multiplications or divi-
sions excepting those in array index computations.

Size of the loop body: number of statements in the loop.
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Control statements in the loop: number of if statements, goto, etc. in the
loop body.

Number of iterations: if it can be computed at compile time.

In order to reduce the learning complexity, only a subset of these features are
used for a given compiler and target machine. The chosen subset was determined
experimentally by cross validation (see Section 4). The quality of the predictions
achieved by an artificial neural network based on 20 indices was equivalent to
the predictive quality of the 6 chosen features.

Figure 2 gives the features that were selected and an example of loop ab-
straction.

do i=2,100
a(i) = a(i)+a(i-1)*a(i+1)

enddo

Number of statements 1
Number of arithmetic operations 2
Minimum number of iterations 99
Number of array accesses 4
Number of array element reuses 3
Number of if statements 0

Fig. 2. Example of features for a loop.

3.2 Unrolling Beneficial Loops

A learning example refers to a loop in a particular context (represented by
the loop features). To determine if unrolling is beneficial, each loop is executed
twice. Then, the execution times of the original loop and of the unrolled loop
are compared. Four cases can be considered:

not significant: the loop execution time is too small and therefore the timing
is not significant. The loop is discarded from the learning set.

equal: the execution times of the original and of the unrolled loop are close. A
threshold is used to take into account the timer inaccuracy. Thus, the loop
performance is considered as invariant by unrolling if the benefit is less than
10%.

improved: the speedup is above 10%. The loop is considered as being benefi-
cial by unrolling.

degraded: there is a speed-down. The loop is considered as a degraded loop by
unrolling.

The loop set is then partitioned into equivalence classes (denoted loop classes
in the remainder). Two loops are in the same loop class if their respective ab-
stractions are equal.

The next step is to decide if a loop class is to be considered as a positive or
a negative example. Note that there can be beneficial and degraded loops in the
same class as non exhaustive descriptions are used to represent the loops. This
is a natural situation as the loop execution or compilation context may greatly
influence its execution time, for instance due to instruction cache memory effects.
The following criterion has been used to decide whether a class will represent a
positive or a negative example:
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1. In a particular class, a loop whose performance degrades by less than 5% is
counted once, a loop that degrades performance by 10% is counted twice. A
loop that degrades performance more than 20% is counted three times.

2. if the number of unrolling beneficial loops is greater than the number of
degraded loops (using the weights above), then the class represents a positive
example, else the class represents a negative example.

3.3 A Learning Method Based on Decision Trees and Boosting

We have chosen to represent unrolling decision rules as decision trees. Decision
trees can be learnt efficiently from feature based vectors. Each node of the de-
cision tree represents a test checking the value(s) of one (or several) feature(s)
which are easy to read by an expert. This is not the case for statistical meth-
ods like Nearest Neighbor or Artificial Neural Network for instance, which have
comparable or slightly better performance.

We used the OC1 [10] software. OC1 is a classification tool that induces
oblique decision trees. Oblique decision trees produce polygonal partitionings
of the feature space. OC1 recursively splits a set of objects in a hyperspace by
finding optimal hyperplanes until every object in a subspace belongs to the same
class.
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Fig. 3. The left side of the figure shows an oblique decision tree that uses two attributes.
The right side shows the partitioning that this tree creates in the attribute space.

A decision tree example is shown in Figure 3, together with its 2-D related
space. Each node of the tree tests a linear combination of some indices (equiva-
lent to an hyperplane) and each leaf of the tree corresponds to a class. The main
advantages of OC1 is that it finds smaller decision trees than classical tree learn-
ing methods. The major drawback is that they are less readable than classical
ones.

The classification of a new loop is equivalent to finding a leaf loop class.
Once induced, a decision tree can be used as a classification process. An object
represented by its feature vector is classified by following the branches of the
tree indicated by node tests until a leaf is reached.

To improve the accuracy obtained with OC1 we have used boosting [13].
Boosting is a general method for improving the accuracy of any given algorithm.
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Boosting consists in learning a set of classifiers for more and more difficult prob-
lems: the weights of examples that are misclassified by the classifier learnt at
step n are augmented (by a factor proportional to the global error) and at step
n + 1 a new classifier is learnt on this weighted examples. Finally, the global
classification is obtained by a weighted vote of the individual classifier according
to their proper accuracy. In our case 9 trees were computed.

4 Experiments

The learning set used in the experiments is

Number of loops 1036
Discarded loops 177
Unrolling beneficial loops 233
Unrolling invariant loops 505
Unrolling degraded loops 121
Loop classes 572
Positive examples 139
Negative examples 433

Table 1. IA-64 learning set.
made of loops extracted from programs in
Fortran 77. Most of them were chosen in
available benchmarks [4,1]. We have studied
two types of programs: real applications (the
majority comes from SPEC [4]) and compu-
tational kernels. Table 1 presents some char-
acteristics of a loop set (cf section 3.2).

The accuracy of the learning method was
assessed by a 10-fold cross-validation. We
have experiment with pruning. We have ob-
tained smaller trees but the resulting quality was degraded. The results without
pruning are presented in Table 2. Two factors can explain the fact that the
overall accuracy cannot be better than 85%:
1. since unrolling beneficial and degraded loops can appear in the same class

(cf section 3.2) a significant proportion of examples may be noisy,
2. the classification of positive examples is far worse than the classification of

negative ones. Maybe the learning set does not contain enough beneficial
loops.

To go beyond cross validation another set of experiments has been performed
on two target machines, an UltraSPARC and an IA-64. They aim at showing
the technique does catch the most significant loops of the programs. The g77 [3]
compiler was used. With this compiler, loop unrolling can be globally turned on
and off. To assess our method we have implemented loop unrolling at the source

Table 2. Cross validation accuracy

UltraSPARC IA-64
normal boosting normal boosting

Accuracy of overall
example classification

79.4% 85.2% 82.6% 85.2%

Accuracy of positive
example classification

62.4% 61.7% 73.9% 69.6%

Accuracy of negative
example classification

85.1% 92.0% 86.3% 92.3%
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code level using TSF [2]. This is not the most efficient scheme because in some
cases this inhibits some of the compiler optimizations (contrary to unrolling
performed by the compiler itself). We have performed experiments to check
whether the MLB heuristics are at least as good as compiler heuristics and
whether the specificities of a target architecture can be taken into account. A
set of benchmark programs were selected in the learning set and for each one we
have:

1. run the code compiled by g77 with -O3 option,
2. run the code compiled with -O3 -funroll options : the compiler uses its own

unrolling strategy,
3. unroll the loops according to the result of the MLB heuristics and run the

compiled code with -O3 option. The heuristics was learned for the target
machine from learning set where the test program was removed.

4. unroll the loops according to the result of the MLB heuristics learnt for the
other target machine and run the compiled code with -O3 option.

Fig. 4. IA-64 : -O3 is the reference execution time.

The performance results are given in Figure 4 and Figure 5 respectively for
the IA-64 and UltraSPARC targets.

The average execution time of the optimized programs for the IA-64 is 93.8%
of the reference execution time (no unrolling) using the MLB heuristics and
96.8% using the g77 unrolling strategy. On the UltraSPARC we have respectively
96% and 98.7% showing that our unrolling strategy performs better. Indeed,
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Fig. 5. UltraSPARC : -O3 is the reference execution time.

gaining a few percent on average execution time with one transformation is
significant because each transformation is not often beneficial. For example, only
22% of the loops are beneficial by unrolling on IA-64 and 17% on UltraSPARC.

In the last experiment we exchanged the decision trees learnt for the two
target machines. On the UltraSPARC, the speedup is degraded from 96% to
97.9% and on the IA-64 it is degraded from 93.8% to 96.8%. This shows that
the heuristics are effectively tuned to a target architecture.

5 Conclusion

Compilers implement a lot of optimization algorithms for improving perfor-
mance. The choice of using a particular sequence of optimizations and their
parameters is done through a set of heuristics hard coded in the compiler.

At each major compiler revision, but also at new implementations of the
target Instruction Set Architecture, a new set of heuristics must be reengineered.

In this paper, we have presented a new method for addressing such reengi-
neering in the case of loop unrolling. Our method is based on a learning process
which adapts to new target architectures or new compiler features. Using an
abstract loop representation we showed that decision trees that provide target
specific heuristics for loop unrolling can be learnt.

While our study is limited to the simple case of loop unrolling it opens
a new direction for the design of compiler heuristics. Even for loop unrolling,
there are still many issues to consider to go beyond this first result. Are there
better abstractions that can capture loop characteristics? Can hardware counters
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(for instance cache miss counters) provide better insight on loop unrolling? How
large should the learning set be? Can other machine learning techniques be more
efficient than decision trees?

More fundamentally our study raises the question whether it could be pos-
sible or not to quasi automatically reengineer the implementation of a set of
optimization heuristics for new processor target implementations.

Acknowledgments. We would like to gratefully thank I. C. Lerman and L.
Miclet for their insightful advice on machine learning techniques.
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Abstract. Local search is often a suitable paradigm for solving hard
decision problems and approximating computationally difficult ones
in the artificial intelligence domain. In this paper, it is shown that a
smart use of the computation of a local search that failed to solve a
NP-hard decision problem A can sometimes slash down the computing
time for the resolution of computationally harder optimization problems
containing A as a sub-problem. As a case study, we take A as SAT and
consider some P NP [O(log m)] symbolic reasoning problems. Applying this
technique, these latter problems can often be solved thanks to a small
constant number of calls to a SAT-solver, only.

Keywords. SAT, local search, minimal models, logic and AI.

1 Introduction

Many hard instances of the NP-complete SAT decision problem can be solved
using local search algorithms [20,19,15,12]. Actually, these latter algorithms for
SAT were fist developed to approximate the MAXSAT optimization problem
[9]. Indeed, when the local search fails to solve a decision problem, its result or
some of its computations deliver an approximate solution of the corresponding
optimization problem.

In this paper, this idea is pushed a step further: failing to prove a decision
problem A can sometimes help us in solving some harder1 symbolic reasoning
problems more efficiently. As a case study, we take A as SAT and consider some
PNP [O(log m)] optimization problems: namely, computing a preferred maximal
consistent subset of clauses and computing a preferred minimal model, respec-
tively. It is shown that a smart use of the computation of a local search that
failed to solve a SAT instance can sometimes slash down the computing time for
the resolution of these optimization problems. More precisely, it appears that
� This work has been funded in part by the CNRS, the IUT de Lens, the Région

Nord/Pas-de-Calais and by the EC under a FEDER program.
1 Unless P=NP
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they can often be solved in this way thanks to a small constant number of calls
to a SAT-solver, only.

But let us start back from the basic consideration that local search algorithms
do not cover the whole search space. Accordingly, they cannot conclude that a
SAT instance is insatisfiable, i.e. they cannot solve the dual co-NP-complete UN-
SAT problem. Recently, we have discovered the following two heuristics about
the work performed by local search techniques when they fail to prove the con-
sistency of SAT instances [13].

HEURISTIC 1
Let us count the number of times each clause has been falsified during the failed
local search and count the number of times a Boolean variable has occurred in the
unsatisfied clauses. The clauses with the highest scores form an approximation
of the set-theoretic union of the minimal inconsistent subsets of the instance.
Likewise, the Boolean variables with the highest scores take part in these subsets,
most probably.

HEURISTIC 2
Focusing a further complete search algorithm on the clauses and on the Boolean
variables with the highest scores can often make the instance solved efficiently.

We refer the reader to [13,11] for the experimental work that gave rise to
these heuristics. In order for Heuristic 1 to provide the best possible approxi-
mation, the parameters of the local search algorithm should be fine-tuned as to
give a good coverage of the search space (mainly, the number of tries should be
large and the distance between initial configurations should be maximized). The
second heuristic has been introduced independently and in some implicit way
by Crawford in the context of hard 3-SAT instances [3]. However, this failed as
Heuristic 2 is generally only helpful when Heuristic 1 delivers an approximation
of the minimal inconsistent subsets that can be handled by the best complete
techniques for SAT. Clearly, this is not the case for large random k-SAT in-
stances at the phase transition, since the size of these subsets does not diverge
significantly enough from the size of the initial instances [13,2].

2 Basic Applications to SAT and MAX-SAT

Before we climb the polynomial hierarchy and show how these SAT-related
heuristics can help with respect to harder optimization problems, let us briefly
review how using failed local search can help with respect to MAX-SAT and
SAT themselves.

When a local search algorithm fails to prove that a SAT instance is satisfiable,
the largest set of simultaneously satisfied clauses during the failed search is
an approximation of the largest consistent subset of the instance, i.e. gives an
approximate solution to the MAXSAT problem [9]. Obviously enough, when the
search succeeds in showing that the instance is satisfiable, then the MAXSAT
problem is solved.
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The local search technique can itself take its previous failed steps into ac-
count. For instance, [17] attached a dynamic weight on clauses that increases
with the number of times these latter ones have been previously falsified. Fo-
cusing on these clauses, a steepest descent towards and a better approximation
of the solution can be obtained, as illustrated in Table 1, where GSAT [20] and
GSAT+weight [17] are compared on DIMACS instances [5]. In the table, #unsat
represents the lowest number of falsified clauses during the search.

Table 1. GSAT vs GSAT+weight2

Instances Sat
Size GSAT GSAT+Weight

Var. Cla. time #unsat time #unsat
BF series:
0432-077 No 1044 3685 5s99 18 6s11 1
1355-240 No 2298 7307 91s42 89 57s94 2
2670-208 No 1379 3423 12s80 25 16s08 1
SSA series:
0432-001 No 435 1027 0s49 6 0s43 1
2670-128 No 1359 3296 12s78 29 7s92 2
6288-047 No 10410 34238 102s78 425 101s17 56
7552-083 Yes 1448 3298 13s72 32 0s06 0
AIM series:
200-1 6-yes1-1 Yes 200 320 0s07 1 0s02 0
200-1 6-no-3 No 200 320 0s06 1 0s08 1
II series:
8b4 Yes 1068 8214 3s42 1 0s08 0
16a1 Yes 1650 19368 33s27 1 0s09 0
32d3 Yes 824 19478 11s94 36 1s70 0

In [13,11] several ways to exploit Heuristic 2 in order to solve SAT instances
efficiently have been proposed. For instance, DP+TSAT is a combination of
a Davis, Logemann and Putnam [4] complete procedure (in short, DP) that
proves competitive in most situations. It starts with a call to a tabu-based local
search algorithm (TSAT) [12,14]. If this one fails to prove consistency, then a DP
procedure is run. The branching heuristic of DP selects the most often falsified
literal by a previous call to a local search algorithm. In Table 2, the very good
performance of DP+TSAT is illustrated on various benchmarks from [5].

3 Computing Preferred Maximal Consistent Subsets of
Clauses

Let us now climb the polynomial hierarchy and select some recurrent combina-
torial optimization problems in the artificial intelligence community as a case
2 All experimental results in this paper have been obtained on Pentium III 350Mhz
under linux kernel 2.2.12. All experimental data are available at:
http://www.cril.univ-artois.fr/˜mazure.
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Table 2. DIMACS problems

Instances Sat
Size Classical DP DP+TSAT

Var. Cla. #A #CH time #A #CH time
AIM series:
100-1 6-no-3 No 100 160 3E+07 2E+06 214s71 178 16 0s26
100-1 6-yes1-2 Yes 100 160 495858 30052 4s39 77 6 0s08
100-2 0-no-1 No 100 200 4E+07 2E+06 349s52 46 5 0s10
100-2 0-yes1-1 Yes 100 200 706388 31274 7s41 81 8 0s15
200-1 6-no-1 No 200 320 *** *** >8h 240 16 0s58
200-1 6-yes1-3 Yes 200 320 *** *** >9h 232 11 0s32
200-2 0-no-3 No 200 400 *** *** >15h 120 10 0s42
200-2 0-yes1-1 Yes 200 400 2E+09 7E+07 21859s45 291 27 1s21
50-1 6-no-1 No 50 80 12072 895 0s09 72 8 0s06
50-1 6-yes1-1 Yes 50 80 1540 84 0s01 37 6 0s05
50-2 0-no-1 No 50 100 54014 2759 0s43 52 5 0s05
50-2 0-yes1-1 Yes 50 100 2878 176 0s03 11 3 0s03
BF series:
0432-007 No 1040 3668 9E+08 6E+06 19553s44 115766 870 85s25
1355-075 No 2180 6778 317628 2047 18s88 4602 28 26s23
1355-638 No 2177 4768 *** *** >17h 6192 32 32s57
2670-001 No 1393 3434 *** *** >25h 490692 4822 519s40
SSA series:
0432-003 No 435 1027 133794 1570 1s79 1338 16 0s80
2670-130 No 1359 3321 *** *** >33h 2E+07 79426 8040s64
2670-141 No 986 2315 3E+08 2E+06 6350s77 1E+07 92421 6639s44
7552-038 Yes 1501 3575 *** *** >13h 29 1 0s34
7552-158 Yes 1363 3034 1639 78 0s19 12 1 0s29
7552-159 Yes 1363 3032 1557 84 0s21 12 1 0s25
7552-160 Yes 1391 3126 1457 76 0s18 1 1 0s30

(#A = Number of assignments #CH = Number of choices)

study. A first one consists in computing maximal (set-theoretic) consistent sub-
sets of clauses, while obeying a preference relation between clauses.

For clarity of presentation, we first need to recall the concept that is dual
to the notion of maximal consistent subset of clauses, namely the concept of
minimal inconsistent kernel. In the following, C is a finite set of Boolean clauses.

DEFINITION 1
A minimal inconsistent kernel (in short, kernel) of C is a subset of C that is both
inconsistent and minimal with respect to set-theoretic inclusion.

Clearly, C might contain several different kernels in the general case. Also,
dropping one clause belonging to a kernel of C is enough to break the kernel, i.e.
to suppress it from the set of kernels of C.
DEFINITION 2
The inconsistent part of C, noted ∪MIN-UNSAT(C), is the set-theoretic union
of all kernels of C.
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The dual concept is thus the notion of maximal consistent subset of C; com-
puting one of them is the target of the MAXSAT optimization problem. Let
us redefine this notion when a preference pre-ordering applies on clauses of C,
which is often the case in many artificial intelligence applications. Accordingly,
this gives rise to an extended form of MAXSAT that accommodates a preference
relation between clauses.

Assume thus that the m clauses in C are partitioned inside n strata S1 ∪ . . .∪
Sn. For simplicity of presentation, we assume that the m clauses are numbered in
a way that follows the strata, i.e. when ci ∈ Sk, cj ∈ Sr and k > r, then i > j.
When ci ∈ Sk and cj ∈ Sr such that k > r that means that cj is preferred over ci,
i.e. if we must choose to drop one of the two clauses to get a maximal consistent
subset then we drop ci. Accordingly, the strata translate a preference complete
pre-ordering on the clauses of C. Let A = A1 ∪ . . . An and B = B1∪ . . . ∪ Bn be
two consistent subsets of C, where Ai = A ∩ Si and Bi = B ∩ Si.

DEFINITION 3 (Benferhat et al.)[1]
A <<{S1∪...∪Sn} B iff ∃i s.t. Ai ⊂ Bi and ∀j < i, Aj = Bj. A consistent
subset of C that is maximal w.r.t. <<{S1∪...∪Sn} is called a preferred maximal
consistent subset of C (w.r.t. S1 ∪ . . . ∪ Sn).

In some artificial intelligence problems, like model-based diagnosis [18,8], a
single kernel assumption is often assumed. In this respect, the following defini-
tion will prove useful.

DEFINITION 4
The set of highest cancelable clauses of C, noted ∪MIN-UNSAT(C)highest is the
set of clauses that are maximal according to the complete pre-ordering < between
clauses in ∪MIN-UNSAT(C).

Under the single kernel assumption, dropping one element of ∪MIN-UN-
SAT(C)highest delivers a preferred maximal consistent subset of C. Computing
one element of ∪MIN-UNSAT(C)highest is however computationally heavy in the
worst case; it is easy to show that it is polynomial under a number of calls to
an NP-oracle that is logarithmic with respect to the number of strata (which, in
the worst case, is the number of clauses of C).

PROPOSITION 1
When the single kernel assumption applies, computing a preferred maximal con-
sistent subset of C belongs to PNP [O(log n)], where n is the total number of strata.

However, when Heuristics 1 and 2 apply, this task can be achieved more
efficiently for most sets of clauses, reducing the logarithmic number of calls to
an NP-oracle to only 4 calls to a fast satisfiability check very often.

PROPOSITION 2
When both the single kernel assumption and Heuristics 1 and 2 apply, computing
a preferred maximal consistent subset of C is polynomial under 4 calls to an NP-
oracle.
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The algorithm is given in the [6]. The main idea is the following. A local
search algorithm is run on C. If it fails to prove the consistency of C after a
preset computing time, a complete DP-based search is performed. When C is
inconsistent, the trace of the search delivers a list L of clauses c that are sorted
in decreasing order w.r.t. the number of times they have been falsified during the
search. L is re-organized in such a way that a clause that belongs to the most
often falsified ones and that exhibits the highest stratum among these latter ones
appears first. Under the single kernel assumption, the first clause c in the list L
belongs to ∪MIN-UNSAT(C)highest, most probably. Accordingly, we check the
consistency of C\{c} and retract c from L. If this leads to consistency, we just
need one more consistency check to make sure that no preferable clause would
lead to consistency when dropped. If this fails, we try the next elements of L,
successively.

In table 3, some typical experimental results are given. Large benchmarks
were built, merging several DIMACS benchmarks [5] (sharing a same set of
variables). A total order between clauses are assumed. Table 3 gives the initial
DIMACS instances that were merged, the size of the final instances, the clauses
to be dropped to obtain a maximal consistant preferred subset, and the global
computing time.

Table 3. Maximal consistant preferred sub-base

Instances
Size

#Cla.
tested

Time to

Var. Cla.
compute

find c
prove it gives a

the trace preferred sub-base
ssa7552-160+dubois10 1391 3206 41 88s62 52s35 4s13
ssa7552-094+pret150-60 1473 3842 400 89s77 869s14 2s68
ssa7552-156+aim-50-2 0-no-2 1444 3382 100 93s76 139s87 1s20

When we cannot assume that the single kernel assumption applies, then the
problem becomes even harder.

PROPOSITION 3
Computing one preferred maximal consistent subset of C belongs to PNP [O(m)],
where m is the total number of clauses in C.

In [6], a basic algorithm that computes an approximate preferred maximal
consistent subset of C is given. Once again, it makes use of the failed local search
intensively. It delivers a right set of clauses under the condition that Heuristic 1
allows us to extract a superset of ∪MIN-UNSAT(C), which is often the case.

PROPOSITION 4
When the trace of the local search allows us to extract a superset of ∪MIN-
UNSAT(C) as the part of 1L that is interpreted as containing the most often
falsified clauses, then Procedure 1 in [6] computes a preferred maximal consistent
subset of C.
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In most realistic situations, the number of kernels is bounded by a small
constant k. In this case, the computation of a preferred maximal consistent
subset of C can be reduced dramatically when the trace of the local search that
runs on C allows us to extract a superset of ∪MIN-UNSAT(C).

PROPOSITION 5
When the trace of the local search allows us to extract a superset of ∪MIN-
UNSAT(C) and when the number of kernels of C is bounded by k, then computing
one preferred maximal consistent subset of C is polynomial under k calls to a NP-
oracle.

4 Computing Preferred Models of Sets of Clauses

Let us now turn our attention to another hard optimization problem. Let us
illustrate it by means of an artificial intelligence application. The knowledge
about a physical device is represented using a finite set C of Boolean clauses. To
represent possible faulty behaviors of the device, a pre-ordered set (AB, <) of
specific Boolean variables Abi [16] is used. For instance, the rule asserting that,
under normal circumstances, when the switch is on then the lights should be on
is represented by the formula switch on∧¬Ab37 ⇒ lights on, and in clausal form
by ¬switch on ∨ Ab37 ∨ lights on (where ∧, ∨, ¬, ⇒ represent the standard
conjunctive, disjunctive, negation and material implication connectives, respec-
tively). If at the same time we also have that both switch on and ¬lights on
are true, then Ab37 must also be true in order for the whole set of formulas to
remain consistent. In the normal circumstances of affairs, all markers can be
assumed false while the system remains consistent. When the system requires
some markers to be true in order to be consistent, then these latter markers
indicate one possible failure.

Let us recall that a model is a truth assignment that satisfies all clauses from
C. A model is represented by the set of Boolean variables that it sets to true.
Here, we are interested in finding a model of C where no marker Abi from AB
is true. If such a model does not exist, then we want to provide the user with
the marker with the lowest index that must be true in order for the system to
be consistent. The motivation is that we want to inform the user of the most
important failure, which are supposed to be represented by markers Abi with
lowest possible index i. This specific form of model-based reasoning is used to
solve the Christmas Tree Syndrome (as it is called by airforce pilots when many
alarms flash at the same time due to a single source problem, which is often vital
to localize quickly). Such a problem is described in e.g. [7].

In the following, C is assumed consistent. Let M1, M2 and M3 be models of
C.
DEFINITION 5
M1 is a preferred model of C iff
1. M1 does not contain any Abi

2. or M1 contains at least one Abi and, at the same time,
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– there does not exist a model M2 of C that does not contain any Abj ;
– there does not exist a model M3 of C containing an Abj such that Abj <

Abi for all Abi in M1.

Computing one such preferred model is an heavy task in the general case.

PROPOSITION 6
Computing one preferred model of C is in PNP [O(log m)], where m is the total
number of strata in AB.

Fortunately, the technique that is proposed in this paper allows us to find a
preferred model (and thus one most important failure) using a small constant
number (often 3) calls to a fast propositional satisfiability prover (very often). It
works as follows. First, we try to prove the absence of device failure by assigning
all markers to false and showing that C remains consistent under these circum-
stances. To this end, a combination of a local search technique with a complete
DP algorithm is used. More precisely, if the local search technique delivers a
model, then this proves the absence of failure. Else, a complete DP technique
is run (possibly focusing on the trace delivered by the previous call to the local
search algorithm). If a model is found, no failure is exhibited. Else, the algorithm
takes the trace delivered by the local search into account. In order to be con-
sistent, at least one marker should be true. In this respect, the following result
proves essential.

PROPOSITION 7
Let D be any superset of ∪MIN-UNSAT(C∪{¬Abi}(∀Abi∈AB)). Any model of C
contains at least one marker occurring in D.

Accordingly, if the heuristic about the trace is correct, then it indicates by
means of the score of the clauses to which they belong, which markers should
be true to get a model of C. Fortunately, this heuristic is experimentally correct
extremely often for realistic sets of clauses representing physical devices.

HEURISTIC 3
The trace of the failed (local) search of a model of C∪{¬Abi}(∀Abi∈AB) is a good
oracle of the markers that are required to be true in order for C to be consistent.

The idea is thus to select the marker with the lowest index in the clauses with
the highest scores and set it to true. Assume it is Abi: if this leads to a model, it
remains to check that no model containing a marker with a strictly lower index
exists. This can be checked by testing the consistency of C∪{¬Abi} ∪ {Ab1 ∨
Ab2 ∨ . . . Abr}, where the last clause is formed from all markers Abk such that
Abk < Abi. If this leads to a model (low probability), then the process is iterated
with the marker true with the lowest index in this last clause. If no model can
be found, then Abi is the most important failure to be reported to the user.

Obviously enough, this process might lead all markers to be considered suc-
cessively and yield a PNP [O(log m)] complexity where n is the number of markers
(although a dichotomy-based approach could reduce it to the logarithmic result
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of Proposition 6). Fortunately, applying the heuristic often leads us to the result
immediately.

In Table 4, typical experimental results are given for ISCAS [10] benchmarks,
translated into the DIMACS format [5]. The time to compute a preferred model
in case of device failure, and the total number of candidates Abi that had to be
considered are given.

Table 4. ISCAS problems

Instances
Size #Abi Time to obtain

Var. Cla. Abi tested trace pref. model
c17 29 73 6 2 0s00 0s02
c432 692 1903 160 5 0s02 1s61
c1355 2165 5293 514 0 0s00 0s12
c1908 3129 7880 718 3 1s00 16s75
c2670 4499 11200 997 3 1s05 27s48
c3540 6104 15720 1446 3 3s02 66s51
c5315 8865 23201 1994 2 6s06 76s91

5 Conclusion

In this paper, it has been shown how the computation of a local search that failed
to solve a SAT instance can prove useful in allowing harder symbolic reasoning
problems to be solved more efficiently. We believe that similar results could be
obtained with respect to other decision and optimization problems.

Obviously enough, the price to pay is the restricted applicability of the ap-
proach. In particular Heuristic 2 does not work well for large random instances at
the transition phase, where really hard problems are often thought to be found.
On the other hand, the heuristics that are used in this paper appear to work
very often for realistic real-world problem instances.
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Abstract.   This paper proposes a domain independent heuristic for re-
gression planners, which is based on action evaluation. The heuristic
obtains estimates for the cost of applying each action of the domain by
performing a forward search in a relaxed version of the initial problem.
The estimates for the actions are then utilized in a backward search on
the original problem. The heuristic, which has been further refined by a
fact ordering and several domain-analysis techniques, has been
implemented in AcE (Action Evaluation), a regression, heuristic
planner. AcE has been thoroughly tested on a variety of planning
problems, from the AIPS competitions with quite promising results.

1 Introduction
State space planning is the simplest form of planning and has been an active research
area for many years. However, a large part of the AI researchers in Planning,
abandoned it and focused on other areas, since they regarded it to be non promising.
This was totally justifiable, since even with the heuristics that were available at that
time the search in the space of states was combinatorial explosive. However, 6-7
years ago, McDermott with his work on UNPOP and later Geffner with ASP/HSP,
urged a large part of the planning community to re-consider state space planning.
They showed that with the appropriate heuristics, state space planning can be very
efficient.

In this paper we propose a different approach in state-space, heuristic planning,
which is based on estimated distances between the domain’s actions, rather than facts,
and the goals. Basing the estimates on actions rather than facts, enables the heuristic
to keep better track of the various interactions between the facts, and therefore
produce better estimates. The proposed heuristic is embodied in a regression planner
employing a weighted A* search strategy, which is thoroughly tested on a large
variety of problems, adopted from the last AIPS-00 planning competition. The
efficiency of the new planner, called AcE, is assessed through comparative tests with
5 of the most efficient planners in this category.

The rest of the paper is organized as follows: Section 2 presents an overview of the
research in the area of heuristic planning. Section 3 describes the heuristic of AcE
among with an extension based on fact ordering. Section 4 addresses certain
implementation issues and section 5 presents experimental results of Ace and most of
the state-of-the-art planners presented over the last years. Finally section 6 concludes
the paper and poses future directions.
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2 Related Work
Two of the most promising trends in domain-independent planning were presented
over the last few years.

The first one consists of the transformation of the classical search in the space of
states to other kinds of problems, which can be solved more easily. Examples of this
category are the SATPLAN [6] and BLACKBOX [14] planning system, the
evolutionary GRAPHPLAN [1] and certain extensions of GRAPHPLAN as the
famous STAN [9] planner.

SATPLAN and BLACKBOX transform the planning problem into a satisfiability
problem, which consists of a number of boolean variables and certain clauses between
these variables. The goal of the problem is to assign values to the variables in such a
way that establishes all of the clauses.

GRAPHPLAN on the other hand creates a concrete structure, called the planning
graph, where the nodes correspond to facts of the domain and edges to actions that
either achieve or delete these facts. Then the planner searches for solutions in the
planning graph. GRAPHPLAN has the ability to produce parallel plans, where the
number of steps is guaranteed to be minimum.

Fox and Long developed STAN, a powerful planning system, extending
GRAPHPLAN with State Analysis techniques. Apart from the State Analysis
techniques, the efficiency of STAN is due to the construction of the planning graph in
STAN, which is done very efficiently through bit-wise operators on vectors of bits. In
its latest version, called Hybrid STAN [4], the system is cable of identifying specific
sub-problems (e.g. TSP sub-problems) from the definition of the original problem.
The planner then uses specialized techniques to tackle each of the sub-problems
separately.

The second category is based on a relatively simple idea where a general domain
independent heuristic function is embodied in a heuristic search algorithm such as
Hill Climbing, Best-First Search or A*. A detailed survey of search algorithms can be
found in [8]. Examples of planning systems in this category are UNPOP [10], the
ASP/HSP family [2,3], GRT [12,13], AltAlt [11], FF [5], which was awarded for
outstanding performance in the last AIPS-00 planning competition and BP [15].

The planners of the latter category rely on the same idea to construct their heuristic
function. They relax the planning problem by ignoring the delete lists of the domain
operators and starting either from the Initial State or the Goals they construct a
leveled graph of facts, noting for every fact f the level at which it was achieved L(f).
In order to evaluate a state S, the heuristic function takes into account the values of
L(f) for each f ∈  S.

3 Evaluating Actions
Most of the state-of-the-art planners in this category, such as GRT, HSP/ASP, HSPr
and AltAlt, note for every fact of the domain its estimated distance from the goals (or
from the initial state) and then use these values in order to evaluate a whole state
(usually by summing up the values of the included facts).
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Their main inefficiency sources from the facts that they consider the facts of the
domain to be completely independent and the cost of achieving a set of facts is equal
to the sum of the costs of achieving each one of them separately. However, this is
rarely the case since in the attempt to achieve a certain fact many other facts are also
achieved in the way.

GRT partially deals with this problem with the introduction of related facts. Two
facts p and q are related with each other if:

a) The action that achieved p, during the construction of the heuristic, also
achieves q or the opposite.

b) q is already noted as related with one of the preconditions of the action
achieving  p.

Although, the related facts are able to track only a small subset of the interactions
between the facts of the domain, they manage to refine the heuristic of GRT and they
prove to be useful in many domains.

FF, adopts a different strategy for keeping track of the possible interactions
between the facts of the domain. In order to construct its heuristic, FF builds a graph
similar to that of GRAPHPLAN and uses this graph to extract a relaxed partially
ordered relaxed plan, the size of which is the estimated distance between the current
state and the goals. From the way in which the relaxed plan is constructed FF is able
to discover a large portion of the interactions. However, the fact that FF has to search
in both directions in order to construct its heuristic, enforces it to reconstruct it at each
state (or at least in a large number of states) during the actual search.

This paper proposes a different approach in the construction of the heuristic
function, based on action evaluation, which is able to keep track of the great majority
of interactions between the domain’s facts and yet needs to be constructed only once
at the beginning.

The heuristic of AcE is constructed in the forward direction, starting from the
initial state and proceeds towards the goals, calculating the distances between the
initial state and all the actions of the domain (or at least all the actions that can be
achieved from the initial state). The distance, noted as dist, for a given action A is
calculated by the following rules:

( ( ))

1, ( )
( )

1 ( ), ( )
X MPS prec A

if prec A I
dist A

dist X if prec A I
∈

   ⊆=  +   ⊄ ∑
where MPS(S) is a function returning the set of actions {Ap} achieving all the facts of
S with the minimum accumulated cost of dist(Ap). Note that MPS never returns
actions with undefined dist.

In order to find the minimum set of actions achieving a specific state, MPS(S) has
to calculate all the possible combinations of actions achieving S, and this process is
combinatorial explosive. In AcE, MPS(S) is approximated using a greedy algorithm,
which is outlined in figure 1.
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Function MPS(S)
Input: a set of facts S
Output: a set of actions achieving S with near minimum
accumulated dist
Set G = ∅
S S S I= − ∩
Repeat

f is the first fact in S
Let act(f) be the set of actions achieving f
for each action A in act(f) do

val(A)=dist(A) / | ( )add A S∩ |

Let A’ be an action in act(f) that minimizes val
Set ’G G A= ∪

Set S = S - ( ’)add A S∩
Until S = ∅
Return G

Fig. 1.  MPS Function

In the worst case, each action A’ selected by MPS will only achieve one fact of S
and therefore the complexity of MPS will be |S|*N, where N is the number of the
domain’s actions. Since |S|<<N the order of the complexity is O(N2).

In the average case, the actions achieving a fact f are a small subset of the domain’s
actions and the size of the subset is N/K, where K is comparable to |S| for each state S
of the domain. Therefore the complexity of MPS is |S|*N/K, which is in the order of
O(N).

We will illustrate the heuristic function of AcE with a concrete example of the
Blocks-world domain. Suppose that the initial state of the problem is the one shown in
figure 2.

Fig. 2. Example of the Blocks wordl

The actions that can be applied to the initial state of the problem in figure 2 are: put-
down(C) and stack(C,A) and therefore: dist(put-down(C))=1  and dist(stack(C,A))=1.
In order to calculate dist(un_stack(A,B)) we need MPS(prec(un_stack(A,B)):
S= {handempty,on(A,B),clear(A)}
S S S I= − ∩ = {handempty}
f=handempty
act(f) = {put_down(C), stack(C,A)}, note here that all the other actions achieving f
have undefined dist, so they are not taking into account.
A’ = put_down(C) both actions in act(f) have the same val, so one of them is
arbitrarily selected.
G = {put_down(C)}
S = ∅

A

B

C
ontable(B)
holding(C)
on(A,B)
clear(A)
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MPS({handempty,on(A,B),clear(A)})={put_down(C)} and dist(un_stack(A,B))= 1+
dist(put_down(C)) =1+1 = 2.

Similarly the algorithm proceeds with the rest of the domain’s actions. When
distances have been assigned to all the domain’s actions, AcE starts searching the
state-space starting from the goals. During the search, the estimated distances of the
actions are used to evaluate all the intermediate states.

In order to calculate the heuristic value a given state S1 (h(S1)), AcE uses MPS(S1)
to find the near minimum set of actions achieving the facts of S1 and then sums up the
distances of the actions in MPS(S1). This can be seen as the process of evaluating an
action AS1 for which: prec(AS1) = S1.

For example, in order to evaluate state Sa of figure 3, we calculate MPS(Sa):
S= {ontable(B),ontable(C),holding(A),clear(B),clear(C)}
S S S I= − ∩ ={ontable(C),holding(A),clear(B),clear(C)}
f=ontable(C)
act(f)={put_down(C)}
A’ = put_down(C)
G={put_down(C)}
S={ holding(A),clear(B)}
f=holding(A)
act(f)={pick-up(A),unstack(A,B),unstack(A,C)}
A’=unstuck(A,B)
G={put_down(C), unstuck(A,B)}
S = ∅
MPS(Sa)={put_down(C), unstuck(A,B)} and
h(S1)=dist(put_down(C)) + dist(unstuck(A,B)) = 1 + 2 =3

Similarly, h(Sb) for Sb={ontable(A), ontable(C), holding(B), clear(A), clear(C)} is equal to
dist(put_down(C)) + dist(put_down(A)) + dist(pick_up(B)) =  1 + 3 + 4 = 8

It is clear from the above examples that the heuristic of AcE still produces
overestimates. This can be overcome by keeping track of the MPS for all the
domain’s actions, apart from the distances, and taking also into account part of the
delete lists. It remains in our direct future plans to investigate this type of heuristic
refinement. However, the heuristic as it is behaves satisfactory and it generally
succeeds in guiding the search to the most promising states.

3.1. Ordering the Facts of the Initial State

Goal ordering for planning has been an active research topic over the last years and a
number of techniques have been successfully adopted by state-of-the-art planning
systems [7]. AcE adopts a variation of Goal ordering, which is suitable for regression
planners and is very fast to compute. This technique was also adopted by BP[15],
offering a significant speedup in its approach. The technique is based on mutual
exclusions between facts of the domain. Since the planner calculates the set of binary
mutual exclusions, in order to use them for the regression phase, the overhead
imposed by the calculation of reasonable orderings is negligible. Function OB-R
(Ordered Before for Regression), which is outlined in Figure 4, is iteratively ran on
every pair of facts in the initial state in order to identify the possible orderings.

CB

A
ontable(B)
ontable(C)
holding(A)
clear(B)
clear(C)

Fig. 3. State Sa
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Function OB-R
Input: Initial facts a and b
Output: True (a should be ordered before b) or False (a
should not be ordered before b)
For each action O: a∈ del(O)

Result =true
For each fact f: f∈ (prec(O)-del(O) ∪ add(O))

If mx(a,f)=true
Result=false

If result = true return false
Return true

Fig. 4. The OB-R Function

The orderings extracted by OB-R are used in the planning phase, in order to refine
the results of the heuristic function. More specifically, after the evaluation of a state S
by the heuristic function, AcE searches state S for possible violations of the orderings.
Fact f of a state S is violating an ordering if:

 f∈ I and ∃  fact g: g∉ S and OB-R(g,f)=true
For every ordering violation in state S, the estimated distance between S and the

Goals is increased by a constant number (10 at the current implementation), since at a
later point the ordering breaches will have to destroyed and re-achieved after the
correct ordering has been reinstated.

4 Implementation Issues
This section discusses certain implementation issues of the AcE planning system,
concerning the adopted search strategy and the internal representation of the
important information. It also addresses certain problems that arise during the
application of the planner in specific domains and presents two techniques for
enriching and simplifying the problems definitions that deal with the above problems.

4.1. Search Strategy

AcE employs a weighted A* search strategy which starts from the goals of the
problem and moves backwards until it reaches the initial state. A state S in weighted
A* is evaluated using the following formula:

e(S) = w*h(S) + d(S),
where h(S) is the value of the heuristic function for state S, d(S) is the number of steps
that were performed to reach S and w is a constant real number between 0 and 1.

Ace has a closed list, which is index by a hash table, in which it keeps all the
already expanded states, in order to avoid revisiting them in the future.

The states that have not yet been expanded are kept in an agenda, the size of which
is limited to a constant number N. If the size of the agenda grows larger than N at
some point during search, only the N best states (according to the heuristic function)
will remain in the agenda, while the rest will be pruned.

By pruning states from the agenda, AcE risks its completeness (i.e. the pruned
states may be leading to a solution), but this is a necessary concession since otherwise
the memory requirements may grow outside the available resources.
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4.2. Representation

After the parsing of the input files (domain file and problem file) and in order to
speed up the planning process, AcE creates all the (grounded) facts of the domain and
the (grounded) actions that can be achieved from the initial state of the problem.
These facts and actions are stored in tables and AcE assigns to each fact and actions a
unique integer number, Based on these numbers Ace makes all the necessary links
between facts and actions. For example, for each fact f it creates four lists of actions
containing:

a) The actions that have f in their preconditions
b) The actions that have f in their add-effects
c) The actions that have f in their delete lists
d) The actions that have f in their preconditions and not in their delete lists.
These integers and the appropriate lists are then utilized during the search. A state

is represented as a one-dimensional table of integers and in order to find the actions
that are applicable to a state S, AcE performs a limited search in the appropriate lists
of actions of the facts in S.

5 Experimental Results
In order to evaluate the efficiency of AcE we compared it, on a large variety of
problems used in the two AIPS planning competitions, with three state-of-the-art
planning systems. These are: FF, GRT and HSPr. Figures 5-12 present experimental
results from the blocks-world, the Logistics, the Mic-10 and the Gripper domain
respectively.

The platform used for the results is a SUN ULTRA ENTERPRISE 450 Unix server
with 2 GB of shared memory and 4 processors running at 400 MHz. The underlying
operating system is SUN Solaris 2.8. For each experiment we limited the available
cpu time to 120 seconds.

5.1. Blocks

FF managed to solve a few more problems than the other three contestants and except
for a few problems it was quite faster, taking less than 0.1 sec for most of the
problems. AcE had a quite uniform performance in most of the problems, taking
much less time than HSPr and GRT. Concerning plan length AcE and FF behaved
equally producing shorter plans than HSPr and especially GRT.
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Fig. 5. Execution time for Blocks-world problems
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Fig. 6. Plan lengths for Blocks-world problems

5.2. Logistics

FF was also faster in the Logistics domain, but AcE was very close to it concerning
execution time. GRT and HSPr did not scale up effectively to the hard instances of
Logistics, taking much more time than FF and AcE. Concerning plan length, FF and
GRT produced a little bit smaller plans than AcE and HSPr.
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Fig. 7. Execution time for Logistics problems
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Fig. 8. Plan lengths for Logistics problems

5.3. Mic-10

In MIC-10 the situation concerning execution time was quite similar to that of the
Logistics domain. FF and AcE took less than a second to solve almost every problem,
with a few exceptions by the latter. The plans created by all planners were of similar
quality, with HSPr producing a little larger plans.
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Fig. 9. Execution time for MIC-10 problems
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Fig. 10. Plan length for MIC-10 problems

5.4. Gripper

AcE was quite faster than the other contestants in the Gripper domain. It took less
than a second to solve all the problems. GRT and FF behaved almost similarly and
HSPr took much more time to solve the hard instances. However, HSPr produced the
shortest plans, which however were quite close to those produced by AcE and GRT.
GRT and AcE produced plans of exactly the same length for each of the problem. FF
did not behave well in the Gripper domain, producing the lengthiest plans in all
instances and it was lower than AcE and GRT.
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Fig. 11.  Execution time for Gripper problems
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Fig. 12. Plan length for Gripper problems

6 Conclusion and Future W ork
This paper presented a different approach to domain-independent heuristic planning.
The proposed heuristic is not based on distances between independent facts and the
goals, but on distances between actions and the goals. This enables the heuristic to
keep track of more interactions and yet remain simple enough to be executed with
little computational cost.

The proposed heuristic has been embodied in a weighted A* regression planner,
called AcE, and the planner has been tested on a variety of toy problems and
compared with state-of-the-art planning systems. The results are quite promising,
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since they show that AcE is at least a fair match the planners excelling in the planning
competitions.

It is in our direct future planners to investigate ways of further refining the
heuristic. One possible way of doing this is by keeping track of more information for
every action, than just its estimated distance, and taking also into account part of the
information provided by the delete lists of the actions. Furthermore, we plan to extend
AcE to handle many of the new features in PDDL 2.1, such as time and resources.

Acknowledgements. This project has been partially supported by SUN Micro-
systems, grant number EDUD-7832-010326-GR.
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Abstract. In this paper we introduce WHAT, an intelligent tutor for
learning the functional programming language Haskell. WHAT adapts
its behavior not only individually for each student but also by consider-
ing the performance of similar students. The core of its adaptive part is
based on the classification of students into classes (groups of students
sharing some attributes). By doing that, the behavior of past students
of the same class determines how WHAT interacts, in the future, with
students of that class. That is, WHAT learns how to deal with each
type of student. Besides, the general model of each class is instan-
tiated for each student in order to better fit the particular learning needs.

Keywords: Intelligent Tutors, Education, e-learning.

1 Introduction

During the last years, and due to the wide implantation of the WWW, there has
been a proliferation of web-based courses. The first systems were quite rudimen-
tary and rather rigid, that is, they were mainly based on a fix set of questions;
usually, multiple-choice questions. In particular, it was rather difficult to eval-
uate the profit gained by the users of the course. The situation changed in the
moment that artificial intelligence techniques appeared in the development of
this kind of systems. Good examples of these new generation tutoring systems
are [3,1,12,6] among many others. Besides, by using adaptive hypermedia tech-
niques (e.g. [2,5,13]) when developing intelligent tutors, we get a system that is
automatically adapted according to the responses of students (e.g. [11]).
In this paper we present WHAT:Web-based Haskell Adaptive Tutor. In short,

WHAT represents a system which can be used by students as a complement
to the classroom learning of the functional programming language Haskell [9].
During the last years, in order to introduce programming to first-year students
of Mathematics, different languages (actually, Pascal, Haskell, and Java) have
been used in our department. Unfortunately, no common agreement has been
reached and the question of which language is more suitable for Mathemat-
ics students is still open. The main reason for developing a Haskell tutor, and
not a Java or a Pascal one, is that the existing environments for Haskell are
not friendly. Most Haskell compilers/interpreters only allow the user to inter-
act with a text-based interface and only a programming environment (winhugs
� Work partially supported by the CICYT project TIC2000-0701-C02-01.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 71–80, 2002.
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at http://www.haskell.org/hugs) provides a simple graphical interface. Thus,
one of the main disadvantages of using Haskell to teach first-year students is that
they do not feel comfortable with the environment: Even though the language
could be a good choice, the environments are certainly not. Therefore, in order
to fairly compare the difficulties the students have to deal with each language,
a better interface is needed for Haskell.
Next we briefly sketch the main characteristics of WHAT. First, WHAT

combines individual profiles for each student with general profiles for each class
of students (the class mechanism is explained in Section 3). By doing so, WHAT
is able to adapt its behavior with respect to a student not only individually, on
the basis of her1 previous fails and successes, but also by taking into account the
performance of the rest of students (current as well as former students). That
is, the system learns how to interact with a student by adapting the general
profile of her class(es) to her necessities. However, the progress of the users while
experimenting with the system is individually controlled. WHAT keeps profiles
for each student where all the relevant information (from her previous sessions) is
recorded. In particular, the system points to the next topic that the user should
explore once she has reached a certain command in the current topic. Another
important feature of WHAT is given by its skill to (automatically) generate new
problems. Exercises are randomly created according to the knowledge that the
student has obtained so far.
We think that WHAT may increase the success rate of students in two ways.

On the one hand, students can regularly check their progress by self-evaluation.
On the other hand, teachers can find out which parts of the course are more
difficult for the students (WHAT provides the teacher with a private interface
that allows her to access to information about students performance). In the
presentation of WHAT we have tried to avoid Haskell details, so that the main
ideas (how WHAT has been developed) can be followed even if the reader is
not an expert in functional programming. The rest of the paper is organized as
follows. In Section 2 we describe the behavior of WHAT from a user point of
view. In Section 3 we explain the adaptive behavior of our tutor. We concentrate
on the class mechanism underlying WHAT. In Section 4 we present some im-
plementation details. Finally, in Section 5 we present our conclusions and some
lines for future work.

2 An Overview of WHAT

In this section we explain the main functionalities of our adaptive tutor. Techni-
calities about the implementation are presented in the next sections. The main
aim of our web-based system is to provide students with an easy-to-use tool
where they can practice the knowledge previously gained in the classroom. So,
students will be able to check whether they have fully assimilated the concepts
they were supposed to. Even though we have designed our system to help stu-
dents having another (main) source of learning (i.e. a teacher) the current system

1 During the rest of the paper we suppose a generic female student.
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Fig. 1. Help page in WHAT.

could be used as a completely independent tutor. Actually, all the concepts cov-
ered by the course are already documented by means of a friendly navigation
interface (see Figure 1). Topics can be accessed in three different ways: By using
an index of topics (left frame), by incremental searches (center frame), or by an
alphabetic list of keywords (right frame).
In order to ensure a personalize treatment, students access the system

through a login page. This allows the system to recover the data from previous
sessions. At the beginning of the course, students are provided with a password.
They log in by giving their ID-number and password. This mechanism tries to
avoid attacks to previous sessions of students. For example, an attacker could
ask the system for previous exercises and provide wrong answers. Then, when
the real student logs in, she will find out that the system thinks that she did not
understand the concepts covered in previous sessions.
Once a student has been recognized by the system, a new session starts. The

initial page allows the student to choose among three different types of problems:

– Evaluation of expressions.
– Typing functions.
– Solving programming assignments.

Let us remark that these three parts are not taught sequentially, but in parallel.
For example, students will be able to define a function adding or multiplying
two numbers before they are able to type/evaluate an expression as

foldr (&&) True (zipWith (==) "hello" [’h’,’e’,’l’,’l’,’o’])

As it is widely recognized, any intelligent tutoring system should have a good
underlying curriculum model (see for example [7]). In order to avoid incoher-
ences, the curriculum model should be carefully organized according to some
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rules (see [4]). We have designed our system taking into account the following
considerations. At each moment, the student will be able to choose which cat-
egory of exercises she would like to practice. After reaching a certain level in a
type of problems, WHAT suggests the student to solve exercises from a different
type. However, the student may continue practicing exercises from the same cat-
egory. In this case, the curricular dependencies restrict the level she can reach in
this category. Even though the student can choose freely the type of exercises,
the difficulty of them will be constrained by two main factors:

– It will increase according to the level that the student has reached in previous
sessions.

– A student will not be allowed to practice topics which have not been covered
yet in the classroom, even if she has correctly learnt all of the previous topics.

These two restrictions are strongly related to the curriculum theory underlying
our system. Let us remark that even though the first restriction is applied, the
system will sometimes ask for exercises which the student is supposed to know
already (according to her previous sessions). We pretend to control that students
do not forget topics that were covered at the beginning of the course. By using
the second restriction we try to avoid that students simply guess the answers
to questions that have not been already taught. There is an exception to this
constraint. If a student took the course in previous years but she did not pass
it, then she will have access to any topic. Let us remark that, even in this case,
the first limitation will be applied. Nevertheless, this second restriction could
be easily removed in order to allow good students (that is, the ones having an
acceptable rate of right answers) to speed up their learning. In this case, the
help system (that covers all the course) can (somehow) substitute the teacher.
Finally, WHAT includes an extra option: Review. The students will be able to

use this possibility to review the lessons learnt so far. So, they will be confronted
with assignments similar to those that have been already covered by them in
previous sessions. This option can be very interesting (from a student point of
view) when the exam is approaching.
Now we will briefly sketch what the student will find in each part of the

course. Firstly, in order to gently introduce the language, the capabilities of the
programming language will be restricted to the power of a complex calculator.
Thus, the first exercises will be only devoted to handle simple numerical op-
erations. So, students will get familiar with the syntax of the language. The
difficulty will start increasing, taking into account the precedence of operators,
asking for the answer to questions like

4-5+7*3-2

Both integer and real numbers will be used, but considering the type of opera-
tions that can be used with each of them. After dealing with numerical values,
other simple types like characters and booleans will be used. Then tuples will be
introduced. At this point, the student is able to start working with lists. First,
strings of characters will be considered, as they are more intuitive. Then, they
will be generalized to deal with lists of any type.
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Regarding the definition of functions, at the beginning only very easy op-
erations will be considered (e.g. adding two numbers). By doing so, we expect
the students to avoid the usual mistakes of a beginner when declaring functions.
Then, the system will concentrate on recursive programming. A next step is given
by introducing simple higher order functions like map, filter, and zipWith. Fi-
nally, the student will be able to define her own higher order functions.

2.1 Wrong Answers and Hints

A very important part of any tutoring system is the feedback that the user
receives. While designing our system, we have been specially careful at this
point. Let us consider what our system returns after a question is answered. If
the student provides the right answer then the system returns a congratulations
message. The difficulties start when managing wrong answers. The easy solution
consists in notifying that the answer was wrong and provide the right answer. We
consider that this is not a good practice. In the best scenario, the student will try
to understand what she was doing wrong by pattern matching. We have preferred
to return a suggestion about what the student should do (indicating what the
error was) instead of giving the right answer. We have also paid special attention
to avoid cheating. As it is pointed out for example in [10], some students tend
to learn how to cheat the system instead of learning the current contents. We do
not claim that our system is totally fool-proof (actually, we do not think so!) but
we have tried to detect some funny answers. For instance, if we ask for the value
of 3+4 a student may answer 5+2 (non so trivial examples include the application
of higher order functions in an unexpected way). Actually, this is a right answer,
but it is not what it is expected. If WHAT detects such a right answer, it will
indicate that it is correct but it will ask for the most correct answer. Finally, even
though the management of answers has been a specially hard part to develop,
we think that the effort has been worth. Firstly, students will see their mistakes
and try to correct them. Secondly, they will be soon convinced (we hope) that
it is senseless to spend time trying to fool the system.
Students will be also allowed to ask for hints. The type of hints, that the

system provides, depends on the number of hints the student has already asked
for in the current exercise. For instance, if the student has provided a wrong
answer, a first hint will only provide a message saying which type of error it
was, that is, whether it was a syntactic error, a type error, or a semantic error.
Afterwards, in case the student needs more hints, the error will be explained
more precisely. Finally, if a student is not able to provide the right answer, she
can press the give up button and the answer will be presented. In our system,
the student may ask for a hint, give a wrong answer, fail again, etcetera.

3 Adaptive Behavior of the System

The main advantage of using an intelligent tutor with adaptive capabilities is
that it can be automatically adapted to the students. WHAT can adapt its
behavior not only on the basis of the fails and successes of the current student,
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but also on the experiences of the rest of students. Thus, there will be a module
of the implementation dealing with the class adaptive part, while a different
module will be responsible of the user adaptive part.
The Class Adaptive Module (CAM) gathers statistics about the interaction

of the users with WHAT. The ID number of users will not be relevant, but only
the class(es) of the student. This module manages a fix set of classes, that is,
it does not generate new classes. For example, CAM will distinguish between
students who were taking the course in previous years and fresh students. By
doing so, the system will learn how to interact with the typical student of each
class, creating different models for different classes. For instance, students with
previous knowledge of an imperative language will not need many questions
about evaluating simple numerical expressions, while the rest of students will
need to work harder on this issue.
It is important to note that a student may be located in more than a single

class. For example, a student can take the course for the second year and, in
addition, she can also know an imperative programming language. In such cases,
it seems that the fails and successes of the student should be taken into account
in both of her classes. However, this would be an erroneous solution, as this
student is not a good representative of any of them. The correct solution is to
use a new class for the intersection of both classes. Note that there is no risk of
class explosion, as the set of primitive classes is quite small.
The previous classes are static, that is, a student is located in a class(es) at

the beginning of the course and these attributes do not change during the aca-
demic year. In addition to static classes, WHAT also handles dynamic classes of
students. Currently, WHAT considers two dynamic classes. The first one classi-
fies the students according to their learning speed, while the second one does it
on the basis of their memory.
It is well known that not all students need the same effort to learn a new

topic. Some people need to practice many times the same type of problems before
mastering it, while others only need to work on it during a small amount of time.
Fast learning students use to get bored after solving several similar problems.
Thus, by repeating them, their motivation is dramatically reduced. So, they do
not achieve the goals they should. On the other hand, slow learning students get
depressed if they continuously fail the questions. Thus, WHAT will interleave
easier questions while asking them new problems. By doing so, the motivation
of the students will not be lost and the overall results will be improved.
It is also a fact that not everybody has the same memory. Some students

easily forget concepts learnt in previous lessons, while others obtain more solid
backgrounds. Students with weaker memories will be asked questions about old
lessons more frequently than those with better memories.
Once we have explained the class mechanism, we briefly sketch how CAM

adapts itself. The statistics recorded for each class of student and each type of
assignments are used by CAM to modify the original information. This is done
in two ways. First, for each class of students, CAM keeps values (one for each
topic of the course) about the number of exercises that students are supposed
to solve before they know the topic. These values will be readapted according
to the performance of students. The second task of CAM consists in classify-
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ing the difficulty of programming assignments. Each programming assignment
has associated with it a value indicating its difficulty. A difficult programming
assignment will not be asked until enough easier exercises are correctly solved.
As in the previous case, CAM uses its statistics to modify the difficulty of as-
signments. The new values are computed by taking into account the response
of all the students (regardless of their attributes). However, difficulty is a rela-
tive concept. For example, a difficulty value v will not have the same meaning
for fresh students that it has for second year students knowing Java. So, the
corresponding values v’s are normalized for each class of students.
The User Adaptive Module (UAM) deals with concrete information about

each individual student. As the static attributes of each student will be recorded
at the beginning of the academic year, the main tasks of UAM are:

– To compute the dynamic classes in which the student is included at each
moment.

– To adapt the models created by CAM to better fit the characteristics of the
individual student.

Let us remark that while CAM creates models for each class (both static and
dynamic), UAM classifies students inside a class. This is so because only UAM
has the appropriate information about individual students. Regarding dynamic
classes, WHAT is able to classify students according to both the speed and the
memory of every student. Initially, all the students are located in the same
classes. Afterwards, the speed of each student is obtained by computing the
number of questions that were necessary before she started to answer correctly
all the questions on the same topic. Let us note that we do not take into account
the time of response because this would lead to some erroneous results (for
example, a bad Internet connection could indicate that the student is very slow).
The memory factor is computed on the basis of the questions about previously
learnt lessons. Besides, some students learn slower at the beginning and faster
afterwards, while other students have the opposite behavior. If WHAT detects
these situations, it will be the task of UAM to modify the dynamic attributes of
the student. Let us note that the modification of dynamic attributes should be
done very carefully. For example, a student should not be considered memory-
weak just because of a simple mistake, that is, the system is noise tolerant.
The second task of UAM consists in adapting the models obtained by CAM.

If a student s belongs to a class c, UAM will adapt the general model for c so that
it will better fit to the peculiarities of s. For instance, UAM will record errors
that the student has performed in the past. When the student has an error and
ask for help, the system will be able to relate the current error with previous
ones. Then, the student will remember the reason of the past error, and she
will better understand the reason of the current one. Finally, let us remark that
UAM does not create a complete individual model for s: it only adapts the model
corresponding to the class c (designed by CAM). By doing so, we increase the
efficiency of the system and we also provide a hierarchical organization. Thus, it
will be easier for the teacher to understand the evolution of the students.
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Fig. 2. The WHAT system architecture.

3.1 Non-adaptive Behavior of WHAT

As we have already explained, WHAT can automatically adapt itself to improve
its ability to help students to learn. But the capabilities of an intelligent tutor
cannot be compared to those of an expert human teacher. Thus, even though
WHAT is a powerful tool to help teaching, we think that the overall control of
the course should be taken by the human professor.
From the teacher point of view, WHAT provides information about the skills

the students are getting, but also about how they are obtaining the skills: Their
main difficulties with each type of problems. Thus, the teacher can adapt the
classroom lessons to explain with more detail the parts of the course that seemed
to be harder for previous students. So, by using WHAT, the teacher learns from
the students how to improve the lessons.
Not only the classroom lessons can be modified depending on the results

provided by WHAT, but also WHAT itself can be modified by the teacher. In
fact, WHAT contains an additional module: Teacher Adaptive Module (TAM).
This module allows the teacher to change the teaching strategies of the system.
For instance, it allows to add/modify/remove programming problems from a
given lesson. More importantly, it allows to modify by hand both the design of
the curriculum and the basic models for each class of students.

4 Implementation

In this section we sketch some implementation details. In particular, we will
concentrate on how assignments are generated. First, we present the architecture
of WHAT (see Figure 2). From the teacher point of view, she accesses the TAM
through the web server. From the TAM the teacher is allowed to modify the
curriculum model. Besides, she can also consult CAM to check the current models
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for the corresponding classes. The web server generates new queries by taking
into account both the curriculum model and the models corresponding to the
classes of the current student.
The generation of new exercises is automatically done for the first two classes

of problems (evaluation and typing of expressions). There is a set of predefined
functions, and they are combined randomly, by taking into account that the cor-
responding types fit. The complexity of the expressions will depend on several
factors: the set of types that can be used, the functions that have been taught
so far, the number of functions that can be combined in each expression, and
also the number of levels of higher-order that can be used, that is, the num-
ber of nested higher-order functions that can be used in a single function. The
implementation of this generator of problems has been done in Haskell because
this language is very suitable for this kind of programs. Let us remark that
this choice is not related to the fact that WHAT teaches Haskell. Actually, any
programming language could be used to write this part of the system.
Unfortunately, it is not possible to automatically generate programming as-

signments. So, they are randomly selected from a wide set of predefined problems.
The problems are classified according to their characteristics, so that they are
only proposed to the student when they have reached the appropriate level. Even
though it is not possible to automatically generate new problems, it is possible
to automatically generate variations of the predefined problems, modifying the
parameters of the problems. Functional languages are very adequate for that
because programs can be written by combining higher order functions.
In order to check the programs that students have developed, we provide an

automatic connection to a Haskell environment where the program is tested over
a set of input data. These data will represent the most relevant cases of the (class
of) function, that is, the values that are more difficult to deal with. These values
are not known by students. In addition to the most relevant cases, there will be
some randomly selected cases, just to increase the set of tests. By doing so, we
will be able to detect most of the errors introduced by the student. Moreover,
in the case of a wrong answer, a good hint about the source of error can be
given because WHAT will know the cases that are not correctly covered. Let us
remind that it is not possible to automatically verify that any given program is
correct, as it is well known that such a task is undecidable. So, the best that we
can do is just to test the programs.2

Regarding the web interface, the implementation uses both CGIs and
JavaScript. The server side of the system is implemented using CGIs. The CGIs
(written in C) control the interaction of the user with the system, generating
appropriate web pages. These pages include JavaScript code, so that the user
may perform most of the operations without actually connecting to the server.

2 This is an easy way of cheating WHAT. However, we think that the probability of
such an error is rather low because of the careful selection of the test cases.
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5 Conclusions and Future Work

In this paper we have presented WHAT. We have described its features and
we have given some implementation details. In particular, we have explained
the class mechanism underlying WHAT. This classification of students allows
WHAT to adapt itself to the necessities of each particular type of student.
As future work, we plan to provide similar systems for Pascal and Java. This

will allow us to study their learning curves by using comparable tools. Finally,
we would also like to apply the experience gained after constructing WHAT
to a different field of expertise. Actually, we are already developing a tutor to
teach process algebras. In this case, we will consider PAMR [8] because it allows
to abstract some of the usual difficulties when specifying real systems.
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Abstract. In the present work the issue of decomposing and distributing a con-
figuration problem is approached in a framework where the domain knowledge is
represented in a structured way by using a KL-One like language, where whole-
part relations play a major role in defining the structure of the configurable objects.
The representation formalism provides also a constraint language for expressing
complex relations among components and subcomponents.
The paper presents a notion of boundness among constraints which specifies when
two components can be independently configured. Boundness is the basis for
partitioning constraints and such a partitioning induces a decomposition of the
configuration problem into independent subproblems that are distributed to a pool
of configurators to be solved in parallel.
Preliminary experimental results in the domain of PC configuration showing the
effectiveness of the decomposition technique in a sequential approach to config-
uration are also presented.

1 Introduction

In recent years configuration has attracted a significant amount of attention not only from
the application point of view but also from the methodological one [12]. In particular,
logical approaches such as [13,4] and approaches based on CSP have emerged [10,3,11,
14]. In CSP approaches, configuration can exploit powerful constraint problem solvers
for solving complex problems [5,1]. From the other hand, logical approaches make use
of a more explicit and structured representation of the entities to be configured (e.g. [9]).
Logical approaches seem to offer significant benefits when interaction with the user
(e.g. [7]) and explainability of the result (or failure) are major requirements.

Configuration, as many other tasks, can be computationally expensive; therefore, the
idea of problem decomposition looks attractive since, from the early days of AI, problem
decomposition has emerged as one of the most powerful mechanisms for controlling
complexity. Ideally, the solution of a complex configuration problem should be easily
assembled by combining the solutions of the subproblems the initial problem has been
decomposed into. Moreover, decomposing a configuration problem into a set of mutually
independent subproblems allows the configuration process to be distributed among a set
of configurators working in parallel. Unfortunately, in many cases it is not obvious at all
how to perform such a decomposition.

In the present work the issue of decomposing a configuration problem is approached
in a framework where knowledge about the entities is represented in a structured way
by using a KL-One like language augmented with a constraint language for expressing
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complex inter-role relations (see section 2 for a summary of the representation language).
Partonomic relations provide the basic knowledge for decomposing the configuration
problem. In fact, two subparts involved into two partonomic relations can not be inde-
pendently configured if there is at least a constraint that links them together. For this
reason we have introduced a notion of boundness among constraints (section 3) which
assures that two components not involved in a same set of bound constraints can be
independently configured.

Section 4 provides a high-level description of the configuration algorithm and of the
decomposition strategy, while an example of an application of the algorithm is shown in
section 5. Section 6 reports preliminary experimental results concerning the reduction
of the computational effort. A discussion of the approach is reported in section 7.

2 The Conceptual Language

In the last few years we have developped a representation formalism called FPC [6,7]
(Frames, Parts and Constraints) for modeling configuration problems. Basically, FPC
is a frame-based KL-One like formalism augmented with a constraint language.

In FPC, there is a basic distinction between atomic and complex components. Atomic
components are described by means of a set of features characterizing the component
itself, while complex components can be viewed as structured entities whose character-
ization is mainly given in terms of their (sub)components, which can be complex com-
ponents in their turn or atomic ones. FPC offers the possibility of organizing classes of
(both atomic and complex) components in taxonomies as well as the facility of building
partonomies that (recursively) express the whole-part relations between each complex
component and any one of its (sub)components. Moreover, in any complex component,
a set of constraints restricts the set of valid combinations of its (sub)components.
Frames and Parts. In FPC, each frame represents a class of components (either atomic
or complex) and it has a set of member slots associated with it. Each slot represents a
property of the components belonging to the class and it can be of type either partonomic
or (alternatively) descriptive. Any slot p of a class C is described via a value restriction
D(that can be another class or a set of values of a predefined kind) and a number restriction
(i.e. an integer interval [m,n] with m ≤ n), as usual in the KL-One like representation
formalisms. A slot p with value restriction D and number restriction [m,n] captures the
fact that the property p for any component of type C is expressed by a (multi)set of
values of type D whose cardinality belongs to the interval [m,n].

In the following we restrict our attention to partonomic slots since in this framework
they represent the basic knowledge for problem decomposition.

Partonomic slots are used for capturing the whole-part relation among compo-
nents. In FPC this relation is assumed to be asymmetric and transitive. Formally,
any partonomic slot p of a class C is interpreted as a relation p : C → D such that
(∀c ∈ C)(m ≤ |p(c)| ≤ n)), being D and [m,n], respectively, its value and its number
restrictions; the meaning is straightforward: any complex component of type C has from
a minimum of m up to a maximum of n direct parts of type D via a whole-part relation
named p.

It is worth noting that in each configuration a component can neither be a direct part
of two different complex components nor a direct part of the same complex component
via two different whole-part relations (exclusiveness assumption on parts).
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CONSTRAINTS
Associated with C:
[co1]({<p1,q1>})(1;1) ==> ({<p2,q5>})(1;1)      
[co2]({<p1,q2>})(1;1) ==> ({<p2,q3>})(1;1)
[co3]({<p2,q3>})(2;2) ==> ({<p2,q4>})(2;2) 
[co4]true ==> ({<p1,q1>})(in A11 (1;4))
[co5]({<p3>})(1;1) ==> ({<p3>})(in A71)
Associated with C1:
[co6]({<q1>})(1;1) ==> ({<q6>})(in A61) 

C

p1(1;2)

p2(1;2)

p3(1;2)
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Fig. 1. A toy conceptual model

Figure 1 contains a toy conceptual model that we use here as a simple example.
Each rectangle represents a class of complex components, each oval represents a class
of atomic components and any thin solid arrow corresponds to a partonomic slot. In
the figure, it is stated, for instance, that C is a class of complex components and the
partonomic slot p1 specifies that each instance of C has to contain one or two (complex)
components of type C1; whereas the partonomic slot p3 states that any instance of C
has to contain one or two (atomic) components of type A7.

In any conceptual model, a slot chain γ = 〈p1, . . . , pn〉, starting in a class C and
ending in a class D is interpreted as the relation composition pn ◦ pn−1 ◦ . . . ◦ p1 from
C to D. The chain represents the subcomponents of a complex component c ∈ C via
the whole-part relations named p1, . . . , pn. In figure 1, for example, 〈p1, q1〉 denotes
the subcomponents (of type A1) of each instance of C through the partonomic slots p1
and q1. Similarly, a set of slot chains R = {γ1, . . . , γm} (where each γi starts in C and
ends in Di) is interpreted as the relation union

⋃m
i=1 γi from C to

⋃m
i=1 Di.

Besides the partonomies, also the taxonomies are useful in the conceptual models.
In figure 1 the subclass links are represented by thick solid arrows. In that toy domain
we assume that each class of atomic components Ai is partitioned into two subclasses
Ai1 and Ai2. Only the partitioning of A1 into A11 and A12 is reported in figure.
Constraints. A set (possibly empty) of constraints is associated with each class of com-
plex components. These constraints allow one to express those restrictions on the com-
ponents and the subcomponents of the complex objects that can’t be expressed by using
only the frame portion of FPC, in particular the inter-slot constraints that cannot be
modeled via the number restrictions or the value restrictions.

Each constraint cc associated with C is of the form α ⇒ β, where α is a conjunction
of predicates or the boolean constant true and β is a predicate or the boolean constant
false. The meaning is that for every complex component c ∈ C, if c satisfies α then it
must satisfy β. It should be clear that if α = true, then, for each c ∈ C, β must always
hold, while if β = false, then, for each c ∈ C, α can never hold.

In the following we present only a simplified version of some predicates available
in FPC. For a more complete description of them see [6].



84 D. Magro and P. Torasso

Let R = {γ1, . . . , γm}, where each γi = 〈pi1 , . . . pin〉 is a slot chain starting in a
class of C complex components. For any c ∈ C, R(c) denotes the values of the relation
R computed for c.
1) (R)(h; k). c ∈ C satisfies the predicate iff h ≤ |R(c)| ≤ k, where h, k are non
negative integers with h ≤ k.
2) (R)(inI). c ∈ C satisfies the predicate iff R(c) ⊆ I , where I is a union of classes in
the conceptual model.
3) (R)(inI(h; k)). c ∈ C satisfies the predicate iff h ≤ |R(c) ∩ I| ≤ k, where h, k are
non negative integers with h ≤ k and I is a union of classes in the conceptual model.

For example, the constraint co5 states that if only one component playing the parto-
nomic role p3 is present in a configuration of an object of type C, then this component
must be of type A71. It is worth noting that the user’s requirements are automatically
translated into the FPC constraint language. For example, the (user’s) requirement of
inserting in a configuration of an object of type C from 1 up to 4 subcomponents of type
A11 is expressed by the constraint co4.

3 The Role of Partonomic Knowledge in Problem Decomposition

Given this framework, configuring a complex object of type C means to completely
determine an instance c of C in which all the partonomic slots of C are instantiated
and each direct component of c is completely configured too. c has to respect both the
conceptual model (number and value restrictions imposed by the taxonomy and the
partonomy as well as the constraints associated with the classes of components involved
in c) and the user’s requirements.

Configuring a complex component by taking into consideration only its taxo- parto-
nomic description would be a straightforward activity. In fact, for any well formed model
expressed in FPC in which no constraints are associated with any class, a configuration
respecting that model would always exist. A simple algorithm could find it without any
search and by simply starting from the class of the target object (i.e. the one for which the
configuration has to be built), considering each slot p of that class and, for it, choosing its
cardinality, i.e. choosing the number of components playing the partonomic role p to in-
troduce into the configuration, and the type for each such component. This process must
be recursively repeated for each complex component introduced in the configuration,
until all the atomic ones are reached. In this process the algorithm needs only to respect
the number and the value restrictions of the slots. Unfortunately, this is not realistic. The
conceptual model usually contains complex constraints that link together different slots.
In this more realistic situation a solution can’t be generally found by making only a set
of local choices and without resorting to search in a large space of alternatives.

Moreover, the requirements usually imposed by the user to the target artifact further
restrict the set of legal configurations. This means that the search for a configuration is
not guaranteed to be fruitful any more. In fact, even assuming the consistency of the
conceptual model, the user’s requirements could be inconsistent w.r.t. it and in such a
case no configuration respecting the model and satisfying the requirements exists.

Therefore, in general, the task of solving a configuration problem can be rather
expensive from a computational point of view. As we have mentioned above, in FPC
framework this is mainly due to the constraints (both those that are part of the conceptual
model and those imposed as user’s requirements) that link together different components
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and subcomponents. In these situations a choice made for a component during the con-
figuration process might restrict the choices actually available for another one, possibly
preventing the latter to be fully configured. In such cases the configuration process has to
revise some decision that it previously took and to explore a different path in the search
space. Usually, in real cases the search space is rather huge and many paths in it don’t
lead to any solution.

However, in many cases it does not happen that every constraint interacts with each
other and the capability of recognizing the sets of (potentially) interacting constraints
can constitute the basis for decomposing a problem into independent subproblems.

Once a problem has been decomposed into a set of independent subproblems, these
could be solved concurrently and with a certain degree of parallelism, potentially re-
ducing the overall computational time. However, also a sequential configuration process
can take advantage of the decomposition. In fact, if two subproblems are recognized to
be independent, the configurator is aware that no choice made during the configuration
process of the first one needs to be revised if it enters a failure path while solving the
second one.

To be effective, the task of recognizing the decomposability of a problem (and of
actually decomposing it) should not take too much time w.r.t. the time requested by the
whole resolution process.

In our approach, the partonomic knowledge can be straightforwardly used in recog-
nizing the interaction among constraints (with an acceptable precision) and in defining a
way of decomposing a configuration problem into independent subproblems. With this
aim, we introduce the bound relation among constraints. Intuitively, two constraints are
bound iff the choices made during the configuration process in order to satisfy one of
them can interact with those actually available for the satisfaction of the second one.
If c is a complex component in a (tentative) configuration, the bound relation Bc is
defined in the set CONSTRS(c) of the constraints that c must satisfy, as follows: let
u, v, w ∈ CONSTRS(c). If u and v contain both a same partonomic slot p of class(c)
then uBcv (i.e. if u and v refer to a same part of c, they are bound); if uBcv and vBcw
then uBcw (transitivity).

It is easy to see that Bc is an equivalence relation. If U is an equivalence class in
the quotient set CONSTRS(c)/Bc, every constraint in U might interact with any other
constraint in the same class during the configuration process of c. On the contrary, given
the exclusiveness assumption on parts, if V ∈ CONSTRS(c)/Bc is different from
U , it means that in c the constraints belonging to V don’t interact in any way with
those in U . This means that the problem of configuring c by taking into consideration
CONSTRS(c) can be split into the set of independent subproblems of configuring c
by considering the set W of constraints, for each W ∈ CONSTRS(c)/Bc.

4 Configuration via Decomposition and Distribution

As said in the section above, bound relation can be used for singling out independent
subproblems in the configuration process. A sequential algorithm for configuration ex-
ploiting decomposition is described in [8]. In the present paper we describe a general
configuration technique which exploits the decomposition mechanism for distributing
independent subproblems among a set of configurators working in parallel.
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Let P be a pool of m configurators (m ≥ 1). In the following we assume that each
configuration request is sent to P . If no configurator is available, the request is enqueued
and it is assigned to a configurator as soon as one becomes available.

Each configuration request is a 4-TUPLE 〈CM,T, c, V 〉, where CM is the FPC
conceptual model describing the domain; T is a tentative configuration "under construc-
tion"; c is a complex component occurring in T and V is a set of FPC constraints
holding for c. Such a 4-TUPLE corresponds to the request of extending the tentative
configuration T (in the domain modeled by CM ) by configuring only those direct parts
of the complex component c involved in the constraints in V .

Each configurator in P runs the configure procedure in figure 2. configure pro-
cedure accepts as input a configuration request 〈CM,T, c, V 〉 and it returns either the
FAILURE message or a tentative configuration in which the complex component c
has been successfully extended.

The problem of extending c by taking into consideration the constraints in V requires
the introduction in T of a set of direct components of c (first instruction of the procedure
in fig. 4) and, then, the extension of each complex component introduced in this first step
(WHILE loop).

Procedure insertDirectComponents(CM,T, c, V ) tries to introduce in T the di-
rect components of c that might be critical for the satisfaction of the constraints in V .
To do this, among the partonomic slots of the most specific class (w.r.t. the taxonomy)
in CM to which c belongs (let’s call it class(c)), it considers only those occurring in
some constraint of the set V (in fact, the other partonomic slots possibly associated
with class(c) are not critical for the satisfaction of the constraints in V ). For each such
partonomic slot p, this procedure chooses both the number of the components playing
the partonomic role p that should be inserted into the tentative configuration T and the
type for each of them. Such choices are done by taking into account both the number
and value restrictions associated with the partonomic slot p. Since, in general, there are
more than one alternatives, the configurator records all the open choices. Whenever a
direct complex component of c is introduced, it is inserted in the queue dirC comps(c).

procedure configure(CM,T,c,V){
  T = insertDirectComponents(CM,T,c,V);
  if(T == FAILURE){return FAILURE;}
  /*T   FAILURE*/
  while(dirC_comps(c)  <>){
    c‘ = dequeue(dirC_comps(c));
    CONSTRS(c’) = I_Constrs(c’)   L_Constrs(c’);
             = CONSTRS(c’)/   ;
             = send(           ,  );
    if(                ){
      if(no open choice for c){
         return FAILURE;
      }else{BACKTRACK;}
    }else{T = merge(         );}
  }//while
  return T;
}//configure

6=

6=

[

fV1; : : : ; Vng B
c
0

fT1; : : : ; Tng fhT; c0; Viig
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Fig. 2. High level description of the configuration algorithm



Decomposing and Distributing Configuration Problems 87

It can happen that in this phase there is no way to insert these direct components of
c into T without violating any constraint in V : in this case, the process fails.

The WHILE loop considers each complex direct component c′ of c that was intro-
duced (and enqueued in dirC comps(c)) in the previous step. The set of constraints that
have to be considered for c′ is CONSTRS(c′) = I Constrs(c′) ∪ L Constrs(c′).
I Constrs(c′) is the set of constraints that c′ inherits from c, namely the constraints inV
in which some partonomic slot associated with class(c′) occurs (i.e. those constraints in
V mentioning some component of c′);L Constrs(c′) is the set of local constraints for c′,
namely those ones associated with class(c′) in CM , plus the constraints expressing the
user’s requirements for c′. CONSTRS(c′) is then partitioned into the set {V1, . . . , Vn}
of equivalence classes w.r.t. the bound relation Bc′ . Each class Vi induces a subprob-
lem, thus the configuration of the component c′ w.r.t. the constraints CONSTRS(c′)
is decomposed into the set of subproblems {〈T, c′, Vi〉}n

i=1 and this set of configuration
requests is sent to the pool P of configurators. The results of these configurations is
collected in {T1, . . . , Tn}. If one (or more) configuration request 〈T, c′, Vi〉 leaded to a
failure, it means that, given the tentative configuration T , there is no way to configure
the component c′ by respecting the constraints CONSTRS(c′). In this case, if there are
some open choices in the configuration of c, a backtracking mechanism is activated, oth-
erwise a failure occurs.1 In case all the subproblems are successfully solved, the partial
configurations {T1, . . . , Tn} are merged and a new tentative configuration T , containing
the configuration of c′ w.r.t. CONSTRS(c′), is produced. As shown in the example
reported below, the merge operation is fairly simple since it only consists in "summing
up" the partial solutions. In fact, the partition of the constraints induces a partition of the
partonomic slots associated with class(c).

The configuration of c w.r.t. the constraints in V is completed when all the direct
complex components of c in dirC comps(c) are successfully configured.

It is worth saying that when a configurator Ci ∈ P sends a set of configuration
requests to P , it becomes immediately available, thus the mechanism is deadlock-free.

Let us suppose that the user asks for a configuration of a complex object c0 of type
C and imposes a set of requirements REQS. A main module computes the set of
constraints CONSTRS(c0) containing the constraints derived from the user’s require-
ments as well as those associated with C in CM . The main decomposes this problem
into the requests

{〈CM,T0, c0, Vi〉}l
i=1(l ≥ 1) (where T0 contains only the component c0) and sends

them to P .

5 An Example

Figure 3 reports eight snapshots of the configuration process of an object of type C w.r.t.
the constraints co1-co5, where co4 is a user requirement (see figure 1). In figure 3, each
x 1 identifies a component of type X , while any partonomic slot p is identified by an arc
labelled p; an arrow indicates the last component that has been expanded or the compo-
nent that will be expanded next. At the beginning, the partial configuration Ta contains
only the component c 1 representing the target object. The main module partitions the

1 The backtracking mechanism is not described here, since it is out of the scope of this paper. A
description of this mechanism can be found in [8].
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constraints for c 1 into the two classes V1 = {co1, co2, co3, co4} and V2 = {co5}
and sends the two correspondent configuration requests to the pool of configurators.
The configuration of c 1 w.r.t. the constraints V2 leads to the partial configuration Tg;
in parallel, the configuration request relevant to V1 is taken into consideration. Since
only the partonomic slots p1 and p2 of C occur in the constraints belonging to V1, only
the complex components c1 1 and c2 1, playing these partonomic roles, are inserted
into the partial configuration (Tb). To complete the configuration of c 1 w.r.t. V1, its
direct complex components c1 1 and c2 1 have to be configured too. The constraints
for c1 1 (those inherited from c 1 and the local one co6) are split into the two classes
V3 = {co1, co4, co6} and V4 = {co2}; the solutions of the two correspondent sub-
problems lead to the partial configurations Tc and Td, respectively. These two partial
configurations are merged and Te is produced. The configuration of the component c2 1
is decomposed into two subproblems corresponding to the two classes of constraints
V5 = {co1} and V6 = {co2, co3}; after merging the solutions to these two subprob-
lems, Tf , representing a partial configuration of c 1 w.r.t. V1 is produced. A final merge
between Tg and Tf produces a complete configuration of the target object (Th).

6 Preliminary Results

In order to test the impact of the decomposition strategy on the configuration process,
we have performed an experiment in a real domain of PC configuration. In this domain

p1
q1

q6

a11_1

p2 c2_1

Tc

a61_1

{V1}
c_1

{V3}
c1_1

p1

{V3,V4}
c1_1

p2 c2_1

Tb

{V1}
c_1

p1

{V4}
c1_1

p2 c2_1

{V1}
c_1 q2

a21_1

Ta

{V1, V2}
c_1

Tg

{V2}
c_1

p3

a71_1

Td

p1
c_1

c1_1

q1

q6

a11_1

p2 c2_1

a61_1
q2

a21_1
Te

p1
c_1

c1_1

q1

q6

a11_1

p2 c2_1

a61_1
q2

a21_1

q5 a51_1

q3
a31_1

q4

a41_1

Tf
p1

c_1

c1_1

q1

q6

a11_1

p2 c2_1

Th

a61_1
q2

a21_1

q5 a51_1

q3
a31_1

q4

a41_1

p3

a71_1

= Merge = Decompose

Fig. 3. A configuration example



Decomposing and Distributing Configuration Problems 89

a set of atomic components, such as CPUs, memory slots, monitors, etc., can be used for
configuring complex objects, such as different kinds of PCs, motherboards etc. according
to the user requirements. We have generated a test set of 153 configuration problems:
for each of them we have specified the type of the target object (e.g. a PC for graphical
applications) and the requirements that it must satisfy (e.g. it must have a CD writer of
a certain kind, it must be fast enough and so on). In this experiment, we used only one
configurator, in order to test the impact of the decomposition technique on a sequen-
tial approach to the resolution of configuration problems. A configuration problem is
considered solved iff the configurator either provides a configuration or detects that no
configuration satisfying the user’s requirements can be produced, within the timeout of
360 sec.

It came out that the strategy no dec that did not attempt any decomposition was able
to solve 150 out of the 153 configuration problems (i.e. its competence was of 98.0%);
whereas the strategy dec making use of decomposition solved all the problems (i.e. its
competence was of 100%). The average CPU time computed on the 150 problems solved
by both strategies was 7735.4 msec. for no dec and 2257.4 for dec (i.e. −70.8% w.r.t.
no dec). Moreover, the average CPU time computed on the 153 problems solved by dec
was 4502.3 msec. This means that dec was able to solve the 3 difficult problems that
no dec did not solve with an average cost still less than that relevant to the 150 problems
solved by no dec 2.

7 Discussion

The present paper addresses the issue of decomposing a configuration problem into sim-
pler subproblems by exploiting as much as possible the implicit decomposition provided
by the partonomic relations of complex components. The adoption of a structured frame-
work for modeling the configuration domains as well as for expressing the configuration
problems plays a major role since the criterion for singling out the classes of bound con-
straints is based on an analysis of the partonomic slots mentioned in the constraints. The
problem decomposition is induced by this partitioning of the constraints into classes.

Since a set of constraints is associated with each complex component, the configura-
tion process can try to recursively decompose the problem each time it has to configure
a component or a subcomponent of the target object. The set of mutually independent
subproblems the main problem has been decomposed into can be solved in parallel by
a pool of configurators. Our main motivation for decomposing configuration problems
is saving in computational effort. However, there are domains in which the configura-
tion problems are distributed by their nature [2]. This is the case, for example, of those
domains in which the main components of a complex product are provided by different
suppliers. In these cases the capability of decomposing at least the main configuration
problem (i.e. the capability of attempting a decomposition at the target object level)
can be quite useful, since it would single out the possible interactions among the main
components.

2 It is worth noting that if we computed the average CPU time spent by no dec on all the 153
problems (i.e. including the 3 unsolved problems), we would obtain 14642.5 msec.
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Preliminary experimental results demonstrate the effectiveness of the decomposition
technique in a sequential approach to configuration. Further experiments are planned in
order to test the impact of the distribution of the subproblems to a pool of configurators.
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Abstract. The paper applied a Recurrent Neural Network (RNN) model in two
Integral-Plus-State (IPS) schemes of real-time adaptive neural control. The
proposed control modify and extend a previously published direct adaptive
neural control scheme with one or two I-control terms, so to obtain a neural,
IPS adaptive, offset compensational and trajectory tracking control. The control
scheme contains only two RNN models (systems identificator and IPS feedback
controller) and not need a third feedforward RNN control model. The good
performance of the adaptive neural IPS control is confirmed by comparative
simulation results, obtained using a nonlinear multi-input multi-output plant,
corrupted by noise. The results exhibits good convergence and noise resistance
which not depend on the magnitude of the offset.

1 Introduction

Intelligent control using Neural Networks (NN) has been applied to various control
problems, [8]. It is known to be effective in many situations, especially when the
controlled plant exhibits nonlinearity, and the plant parameters are unknown and time-
varying, especially for mechanical systems. On the other hand, the unavoidable
effects of identification and control errors, due to model uncertainties, together with a
slow load variations, caused a steady-state offset that needs to be removed. In this
case, an integral action, added to the control, compensates the plant uncertainties and
load effects, and help the system to track the reference signal.

Within the context of the servomechanism problem, integral action is a
fundamental technique in the control repertoire and the I-PD (or PID) controllers
have been the most utilised controllers in the industry, because of their simple
structure and robust performance in wide range of operating conditions, [4]. Here the
PD mode is used to speed up response, whereas the PI mode is applied to eliminate
the steady state offset. In last years, the classical PID scheme has been completed by
auto-tuning devices like Neural Networks, [5], [6], (Multi-Layer Perceptron, learned
by Genetic Algorithms; Radial Basis Functions NN), and Fuzzy Systems, [2], to adjust
on-line its parameters. To resolve some specific control problems in mechanical
systems, some extensions to the classical PID scheme, have been added. So, for
regulator tasks on mechanical systems that exhibit friction, the PID-controller is
combined with mass and friction feedforward, [2]. The state PD-controller plus
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gravity compensation terms is widely used in robot manipulators control. However,
this linear state feedback controllers could not compensate inertial and Corriolis
forces and cannot render asymptotic stability for path tracking tasks. To overcome
this, in [9], a nonlinear PID controller, is proposed. The major disadvantage of this
controllers is that they could be applied only for Single-Input-Single-Output (SISO)
and not for Multi-Input-Multi-Output (MIMO) systems. Also, in the case of high order
systems, the PD action is not sufficient to assure systems stability. The use of RNN
for systems control could overcome these problems. In [3], Baruch et all., proposed a
new RNN and a dynamic Backpropagation (BP)-like algorithm of its learning, which
could resolve identification and control problems in an universal way. The applied
direct adaptive neural control system contains three RNNs (one for identification and
two - for feedback and feedforward control, respectively), which offers a good
performance and flexibility. The aim of this paper is to apply this RNN model in two
Integral-Plus-State (IPS) schemes of real-time identification and control of nonlinear
MIMO plants with unknown parameters. This objective could be reached modifying
and extending the given in [3] control scheme with one or two I-control terms, so to
obtain an IPS adaptive, offset compensational and trajectory tracking control. The
performed study shows that the introduction of I-actions gives the possibility to
remove the feedforward part of the control scheme, given in [3], without to damage
the tracking abilities of the proposed control in noise conditions.

2 Recurrent Neural Network Topology and Learning

In [3], a discrete-time model of Recurrent Trainable Neural Network (RTNN), and a
dynamic Backpropagation  weight updating rule, are given. The RTNN model is
described by the following equations:

X(k+1) = JX(k)+BU(k)                                                              (1)
Z(k)=S[X(k)]                                                                              (2)
Y(k) = S[CZ(k)]                                                                         (3)
J = block-diag (Ji); �Ji�� 0                                                        (4)

Where: X(k) is a N - state vector of the system; U(k) is a M- input vector; Y(k) is a L-
output vector; Z(k) is an auxiliary vector variable with dimension L , S(.) is a vector-
valued activation function with appropriate dimension; J is a (NxN) weight-state
diagonal matrix with elements Ji; B and C are weight input and output matrices with
appropriate dimensions and block structure, corresponding to the block structure of J.
As it can be seen, the given RTNN model is a completely parallel parametric one, so it
is useful for identification and control purposes. The controllability and observability
of this model is proven in [1], [10]. Parameters of that model are the weight matrices
J, B, C and the state vector X(k). The equation (4) is a stability preserving condition.
The general BP learning algorithm is given as:

Wij(k+1) = Wij(k) +� �Wij(k) +� �Wij(k-1)                            (5)

Where: Wij (C, J, B) is the ij-th weight element of each weight matrix (given in
parenthesis) of the RTNN model to be updated; �Wij (�Cij , �Jij, �Bij) is the ij-th
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weight correction of Wij of each weight matrix (given in parenthesis); �, � are
learning rate parameters. The weight updates �Cij , �Jij, �Bij of model weights Cij , Jij,
Bij , are given by:

�Cij(k) = [Tj(k) -Yj(k)] Sj’(Yj(k)) Zi(k)                                        (6)
�Jij(k) = R Xi(k-1)                                                                       (7)
R1 = Ci(k) [T(k)-Y(k)] Sj’(Zj(k))                                                 (8)
�Bij(k) = R Ui(k)                                                                         (9)

Where: T is a target vector with dimension L and [T-Y] is an output error vector also
with the same dimension; R1 is an auxiliary variable; S’(x) is the derivative of the
activation function, which for the hyperbolic tangent is Sj’(x) = 1-x2.

The next part of the paper incorporates the RTNN model in two IPS schemes of
real-time adaptive control. The block diagrams of that controls are described bellow.

3 A Direct Adaptive Neural Control with IPS Action

Let us suppose that the studied nonlinear plant possess the following structure:

Xp(k+1)=F(Xp(k),U(k))                             (10)
Yp(k)=�(Xp(k))                                            (11)

Where: Xp(k), Yp(k) are plant state and output vector variables; F and � are smooth,
odd, bounded, unknown nonlinear functions. Two control schemes are considered –
with one and with two integral terms in the control part.

3.1 A Direct Adaptive Control Scheme with One Integral Block

The block diagram of the first control scheme, containing one integral block is shown
on Fig.1. It contains one identification and state estimation RTNN-1, which generates
states, to the control RTNN-2 which is a feedback stabilizing systems controller with
IPS action.
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Term

O

ei

e
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U
-offset
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+

Y

Fig. 1.. Block-diagram of a direct adaptive trajectory tracking control system with IPS action.
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From Fig.1 it is seen that the control RTNN have as inputs the state vector, the
integral action vector V(k) and the systems reference vector R. Let us define the
measurement vector of the control system as:

Y*(k) = Yp(k) + O(k)                                (12)

Where O(k) is a L-vector offset (measurement and load disturbance). The discrete
integral term equation, of the integral block, which integrates the plant measurement
output, is written as:

V(k+1)=V(k)+To Y*(k)                                (13)

Where V(k) is a L-vector integral action variable and To is a period of discretization.
The control law is given by the following equation:

U(k) = - NS[Xe(k), R(k)]                       (14)

Where: NS is a RTNN function; Xe(k) is a (N+L) extended state vector, defined as:

Xe(k) = [X(k), V(k)]T                                       (15)

Now, it is easy to add another integral block to this control system.

3.2 A Direct Adaptive Control Scheme with Two Integral Blocks

The block diagram of the second control scheme, containing two successive integral
blocks is shown on Fig.2. It contains one identification and state estimation RTNN-1,
which generates states, to the feedback stabilizing systems controller with 2I-PS
action (the RTNN-2). From Fig.1 it is seen that the control RTNN have as inputs the
state vector, the first and the second integral action vectors V(k), Z(k) and the systems
reference vector R. The discrete integral term equation of the second integral block,
which integrates the output of the first integrator, is written as:

Z(k+1)=Z(k)+ToV(k)                                 (16)

Where Z(k) is a L-vector integral action variable. The control law of this control
scheme, is given by the following equation:

U(k) = - NS[Xee(k), R(k)]                            (17)



Direct Adaptive Neural Control with Integral-Plus-State Action         95

PlantRTNN-2

RTNN-1 I
Term

O

ei

e
c

+

-

+R

Yi

Z

X

U
-

I
Term

V
Z

offset
+

+

Y

Fig. 2.. Block-diagram of a direct adaptive trajectory tracking control system with double
integral terms (2I-PS action).

Where: Xee(k) is a (N+2*L) extended state vector, defined as:

Xee(k) = [X(k), V(k), Z(k)]T                        (18)

In the next part, simulation result, obtained with a MIMO plant, are given.

4 Simulation Results

The plant, considered here, is a third-order nonlinear MIMO system whit two inputs,
two outputs, three states, and it is described by the following nonlinear state-space
equations, [7]:
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Where: x(k)=[x1(k), x2(k), x3(k)]T  is a 3-state vector; u(k) =[u1(k), u2(k)]T is a 2-
dimensional input vector; y(k) =[y1(k), y2(k))]T is a 2-dimensional output vector, all at
the instant k. The reference signal is a sum of two sinusoids with different amplitudes
and frequencies.

Results of simulation experiments with duration of 40 seconds, are shown in 10-
second-graphics. The results, obtained using the first control scheme (Fig.1), are
given on Fig. 3 and that – by the second control scheme (Fig.2) - are given on Fig. 4,
5, respectively. Comparative results, obtained by control scheme without integral
terms, are given on Fig. 6. The graphics, given on Fig. 3, a to m, show simulation
results, using the first control scheme with one integral block and constant offset
signal with magnitude of 40%, corrupting the systems output signal. The first two
graphics (Fig.3,a,b) compare both reference signals with both plant outputs in the first
10 seconds of the plant control simulation. The following two graphics give both
control signals, obtained for the last 10 seconds of the control simulation (Fig. 3,c,d).
The next two graphics compare both plant outputs with corresponding outputs of the
identification RTNN during the first 10 seconds of the plant identification (Fig. 3,e,f).
The following two graphics give the same results, obtained for the last 10 seconds of
the identification (Fig.3, g, h). The control and identification results exhibits good fast
convergence to the desired values. Next two graphics represents both control signals
(Fig. 3, i, j). The following two graphics represent the total Mean Squared Error
(MSE%) of control and the total MSE% of identification (Fig. 3, k, l), both decreasing
rapidly to small values. The last graphics, (Fig. 3,m), represents the four states of the
system, issued by the identification RTNN (architecture 1, 4, 1, ��� 0.01, � = 0.001,
for both control schemes), which are entry to the control RTNN. Similar results,
obtained with the second control scheme (Fig. 2), where the plant output is corrupted
by 40% linear (triangular) load disturbance, are given on Fig. 4, a to m. The
comparison of these results show that the introduction of second integral gives the
opportunity to compensate not only constant offsets, but also linear offsets. The price,
paid for this, is that the RTNNs converges more slowly, which could be seen
comparing the graphics, given on Fig. 3, a, b with that, given on Fig. 4, a, b,
respectively. For sake of comparison, on Fig. 5 a, b; c, d; e, f, are shown the graphical
results, corresponding to that- given on Fig. 4, c, d; g, h; k, l, but for an linear offset of
100%. The graphics show good performance of the systems identification and control
in the last 10 seconds of the simulation, in spite of the bigger offset. Results, obtained
with a control system without integral blocks and a linear offset of 40%, are shown on
Fig. 6, a, b; c, d; e, f; g, h which could be compared with that of Fig. 4 a, b; c, d;, e, f;
g, h. As it could be seen, the system without integral action is sensitive to linear load
disturbances, especially in the first 10 seconds of the identification and control
simulations. The on-line simulation results, for both control schemes, show that an
overshoot of the MSE% occurs due to improper identification in the beginning (see
Fig. 3, e; Fig. 6, e, respectively), but this MSE% rapidly decreased.

5 Conclusions

A comparative study of various control systems with I-action, is done. The paper
propose to use two direct adaptive feedback control schemes with Integral-Plus-State
action, applied for discrete-time MIMO system, [7]. The control scheme contain one
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identification and state estimation RTNN, one or two integral blocks and one control
RTNN. The good tracking abilities of this adaptive IPS control, for both control
schemes, is confirmed by comparative simulation results, obtained with a MIMO plant
model. The results show that the first control scheme could compensate constant
offsets, and the second control scheme could compensate linear offsets.
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Fig. 3.. A single integral direct adaptive trajectory tracking control with 40% constant offset; a)
comparison between the first plant output Y1 and the reference signal R in the first 5 seconds of
the simulation; b) comparison between the second plant output Y2 and the reference signal R in
the first 5 seconds of the simulation; c) comparison Y1 and R in the last 5 seconds of the
simulation; d) comparison between Y2 and R in the last 5 seconds of the simulation; e)
comparison between the first plant output Y1 and the first output Yi1 of the identification
RTNN in the first 5 seconds of the simulation; f) comparison between the second plant output
Y2 and the second output Yi2 of the identification RTNN in the first 10 seconds of the
simulation; g) comparison between Y1 and Yi1 of the identification RTNN in the last 5 seconds
of the simulation; h) comparison Y2 and Yi2 of the identification RTNN in the last 5 seconds of
the simulation; i) first control signal U1; j) second control signal U2; k) mean squared error of
control (MSE%); l) mean squared error of identification (MSE%); m) systems state variables,
estimated by RTNN.
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Fig. 4.. A double integral direct adaptive trajectory tracking control with 40% linear offset; a)
comparison between the first plant output Y1 and the reference signal R in the first 5 seconds of
the simulation; b) comparison between the second plant output Y2 and the reference signal R in
the first 5 seconds of the simulation; c) comparison Y1 and R in the last 5 seconds of the
simulation; d) comparison between Y2 and R in the last 5 seconds of the simulation; e)
comparison between the first plant output Y1 and the first output Yi1 of the identification
RTNN in the first 5 seconds of the simulation; f) comparison between the second plant output
Y2 and the second output Yi2 of the identification RTNN in the first 10 seconds of the
simulation; g) comparison between Y1 and Yi1 of the identification RTNN in the last 5 seconds
of the simulation; h) comparison Y2 and Yi2 of the identification RTNN in the last 5 seconds of
the simulation; i) first control signal U1; j) second control signal U2; k) mean squared error of
control (MSE%); l) mean squared error of identification (MSE%); m) systems state variables,
estimated by RTNN.
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Fig. 5.. A double integral direct adaptive trajectory tracking control with 100% linear offset; a)
comparison between the first plant output Y1 and the reference signal R in the last 5 seconds of
the simulation; b) comparison between the second plant output Y2 and the reference signal R in
the last 5 seconds of the simulation; c) comparison between the first plant output Y1 and the
first output Yi1 of the identification RTNN in the last 5 seconds of the simulation; d)
comparison between the second plant output Y2 and the second output Yi2 of the identification
RTNN in the last 5 seconds of the simulation; e) mean squared error of control (MSE%); f)
mean squared error of identification (MSE%).
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Fig. 6.. A direct adaptive trajectory tracking control without integral action and with 40% linear
offset; a) comparison between Y1 and R in the first 5 seconds; b) comparison between Y2 and
R in the first 5 seconds; c) comparison between Y1 and R in the last 5 seconds; d) comparison
between Y2 and R in the last 5 seconds; e) comparison between Y1 and Yi1 of the
identification RTNN in the first 5 seconds of the simulation; f) comparison between Y2 and Yi2
in the first 5 seconds; g) comparison between Y1 and Yi1 in the last 5 seconds of the
simulation; h) comparison betweenY2 and Yi2 in the last 5 seconds.
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The proposed control schemes does not need feedforward control part, as the
scheme, given in [3], does. The comparison with simulation results, obtained using a
system without integral terms confirm that the system with I-terms performs better in
noise conditions.
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Abstract. This paper presents an application of some Inductive logic
programming (ILP) techniques for checking user’s answer correctness
in a Computer-Aided Language Learning (CALL) system STyLE (Sci-
entific Terminology Learning Environment). STyLE supports adaptive
learning of English terminology with a target user group of non-native
English speakers. In STyLE are implemented many original features
that make this system intelligent and adaptive, but we will focus only
on one of them: supporting learner-system communication in Natural
Language (NL). The proposed ILP system RICH is used for generation
of least generalization(LG) and greatest specialization(GS) of the set of
possible correct answers of a given question to the user from the system.
The user’s answer is correct if it is between LG and GS of the correct
answers’ set.

Keywords: Inductive Logic Programming, Natural Language Processing,
Free-text input

1 Introduction

Supporting free NL input requires integration of complex NLP techniques, esp.
parsing and checking the correctness of the learner’s NL answer. A number of
prototypes try to cope with the (almost free) NL input but according to [4]
”so few of these systems have passed the concept demonstration phase”. The
prototypes in [4] contain mostly modules for checking students’ competence in
vocabulary, morphology, and correct syntax usage (parsers). The most sophisti-
cated semantic analysis is embedded in BRIDGE/MILT which matches the learner’s
utterance (a lexical conceptual structure) against the prestored expected lexical
conceptual structures. More recent systems (CASTLE in RECALL [5] and SLALOM
[6]) still focus on spelling, morphological, and syntactic errors. Another example
is CIRCSIM-Tutor [7], which expects quite short answers, permissively extracts
whatever is needed and ignores the rest. To conclude, every CALL system pre-
tending for some intelligence has to decide how to analyse learners’ NL inputs
and check their correctness but the present solutions especially for semantic
analysis are far from being perfect.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 101–110, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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This paper presents an application of some ILP techniques for checking user’s
answer correctness in a CALL system STyLE [3]. STyLE supports adaptive learn-
ing of English terminology with a target user group of non-native English speak-
ers. In STyLE are implemented many original features that make this system in-
telligent and adaptive, but we will focus only on one of them: supporting learner-
system communication in NL. This type of communication in STyLE is supported
by its module STyLE-Parasite, which provides a mechanism for checking the
correctness of learner’s NL utterances. On the other hand STyLE-Parasite uses
the system Parasite as an NLU machine.
Section 2 describes the system Parasite. Section 3 deals with the mechanism

for checking the correctness of the learner’s NL utterances. Section 4 describes
application of ILP techniques. In Section 5 are given some examples. Section 6
gives the conclusion.

2 System Parasite

The system Parasite, developed at UMIST by Allan Ramsay, see e.g. [8] and
[9], is already integrated in STyLE as an NLU machine for analysing learners’
free utterances.

Parasite works using a lexicon, syntax grammar rules and a knowledge base
of type (word) hierarchy and meaning postulates. The lexicon contains the mor-
phological description of the words recognised in the input text. The grammar
currently covers most of the English syntax, including complex embedded sen-
tences. The hierarchy is a DAG (directed acyclic graph). The meaning postulates
define in logical format the word semantics. It is not obligatory to define in ad-
vance the semantics of each word to be processed; the designer only has to keep
in mind that the prover of the semantic correctness works with the available pos-
tulates. Parasite is an open system and allows for the insertion of new words,
grammar rules and meaning postulates. When started Parasite checks the KB
consistency (contradictions, loop definitions).
As a typical NLU artefact (in contrast to some prototypes for automatic

KA),Parasite analyses every input string. It processes separate sentences as
well as extended discourse of several sentences. Given a text paragraph, the user
might choose analysis type: either independent analysis sentence by sentence, or
analysis of all sentences as coherent discourse.
The analysis is performed step by step, starting by morphological and syn-

tactic analysis. Diagnostics is available in cases of unknown or non-correctly de-
rived words, as well as for wrong or ambiguous sentence structure. Soft parsing
techniques provide correct analysis of sentences with ”small” syntax errors (e.g.
wrong subject-verb agreement). Some ambiguity types are resolved by heuris-
tically predefined preference scores; currently the PP-attachment problems are
tackled. Syntax analysis fails in case of unknown input words and unresolvable
ambiguities.
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After correct syntax analysis Parasite performs semantic analysis (see [1,
11,12]). Meaning postulates are encoded in a language which is a dynamic, con-
structive version of Ray Turner’s ’property theory’ [11].
For instance, the definition of ”capital market”:”The capital market is an

institutional mechanism which deals with capital goods.” can be translated as
following Meaning postulate:

lexicalMP(
forall(X :: {capital_market(X)}, institutional_mechanism(X) &

exists(Z::{deal(Z)}, theta(X,$agent,Z) &
exists(Y::{capital_goods(Y)}, theta(Y,$object,Z))))).

3 Mechanism for Checking the Correctness of the
Learner’s NL Utterances

Answers in free English are linguistically analysed by the NL Understanding com-
ponent Parasite. An especially implemented prover STyLE-Parasite checks
whether the linguistically correct student’s answer is correct as an answer to the
particular exercise performed at the moment.
An especially performed user study [10] investigated how erroneous answers

appear in terminology learning. Errors are usually caused by the following rea-
sons:

– Language errors (spelling, morphological, syntax errors);
– Question misunderstanding, which causes wrong answer;
– Correct question understanding, but absent knowledge of the correct term,
which implies usage of paraphrases and generalisation instead of the expected
answer;

– Correct question understanding, but absent domain knowledge, which im-
plies specialisation, partially correct answers, incomplete answers and wrong
answers.

In principle Parasite covers errors due to the first two cases while the prover
STyLE-Parasite discovers errors due to the two later cases. Parasite provides
advanced NL understanding in cases when the learner is given the opportunity
to type in freely. The expected answers are simple declarative sentences although
Parasite handles complex sentences as well as simple discourse consisting of
several sentences. Analysing the English input and its linguistic consistency,
Parasite returns a model of the correct answers or indications of four kinds of
errors: (i) unknown word, (ii) morpho, (iii) syntax and (iv) wrong. However, to
know that an input utterance is linguistically correct is not enough in CALL,
for instance ”John loves Mary” is linguistically correct but does not answer the
question ”who does trade stocks on the primary market”. Therefore a second
step is necessary, to find out whether the given utterance is reasonable as an
answer to the exercise being performed. STyLE-Parasite checks the answers’
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correctness against the available domain knowledge and the expected answer.
Most generally, STyLE-Parasite takes the logical form built by Parasite ,
”compares” it to the logical forms of the predefined expected minimal and
maximal answers and makes the necessary inferences [2,3]. Figure 1 presents
the eight possible cases of intersections of the terms in the three logical forms
and shows how STyLE-Parasite decides about the correctness of the input
logical form (which strongly depends on the lexical choices and the syntactic
structure of the concrete input). Since there might be many correct answers
and their language expression varies considerably, it is not practical to compare
the input to a single predefined correct logical form. Rather, STyLE-Parasite
uses pre-stored maximal and minimal logical forms. Adding new terms to the
maximal answer might be redundant or wrong. STyLE-Parasite inference
is sound [2] but not complete, because the conclusion ”(partially) correct
learner utterances” is indicated after the first correct binding of variables.
STyLE-Parasite returns the following indications of semantic mistakes: (i)
correct, (ii) more general, (iii) more specific, (iv) paraphrase (usage of concept
definition instead of the proper term), (v) incomplete, (vi) partially correct,
(vii) wrong and (viii) combination of several mistakes.

4 Application of ILP Techniques

Let create clauses from the logical models generated after Parasite analyses,
where this model is used as a body of the clause and all clauses have one and
same predicate symbol ”answer” with arity 1.
To generate sets of minimal and maximal correct answers we will use some

ILP Techniques. First we will give some preliminary definitions and results.

Definition 1: (subsumption). Let C and D be clauses. We sat that C sub-
sumes D, denoted as C ≥ D if there exists a substitution θ such as Cθ ⊆ D.
In order subsumption we will say that the clause C is more general than the

clause D (or dually D is more specific than C) if C subsumes D.

Definition 2: (implication). Let C and D be clauses. We sat that C logically
implies D, denoted as C |= D if every model of C is also a model of D.
In order implication we will say that the clause C is more general than the

clause D (or equivalently D is more specific than C) if C logically implies D.

Corollary 1. If C ≥ D then C |= D. The converted does not hold.

Lemma (Gottlob). Let C and D be clauses, which are non-tautologous. If
C |= D than C+ ≥ D+ and C− ≥ D−, where by C+ are denoted positive
literals in C and C− denotes negative literals in C.
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1. Correct answer
2.
a) incomplete answer
b)specialization
c)paraphrasing using concept definition

3.
a) partially correct answer
b)generalization

4. partially correct answer

5. wrong answer 6. wrong answer

8. wrong answer7. partially correct answer

Legend: User's answer logical model

Kernel - minimal  correct

Cover- maximal  correct

Fig. 1. Comparison and inference of logical forms

Following arguments mentioned in section 3 we can formulate the follow-
ing theorem:

Theorem. Let C be the clause representing the minimal correct answer of a
question, D be a clause representing the maximal correct answer of the same
question and U be a clause representing user’s answer on this question. Then U
is a correct answer iff K |= U and U |= C.

Proof: 1. Let U be a correct answer, hence there exists a substitution θ such as
θK ⊆ U , because U as a correct answer contains the logical model of minimal
correct answer. Form Definition 1 follows that K ≥ U . From Corollary 1 follows
that K |= U . Dually U as a correct answer includes in the logical model of the
maximal correct answer, hence there exists a substitution σ such as Uσ ⊆ C.
Form Definition 1 follows that U ≥ C. From Corollary 1 follows that U |= C.
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2. Let K |= U and U |= C. From Lemma (Gettlob) follows that K− ≥ U−

and U− ≥ C−. Hence there exists substitutions θ and σ such as K−θ ⊆ U− and
U−σ ⊆ C−. But negative literals in U represents the logical model of the user’s
answer. Hence the logical model of U contains K and includes in C. Hence U is
a correct answer.

Corollary 2. The minimal correct answer of a question is a least generalization
under implication (LGI) of all correct answers of this question.

Corollary 3. The maximal correct answer of a question is a greatest special-
ization under implication(GSI) of all correct answers of this question.

Hence for generating the set of minimal correct answer we can use some
ILP algorithms for generation of LGI and GSI. We will use a system RICH
(Relative Implication of Clauses of Horn) [13]. In RICH are implemented
algorithms for specialization and generalization under relative implication. Both
the set of clauses and background knowledge (BK) sets processed by RICH
are finite sets of function-free Horn clauses with some restrictions. RICH is an
empirical non-interactive single predicate learning system. RICH can generate
new predicates. RICH uses direct constructing of hypothese approach, instead of
seraching the hypotheses space. The main methods for constructing hypothesis
is covering approach, unification algorithm, anti-unification algorithm and
resolution. The main idea of the algorithm for inducing least generalization
under relative implication is sketched on Fig. 2:

Where S is the set that to be generalized, BK represents the background
knowledge set. Head contains head of the hypothesis generated by anti-
unification algorithm. Common is a greatest subset of S for which exists most
general unifier and DSet is its corresponding disagreement set resulted of uni-
fication algorithm. RCommon is a greatest subset of the set of all resolvents of
BK and DSet for which exists most general unifier and S’ is its corresponding
disagreement set resulted of unification algorithm. NewPredicates is a set of au-
timatically generated new predicates from S’. S” contains literals from S’ that
to be dropped.
The final hypothesis is constructed from literals in sets Head, Common,

RCommon and head literals from the set NewPRedicates. In more details al-
gorithm is presented in [13].
In application of RICH in STyLE-Parasite we do not have background

knowledge set.

5 Example

In these section we will show an example for generation of minimal and maximal
correct answers’ sets using ILP system RICH.
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S

Head

Common

DSet

BK

RCommon
S'

New
Predicates S''

Fig. 2. LGRI algorithm of system RICH

Question (1):
Each of the statements below describe a characteristic of one major type of
market. Which? Supports the building of homes, factories, shopping centres.
Some possible correct answers:

(2.1) This situation describes capital market.
(2.2) This is capital market.
(2.3) This characteristics describe capital market

The corresponding clauses created from Parasite’s logical model for each of
these answers are:

(3.1)
answer(N152):-theta(N144152,Object3,N143152),

capital_goods(N144152),
deal(N143152),situation(N153),
theta(N152,Agent3,N143152),
institutional_mechanism(N152),
capital_market(N152),market(N152),
associated_capital(N152),
theta(N150,Object4,N152),
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theta(N150,Agent4,N153),
describe(N150).

(3.2)
answer(N149):-theta(N144149,Object5,N143149),

capital_goods(N144149),deal(N143149),
theta(N149,Agent5,N143149),
institutional_mechanism(N149),
capital_market(N149),market(N149),
associated_capital(N149),
theta(N147,Pred1,N149),
theta(N147,Topic1,N1475072),
predication(N147).

(3.3)
answer(N159):-theta(N144159,Object1,N143159),

capital_goods(N144159),deal(N143159),
characteristic(N160),
theta(N159,Agent1,N143159),
institutional_mechanism(N159),
capital_market(N159),market(N159),
associated_capital(N159),
theta(N157,Object2,N159),
theta(N157,Agent2,N160),
describe(N157).

The genreated LGI (minimal set) of these correct answers’ set from RICH
system will be the following hypothesis:

(4)
answer(N5569):-institutional_mechanism(N5569),

capital_market(N5569),market(N5569),
associated_capital(N5569),
capital_goods(N5601), deal(N5633),
theta(N5569,Agent9,N5633),
theta(N5601,Object9,N5633).

The generated GSI (maximal set) of these correct answers’ set from RICH system
will be the following hypothesis:

(5)
answer(N152):-theta(N144152,Object3,N143152),

capital_goods(N144152),
deal(N143152),situation(N153),
theta(N152,Agent3,N143152),
institutional_mechanism(N152),
capital_market(N152), market(N152),
associated_capital(N152),
theta(N150,Object4,N152),
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theta(N150,Agent4,N153),
describe(N150),
theta(N147,Pred1,N152),
theta(N147,Topic1,N1475072),
predication(N147),
characteristic(N153).

For instance, let we have the following users’ answers of this question: (6a)
This is an institutional mechanism which deals with capital goods. (6b) This is
a financial market that operates with debt instruments.
The logical model created from Parasite of (6a) is:

answer(N140):- theta(N144140,Object6,N143140),
capital_goods(N144140),deal(N143140),
theta(N140,Agent6,N143140),
institutional_mechanism(N140),
capital_market(N140),market(N140),
associated_capital(N140),
theta(N141,Pred1,N140),
theta(N141,Topic1,N1475072),
predication(N141).

STyLE-Parasite will classifies (6a) as ”paraphrase of the correct answer”,
because LGI (4) is not a logical implication from (6a), but GSI(5) logically
implies (6a).

STyLE-Parasite will classifies (6b) as ”wrong answer”, because neither LGI
(4) is a logical implication from (6b), nor GSI(5) logically implies (6b).

6 Conclusion

One of the crucial points in implementation of complex learning systems is knowl-
edge base building. Non-automatic generation of minimal and maximal correct
answers’ sets is rather hard and requires extended knowledge about the system.
Presented approach allows automatic generation of minimal and maximal correct
answers’ sets and avoids necessity knowledge expert to be familiar with rather
complex internal data representation. This approach is independent of knowl-
edge domain of the learning system as far as Parasite’s lexicon and meaning
postulates base have to include this domain concepts. Generation of minimal and
maximal correct answers’ sets is a pre-process and STyLE-Parasite’s efficiency
does not depends of it during the learning sessions. Presented approach is a step
toward in free-text input processing.
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Abstract. The selection of an efficient physical schema is an NP-
complete problem. In this paper, we show that crucial parts of physical
database design can be smoothly modelled as a Dempster-Shafer appli-
cation. We exploit the properties of the Dempster-Shafer theory to model
explicitly a rich set of heuristics —used for the selection of an efficient
physical schema— into knowledge rules. These rules may be loaded into
a knowledge base, which, in turn, can be embedded in database design
tools.

1 Introduction

The design of databases takes place on several levels. One of these levels is the
so-called physical level, and the design of databases at this level is called phys-
ical database design. Physical database design aims to achieve efficient physical
schemas by organizing data in such way that the operations defined on the data
can be quickly processed and with low cost. Typical problems at the physical
level are the assignment of efficient storage structures to certain amounts of data
and the allocation of secondary indices to attributes. A storage structure may be
considered as a file arrangement, whether or not clustered on a certain attribute,
providing a way to access data. The clustering attribute is known as the primary
index. Secondary indices, also known as access structures, can be regarded as
auxiliary files that allow to retrieve parts of the data satisfying a certain selection
predicate without having to examine all available data. Updating the database,
causes an index to be updated to remain consistent with the new database state.
So, an index speeds up retrieval and slows down maintenance.
The number of physical schemas among which database designers have to

select a schema is enormous. The evaluation of a physical schema is a tedious
and error-prone process. One should understand the workings of a particular
database management system. Therefore, there is a practical need to develop
tools that assist database designers in the selection of physical schemas. A sig-
nificant number of efforts has been reported to develop such tools [1,2,3,4,5,8].
Most of the efforts implicitly apply a limited number of heuristics to avoid the
evaluation of all schemas. Uncertainty and ignorance, which appear to charac-
terize many of these heuristics, are hardly taken into account.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 111–121, 2002.
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In this paper, we show that the selection of crucial parts of a physical schema
can be smoothly modelled as a Dempster-Shafer application. As a consequence,
the properties of the Dempster-Shafer theory [9] can be used to support the selec-
tion process. Based on this theory, we present an approach that explicitly models
a rich set of heuristics —used for the selection of an efficient schema— into pro-
duction rules to which a measure of uncertainty is attached. These heuristics can
be loaded in a knowledge base that might be used in physical database design
tools.
We note that previous work in this field either apply (a limited number of)

heuristics in an implicit way and do not take the uncertainty and ignorance into
account, which apparently characterize many of these heuristics. We are aware
of only one effort [4] that has attempted to take the uncertainty of heuristics
into account. This effort captured uncertainty by the well known concept of
certainty factors [10]. Unfortunately, this concept does not have a theoretical
foundation. Furthermore, [4] is focussed towards network databases, while we
focus on relational databases. Perhaps unnecessarily, we note that network and
relational databases fundamentally differ from each other.

2 Physical Database Design

As already noticed, the outcome of physical database design is a physical schema.
In the selection of a physical schema, the operations defined on the data, called
the workload, play a crucial role. A physical schema that may be good or optimal
for a certain workload, may be bad for another workload.
Basically, we may distinguish four kinds of database operations on a relational

schema1 namely, insertions, deletions, updates, and queries. In general, a number
of operations of each type are defined on a relational schema. To each operation
a weight is assigned, which is based on the frequency and the importance of the
operation.
Based on the relational schema, the workload, and some other database char-

acteristics, such as the cardinality of a relation, length of a tuple, number of pages
to store a relation, etc., a storage structure and a set of indices should be se-
lected for each relation. A storage structure determines the order of the tuples
of a relation on disk. If this order is determined by an attribute, this attribute
is called the ordering attribute. An index is a set of pairs (key value, TID-list).
The key values are a subset of the domain of the indexed attribute, and a tuple
identifier (TID) in the TID-list identifies a tuple possessing the key value.
An index on an ordering attribute is called a clustering index and an index

on a non-ordering attribute is called a secondary index. We note that a storage
structure is also associated with each index.
In Figure 1, we depict how the notions storage structure, ordering attribute,

and clustering index are related. Furthermore, for a number of storage structures,
1 A relational schema is a set of relations. A relation R is defined over some attributes

α1, α2, ..., αn, and is a subset of the Cartesian product dom(α1) × dom(α2) × ... ×
dom(αn), in which dom(αj) is the domain of attribute αj .
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we have indicated between brackets whether they have an ordering attribute or
not. If a storage structure has an ordering attribute, we have indicated whether
the ordering attribute is indexed or not. For example, the storage structure Heap

storage structure

( Heap, Isam, Btree, Hash)

ordering attribute

no ordering attribute

(Isam, Hash, Btree)

(Heap)

clustering index
(Btree)

no clustering index
(Isam, Hash)

Fig. 1. Several kind of storage structures

does not have an ordering attribute, and, therefore, it is unordered. Storage
structures that have an ordering attribute are Isam, Btree, and Hashing [7].
In general, the way a clustering index is organized depends on the storage

structure to which the clustering index is related. For example, the storage struc-
ture Btree in Ingres allocates an index to the ordering attribute (resulting into
a clustering index), and to this clustering index a pre-defined storage structure
is assigned.
We focus on the selection of a storage structure and a set of indices for each

relation, and refer to it as physical database design. Although our description
does not cover the overall problem of physical design, it covers the most difficult
and crucial parts [3].

3 Physical Schema

Before formalizing the notion of physical schema, we outline the assumptions on
which the definition of a physical schema is based.
We assume that either a secondary index or a clustering index can be allo-

cated on an attribute (but not both). The way a clustering index is stored is
assumed to be fixed. Exactly one storage structure can be assigned to a relation.
The storage structures that are considered are Heap, Isam, Btree, and Hashing.
Since these storage structures are concerned with the arrangement of tuples of
a single relation on disk, we do not consider the possibility to absorb a relation
in another relation. As a consequence, we assume that a page contains tuples of
exactly one relation. A last assumption is that indices and ordering attributes
concern single attributes. A physical schema for a single relation is now defined
as follows.

Def. 1 Let R be a relation with attributes α1, α2, ..., αn. A physical schema pR

corresponding to R is an element of PR, in which
PR = {(x0(A0), {xi(Ai) | i = 1, 2, .., m}) | m ∈ IN ;

∀i, j ∈ {0, 1, 2, ...m} : i �= j ⇒ Ai ∩ Aj = ∅; |A0| ≤ 1;
∀i > 0 : |Ai| = 1;∀i ≥ 0 : Ai ⊂ {α1, α2, ..., αn};
x0, xi are storage structures; |A0| = 0⇒ x0 = Heap}
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The expression x0(A0) means that a relation is stored as x0 and ordered on
the set of attributes A0. We note that if a relation is stored as Heap, then A0
is the empty set, else A0 contains exactly one element. The expression xi(Ai)
represents that a secondary index is allocated to the set of attributes Ai and is
stored as xi. Note, Ai consists of exactly one element, since we restrict ourselves
to single attribute indices. So, extension of Def. 1 by multi-attribute indices is
straightforward.
An (overall) physical schema for a set of relations is defined as the union of

the selected physical schema for each relation.
We note that the selection of physical schemas per relation is justified in [11].
The following example illustrates the notion of physical schemas. Since the

number of elements of a set Ai, i ≥ 0, is zero or one, we write xi() and xi(αi)
instead of xi({}) and xi({αi}) respectively. For convenience’s sake, the set
brackets are omitted.

Example 1 Consider the following relational schema:
Person(per#, first name, last name, birth date, city),
Vehicle(veh#, model, color, doors, body, manufacturer)
Owns(per#, veh#, money paid)
Two overall physical schemas for the above-mentioned relational schema are
given below.
1. ( (Heap(),{Btree(city), Btree(last name)}), (Hash(veh#), {}), (Heap(),{}))
2. ( (Heap(),{}), (Heap(),{}), (Btree(per#), {Btree(money paid)}) )
In the first schema, the relation Person is stored as Heap and two secondary
indices, both stored as Btrees, to the attributes city and last name respectively
are allocated. The relation Vehicle is hashed on the attribute veh#. The relation
Owns is stored as Heap. ✷
In the second schema, the relations Person and Vehicle are stored as Heap.

The relation Owns is stored as Btree, ordered on attribute per#, and a secondary
index, stored as Btree, to money paid is allocated.

4 Heuristics

After analysing about 60 heuristics used by experts for physical database de-
sign, we observed the following. First, the heuristics consist of a condition and
conclusion part (see Figure 2). Second, experts have apparently no difficulties
to translate qualitative notions into quantitative measures. In general this is a
tough task. In Heuristic 1 of Figure 2, a quantification of the notion small is
given between brackets. Third, heuristics have an uncertain character. A heuris-
tic works well in many cases but not in all cases. Database administrators are
able to estimate in how many percent of the cases a heuristic may be successfully
applied. For example, applying Heuristic 1 of Figure 2 results in 90% of the cases
into Heap as storage structure. The heuristic says nothing about the remaining
10% implying ignorance in these cases. We note that the latter information is
not explicitly captured in Heuristic 1. Fourth, we may distinguish two types of
heuristics.
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Heuristic 1:
IF a relation is small (< 6 pages)
THEN Heap is often (90%) an adequate storage structure

Heuristic 2:
IF the more the percentage of operations that changes

the value of an attribute in a workload exceeds 10%
THEN the more this attribute is not an index candidate

Fig. 2. Examples of some heuristics

1. The belief in the conclusion(s) is based on the fact whether the condition
part is true or not. For example, in Heuristic 1 of Figure 2, the belief that a
Heap storage structure is chosen for a small relation is independent of how
small the relation is.

2. The belief in the conclusion(s) is dependent of the extent to which a condition
part is satisfied. For example, the idea behind Heuristic 2 of Figure 2 is
that if the number of operations in a workload that changes an attribute
αh increases, then the belief that αh is not an index candidate grows. To
represent this uncertain character, it is not sufficient to represent heuristics
only with a condition and conclusion part.

For the time being, we represent the heuristics of type 2, thus for which holds
that the belief in the conclusion increases (or decreases) if the extent to which
the conditions are satisfied increases (decreases), as follows.
IF (conditions(y%)) ∧ (y ≥ y0) THEN conclusion with belief f(y − y0)
We note that y is the actual percentage to which the conditions are satisfied,
y0 is the minimal required percentage in order to draw conclusion, and f(y) is
a function of y. The belief in conclusion increases (or decreases) if the value of
y − y0 becomes higher (smaller).

5 A Dempster-Shafer Approach

We feel that the Dempster-Shafer theory, as a theory of evidence [6], is a suitable
theory to capture the uncertainty contained in the heuristics used by database
designers. Before illustrating this, we give a brief description of the theory in
the context of physical database design. We start with defining what should be
understood by all permitted overall physical schemas for a relational schema in
which r relations are involved.

Def. 2 Let PR (see Def. 1)be the set of all permitted physical schemas cor-
responding to a relation R having attributes α1, α2, ..., αn. The set of per-
mitted overall physical schemas for a relational schema in which r relations,
R1, R2, ..., Rr, are involved, called the frame of discernment, is PR1,R2,...,Rr =
PR1 ×PR2 × ...×PRr . In the following, PR1,R2,...,Rr is abbreviated as PDB.

The following example lists all physical schemas corresponding to a relation.
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Example 2 Consider the relation Owner(per#, veh#, money paid), which has
been introduced in Example 1. We assume that a relation is either stored as a
Heap or hashed on a single attribute. A secondary index is stored as a Btree.
In the following, we write pi for the i-th physical schema of relation Owner

instead of pOwner
i . The set of all permitted physical schemas for Owner, is

POwner = {p1, p2, p3, ..., p20}. The schemas p1, p2, p3, ..., p20 are listed in Ta-
ble 1. The physical schema p1 means that Owner is stored as Heap and no

Table 1. Permitted physical schemas for Owner

p1 = (Heap(), {})
p2 = (Heap(), {Btree(per#)})
p3 = (Heap(), {Btree(veh#)})
p4 = (Heap(), {Btree(money paid)})
p5 = (Heap(), {Btree(per#), Btree(veh#)})
p6 = (Heap(), {Btree(per#), Btree( money paid)})
p7 = (Heap(), {Btree(veh#), Btree( money paid)})
p8 = (Heap(), {Btree(per#), Btree(veh#), Btree( money paid)})
p9 = (Hash(per#), {})
p10 = (Hash(per#), {Btree(veh#)})
p11 = (Hash(per#), {Btree(money paid)})
p12 = (Hash(per#), {Btree(veh#), Btree( money paid) })
p13 = (Hash(veh#), {})
p14 = (Hash(veh#), {Btree(per#)})
p15 = (Hash(veh#), {Btree(money paid)})
p16 = (Hash(veh#), {Btree(per#), Btree( money paid) })
p17 = (Hash(money paid), {})
p18 = (Hash(money paid), {Btree(veh#)})
p19 = (Hash(money paid), {Btree(money paid)})
p20 = (Hash(money paid), {Btree(per#), Btree(veh#)} )

secondary indices are allocated, while p12 means that Owner is hashed on the
attribute per# and secondary indices —both stored as Btrees— are allocated to
attributes veh# and money paid. ✷

Def. 3 Let PDB be the set of all permitted overall physical schemas for a re-
lational schema. Let IP (PDB) be the power set of PDB, then a function
m : IP (PDB)→ [0, 1] is called a basic probability assignment (bpa) whenever

m(∅) = 0 and
∑

P⊆PDB

m(P ) = 1

The quantity m(P ) is called P ’s basic probability number and it is understood to
be the measure of belief that is exactly committed to the set of overall physical
schemas P . The total belief in P , (Bel(P )), is the sum of the basic probability
numbers of all subsets PP of P . The relation between belief and bpa is defined
as follows.
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Def. 4 A function Bel is called a belief function over PDB if it is given by the
following equation for some bpa m : IP (PDB)→ [0, 1].

Bel(P ) =
∑

PP⊆P⊆IP (PDB)

m(PP) (1)

A basic probability assignment induces a belief function and conversely. Two
other notions that are related with a belief function are plausibility and igno-
rance. The plausibility in a set of physical schemas P expresses the maximal
belief in this set, and is defined as Pl(P ) = 1 − Bel(PC), in which PC is the
complement of P relative to PDB. The ignorance with regard to a set of overall
physical schemas P , is defined as Ig(P ) = Pl(P )− Bel(P ).

5.1 Knowledge Rules

We continue by illustrating how to model the heuristics into knowledge rules.
A knowledge rule has an antecedent and a consequent. With the consequent, a
bpa is associated that expresses the belief that is committed to the consequent.
Since the conclusion(s) of both types of heuristics of Section 4 actually sup-

port a number of overall physical schemas, the consequent part of a knowledge
rule should support this property. In the following, we derive the knowledge
rule corresponding to Heuristic 1 of Figure 2.

Heuristic 1 Let the belief in a Heap storage structure for small tables
be 0.9 and PRl

Heap be the set of all permitted physical schemas storing relation Rl

as Heap, whatever the set of secondary indices —and their storage structures—
is. We note that PRl

Heap formally means:

{(Heap(), {xi(Ai) | i = 1, 2, .., m}) | m ∈ IN ;∀i, j ∈ {0, 1, 2, ...m} :
i �= j ⇒ Ai ∩ Aj = ∅;∀i ≥ 1 : (Ai ∈ {α1, α2, ..., αn} ∧ |Ai| = 1);
xi is a storage structure}

We note that α1, α2, ..., αn are attributes of relation Rl.
The knowledge rule (k1) corresponding to Heuristic 1 is given below. In this

rule nRl
pag represents the number of pages required to store relation Rl.

IF nRl
pag < 6 pages

THEN
PRl

Heap × PDB\Rl ; m(PRl

Heap × PDB\Rl) = 0.9

PDB; m(PDB) = 0.1

We note that PRl

Heap × PDB\Rl is an abbreviation for:
PR1 × PR2 × ... × PRl−1 × PRl

Heap × PRl+1 × ... × PRr

Let us explain the belief value committed to PDB. Heuristic 1 of Figure
2 tells us that if a physical table is small we choose to store relation Rl as
Heap with a belief of 0.9. However, no statement is made for the remaining



118 S. Choenni and H. Blanken

belief of 0.1. In this case, no preference is given to any overall physical schema.
Therefore, this belief is committed to the whole frame of discernment. In this
way ignorance is modelled. ✷

100%

1.0

bpa

y
actual percents y

0

Fig. 3. A possible function between the fraction satisfying a condition and the bpa

Let us recall the meaning of the heuristic of type 2 in Section 4, before giving
the corresponding knowledge rule. Suppose that y is the actual percentage that
satisfies the condition and y0 the required percentage that has to be satisfied
for committing a non-zero belief to a set of overall physical schemas. Then, the
heuristic of this type implies that the belief in a set of overall physical schemas
depends on y. In general, the larger y − y0, the stronger the belief in this set of
overall physical schemas. Thus, the bpa in modelling heuristics of type 2 will be
a function of y, which generally have the form of Figure 3. In the following, we
model Heuristic 2 of Figure 2.

Heuristic 2 Let ChW (αh) be the percentage of changes on an attribute
αh of relation Rl by workload W and f(ChW (αh)) is a function like the one in
Figure 3. Then, Heuristic 2 can be modelled as knowledge rule k2:

IF ChW (αh) > 10%
THEN

PRl¬αh
× PDB\Rl ;m(PRl¬αh

× PDB\Rl) = f(ChW (αh))

PDB; m(PDB) = 1− f(ChW (αh))
The expression PRl¬αh

is a shorthand for:

{(x0(A0), {xi(Ai) | i = 1, 2, .., m}) | m ∈ IN ;∀i, j ∈ {0, 1, 2, ...m} :
i �= j ⇒ Ai ∩ Aj = ∅;|A0| ≤ 1;∀i > 0 : |Ai| = 1;∀i ≥ 0 :
Ai ⊂ {α1, α2, ..., αn} \ {αh}; x0, xi are storage structures; |A0| = 0⇒ x0 = Heap}
We note that the expression PRl¬αh

× PDB\Rl represents the set of physical
schemas storing relation Rl in such a way that Rl is neither ordered on attribute
αh nor a secondary index is allocated on αh. ✷

We assume that experts are able to give a reliable belief function for a knowl-
edge rule. If experts are not able to estimate a belief function for a knowledge rule
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corresponding to a heuristic that is used by them, then the heuristic probably
has not taken shape yet. Such a rule might be better omitted from a knowledge
base. Consequences of variations in belief functions is a topic for further research.

5.2 Combining Knowledge Rules

Each knowledge rule supports or rejects a set of overall physical schemas with
a certain belief. Intuitively, if two rules support the same set of overall physical
schemas P , then the combination of these rules should result into a higher belief
for P , while if one of the rules supports P and the other rule rejects P , then
this should result into a lower belief for P . The combination rule of Dempster
possesses these properties and looks as follows:

m1 ⊕ m2(P ) = K−1
∑

i, j
P 1

i ∩ P 2
j = P

m1(P 1
i )m2(P 2

j )

in which P is a non empty set and

K =
∑

i, j
P 1

i ∩ P 2
j �= ∅

m1(P 1
i )m2(P 2

j )

Bel1 ⊕Bel2 is the belief function induced by m1 ⊕m2. The following example
illustrates the use of the combination rule.

Example 3 Consider a relational schema consisting of the relation Owner(per#,
veh#, money paid) (introduced in Example 1). All physical schemas for Owner,
POwner = {p1, p2, p3, ..., p20} are listed in Table 1.
Let us assume that the workload W defined on the schema is such that the

percentage of modifications on veh#, ChW (veh#), is 15%. This fact induces the
execution of rule k2 (see Section 5), which neither supports a secondary index
on veh# nor an ordering on veh#. Suppose this results in the following bpa:
m2({p1, p2, p4, p6, p9, p11, p17, p19}) = m2(P 2

1 ) = 0.6 and m2(POwner) = 0.4.
Suppose that another rule k3, results in (a secondary index on veh#):

m3({p3, p5, p7, p8, p10, p12, p18, p20}) = m3(P 3
1 ) = 0.9 and m3(POwner) = 0.1.

And, a third rule k4, supports hashing on the attributes veh# and per# with the
following bpa: m4({p9, p10, p11, p12}) = m4(P 4

1 ) = 0.6, m4({p13, p14, p15, p16}) =
m4(P 4

2 ) = 0.3, and m4(POwner) = 0.1.
Combining rules k2 and k3, which are conflicting, results in a combined bpa:

m2 ⊕ m3(P 3
1 ) = 0.36/0.46 = 0.78 m2 ⊕ m3(P 2

1 ) = 0.06/0.46 = 0.13 m2 ⊕
m3(POwner) = 0.04/0.46 = 0.09 We note that the K is 0.46.
The combination of m2 ⊕ m3 with m4, written as m2−4, can be carried out

in the same way, and the results are: For the set {p10, p12} the m2−4, Bel, and
Pl are 0.64, 0.64 and 0.83 respectively. For {p9, p11} m2−4, Bel, and Pl are 0.11,
0.11, and 0.20 respectively. For P 3

1 we obtain the values 0.11, 0.75, and 0.83 for
m2−4, Bel and Pl respectively. For P 4

1 we obtain the values 0.07, 0.71, and 0.95
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, for P 4
2 , we obtain 0.04, 0.04, and 0.05, for P 2

1 we obtain 0.01, 0.12, and 0.20 for
m2−4, Bel, and Pl respectively. For POwner these values are 0.01, 0.99, and 0.99
We note that the K is 0.73 and due to roundings Bel(POwner) and Pl(POwner)
take the value 0.99 in stead of 1.0.
The highest belief, after combining the three rules, is assigned to the set of

schemas {p10, p12}. We note that the high total belief in the sets P 3
1 , P 4

1 and
POwner is due to the fact that these sets contain the schemas p10 and p12. ✷

The combination of three rules has resulted into the support of several physi-
cal schemas with different belief values. If the bpa’s assigned to the three knowl-
edge rules are the real bpa values, there is a high belief that a good physical
schema is among the schemas p10 and p12. By passing both schemas to the
optimizer, we may decide which physical schema of two is the best one.

6 Conclusions & Further Research

Since the selection of efficient physical schemas is a tough process, there is a
practical need for tools that assist database administrators in this process. A
significant number of research has been reported to develop such tools. Most
of the efforts implicitly apply a few heuristics to avoid the evaluation of all
schemas, while database administrators in real-life apply a rich set of heuristics
to select physical schemas. Our goal is to exploit this rich set of heuristics in tools
for physical database design. Therefore, we have analysed about 60 heuristics
used by database administrators in real-life. These heuristics contain a degree of
uncertainty and ignorance. We have proposed an approach to model explicitly
these heuristics into knowledge rules by using the Dempster-Shafer theory, which
appeared to be a suitable theory for our purposes. These knowledge rules may
be loaded in a knowledge base, which, in turn, can be embedded in physical
database design tools.
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Abstract. This paper presents an architecture for generating online
and written technical documentation. Action plans are generated from
an underlying model of the system being documented, which may be
post-edited to refine the output. An NLG system is built based on this
architecture allowing the generation of documentation in Russian and
English. A range of built-in tools enable editing of linguistic and domain
knowledge at any point in document processing. This architecture is in-
tended to help an author select the right balance between automatic and
controlled generation for a specific application.

1 Introduction

Natural Language Generation (NLG) provides several advantages over other
methods of creating technical documentation. It allows consistent versions of a
document to be produced possessing various properties, with explanations and
layout depending on the user’s expertise and requirements. NLG is particularly
advantageous for producing multi-lingual documents. Compared with Machine
Translation (MT) NLG systems can produce better quality text, less likely to
require post-processing. In addition, using NLG ensures that versions generated
in different languages are consistent with a domain being documented and be-
tween each other [3]. Employing NLG should result in less cost in document
maintenance, especially when the documented domain changes often, requiring
documentation updates. The use of NLG is particularly justified when [4]:

– The data to be communicated is already present in an existing database;
– The domain data changes frequently and there is a requirement for consis-
tency between a document and the domain described;

– There is a need for producing different versions of a document depending on
the user requirements, level of expertise and the desired layout of a document;

– There is a need for producing multi-lingual versions of a document and there
is no possibility for post-editing a document, for example, in on-line systems.

However, the output of an NLG system is still unlikely to be as good as
that of a competent human author, who might be able to improve the structure,
content and language used in a document [3].
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There is therefore a need to ensure that a documentation system allows the
task of creating high quality documentation to be shared appropriately between
the system and human. While a fully automated system may be appropriate in
some contexts, in others the author (henceforth referred to as user) should be
allowed to intervene.

Another important consideration is the feasibility of editing the linguistic
and domain resources. This is important in order to provide flexibility for the
description of other systems/domains and to ensure that the documentation is
up-to-date with the actual system specification.

2 Background

2.1 Limitations of Existing Approaches

Existing systems tend to fall into two groups, which can be referred to as “au-
tomatic” or “user-assisted”. Automatic systems produce text directly from the
domain knowledge representation, with the technical author having no role (e.g.,
ILEX[9], IDAS[5], and HyperDoc[6]). ILEX and IDAS are hypertext-based tools
for exploring electronic catalogues and complex technical systems respectively.
They automatically produce textual descriptions in response to the user clicking
on a hyperlink corresponding a topic to be explored. HyperDoc is a system for
producing instructions that could be incorporated in manuals for home appli-
ances, like VCRs. These instructions represent a sequence of actions which the
user should carry out in order to perform some task. The system generates in-
structions given the initial state of a system and the desired state (i.e. the user’s
goal).

However useful automatic text generation is, the output of most of these
systems is non-optimal as the text lacks rhetorical cohesion and the variety of
sentence patterns is small [6]. Attempts have therefore been made to enable
a human technical author to support the text production process in order to
improve text quality [3,1]. We refer to this approach as user-assisted.

The most usual scenario for user-assisted generation is that the user creates
a plan in some form, and this plan is then passed to the generation subsystem to
produce an output text [2,3]. Text in several languages may be produced from
a single plan. In contrast with automatic systems, user-assisted systems are
normally used to generate printable documentation (e.g., Drafter [3], AGILE
[1], TechDoc [2]). Text generated by these three systems is similar to that of
HyperDoc and consists of a set of operating procedures. Each procedure is a
sequence of actions the user should perform to achieve some goal.

The quality of output text of user-assisted NLG systems is normally better
than that of automatic systems [3]. However, the user has to perform a great
deal of work to create the initial procedure plans. This is clearly not ideal where
we want to create new forms of documentation quickly, given new tasks and
contexts, as might occur in an online system. The relationship between the user
and system in these latter systems is also fairly rigid, with the author given
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a specific role of procedure plan editor. We aim to provide the author with a
wide range of roles, from a passive one, simply making use of existing tools and
knowledge base, to an active one, modifying and editing resources, plans and
texts as required.

The second practical problem with existing systems is the difficulty in editing
knowledge resources. This is important in order to modify the system:

– Given revised specifications and designs;
– For the description of a new device/domain.

While existing systems provide some facilities for knowledge editing, these do
not always allow for the easy editing of all parts of a knowledge base, or they are
poorly integrated. For example, Drafter’s domain knowledge base consists of the
two levels – T-box and A-box. T-box contains concepts, actions, relations that
are relevant in the software domain. A-box contains a set of assertions modelling
a procedure for performing some task. T-box is a static resource which is provided
with the system so the user can not easily change it [3]. This makes Drafter
difficult to use for documenting new systems and domains. The AGILE system,
largely based on Drafter, has similar functionality and the same restrictions.

HyperDoc supports extensive domain knowledge engineering, providing a
tool for graphical modelling the user interface of a system being documented.
However, domain engineering is only possible within a pre-defined set of linguistic
and domain primitives. Changing this set at the system run-time is difficult [6].

3 A New Solution

We have developed an NLG system that allows the user to choose an appropriate
balance between automatic and user-assisted generation. Our system provides
various means for domain and linguistic knowledge modelling and editing. The
system may be adapted for production texts pertinent to different technical
systems and domains. The user defines whether to use the system to produce
text automatically to obtain a moderate quality text or put more emphasis on
editing the text representation to improve its quality.

Our system, called FlexyCAT (flexible computer-aided technical writer), con-
sists of five main parts: knowledge representation module, plan generation mod-
ule, plan post-editing module, the generator and linguistic knowledge represen-
tation/editing module. The FlexyCAT’s architecture is depicted in figure 1.

3.1 Linguistic Knowledge Base and Editing Tools and Text
Generator

The goal of our project is to produce instructional texts in Russian and English.
Because Russian has a rich morphology requiring complicated lexical agreement,
it was strongly desirable to avoid the use of canned text. We have tried to keep
both the implementation of the linguistic subsystem and its interface with the
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Fig. 1. The proposed NLG system architecture

user and other subsystems as simple as possible. To enable the non-specialist user
to edit linguistic knowledge, it was desirable to avoid using relatively complex
tools such as KPML. Fortunately, the restricted domain of technical documen-
tation we are working with encompasses a restricted set of possible sentence
patterns, enabling us to use fairly simple means for text generation.

The most effective way to generate multilingual text involves the production
of text in each language independently, based on a common semantic represen-
tation [4]. In this case it is possible to ensure that the generated versions of the
text are semantically equivalent, and thus consistent one with another.

To implement this, we had to create a transparent system of encoding the
linguistic knowledge, allowing for storing counterparts of linguistic entries in
both languages and using them in a unified manner, capturing both universal
and language-specific features for generation purposes. This is relevant both for
linguistic primitives and more complex structures, up to a text.

We have implemented our linguistic processing subsystem making use of the
principles of Role and Reference Grammar [10] and Meaning-Text Theory [8].

Texts generated in our system, like in Drafter or HyperDoc, comprise a set
of procedures containing steps (actions) the user is to perform. Each action
is described in a single sentence. Each sentence constituent clause contains a
verb (head of a clause) and noun phrases representing a subject, object and a
complement. A clause consistency structure represents its semantic structure.
The semantic structure of a clause is mapped onto a template defining such
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syntactic features as linear word order, mood and tense. The information on
word agreement is defined largely at the semantic level and is partially stored in
the lexicon. See a simplified example in figure 2.

Fig. 2. A semantic structure and template of the clause “User inserts power connector
into the mains”

This approach enables us to map the same semantic structure onto different
syntactic ones. For example, a clause “Insert power connector into the mains”
may be expressed as a purpose “To insert power connector into the mains”,
means “By inserting power connector into the mains” or condition “If power
connector is inserted into the mains”, etc.

We employed an object-oriented representation for the description of all lin-
guistic components, from parts of speech through to clauses and sentences, so
that the bigger structures are built from more elementary ones and all of them
have information relevant for generation in both languages. This enabled us to
create an interface for construction, editing and maintenance of linguistic knowl-
edge using a convenient GUI: see figure 3. The user is not required to have any
specific expertise except for the basic knowledge of the languages involved.

Sentences are subsequently built using permitted clause combinations, allow-
ing the production of about 20 different sentence structures in two languages.
The versions generated in each language have the same syntactic features, like
the mood and tense. The following example illustrates how the same meaning
may be expressed using different sentence structures:

Press menu button to show TV menu
Show TV menu by pressing menu button

Corresponding Russian versions:

The sentence structure can be assigned either heuristically by the planner or
explicitly by the user.

Although our linguistic module allows for text generation in two languages,
it is likely that the methods used will enable generation in other languages, in-
cluding the dependent-marking accusative languages [10] (most Slavic languages,
German etc.)
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Fig. 3. Screenshot of the system

3.2 OO Knowledge Representation Module

We employ an Object-Oriented (OO) approach for the specification of the do-
main model. An entity to be described is represented as a set of all its elementary
components. The description of each elementary component includes the speci-
fication of events, properties and actions.

We have created a GUI that allows for visual manipulation of an object
structure. Figure 3 shows a part of the system GUI with the domain knowledge
representation module and a part of the linguistic knowledge representation sub-
system.

This GUI enables a technical author to change the object dependencies, ac-
tions and properties to ensure that object specification is up-to-date with the
system design. New objects can be created either from scratch or based on ex-
isting ones.

For example, we can adapt the specification of a TV to create a description
of a VCR. We re-use many of the existing objects (for example, “power button”
and “power connector”), slightly amending their functionality if needed to take
into account the VCR’s properties. This allows multilingual documentation for
a new device to be developed fairly quickly.

3.3 Procedure Plan Generator and Plan Editor

From the specification of the system being documented the STRIPS-like planner
[7] generates procedure plans. The user chooses the initial and final states of
the system, and the planner automatically builds a sequence of steps which
fulfils the user goal given the search conditions. The description of each step
contains its semantic representation, desired mood and rhetorical information.
The mood and type of rhetorical relation between sentences is generated using
default heuristics. An example plan of a typical procedure for turning on a TV
(corresponding to the specification given in figure 3) is shown in figure 4.
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� Insert power connector → Power TV
� Press power button → Turn on TV

Fig. 4. An example procedure plan

Based on the plan depicted in figure 4, the output in figure 5 may be pro-
duced.

1. Insert power connector into the mains to power TV
2. Press power button to turn TV on

Fig. 5. An example of generated text

An automatically generated procedure plan may be non-optimal [3]. Indeed,
the text given in figure 5 lacks rhetorical cohesion inherent to a good quality
text.

Our system offers the possibility for the user to edit a generated procedure
plan to yield a better quality text. This editing includes adding/editing/deleting
individual steps of the plan, changing the rhetorical markers denoting their rela-
tionships and modifying the structure of sentences expressing individual steps.
In our example we may add a header to the procedure and changed the sentence
structure of the first step from “Purpose” to “Condition” and from “Purpose”
to “Means” for the second step. See figure 6.

Fig. 6. Example of sentence structure change

The output after the plan refinement is a more coherent and comprehensible
text. See figure 7.

Note that the user edits not the output text, but its plan, i.e. its semantic
representation. Based on that representation texts may be generated indepen-
dently in as many languages as needed. If the plan changes in the future (for
example, to be up-to-date with the system specification), documentation may
be re-generated in every language involved at no extra cost.
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To turn on TV:
1. If TV is not powered, insert power connector to the mains
2. Turn TV on by pressing power button

Fig. 7. An example of text after refining a plan

A manual does not consist of just one procedure, but includes a number of
them arranged in some order. Our system provides for the possibility of compos-
ing a plan of the entire document from individual procedure plans. An interac-
tive tool has been created that enables the technical author to pick up procedure
plans from a collection of previously generated ones and place them in an ap-
propriate order. When necessary, plan grouping and additional plan editing may
be performed. Based on a composed document plan it is possible to generate
documents with a consistent content in multiple languages.

3.4 An Integrated CATW

All the parts described so far are incorporated into an integrated system with a
common user interface. This integration allows the user to control text content
and quality at various inter-dependent levels. The common OO approach used
at all the levels of system design enabled easy module interfacing.

A common GUI simplifies use of components of the subsystems by other mod-
ules. For example, in the KR module the name of every object is represented
by the class “nominal” of the linguistic primitives database. When creating a
new object, e.g. “Power Button”, the user assigns a name to the object by drag-
ging and dropping a linguistic primitive “Power Button” from the dictionary of
nominals into the corresponding GUI element of the KR. After that, the corre-
sponding slot in the object structure is filled with the nominal “Power button”.
This nominal already “knows” how to behave, e.g., to get agreement with other
lexemes in a clause both in English and Russian, or how to represent itself as a
string to display a title of an object in the GUI. Similarly, the planning subsystem
can easily access objects of the KR module and their actions.

Our system also provides the user with flexibility to amend linguistic or
domain knowledge at any stage of document design. For example, the user can
create a new linguistic entry describing an object or an action. Also the user can
modify a domain model, e.g., by creating a new object or changing the object
properties or actions. After the domain model or linguistic knowledge editing
is complete, the changes made will be immediately proliferated though all the
relevant parts of the text plan and the resultant text.

3.5 Using the Architecture in Interactive Systems

At the moment our system is only intended for the production of printable docu-
ments. We expect that our architecture can be used also for building interactive
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documenting systems (on-line help systems, interactive tutoring/simulation sys-
tems, etc.) We can re-use many resources used for the creation of a printed
version. The method for representing the domain knowledge allows us to gener-
ate a wide range of explanations and instructions, answering queries like: ‘What
is it? ’, ‘What is it used for? ’, ‘How do I...? ’, and context specific questions:
‘What should I do next? ’, ‘What do I do it for? ’, etc. It is possible to query a
domain model by object, type of object, properties, actions, or events. Below
there is a possible scenario of using the architecture in an on-line system.

The user asked the system for TV control ‘How do I turn TV on? ’. The
system searches among all the available actions for the one having an effect ‘TV
is turned on’. The same domain model is used as for the generation of a printed
version. The action ‘Turn on TV ’ is picked up. Then the system looks up in the
scope of previously composed and edited plans to see if there are any containing
that action. If one is found, it is offered to the user as an answer to his/her query,
like the one in figure 7. If no pre-composed procedure plan is found, a new one
is generated, like the one in figure 5.

The advantage of this approach to the generation of interactive documents is
that it always gives an answer, in a form of a good quality text if the pre-edited
plan conforming to the user request exists, and in a form of readable and correct
text otherwise.

4 Advantages of the Architecture

Our architecture combines many advantages of other NLG systems, while pro-
viding some additional functionality.

Firstly, it provides a facility for automatic text generation, like HyperDoc,
alleviating the work of technical author. The time to create a domain model and
producing an output text in two languages is in some cases comparable to the
time taken to write a version of the text in a single language. At the same time,
it enables the user to control what the system produces, like Drafter or TechDoc,
when user wants to produce a better quality text.

Secondly, our generation system, while simple, avoids the use of canned text
[2,9]. This allows the generation of grammatical texts in Russian and English
possessing fairly rich structure and facilitates system maintenance. If canned
text is used, when the system specification or context changes, the author has
to locate and change all relevant text fragments, in all languages supported.

Thirdly, it allows for knowledge re-use. This is relevant both for the domain
and linguistic knowledge. Knowledge reuse is possible at two levels:

– When creating a new object description based on a previously created one,
it is possible to reuse many common elements of both the linguistic and
domain knowledge bases.

– The architecture enables using the same domain and linguistic knowledge
both for the creation of a printable version of document and for building on-
line interactive explanatory system. By this, the overhead of using existing
resources for the creation of another type of documentation is reduced.
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5 Conclusion and Further Work

We present an NLG system for creating printable technical documentation, able
to generate documents in multiple languages. The system combines advantages
of operating with a simulation model of the documented system, with repre-
sentations that facilitate post-editing and language generation. The system can
currently be used to generate offline printed documentation, but is also suitable
for online interactive documentation. In that case, the simulation model can be
invoked when needed to answer unusual questions, while the post-edited plans
can be retrieved to provide more refined answers to commonly asked queries. We
are currently working on the evaluation of the system.
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Abstract. Linguistic negation processing is a challenging problem studied by a
large number of researchers from different communities, i.e. logic, linguistics,
etc. We are interested in finding the positive interpretations of a negative sentence
represented as ”x is not A”. In this paper, we do not focus on the single set of trans-
lations but on two approximation sets. The first one called pessimistic corresponds
to the positive translations of the negative sentence that we can consider as sure.
The second one called optimistic contains all the sentences that can be viewed
as possible translations of the negative sentence. These approximation sets are
computed according to the rough sets framework and based on a neighbourhood
relation defined on the space of properties. Finally, we apply an original strategy
of choice upon the two approximation sets which allows us to select the suitable
translations of the initial negative sentence. It appears that we obtain results in
good accordance with the ones linguistically expected.

1 Introduction

When dealing with sentences expressed in natural language, it is difficult to define pre-
cisely their meaning since they are imprecise, ambiguous, etc. However, a human rea-
soning with such information is able to find a specific interpretation of these sentences.
The methods used to manage these information are based on deep natural language
analysis, the notion of context, etc ([6], [2], [8], [7], [21]). Here, the framework we are
interested in is the one dealing with information, expressed in natural language, using
a negation like ”John is not tall” or ”John is not really small” ([9], [1], [5], [4]). The
issue is then to find a positive interpretation of a such negative sentence. Let us notice
that different significances may be associated with this sentence, like ”John is extremely
tall” or ”John is very small” ([10], [12], [11], [13]). The goal of this paper is made of
three parts: (1) analyze the problem of linguistic negation, (2) introduce a formalization
of linguistic negation approximation using rough set theory, (3) propose a formal frame-
work for selecting automatically the certain and possible interpretations of a linguistic
negation. This paper is organized as follows. Section 2 is dedicated to the introduction
of the main concepts and notations related to the problem of linguistic negation which is
viewed here as a negation of a nuanced property. Section 3 is devoted to the definition of
the reference frame from which one can extract (if needed) the affirmative, called also
positive, interpretations of a linguistic negation. This approach takes into account some
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results of linguistic analysis of linguistic negation proposed in ([9], [1], [4], [5]). This
new definition of reference frame can be viewed as a generalization of the one proposed
in [13]. Section 4 presents a new approach to linguistic negation: the originality results
from the fact that we do not search directly all affirmative interpretations of a negative
sentence, but we approximate its significance. Our approach is based on two optimistic
and pessimistic operators that are defined according to rough set theory ([14], [15], [16]).
These operators refer to a specific neighbourhood (or similarity) relation defined in such
a way that the pessimistic operator returns certain positive interpretations whereas the
result of the optimistic operator contains all possible positive interpretations. We briefly
recall the basic notions of rough set theory in Section 4.1. The linguistic negation re-
formulation is presented in Section 4.2. Its approximation within rough set theory is
developed in Section 4.3. In Section 4.4, we propose tools allowing us to give the affir-
mative interpretations of linguistic negations, and this, by using previous approximation
sets. More precisely, we both propose a standard choice of this relation resulting from
the neighbourhood relation of nuance meanings and the reference frame of a denied
assertion and show how our method works to define these approximations sets when the
neighbourhood relation has been computed. We can point out that all examples lead to
results in good accordance with the ones linguistically expected.

2 Universe Description

We suppose that our discourse universe is characterized by a finite set of concepts. For
example, the concepts of ”height”, ”wage” and ”appearance” should be understood as
qualifying individuals of the human type. Moreover, each concept can be characterized
by a finite set of basic properties having the same description domain. For example,
the basic properties ”small”, ”medium” and ”tall” can be associated with the concept
”height”. Finally, linguistic modifiers bearing on these basic properties permit us to
express nuanced knowledge, like ”John is really very tall”. This work uses the model
proposed in [3] to represent affirmative information expressed in the form ”x is fαmβPik”
or ”x is not fαmβPik” in the case of negation. In this context, expressing a property
like ”fαmβPik” called here nuanced property, requires a list of linguistic terms. Two
ordered sets of modifiers are selected depending on their modifying effects. The first
one groups translation modifiers resulting somehow in both a translation and a possible
precision variation of the basic property: For example, the set of translation modifiers
could be M7={mα | α ∈[1..7]}={extremely little, very little, rather little, moderately (∅),
rather, very, extremely} totally ordered by the relation: mα<mβ ⇔ α<β. Let us notice
that the seven terms have been choosen to define a symmetrical scale in the French
language. Unfortunately, this could not correspond exactly to usual adverbs used in
English language. The second one consists of precision modifiers which make it possible
to increase (or decrease) the precision of the previous properties. For example, F6={fβ |
β ∈[1..6]}={vaguely, neighboring, more or less, moderately (∅), really, exactly} totally
ordered by the relation: fα<fβ ⇔ α<β. Within our discourse universe, let us denote as
: C the set of distinct concepts Ci, Di the domain associated with the concept Ci, M the
set of modifier combinations, Nik the set of all nuances of the basic property Pik, Ni

the set of all nuanced properties associated with Ci, N the set of all nuanced properties,
Pi the set of all basic properties associated with Ci and P the set of all basic properties.
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3 The Reference Frame of a Linguistic Negation

The main idea justifying our approach is the fact that the traduction of a negative nuanced
property does not correspond to a single positive property due to the vagueness of basic
properties and the nuances that are applied. For example, “John is not tall” does not
necessary refers to the sentence “John is small” but can correspond to several possible
interpretations like “John is very small”, “John is small” and “John is medium”. It appears
clearly that a modelisation implying denied properties cannot be viewed as a one-to-one
correspondence but as a one-to-many one, called here multi-set function.

By using linguistic analysis results of linguistic negation ([9] [1], [5], [4]), it has
been pointed out in ( [10], [11]) that when one asserts that ” x is not A ” then, (1) one
rejects a reference to ” x is A ”, and (2) if necessary, one refers either to another object
y (i. e., “y is A”) or the logical negation of A, or to another property P different from A
(i. e., “x is P ”) but defined in the same domain, or sometimes to a another nuance of A,
or finally to a new basic property denoted as not-A. The previous analysis only defines
the standard forms of the linguistic negation. The linguistic negation is defined by using
one-to-many mappings from E into P(E) (E parts).

Definition 1. A multi-set function is a one-to-many function from E into P(E) (E parts).

In this paper we propose a new definition of linguistic negation which can be viewed
as a generalization of the one proposed in [13]. For any concept Ci, we define the
reference frame of a linguistic negation as a parameterized function Ref−Negt.

Definition 2. For any concept Ci, the reference frame of a linguistic negation is a
function Ref−Negt: Di × Ni → P(Di) × P(Ni) defined as follows, knowing that
nγ ∈ M and t∈[0 .. 5]:
- Ref−Neg0(x , nγ Pik) = (∅, ∅),
- Ref−Neg1(x, nγ Pik) = (Di\{x}, {nγ Pik}),
- Ref−Neg2(x, nγ Pik) = ({x}, Ni\{nγ Pik}),
- Ref−Neg3(x, nγ Pik) = ({x}, Nik\{nγ Pik}),
- Ref−Neg4(x, nγ Pik)= ({x}, Ni\Nik),
- Ref−Neg5(x, nγPik) = ({x}, {not-(nγ Pik)}), where not-(nγ Pik) is a new basic property
associated with Ci.

Each value of the parameter t is associated with a possible scope of the negation op-
erator, this scope characterizes the reference frame which contains the possible intended
positive meanings. It is possible to associate a standard form Ft for “x is not A” with
each previous Ref−Negt(x, A). More precisely, when a speaker says “x is not A”, he
means that:
- F0: For this x, “x is A” is rejected and there is not any corresponding affirmative
expression. For instance, saying ”Smith is not guilty” without reference to affirmative
property, may occur in a context where the only thing about his culpability is that his
alibi is confirmed.
- F1: Another object of the same domain satisfies the same nuanced property. As an
example, ”Jack is not guilty” since it is John who is guilty.
- F2: The same x satisfies another nuance of Ni, the set of all nuanced properties asso-
ciated with Ci. For example, ”John is not small” since he is ”really medium”.
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- F3: The same x satisfies another nuance of Nik, the set of all nuances of the basic
property Pik. For instance, the doctor can say “the temperature is not low” because he
thinks that “the temperature is really low”.
- F4 : The same x satisfies a nuance of another basic properties associated with the same
concept Ci. For instance, the doctor can say “cholesterol risk is not low” because he
thinks that “cholesterol risk is medium”.
- F5 : The same x satisfies a nuance of a new affirmative basic property. In this case,
“x is not A” means that “x is not-A”, this new property “not-A” is associated with the
same concept as A. “The patient is not seriously ill” may introduce a new basic property
“not-seriously-ill”.

Remark 1. Note that, in this paper, we are not concerned with the form F0 (which is
scarcely used in knowledge base field) or F5 (which is in fact an affirmative assertion,
and can be directly translated). As noted before, when the user says “x is not A”, he
possibly refers either to another object y (Standard form F1, “y is A”) or to another
nuance P (“x is P”) (standard forms F2 to F4). So, Ref−Negt is defined with the aid of
two multi-set functions giving the two main scopes of the negation operator: either an
object or a nuanced property is denied.

It is obvious that we have:

Proposition 1. Ref−Neg4 (x, nγ Pik) ⊆ Ref−Neg2 (x, nγ Pik) and Ref−Neg3 (x, nγ Pik)
⊆ Ref−Neg2 (x, nγ Pik).

4 A New Approach to Linguistic Negation

Let us notice that the handling of linguistic negation using the scope proposed in previous
section has yet been developped in the framework of fuzzy logic (see [10], [11], [12]).
The difference which is made when working with rough set theory is that we do not
work on the reference frame but on two approximations of this set (an optimistic one
and a pessimistic one).

4.1 Rough Set Theory

The theory of rough sets was introduced by Z. Pawlak in the early 1980’s ( [14], [15],
[16]). It offers a new tool for the study of vagueness and uncertainty in the context
of data analysis. This theory is based on two approximation operators that allow the
approximation of a concept, represented as a set, by a pair of sets called lower and upper
approximation.

Definition 3. Let R be a binary relation on a universe U, r(x)={y∈U| xRy}, and X a
subset of U. A pair of approximation operators, R∗ and R∗ are defined by :
- R∗(X)={x∈U | r(x)⊆X}, called the lower approximation of X,
- R∗(X)={x∈U | r(x)∩X= ∅}, called the upper approximation of X.

Consequently, one may approximate a subset X⊆U by a pair of subsets of U with
respect to the binary relation R. The lower approximation of a set X is R∗(X) and
contains elements that necessarily belong to X whereas the upper approximation R∗

(X) contains those that possibly belong to X. This approximation expresses nuanced
notion as elements in the lower approximation are referred to as strong members, while
elements in the upper approximation are weak members.
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Definition 4. The system (2U , ∩, ∪, �, R∗, R∗) is called a rough set algebra, where ∩,
∪ and � are the standard set intersection, union and complement.

Proposition 2. Let U be a universe and R⊆U×U be a reflexive relation. The approxi-
mation operators R∗, R∗ have the following property: R∗(X) ⊆ X ⊆ R∗(X).

This proposition is a direct deduction from the previous definition of the operators
(see Definition 3). In fact, we know that r(x) contains x (reflexivity of R) and r(x) ⊆
X implies that R∗(X)⊆X. Similarly, X is contained in its upper approximation R∗(X)
because r(x)∩X= ∅ for all x∈X.

Definition 5. A set X is said to be a rough set iff its boundary is not empty R∗(X) \
R∗(X)= ∅.

In this situation, the elements that belong to the boundary can not be classified cor-
rectly to belong to X nor to its complement �X. More details on foundations, methodol-
ogy and applications of rough set theory are developed in [18]. Different generalizations
of rough set theory have been suggested in ([20], [17], [19]).

4.2 Linguistic Negation Reformulation

The goal of this section is to reformalize the process we have introduce previously to
deal with negation (see Section 3). The input of this process is a sentence with negation
that have the following general form ”x is not A”, whereas its output is a set of ”positive”
sentences ”x is Q”. Any positive sentence that belongs to the output of the process
is a possible interpretation of the negative sentence given as input. Thus, the general
goal of the method is to found the set of positive sentences corresponding to an input
negative sentence. Let E+ (resp. E-) represents a set of admissible positive (resp. negative)
sentences:
- E+={(x is nδPik) | x∈ Di, nδ ∈ M, Pik ∈ Pi }, and
- E-={ (x is not nγPik) | x∈ Di, nγ ∈ M, Pik ∈ Pi}

The main question is what is the significance of a given negative sentence? The an-
swer is represented as a subset of E+. How to determine this subset ? We have introduced
our method and process to answer this question. Our approach starts by a first step that
rewrite the input negative sentence as a set of nuanced properties. The main problem is
next to search a subset of Ni that represents the semantic of this negation. Finally we
instantiate the subset of nuanced properties to determine the corresponding subset of
E+. This subset contains positive sentences that are possible interpretations of a given
negative sentence.
More formally we can view our process that deals with the linguistic negation as a gen-
eral function of sets transformation. In fact, we can rewrite, in the case where t = 2, 3,
4, the reference frame of the linguistic negation (see Definition 2) Ref−Negt(x, A) as
follows:
Ref−Negt(x, A) = ({x}, [Ref−Negt(x,A)])∈{x}×P(Ni).
This approach is characterized by a global view of negation processing as the ultimate
goal is to determine the set {”x is Q”|Q∈[Ref−Negt(x, A)]} that gives a global inter-
pretation of the sentence ”x is not A”.

This output set may be vague and difficult to compute. For this reason we refine
our method and modify the goal of negation processing. In fact, we only search for an
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approximation of linguistic negation and not the set of its global interpretation, as it
is the case in the approach using fuzzy context. For this reason, we use the rough set
framework ([14], [15], [16]) to formalize the notion of linguistic approximation.

4.3 Linguistic Negation Approximation

This section presents an operationalization of the basic concepts of rough sets in the
context of linguistic negation. Let us consider λ a binary relation that defines the neigh-
borhood of each basic property Pik or each nuanced property mαofβ(Pik). Now, given a
standard form Ft (with t∈{2, 3, 4}) we consider a subset denoted as Xt of properties that
can be nuanced or not. We define then the two main operators, named lower and upper
approximations, and denoted respectively R∗ and R∗, considering a binary relation λ.

Definition 6. Knowing that λ is a binary relation defined on Ni, the set of all nuances
associated with the concept Ci, we denote [p]λ= {q∈ Ni | pλq }.

Definition 7. For any standard form Ft with t∈{2, 3, 4}, let us suppose that λ is a binary
relation (at least reflexive) defined on Ni, and Xt, Yt and Tt are subsets of Ni such that
Xt= Yt\Tt. Then, a pair of approximation operators, R∗ and R∗ are defined by :
- R∗(Xt)={p∈ Ni| [p]λ ⊆Xt}, and
- R∗(Xt)={p∈ Ni| [p]λ∩Xt = ∅}\Tt.

Remark 2. The particular set Tt contains nuanced properties to be rejected according to
the standard form Ft of the linguistic negation. For this reason we exclude this set from
the solution computed by the upper approximation. This operation is not necessary for
the lower operator since we have: R∗(Xt)⊆Xt and Tt∩Xt=∅.

Example 1. In the following, for any standard form Ft with t∈{2, 3, 4}, previous sets
refer to the definition of [Ref−Negt (x, A)] resulting from the reference frame of the
linguistic negation. More precisely, the sets Xt and Tt are defined as follows: X2 =
Ni\{nγ Pik}, X3 = Nik\{nγ Pik}, X4 = Ni\ Nik, and T2 = T3 = {nγ Pik}, T4 = Nik.

These two operators allow us to introduce two main approximations of the negation.
Let us now prove the main result giving us the link between each reference frame of a
linguistic negation and two precise approximation sets based on rough set theory.

Proposition 3. R∗([Ref−Negt(x, A)]) ⊆ [Ref− Negt(x, A)] ⊆ R∗([Ref−Negt(x, A)]), for
any standard form Ft knowing that t∈{2, 3, 4}.

The inclusion of the lower approximation in [Ref−Negt(x, A)] results from Proposi-
tion 2. The inclusion of [Ref−Negt(x, A)] in the upper approximation results also from
Propoposition 2 by taking into account the fact that Xt∩Tt =[Ref−Negt(x, A)]∩Tt =∅.

Consequently, we have a more flexible interpretation of the negation with a pes-
simistic operator (R∗ ) which reduces the interpretation of ”x is not A” to only certain
nuanced properties when the optimistic one (R∗) extends the result to more possible
nuanced properties.
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4.4 Dealing with Linguistic Negation

The goal of this Section is to show the interest of our approach to deal with linguistic
negation. More particularly, we point out the relationship between the standard form of
negation and the results of the approximation. First, we more emphasize the choice of
the binary neighbourhood relation associated with expected linguistic negations. Then,
we propose some focusing examples allowing to explain the process of determination
of the positive interpretation(s) associated with a negative sentence from its reference
frame.

Let us propose some tools allowing us to propose a binary relation λ defining the
approximation sets R∗ and R∗ leading to the intended meanings of linguitic negations.
We search the approximation sets associated with the precise negative assertion ”x is
not nγPik” for a given standard form Ft0 with t0∈{2, 3, 4}, knowing also that the other
negative assertions ”x is not nδPij” are defined for a standard form Ft with t∈{2, 3, 4}.
In our context of linguistic negation problem, it is necessary to propose an extension of
rough sets by using a neighbourhood (or similarity) relation as model for indiscernibility
instead of an equivalence one ([18]): intuitively, knowing (x, nγPik) and the standard
form Ft0 with t0∈{2, 3, 4} of linguistic negation of ”nγPik”, nγPik and some other
nuances rather close to nγPik should be viewed as indiscernible. First of all, we suppose
that we know, for each nuance nγPik, the set of nuances having a meaning rather close to
the one of nγPik (it results from a linguistic analysis of nuance meaning). So, we obtain
a first binary neighbourhood relation ϑ related to the nuance meaning and defined on
Ni: [p]ϑ={q∈ Ni | pϑq}={nuances q having a meaning rather close to the one of p}.
Indeed, this relation should be reflexive, certaintly symmetrical, but never transitive.
This being so, we have to define another relation λ as model of indiscernibility related
now to the process of linguistic negation of nγPik for a standard form Ft0 with t0∈{2,
3, 4}. For previous standard form Ft0, this relation defines the reference frame Xt0 of
the linguistic negation, and the approximation sets R∗(Xt0) and R∗(Xt0) for the nuance
nγPik. So, we propose to put in this case [p]λ=[p]ϑ. For other Ft, we have to avoid as
neighbour of nδPij , a nuance which can belongs to Xt and R∗(Xt), but being not a certain
intended meaning of the linguistic negation. This can be done by choosing in these cases
[p]λ equal to p or Ni. As a result, λ will also be a neighbourhood relation, since λ will
be reflexive, possibly symmetrical, but never be transitive. In the following, knowing
previous neighbourhood relation ϑ, we propose a standard neighbourhood relation λ as
model of indiscernibility allowing us to define, in all cases, the previous approximation
sets R∗ and R∗.

Proposition 4. The neighbourhood relation ϑ related to nuance meaning is supposed
well-known. Then, we search R∗ and R∗ the approximation sets associated with the
negative assertion ”x is not nγPik” for a given standard form Ft0 with t0∈{2, 3, 4}
knowing that the other negative assertions ”x is not nδPij” being defined for a precise
standard form Ft with t∈{2, 3, 4}. Then, in order to obtain approximations sets in good
accordance with linguistic analysis, a new neighbourhood relation λ, dealing with all
cases of linguistic negation, can be build as follows:
- Case t0=3. For any t=3 we put [nδPij]λ={nδPij}. For t0=3 and t=3, [nγPik]λ (resp.
[nδPij]λ) contains the nuance nγPik (resp. nδPij) and none or several other neighbours1

(if they exist) of nγPik (resp. nδPij) related to ϑ.
1 In this paper, we will always choose all neighbours of nγPik (resp. nδPij) related to ϑ.
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- Case t0=2 (resp.t0=4). For any t=2 (resp. t=4) we put [nδPij]λ=Ni. For t0=2 (resp.
t0=4) and t=2 (resp. t=4), [nγPik]λ (resp. [nδPij]λ) contains the nuance nγPik (resp.
nδPij) and none or several other neighbours, if any, of nγPik (resp. nδPij) related to ϑ.

In the first case, the Xt0=X3, the set associated with ”x is not nγPik”, contains
only all nuances of Pik except Pik. So, no nuance of an other basic property belongs to
R∗(Xt0), but can belong to R∗(Xt0). In other words, the certain affirmative interpretation
are nuances of Pik. In the second case, knowing that Xt0 cannot be a strict subset of Ni,
R∗(Xt0) cannot contains nuances associated with a standard form Ft different from Ft0.
In other words, the certain interpretations refer only to nuances belonging to Xt0, the
reference frame of ”x is not nγPik”. It appears that this relation leads, in all cases, to
results in good accordance with the intended meanings of the linguistic negations. The
following examples illustrate the use of the relation λ.

Example 2. Let us suppose that the set Di={John, Jack} and Pi={Pi1, Pi2}={visible (in
the crowd), invisible (in the crowd)}. We do not use modifiers. The relation υ is defined
as follows : [visible]ϑ={visible}, [invisible]υ = {invisible}. We suppose that F4 is asso-
ciated with ”x is not visible” and ”x is not invisible”. So, we have: [visible]λ={visible},
[invisible]λ = {invisible}. Then, the approximation of ”John is not visible” gives us:
X4={invisible}, R∗(X4) = R∗(X4) = {invisible} and the approximation of ”Jack is not
invisible”: X4={visible}, R∗(X4) = R∗(X4) = {visible}. So, ”John is invisible” and ”Jack
is visible” are certain interpretations of previous linguistic negations.

Example 3. In this example, we consider the sets Di={John, Jack, Tom} and Pi={Pi1,
Pi2, Pi3}={small, medium, tall}. We consider only one modifier called ”very” applied
to the basic properties ”small” and ”tall”. So, Ni={very Pi1, Pi1, Pi2, Pi3, very Pi3}. We
suppose now that we know the standard form Ft associated with the linguistic negation.
So, ”x is not very Pi1”, ”x is not Pi1”, ”x is not Pi2”, ”x is not Pi3”, ”x is not very
Pi3” are respectively connected with standard forms F3, F4, F2, F4 and F3. The natutal
neighbourhood relation υ is defined as follows: in all cases, [p]ϑ = {p}. We can now
define explicitely the binary relation λ, by using previous results about particular cases
of linguistic negation.
- Approximation of ”x is not very Pi1”. We obtain: for any p, [p]λ={p}. Then, X3= {Pi1}
leads to R∗(X3)={Pi1} and R∗(X3)={Pi1}. So, ”x is small” is the certain linguistic nega-
tion of ”x is not very small”.
- Approximation of ”x is not very Pi3”. This symmetrical case gives us: X3={Pi3} leads
to R∗(X3)={Pi3} and R∗(X3)={Pi3}. So, ”x is tall” is the certain linguistic negation of
”x is not tall”.
- Approximation of ”x is not Pi1”. We can have: [very Pi1]λ=Ni, [Pi1]λ={Pi1},
[Pi2]λ=Ni, [Pi3]λ={ Pi3}, [very Pi3]λ=Ni. So, X4={Pi2, Pi3, very Pi3} leads to
R∗(X4)={Pi3} and R∗(X4)={Pi2, Pi3, very Pi3}. So, ”x is tall” is a certain linguistic
negation of ”x is not small”. Moreover, ”x is medium” and ”x is very tall” are possible
but not certain interpretations.
- Approximation of ”x is not Pi3”. This symmetrical case gives us: X4={Pi2, Pi1, very
Pi1} leads to R∗(X4)={Pi1} and R∗(X4)={Pi1, Pi2, very Pi1}. So, ”x is small” is a certain
linguistic negation of ”x is not tall”, and ”x is medium” or ”x is very small” are possible
but not certain interpretations.
- Approximation of ”x is not Pi2”. We obtain: [very Pi1]λ=Ni, [Pi1]λ=Ni, [Pi2]λ={Pi2},
[Pi3]λ=Ni, [very Pi3]λ=Ni. Then, X2={very Pi1, Pi1, Pi3, very Pi3} leads to R∗(X2)=∅
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and R∗(X2)={very Pi1, Pi1, Pi3, very Pi3}. It appears that no certain interpertation of ”x
is not medium” exists, but four affirmative interpretations are possible.

It appears clearly that this standard neighbourhood relation λ leads to results in
good accordance with the ones linguistically expected. Note that we are currently
studying other plausible relations λ and its basic properties, like the ones proposed in
([17], [18]). The examples presented in this Section give an idea on the quality of the
results computed by the approximation according to each standard form of negation
(due to lack of space, we do not present more examples). More refined relations can be
used to analyze the behavior of the approximations.

We can point out the fact that the upper approximation R∗ contains all possible inter-
pretations of each linguistic negation, but can also contain some neighbours very close to
these expected solutions. Moreover, the lower approximation R∗ only contains nuances
acceptable for the standard form associated with this linguistic negation. So, among the
elements of the approximation sets, several of them are certain or possible interpretations,
and others are neighbours of them but not plausible. Then, it is necessary to propose a
default strategy of choice of suitable affirmative interpretations. Unfortunately, due to
the lack of space, we do not present these several strategies.

5 Conclusion

This paper deals with a new approach of the problem of linguistic negation. Clearly,
it consists in finding, for a given negative sentence, the suitable positive translations
that are linguistically expected. The originality of the work is that we do not compute
the reference frame of positive translations associated with the negative sentence but
we work on two approximation sets of the reference frame: a pessimistic one gives the
translations which are sure and an optimistic one gives all the possible translations. These
sets being computed, we propose a standard choice of the relation of neighbourhood. The
last step, which is not studied here, is the choice strategy of one (or several) affirmative
interpretation(s) associated with a negative sentence from its reference frame. These
strategies leads to select positive translations that are in good accordance with the ones
linguistically expected.
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Abstract. Tree Adjoining Grammar (TAG) is a grammar formalism
that has become very popular for the description of natural languages,
however, this context-sensitive formalism entails important computation
costs (O(n6)-time). Tree Insertion Grammar (TIG) is a compromise
between Context Free Grammar (CFG) and TAG that can be parsed in
O(n3) − time. In the literature, just two Earley-like parsers for TIGs
have been defined. In this paper, we define a new variant of Earley-like
parser for TIGs. In order to improve the performance of this parser, we
show how the left corner relation for CFG can be generalized to the
case of TIG and we present an efficient parser for TIG that uses this
relation.

Keywords: natural language processing, parsing, TIG, TAG, left
corner

1 Introduction

Tree Insertion Grammar (TIG) [6] is a compromise between Context Free Gram-
mar (CFG) and Tree Adjoining Grammar (TAG) [4] that combines the efficiency
of the former with the strong lexicalizing power of the latter. TIGs are charac-
terized by the following: like CFG, TIG can be parsed in O(n3)−time, instead of
O(n6)− time for TAG; TIGs are a subclass of TAGs, therefore, TIG is naturally
lexicalized.

Most parsers for TAGs and TIGs are extensions of well-known parsers for
CFGs. Several parsers for TAGs have been defined on the basis of the Earley’s
algorithm ([4],[5],[1]), however, just two Earley-like parsers for TIGs have been
defined ([6],[3]).

Parsing algorithms can be defined as deduction systems ([8],[9]) where for-
mulas, called items, are sets of complete or incomplete constituents. Parsing
schemata were introduced in [9] as a framework for high-level description of
parsing algorithms. A parsing schema abstracts from implementation details of
an algorithm like data control structures. This framework allows us to establish
relations between two parsers in a formal way. The filters are very interesting
relations because they can be used to improve the performance of parsers in
practical cases. An example of filter is the relation between Earley and Left
Corner (LC) parsers for CFGs.
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A LC parser, like an Earley parser, proceeds through the sentence from left to
right, but differs in the way in which top-down predictions are used to guide the
bottom-up recognition. A LC parser reduces the number of predictions applied
by an Earley’s parser by using a left corner relation. A LC parser for TAGs has
been defined in [2], but to the best of our knowledge, no attempt has been made
to improve the practical performance of Earley-like parsers for TIGs by using
an left corner relation.

2 Tree Insertion Grammars

A TIG is a five-tuple (VN , VT , S, I, A), where VN is a set of nonterminal symbols,
VT is a set of terminal symbols, S ∈ VN is the axiom, I is a finite set of finite
initial trees and A is a finite set of finite auxiliary trees. The set I ∪A is referred
to as the elementary trees. Internal nodes in an elementary tree are labeled by
nonterminal symbols. We refer to the root of an elementary tree γ as Rγ . In each
elementary tree the nodes on the frontier are labeled by terminal symbols, the
empty string (ε) or nonterminal symbols marked for substitution, except that
exactly one node in each auxiliary tree which is marked as the foot and whose
label is the same as the root. We refer to the foot of an auxiliary tree β as Fβ .
The path from the root to the foot is called the spine. We use label(Mγ) to
denote the label of node Mγ .

Auxiliary trees in which every frontier node is to the left (right) of the foot
are called left (right) auxiliary trees. Other auxiliary trees are called wrapping
auxiliary trees. We use AL and AR to denote the sets of left auxiliary trees and
right auxiliary trees, respectively.

A TIG derivation starts with an initial tree rooted at S. This tree is re-
peatedly extended using substitution and adjunction. The adjunction inserts an
auxiliary tree β into another tree γ on a node Mγ that has the same label as Rβ .
In concrete, Mγ is replaced by β and Fβ is replaced by the subtree rooted at
Mγ . We use β ∈ adj(Mγ) to denote that a tree β ∈ A may be adjoined on node
Mγ , i.e. Mγ is an adjunction node. If adjunction is not mandatory on Mγ then
nil ∈ adj(Mγ), where nil is a dummy symbol. The adjunction of a left (right)
auxiliary tree is referred to as left (right) adjunction. We use β ∈ ladj(Mγ)
(β ∈ radj(Mγ)) to denote that a tree β ∈ AL (β ∈ AR) may be adjoined on
node Mγ , i.e. Mγ is a left (right) adjunction node. If left (right) adjunction is
not mandatory on Mγ then nil ∈ ladj(Mγ) (nil ∈ radj(Mγ)). The substitution
is mandatory and replaces a node marked for substitution Mγ with a copy of an
initial tree α whose root has the same label as Mγ . We use α ∈ subst(Mγ) to
denote that node Mγ may be substituted by a tree α ∈ I .

TIG does not allow wrapping auxiliary trees and an left (right) auxiliary tree
to be adjoined on any node that is in the spine of a right (left) auxiliary tree.
To increase the trees that can be generated, TIG allows arbitrarily simultaneous
adjunctions on a single node (look up details in [6]). Simultaneous adjunction is
fundamentally ambiguous in nature and typically results in the creation of sev-
eral different trees. One can easily imagine variants of TIG where simultaneous
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adjunction is more limited. In order to preserve the trees that can be generated
without increasing the ambiguity of derivations, we have chosen the variant of
TIG presented in [7] that allows right and left adjunction on a node, but at most
once each.

In order to represente partial parse trees, we define a production Nγ →
Nγ

1 ...N
γ
g for every node Nγ and its ordered g children Nγ

1 ...N
γ
g in an elementary

tree. We refer to the set of productions related to an elementary tree γ as P(γ).
For technical reasons, we consider additional productions � → Rα, � → Rβ and
Fβ → ⊥ for every initial tree α and auxiliary tree β. To preserve the generative
capability of the grammar, the nodes � and ⊥ can not be adjoined.

3 Earley-Like Parser for TIGs

We present a new efficient left-to-right parsing algorithm for TIG that main-
tains the valid prefix property [5] and requires O(n3) time in the worst case, by
combining top-down predictions as in Earley’s algorithm for parsing CFGs with
bottom-up recognition.

We define a parsing system IPEarley for an arbitrary tree insertion grammar
G ∈ TIG and an input string a1...an with n ≥ 0. The domain IEarley is given by

IEarley = I(i)
Earley ∪ I(ii)

Earley

I(i)
Earley = {[Mγ → δ • ν, i, j, code]}

such thatMγ → δν ∈ P(γ), γ ∈ I∪A, 0 ≤ i ≤ j, ν �= ε, code = ∅ if no adjunction
was completed on Mγ and code = {L} if a left adjunction was completed on
Mγ . The purpose of the code is to insure that left and right adjunction can each
be applied at most once on the node Mγ .

I(ii)
Earley = {[Mγ → ν•, i, j, code]}

such that Mγ → ν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ i ≤ j, code = ∅ if no adjunction
was completed on Mγ , code = {L} if a left adjunction was completed on Mγ ,
code = {R} if a right adjunction was completed on Mγ and code = {L,R} if a
left adjunction and a right adjunction were completed on Mγ .

For the set of deduction steps, we define subsets for initialize, scan and
complete similar to the Earley parser for CFGs. The set DEarley is defined by:

DEarley = DIni
Earley ∪ DSc

Earley ∪ Dε
Earley ∪ DPred

Earley ∪ DCmp
Earley ∪ DFoot

Earley ∪ DLAdjPred
Earley ∪

DLAdjCmp
Earley ∪ DRAdjPred

Earley ∪ DRAdjCmp
Earley ∪ DSubsPred

Earley ∪ DSubsCmp
Earley

The recognition starts by predicting every initial tree α ∈ I whose root is labeled
with the axiom (label(Rα) = S):

DIni
Earley =

[� → •Rα, 0, 0, ∅]
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The scanning steps recognize terminal symbols and match fringe nodes against
the input string. DSc

Earley recognizes the presence of a terminal symbol in the
input string. Dε

Earley and DFoot
Earley encode the fact that one can skip over nodes

labeled with ε and foot nodes without having to match anything:

DSc
Earley =

[a, j, j + 1]
[Nγ → δ • Mγν, i, j, code]

[Nγ → δMγ • ν, i, j + 1, code]
label(Mγ) = a

Dε
Earley =

[Nγ → δ • Mγν, i, j, code]
[Nγ → δMγ • ν, i, j, code] label(Mγ) = ε

DFoot
Earley =

[Fβ → •⊥, j, j, ∅]
[Fβ → ⊥•, j, j, ∅] β ∈ A

In the case of TIGs, we have four kinds of predictions with their associated
completion steps: subtree, left adjunction, right adjunction and substitution.
The subtree traversal steps control the recognition of subtrees. DPred

Earley predicts
a subtree rooted at Mγ if the previous siblings have already been recognized and
Mγ has not mandatory left adjunction (nil ∈ ladj(Mγ))):

DPred
Earley =

[Nγ → δ • Mγν, i, j, code]
[Mγ → •ω, j, j, ∅]

DCmp
Earley completes the recognition of a subtree rooted atMγ if and only ifMγ has

not mandatory adjunction (nil ∈ adj(Mγ)) and code = ∅ or Mγ is a adjunction
node and code �= ∅:

DCmp
Earley =

[Mγ → ω•, j, k, code]
[Nγ → δ • Mγν, i, j, code′]
[Nγ → δMγ • ν, i, k, code′]

The left and right adjunction steps recognize the adjunction of left and right aux-
iliary trees. When the recognition reaches a left adjunction node Mγ , DLAdjPred

Earley
triggers the recognition of every left auxiliary tree β that may be adjoined on
Mγ (β ∈ ladj(Mγ)):

DLAdjPred
Earley =

[Nγ → δ • Mγν, i, j, code]
[� → •Rβ , j, j, ∅]

DLAdjCmp
Earley supports the bottom-up recognition of the adjunction of a left aux-

iliary tree. In order to avoid other left adjunction we set {L} the code of the
consequent:

DLAdjCmp
Earley =

[� → Rβ•, j, k, ∅]
[Nγ → δ • Mγν, i, j, code]

[Mγ → •ω, j, k, {L}]
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The right adjunction steps, DRAdjPred
Earley and DRAdjCmp

Earley , are analogous to the left
adjunction steps, but are triggered by items of the form [Mγ → ν•, i, j, code]
where R /∈ code:

DRAdjPred
Earley =

[Mγ → ν•, i, j, code]
[� → •Rβ , j, j, ∅]

DRAdjCmp
Earley =

[� → Rβ•, j, k, ∅]
[Mγ → ν•, i, j, code]

[Mγ → ν•, i, k, {R} ∪ code]

DSubsPred
Earley predicts a substitution of an initial tree α on a node Mγ if α ∈

subst(Mγ), whereas DSubsCmp
Earley completes the substitution:

DSubsPred
Earley =

[Nγ → δ • Mγν, i, j, code]
[� → •Rα, j, j, ∅]

DSubsCmp
Earley =

[� → Rα•, j, k, ∅]
[Nγ → δ • Mγν, i, j, code]
[Nγ → δMγ • ν, i, k, code]

The set of final items is defined by:

FEarley = {[� → Rα•, 0, n, ∅] | α ∈ I, label(Rα) = S}

4 Left Corner Parser for TIGs

In this section we present a parser that uses left corner relation to filter the
predictions on Earley-like parser for TIGs. The time complexity of the algorithm
is O(n3) but improves the performance by the reduction in the size of chart.
Before describing the new parser, we need define the left corner relation for
TIGs.

Definition 1. Left corner relation on elementary trees of TIGs
The left corner of a node Oγ is her leftmost daughter P γ if and only if ladj(P γ) =
{nil}. The relation >� on VN × (VN ∪ VT ∪ {ε,⊥}) is defined by
Oγ>�P

γ if there is a production Oγ → P γν ∈ P(γ) and ladj(P γ) = {nil}.
The transitive and reflexive closure of >� is denoted by >∗

� .

It is worth noting that left corner relation for TIGs starts on a node labeled
with a nonterminal symbol and ends on a left adjunction node, a node marked
for substitution, a node labeled with a terminal symbol or a node ε.

We define a parsing system IPLC for an arbitrary tree insertion grammar
G ∈ TIG and an input string a1...an with n ≥ 0. The set of items ILC is given
by

ILC = I(i)
LC ∪ I(ii)

LC ∪ I(ii)
Earley

I(i)
LC = {[Mγ → δ • ν, i, j, code]}
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such that Mγ → δν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ i ≤ j, δ �= ε, ν �= ε, code = ∅ if
no adjunction was completed on Mγ and code = {L} if a left adjunction was
completed on Mγ ;

I(ii)
LC = {[Mγ → •P γν, i, j, code]}

such that Mγ → ν ∈ P(γ), γ ∈ I ∪A, 0 ≤ i ≤ j, code = {L} if a left adjunction
was completed on Mγ and code = ∅ if P γ is a left adjunction or substitution
node and no adjunction was completed on Mγ .

For the set of deduction steps, we define subsets for initialize, scan and com-
plete similar to the Earley-like parser. The left corner relation will be applied for
the six cases of prediction: initial, subtree, foot, left adjunction, right adjunction
and substitution. The left corner steps come in four varieties of left corners: ter-
minal, empty, foot and nonterminal. The latter is presented when the left corner
is a left adjunction or substitution node, because the auxiliary tree or the initial
tree must be recognized. The set DLC is defined by:

DLC = DLIt
LC ∪DLIε

LC ∪DLIpre
LC ∪DSc

Earley ∪Dε
Earley ∪DLCt

LC ∪DLCε

LC ∪DLCpre
LC ∪DLCfoot

LC ∪

DLCn
LC ∪ DLAn

LC ∪ DLFn
LC ∪ DLAt

LC ∪ DLAε

LC ∪ DLApre
LC ∪ DLFt

LC ∪ DLFε

LC ∪ DLFpre
LC ∪

DLFfoot
LC ∪ DLACmp

LC ∪ DRAfoot
LC ∪ DRACmp

Earley ∪ DLSt
LC ∪ DLSε

LC ∪ DLSpre
LC ∪ DSubsCmp

Earley

The recognition starts by predicting every initial tree α whose root is labeled
with the axiom S. If �>∗

�O
α we can apply LC filter and obtain:

DLIt
LC =

[a, 0, 1]
[Oα → Pα • ν, 0, 1, ∅] label(Pα) = a

DLIε

LC =
[Oα → Pα • ν, 0, 0, ∅] label(Pα) = ε

DLIpre
LC =

[Oα → •Pαν, 0, 0, ∅] ∃β ∈ ladj(Pα) or ∃α′ ∈ subst(Pα)

When the recognition reaches a nodeMγ that dominates Oγ by a LC relation
(Mγ>∗

�O
γ) and Mγ has not mandatory left adjunction (nil ∈ ladj(Mγ)), we

apply LC filter and obtain:

DLCt
LC =

[Nγ → δ • Mγν, i, j, code]
[a, j, j + 1]
[Oγ → P γ • ω, j, j + 1, ∅] label(P γ) = a

DLCε

LC =
[Nγ → δ • Mγν, i, j, code]
[Oγ → P γ • ω, j, j, ∅] label(P γ) = ε

DLCpre
LC =

[Nγ → δ • Mγν, i, j, code]
[Oγ → •P γω, j, j, ∅] ∃β ∈ ladj(P γ) or ∃α ∈ subst(P γ)

DLCfoot
LC is applied when the recognition reaches a node Mβ that has not

mandatory adjunction and dominates the foot node of a left auxiliary tree
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(Mβ>∗
�F

β). This step encodes the fact that one can skip over nodes labeled
with ⊥ of left auxiliary trees without having to match anything:

DLCfoot
LC =

[Nβ → δ • Mβν, i, j, code]
[Fβ → ⊥•, j, j, ∅]

The following steps perform the bottom-up recognition trough the nodes in
a LC relation. In order to set an accurate value of code, we distinguish three
cases:

DLCn
LC =

[Nγ → δ • Mγν, i, j, code′]
[Oγ → ω•, j, k, code]

[Qγ → Oγ • υ, j, k, ∅]
such that Mγ>∗

�O
γ , Mγ �= Oγ , nil ∈ ladj(Mγ), Oγ has not mandatory right

adjunction and code = ∅ or Oγ is a right adjunction node and code = {R};

DLAn
LC =

[Oγ → ω•, j, k, code]
[Qγ → Oγ • υ, j, k, ∅]

such that �>∗
�O

γ , Oγ has not mandatory right adjunction and code = ∅ or Oγ

is a right adjunction node and code = {R};

DLFn
LC =

[Nγ → δ • Mγν, i, j, code′′]
[� → Rβ•, j, k, ∅]
[Oγ → ω•, k, l, code′]
[Qγ → Oγ • υ, k, l, code]

such that Mγ>∗
�O

γ , Mγ �= Oγ , β ∈ ladj(Mγ), Oγ has not mandatory right
adjunction and code′ = ∅ or Oγ is a right adjunction node and code′ = {R},
code = {L} if Qγ = Mγ and code = ∅ if Qγ �= Mγ .

DCmp
LC completes the recognition of a subtree dominated by a node Mγ if

this node has not right adjunction mandatory and code = ∅ or Mγ is a right
adjunction node and code = {R}:

DCmp
LC =

[Mγ → ω•, j, k, code]
[Nγ → δ • Mγν, i, j, code′]
[Nγ → δMγ • ν, i, k, code′]

When a left adjunction nodeMγ is predicted, we must trigger the recognition
of every left auxiliary tree β that may be adjoined on this node (β ∈ ladj(Mγ)).
If �>∗

�O
β we apply again a LC filter and obtain:

DLAt
LC =

[Nγ → δ • Mγν, i, j, code]
[a, j, j + 1]
[Oβ → P β • ω, j, j + 1, ∅] label(P β) = a

DLAε

LC =
[Nγ → δ • Mγν, i, j, code]
[Oβ → P β • ω, j, j, ∅] label(P β) = ε
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DLApre
LC =

[Nγ → δ • Mγν, i, j, code]
[Oβ → •P βω, j, j, ∅] ∃β′ ∈ ladj(P β) or ∃α ∈ subst(P β)

When a left auxiliary tree β that may be adjoined on a node Mγ is ex-
hausted (β ∈ ladj(Mγ)), the recognition of the excised subtree must be started.
If Mγ>∗

�O
γ we can apply LC filter, but in order to insure the accurate value of

code, we must add a condition defined by code = ∅ if Mγ �= Oγ and code = {L}
if Mγ = Oγ :

DLFt
LC =

[a, k, k + 1]
[� → Rβ•, j, k, ∅]
[Nγ → δ • Mγν, i, j, code′]
[Oγ → P γ • ω, k, k + 1, code]

label(P γ) = a

DLFε

LC =

[� → Rβ•, j, k, ∅]
[Nγ → δ • Mγν, i, j, code′]
[Oγ → P γ • ω, k, k, code] label(P γ) = ε

DLFpre
LC =

[� → Rβ•, j, k, ∅]
[Nγ → δ • Mγν, i, j, code′]
[Oγ → •P γω, k, k, code]

∃β ∈ ladj(P γ) or ∃α ∈ subst(P γ)

DLFfoot
LC =

[� → Rβ•, j, k, ∅]
[Nγ → δ • Mγν, i, j, code′]

[Fγ → ⊥•, k, k, ∅] γ ∈ AL

DLACmp
LC completes a left adjunction:

DLACmp
LC =

[� → Rβ•, j, k, ∅]
[Mγ → ω•, k, l, code]
[Nγ → δ • Mγν, i, j, code′]
[Nγ → δMγ • ν, i, l, code′]

β ∈ ladj(Mγ), L ∈ code

DRAfoot
LC go down on an right auxiliary tree up to the node ⊥:

DRAfoot
LC =

[Mγ → ν•, k, l, code]
[Fβ → ⊥•, l, l, ∅] β ∈ radj(Mγ), R /∈ code

When the recognition reaches a substitution node Mγ (α ∈ subst(Mγ)) we
apply LC filter to the prediction of the initial tree α and obtain:

DLSt
LC =

[Nγ → δ • Mγν, i, j, code]
[a, j, j + 1]
[Oα → Pα • ω, j, j + 1, ∅] label(Pα) = a

DLSε

LC =
[Nγ → δ • Mγν, i, j, code]
[Oα → Pα • ω, j, j, ∅] label(Pα) = ε

DLSpre
LC =

[Nγ → δ • Mγν, i, j, code]
[Oα → •Pαω, j, j, ∅] ∃β ∈ ladj(Pα) or ∃α′ ∈ subst(Pα)

The set of final items is defined by:

FLC = {[� → Rα•, 0, n, ∅] | α ∈ I, label(Rα) = S}
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5 Experimental Results

The time complexity of the algorithm with respect to the length n of the input
string is O(n3) for both parsers (look up details about the calculation of the
complexity in [5]). The improvement in the performance of Left Corner parsers
comes from the reduction in the size of the chart (the set of deduced items). It
is clear that this reduction depends on the grammar and the input string con-
sidered. We have made a preliminary study where we have tested and compared
the behavior of the LC parser and the Earley-like parser explained before.

We have incorporated both parsers into a naive implementation in Prolog
of the deductive parsing machine presented in [8]. We have taken a subset of
elementary tree of the XTAG grammar [10] that cover a variety of English con-
structions: relative clauses, auxiliary verbs, unbounded dependencies, extraction,
etc. In order to eliminate the time spent by unification, we have not considered
the feature structures of elementary trees. Instead, we have simulated the fea-
tures using local constraints. Every sentence has been parsed without previous
filtering of elementary trees. Briefly, we can remark that LC parser shows on
average a time reduction of 11% and a chart size reduction of 50%.

6 Conclusion

We have defined two new parsers for TIGs, an Earley-like parser and a Left Cor-
ner parser, both of them are extensions of parsers for Context Free Grammars.
The LC parser can be view as a filter on an Earley-like parser for TIGs, where the
number of predictions is reduced due to the generalized left corner relation that
we have established on the nodes of elementary trees. The worst-case complexity
with respect to space and time is the standard one for TIG parsing, but prelim-
inary experiments have shown a better performance than classical Earley-like
parsers for TIGs.
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Abstract. The paper is focused on a DATR-theory of Bulgarian noun
inflectional morphology. It takes into account the morphosyntactic
nature of the grammar feature of definiteness in Bulgarian, and argues
for a specific computational approach of interpretation. The constructed
semantic network is explained in details, supported by a particular
linguistic motivation. The grammar feature of gender is accepted as a
starting point of the encoding, and a possible query to be evaluated is
given as a result.

Keywords: DATR formal language for lexical knowledge presentation,
Bulgarian definite article, computational morphology, definiteness.

1 Introduction

The standard Bulgarian language does not use cases for syntactic representa-
tion, and at the same time, it has very rich inflectional system - both for word-
formation and for inflectional morphology [7]. Also, it uses prepositions and a
base noun form instead of a case declination, which is a result of its development
over the centuries. Another important grammar feature of Bulgarian, in which
it differs with all the Slavic languages, is the feature of a definite article.

Concerning its syntax, Bulgarian language is considered to be a language us-
ing relatively free word order [7]. Practically, the subject can take every syntactic
position in the sentence (including the last one) and the definite article is the
only marker of it. Thus, modeling inflectional morphology of the definite article
is a most important stage of a successful part-of-speech parsing of Bulgarian.

2 The Definite Article – A Grammar Feature Standing
between the Morphology and the Syntax

The syntactic function of definiteness in Bulgarian is expressed by a formal
morphological marker which is an ending morpheme [8]. It differs with respect
to gender, however, for the masculine gender a two types of definite morpheme
exist – to determine a full and a partly defined entity, which have two phonetic
variants, respectively. For the feminine and for the neuter gender only definite
morphemes exist, respectively. For the plural, two definite morphemes are used
depending on the ending vocal of the main plural form.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 152–161, 2002.
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The following part-of-speech in Bulgarian take a definite article [8]: nouns,
adjectives, numerals (both cardinals and ordinals), possessive pronouns, and
reflexive-possessive pronoun.

With respect to its semantics, the definite article can assign an individual,
a quantity or a part-of-whole definiteness, and it has a generic use as well. The
formal morphological marker (definite article) is one and the same for all part-of-
speech but it has different forms to account for the feature of number and gender.
Therefore, our task is to model it using specific approaches to computational
morphology, and at the same time, the proposed analysis should be interpreted
syntactically.

Following these preliminary requirements, we are going to present the starting
point of our morphological interpretation.

3 Some Approaches to Computational Morphology and
Suitable Formal Models

The standard computational approach to both word-formation and inflectional
morphology is to represent words as a rule-based concatenation of morphemes,
and the main task is to construct relevant rules for their combinations. However,
different approaches exist depending on whether the stem or the concatenating
morpheme stays stable or varies. With respect to the number and the types of
morphemes, the different theories offer different approaches depending on the
variations of either stems or suffixes as follows:

(i) conjugational solution offers an invariant stem and variant suffixes;
(ii) variant stem solution offers variant stems and invariant suffix.

Both these approaches are suitable for languages, which use inflection rather
rarely to express syntactic structures, whereas for those using rich inflection some
cases where phonological alternations appear both in stem and in concatenating
morpheme a ”mixed” approach is used to account for the complexity. We con-
sidered such approach as a most appropriate for our task. Thus, to reduce the
size of our morphological lexicon, to make it more computationally tractable,
and to account for the specific phonetic alternations, we are considering both
stems and suffixes as invariable.

With respect to the existing formal models, we have found the HPSG as not
a suitable because of the fact, that in its framework the lexicon is generated on
the fly, and thus it limits us to the use of lexical rules which produce only one
type of inflecting forms.

We considered the DATR language for lexical knowledge presentation as be-
ing suitable formal framework for modeling inflectional morphology of Bulgarian
definite article.
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4 The DATR Language

The DATR language is a non-monotonic language for defining the inheritance
networks through path/value equations [6]. It has both an explicit declarative
semantics and an explicit theory of inference allowing efficient implementation,
and at the same time, it has the necessary expressive power to encode the lexical
entries presupposed by the work in the unification grammar tradition [3,4,5].

In DATR, information is organized as a network of nodes, where a node is
a collection of related information. Each node has associated with it a set of
equations that define partial functions from paths to values where paths and
values are both sequences of atoms. Atoms in paths are sometimes referred to
as attributes.

DATR is functional, it defines a mapping which assigns unique values to
node attribute-path pair, and the recovery of this values is deterministic. It can
account for such language phenomena like regularity, irregularity, and subregu-
larity, and allows the use of deterministic parsing. The DATR language has a
lot of implementations, however, our application was made by using QDATR 2.0
(consult URL http://www.cogs.susx.ac.uk/lab/nlp/datr/datrnode49.html
for a related file bul_det.dtr). This PROLOG encoding uses Sussex DATR no-
tation [9].

DATR allows construction of various types of language models (language
theories), however, our model is presented as a rule-based formal grammar and
a lexical database. The particular query to be evaluated is a related inflecting
word form, and the implementation allows to process words in Cirillic alphabet.

5 DATR Account of Bulgarian Noun Inflectional
Morphology – The Overall Architecture

We are not committed to a particular morphological theory, and we accept a
rather traditional view of the paradigm as an underlying basic idea of our anal-
ysis.

Concerning word, we shall follow an old and well-known lexicographic notion
of the lexeme. The structure we use to present a lexeme remains very much
that of a dictionary’s lexical entry, however, we use different roots to account
for the particular morphophonological phenomena instead of presenting different
meanings of the word. So, the difference is semantic rather than syntactic.

Also, we consider morphemes as a semantic realization of a particular mor-
phosyntactic phenomenon (note part (i) of the following description, which rep-
resents inflecting morphemes for definite article, and part (ii) representing plural
morphemes).

In general, the approach we use to account for Bulgarian noun inflection
is closely related and is indebted to those of Cahill&Gazdar [1] developed for
German noun inflection, except their account of morphophonology.

Our model represents an inheritance network consisting of various nodes
which allows us to account for all related inflecting forms within the framework
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of one grammar theory. Using this strategy, we propose the following architecture
(see Fig. 1.):

(i) definite

morphemes

(ii) plural

morphemes

(iv) lexical

database

(iii) noun type

hierarchy

(query)

inflecting forms
✲

❍❍❍❍❍❍

✟✟✟✟✟✟

Fig. 1. The overall architecture of Bulgarian noun inflection.

(i) all definite inflecting morphemes for all forms of definite article attached to
node DET, and given by their values through the paths <masc>, <masc_1>,
<femn>, <neut>, and <plur>.

(ii) 12 inflecting morphemes for generating plural forms (they origin from Old
Bulgarian, and represent old case morphemes for the different declinational
types) defined at node Suff.

(iii) the inflectional types are defined as a rule-based concatenation of mor-
phemes at the related nodes.

(iv) The words, themselves, are given as a lexical database attached to their
inflectional nodes, respectively. They are defined by giving information for
the lexical entries through paths <root> [2] and <root plur>, so to account
for the different phonological alternations. It is important to note that our
interpretation of Bulgarian nominal inflection is made for text processing,
not for speech processing.

5.1 DATR Account of Bulgarian Noun Inflectional Morphology –
The Inheritance Hierarchy

The Bulgarian noun, as it is described traditionally [7,8], has three grammar
features: gender, number, and definiteness. Among them only number and def-
initeness are inflectional, whereas gender is not an inflectional one but is con-
stant for every noun. Thus, we can consider the gender as a specific trigger in
our formal interpretation. It is assigned by the path <gender>, which takes the
following values: masc_1, masc, femn, and neut. With respect to its gender, Bul-
garian nouns are divided into three groups: (1) of masculine gender (assigned by
masc_1 and masc); (2) of feminine gender (assigned by femn); (3) of neuter gen-
der (assigned by neut). Within these groups, there are different types of nouns
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depending of their suffix for forming plural, so that, the next triggering factor
is the feature of number, assigned by path <sing> – for singular, and <plur> –
for plural. The Bulgarian noun type hierarchy is presented in Fig. 2.

Noun

Noun A

Noun B1

Noun 1

Noun 2

Noun 3

Noun 4

Noun 6

Noun 8 Noun 9

Noun 10 Noun 11

Noun 12

Noun 12B

Noun 10B

Noun B2

Noun 13

Noun 7

Noun 5

Noun 4A

Noun 14

Noun 15

Noun 16

Noun 17

Fig. 2. The Bulgarian noun inheritance hierarchy.

With respect to the above assumptions, we are starting our encoding with the
definition of node DET consisted of inflecting morphemes for articles as follows:1

DET: <sing undef> ==
<sing def_2 masc> == _ja

1 Here and elsewhere in the description we use Latin alphabet to present morphemes,
instead of Cirillic used normally. Because of the mismatching between both, some of
the typically Bulgarian phonological alternations are assigned by two letters, whereas
in Cirillic alphabet they are marked by one.
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<sing def_2 masc_1> == _a
<sing def_1 masc> == _jat
<sing def_1 masc _1> == _ut
<sing def_1 femn> == _ta
<sing def_1 neut> == _to
<plur undef> ==
<plur def_1> == _te.

Also, we define node Suff as consisting of 12 endings for plural.
Suff: <suff_11> == _i

<suff_111> == _ovci
<suff_12> == _e
<suff_121> == _ove
<suff_122> == _eve
<suff_123> == _ovce
<suff_21> == _a
<suff_22> == _ja
<suff_211> == _ishta
<suff_212> == _ta
<suff_213> == _ena
<suff_214> == _esa.

Every node in our network, which starts with Noun... represents a noun inflec-
tional type. It consists of grammar rules for generating a related inflecting form
using the information given through paths <root> and <root plur> for the
stem, and <masc>, <masc_1>, <femn>, <neut>, and <plur> for the particular in-
flecting morpheme. The different inflectional types were defined both according
to their lexical semantic constraints to generate an inflecting form (like nouns
of type pluralia or singularia tantum), and according to their grammar feature
constraints (like gender or related plural form morphemes).

The node Noun is a basic in our semantic network, and consists of grammar
rules generating a related inflecting forms for number and definiteness. It, basi-
cally, describes nouns of masculine gender forming their plural forms in -i, full
definite form in -ut, and short definite form in -a.
Noun: <suff> == suff_11

<gender> == masc_1
<> == <stem> DET:<Idem "<gender>">
<stem sing> == "<root sing>"
<stem plur> == "<root plur>" Suff:<"<suff>">.

Node Noun_A describes nouns, so-called, pluralia tantum assigned to masculine
gender, ending in -i, and forming their definite plural form using -te.
Noun_A: <> == Noun

<sing> == "<plur>"
<sing def_2> == "<plur def_1>".

Node Noun_B1 defines rules for inflectional morphology of nouns, which are of
type singularia tantum, forming their full definite form using -ut, and short
definite form with -a.
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Noun_B1: <> == Noun
<plur> == "<sing>"
<plur def_2> == Noun.

Node Noun_B2 describes group of nouns singularia tantum of masculine gender,
ending in -a, forming their full definite form using -jat, and short definite form
using -ja.
Noun_B2: <> == Noun_B1

<gender> == masc.

Node Noun_1 describes nouns, which are of masculine gender forming their plural
form in -e, full definite form in -ut, short definite form in -a, and definite plural
form in -te.
Noun_1: <> == Noun

<suff> == suff_12.

Node Noun_2 describes a class of nouns, which are of masculine gender forming
plural in -ove, full definite form in -ut, short definite form in -a, and definite
plural form in -te.
Noun_2: <> == Noun

<suff> == suff_121.

Node Noun_3 defines group of nouns of masculine gender forming plural in -eve,
full definite form in -jat, short definite form in -ja, and definite plural form in
-te.
Noun_3: <> == Noun

<gender> == masc
<suff> == suff_122.

Node Noun_4 describes nouns of masculine gender forming their plural form in
-a, full definite form in -ut, short definite form in -a, and definite plural form in
-ta.
Noun_4: <> == Noun

<plur def_1> == <stem plur> DET:<sing def_1 femn>
<suff> == suff_21.

Node Noun_4A defines group of nouns pluralia tantum assigned to masculine
gender ending in -a, and forming their (plural) definite form in -ta.
Noun_4A: <> == Noun_4

<sing> == Noun_A.

Node Noun_5 defines nouns of masculine gender having their plural form in -ja,
full definite form in -ut, short definite form in -a, and definite plural form in -ta.
Noun_5: <> == Noun_4

<suff> == suff_22.

Node Noun_6 describes group of nouns of masculine gender, forming their plural
form in -i, full definite form in -jat, short definite form in -ja, and definite plural
form in -te.
Noun_6: <> == Noun

<gender> == masc.
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Node Noun_7 defines nouns of masculine gender forming their plural form in
-ishta, full definite form in -jat, short definite form in -ja, and plural definite
form in -ta.
Noun_7: <> == Noun_4

<gender> == masc
<suff> == suff_211.

Node Noun_8 describes group of nouns of masculine gender forming their plural
form in -i, definite form in -ta, and plural definite form in -te.
Noun_8: <> == Noun

<sing def_1> == "<stem sing>" DET:<sing def_1 femn>
<sing def_2> == "<sing def_1>".

Node Noun_9 defines nouns of masculine gender forming their plural form in
-ovci, definite form in -to, and definite plural form in -te.
Noun_9: <> == Noun_8

<sing def_1> == "<stem sing>" DET:<sing def_1 neut>
<suff> == suff_111.

Node Noun_10 describes group of nouns of feminine gender forming plural form
in -i, definite form in -ta, and plural definite form in -te.
Noun_10: <> == Noun

<gender> == femn.

Node Noun_10B defines nouns singularia tantum of feminine gender forming def-
inite form in -ta.
Noun_10B: <> == Noun_B1

<gender> == femn.

Node Noun_11 describes nouns of feminine gender forming their plural form in
-e, definite form in -ta, and plural definite form in -te.
Noun_11: <> == Noun_10

<suff> == suff_12.

Node Noun_12 defines group of nouns of neuter gender forming their plural form
in -i, definite form in -to, and plural definite form in -te.
Noun_12: <> == Noun

<gender> == neut.

Node Noun_12B describes nouns singularia tantum of neuter gender forming their
definite form in -to.
Noun_12B: <> == Noun_B1

<gender> == neut.

Node Noun_13 defines group of nouns of neuter gender forming their plural form
in -a, and (plural) definite form in -ta.
Noun_13: <> == Noun_4

<gender> == neut.

Node Noun_14 describes nouns of neuter gender forming their plural form in -ja,
definite form in -to, and plural definite form in -ta.
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Noun_14: <> == Noun_13
<suff> == suff_22.

Node Noun_15 defines group of nouns of neuter gender forming their plural form
in -ta, definite form in -to, and plural definite form in -ta.
Noun_15: <> == Noun_13

<suff> == suff_212.

Node Noun_16 describes group of nouns of neuter gender forming their plural
form in -ena, definite form in -to, and plural definite form in -ta.
Noun_16: <> == Noun_13

<suff> == suff_213.

Node Noun_17 defines nouns of neuter gender forming their plural form in -esa,
definite form in -to, and plural definite form in -ta.
Noun_17: <> == Noun_13

<suff> == suff_214.

5.2 Given Knowledge and Evaluating Query

The above formal description forms a DATR-theory which describes inflectional
morphology of Bulgarian noun. The lexemes are given as different nodes. Every-
one is attached to a related inflectional type, and consists of lexical information
given by the paths <root>, and <root plur>, so to account for the different
phonological alternations. An example lexeme for bulgarian word for newspaper
(vestnik), which uses inflectional rules defined at node Noun is as follows:

Vestnik: <> == Noun
<root> == vestnik
<root plur> == vestnic.

Following the consequence of the given axioms, we can generate the queries
which are all possible inflecting forms by asking the system using following paths:
<gender> – to evaluate for the gender, it takes one and the same value for all gen-
erated inflecting forms; <sing undef> – to evaluate for the singular uninflecting
form; <plur undef> – to evaluate for the plural uninflecting form; <sing def_1>
and <sing def_2> – to evaluate for the definite singular form; <plur def_1> –
to evaluate for the definite plural form. For the example word vestnik the queries
are:

Vestnik: <gender> == masc_1.
Vestnik: <sing undef> == vestnik.
Vestnik: <plur undef> == vestnic_i.
Vestnik: <sing def_1> == vestnik_ut.
Vestnik: <sing def_2> == vestnik_a.
Vestnik: <plur def_1> == vestnic_i_te.
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6 Conclusions and Future Work

The proposed network is linguistically motivated, and it uses the feature of gen-
der and of number for triggering a given morphological information to evaluate
inflecting forms. In general, the architecture of the model is based on our belief
that the best strategy to interpret inflectional morphology is to start with a
non-inflectional grammar feature (like gender, for example), and to use it as a
trigger to change different values of the inflecting morphemes directing in that
way the process of morphemes concatenation. An inflectional grammar feature
is possible to be used as well, however, the structure becomes more complicated,
and the application is limited. For our model, the grammar feature of number
has been used as a trigger.

The proposed inheritance hierarchy is based only on a morphological account
of the grammar feature of definiteness in Bulgarian. An account from the point
of view of the syntax is possible as well. However, it might be given either in the
DATR framework or as a separate formal semantic interpretation.

We are planning to expand our DATR application of definite article for all
part-of-speech, and to define the definiteness in Bulgarian within the framework
of one common DATR theory.
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Abstract. Developing multi-agent systems may be a rather difficult
task. Having confidence in the result is still more difficult. In this article,
we describe a methodology that helps in this task. This methodology is
dedicated to global optimization problems that can be solved combining
local constraints. We developed CASE tools to support this methodology
which are also presented. Finally, we show how this methodology has
been successfully used to develop a multi-agent system for the graph
colouring problem.

Keywords: multi-agent system, methodology, graph colouring

1 Introduction

Many methods already exist to build multi-agent systems (MAS) [12,15]. Theses
methods are composed of a set of models, but there is often a lack of methodol-
ogy to help to transform real system specifications into a modelization provided
by the method. [18,1]. In this paper, we introduce the bases of a methodol-
ogy associated to a method to develop multi-agent systems that are dedicated
to optimization problems. The first part of the article presents essentially the
methodology. In the second part, we introduce a system made of java classes we
developed to help us to write agents derived from our methodology. Finally, in
the third part, we present an application of our methodology to a particular
problem : the graph colouring problem. Using the methodology and the system
presented before, we developed a MAS for the graph colouring problem.

2 Methodology

The goal of our research is to have a method, a methodology and also tools to
help the analysis and design of distributed problem solving by MAS.

An important aspect of our methodology is that :

– at any time, the system can be stopped ;
– as time goes by, the solution proposed by our system gets better and better.

As presented in the sequel, the methodology is based on a top-down approach
which guaranty the progress of our system towards a satisfying solution.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 162–172, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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2.1 Usage Conditions

The methodology defined here must be used to solve global problems which can
be specified by a set of local constraints (LC). A more restrictive usage condition
is that this methodology is dedicated to optimisation problems for which a trivial
(but bad) solution exists.

Of course, for non NP-hard and non distributed problems for which a se-
quential algorithm is known, using agents (and so our methodology) is rarely a
good solution because communications and synchronisations introduced by MAS
make the program less efficient [17].

An example of a target problem for our methodology is the graph colouring
problem which consists in colouring a graph with a minimal number of colours
in such a way that two connected nodes do not have the same colour. This
application is presented in section 4.

2.2 The Methodology

Global variant. The first thing to do is to define a variant : a notion often
used to prove termination of algorithms. A variant is a variable defined on a
totally ordered structure that must decrease at each iteration and that has a
lower bound. These two properties imply the termination of the iterations.

Local decomposition. The second step is perhaps the hardest one : the global
problem has to be expressed in terms of local sub-problems. This consists in
dividing the solution of the problem into several parts. These parts are not
necessarily disjunctive. Each part is associated to a local sub-problem. The reso-
lution of each of these sub-problems must help to solve the global problem. The
ideal case is a sub-problem whose resolution is a necessary condition for solving
the global problem. However, this is not always the case. An other possibility is
a sub-problem whose resolution makes the global variant decrease.

Agentification. Once the global problem has been decomposed, we still do not
have agents. Of course, a first idea could be to assign each local problem to an
agent, but this is not always possible for the following reason.

To agentify a problem, two types of constraints must be considered :

– each sub-problem must be assigned to an agent ;
– each property (piece of data) must be assigned to an agent.

Each agent perceives only a local part of the environment. Moreover, an agent
being autonomous, no other agent can modify directly its properties. These two
constraints are called the locality principle. So, if the resolution of two sub-
problems needs to modify the same property, assigning two problems to two
different agents is impossible. A first solution could be to assign properties to
the environment. This is an easy solution, but this makes the environment a
central resource for our MAS, limiting the benefit of the distribution.
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A better solution is to change the structure of the local-problems so that
the modification of a property occurs only in the resolution of one sub-problem.
So, each property modification is controlled by one and only one agent. Other
agents that need to get the value of this property must have the agent owning
the property in their accointance set and can know its value by message passing.
Sub-problems resulting from this restructuring are called Property Oriented Sub-
Problems (POSP) in the sequel.

This step is necessary (it provides the agents and the accointance relations
of the MAS) and not so difficult to realize as it is shown in this article for the
graph-colouring problem.

Agents behaviour. We consider the agents as reactive and social ones, that
is they can react to changes of their environment and communicate with other
agents.

General behaviour. Each POSP is assigned to an agent. So, the general behaviour
of each agent is very simple :

– if its problem is solved, it does nothing (it could also help other agents). The
agent is satisfied ;

– otherwise, it tries to find a solution to its problem.

Solving a problem. For the global problem, we introduced a variant. We have to
do the same for each POSP in such a way that each time a local variant decrease,
the global variant does not increase.

Each POSP can be divided into sub-goals whose resolution makes the local
variant decrease. Then, an unsatisfied agent chooses a sub-goal and must solve
it.

When a sub-goal has to be solved, there are two cases :

– either it can be solved by the agent : the agent can then choose a new goal ;
– or the agent cannot solve it.

There are two reasons making a subgoal unable to be reached :
– either there is a blocking situation : an other agent prevent the acting agent

to apply one of its stategies ;
– or the agent doesn’t know what to do to solve the subgoal in the given

situation.
In the second case, the agent chooses an other goal or waits for a modification
of the situation. In the first case, the agent attacks the obstructing agent. This
behaviour follows the eco-agent’s one [7]. The attack mecanism is simulated
by sending an agression message. An agent under attack has to flee so that the
blocking situation disappears, but preserving the local constraints LC. Note that
the fleeing behaviour can increase the local variant. If the agent cannot flee, it
ignores the attack.

In order to help us specifying agents behaviours, we used the formalism of
automata with multiplicities [2]. This formalism can also be used to specify
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Fig. 1. Eco-agent : general behaviour

behaviours of other kinds of agents [13]. Thus, we defined the general behaviour
of an eco-agent by the automaton shown in figure 1.

Σ = {Init, S, NS, A, IC, E} is the set of the following perceptions :
Init : Synchronization signal,
S : goal is satisfied,
NS : goal is unsatisfied,
A : attacked by an other agent,
IC : main action impossible,
E : stop signal.

The set of elementary actions (behaviour primitives), performed when a state
is reached, is defined by {In,L,C,Sa,At,St,F,Fa} with
In : initialization of agent parameters,
L : lauching agent functionalities,
C : main action itself,
Sa : satisfied message,
At : agression,
St : stop process,
F : flee,
Fa : final message.

To help us developing MAS whose agents are specified by automata with
multiplicities, we developed Java classes that are described in the next section.
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3 System : CASE Tools Dedicated to Our Agents

3.1 Presentation of the System

In order to help developers in coding agents specified by automata with mul-
tiplicities, Java classes have been developed by our team. These classes give to
the programmer an upper level to the MAS platform Madkit on which they
rely [14]. These classes can however be easily adapted to other contexts because
their concepts are general.

The Madkit plateform is based on a multi-agent model (agent, group, role)
proposed in the Aalaadin method [8].

Group

Agent Role

ismember
−→

handles
−→

↑ is defined for

Fig. 2. AALAADIN concepts

In this model, an agent is defined as an autonomous and communicating
entity that can play a given number of roles in one or more groups. A group is a
set of agents. A semantic is given to groups at the design step, depending of the
application. Roles are functionnalities (or services) performed by the agents in
a given group. There is no other constraint in this model. Moreover, the inner
structure of each agent is unspecified.

Madkit provides an Agent class based on three main methods :
– activate : describes actions to perfom when the agent is initialized ;
– live : specifies the general behaviour of the agent ;
– end : lists actions to be executed when the agent dies.
To develop its application, the developer must create its own classes extend-

ing the Agent class. The three methods described above must be written using
primitives provided by Madkit, helping to manage groups, roles, communica-
tions, etc.

The classes we developed, and we present in this section, specialize the Agent
class of Madkit to help to describe the agent’s behaviour. According to the first
part of this article, here are the concepts our system helps to manage :
– description of the general behaviour of the agent by an automaton with

multiplicities ;
– description of the set of perceptions of the agent;
– description of actions associated to perceptions ;
– description of the behaviour of the agent according to its inner state.

These four concepts are available thanks to two main classes : the Automate
and AgentAuto classes.
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The Automate (automaton) class. The goal of this class is to provide func-
tionnalities to built and use automata with multiplicities. In this class, each state
is caracterized by :.

– a number n ;
– a method etatn describing the behaviour of this agent in state n. This method

must be written in the class representing the agent (presented below).

Following the definition given in [2], each transition of the automaton is
specified by a 4-tuple (initial state, final state, perception, action). Initial and
final states are represented by their number n. The perception is identified by a
method that is executed to determine wether the perception is valid or not. If it
is valid, the transition may be fired. The action is identified by a method that is
executed if the corresponding transition is activated. Both methods representing
the perception and the action must be defined in the class describing the agent.

The Automaton class provides to the user the two following main methods :

– setTransition : a method to add a transition to the automaton. The four
parameters correspond to the four characteristics of a transition ;

– transiter : this method determines valid transitions in the current state by
dynamic invocation of perception methods. If many perceptions are valid, a
method choix perception (choose perception), defined in the class associated
to the agent, is executed to determine the transition to fire. The associated
action is executed (by dynamic invocation). Finally, the method associated
to the final state is executed.

AgentAuto class. This class inheritates from the Agent class of Madkit. It allows
to implement an agent whose behaviour is described by an automaton with
multiplicities. The characteristics of this class are the following :

– definition of the live method : the standard algorithm looks like this :

current_state = initial_state;
execute the initial_state method
while (current_state != final_state)

current_state = transiter(current_state);

– definition of the choix perception method : this method tells to the Automate
class which perception must be chosen when several are valid at the same
time. A default version, written in the AgentAuto class, chooses a perception
randomly.

Using classes described above. To define an agent, a developer has to write
a class MyAgent inheritating from the AgentAuto class defining at least the
activate, etati, perception and actionmethods as shown in the following example.
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Fig. 3. Behaviour of a simple agent

3.2 A Toy Example

We want to write an agent with the behaviour described in figure 3.
This behaviour can be built on 4 properties :
private int food_storage;
private int tiredness;
private boolean hasFood;
private boolean isNoMoreTired;

The automaton is defined using the setTransition method in the constructor.
Here are three examples of methods :

– a method associated to a state, the playing state :
public void etat1() {// I play

foodStorage-=2;
tiredness++;

}

– a perception method, the tired perception :
public boolean isTired() {return (tireness > 5);}

– an action to perform when a state change is performed, the tiredAction
method :

public void tiredAction()
{System.out.println("I am tired");isNoMoreTired=false;}

4 Application to Graph Colouring

4.1 The Graph Colouring Problem

We give in this part the application of the methodology presented before to a
graph colouring problem. The general problem is to colour the nodes of a graph
with a minimal number of colours (optimisation) without two neighbour nodes
having the same colour (local constraint).

The problem of graph colouring being NP-hard, algorithms looking for opti-
mal solutions are numerous [5] but rarely usefull for real-size problems. We can
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refer to [6,9,10,11] for various methods trying to solve this problem, and more
precisely to [3,16] for ants algorithms.

The essential characteristic of our solution is that it starts with a correctly
coloured graph but not optimal as far as the number of colours is concerned. For
instance, a trivial initial solution is to assign a different colour for each node.
As the time goes, our algorithm tries to suppress colours, keeping a correct
coloration of the graph, and, at any time, we can stop our algorithm and obtain
a correctly coloured graph. Obviously, the more our algorithm will work, the
more pertinent the proposed solution will be.

4.2 Some Coloured Graph Properties

For details about graph definitions and properties, it can be refered to [4]
for example. Here are given the main ones used in the sequel. We denote
G = (N, E) an oriented (resp. non oriented) graph with N and E two sets
such that elements of E are ordered (resp. unordered) couples (u, v) ∈ N2, and
N ∩ E = ∅. The elements of N are nodes, those of E are the edges. Two nodes
u, v of G are neighbours if (u, v) ∈ E. V (u) will denote the set of all neighbours
of u.
Let C(u) the colour associated to a node u, and C(V (u)) the set of colours of u
neighbours. The k-colouring of a graph G = (N, E) is the attribution, to each
node, of a colour among k such that, for each edge (u, v) of E, C(u) �= C(v).
A graph is k-colourable if a k-colouring can be applied1. The smallest k such
that G is k-colourable is the chromatic number of G and denoted χ(G).
In the sequel, we will consider a k-coloured graph.

For this application, we have to define two new specific notions concerning
nodes. The local chromatic number of a node u is lcn(u) = max{|C|,∀C clique
of G /u ∈ C}. The current chromatic number of u is ccn(u) = |{c(u)} ∪

{c(v)/v ∈ V (u)}|. Then, a node u satisfies its lcn if and only if lcn(u) = ccn(u).
The following properties are used to implement our solution.

Theorem 1. Let G = (N, E) be a graph. For all node u ∈ N , if G is correctly
coloured, then ccn(u) ≤ lcn(u).

Theorem 2. Let G = (N, E) a graph, and let χ(G) = n. For each node u ∈ N ,
we have lcn(u) ≤ n.

Remark 1. Let us notice that, despite these two theorems, even if all the nodes
of a graph satisfy their lcn, the chromatic number of the graph can not always
be reached. There are also some graphs which can not be coloured such that
each node satisfies its lcn.
1 For k ≥ 3, decide wether a graph is k-colourable or not is NP-hard.
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4.3 Application

Global variant. Our goal is to make decrease the number of colours of the
nodes of a graph (the chosen global variant), trying to reach the graph chromatic
number.

Local decomposition. The previous property is decomposed into subproblems
for each node. Each node tries to change the colours of its neighbours in order to
make the local variant decrease. This variant corresponds to the node ccn whose
lower bound is the node lcn.

Agentification. The previous decomposition does not follow the locality prin-
ciple (indeed an agent should modify the colour of another agent). So, the POSP
of our general problem, is, for a node u, to change its own colour. The new as-
sociated local variant is the tuple of the ccn of its neighbours. Then, each POSP
is assigned to an agent called a node agent. It can be reached by solving a set
of subgoals (decreasing the ccn of a given neighbour). Notice that as each node
agent has at least one neighbour, its neighbours will make its ccn decrease.

Agents Behaviour. When the POSP assigned to an agent is not satisfied (that
is one of its neighbours has a ccn greater than its lcn), it has to choose a colour:

– existing in the graph ;
– making the ccn of the neighbour n decrease ;
– being different from the colours of its neighbours.

As a node agent can only see (and communicate with) its neighbours, to find
a colour verifying the two first items enumerated above, it asks to its neighbour
u the colours of its neighbours, which gives a first set C(V (u)), the colours set
of the neighbours of u.

To verify the third point, the acting agent a first asks to its neighbours their
colours and constructs the set C(V (a)) of these colours. Then it chooses a colour
among the new set S = C(V (u))\{C(V (a)) ∪ C(a)}2.

If a node agent u can not change its colour, necessarily, the set C(V (u)) is a
member of the set C(V (a)). In such a case, the node agent u attacks one of its
neighbours whose colour is in the set C(V (u)). If it is attacked, it flees, trying
to take another colour. It chooses a colour among the neighbours’ ones of its
neighbours, which is not a colour in its neighbours’ colours.

Two other agents have to be created for coordination and implementation
reasons. The topological agent creates the initial graph, node agents with their
characteristics (e.g. list of neighbours, initial colours), and a drawer agent giving
a graphic view of the graph updated when colours change.
2 The new colour must be different from the previous one, that is why C(a) is removed
from possible colours.
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Now we can precise the structure of the automaton with multiplicities which
defines the node agents behaviour. It has been given in figure 1 of paragraph 2.2
under its general form. With the notations of figure 1, we associate the IC
perception to the impossibility to change its own colour, and the C action to the
fact of recolouring itself.

5 Conclusion and Future Work

The last part presented an application of our methodology to a graph colouring
problem. It allowed to illustrate that the methodology presented in this paper
can be applied to real problems.

Our research now leads in adding to the methodology a fully specified method
with formal or semi-formal models (like, for instance, automata with multiplici-
ties presented here) to help designers of MAS.

CASE-Tools will also have to be enriched to support both the methodology
and the method.
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Abstract. Ontology based Component Oriented Architecture (OCOA)1

is an open software architecture designed for autonomous robotic agents.
It is comprised of four kinds of objects that manage and interchange in-
formation with each other on a distributed peer to peer basis. The cen-
tral architectural information service in the agent is the Agent Informa-
tion Manager (AIM), which is notified and notifies any capability added,
updated, substracted, or failed in the agent. These capabilities are man-
aged ontologically. The architectural knowledge base is built dynamically
by the components of the agent, and all of them can be searched and
found using ontology as resource and information retrieval mechanism.
High level logical data processing services are performed by Common
Framework objects (CFo). CFos also offer the infrastructure needed to
interchange raw and ontological architectural information. The interface
to physical devices is provided by Devide object Drivers (DoD). DoDs
extend CFo features by incorporating device and platform dependent
code wrapped in Device Input Output Drivers (DIOD). DIODs are Java
Native Interface objects, which operate directly with physical devices.
Therefore, OCOA uses these four kinds of objects (AIM, CFo, DoD and
DIOD), giving (by replacing only DIODs) a scalable, modular, open,
platform neutral, dynamic, ontology based agent architecture.

1 Introduction

The most succesful robotic software architectures developed can be classified
into three categories [1]: hierarchical, deliverative and hybrid. The main feature
of a hierarchical architecture [2] is to be guided to reach a high level plan by
restricting low-level horizontal communications. This architecture has poor flex-
ibility, so it is difficult to adapt to modern robots, which have to manage many
sensors in reactive and reflex loops. The deliverative architecture [3] adopts the
opposite approach. It comprises several modules known as behaviours which run
concurrently through communication and through the environment. The design
of high level goals is usually difficult to achieve. Hybrid architectures [4] are the
most recent. They try to combine hierarchical and deliberative control. However,
the connection between these two levels is generally a difficult task [1]. There are
1 This work is partly supported by the Spanish CICYT project TAP1999-0590-c02-02.
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several trends in the development of software that can help to the development
of new and powerful robotic architectures.

From Software Engineering there is a recent approach for building software
architectures that reuse off-the-shelf components. This approach is called compo-
nent based architectures [5]. Also, there is a growing interest in using ontologies2

as the main tool for the development of new and powerful knowledge based sys-
tems [9]. OCOA architecture follows these trends by integrating ontology into
the core of the architecture. As far as we know, this is a new approach for de-
signing autonomous robotic software architectures that may perform dynamic
reconfiguration of robotic system software components. OCOA, writen in Java,
is a hybrid robotic software architecture that uses component based features.
This architecture proposes approaches to:

– Total portability of components among different robotic platforms (openess).
– Dynamic plug/unplug of interdependent behavioral reactive, deliverative and

physical-driver components, even among different physical agents, without
loss of control over the agent.

– Ability to perform, structure and coordinate complex interdependent reac-
tive and deliverative behaviors.

In order to be able to coordinate behaviors and manage the dynamic adding
and removing of components, OCOA architecture uses an architectural knowl-
edge base. This knowledge base is dynamically built by the components of the
OCOA architecture. All its components manages the same ontology, which is
stored in the AIM, and provides the OCOA with a yellow and white pages
server, thus any request for information about services available in OCOA is an-
swered by the AIM. Logical data processing services are performed by Common
Framework objects (CFo) whilst the interface to physical devices is provided
by Device object Drivers (DoD). DoDs extend CFo features by incorporating
device and platform dependent code wrapped in Device Input Output Drivers
(DIOD). DIODs are Java Native Interface [6] objects, which operate directly
with physical devices. Therefore, OCOA is a scalable (components can be added
or removed), modular (component based), open and platform neutral (by replac-
ing only DIOD components the rest of the OCOA architecture can be used in
different robotic hardware architectures), dynamic and ontology based software
agent architecture. Moreover, due to the use of Java Remote Method Invocation
(Java/RMI) [7] [8], each component may be located in a different Java Virtual
Machine, therefore it also has distributed characteristics.

This paper describes OCOA architecture and it is organized as follows: sec-
tion 2 sets out the robotic architecture ontology used by the OCOA architecture.
Section 3 describes the components of OCOA: AIM, CFo and DoD. Section 4
shows an overview of the coordination resources that OCOA provides. Section 5
shows. an example of a robotic agent that uses OCOA. Section 6 describes some
details of OCOA implementation. Finally, the conclusions are drawn.
2 In this context, an ontology is a description (like a formal specification of a program)
of the concepts and relationships that can exists for an agent or a community of
agents [13].
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2 OCOA Robotic Ontology

In this section it is set out the ontological representation of the architectural
knowledge base of OCOA. The description includes the properties, features,
attributes and restrictions of each concept. Figure (1) shows the class tree used
for representing the architectural knowledge base.

Fig. 1. OCOA architectural ontology.

The root of the class tree is the Agent Information Manager, which has
an instance of the OntologyGraph and an instance of the TaxonomyTree. The
TaxonomyTree contains the name of the taxonomy, and a collection of Taxono-
myItems. Each TaxonomyItem contains the name of the item, the Children that
the item owns (which are instances of TaxonomyItem), the Father of the item it-
self (which is, again, an instance of TaxonomyItem), and a link to OntologyItem
(which is the ontological correspondence of the TaxonomyItem in the knowledge
base).

The OntologyGraph contains the name of the Ontology and a collection of
OntologyItems. Each OntologyItem contains the name of the item, a link to Tax-
onomyItem (which is its taxonomical hierarchy correspondence), and a collection
of instances of Capabilities. Each Capability contains the CapabilityName, a col-
lection of Dependencies (which are instances of OntologyItem), and information
related to the concrete capability implementation made by the part of a concrete
CFo (Method, ParameterClass and ReturnDataClass). The CFo is comprised of
a collection of Capabilities, an OCOAAddress (which univocally identifies the
component in the OCOA agent), and a series of strings related to the taxonomy
branch kept by this CFo in the TaxonomyTree. Device object Driver has is-a re-
lationship with a Common Framework object. This relationship represents that
a DoD is a kind of CFo. Device object Driver contains an EmbebedDIOD, which
links DoD to the system library that can be used to manage physical devices.
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3 The Structural Components of OCOA Architecture

In this section the main structural components of the OCOA architecture are
explained.

3.1 The Agent Information Manager (AIM)

The Agent Information Manager provides the agent with a white and yellow
pages server. It manages available information about components of the agent
by using the architectural knowledge base. Through the registration process, a
component anounces its existence, capabilities, goals and dependencies to the
AIM. Thus, the AIM incorpotes the component in its architectural knowledge
base. Capabilities, goals and dependencies are specified by the component being
registered using the common ontology of the architecture. The taxonomical in-
formation provided by the component can be non existent. Thus, the AIM must
include this information as a new branch of the taxonomical tree.

Fig. 2. Modular description of the Agent Information Manager (AIM).

As a result of this registration process, the component receives its own OCOA
address and all the addresses of its dependent components. If any of the com-
ponent dependences are not available (i.e. not yet registered), the dependence
addresses will be not provided. These addresses will be sent when the related
components that provide these capabilities are registered in the AIM. The mod-
ular structural description of the AIM is shown in Figure 2. It includes the
architectural knowledge base (which includes taxo-ontological information and
component addresses) and facilities to communicate with other components by
providing methods for performing registration, notifications and requests of ca-
pability explanations.

3.2 Common Framework Object (CFo)

Common Framework object provides facilities to interchange information with
other agent components: methods to register and unregister to the AIM and
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methods to attach listeners and triggers to other OCOA components. Also, the
CFo includes its own timers and watchdogs.

The CFo implements a Listener Manager which accepts and processes new
listener registrations from other components and requests listener registrations
to other components. This Listener Manager processing involves a complete
ontological knowledge of the component to be registered. This knowledge is used
to deal with conflicting external requests. CFo also implements a Dependence
Manager which manages all dependency information that this CFo has with
other components in the agent.

The Capability Manager performs several tasks in the CFo: 1) informs the
Listener Manager about new registrations to be made to other components;
2) provides all necesary information to perform the registration to the AIM;
3) manages all communications needed by any capability method; and 4) it is
informed of dependency modifications by the Dependence Manager.

Fig. 3. Modular description of an Extended Common Framework object (ECFo).

The CFo must be extended with capability methods to perform the desired
tasks and, afterwards, must be linked to an onto-taxonomical description of the
capabilities that these methods perform. Figure 3 shows the modular structural
description of an extended CFo component (ECFo).

When a CFo is incorporated into the architecture, the CFo communicates
with the AIM in order to provide its capabilities and dependencies. The AIM
incorporates the CFo into the general ontology and, as result, the AIM sends
the CFo OCOA address, and the addresses of the CFo dependence components
to the CFo. With this information, the CFo determines how and when to use
the dependences relating to the tasks to be executed. If any of its core depen-
dences are not available, the CFo states inactive until the AIM notifies it of the
availability of those dependences.
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3.3 Device Object Driver (DoD)

The Device object Driver can be shown as an abstraction layer to hide plat-
form dependant device implementation issues. DoD, besides inheriting all the
functionalities of its superclass (the CFo), adds a new object, the Device Input
Output Driver (DIOD). This new object wraps a link to a plattform dependant
driver (a system library program, usually written in C), which allows access
to physical, plattform dependant devices. The DIOD links platform dependant
code through Java Native Interface.

Fig. 4. Modular description of an Extended Device object Driver(EDoD).

The possibilities offered by its superclass (the CFo) enable preprocessing of
input data signals and revision of the execution of commands that interact with
the external world environment. As a result, DoD can carry out explicit trap-
ping of errors that occur within primitive action/sense tasks and the subsequent
activation of an alternative or error-correction activity. These reactive control
possibilities that DoD offers, allow prewired patterns of behavior. DoD may have
either eager sensing (i.e. senses often to update the system’s view of the world)
or lazy sensing (i.e. senses by request of any other component of the agent). Both
ways can be chosen. This gives OCOA agents the ability to selectively focus their
attention on specific aspects of their environment. These considerations allow an
OCOA agent to operate in real-time dynamic environments, due to the possibil-
ity of executing simple reaction strategies, the lack of an explicit external world
representation, and the reactive response to stimuli.

The DoD must be extended with: 1) a platform dependant driver linked to
the DIOD, 2) capability methods to develop the desired tasks; and 3) linkage
of these methods to a taxo-ontological description of the capabilities. Figure
4 shows the modular structural description of an Extended DoD component
(EDoD).
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4 Component Coordination

In OCOA architecture coexists several components3. All of them try to accom-
plish their job, and ocassionally will race to obtain necessary resources. These
resources can be, i.e. complying with DoD sensors, efectors, CFos that express
different levels of behavior, etc. Coordination among them is reached by get-
ting semanic knowledge of the tasks and goals asigned to each component. This
knowledge is expressed at an ontological level, and it is stored in the AIM when
the component is registered. Details of tasks to be accomplished are expressed
by:

– Precondition(s) to activate the behavior. These preconditions can be, i.e. a
definite state of the environment.

– Postcondition: State of the agent after the execution of a behavior. This can
imply the interchange of messages among different components.

– Execution priority: It has to be set off-line. Some behaviors will require a
higher priority over remainder behaviors( obstale avoidance, panic behavior,
etc...). Remainder behaviors may have an standard priority, and given a
punctual situation, race for resources.

– Execution deadline: It can be an absolute or relative temporal definition,
and in terms of available resources or state of the agent.

5 OCOA for Example

In figure (5) an example of use of OCOA in an autonomous robotic agent can be
seen. In the lower side of the figure, we can see three physical devices managed
by DIODs, which are embebed in Extended DoD (EDoD) components. Each
EDoD manages a DIOD. All EDoDs are interconnected to allow data interchange
needed to perform reactive behaviors. Above the EDoDs, a series of Extended
CFos (ECFos) can be seen. These ECFos perform logical processing of data
provided by the EDoDs; one of the ECFos uses an EDoD to deal with the
movement of the robot. All ECFos perform deliverative processing of data (i.e.:
map building, spatial and temporal reasoning, and navigational processing). The
AIM manages architectural knowledge data and, as a future work to be done,
will perform communication with external agents.

Figure (6) shows a cronogram representing event registrations, notifications
and capability requests during the execution of the OCOA implementation
shown in figure (5). The first action each component performs is to register
itself to the AIM; after providing their capabilities and dependences, the AIM
provides each component with its own OCOAAddress and the OCOAAddresses
of their dependence components (if available).

Next, the components mutually perform a series of registration processes, in
order to append listeners to achieve automatic event notification. The last series
3 The term “component” (structural), can be freely interchanged by the term “be-
haviour” (functional).
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Fig. 5. Software components and hierarchical relationships in an example agent.

of processes shown in figure (6) evidences the interaction between the active
components in the agent.

6 OCOA Implementation. Ongoing Efforts

OCOA implementation is being done using JADE [14] and its framework. Ac-
cording with JADE philosophy, every agent runs an unique execution thread.
By this reason, every OCOA component will be compound by several JADE
agents. Every manager of OCOA components (Listener, Dependence and Capa-
bility managers), is being implemented using a different and separate execution
thread; and every manager will be a different JADE agent. Also, every OCOA
capability will be implemented by a JADE agent. All OCOA components will
have common methods for initialize, register and cleanly exit from the system.

Implementation of service requests will be done using Service Request bro-
ker model (SRB). This will be done exchanging JADE pure ACL text messages
between OCOA components. This makes needless to know the exact API of the
server component and types/clases of parameter objects. Also, this will provide
loose coupling between OCOA components. Aside of exchange ACL text mes-
sages, the possibility of direct calling to remote methods of the components will
be provided.
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Fig. 6. Cronogram of the execution of OCOA implementation shown in figure 5.

There is a need of more flexibility regarding to the ontology framework pro-
vided by JADE. Its current implementation, makes necessary to known exactly
the kind of Java class that houses an ontology item. This lack of flexibility will
be overcomed supossing a previous agreement about the idea that a determi-
nate ontology item (identified by its tokens(s)) means the same concept among
all components. As further work, an analisys and comparation with the most
relevant robotic software architectures will be done.

7 Conclusions

Several recently published architectures for robotic autonomous agents use com-
ponent based theories (i.e. the works of [10] [11] [12]). OCOA main advantages
among other architectures are:

– Openess and Portability : the choice of Java as the language to use in this
architecture allows the implementation on a wide variety of target platforms,
and OCOA is not tied to any specific operating system.

– Modularity and Reusability : The definition of OCOA architecture is inher-
ently modular. CFos and DoDs (but no DIODs) can be reused off-the-shelf
in different robotic platforms.

– Scalability, Fault Tolerance and Security : through the Java/RMI distributed
computation model, nodes can be attached to the system to add more com-
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pute power, and thanks to OCOA this is done transparently. Due to the use
of Java/RMI, fault tolerance and security issues are provided.

– Reactive control behaviour patterns and ability to focus attention on specific
aspects of the robot environment : DoD structure provides prewired patterns
of behavior. Also, DoDs provide to perform lazy or eager sensing.

– High level planning : CFos provide the possibility of performing deliverative
processing.

– Dynamic component plug-in and ability to perform, structure and coordinate
complex interdependent reactive and deliverative behaviors: The ontology is
built dynamically with the components. Moreover, the use of ontology pro-
vides a way to perform real dynamic component plugin and resolution of all
possible behavior coordination and component dependences in the agent.
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Abstract. We present an algorithm for replanning in a reactive agent architecture
which incorporates decision-theoretic notions to drive the planning and meta-
deliberation process. The deliberation component relies on a refinement planner
which produces plans with optimal expected utility. The replanning algorithm we
propose exploits the planner’s ability to provide an approximate evaluation of
partial plans: it starts from a fully refined plan and makes it more partial until
it finds a more partial plan which subsumes more promising refinements; at that
point, the planning process is restarted from the current partial plan.

1 Introduction

In this paper we present a replanning algorithm developed for a reactive agent architecture
which incorporates decision-theoretic notions to determine the agent’s commitment. The
agent architecture is based on the planning paradigm proposed by [3], which combines
decision-theoretic refinement planning with a sound notion of action abstraction ([2]):
given a goal and a state of the world, the planner is invoked on a partial plan (i.e. a plan in
which some actions are abstract) and iteratively refines it by returning one or more plans
which maximize the expected utility according to the agent’s preferences, modelled by
a multi-attribute utility function.

The decision-theoretic planning paradigm extends the classical goal satisfaction
paradigm by allowing partial goal satisfaction and the trade-off of goal satisfaction
against resource consumption. Moreover, it accounts for uncertainty and non deter-
minism, which provide the conceptual instruments for dealing with uncertain world
knowledge and actions having non-deterministic effects. These features make decision-
theoretic planning especially suitable for modelling agents who are situated in dynami-
cally changing, non deterministic environments, and have incomplete knowledge about
the environment.

However, decision-theoretic planning frameworks based on plan refinement ([3]) do
not lend themselves to reactive agent architectures, as they do not include any support
for reactive replanning. In this paper, we try to overcome this gap, by proposing an
algorithm for replanning for a reactive agent architecture based on decision-theoretic
notions.

Since optimal plans are computed with reference to a certain world state, if the world
state changes, the selected plan may not be appropriate anymore. Instead of planning an
alternative solution from the scratch, by re-starting the planning process from the goal,
the agent tries to perform replanning on its current plan.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 183–192, 2002.
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The replanning algorithm is based on a partialization process: it proceeds by making the
current solution more partial and then starting the refinement process again. This process
is repeated until a new feasible plan is found or the partialization process reaches the
topmost action in the plan library (in this case, it coincides with the standard planning
process).

We take advantage of the decision-theoretic approach on which the planner is based
not only for improving the quality of the replanned solution, but also for guiding the
replanning process. In particular, the planner ability to evaluate the expected utility of
partial plans provides a way to decide whether to continue the partialization process or to
re-start refinement: for each partial plan produced in the partialization step, it is possible
to make an approximate estimate of whether and with what utility the primitive plans it
subsumes achieve the agent’s goal.
Then, the pruning heuristic used during the standard planning process to discard sub-
optimal plans can be used in the same way during the replanning process to reduce its
complexity.

2 The Agent Architecture

The architecture is composed of a deliberation module, an execution module, and a
sensing module, and relies on a meta-deliberation module to evaluate the need for re-
deliberation, following [9]. The agent is a BDI agent ([7]), i.e. its internal state is defined
by its beliefs about the current world, its goals, and the intentions (plans) it has formed in
order to achieve a subset of these goals . The agent’s deliberation and redeliberation are
based on decision-theoretic notions: the agent is driven by the overall goal of maximizing
its utility based on a set of preferences which are encoded in a utility function.
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Fig. 1. The structure of the agent
architecture. Dashed lines represent
data flow, solid lines represent con-
trol flow.

The agent is situated in a dynamic environ-
ment, i.e. the world can change independently from
the agent’s actions, and actions can have non-
deterministic effects, i.e., an action can result in a
set of alternative effects. Moreover, there is no per-
fect correspondence between the environment actual
state and the agent’s representation of it.

In this architecture, intentions are not static, and
can be modified as a result of re-deliberation: if the
agent detects a significant mismatch between the
initially expected and the currently expected utility
brought about by a plan, the agent revises its inten-
tions by performing re-deliberation. As a result, the
agent is likely to become committed to different plans
along time, each constituted of a different sequence
of actions. However, while the intention to execute
a certain plan remains the same until it is dropped or satisfied, the commitment to
execute single actions evolves continuously as a consequence of both execution and
re-deliberation.
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In order to represent dynamic intentions, separate structures for representing plan-
level commitment and action-level commitment have been introduced in the architecture.
So, intentions are stored in two kind of structures: plans, representing goal-level com-
mitment, and action-executions, representing action-level commitment. New instances
of the plan structure follow one another in time as a consequence of the agent’s re-
deliberation; on the contrary, the action-level commitment of an agent is recorded in a
unitary instance of the action-execution structure, called execution record, whose tem-
poral extent coincides with the agent’s commitment to a goal and which is updated at
every cycle.

The behavior of the agent is controlled by an execution-sensing loop with a meta-
level deliberation step (see figure 1). When this loop is first entered, the deliberation
module is invoked on the initial goal; the goal is matched against the plan schemata
contained in the library, and when a plan schema is found, it is passed to the planner for
refinement.This plan becomes the agent’s current intention, and the agent starts executing
it. After executing each action in the plan, the sensing module monitors the effects of the
action execution, and updates the agent’s representation of the world. Then, the meta-
deliberation module evaluates the updated representation by means of an execution-
monitoring function: if the world meets the agent’s expectations, there is no need for
re-deliberation, and the execution is resumed; otherwise, if the agent’s intentions are not
adequate anymore to the new environment, then the deliberation module is assigned the
task of modifying them.

Due to the agent’s uncertainty about the outcome of the plan, the initial plan is
associated to an expected utility interval, but this interval may vary as the execution of
the plan proceeds. More specifically, after the execution of a non-deterministic action
(or a conditional action, if the agent did not know at deliberation time what conditional
effect would apply), the new expected utility interval is either the same as the one that
preceded the execution, or a different one. If it is different, the new upper bound of the
expected utility can be the same as the previous one, or it can be higher or lower - that
is, an effect which is more or less advantageous than expected has taken place.

The execution-monitoring function, which constitutes the core of the meta-
deliberation module, relies on the agent’s subjective expectations about the utility of
a certain plan: this function computes the expected utility of the course of action con-
stituted by the remaining plan steps in the updated representation of the world. The
new expected utility is compared to the previously expected one, and the difference is
calculated: replanning is performed only if there is a significant difference.

If new deliberation is not necessary, the meta-deliberation module simply updates
the execution record and releases the control to the execution module, which executes
the next action. On the contrary, if new deliberation is necessary, the deliberation module
is given the control and invokes its replanning component on the current plan with the
task of finding a better plan; the functioning of the replanning component is inspired to
the notion of persistence of intentions ([1]), in that it tries to perform the most local re-
planning which allows the expected utility to be brought back to an acceptable difference
with the previously expected one.
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3 The Planning Algorithm

The action library is organised along two abstraction hierarchies. The sequential ab-
straction hierarchy is a task decomposition hierarchy: an action type in this hierarchy
is a macro-operator which the planner can substitute with a sequence of (primitive or
non-primitive) action types. The specification hierarchy is composed of abstract action
types which subsume more specific ones.
The specification hierarchy is obtained by inheritance abstraction, a technique for group-
ing together conditional probabilistic action operators in abstract classes based on their
outcomes which is characterized by the common features of all elements of the class
([4]), while the decomposition hierarchy is obtained by sequential abstraction, i.e., by
gathering stereotypical sequences of action types into complex action types ( [8]). In
the following, for simplicity, we will refer to sequentially abstract actions as complex
actions and to actions in the specification hierarchy as abstract actions.

A plan (see section 2) is a sequence of action instances and has associated the goal
the plan has been planned to achieve. A plan can be partial both in the sense that some
steps are complex actions and in the sense that some are abstract actions. Each plan is
associated with the derivation tree (including both abstract and complex actions) which
has been built during the planning process and that will be used for driving the replanning
phase.

Before refining a partial plan, the agent does not know which plan (or plans) -
among those subsumed by that partial plan - is the most advantageous according to its
preferences. Hence, the expected utility of the abstract action is uncertain: it is expressed
as an interval having as upper and lower bounds the expected utility of the best and the
worst outcomes produced by substituting in the plan the abstract action with all the more
specific actions it subsumes. This property is a key one for the planning process as it
makes it possible to compare partial plans which contain abstract actions.

The planning process starts from the topmost action in the hierarchy which achieves
the given goal. If there is no time bound, it proceeds refining the current plan(s) by
substituting complex actions with the associated decomposition and abstract actions
with all the more specific actions they subsume, until it obtains a set of plans which are
composed of primitive actions.

At each cycle the planning algorithm re-starts from a less partial plan: at the beginning
this plan coincides with the topmost action which achieves the goal, in the subsequent
refinement phases it is constituted by a sequence of actions; this feature is relevant for
replanning, as it make it possible to use the planner for refining any partial plan, no
matter how it has been generated.

At each refinement step, the expected utility of each plan is computed by projecting
it from the current world state. Then, a pruning heuristic is applied by discarding the
plans identified as suboptimal, i.e., plans whose expected utility upper bound is lower
than the lower bound of some other plan p. The suboptimality of a plan p′ with respect
to p means that all possible refinements of p have an expected utility which dominates
the utility of p′, and, as a consequence, dominates the utility of all refinements of p′:
consequently, suboptimal plans can be discarded without further refining them. On the
contrary, plans which have overlapping utilities need further refinement before the agent
makes any choice. At each step of refinement the expected utility interval of a plan tends
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procedure plan replan(plan p, world w){
/* find the first action which will fail */
action a := find-focused-action(p,w);
mark a; //set a as the FA
plan p’ := p;
plan p’’ := p;

/* while a solution or the root are not found */
while (not(achieve(p’’,w, goal(p’’)))

and has-father(a)){
/* look for a partial plan with better utility */
while (not (promising(p’, w, p))

and has-father(a)){
p’ := partialize(p’);
project(p’,w); } //evaluate the action in w

/* restart planning on the partial plan */
p’’ := refine(p’,w);}
return p’’;}

Fig. 2. The main procedure of the replanning algorithm, replan

to become narrower, since it subsumes a reduced number of plans (in fact, the plan
appears deeper in the hierarchy of plans).

4 The Replanning Algorithm

If a replanning phase is entered, then it means that the current plan does not reach
the agent’s goal, or that it reaches it with a very low utility compared with the initial
expectations. But it is possible that the current plan is ‘close’to a similar feasible solution,
where closeness is represented by the fact that both the current solution and a new feasible
one are subsumed by a common partial plan at some level of the action abstraction
hierarchy.

The key idea of the replanning algorithm is then to make the current plan more partial
by traversing the abstraction hierarchies in a upsidedown manner, until a more promising
abstract plan is found. The abstraction and the decomposition hierarchy play comple-
mentary roles in the algorithm: the abstraction hierarchy determines the alternatives for
substituting the actions in the plan, while the decomposition hierarchy is exploited to
focus the substitution process on a portion of the plan.
A partial plan can be identified as promising by observing its expected utility interval,
since this interval includes not only the utility of the (unfeasible) current plan but also
the utility of the new solution. So, during the replanning process, it is possible to use this
estimate in order to compare the new plan with the expected utility of the more specific
plan from which it has been obtained: if it is not promising it is discarded.

The starting point of the partialization process inside the plan is the first plan step
whose preconditions do not hold, due to some event which changed the world or to
some failure of the preceding actions. In [4]’s planning framework the Strips-like pre-
condition/effect relation is not accounted for: instead, an action is described as a set of
conditional effects. The representation of an action includes both the action intended
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function plan partialize(plan p){
action a := marked-action(p); /* a is the FA of p */
/* if it is subsumed by a partial action */
if (abstract(father(a))){

delete(a, p); /* delete a from the tree */
return p;}

/* no more abstract parents: we are in a decomposition */
else if (complex(father(a)){

a1 := find-sibling(a,p);
if (null(a1)){

/* there is no FA in the decomposition */
mark(father(a)) //set the FA

//delete the decomposition
delete(descendant(father(a)),p);
return p;}

else { //change the current FA
unmark(a);
mark(a1);}}}

Fig. 3. The procedure for making a plan more abstract, partialize.

effects, which are obtained when its ‘preconditions’ hold, and the effects obtained when
its ‘preconditions’ do not hold. For this reason, the notation of the action has been aug-
mented with the information about the action intended effect, which makes it possible
to identify its preconditions.1

The task of identifying the next action whose preconditions do not hold (the ‘focused
action’) is accomplished by the Find-focused-action function (see the main procedure
in Figure 2); mark is the function which sets the current focused action of the plan).
Then, starting from the focused action (FA), the replanning algorithm partializes the
plan, following the derivation tree associated with the plan (see the partializes function
in Figure 3).

If the action type of the FA is directly subsumed by an abstract action type in the
derivation tree, the focused action is deleted and the abstract action substitutes it in the
tree frontier which constitutes the plan. On the contrary, if FA appears in a decomposition
(i.e., its father in the derivation tree is a sequentially abstract action) then two cases are
possible (see the find-sibling function in 4):

1. There is some action in the plan which is a descendant of a sibling of FA in the
decomposition and which has not been examined yet: this descendant of the sibling
becomes the current FA. The order according to which siblings are considered re-
flects the assumption that it is better to replan non-executed actions, when possible:
so, right siblings (from the focused action on) are given priority on left siblings.

2. All siblings in the decomposition have been already refined (i.e., no one has any
descendant): all the siblings of FA and FA itself are removed from the derivation

1 Since it is possible that more than one condition-effect branch lead to the goal (maybe with
different satisfaction degrees), different sets of preconditions can be identified by selecting the
condition associated to successful effects.
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function action find-sibling(a,p){
/* get the next action to be refined (in the same decomposition as a) */
action a0 := right-sibling(a,p);
action a1 := leftmost(descendant(a0,p));
while(not (null (a1))){

/* if it can be partialized */
if (not complex(father(a1))){
unmark(a); //change FA
mark(a1)
return a1;}

/* move to next action */
a0 := right-sibling(a0,p);
a1 := leftmost(descendant(a0,p));}

/* do the same on the left side of the plan */
action a1 := left-sibling(a,p);
action a1 := rightmost(descendant(a0,p));
while(not (null (a1))){
if (not complex(father(a1))){
unmark(a);
mark(a1)
return a1;}

action a1 := left-sibling(a,p);}

Fig. 4. The procedure for finding the new focused action.

tree and replaced in the plan by the complex sequential action, which becomes the
current FA (see Figure 4).2

As discussed in the Introduction, the pruning process of the planner is applied in
the refinement process executed during the replanning phase. In this way, the difficulty
of finding a new solution from the current partial plan is alleviated by the fact that
suboptimal alternatives are discarded before their refinement.

Beside allowing the pruning heuristic, however, the abstraction mechanism has an-
other advantage. Remember that, by the definition of abstraction discussed in Section
2, it appears that, given a world state, the outcome of an abstract action includes the
outcomes of all the actions it subsumes.
Each time a plan p is partialized, the resulting plan p′ has an expected utility interval that
includes the utility interval of p. However p′ subsumes also other plans whose outcomes
are possibly different from the outcome of p. At this point, two cases are possible: either
the other plans are better than p or not. In the first case, the utility of p′ will have an
higher higher bound with respect to p, since it includes all the outcomes of the subsumed
plans. In the second case, the utility of p′ will not have a higher upper bound than p.
Hence, p′ is not more promising than the less partial plan p.
The algorithm exploits this property (see the promising condition in the procedure re-
plan) to decide when the iteration of the partialization step must be stopped: when a

2 Since an action type may occur in multiple decompositions3, in order to understand which
decomposition the action instance appears into, it is not sufficient to use the action type library,
but it is necessary to use the derivation tree).
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promising partial plan (i.e., a plan which subsumes better alternatives than the previous
one) is reached, the partialization process ends and the refinement process is restarted
on the current partial plan.

The abstraction hierarchy has also a further role. The assumption underlying our
strategy is that a plan failure can often be resolved locally, within the subtree the focused
action appears into. Not all failures, however, can be resolved locally, but these cases are
taken into account by the algorithm as well: after the current subtree has been completely
partialized, a wider subtree in the derivation tree will be considered, until the topmost
root action is reached: in this case, the root of the derivation tree becomes the FA and
the planning process is restarted from scratch.
In case of non-local causal dependencies among actions (i.e., a precondition of the FA is
enabled by the effect of an action which does not appear in the local context of FA), the
algorithm takes advantage from the fact that the current partial plan is projected onto its
final state and its expected utility is computed: provided that the definition of abstract
action operators is sufficiently accurate to make casual dependencies explicit, it is likely
that invalid dependencies will be reflected in the expected utility of the current partial
plan, and, as a consequence, it will be pruned during refinement without being further
expanded.

A
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D E

B’ B’’

C’

E’ E’’

F G

C’’

G’ G’’

Fig. 5. A generic action hierarchy. Abstrac-
tion relations are represented by dashed
lines.

Finally, the movement of the FA is a
critical point of the algorithm. Here we
presented find-sibling as a simple pro-
cess which follows the local structure of
the tree. However, some improvements
are possible to take advantage from the
cases in which non local dependencies
are known. Hence, the find-sibling proce-
dure should be modified in order to use in
deeper way the structure of the plans and,
in particular, the implicit enablement links
among actions for choosing the next FA.

For the sake of brevity, in order to illus-
trate how the replanning algorithm works,
we will resort to a generic action hierarchy
(see fig. 5), which abstracts out the details
of the domains we used to test the imple-
mentation.
In the following, we will examine the replanning process that the algorithm would per-
form, given the initial plan composed of the steps B′ - D - E′ (see fig. 6).

1. Assume that, at the beginning of the replanning process, the focused step is action
D (1). D is examined first, but an alternative instantiation of it cannot be found (as
its immediate parent is not an abstract action). The find-siblings function returns the
right sibling of D, E.

2. The planner is given as input the partial plan B′ - D - E. Assuming that a feasible
plan is not found (i.e., B′ - D - E′′, the only possible alternative to the original plan,
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Fig. 6. A graphical representation of the plan replanning process on the generic action library
introduced in 5. Black nodes represent the siblings of the focused action node, while the grey
nodes represent the local decomposition context. (1)-(2)-(3) represent the phases of the replanning
process.

does not work), the replanning process is started again after collapsing the sub-plan
(D − E) on its father, the complex node C ′ (no siblings left).

3. Given the new input plan B′ - C ′, the focused step now is C ′ (2). The focused step
is examined first, and the more abstract father node C is found; C ′ is replaced by C
in the plan and the planner is invoked on the new partial plan B′-C.

4. Again, assuming that a new feasible plan has not been found by refining B′-C, the
replanning process continues by examining B, the only sibling of the focused action
C (3). Before the candidate plan is collapsed on its root (A), the replanning process
gives the planner as input the plan obtained by substituting the more abstract node
B for B′ in the current partial plan, obtaining B - C.

5. Finally, if the refinement of the partial plan B - C does not yield a feasible plan, the
plan is collapsed on the its father A. If a feasible plan is not found by refining the
plan constituted by the root alone, the plan replanning algorithm fails.

In the previous version of the algorithm, the find-sibling step proceeds not only from
left to right (towards actions yet to be executed), but also in a backward manner: at
a certain point it is possible that the focused point is shifted to an already executed
actions. In order to overcome this problem, we propose that the projection rule should is
changed to include in the projection the actions that must be executed again (possibly in
an alternative way). In this case, the FA would be moved incrementally to the left, and
would become the reference point for starting the projection of the current partial plan.

5 Related Work and Conclusions

[5] has proposed a similar algorithm for an SNLP planner. The algorithm searches for a
plan similar to known ones first by retracting refinements: i.e., actions, constraints and
causal links. In order to remove the refinements in the right order, [5] add to the plan an
history of ‘reasons’ explaining why each new element has been inserted.
In a similar way, our algorithm adapts the failed plan to the new situation by retracting
refinements, even if in the sense of more specific actions and decompositions. The same
role played by ‘reasons’ is embodied in the derivation tree associated to the plan which
explains the structure of the current plan and guides the partialization process.
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As it has been remarked on by ([6]), reusing existing plans raises complexity issues.
They show that modifying existing plans is advantageous only under some conditions:
in particular, when, as in our proposal, it is employed in a replanning context (instead
of a general plan-reuse approach to planning) in which it is crucial to retain as many
steps as possible of the plan the agent is committed to. Second, when the complexity of
generating plans from the scratch is hard, as in the case of our decision-theoretic planner.

For what concerns the complexity issues, it must be noticed that the replanning
algorithm works in a similar way as the iterative deepening algorithm. At each stage, the
height of the tree of the state space examined increases. The difference with the standard
search algorithm is that, instead of starting the search from the tree root and stopping
at a certain depth, we start from a leaf of the plan space and, at each step, we select a
higher tree which rooted by one of the ancestors of the leaf.
In the worst case, the order of complexity of the replanning algorithm is the same as the
standard planning algorithm. However, two facts that reduce the actual work performed
by the replanning algorithm must be taken into account: first, if the assumption that a
feasible solution is “close" to the current plan is true, then the height of the tree which
includes both plans is lower than the height of root of the whole state space. Second, the
pruning heuristics is used to prevent the refinement of some of the intermediate plans in
the search space, reducing the number of refinement runs performed.

Finally, it is worth mentioning that the replanning algorithm we propose is complete,
in that it finds the solution if one exists, but it does not necessarily finds the optimal
solution: the desirability of an optimal solution, in fact, is subordinated to the notions
of resource-boundedness and to the persistence of intentions, which tend to privilege
conservative options.

References

1. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355, 1988.

2. Vu Ha and Peter Haddawy. Theoretical foundations for abstraction-based probabilistic plan-
ning. In 12th Conf. on Uncertainty in Artificial Intelligence, pages 291–298, Portland, 1996.

3. P. Haddawy and S. Hanks. Utility models for goal-directed, decision-theoretic planners. Com-
putational Intelligence, 14:392–429, 1998.

4. P. Haddawy and M. Suwandi. Decision-theoretic refinement planning using inheritance ab-
straction. In Proc. of 2nd AIPS Int. Conf., pages 266–271, Menlo Park, CA, 1994.

5. Steve Hanks and Daniel S. Weld. A domain-independent algorithm for plan adaptation. Journal
of Artificial Intelligence Research, 2:319–360, 1995.

6. B. Nebel and J. Koehler. Plan modification versus plan generation: A complexity-theoretic per-
spective. In Proceedings of of the 13th International Joint Conference on Artificial Intelligence,
pages 1436–1441, Chambery, France, 1993.

7. A. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In Proc. 2th
Int. Conf. Principles of Knowledge Representation and Reasoning (KR:91), pages 473–484,
Cambridge, MA, 1991.

8. E. D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier, New York, 1977.
9. Mike Wooldridge and Simon Parsons. Intention reconsideration reconsidered. In Jörg Müller,

Munindar P. Singh, and Anand S. Rao, editors, Proc. of ATAL-98), volume 1555, pages 63–80.
Springer-Verlag, 1999.



A Broker Approach for Multi-agent Scheduling
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Abstract. We propose an iterative broker approach for solving a multi-agent
scheduling problem in an inherently distributed environment. The agents have
incomplete information about the environment and incomplete models of other
agents, and are reluctant to disclose any information to other agents. The
algorithm allows the agents to reach a solution close to the global optimum
found in the centralised approach. The algorithm is demonstrated through two
scenarios. We have applied the algorithm to a case study and the result is as good as
in the centralised approach. Experimental results on random data are also provided.

Keywords: distributed AI, multi-agent systems, planning

1 Introduction

A number of studies in multi-agent systems focus on co-operative problem solving.
There are two types of situations in which agents co-operate. In the first situation, the
agents have a common objective but individual agents cannot solve the problem alone,
thus the task requires agents to co-ordinate their plans and share resources. In this case,
co-operation is mandatory. In the second situation, each agent can solve its own problem
independently, but co-operation with other agents helps to reduce the cost of operation. In
this case, co-operation is desirable but not mandatory and usually involves the exchange
of tasks, resources and goals.

However, in an environment where each agent has incomplete information of what
the other agents need and agents are unwilling to disclose all their requirements and
resources to the other agents, co-operation could be difficult, if not impossible.

Richards et al. [6] presents the Teaching Space Utilisation (TSU) problem in such
an environment. The TSU is a course scheduling problem involving a number of de-
partments. Each department has many courses to schedule and rooms available. Each
department schedules its own courses using its own resources. However, these solutions
when combined together are unlikely to be optimal in terms of the overall number of
resources used throughout the university. Alternatively the departments can let the prob-
lem be solved centrally, which can result in a better solution than when each department
solves the problem itself.

In practice there are good reasons to use a multi-agent approach. Each department
has its own local constraints, preferences and perhaps even confidential requirements
and optimisation criteria. It is desirable to respect these and still obtain a solution better
than independent departmental scheduling.

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 193–202, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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The goal of this paper is to use an iterative broker approach to achieve the global
optimum with respect to one optimisation criterion. The rest of the paper is organised
as follows. Section 2 presents the related works. Section 3 presents the formalities and
Section 4 the algorithm. Section 5 presents two scenarios and Section 6 the results using
TSU as a case study. Finally, Section 7 discusses the approach and Section 8 concludes.

2 Related Work

Both [5] and [1] use broker approach to manage resource. [5] develops a resource man-
agement system which supports a de-centralised approach using three types of agents:
the application agents, the broker agents and resource agents. However, neither of them
are concerned with optimisation.

A number of works point out that co-operative planning can improve costs. However,
mostly they are either seeking a feasible solution or a better solution without seeking fur-
ther for a global optimum. In some case, without rescheduling [3,7], the global optimum
is unlikely to be found.

While [2] investigates a cooperative planning using complete information, in this pa-
per, we propose a multi-agent cooperative scheduling problem under incomplete infor-
mation. Both their approach and ours require agents to construct their plans or schedules
first before the agent interaction phase starts. Although [2] develops methods to reason
about free resources, in our case, free resources are much easier to compute. Unlike their
approach in which the agents pass complete plans with solutions to a planner, in our
case, the agents pass only the non-optimised problem to the broker.

3 Formalities

In this section we present the notion of activities, resources, constraints and optimisation
criteria. Details of the problem descriptions can be found in [4].

3.1 Variables

Activities. Activities have properties: resource requirement, room type, student group,
teacher, and duration. Two decision variables are associated with each activity: Room
(Rm) and Time (T ).

Resources. The set of resources will be denoted by R which is Rm ∪ T . Resources can
have different attributes and different capacities. If two resources are of the same type
and same capacities, they may be used for the same type of activities.

Each activity requires exclusive access to a resource throughout its duration. If a
resource is used by an activity, the resource constraint has to be updated to indicate that
it is no longer available.
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3.2 Constraints

There are two main types of constraints: the temporal constraints and the capacity con-
straints. The temporal constraints are imposed mainly by the group of students attending
the activities and the teacher lecturing the activity. Resource must be exclusive, so no
students will be assigned to the same room at the same time. This is the same for the
teachers. For each activity, the size of the student group determines the capacity of the
room required and the activity type must match that of the room.

3.3 Optimisation Criteria

The optimisation criterion is based on a cost function of resource usage. Without loss
of generality, the objective is to minimise the resource cost. The task is to schedule the
activities into resources without violating the constraints with the goal to optimise on
resource usage.

Depending on the optimisation criterion, the cost function varies. [6] used two opti-
misation criteria: the room usage and the seat usage where the objective function is to
minimise the number of rooms used and the number of overall empty seats respectively.

Each agent produces a schedule with cost function Cost : R → N
+.

Cost =
k∑

i=1

Ri (1)

where k is the total number of activities.
In the room usage case,Ri is 100 if a new room is needed during allocation; otherwise,

it is 0. In the seat usage case, Ri is the number of empty seats of the activity.

4 Algorithm

The architecture consists of two types of agents: an optimising agent who owns a number
of resources and a broker which acts as an intermediary to assist agents in locating
resources for optimisation.

The iterative broker algorithm extends from the simple broker approach proposed
by [6]. In the simple broker approach, only the agent can deallocate resources and can
communicate to the broker. In the iterative broker approach, the broker can deallocate
resources, negotiate and reschedule. Communication among the agents and the broker
is bidirectional.

The simple approach is as follows:

– Each agent solves its local problem to create a schedule from its own resources. The
schedule stipulates the resources needed, and the cost of the schedule.

– The agents then deallocate requests, and send them with unallocated resources to
the broker.

– The broker gathers the requests from the agents and optimises the problems using
the aggregated free resources.

The iterative broker approach continues from the simple broker approach as follows:
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– The broker deallocates requests and sends the deallocated requests and some re-
sources to the agents.

– The agents may need to revise their schedules, whether partially or completely, to
accommodate these requests. The agents then send bids to request resources for
local activities using external requests.

– The broker awards the bids with minimal cost and rejects otherwise.
– The agent receives the answer from the broker and the rejected bids form the deallo-

cated requests which the agent then sends to the broker together with the associated
constraints.

– The broker reschedules the deallocated requests.

The broker and the agents interact until no more deallocation is done or no im-
provement on the solution is achieved or until the global optimal is reached. The global
solution of the broker approach is found by aggregating the partial solutions of the agents
and the solution of the broker.

4.1 Deallocation Procedure

The deallocation procedure is at the heart of the broker model. It has two parameters:
the deallocation criterion and the deallocation factor.

Deallocation Criterion. The choice of a deallocation criterion follows from the opti-
misation criterion. If the optimisation criterion is on room usage, then the deallocation
criterion is also on room usage.

Deallocation Factor. A deallocation criterion has a variable deallocation factor, f , which
affects the number of events to be deallocated. f is the percentage of the resources not
used per resource, therefore, f is from 0 to 100. For a resource with fixed capacity, the
percentage can be replaced by a number between 0 and the maximum capacity.

Algorithm 1 shows the deallocation procedure using the deallocation factor f .

Algorithm 1 Deallocation
Deallocation

for each used optimising resource R do
let c be f× max usage
if number of times R is used ≤ c then

for each activity using R do
deallocate the activity

end for
end if

end for

According to the deallocation criterion, an agent creates a new subproblem by par-
titioning the solution into two parts: an optimised part and a suboptimal part. For the
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optimised part, the agent keeps the solution unchanged. For the suboptimal part, the
agent creates an unsolved subproblem by unassigning values for the variables.

The agents then bundle all the deallocated events with the associated constraints into
a request. All the agents send the deallocated requests with the associated constraints,
and all the free resources, to the broker.

4.2 Rescheduling

The broker aggregates all the deallocated requests and free resources from all the agents
as a new subproblem and solves the new subproblem to optimality.

We propose two strategies for broker rescheduling:

1. The broker deallocates the activities using the same deallocation factor as the agents.
Afterwards, the broker sends the deallocated requests to all the agents. At the same
time, the broker also sends back the unallocated resources to the original agents.
The broker waits for the reply from the agents. Bidding may be needed if more than
one agent can solve the external requests from the broker.

2. The broker requests the agent to increase the deallocation factor, and sends these
deallocated activities and resources. Then the broker continues optimisation and
deallocation.

Note that when the broker sends back the unallocated resources to the agents for
rescheduling, it may be necessary to consider what these unallocated resources are:
should the broker send the resource previously owned by the agents, or resources of the
other agents. In this paper, for the room usage, the broker sends only those free resources
that belong to the agents previously. However, the free resources sent are those that are
used by at least one activity; in other words, those resources that are currently in use
after broker deallocation.

4.3 Convergence

Remember that all the deallocated activities belong to the non-optimised activities; each
activity after broker scheduling can be either better off as optimised or remain as non-
optimised.

Cost can be reduced in two ways. First, when activities are assigned to a resource
currently in use; second, when non-optimised activities of two agents are combined to
use the same resources. If an agent reschedules the activities successfully, the resources
will incur no additional cost because all the resources returned to the agents are currently
in use. Additionally the broker could save the cost from deallocated activities. In this
regard, there is an improvement in cost. But if agent rescheduling fails, the deallocated
activities of the broker have to make use of the previous schedule and this will result
in no cost improvement. Therefore, in the worst case, the cost of the resource usage
would be as before broker deallocation. However, due to the labelling strategy being
incomplete since it is order-dependent, it is possible that the results may not converge.
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5 Scenario

In this section, we consider two scenarios. The first has a co-operative objective; the
second has a competitive objective.

5.1 Scenario 1

In the first scenario, the deallocation criterion is

Room Usage: Minimise the number of rooms used in scheduling lectures. A room is
considered as used if a lecture is scheduled in it for at least one time slot in a week.

Suppose agent A has one room with 8 seats, and agent B has one room with 25
seats and one room with 30 seats. Suppose after deallocation, the agents both deallocate
activities and send the requests and resource to the broker.

Fig. 1 shows the broker view of the schedule before broker scheduling.

Rooms Agent Capacities Time-units(1..5)
r1 A 8 UUU--
r2 B 25 U-U-U
r3 B 30 -----

Fig. 1. Broker before scheduling (room usage)

where U represents rooms used by the agents and therefore unavailable for scheduling
and - represents free time-units, so the broker can schedule into these time-units.

Suppose that the broker has two external requests, from agent A and B, with seating
requirements of 6 and 8 to be scheduled at time 2 only. The broker has limited knowledge
about the time-domain of the activities of the scheduled activities of the agents, so it
is unable to make a better schedule. Therefore, without interacting with the agents, the
broker may require three rooms instead of two rooms (see Fig. 2).

Rooms Agent Capacities Time-units(1..5)
r1 A 8 UUU--
r2 B 25 U6U-U
r3 B 30 -8---

Fig. 2. Broker original schedule

The broker deallocates the room which is used less than two times, and so the
activity requesting 8 seats is deallocated and sent to agent A. Agent A can accommodate
the requests of the broker by rescheduling its activities, so the broker can schedule the
activities into two rooms (see Fig. 3).
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Rooms Agent Capacities Time-units(1..5)
r1 A 8 U8UU-
r2 B 25 U6U-U
r3 B 30 -----

Fig. 3. Broker final schedule

As a result of the algorithm, the total number of rooms needed is 2, which is the same
as that in the centralised approach.

We have only presented the first strategy in rescheduling. The second strategy will
have similar effects when the broker requests agent A to deallocate more resources. The
reason why agent A is requested instead of agent B is because r1 is used 3 times while
r2 is used 4 times. The broker chooses the one with the lower usage.

5.2 Scenario 2

In the second scenario, we use seat usage as the deallocation and optimisation criteria.
The scenario is more complicated than scenario 1, since the agents actually compete to
use the rooms with the least empty seats. One time-unit used by one agent may not be
re-used by another agent.

The Deallocation criterion is:

Seat Usage: Minimise the number of empty seats in the scheduled rooms. The total
number of empty seats in a schedule is obtained by summing all the empty seats in
all the rooms used in that schedule.

Fig. 4 shows the broker view of the schedule before broker scheduling.

Rooms Agent Capacities Time-units
r1 A 8 5 6 7 -
r2 B 25 18 - 20 21
r3 B 30 - - - -

Fig. 4. Broker before scheduling (seat usage)

Again, suppose there are two external requests, one requires 6 seats and one requires
8 seats, both at time 2 only.

If the broker only schedules to the time-slots available, without requiring the agents
to reschedule, the result would be as in Fig. 5, which yields 63 empty seats.

Suppose the broker deallocates any activities with more than 10 empty seats, so the
external activities are deallocated again. The broker sends these deallocated activities and
asks the agents to reconsider their schedule taking into account of the external requests.
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Rooms Agent Capacities Time-units
r1 A 8 5 6 7 -
r2 B 25 18 8 20 21
r3 B 30 - 6 - -

Fig. 5. Broker original schedule

Rooms Agent Capacities Time-units
r1 A 8 5 8 6 7
r2 B 25 18 6 20 21
r3 B 30 - - - -

Fig. 6. Broker final schedule

Rescheduling from the part of the agents is required, because the broker cannot
reschedule the schedule made by the agents. Both agents A and B may bid the resource
for external requests. These resources could be the same or different. Fig. 6 shows a final
schedule of 41 empty seats.

6 Experimental Results

In order to study the algorithm, as a case study, we have used Teaching Space Utilisation
(TSU) problem [6]. The TSU problem schedules a number of lectures in a number of
rooms with 36 time-slots per week such that no constraints are violated. In this section,
the results of using the broker approach on the TSU problem [6] are presented. There
are four agents and altogether 519 activities, 45 rooms and 22286 seat available.

6.1 TSU – Room Usage

Fig. 7 shows the TSU results using the centralised approach, the distributed approach,
the simple broker approach and the iterative broker approach, using room usage as the
optimisation criterion such that the number of rooms used is minimised. In the distributed
approach, the agent solves the problem independently without communicating with the
broker.

Centralised Distributed Simple Broker Iterative Broker
Optimal 16 19 17 16

Time 65 2 2 17

Fig. 7. TSU problems - Centralised vs. Distributed vs. Broker

The experiments are run using ECLiPSeversion 4.2 under a Pentium III at 933
Mhz with 512MB RAM of main memory. The optimal is the number of rooms needed.
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The time is the total of the execution time for constraint propagation, labelling and
optimisation in seconds. In [6], the simple broker approach has tried deallocation factor
from 0 to 20 time-slots in intervals of 5; the best solution found is 17 rooms, which is
still greater than the centralised approach. Instead, our iterative broker approach can find
the optimum of 16 rooms using either the strategies described in Section 4.2.

6.2 Random Data

We generate two sets of random problem by modelling them on the TSU problems.
Each problem has 4 agents, each with 90 activities and 10 rooms. Set A and Set B differ
in the way using po, where po represents the probability that two groups of students
cannot occur at the same time. Each set has 50 instances for each po. We only compare
instances that are solvable by both the agents and the broker. The problems are tried
using the centralised approach, the simple broker approach and the iterative approach.

Problem Set po Centralised Simple Iterative Better Solvable
A1 0.2 20 6 22 12 34
B1 0.2 24 5 40 24 49
B2 0.3 13 3 42 34 48

Fig. 8. Random solution (room)

Fig. 8 shows the number of instances with which each algorithm can reach the
global optimum, a solution which has the lowest resource usage among the three; it also
shows that the simple broker model performs the most unsatisfactory. For problem set
A1, in 22 instances of the iterative approach, 12 of them find solutions better than the
centralised approach, which shows that the broker models can produce results better
than the centralised approach. In all the instances, the iterative broker model can always
achieve better results than the simple broker model. For problem set B2 with 0.3 po, the
number of instances in the iterative broker approach reaching a global optimum even
outnumber the centralised approach.

7 Discussion

Experimental results show that the iterative broker approach can do better than the simple
broker approach. We can identify three reasons. First, in the simple approach, each agent
uses a fixed deallocation factor. However, the problem of each agent may be different:
some may have rooms better utilised than the other. Second, in the iterative approach,
rescheduling provides the opportunities that allow some of the activities release resources
for other agents’ need. In addition, the agent may be able to find non-local resources to
accommodate the needs of the current already activities. Third, in the iterative approach,
the overall number of deallocated activities is in fact greater than that in the simple
approach. When the number is small, the simple approach is closer to the distributed
approach than the centralised approach.
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The effectiveness of the iterative broker approach can be affected by two factors.
First, increase in the probably of conflict in the problem makes the problem less densely
scheduled which may increase the number of activities deallocated. Second, the sequence
of agent communication affects the order of the activities to be labelled. To ease the
comparison, this sequence is fixed in our implementation; otherwise, the results would
be non-deterministic. For a 4-agent scenario, there would be 24 of ways to read the
messages.

We have also tried the seat usage on the TSU problem. However, the strategies
mentioned in Section 4.2 are limited since the broker has less information to reason
about seat usage in other agents. The seat usage is more complicated than the room
usage and details of experimental results on seat usage will be reported later.

Though in the room usage, the result of improvement does not look significant: only
by one unit. However, we need to understand that the solution of TSU problem are
densely allocated. Remember that it takes 36 activities to reduce further the cost, since
one room can allocate 36 activities. However, as seen in Scenario 2, the resource cost
can be reduced by more than one unit.

8 Conclusion and Future Work

We have presented an iterative broker-based approach to global optimisation. We have
proposed two strategies for rescheduling, and we have found that the iterative broker
approach can produce result better than the simple approach. Sometimes, the broker
approach can even outperform the centralised approach. To reach the ultimate goal of
achieving multi-criteria optimisation as addressed by [6], further work will be necessary.
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Abstract. Extracting and processing information from web pages is an
important task in many areas like constructing search engines, information
retrieval, and data mining from the Web. Common approach in the extraction
process is to represent a page as a “bag of words” and then to perform an
additional processing on such a flat representation. In this paper we propose a
new, hierarchical representation that includes the browser screen coordinates
for every HTML object in a page. Using a spatial information one is able to
define heuristics for recognition of common page areas such as a header, left
and right menu, footer and the center of a page. We show in initial experiments
that using our heuristics, defined objects are recognized properly in 73% of
cases.

1. Introduction

Web pages are designed for humans! While the previous sentence is more than
obvious, still many machine learning and information retrieval techniques for
processing web pages do not utilize implicit spatial information contained in the
HTML source. By spatial information we assume positions of HTML objects in the
browser window. For example, one can say that a certain image is on the top left
corner of the screen or that the most informative paragraph is in the center of the page
and it occupies the area of 100x200 pixels. Where can this kind of information be
useful?

 Consider the problem of feature selection in a document (web page) classification.
There are several methods to perform the feature selection process. We will mention
just the two of them. The first one is based on finding the expected information gain
that the presence or absence of a word w gives toward the classification of a document
D [1]. Using this approach D is represented as a vector of k most informative words.
The other approach is to represent D as a vector relative to some collection of words
that define vocabulary V. Every coordinate has a value – frequency of the
corresponding word in the document, weighted by the factor that identifies the inverse
frequency of the word in the whole reference corpus to which D belongs to. This
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measure is called TF-IDF (term frequency – inverse document frequency)[2]. In both
cases we try to estimate what are the most relevant words that describe D i.e. the best
vector representation of D that will be used in the classification process. Assuming
that web pages are designed for visual sense, we can argue that some words represent
noise with respect to the page topic if they belong to menu, banner link or perhaps
page footer. That noise can be misleading for classifiers. We can also suppose that the
words which belong to the central part of the page (screen) carry more information
than the words from the bottom right corner. Hence there should be a way to weight
differently words from different layout contexts. Presently, in classical algorithms
positions of words and their spanning areas are not considered at all!

Let us mention another problem – designing an efficient crawling strategy for a
focused search engine. Given a specific topic T and the starting set of pages S, it is
necessary to find as much T on-topic pages as possible in a predefined number of
steps. By step means visiting (and downloading and indexing) a page reachable from
S following the hyperlinks from the pages in S. In other words it is important to
estimate whether an outgoing link is promising or not. In [3][4] and [5] different
techniques are described. In any case when a crawler decides to take into account a
page for link expansion, all the links from the page are inserted into the crawl frontier
(links that are to be visited). But many of them are not interesting at all (i.e. “this page
is designed by XYZ”). Sometimes, the links that belong to menus or to the footer are
also misleading. Can we measure the importance of a link according to its position in
a page (on the browser screen). Links in the center of the page are probably more
important than the links in the bottom left corner. We can also calculate link density
in some area of the page (screen) and weight links taking into account that density
factor. The links that are surrounded by “more” text are probably more important for
the topic than the links positioned in groups. On the other hand groups of links can
signify we are on the hub page that can also be important for our focused crawler. Can
we learn the positions of interesting links for some topics?  In any case, we believe
information about the position of a link can help to infer if it is promising or not!

To give a final example, let's consider the problem of cheating search engines by
inserting irrelevant keywords into the HTML source. This is a widely used technique
in order to raise the probability of indexing a page by a search engine and
representing it with higher rank among search results. While it is relatively easy to
detect and reject false keywords where their foreground color is the same as the
background color, there is no way to detect keywords of regular color covered with
images. If the coordinates of objects in a page representation are known, then search
engines could filter the false keywords hidden by other objects and users would get
better answers on their queries!

The outline of the paper is as follows: In Section 2 we define the M-Tree format of
a page used to render the page on the virtual screen, i.e. to obtain coordinates for
every HTML object. Section 3 describes heuristics for recognition of a header, footer,
left and right menu, and the “center” of a page. In Section 4, experimental results on a
predefined dataset are shown. Finally, conclusions and remarks about the future work
are given in Section 5.
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2. Extraction of Spatial Information from an HTML Source

We introduce a virtual screen (VS) that defines a coordinate system for specifying the
positions of HTML objects (in further text - objects) inside Web pages (in further text
- pages). VS is a half strip with a predefined width and an infinite height both
measured in pixels. It is set to correspond to the page display area in a maximized
browser window on a standard monitor with the resolution of 1024x768 pixels. Of
course one can set any desirable resolution. The width of VS is set to 1000 (when the
vertical scroll bars are removed that quantity is usually left for rendering the page).
Obviously pages are of different length and therefore height can be theoretically
infinite. The top left corner of VS represents the origin of the referent coordinate
system.

The process of the spatial information extraction consists of three steps. In the first
step a page is parsed using an HTML parser that extracts two different types of
elements – tags and data. Tag elements (TE) are delimited with “<>” while data
elements (DE) are contained between the two consecutive tags. Each TE includes the
name of the corresponding tag and a list of attribute-value pairs. DE is represented as
a list of tokens, which taken all together form a data string between the consecutive
tags. In the second step, as soon as <TE,DE> pair is extracted from the input HTML
stream, it is injected into the tree builder. Tree builder applies a stack machine and a
set of predefined rules to build the tree that represents the HTML structure of the
page. We named the output of this component m-Tree. There are many papers that
describe the construction of the parsing tree of an HTML page [6][7]. In our approach
a technique is adopted which constructs the m-Tree in one single pass through the
given page. Rules used to properly nest TEs into the hierarchy conform to the HTML
4.01 specification [8]. Additional efforts were made to design a tree builder that will
be immune to the bad HTML source.

Definition 1: m-Tree (in further text mT) is directed n-ary tree defined with a set of
nodes N and a set of edges E with the following characteristics:

1. N = Ndesc ∪  Ncont ∪  Ndata   where:

� Ndesc (description nodes) is a set of nodes, which correspond to TEs of the following HTML
tags: {<TITLE>, <META>}

� Ncont (container nodes) is a set of nodes, which correspond to TEs of the following HTML
tags: {<TABLE>, <CAPTION>, <TH>, <TD>, <TR>, <P>, <CENTER>, <DIV>,
<BLOCKQUOTE>, <ADDRESS>, <PRE>, <H1>, <H2>, <H3>, <H4>, <H5>, <H6>,
<OL>, <UL>, <LI>, <MENU>, <DIR>, <DL>, <DT>, <DD>, <A>,
<IMG>,<BR>,<HR>}

� Ndata (data nodes) is a set of nodes, which correspond to DEs.

Each n ∈  N has the following attributes: name equals the name of the corresponding tag except
for Ndata nodes where name = “TEXT”, attval is a list of attribute-value pairs extracted from the
corresponding tag and can be null (i.e. nodes from Ndata have this attribute set to null).
Additionally, each Ndata node has four more attributes: value, fsize, emph, and align. The first
contains tokens from the corresponding DE, the second describes font size of these tokens, the
third caries information whether the tokens belong to the scope of validity of one or more of the
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following HTML tags: {<B>,<I>,<U>, <STRONG>, <EM>, <SMALL>, <BIG>}. The last
one describes the alignment of the text (left, right or centered). In further text if n corresponds
to tag X we write n<X> (n has the attribute name = X) .

2. The root of mT, nROOT ∈  Ncont represents a page as a whole and its name is set to “ROOT”
while attval contains only one pair (URL : source url of the page itself).

3.  E = {(nx , ny) | nx  , ny ∈  N }.

There can be only the following types of edges:

� (nROOT, ndesc), ndesc ∈  Ndesc

� (ncont1, ncont2), ncont1 ∈  Ncont \ {n<IMG>}, ncont2 ∈  Ncont \ {nROOT} iff  ncont2 belongs to the context of
ncont1 according to the nesting rules of  the HTML 4.01 specification

� (ncont, ndata), ncont ∈  Ncont \ {n<IMG>}, ndata ∈  Ndata iff ndata belongs to the context of ncont   •

From definition 1 it is clear that image and text nodes can be only the leafs in an mT.
After mT is obtained from the input page and when the context of every object of
interest is known, it is possible to apply the algorithm for coordinate calculation. In
fact, it is nearly the same algorithm that browsers perform when rendering a page.
The coordinates of objects are calculated in the third step using the rendering module
and constructed mT as its input. We did not find any specific algorithm for page
rendering except some recommendations from W3C [8] and therefore it was
necessary to design our own. We decided to imitate the visual behavior of Internet
Explorer because of the popularity of this product. It is clear how difficult it could be
if all aspects of the rendering process would be taken into account. Hence some
simplifications were made, which in our opinion do not influence significantly the
final task – recognition of common areas in a page. The simplifications are as follows:

1. Rendering module (RM) calculates only coordinates for nodes in mT, i.e. the HTML tags
out of mT are skipped.

2. RM does not support layered HTML documents.

3. RM does not support frames.

4. RM does not support style sheets.

Rendering module produces the final, desirable representation of a page – M-Tree (in
further text MT). MT extends the concept of mT by incorporating coordinates for
each n ∈  N  \ Ndesc.

Definition 2: MT is the extension of mT with the following characteristics:

1. For ∀ n ∈  N \ Ndesc , there are two additional attributes: X and Y. These are arrays which
contain x and y coordinates of the corresponding object polygon on VS.

2. If n ∈  Ncont \ {n<A>} then X and Y have dimension 4 and it is assumed that the object
represented with n occupies rectangle area on VS. The margins of this n’s rectangle are:

� The bottom margin is equal to the top margin of the left neighbor node if it exists. If n does
not have a left neighbor or n = n<TD> then the bottom margin is equal to the bottom margin of



Recognition of Common Areas in a Web Page Using a Visualization Approach         207

n’s immediate parent. If n = nROOT then the bottom margin is the x-axes of the VS coordinate
system.

� The top margin is equal to the top margin of the rightmost leaf node in the subtree in which
n is the root node.

� The left margin is equal to the left margin of n’s immediate parent, shifted to the right for
the correction factor. This factor depends on the name of the node (i.e. if name =”LI” this
factor is set to 5 times current font width because of the indentation of list items). If n = n<TD>

and n has a left neighbor then the left margin is equal to the right margin of n’s left
neighbor. If n = nROOT then the left margin is the y-axes of the VS coordinate system.

� The right margin is equal to the right margin of n’s immediate parent. If n = n<TABLE> or n =
n<TD> then the right margin is set to correspond to table/cell width.

3. If n ∈  Ndata or n = n<A> then X and Y can have dimension from 4 to 8 depending on the area
on VS occupied by the corresponding text/link (see Figure 1-B). Coordinates are calculated
using the number of characters contained in the value attribute and the current font width.
Text flow is restricted to the right margin of the parent node and then the new line is started.
Heights of lines are determined by the current font height.  •

The previous definition covers most aspects of the rendering process, but not all
because of the complexity of the process. For example if the page contains tables then
RM implements modified auto-layout algorithm [8] for calculating table/column/cell
widths. If n<TABLE> is encountered, RM makes one more pass from that node down the
mT to calculate cell/column/table widths. Hence the first pass is dedicated to table
width calculations, and in the second pass RM calculates the final coordinates for the
nodes that belong to the observed subtree. If there are other n<TABLE> nodes down on the
path (nesting of the tables in a page) the process of calculating widths is recursively
performed, but with no additional passes. Before resolving a table, artificial cells
(nodes) are inserted in order to simplify calculus in cases where cell spanning is
present (colspan and rowspan attributes in a <TD>).

Let us consider the complexity of the MT extraction process. The first and the
second step (extracting <TE,DE> pairs  and building the mT)  are performed in a
single pass through the page. Hence the complexity so far is O(s), where s represents
the size of the file. In the third step RM transforms mT into MT while passing through
mT and calculating coordinates for every non-descriptive node. If mT does not
contain the nodes that represent table TEs (tables in a page) then one single pass in
the third step is needed and the complexity remains linear. If the page contains tables
then in the worst case RM performs an additional pass. Hence the complexity of the
RM phase is O(2s) and the resulting complexity of the MT extraction process is
O(3s), which is satisfactory for most applications.

3. Defining Heuristics for Recognition of Common Areas of
Interest

Given the MT of a page and assuming the common web design patterns [9], it is
possible to define a set of heuristics for recognition of standard areas in a page such as
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a menu or footer. First, we choose the areas of interest to be: a header (H), footer (F),
left menu (LM), right menu (RM), and the center of a page (C). Presently there are no
exact definitions in the open literature for these page areas (one can think of these
areas as groups of objects). Therefore we adopted intuitive definitions of these areas,
which rely exclusively upon VS coordinates of logical groups of objects in a page. It
is helpful to understand these groups of objects as frequently found areas in pages
regardless of a page topic. They are tightly related to the presentational concept of a
page. Naturally, heuristics based on spatial information are used to recognize them,
instead of exact algorithms. After careful examination of many different pages on the
Web, we restricted the areas in which H, F, LM, RM, and C can be found. Before we
describe what is recognized to be H, F, LM, RM, and C, we will introduce the specific
partition of a page as it is shown in figure 1-A.

We set W1 = W2 to be 30% of the page width in pixels determined by the rightmost
margin among nodes from MT. W1 and W2 define �� and �� respectively which are
the locations where LM and RM can be exclusively found. We set H1 = 200 pixels
and H2 = 150 pixels. H1 and H2 define � and � respectively which are the locations
where H and F can be exclusively found.  Of course one can set different values, but
the initial experiments showed that the previous values are appropriate (see Section
4). Now we define the following heuristics:

Heuristic 1: H consists of all nodes from MT that satisfy one or more of the
following conditions:

1. Subtree S of MT with its root rS belongs to H iff rS is of type n<TABLE> and completely belongs
to �� (i.e. the upper bound of the table is less than or equal to H

1
).

2. Subtree S of MT with its root rS belongs to H iff the upper bound of rS is less than or equal to
m and does not belong to the subtrees found in 1. Number m is the maximum upper bound
of all n<TABLE> nodes found in 1. •

Heuristic 2: LM consists of all nodes from MT that are not contained in H and satisfy
one or more of the following conditions:

1. Subtree S of MT with its root rS belongs to LM iff rS is of type n<TABLE> and completely
belongs to �� (i.e. the right bound of the table is less than or equal to W

1
).

2. Subtree S of MT with its root rS belongs to LM iff rS is of type n<TD>, and completely belongs
to ��, and n<TABLE> which this rS belongs to has the lower bound less than or equal to H

1
, and

the upper bound greater then or equal to H
2
. •

 Heuristic 3: RM consists of all nodes from MT that are not contained in H, LM and
satisfy one or more of the following conditions:

(Analogously as heuristic 2 except �� and W
2
 instead of �� and W

1
) •

Heuristic 4: F consists of all nodes from MT that are not contained in H, LM, RM,
and satisfy one or more of the following conditions:

1. Subtree S of MT with its root rS belongs to F iff rS is of type n<TABLE> and completely belongs
to �  (i.e. the lower bound of the table is greater than or equal to H

2
).
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2. Subtree S of MT with its root rS belongs to F iff the lower bound of rS is greater than or
equal to m and rS does not belong to the subtrees found in 1. Number m is the maximum
lower bound of all n<TABLE> nodes found in 1.

3. Let n ∈ {n<BR>, n<HR>} or n is in the scope of the central text alignment. Further, assume n is
the lowest of all nodes in MT completely contained in �. Subtree S of MT with its root rS

belongs to F iff lower bound of rS is greater than or equal to the upper bound of n, and rS

does not belong to the subtrees found in 1 and 2. •

Heuristic 5: C consists of all nodes from MT that are not in H, LM, RM, and F. •

This is another
example

X0,Y0

This is an example
This is an example

X1,Y1

X2,Y2X3,Y3

X5,Y5

X0,Y0

                        This is
the most complicated
example

X0,Y0

X7,Y7

W1 W2

H1

H2end of
page

start of
page

  H

F

RMLM

C

(A) (B)

Fig. 1. Position of areas of interest in a page (A) and some possible text polygons (B)

From previous definitions of heuristics one can understand the importance of the
<TABLE> tag and its related tags <TR> and <TD>. These tags are commonly used
(≈ 88%) for the purposes not originally intended by inventors of HTML [10]. Web
designers usually organize the layout of a page and the alignment of objects by
including a lot of tables in the page. Therefore every table cell often represents a
smallest amount of the logically grouped information, visually presented to the user in
a browser window (in our case on the VS). The same stands for tables that often
group menu objects, footers, search and input forms, and other common page objects.
Realization of the previous heuristics is done in at most 2 additional passes through
the given MT. Hence the resulting complexity of the whole recognition process is
nearly O(5s), allowing us to apply it in different applications mentioned in Section 1.
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4. Experimental Results

An experiment is performed to show how efficient the recognition process can be
using only the spatial information given through MT. The setup of the experiment
was as follows:

Step 1: Construct the dataset D that contains sufficient number of different pages from different
sites.

Step 2: Walk through D manually and label areas that can be considered as H, F, LM, RM, and
C.

Step 3: Perform automatic extraction of MT for each page in D. Perform automatic recognition
of the areas of interest using defined heuristics on MT. Make the new automatically labeled
dataset D1 from each previously processed MT.

Step 4: Walk through D1 manually and estimate how well the areas are recognized using
manually labeled D as a reference point.

Step 1 is conducted by downloading nearly 16000 pages from the open source
directory www.dmoz.org as a starting point for our crawler. We downloaded nearly
1000 files from the first level of every root category. D is constructed from the
downloaded set by randomly choosing 515 files, uniformly distributed among
categories and also by size. Two persons performed step 2 once. The second person
was a kind of control and an ultimate judge for labeling. Step 3 is performed using a
tool that includes MT builder and the logic for applying the recognition heuristics.
This tool can be used to visualize objects of interest from a web page. For example
one can see in a scrolling window where the paragraphs and line breaks are placed.
One can also enter any sequence of HTML tags to obtain the picture (visualization) of
their positions. In step 4, two persons make the judgment of recognizer performance
by entering into each labeled file and comparing the automatic labels with the hand
made labels from step 2. After step 4 we obtained the results shown in table 1.

In order to discuss results, notions of “bad” or “good” in recognition process have
to be clarified. If area X exists but is not labeled at all, or if X does not exist but
something is labeled as X, then mark “not recognized” is evidenced. If less than 50%
of objects that belong to X are labeled, or if some objects out of X are labeled too,
then mark “bad” is evidenced. Mark “good” is evidenced if more than 50% but less
than 90% of objects from X are labeled and no objects out of X are labeled. Mark
“excellent” is evidenced if more than 90% of objects from X and no objects out of X
are labeled. The verification process was very tedious and it lasted a whole week!

We stress that mark “bad” is given in cases where something is wrongly
recognized. That is because we intend to use our tool to filter the noise for the text
classification purposes. Therefore if some text from the center of a page is wrongly
removed we could lose important information. Also, the recognition of C is,
according to heuristic 5, complementary to the recognition of other areas. So we did
not include it in the performance measurements.

Results from Table 1 (column “overall”) are obtained by introducing the total
score S for the page P as a sum of all marks for recognition of all areas of interest. If
X∈ {H, F, LM, RM} is  “not recognized” then the corresponding mark is 0. Marks
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“bad”, “good”, and “excellent” are mapped into 1, 2, and 3 respectively. Now, if S =
12 we assume that recognition process for a particular file (page) is “excellent”.
Similar “good” stands for 8 ≤ S < 12, “bad” stands for 4 ≤ S < 8, and “not recognized”
stands for S < 4. Analyzing pages that produced “bad” or “not recognized” we found
that in nearly 20% MT was not quite correct but mT was correct i.e. the rendering
process was not good enough. The typical error is that portions of a page are
internally rendered well but they are scrambled as a whole.

Table 1. Success in the recognition process (in %). Shaded rows represent successful
recognition.  

Header
%

Footer
%

Left Menu
%

Right Menu
%

Overall %

Not recognized 25 13 6 5 3

Bad 16 17 15 14 24

Good 10 15 3 2 50

Excellent 49 55 76 79 23

For the rest of 80% of “not recognized” and “bad” recognized pages we suppose that
defined heuristics are not sufficient enough. Finally we selected values for margins
H1, H2, W1, and W2 according to the statistics from [9]. In further research other values
have to be considered as well.

5. Conclusion

This paper describes a possible representation for a web page in which objects are
placed into the well-defined tree hierarchy according to where they belong in an
HTML structure of a page. We named this representation M-Tree. Further, each
object (node from M-Tree) carries information about its position in a browser
window. This spatial information enables us to define heuristics for the recognition of
common areas such as a header, footer, left and right menus, and the center of a page.
The crucial difficulty was to develop sufficiently good rendering algorithm i.e. to
imitate behavior of the popular user agents such as Internet Explorer. We concluded
from analyzed pages that an HTML source was often far away from the proposed
standard and it posed additional problems in the rendering process. After applying
some techniques for the error recovery in the construction of the parsing tree and
introducing some rendering simplifications (we do not deal with frames, layers and
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style sheets) we defined  recognition heuristics based only on spatial information. We
could have included other types of information into the recognition process, but we
wanted to observe the percentage of successfully recognized areas based only on a
page layout structure and common design patterns. The overall success in recognizing
targeted areas yields 73% (“good+excellent”). From Table 1 one can see that menus
are either recognized or not. On the other hand recognition of header and footer is
more complex and heuristics other than just spatial have to be considered. In further
research we plan to improve the rendering process and the recognition heuristics. We
plan to apply the MT format in a page classification task by grouping features from
similar contexts and learning these newly created structures using Hidden-Tree
Markov Models. We also hope that we can improve the crawling strategy for the
focused crawler described in [4] by estimating the importance of a link based on its
position and neighborhood. We believe that MT can find its application in many other
areas related to search engines, information retrieval and data mining from the Web.
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Abstract. A neural approach to propositional multi-adjoint logic programming
was recently introduced. In this paper we extend the neural approach to multi-
adjoint deduction and, furthermore, modify it to cope with abductive multi-adjoint
reasoning, where adaptations of the uncertainty factor in a knowledge base are
carried out automatically so that a number of given observations can be adequately
explained.

1 Introduction

Uncertainty, incompleteness, and/or inconsistency have to be faced, sooner or later,
when dealing with complex applications of knowledge representation. As a result, sev-
eral frameworks for manipulating data and knowledge have been proposed in the form
of extensions to classical logic programming and deductive databases. The underlying
uncertainty formalism in the proposed frameworks includes probability theory, fuzzy
set theory, many-valued logic, or possibilistic logic. Our approach to modelling uncer-
tainty in human cognition and real world applications is based on the multi-adjoint logic
programming paradigm.

In this paper we introduce and study a model of abduction problem. Abductive
reasoning is widely recognized as an important form of reasoning with uncertain infor-
mation that is appropriate for many problems inArtificial Intelligence. Broadly speaking,
abduction aims at finding explanations for, or causes of, observed phenomena or facts;
it is inference to the best explanation, a pattern of reasoning that occurs in such diverse
places as medical diagnosis, scientific theory formation, accident investigation, language
understanding, and jury deliberation. More formally, abduction is an inference mecha-
nism where given a knowledge base and some observations, the reasoner tries to find
hypotheses which together with the knowledge base explain the observations. Reasoning
based on such an inference mechanism is referred to as abductive reasoning.

Abduction methods can be characterised within different frameworks, such as logical,
neural, data analysis, etc. We will use the logical and the neural approach in this paper,
in order to present our model of abduction reasoning. In general, as pointed out in [1], a
neural network is assumed to support complex patterns of interaction between effects and
causes; however, it is very difficult to model relationships such as competition between
two causes when a common effect shows up and cooperation between them otherwise.
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This is why we have chosen a hybrid approach, in which all these relationships are
expressed in the rich language of multi-adjoint logic. The purpose of this work is to
link, following ideas from [3,9], the theoretical framework for abductive multi-adjoint
reasoning presented in [7], and its neural net implementation [6].

Transformation rules carry multi-adjoint logic programs into corresponding neural
networks, where the confidence values of rules relate to output of neurons in the net,
confidence values of facts represent input values for the net, and network functions are
determined by a set of conjunctors, implications and aggregation operators; the output of
the net being the values of the propositional variables in the program under its minimal
model. Also, some examples from a first prototype are reported.

2 Preliminary Definitions

In order to make this paper as self-contained as possible, we give here the essentials
of multi-adjoint logic programming, and its neural implementation framework. Due to
space limitations, neither comments nor motivations are presented, the interested reader
is referred to [8] where multi-adjoint logic programs are formally introduced and its
procedural semantics is given, to [7] where the framework for abductive reasoning is
set, and to [6] in which a neural approach to multi-adjoint logic programming is given.

Originally, the multi-adjoint paradigm was developed for multi-adjoint lattices (a
much more general structure for the set of truth-values than the unit real interval[0, 1]),
however, for the sake of simplicity, in this specific application we will restrict our atten-
tion to [0, 1]. However, the other special feature of multi-adjoint logic programs, that a
number of different implications are allowed in the bodies of the rules, will remain in
force. Formally,

Definition 1. A multi-adjoint programis a set of rules 〈A←i B, ϑ〉 satisfying:

1. The headof the rule A is a propositional symbol.
2. The bodyformula B is a formula of F built from propositional symbols B1, . . . , Bn

(n ≥ 0) by the use of conjunction (&j) operators.
3. The confidence factorϑ is an element (a truth-value) of [0, 1].

Factsare rules with body� (which usually will not be written), and a query(or goal) is
a propositional symbol intended as a question ?A prompting the system.

Regarding the implementation as a neural network, it will be useful to give a name
to a specially simple type of rule: thehomogeneous rules.

Definition 2. A rule 〈A←i B, ϑ〉 is said to be homogeneousif its body is either a
propositional symbol or a &i-conjunction of variables.

As usual, aninterpretation is a mappingI:Π → L. Note that each of these interpretations
can be uniquely extended to the whole set of formulas. The ordering� of the truth-values
L can be easily extended to the set of interpretations, which also inherits the structure
of complete lattice.
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Definition 3.

1. An interpretation I satisfies〈A←i B, ϑ〉 if and only if ϑ � Î (A←i B).
2. An interpretation I is a modelof a multi-adjoint logic program P iff all weighted

rules in P are satisfied by I .
3. An element λ ∈ L is a correct answerfor a program P and a query ?A if for any

interpretation I which is a model of P we have λ � I(A).

The immediate consequences operator, given by van Emden and Kowalski, can be
easily generalised to the framework of multi-adjoint logic programs.

Definition 4. Let P be a multi-adjoint program. The immediate consequences operator
TP maps interpretations to interpretations, and is defined by

TP(I)(A) = sup
{
ϑ

.
&i Î(B) | 〈A←iB, ϑ〉 ∈ P

}

The semantics of a multi-adjoint logic program can be characterised, as usual, by
the post-fixpoints ofTP; that is, an interpretationI is a model of a multi-adjoint logic
programP iff TP(I) � I. TheTP operator is proved to be monotonic and continuous
under very general hypotheses, see [8], and it is remarkable that these results are true
even for non-commutative and non-associative conjunctors. In particular, by continuity,
the least model can be reached in at most countably many iterations ofTP on the least
interpretation.

3 Model of Neural Network

In this section we briefly describe the model of neural net chosen to implement the
immediate consequences operatorTP for multi-adjoint logic programming.

Before describing the model, some considerations are needed: The set of opera-
tors to be implemented will consist of the three most important adjoint pairs: product
(&P ,←P ), Gödel (&G,←G) and Lukasiewicz (&L,←L). Regarding the selection of
operators implemented, just recall that everyt-norm, the type of conjunctor more com-
monly used in the context of fuzzy reasoning, is expressible as a direct sum of these
three basic conjunctors [5]. Regarding the aggregation operators, we will implement a
family of weighted sums, which are denoted@(n1,...,nm) and defined as follows:

@(n1,...,nm)(p1, . . . , pm) =
n1p1 + · · ·+ nmpm

n1 + · · ·+ nm

A neural net is considered in which each process unit is associated to either a propo-
sitional symbol or an homogeneous rule. The state of thei-th neuron in the instantt is
expressed by its outputIi(t). Thus, the state of the network can be expressed by means
of a state vectorI(p), whose components are the output of the neurons in the net, and
its initial state is the null vector.

Regarding the user interface, there are two layers, a visible one, whose output is part
of the overall output of the net, and a hidden layer, whose outputs are only used as input
values for other neurons.
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The connection between neurons is denoted by a matrix of weightsW, in which
wkj indicates the existence or absence of connection from unitk to unitj; if the neuron
represents a weighted sum, then the matrix of weights also represents the weights asso-
ciated to any of the inputs. The weights of the connections related to neuroni (that is,
the i-th row of the matrixW) are represented bywi•, and are allocated in an internal
vector register of the neuron.

We will work with two vectors in the internal register: the first one stores the con-
fidence valuesv of atoms and homogeneous rules, the second vector,m, stores the
functioning mode of each neuron in the net as a signalmi. The different functioning
modes are described below:

If mi = 1 the neuron is assumed to be associated to a propositional symbol, and its
next state is the maximum value among all its input, its previous state, and the initial
confidence valuesvi. More precisely:

Case p, mi = 1: Ii(t+ 1) = max
{

max
k|wik>0

{Ik(t)}, Ii(t), vi

}

When a neuron is associated to the product, G¨odel, or Lukasiewicz implication, then the
signalmi is set to 2, 3, and 4, respectively. Its input is formed by the external valuevi

of the rule, and the outputs of the neurons associated to the body of the implication. The
output of the neuron somehow mimics the behaviour of the procedural semantics when
a rule of typemi has been used; specifically, the output in the next instant will be:

Case←P , mi = 2: Ii(t+ 1) = max


Ii(t), vi ·

∏
k|wik>0

Ik(t)




Case←G, mi = 3: Ii(t+ 1) = max
{
Ii(t),min

{
vi, min

k|wik>0
{Ik(t)}

}}

Case←L, mi = 4: Ii(t+ 1) = max


Ii(t), vi +

∑
k|wik>0

Ik(t)−Ni


,

whereNi indicates the number of arguments of the body of the rule.
Case @, mi = 5: the aggregators considered as weighted sums, therefore

Ii(t+ 1) =
∑

k|wik>0

w′
ik · Ik(t) where w′

ik =
wik∑

r|wir>0

wir

Finally, neurons associated to the adjoint conjunctors have signalsmi = 6, 7, 8, for
product, Gödel, or Lukasiewicz conjunctions, respectively. Its output is:

Case &P , mi = 6: Ii(t+ 1) =
∏

k|wik>0

Ik(t)

Case &G, mi = 7: Ii(t+ 1) = min
k|wik>0

Ik(t)

Case &L, mi = 8: Ii(t+ 1) = max


0,

∑
k|wik>0

Ik(t)−Ni + 1




Note that the output of the neurons is never decreasing.
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By means of an external reset signalr, common to all the neurons, one can modify
both the values of the internal registers of the neurons and their state vectorI(t).

– r = 1. The initial truth-valuevi, the type of formulami, and thei-th row of the
matrix of weightswi• are set in the internal registers. This allows to reinitialise the
network for working with a new problem.

– r = 0. The neurons evolve with the usual dynamics, and it is only affected by the
state vector of the netI(t). The valuemi, set in their internal register, selects the
function which is activated in the neuron. By using a delay, the output of the activated
function is compared with the previous value of the neuron.

Once the corresponding values for both the registers and the initial state of the net have
been loaded, the signalr is set to 0, and each neuron will only be affected by the neurons
given byI(t), its state vector at stept.

A number of programs have been carried out with the implementation. Here we
present two toy examples:

Example 1. Consider the program with rules

〈h←G (r&P o), 0.9〉 〈v ←G @(1,2)(o, w), 0.8〉
〈n←P r, 0.8〉 〈n←P w, 0.9〉 〈w ←P v, 0.75〉

and facts〈o, 0.2〉, 〈w, 0.2〉, 〈r, 0.5〉.
As there are non-homogeneous rules, the rules of the program are transformed as

follows
〈i←P r&P o, 1〉 〈j ←P @(1,2)(o, w), 1〉
〈h←G i, 0.9〉 〈v ←G j, 0.8〉 〈n←P r, 0.8〉
〈n←P w, 0.9〉 〈w ←P v, 0.75〉

Therefore, we will need 13 neurons (7 in the hidden layer) associated to variables
h, n, o, r, v, w, i, j and to the last five rules.

The initial values of the registers are:

– The vectorv = (0, 0, 0.2, 0.5, 0, 0.2, 1, 1, 0.9, 0.8, 0.8, 0.9, 0.75)
– The vectorm = (1, 1, 1, 1, 1, 1, 6, 5, 3, 3, 2, 2, 2)
– The matrixW1 is given in Figure 1 (left).

After five iterations, the net gets a stable state:

I = (0.1, 0.4, 0.2, 0.5, 0.2, 0.2, 0.1, 0.2, 0.1, 0.2, 0.4, 0.18, 0.15)

with the following values for the variables:vh = 0.1; vn = 0.4; vo = 0.2; vr = 0.5;
vv = 0.2; vw = 0.2.

Example 2. Consider the program with rules

〈p←G @(1,2,3)(q, r, s), 0.8〉 〈q ←P (t&Lu), 0.6〉
〈t←P (v&Gu), 0.5〉 〈v ←P u, 0.8〉

and facts〈u, 0.75〉, 〈r, 0.7〉, 〈s, 0.6〉.
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W1 =




· · · · · · · · 1 · · · ·
· · · · · · · · · · 1 1 ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · 1 · · ·
· · · · · · · · · · · · 1
· · 1 1 · · · · · · · · ·
· · 1 · · 2 · · · · · · ·
· · · · · · 1 · · · · · ·
· · · · · · · 1 · · · · ·
· · · 1 · · · · · · · · ·
· · · · · 1 · · · · · · ·
· · · · 1 · · · · · · · ·




W2 =




· · · · · · · · · · 1 · · ·
· · · · · · · · · · · 1 · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · 1
· 1 2 3 · · · · · · · · · ·
· · · · 1 1 · · · · · · · ·
· · · · · 1 1 · · · · · · ·
· · · · · · · 1 · · · · · ·
· · · · · · · · 1 · · · · ·
· · · · · · · · · 1 · · · ·
· · · · · 1 · · · · · · · ·




Fig. 1. Matrices for Examples 1 and 2.

Firstly, the rules of the program are homogenised as follows

〈h←P @(1,2,3)(q, r, s), 1〉 〈i←P t&Lu, 1〉 〈j ←P v&Gu, 1〉
〈p←G h, 0.8〉 〈q ←P i, 0.6〉
〈t←P j, 0.5〉 〈v ←P u, 0.8〉

The net will consist of 14 neurons, to represent variablesp, q, r, s, t, u, v, h, i, j together
with the last four (homogeneous) rules in the program.

The initial values of the net are:

– The vectorv = (0, 0, 0.7, 0.6, 0, 0.75, 0, 1, 1, 1, 0.8, 0.6, 0.5, 0.8).
– The vectorm = (1, 1, 1, 1, 1, 1, 1, 5, 8, 7, 3, 2, 2, 2).
– The matrixW2 is given in Figure 1 (right).

After running the net, its state vector get stabilised at

I = (0.5383, 0.03, 0.7, 0.6, 0.3, 0.75, 0.6, 0.5383, 0.05, 0.6.0.5383, 0.03, 0.3, 0.6)

where the first nine components correspond to the visible layer, which are interpreted as
the obtained truth-value forp, q, etc.

4 Abduction in Multi-adjoint Logic Programs

In this section we introduce the basics of abductive reasoning in a multi-adjoint context;
specifically, we will define the concept of (multi-adjoint) abduction problem and correct
explanation for an abduction problem. Later, we will make the necessary adaptations to
the neural model to cope with abductive reasoning.
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Definition 5. An abduction problemis a tuple A = 〈P, OBS,H〉, where

1. P is a multi-adjoint logic program.
2. H is a (finite) subset of the set of propositional symbols, the set of hypotheses.
3. OBS:OV → [0, 1] is the theory of observations (whereOV is a set of observation

variables such that OV ∩H = ∅).

The intended meaning ofOV ∩ H = ∅ is that observation variables should not be
explained by themselves.

Definition 6. A theory E:H → [0, 1] is a correct explanationto 〈P, OBS,H〉 if

1. P ∪ E is satisfiable.
2. Every model of P ∪ E is also a model of OBS.

In [7] it was given a the procedural semantics based on theTP operator which is
sound and complete and, furthermore, it was proved that the surface corresponding to
all the solutions for particular observations has the shape of a convex body and the set
of all solutions is the union of such surfaces.

4.1 Neural Model for Multi-adjoint Abduction

Our main goal here is to adapt the neural model above to the abductive framework for
multi-adjoint logic programming. The general approach to abduction is, given a program
P and a set of observations, to obtain a set of explanations for these observations, as a
number ofabduced facts. In addition, we are also interested in allowing the possibility of
changing the confidence values of the rules in the given program for a number of reasons;
for instance, it could happen that no explanation exists simply because the confidence
values of the rules have not been suitably assigned although, obviously, it might also
happen that no explanation can be obtained for a given problem, for instance, in the case
of badly posed problems.

Our neural model for abductive reasoning will allow to divide the set of rules as rules
with ‘hard’ confidence value and rules with ‘soft’ confidence value; the former assumed
to have a fixed confidence value throughout all the computation and the latter whose
confidence value could be modified if necessary.

Once the parametersv, m andW have been set in the initial registers of the net,
the program can be run in order to obtain the minimal model, which may or may not
explain all the observed values (loaded in a vector of observed valuesov). Obviously,
the interesting case from an abductive point of view is when the minimal model does
not explain all the observed values.

The neural model for abduction will be a modification on that given in the previous
section which includes, apart from the vector of observed valuesov, another vector
for setting the rules whose confidence values will remain unmodifiedu. Now, our goal
will be to find either an explanation based solely on the set of hypotheses or set new
confidence values to rules (determined by vectoru) so that the observed values are
attained. The search for these new confidence valuesv is obtained by training the net.

If there aren neurons, and we haveb observed values andh rules have hard confi-
dence values, then the net implements a functionf : [0, 1]n−b−h → [0, 1]b, since theb
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components of the observations and theh components of the hard rules will remain
fixed. Therefore we can consider the space[0, 1]n−b−h as the search space and, given
v ∈ [0, 1]n we will denote its projection on the search space asπv ∈ [0, 1]n.

Given the observationsov ∈ [0, 1]b, we define thefeasible region as the setF ⊂
[0, 1]n−b−h such that ifπv ∈ F thenπvj ≥ ovj for all j = 1, . . . , b.

The function implemented by the net has the following properties:

1. It is non-decreasing in all its components.
2. If there is some correct explanation, thenf(1) ∈ F .
3. If every interpretation is a correct explanation, thenf(0) ∈ F .

4.2 Training the Net

Given an abduction problem, firstly, we have to check whether there is at least a model
for the program and the observations. This is done by checking that the vectorπv = 1,
changed by including the observed values, is a point of the feasible region. If we get
affirmative answer, then the effective training of the net begins, having in mind that
the components ofv corresponding to the observations will be fixed for all the training
process, as well asm andW.

We have chosen to randomly search for explanations, so that we have chance to
obtaining a wide range of possible explanations to a given abduction problem. The
training process aims at obtaining a vector of confidence values for hypotheses and soft
rules such that the resulting least model (that is, the output of the function implemented
by the net) is as close as possible to the frontier of the feasible region.

The training is based on an iterative procedure which begins with the initial vector
v0 = πv, wherev corresponds to the confidence values of rules and facts in the program
P, and zeroes assigned to variables which are not facts. Now, assume that the net gets
stable at pointf(v0), and randomly take another vectorv1 ∈ [0, 1]n−b−h, and assume
the net stabilises atf(v1). Then, calculate the values0 ≤ k ≤ 1, such that the point
kf(v0) + (1− k)f(v1) is the closest (using euclidean distance) to vectorov. The new
initial vector will bev2 = kv0 + (1− k)v1, which by convexity is in the search space.

The procedure is repeated by choosing new random vectors, until the resulting con-
fidence valuesvn are such thatf(vn) can be no longer improved, in the sense of getting
closer toov. This occurs if in several trials (in a number greater than the dimension
n− b− h of the search space) the obtained point gets fixed. This point is checked to be
in the feasible region, if affirmative the training is finished, otherwise, we will find the
point in the frontier of the feasible region contained in the segment[vn,1].

As a result, after the training process, the net is able to explain the observed facts, in
the sense that new confidence values are assigned to rules and facts, and possibly new
facts are added to the program, obtaining a modified programP

′, so that the observations
are logically implied byP′.

4.3 Simulations for Multi-adjoint Abduction

A number of problems have been carried out with the resulting implementation. Here
we present some toy examples:
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Example 3. Consider the program with rules

〈p←P (q&P r), 0.8〉 and 〈r ←G s, 0.7〉

and the observation〈p, 0.7〉.
By assigning neurons with the variablesp, q, r, s and with the two rules, the initial

registers will bev = (0, 0, 0, 0, 0.8, 0.7), m = (1, 1, 1, 1, 2, 3), the matrixW whose
entries are all zeroes butw15, w36, w52, w53 andw64 which are 1, and the observed value
p = 0.7.

After training the net, without considering any hard rule, we get the new vector
of confidence valuesv = (0, 0.8599, 0.9024, 0.9268, 0.8783, 0.9641), which gives the
new program with rules

〈p←P (q&P r), 0.8783〉 and 〈r ←G s, 0.9641〉

and facts〈q, 0.8599〉, 〈r, 0.9268〉,〈s, 0.9268〉.

Example 4. Consider the following program

hi fuel comp
0.8←G @(2,1)(ri mix, lo oil) (1)

overheating
0.5←P lo oil (2)

overheating
0.9←L lo water (3)

This program is intended to represent some kind of knowledge about the behaviour of a
car.1 Let us assume that we have two observed facts, namely

〈hi fuel comp, 0.75〉 〈overheating, 0.5〉

The vector of observed values isov = (0.75, 0.5)
We have trained the net twice: the first one considering no hard rule, and the second

one considering no soft rule.
The non-homogeneous rule has been separated by introducing a hidden neuron im-

plementing its body The obtained results in either case are the following:

1. No hard rules: The obtained explanation, regarding the hypotheses, isri mix =
0.853, lo oil = 0.5656, lo water = 0.6214, and the updated confidence values for
the rules are (1)= 0.75, (2)= 0.9519 and (3)=0.8837.
The values above give the following results to the observed variables is
hi fuel comp = 0.75 andoverheating = 0.5384.

2. No soft rules: The obtained explanation isri mix = 0.8335, lo oil = 0.5864, and
lo water = 0.6.
The values above give the following results to the observed variables is
hi fuel comp = 0.7511 andoverheating = 0.5.

1 We do not intend that these relationships correspond to an actual case.
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5 Conclusions and Related Work

A neural model has been introduced, which implements the procedural semantics re-
cently given to multi-adjoint logic programming, in addition, it has been adapted to
model abductive reasoning. As a result, it is possible to adjust the confidence values of
the rules and facts of a given program which is supposed to explain a set of given ob-
servations. An advantage of the use of multi-adjoint programs is that one has a uniform
computational model for a number of fuzzy rules and, thus, the implementation can be
easily modified to add new connectives.

Some authors have addressed similar problems as those stated here; for instance [4]
introduces a neural implementation of the fixed point of theTP operator but only for
classical logic. On the other hand [1,2] introduces some neural approaches to the sim-
ulation of abductive reasoning, in which the complexity of the relationships between
causes and effects is reproduced at the neural level; in our case, this complexity is dealt
with by using the great expressive power of multi-adjoint logic, and the neural approach
is used to provide a massively parallel computational model.

As future work, we will have to study different training strategies for the net in order
to minimise its complexity and improving the approximation to the observed values, in
order to apply some criteria for selecting the “best" explanation are used, such as the
parsimony covering (the best explanation should include a minimal set of causes) or
maximal plausibility (the best explanation must be the most likely wrt a given belief
function).

Acknowledgements. We thank P. Eklund for providing interesting comments on pre-
vious versions of this work.
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8. J. Medina, M. Ojeda-Aciego, and P. Vojt´aš. A procedural semantics for multi-adjoint logic
programming. InProgress in Artificial Intelligence, EPIA’01, pages 290–297. Lect. Notes in
Artificial Intelligence 2258, 2001.

9. E. Mérida-Casermeiro, G. Gal´an-Marı́n, and J. Mu˜noz Pérez. An efficient multivalued Hopfield
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Abstract. This paper generalises the tree-based data structure of ∆-tree to be
applied to signed propositional formulas. The ∆-trees allow a compact repres-
entation for signed formulas as well as for a number of reduction strategies in
order to consider only those occurrences of literals which are relevant for the
satisfiability of the input formula. The conversions from signed formulas to ∆-
trees and vice versa are described and a notion of restricted form based on this
representation is introduced, allowing for a compact representation of formulas
in order to consider only those occurrences of literals which are relevant for its
satisfiability.
Keywords. Automated Reasoning. Knowledge Representation

1 Introduction

Proof methods for multiple-valued logic have developed alongside the evolution of the
notions of sign and signed formula. The use of signs and signed formulas allows one
to apply classical methods in the analysis of multiple-valued logics. Forgetting the set
of truth-values associated with a given logic, in the metalanguage one may interpret
sentences about the multiple-valued logic as being true-or-false. For example, in a 3-
valued logic with truth-values {0, 1/2, 1} and with {1} as the designated value, the
satisfiability of a formula ϕ can be expressed as: Is it possible to evaluate ϕ in {1}? In
the same way, the unsatisfiability of ϕ is expressed by: Is it possible to evaluate ϕ in
{1, 1/2}? These questions can be represented by the signed formulas {1}:ϕ and {1/2,1}:ϕ
which are evaluated on the set {0, 1} with the following meaning:

{1}:ϕ takes the value 1 iff ϕ can be evaluated in {1}
{1/2,1}:ϕ takes the value 1 iff ϕ can be evaluated in {1/2, 1}
In other words, the formulas in a signed logic are constructions of the form S:ϕ,

where S is a set of truth-values of the multiple-valued logic, called the sign, and ϕ is
a formula of that logic. The interpretations that determine the semantics of the signed
logic are defined from the interpretations of the multiple-valued logic as follows:

Iσ(S:ϕ) = 1 if and only if σ(ϕ) ∈ S

The first works to provide a systematic treatment of sets of truth-values as signs were
due to Hähnle in [5] and Murray and Rosenthal in [7]. There the notion of signed for-
mula is formally introduced. In [5] these tools are used in the framework of truth tables,
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while in [7] they are used to develop another, nonclausal proof method, that of dissol-
ution. As a result of these works, the use of signed formulas in the field of automated
deduction has been extended, and has lead to significant advances in this method; there-
fore, efficient representations for signed formulas are necessary in order to describe and
implement efficient algorithms on this kind of formulas.

An approach to the efficient handling of signed formulas that one can find in the lit-
erature is the clause form [6], which allow the extension of classical techniques such as
resolution, or Davis-Putnam procedures. Another representation is the Multiple-Valued
Decision Diagrams (MDDs) and its variants [11, 2], but they are not useful for the study
of satisfiability because although they make straightforward the testing of satisfiability,
the construction of a restricted MDD for a given formula is exponential in the worst
case. Some specific representation approaches exist for particular tasks, such as labelled
rough partitions [3] to work with multiple-valued relations.

The approach we follow in this paper is that introduced in [4], interpreting signed
formulas given means of ∆-trees, that is, trees of clauses and cubes. We will be mainly
concerned with the metatheory of multiple-valued ∆-trees, not with implementation
issues; however, the results obtained for the classical case are promising. It is interesting
to recall the intrinsic parallelism between the usual representation of cnfs as lists of
clauses and our representation of signed formulas as lists of ∆-trees.

Clause " List of literals
Cnf " List of clauses
∆-tree " Tree of clauses/cubes
Signed formula " List of ∆-trees

In this multiple-valued version, we will consider clauses and cubes with basic literals:
signed literals with singleton signs.

2 Reduced Signed Logics

The notion of reduced signed logic was introduced in [8] as a generalisation of previous
approaches. It is developed in the general framework of propositional logics, without
reference either to an initially given multiple-valued logic or to a  specific algorithm,
ie. the definition is completely independent of the particular application at hand. The
generalisation consists in introducing a possible truth values function to restrict the truth
values for each variable. These restrictions can be motivated by the specific application
and they can be managed dynamically by the algorithms. For example, in [8] these
restrictions are used to improve the efficiency of tableaux methods; in [10] are used to
characterize non-monotonic reasoning systems.

The formulas in the reduced signed logics are built by using the connectives ∧
and ∨ on the atomic formulas. The atomic formulas are the ω-signed literals: if n =
{1, . . . , n} is a finite set of truth-values, 1 V is the set of propositional variables and

1 The specific elements of n are not important, in the examples of this work we will use n =
{1, . . . , n} as set of truth values in a n-valued logic.
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ω : V → (2n
" ∅) is a mapping, called the possible truth-values function, then the set

of ω-signed literals is

LITω = {S:p | S ⊆ ω(p), p ∈ V} ∪ {⊥,'}

In a literal # = S:p, the set S is called the sign of # and p is the variable of #. The
opposite of a signed literal S:p is (ω(p) " S):p and will be denoted S:p.

The semantics of Sω, the signed logic valued in n by ω, is defined using the ω-
assignments. The ω-assignments are mappings from the language into the set {0, 1}
that interpret ∨ as maximum, ∧ as minimum, ⊥ as falsity, ' as truth and have the
following properties:

1. For every p there exists a unique j ∈ S such that I({j}:p) = 1
2. I(S:p) = 1 if and only if there exists j ∈ S such that I({j}:p) = 1

These conditions arise from the objective for which signed logics were created: the
ω-assignment I over S:p is 1 if the variable p is assigned a value in S; this value must be
unique for every multiple-valued assignment and thus unique for every ω-assignment.
This is why we some times will write I({j}:p) = 1 as I(p) = j.

An important operation in the sequel will be the reduction of a signed logic. This
operation decreases the possible truth-values set for one or more propositional variables.
The reduction will be forced during the application of an algorithm but it can also
help us to specify a problem using signed formulas. Specifically, we will use two basic
reductions: to prohibit a specific value for a given variable, [p *= j], and to force a
specific value for a given variable, [p = j]: If ω is a possible truth-values function, then
the possible truth-values functions ω[p *= j] and ω[p = j] are defined as follows:

ω[p *= j](v) =

{
ω(p) " {j} if v = p

ω(v) otherwise
ω[p = j](v) =

{
{j} if v = p

ω(v) otherwise

If A is a formula in Sω, we define the following substitutions:

– A[p *= j] is a formula in Sω[p !=j] obtained from A by replacing {j}:p by ⊥, {j}:p
by ' and S:p by (S " {j}):p. In addition, the constants are deleted using the 0-1-
laws.

– A[p = j] is a formula in Sω[p=j] obtained from A by replacing every literal S:p
satisfying j ∈ S by ' and every literal S:p satisfying j /∈ S by ⊥; in addition, the
constants are deleted using the 0-1-laws.

An immediate consequence is the following: if I is a model of A in Sω and I(p) *=
j, then (the restriction of) I is also a model of A[p *= j] in Sω[p!=j]; if I is a model of A
in Sω and I(p) = j, then I is a model of A[p = j] in Sω[p=j].

Throughout the rest of the paper, we will use the following standard definitions. A
signed formula A in Sω is said to be satisfiable if there is an ω-assignment I such that
I(A) = 1; in this case I is said to be a model for A. Two signed formulas A and B
are said to be equisatisfiable, denoted A ≈ B, if A is satisfiable iff B is satisfiable.
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Two formulas A and B are said to be equivalent, denoted A ≡ B, if I(A) = I(B)
for all ω-assignment I . The symbols ' and ⊥ denote truth and falsity. We will also use
the usual notions of clause (disjunction of literals) and cube (conjunction of literals). A
literal # is an implicant of a formula A if # |= A. A literal # is an implicate of a formula
A if A |= #.

We will use the standard notions of list and tree. Finite lists are written in juxtapos-
ition, with the standard notation, nil, for the empty list; if λ and λ′ are lists, # ∈ λ
denotes that # is an element of λ; the concatenation of two lists λ and λ′ is written as
either λ〈〉λ′ or λ∪λ′; the inclusion and intersection of lists are defined in the usual way.

3 Multiple-Valued ∆-Trees

The satisfiability algorithm we will describe is based on the structure of multiple-valued
∆-trees. In the classical case, nodes in the ∆-trees correspond to lists of literals; in the
multiple-valued case we will exploit a duality in the representation of signed literals in
terms of basic literals (whose sign is a singleton). To better understand this duality, let
us consider the literal {1,4}:p in the signed logic Sω where ω(p) = {1, 2, 4, 5}, then:

{1,4}:p ≡ {1}:p ∨ {4}:p {1,4}:p ≡ {2}:p ∧ {5}:p

This way, we have both a disjunctive and a conjunctive representation of signed literals
using the literals {j}:p and {j}:p, which are called basic literals. In the sequel, we will
use a simpler representation for these literals:

pj
def
= {j}:p pj

def
= {j}:p

The basic literals pj are the positive literal and their opposites, pj, are the negative
literal. In the ∆-tree representation we work with lists of positive literals.

Definition 1.

1. A list/set of positive literals, λ, is saturated for the variable p if pj ∈ λ for all
j ∈ ω(p). (This kind of lists/sets will be interpreted as logical constants.)

2. A ∆-list is either the symbol & or a list of positive literals such that it does not have
repeated literals and it is non-saturated for any propositional variable.

3. A ∆-tree T is a tree with labels in the set of ∆-lists.

In order to define the operator sgf which interprets a ∆-tree as a signed formula,
we should keep in mind that:

1. The empty list, nil, has different conjunctive and disjunctive interpretations, since
it is well-known the identification of the empty clause with ⊥ and the empty cube
with '; but anyway it corresponds to the neutral element for the corresponding in-
terpretation. Similarly, we will use a unique symbol, &, to represent the absorbent
elements, ⊥ and ', under the conjunctive and disjunctive interpretation, respect-
ively.
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2. A given ∆-tree will always represent a conjunctive signed formula, however, its
subtrees are alternatively interpreted as either conjunctive or disjunctive signed for-
mulas, i.e. the immediate subtrees of a conjunctive ∆-tree are disjunctive, and vice
versa.

Definition 2. The operator sgf over the set of ∆-trees is defined as follows:

1. sgf(nil) = ', sgf(&) = ⊥, sgf(#1 . . . #n) = #1 ∧ · · · ∧ #n

2. sgf

(
λ

T1 . . . Tm

)
= sgf(λ) ∧ dsgf(T1) ∧ · · · ∧ dsgf(Tm)

where the auxiliary operator dsgf is defined as follow:

1. dsgf(nil) = ⊥, dsgf(&) = ', dsgf(#1 . . . #n) = #1 ∨ · · · ∨ #n

2. dsgf

(
λ

T1 . . . Tm

)
=dsgf(λ) ∨ sgf(T1) ∨ · · · ∨ sgf(Tm)

In short, we will write
∧
T = sgf(T ) and

∨
T = dsgf(T ); in particular, if T = λ =

#1 . . . #n we have:
∧
λ = #1 ∧ · · · ∧ #n and

∨
λ = #1 ∨ · · · ∨ #n.

The notions of validity, satisfiability, equivalence, equisatisfiability or model are
defined by means of the sgf operator; for example, a ∆-tree, T is satisfiable if and only
if sgf(T ) is satisfiable and the models of T are the models of sgf(T ).

In the next definition we introduce an operator to make the converse translation, that
is, to define the ∆-tree associated to a signed formula. To begin with, we will introduce
the representation of clauses and cubes in terms of basic literals.

Definition 3.

1. Given A = S1:p1 ∨ · · · ∨ Sn:pn, consider the following set of positive literals:

A = {ps | p = pi for some i and s ∈ Si}
Then the ∆-list d∆List(A) is & if A is saturated for some pi, otherwise it is the
list of the elements of A.

2. Given A = S1:p1 ∧ · · · ∧ Sn:pn, consider the following set of positive literals:

B = {ps | p = pi for some i and s ∈ ω(p) " Si}
Then the ∆-list c∆List(A) is & if B is saturated for some pi, and it is the list of
the elements of B otherwise.

Example 1. In the logic Sω with ω(p) = {1, 2, 4, 5}, ω(q) = {1, 2, 3}, ω(r) = {2, 5}.

– d∆List({1,4}:p ∨ {1,2}:q) = p1 p4 q1 q2
– c∆List({1,4}:p ∧ {1,2}:q) = p2 p5 q3
– d∆List({1,4}:p ∨ {2}:r ∨ {2,4,5}:p) = &, for {p1, p2, p4, p5, r2} is saturated for p.
– d∆List({1}:q ∧ {1,2,4}:p ∧ {2}:q) = &, for {p5, q1, q2, q3} is saturated for q.

227Restricted D-Trees in Multiple-Valued Logics



In the following definition, we will work with lists of ∆-trees. To help the reading,
we will write these lists with the elements separated by commas and using square brack-
ets as delimiters. This way, for example, p1s1 . . . pnsn is a ∆-list, and [p1s1, . . . , pnsn]
is a list of ∆-trees (in which each ∆-tree is a leaf, which turns out to be a singleton
∆-list).

Definition 4. Let A be a signed formula, ∆Tree(A) is a list of ∆-trees defined recurs-
ively as follow:

1. If A is a disjunctive signed formula, and the disjunction of its literals disjuncts is
A0 = S1:p1 ∨ · · · ∨ Sk:pk, and A1,. . . , An are the non-literal disjuncts of A, then
(a) If k = 0 then ∆Tree(A) = [c∆Tree(A1), . . . , c∆Tree(An)] (in this case,

necessarily n *= 0)
(b) If d∆List(A0) = &, then ∆Tree(A) = [nil] (that is, a list with just one

∆-tree, the leaf nil.)
(c) ∆Tree(A) = [c∆List(S1:p1), . . . , c∆List(Sk:pk),

c∆Tree(A1), . . . , c∆Tree(An)] otherwise

2. If A is a conjunctive signed formula, then ∆Tree(A) = [c∆Tree(A)] (that is, a
list with just one ∆-tree)

The auxiliary operators d∆Tree and c∆Tree are defined as follows:

– Let A be a conjunctive signed formula, let A0 = S1:p1 ∧ · · · ∧ Sk:pk be the con-
junction of its literal conjuncts, and let A1, . . . , An be the non-literal conjuncts of
A. If c∆List(A0) = &, then c∆Tree(A) = &; if c∆List(A0) *= &, then

c∆Tree(A) =
c∆List(A0)

d∆Tree(A1) . . . d∆Tree(An)

– Let A be a disjunctive signed formula, let A0 = S1:p1 ∨ · · ·∨Sk:pk be the disjunc-
tion of its literals disjuncts, and let A1, . . . , An be the non-literal disjuncts of A. If
d∆List(A0) = &, then d∆Tree(A) = &; if d∆List(A0) *= &, then

d∆Tree(A) =
d∆List(A0)

c∆Tree(A1) . . . c∆Tree(An)
A ∆-tree will always be interpreted as a conjunctive signed formula. To work with

arbitrary signed formulas, we will use lists of ∆-trees; this way, the study of satisfiabil-
ity can be performed in parallel with the elements of the list.

Example 2. The following examples are from S3.

∆Tree(({1,2}:p ∨ {2}:q) ∧ ({2,3}:p ∨ {1,3}:r)=

[
nil

p1p2q3 p2p3r1r3

]

∆Tree({2,3}:q ∨ ({1,2}:p ∧ ({1,2}:q ∨ {2,3}:p) ∧ {3}:q ∨ {1}:p)))

=

[
q1,

p3

p2p3q1q2 p1q3

]

The next theorem shows that the operators sgf and ∆Tree are inverse, up to equi-
valence.
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Theorem 1. Let A be a signed formula

1. If A is disjunctive, then dsgf(d∆Tree(A)) ≡ A
2. If A is conjunctive, then sgf(c∆Tree(A)) ≡ A

3. If ∆Tree(A) = [T1, . . . , Tn], then A ≡ ∧
T1 ∨ · · ·∨ ∧

Tn. In particular, if n = 0, then
A ≡ ⊥.

From this result we have that, in some sense, the structure of ∆-tree allows to sub-
stitute reasoning with literals by reasoning with clauses and cubes. Other important
consequence is that the structure of ∆-tree gives us a means to calculate implicants and
implicates, which will be used in the reduction transformations below.

Proposition 1. If T is rooted with λ and pj ∈ λ, then:

sgf(T ) |= pj and pj |= dsgf(T )

4  Restricted ∆-Trees

In multiple-valued logic there is not a notion which captures the well-known definition
of restricted clauses of classical logic, in which opposite literals and logical constants
are not allowed. We can say that restricted ∆-trees are ∆-trees without trivially redund-
ant information. The aim of this section is to give a suitable generalisation built on the
notion of restricted multiple-valued ∆-tree which is built from its classical counter-
part [4].

To begin with, we need the technical definitions given below and in the subsequent
sections:

Definition 5. The operators Uni and Int are defined on the set of ∆-lists as follows. If
λ1, . . . , λn are ∆-lists then:

1. Uni(λ1, . . . , λn) = & if either there exists i such that λi = & or
⋃n

i=1 λi is saturated
for some variable p. Otherwise, Uni(λ1, . . . , λn) =

⋃n
i=1 λi.

2. Int(λ1, . . . , λn) = & if λi = & for all i.
Otherwise, Int(λ1, . . . , λn) =

⋂
λi !=# λi.

The following definition gathers the specific situations that will not be allowed in a
restricted form: nodes in the ∆-tree which, in some sense, can be substituted by either
⊥ or ' without affecting the meaning and leaves with only one propositional variable;
in addition, our restricted trees must have explicitly the implicants and implicates of
every subtree in order to perform the reductions based in these objects (see [9]).

Definition 6. Let T be a ∆-tree.

1. A node of T is said to be conclusive if it satisfies any of the following conditions:
– It is labelled with &, provided that T *= &.
– It is either a leaf or a monary node labelled with nil, provided that it is not

the root node.
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Rule C1 $

T1 . . . Tm

! $

Rule C2 λ

T1 . . . Tm $

! λ

T1 . . . Tm

Rule C3 λ

T1 . . . Tm nil

! $

Rule C4 λ1

T1 . . . Tn nil

λ2

Tn+1 . . . Tm

! Uni(λ1, λ2)

T1 . . . Tn Tn+1 . . . Tm

Rule C5 If λ2 ⊆ λ1 then λ1

T1 . . . Tn λ2

! $

Rule C6 If Uni(λ1, λ2) = $ then
λ1

T1 . . . Tn λ2

Tn+1 . . . Tm

! λ1

T1 . . . Tn

Rule S λ

T1 . . . Tm pji1 . . . pjik

! Uni(λ, pjik+1 . . . pjin)

T1 . . . Tm

provided that ω(p) = {ji1 , . . . , jik , jik+1 , . . . , jin}.
Rule U λ

T1 . . . Tn λ′

λ1

. . .

. . . λm

. . .

! Uni(λ, µ)

T1 . . . Tn λ′

λ1

. . .

. . . λm

. . .

if nil != µ =

{
Int(λ1, . . . , λm) if λ′ = nil

Int(λ1, . . . , λm, pjik+1 . . . pjin) if λ′ = pji1 . . . pjik

provided that ω(p) = {ji1 , . . . , jik , jik+1 , . . . , jin}.

Fig. 1. Rewriting rules to obtain the restricted form

– It is labelled with λ, it has an immediate successor λ′ which is a leaf and
λ′ ⊆ λ.

– It is labelled with λ and Uni(λ,λ′) = &, where λ′ is the label of its predecessor.
2. A leaf in T is said to be simple if the literals in its label share a common proposi-

tional variable.
3. Let λ be the label of a node of T ; let λ′ be the label of one immediate successor of

λ and let λ1, . . . , λn be the labels of the immediate successors of λ′. We say that λ
can be updated if it satisfies some of the following conditions:

– λ′ = nil and Int(λ1, . . . , λm) *⊂ λ.
– λ′ = pji1 . . . pjik

and Int(λ1, . . . , λm, pjik+1 . . . pjin) *⊂ λ, provided that
ω(p) = {ji1 , . . . , jik

, jik+1 , . . . , jin
}.

We say that T is updated if it has no nodes that can be updated.
4. If T is updated and it has neither conclusive nodes nor simple leaves, then it is said

to be restricted.

The rewriting rules (up to the order of the successors) in figure 1 allow to delete the
conclusive nodes and simple leaves of a ∆-tree and in addition, to update the updatable
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nodes. Note that the rewriting rules have a double meaning; since they need not apply
to the root node, the interpretation can be either conjunctive or disjunctive. This is just
another efficiency-related feature of ∆-trees: duality of connectives ∧ and ∨ gets sub-
sumed in the structure and it is not necessary to determine the conjunctive/disjunctive
character to decide the transformation to be applied.

Theorem 2. If T is a ∆-tree, there exists a list of restricted ∆-trees, [T1, . . . , Tn], such

that sgf(T ) ≡ ∧
T1 ∨ · · · ∨ ∧

Tn.

The proof of the theorem allows to specify a procedure to obtain [T1, . . . , Tn]. Let
T ′ be the ∆-tree obtained from T by exhaustively applying the rules C1, C2, C3, C4,
C5, C6, S, and U till no one of them can be applied any more, then the list of restricted
∆-trees [T1, . . . , Tn], denoted by Restrict(T ), is defined as:

1. If T ′ =

nil

nil

T1 . . . Tn

then Restrict(T ) = [T1, . . . , Tn]

2. If T ′ =

nil

λ

T1 . . . Tn

, and dsgf(λ) = S1:p1 ∨ · · · ∨ Sk:pk with pi *= pj for every

i *= j, then Restrict(T ) = [c∆List(S1:p1), . . . , c∆List(Sk:pk), T1, . . . , Tn]
3. Otherwise, Restrict(T ) = [T ′].

Example 3. Let us obtain the restricted form of the following ∆-tree in Sω with ω(p) =
5, ω(q) = {1, 3, 5}, ω(r) = {1, 2}, ω(s) = {1, 4, 5}.

nil

nil

q1

p1p4q3 q3s4

r1s4s5

nil

p1p5r2 p2p5q5s1s5

p3r1

q1s4

p5s5

Rule C5 can be applied on the circled node because it contains its right successor:
the subtree is substituted by & and it is deleted by rule C2 obtaining the leftmost ∆-tree
in the figure below. The restricted form is obtained by applying rules C4 and U on the
corresponding circled nodes.

C5! nil

nil

q1

p1p4q3 q3s4

r1s4s5

nil

p1p5r2

C4! p1p5r2

nil

q1

p1p4q3 q3s4

r1s4s5

U! p1p5r2

q3

q1

p1p4q3 q3s4

r1s4s5
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5 Conclusions and Future Work

An extension to a multiple-valued framework of the results obtained for classical logic
in [4] has been introduced, which can be seen as the refined version of the results in [9,
1]. As a result it is possible to obtain simpler statements of the theorems and, therefore,
reduction transformations are more easily described in terms of rewrite rules.

We have introduced ∆-trees for signed formulas; this allows for a compact repres-
entation for well-formed formulas, as well as for a number of reduction strategies, in
order to consider only those occurrences of literals which are relevant for the satisfiab-
ility of the input formula. Obviously, one cannot hope that just the reduction strategies
are enough to prove the (un)satisfiability of any signed formula, this is possible adding
a branching strategy based on the substitutions [p = j] and [p *= j] in a Davis-Putnam
flavour.
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Abstract. Recent explosive growth in data and the availability of
large data-sets in multiple disciplines, generates the need for new
techniques and tools that can intelligently transform the data into useful
information and knowledge. The machine learning algorithms synthesize
various knowledge representation forms, most of them equivalent and
inter-changeable. A new approach is needed to support and combine the
knowledge representation form with various data sources (represented
by database management systems). In this paper, a powerful, visual
CASE tool for knowledge management is introduced. It supports
the integration of high-level knowledge ”beans” into host projects. A
scalable approach to the problem of data integration from conventional
database systems in expert systems is also over-viewed.

Keywords: Expert systems, knowledge management, data integration,
integrated development environments.

1 Introduction

An approach towards developing a software engineering tool for knowledge man-
agement by merging conventional CASE tool facilities with the expert system
technology is introduced. The Expert System Creator assists the human designer
by efficient encoding and by reusing the expert knowledge. One of the most
well-known tools for the development of rule-based expert systems is CLIPS (C
Language Integrated Production System) [2] environment from NASA. In the
late 90s, its Java counterpart, the JESS (Java Expert System Shell) [4], received
great interest from both commercial and academic environments. More recently,
a family of software CREATOR expert systems has been developed [3],[8]. Al-
though an application of these systems is assisting the human designer when
using a conventional CASE tool, they do not support the translation between
different knowledge representation forms nor the debugging or profiling phases,
in contrast to the Expert System Creator suite.

Expert System Creator is a software tool for the development, testing and de-
bugging, profiling and optimization of expert system based applications. Its main
facilities include: representing domain knowledge using rules set, decision tables
or classification trees; additional representation power, such as using pictorial
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elements and designers’ comments; automatic code generation for declarative,
functional or object-oriented programming languages; integration with ”native”
external programs and with expert systems shells (such as JESS or CLIPS).

After the main facilities are over-viewed, the integration of expert systems
with external programs is presented. The next section presents the knowledge
representation forms and their equivalence. Section 3 outlines the Expert Sys-
tem Creator architecture and briefly describes its modules. In section 4 aspects
related to code generation and integration with host projects are detailed. The
database integration issue is addressed in section 5. The last section presents
several applications, as well as and future research directions and extensions.

2 Knowledge Representation

For the representation of knowledge in expert systems, a number of forms are
used, such as: rules set (production rules, association rules, rules with excep-
tions), decision tables, classification and regression trees, instance-based repre-
sentations, and clusters. Each representation has its advantages and drawbacks.
Expert System Creator is endowed with advanced graphical manipulation tools
for three of the above forms: decision table, classification tree and rules set.
While a human expert can build in a straightforward way an expert system
based on classification or association rules, the decision table representation al-
lows easy automatic analysis and error and consistency checking. A classification
tree can be very easily translated into any common programming language (such
as C/C++, Java, Pascal etc.). As these three forms are equivalent [1],[12], an
expert system built in one of them can be translated into any other one. The
rest of the section will briefly describe the knowledge representation forms (see
[1],[16] for a detailed presentation).

Rules set - A rule-based system form is a set of one or more rules. A rule
has two parts - an antecedent and a consequent - and has the following form: if
antecedent then consequent, where the antecedent of a rule is a conjunction of
elementary constraints, and the consequent is a sequence of elementary actions.
It is worth to mention that important, mature large rule-based systems are
already in use (Mycin, Garvan ES1).

Decision table - A decision table consists of a two-dimensional array of cells,
where the columns contain the system’s constraints and each row makes a clas-
sification according to each cell’s value (case of condition). Although easy to be
visualized and understood, the decision table is a rudimentary form.

Classification tree - A classification tree consists of a set of nodes and a set of
arcs [13]. The set of nodes is divided into two classes: decision nodes (associated
with a constraint of the system) and classification/action nodes (leaf nodes) that
make the classification based on the cases of the constraints from the decision
nodes. Each arc has as its source a deciding node, and is associated with a
case corresponding to the constraint from the source decision node, and the
destination is a decision or classification node. Using data mining and statistical
algorithms classification trees can be automatically built from large datasets.
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Regression tree - When it comes to predict numeric quantities, the same kind
of tree representation as above can be used, but the leaf nodes of the tree would
contain a numeric value which is the average of all the training set values that
the leaf applies to.

Clusters - In case of clusters, the knowledge takes the form of a diagram that
shows how the instances fall into clusters. Instances can be associated proba-
bilistic to more than one cluster. Clustering is often followed by a stage where a
classification tree or rule set is inferred. Data visualization techniques are used
frequently in clustering process.

2.1 The Equivalence of Representation Forms

When a decision object is transformed from one form into another, the new
object can be far larger than the original (it has more parts - rules, rows or
nodes - than the original), and far less compact (not all of its parts will be used
in practice), caveat named inflation problem. For example, applying brute-force
algorithms to the well-known medical expert system Garvan ES1 [7] constructed
as a set of production rules results in a decision table with only 13% useful rows
[1]. These larger objects are side effects of the fact that these decision objects
are constructed as total functions on the attribute space (the space defined by
the distinct possible choices for the variables monitoring of the classification sys-
tem). This observation suggests that in systems with large attribute spaces the
real-world process can be confined to a very small region. The knowledge of the
experts is confined to this small region, which is called the region of experience.
A natural way to represent the characterisation K of the region of experience is
by a set of constraints stating that the values of certain variables are determined
by the values of others (for example if a pacient is a male, pregnant variable will
always be false, although sex and pregnant are independent variables). These
constraints are called partial functional dependencies (PFD). PFD could be con-
structed by the domain experts as part of the process of building a decision
object. There are also proposals for estimating this region using algorithms from
rough sets theory or algorithms from data mining literature, more specifically
association rules discovery.

Colomb and Chung propose an approach for the inflation problem based on
partial functional dependencies [1]. The main idea is to represent the knowledge
only over the region of experience instead of the entire attribute space. A case
is consistent with K if it is consistent with at least one PFD of K (i.e. there is
one PFD which verifies the case). The most distinct and representative knowl-
edge representation forms are discussed below: classification tree, rules set and
decision table.

Let us suppose that the characterization K of the region of experience was
obtained using one of the methods presented above. We present translation algo-
rithms modified so that they use K, the set of PFDs. A good estimate of K would
not only control inflation, but would act as a filter detecting cases which are ei-
ther spurious or perhaps legitimate but outside the experience of the domain
experts
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2.2 Rules and Decision Table

An acyclic rule system defined on the region of the attribute space covered by
K is equivalent to a decision table defined on the same region of the attribute
space.

Construction Algorithm:

a. Table ⇒ Rule based system.
Each row of the table is translated into a rule in rule based system as follows:
the antecedent is the conjunction of all cell’s values from one row and the
consequent is represented by the classification performed by the row.

b. Rule based system ⇒ Table.
For each rule of the system the antecedent is unfolding so that it is repre-
sented as a conjunction of cases. In unfolding process, each case is tested for
consistency with respect to K and inconsistent cases will be removed. The
resulting antecedent will form a new row in decision table. A column in the
decision table will hold the consequent of each rule.

2.3 Decision Table and Classification Tree

A classification tree defined on the region of the attribute space covered by K is
equivalent to an unambiguous decision table defined on the same region of the
attribute space.

Construction Algorithm:

a. Classification Tree ⇒ Decision Table.
Each path through the classification tree consistent with K is included in
the decision table. If the path is inconsistent with K, no valid case will
be consistent with it and path will not be included in decision table. As
each classification (leaf) node of the classification tree performs a unique
classification, the resulting decision table is unambiguous.

b. Decision Table ⇒ Classification Tree.
(by induction on the number of attributes associated with the table)
Basis step: i) If the number of attributes is zero, then create a leaf node whose
classification is the table’s single classification, and whose leaf proposition
is TRUE; ii) If the number of rows is zero, then create a leaf node whose
classification elementary proposition is arbitrary and whose leaf proposition
is FALSE; iii) If the number of distinct classifications is 1, then create a
leaf node whose classification elementary proposition is the table’s unique
classification, and whose leaf proposition is the disjunction of propositions
created from each row by the conjunction of the cell propositions.
Induction step: There is at least one attribute, at least one row, and at least
two distinct classifications in the table T. i) Select an attribute A by some
method (this point is discussed below); ii) Create a deciding node associated
with this attribute; iii) For each v in the value set of A such that the path
proposition in the tree down to A (P(A, v)) is consistent with K, create: an
arc whose source is the deciding node created and whose arc proposition is
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A = v and a decision table T(A, v) with one row derived from each row r
of T in which the cell associated with A is consistent with A = v, and such
that P(A, v) & r consistent with K, by removing the cell associated with A.

T(A, v) has one fewer attribute in its associated attribute set than T, so the
induction proceeds.

This proves that the tree is equivalent to the table on K, since no branch
pruned is consistent with K, nor is any row excluded from the T(A, v). The
key to the algorithm developed above is in the method of choosing an attribute
in part i of the induction step. Shwayder [15] uses a heuristic based on equal-
izing the number of rows in the T(A, v) (maximum dispersion), giving one of
the standard algorithms for translating from a decision table to a classification
tree. Quinlan [13] uses a heuristic based on minimizing the maximum number of
distinct classifications in the T(A, v) (maximum entropy gain). With the maxi-
mum entropy gain selection procedure the algorithms gives a variant of the ID3
algorithm.

Table 1. The results of the translation algorithm

Decision Table MDC ID3 C4.5
(rows) (cn/dn/l) (cn/dn/l) (cn/dn/l)

37 45/38/8 37/29/7 37/74/16
59 59/52/9 59/52/8 59/139/17
100 100/92/17 100/92/8 100/249/17

In order to compare various heuristics, we implemented three selection pro-
cedures based on ID3, C4.5 and MDV (maximum distinct values, the attribute
with the most distinct values is chosen first). The translation algorithm was
implemented based on the construction presented above. The results are pre-
sented in table 1, where cn is the number of classification nodes of the tree, dn
represents the number of decision nodes of the tree and l is the number of tree
levels.

3 Expert System Creator Overview

An overview of the Expert System Creator is shown in Fig. 1. The human expert
prepares an initial design using one of the graphic designers: Decision Frame, De-
cision Table or Classification Tree. This is converted into programming language
code by the Code Generator module. The designers can compile the generated
code and report any existing errors. In order to use symbols (constants, variables,
functions, user types) from other software projects (denoted as host projects) a
Dictionary is introduced. The code generated by the Code Generator module
can be automatically integrated in the host project. The integrated debuggers
in Decision Frame/Table/Tree Debugger can be used to debug the generated
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code in its original form (as a frame, table or tree). The communication mech-
anism between Expert System Creator and the host project is detailed in the
next section.

The Expert System Creator suite supports all the phases of a project’s life
cycle: analysis and documentation, development and implementation, testing,
debugging and profiling.

Three powerful graphic designers support the analysis and development
phases: Decision Frame Designer - rule-based expert system development; Deci-
sion Table Designer - decision table based expert systems construction; Decision
Tree Designer - classification tree based expert systems development.

The graphical elements provided by each designer help the human expert to
express his/her knowledge in the most suitable form.

In addition to debugging the generated code with appropriate tools for target
programming languages, the integrated debuggers in all three designers support
the testing and debugging of constructed systems in their original forms (as
rule set, decision table or tree). Their advanced facilities (breakpoints, variables
inspection and step-by-step execution) are presented to the user in a visually
easy to use way.

Expert System CreatorHost Project

User-defined

data and

data types

C++/Java Code Code generation

Trace file

DESIGNERS

Decision Table

Decision Tree

Decision Frame

Code

Execution

Send/Receive 
values

Import definition

files
Dictionary

TRACEVIEWER

DEBUGGERS

Generator

Fig. 1. Expert System Creator architecture

The trace files that record all fired rules or executed branches for a classifi-
cation tree support the profiling phase. The execution context (formed by the
antecedent and the consequent in the case of rule systems, or by variable values
for classification tree nodes) is also stored in the trace file. The Trace Viewer
visualizes trace files in order to find system bottlenecks or time-consuming rules.
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The knowledge base completion and correctness are key issues in design-
ing large knowledge base systems. Expert System Creator includes appropriate
mechanisms for testing the correctness of constructed knowledge bases. In the
case of rules sets the dependency graph is visualized, offering the user a graphical
image of intrinsic relationships inside the knowledge base. For decision tables,
the Table Analyzer tool highlights the duplicated and ambiguous rules that exist
in the table. In the case of classification trees, encapsulated rules are explicitly
shown in a separate window, thus giving the user an overview of tree function-
ality.

The system is entirely implemented in Java using Java2 SDK 1.3. The Deci-
sion Frame module works together with CLIPS [2],[14] or JESS [4] expert system
shells that perform the knowledge-based reasoning process. Interfacing with ex-
ternal programs written in C/C++ is carried out using JNI specifications [6].
The Code Generator module supports the following programming languages:
C/C++, Java and CLIPS/JESS (for decision frames).

4 Embedding Expert Systems in Host Systems

An important issue in developing knowledge-based systems is their embedding
and communication with a host project. The knowledge system is a form of
representing the logic of a particular field, a form that is most suitable for the
way of perception of the domain for a human expert. Embedding the field’s logic
with the user interface and database communication modules of a large software
application is still an open issue. A new solution, made up of two components
- the Code Generator module and the use of dictionaries - is proposed here. In
the following two subsections the components are presented in more detail.

4.1 Code Generator Module

After the expert system has been built (as a rules set, decision table or classi-
fication tree) it can be translated into a common programming language, such
as C/C++, Java or Basic. For the moment, C/C++ and Java code generators
for decision tables and classification trees are implemented, while rule-based ex-
pert systems are exported in CLIPS/JESS language. Although the generation of
programming code for classification trees and rules sets is straightforward, the
following two steps are necessary for decision tables:

– Translation of decision tables into classification trees (see [14] for details);
– C++ code generation for the obtained classification trees.

The Code Generator module can be easily customized for any structured,
functional or object-oriented programming language, offering an easy way of
embedding expert systems into host projects. The generated code can have sec-
tions for debugging or tracing purposes. If tracing is enabled when generating
the code, then at the execution time of the expert system a trace file will log all
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the fired rules (branches in classification trees). This file is later used in the Ex-
pert System Creator’s TraceViewer module in order to discover time-consuming
rules, frequent (or spurious) rules or rule-sequences (a set of rules activated in
the same order). All this information helps you improve the performances of
your expert system.

4.2 Use of Dictionaries

A Dictionary is a collection of external interfaces imported into expert systems
from a host project for communication with the project’s data and data struc-
tures. In order to use the data types, variables or constants defined inside the
host project, they have to be imported into the expert system frame. A dictio-
nary contains the following:

– Data and data types imported from the host project: user-defined types
(classes or structures), constants and variables, user-defined or system native
functions;

– Data defined only in the expert system module denoted as internal variables.

The Code Generator module gets the information about the module in which
the constant / variable / function is defined in the host project, and includes
the necessary information in the generated files. The internal variables are also
exported in the generated code. The Dictionary Builder module is able to read
user-defined data types, constants and variables from C/C++ header files and
Java files.

5 Database Integration

Large databases of digital information are available in all fields of human activity.
Reasoning using information stored in these large warehouses is a demand of our
age. Expert System Creator offers direct support for database access for all three
forms: rules set, decision table and classification tree.

In the case of decision tables and classification trees, users can use their pre-
ferred database access libraries by importing them in the dictionary component.
Using database access functions from within the constructed decision table or
classification tree is straightforward and requires no specific handling.

In the case of rules set (or decision frames), the problem of reasoning on facts
residing in conventional relational database systems requires more attention. A
major objective of database integration is to provide independence of both infer-
ence engine and database server. The DFDB (Decision Frame DataBase) is an in-
dependent subsystem which acts as a communication channel between database
server and a decision frame based expert system. The subsystem presents an ar-
chitecture (see Fig. 2) where an independent subsystem acts as a communication
channel between relational DBMSs and KBSs (ESs).

DFDB is composed of a data dictionary and three modules: DBWizard,
DBEngine and DBMiddleware. The data dictionary collects and stores in CLIPS
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Fig. 2. Database integration in Expert System Creator

files format all the information about the data managed by relational database
server (for example: sources of data, relationships to other data and rules as-
suring the data integrity). The DBMiddleware level ensures a uniform, trans-
parent access to different RDBMSs, being responsible for all database access
code. It provides Data Manipulation Language features (retrieving, updating,
deleting data from tables or views), automatic data type conversion between
the database server data types and the inference engine data types and many
other database-specific operations. The DBWizard module is a graphical tool
helping the user to build and maintain the data dictionary. The user may select
the columns of the table/view or the relationships he/she is interested in, hav-
ing the ability to reduce the size of data that will be transferred to/from the
database server. The DBEngine is responsible for data downloading/uploading
from/to database server during the knowledge inference step. It also controls the
translation between internal database format and the inference engine’s formats.

6 Applications, Future Research, and Extensions

Expert System Creator gives users the opportunity to develop an expert system
based decision aid that is geared towards their specific needs (such as account-
ing, planning or decision-making in various domains). It also assists users who
do not possess technical expertise in computers in building powerful expert sys-
tems. An effective decision support system must have accurate data, user-friendly
interface, reliable knowledge base, and good inference mechanism. Expert Sys-
tem Creator helps you combine these requirements and assists programmers and
software engineers in building resource planning systems.

Future research includes the optimization of the decision table to classifi-
cation tree conversion based on automatic building of the characterization of
region of experience.
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Expert System Creator has an open architecture for building and testing
the decision objects. Further extensions are planned to integrate the rule-based
expert systems with fuzzy logic engines such as FuzzyCLIPS [10] or FuzzyJ [11].
The automatic growth of classification trees for classification from large data
sets [5] is another important feature to be added in the near future.
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Abstract. Semantic goal-directed forward reasoning is a three stage
procedure. In the first stage a reference set of models is generated from
the negated theorem. In the second stage the assumption clause set is
refined to a set which has an as small set of models as possible in common
with the negated theorem with respect to the reference set of models.
In the last stage a refutation is generated in the space consisting of the
original problem along with the refined assumption. In order to form
a refined assumption, unlike traditional approaches like set of support,
only clauses from assumptions are resolved with each other.

1 Introduction

Resolution [16] is one of the best developed approaches to automated theorem
proving, in which the problem is transformed into a clausal form and a proof is
searched for on this clausal level. Many powerful systems have been built on this
paradigm, e.g. Mkrp [5], Setheo [11], Otter [12], Spass [20], and Vampire
[15]. On the one hand, these systems show remarkable performance on many
problems in particular application areas. Recently a variant of Otter success-
fully solved the Robbins problem [13] that had remained as an open problem
for several decades. On the other hand, since these methods depend largely on
blind search, exponential explosion is unavoidable. The key technique to success-
ful theorem proving consists of efficiently searching through a big search space
and making good heuristic choices.

Semantic information seems to be used as a form of heuristic knowledge in
human problem solving. It is widely understood that automated theorem provers
can also benefit from the use of semantic information. Many semantically guided
provers, e.g. Scott [17,19], Clin-S [4], Mgtp [6], Pttp+GLiDeS [1,2], and Scg
[8], use semantics to guide (or restrict) the proof search. Those techniques are
based on the idea that a resolution step between two clauses from the assumption
part is not likely to contribute to the generation of the empty clause [21], a clause
evaluated to true in a guiding model (or model set) is not likely to lead to an
empty clause [17,19,1,2], or similarly a clause evaluated to true in some smaller
subset of the guiding model set is more likely to generate an empty clause [8].

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 243–252, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Typically, models are either generated incrementally during the proof search or
supplied by the user.

In this paper a semantic approach is presented that starts with goal-directed
forward reasoning, in which – instead of pursuing a refutation by best-first search
from the start – initially only clauses from assumptions are allowed to produce
resolvents. This way a set of clauses is generated, which is a logical consequence
of the original assumptions. We use semantics to guide the procedure so that
every generated clause is more likely to be useful with respect to the conclusion.
The guiding set of models are generated once at the beginning and reused to
check candidate clauses during the rest of the initial transformation procedure.
When a refined assumption set is obtained, it is added to the original problem
as additional assumption. The modified problem will typically be easier to solve
than the original one.

Semantic goal-directed forward reasoning is not a complete theorem prover,
but a preprocessor. It does not prove any theorem on its own, but it modifies
the problem in a form that can more easily be proved by other theorem provers.
The modification procedure is sound and complete to refine the problem. Our
prototype implementations were built using Keim [7] and experimented in com-
bination with Scg [8].

2 Semantic Guidance in Resolution

The semantics of a first-order formula (or formula set) is defined by a pair
M = (D, I), consisting of a domain and an interpretation. The domain D is a
nonempty set of objects, and the interpretation I is a mapping from the terms
of the language to values in the domain. We say M is a model of a formula (or
formula set) if M evaluates the formula (or all formulas in the formula set) to
true.

Assume we have a first-order problem given by a set Γ and a theorem ϕ
for which we want to show that ϕ follows from Γ (i.e., Γ |= ϕ). Furthermore
we assume that the formula set Γ is consistent, that is, that it has models.
Resolution theorem provers negate ϕ and prove that Γ ∪ {¬ϕ} is unsatisfiable,
that is, Γ ∪ {¬ϕ} has no model.

Finder [18] is a model generator which fixes the domain to a specific number
of objects and then performs an exhaustive search in the space of functions and
constants which can be satisfied in that domain. We use Finder as a model
generator to generate a set of models from a set of formulas.

3 Goal-Directed Refinement of Assumptions

Let Γ be a set of assumptions Γ = {A1, A2, . . . , An} and ϕ be the theorem, such
that Γ 	 ϕ. The sets of clauses Γ ∗ and {¬ϕ}∗ are obtained from normalisation of
Γ and {¬ϕ}, respectively. The resolution procedure searches for a contradiction
(an empty clause) from Γ ∗ ∪ {¬ϕ}∗.
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Let {¬ϕ}∗ be the reference clause set. From {¬ϕ}∗ the finite model set M =
{m1,m2, . . . ,mn | mi |= {¬ϕ}∗} is generated with the interpretation domain
fixed to a finite set of objects. We use Im to denote the interpretation of a
clause c (c ∈ {¬ϕ}∗) using a model m.

Im : c ❀ {T, F}
Mc is a subset of M such that Mc = {m | Im : c → T, m ∈ M}. If Γ |= ϕ, MΓ

is a subset of Mϕ.

MΓ = MA1 ∩ MA2 ∩ . . . ∩ MAn ⊆ Mϕ

MΓ ∩ M¬ϕ = ∅

Fig. 1 is a semantic diagram of assumptions and the theorem.

Fig. 1. Semantic diagram of the original assumptions and the theorem

If c1 and c2 are clauses, we use Rc1,c2 to denote the set of resolvents produced
by the application of binary resolution to c1 and c2. If a set of clauses C consists
of Rc1,c2 with c1, c2 ∈ Γ ∗, C can be used as an additional assumption for ϕ along
with Γ ∗.

C = {r | r ∈ Rc1,c2 (c1, c2 ∈ Γ ∗)}
C ∪ Γ ∗ |= ϕ

MC∪Γ ∗ ⊆ Mϕ

In order to guide the transformation, the clauses are checked against the ref-
erence model set. We use {¬ϕ}∗ as reference clause set and, from {¬ϕ}∗, gen-
erate the reference model set M{¬ϕ}∗

with a model generator. Mc is the set
of models in which c is true (c ∈ {¬ϕ}∗ and Mc ⊆ M{¬ϕ}∗

) and |Mc| is the
number of models in Mc. Let C = {c1, c2, . . . , cn} be a finite set of clauses, and
N C the set of numbers of models that evaluate each clause in C to true, i.e.
N C = {|Mc1 |, |Mc2 |, . . . , |Mcn |}. Min(N C) is the smallest number in N C and
CMin(N C) is the subset of C, i.e. CMin(N C) = {ci | |Mci | = Min(N C), ci ∈ C}.

Γ0 = Γ ∗
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Ci = {r | r ∈ Ra,b (a, b ∈ Γi)}

Γi+1 = Γi ∪ Ci
Min(N Ci )

If there is a resolvent with no model (i.e., Min(N Ci) = 0) or the minimum
number of models does not decrease (i.e., Min(N Ci+1) = Min(N Ci)), the as-
sumption refinement terminates and the refined assumption Γ ′ = Ci

Min(N Ci )

combined with the original problem Γ ∪ {¬ϕ} is passed to a theorem prover.
Alternatively, if no more resolvents are generated (i.e., Ci = ∅), the refined
assumption is empty and the original problem is unchanged. Note that these
conditions guarantee that the procedure terminates. In Fig. 2, the refined as-

Fig. 2. Semantic diagram of the refined assumptions and the theorem

sumption clauses c1 and c2 are generated from Γ ∗, and neither of them is true
in any single model of {¬ϕ}∗.

In summary, where Γ is a set of assumptions, a series of resolution steps
between clauses in Γ derives a clause set (or a single clause) Γ ′. If the clause
selection for resolution is carefully constrained, Γ ′ does not semantically overlap
with ¬ϕ (i.e., MΓ ′ ∩ M¬ϕ = ∅). If in this case a resolution step between two
clauses from Γ ′ and {¬ϕ}∗, respectively, is possible, it will likely have the empty
clause as a successor (i.e., Γ ′ ∪{¬ϕ} 	 ✷}). However, since there is no guarantee
that ϕ follows from Γ ′ already, instead of substituting Γ with Γ ′, we have to use
Γ ∪Γ ′ as background theory. On the one hand the refined problem Γ ∪Γ ′ ∪{¬ϕ}
is even bigger than the original one Γ ∪ {¬ϕ}, but on the other hand the search
complexity is – especially when the refutation search is semantically guided –
smaller. As the refined set Γ ′ overlaps a smaller number of models (ideally no
model at all as seen in Fig. 2) with ¬ϕ, a semantically guided theorem prover
gives heuristic preference to resolution steps between Γ ′ and ¬ϕ rather than
between Γ and ¬ϕ. As a result, the search for refutation in Γ ∪ Γ ′ ∪ {¬ϕ} takes
advantage of the smaller search space of Γ ′ ∪ {¬ϕ} with the completeness of
Γ ∪ {¬ϕ} still retained.
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The procedure is divided into three parts, where the first is to generate the
reference model set M¬ϕ, the second to produce a refined clause set Γ ′, and the
last to search for a refutation between Γ ∪ Γ ′ and ¬ϕ.

4 Example Problem

For instance, let us look at the following problem. Given the definition of set
equality as having exactly the same members, set equality is symmetric.

{∀x∀y(Q(x, y) ↔ (∀z(P (z, x) ↔ P (z, y))))}
|= ∀x∀y(Q(x, y) ↔ Q(y, x))

To prove the consequence relation by resolution we assume the first part Γ =
{∀x∀y(Q(x, y) ↔ (∀z(P (z, x) ↔ P (z, y))))} and negate the second part ϕ =
∀x∀y(Q(x, y) ↔ Q(y, x)). By normalisation we get:

Γ ∗ : {¬Q(x, y) ∨ ¬P (z, x) ∨ P (z, y),
¬Q(x, y) ∨ ¬P (z, y) ∨ P (z, x),
P (f(x, y), x) ∨ P (f(x, y), y) ∨ Q(x, y),
¬P (f(x, y), y) ∨ ¬P (f(x, y), x) ∨ Q(x, y)}

{¬ϕ}∗ : {Q(x1, y1) ∨ Q(y1, x1),
¬Q(y1, x1) ∨ ¬Q(x1, y1)}

If the problem is directly tried with a conventional theorem prover like Ot-
ter, Γ ∗ and {ϕ}∗ are usable set and set of support, respectively. An exhaustive
refutation search is started on these clause sets. Otter finds the empty clause
after generating 138 clauses. In the following subsections, we look into the se-
mantic goal-directed forward reasoning.

4.1 Stage 1: Generating Models

The first part of the procedure is a model generation. If we fix the cardinality
to 2, Finder selects an interpretation domain to D = {0, 1} and generate 4096
models from {¬ϕ}∗.

Models m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 · · · m4095 m4096

P (0, 0) F F F F F F F F F F · · · T T
P (0, 1) F F F F F F F F F F · · · T T
P (1, 0) F F F F F F F F F F · · · T T
P (1, 1) F F F F F F F F F F · · · T T
Q(0, 0) F F F F F F F F F F · · · T T
Q(0, 1) T T T T T T T T T T · · · F F
Q(1, 0) F F F F F F F F F F · · · T T
Q(1, 1) F F F F F F F F F F · · · T T
f(0, 0) 0 0 1 1 0 0 1 1 0 0 · · · 1 1
f(0, 1) 0 0 0 0 1 1 1 1 0 0 · · · 1 1
f(1, 0) 0 0 0 0 0 0 0 0 1 1 · · · 1 1
f(1, 1) 0 0 0 0 0 0 0 0 0 0 · · · 1 1

x1 0 1 0 1 0 1 0 1 0 1 · · · 0 1
y1 1 0 1 0 1 0 1 0 1 0 · · · 1 0
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Typically a bigger cardinality makes the model set more informative, and
models of cardinality 2 cannot be considered as representative for all finite mod-
els. However, as our experiments show, even the class of two element models
often bears useful semantic information from which good heuristics for our pur-
pose can be derived. While it is easy to use models with larger cardinality and to
choose randomly a feasible set from all models, the model generation typically
takes much longer for higher cardinalities. In the following we fix the domain
cardinality to 2 for our experiments.

Because using the whole set of models for checking each candidate clause may
be computationally expensive, we typically use only a smaller subset. In order
to form a reference subset, we can either take every nth model from the original
model class (the factor of n) or make a random selection. In our experiments,
we adopt the first approach and the number of models is taken so that it should
be in the range of 40 ≤ n < 100. One interesting feature is that the models do
not provide good heuristics if the factor is dm where d the domain cardinality
and m is an integer. For instance, if the domain cardinality is 2 and the domain
D is fixed to {0, 1}, when the factor is 4, which means that when we take every
4th model, both Skolem constants x1 and y1 are always interpreted as 1 and 0,
respectively, in every model. For this reason, a good number for the factor is an
odd prime number.

4.2 Stage 2: Generating a Refined Assumption Set

The second part of the procedure is forward refinement based on resolution.
Reference models M¬ϕ are generated from the negated theorem ¬ϕ. As clauses
from Γ ∗ are taken to resolve so that a smaller number of models in M¬ϕ eval-
uates the resolvents to true, a refined assumption set Γ ′ is generated after 3
steps.

Γ ∗ c1 ¬Q(x, y) ∨ ¬P (z, x) ∨ P (z, y)
c2 ¬Q(x, y) ∨ ¬P (z, y) ∨ P (z, x)
c3 P (f(x, y), x) ∨ P (f(x, y), y) ∨ Q(x, y)
c4 ¬P (f(x, y), y) ∨ ¬P (f(x, y), x) ∨ Q(x, y)

S1 c5 ¬Q(x, y) ∨ ¬P (f(y, x), y) ∨ Q(y, x) (c2.3, c4.1)
S2 c6 ¬Q(x, y) ∨ P (f(y, x), x) ∨ Q(y, x) (c2.2, c3.1)
S3 c7 ¬Q(x, y) ∨ ¬P (f(y, x), x) ∨ Q(y, x) (c1.3, c4.2)
Γ ′ c8 ¬Q(x, y) ∨ Q(y, x) (c6.2, c7.2)

Γ ′ : {¬Q(x, y) ∨ Q(y, x)}

4.3 Stage 3: Searching for Refutation

The last part is to make a set of clauses that contains the original assumption set
Γ ∗, the refined assumption set Γ ′ and the negated conclusion {¬ϕ}∗, and to feed
them into a theorem prover. If the theorem prover employs semantic guidance,
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resolution steps between clauses from Γ ′ and {¬ϕ}∗ is given higher preference
than those between Γ ∗ and {¬ϕ}∗ or between Γ ∗ and Γ ′. In our experiments
with Scg prover, we use different model sets in the preprocessing and refutation
searching stages. Models are generated from ¬ϕ to guide the search for Γ ′ in the
preprocessor and from Γ to guide the search for ✷ in the Scg prover.

Γ ∗ c1 ¬Q(x, y) ∨ ¬P (z, x) ∨ P (z, y)
c2 ¬Q(x, y) ∨ ¬P (z, y) ∨ P (z, x)
c3 P (f(x, y), x) ∨ P (f(x, y), y) ∨ Q(x, y)
c4 ¬P (f(x, y), y) ∨ ¬P (f(x, y), x) ∨ Q(x, y)

Γ ′ c8 ¬Q(x, y) ∨ Q(y, x)
{¬ϕ}∗ c9 Q(x1, y1) ∨ Q(y1, x1)

c10 ¬Q(y1, x1) ∨ ¬Q(x1, y1)
S1 c11 Q(y1, x1) (c8.1, c9.1)
S2 c12 Q(x1, y1) (c8.1, c9.2)
S3 c13 ¬Q(x1, y1) (c8.2, c10.1)
S4 c14 ✷ (c12.1, c13.1)

The refutation search is much simpler with Γ, Γ ′ 	 ϕ than with Γ 	 ϕ even
though additional Γ ′ has been added. Otter finds an empty clause after gen-
erating only 15 clauses, which can be a great improvement over the 138 clauses
to prove Γ 	 ϕ.

5 Experiments on Pelletier Examples

We have tested our semantic goal-directed forward reasoning procedure com-
bined with Otter [12] and Scg [8]. Table 1 shows how many clauses Otter
generates and how many steps Scg takes, with and without the semantic goal-
directed reasoning preprocessor, in order to prove each example.1 Example 1-10
are the first ten full predicate logic problems without identity and functions
(problem 35-44) from Pelletier’s problem set [14]. The left most column is the
number of steps that the semantic goal-directed forward reasoning preproces-
sor takes to produce a refined assumption set Γ ′. If the initial problem is in a
form that the semantic goal-directed forward reasoning cannot be applied, for
instance, the problem has no assumption, or the assumption consists of only one
clause where no resolution can be applied, then the procedure is not applied and
labelled as “–”. In this case the refined assumption set is empty, i.e. Γ ′ = ∅.
The next two columns show the numbers of clauses Otter generates to prove
Γ 	 ϕ and Γ, Γ ′ 	 ϕ, respectively. Finally, the right most two columns are the
numbers of steps Scg takes. The proof found in step 0 means that the empty
clause was found during the construction of the initial graph. When the prover
1 Since Scg uses a different algorithm from Otter, we apply different measurements

– the number of clauses generated and added to the set of support in Otter, and the
number of clauses selected and added to the clause graph in Scg. In the preprocessor
and Scg, we use a step to denote a resolution step which includes selecting a pair of
clauses, resolving them, adding the resolvent into the clause set (or the clause graph
in Scg), and updating the set (or the graph in Scg).
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Table 1. Experiments on Pelletier examples

Preprocessor Otter* Scg**
Problem Γ ❀ Γ ′ Γ � ϕ Γ, Γ ′ � ϕ Γ � ϕ Γ, Γ ′ � ϕ

Example 1 – 0 0 0 0
Example 2 1 11 2 7 0
Example 3 – 3 3 3 3
Example 4 – Time out Time out
Example 5 – 2 2 0 0
Example 6 3 48 48 14 11
Example 7 2 2 2 2 0
Example 8 3 17 17 6 6
Example 9 3 138 15 101 6
Example 10 2 10 11 18 1

Otter*: The number of clauses Otter generates.
Scg**: The number of steps the semantic clause graph procedure takes.

does not produce the result in a reasonable amount of time (in our experiments
12 hours on SunE420R with four 450MHz processors), the step is rated as time
out.

As we have seen in the table, the semantic goal-directed forward reasoning
combined with a non-semantic prover like Otter does not always make a big
improvement. In Otter, Γ ′ is not given any preference over Γ and therefore all
clauses in Γ and Γ ′ are equally treated. Although in some examples (example
2 and 9) Γ ′ makes significant improvements for Otter, more often the prepro-
cessing does not make any difference (example 1, 3, 5, 6, 7 and 8), or even makes
it worse (example 10). In those cases, the preprocessing can be considered as
an additional overhead as it consumes computing resources and produces addi-
tional clause set Γ ′. However, when the semantic goal-directed forward reasoning
is used with a semantically guided theorem prover like Scg, it makes more sta-
ble improvements in the search for a proof. Wherever possible, preferences are
given to the resolution between clauses from Γ ′ and ¬ϕ, respectively, over those
between Γ and ¬ϕ. As seen in the table, the refined assumption set Γ ′ normally
makes the proof search shorter in most examples.

Please note that our experiments are based on a prototype implementation
and that we wanted only to explore the potential of the approach with our
experiments. The current implementation is built on the Lisp extension Keim
[7] which is not very fast compared to C-implemented systems with indexing
techniques, and a comparison of run time behaviour with existing provers would
not be informative.
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6 Conclusion and Further Work

We have described a semantic approach to goal-directed forward reasoning,
showed how it reduces the search complexities by refining the problem, and pre-
sented experimental results. Our approach differs from other semantically guided
approaches in that it does not search for candidate clauses likely to produce an
empty clause. Instead, it firstly reduces the search space by applying resolution
only between assumption clauses, and secondly the refutation is searched for. In
order to obtain the refined assumption set, candidate clauses are selected in such
a way that resolution is satisfied in the least number of models of the negated
conclusion. The experiments with typical first order problems from Pelletier ex-
amples show that the refutation length with the semantic goal-directed forward
reasoning is shorter especially when the refutation search is semantically guided.

The reference models are generated by Finder only once at the beginning
and reused during the rest of the goal-directed forward reasoning procedure,
while other semantic approaches like Scott do not only generate models from
the initial clauses but also from new ones. This is a big advantage of our ap-
proach since in general model generation is computationally more expensive than
checking.

The performance of semantically guided resolution depends to a great degree
on the availability of good models. Our experiments show that even with two-
element models valuable heuristic information can be obtained. Whether other
models are more promising or not has to be studied for different example classes.
Semantic guidance seems to be a standard technique humans use when searching
for proofs. Rather than generating models from scratch, they often use typical
examples [10,9]. It remains an open question whether and to which extent this
is necessary in our context. It may also be important to use infinite models as
investigated by Caferra and Peltier [3].

Acknowledgement. I thank to Manfred Kerber for useful discussions on the
idea and helpful comments on drafts of this paper.
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Abstract.  Most retrieval systems are geared towards Boolean queries or
hierarchical classification based on keyword descriptors. In this paper we
present a framework for domain-specific information retrieval. The proposed
approach uses topic lattice generated from a collection of documents where
documents are characterized by a group of users with overlapping interests. The
topic lattice captures the authors’ intention as it reveals the implicit structure of
a document collection following the structure of informal groups of individuals
expressing interests in the documents. Due to its dual nature, the lattice allows
two complimentary navigations styles, which are based either on attributes or
on objects.  Topic lattice capturing users’ interest suggests navigation methods
that may be an attractive alternative to specialized domain information retrieval.

Keywords:  information retrieval, web-based technology

1  Introduction

The explosion of the available information has made the problem of efficient resource
discovery vital. One particular challenge is how to display and navigate large sets of
interrelated documents. Browsing and searching are the two main paradigms for
finding information. Both paradigms have their limitations. The problem with general
search is setting up an appropriate query to find the relevant documents. This problem
stems from the lexical metrics used by search engines to infer the semantics of pages
from their lexical representation. Next problem is that search is sometimes hard for
users who do not know how to form a search query. Frequently, people intuitively
know what they are searching (new stuff) but are unable to describe the document
through a list of keywords. The information retrieval problem is too big to be solved
with one model or with one tool.

Recently, keyword searches have been supplemented with a drill-down
categorization hierarchy, that allows users to navigate through a repository of
documents by groups and dynamically to modify parts of their search. These
hierarchies, however, are often manually generated and can be misleading as a
particular document might fall under more than one category. An obvious
disadvantage of categorization is that the user must adopt the taxonomy used by those
who did the categorization in order to effectively search the repository.

Most of the documents available on the Web are intended for a particular
community of users. Typically, each document addresses some area of interest and
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thus a community centered on that area. Therefore the relevance of the document
depends on the match between the intention of the author and the user’s current
interest. Keyword matching alone is not capable to capture this intention [9]. A great
deal of scientific literature available on the web is intended for example to scholars.
For computer science scholars in particular, research papers are often made available
on the sites of various institutions. Such examples indicate that scientific
communication is increasingly taking place on the web [8]. The rapid growth of
scientific information is an exciting trend, but to exploit its full potential this growth
should be paired proportionally with equivalent facilities  helping scholars  to stay
informed about what's happening. The tendency towards specialization suggests that
decentralizing the search process is a more scalable approach since the search may be
driven by a context including topics, queries and communities of users. The question
is what type of topic related information is practical, how to infer that information
and how to use it for improving search results.

Web users typically search for diverse information. Some searches are sporadic
and irregular while other searches might be related to their interests and have more or
less regular nature. An important question is then how to filter out these sporadic,
irregular searches and how to combine regular searches into groups identifying topics
of interest by observing user’s searching behavior. Our approach to topic
identification is based on observations of the searching behavior of large groups of
users. The assumption is that a topic of interest can be determined by identifying a
collection of documents that is of common interest to a sufficiently large group of
users.

 The purpose of this study is to present a framework for identifying and utilizing
emerging ad hoc categories in information retrieval. The framework suggests a
method of grouping documents into meaningful clusters, which in effect identifies
topics of interest shared by certain users and a method of interacting with repository
supporting such structure. The browsing approach we propose uses Formal Concept
Analysis (FCA) [10]. Here FCA is used for dynamic clustering and browsing for
document retrieval. It results in an organizational structure that can support searching
for documents adaptable to a particular community profile. This approach enables
search for similar or new documents while dynamically modifying the original search
criteria.

2 Some Individuals Share Your Information Needs

Boolean search cannot naturally locate resources relevant to a specific topic. An
alternative approach is to deduce the category of user queries. Situations where search
is limited within a group of documents qualified by search participants as ‘interesting’
illustrate a category that is relevant to the user’s information needs. The key questions
are: what type of category related information is valuable and practical at the same
time, how to infer that category information, and how to use it for improving the
search results?

Our method for topic/category identification is based on observations of the
searching behavior of large groups of users. The basic intuition is that a topic of
interest can be determined by identifying a collection of documents (articles) that is of
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common interest to a sufficiently large group of users. The assumption is that if a
sufficient number of users u1,u2,…, um driven by their interest are searching
independently for a collection of documents a1,a2,…,an, then this is an evidence that
there is a topic of interest shared by all users u1,u2,…,um. The collection of documents
a1,a2,…,an characterizes the topic of interest associated with that group of users. While
the observation on a single user who demonstrates interest in objects a1,a2,…,an is not
an entirely reliable judgment, the identification of a group of users along with a
collection of documents satisfying the relation interested_in(ui, aj) is a more reliable
and accurate indicator of an existing topic of interest.

More conventional topical indicators of scientific literature are the place of
publication (the place of presentation). These descriptors when available can support
queries of the type “find  similar” or “find new” documents from this topic. For
example, all papers presented in the recent ECAI conferences are similar with respect
to the papers qualified as AI conference papers. Yet the papers of European
Conference on Artificial Intelligence - ECAI 2002 might be new for some of the AI
researches. Thus a request “find new” depends on how informed on a particular topic
is the individual submitting the request. For scientists the term “similar” might have
several still traceable dimensions. For instance:

•  Two papers are similar if both are presented at the same conference (same
session);

•  Two papers are similar if both are published in the same journal (same section);
•  Two papers are similar if both steam from the same project.

That type of similarity suggests a browsing interaction – where user is able to scan
ad hoc topics for similar or new materials. Assume that each collection of papers
identified by the relation interested_in(ui, aj) is further partitioned following its
publication (presentation) attributes. Assume next that user ui is able to retrieve the
collection of documents a1, a2,…,an and then able to browse the journals and
conferences of interests. The place and time of publications not only provide attribute
values that allow a collection a1,a2,…,an to be arranged  by place and year of
publication. In addition journal and conference names provide lexical material for
generating meaningful name of the collection. They suggest also useful links for
search for similar or new documents.

The web is changing the way that researchers access scientific literature. The
amount of scientific information and the number of electronic libraries on the Internet
continues to increase [8]. In a practical perspective the proposed approach for
identifying a topic of interest is particularly appropriate for specialized search engines
and electronic libraries. First, specialized search engines (electronic libraries) are used
for retrieving information within specified fields. For example, “NEC ResearchIndex”
 (http://citeseer.nj.nec.com/cs) is a powerful search engine for computer science
research papers. As a result, the number of users of specialized search engines is
considerably smaller compared to the number of users of general-purpose search
engines. Second, specialized search engines use some advanced strategies to retrieve
documents. Hence the result list provides typically a good indication of the document
content. Therefore, when a user clicks on one of the documents the chances to get
relevant information are generally high.

The question is: how to gather realistic document usability information over some
portion of the Web (database)? One of the most popular ways to get Web usability
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data is to examine the logs that are saved on servers. A server generates an entry in
the log file each time it receives a request from a client. The kinds of data that it logs
are: the IP address of the requester; the date and time of the request; the name of the
file being requested; and the result of the request. Thus by using log files it is possible
to capture rich information on visiting activities, such as who the visitors are and what
they are specifically interested in and use it for user-oriented clustering in information
retrieval.

The following assumptions provide a ground for the proposed framework. We
assume that all users are reliably identifiable across multiple visits to a  site. We
assume further that if a user (saves/selects) a document it is likely that the document
is relevant to the query or to the user’s current information needs. Another assumption
is that all relevant data of user logs are available and that from the large set of user
logs we can extract a set of relations of the type: (user_id, selected_document). The
next step is to derive from the extracted set of relations meaningful collections of
documents based on overlapping user interests, that is, to cluster the extracted data set
into groups of users with matching groups of documents. The last assumption is that
within each group documents can be organized according to the place and time of
publication/presentation.

3   Lattices for Information Retrieval

In most FCA  applications for document classification documents correspond to
objects and the keywords of the document constitute attribute sets. Instead of using
keywords as attributes, we use the set of users U expressing interest in a document as
a characterization of that document. This enables us to explicate not evident
relationship between collection of document and groups of users. In contrast to
keywords this type of characterization of documents exploits implicit properties of
documents. We will denote the documents (articles) in a given collection with the
letter A. Individual members of this collection are denoted by a1, a2 etc., while subsets
are written as A1, A2. We will denote the group of users searching the collection with
the letter U. Individual users  are denoted by u1,  u2 etc., while subsets are written as U1,
U2.  

Given a set of users U, a set of documents A and a binary relation uIa (user u is
interested in article a) we generate a classification of documents such that each class
can be seen as (ad hoc) topic with respect to a group of users U1 ∈  Pow(U) interested
in  documents A1 ∈  Pow(A). Documents share a group of users and users share a
collection of documents based on the users interest

A1 ={a∈  A|(∀ u∈  U1 ) uIa}

U1 ={u∈  U|(∀ a∈  A1 ) uIa},

Within the theory of Formal Concept Analysis [10] the relation between objects
and their attributes is called context (U,A,I). The extent of a concept is formed by all
objects to which the concept applies and the intent consists of all attributes existing in
those objects.
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Definition. Let C = (U,A,I) be a context. c = (U1,A1) is called a concept of C if
��1)={u∈  U|(∀ a∈  A1 ) uIa} = U1������ ��1) ={a∈  A|(∀ u∈  U1 ) uIa} = A1�� A(c) =

A1 ���� U(c)=U1  are called c’s extent and intent, respectively. The set of all concepts
of C is denoted by B(C).

We may think of the set of articles Au associated with a given user u ∈ U as
represented by a bit vector. Each bit i corresponds to a possible article ai ∈  A and is on
or off depending on whether the user u is interested in article ai. We can generate a
classification of documents such that each class can be seen as a topic (category)
described by the shared user interest. Accordingly we can characterize the relation
between the set of users and the set of articles in terms of topic lattice. To build a
topic lattice we need to find the subtopic-supertopic relationship between topics. This
is formalized by

 (U1, A1) ≤  (U2, A2) ↔  U1 ⊆   U2   or   (U1, A1) ≤  (U2, A2) ↔  A1 ⊇   A2.

As a consequence, a topic uniquely relates a set of documents with a set of
attributes (users): for a topic the set of documents implies the corresponding set of
attributes and vice versa. Therefore a topic may be presented by its document set or
attribute set only. This relationship holds in general for conceptual hierarchies: more
general concepts have fewer defining attributes in their intension but more objects in
their extension and vice versa. The set C=(U,A,I) along with the “≤ “ relation form a
partially ordered set that can be characterized by a concept lattice (referred here as
topic lattice). Each node of the topic lattice is a pair composed of a subset of articles
and a subset of corresponding users. In each pair the subset of users contains just the
users sharing interest to the subset of articles and similarly the subset of articles
contains just the articles sharing overlapping interest from the matching subset of
users. The set of pairs is ordered by the standard “set inclusion” relation applied to the
set of articles and to the set of users that describe each pair. The partially ordered set
can be represented by a Hasse diagram, in which an edge connects two nodes if and
only if they are comparable and there is no other node - intermediate topic in the
lattice, i.e. each topic is linked to its maximally specific more general topics and to its
maximally general more specific topics. The ascending paths represent the subtopic-
supertopic relation.

Table 1. A partial representation of the relation ui is interested in aj

a1 a2 a3 a4 a5 a6 a7  a8

u1  1  1  1  1  1 1  1  1
u2  1  1  1  1  1 0  1  0
u3  1  0  0  0  0 1  0  1
u4  0  1  0  0  1 0  1  0
u5  0  0  1  1  0 0  1  0
u6  1  0  1  1  0 0  1  0
u7  0  0  0  0  1 0  1  0
u8  0  0 0  0  0 1  0  1
 . . . . . . . . .
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The topic lattice shows the commonalities between topics and
generalization/specialization between them. The bottom topic is defined by the set of
all users; the top topic is defined by all articles and the group of users (possibly none)
sharing interest in them. A simple example of users and their interest to documents is
presented in (Tab. 1). The corresponding lattice is presented in (Fig. 1).

4 Navigating the Topic Lattice

Different categories of users are driven by different motivations when searching for
documents. Scholars typically search for new or inspiring scientific literature. In such
cases keywords cannot always guide the search. In addition the term new depends on
who is the individual and how current is she with the available literature. Novices or
inexperienced researchers may also face some problems trying to get to a good
starting point. Typical questions for newcomers in the field are:

Which are the most significant works in the field?
Which are the newest yet interesting papers in the field.
Which are the topics directly related to a given topic?
Which are the most active researchers in the field?

In effect general purpose search engines do not provide support for such type of
questions.

Fig. 1. A topic lattice generated from the relation represented in Table 1.
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The current standard information retrieval methods are: keyword search and
hierarchical classification. In the second method, searches are done by browsing
directories organized as a hierarchy of subject categories. A hierarchical topical
structure as the one described in the previous section presents some features that
support browsing retrieval task: topics are indexed through their descriptors (users)
and are linked based on general/specific relation. User can jump from one topic to
another in the lattice; the transition to other topics is driven by the Hasse diagram.
Each node in the lattice can be seen as query formed by specifying a group of users,
with the retrieved documents defining the result. The lattice supports navigation from
more specific to general or general to specific queries. Another characteristic is that
the lattice allows gradual enlargement or refinement of a query. Following edges
departing downward (upward) from a query produces refinements (enlargements) of
the query with respect to a particular collection of documents.

Consider a context C = (U,A,I). Each attribute u∈  U and object a∈  A has a
uniquely determined defining topic. The defining topic can directly be calculated
from the attribute u or article a  and need not to be searched in the lattice based on the
following property.

Definition. Let C=(U,A,I) be a concept lattice. The defining topic of an attribute
u∈  U (object a∈  A) is the greatest (smallest) topic c such that u∈   U(c) (a∈ � A(c))
holds.

This suggests the following strategy for navigation. A user u∈  U starts her search
from the greatest topic c1 such that u∈   U(c1), i.e. from the greatest collection of
articles interesting to u. User  navigates from topic to topic in the lattice, each topic
representing the current query. Gradual refinement of the query may be accomplished
by successfully choosing child topics and gradual enlargement by choosing parent
topics. This enables a user to control the amount of output obtained from a query. A
gradual shift of the topic may be accomplished by choosing sibling topics. Thus a user
u searches for documents walking through the “topical” hierarchy guided by the
relevance of the topics with respect to her current interest. Decisions on the topics to
be examined next are supported by their relations to the current topic c1. If no other
evidence, user can browse neighboring topics ci when they maximize certain
similarity measure with the topic c1. A simple solution is to measure similarity based
on the number of overlapping users of c1 = (U1, A1) and ci = (Ui, Ci). Thus the
browsing behavior will be guided by the magnitude t= |U1∩ Ui)|. We create a topic
lattice using users and documents as an outer structure and scale up with other
attributes into a nested structure. The nested structure is associated with the current
topic of the outer structure, where the nested attributes are place of publication and
year.

The defining concept property suggests also an alternative navigation strategy
guided by articles. Assume that browsing through the topic lattice user u finds article
a interesting to her and wants to see some articles similar to a, that is, articles sharing
user’s interest with a. Then exploiting the defining concept property the user u can
jump to the smallest topic such that a∈ � A(c), that is, to the minimal collection
containing a, and may resume the search from this point by exploring the neighboring
topics.
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Our supporting conjecture for such type of navigation is that a new document a
topically close to documents Am that are interesting to a user u is also interesting with
high probability.  More precisely, if a user u is interested in documents  Am, then a
document a interesting to her peers Un (a∈  An, such that An⊇  Am (Un ⊆  Um), and a∉  Am)
is also relevant. Thus articles a∈  An that are new to the user u and relevant by our
conjecture should be ranked higher with respect to the user u. Therefore in terms of
the concept lattice the search domain relevant to the user u ∈ Um includes a subset of
articles to which other members (i.e., Uk)  of the group Um  have demonstrated interest.
These are collections of articles Ak of the topic (Uk, Ak), such that u∉ Uk ⊆  Un ≠ ∅ .
This strategy supports an exploration exploiting topical structure in a collection of
documents. It reflects a challenging problem related to recourse exploration: how to
maintain collections of articles that are representative of the topic and may be used as
a starting points for exploration.

Navigation implies notions of place, being in a place and going to another place. A
notion of neighborhood helps specifying the other place, relative to the place one is
currently in. Assume that a user u is in topic c1, such that cp =(Up, Ap) is a parent topic
and c2=(U2,A2),.., ck=(Uk,Ak) are the sibling topics, i.e.   Ui ⊇  Up, i = 1,2,..,k. To
support   user orientation while browsing we provide the following similarity
measurement. Each link (cp, ci) from the parent topic cp to ci is associated with two
weights Wi and wi  absolute and relative weight respectively computed according to
the following formulae Wi = |Ui| and wi = | Ui | / |U1+U2+…+Uk|, i = 1,2,..,k. In
addition to these quantitative measures each node is associated with a name derived
from the place of publication. These names serve as qualitative qualifiers of a topic
relative to the other topic names.

The following is a summary of the navigation strategy derived from the above
considerations. The decision for the next browsing steps are based on the articles in
the current topic and on the weights (Wi/wi)  associated with the sibling nodes. User
u∈  U starts from the greatest topic c1 identified by her defining group U1= U(c1).
Arriving at node (Uk, Ak) user u can either refine, enlarge the search or select a new
topic from the neighborhood of the current topic. These decisions correspond to
choosing a descendant, a parent or a sibling topic from the available list; any
descendant topic refines the query and shrinks gradually the result to a non empty set
of selected documents. The user refines the query by choosing a sequence of one or
more links. As a result the number of selected documents and remaining links
decreases. Correspondingly, the user enlarges the query by choosing a sequence of
parent topics. In contrast, selecting a sibling topic will result in browsing a collection
of articles not seen by that user but rated as interesting by some of her peers. These
three types of navigations are guided by the relations between user groups such as set
inclusion and set intersection as well as by topic names similarity. The next type of
navigation exploits the defining topic property of an object. By selecting an article a
from topic ci= (Ui, Ai),  user is enable to navigate to the minimal collection containing
the article a, that is to jump to the smallest topic c such that Ak= A(c),  Ak ⊆ Ai. In
general traversing the hierarchy in search of documents supported by topic lattice can
be viewed as sequence of browsing steps through the topics, reflecting a sequence of
applications of the four navigation strategies. Once topic is selected then user can
search for papers browsing the corresponding regions associated with place and time
of publication.
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This approach allows users to jump into a hierarchy at a meaningful starting point
and quickly navigate to the most useful information. It also allows users to easily find
and peruse related concepts, which is especially helpful if users are not sure what they
want.

5   Topic Lattice Features

It is essential to be able to incrementally construct a topic lattice by adding new
documents and users. The change of the lattice structure complies with  the following
assumptions. A collection of articles A1  from an existing topic (U1,A1) can only be
expanded. This is implied by the conjecture that documents, qualified as interesting
by user u do not change their status. Therefore, an expansion of the collection of
articles with respect to a topic (U1,A1) will not impose any change of existing links.
Indeed, an expansion of A1  to A’

1 results in an expansion of all parent (descendent)
collections Am, An, such that A1⊆  Am ⊆  An, i.e. from  A1⊆  A’

1 → A’
m ⊆  A’

n and therefore
(Un, An) ≤ (Um, Am) → (U’

n, A
’
n) ≤ (U’

m, A’
m). Analogous relations hold with ancestor

nodes. That is, an expansion of an existing collection of articles preserves the
structure of the lattice.

Lattices are superior to tree hierarchies which can be embedded into lattices,
because they have the property that for every set of elements there exists a unique
lowest upper bound (join) and a unique greatest lower bound (meet). In lattice
structure there are many paths to a particular topic. This facilitates recovery from bad
decision made while traversing the hierarchy in search of documents. Lattice structure
provides  ability to deal with non-disjoint concepts.

One of the main factors in a page ranking strategy involves the location and
frequency of keywords in a Web page. Another factor is link popularity - the total
number of sites that link to a given page. However, present page rank algorithms
typically do not take into account the current user and specifically her interests.
Assume that we have partitioned users into groups associated with their topics of
interest (as collections of documents). A modified ranking algorithm can be obtained
by extending the present strategy with an additional factor involving the number of
links to and from a topic associated with a given user. In this case the page ranking
strategy takes into consideration user’s interest encoded in the number and the levels
of links to a topic associated with a given user. Thus, for a user u∈ U1, where (U1,A1)
is a topic, the page rank of an article a depends on the linkage structure to the articles
ai ∈  A1  representing the topic of interest of user u. We can interpret a link from article
ai to article a as a vote of article ai for article a. Thus votes cast by article that are
from the users topic weigh more heavily and help to make other pages ‘more-
important’. This strategy makes page-ranking user oriented. Such a strategy promotes
pages related to users’ topics of interest. From an “active users” perspective this
approach enables us to recognize a community of users for which a given article is
most likely to be interesting.

By incorporating navigation into a search framework based on keyword
descriptors one can provide an opportunity for different modes of interaction that may
be integrated on combined retrieval space. The topic lattice suggests also a partially
ordering relation (� ) for ranking articles returned in response to a keyword request
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from a user u. Assume that  c0 is the greatest topic such tat u ∈  U0 	� U(c0) . Then
a1� a2 if there exist topics  c1  and   c2,   a1 ∈ � A(c1),  a2 ∈ � A(c2),  such that  ��
 U(c1)
∩ U0� 
��� 
 U(c2) ∩ U0 |, i.e. the more members of the group U0  have expressed an
interest in a given article the better. This ordering is based on the number of users that
has expressed interest in a document. That implies that all articles that originate from
the same topic are lumped into one rank.

At more fundamental level, the value of FCA for information retrieval is based on
the assumption that when user enters a lattice at certain topic, but the document
retrieved are not appropriate, then these documents will be associated with some
attributes that will eventually lead you to the desired documents. This is a central but
hidden assumption in proposing that a lattice browsing scheme will have advantages
over hierarchical approach [6]. In a hierarchical scheme user simply go back to the
top and start again. With a lattice approach user assumes that there are other features
of the retrieved documents (sub-group of users) that will also occur in the document
she really wants to retrieve.

6 Related Works and Conclusion

This paper has taken a step in the direction of finding an approach to a web-based
information retrieval system aimed at specialized domains. In this work we propose to
incorporate the community profiling with the search process. It has long been
recognized in the context of information retrieval that most searches are a
combination of direct and browsing retrieval and as a such, a system should provide
both possibilities in an integrated and coherent interface [5]. The most challenging
test of the information retrieval methods is their application to the Web. The focus of
the current efforts of the Web research community is mainly on optimizing the search,
assuming active users vs. passive information.

Recently there has been much interest in supporting users through collecting Web
pages related to a particular topic [3, 9]. These approaches typically exploit
connectivity for topic identification but not for community identification. Community
identification does not play any significant roles in these methods and therefore user
search experience within a community typically is ignored. Some systems do exploit
the experience of Web surfers to derive clustered topical interests but the focus is on
organizing surfing history in coherent topics for later use. The problem of identifying
community structure was addressed in [7]. However, the approach employed for
community identification is based on analysis of the Web graph structure and is not
explicitly intended to support resource discovery. In collaborative filtering systems
[1] items are recommended on the basis of user similarity rather than object
similarity. Each target user is associated with a set of nearest neighbor users (by
comparing their profiles) who act as ‘recommendation partners’. In contrast, in our
approach users’ similarity is used to build a topical hierarchy supporting search for
matching topics of interests. A derived benefit of such an approach is that it discloses
some implicit relations in documents (such as author’s intention) that can guide a
search for matching topics of interest. Lattices are appealing as a means of
representing conceptual hierarchies in information retrieval systems because of some
formal lattice properties. Applied to information retrieval they represent inverse
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relationship between document sets and query terms. In [4] formal concept analysis is
applied to capture the notion of context in information retrieval. Unlike traditional
systems that use simple keyword matching, [8] is able to track and recommend
topically relevant papers even when keyword based query fails. This is made possible
through the use of a profile to represent user interests. Our framework is close in spirit
to the application of Galois’ concept lattices [2] where each document is described by
exactly those terms that are attached to nodes that are above the document node.
However in our approach the grouping of documents into classes is based on dynamic
descriptors associated with  users conducting search on a regular basis.

Domain-specific information retrieval typically depends on general search engines
which make no use of user’s areas of interest and require a user to look at a linear
display of loosely organized search results or hand crafted specialized systems. The
later systems are with a better browsing interface but are generally costly to build and
maintain. In our approach category identification is part of community formation and
is based on automatic identification of communities with clustered topical interests.

The particular objective of the work described here is to develop a framework
supporting browsing mechanism where the search process can be accomplished
within the context of a community or point of view. The framework exploits topic
lattice generated from a collection of documents associated with users demonstrating
interest in those documents and playing a role of descriptors. Due to its dual nature,
the lattice allows two complimentary navigation styles that are based either on
attributes or on objects. Topic lattice capturing users’ interest suggests navigation that
may be an attractive alternative to specialized domain information retrieval.
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Abstract. Many current information extraction systems tend to be
designed with particular applications and domains in mind. With the
increasing need for robust language engineering tools which can handle
a variety of language processing demands, we have used the GATE
architecture to design MUSE - a system for named entity recognition
and related tasks. In this paper, we address the issue of how this
general-purpose system can be adapted for particular applications with
minimal time and effort, and how the set of resources used can be
adapted dynamically and automatically. We focus specifically on the
challenges of the ACE (Automatic Content Extraction) entity detection
and tracking task, and preliminary results show promising figures.

Keywords: information extraction, named entity recognition, robust
NLP

1 Introduction

Most Information Extraction (IE) systems are designed to extract fixed types
of information from documents in a specific language and domain [4,1,5]. To
increase suitability for end-user applications, IE systems need to be easily cus-
tomisable to new domains [17]. Driven largely by US Government initiatives such
as TIPSTER [3] and MUC [18], work on IE, and in particular on named entity
recognition (NE), has largely focused on narrow subdomains, such as newswires
about terrorist attacks (MUC-3 and MUC-4), and reports on air vehicle launches
(MUC-7). In many applications, however, the type of document and domain may
be unknown, or a system may be required which will process different types of
documents without the need for tuning.

Many existing IE systems have been successfully tuned to new domains and
applications - either manually or semi-automatically – but there have been few
advances in tackling the problem of making a single system robust enough to
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forego this need. It is well-known that the adaptation of existing systems to new
domains is hindered by both ontology and rule bottlenecks. A substantial amount
of knowledge is needed, and its acquisition and application are non-trivial tasks.

For systems to deal successfully with unknown or multiple types of source
material, they must not only be able to cope with changes of domain, but also
with changes of genre. By this we mean different forms of media (e.g. emails,
transcribed spoken text, written text, web pages, output of OCR recognition),
text type (e.g. reports, letters, books, lists), and structure (e.g. layout options).
The genre of a text may therefore be influenced by a number of factors, such as
author, intended audience and degree of formality. For example, less formal texts
may not follow standard capitalisation, punctuation or even spelling formats.
Most IE systems require manual tuning in order to deal with these different
kinds of texts; however, we have developed a system which uses NE technology
to detect different text types, and then automatically fires different processing
resources depending on the text.

We first describe the default system in Section 2 below. We then describe in
Section 3 the background for our work, namely the ACE program. We continue
in Section 4 with the challenges posed by ACE, and how the system has been
adapted, using the GATE technology, to overcome them. In Section 5 we discuss
some aspects of evaluation in IE, and give details of preliminary results with the
ACE system. Finally in Section 6 we summarise the approach used and discuss
some ongoing improvements to the system.

2 The MUSE System for Named Entity Recognition

The MUSE system (MUlti-Source Entity finder) [14] has been developed within
GATE, a General Architecture for Text Engineering [6,7], which is an architec-
ture, framework and development environment for language processing research
and development.

MUSE is based on ANNIE, A Nearly-New IE system, which comes as part of
the standard (freely available) GATE package. Figure 1 depicts a full IE pipeline
based on a LaSIE1 backend with ANNIE shallow analysis.

The MUSE system comprises a version of ANNIE’s main processing re-
sources: tokeniser, sentence splitter, POS tagger, gazetteer, finite state trans-
duction grammar and orthomatcher. The resources communicate via GATE’s
annotation API, which is a directed graph of arcs bearing arbitrary feature/value
data, and nodes rooting this data into document content (in this case text).

The tokeniser splits text into simple tokens, such as numbers, punctuation,
symbols, and words of different types (e.g. with an initial capital, all upper case,
etc.). It does not need to be modified for different applications or text types.

The sentence splitter is a cascade of finite-state transducers which seg-
ments the text into sentences. This module is required for the tagger. Both the
splitter and tagger are domain and application-independent.
1 the original IE system developed within the first version of GATE
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Fig. 1. ANNIE, A Nearly-New IE system

The tagger is a modified version of the Brill tagger, which adds a part-of-
speech tag as a feature to each Token annotation. Neither the splitter nor the
tagger are a mandatory part of the NE system, but the annotations they produce
can be used by the semantic tagger (described below), in order to increase its
power and coverage.

The gazetteer consists of lists such as cities, organisations, days of the week,
etc. It contains some entities, but also names of useful key words, such as com-
pany designators (e.g. ‘Ltd.’), titles, etc. The lists are compiled into finite state
machines, which can match text tokens.

The semantic tagger (or JAPE transducer) consists of hand-crafted rules
written in the JAPE pattern language [8], which describe patterns to match and
annotations to be created. Patterns can be specified by describing a specific text
string or annotation (e.g. those created by the tokeniser, gazetteer, document
format analysis, etc.).

The orthomatcher performs co-reference, or entity tracking, by recognis-
ing relations between entities. It also has a secondary role in improving NE
recognition by assigning annotations to previously unclassified names, based on
relations with existing entities.

3 The ACE Program

The ACE program aims to encourage the development of robust NLP applica-
tions, by promoting faster system development from given linguistic resources,
which encourages the development of general purpose retargetable systems, us-
ing a variety of methods from richly annotated corpora. It also aims to promote
the design of more general purpose linguistic resources, and the development of
general purpose standalone systems.
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The ACE entity detection and tracking (EDT) task goes beyond existing
NE tasks, in that all mentions of an entity (in the form of a name, description
or pronoun) must be recognised and classified (based on reference to the same
entity). The aim is to produce structured information about entities, events,
and relations among them. Although, as with MUC, the texts to be used for
the tasks are newswires, the scope of the task is widened by measuring results
not only on standard written texts, but also on texts produced from automatic
speech recognition (ASR) and optical character recognition (OCR) output. ACE
focuses on the core extraction challenge however, rather than on ASR or OCR
algorithms.

The ACE Program aims to create a powerful new generation of algorithms
capable of extracting information accurately and robustly from human language
data, and to represent that information in a form suitable for subsequent auto-
matic analysis. Potential uses of ACE output include more precise forms of in-
formation retrieval, data mining, and the development of large knowledge bases.

3.1 The Entity Detection and Tracking (EDT) Task

The EDT task is divided into the following 5 recognition subtasks:

– entities (Person, Organization, Location, Facility and GPE2);
– entity attributes: type (Name, Nominal or Pronominal);
– entity mentions [optional] - entity tracking (similar to co-reference);
– mention roles [optional] - for GPEs, each mention has an optional role asso-
ciated with it (Person, Organization, Location or GPE);

– mention extents [optional] - detection of the whole NP span, rather than just
the head.

One of the main differences between ACE and MUC is that where MUC
dealt with the linguistic analysis of text, ACE deals with the semantic analysis
of text. Discussion of how the system was adapted to perform this deeper level
of analysis can be found in Section 4.

3.2 Data

The ACE tasks are carried out on the following types of input data:

– Text from newswire
– (Degraded) text produced from broadcast news by ASR
– (Degraded) text produced from newspapers by OCR
– Clean versions of text produced from broadcast news
– Clean versions of text produced from newspapers

Unlike in MUC, where the texts were all related to a specific domain, the
ACE news texts encompass a wide variety of domains, such as sport, politics,
religion, popular culture, etc.
2 Geo-Political Entity (essentially, any kind of location which has a government, such
as a city or country)
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3.3 Participation

The University of Sheffield team has been participating in the ACE program,
and has therefore faced the challenge of adapting the core MUSE system to deal
specifically with the ACE tasks. We focus here on the EDT task, since we are
not currently participating in the RDC (relation detection and characterisation)
task.

4 Adapting MUSE to Perform EDT

The MUSE system is designed to process multiple types of text in a robust
fashion, with minimal adaptation. However, it does require some tuning in order
to deal with new applications where either the guidelines for entity recognition
are different, or where new tasks are involved. In this section, we describe the
adaptation of the MUSE system to build the ACE system, used to perform the
EDT task. We describe the two parts of the task (named entity detection and
tracking) separately.

Although the two tasks are considerably different from the MUSE basic NE
task, the time and effort spent tuning the system was remarkably small, because
of the robust design and flexible architecture of GATE. The ACE system is
just one example of this: we have also implemented similar adaptations to build
the HaSIE system for IE and summarisation from company reports [15], the
OldBaileyIE system for information extraction from old English court reports
[2], and the Romanian NE system [12], among others.

4.1 Named Entity Detection

There are a number of features of the EDT task that have required adaptation
to the original MUSE system.

1. The entity types are different. MUSE recognises the standard MUC entity
types of Person, Location, Organisation, Date, Time, Money and Percent,
plus the additional entity types Address (including email, phone numbers,
urls, etc.) and Identifier. ACE has the first three, plus the additional types
Facility (which subsumes some entities previously belonging to the MUSE
types Organisation and Location), and GPE, which subsumes some, but not
all, entities from the MUSE types Person, Location and Organisation). This
means that on the one hand, some entities are grouped together, and on the
other hand, that finer distinctions are made (for example, the division into
Location and GPE).

2. A word or string does not consistently belong to an entity type in the same
way that it (usually) does in MUSE; for example, in ACE “English” could
be annotated as a Person or Organization, depending on the situation. Con-
textual information and intended meaning are very important, and world
knowledge, intuition or pragmatic information may be necessary to cate-
gorise a particular occurrence of an entity correctly.
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3. Entities may be used metonymously. This means that they must also be
classified as such, by means of the use of roles. A metonymous mention of
an entity is given a literal and an intended role. For example, in the museum
announced its new exhibit, the entity museum is a facility that houses art,
but in this context it is being used to describe the organisation behind the
museum, and the mention should therefore be annotated as having the literal
role Facility and the Intended role Organisation.

4. For some domains, such as Sport, a string may have a different entity type.
For example, names of cities and countries are often used to represent team
names, and should therefore be annotated as Organisations and not GPEs.

Due to the modular nature of the GATE architecture, it is relatively straight-
forward to adapt processing resources such as the grammar and gazetteer lists of
MUSE in order to deal with the first problem. Firstly, procedural and declarative
knowledge in GATE are separate, which minimises the adaptation necessary. Sec-
ondly, within the processing resources, foreground and background information
are largely distinguished, so that background knowledge (such as that required
for the tokenisation, name matching etc.) can remain untouched and only fore-
ground information (that which is very specific to the domain or application)
needs to be modified. For example, changes can be made to specific parts of
the grammar while ensuring that the remaining parts of the grammar will be
unaffected. This is of enormous benefit in reducing the time and effort spent
adapting the system to a new application.

To deal with different text types, we introduced a conditional controller mech-
anism, which enables the user to set up the chain of processing resources accord-
ing to features found in the text. A JAPE transducer is first run over the text
to determine its type, by identifying salient features of the document.

The transducer adds a feature to the document indicating its domain. The
conditional controller is set up so that depending on the presence or absence
of certain features (e.g. a “sport” feature), a processing resource can be fired
or not. In this way, we can set the controller to fire, for example, a particular
sports grammar if the sports feature is present, and a regular grammar if it is
not. The sports grammar annotates certain locations as Organisations, whereas
the regular grammar annotates them as GPEs. The same mechanism can also
be used for dealing with any kind of metonymy: if certain features are detected
in the text, we can set the controller to run certain extra grammars, or to omit
existing ones. The firing of other resources such as gazetteer lists or POS taggers
can also be handled in the same way.

4.2 Entity Tracking

The entity tracking part of the EDT task has required the construction of some
entirely new components to the MUSE system, and some further adjustments to
existing parts. The main problems for the system were detection of pronominal
entity mentions, coreference of proper names, and anaphora resolution.
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The detection of pronouns is quite straightforward, since MUSE already con-
tains a POS tagger which enabled us to recognise them by simply making some
minor additions to the JAPE grammars.

Recognising the name mentions (i.e. finding coreference chains between
proper nouns) required use of the MUSE orthomatcher, with some minor modifi-
cations to ensure that the correct entity types were considered. For example, we
added new rules to match locations with their respective adjectives (e.g. France
and French), and we extended the rules for Organisations so that they also took
care of matches between Facilities (since Facility was not an entity type used in
MUSE).

Finding the pronominal mentions (anaphora resolution) required more ex-
tensive work in the form of an entirely new module, the pronominal coreference
module, which was built using the JAPE formalism. The GATE framework pro-
vided the basis for this to be designed, developed and slotted into the architecture
with minimum effort. Detailed analysis of the data revealed that a few simple
rules could account for the vast majority of pronominal cases. For example, 80-
85% of the occurrences of [he,his,she,her] referred to the closest person of the
same gender in the same sentence, or, if unavailable, the closest preceding one. In
most cases, they referred back to named entities rather than nominal references.
Likewise, [it,its] are handled in the same way, but with scope restriction (because
there are many nominals). Currently the rules do not allow for cataphora, but
occurrences of these were rare. Pronouns occurring in quoted speech are handled
by a separate grammar, and require slightly more complex rules. More details
of the pronominal coreference module can be found in [9].

5 Evaluation

We have evaluated the ACE system using Precision and Recall, which we calcu-
lated using the evaluation facilities developed within GATE: the AnnotationDiff
tool and the Benchmarking Tool. These are particularly useful not just as a final
measure of performance, but as a tool to aid system development by tracking
progress and evaluating the impact of changes as they are made. The evaluation
tool (AnnotationDiff) enables automated performance measurement and visu-
alisation of the results, while the benchmarking tool enables the tracking of a
system’s progress and regression testing.

5.1 The AnnotationDiff Tool

Gate’s AnnotationDiff tool enables two sets of annotations on a document to be
compared, in order to either compare a system-annotated text with a reference
(hand-annotated) text, or to compare the output of two different versions of the
system (or two different systems). For each annotation type, figures are generated
for precision, recall, F-measure and false positives.
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5.2 Benchmarking Tool

GATE’s benchmarking tool differs from the AnnotationDiff in that it enables
evaluation to be carried out over a whole corpus rather than a single document.
It also enables tracking of the system’s performance over time. Performance
statistics are output for each text in the corpus, and overall statistics for the
entire corpus, in comparison with a reference corpus.

5.3 Results

The latest evaluations for the ACE system scored 82-86% precision and recall,
depending on the text type (newswire scored the highest, though it also had the
most substitution errors3 (7%). For detection of pronominal mentions (anaphora
resolution) the recall was low (around 40%) but precision was high (83% for
broadcast news, and slightly less for the other text types). The main reason
for recall being low was that we currently do not attempt to identify all types
of pronouns. Detection of name mentions was also high, with the precision for
newswires at 93%, and a slightly lower score for the other text types.

5.4 Other Evaluation Metrics

The most commonly used evaluation metrics in IE - precision, recall, error rate
and F-measure - all stem from the IR field, and consequently so does much
of the literature on this topic, e.g. [19,13,11]. Typically in IR, people want to
know how many relevant documents are to be found in the top N percent of
the ranking. This is reflected well by the precision metric. In IE, however, peo-
ple typically want to know for each entity type how many entities have been
correctly recognised and classified. In IE therefore, the proportion of entities be-
longing to each type has an impact on the outcome of the evaluation, in a way
that the proportion of relevant documents in the collection does not in IR. Eval-
uation mechanisms in IE can also be affected by the notion of relative document
richness, i.e. the relative number of entities of each type to be found in a set
of documents. For this reason, error rate is sometimes preferred in the IE field,
because, unlike precision, it is not dependent on relative document richness.

5.5 Cost-Based Evaluation

Using error rate instead of precision and recall means, however, that the F-
measure can no longer be used. An alternative method of getting a single bottom-
line number to measure performance is the cost-based metric. This appears to
be becoming a favourite with the DARPA competitions, such as TDT2 [10], and
is the method used in ACE. The model stems from the field of economics, where
the standard model “Time Saved Times Salary” measures the use of the direct
salary cost to an organisation as a measure of the value [16].

Another advantage of this type of evaluation is that it enables the evalua-
tion to be adapted depending on the user’s requirements. A cost-based model
3 where an entity was correctly detected but allocated the wrong entity type
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characterises the performance in terms of the cost of the errors (or the value
of the correct things, depending on whether you see the glass as half-empty or
half-full). For any application, the relevant cost model is applied, and expected
prior target statistics are defined.

For a cost-based error model, a cost would typically be associated with a
miss and a false alarm, and with each category of result (e.g. recognising Person
might be more important then recognising Date correctly). Expected costs of
error would typically be based on probability (using a test corpus). This makes
the assumption that a suitable test corpus is available, which has the same rate of
entity occurrence (or is similar in content) to the evaluation corpus. If necessary,
the final score can be normalised to produce a figure between 0 and 1, where 1
is a perfect score.

The official ACE evaluations are carried out using a cost-based function based
on error rate, for the reasons described above. However, since these evaluations
are closed (i.e. we are not able to divulge any results other than those of our
system), it is not very informative to discuss these cost-based results in isolation,
since a single value means little without direct comparison, and therefore we have
given our results in terms of the more widely recognised Precision and Recall.

6 Conclusions

In this paper, we have described a robust general-purpose system for NE across
different kinds of text, and its adaptation for use in a specific application, the
ACE EDT task. We have shown that the flexibility and open design of the GATE
architecture and MUSE system enables this kind of adaptation to be carried
out with minimal time and effort. Approximately 8 person weeks were spent
on the development of the coreference module (which was not ACE-specific,
but intended for general use within GATE); 6 person weeks were spent on the
adaptation, (including those modules developed specifically for ACE), and a
further 2 person weeks on familiarisation with the task and guidelines.

The conditional controller mechanism enables the system to be adapted au-
tomatically and dynamically according to the characteristics of the text being
processed. Current results are promising and we aim to improve on them in the
near future, with modifications to coreference and metonymy, and the use of
learning mechanisms for error corrections and ambiguity resolution.
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Abstract. The Semantic Web is a vision to move the Web from a place
where information is processed by humans to one where processing can
be automated. Currently, AI seems to be making an impact on bringing
the vision to reality. To add semantics to the web requires languages for
representing knowledge. To infer relationships between resources or new
facts requires web-scale automated reasoning. However, there is some
skepticism in the web community that AI can be made “web appropri-
ate” and work on a web scale. I will introduce the Semantic Web concept
and give a number of examples of how AI has already contributed to its
development, primarily through knowledge representation languages. I
will explore the reasons why the Semantic Web is a challenging environ-
ment for AI. I will suggest that this could be a killer app for AI, but
we must recognize that the web is a vast and untidy place, and only a
combination of approaches will yield success.

The Web as a means for publishing and disseminating information to people
is unprecedented. However, to access and interpret information necessitates hu-
man intervention. So the web is a place where humans do the processing and
computers do the rendering.

The vision of the Semantic Web is to evolve the web to one where information
and services are understandable and useable by computers as well as humans.
Automated processing of web content requires explicit machine-processable se-
mantics associated with those web resources.

To realise this vision is in some ways mundane and in others daunting, de-
pending on your ambition. As McBride points out [1] simple metadata and simple
queries give a small but not insignificant improvement in information integra-
tion. Others have more ambitious ideas of an environment where software agents
are able to dynamically discover, interrogate and interoperate resources, build-
ing and disbanding virtual problem solving environments [2], discovering new
facts, and performing sophisticated tasks on behalf of humans. The key point is

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 274–278, 2002.
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Fig. 1. The Semantic Web Layer Cake

to move from a web where semantics are embedded in hard-wired applications
to one where semantics are explicit and available for automated inference.

The core technologies proposed for the Semantic Web have their roots in
distributed systems, and information management, for example, the identity of
resources, and the annotation of resources with metadata for subsequent query-
ing. However, the greatest impact so far appears to have been made by AI.
Ontologies will enable software agents to find the meaning of the content within
web resources, and metadata attached to them by following hyperlinks to def-
initions of key terms. These definitions will be written using formal (logical)
languages that facilitate automated reasoning.

Tim Berners-Lee’s famous “layer cake” picture (seee Figure 1) puts ontolo-
gies, logic, proof and reasoning at the forefront of the Semantic Web vision. In
2001 the first Semantic Web Working Symposium was classified by Google as
[Computers>Artificial Intelligence], and this year as [Science>Math>Logic and
Foundations]. Similarly, semanticweb.org is classified as [Computers>Artificial
Intelligence>Knowledge Representation].

Arguably the most successful example of the migration of AI techniques
to the Semantic Web has been the DAML+OIL web ontology language [3].
DAML+OIL came out of various EU projects1 and the USA DARPA DAML

1 EU IST Ontoknowledge, UK EPSRC CAMELOT
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programme2. It is now undergoing a transformation through the W3C Seman-
tic Web activity by the Web Ontology Working Group3 to become the W3C
ontology language OWL.

DAML+OIL/OWL is a language based on a description logic with a (partial)
mapping to RDF(S), that supports subsumption reasoning and concept satisfi-
ability reasoning. The reasoning is exploited by ontology developers through
ontology editors such as OilEd [4]. OilEd is connected to the FaCT reasoning
engine which it uses to identify new subsumption relationships and discover in-
consistent concept definitions. The editor has generated much interest, with 2500
downloads so far. Semantic web services use DAML+OIL service descriptions to
discover web services, and use reasoning to match service descriptions [5,6]. Se-
mantic web applications such as COHSE use DAML+OIL mark up to generate
hypertexts for people to navigate, and use reasoning to make editorial decisions
on link possibilities [7]. COHSE is unusual in that it combines databases, meta-
data, ontologies, and open hypermedia,and recognises the role of Web in the
Semantic Web.

There are many other prospects for AI techniques. For example: semantic web
services are recast as variations of agent negotiation [8], planning and rule based
systems [9]; machine learning is used for emergent metadata and ontologies [10];
ontology development, evolution, merging draws upon knowledge acquisition and
knowledge representation.

However, viewing the web as just an application of technologies to hand
misses the point. The web was successful because it scaled, and it scaled because
it challenged fundamental assumptions of the hypertext community. To bring
ontologies, or any other AI technology, to the web means making similar chal-
lenges. Apart from pointing out that the web is vast, so solutions have to scale,
there are other points:

– The web is here – we have a legacy so we will have a mixed environment
where some resources are ”semantic” and some are just ”web”. We must
have a clear and achievable migration path from non- semantic to semantic;

– The web is democratic – all are knowledge acquisition experts and all are
knowledge modellers. I believe that there will in fact be islands of quality
semantic webs for communities with high quality annotation, large and good
quality ontologies and sound inference, afloat in a sea of low grade and
volatile metadata, ontologies of variable quality and doubtful persistence (i.e.
they won’t always be there). The semantics associated with a resource will
migrate up and down this continuum. High end semantic web applications
will be few.

– The web grows from the bottom. Most people wrote their first HTML by
editing someone elses. Perhaps the semantic web will arise from fragments
of metadata and ontologies being copied in similar way. New concepts for
ontologies will be produced ”just in time” by annotators.

2 http://www.daml.org
3 http://www.w3.org/2001/sw/WebOnt/
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– The web is volatile and changeable – resources appear and disappear, re-
sources change. Ontologies change. What if a piece of metadata is grounded
on a term in an ontology that no longer exists? How do we deal with an
”Error 404” for terms?

– The web is dirty – there is no way to ensure consistency; provenance is
unknown; or whether information is trustworthy. However, tolerance of error
doesn’t necessarily mean one should be oblivious to it;

– The web is heterogeneous – no one solution or one technology will be adopted;
no one ontology will prevail; no one set of metadata will apply to a resource.
Agreements are difficult; mappings and translations will be commonplace.
This is not a single discipline issue: databases, hypermedia, library sciences,
distributed computing all have a role to play.

McBride recently said “the perception that the semantic web is concerned
with artificial intelligence is not helpful to its widespread adoption in the IT
industry” [1]. Why would he say that? Perhaps it is the perception that the AI
community promises much but doesn’t deliver. Perhaps it’s a belief that AI only
works small scale and where there is control, completeness and correctness. The
best way to dissuade doubters is to develop some practical applications and get
them out there.

In this talk I will introduce the Semantic Web concept and give a num-
ber of examples of how AI has already contributed to its development, primar-
ily through knowledge representation languages. These examples will include
DAML+OIL and applications that use DAML+OIL. I will explore the reasons
why the Semantic Web is a challenging environment for AI (and any other disci-
pline). I will suggest that this could be a killer app for AI but we must recognize
that the web is a vast and untidy place, and only a combination of approaches
will yield success.
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López, Natalia 71

Magro, Diego 81
Manzano Casas, Feliciano 173
Maynard, Diana 264
Mazure, Bertrand 51
Medina, Jesús 213
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