


Cellular Automata Modeling of Chemical Systems



Cellular Automata Modeling
of Chemical Systems
A textbook and laboratory manual

Lemont B. Kier, PhD
Professor of Medicinal Chemistry
Senior Fellow, CSBC
Virginia Commonwealth Universityr
USA

Paul G. Seybold, PhD
Professor of Chemistry
Wright State University
External Fellow, CSBC
Virginia Commonwealth Universityr
USA

Chao-Kun Cheng, PhD
Associate Professor of Computer Science
Fellow, CSBCFF
Virginia Commonwealth Universityr

A publication of the Center for the Study of Biological Complexity
Virginia Commonwealth Universityr
Richmond Virginia
USA



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-3657-4 (HB)
ISBN-13 978-1-4020-3657-6 (HB)
ISBN-10 1-4020-3690-6 (e-book)
ISBN-13 978-1-4020-3690-3 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved
©C 2005 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.



Table of Contents

Preface vii

1. Modeling Nature 1

2. Cellular Automata 9

3. Water as a System 39

4. Solution Systems 57

5. Dynamic Aqueous Systems 73

6. Water-Surface Effects 87

7. First-Order Chemical Kinetics 109

8. Second-Order Chemical Kinetics 125

9. Additional Applications in Chemical Kinetics 139

10. Use of the CASim Program 157

Index 169

v



Preface

Over the past two decades there has been a significant growth in the use of
computer-generated models to study dynamic phenomena in the nature. These
studies have ranged over many of the fields of human endeavor. For example,
insect behavior is a target for dynamic models; automobile traffic is another.
The sociologists have picked up on the possibilities afforded by computer mod-
els to study dynamic systems. In the physical and biological sciences, dynamic
computer models have been used to study a variety of phenomena. Some studies
in chemistry have appeared in the literature, but the field is so vast that only a
small area has been considered for computer modeling. In our view chemistry
is ripe for studies utilizing this paradigm. The study of chemistry is usually
focused on changes; we establish a structure, a form, but it is of real interest
when we consider how and to what it is transformed. Laboratory studies inww
schools introduce the student to simple processes that always work. More com-
plex transformations are difficult to set up as experiments; they often do not
“work” and so the didactic value of such experiences is marginal.

It is our purpose in this book to explore and reveal how some computer mod-
els might enrich the practical experiences, traditionally carried out in “wet” labs.
We pursue this goal using one of the modeling schemes that was developed a
half century ago: cellular automata. The record of cellular automata as a model-
ing paradigm is revealed in the literature. We have used cellular automata in our
research for a decade, modeling solution and kinetic phenomena of chemical
systems. We feel that this approach can bring new meaning to experimental
chemistry in the form of in silico experiments. This book is dedicated to that
objective.

The book is organized into three sections. In the first section we introduce
the student to some of the concepts that are fundamental to an understanding
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viii Preface

of chemical phenomena. These include a look at the subject of complexity.
Imbedded in these concepts are general chemical phenomena such as self-
organization, emergent properties, and local interactions. This section sets the
stage for a look at some of the modeling techniques used to explore complex
systems.

In the second section we present a brief overview of some currently used
dynamic modeling methods before introducing cellular automata. After a brief
history of this method we describe the ingredients that drive the dynamics
exhibited by cellular automata. These include the platform on which cellular
automata plays out its modeling, the state variables that define the ingredients,
and the rules of movement that develop the dynamics. Each step in this section
is accompanied by computer simulation programs carried on the CD in the
back of the book.

With this background the student is then equipped to witness what hasWW
been done in chemistry using cellular automata models. These studies are
accompanied by unfinished studies and challenges, “what if” ideas for the
student. The laboratory in a general chemistry course is an ideal place to use this
approach since it brings to the student views of many phenomena, previously
difficult to visualize. As an adjunct to experimental work in the lab, it opens
up a new level of understanding. It may even pique interest in pursuing new
theoretical investigations in chemistry.

At a near final stage of writing this book, we had a golden opportunity to test
the modeling exercises. Seven students in the Integrated Life Sciences graduate
program at the Virginia Commonwealth University were asked to read the text
and to perform many of the examples and studies. Their experiences were of
immense value to us in finalizing the manuscript. We want to acknowledge them
and thank them for their efforts. They are Xiangrong Kong, Julie Naumann,
Jean Nelson, Antoine Nicolas, Elizabeth Prom, Alexander Tulchinsky, and Carl
Zimmerman. We also want to thank Yingjin Cui for her help in creating some of
the figures. The authors thank Marco Tomassini for early, helpful reviews of the
manuscript. We thank Enguang Zhao for his help in preparing the Java version
of the CA program. Finally we acknowledge the scholarly climate and encour-
agement given to us at the Center for the Study of Biological Complexity at the
Virginia Commonwealth University.

Lemont B. Kier
Paul G. Seybold

Chao-Kun Cheng



Chapter 1

MODELING NATURE

The chess-board is the world; the pieces are the phenomena of the universe;
the rules of the game are what we call the laws of Nature. The player on the
other side is hidden from us. But we know that his play is always fair, just, and
patient. But also we know to our cost, that he never overlooks a mistake, or
makes the smallest allowance for ignorance.

—Thomas Huxley

It is the role, and the privilege, of a scientist to study Nature and to seek to
unlock her secrets. To unlock these secrets, a certain process is customarily
taken. Normally, the scientific process starts with observations; the scientist
observes some part of the natural world and attempts to find patterns in the
behaviors observed. These patterns, when they are uncovered out of what may
otherwise be a quite complicated set of events, are then called the “laws” of
behavior for the particular part of nature that has been scrutinized. But the
process does not stop there. Scientists are not content merely to observe nature
and catalog her patterns—they seek explanations for the patterns. The possible
explanations that scientists propose take the form of hypotheses and theories—
“models”—about how things work behind the scenes of outside appearance.
This book is about one such type of model and how it can be used to understand
the patterns of chemistry.

But what do we mean by a “model”? A model is a substitute, usually greatly
simplified, for what the early quantum physicists called the Ding an sich—the
“thing itself,” the real thing. The mathematician Jacob Bronowski spoke of
models as metaphors, likenesses that we snatch from the larger world of eye
and ear and touch. [1] A model should simulate or imitate the real system
and display in some revealing way its most important or interesting features;
where possible it should capture the essence of the system without being overlyww
cumbersome or complicated. Science writer George Johnson [2] has described
the nature of a successful simulation:
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2 Chapter 1

The mark of a good simulation is that it separates the essential from the
incidental, cutting through what is deemed irrelevant detail to get at the heart
of the problem.

Many models in the physical sciences take the form of mathematical rela-
tionships, equations connecting some property with other parameters of the
system. Some of these relationships are quite simple, e.g., Newton’s sec-
ond law of motion, which says that force = mass × acceleration: F = ma.
Newton’s gravitational law for the attractive force F between two masses m1

and m2 also takes a rather simple form

F = Gm1m2/r2

whereww r2 is the square of the distance separating the masses and G is a constant
that rationalizes the units. But many mathematical relationships are much more
complicated and rely on the techniques of calculus to describe the rates of
change of the quantities involved. An example is the basic equation of quantum
theory, the Schrödinger equation, which takes the more formidable form (it is¨
not necessary here to dwell on the meanings of the symbols):

−h–hh2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ψ + V ψ = Eψ

In chemical kinetics, one finds linked sets of differential equations expressing
the rates of change of the interacting species. Overall, mathematical models
have been exceedingly successful in depicting the broad outlines of an enor-
mously diverse variety of phenomena in nature. Some scientists have even
commented in surprise at how well mathematics works in describing nature. So
successful have these mathematical models been that their use has spread from
the hard sciences to areas as diverse as economics and the analysis of athletic
performance [3].

In other cases, models take a more pictorial form. In the early atomic models,
an atom was first pictured by J. J. Thomson as a “plum pudding,” with negative
electrons (the “plums”) embedded in a spread-out positive charge (the pudding),
and then later by Ernest Rutherford and Niels Bohr as a planetary system with a
tiny positive core surrounded by circling electrons, a model called the “nuclear
atom.” Today, within quantum theory, the nuclear atom picture has been further
transformed into one with a positive nucleus surrounded by a cloud of electron
probabilities. In biology, the double helix model of the structure of the genetic
material DNA proposed by James Watson and Francis Crick in 1953 led to
an explosion of studies in the field of molecular genetics. Charles Darwin’s
model of evolution by means of natural selection pictures species composed
of a collection of individuals with a variety of different traits interacting with
their environments. Individuals with some traits are better suited to survive and
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reproduce, thereby passing on these traits to their offspring. Over time new
traits are introduced through mutations, environments gradually (or sometimes
rapidly) change, and new forms develop from the old ones. The modern model
of the human brain envisions regions devoted to different functions such as
sight, motor movements, and higher thought processes. In geology, the tectonic
plate model of the Earth pictures expansive continental plates moving gradually
over the planet’s surface generating earthquakes as they meet and slide over one
another. And in psychology, the Freudian approach pictures human behavior as
resulting from the actions of invisible components of the mind termed the id,
the ego, and the superego.

The key feature of successful models is that they produce results consistent
with the experimental observations. Successful models capture the essential
features of the systems of interest, and they customarily go beyond this simple
reproduction to predict new features of the systems that may have previously
escaped notice. In this latter case, the predictions provide an important means
for testing the validity of the models.

At this point, it is helpful to dissect models into their most significant parts
so that we can start from a common basis.

1.1. The system

Studies in chemistry or any realm of science commonly consist of a series
of directed examinations of parts of nature’s realm called systems. A system is
an identifiable fragment of the world that is recognizable and that has attributes
that one can identify in terms of form and/or function. We can give examples at
any level of size and complexity and in essentially any context. Indeed, a dog is
a system at a pet show; whereas the human heart is a system to the cardiologist;
a tumor cell is a system to the cancer specialist; a star or planet or galaxy is a
system to an astronomer; a molecule or a collection of molecules is a system to
a chemist; and an atom or group of atoms is a system to a physicist. A system
is, then, whatever we focus our attention upon for study and examination.

1.2. States of the system

A system is composed of parts that can be recognized and identified. As
time goes by, a system under study may acquire different attributes as a result of
changes among its parts, and over time its appearance or function may change.
Each of the different stages through which the system passes in its evolution is
called a state of the system. A dog grows old over time, passing through stages
recognized in general terms as puppy, dog, old dog, and, finally, dead dog. A
heart may change its pattern of contractions, going from normal to tachycardia
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to ventricular fibrillation, each of which we categorize as a different state of
functioning. A solution of ethyl acetate in water may slowly decompose to
mixtures of ethyl acetate, acetic acid, and ethanol, through a sequence of states
characterized by their different compositions. Water may start as a solid (ice),
become a cool liquid, then a warmer liquid, and finally appear as a vapor at
higher temperature, passing through these different stages as it is melted, heated,
and vaporized. We refer to each set of conditions for the present purposes as a
“state.” It is the various states of the system that we focus attention upon when
we study any system.

1.3. Observables

Our studies require us to analyze and describe the changes that occur in
the systems we are interested in that evolve with time. To accomplish this
analysis properly, we need to record specific features that characterize what
is occurring. The features assigned for this purpose are termed observables.
For example, we distinguish the puppy from the old dog by the changes in
its physical appearance and its behavior. The changes in a heart’s rhythm are
recorded on special charts monitoring electrical signals. The changes occurring
in a solution of ethyl acetate in water can be characterized by changes in the
solution’s acidity, by spectroscopic readings, or by detection of the odor of acetic
acid. To be as precise as possible in a scientific investigation, it is necessary
to assign numerical values to the characteristics that distinguish one state of
a system from another. The state of a system is studied through detection and
recording of its observables.

1.4. Interactions

The parts of a system naturally interact with one another, and the fascinating
and often complex evolutions of natural systems depend crucially on the nature
of these interactions. The interactions supply the driving forces for the changes
that we observe in the systems. In addition, we can change the behavior of
a system by introducing new elements or ingredients. Intrusions of this kind
produce new interactions, which in turn alter the system. By carefully choosing
the added factors and interactions, we can develop new patterns of observables
that may be revealing. Interaction with your dog might include exercising to
increase his running stamina, which in turn will lead to a new, improved set of
health-related (state) indicators. Electrical stimulation of a fibrillating heart can
introduce interactions that lead to the conversion of the heart from the fibrillating
state to a normal, healthy state of performance. Heating the ethyl acetate solution
will eventually complete the hydrolysis reaction and distill away the resulting
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ethanol leaving a solution of acetic acid. The interactions introduced and the
accompanying changes in the systems’ observables produce information about
the nature of the systems and their behaviors under different conditions. With
enough observables, we may be able to piece together a reasonable description,
a model, for how the system operates.

1.5. Back to models

From a carefully selected list of experiments with a system, we can evoke
certain conclusions. The mosaic of information leads us to piece together a
description of the system, what is going on inside it, the relationships among
its states, and how these states change under different circumstances. In the
case of our dog, the exercise tests may lead us to theorize that the dog is in
good or poor health. With the heart, the electrical impulses that we record can
reveal a pattern of changes (observables) that we theorize belong to a healthy
(or diseased) heart. By subjecting the solution of hydrolyzing chemicals to
fractional distillation and chemical analysis, we may theorize that we originally
had a system of water and ethyl acetate.

We can arrive at our theories in two main ways. In the first, as illustrated
earlier, we subject a system to experimental perturbations, tests, and intrusions,
thereby leading to patterns of observables from which we may concoct a theory
of the system’s structure and function. An alternative approach, made possible
by the dramatic advances that have occurred in the area of computer hardware
in recent times, is to construct a computer model of the system and then to
carry out simulations of its behavior under different conditions. The computer
“experiments” can lead to observables that may be interpreted as though they
were derived from interactions.

1.6. Simulations

It is important to recognize the different concepts conveyed by the terms
“model” and “simulation,” even though these terms are sometimes used inter-
changeably. As noted above, a model is a general construct in which the parts
of a system and the interactions between these parts are identified. The model
is necessarily simpler than the original system, although it may itself take on
a rather complicated form. It consists of ingredients and proposals for their
interactions.

Simulations are active imitations of real things, and there are generally two
different types of simulations with different aims. In one approach, a simulation
is merely designed to match a certain behavior, often in a very limited context.
Thus, a mechanical noisemaker may simulate a desired sound and does so
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through a very different mechanism than the real sound maker. Such a simu-
lation reveals little or nothing about the features of the original system, and is
not intended to do so. Only the outcome, to some extent, matches reality. A
hologram may look like a real object, but it is constructed from interfering light
waves.

A second type of simulation is more ambitious. It attempts to mimic at least
some of the key features of the system under study, with the intent of gaining
insight into how the system operates. In the context of our modeling exercise,
a simulation of this sort means letting our model “run.” It refers to the act of
letting the parts of our model interact and seeing what happens. The results are
sometimes very surprising and informative.

1.7. Models in chemistry

Chemistry, like other sciences, progresses through the use of models. Mod-
els are the means by which we attempt to understand nature. In this book, we
are primarily concerned with models of complex systems, those systems whose
behaviors result from the many interactions of a large number of ingredients.
In this context, two powerful approaches have been developed in recent years
for chemical investigations: molecular dynamics and Monte Carlo calculations
[4–7]. Both techniques have been made possible by the development of ex-
tremely powerful, modern, high-speed computers.

Both of the above approaches rely in most cases on classical ideas that pic-
ture the atoms and molecules in the system interacting via ordinary electrical
and steric forces. These interactions between the species are expressed in terms
of “force fields,” i.e., sets of mathematical equations that describe the attrac-
tions and repulsions between the atomic charges, the forces needed to stretch
or compress the chemical bonds, repulsions between the atoms due to their
excluded volumes, etc. A variety of different force fields have been developed
by different workers to represent the forces present in chemical systems, and
although these differ in their details, they generally tend to include the same
aspects of the molecular interactions. Some are directed more specifically at the
forces important for, say, protein structure, while others focus more on features
important in liquids. With time more and more sophisticated force fields are
continually being introduced to include additional aspects of the interatomic
interactions, e.g., polarizations of the atomic charge clouds and more subtle
effects associated with quantum chemical effects. Naturally, inclusion of these
additional features requires greater computational effort, so that a compromise
between sophistication and practicality is required.

The molecular dynamics approach has been called a “brute-force solution
of Newton’s equations of motion.” [8] One normally starts a simulation using
some assumed configuration of the system components, for example, an X-ray
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diffraction structure obtained for a protein in crystalline form or some arrange-
ment of liquid molecules enclosed in a box. In the protein case, one might next
introduce solvent molecules to surround the protein. One then allows the sys-
tem, protein-in-solvent or liquid sample, to evolve in time as governed by the
interactions of the force field. As this happens, one observes different configu-
rations of the species that appear and disappear. “Periodic” boundary conditions
are usually applied such that molecules leaving the box on the right side appear
on the left; those leaving at the top appear at the bottom, and so forth. The
system’s evolution occurs via time steps (iterations) that are normally taken to
be very short, e.g., 0.5–2.0 fs (10−15 s), so that Newton’s second law of motion

F = ma = m(dv/dt)

can be assumed to hold a nearly linear form. The evolution is followed over
a very great number of time steps, often more than a million, and averages
for the features of interest of the system are determined over this time frame.
Because the calculation of the large number of interactions present in such a
system is very computationally demanding, the simulations take far longer than
the actual time scale of the molecular events. Indeed, at present most research
level simulations of this type cover at best only a few tens of nanoseconds
of “real time.” (Note that 106 steps of 1 fs duration equal one nanosecond,
10−9 s.) Whereas such a timeframe is sufficient to examine many phenomena of
chemical and biochemical interest; other phenomena, which occur over longer
time scales, are not as conveniently studied using this approach.

The Monte Carlo method for molecular simulations takes a rather different
approach from that of the molecular dynamics method [9]. Rather than watching
the system evolve under the influence of the force field, as done in molecular
dynamics, a very large number of possible configurations of the system are
sampled by moving the ingredients by random amounts in each step. New con-
figurations are evaluated according to their energies, so that those lowering the
system’s energy are accepted, whereas those raising the energy are conditionally
“weighted” or proportionately accepted, according to their potential energies.
The weighting is normally taken to have the form of the Boltzmann distribution,
i.e., to be proportional to e−�V/kT , wherew �V is the potential energy change,
k is Boltzmann’s constant, and T is the absolute temperature. From statistical
analysis of a large, weighted sample (“ensemble”) of such configurations, one
can ascertain many of the important thermodynamic and structural features of
the system. A typical sample size employed for this purpose might encompass
between one and ten million configurations.

Both the molecular dynamics and the Monte Carlo approaches have great
strengths and often lead to quite similar results for the properties of the systems
investigated [10]. However, these methods depend on rather elaborate models
for the molecular interactions. As a result, as noted above, both methods are
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very computationally demanding and research level calculations are normally
run on supercomputers, clusters, or other large systems. In Chapter 2, we shall
introduce an alternative approach that greatly simplifies the view of the molec-
ular system, and that, in turn, significantly reduces the computational demand,
so that common personal computers suffice for calculations and elongated time
frames can be investigated. The elaborate force fields are replaced by simple,
heuristic rules. This simplified approach employs cellular automata.

I have avoided words such as “true and false”, “correct and incorrect”, and
“valid and invalid”. Such descriptives have no place in a discussion of chemical
models which are, above all, fictitious. Models—one must never forget—are to
be used, not believed.

—Fredric Menger [11]
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Chapter 2

CELLULAR AUTOMATA

To discover and analyze the mathematical basis for the generation of com-
plexity, one must identify simple mathematical systems that capture the essence
of the process. Cellular automata are a candidate class of such systems. . . .
Cellular automata promise to provide mathematical models for a wide vari-
ety of complex phenomena, from turbulence in fluids to patterns in biological
growth.

–Stephen Wolfram [1]

In the first chapter several traditional types of physical models were discussed.
These models rely on the physical concepts of energies and forces to guide the
actions of molecules or other species, and are customarily expressed mathe-
matically in terms of coupled sets of ordinary or partial differential equations.
Most traditional models are deterministic in nature—that is, the results of sim-
ulations based on these models are completely determined by the force fields
employed and the initial conditions of the simulations. In this chapter a very
different approach is introduced, one in which the behaviors of the species under
investigation are governed not by forces and energies, but by rules. The rules,
as we shall see, can be either deterministic or probabilistic, the latter leading to
important new insights and possibilities. This new approach relies on the use
of cellular automata.

Cellular automata (CA) were first proposed by the mathematical physicist
John von Neumann and the mathematician Stanislaw Ulam more than a half
century ago [2–4] and similar ideas were suggested at about the same time, in
the 1940s, by the German engineer Konrad Zuse [5–7]. Von Neumann’s interest
was in the construction of “self-reproducing automata.” [8] His original idea was
to construct a series of mechanical devices or “automata” that would gather and
assemble the parts necessary to reproduce themselves. A suggestion by Ulam
led him to consider more abstract systems consisting of grids with moving
ingredients, operating under sets of rules. The first such system proposed by von

9



10 Chapter 2

Neumann consisted of a two-dimensional grid of square cells, each having a set
of possible states, along with a set of rules. The system he developed eventually
employed as many as 29 different possible states for the cells, and was, at the
least, clumsy to work with. With the development of modern digital computers,
however, it became increasingly clear to a small number of scientists that these
very abstract ideas could in fact be usefully applied to the examination of real
physical and biological systems, with interesting and informative results [9,10].

A number of research groups have subsequently developed different real-
izations of the CA paradigm for the study and simulation of a broad range of
physical, biological, chemical, and even sociological, phenomena. These mod-
els have contributed important new insights regarding the deeper, often hidden,
factors underlying a host of complex phenomena. These diverse CA studiesff
have been especially important in treating the often-surprising behaviors of
systems where large numbers of complicated interactions between the system
ingredients serve to hide the general patterns involved and, in addition, render
the conventional, differential-equation-based methods difficult to implement or
ineffective, i.e., complex systems. In this book we shall describe the details of
particular CA models developed by our own research groups for the study and
simulation of complex physical, chemical, and biochemical systems.

The present chapter will focus on the practical, “nuts and bolts” aspects of
this particular CA approach to modeling. In later chapters we will describe a
variety of applications of these CA models to chemical systems, emphasizing
applications involving solution phenomena, phase transitions, and chemical
kinetics. In order to prepare readers for the use of CA models in teaching
and research, we have attempted to present a user-friendly description. This
description is accompanied by examples and “hands-on” calculations, available
on the compact disk that comes with this book. The reader is encouraged to use
this means to assimilate the basic aspects of the CA approach described in this
chapter. More details on the operation of the CA programs, when needed, can
be found in Chapter 10 of this book.

2.1. What are cellular automata?

But just what are cellular automata? Mathematician Stephen Wolfram has
defined cellular automata as follows [1]:

Cellular automata are simple mathematical idealizations of natural systems.
They consist of a lattice of discrete identical sites, each site taking on a finite
set of, say, integer values. The values of the sites evolve in discrete time steps
according to deterministic rules that specify the value of each site in terms of
the values of neighboring sites. Cellular automata may thus be considered as
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discrete idealizations of the partial differential equations often used to describe
natural systems.

Wolfram has elaborated on this description elsewhere [11,12]. As we shall see,WW
the restriction to deterministic rules is unnecessary, and we shall in fact make
extensive use of probabilistic rules in our studies of real physical and chemical
systems.

Cellular automata, then, are models, in the same sense that the Monte Carlo
and molecular dynamics approaches are models, which can be employed for the
purpose of simulating real systems. We shall use the term cellular automaton
(singular) to refer to a model consisting of the following components:∗

� A grid composed of cells.
� A set of ingredients.
� A set of local rules governing the behaviors of the ingredients.
� Specified initial conditions.

Once the above components of the model are defined, a simulation can be carried
out. In the simulation the system evolves via a series of discrete time-steps, or
iterations, in which the model rules are applied to all the ingredients of the
system, and the configuration of the system is accordingly updated.

A striking feature of the cellular automata (CA) models is that they treat
not only the ingredients, or agents, of the model as discrete entities, as do
the traditional models of physics and chemistry, but now time (iterations) and
space (the cells) are also regarded as discrete, in stark contrast to the continuous
forms for these parameters assumed in the traditional, equation-based models.
In practice, as we shall see, this distinction makes little or no difference, for the
traditional continuous results appear, quite naturally, as limiting cases of the
discrete CA analyses. Nonetheless, this quantization of time and space does
raise some interesting theoretical and philosophical questions, which we shall,
however, ignore at this time.†

A new,ww important feature is sometimes observed in studies of the evolutions
of these computational systems: the development of unanticipated patterns of

∗ Historically, there has been some looseness of terminology in this field. A few authors have
used the term “cellular automaton” to refer to a cell. We shall not use the term in this sense.

† Some recent theories of modern physics, such as string theory and quantum loop gravity
theory, raise the interesting possibility that at some ultimate level—perhaps at very short times
approaching the so-called Planck time, about 10−43 s, and at distances approaching the Planck
distance, about 10−35 m—the discrete natures of time and space might reveal themselves. Time,
for example, might proceed in jumps at very short times, in the same way that quantum theory
shows that energy comes in jumps called quanta, when events at the submicroscopic level are
examined. Physicists refer to such hypothetical time units as “chronons” in analogy to the “pho-
tons” of light energy. At the present time, of course, such extremely short times and distances
lie well beyond experimental detection.
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ordered dynamical behavior. These patterns have come to be called emergent
properties. As Stuart Kauffman has expressed it [13]

Studies of large, randomly assembled cellular automata . . . have now
demonstrated that such systems can spontaneously crystallize enormously or-
dered dynamical behavior. This crystallization hints that hitherto unexpected
principles of order may be found [and] that the order may have significant
explanatory import in [biology] and . . . physics.

Experience has shown that this enticing assessment is, in fact, too cautious:
cellular automata carry great potential for revealing “hitherto unexpected prin-
ciples” not only in biology and physics but also in chemistry and a host of other
fields as well.

As noted earlier, a variety of different models can be developed within the
general CA framework pictured above. In this book we describe a particular
realization of this concept that the present authors have found especially well
suited for the examination of physicochemical and biochemical systems. We
shall now examine the components of this CA model in more detail.

2.2. The grid and the cells

2.2.1. The grid

The grid in a CA model may contain a single cell, or more commonly, a
larger collection, with possibly as many as 100,000 or more cells. In principle,
the grid itself might be one-, two-, or three-dimensional in form, although most
studies have used two-dimensional grids. These two-dimensional grids will be
the principal focus in this book. A moving ingredient may encounter an edge or
boundary during its movements. Three general types of two-dimensional grids
will be considered relating to the boundaries: (1) a box, (2) a cylinder, and
(3) a torus. In the box grid, moving ingredients encounter boundaries on all
four sides; in the cylinder they encounter only top and bottom boundaries; and
in the torus no boundaries are present to restrict the ingredient movements. An
illustration of a 7 × 7 = 49 cell grid of square cells occupied by two types of
ingredients, A and B, is shown in Figure 2.1.

The nature of the grid type employed will normally depend on the boundary
characteristics of the system of interest. For some systems, e.g., when the
ingredients themselves are either stationary or confined, a box grid is perfectly
suitable. In other cases, one may need only a constraining top and bottom (or
right and left sides), and a cylindrical grid will be most appropriate. An example
here would be the condensation of a gas to a liquid under the influence of gravity
(see Chapter 9). For this, a bottom is required to restrain the liquid below and a
top holds in the gas, but the ingredients remain free to move unobstructed to the
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Figure 2.1.FF A two-dimensional cellular automata grid. Shown are two sets of occupied cells of
different states, A and B. The unoccupied cells are blank

right or left, such that those moving off the edge to the right will appear at the
left, and those moving off the grid to the left will appear on the right. In all these
cases the ingredients can only move to unoccupied cells. The torus effectively
simulates a small segment of a larger, unrestricted system by allowing cells
also to move off the top edge and appear at the bottom, or move off the bottom
edge and appear at the top. These features are shown in Figures 2.2 and 2.3.

In most cases, and in all cases found in this book, the cells of the boundaries
are themselves inert, and have no interactions with the grid ingredients other
than to constrain their movements in certain directions. However, more gener-
ally the boundary cells can be constructed to have active properties just like
any other ingredient, following rules (see below) that permit joining, breaking,

Figure 2.2.FF A torus grid eliminates boundaries
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Figure 2.3.FF Movement of cell ingredients at the boundaries of a grid on the surface of a torus.
One ingredient A might move off the grid to the right and reappear at the left edge of the grid.
Another ingredient A might move off the bottom of the grid and reappear at the top of the grid

and reacting with the grid ingredients. Thus in principle, the boundaries can be
either inert or active in some way.

2.2.2. The cells

The cells themselves can take a variety of shapes; they can be triangles,
squares, hexagons, or other shapes on the two-dimensional grid, with square
cells being most common. Each cell in the grid can normally exist in a number
of distinct “states” which define the occupancy of the cell. The cell can be empty
or contain a specific ingredient, where the ingredient, if present, might represent
a particle, a type of molecule or isomer, a particular molecular electronic state,
an organism, an automobile, or some other entity pertinent to the study in
question.

The choice of the cell shape is based on the objective of the study. In the case
of studies of water-related phenomena, for example, square cells are especially
advantageous, since water molecules, H2Os, are quadravalent with respect to
their participation in intermolecular hydrogen bonding. An individual water
molecule can employ two hydrogen atoms and two lone pairs of electrons to
form hydrogen bonds with its neighbors. This leads to the tetrahedral configu-
ration found in ice, a structure that is retained to some extent in the liquid state.
The four faces of a square cell thus correspond nicely to the four hydrogen-
bonding opportunities of a water molecule.

The interactions of an ingredient with other ingredients take place at the
cell edges. Originally, cellular automata models routinely assumed that all of
the edges of a given ingredient should obey the same rules. More recently, the
idea of a variegated cell, in which each edge can have its own independent rules
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(a) (b)

(c)

Figure 2.4.FF Examples of variegated cells: (a) Two different types of edges with different rules,
(b) Three different types of edges with different rules, and (c) Four different types of edges with
different rules

for interaction with other ingredients, has been introduced and shown to have
considerable value in modeling [14]. Examples of some types of variegated
cells are shown in Figure 2.4.

2.2.3. Cell neighborhoods

As we shall soon see, the movements and other actions of an ingredient
on the grid are governed by rules, and these rules depend only on the na-
ture of the cells in close proximity to the ingredient. This proximate envi-
ronment of a cell is called its neighborhood. The most common neighbor-
hood used in two-dimensional cellular automata studies is called the von
Neumann neighborhood, after the original pioneer of the CA method. This
neighborhood for a cell, A, refers to the four, B, cells adjoining its four faces
(Figure 2.5a). Another common neighborhood is the Moore neighborhood, pic-
tured in Figure 2.5b, referring to the eight B cells completely surrounding cell
A, including those cells on the diagonals. Another useful neighborhood is the
extended von Neumann neighborhood, shown in Figure 2.5c, where the four
C cells lying just beyond the four B cells of the von Neumann neighborhood are
included.
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Figure 2.5.FF Cell neighborhoods: (a) the von Neumann neighborhood, (b) the Moore
neighborhood, and (c) the extended von Neumann neighborhood of cell A

2.3. The rules

2.3.1. Types of rules

Several different types of rules govern the behaviors of the ingredients on
the grid, and thereby the subsequent evolutions of the CA systems. Movement
rules govern the movements of ingredients about the grid. These rules take
several forms. The breaking probability, PBPP (AB), determines the degree to
which two adjacent ingredients A and B tend to stay bonded, or “stick,” toww
each other. The joining parameter, J (AB), establishes the propensity of an
A ingredient to move toward or away from a B ingredient, when these two
ingredients are separated by an empty cell. The free-moving probability PmPP (A)



2. Cellular automata 17

of an ingredient A defines the ingredient’s tendency to move more rapidly
or more slowly on the grid. A gravitational parameter G, if present, denotes
a greater-than-random tendency for an ingredient to move downward on the
grid, thereby distinguishing motion in this direction from motion in the other
directions on the grid. Transition rules govern the likelihood that during an
iteration of the system, an ingredient will transform to some other species. The
simple first-order transition probability PTPP (AB) defines the probability that
an ingredient of species A will change to species B during an iteration. The
reaction probability PRPP (AB) defines the probability that ingredients A and B
will transform to species C and D, respectively, when they “encounter” each
other (come into contact) during their movements about the grid. Occasionally
other types of rules may be added. The key features of all these rules are that
they are local, involving only an ingredient itself and possibly those ingredients
in its immediate neighborhood, and that they are uniformly applied throughout
the CA simulation.

2.3.2. Transition rules

Transitions occur constantly in nature; molecules change from one tau-TT
tomeric form to another, radioactive nuclei decay to form other nuclei, acids
dissociate, proteins alter their shapes, molecules undergo transitions between
electronic states, chemicals react to form new species, and so forth. Transition
rules allow the simulation of these changes.

As indicated, transition rules govern the probability that during each iteration
of the simulation, an ingredient will transform to a different type of ingredient.
If PTPP (AB) = 1.0 the transition A → B is certain to occur; if PTPP (AB) = 0.0,
it will never occur. But if, for example, PTPP (AB) = 0.5, then during each iter-
ation, there will be a 50% chance that the transition A → B will occur. The
first two cases can be considered deterministic, since they do not allow for
different outcomes. The third case is stochastic, however, since it allows dif-
ferent outcomes, the ingredient might remain unchanged or it might transform
to a different state.‡ The transition probabilities may, in some cases, depend
on the conditions prevailing in neighboring cells. For example, the transfor-
mation probability PTPP (AB) might depend on the occupancies of neighboring
cells. In reaction simulations two ingredients A and B that come in contact
on the grid will have a probability PRPP (AB) of “reacting,” or transforming, to

‡ The probabilities are enforced using a random-number generator in the CA program. Suppose
that the random-number generator generates numbers between 1 and 1000. For a 20% probability
of movement, one might assign a choice of numbers between 1 and 200 inclusively as a “move”
decision, while a choice in the remaining number set, 201–1000, is a “no-move” decision. Each
ingredient is then assigned a random number, and correspondingly behaves according to that
value.
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other species, say, C and D, during such an “encounter.” In this case the re-
action probabilityPRPP (AB) defines the probability that the reaction A + B →
C + D will occur when A and B encounter one another in the course of their
motions. If PRPP (AB) = 1, the reaction will take place on every encounter, but if
PRPP (AB) = 0.1, for example, only 10% of such encounters will lead to reaction.

2.3.3. Movement rules

Much of the dynamic character of cellular automata models is developed
through the movements of the ingredients about the grid. During each time-step
interval, or iteration, in the CA simulation, an ingredient on the grid has the
possibility of moving vertically or horizontally to an adjacent, unoccupied cell.
In the absence of further restrictions, a free ingredient would therefore, over
time, perform a random walk about the grid. Normally, however, there are other
ingredients on the grid, and the presence of these ingredients will influence the
motion of the first ingredient. During each iteration the movement of every in-
gredient on the grid is computed based on rules (described below) that involve
the status of its neighboring cells, i.e., whether these cells are empty or occupied,
and, if occupied, by what types of ingredients. Deterministic cellular automata
use a fixed set of rules, the values of which are immutable and uniformly applied
to the ingredients. In probabilistic, or stochastic, cellular automata, the move-
ments of the ingredient are based on probabilistic rules, embodied as probabil-
ities of moving or not moving during an iteration. We shall now consider the
several types of movement rules individually.

2.3.4. The free-moving probability PM

The free-moving probability PMPP (A) defines the probability that an ingre-
dient A in a cell, i , will move to one of the four adjacent cells, j , in its von
Neumann neighborhood, if that space is unoccupied. An example would be the
ingredient A in cell, i , in Figure 2.6a, which might move to any of the unoc-
cupied neighboring cells, j . TwoTT ingredients might move simultaneously as in
Figure 2.6a or in sequence as in Figure 2.6b. This will be discussed later. As a
matter of course this probability is usually set at PMPP = 1.0, which means that a
movement in one of the allowed directions always happens (a rule). However, in
some cases PMPP can be set to lower values if certain species in the CA simulation
are to be regarded as moving more slowly than others.

2.3.5. The joining parameter J

The first of the two trajectory or interaction rules is the joining trajectory
parameter, J (AB), which defines the propensity of movement of an ingredient
A toward or away from a second ingredient B, when the two are separated by
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(a)

(b)

Figure 2.6.FF Possible movement of cell i occupant A or B to unoccupied cells j
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Figure 2.7.FF Effect of the joining parameter J on the movement of ingredient A in different
directions

a vacant cell (Figure 2.7). It thus involves the extended von Neumann neigh-
borhood of ingredient A, and has the effect of adding a short-range attraction
or repulsion component to the interaction between ingredients A and B. J is a
nonnegative real number. When J = 1, species A has the same probability of
movement toward or away from B, as when the B cell is not present. When J
is greater than 1, ingredient A has a greater probability of movement toward a
B ingredient than when ingredient B is absent, simulating, in effect, a degree of
short-range attraction. When J lies between 0 and 1, ingredient A has a lower
probability of such movement, and this can be considered as a degree of mutual
repulsion. When J = 0, ingredient A cannot move toward B at all.

2.3.6. The breaking probability PBPP

The second trajectory or interaction rule is the breaking probability, PBPP .
This parameter, in effect, assigns a “stickiness” to the interaction between two
ingredients that are in contact, i.e., adjacent to each other on the grid. The
breaking rule assigns the probability PBPP (AB) that an ingredient A, adjacent to
an ingredient B, will break apart from B, as shown in Figure 2.8a. The value
for PBPP necessarily lies within the range 0–1. Low values of PBPP imply a strong
cohesion between A and B, whereas high values indicate little cohesion. Thus
if PBPP = 0, the ingredients will not separate from each other, and if PBPP = 1, they
have no tendency to adhere to one another. If PBPP lies between these values, there
is an intermediate tendency to break apart. When molecule A is bordered by
two ingredients, B and B, the simultaneous probability of A breaking away is
given by the product PBPP (AB) × PBPP (AB), as shown in Figure 2.8b. If ingredient
A has three adjacent ingredients (B, B, and B), the simultaneous breaking
probability of ingredient A, the probability that it will move to the remaining
adjacent empty cell, is PBPP (AB) ×PBPP (AB) ×PBPP (AB), shown in Figure 2.8c. Of
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(a) (b)

(c) (d)

Figure 2.8.FF The possible directions of ingredient A breaking away from ingredient B: (a) A is
bound to one B cell, (b) A is bound to two B cells, (c) A is bound to three B cells, and (d) A is
bound to four B cells

course, if ingredient A is surrounded by four ingredients (Figure 2.8d), it cannot
move.

2.3.7. Relative gravity rules

The simulation of a “gravity” effect can be introduced into a cellular automa-
ton model in two different ways. Separation phenomena like the demixing of
immiscible liquids can be simulated using a relative gravity rule [15]. For this,
a boundary condition is first imposed at the upper and lower edges of the grid to
apply vertical limits on the motions of the ingredients (a cylindrical grid). The
differential effect of gravity on different ingredients A and B is simulated by
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Figure 2.9.FF Illustration of relative gravity rules influencing cells A and B

introducing reciprocal rules governing their tendencies to exchange positions
when they come together. When one ingredient moves to a position on top ofww
the other, the rules are applied. The first rule, GR(AB), applies when A is above
B and is the probability that ingredient A will exchange places with ingredi-
ent B, so that A will appear below, and B above. The complementary rule is
GR(BA), which expresses the probability that molecule B, originally above A,
will exchange positions with A and end up below. These rules are illustrated in
Figure 2.9.

When GR(AB) is greater than GR(BA), there will be an overall tendency for
the A ingredients to congregate below the B ingredients, and when GR(AB) is
less than GR(BA), the A ingredients will tend toward the upper part of the grid.
In the first case the As can be thought of as forming a more dense liquid than
the Bs, and in the latter case, a less dense liquid. The GR rules are probabilities
that the events will occur.

2.3.8. The absolute gravity rule

In other simulations an absolute gravity rule, denoted by GA(A), is more
appropriate [16]. This rule favors motion in a preferred direction. For example,
one might wish to simulate the motions of different gas molecules, some heavier
than others, in a gravitational field. The value GA(A) = 0 is the neutral value, so
that the movement probabilities are equal in all four directions. Values greater
than GA(A) = 0 increase the likelihood of downward movements. Thus a value
of GA(A) = 0.2 would impose a slight tendency on the ingredients of species
A to move downward on the grid, and GA(A) = 0.5 would impose a much
stronger tendency.
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Figure 2.10.FF Illustration of cell rotation rules

2.3.9. Cell rotation rules

In those cases where variegated ingredients are used (for examples, see
Figure 2.4), it is necessary to ensure that there exists a balanced representation
of the possible rotational states of these ingredients on the grid. To accomplish
this, the variegated cells are rotated randomly, by −90◦, +90◦, or 180◦, during
every iteration of the run. Only free cells rotate; when a variegated ingredient
has a neighboring ingredient in its von Neumann neighborhood, it does not
rotate. This rotation process is illustrated for three possible state changes in an
iteration in Figure 2.10.

2.3.10. Synchronous or asynchronous application of the rules

A complete time-step (iteration) in a CA model involves the application of
all the applicable model rules to all the ingredients on the grid. During an itera-
tion the movement rules can be applied either simultaneously (synchronously),
Figure 2.6a, or sequentially (asynchronously), Figure 2.6b. Alert readers will
recognize at this point that synchronous application of the governing move-
ment rules for a CA simulation, as outlined above, can lead in some instances
to conflicts, e.g., the assigning of two ingredients to move to the same empty
cell, just as a similar conflict arises when two cars simultaneously attempt to
move into the same vacant parking space. As a result, synchronous rule ap-
plication is not practical for cellular automata modeling within the framework
described here. In asynchronous application of the rules, in contrast, ingre-
dients are selected in random order for application of the movement rules,
and such potential conflicts are avoided. Only asynchronous application of the
rules to the different ingredients will be used in the applications covered in this
book.
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The further question of the order to use in applying the different movement
rules for a single ingredient does not arise in the present case, since the PmPP ,
PBPP (AB), and J (AB) are joined in a single probabilistic equation when deter-
mining whether or not a single ingredient will move. The key factor is that any
order assigned should be followed consistently and should be reasonable.

2.4. Running a simulation

Having defined both the grid type and size and the governing rules for a
simulation, the latter by assigning specific values to the parameters described
above, one next needs to define the remaining conditions of the simulation.
These include (1) the natures and numbers of the starting ingredients, (2) the
configuration of the initial state of the system, (3) how many runs of the sim-
ulation are to be carried out, and (4) the length of the runs, i.e., how many
iterations they should include.

2.4.1. The initial ingredients

Before beginning, it is necessary to define the starting condition of the
system. Here one first declares what types of ingredients should be present at
the start of the run and how many of each type should be present. For example,
one might wish to work with four species, but start with just two of them on
the grid, the others being generated as the system evolves. One might then
designate the initial numbers as, say, 250 A ingredients and 500 B ingredients,
with zeros for the remaining species C and D. The ingredients are customarily
distinguished on the computer screen by different colors. In the present example,
the As might be blue, the Bs green, and the Cs and Ds, which are not initially
present, red and brown, respectively.

In order for ingredients to move on the grid, there must be empty cells
available to accommodate them. For studies of aqueous systems, it has been
found that leaving about 31% of the cells on the grid empty provides a reasonable
description of the actual condition for motion of the ingredients representing
water molecules [17,18]. Therefore in a water study using a 50 × 50 grid with
2500 cells, there should be 1725 cells occupied by “water” ingredients and
775 empty cells.

2.4.2. The initial conditions

The default condition for placement of the starting ingredients is to position
them randomly on the grid. For some studies, however, a different distribution
might be needed. For instance, when one wants to examine the dissolving of
a block of ingredients into a surrounding liquid, one might wish to place an
array of the ingredients in the center of the grid and then surround them with
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the ingredients of the liquid. In another case one might wish to examine the
diffusion of a gas into an open area or the passage of ingredients through a
membrane, so that appropriate structures for these studies must be constructed
as part of the initial configuration on the grid. In the simulations to be described
in this and later chapters, any required special constructions or distributions will
be set up automatically by the program, so that it will not be necessary for the
reader to create them.

2.4.3. The CA runs

It needs to be emphasized at this juncture that when the CA rules are
stochastic, i.e., probabilistic, each simulation run is, in effect, an independent
“experiment.” This means that in principle, the results from separate runs can
possibly be quite different, as chance would have it. This, indeed, does occur
in some studies, as we shall see. In general, the behavior of a single ingredient
is completely unpredictable. However, for most examples, we shall examine
whichww collective outcome, either that from a run with a great number of ingre-
dients or that from a great number of runs with few ingredients, tends to display
a similar pattern. In the same way that laboratory experiments when repeated
tend to yield similar results, so to will CA simulations yield similar patterns.
These patterns are the emergent properties associated with the simulations. In
the same way, laboratory workers customarily repeat their experiments several
times in order to establish the statistical validity of their results, yielding, e.g.,
an average result and a standard deviation, which is a measure of the experimen-
tal error associated with the measurements. This same procedure for the CA
runs, repetition of the runs, yields an analogous indication of the uncertainty
involved in the simulations. We shall see that as a rule relative error tends to
decrease as the sample size increases, or as more runs are employed, just as it
does in laboratory experiments.

Accordingly, two further simulation details need to be established, the num-
ber of independent runs to be performed and the length (in iterations) of these
runs. These numbers will depend very much on the nature of the simulation to
be performed. In some cases a relatively short run of, say, 70 iterations, might
be enough to make the point needed. But in other, more typical situations, runs
of several thousand iterations might be more appropriate, and one might wish
to perform several runs in order to establish the uncertainties in any numerical
results that appear. In some cases it will be desirable to allow the runs to pro-
ceed long enough for some sort of steady-state or equilibrium condition to be
achieved. Such a stability point can normally be recognized when the output
values exhibit a relatively constant average value over a number of iterations.

It is useful to note here that the CA simulations to be described in this
chapter and later chapters tend to be ergodic in the sense that the time average
value for a particular property of a single system (i.e., the average taken over a



26 Chapter 2

long time period after the system has reached its steady-state condition) and the
ensemble average value for this property (i.e., the average obtained from a large
number of runs for the system at a specific time after reaching steady state) are
closely identical [19]. Normally it is much simpler to allow a single simulation
to run for some time and to obtain property averages from the postequilibrium
portion of the run, than to perform a large number of separate runs.

2.5. The output

The output of a CA simulation carried out on a computer comes in two
different forms: a visual output that is displayed on the computer screen, and
numerical data summaries compiled in output files that are generated during
each run. The visual output allows the observer to follow the system as it
evolves, and can be very helpful in comprehending the overall process of the
system’s evolution. The data summaries in the output files are more suitable for
quantitative analysis of the details of this evolution.

The numerical data files list the values of specific properties, or attributes,
of the system as they change with time. The overall configuration of the sys-
tem, i.e., the specific arrangement of its ingredients, evolves in time as the
cellular automaton rules are applied during each iteration. Accordingly, the
system’s attributes evolve with time. For kinetic studies the relevant attributes
are normally the counts of the different species present and the numbers of
the various types of transitions that take place during each iteration. In studies
of liquids the numbers of ingredients engaged in different types of “bonding”
arrangements are typically listed as they vary with the iterations. The posi-
tions on the grid of the different ingredients might also be of interest in some
studies. The variations in the system attributes with time can often be related
to important macroscopic phenomena taking place in the real systems being
simulated.

2.5.1. Liquid simulation outputs

For typical simulations used in the study of aqueous and other liquid sys-
tems, several attributes are customarily recorded and used in comparative stud-
ies. These attributes used singly or in combination are useful for analyses of
different phenomena (Examples of the use and significance of these attributes
will be described in later examples). The commonly collected attributes for the
liquid systems relate mainly to the states of bonding, i.e., the numbers of adja-
cent ingredients in the von Neumann neighborhood, of the ingredients. Their
designations are as follows:

f0ff —fraction of ingredients not bound to other ingredients,
f1ff —fraction of ingredients bound to only one other ingredient,
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f2ff —fraction of ingredients bound to two other ingredients,
f3ff —fraction of ingredients bound to three other ingredients, and
f4ff —fraction of ingredients bound to four other ingredients.

In addition, the average distance that a cell travels might be another datum
collected, as might be information related to the positions on the grid of the
different types of ingredients.

2.5.2. Chemical kinetic outputs

In chemical kinetic studies the most relevant attributes are the counts of
the various species present and the numbers of transitions of various types that
occur during each iteration. For example, in a study of three types of reacting
ingredients, A, B, and C, the numbers of each species will change with time,
and this variation can reveal important information about the kinetics of the
reactions involved. Also informative will be the numbers of transitions, say,
from A → B and A → C, that take place in each iteration.

2.6. Putting it all together

In this section, we will examine four examples that illustrate the steps, pro-
cedures, choices, and outputs involved in conducting some elementary cellular
automata model simulations. The reader is advised to consult Chapter 10 to find
the appropriate ways for entering parameters and making appropriate selections
for each study. Following each prearranged example, some brief further studies
are indicated that will expand on, and further illustrate, the concepts involved
in the example.

Application 2.1. Movement on the grid

Except for the constraints imposed on an ingredient’s movements by the
presence of other ingredients, or in the special case of a gravitational effect,
an ingredient will move randomly about the grid. The pace of its movement
is determined by the value assigned to the free movement parameter PmPP . To
illustrate this movement we will start our simulation with a single ingredient
placed at the center of a 51 × 51 cell grid, the starting point being designated
as position (0, 0), where the numbers in the parentheses indicate the x and y
coordinates, respectively. Following a practice to be used throughout this book,
the ingredient will be indicated by a colored cell, with the empty cells white.
Individual movements can only occur to adjacent, empty cells. Each step counts
as one unit, so that a sequence of steps will normally take the ingredient to a
new location on the grid, (x ′, y′). For example, a sequence of two steps to the
right and one downward would lead to the position (2, −1). For the present
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example we will use PmPP = 1, the default setting. Our simulation will involve a
single run consisting of 60 steps (iterations).

Example 2.1. Random walk

The Parameter Setup for this Example is shown below. After opening the
application CD to Example 2.1 (see Chapter 10 for instructions), the reader
should start the simulation run. The ingredient will very rapidly move to some
new position. It has executed a “random walk,” ending up in some position
we can call (x1, y1). Start again with the ingredient in the center and observe
the result. More than likely, the ingredient will end up in an entirely different
place on the grid, at a position we will call (x2, y2). Repeat the process several
times and note the final positions of the ingredient (For a general discussion of
random walks, see Hayes [20]).

Parameter setup for Example 2.1. Random walk

One ingredient placed at the center of a 51 × 51 cell grid on a torus
Parameters: PMPP = 1.0, PBPP (AA) = 1.0, and J (AA) = 1.0
Run for 60 iterations. Repeat three times
Report the final values of x , y, and d the displacement for each run
Note: The grid dimensions for this example cannot be altered.

The final position of the ingredient after a run consisting of “n” iterations
is not predictable. What is predictable, however, and quite interesting, is the
collective average result after a great number of independent runs. In an un-
biased random walk, there should be no overall tendency to move to either
the left of the grid or to the right. Therefore the average x displacement 〈x〉,
counting displacements in both the positive and negative x-directions, after
many runs of, e.g., 60 iterations each, should logically be 〈x〉60 ≈ 0.0. Of
course, in a finite set of runs we don’t expect 〈x〉60 to be exactly 0.0, but it
should be close to this value, within the uncertainty, or standard deviation,
of the experiment. Using the same reasoning, there should be no bias toward
upward or downward movement on the grid, and we expect that the average
y displacement 〈y〉60 after 60 iterations should also be near zero, i.e., 〈y〉 ≈
0.0. But—and perhaps this is surprising—the average total displacement 〈d 〉
= 〈√(x2+y2)〉 = (1/n)

∑
i

√
(x2

i + y2
i ) after 60 iterations will not be zero (Can

you, dear reader, explain this?). In fact, the average displacement 〈d 〉n after
n iterations tends to increase as the square root of n: mathematically, 〈d 〉n ≈
(constant = s)

√
n

√√
, where the constant,ww s, corresponds to the step size. We now

will examine these interesting aspects of the random walk process in our first
study.
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Physicist George Gamow has playfully pictured a random walk as the path
a drunken man might follow in walking away from a light post: first a step in
one direction, then a step in another, random, direction, and so on [21]. In fact,
random walks play a significant role in natural science [22,23]. They are central
to the concept of diffusion of substances in solution [24], and they account for
such diverse phenomena as the “Brownian motion” of pollen grains in water,
first noted by the botanist Robert Brown in 1827 [25], the migrations of fruit
flies from a release point [26], the end-to-end distances of polymers [27], and
the diffusion of photons of light from the center of the sun to its surface [21]. In
the last case, a straight-line passage of a light photon along the sun’s 700,000 km
radius would take only about 2 s, but since the photon suffers about 5 × 1021

collisions in its journey from the sun’s center, the actual time required for its
escape to the surface is roughly 5000 years! [21] Some observers have even
compared fluctuations in stock market prices to a random walk [28] (But also
see Ref. [29]).

Study 2.1a. Random walk statistics

In this study the reader is introduced to the procedures to be followed in
entering parameters into the CA program. For this study we will keep PMPP =
1.0. We will first carry out 10 runs of 60 iterations each. The exercise described
above will be translated into an actual example using the directions in Chapter
10. After the 10-run simulation is completed, determine 〈x〉60, 〈y〉60, and 〈d 〉60,
along with their respective standard deviations. Do the results of this small
sample bear out the expectations presented above? Next, plot 〈d 〉n versus

√
n

√√
for n = 0, 10, 20, 30, 40, 50, and 60 iterations. What kind of a plot do you get?
Determine the “trendline” equation (showing the slope and y-intercept) and
the coefficient of determination r2 (the fraction of the variance accounted for
by the model) for this study. Repeat this process using 100 runs. Note that the
slope of the trendline should correspond approximately to the step size, s = 1,
and the y-intercept should be approximately zero.

Note that the dependence of the average absolute distance d on
√

n
√√

is an
emergent property that appears only when the results of a significant number
of separate runs are collected and analyzed. A single run with one ingredient
will not generally exhibit this phenomenon. The emergent dependence of 〈d 〉
on

√
n

√√
does normally arise rather quickly, and the use of only 10 runs often

shows a reasonable correspondence between these variables.

Caution

Do not employ too many iterations in your runs (say, more than 200), since
eventually some ingredients will move beyond the edges of the torus grid
and appear on the opposite sides. Such movements cause the corresponding
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distances to be incorrectly calculated (underreported) by the program. You
might even wish to test this by increasing the number of iterations and noting
the point at which the linear relation between 〈d 〉 and

√
n

√√
no longer holds.

Study 2.1b. Slowing things down

In this example we will repeat the previous study but now slow down the
action by reducing the free-moving probability of the ingredient to PmPP = 0.5.
Repeat the same calculations as in Study 2.1a, but now using 100 iterations as
the reference time. In this case plot 〈d 〉 against

√
n

√√
for n = 0, 10, 20, 30, . . . ,

100. Again, comment on your results. How does 〈d 〉 after 60 iterations compare
with the corresponding result from Study 2.1a above? Explain any difference.

Example 2.1a. A one-dimensional random walk

The random walk problem can be simplified by studying motion in just a
single dimension. For this parameter setup, open Example 2.1A in the program,
CASim. Employ a grid consisting of just one horizontal row with 51 cells. The
single ingredient should start in the central cell, at x = 0. Perform 10 runs of
60 iterations each. Record the 10 individual final positions, the average final
position 〈x〉50, and the standard deviation for your results. Are your results in
accordance with expectations? Repeat with 100 runs. In this case use a bar
chart to plot the relative final populations of the cells. The results after many
runs should converge to a “bell-shaped” (in mathematical terms, “Gaussian”)
distribution about the central position.

Parameter setup for Example 2.1A. One-dimensional random walk

1 ingredient placed at the center of a 1 × 51 cell linear grid
Parameters: PMPP = 1.0, PBPP (AA) = 1.0, J (AA) = 1.0
Run length = 60 iterations
First employ 10 runs, then 100 runs
For the 100-run simulation, prepare a bar chart of the relative final positions

of the ingredients
Note: For technical reasons, the grid dimensions for this example cannot be

changed.

Application 2.2. How other ingredients influence movement
on the grid

We have just observed that in the absence of other influences an ingredient
will move about the grid in a random walk pattern. Things get more interesting,
and more realistic, when the moving ingredient encounters other ingredients
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and is either attracted to them or repulsed by them. In this study we will set
up a grid and introduce ingredients. For the present, we might regard them as
molecules or other things and allow them to move about for a while. We will
observe the motions and draw some conclusions from the study.

We begin with a grid that is a square, 100 × 100 cells. Since we want to
model a physical phenomenon, we recognize that our tiny grid of 10,000 cells
is an insignificant fragment of what constitutes a bulk physical system. The
presence of boundaries, such as the walls of a container, would normally have
only a very minimal influence on the few ingredients we will study. Accordingly,
we shall set up our model with no boundary conditions. Thus we choose the
option of a torus for the grid.

Example 2.2. Ingredient interaction

The next step is to introduce some ingredients: 1000 in the present case for
study. We can scatter them about or put them in selected locations. We choose
to position the ingredients randomly on the grid. The exact position of each
ingredient is identified by reference to its column and row numbers, stored in the
program. The “introduction” of ingredients is really the assignment of nonzero
states to the cells chosen. We next select an asynchronous computation of the
system state and the appropriate transition rules for each ingredient. When
each ingredient has in its turn executed its movement and transition rules, an
iteration of time has transpired.

The first rule to choose is the probability that each ingredient will move,
the free-moving probability PMPP . In this study we shall choose PMPP = 1.0, so
that the ingredients move during every iteration for which movement is possi-
ble. The reader can experiment with this rule by selecting different values, as
explained in Chapter 10.

With 1000 ingredients moving about, there will be created at some times aWW
condition in which two of the ingredients will touch, that is, they will occupy
adjacent cells. The frequency of such encounters is influenced by the joining
rule J , which establishes a tendency for the molecules to move toward, or awayww
from, each other. If two molecules touch, there then occurs the opportunity
for them to either separate or remain in contact. This “separation tendency” is
established by the second movement rule, the breaking probability PBPP . Both
the J and PBPP rules have been described above, and they should become very
familiar to the reader. If a high incidence of attraction is desired in the model,ff
a high J value should be selected. If a high tendency for the two molecules
to separate is desired, a high breaking probability PBPP , near unity, should be
assigned. The behaviors imparted by various combinations of these rules
will be markedly different, as the reader will see by experimenting. For our
starting example, as a point of reference, we will observe the behavior of
the ingredients under “neutral” conditions, i.e., conditions where there is no
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tendency to move either toward or away from each other, and no tendency
to stick together if they meet. For these conditions we set PBPP (AA) = 1.0 and
J (AA) = 1.0. The Parameter setup file shown below will be employed initially.

Parameter setup for Example 2.2. Ingredient interactions

1000 ingredients located randomly on a 100 × 100 = 10,000 cell torus grid
Parameters: PMPP = 1.0, PBPP (AA) = 1.0, J(AA) = 1.0
Run for 1000 iterations.
Observe the motions of the ingredients

How would you describe (qualitatively) the movements of the ingredients under
these circumstances?

Studies 2.2a–d. Effects of varying the PBPP and J parameters

In the following four studies, the PBPP and J parameters are to be varied
systematically to reveal their influences on the properties recorded. The reader
should now select, sequentially, the following four sets of rules, following the in-
structions for this in Chapter 10. Compare the behaviors of the molecules in each
case with those observed for the neutral conditions prevailing in Example 2.2.
Do the ingredients tend to move toward or away from one another? Do they
tend to stick together or separate?

Set 1: J = 2, PBP = 0.2 (Study 2.2a)
Set 2: J = 0.2, PBP = 0.2 (Study 2.2b)
Set 3: J = 2, PBP = 0.8 (Study 2.2c)
Set 4: J = 0.2, PBP = 0.8 (Study 2.2d)

After some intuition about the effects of these rules is acquired, the reader is
encouraged to try other combinations.

Application 2.3. Changes of state

This application shows how a cellular automaton can model a phenomenon
in which the agents, or ingredients, change their states. This could refer to a
chemical reaction, a nuclear decay, or, more generally, any process in which an
item converts to another form.

Example 2.3. Changes of state

We shall employ a 20 × 20 cell grid, this time with all the 400 cells initially
occupied and having the same state “A” reflecting their occupied conditions. The
state “A” might represent a particular molecular or nuclear species, a specific
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quantum state of an atom, or some other entity. In this example movement is
irrelevant and will be excluded, so that attention can be focused on the state
of each cell, and the state in which transformations can take place. The rule
governing these transformations is the transition probability PTPP (AB) for the
transition A → B.

If we select PTPP (AB) = 0.1, then during each iteration every A ingredient
has a 10% chance of changing to state B. During any iteration, therefore, one
expects that about 10% of the A ingredients should convert to state B, but as is
common for random events with so few ingredients, significant deviations from
exact adherence to this schedule are to be expected. The reader is next asked to
run the dynamics using the program on the CD. Choose a run of 100 iterations.
The numbers of A and B after any iteration can be reckoned by stopping the run
and counting the numbers of the A and B ingredients. Alternatively, and much
more conveniently, the program automatically keeps a record of the counts of
ingredients of each type, as the system evolves. From the numbers of A and
B ingredients at different times, a plot can be prepared, showing the decay of
the A numbers and the growth of the B numbers. Changes in the PTPP (AB) value
produce changes in such a plot, an experiment that the reader is encouraged to
carry out. The Parameter Setup file shown below will be employed initially.

Parameter setup for Example 2.3. Changes of state

Start with 400 A (blue) cells on a 20 × 20 grid.
Parameters: PMPP = 0.0, PBPP (AA) = 1, J (AA) = 1, and PTPP (AB) = 0.1
Run for 100 iterations
A cells are blue, B cells are green
Repeat three times. Compare the times (number of iterations) at which half
of the A cells have switched states to B (this time is called the “half-life”
for the transformation A → B).

From your knowledge of chemical reactions, you may recognize that the
dynamics involved in the above example represent a first-order decay pro-
cess for the substance A. Modifications can be made to this simple experi-
ment to represent more complicated situations. First, one might want to slow
down the conversion of A to B by reducing the value of PTPP (AB), and see
how this affects the results. Also, by adding a transition rule PTPP (BA) for the
conversion of species B back to species A, i.e., the process A ← B, one can
model first-order equilibrium. One might also add a transition rule PTPP (BC)
for conversion of species B to a new species C, so that a series of transitions
A → B → C can be represented. A wide variety of more elaborate sets of tran-
sitions can be imagined and conducted with this general setup. A more detailed
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and quantitative examination of these first-order kinetic processes will be pre-
sented in Chapter 7, but here we will examine some of the basic features of
such reactions.

Study 2.3a. Slowing the rate

For this study you are asked to change the PTPP (AB) value to PTPP (AB) =
0.05 and compare the results to those in the example. Because of the lower
transition probability employed, you should now also extend the run length to
500 iterations to assure that most ingredients will convert from A to B during
the course of a run. Try to focus on some individual cells and note when they
convert from A to B.

Study 2.3b. Adding a back reaction A ← B

Most chemical reactions are reversible, at least to some extent. We will use
PTPP (AB) = 0.05 again, and start with all of the cells in the “A” state. To add
the back reaction B → A to the forward reaction A → B, we need to add a
transition probability PTPP (BA) for the B → A transition. We will initially take
PTPP (BA) = 0.08 and observe the results, again after 500 iterations. How many
A ingredients remain after 500 iterations? How many remained in Study 2.3a?

Now run this experiment three times and note the numbers of A and B
remaining after each run. Let [A] equal the number of A remaining at the end
of the run and [B] the number of B. From your three runs, determine average
values and standard deviations for these numbers. We can define the equilibrium
constant for the interconversion of A and B as Keq = [B]/[A]. Determine an
average value and standard deviation for this ratio based on your results. What
value would you expect for Keq based on the transition probabilities? Does your
calculated value from the simulations agree with this value?

Application 2.4. Introducing gravity

A gravitational field introduces a directional preference into the movements
of the ingredients on the grid. This preference could just as well reflect the
influence of any type of gradient, for example, an electric field, a chemical
gradient, or a light gradient that might affect the movements of an agent. To
investigate this influence we will again study a simple neutral system first, and
then introduce the influence we wish to examine, noting its effect.

Example 2.4. Absolute gravity

We will start with a collection of 300 ingredients, free to move about a
cylindrical 50 × 50 cell grid. We will assume that they have no tendencies to
stick together or move toward or away from each other. A run of 1000 iterations
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will give us some time to observe the motion. The Parameter Setup file shown
below will be employed initially.

Parameter setup for Example 2.4. Absolute gravity

300 ingredients placed randomly on a 50 × 50 cell horizontal (H) cylindrical
grid.
Parameters: PMPP = 1.0, PBPP (AA) = 1.0, J (AA) = 1.0, and GA(A) = 0.0
Run for 1000 iterations.
Observe the motions of the ingredients (same as Example 2.2).

Note your general impressions of the motions of the ingredients. (This need
not be detailed, just a general impression.)

Study 2.4. Adding a gravitational effect

Now you should introduce a gravity effect into the simulation by adjusting
the absolute gravity parameter GA(A). First set GA(A) = 0.15, and have the
simulation run for 2000 iterations. Record your general impression of what
happens. Next try GA(A) = 0.3 and repeat the experiment (You might think
of these two cases as representing, in a very loose way, the gravitational sit-
uations on Earth and on the planet Jupiter, respectively). Report your general
observations.

2.7. Cellular automata models

All models are simplifications, abstract representations of real systems. In
cellular automata models we employ very simple tools: cells on a grid, some oc-
cupied, some not, and a set of fairly simple rules. We postulate correspondences
between the ingredients on the grid and certain objects in nature. In chemistry
these objects are often molecules, but in a broader sense they might be almost
anything; ants in an ant colony, bacteria in a solution, cars in traffic, flowers on a
field, or people in society. The ingredients represented by occupied cells do not
possess the elaborate structural details usually associated with the real objects
of interest. In CA models these structural details and their associated equations
are replaced by simple local rules for the interactions between the ingredients.
In the case of a square cell, the rules define how the four faces of an ingredient
will interact with objects in its environment. In this way a CA model provides
a set of constraints on the dynamic encounters and state changes undergone
by ingredients that are only defined relationally, i.e., by their interactions. The
same is true to a large extent; of course, for the more elaborate traditional mod-
els discussed in Chapter 1. Indeed, many models in science rely on abstract
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equations and completely ignore the structural details and the interactions in-
volved. As we have seen in the studies above, the rules define the affinities that
the ingredients have for one another and the probabilities that ingredients will
transform to new species.

The CA paradigm thus represents a drastic simplification, and the ques-
tion arises whether such a model yields sufficiently realistic representations of
natural phenomena to be useful. Our aim in this book is to answer this ques-
tion. We will do so by examining the applications of CA models to a variety
of natural systems. As primitive as the basic notions employed might seem to
the first-time observer, experience shows that these notions encapsulate to a
surprising extent the universal features responsible for the behaviors observed
for ingredients in natural systems. This is, indeed, the secret of any successful
model that it recognizes and properly incorporates the major elements affecting
behavior. The inherent simplicity of CA models provides two great advantages:
this simplicity permits a clear view of the roles of different features responsible
for the system’s behavior, and it allows rather complicated systems to be studied
using only modest computational resources.

One of the most important considerations of a scientist planning a research
project is experimental design. The design process begins with several ques-
tions: What do I assemble in the lab (or on the computer)? What features do
I control (model)? What observations should I make (calculate)? How many
times should I repeat the experiment (runs)? What relationship does what I am
going to do have to understanding nature (applicability)? There are accordingly
a number of practical considerations that go into the planning of a CA experi-
ment, and the following chapters will illustrate these considerations. The initial
conditions, the starting pattern on the grid, and the applied rules should bear a
sensible relationship to the real system being examined. The configurations of
the CA system should, as they evolve, supply a useful portrayal of the actual
chemical or physical phenomenon that is being investigated. In any successful
model the key known features of the physical, chemical, biological, or other
process should be properly replicated.

With these caveats satisfied, CA models contain a further potential: they al-WW
low investigators an opportunity to go beyond the simple replication of natural
phenomena and carry out “what if ?” experiments. What happens, for instance,
if a certain rule is changed or if the starting ingredients are altered? In silico
explorations based on such questions are relatively easy to perform and can
lead to new insights and the revelation of heretofore unrecognized features
and relationships. Indeed, CA models, through their use of independent rules,
are capable of parsing out dependencies and relationships that are not readily
separable or distinguishable in normal physical and chemical experiments. For
example, one can change the temperature of the solvent in a simulation while
leaving the temperature of its solute unchanged, thus revealing the isolated
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influence of solvent temperature on a process, independent of other factors. Or
one can follow the movement of a single ingredient in a collection of identical
ingredients—a feature extremely difficult, and perhaps impossible, to follow in
a traditional laboratory experiment. Put briefly, beyond their ability to duplicate
what is already known, a virtue in itself, the CA models described in the fol-ww
lowing chapters, may, in the hands of creative readers, also provide a means for
discovering previously unknown aspects of nature. It is with this hope that we
have written this book, and we trust that readers will carry CA “experiments”
into new fields that the authors have not even dreamed of.
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Chapter 3

WATER AS A SYSTEM

I loved touching water. Physically. Sensually. Water fascinated me.
—Jacques-Yves Cousteau [1]

It has long been recognized that water plays an essential part in chemical
events, especially those associated with biological phenomena. It is viewed
as an active participant in complex systems such as solutions of ingredients
necessary for life. It is important to add to the understanding of this essential
fluid and the complex systems it forms when solutes enter its embrace. When
solution ingredients interact, there emerges in the system a set of properties
not clearly recognizable as additive contributions from the ingredients. There
forms a complex system characterized by emergent properties. The subjects of
complexity and emergent properties in chemical research have recently been
reviewed by Kier and Testa [2]. The complex nature of water and solutions has
been recognized in recent times and has prompted some investigators to derive
models based on nonlinear combinations of ingredients [3]. In particular, we
have witnessed the growth of Monte Carlo and molecular dynamic simulations
of water that have added to our understanding of its complex character [4].
Molecular dynamics has provided an approach toward a better understanding
of water as a complex system; however, the large amounts of computer time
required coupled with its assumptions of specific force fields produce certain
limitations. This has led to the study of water and solution phenomena using
cellular automata models of dynamic processes.

A current model of water is that of an extended network of hydrogen-
bonded molecules that lack a single, identifiable, long-lived structure. The
hydrogen bonds continually form and break producing a constantly changinghh
mosaic when viewed at the molecular system level. This model lends itself
to simulations using dynamic methods such as cellular automata. In a recent
study, Kier and Cheng [5] have created such a model of liquid water using rules
governing the joining and breaking of water-designated cells.

39
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3.1. The dimensionality of the model

In models used for studies of aqueous phenomena, the organization of liquid
water molecules is assumed to follow the pattern of the hexagonal ice lattice
(Figure 3.1a). Each vertex in that figure denotes a water molecule, while each
edge denotes a bonding relationship. This three-dimensional network can be
dissected into a contiguous series of vertices arranged tetrahedrally around a
central molecule (Figure 3.1b).

Some or all of the vertices in each fragment may be representative of
a water molecule. The trace of each fragment may be mapped onto a two-
dimensional grid (Figure 3.1c). This trace is equated with the mapping of a cel-
lular automaton von Neumann neighborhood. The cellular automata transition
rules operate randomly and asynchronously on the central cell, i, in each von

(a) (b)

(c)

Figure 3.1.FF (a) Hexagonal array of water molecules in the solid state. (b) Tetrahedral arrangement
of bound water molecules. (c) Trace of the tetrahedral arrangement if there are five bound water
molecules on a surface. This mapping is equivalent to the von Neumann neighborhood
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Neumann neighborhood. As a consequence, the new configuration for each
cell, i, and its neighborhood is derived independently of all other cells outside
this neighborhood. The configuration of the system, achieved after all cells
respond in random order to the rules, constitutes one iteration. This configura-
tion is a composite of the collective configurations achieved in all of the von
Neumann neighborhoods. Each of these neighborhoods is a two-dimensional
mapping of a tetrahedral fragment of the original three-dimensional model.
The model is a representation of the configuration of a three-dimensional sys-
tem on the basis of it being an ensemble of discrete, separate events occurring
within that system. A number of studies using this approximation have been
reported [6].

3.2. Experimental design

The square cell is convenient for a model of water because water is quadri-
valent in a hydrogen-bonded network (Figure 3.2). Each face of a cell can model
the presence of a lone-pair orbital on an oxygen atom or a hydrogen atom.
Kier and Cheng have adopted this platform in studies of water and solution
phenomena [5]. In most of those studies, the faces of a cell modeling water were
undifferentiated, that is no distinction was made as to which face was a lone pair
and which was a hydrogen atom. The reactivity of each water cell was modeled
as a consequence of a uniform distribution of structural features around
the cell.

3.3. The grid

The size of the grid can vary, but it should be large enough to allow a
statistically consistent set of results to be gathered. On the other hand, a very
large grid slows the calculation time, but this may not be a real problem for

Figure 3.2.FF The quadrivalent structure of a water molecule with two hydrogen atoms and two
lone pairs of electrons
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a fast computer. A 40ff × 40 cell grid is probably the minimum size for water
and solution studies, while a 100 × 100 grid should satisfy any space needs
for numerous ingredients and should ensure reproducibility. In many of our
studies we have used a 55 × 55 grid. The grid should be boundary free for most
studies since the walls of the water vessels are not usually the focus of attention
in a study. In order to achieve movement modeling reality, the computing of
states should be asynchronous. The run times should be long enough to achieve
relatively constant values of the attributes collected.

3.4. The representation of water

Evidence shows that bulk water contains a significant amount of free space
referred to as cavities or voids. It is obvious that water could not permit the
diffusion of solutes through it if there was no space between water molecules.
In ice, this is not the case, water molecules are bound to approximately four
other water molecules. The choice of how many water molecules should be
represented on a grid of a certain size was explored by Kier and Cheng [5].
Two approaches were taken. The first approach was on the basis of estimates
of the volume of a water molecule and the number of water molecules in
a mole, an estimate of about 69% occupancy of a grid was deduced. The
second approach was to conduct CA runs with varying water concentrations.
The attributes of the CA configuration were interpreted and compared with
experimental values. For example, after a sufficient number of runs, the average
number of cells joining each cell was recorded. This attribute was judged to
be a model of the average number of hydrogen bonds per molecule of water. A
good correspondence of these two values was found for a water concentration
of about 69% of the grid cells. Another attribute from these experiments, the
number of free, unbound water molecules, was recorded. This small percentage
of the total number of waters was compared with the number of free waters
from the experiment. The best correspondence was found for a CA system
containing about 69% water molecules in the grid. From this information, a
system modeling water was adopted using this percent of water molecules in
the grid.

3.5. Water density consideration

Adopting a grid density of 69% water molecules is a reasonable model,
but it is known that the density of water decreases slightly with increased
temperature of above 4◦C. It might be necessary in a few studies to refine the
model of water density in a CA grid to conform to the experimental observation.
This is easily done by reducing the grid density by a decrement corresponding
to a lower experimental density at a given temperature. Table 3.1 shows the
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Table 3.1. Water density and water cell concentration for water temperaturesWW

100 × PBPP (WW) Specific gravity Concentration (cells) of watera

10 1.0000 2099
20 0.9982 2096
30 0.9957 2091
40 0.9922 2084
50 0.9881 2075
60 0.9832 2065
70 0.9778 2053
80 0.9718 2041
90 0.9653 2027

a Number of water cells in a 55 × 55 grid.

water temperature, the corresponding specific gravity, and the adjusted number
of water cells for a 55 × 55 cell grid. Example 3.3, below, examines this issue.

3.6. The movement rules

Three rules must be chosen to impart a “water character” to the occupied
cells that we designate. The first of these is the movement probability PmPP .
There is no practical reason to believe that anything other than PmPP = 1.0 for
water has any real significance. This choice characterizes water as a freely
moving molecule whenever it is possible. The other two rules governing the
joining and breaking of water molecules are critical to their behavior and to the
emergent attributes of the CA system. Recall that the joining rule, J , encodes
the probabilities of water molecules to join others to form a bond (a hydrogen
bond in the case of water). The breaking probability, PBPP , describes the tendency
of bound waters to break apart. The selection of these rules is essential if the
model is to have any validity.

3.7. The J and PBPP rules for water

The linkage between rules J and PBPP can be made relative to a range of
values of one of them. As described earlier, the PBPP value ranges from zero
to one; therefore, the J value may be chosen as a function of PBPP . Later, the
wisdom of this choice can be tested by comparing the attributes of the system
with the physical properties. The studies of Kier et al. [7] led to a relationship
as shown in Eq. (3.1).

log J = −1.5 PBPP + 0.6 (3.1)

These rules are shown in Table 3.2 for several values of PBPP . The fxff attributes
computed for different values of PBPP and the corresponding J rules are plotted
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Table 3.2. Breaking (PBPP ) and joining
(J ) rules for the equation used for water

(log J = −1.5 PBPP + 0.6)

PBPP (WW) J (WW)

0.05 3.35
0.10 2.80
0.15 2.37
0.20 2.00
0.25 1.68
0.30 1.40
0.35 1.19
0.40 1.00
0.45 0.84
0.50 0.71
0.55 0.60
0.60 0.50
0.65 0.42
0.70 0.36
0.75 0.30
0.80 0.25
0.85 0.21
0.90 0.18
0.95 0.15

in Figure 3.3. If we assign a “temperature” of the water to a PBPP value according
to the relationship of Eq. (3.2),

T(◦C) = 100 PBPP (3.2)

then the sets of fxff values can be related to the temperatures of water. From
this relationship, selected physical properties at different temperatures can be
related to fxff values at those temperatures [8]. An analysis of several properties
demonstrates the relationship with selected fxff values and the general validity
of the CA model of water. Some of these analyses are shown in Table 3.3. The
conclusion that selected values of the movement rules from Eq. (3.1) produce
a meaningful profile of fxff values, makes it possible to proceed with some
confidence that this CA model of water has validity.

At this point in the discussion of experimental design, it is necessary to
reflect on what is known about water molecules in terms of their propensity
to join and break apart. A condition in which many water molecules join and
few break apart is a state of the system associated with cold water. In contrast,
the condition in which there are less joined water molecules and more isolated
molecules is a state expected of warmer water.
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Figure 3.3.FF A plot of relative bound water types, fxff , formed at various PBPP parameter values

This intuition leads us to recognize that the J and PBPP rules must be compli-
mentary and that they may model states of water associated with temperature.
The choice of these two rules must therefore lead to the attributes of the CA
dynamics that have some relationship to the physical properties that change
with temperature. These properties then become references for the validity of

Table 3.3. Water properties related to cellular automata attributesWW

Property Equation r 2 correlation

Vapor pressure logVV PvPP (mm Hg) = 13.77 ( f0ff + f1ff ) + 0.795 0.987
Dielectric constant ε = −224 f1ff + 86.9 0.989
ViscosityVV η (centipoise) = 3.165 f4ff − 0.187 0.989
Ionization −log KwKK = −20.94 fHff + 16.43 0.999
Surface tension γ (dynes/cm) = 16.07 NHN B + 22.35 0.970
Compressibility κ (×106/Bar) = −53.82 f3ff + 66.66 0.953
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the model. The choice of J and PBPP must produce attributes in the CA dynamics,
which can be recorded for this validation.ww

3.8. The attributes recorded

A CA run leads to a configuration that is constant in an average sense.
Several attributes of this configuration may be recorded and used for further
study. The configuration may be analyzed for the numbers of molecules with
no neighbor, one neighbor, and so on up to four neighbors. The fraction of
each state can be represented as shown in Figure 3. The distribution of these
fractional values becomes a profile of the state of a molecule. It is observed
that these states change with different J and PBPP rules and that these states have
some correspondence to the temperature of the system.

Another attribute of CA dynamics is the average size of clusters of cells. This
is certainly influenced by the choice of J and PBPP rules and should parallel some
physical properties. Other attributes that can be measured and used to link with
physical properties include the average number of joined faces of a molecule
and the number of free cell faces. Each of these attributes has been exploited
for their ability to relate to the physical properties. The choice of J and PBPP
rules, therefore, must be made with some attention to their attributes produced
and their ability to mirror physical properties as a function of systematic rule
changes.

3.9. Statistical considerations

An important issue in these studies is the number of runs necessary to
achieve a reproducible value for an attribute and how many iterations are nec-
essary for each run. These questions do not have obvious answers since the
emergent attributes from any study are not predictable from a simple sum of
the attributes of the ingredients. It is important to test both the necessary length
of time for a meaningful run and how many runs should be made.

3.10. Other liquids

So far we have focused on models reproducing properties of water. What
about other solvents? Can we manipulate the J and PBPP rules to achieve a model
that reflects the properties of a liquid other than water? This is an unexplored
territory, but we will address the issue here in terms of what a useful approach
may be.

The description of molecules such as water in a CA experiment is a blend of
rules that are relational rather than intrinsic. The rules describe how a molecule
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may interact with another, not what the molecule is by itself. Any variation from
a description of a molecule to characterize another molecule, must go through
the medium of the rules that we have introduced. It may be possible to exploit
this characteristic of a system in the CA method to study a molecule other than
water. The rules create the conditions for the attributes of the model to emerge.
The attributes are studied for their ability to relate to physical properties in
order to validate the model. The logical place to begin the attempt to model a
liquid other than water is to look at a list of properties of liquids that includes
water.

In an earlier work, Kier and Cheng [5] have shown a close correlation
between the viscosity of water, η (centipoise), and the f4ff fraction calculated in
a CA model, at a range of temperatures (Figure 3.4). The relation is

η (centipoise) = 3.165 f4ff − 0.187

r2 = 0.987

The experimental and predicted values of η (centipoise) are shown in
Figure 3.4. From this close correlation we infer that the f4ff structural attribute
is influential on the viscosity. This relationship leads to the expectation that a
second liquid could be defined in part by the f4ff attribute, at least as far as the

Figure 3.4.FF A plot of water viscosity (in centipoise) versus the fraction of f4ff water types
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Figure 3.5.FF Plot of viscosity of several liquids as a function of the temperature

property of viscosity is concerned. A comparison of the viscosities of some
common liquids versus temperature is also shown in Figure 3.5.

The value of f4ff in a system of molecules is due to the rules selected to run
the CA dynamics. Therefore, the equation relating the J and PBPP rules is the
target for study and change. If we write Eq. (3.1) in general terms we get

log J = αPBPP + β (3.3)

It is the α and β coefficients that must be manipulated to obtain a new set
of attributes that correspond to a liquid other than water. Of course, this re-
lationship is only with the value of the viscosity, but it may relate to other
properties.

If we look at Figure 3.5, we see that some liquids present a curve of viscosity
versus temperature above that of water while others lie below. By systematically
varying the α and β values in Eq. (3.3) and using these to calculate the f4ff values
versus the temperature, we obtain the information about their influence on the
viscosity versus temperature relationship. Those plots that lie below the water
curve in Figure 3.5 may represent the rules needed to model liquids such as
benzene, methanol, or ethyl acetate. The α and β coefficients that produce f4ff
values leading to plots above water in Figure 3.5 are candidates for the modeling
of liquids such as ethanol, propanol, or butanol.

This approach leads to a model of a liquid other than water that has a
calculated viscosity different from water but that may be all that is needed for
a particular study. It should be noted that the vapor pressure presents a similar
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opportunity to create a model of another liquid, this one is based on the attributes
f0ff , f1ff , and f2ff . Much more could be done along these lines to model other liquids,
an opportunity for the reader to participate in some interesting research.

Application 3.1. The structure of water at various temperatures

Water exhibits variations in physical property values when the temperatureWW
is varied. The underlying cause of this variation is the change in the structure
of water when the temperature changes. What is the structure of water and how
can it be revealed and defined in a quantitative way? One approach to this has
been described above. An amenable method is to relate the profile of fxff values
with the temperature. This profile is shown in Figure 3.3. With this profile, it
is possible to define a state at a certain temperature by selecting the parameters
corresponding to a given temperature and then running the CA dynamics to
obtain these results. From there it is possible to simulate a temperature in
another study. The following example and studies introduce the reader to this
approach to the modeling of water.

Example 3.1. Model of water at room temperature (20◦C)

Run a model of water using the parameters shown in Example 3.1 in the
Program CASim.

Parameter setup for Example 3.1. Model of water at room
temperature

Grid 55 × 55 on a torus
2100 A (blue) cells
PMPP (A) = 1.0, PBPP (AA) = 0.2, J (AA) = 2.0
10 runs at 1000 iterations each run
Record the average values of f0ff , f1ff , f2ff , f3ff , f4ff , and the average cluster size.

Run the dynamics for 1000 iterations or until you are satisfied that the run
is producing a relatively constant set of attributes. Repeat the run 10 times and
compute the average values for each fxff attribute. Convert each fxff value to a
fraction of the total number of water molecules, 2100 in this case. The sum of
the fxff values then equals 1.0. These fractions become a structural profile of
water at any simulated temperature.

Study 3.1a. Model of “hot” water

Repeat the runs described above but change the values to hot water,
PBPP (AA) = 0.8 and J (AA) = 0.25. Notice the change in the water clusters
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and the cavity behavior. Compare the attributes described by the fxff profiles for
the “cold” water model with those of the “hot” water model. Note the change
in the average cluster size.

Study 3.1b. Other temperatures of water

Using the parameter setups for Example 3.1, change the “temperature” of
the water by changing the PBPP (WW) and J (WW) values according to the rela-
tionships shown in Table 3.2. For example, use PBPP (WW) = 0.50 and J (WW)
= 0.71. Run several of these “temperatures” from hot to cold water and col-
lect the fxff attributes. Convert the fxff values to a fraction of 1.00 and then plot
the set of fxff values versus the “temperature.” This set of relational values is a
set of structures of water at different simulated temperatures (see Figure 3.3).
They can be used as independent variables to explore the relationships of wa-
ter versus various physical properties at different temperatures as shown in
Table 3.2.

Application 3.2. Density-adjusted grid occupancy

We have described above the choice of a concentration of water-designated
cells to mirror the density of water. Using the fxff values over the temperature
range of liquid water, we have achieved success in modeling many physical
properties of water. We have used a uniform density in these studies. In fact,
the density of water varies slightly over the liquid temperature range as seen
in Table 3.1. Strict adherence to this variation would lead us to vary the grid
occupancy by an amount corresponding to the variation shown in Table 3.1. In
this example, the variation is built into the parameters for runs to compare with
the results from Example 3.1.

Example 3.2. Density-adjusted grid occupancy for a water model

In this study the concentration of the water in the grid is adjusted to corre-
spond to the density (specific gravity) of water at various temperatures. These
adjusted concentrations are shown in Table 3.1. Run the example 3.2 for the
adjusted concentrations of water in Example 3.2 in the program CASim for a
temperature of 20◦C.

Parameter setup 3.2. (Example 3.2) Density-adjusted “cold” water

Grid 55 × 55 on a torus
2096 A (blue) cells
PMPP (A) = 1.0, PBPP (AA) = 0.2, J (AA) = 2.0
10 runs at 1000 iterations each run
Record the average values of f0ff , f1ff , f2ff , f3ff , f4ff , and the average cluster size.
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Study 3.2a. Density-adjusted “hot” water

Repeat Example 3.2 using a simulated temperature of 80◦C using PBPP (AA) =
0.8 and J (AA) = 0.25. Change the water concentration according to Table 3.1.
Collect the fxff values and convert them to a fraction of 1.0. Compare these
values with those from Study 3.1.

Study 3.2b. Density adjusted for intermediate temperatures of water

Repeat the studies, selecting intermediate temperature values using the re-
lationships between PBPP and J values for water shown in Table 3.2. For example,
use PBPP (WW) = 0.50 and J (WW) = 0.71 in Example 3.2. Compare the fxff values
with the Studies in Examples 3.1and 3.2. A plot of each fxff value from Studies
in 3.1 and 3.2 will reveal the influence on these attributes with and without a
density consideration. Also compare the average cluster sizes between these
two groups of studies. How much difference is found in the fxff values when
water density is accounted for?

Application 3.3. Use of a variegated water cell

In this exercise, a comparison is made between a water cell with the same
set of parameters for each face of the cell and a water cell with a different set
of parameters reflecting the difference between a hydrogen and a lone pair of
electrons on water. This latter case makes use of the variegated cell architecture
described in Chapter 2, Figure 2.4. In the variegated cell, we assume that the
two water molecules will bond only through the encounter of a hydrogen atom,
H, and a lone pair of electrons, e, of an oxygen atom. The encounters of two
hydrogens or two lone-pair orbitals are modeled as an event contributing nothinghh
to the bond formation.

Example 3.3. Variegated water cell models

This example uses the variegated cell pattern aabb shown in Figure 3.6. Use
Example 3.3 in the program CASim. Results from this example are compared

(a) (b)

Figure 3.6a and b.FF A variegated cell depicting two patterns equivalent to the mapping of a
tetrahedrally bound water molecule as shown in Figure 3.2
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with the attributes that emerge from the dynamics using uniform cells in Ex-
amples 3.1 and 3.2. A temperature of 20◦C is used in this example.

Parameter setup 3.3. (Example) Water modeled with a variegated cell
of aabb pattern

Grid 55 × 55 on a torus
2100 variegated A cells. The faces of A are designated aabb
PMPP (A) = 1.0, PBPP (aa) = 1.0, J (aa) = 0, PBPP (bb) = 1.0, J (bb) = 0,

PBPP (ab) = 0.2, J (ab) = 2.0
10 runs of 1000 iterations each run
Record the average f0ff , f1ff , f2ff , f3ff , f4ff values, and convert them to fractions

of 1.0
Record the average cluster size.

Study 3.3. Hot water modeled using pattern aabb

Repeat the dynamics using a temperature simulation of 80◦C. Compare
these results with the results from Studies 3.1a and 3.2a. An interesting question
for the student to contemplate is whether the use of the alternative variegated
cell, abab, would produce different results in these studies. Reach a conclusion
as to whether the more detailed aabb cell has any significant differences from the
uniform cell employed in Applications 1 and 2. The future use of the variegated
cell may be important when different features of the same molecule are to be
encoded. More on this in later chapters.

Application 3.4. Self-diffusion

It is possible to model what a single molecule of water is doing in the
presence of bulk water. It is necessary to distinguish one molecule as being
different, say a different color and identity within the program. The state and
the movement rules are kept the same for this molecule as for the rest of the
water molecules. The movement of the designated water molecule away from
a reference point as a function of time is the diffusion rate.

Example 3.4. Water self-diffusion

A single water molecule is identified by a different color, but it has the same
states and trajectory rules as that of the other water molecules. In this ways,
its behavior can be singled out for separate recording. This is the procedure
necessary to evaluate a property such as self-diffusion. In this study, evaluate the
average distance of movement of the designated cells after a common number
of iterations.
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Parameter setup 3.4. (Example 3.4) Water self-diffusion at 20◦C

Grid 55 × 55 on a torus
2099 A (blue) cells
1 B (red) cell located at row 27, column 27
PMPP (A) = PMPP (B) = 1.0, PBPP (AA) = PBPP (AB) = 0.2, J (AA) = J (AB) = 2.0
10 runs at 1000 iterations each run
Record the average distance that cell B travels from the starting position

after 1000 iterations.

Study 3.4. Water self-diffusion at various temperatures

In this study the water temperature is changed to other values using the
PBPP (WW) and J (WW) parameters shown in Table 3.2. A profile of self-diffusion
as a function of temperature can be derived from these results.

Application 3.5. Evaporation of water

Modeling of water may be extended to properties involving the movement
of molecules into space, a process of evaporation. For this the grid must be
structured at the initial setting to have two different areas, one with occupied
cells and the other with unoccupied cells (Figure 3.7). The rate of evaporation
can be measured from a model allowing for water movement into an empty
part of the grid. This is illustrated in Example 3.5.

Example 3.5. Evaporation of water

Water molecules are placed in the lower half of the grid, leaving the upperWW
half empty. A temperature is selected using the PBPP and J parameters and the CA
is allowed to run for a specified time. The number of water molecules in each row
of the upper half of the grid is counted. The grid is defined as a cylinder with the
upper and lower boundaries stationary. This prevents water movement past the
bottom boundary. A profile of evaporation versus temperature can be obtained
by varying the simulated temperature. Use Example 3.5 in the Program CASim.

Parameter setup 3.5. (Example) Evaporation of cold water

Grid 55 × 55 cells in a cylinder (top and bottom boundaries)
1050 cells W located in the lower half of the grid
PMPP = 1.0, PBPP (WW) = 0.3, J (WW) = 1.4
Run 1000 iterations for 20 runs
Average, every 100 iterations, the counts of cells in each row in the upper

half of the grid.
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Figure 3.7.FF A grid organized to show the lower half occupied with water. The grid is bounded
on all four sides.

Plot this average value against the distance from the original interface. Calculate
the rate of evaporation.

Study 3.5a. Evaporation of hot water

In this study, the water molecules are heated up using PBPP (WW) = 0.70 and
J (WW) = 0.36. The rate of evaporation is recorded at intervals of the iteration
count. Compare these results with the results from Example 3.5.

Study 3.5b. Evaporation of water at various temperatures

Repeat this study using various intermediate temperatures by altering the
PBPP (WW) and J (WW) values in Parameter Setup 3.5. From the recorded data it
is possible to compute the rate of evaporation. In later chapters we introduce a
second ingredient into the grid. At that time the student is encouraged to repeat
these studies using more than one ingredient, varying their parameters to obtain
differential evaporation or distillation.
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Application 3.6. Modeling physical properties with structure, fxff
values, of water

We have defined above a way of quantifying the structure of water based on
the profile of fxff values that encode the number of each possible joined state of
a molecule. It is now possible to use this profile as a measure of the structure
of water at different temperatures. As an application of this metric it is possible
to relate this to physical properties. We have shown the results of our earlier
work in Table 3.3. The reader is encouraged to repeat these and to explore other
structure–property relationships using the fxff as single or multiple variables. A
unified parameter derived from the five fxff values expressed as a fraction of 1.0,
might be the Shannon information content. This could be calculated from all
the data created in the above studies and used as a single variable in the analysis
of water and other liquid properties.
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Chapter 4

SOLUTION SYSTEMS

Complexity is a maddeningly slippery concept. . . . The cellular automaton is
to the study of complexity what E. coli or a planarian is to biology—a relatively
simple preparation used to open a window on perplexing phenomena.

—George Johnson [1]

Water becomes much more interesting when there is something in it. FormingWW
a solution is what water does best on this planet, and so we address this com-
plex system as a focus for cellular automata modeling. In the previous chapter
we developed approaches to the CA modeling of water. Critical issues such as
the grid density, movement rules, and attribute collection were laid out. In this
chapter, we introduce an ingredient, usually a solute, into water. This consid-
eration raises new issues that must be considered in the experimental design
and data collection. Several examples will illustrate this aspect of the chemical
applications of CA models.

4.1. The rules

In a cellular automata model of a solution, there are three different types of
cells with their states encoded. The first is the empty space or voids among the
molecules. These are designated to have a state of zero; hence, they perform no
further action. The second type of cell is the water molecule. We have described
the rules governing its action in the previous chapter. The third type of cell in
the solution is the cell modeling a solute molecule. It must be identified with a
state value separate from that of water.

Recall that the rules for water molecules are the J and PBPP rules, influencing
the movement toward and away from each other. Their effect is to produce a
dynamic system modeling liquid water. We will adopt a standard protocol for the
naming of these rules since the variety increases significantly when modeling

57
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solutions. The J rule for water–water encounters is designated as J (WW).
Similarly, for the breaking rule for two water molecules bound together we
adopt the descriptor, PBPP (WW). Recall that the PBPP (WW) rule can range from
zero to one and that it has a close correspondence to the water temperature
in ◦C. The J (WW) value is a ratio of probabilities that have a wide range of
positive values.

When we introduce a new molecule type into the system, it is designed to be
different from water by virtue of its rules. The new rules pertaining to the solute
must not only govern its joining and breaking actions among like molecules,
but they must also govern its actions with water molecules. Thus encounters
between solute and solvent molecules are made possible and influenced by these
heterogeneous rules. The behavior of the solute in the solutions is dependent
on these rules.

4.2. The solute rules

The interactions among solute molecules are a reflection of their chemical
structure. The manifestations of this structural influence are the physical prop-
erties associated with their intermolecular binding. As examples, the melting
point reflects the ease of crystal disruption to bring about a state change. The
solubility is another phenomenon derived from the structural influences on the
binding of solute molecules in a crystal.

The breaking and joining rules pertaining to the solute may then be assigned
on the basis of some anticipation of the magnitude of these intermolecular
events [2]. A large value of the joining rule, J (SS) where S denotes the solute
molecule, encodes a high incidence of joining among the molecules. In contrast,
a low value of J (SS) implies a low possibility of solute molecules coming to-
gether. The companion rule, PBPP (SS), encodes the ease or difficulty in breaking
a pair of joined solute molecules. To illustrate the cooperativety of these two
rules for a solute, a molecule with rules J (SS) = 2.0 and PBPP (SS) = 0.2 would be
expected to remain as an aggregate, a crystal, for most of the time. Its expected
properties would be a high-melting point and relative insolubility. In contrast,
the solute molecule with rules J (SS) = 0.5 and PBPP (SS) = 0.8 would likely have
a lower melting point and would be more soluble. The choice of these rules dic-
tates the general behavior of the model of solute molecules among themselves.

4.3. The solute–water encounter rules

The solute molecules are going to encounter water molecules, an event that
is governed by J and PBPP values encoding this. The joining and breaking rules
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for a water–solute molecule encounter, J (WS) and PBPP (WS), are assigned on the
basis of the choice of behavior for the solute. This behavior manifests itself in
the physical property of solubility. A solute molecule with rules of J (WS) = 1.5
and PBPP (WS) = 0.3 would be expected to interact with water resulting in joining
of the two molecules. In contrast, a solute molecule with rules J (WS) = 0.3 and
PBPP (WS) = 0.8 would be likely to have limited joining events with water. These
behaviors model the relative solubility and insolubility of a solute molecule.
The character of the solute molecule, sometimes referred to as its polarity, is
thus encoded in these rules. Kier et al. used these rules to study the behavior
of a solute in the water surrounding it [3].

Application 4.1. Modeling aqueous solutions

A 55 × 55 grid is used with 2100 water cells, corresponding to a density
of 69%. A number of solute molecules are then added. If 100 solute molecules
are used, then this number would be subtracted from the 2100 water molecules
to maintain 69% cells in the grid. The assumption is made that the volume of
all molecules in the grid is about 69%. This assumes that the dissolution in
this study produces an overall expansion of the volume of the system to 3125
occupied cells, but we are modeling only 3025 of these as water cells. Volume
expansion on addition of a solute is recognized, but it may not be a universal
phenomenon. The reader is invited to explore this concept.

Example 4.1. The influence of water temperature on solubility

This example is designed to measure some attributes reflecting a dissolved
state, specifically to model the effect of water temperature on the solubility. The
assumption is made that the concentration of solute molecules not bound to
other solute molecules characterizes the dissolved state. The attribute used to
reflect this state is the f0ff value for solute molecules. The higher this value,
the more dispersed are the solute molecules among the water molecules. The
average cluster size is also a significant attribute characterizing a solution.
The water temperatures used in this example is 30◦C. The solute component
is represented by 100 cells. The polarity of the solute molecule is described
by PBPP (WS) = 0.5, J (WS) = 0.7, PBPP (SS) = 0.5, and J (SS) = 0.7. At each
water temperature, the attributes of the solute, f0ff , cluster size, and number
of solute–solute bonds are recorded. These attributes are interpreted as mod-
eling the extent of dissolution. It should be noted that only the temperature
of the water changed in this study, no changes in other rules are made. The
changes recorded in the attributes are emergent properties of a new system,
a solution. Run these values 10 times and average the values of the attributes
collected.
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Parameter setups for Example 4.1. The influence of water
temperature on solubility

Grid 55 × 55 cells on a torus
Water, W (blue), 2000 cellsWW
Solute, S (red), 100 cells
PMPP (W) = 1.0, PBPP (S) = 1.0
PBPP (WW) = 0.3, J (WW) = 1.4, PBPP (SS) = 0.2, J (SS) = 2.0, PBPP (WS) = 0.5,

J (WS) = 0.7
Run the dynamics for 1000 iterations, for 10 runs
Record the average of the largest cluster size of the solutes, S, and the average

fxff values for the solute, S.

Studies 4.1a and 4.1b. Effect of water temperatures of 60◦C and
90◦C on solubility

Repeat this example in the following studies, for water temperatures simulat-
ing 60◦C, PBPP (WW) = 0.6, J (WW) = 0.5 and 90◦C, PBPP (WW) = 0.9, J (WW) =
0.18. Also record the fxff values and the average cluster size for the solute. See
Table 4.1 for some results previously reported [2].

Table 4.1. Effect of water temperature on solubility

Simulated water Average cluster Average number of
temperature (◦C) f0ff (S)a size solute bonds

30 0.11 4.5 2.00
60 0.33 2.0 1.25
90 0.44 1.5 1.00

a Fraction of solute molecules not bound to other solute molecules.

Example 4.2. The influence of solute concentration on water
structure

In this example, the effect of increasing the solute concentration on the
water structure is explored [4]. The attributes of water f0ff (W) and the average
number of water–water bonds are measured. This latter attribute corresponds
to the average number of hydrogen bonds. Again in this study, the change in a
single variable, the solute concentration, results in an emergent set of properties
associated with the water structure. Run these parameters 10 times and average
the values of the attributes collected.
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Parameter setup Example 4.2. The influence of concentration

Grid 55 × 55 cells on a torus
Water, W (blue), 2080 cellsWW
Solute, S (red), 20 cells
PMPP (W) = 1.0, PMPP (S) = 1.0
PBPP (WW) = 0.3, J (WW) = 1.4, PBPP (SS) = 0.5, J (SS) = 0.7, PBPP (WS) = 0.5,

J (WS) = 0.7
Run the dynamics for 200 iterations, for 50 runs
Record the average fxff values for water, W.

Studies 4.2a and 4.2b. Alternate concentrations

Repeat this example using 2060 water cells and 40 solute cells in the Ex-
ample 4.2 Parameter Setup. This is approximately a 2% solution. Repeat the
dynamics again with a higher concentration such as 2020 water cells and 80 so-
lute cells, using Example 4.2 Parameter Setup. Compare the structures of water
as characterized by their fxff profiles and average cluster sizes. Some measures
of the structure change in water as a function of the concentration are shown
in Table 4.2.

Table 4.2. Effect of solute concentration on water structure

% Solute f0ff (W)a Average number of hydrogen bonds

0 0.004 3.013
1.8 0.005 3.008
3.5 0.006 2.993
5.2 0.007 2.928
6.9 0.008 2.906

a Fraction of water molecules not bonded to other water molecules.

Application 4.3. The hydrophobic effect

The hydrophobic effect of a solute is its influence on nearby water molecules
resulting in an increased organization or structure change. This organization
manifests itself as a greater degree of water–water hydrogen bonding producing
an increased microviscosity in this region. The hydrophobic effect results from
the influence of a soluble but relatively hydrophobic (nonpolar) solute. Kier
et al. have modeled this phenomenon using cellular automata [3].
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4.4. The influence of the solute–water rules
on water structure

A study by Kier et al. explored the influence of the solute–water rules on the
water structure [3]. The rules governing this relationship impart to the solute
what is called the hydropathic state. This is the relative degree of water affinityww
or rejection. A PBPP (WS) value of 0.2 implies a strong association between the
water and the solute. The solute is said to be “polar” or “hydrophilic.” In con-
trast, a PBPP (WS) of 0.9 is a rule describing a very “nonpolar” solute, one that
is hydrophobic. These two terms constitute the relative hydropathic state of a
solute. The study by Kier et al. used water at 25◦C, a solute with PBPP (SS) = 0.10,
J (SS) = 1.0, and PBPP (WS) values ranging from 0.2 to 0.8; thus, a large range of
hydropathic states of the solute was explored. The influence on the water struc-hh
ture was measured as the number of hydrogen bonds and the f4ff (W) value. Some
of these results are shown in Table 4.3. They reveal that a decreasingly polar
solute, in the presence of water, produces an increasing degree of organization
or structure in the water. This corresponds to the hydrophobic effect. From
the graphics exhibited by solutes of varying degrees of hydrophobicity, the hy-
drophobic effect can be recognized. In the case of a relatively polar solute say
PBPP (WS) = 0.2 and J (WS) = 1.0, the solute molecules are largely distributed
among the clusters of water as seen in Figure 4.1a. This figure demonstrates the
hydration of polar solutes. If we change the water–solute rules tohh PBPP (WS) =
0.8 and J (WS) = 0.5, this relatively nonpolar solute is observed to be away
from the interior of water clusters and is found most of the time in the cavities
(Figure 4.1b). This figure demonstrates the hydrophobic effect. The reader is
encouraged to set up these rules and to observe the dynamic behavior leading
to this effect. To monitor the progress toward this effect, record the f4ff fraction
at regular intervals until it is roughly constant.

Table 4.3. Influence of solute polarity on water structure

PBPP (WS) f4ff (W)a Average number of hydrogen bonds

0.2 0.269 2.89
0.4 0.298 2.93
0.6 0.313 2.97
0.8 0.320 2.97

a Fraction of water molecules bonded to four other molecules.

Example 4.3. The hydrophobic effect

Use the parameter setups described in the Example 4.3 with a water tem-
perature (WW) of 20◦C and the rules for the hydropathic state of the solute of
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(a) (b)

Figure 4.1.FF (a) A cellular automata model of hydrophilic solutes in water. (b) A cellular
automata model of hydrophobic solutes in water

PBPP (WS) = 0.2 and J (WS) = 2.0. Run the dynamics for 1000 iterations for 10
runs. Collect the average fxff values and the average cluster size for water.

Parameter setup Example 4.3. The hydrophobic effect

Grid 55 × 55 cells on a torus
Water 2020 cells (blue), Solute 80 cell (red)WW
PMPP (W) = 1.0, PMPP (S) = 1.0 PBPP (WW) = 0.2, J (WW) = 2.0, PBPP (SS) = 0.5,

J (SS) = 0.7, PBPP (WS) = 0.2, J (WS) = 2.0
Run the dynamics for 200 iterations for 10 runs
Record the average fxff values for W and the average cluster size for W at the

end of each run.

Studies 4.3a and 4.3b. Variation of PBPP and J rules for (WS) on the
hydrophobic effecthh

Increase the nonpolar character of the solute by using rules PBPP (WS) = 0.5
and J (WS) = 0.7. Keep all the other rules constant. Run each experiment
10 times and collect and average the f4ff values. Repeat the study using a more
nonpolar parameter set for the solute, for example PBPP (WS) = 0.8 and J (WS) =
0.25. Other parameters are retained as in Example 4.3. Record the fxff values
and the average cluster size for water at the end of each run.
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Figure 4.2.FF A cellular automata model of a crystal in water

Application 4.4. Solute dissolution

Another aspect of the complex system called a solution is its formation
from the interaction of the ingredients, water and a solute. Kier and Cheng have
modeled the dissolution of a solute crystal into water using CA [5]. The crystal
was modeled as a compact group of cells in the center of a grid (Figure 4.2).
Surrounding it is a field of water molecules dispersed as a 69% concentration in
the remaining part of the grid. Several sets of rules were used in multiple studies
to examine the influences on the crystal disruption leading to dissolution. The
extent of dissolution was monitored by the change in the number of solute–
solute bonds and the average distance that the solute molecules moved from
the crystal. The fewer the number of solute–solute bonds, the greater the extent
of solute dissolution. Similarly, the greater the separation of solute cells from
the original crystal mass, the greater the dissolution. It was observed that an
increase in the water temperature produced an increase in the rate of formation
of the isolated ( f0ff ) solute molecules. This corresponds to the generally observed
temperature effect on dissolution.
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The question as to which rule has the greatest influence on the dissolution,
PBPP (SS) or PBPP (WS), was addressed in another study. Again using the f0ff (solute)
attribute as an indication of the extent of dissolution, the results from variations
in these two rule sets are compared. The studies indicated that the PBPP (SS) and
J (SS) rules had the greatest influence. This result suggest that the self-affinity of
a solute, reflected by the PBPP (SS) value, is a greater determinant of the solubility
than the hydropathic state, reflected by the PBPP (WS) value [5]. The validity of
these findings is open to debate.

Example 4.4. Solute dissolution

The reader is invited to examine this phenomenon by running the models
described above, by varying these two sets of parameters. The solute is modeled
as a 10 × 10 block of 100 cells in the center of a 55 × 55 cell grid. The water
content of the grid is 69% of the spaces around the solute block, randomly
placed at the beginning of each run. The water temperature (WW), solute–
solute affinity (SS), and hydropathic character of the solute (WS) are presented
in the parameter setup for Example 4.4. The extent of dissolution as a function
of the rules and time (5000 iterations) is recorded as the f0ff and the average
cluster size of the solute (S).

Parameter setup Example 4.4. Solute dissolution

Grid 55 × 55 cells on a torus
Water, W, 2000 cellsWW
Solute, S, 100 cells in a 10 × 10 block in the center of the grid
PMPP (W) = 1.0, PMPP (S) = 1.0. PBPP (WW) = 0.3, J (WW) = 1.4, PBPP (SS) = 0.5,

J (SS) = 0.7, PBPP (WS) = 0.5, J (WS) = 0.7
Run for 1000 iterations
Record the average distance of S from the center of the grid, (row 27, column

27).

Study 4.4a. Variation of solute self-affinity (SS) effect on dissolution

These studies vary the relative aggregation of the solute encoded in the PBPP
and J values for (SS). Select several sets of these parameters using the setup
in Example 4.4, run the dynamics for 1000 iterations, and record the average
distance the S molecules have migrated from the center of the grid.

Study 4.4b. Variation of hydropathic state on dissolution

This study looks at the effect of changes in the solute hydropathic state
(WS) on the dissolution of the solute. The PBPP and J values for (WS) determine
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this attribute of the solute. Using the setup in Example 4.4, vary the PBPP (WS)
and J (WS) values. Record the average distance the S molecules have migrated
from the center of the grid. Another variable not studied by Kier and Cheng
is the influence due to the water temperature. The problem now becomes a
three-dimensional one with these three variables. Have a look at this problem.

Observing the dissolution process

So far, most of the observations of CA dynamics that we have described have
arisen from an inspection of data reported in the form of counts of structural
types as a function of time, temperature, or joining and breaking rules. It is also
possible to make some observations, even discoveries, by observing directly
the evolving picture of the dynamics. Watching the crystal “dissolve” in these
studies reveals that the process does not take place because of the intrusion of
water molecules into the solute–crystal mass. What occurs is the “intrusion” of
cavities into the crystal structure. These move about as though they were real
entities; they grow in number until the crystal is blown apart. At this point there
is a major intrusion of water molecules into the crystal. The reader is invited
to run these experiments and make this observation. A typical scene is shown
in Figure 4.3, and on the cover of the book. How close this model is to reality
remains to be seen.

Application 4.5. Solute diffusion in water

The diffusion of solutes in water is an important event in many biological
processes. The influences of water temperature and hydropathic states of the
solute are expected to be of importance in this process. A study modeling
diffusion using CA was reported by Kier et al. [6]. The study revealed increases
in diffusion rates with higher temperatures and higher solute hydrophobicity.
More recent studies indicate that the diffusion rate may be maximum at an
intermediate level of hydrophobicity and temperature [7].

Example 4.5. Diffusion in water

The rate of diffusion of a solute in water may be studied as a function of the
temperature of water and the hydropathic state of the solute. For this experiment,
the setup for Example 4.4 can be used, with a single cell positioned in the center
of the grid. The distance between the center of the grid and the average position
of the solute cell is recorded at every 100 iterations. This gives the rate of
diffusion. Varying the rules for (SS) and (WS) give models of the influences
of the solute characteristics on the diffusion rate. Use the following parameter
setups to model these effects.
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Figure 4.3.FF A cellular automata model of a partially dissolved crystal in water

Parameter setup for Example 4.5. Diffusion in water

Grid 55 × 55 cells
Water, W, 2099 cells (blue)WW
Solute, S, 1 cell (red). Initial position is in the center of the grid
PMPP (W) = 1.0, PMPP (S) = 1.0 PBPP (WW) = 0.3, J (WW) = 1.4, PBPP (WS) = 0.5,

J (WS) = 0.7
Run the dynamics for 1000 iterations
Run the simulation for 50 times
Caution: Adjust the number of iterations so that the S cell does not pass over

an edge to the opposite side of the grid. Test the best choice of the number of
iterations, then record the average distance that S travels from the initial
position.
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Study 4.5a,b. Influence of variation in hydropathic state of the solute
on diffusion

By varying the hydropathic states, PBPP (WS), of the solutes, it is possible
to model this influence on the rate of diffusion. Repeat Example 4.5 in the
following studies to gather data on this influence. Using the parameter setup in
Example 4.5, study the effect of solute polarity, as reflected by its hydropathic
state, on the diffusion characteristics in water. Modify the parameters for (WS),
for example, choose PBPP (WS) = 0.2 and J (WS) = 2.0 as descriptors of a high
state of solute polarity. Another, more nonpolar state of the solute may be
selected using parameters PBPP (WS) = 0.8 and J (WS) = 0.25. Run these and
other sets of hydropathic state rules to obtain some insight into the influence
on diffusion. Record the average extent of diffusion from the center of the grid,
after each 100 iterations.

Study 4.5c. Influence of temperature on solute diffusion

Using Example 4.5, vary the temperature of the water using PBPP (WW) and
J (WW) values from Table 3.2 in Chapter 3. Remember that temperature in
degrees C = 100 ×PBPP (WW). From the Studies 4.5a and b, create a profile of
the diffusion of a solute in water as a function of water temperature and solute
hydropathic states.hh

Application 4.6. Freezing point depression

It is known that the introduction of a polar solute into water will produce an
effect lowering the freezing point of water. The extent of the lowering is related
to the concentration of the solute. This effect can be modeled with CA even
though the phase change to a solid state is not a part of the model. In Chapter 3,
Figure 3.3, the fractions of bound states of water, fxff , are shown as a function
of water temperature. A change in this pattern of fxff values corresponds to a
change in the temperature. We can say that the pattern of fxff values is a system
structural description of what is modeled as temperature. If a solute that is
introduced changes this pattern of fxff values from those corresponding to 20◦C
to those corresponding to 25◦C, then the freezing point has been lowered by
this temperature increment.

An important question is, how can we quantify the fxff pattern so that
it can be numerically compared with temperature? One way is to consider
the ensemble of fxff values as information describing the system. By design,

 fxff = 1.00 holds for this set of values and so the fxff values should be con-
verted to fractions of 1.00. The information content, H , is a value that is
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Table 4.4. Information content of water cell types at
different temperatures

Shannon information content

Temperature asTT PBPP (W) −
 fxff log fxff

0.1 0.467
0.2 0.507
0.3 0.536
0.4 0.548
0.5 0.558
0.6 0.563
0.7 0.570
0.8 0.581
0.9 0.595

calculated using the Shannon equation, Eq. (4.1).

H = −
 fxff log fxff (4.1)

As an example, consider the fxff values for water at 20◦C, in Figure 3.3 of
Chapter 3. The information content is

H = − f0ff log f0ff + f1ff log f1ff + f2ff log f2ff + f3ff log f3ff + f4ff log f4ff = 0.507

If we calculate the H values for various water temperatures, we see results
as shown in Table 4.4. The importance of the information content encoded in
the H value in these studies is that it is a single-numerical description of the
system, water in this case, that can be used to relate to physical property changes
occurring at different temperatures. This approach can be used to evaluate a
property change such as the freezing point depression.

Using the information content, H , to describe the structure at any tempera-
ture, it is possible to estimate the “new” temperature of water when a solute has
been added. An increase in this temperature corresponds to the freezing point
depression because the water must experience a greater decrease in temperature
in order to arrive at the point of solidification.

Example 4.6. Modeling the freezing point depression due to a solute

In this example, the attributes associated with water and solutions contain-
ing various concentrations of a polar solute are calculated and transformed into
“effective temperatures.” The comparisons between these two values are reck-
oned to be a model of the depression in the freezing point of the system. The
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rules in Example 4.6 are used as the reference state in modeling the influence
on the water structure in the presence of a polar solute, S.

Parameter setup Example 4.6. Reference fxff profile

Grid 55 × 55 cells
Water 2100 cells (blue)WW
Solute 0 cells (red)
PMPP (W) = 1.0, PMPP (S) = 1.0 PBPP (WW) = 0.20, J (WW) = 2.0, PBPP (SS) = 0.5,

J (SS) = 0.7, PBPP (WS) = 0.2, J (WS) = 2.0
Run the dynamics for 200 iterations, 10 times
Record the average fxff values for water, then convert these to fractions of

1.00, then calculate the Shannon information content.

Study 4.6. Influence of a solute on the freezing point

The rules in Example 4.6 are used to estimate the effective temperature
resulting from the presence of a solute. In this study, replace 30 water molecules
with 30 solute molecules. Use parameters for these solute molecules reflecting
a moderately polar character, such as PBPP (SS) = 0.5, J (SS) = 0.7 and PBPP (WS) =
0.2, and J (WS) = 2.0. Run the dynamics and collect the fxff values for the water.
Convert these fxff values as fractions of 1.00. Compute the Shannon information
content, H , for this set of parameters.

From these results it is possible to make another estimate of a property of
the solution system. It is known that the freezing point of a solvent is lowered by
approximately 1.86◦C for every mole of the solute present. From the estimates
of the temperature of the solvent and the solution modeled above, the decrease
in the temperature can be estimated. From this value, the number of cells
comprising a “mole” of solute may be reckoned. Thus, a value may be stated
for an imaginary “molecular weight” of the cells used in the study.

4.5. A model of solute aggregation

At the molecular level in biology, the solution is the common method of
transport of nutrients and wastes throughout the organism. The solution is a
system, ubiquitous in every living being; it may be thought of as a part of the
definition of “living.” Recognizing its importance, we may ask some searching
questions about its character; when is a substance “dissolved”?; what is the
nature of the “dissolved” state?; why does a solute remain “dissolved”?; what
conditions promote this state? Experiments probing these issues are compli-
cated by the difficulty in isolating just one variable for study in a complex
mixture of influences. We have found one approach to this problem in earlier
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Figure 4.4.FF A plot of solute structure types as a function of hydropathic state

studies on water and solutions, namely the use of cellular automata to model
the system.

Study 4.7. Modeling solute aggregation

In this study we are interested in the attributes of a solute in water as condi-
tions change in the entire system. For example, we want to examine the profile
of solute molecules through their fxff values when conditions are varied. As an
example, what is the fxff profile of a solute when the hydropathic state of the
solute is changed from polar to nonpolar. In Figure 4.4, the hydropathic state
is varied using various parameters for PBPP (WS) and J (WS). The fractions of
solute existing in each of the fxff states is recorded for various parameter sets.
Figure 4.4 reveals an interesting pattern. An inquisitive and creative student
should explore these ideas.
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Chapter 5

DYNAMIC AQUEOUS SYSTEMS

When water turns to ice does remember one time it was water? When ice
turns back into water does it remember it was ice?

—Carl Sandburg

We have introduced the use of cellular automata modeling of water and possibly
some other solvent, and have observed the influence of solutes on the emergence
of properties in these complex systems. In this chapter we consider a few,
more complex chemical systems that may lend themselves to cellular automata
modeling. We will discuss several of these and then suggest some studies for
the reader.

5.1. Oil–water demixing

Systems composed of two liquids that possess low intersolubility are of con-
siderable interest in chemistry because they mirror some biological phenom-
ena. In particular, a two-phase liquid system possesses some characteristics of
membranes and their aqueous surroundings. The two-phase system of nonpolar
liquid and water has been used to quantify the property of hydrophobicity, the
propensity of a solute molecule to partition in some ratio between two immis-
cible liquids. This propensity is the attribute used to model the expectation of
a drug molecule to cross cell barriers and to enter the brain. Much effort has
gone into measuring and predicting this property of a candidate molecule in
drug research.

The behavior of two liquids that are sparsely soluble in each other is a
familiar one to any experimental chemist. If we shake ether and water in aff
separatory funnel and observe the system at equilibrium, we see that the liquids
have settled in two layers. The reader is asked to identify which liquid is the
bottom layer. If water and chloroform are shaken, the system again equilibrates

73
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to a two-phase system. Which layer is the water? The process of separating, or
demixing, is a dynamic event that is interesting to watch. Questions arise as to
the behavior of the two liquids as they separate, and the nature of the interface.
Another interesting question is the behavior of a solute, shaken with the two
liquids. Where does the solute end up? What properties of a solute make it
more concentrated in the water; or in the ether?

These questions are addressed in a well-designed laboratory experiment. But
in the lab we can only see certain things, all associated with the bulk liquids made
up of vast numbers of molecules. It would be interesting to attempt to model the
demixing and partitioning phenomena at the level of a few molecules. This is
the molecular system level that we have described in Chapter 2. Some models
have been described using molecular dynamics and Monte Carlo simulations.
Kier and Cheng have reported on a cellular automata model of demixing and
partitioning of a solute [1,2]. We describe this here and introduce some new
procedures and rules.

5.1.1. Experimental design

In order, for the two liquids to separate into two phases, they must be very
weakly soluble in each other. When exposed to each other by mixing or shaking
in a separatory funnel, they may not interpenetrate each other’s realm to any
extent. At the molecular level, we infer that the two species of molecules have
no significant affinity for each other, rather they are predominantly attracted to
other molecules with the same structure. To model this aversion, the joining
and breaking rules must encode this behavior. The cells of liquids X and Y must
respond to rules typified by those shown in the parameter setup tables below.
With these rules we anticipate that liquid X will favor associating with otherWW
X molecules, while molecule Y will be found predominantly among other Y
molecules.

It is observed that the CA dynamics, with these rules, results in a pattern
in which clusters of X are scattered among clusters of Y. This is not what is
seen in the laboratory. In reality, two immiscible liquids will separate into two
layers, each responding to a different influence from gravity. What the CA
model shows is the separation experienced in the weightlessness of space. A
gravity rule must be added.aa

5.1.2. The gravity rule

The gravity rules were described in Chapter 2. They are selected to impart
a different orientation among molecules X and Y. If the gravity rule, GR(XY)
favaa ors X over Y, then X molecules will tend to be the upper layer. The relation-
ship of up and down for relative gravity now requires a reference in the grid
construction for these gravity rules to be operative. There must be an upper and
a lower boundary on the grid. Therefore, the X and Y molecules cannot pass
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Figure 5.1.FF A cellular automata grid on the surface of a cylinder. This design permits the use of
a parallel set of boundaries, while the other two sides are continuous

through the bottom of the grid as is the case of an unbounded grid on the surface
of a torus. In effect we use a grid on the surface of a cylinder (Figure 5.1).

Application 5.1. Immiscible solvent demixing

In this application the reader will examine the influence of the interrelation
between the two liquids on the extent and rate of the demixing process. In
Example 5.1, the two liquids have a modest affinity for each other, characterized
by rules describing a relatively low breaking probability rule between them.
These setup data are found in Parameter setup 5.1.

Example 5.1. Demixing of two immiscible liquids

This example describes two liquids, X and Y, with parameters that describe
their aversion to each other. This is accomplished with PBPP (XY) = 0.5 and
J (XY) = 0.7. The gravity terms are created to impart a preference for one
ingredient to move lower in the grid than the other ingredient. In this example
setup, the Y is slightly favored to move lower than the X ingredients. Use
Example 5.1 in the program CASim to run this example.

Parameter setups for Example 5.1. Demixing

Grid 55 × 55 cylinder with top and bottom boundaries
Liquid X 1050 cells (blue)
Liquid Y 1050 cells (green)
PBPP (XX) = 0.4, J (XX) = 1.0, PBPP (YY) = 0.4, J (YY) = 1.4, PBPP (XY) = 0.5,
J (XY) = 0.7
GR(XY) = 0.35, GR(YX) = 0.20
Run the simulation 1000 iterations, and then adjust the run time to observe

a well-formed interface.
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Figure 5.2.FF A cellular automata model of the interface between two immiscible liquids, after
the demixing process has reached an equilibrium

Observe the progress of the demixing. Make a rough estimate of the time
required to achieve a clear interface with this set of parameters. The interface
seen after a long run is shown in Figure 5.2.

Studies 5.1a and b. Variation of rules in demixing studies

Repeat the study using the same conditions but change the rules relating to
the two ingredients. In this study use PBPP (XY) = 0.9 and J (XY) = 0.18. Estimate
the number of iterations needed to achieve an interface at a rough equilibrium.
Repeat the study using the same conditions but with the rules describing a
closer relationship between the ingredients. Use PBPP (XY) = 0.2 and J (XY) =
2.0. Compare the extent of demixing among these three studies, and note what
influence the similarities in polarity have on the demixing process. Draw some
conclusions about the necessary properties of any two liquids that make them
immiscible and that permit demixing when they are homogenized. It is also
very interesting to observe the progress of the demixing. This process can be
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halted along the way to inspect the structures at the modeled molecular system
level.

Application 5.2. Partition coefficients

The modeling of the partitioning of a solute between two immiscible liquids
is now possible using the parameter setups described in Example 5.1 and Stud-
ies 5.1a,b. The solute may be assigned PBPP and J values, reflecting a preference
for one or the other solvents. For example, we may introduce a solute into the
mixtures described in Example 5.1, by replacing an equal number of X and Y
molecules with a third ingredient designated as solute, S. The solute, S, should
be given joining and breaking parameters, reflecting its relationship to liquids
X and Y.

Example 5.2. Partitioning of a solute between two liquids

In this example, a solute is introduced into the system described in
Example 5.1. We introduce 50 molecules of solute, S, by subtracting 25 cells
each from liquids X and Y. Joining and breaking parameters are selected for
the SX and SY relationships, shown in Parameter Setup 5.2.

Parameter setups for 5.2. (Example) Partitioning

Grid 55 × 55 cylinder with top and bottom boundaries
Liquid X 1025 cells (blue)
Liquid Y 1025 cells (green)
Solute S 50 cells (red) random initial distribution
PBPP (XX) = 0.4, J (XX) = 1.0, PBPP (YY) = 0.4, J (YY) = 1.4, PBPP (XY) = 0.5,
J (XY) = 0.7 PBPP (SX) = 0.1, J (SX) = 2.8, PBPP (SY) = 0.7, J (SY) = 0.36,
PBPP (SS) = 0.5, J (SS) = 0.7 GR(XY) = 0.35, GR(YX) = 0.20
Run the dynamics for 2000 iterations, then record the number of solute, S,
molecules in each phase.

The partition coefficient is the log of this ratio. Figure 5.3 shows an example
of the partitioning of a solute between two phases.

Study 5.2. Variations in the hydropathic state of the solute

In the following studies change the parameters of the solute shown in
Example 5.2. For example, use PBPP (SX) = 0.7, J (SX) = 0.36, PBPP (SY) = 0.1,
and J (SY) = 2.8, replacing the corresponding parameters shown in Exam-
ple 5.2. Run the dynamics and observe the difference from Example 5.2. Look
at the cover of the book. Repeat with a variety of parameters for the solute, S.
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Figure 5.3.FF A cellular automata model of the interface between two immiscible liquids, after the
demixing process has reached an equilibrium. A solute (encircled cells) has partitioned into the
two phases according to its partition coefficient

5.1.3. Observations of runs

In each of the studies described above, the reader is encouraged to watch the
development of the two phases from the original homogeneous mixture. Note
that there is significant clustering of like molecules well before two discrete
phases form. Another observation is the ragged nature of the interface. It is not
a smooth discrete separation in this molecular system level model.

5.2. Modeling micelle formation

We have seen how solutes behave in terms of dissolution, hydrophobic
effects, and diffusion. With cellular automata it is possible to examine the
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Figure 5.4.FF An example of variegated cells that may be used in modeling an amphiphile
molecule with different trajectory rules for the different types of edges

behavior of certain molecules that have distinct topological features that in-
fluence more complex patterns of organization. One such molecule is the am-
phiphile. These are molecules with two different structural features imparting
both hydrophobic and hydrophilic inter-molecular interaction behavior. Am-
phiphiles are prominent as surfactants, bile salts, and components of cell mem-
branes. Typically they have a large fragment that is quite hydrophobic in nature.
This fragment may be a long-chain alkyl group or a phenyl group. The other
part of the amphiphile is often a carboxylate or phosphate group with notable
affinity for interaction with water.

Application 5.3. Formation of micelles

The amphiphile can be modeled using one of the variegated structures de-
scribed earlier [3], as shown in Figure 5.4. Each part of the cell modeling the
amphiphile is endowed with a separate set of rules imparting the appropriate
hydropathic state. Because the hydrophobic fragment, X, is usually much larger,hh
it is appropriate to model it with three of the four cell faces. This is the light
portion of the cell in the simulation. The hydrophilic fragment, Y, is modeled
by the dark cell face.

Example 5.3. Modeling micelle formation

An example of parameters for these two molecular fragments is: PBPP (WY) =
0.2, J (WY) = 2.0 and PBPP (WX) = 0.80, J (WX) = 0.25, where Y is the hy-
drophilic fragment and X is the hydrophobic fragment. The other parameters
are modeled with PBPP (XX) = 0.2, J (XX) = 2.0, PBPP (YY) = 0.5, and J (YY) =
0.70. The water temperature can be varied to study its influence on the emer-
gent properties. Use a grid of 55 × 55 with 100 amphiphiles and 2000 water
molecules.



80 Chapter 5

Parameter setups for Example 5.3. Micelle model

Grid 40 × 40 cells on a torus
Water, W are 1000 cellsWW
Solute molecules, S, are 100 cells, each with 3 hydrophobic faces, X, and
one hydrophilic face, Y
PBPP (WW) = 0.25, J (WW) = 1.70
PBPP (XX) = 0.2, J (XX) = 2.0, PBPP (YY) = 0.5, J (YY) = 0.7, PBPP (XY) = 0.5,
J (XY) = 0.7
PBPP (WX) = 0.8, J (WX) = 0.25, PBPP (WY) = 0.20, J (WY) = 2.0
Run the dynamics for 1000 iterations, pausing when an interesting structure

appears.

The reader is encouraged to run this model and collect the average cluster
size of amphiphile cells. Observing the run reveals a view of the emergent
property known as micelle formation. Periodic halting of the run when these
micelles are prominent will be of interest. Try a screen grab of several good
examples.

Study 5.3. Water temperature effects on micelle formation

Systematic variation in the water temperature, (WW), will produce a profile
reflecting this influence. Vary the PBPP (WW) and J (WW) values in Example 5.3
to simulate different water temperatures. Run the dynamics for these different
water temperatures to observe its influence. Note whether this is a linear or
nonlinear effect on the cluster size. The structures formed may be quantified
by recording the average micelle cluster size. The typical pattern looks like the
examples in Figure 5.5.

Figure 5.5.FF Examples of a cellular automata modeling of micelle formation. The dark faces
of each cell model the hydrophilic part of the amphiphile, while the light faces model the
hydrophobic features of the amphiphile moleculehh
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Figure 5.6.FF Cell types that may be used in modeling crystal formation

5.3. Modeling crystal formation

The micelles just discussed, represent a phenomenon arising from a hetero-
geneous set of surface properties of a molecule. Part of a molecular surface is
hydrophobic and part of it is hydrophilic. In the presence of water the affinitieshh
of each part may lead to a pattern of self-adhesion, producing a micelle. The
structure of the micelle is such that the system remains in solution. An alter-
native consequence of the encounters of solute molecules is the formation of
aggregates of solutes, large enough to destroy their ability to remain in solution.
These structures leave the water environment as precipitates. Sometimes the
form that they assume is a highly regular aggregate called a crystal.

Application 5.4. Crystal formation

Crystal formation occurs as a local event, self-organizing into a reoccurring
system of molecules that have a uniform arrangement throughout the aggregate.
The formation of such a system lends itself to modeling with cellular automata.
If we select cells with variegated faces, as in Figure 3.4 in Chapter 3, we would
anticipate formation of aggregates of different patterns of organization. As an
example, consider the possible variegated cells in Figure 5.6.

If we prescribe rules for one type of cell in Figure 5.6, where the, a, faces
form strong bonds with each other, while the, bb, and, ab, junctures are not
strong, we anticipate a particular pattern of crystal structure to form.

Example 5.4. Crystal formation with a selected rule

Use the first cell type aabb shown in Figure 5.6 for this study. Use the
following parameter setups.

Parameter setup Example 5.4. Formation with aabb cell

Grid 40 × 40 on a torus
Water 900 cells (blue)WW
Solute 200 variegated cells with face pattern aabb
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PBPP (WW) = 0.2, J (WW) = 2.0 PBPP (aa) = 0.1, J (aa) = 2.8, PBPP (bb) = 0.9,
J (bb) = 0.18
PBPP (ab) = 0.9, J (ab) = 0.18
PBPP (Wa) = 0.5, J (Wa) = 0.7, PBPP (Wb) = 0.5, J (Wb) = 0.7
Count the number of unions of (a) faces with each other.

Observe the patterns created by this set of rules. Pause the run when a
particular pattern develops and save the image.

Study 5.4. Crystal formation with the abab cell type

Repeat the run using abab cells and the parameter sets in Example 5.4.
Other sets of rules can be used, varying the parameters reflecting strong and
weak probabilities in Example 5.4. The variety of cells in Figure 5.6 can be
considered for further studies. Rules of joining and breaking among the different
cell types can lead to a rich mixture of aggregates modeling different crystal
types.

5.4. Modeling percolation

Percolation is a phenomenon associated with ingredients in a system reach-
ing a critical state of association, so that information may be transmitted from
one ingredient to another across or through the system without interruption.
This can be demonstrated by considering a system with a grid of spaces shown
in Figure 5.7. Some objects under study are randomly distributed throughout
this grid (Figure 5.7a). Because of the sparcity of these objects, little or no phys-
ical contact is encountered. No information is exchanged within the system. If
enough additional objects are randomly added to the system (Figure 5.7b), a
finite probability arises such that some of these objects may be associated to
form clusters. Some exchange of information occurs within the clusters, but
the clusters are isolated, and so the information exchange is confined within
each cluster. If enough objects are randomly added to the system, the possibility
arises that some clusters may appear united as a single cluster, which spans the
entire length or width of the system. This spanning cluster produces a conduit
through which an uninterrupted flow of information is possible across the sys-
tem. This flow of information takes place within a process called percolation
(Figure 5.7c). The minimum number of objects randomly placed in the system,
necessary to have a finite probability of percolation occurring, is called the
percolation threshold or the percolation point.

Percolation is widely observed in chemical systems. It was first recognized
as a method to describe how small, branched molecules react to form polymers,
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Figure 5.7.FF (a–c) Stages of grid occupancy leading up to a percolating cluster. In this case there is
a continuous path of connected, occupied cells leading from one edge of the grid to the opposite
edge

ultimately leading to an extensive network connected by chemical bonds. The
relevance of percolation theory to the critical behavior of sols and gels was a
major advance in understanding the physics and chemistry of these systems.
The structured continuum of water is an example of a percolating system.

Application 5.5. Percolation

The configuration of a system in which percolation may occur is classically
treated as one in which the ingredients do not move. Considerable work has
been devoted to these static models, leading to numerical solutions of the crit-
ical concentrations and cluster sizes associated with a percolation threshold.
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These have been worked out mathematically for several grid structures and
dimensions. In reality, the ingredients in a system are not static, but they may
exhibit dynamic behavior within the system. This may give quite different re-
sults for the example in Figure 5.7c, when the percolation threshold is sought.
One approach to the study of discrete, dynamic systems is through the use of
computer simulations using cellular automata. Kier et al. and Testa et al. have
used CA to model a two-dimensional dynamic system of varying concentra-
tions, to study the onset of percolation and large-cluster behavior, both visually
and numerically [4,5].

In the following example and studies, the reader will form an estimate of the
number of cells (concentration) that produces a 50% probability of forming a
static percolating system. Using increasingly larger concentrations, say 100 cell
increments on a 55 × 55 cell grid, compute the average number of cells neces-
sary to produce a 50% probability of a percolation cluster to form. Repeat this
with several concentrations of randomly introduced nonmoving cells. It is not
necessary to run any dynamics since the initial random placement of cells is a
permanent condition. This study becomes a reference against which a dynamic
system may be compared.

Example 5.5. Percolation in static systems

Run this example using the following parameter setup. Record the average
cluster size and the percent of percolations over a number of runs. The number
of iterations will be zero and only the initial grid configuration will be used. A
suggested number of runs is 1000.

Parameter setup 5.5. (Example) Percolation in static systems

Grid 55 × 55 cells on a torus
Cells, A, 300 random in initial configuration of the grid
PBPP and J values are all zero
PmPP = 0
Use only the initial random placement of A cells
Run 100 times and report the average cluster size
Report any possible percolations as a percentage of 100 runs.

Studies 5.5a–c. Parameter variation in static systems

Run these studies with the parameters shown in Example 5.5. Vary the
number of A cells using 600, 900, and 1200. Record the average number of
percolations over a number of runs. Estimate the number of A cells that produce
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a percolating event in 50% of the runs. This is the percolation point for static
ingredients.

Studies 5.5d. Percolation among dynamic ingredients

Repeat 5.5a–c, only allow the ingredient cells, A, to move freely, using
PmPP = 1.0, PBPP (AA) = 0.4, and J (AA) = 1.0. At each concentration level, 300,
600, 900, and 1200 A cells, average the number of percolating clusters over
some constant number of iterations, say 100. Repeat each concentration study
50 times, compute the percentage of percolation at each concentration, and
estimate the concentration producing 50% of the time, a percolating system.
Compare this value with the result from a static system, as in Example 5.5.
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Chapter 6

WATER–SURFACE EFFECTS

I have been carried . . . into the sanctuary of minuteness and of power, where
molecules obey the laws of their existence, clash together in fierce collision, or
grapple in yet more fierce embrace, building up in secret the forms of visible
things.

—James Clerk Maxwell [1]

In this chapter we address several phenomena involving a solvent, principally
water, and a stationary surface. These include various wetting and wall effects,
chromatography, and membrane passage. Some of these phenomena have been
modeled with cellular automata, and a brief description of those studies will be
presented. Each of these examples opens up a wealth of possibilities for future
work, and the reader is urged to pursue some studies that these may inspire.

6.1. Water–vessel surface encounters

Interest in relationships between water solutions and stationary surfaces
is revealed in a variety of research applications, including studies of wet-
ted surfaces, heterogeneous catalysis, fluid flow, flow through blood vessels,
colonic pathologies, and ligand–protein encounters. A number of studies have
focused on nonpolar solutes and water as models of what might be occurring
at macroscopic, nonpolar surfaces. Effects of a surface on water structure may
extend more than 10 Å̊̊ into the liquid. Weak hydrogen bonding between wa-
ter molecules and strong orientation effects may prevail near the liquid–solid
interface, depending on the hydropathic states of these two entities. Water con-
fined at a Janus interface (consisting of opposed hydrophobic and hydrophilic
surfaces) produces a dewetting at the hydrophobic surface and an accumula-
tion at the opposing hydrophilic surface. As a consequence of these contrary
tendencies, the confined water exhibits a fluctuating, complex behavior.

87
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Studies described in earlier chapters used cellular automata dynamics to
model the hydrophobic effect and other solution phenomena such as dissolu-
tion, diffusion, micelle formation, and immiscible solvent demixing. In this
section we describe several cellular automata models of the influence of the
hydropathic state of a surface on water and on solute concentration in an aque-hh
ous solution. We first examine the effect of the surface hydropathic state on the
accumulation of water near the surface. A second example models the effect of
surface hydropathic state on the rate and accumulation of water flowing through
a tube. A final example shows the effect of the surface on the concentration of
solute molecules within an aqueous solution.

Application 6.1. Solvent–wall relationships

In this application the influence of the wall’s hydropathic state on the accu-
mulation of water molecules near the wall is examined. The system used is a grid
of 55 × 55 = 3025 cells of which 2100 (69%) are occupied by ingredients rep-
resenting water molecules. The vertical sides of the grid are composed of fixed
cells, B, with defined hydropathic states. Each water molecule, W, is allowed
to move and interact with other water molecules according to the water–water
joining rule J (WW) = 1.10 and the water–water breaking rule, PBPP (WW) =
0.375. As determined in earlier studies, these parameters correspond to a water
“temperature” of 37.5◦C. The parameters governing interactions between the
wall cells, B, and the water molecules, W, define the hydropathic state of the
wall. Sets of parameters are used, PBPP (WB), and J (WB), shown in Table 6.1.
Five different sets of these parameters are used, representing a variation from
a hydrophilic wall surface (Cases 1 and 2) to a hydrophobic surface (Cases 4hh
and 5) listed in Table 6.1.

Example 6.1. Effect of wall hydropathic state on water.
Case 1 in Table 6.1.

In these studies the wall hydropathic state is varied to reveal the influence on
nearby water molecules. In this example the wall is defined as a polar surface.

Table 6.1. Rules encoding the hydropathic states of wall cellsa

Case no. Wall state PBPP (WB) J (WB)

1 Polar 0.10 2.80
2 Moderately polar 0.30 1.40
3 Neutral 0.50 0.70
4 Moderately nonpolar 0.70 0.36
5 Nonpolar 0.90 0.18

a B = wall cells and W = water cells.
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The parameter values are shown in the following Parameter Setup. Fifty runs of
1000 iterations each are carried out, and data collected in every 100 iterations,
between 500 and 1000 iterations in each run.

Parameter setup Example 6.1. Effect of wall hydrophobic
state on water

Grid 55 × 55 cells on a cylinder
Cylinder border, B, 110 cells
Water, W, 2100 cells (blue)WW
PBPP (WW) = 0.375, J (WW) = 1.1, PBPP (WB) = 0.10, and J (WB) = 2.8
Run 50 times, with 1000 iterations in each run
Record average number of W cells in each of the five columns adjacent to

each border of the cylinder
Collect data in every 100 iterations, between 500 and 1000 iterations.

Studies 6.1a–d. Variation of wall hydropathic state

The wall hydropathic state is varied in these studies, ranging from polar, as
in Example 6.1, to very nonpolar in the last study in this series. See Table 6.1
for the (WB) values to be used in the studies. Record the average number of
water cells, W, in each of the five columns out from each wall.

Discussion

The numbers of water molecules in each column, starting at column 1
adjacent to each wall and proceeding out five columns, are recorded. Some
results (averaged) that we have obtained [2] are shown in Table 6.2. The studies
with hydrophilic walls, Cases 1 and 2 shown in Table 6.2, reveal a significant
tendency for water to accumulate near the wall. The concentrations in Table 6.2
should be compared with the value of 38.2 water molecules, which is the average
concentration per column for a uniform distribution of water within this grid.
Cases 1 and 2 thus reveal a typical “wetting” of the polar wall by the polar solvent
water. In contrast, when the wall is hydrophobic, as in Cases 4 and 5, there are
fewer water molecules adhering to the wall. This is a surface manifestation
of the hydrophobic effect, commonly referred to as surface dewetting. The
results from all the five Cases, illustrated in Figure 6.1, display the forming of
familiar surface shapes, called menisci, arising from the behaviors of wettingff
and nonwetting fluids at a solid surface.

Studies 6.1e and f. Effect of water temperature on wetting properties

Repeat the runs described in Example 6.1, using a lower and a higher water
temperature, for example PBPP (WW) = 0.2, J (WW) = 2.0 and PBPP (WW) = 0.7,
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Table 6.2. Water concentrations in columns influenced by wall hydropathic stateWW a

Case no.b

Column 1 2 3 4 5

1 52.8 45.4 30.9 16.3 7.2
2 39.1 38.4 37.7 36.4 36.0
3 37.4 37.9 38.5 39.3 39.7
4 36.9 37.5 38.6 39.5 39.9
5 36.6 37.4 38.5 39.8 40.1
6 36.7 37.4 38.7 39.3 40.2
7 36.8 37.3 38.4 39.3 40.3
8 36.9 37.7 38.5 39.0 40.1
9 37.3 37.7 38.1 39.0 39.8

10 37.0 37.2 38.7 39.4 39.0
27c 37.4 37.2 37.8 38.4 38.8

a Water concentrations are averaged from the two comparable columns at either side of the grid.WW
b See Table 1 for descriptions of the wall hydropathic state.
c The unique, central column.

J (WW) = 0.5. Record the concentrations of water found in columns 1–5 from
each surface, as shown in Table 6.2.

Figure 6.1.FF Density (number of water molecules) in each column, out from the wall. Each
series represents one case varying hydropathic state of the wall

Application 6.2. Effect of wall hydropathic state on water flow

This application is designed to model the influence of the hydropathic state
of the wall on the flow rate of water through a tube or other vessel. The system
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Table 6.3. Water flow rates influenced by wall hydropathic state (net downwardWW
movement of cells in a column per iteration)

PBPP (WB)

Column no. 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 2.0 2.3 4.6 6.2 6.5 6.4 4.9 3.2
2 4.1 4.3 4.5 4.5 4.7 5.3 5.4 4.9
3 4.7 4.7 4.5 4.5 4.7 4.2 4.2 4.1

Middle four columns 4.8 4.4 4.6 4.5 4.2 4.3 4.2 4.0

chosen is a vertical cylinder 55 cells long and 55 cells wide. The vertical cell
walls are bounded by fixed rows of stationary cells, B, simulating the wall.
The direction of water flow is parallel to the bounded walls of the grid. As
in Example 6.1, the water rules are set so as to simulate a temperature of
37.5◦C. The flow is modeled using the absolute gravity rule described earlier
in Chapter 2. The rate of flow of the water through the cylinder is computed
as the difference between the number of water ingredients moving down in a
column and the number of water ingredients moving up in the column. The
rate is expressed as the average net movement in the 55 cells of each vertical
column per iteration. Since one pair of borders in the cylinder is unbounded,
molecules moving past the bottom of the grid appear at the top of the cylinder
and continue their passage through the system. In addition to the flow rate,
the concentration of water in vertical columns is recorded for each set of wall
hydropathic state rules, as shown in Table 6.3.hh

Example 6.2. Influence of water flow rate on wall effect

The flow rate is controlled by the absolute gravity parameter as shown in
Parameter Setup 6.2. Run this example to observe the effect of this parameter.

Parameter setup Example 6.2. Influence of flow rate on
wetting effect

Grid 55 × 55 cells on a cylinder
Border, B, 110 cells, 55 cells on each side of the cylinder
Water, W, 2100 cells (blue)WW
PBPP (WW) = 0.2, J (WW) = 2.0, PBPP (WB) = 0.3, J (WB) = 1.4 and

Ga(W) = 0.5
Record flow rate in each of the five columns next to each border.

Study 6.2a. Influence of wall hydropathic state on the flow rate

Repeat Example 6.2, but change character of the wall to a higher and then to
a lower hydropathic state by changing the PBPP (WB) and J (WB) values. Report
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the effect of these flow rates versus hydropathic states of the wall cells. It would
also be of interest to study the effect of water temperature on the flow rate.

Discussion

From these results, and our results shown in Table 6.3, it is seen that the hy-
dropathic state of the wall strongly influences the rate of water flow in the
adjacent column (column number 1 in Table 6.3) but less so in neighbor-
ing columns toward the interior of the cylinder (column numbers 2 and 3 in
Table 6.3). The rate of flow of the column next to the wall increases, as the
hydrophobicity of the wall increases up to abouthh PBPP (WB) = 0.6. At greater
values of the wall hydrophobicity, i.e., higher PBPP (WB) values, the rate of flow
decreases as shown in Figure 6.2. From Table 6.4 it can be seen that the con-
centration of water next to the wall decreases with increased hydrophobicity.
At higher degrees of hydrophobicity, the flow rate in the interior columns de-
creases slightly; however, the concentrations of water molecules in the interior
columns does exhibit a modest increase with increasing hydrophobicity of the
wall (Table 6.4). These observations characterized a hydropathic wall effect on
the flow rate.

Application 6.3. Effect of hydropathic state of solutes
and walls on solutes

This application is designed to analyze the concentrations of solute
molecules near the wall when the hydropathic states of both wall and solutes are
varied. The simulations are run using a grid of 55 × 55 cells forming a cylinder.
The cylinder walls consist of stationary cells, B, that are either polar or nonpolar

Figure 6.2.FF Flow rate of water next to a wall, when the hydropathic state of the wall varies
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Table 6.4. Water concentration in columns near the wallsWW

Column no. 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 193 165 141 114 80 57 40 24
2 140 140 135 139 139 136 136 139
3 135 137 140 140 141 146 146 150
4 129 134 143 141 140 147 147 148
5 133 134 139 140 141 145 149 147
6 133 134 136 140 148 147 147 147
7 134 135 139 143 145 145 146 148
8 136 135 139 145 144 147 145 148
9 138 137 141 145 144 144 147 143

10 140 138 140 142 144 146 150 147
Water concentration change inWW

2, 3, 4, and 5 relative to the
average value of 139

−18 −11 0 +4 +5 +11 +22 +28

in character according to their PBPP and J parameters. Four cases are considered
in which combinations of the walls and solute molecule hydropathic states are
defined as polar or nonpolar. These conditions are summarized in Table 6.5.
One hundred and five solute molecules, S, are introduced into the water phase,
replacing a like number of water molecules, creating a 5% solute concentration.
The solute molecules are given either a polar or a nonpolar state as are the wall
cells. These combinations and the results we have found are shown in Table 6.5.

Example 6.3. Wall and solute effects

The water molecules are given a “temperature” of 37.5◦C as in the previ-
ous examples. The rules for a polar solute relative to water are PBPP (WB) and
PBPP (WS) = 0.20; J (WB) and J (WS) = 2.00. For a nonpolar solute relative to
water, the rules are PBPP (WB) and PBPP (WS) = 0.80 and J (WB) and J (WS) =
0.25. The simulation is run and the configurations of each run are recorded
after 5000 iterations. The concentrations of both solute and water molecules

Table 6.5. Rules relating wall cells and solute molecules

Hydropathic state Solute concentration

Study no. Solute Wall In first column

1 Polar Polar 1.5 ± 0.1
2 Polar Nonpolar 0.1 ± 0.03
3 Nonpolar Polar 0.1 ± 0.02
4 Nonpolar Nonpolar 18.2 ± 0.4
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in columns close to the wall are averaged over the final 200 iterations and
recorded.

Parameter setup Example 6.3. Wall and solute effects

Grid 55 × 55 cells, cylinder.
Water, W, 1995 cells (blue).WW
Solute, S, 105 cells (red).
Border, B, 110 cells.
PBPP (WW) = 0.375, J (WW) = 1.1, PBPP (SS) = 0.5, J (SS) = 0.7
PBPP (WS) = 0.2, J (WS) = 2.0, PBPP (SB) = 0.5, J (SB) = 0.7, PBPP (WB) = 0.2,

J (WB) = 2.0

Run the simulation for 1000 iterations. Average, over the last 200 iterations,
the count of S cells in each of the five rows next to the border cells.

Studies 6.3a–c. Effect of wall and solute states on solute distribution

The same system is run using a nonpolar solute. The WS parameters are
changed to reflect this attribute of the solute using PBPP (WS) = 0.8 and J (WS) =
0.25. Record the number of S cells out of five layers from the wall. Repeat using
the other combinations of solute and wall states as shown in Table 6.5.

Discussion

The cellular automata models portray the presence of water with and with-
out a solute, near surfaces of differing hydropathic states. In the first example,
the simulation reveals the presence of water molecules in greater than av-
erage numbers near a wall composed of relatively hydrophilic cells. This is a
manifestation of the “wetting” effect of a polar solvent on a polar wall, resulting
in a concave upward meniscus at the wall. In contrast, when the cells composing
the wall are relatively hydrophobic, the concentration of water molecules at the
wall is less than the average expected in a random distribution, and a nonwet-
ting, concave downward meniscus is formed. This latter result corresponds to
a classical “hydrophobic” effect. Using these simulations, it is observed that
the effect of the wall on nearby water operates over two or three layers of water
molecules, leaving the interior water relatively unaffected, a pattern consistent
with experimental and theoretical studies.

The second example simulates the flow of water near the wall surfaces, rang-
ing from very hydrophilic to very hydrophobic in character. These simulations
suggest that the water flow rate at the wall first increases as the character of the
wall changes to a more hydrophobic state but then decreases at still greater wall
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hydrophobicity. This nonlinear behavior is likely a consequence of two compet-hh
ing factors influencing the flow rate. For a hydrophilic wall, adhesion of water
to the wall (and its influence on the adjacent columns) retards the flow rate.
As the wall becomes less hydrophilic (more hydrophobic) there is a weakening
of the affinity of the water for the wall, and the flow rate increases as seen in
Figure 6.2. At the same time, there occurs an increase in the hydrophobic effect
near the wall, resulting in decreased concentration and increased intermolecular
attraction and organization of the water in that region. The lower concentration
and increased self-affinity of water near the wall acts to retard the rate of flow,
and at still higher wall hydrophobic states, these effects dominate. The overall
result of these intersecting effects is a “dome-shaped” variation in the rate of
flow with a maximum occurring at an intermediate hydropathic state of the
wall, as shown in Figure 6.2.

The third application reveals the effects of wall and solute hydropathic
states on the accumulation of solute molecules at the wall. The studies show
that hydrophobic solutes accumulate in significant concentration at walls with
hydrophobic character.hh

6.2. A model of chromatography

Chromatography is a process used for the separation of solutes based on
differences in their affinity for stationary particles in their midst. It is widely
used in purification and analysis, where the identity and concentrations are
of interest. The procedure employs a stationary bed of particles which have
surfaces covered with a layer of molecules with chosen properties. Solutes
in a liquid solvent, called the mobile phase, are allowed to pass through the
stationary bed, permitting interactions between the surface molecules and the
solutes. If two solutes have characteristics permitting one to be more closely
attracted to the particle surface than the other, then the weakly interacting
solute will pass through the stationary bed and will eventually separate from
the more tightly bound solute. This is a dynamic system, one that lends itself
to modeling and study using cellular automata. Kier et al. have reported such a
model [3].

6.2.1. Structure of a model

The structure of a chromatography model includes the dimensions of the
system, the concentrations of the solutes and the stationary phase, plus the
probabilities for interactions between the ingredients. A cellular automata grid
of 43 × 100 cells is used (Figure 6.3). The sides of the long dimension are
impenetrable boundaries, while the top and bottom short dimension edges are
open. A cell moving below the bottom edge of the grid will reappear at the top
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Figure 6.3.FF A CA grid on a cylinder showing the flow of an ingredient in one direction

of the grid. The grid is thus a cylinder with a continuous surface around the long
dimension, as shown in Figure 6.3. The stationary bed is made up of 600 cells
randomly dispersed on the grid. No two stationary cells are allowed to be any
closer than a three-cell separation. The solvent is modeled by the presence of
water cells at a concentration of 69% of the grid space, in the grid. The total
grid size is 43 × 100 = 4300 cells. If 300 cells of this space are occupied by
the stationary cells, then the remaining free space is 4000 cells. The solvent
is assumed to occupy about 69% of this free space (as previously assumed in
studies using water). Finally, the solutes are represented by a small number of
cells with different properties for each cell type. This is the structure of the
model as used by Kier et al. to study different properties of a chromatographic
separation [3].

6.2.2. The rules

A series of rules describing the breaking, PBPP ,and joining, J , probabilities
must be selected to operate the cellular automata model. The study of Kier was
driven by the rules shown in Table 6.6, where S1 and S2 are the two solutes, B, the
stationary cells, and W, the solvent (water). The boundary cells, E, of the grid are
parameterized to be noninteractive with the water and solutes, i.e., PBPP (WE) =
PBPP (SE) = 1.0 and J (WE) = J (SE) = 0. The information about the gravity
parameters is found in Chapter 2. The characteristics of S1, S2, and B relative
to each other and to water, W, can be interpreted from the entries in Table 6.6.

6.2.3. The dynamics

The solute cells are placed in a row at the top of the grid. The gravity terms
shown in Table 6.6 are designed to simulate a flow of S1, S2, and W cells,
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Table 6.6. Trajectory parametersT

Encounters PBPP (xy) PJPP (xy) Interpretation

B–B 0.999 0.001 Stationary, at least 3 cells apart
B–S1 0.90 0.20 Affinity for B
B–S2 0.10 2.00 Affinity for B
B–W 0.90 0.10 Solvation of B
S1–S1 0.90 0.10 Interrelation of S1

S1–S2 0.90 0.10 Interrelation of S1 and S2

S2–S2 0.90 0.10 Interrelation of S2

S1–W 0.90 0.10 Solvation of S1

S2–W 0.90 0.10 Solvation of S2

W–W 0.90 0.10 Relative polarity of solvent
G(S1) = 10 Flow rate of S1

G(S2) = 10 Flow rate of S2

G(W) = 10 Flow rate of S2

Column dimensions = 43 × 100 cells
Water cell content 69% minus 20 solutes and 300 BWW
S1 content = 10 cells
S2 content = 10 cells
B (stationary cells) = 300 cells
Run “time” = 700 iterations
Usual number of runs = 10
System configuration is a cylinder with ingredients flowing back to the top of the system.

through the long dimension of the column. The cells of the long edges of the
grid are stationary boundaries. In other words, the flow created by the gravity
terms, allows movement only through the long dimension. Cells reaching the
bottom of the 100-cell column pass to the top of the column, as on the surface
of the cylinder. Note that the solutes and water always have the same gravity
parameters, thus removing any preselected influence on the relative movements
of any solute.

Application 6.4. Affinity of a solute for the stationary phase

This application reveals the influence of the parameters on the solute–
stationary cell affinity, and the subsequent movement rate of the solute through
the column.

Example 6.4. Solute affinity for the stationary phase

In this example, one solute is used on the column. The PBPP (BS1) and J (BS1)
values control the affinity of the S1 solute for the stationary phase. The pa-
rameters are shown in the Parameter Setup 6.4. In the report, the position of
each solute cell is recorded in groups of five rows from 0 to 100 after a certain
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number of iterations (time). Various times are selected, but the solutes must not
be allowed to pass through row 100 to reappear at the top of the column. Each
time period chosen is repeated 100 times, and the positions of the solute cells
summed for each row. A plot of the number of solutes in each five-row section
at various times should be made. It should appear as a Gaussian distribution.
Repeat this study using other parameters relating the solute to the stationary
cells. Note the position of the distribution maximum in each case. This is a
faithful model of an actual chromatographic analysis.ff

Parameter setup Example 6.4. Affinity of a solute for the stationary
phase

Grid 43 × 100 cells on a cylinder. The long dimension is lined with 2
columns, 100 cells, E, on each side

Water, W, 2657 cells (blue)WW
Stationary phase, B, 300 cells (black) are distributed so that no two cells are

closer than 3 cells
Solute, S1, 10 cells (red) are located in the top two rows of the column
PMPP (W) = 1.0, PMPP (B) = 0, PMPP (S1) = 1.0
PBPP (WW) = 0.5, J (WW) = 0.7, PBPP (WB) = 0.9, J (WB) = 0.1, PBPP (WS1) =

0.9, J (WS1) = 0.1
PBPP (S1S1) = 0.9, J (S1S1) = 0.1, PBPP (S1B) = 0.70, J (S1B) = 0.36
Ga(W) = 3
Ga(S1) = 3
Run 700 iterations, 10 runs
Record the number of S1 cells in each group of five rows.

Studies 6.4a–c. Varying the affinity of the solute for
the stationary phase

In these studies, the simulation in Example 6.4 is repeated using a variety
of PBPP and J values for the B–S1 encounters. Suggested are PBPP /J sets of values
for (BS1) of 0.5/0.71, 0.35/1.19, and 0.2/2.0. Run 700 iterations in 10 runs and
record the average numbers of S1 cells in each group of five rows.

Example 6.5. Relative retention of two solutes

In this example, two solutes are modeled as described for one solute in the
previous Example and Studies. Note that there is a separation of the two solutes
and that the bands representing concentrations differ in their height and width.
This is typical of two different solutes in a chromatography separation. Repeat
this study choosing different parameters for the S1–B and S2–B encounters.
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Parameter setup Example 6.5. Relative retention of two solutes

Grid 43 × 100 cells on a cylinder with the 200 cell dimension fixed cells
Water, W, 2650 cells (blue)WW
Stationary phase, B, 600 cells (black) are distributed so that no two cells are

closer than 3 cells
Solute, S1, 10 cells (red) are located in the top two rows of the column
Solute, S2, 10 cells (green) are located in the top two rows of the column
PMPP (W) = 1.0, PMPP (B) = 0, PMPP (S1) = 1.0
PBPP (WW) = 0.5, J (WW) = 0.7, PBPP (WB) = 0.9, J (WB) = 0.1
PBPP (WS1) = 0.9, J (WS1) = 0.1, PBPP (WS2) = 0.9, J (WS2) = 0.1
PBPP (S1S1) = 0.9, J (S1S1) = 0.1, PBPP (S2S2) = 0.9, J (S2S2) = 0.1, PBPP (S1S2) =

0.9, J (S1S2) = 0.1||, PBPP (S1B) = 0.70, J (S1B) = 0.36, PBPP (S2B) = 0.40,
J (S2B) = 1.0

Ga(W) = 3
Ga(S1) = 3
Ga(S2) = 3
Run 700 iterations, 25 runs
Record the number of S1 and S2 cells in each group of five rows.

Studies 6.5a and b. Variation in the affinities of each solute
for the stationary phase

In these studies, choose different sets of affinities (S1B) and (S2B), and
run these with the same parameters for the other ingredient encounters, as in
Example 6.5. The cellular automata modeling of chromatographic separation
produces a very realistic picture of the events taking place. It provides a visual
and a tabular representation of the influence of variables on the process. The
student is challenged to pursue these models and to compare them with some
of the mathematical descriptions possible from chromatography.

6.3. Modeling membrane permeability

The movement of solutes and water across cell membranes has been of
great interest for many years. It is now recognized that most of the ingredients
entering and exiting a cell pass through channels or are carried across bound
to specialized proteins. Of particular interest is the mechanism whereby water
passes in and out of a cell to maintain a state of osmotic pressure compatible with
a cell’s viability. One way is for the water molecules to pass through channels
along with ions and small molecules. It is also recognized that water molecules
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pass through the cell membrane by a process of passive diffusion. This latter
route relates back to the early consideration of Overton, who proposed a cor-
relation between oil/water partitioning and the propensity to diffuse through
a membrane [4]. The intramembrane residency of solutes has been shown to
be of considerable importance for certain classes of drugs. In these cases the
receptor is within the membrane and access to it is through the membrane. The
process of membrane passage is a dynamic one with insight coming from ex-
perimental evidence. It is also possible that a well-crafted dynamic model of the
ingredients of such a system might produce some understanding of influences
on the process.

In this section we describe a cellular automata model of a semipermeable
membrane separating two compartments [5]. A solute in one compartment has
varied parameters to reflect its relative polarity or lipophilicity. The passage
of this solute into and through the membrane is observed, as this property is
varied.

6.3.1. Structure of the model

We may construct a cellular automata model of membrane permeability
using rules from earlier studies of water and solution phenomena. The model,
shown in Figure 6.4, is a grid of 55 × 55 cells on the surface of a cylinder. A
band of cells, five rows wide across the middle of the grid is designated as a
membrane of which 69% of the space is occupied with a nonpolar ingredient
modeling a lipid. These cells may move laterally based on probability-based
rules but are constrained to remain within the five membrane-designated rows.
Above and below this membrane are compartments of water-designated cells
comprising 69% of the space. In the five rows immediately below the membrane
there are randomly scattered, a number of cells occupied with solute molecules.

6.3.2. Selection of rules for membrane cell ingredients

In these applications we use rules imparting to the membrane lipid cells,
M, a very modest degree of self-affinity, using the parameter set PBPP (MM) =
0.9 and J (MM) = 0.1. The water in the two compartments have identical pa-
rameters PBPP (WW) = 0.375, J (WW) = 1.7, but the computer tracking of the
water cells in each compartment make it possible to follow the movement of
water cells from each compartment, even though they comingle after entering
the membrane layer or pass through it to the alternate compartment. Water in
each compartment designated W1 and W2 for the upper and lower compart-
ments, respectively, is 69% of the cells. The PBPP (WW) parameter chosen for
each is the same and in correspondence with a temperature of approximately
37◦C, as described in Chapter 3. The solute cells, S, may vary in number and
parameter values, reflecting different concentrations and degrees of polarity.
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Figure 6.4.FF Model of a membrane (center horizontal layer of cells) separating two regions of
the grid, both being water

A relatively polar solute has a low PBPP (WS) value and a high J (WS) value.
The rules describing a nonpolar solute have be a high PBPP (WS) value and a low
J (WS) value. The parameters relating solutes to themselves are held constant
at PBPP (SS) = 0.5 and J (SS) = 1.0.

Application 6.5. Effect of solute concentration on water permeation

This application is designed to model the influence of various concentrations
of a solute near one edge of the membrane, on the diffusion of water through
the membrane. Specifically we are interested in determining whether the model
reveals a difference in the flow of water out of one compartment relative to the
other. It is well known that if a semipermeable membrane is impervious to a
solute on one side of a membrane, a greater flow of water from the other side
will occur. This is a model of the osmotic effect, the flow of water through the
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semipermeable membrane producing an increase in the concentration on one
side. In this model the sizes of the two water compartments are inflexible as
to the number of cells they contain. Accordingly we would not anticipate the
appearance of a significant increase in the number of water molecules on one
side of the membrane. This resistance to volume increase is comparable to the
osmotic pressure needed to be exerted to counterbalance the differential flow
of water through the membrane.

Using cellular automata we have an opportunity to model the flow of water
from each compartment into the membrane, when a solute is present on one side
of the membrane. By design, the membrane in our model is composed of 31%
empty cells. At iteration zero, in our dynamics, the membrane contains no water.
After several iterations, there will be flows of water from the two compartments
into the membrane. If we monitor the early stages of this process, we may detect
a possible preference for water to flow from one of the compartments. Such a
condition would model the early stages of the osmotic effect.

To examine this possibility, we introduce a solute near the lower edge of the
membrane. Each solute cell replaces a water-designated cell in that compart-
ment. To create a polar solute, which is unlikely to penetrate the membrane,
we give it the set of parameters, PBPP (WS) = 0.25, J (WS) = 1.7. This corre-
sponds to a solute being quite polar, hence avid toward water rather than the
membrane lipid. We monitored the count of water containing cells entering the
membrane from the two compartments over a few iterations at the beginning
of the dynamics. Only at this early time is the count valid to determine the
source of each water molecule. Later in the dynamics, a water molecule may
pass through the membrane and back into it, hence the origin of the water in
the membrane may no longer be evident. From these observations we find that
a time period between 60 and 150 iterations gives a reliable count of the water
movements into the membrane.

The dynamics for each solute concentration study were run 10 times and
averaged for each 10 iteration periods. Water molecules from the upper and
lower compartments, within the membrane, are designated W1 and W2, re-
spectively. It can be seen from these results that the presence of solutes in the
lower compartment, W2, retards the flow of water into the membrane, relative
to the flow from the upper compartment, W1. In addition, this retardation of
flow increases as the concentration of solute in W2 increases. We anticipate that
these results are comparable to the situation at the earliest manifestation of the
osmotic effect [5].

Example 6.6. Effect of a solute on membrane permeation of water

This example is a model of the influence of a solute, S, near a membrane,
on water passing through a membrane. The membrane contains lipid cells
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constrained to a five-row section in the middle of the grid. An equal number of
water cells lie above and below the simulated membrane. Twenty solute cells,
S, lie in a row beneath the membrane.

Parameter setup Example 6.6. Effect of a solute on membrane
permeation of water

Grid 55 × 55 on a cylinder
Water, W, 1890 cells, rows 0–25, WWW 1 945 cells, rows 31–55, W2 945 cells
Lipid layer, 190 cells, M
Solutes, S, 10 cells (in top three rows of W2 layer of water)
PBPP (MM) = 0.9, J (MM) = 0.1, PBPP (WW) = 0.37, J (WW) = 1.1
PBPP (MS) = 0.8, J (MS) = 0.25, PBPP (MW2) = 0.8, J (MW2) = 0.25,

PBPP (MW1) = 0.8, J (MW1) = 0.25, PBPP (SS) = 0.5, J (SS) = 0.7,
PBPP (WS) = 0.25, J (WS) = 1.7

Count average W1 and W2 passage into the opposite compartments after
500 iterations in 10 runs.

Studies 6.6a and b. Variation in water temperature on water passage

In the following studies, the water temperature is increased to observe the ef-
fect on water passage through the membrane. Change the PBPP (WW) and J (WW)
values to accomplish these changes. See Chapter 3, Table 3.2 for these values.

Application 6.6. Effect of solute hydropathic state
on membrane transport

In this application we examine the influence of solute polarity on its parti-
tioning into, and diffusion through the membrane. The concentration of solute
is held constant at [S] = 30 cells in the W2 compartment. The dynamics are
run 10 times for each value of PBPP (WS), and the results averaged.

In Figure 6.5, the count of the number of solute cells diffusing from the
W2 compartment, into the membrane, and the number diffusing through the
membrane into the W1 compartment is shown for several values of solute
lipophilicity. The permeation of solute through the membrane increases with
increasing lipophilicity up to about PBPP (WS) = 0.50, and then decreases as the
lipophilicity increases. The concentration of solute within the membrane is very
low, as the PBPP (WS) value increases from 0.15 to 0.45. At a value of PBPP (WS) =
0.50, the count of solute molecules in the membrane exhibits a sharp increase
at PBPP (WS) = 0.55, as shown in Figure 6.5 [5].
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Figure 6.5.FF The number of solute molecules passing through the membrane, �, and the
number of solute molecules retained in the membrane, �, when the hydropathic state of theww
solute is varied.

Example 6.7. Membrane passage as a function of solute
hydropathic statehh

The hydropathic state of the solutes, S, is varied, and the passage into and
through the membrane recorded as a function of this solute property.

Parameter setup Example 6.7. Variation of solute hydropathic state

Grid 55 × 55 on a cylinder
Water, W, 1890 cells, rows 0–25, WWW 1 945 cells, rows 31–55, W2 945 cells
Lipid layer, 190 cells, M, in rows 26–30
Solutes, S, 20 cells in the top 3 rows of the W2 layer of water
PBPP (MM) = 0.9, J (MM) = 0.1, PBPP (WW) = 0.37, J (WW) = 1.1, PBPP (SS) =

0.5, J (SS) = 0.7, PBPP (WS) = 0.20, J (WS) = 2.0
Count W1 and W2 passage into the opposite compartments after 100

iterations
Count solute cells, S, in membrane and through it into the W1WW layer.
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Studies 6.7a–c. Variation in solute hydropathic state

In this study, the hydropathic state of the solute, S, is varied and the passage
of the solute into and through the membrane is recorded for each variation.
The other parameters are retained as in Example 6.7. Suggested S hydropathic
states are PBPP (W1S) = PBPP (W2S) = 0.4, J (W1S) = J (W2S) = 1.0; PBPP (W1S) =
PBPP (W2S) = 0.6, J (W1S) = J (W2S) = 0.5; and PBPP (W1S) = PBPP (W2S) = 0.8,
J (W1S) = J (W2S) = 0.25. Count the number of S cells passing into and
through the membrane after 100 iterations.

6.3.3. Discussion

In our model of a membrane system, we initially looked for experimen-
tal validation of emergent attributes. One example is the difference in water
flow into the membrane from the two water compartments, when there is a
difference in solute concentration within these compartments. The dynamics
reveal that more water flows into the membrane from the less solute concen-
trated water compartment. These observations are characteristic of the osmotic
effect. A second observation from our model is the increase in the passage
of the solute through the membrane as the probability rules change, corre-
sponding to a relative increase in lipophilicity. This increase in the passage
through the membrane experiences a maximum value at about the midpoint
of the relative lipophilicity scale, followed by a sharp decline in the amount
of permeated solute. Lieb and Stein (1986) have analyzed transverse mem-
brane permeability data and have concluded that diffusion is dependent upon
the volume of a nonelectrolyte [6]. This attribute is factored out in our model,
since the solute-designated cells used in the dynamics are of constant size.
This is interpreted as reflecting an approximately equal volume among the
molecules in the lipophilicity series modeled. The relative lipophilicity val-
ues portrayed in Figure 6.5 are thus a consequence of structural differences
other than volume. The review of Gupta cites examples of molecular series in
which structural attributes other than the volume are the determinant in pro-ww
ducing a parabolic relationship between central nervous system penetration and
lipophilicity [7].

These models mirror reality to the extent that we have some confidence in
the possible significance of other, less documented attributes. One observation
from these models that is unexpected is the very abrupt increase in the slope
of the line representing the concentration of the solute within the membrane
as a function of the rule value PBPP (WS), portraying the lipophilicity. This large
change in the slope corresponds closely to the PBPP (WS) values at which the
permeation of the solute through the membrane is maximal (Figure 6.5). To
our knowledge, this observation has not been reported. The direct measurement
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of solute concentration in a diffusion-functioning membrane would appear to
be a daunting task.

The appearance of the curve in Figure 6.5 suggests that a confluence of
events is taking place, as the solute molecule is systematically changed from a
hydrophilic to a hydrophobic ingredient. The relationship is bilinear, hence wehh
might infer that the aqueous solubility is decreasing while the affinity for the
membrane substance is increasing. The superpositioning of these two effects
might account for the observed occupancy of the membrane with a small change
in the parameters. This pattern of behavior parallels the extent of permeation
of the solute through the membrane, observed to have a significant increase in
concentration when the solute lipophilicity is at the same midrange value. The
suddenness of the change in slope of this concentration increase is unexpected
and awaits further detailed interpretation. This sensitivity of the response to
relative lipophilicity is a possible subject for further exploration.

We can draw another inference from these models in regard to the flow of
water through the membrane. When the concentration of the solute in the mem-
brane increases abruptly with a small change in the lipophilicity, it is likely that
the membrane would approach saturation, that is, the cavities among the mem-
brane cells would be extensively occupied. Trauble has proposed that water and
small solutes are carried across a membrane by occupying discontinuities or

Figure 6.6.FF The number of water molecules passing through the membrane when the
hydropathic state of the solute is variedhh
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kinks in the membrane lipids [8]. We might regard the cavities in our model
of the membrane as being surrogates for these kinks, wherein water and solute
cells are transported into and through the membrane. If the membrane cavities
become mostly occupied at some point in the lipophilicity scale, we would
expect that there would be an abrupt decline in the amount of water trans-
ported across the membrane. Our modeling of water flux at various degrees of
lipophilicity agrees with this expectation (Figure 6.6).
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Chapter 7

FIRST-ORDER CHEMICAL KINETICS

The grand aim of all science is to cover the greatest number of empirical
facts by logical deduction from the smallest number of hypotheses or axioms

–Albert Einstein [1]

The simplest form of a physicochemical reaction takes place when one
species simply changes to another. This can be written in a general way as
A → B. The rate of such a reaction is defined as the amount of reactant (the
reacting species, A, in this case) or equivalently the product (B) that changes
per unit time. The key feature here is the form of the rate law, i.e., the expression
for the dependence of the reaction rate on the concentrations of the reactants.
For a first-order reaction

Rate = k[A],

where [A] symbolizes the concentration of reactant species A, andww k is the
reaction rate constant, a proportionality constant that shows how likely the
reaction is to occur in a given time period. The rate of a first-order reaction
depends directly on how much reactant is present.

There are many familiar examples of first-order processes. The classic ex-
ample is that of nuclear decay in which one nuclear species decays to another.
(The reaction rates for nuclear decays vary enormously: the time frames in-
volved range from tiny fractions of a second to billions of years.) Another
example would be the rates of population growth for cities: large cities tend to
have greater rates of population growth than small cities since they have higher
numbers of people to begin with. In biology, microbial populations increase in
direct proportion to the number of microbes present, so long as there is adequate
food and wastes are suitably disposed of.

Some chemical reactions also obey first-order kinetics. Isomerization and
racemization reactions are normally first-order. Note that whereas nuclear

109
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decays are irreversible, first-order chemical processes, such as isomerizations
and racemizations, are generally reversible. That is, in addition to the forward
reaction A → B, the reverse reaction B → A can also occur for these processes.
Thus if one starts with one pure isomer of a substance, this isomer can undergo
first-order transitions to other forms, and in turn these other forms can undergo
transitions among themselves, and eventually an equilibrium mixture of differ-
ent isomers will be generated. The transitions between atomic and molecular
excited states and their ground states are also mostly first-order processes. This
holds both for radiative decays, such as fluorescence and phosphorescence,
and for nonradiative processes, such as internal conversions and intersystem
crossings. We shall look at an example of this later in Chapter 9.

Although first-order transitions themselves are inherently straightforward,
combinations of first-order transitions can sometimes lead to quite complicated
patterns of behavior. We shall examine some of the more basic forms in this
chapter [2].

Cellular automata models of first-order kinetic phenomena are relatively
simple, since the motions of the ingredients, their encounters with other ingre-
dients, and effects of neighbors do not usually come into play. The grid size
employed can range from a single cell to more than 100,000 cells. Only rules
governing the transformations between the species need be specified, and each
ingredient behaves as an independent actor. It can be instructive to follow the
behavior of a single ingredient, but only in the combined behaviors of all of the
ingredients do the key patterns called “emergent properties” arise. Normally,
it is convenient to fill the grid with the desired starting species, although filling
all of the grid cells with ingredients is not at all necessary. Moreover, it will
be clear from the examples that follow that as the number of active ingredients
increases, the results tend to approach the results expected on the basis of the
continuous, deterministic equations.

7.1. Exponential decay

The important phenomenon of exponential decay is the prototype first-
order reaction and provides an informative introduction to first-order kinetic
principles. Consider an important example from nuclear physics: the decay of
the radioactive isotope of carbon, carbon-14 (or 14C). This form of carbon is
unstable and decays over time to form nitrogen-14 (14N) plus an electron (e−);
the reaction can be written as

14C → 14N + e−.

The raterr of this reaction, i.e., the amount of 14C disappearing per unit time,
depends on the amount of 14C present—the more 14C in a sample, the greater
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Figure 7.1.FF Exponential decay

the number of 14C nuclei that decay over a given short time period. Of course,
as the 14C disappears, the rate of the reaction slows down. At any point in time,
the reaction rate can be expressed as

Rate = k[14C] (7.1)

or in calculus terms,

− d

dt
[14C] = k[14C] (7.2)

In these expressions [14C] represents the concentration of 14C and the “k” is
the rate constantrr . From experiments, the rate constant for this process is found
to be, k = 1.21 × 10−4 year−1.

We can solve the above differential equation, Eq. (7.2), to determine the
concentration [14C] of 14C as a function of time. This solution gives

[14C] = [14C]0e−kt (7.3)

where [ww 14C]0 is the concentration of 14C at time t = 0. This is thus an exam-
ple of the familiar phenomenon called “exponential decay,” and if we plot the
concentration of 14C against time, where [14C]0 is 100, we obtain the curve
shown in Figure 7.1. Taking natural logarithms of both sides of Eq. (7.3)
yields

ln[14C] = ln[14C]0 − kt (7.4)

In this case we can plot ln[14C] against time t to give a straight line as shown in
Figure 7.2. (The advantage of such a plot is that it is easier to identify a straight
line than to identify other types of curves.) The slope of the line is −k. The so-
called “half-life” for this process, t1/2, is the time it takes for the concentration
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Figure 7.2.FF A logarithmic plot of the exponential decay of Figure 7.1 showing the linear
dependence of ln(concentration) versus time

of the 14C to fall to half its original value. For first-order reactions, the half-lifeff
is related to the decay rate constant k by the formula

t1/2 = 0.693/k (7.5)

In the case of radiocarbon 14C, t1/2 is about 5730 years.
Exponential decay is quite regular: starting with a given amount of a sub-

stance at t = 0, this amount will fall to 1/2// its original value after one half-life,
to 1/4// after two half-lives, 1/8// after three half-lives, and so forth. This regular-
ity has its usefulness, and the decay of 14C has been widely employed to date
archeological artifacts [3].

Application 7.1. Exponential decay

To illustrate these ideas using a CA, let us start with a single ingredient, e.g.,
a blue ingredient, on a 1 × 1 grid. We set the transition probability per iteration
for the blue cell to turn into a green cell at PTPP (B → G) = 0.1 iteration−1,
meaning that at each iteration there is one chance in 10 that the blue → green
transition will occur. Setting the number of iterations to 50 assures that the
transition is likely to take place during the time observed. Then, we start the
run using the setup for Example 7.1 in the program CASim. Since this is a
probabilistic model based on a random number generator, the actual transition
might occur at any time, perhaps during the first iteration, or possibly during
the 9th iteration, or even during the 32nd iteration. Whatever the case, it is clear
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that the transition occurs at a very specific time in each trial run: there is no
exponential decay at this stage.

Parameter setup for Example 7.1. Exponential decay

Starting configuration: 1 blue ingredient on a 1 × 1 grid
Parameter: PTPP (A → B) = 0.01
Run time = 50 iterations
Record the iteration at which the transition occurs
Repeat nine more times and record the results.

Do you see any pattern in the 10 results? Determine the median (the “middle”
one of the 10) and the average (the total of the times divided by 10) values for
the decay times.

Study 7.1a. Exponential decay with 100 ingredients

We then examine a series of 100 runs, or equivalently and more conveniently,
one run starting with 100 blue cells using a 10 × 10 grid. Import the results to a
plotting program (e.g., EXCEL©c ) and plot the number of As remaining versus
the number of iterations. Does the pattern look like exponential decay?

Study 7.1b. Exponential decay with 900 ingredients

Now expand the experiment to 900 ingredients on a 30 × 30 grid. Again,
plot the number of A cells versus the number of iterations, n. In this case also
plot ln[A] versus n omitting the late part of the decay where there are too few
ingredients remaining for meaningful analysis. Obtain the slope (trendline) of
this plot with its statistics. Compare the negative of the slope of your plot with
the transition probability PTPP (A → B).

In these examples, we go through a classic example of an emergent prop-
erty. The phenomenon of exponential decay arises when a very simple rule,
a specific transition probability, is imposed on the members of a population
of ingredients. But the pattern emerges only from the collective behavior of
a significant number of ingredients. The pattern predicted on the basis of a
deterministic, differential equation analysis (the kind found in most textbooks)
appears as a limiting case of our discrete model, namely as the limit when a
very great number of ingredients are involved. This is, of course, what occurs
in nature, where the patterns observed from common discrete systems such
as collections of atoms or molecules appear to be deterministic and continu-
ous because the observations normally involve huge numbers of actors, often
approaching Avogadro’s number.

An interesting point to consider here concerns the comparison of the
classical deterministic analysis and our discrete analysis. The deterministic
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calculus-based rate equation approach assumes that A and t are continuous
functions, so that the decay process is represented as in Eq. (7.3) by a smooth
exponential decay. The rate constant k represents the probability per unit time
for the transition A → B, and appears as the slope −k in a plot of ln[A] against
time (Figure 7.2). The corresponding deterministic half-life is t1/2 = ln 2/(k).
One might expect that our transition probability PTPP should play the same role in
the CA model as the rate coefficient k does in the deterministic approach. There
is, however, a subtle difference. For the probabilistic, discrete decay that takes
place in our CA model (and in nature), the population of As after n iterations
([A]n) is given by

[A]n = [A]0(1 − PTPP )n (7.6)

whereww PTP is the transition probability per discrete iteration. This analysis yields
a “slope” d[A]/dt = ln(1 − PT) and a half-life (in iterations) of

n1/2 = −ln 2/ln(1 − PTPP ) (7.7)

The deterministic and discrete expressions for the slopes, and hence the half-
lives, are thus not identical, but since mathematically when x is much smaller
than unity (i.e., x � 1), ln(1 − x) ≈ −x , in those cases where the transition
probability x = PTPP is very small compared to 1, the continuous (deterministic)
and discrete expressions yield essentially the same values. When PTPP is not small
compared to 1, the continuous and discrete solutions will differ. For the case
PTPP = 0.10, the half-life solutions are t1/2 = 6.93 and n1/2 = 6.58 iteration, a
noticeable difference of 5%. For PTPP = 0.01, t1/2 = 69.31 and n1/2 = 68.97
iterations, there exists a difference of just 0.5%. For still smaller values of PTPP ,
the difference between the two expressions continues to decrease.

Study 7.1c. Changing the exponential decay rate

Repeat the study of exponential decay described in Study 7.1b, but now using
PTPP (A → B) = 0.01. First use 900 cells on a 30 × 30 grid, as in Study 7.1b.
Then use a 50 × 50 = 2500 cell grid. For this second case, plot ln[A] versus
time in iterations and obtain the slope of the decay line. (Use just the first 80%
of the plot to estimate the slope. The final part of the plot has too few active
cells to be well behaved.) Compare the slope obtained from your plot with the
slopes expected from (1) the deterministic approach with k = 0.01 and (2) the
discrete cellular automata approach with PTPP = 0.01.

7.2. First-order equilibrium

In the preceding exercise the process A → B was irreversible. In many
practical cases, however, the reverse reaction B → A can also occur. This sets
up a dynamic situation in which A is transforming to B and at the same time
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B is transforming back to A. The result, after a time, is a dynamic equilibrium
condition in which the total numbers of A and B remain fairly constant even
though the individual ingredients are constantly switching from one form to
the other. The equilibrium constant Keq for this situation is defined as

Keq = [B]/[A] (7.8)

Within the deterministic approach, this can also be expressed in terms of theWW
forward and reverse rate constants, kforkk and krevkk , and equivalently in our discrete
CA model the forward and reverse transition probabilities, PTPP (A → B) and
PTPP (B → A), respectively

Keq = kforkk /krevkk = PTPP (A → B)/PTPP (B → A) (7.9)

Application 7.2. First-order equilibrium

We can test this notion by setting up a 10 × 10 grid and filling it with 100 blue
(A) cells. We set PTPP (A → B) = 0.10, PTPP (B → A) = 0.05 and the number of itera-
tions to 1000, as shown in Example 7.2. Upon starting the run, the ever-changing
individual blue and green (B) ingredients will quickly tend toward a situation in
which roughly two thirds of the ingredients are green and about a third are blue.ww
This is illustrated in Figure 7.3. In fact, the same equilibrium condition will be
reached regardless of the starting numbers of blue and green cells. Moreover,

Figure 7.3.FF A plot showing the transition to an equilibrium condition between A and B ingredients
in a 100-cell system as described in Example 7.2. Note the fluctuations in the numbers of A and
B cells illustrating the dynamic nature of the equilibrium
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as in a real molecular system, even after the equilibrium has been reached,
the concentrations of A and B will fluctuate about their average values. In this
example, equilibrium is obtained rather rapidly because of the high transition
probabilities assumed. Using data from the last 500 iterations of the run, a
period well after equilibrium has been reached, we can determine the average
equilibrium values for [A] and [B] along with their standard deviations, which
provide measures of the fluctuations. From these values we can determine the
equilibrium constant Keq and its uncertainty for our experiment.

Parameter setup for Example 7.2. First-order equilibrium

Starting configuration: 100 A cells on a 10 × 10 grid
Parameters: PTPP (A → B) = 0.1, PTPP (B → A) = 0.05
Run for 1000 iterations
Plot the numbers of A and B cells versus iterations
Determine the average values of [A] and [B] and their standard deviations

using the last 500 iterations of the run
Determine Keq from these average values
Compare the Keq with the expected deterministic value.

Study 7.2a. Effect of a larger number of cells on
the equilibrium condition

If we increase the number of ingredients in our study, fluctuations will still
occur, but because of the greater number of ingredients the fluctuations will
tend to become smaller relative to the total ingredient concentrations, so that the
population curves we obtain should look smoother. Of course, this same feature
prevails in real systems, where the fluctuations become unnoticeable at the very
large concentrations normally involved in typical laboratory experiments. In
this study keep the same transition probabilities as in the example, but now
place 2500 starting A ingredients on a 50 × 50 grid. Again plot the numbers of
A and B ingredients as they vary over 2000 iterations. Compare these results
with those obtained in Example 7.2. A typical result is plotted in Figure 7.4.

Study 7.2b. Equilibrium from a different starting condition

Repeat the 100-cell equilibrium setup of Example 7.2, but starting with
all cells in the B form. What specific result do you obtain for Keq at 2000
iterations? Then, analyze the values for the interval from 1000 to 2000 iterations
statistically using EXCELTM or a similar program to obtain average values for
the concentrations [A] and [B] and also for Keq over this period, along with
their standard deviations.
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Figure 7.4.FF The transition to equilibrium for an A ↔ B system with 2500 ingredients showing
the effect of an increased number of ingredients

Study 7.2c. Equilibrium with different probabilities

Perform the same analyses as in Study 7.2b, but now using PTPP (A → B) =
0.02 and PTPP (B → A) = 0.008. Compare the results with those obtained in Study
7.2b. Determine the average values of [A] and [B] after equilibrium is reached
and the corresponding equilibrium constant Keq with its standard deviation.
Compare the measured Keq with the expected limiting deterministic value.

7.3. Series reactions

Some reactions, including both chemical reactions and nuclear decays, occur
in a series of steps. We can look at the sequence of reactions A → B → C and
study the changes in the numbers of the three species as the reaction series
proceeds.

Example 7.3. Series reactions

In this example, we shall use a 50 × 50 = 2500 cell grid originally with all the
cells in form A and set PTPP (A → B) = 0.05 iteration−1 and PTPP (B → C) = 0.01
iteration−1. The reaction sequence should be monitored for 1000 iterations.
The resulting concentration changes are shown in Figure 7.5. As shown in the
figure, the number of A cells falls off exponentially, while the number of B cells
increases, reaches a maximum, and then falls, as the run continues. The C cells



118 Chapter 7

Figure 7.5.FF Concentrations of A, B, and C ingredients versus time for the reaction sequence
A → B → C as described in Example 7.3

build up in numbers until eventually all of the cells are in the C form. The spe-
cific forms of the concentration curves will depend on the relative values of the
transition probabilities used for the steps A → B and B → C. This example illus-
trates the buildup of an intermediate species in the course of a reaction sequence.

Parameter setup for Example 7.3. Series reactions

Starting configuration: 2500 A cells on a 50 × 50 grid
Parameters: PTPP (A→B)=0.05 iteration−1 and PTPP (B→C)=0.01 iteration−1

Run for 1000 iterations
Plot numbers of A, B, and C cells versus iterations
Determine the maximum concentration of the B cells ([B]max) for this

example and note the iteration nBmax at which [B]max occurs.

Study 7.3a. Sequential reactions

Repeat the study of Example 7.3 for the sequence of reactions A → B → C
but now with the transition probabilities reversed, i.e., setting PTPP (A → B) =
0.01 iteration−1 and PTPP (B → C) = 0.05 iteration−1. Plot the results in terms of
concentrations versus time. How do the results differ from those in Example 7.3?

Study 7.3b. Rate-limiting step

Examine the reaction sequence A→B→C→D→E involving five species
and four reaction steps. Use a 2500-cell grid with runs of 1000 iterations each.
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Set the transition probabilities to 0.02 for all the steps except the step B → C.
In separate runs set PTPP (B → C) to 0.002, 0.004, and 0.006 iteration−1. Plot
[A], [B], and also [E] for all the runs on a single plot. The slow step B → C
is an example of a “rate-limiting step” for this reaction series. It is the slowest
step and acts as a sort of bottleneck in the series. Note the effect of PTPP (B → C)
on the rate of production of the final product [E] in this example.

7.4. Parallel reactions

In addition to sequential reactions, reactions can occur in parallel and com-
pete with one another. For example, a single reactant A might form two different
products, B and C:

A → B
↓
C

Whether product B or product C will predominate over the course of the reaction
depends on the relative values of the transition probabilities, PTPP (A → B) and
PTPP (A → C), connecting A to these products.

Example 7.4. Competing parallel reactions

In this example, we shall again use a 50 × 50 grid with all 2500 cells
starting in the A form. We set PTPP (A → B) = 0.04 iteration−1 and PTPP (A → C)
= 0.01 iteration−1 and follow the process for 200 iterations. In this case the
concentrations evolve as shown in Figure 7.6.

Parameter setup for Example 7.4. Competing parallel reactions

Starting configuration: 2500 A cells on a 50 × 50 grid
Parameters: PTPP (A → B) = 0.04 iteration−1, PTPP (A → C) = 0.01 iteration−1

Run for 200 iterations
Plot numbers of A, B, and C cells versus iterations. Note the final concen-

trations of B and C.
Repeat two more times and from the three runs determine averages and

the final concentrations of [B] and [C]
Compare these values with the results expected from the transition prob-

abilities.

In this particular example reaction, one finds that after 200 iterations roughly
80% of the A ingredients have converted to the B form and 20% have converted
to the C form. Thus the ratio of [B]/[C] is about 4:1. In the end, because the
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Figure 7.6.FF Plot of concentrations of A, B, and C ingredients for the competing reactions
A → B and A → C as described in Example 7.4

transition probability PTPP (A → B) is four times that of PTPP (A → C), the B
cells predominate over the C cells by about this same ratio. The numerical
differences observed in runs of this type are due to the inherently stochastic
(random) nature of the processes involved.

Study 7.4. Small-scale and large-scale competing reactions

Repeat the exercise shown in Example 7.4 using PTPP (A → B) = 0.01 and
PTPP (A → C) = 0.03, with a 100-cell grid. Use three trial runs and compute
the average final concentrations of species B and C along with their standard
deviations. Repeat this using 2500 ingredients on a 2500 cell grid. Compare
the two results with special attention to the ratios of the standard deviations to
the final concentrations.

7.5. Kinetic and thermodynamic reaction control

Example 7.5. Reversible competing reactions: kinetic and
thermodynamic reaction control [4]

One can add reverse reactions to the parallel reaction model to illustrate what
chemists refer to as kinetic and thermodynamic reaction control. Often a reac-
tant A can form two (or more) products, one of which (B) is formed rapidly (the
kinetic product) and another (C) which forms more slowly (the thermodynamic
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product), but which is favored by a greater equilibrium constant. Depending
upon which product the synthetic chemist directing the reaction most desires
the reaction can be stopped after a short time (to get B) or a longer period
(to get C).

To illustrate this, we shall start with 2500 A ingredients and set the transition
probabilities to PTPP (A → B) = 0.01, PTPP (B → A) = 0.02, PTPP (A → C) = 0.001,
and PTPP (C → A) = 0.0005. Note that these values yield a situation favoring
rapid initial transition to species B, since the transition probability for A → B
is 10 times than that for A → C. However, the formal equilibrium constant
Keq[C]/[A] is 2.0, whereas Keq[B]/[A] = 0.5, so that eventually, after the es-
tablishment of equilibrium, product C should predominate over product B. This
study illustrates the contrast between the short run (kinetic) and the long run
(thermodynamic) aspects of a reaction. To see the results, plot the evolution of
the numbers of A, B, and C cells against time for a 10,000 iteration run. De-
termine the average concentrations [A]avg, [B]avg, and [C]avg under equilibrium
conditions, along with their standard deviations. Also, determine the iteration
nBmax at which ingredient B reaches its maximum value.

Parameter setup for Example 7.5. Kinetic and thermodynamic
reaction control

Starting configuration: 2500 A cells on a 50 × 50 grid
Parameters: PTPP (A → B) = 0.01, PTPP (B → A) = 0.02, PTPP (A → C) = 0.001,

PTPP (C → A) = 0.0005
Run for 5000 iterations
Plot numbers of A, B, and C cells versus iterations for the first 200 iterations

and determine the maximum concentration reached for ingredient B
Note also the iteration at which [B]max occurs
Determine the equilibrium concentrations for A, B, and C by taking averages

(and standard deviations) for these ingredients over the last 2000 iterations.

Figure 7.7 shows a typical plot for this experiment. Typical results for this
experiment are [B]max ≈ 750 and nBmax ≈ 130, but these values will vary from
run to run.

Study 7.5. Further study of kinetic and thermodynamic reaction
control

Repeat Example 7.5 using the following transition probabilities: PTPP
(A → B) = 0.01, PTPP (B → A) = 0.009, PTPP (A → C) = 0.001, PTPP (C → A) =
0.0001. Determine the same properties as before.
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Figure 7.7.FF Plot of the numbers of A, B, and C ingredients illustrating kinetic and
thermodynamic reaction control as described in Example 7.5

7.6. Pre-equilibrium

A number of chemical processes involve a pre-equilibrium in which a re-
versible process A ↔ B is coupled with the transformation B → C [2,5]:

A
k1←→
k2kk

B
k3k−→ C (7.10)

Frequently the rate constants k1 for the forward reaction A → B and k2kk for the
reverse reaction are much larger than k3k , so that the pseudo-equilibrium A ↔ B
is strongly coupled and the reaction B → C serves merely to “drain off” the
product C from the equilibrium. If we define the “pseudoequilibrium constant”
KABK = k1/k2kk , then the rate of formation of C is

Rate = d[C]/dt = k3k [B] ≈ k3k KABK [A] (7.11)

Accordingly, this arrangement serves to make the rate of the formation of
product C largely dependent on the concentration of A.

Example 7.6. A pre-equilibrium condition

We can simulate the pre-equilibrium condition by taking PTPP (A → B) = 0.2,
PTPP (B → A) = 0.2, and PTPP (B → C) = 0.004. We can use a 50 × 50 = 2500 cell
torus grid and start with 2500 blue A ingredients and no B or C ingredients.
Note that the k1 and k2kk values are much greater than k3k , so that when it is
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formed an ingredient B will be 50 times more likely to revert to A than to
convert to product C. Gradually, however, the product C ingredients will be
produced. We can follow the production of C and also the changes of the A and
B concentrations as they vary with time over 200 iterations.

Parameter setup for Example 7.6. Pre-equilibrium

Starting configuration: 2500 A cells on a 50 × 50 grid
Parameters: PTPP (A → B) = 0.2 iteration−1, PTPP (B → A) = 0.2 iteration−1,

PTPP (B → C) = 0.004 iteration−1

Run for 200 iterations
Plot numbers of A, B, and C cells versus iterations
Note the slope (in units of ingredients/iteration) of the line for the formation

of ingredient C.

Note the slope (in units of ingredients/iteration) of the line for the formation of
ingredient C. Figure 7.8 shows a typical plot of the cell concentrations for this
example.

Study 7.6. Pre-equilibrium

Repeat the above example using a 100 × 100 = 10,000 cell grid. Plot
numbers of A, B, and C cells versus iterations. Compare the production

Figure 7.8.FF A typical plot of the concentrations of A, B, and C ingredients for the
pre-equilibrium conditions given in Example 7.6
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rate (i.e., the slope) for formation of product C with that obtained in the
example.
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Chapter 8

SECOND-ORDER CHEMICAL KINETICS

It seems to me that all great understandings of the big things emerge from
meticulous attention to the detailed workings of the minutiae . . . . Even the novel
behaviors of complex systems arising from complexity itself are ultimately com-
prehensible only in terms of the underpinnings—as with Boltzmann’s treatment
of a huge collection of newtonian billiard balls vomiting up that humdinger of
an emergent property, the second law of thermodynamics.

—Chris Miller1

So-called second-order reactions—those involving the encounters of two
ingredients–lie at the heart of chemistry. Indeed, the classic prototype of a
chemical reaction takes the general form

A + B → C + D, (8.1)

where reactants A and B interact to form products C and D. For anww elementary
reactionrr of this form, i.e., one simply involving molecules A and B reacting
by means of a bimolecular collision, the rate lawrr , the formula describing the
dependence of the reaction rate on the reactant concentrations, is

Rate = k[A][B], (8.2)

where k is the reaction rate constant (units of timeww −1concentration−1), and [A]
and [B] are the concentrations of the reactants A and B. (By concentration,
we formally mean the number of ingredients of a given species divided by the
total number of grid cells. However, in many cases it is simpler to refer to the
number of ingredients of each species as the “concentration” of that species.)
Because in this case the reaction rate depends directly on the first powers of
[A] and [B] the rate law is said to be first-order with respect to each of these
species, and, referring to the total reaction, second-order overall. Stated in the

125
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terms of calculus,

− d

dt
[A] = − d

dt
[B] = + d

dt
[C] = + d

dt
[D] = k[A][B] (8.3)

where the terms of the formww d
dt [X ] represent the rates of change of the different

“X” (= A, B, C, and D) species with time. It is clear that as the concentrations
of the reactants A and B fall during the reaction, the concentrations of the
products C and D will increase in the same amount.

For the special case in which reactant A reacts with itself to form products,
i.e., A + A → C + D, a simplification is obtained, and the rate law becomes

Rate = k[A]2. (8.4)

Solving this equation yields a formula for the (inverse) concentration of A as a
function of time t:

1

[A]
= kt + 1

[A]0
, (8.5)

where [A]ww 0 is the concentration of A at t = 0. Equation (8.5) is seen to have the
form of a straight line, y = mx + b, in which y = 1/[A], x = t, the slope m =
k, and the y-intercept b = 1/[A]0. For this particular case, the half-life t1/2, the
time it takes for the concentration of species A to fall to half its original value,
depends on the starting concentration, as

t1/2 = 1/k[A]0. (8.6)

Thus the higher the starting concentration of A, the shorter the half-life, and as
the reaction proceeds (and [A] decreases) the half-life lengthens.

Many, if not most, of the key reactions of chemistry are second-order reac-
tions, and understanding this type of reaction is central to understanding chem-
ical kinetics. Cellular automata models of second-order reactions are therefore
very important: they can illustrate the salient features of these reactions and
greatly aid in this understanding.

8.1. Second-order cellular automata models

In the previous chapter we examined cellular automata simulations of first-
order reactions. Because these reactions involved just transformations of indi-
vidual ingredients, the simulations were relatively simple and straightforward
to set up. Second-order cellular automata simulations require more instructions
than do the first-order models described earlier. First of all, since movement
is involved and ingredients can only move into vacant spaces on the grid, one
must allow a suitable number of vacant cells on the grid for movement to take
place in a sensible manner. For a gas-phase reaction one might wish to allow at
least 5–10 vacant cells for each ingredient, so that on a 100 × 100 = 10,000
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cell grid there should be at most 1000–2000 ingredients, the rest of the 8000–
9000 cells being unoccupied. Next, one must define the rules that apply to the
system in question. For movement, these rules are embodied in the free moving
probability Pm and the influences on movements expressed by the breaking and
joining parameters, PB and J, respectively. When reactions are involved one
must also designate the reaction probability per encounter, PR(A,B), for each
pair (A,B) of reacting species. This probability defines the likelihood that a
transition from reactants (A,B) to products (C,D) will occur when the ingredi-
ents A and B come in contact (move to adjacent cells within the von Neumann
neighborhood). Usually gravity rules are not invoked in this type of simulation,
although they could be if desired.

Second-order simulations typically start with the initial ingredients placed
randomly into the cells of the grid (although this is not necessary and can
be changed). Thus the initial configuration of the system normally assumes a
random character. As the simulation proceeds the ingredients move about the
grid under the influences of the PB and J rules and subject to the designated
reaction probabilities PR. Because of these several random features—which
in fact have their counterparts in nature—each simulation run is in effect a
“new” experiment, with different starting conditions and almost certainly a
different set of configurations through which the system passes in the course
of its evolution. Accordingly, one might anticipate that each simulation might
lead to a rather different evolutionary sequence. Indeed this is the case if one
speaks of specific absolute configurations. However, in practice, although the
specific configurations involved will differ, for a sufficiently large sample of
ingredients the collective pattern that emerges—the “emergent property” of
second-order kinetic behavior—tends to look much the same, especially when
a substantial number of ingredients are participating.

In what follows, unless specified otherwise the breaking and joining pa-
rameters, PB and J, will be assigned the neutral values PB = 1.0 and J = 1.0
appropriate to “hard-sphere” (billiard ball) collisions. In some cases it will be
of interest to depart from this simple model and to alter these values to find the
influences of intermolecular attractions and repulsions on the results.

The following examples and exercises will exhibit the basic concepts of
second-order kinetics. Some more specialized applications related to this topic
will be given in Chapter 9.

8.2. Irreversible second-order reactions A + B → C + D,
small scale2

Application 8.1. Irreversible second-order reactions, small scale

In order to illustrate the randomness inherent in these systems, let us first
examine a small system consisting of a 20 × 20 = 400 cell grid containing
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Figure 8.1.FF Two typical starting configurations for Application 8-1, showing random
placement of two ingredients on a 20 × 20 grid.

just a single A ingredient and a single B ingredient on a torus grid. We shall
set the reaction probability per encounter of these two ingredients at PR(AB) =
0.10, so that on average one of every 10 “collisions” of these two ingredients
will lead to a reaction transforming them into C and D ingredients. We shall
employ ten runs of 5000 iterations each in the simulation. What we want to
record for each run is the specific iteration at which the transforming “reaction”
occurs. Figure 8.1 shows two of the 10 starting configurations generated by the
program for this exercise, illustrating typical initial conditions. It should be
noted that even if the two ingredients start at positions close to one another,
because the ingredients then undergo random walks about the grid it does not
necessarily follow that they will encounter each other more quickly, and even if
they encounter each other rapidly they will not necessarily “react” more quickly.

Parameter setup for Example 8.1. Irreversible second-order reaction,
small scale

Grid: 20 × 20 = 400 cells on a torus
Parameters: Pm = 1.0, J = 1.0, PB = 1.0, PR(AB) = 0.1
A cells (blue) = 1
B cells (green) = 1
C cells (red) = 0
D cells (brown) = 0
Number of runs = 10
Simulation length for each run = 5000 iterations
Report the iteration at which the reaction A + B → C + D occurs for each

run. Determine the average and median reaction iterations for the set of
10 results.
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In one set of ten runs the following reaction times were observed (placed in
numerical order): 35, 185, 204, 346, 444, 454, 780, 843, 925, and a long value
of 2771. The median time for this set of runs was 449 itn., and the average time
for reaction was 699 itn. A second collection of ten runs would very likely yield
a quite different set of results.

Study 8.1a. Repeating the small scale reaction

Repeat the example above and compare your results with those obtained
for Example 8.1. This study illustrates the stochastic nature of these small-
scale reaction systems, and the fact that each simulation is an independent
experiment.

Study 8.1b. Changing the reaction probability PR(AB)

Change the reaction probability PR(AB) to 1.0, and let the simulation run
for 1000 iterations. At what time (what iteration) does reaction occur? Repeat
this simulation nine more times and tabulate the results. Find the average time
and its standard deviation for your results, as well as the median time. Next
change PR(AB) to 0.05, increase the number of iterations for each run to 5000,
and tabulate the results for 10 trial runs. Repeat the averaging process above.
This study reveals the influence of the reaction probability on the course of the
reaction.

Study 8.1c. Changing the “concentration”

In a further test, increase the grid size to 100 × 100, set PR(AB) at 1.0,
and repeat the process. This test reveals the influence of concentration on the
rate, since the two ingredients now have a much larger territory to roam about,
making them in effect “less concentrated.” Compare your results with the results
from the PR(AB) = 1.0 part of Study 8.1b.

8.3. Irreversible second-order reaction A + B → C + D,
large scale

Application 8.2. Irreversible second-order reaction, large scale

As a contrasting example, we now examine the same type of reaction, but
with a large number of interacting ingredients. We shall begin with a 100 ×
100 cell grid with 500 A (blue) cells and 500 B (green cells) and a reaction
probability PR(AB) = 0.05 for the formation of C (red) and D (brown) products.
This means that the conversion from (blue, green) to (red, brown), indicated
in Eq. (8.1) will, on average, take place in one of every twenty (blue, green)
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Figure 8.2.FF Time variations of the concentrations of ingredients A and C for the
second-order reaction A + B → C + D.

encounters. We allow the system to run for 1000 iterations, and observe that
indeed as time goes by the A’s and B’s are converted to C’s and D’s. The variations
in the concentrations of [A] (= [B]) and [C] (= [D]) as the simulation proceeds
are illustrated in Figure 8.2. At first the concentration of C rises steeply, later
less steeply, and finally [C] asymptotically approaches its limiting value [C] =
500, as the few remaining A’s and B’s eventually react.

This example illustrates the point that there is “strength in numbers”, in
this case statistical strength. Although the behavior of any single ingredient
is unpredictable, the overall statistical behavior of a large number of identical
ingredients does become, within well-defined limits, predictable.

Parameter setup for Example 8.2: Large-scale irreversible reaction

Grid: 100 × 100 = 10,000-cell torus
Parameters: Pm, J, and PB = 1.0, PR(AB) = 0.05
A cells (blue) = 500
B cells (green) = 500
C cells (red) = 0
D cells (brown) = 0
Number of runs = 1
Simulation length = 1000 iterations
Plot the concentration of the A and C cells vs. iterations n over this time

frame. Determine the initial rate from the first linear portion of the [C] vs.
n plot; determine k from this rate.
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Figure 8.3.FF Initial variations in the number of product C ingredients for the A + B → C + D
reaction of Example 8.2. Note the brief initial adjustment period before the system settles into

linear behavior.

The initial rate of the reaction can be determined from the early linear
portion of the plot of [C] vs. n. (Note that there is often a brief adjustment period
before the system settles into normal kinetic behavior. This brief adjustment
period should not be included in the initial linear period.) This is illustrated
in Figure 8.3, where the initial slope is found to be 4.83 ingredients/iteration
(ingr/itn). Based on Eq. (8.2), the value of the rate constant k for this system is
4.83/(500)2 ≈ 2.0 × 10−5 ingr−1itn−1.

Study 8.2a. Changing the reactant concentrations

We have not yet completely examined how the reactant concentrations affect
the reaction rate. In this study we shall decrease the initial concentrations of
the reactants A and B and observe the results. Keep the parameters the same
as in Example 8.2, but now decrease the starting concentrations of A and B to
[A]0 = 250 and [B]0 = 250. Plot the results as [C] vs. n and determine the new
rate from the initial linear portion of the plot. Also, determine a value of k from
a plot of the early portion of [C] vs. n.

Study 8.2b. Different starting reactant concentrations for A and B

We saw in Study 8.2a that decreasing the concentrations of both A and
B decreased the reaction rate, but we have not tested what happens when the
concentrations of the reactants A and B are not the same. Set up your simulation
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as in Example 8.2, but now with [A]0 = 400 cells and [B]0 = 600 cells. Plot
the concentrations of the ingredients as they change with time. Determine the
initial reaction rate, taking the first early linear portion of the plot of [C] vs.
time in iterations. Determine the rate constant and compare this value with the
result in Example 8.2. You might wish to repeat the process using different
values of [A]0 and [B]0.

Application 8.2a. Self reaction: A + A → C + D

We now can investigate the self-reaction A + A → C + D, as described
in the introduction to this Chapter. Here we will use 1000 A ingredients on a
100 × 100 cell grid, and set PR(AA) = 0.01. Run for 1000 iterations. Find k
from the initial slope of a plot of [C] vs. n. Compare the k value obtained from
the initial slope with that obtained from a plot of 1/[A] vs. n as described in
Eq. (8.5).

Parameter setup for Example 8.2a. Self-reaction kinetics

Use Example 8.2 with the following conditions:
Grid: 100 × 100 = 10,000-cell torus
Parameters: Pm, J, and PB = 1.0,
PR(AA) = 0.01 for reaction A + A → C + D
A cells (blue) = 1000
B cells (green) = 0
C cells (red) = 0
D cells (brown) = 0
Number of runs = 1
Simulation length = 1000 iterations
Plot the concentrations of the A and C cells vs. iterations n over this time

frame. Determine the initial reaction rate from the first linear portion of
the [C] vs. n plot; also determine k from this plot. Next plot 1/[A] vs. n
and determine k from this plot. Compare this value of k with that from the
initial reaction rate. Does the y-intercept agree with the expectation from
Eq. (8.5)?

8.4. Second-order equilibrium, A + B � C + D

Application 8.3. Second-order equilibrium

Next we shall expand the previous example to include the back reaction
C + D → A + B, yielding the equilibrium condition A + B � C + D. This
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is analogous to the first-order equilibrium discussed in Chapter 7. For this case
the equilibrium constant is given by the expression

Keq = [C][D]/[A][B]. (8.7)

We shall set PR(AB) = 0.05 and set the reaction probability for the back reaction
at PR(CD) = 0.01. Since the equilibrium constant Keq can equally well be
expressed as Keq = PR(AB)/PR(CD), once the simulation has come to a steady
state we expect to find the ratio Keq = [C][D]/[A][B] to be about 5. We allow
the simulation to run for 1200 iterations.

Parameter setup for Example 8.3. Second-order equilibrium

Grid size 100 × 100 = 10,000 cells (torus)
Parameters: Pm, J, and PB = 1.0, PR(AB) = 0.05, PR(CD) = 0.01
A cells (blue) = 500
B cells (green) = 500
C cells (red) = 0
D cells (brown) = 0
Number of runs = 1
Simulation length = 1200 iterations
Report the concentrations of A and C cells and plot [A] and [C] versus

iterations for the last 500 iterations. Determine the average equilibrium
concentrations of A and C, along with their standard deviations. Also
determine the equilibrium constant Keq.

From the plot of the concentrations of [A] and [C] in Figure 8.4 it is ap-
parent that a steady-state, or equilibrium, condition is achieved after about 300
iterations. This is not a static equilibrium, however, and during this period the
values of [A] and [C] fluctuate a great deal about their average values. Taking
averages for the last 500 iterations of the run we find that for this specific run
[A]avg = 154.6 ± 5.0 and [C]avg = 345.4 ± 5.0. The actual instantaneous values
for [A] range from a low of 140 to a high of 166 during this 500-iteration period,
and the values for [C] vary from 334 to 360. Since [A] = [B] and [C] = [D],
the observed average values yield Keq = [C][D]/[A][B] = (345.6)2/(154.6)2 =
4.99, a number fortuitously close to the deterministic value of Keq = 5.0. How-
ever, an analysis of the instantaneous values of Keq obtained during the final
500 iterations shows that these instantaneous values fluctuate over a consider-
able range—from a minimum of 4.05 to a maximum of 6.61. The fluctuations
demonstrate the stochastic behavior associated with relatively small, finite sam-
ples of interacting ingredients. Using these instantaneous values for Keq one
finds Keq = 5.02 ± 0.47. Again, this value is fortuitously close to 5.0, and in
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Figure 8.4.FF Plot of Eq. 8.5 for the self-reaction A + A → C + D of Example 8.2a.

most cases such excellent agreement is not found for a short period such as
that examined here. However, if longer periods are studied, say the last 5000
itn. of a 6000 itn. run, very good agreement with the deterministic expectation
is usually found.

Study 8.3a. Repeating the example for a longer time

Repeat Example 8.3, but now using a run of 6000 itn. Estimate Keq from
the data for the last 5000 itn.

Study 8.3b. Starting from the product side

Example 8.3 above showed that equilibrium was achieved when we started
with reactants A and B, but what happens when we approach this from the
opposite direction, i.e., starting from the product side? We can test this by
starting with [A]0 = [B]0 = 0 cells, and [C]0 = [D]0 = 500 cells. Run the
simulation just as in Example 8.3, but with these changed initial values. Is
equilibrium achieved from the product direction? If so, what is the equilibrium
constant Keq? (Include the uncertainty in Keq.)

Study 8.3c. Changing the starting concentrations

In Study 8.1c we examined how the reactant concentrations affected the for-
ward reaction rate, but we have not yet examined how such a change influences
the equilibrium condition. Change the initial concentrations to [A]0 = 700 cells
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and [B]0 = 700 cells and compare your results with those obtained in Example
8.3. Is the equilibrium constant affected?

Study 8.3d. Unequal reactant concentrations

Repeat Example 8-3 but now with unequal initial concentrations of A and
B. Use [A]0 = 400 cells and [B]0 = 600 cells. Perform the same tests as before
and comment on the results. In particular, determine Keq.

8.4. Effects of ingredient interactions on the rates

It is now interesting to see if changing the breaking probability PB(A,B) or
the joining parameter J(A,B) affects the reaction rate. For this we first set up the
situation as in Example 8.2 above, with a 100 × 100 grid and 500 A and 500 B
cells, but now set PB(AB) = 0.5 (instead of PB = 1.0). This means that the A
and B cells in contact with each other have some tendency to stay in contact.

Parameter setup for Example 8.4. Effect of PB(AB) on the rate

Grid: 100 × 100 = 10,000 cells (torus)
Parameters: PR(AB) = 0.05, PB(AB) = 0.5, J(AB) = 1.0,
A cells (blue) = 500
B cells (green) = 500
C cells (red) = 0
D cells (brown) = 0
Number of runs = 1
Simulation time = 1000 iterations
Report the concentrations of A and C cells and plot [A] and [C] versus

iterations, n. Is the initial rate (slope of a plot of [C] vs. time) changed?

A typical result for this experiment is shown in Figure 8.5. The result of
increasing the propensity of A and B to stick together when they meet is to
increase the reaction rate.

Study 8.4a. Effect of the breaking probability PB(AB) on
equilibrium

A further test of the equilibrium concept, introduced in Example 8.3, in-
volves introducing the influence of the breaking probability into the equilibrium
process. In this case repeat the process of Example 8.2, but with the change of
PB(AB) to 0.5. Do you expect an effect? What do you observe? What is Keq

for this case?
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Figure 8.5.FF Concentration changes of ingredients A and C for the equilibrium
A + B � C + D of Example 8.3.

Study 8.4b. Effect of the joining probability J(AB) on equilibrium

In Example 8.4 we saw that increasing the stickiness of A and B (by de-
creasing PB(AB) increased the reaction rate of the reaction A + B → C + D.
Now it is time to see what the influence of the joining probability J is on the
reactions. Repeat the simulation of Example 8-1, but with a change of J(AB)
from 1.0 to 2.0. This change increases the tendencies of A and B to move to-
ward each other when they are separated by a vacant cell. Plot your results as
in Exercise 8.2, and describe any changes observed. Next, repeat the exercise
with J(AB) = 0.5. Again, plot your results and describe any changes in the
results.

Study 8.4c. The influence of an inert species

Many gas-phase reactions are carried out with the addition of a “filler”
species, an inert gas that increases the pressure, collides with the reactants,
and otherwise influences the course of the reaction. It is interesting to observe
whether such an added inert species has an effect on the kinetic results. To thew
conditions of Example 8.2 add 500 “E” cells, which do not interact with the
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other species other than by occupying space on the grid. That is, the E cells
have both PB(EX) = 1.0 and J(EX) = 1.0, for X = A, B, C, D, and E, and
PR(EX) = 0. Compare the concentration vs. time curves obtained in this way
with those from Example 8.2. What effect did adding E have on the results?
What happens with 1000 E cells?
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Chapter 9

ADDITIONAL APPLICATIONS IN
CHEMICAL KINETICS

Complex systems can be identified by what they do (display organization
without a central organizing authority—emergence) and also by how they may
or may not be analyzed (as decomposing the system and analyzing sub-parts
do not necessarily give a clue as to the behavior of the whole).

—J. M. Ottino [1]

In the previous two chapters we examined a number of examples of how
cellular automata models can be used to simulate basic first-order and second-
order phenomena. In this chapter, we shall examine some examples that are
slightly more complicated and/or more specialized. First, we will look at the
example of enzyme kinetics based on the classic Michaelis–Menten model.
Next, we shall look at the equilibrium between a vapor and its liquid, watch-
ing the vapor condense under the joint influences of ingredient attractions and
gravity. Then, we will consider a particular chemical reaction mechanism, theaa
Lindemann mechanism, employing a simplified first-order approach. Finally,
we shall model the kinetics associated with transitions involving atomic and
molecular excited states, focusing on the specific example of the excited states
of atomic oxygen responsible for the spectacular Aurora borealis displays.

9.1. Enzyme kinetics

The functioning of enzymes produces phenomena driving the processes
which impart life to an organic system. The principal source of informationww
about an enzyme-catalyzed reaction has been from analyses of the changes pro-
duced in concentrations of substrates and products. These observations have led
to the construction of models invoking intermediate complexes of ingredients
with the enzyme. One example is the Michaelis–Menten model, postulating an

139
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intermediate enzyme–substrate complex, followed by changes in the substrate
leading to a product.

Enzyme (A) + substrate (B) ↔ enzyme–substrate complex (AB) ↔
enzyme–product complex (AC) ↔ enzyme (A) + product (C)

Enzyme reactions, like all chemical events, are dynamic. Information com-
ing to us from experiments is not dynamic even though the intervals of time
separating observations may be quite small. In addition, much information is
denied to us because of technological limitations in the detection of chemical
changes. Our models would be improved if we could observe and record all
concentrations at very small intervals of time. One approach to this information
lies in the creation of a model in which we know all of the concentrations at
any time and know something of the structural attributes of each ingredient. A
class of models based on computer simulations, such as molecular dynamics,
Monte Carlo simulations, and cellular automata, offer such a possibility.

Application 9.1. Modeling an enzyme reaction

The goal in this application is to explore the possibility of using cellular
automata to model some of the phenomena of enzyme reactions and to de-
termine if there is a potential here for acquiring new information about these
processes. These studies are conducted by varying the rules relating the en-
zyme, substrate, product, and water to themselves and to the other ingredients.
The dynamics are allowed to proceed and the initial velocities and the progress
of the product concentration are observed. This information is compared to
a Michaelis–Menten model. Some general inferences about the influence of
substrate–water and substrate–enzyme relationships on rates of reaction are
made, illustrating the potential value of cellular automata in these studies. Kier
and colleagues [2–4] have used cellular automata to model enzyme reactions.

Example 9.1. An enzyme-catalyzed reaction

The cellular automata dynamics are run on the surface of a torus to eliminate
a boundary condition. The grid of cells is 110 × 110 = 12,100 cells. When
additional ingredients are introduced, they are assumed to displace the water
cell count on a one for one basis; thus the 31% cavity compliment is always
maintained. The ingredients and their designations are enzyme A, substrate B,
product C, and water D. The rules govern the movement, joining, and breaking
of cell ingredients with each other and with neighboring cell ingredients. The
rules take the form of probabilities. Each cell type has a set of parameters
governing its relationship to itself and to all other cell ingredients.

The enzyme, A, is allowed to join with only one molecule of B, C, or D
but not another A. Thereafter, further joining with any other ingredient is not
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possible. The A cells are constrained to remain at some designated minimum
distance from any other A cell. The parameter, PRPP , is employed that describes
the probability of an AB pair of cells changing to an AC pair of cells. The
objective in these studies is to determine if Michaelis–Menten kinetics are
observed from our cellular automata model of an enzyme reaction. Then fifty
of the 12,100 cells are designated as enzymes and a variable number of cells
are designated as substrates. The remaining cells of the grid are designated as
water or cavities, the latter comprising 31% of the grid space. The PRPP value
was arbitrarily chosen to be 0.1 and PBPP (DD) = 0.375 was chosen to simulate
water at body temperature. From the Michaelis–Menten equation, there is a
high degree of linearity between the reciprocals of the concentration and the
initial velocity.

Parameter setup for Example 9.1. Rate of enzyme-catalyzed reaction

Grid 110 × 110 cells on a torus
Water, D, 7350 cellsWW
Enzyme, A, 50 cells
Substrate, B, 500 cells (4%)
Product, C, 0 cells
PMPP (A) = 1.0, PMPP (B) = 1.0, PMPP (C) = 1.0, PBPP (DD) = 0.375, J (DD) = 1.1,

PBPP (DB) = 0.75, J (DB) = 0.3, PBPP (AB) = 0.75, J (AB) = 0.3, PBPP (AC) =
0.75, J (AC) = 0.3, PRPP (AB → AC) = 0.1, PRPP (AC → AB) = 0

Record the number of C cells at 80 iterations
Run for 100 iterations, 100 times to determine an average initial velocity,

V0VV .

The number of C cells recorded at 80 iterations divided by 80 is taken to be the
initial velocity of the reaction, V0VV . The initial concentration [B0] is taken to be
the number of B cells at the start.

V0VV = [C]/80

From the Michaelis–Menten model, there is a relationship between 1/V0VV and the
initial substrate concentration, expressed as the reciprocal, 1/[B0]. To develop
this relationship we shall repeat Example 9.1 using varying concentrations of
B cells. Be sure to subtract the number of B0 cells in each study from the total
number of water, D, cells in the setup.

Studies 9.1a–d. Variation of substrate concentration

A systematic variation of the rules governing the interactions of B and
A can be made to reveal the influence of substrate concentration, B0. Run
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the example again using B0 concentrations of 1000, 1500, 2000, and 2500
cells. Be sure to subtract the same number of cells from the water D used
in each study. Using the [C]80 concentration as a measure of the extent of
the reaction at a common time, in this case 80 iterations, it is possible to
derive some understanding of the influence of interingredient relationships. The
Lineweaver–Burk relationship, 1/[V0VV ] versus 1/[B0], is calculated from this data.
Plot this data using 1/V for the y-axis and 1/[B0] for the x-axis. Calculate the
relationship

1/V0VV = a × 1/[B0] + b

whereww a is the slope of the line and b is the intercept of the line on the plot.
The y-axis intercept, b, is taken to be the reciprocal of the maximum velocity,
1/V0VV , of the reaction for that particular enzyme. The x-axis intercept of the line
is taken to be the negative reciprocal of the KmKK value. KmKK is interpreted to be
the equilibrium constant for the enzyme–substrate system.

A + B ↔ AB

Finally, a term reflecting the efficiency or competence of the enzyme, kcatkk , is
derived

kcatkk = VmaxVV /[A0]

Studies 9.1e–f. Variation of the enzyme conversion probability

The influence of the PRPP probability on this enzymatic process can be evalu-
ated using different values of this parameter. In Example 9.1, the PRPP (A + B →
A + C) was chosen to be 0.1. Repeat that example and the four substrate con-
centration studies in Studies 9.1a–d using the same parameters but changing
the PRPP values to 0.4. Calculate the V0VV , VmaxVV , KmKK , and kcatkk values for this set of
input variables. Repeat the process again using a PRPP value of 0.7. Compare the
Lineweaver–Burk plots and all the V0VV , VmaxVV , KmKK , and kcatkk values for these three
PRPP values. In essence, this is a comparison of three different enzymes acting
on the same substrate. Rank them according to their catalytic efficiency in car-
rying out the reaction. These examples and studies clearly illustrate the power
of cellular automata models in this area of chemistry. The reader is invited to
consider the extensions of these procedures such as introducing an “inhibitor”
molecule to retard the process. A series of reactions could be designed such as

B + A1 → BA1 → CA1 → C + A1

C + A2 → CA2 → DA2 → D + A2

D + A3 → → → and so on . . .
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This has been done illustrating a feed-forward process [3]. Another applica-
tion of these multistep reactions is the study of metabolic networks. Kier and
colleagues have reported on such an example [4].

9.2. Liquid–vapor equilibrium

Application 9.2. Modeling liquid–vapor behavior

In Chapter 2, we examined the effect of introducing a gravity effect on
the movements of the CA ingredients (Example 2.4). Now, we are ready to
see what happens if we combine the gravity effect with attractions between
the moving ingredients. First, however, we shall see what happens if we omit
the gravity term and just allow attractions between the ingredients. This should
give the equivalent of a “mist,” as happens in moist air containing many small
droplets of water molecules that are light enough not to settle quickly to the
ground. After our initial examination, we shall add a gravity term and see what
happens.

Example 9.2. Liquid–vapor equilibrium

First, we examine the case where the ingredients attract one another in the
absence of gravity. The setup is shown as follows:

Parameter setup for Example 9.2. Liquid–vapor equilibrium

1500 ingredients placed on a 100 × 100 cylinder grid
Parameters: PmPP = 1.0, PB(AA) = 0.25, and J(AA)JJ = 2.0
Run length = 500 iterations
Note the general character of the appearance of the system. Does it resemble

a mist?

Study 9.2a.

Now, introduce an absolute gravity term GAG (A) = 0.15 and allow the simu-
lation to run for 15,000 iterations. Note the appearance of the system and print
out a picture of your screen at the end of the run.

Study 9.2b.

Increase the absolute gravity parameter to GAG (A) = 0.30, and repeat
Study 9.2a.
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9.3. The Lindemann mechanism [5]

A “mechanism” in chemical kinetics refers to a set of elementary reac-
tions (i.e., reactions occurring on the molecular scale) that together lead to the
observed overall macroscopic behavior. One of the more interesting of these
mechanisms is the so-called “Lindemann mechanism,” named after the British
physicist F. A. Lindemann. This mechanism was devised to explain the curious
phenomenon that certain gas phase chemical reactions appeared to be uni-
molecular, i.e., taking place without collisions, at high pressure, whereas the
same reactions obeyed normal second-order collisional kinetics at low pressure.
The Lindemann mechanism explained the observed results as arising from the
generation of an “activated” intermediate form A∗ from collisions of the react-
ing species A with an inert ingredient M. The activated species A∗ could then
either (1) be deactivated back to its parent species A by further collisions with
M or (2) proceed to form a product P.

The reaction mechanism is described by the following set of elementary
reactions:

A + M
k1−→ A∗ + M

A∗ + M
k2kk−→ A + M

A∗ k3k−→ P

(9.1)

In this mechanism, conversion of the activated species A∗ to the product P (the
last reaction) competes with deactivating collisions of A∗ with the species M
(the second reaction).

The usual chemical kinetics approach to solving this problem is to set up
the time-dependent changes in the reacting species in terms of a set of coupled
differential rate equations [5,6].

d

dt
[A] = k1[A∗][M] − k2kk [M][A]

d

dt
[A∗] = −k1[A∗][M] + k2kk [M][A] − k3k [A∗]

d

dt
[P] = k3k [A∗]

(9.2)

Usually the steady-state approximation d[A∗]/dt ≈ 0 is applied at this point to
help in solving the equations. This approximation postulates that the concentra-
tion of the intermediate A∗ remains relatively constant over a suitable portion
of the reaction time. The result is the following expression for the reaction
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rate v,

v = d

dt
[P] = k1k3k [A][M]

k3k + k2kk [M]
(9.3)

Note here that at high pressures of M, k2kk [M] � k3kk and Eq. (9.3) reduces to the
first-order rate expression v ≈ (k1k3kk /k2kk )[A] = k ′[A], whereas at low pressures
k2kk [M] � k3kk and the expression becomes v ≈ k1[A][M], the normal second-
order form. (Approximations such as these are commonly used in many areas
of science and mathematics.)

Application 9.3. The Lindemann mechanism [5]

The cellular automata approach to this problem would generally demand a
second-order simulation, and this indeed can be done [5]. However, it is possible
to simplify the problem and write it in terms of first-order kinetics. To do this,
one notes that both the activation and the deactivation of A∗ depend directly on
the concentration [M] of the species M

Rate1 = k1[A][M]

Rate2 = k2kk [A∗][M]

Therefore, one can introduce the pseudo-first-order rate constants k ′
1 = k1[M]

and k ′
2 = k 2[M] for these processes, so that the abovementioned rate expressions

become

Rate1 = k1
′[A]

Rate2 = k2kk ′[A∗]

This redefinition establishes the effective activation/deactivation equilibrium
constant K = k ′

1/k ′
2 = k1/k2kk . (Note that in the cellular automata models, the rate

constants kikk are expressed as transition probabilities per iteration Pi.) Using
the above redefinition, the mechanism of Eq. (9.1) becomes a set of first-order
reactions

A
k ′

1−→ A∗

A∗ k ′
2kk−→ A (9.4)

A∗ k3k−→ P

Thus, the competition between deactivation of the intermediate A∗ and product
formation is given in terms of the ratio α = k′kk2kk /k3kk . When the second-order rate
constants k1, k2kk , and k3kk are set for the system, the ratio α is directly propor-
tional to the pressure [M], since α = (k2kk /k3kk )[M]. Thus, the effect of varying
[M], the variable in the Lindemann mechanism that defines the pressure, can
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be simulated by varying the value of α while keepingww k3kk and the ratio K = k1/k2kk
constant. Accordingly, in this cellular automaton model by simultaneously re-
ducing the transition probabilities k ′

1 and k ′
2 (while keeping their ratio K =

k ′
2/k ′

1 constant), one simulates a reduction in [M], and conversely increasing
these probabilities simulates an increase in [M].

Example 9.3. The Lindemann mechanism

We shall set K = 0.5 and vary k ′
1 and k ′

2 from high values (high pressure) to
low values (low pressure) while keeping their ratio steady at 0.5. We shall hold
k3kk , the rate for conversion of A∗ to P, steady at k3kk = 0.01 per iteration. The aim
in this example is to measure the initial rate of product formation in terms of
P formed per iteration. This can be found by measuring the initial linear part
of the slope of a plot of [P] versus iterations. (Caution: there is usually a short
“induction period” before the linear region is established. Do not include this
period in your analysis.) We will use a grid of 10,000 ingredients. Let A = A
(the starting ingredient), B = A∗ (the activated intermediate), and C = P (the
product). Start with k ′

1 = PT(A → B) = 0.495 iteration−1 and k ′
2 = PT(B →

A) = 0.99 iteration−1 and decrease these values in steps until k ′
1 = 0.000005

iteration−1 and k ′
2 = 0.00001 iteration−1.

Parameter setup for Example 9.3. The Lindemann mechanism

Grid 100 × 100 = 10,000 cell torus grid
10,000 starting A ingredients
Starting transition probabilities:

P =
⎛
⎝
⎛⎛

0.0 0.495 0.0
0.99 0.0 0.01
0.0 0.0 0.0

⎞
⎠
⎞⎞

Run for enough iterations to obtain a linear early region for a plot of P versus
time.

Determine the initial slope of this linear region and record it. Then, repeat
lowering PT(A → B) to 0.25 iteration−1 and PT (B→A) to 0.50 iteration−1,
but keeping PT(B→C) = 0.01. Again, record the initial linear rate of
formation of product P. Repeat again, but this time lowering PT(A → B)
to 0.05 iteration–1 and PT(B→A) to 0.10 iteration–1. Continue to reduce
PT(A → B) and PT(B → A) in further steps, holding their ratio steady at
0.5 and keeping PT(B → C) = 0.01 iteration–1. Finally, take PT(A → B)
= 0.000005 iteration–1 and PT(B → A) = 0.00001 iteration–1 and record
the initial production rate of P.
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When you have all the initial rates Ri, plot log10(R(( i) versus log10α, whereww
α = k ′

2/k3kk = PT(B → A)/0.01. Note the form of this plot, which should
pass from an initial linear region at low α to a flat final region at high α.

Note that α is proportional to the pressure [M].

Study 9.3. The Lindemann mechanism variation in K parameter

Repeat Example 9.3 using K = 0.2 instead of K = 0.5. Again plot this
result.

9.4. Excited-state photophysics [6]

Quantum theory, developed in the early years of the 20th century, forced
scientists to accept the surprising fact that atoms and molecules cannot exist
at arbitrary energies, but rather can exist only in certain discrete energy states,
these states being characteristic of the particular atoms or molecules in ques-
tion. Spectroscopy involves the study of the transitions between these discrete
quantum energy states. The energy states themselves can be associated with
the electronic, vibrational, and rotational motions that the molecules undergo.
Molecular spectra observed in the visible and ultraviolet regions of the elec-
tromagnetic spectrum involve mostly transitions between different electronic
energy states of the atoms and molecules. A second notion resulting from
quantum theory was that the individual electrons, which together determine
the electronic energy states, have an inherent property called spin, and, further-
more, that the electronic spins can only take on two forms, which for want of
better names were termed “up” and “down.” As a consequence, the electronic
states of atoms and molecules exist in a variety of different overall spin ver-
sions, called “singlet,” “doublet,” “triplet,” etc., states, depending on how the
individual electron spins are aligned with respect to one another. Normally,
transitions between electronic states with different overall spins are inhibited,
i.e., they have slower rates than the transitions between electronic states of the
same spin.

Usually the lowest or “ground” states of organic molecules are so-called
“singlet” states in which all the spins of the electrons present are all paired up,
“up” spins coupled with “down” spins. When subjected to a magnetic field,
singlet states do not split in energy. In contrast, “triplet” electronic states, in
which two of the electron spins have become uncoupled (both are up, or bothww
down), split into three slightly different energy levels under the influence of
an imposed magnetic field. The resulting excited-state situation is most easily
visualized by a Jablonski diagram, as shown in Figure 9.1. The usual condition
is that the molecular ground state is a singlet state (S0), and there exists a
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Figure 9.1.FF A Jablonski diagram. S0 and S1 are singlet states, T1 is a triplet state. Abs, absorption;
F, fluorescence; P, phosphorescence; IC, internal conversion; and ISC, intersystem crossing.
Radiative transitions are represented by full lines and nonradiative transitions by dashed lines

host of excited states having either singlet (Sn) or triplet (Tn) character. The
observed visible/ultraviolet absorption spectrum of the compound consists of
transitions from the ground state S0 to the excited singlet states S1, S2, S3, etc.
Absorptions to the excited triplet states are strongly inhibited (“forbidden”)
by the spin restriction mentioned above and do not normally appear in the
spectrum.

Photophysics is the study of the transitions between the ground state and
the excited states. If one is interested primarily in the luminescence of the
molecules, i.e., the radiative transitions from the excited states to the ground
state, it is usually sufficient to study only the lowest excited singlet and triplet
states, S1 and T1, respectively. This is because of Kasha’s rule, which states that
the emitting state of a given spin multiplicity (singlet or triplet, in the present
case) is the lowest excited state of that multiplicity [7]. This rule follows from
the fact that excited states of the same spin are usually close in energy and
strongly coupled to one another, so that after excitation to a higher excited
singlet state, say S2 or S3, collisions with surrounding molecules quickly remove
the excess energy and cause rapid nonradiative (without radiation) decay to the
lowest excited singlet state S1. Once at S1, however, the molecules face a rather
large energy gap to the ground state. Fluorescence, the spin-allowed radiative
transition from S1 to the ground state, is usually a fast process, taking place
within several nanoseconds (10–9 s) of excitation. S1 can also decay to S0

without radiation via a process called internal conversion (IC) that competes
with fluorescence. In addition, S1 is normally close in energy to T1, so that
despite the spin restriction nonradiative transitions from S1 to T1 can also take
place, a process called intersystem crossing (ISC). Thus, three processes can
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occur from S1: fluorescence S1 → S0, ISC S1 → T1, and nonradiative IC S1 →
S0.

If the molecule reaches the triplet state T1, two further decay transitions can
occur: radiative decay T1 → S0 called phosphorescence and nonradiative ISC
decay T1 → S0. Because of the spin restriction involved and the rather large
T1-S0 energy gap, both processes are rather slow and can have characteristic
times ranging from microseconds (10−6 s) to seconds. In solution at room
temperature, the long-lived (by molecular standards) triplet states of organic
compounds are usually quenched by molecular oxygen dissolved in the solution
and phosphorescence is not normally seen. (Molecular oxygen, O2, has a triplet
ground state and can quench other triplet states.) However, in low-temperature
(e.g., liquid nitrogen temperature, 77 K) rigid glasses and under some other
special conditions, it can be possible to observe phosphorescence from organic
compounds. Moreover, many gaseous atoms and solid inorganic compounds
phosphoresce strongly at room temperature.

Let us now examine how a luminescent organic substance might behave
following elevation to an excited state.

Application 9.4. Excited-state decay following light absorption

When a compound absorbs light it is carried to a higher energy state. From
there it will decay to lower energy states, possibly emitting a photon in the
process, and eventually it will return to its ground state. We shall follow a typical
case wherein a sample of identical compounds is excited by a light pulse to S1

and allowed to cascade down through several possible pathways. For simplicity,
we will ignore the IC S1 → S0 from the excited singlet state to the ground state,
since in many fluorescent dyes this decay route is not important. We cannot
say just what an individual ingredient will do, but we will set the probabilities
such that on an average 30% of the compounds fluoresce and 70% cross over
to the triplet state T1. This should result in an expected fluorescence quantum
yieldof ϕf ≈ 0.30 for a large sample and a corresponding triplet quantum
yield of ϕT ≈ 0.70, these numbers reflecting the fractions of ingredients taking
each path. Once in the triplet state T1, the compounds can either decay by
emitting radiation as phosphorescence or decay nonradiatively to the ground
state. Because of the large energy gap and the spin-forbidden natures of the
T1 → S0 decay transitions, their probabilities per unit time are much lower
than those for the singlet state. The phosphorescence quantum yield ϕp is the
product of the fraction of ingredients crossing over to the triplet state (here
the triplet quantum yield ϕT = 0.7) and the fraction of ingredients reaching
the triplet that then phosphoresce. The latter fraction is given by the ratio
of the T1 radiative decay probability per unit time to the total decay probability
per unit time for T1. In the present case, we will set the radiative probability
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at PradPP (T1 → S0) = 0.00004 and the nonradiative probability at PnonPP (T1 →
S0) = 0.00006, so that ϕp = (0.7)(0.00004/0.00010) = 0.28. These values,
ϕf = 0.7 and ϕp = 0.28, correspond to the deterministic limiting values for
these properties. (Note that the triplet state decay rates have been set higher
than those normally encountered for purposes of illustration.)

We will first follow the decay paths taken during several individual runs, just
to see how they can vary. Then we will examine the behavior of larger samples
to find actual values for ϕf and ϕp for the samples. Since the cellular automata
models are stochastic, the results for ϕf and ϕp for small samples will likely
differ significantly from the deterministic values cited above. The differences
between the observed and the deterministic values will normally decrease as
the sample size is increased. We will also examine the observed “lifetimes” τ f

and τ p of the decays of the S1 and T1 states (Chapter 7) and compare the values
found with the corresponding deterministic values.

Example 9.4. Pulse excitation

The somewhat simplified CA program accompanying this text does not
record the specific state-to-state transitions taking place during each iteration,
so that we cannot use it directly to follow the paths taken by each individ-
ual ingredient. In order to determine these paths and their respective quantum
yields, we would like some simple means for following these paths. In partic-
ular, we now have two different decay paths between state B (representing T1)
and state C (representing S0): a radiative path with PradPP (T1 → S0) = 0.00004
and a nonradiative path with PnonPP (T1 → S0) = 0.00006, but our first-order
transformation matrix only permits one path between any two states. We shall
now introduce a simple “trick” to solve both of these problems. The “trick” is to
divide the ground (i.e., C) state into three equivalent parts, one for each of the
paths. To do this, we add states C′ and C′′, as shown in Figure 9.2, to the state
C. Thus the fluorescent S1 → S0 path will go directly from state A to state C,
the phosphorescent decay path from S1 to T1 to S0 will go from A → B → C′,
and the S1 → T1 → S0 nonradiative path will go A → B → C′′. Keeping trackKK
of the populations of C, C′, and C′′ gives us the counts for these three paths.
The total ground state population at any time will be the sum of the populations
of C, C′, and C′′. In Example 9.4, we shall examine some single decays so that
we can get an idea of how the system works. Then in the studies, we will take
the investigation further.

Parameter setup for Example 9.4. Pulse excitation

Grid size 1 × 1 = 1 cell
Starting A cells (blue) = 1 (representing the S1 state)



9. Additional applications inchemical kinetics 151

Starting B cells (green) = 0 (representing the T1 state)
Starting C cells (red) = 0 (S0 for the fluorescence decay)
Starting C′ cells (brown) = 0 (S0 for the phosphorescence decay)
Starting C′′ cells (yellow) = 0 (S0 for the nonradiative decay from state T1)
The transition probability matrix is:

P =

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0.0 0.70 0.30 0.0 0.0
0.0 0.0 0.0 0.000004 0.000006
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

(Note that the numbers in the above matrix are the transition probabilities
for each path)

Number of runs = 10
Simulation length for each run = 5000 iterations
For each of the 10 separate runs note the decay path taken.

Study 9.4a. Behavior of a 100-cell sample

We now consider a sample of 100 ingredients on a 10 × 10 cell grid. All
of the starting ingredients will be blue, so they are starting in their S1 states.
With this sample size, although it is relatively small, we will begin to see theWW
emergence of a pattern in the decays, although the pattern is not very clearly
defined because of the small size of the sample. Maintain the other conditions,
the transition probabilities, of the simulation the same as in Example 9.1, but
now use just a single run of 5000 iterations. Determine ϕf and ϕp for this sample
and compare these values with the deterministic values. (Note again that the

Figure 9.2.FF Cellular automaton setup for photophysics showing the final states C, C′, and C′′
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total numbers of ingredients taking the fluorescent route A → C, the radiative
triplet decay route A → B → C′, and the nonradiative decay path A → B →
C′′ can be found simply by noting the final populations of the C, C′, and C′′

states, respectively.)

Study 9.4b. Extension to a larger sample

We shall now examine the behavior of a fairly large sample of 10,000
cells using the same conditions as mentioned above. Again, use a single 5000
iteration run. (Check to see how many of the 10,000 starting A ingredients have
ended up in the C states. Lengthen the run if too many have not completed their
decays after 5000 iterations.) Determine ϕf, ϕp, τ f, and τ p for this sample and
compare these values with the deterministic values. For the lifetimes τ f and τ p,
plot ln(A or B) versus time for the first 70% of each decay period and determine
the decay rates k from the slopes. The lifetimes are the inverses of the slopes,
τ = 1/k.

Application 9.5. Continuous excitation

In the above illustrations, we looked at the behavior of cells after a burst of
excitation, where all the ingredients start in the excited S1(A) state. In many,
if not most, luminescence experiments the excitation is continuous, i.e., the
sample is constantly illuminated so that the fluorescence is continuously ob-
served. Simulation of this experimental mode requires the introduction of an
excitation probability from the ground state (C, C′ or C′′ in this case) to the
excited singlet state (A), i.e., a value for the absorption probability PabsPP (S0 →
S1). In general, this value will depend on three factors: (1) the incoming light
intensity, (2) the spectral nature of the incoming light, and (3) the ability of the
luminescent compound to absorb the incoming light.

Thus, this value will depend on the experimental conditions, including the
light source, the sample studied, and the overall optical setup. For the present
illustration, we will set PabsPP (S0 → S1) = 0.005 per iteration.

Example 9.5. Continuous excitation

In this example, Example 9.2, we shall start with all the cells in the ground
state S0. Again, we will use the three parts of the ground state, C, C′, and C′′,
to keep track of the paths taken during this continuous process.

Parameter setup for Example 9.5. Continuous excitation

Grid size 100 × 100 = 10,000 cells
Starting A cells (blue) = 0 (representing the S1 state)



9. Additional applications inchemical kinetics 153

Starting B cells (green) = 0 (representing the T1 state)
Starting C cells (red) = 10,000 (S0 for the fluorescent decay path)
Starting C′ cells (brown) = 0 (S0 for the phosphorescence decay path)
Starting C′′ cells (yellow) = 0 (S0 for the nonradiative decay from state T1)
The transition probability matrix is:

P =

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0.0 0.70 0.30 0.0 0.0
0.0 0.0 0.0 0.0004 0.0006
0.005 0.0 0.0 0.0 0.0
0.005 0.0 0.0 0.0 0.0
0.005 0.0 0.0 0.0 0.0

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

(In the above matrix, the numbers are the transition probabilities for each
path)

Number of runs = 1
Simulation length = 10,000 iterations
Plot the concentrations (numbers) of the species A, B, C, C′, and C′′ as a

function of time
After how many iterations (roughly) is a steady-state condition reached?

What are the steady-state concentrations of the different states (S0, S1,
and T1)? (Determine the latter over the final 5000 iterations.) Determine
the quantum yields ϕf and ϕP from your results

A typical result is shown in Figure 9.3. Note that the concentration of S0

initially falls as the ingredients are excited to S1, but eventually reaches a rela-
tively steady value after about 500 iterations as ingredients return to this state
through various routes. During this same period, the triplet state (T1) popu-
lation first increases and then also reaches a relatively steady value. Because
of its very short lifetime, the population of the excited singlet state S1 never
becomes very large, and is not much evident in Figure 9.3. Recall that to de-
termine the total S0 population, one must sum the values of the C, C′, and
C′′ populations, giving Ctot. Taking the interval between 1000 and 2000 it-TT
erations as a reasonable sample for the steady-state region, it was found for
the sample run illustrated in Figure 9.3 that [S0]avg = 7376 ± 48. Likewise,
[S1]avg = 37 ± 6 and [T1]avg = 2588 ± 46. Breaking down the components
of the S0 state population for the 1000–2000 iteration interval gave [C]avg =
2219 ± 33, [C′]avg = 2077 ± 29, and [C′′]avg = 3079 ± 38. Using our “trick”
described earlier, these numbers can be used to estimate the fluorescence quan-
tum yield ϕf, the triplet yield ϕT, and the phosphorescence yield ϕp. Here ϕf =
[C]avg/[Ctot]avg = 2219/7376 = 0.301, a value very close to the deterministic
value of 0.3. Likewise, ϕT = ([C′]avg + [C′′]avg)/[Ctot]avg = 5156/7376 = 0.699,
and ϕp = [C′]avg/[Ctot]avg = 2077/7376 = 0.282.
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Figure 9.3.FF Illustration of the approach to steady-state conditions for the populations of states
S0, S1, and T1 under the continuous excitation conditions of Example 9.5

Study 9.5a. Repeating the result

Repeat the above study, now using a smaller 50 × 50 = 2500 cell sam-
ple. After the sample has been allowed to come to a steady state, determine
the steady-state concentrations of S0, S1, and T1, along with their standard
deviations. Also determine the quantum yields ϕf and ϕP.

Study 9.5b. Increasing the light intensity

Repeat Example 9.2 (with 10,000 cells) after increasing the absorption rate
to 0.05 iteration–1. Note especially the steady-state concentrations of S0, S1,
and T1.

Study 9.5c. Excited-state dynamics of oxygen atoms [8,9]

Light emissions from excited oxygen atoms play a significant role in the
A. borealis, or northern light displays, seen in the skies of the northern polar
regions [10]. Similar light displays (Au(( rora australis) are also seen above the
southern polar regions and in the atmospheres of Mars and Venus. Several
atmospheric processes lead to the formation of excited oxygen atoms in their
so-called 1S (singlet S) and 1D (singlet D) states, which lie 4.19 and 1.97 eV,
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Figure 9.4.FF Excited states and transitions of oxygen atoms. The numbers on the lines refer to
the wavelengths, in nanometers, of the transitions

respectively, above the atomic ground 3P (triplet P) state of the oxygen atom.
The energetic arrangement of these states is illustrated in Figure 9.4.

Since both the excited (1S and 1D) states are singlet states and the ground
(3P) state is a triplet state, transitions between the excited states and the ground
state are spin-forbidden and have low probabilities (and hence long lifetimes).
The 1S → 3P emission appears weakly at 297.2 nm in the ultraviolet region, and
the 1D → 3P emission appears weakly at 630 nm in the red region. A stronger,
spin-allowed emission, 1S → 1D, appears in the green region at 557.7 nm and
is found prominently in many auroral displays. Okabe [11] has compiled rate
constants for a great number of spectroscopic transitions, including those for
the oxygen atomic states. He lists the following rate constants for the above
transitions:

P(1S → 3P) = 0.067 s−1

P(1D → 3P) = 0.0051 s−1

P(1S → 1D) = 1.34 s−1

In this study, set up the parameters to analyze the dynamics of the oxygen atoms
in the atmosphere based on the above data. Use a 50 × 50 = 2500 cell grid
and start with all the cells in the excited 1S state. Let A = the 1S state, B = the
1D state, and C = the ground 3P state. Start with all of the ingredients in the
excited 1S state. To convert from Okabe’s rate constants, given in units of s–1,
to probabilities per iteration, divide the above values by 10 so that 10 iterations
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correspond to 1 s. (Note that our transition probabilities must always be ≤1.0.)
First, try a run of 2000 iterations. Plot the time course of the A, B, and C
populations for this system. Determine the decay times, τ (1S) and τ (1D), for
the two excited states.
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USE OF THE CASim PROGRAM

Only a new kind of science could begin to cross the great gulf between
knowledge of what one thing does—one water molecule, one cell of heart tissue,
one neuron—and what millions of them do.

—James Gleick1

This chapter prepares the reader to experience the exciting adventure of run-
ning in silico experiments. The Examples and Studies in Chapters 2 through
9 are coordinated with files in the CASim program, found on the compact disk
accompanying this book. In the program the procedures for introducing or
changing parameters, running studies, and collecting data have been simplified
to provide what we hope is a user-friendly and fairly general means for per-
forming cellular automata simulations. It is essential that the reader master the
details in the present chapter very early in his or her work. Once this mastery is
accomplished, the Examples and Studies can be run with minimum distraction
and with maximum understanding of what cellular automata models can do
and show. So, read, practice, learn, and enjoy.

The cellular automata simulation program CASim allows the user to select a
variety of parameters and ingredient types, and to establish appropriate behav-
ioral rules, initial configurations, and report formats. Allowing this flexibility,
however, adds complexity to the system, and requires some attention to detail
on the part of the user. For this book, we decided to structure the simulation
program around the Examples provided, so that the reader does not need to
learn the full procedures for setting up a number of different types of simu-
lations. This format does, however, restrict the reader to simulations related
to the Examples provided. In most cases, depending on how the Example is
designed, the reader is permitted to change the parameter values, the size of the
grid, and the numbers of the different ingredients. In some cases, however, it
has been necessary to keep the grid size or ingredient numbers constant, and
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in these cases the system will disable some functions (see below for specific
details). In most cases the ingredient types, initial configuration set-up, and the
information reported are pre-selected and cannot be changed.

In many cases readers will wish to change the parameters of an Example
in order to explore the consequences. In order to provide for such changes,
CASim uses so-called Setting files (with “.set” as the extension). Each Setting
file must be associated with a specific Example. The Setting file therefore allows
variations from the specific conditions of the Example to be examined. There
are two kinds of Setting files: core and non-core. The core Setting files are
those initially present on the CASim CD and use the Example names as their
file names. For example, the core Setting file associated with Example2-1 is
called Example2-1.set. The non-core Setting files are additional Setting files
created by the user (see below). You can delete non-core Setting files, but
you should not delete core Setting files, although you are free to change their
parameters (see below).

10.1. System requirements

This software is written in Java programming language. To run this Java
application, the J2SE (v 1.4.2 or higher version) Java runtime environment must
be installed. There is a free download web site http://java.sun.com/j2se/1.4.2/
download.html. The CASim software is designed to run on any computer that
supports Java 1.4.2 or later Java runtime environment. (This includes almost
all Windows, Macintosh, and linux systems.)

10.2. Installation of CASim on your computer

Installation is accomplished by simply copying the CASim directory from
the accompanying CD onto the hard drive of your personal computer.

10.3. Organization of the CAProgram Directory

The CASim directory contains three subdirectories: CAExample, CAOut-
put and CAProgram. In the CAProgram directory, there are three files—
CASim.class, CASim.jar, and CASim.BAT.

In the CAExample directory there are eight subdirectories, one for each
chapter of this book (except Chapter 1 and the present Chapter). Each chapter
subdirectory contains a Hidden subdirectory that contains certain files needed
to set up the examples in that chapter properly. Do not change anything in these
Hidden subdirectories, since changes in these files may prevent the program
from working properly. In addition, each chapter subdirectory contains core
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Setting files, one for each example in the chapter. Again, do not delete core
Setting files.

The CAOutput directory is initially empty. It is the directory into which
the output of each simulation will be placed. Please see the Data Collection
section below for details.

10.4. Data Collection

When a simulation is completed, the data gathered during the simulation are
collected into a report. This report, as a text file, will be found in the CAOutput
directory with a file name indicating the Example, the Setting file, and the time
of the simulation. For instance, the file name for a report of a simulation which
ran Example3-1 with Setting file abc.set on May 10 at 13th hour and 45 minutes
would be

Ex3-1 abc 05101345.txt.

In this form, “05101345” repesents mm/dd/hh/mm. Expressing the file in this
wayaa reduces the chance of accidentally overwriting a previous report.

You may wish to rename the output file so that it will not be overwritten
when you run the same Example again. For this, it is recommended that youww
choose a name that you can easily relate to the appropriate topic and Example.
You may want to remove this file from the CAOutput subdirectory, to keep the
directory from becoming too crowded.

10.5. Graphic User Interface window and Graphic
Simulation window

The system employs two windows. One is the Graphic User Interface
window which provides facilities for the user to load, edit, and/or to view variousww
parameter settings. Furthermore, the user can issue commands to save the
settings and to run the simulation. The other window is the Graphic Simulation
window which presents the dynamics of the ingredients movement in the grid.ww
Both windows can be closed by clicking the “cross” at the right top corner of
the window. These two windows are very much related, therefore the following
two rules must be observed.

1. The Graphic Simulation window should be closed before the Graphic
User Interface window.

2. When the Graphic Simulation window is still open, the Graphic User
Interface window should not be used.
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10.6. Steps in setting up a simulation

The steps needed to set up a simulation, run it, and recover data are described
here. More detailed instructions for each of the Steps 2–4 will be described later.

Step 1. Pick an Example in the text that represents the kind of simulation
you wish to study.

Step 2. For MS Windows users, start theWW CASim software by double clicking
CASim.BAT in the CAProgram directory. If you wish, you can bring
CASim.BAT to the desktop so that you can start from there. For other
platforms, first set CAProgram as the default directory, then you may
start the software by entering “java CASim” at the command line.

Step 3. After Step 2, you will be greeted with a window with one tab (see
Figure 10.1). Use the list box beneath “Select the chapter” to choose
the desired chapter. The contents of the other two list boxes will change
according to the selection of the chapter. Use the list box beneath “Select
the example” to choose the desired Example. The content of the lowest
list box will change to display the Setting files in the selected chapter’s
directory that are associated with the selected example. Use the list box
beneath “Select the Setting file” to choose the desired Setting file. Click
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the Load button; and you will see the same window but with more tabs
(see Figure 10.2). Depending on which example is loaded, there will be
different tabs. We will choose the tab “Run Simulation” in the next step,
and postpone the discussion of other tabs until we reach the section on “
Editing and Saving”.

Step 4. Choose the tab “Run Simulation”; the window will show the corre-
sponding page (see Figure 10.3). This page allows you to set the number
of iterations required for this simulation, the iteration at which the pro-
gram should start to gather data, the number of runs in this simulation,
how often the data should be collected (e.g., once in 10 iterations), and a
factor allowing you to slow down the simulation. There are five descrip-ff
tors on the rightmost column on this page, corresponding to each of these
parameters. Entering values into the edit boxes will set the corresponding
parameters. Once all the parameter are set, you can click the Run button to
start the simulation. The Graphic Simulation window will appear. The
initial configuration of the grid is displayed, and at this moment, the sim-
ulation is in the suspend mode. A click on the Suspend/Resume button
will start the dynamic process of the simulation. In fact, you can suspend
or resume the activity by clicking the Suspend/Resume button. You may
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close the Graphic Simulation window before or after the simulation is
over. Once that is done, you can work with the Graphic User Interface
window to start a new run, load a new example setting, or simply close
the window.

Step 5. After the simulation, you can find the report file in the CAOutput
directory. At this point you may wish to rename the output file so that you
can relate it to the specific settings employed. You may also wish to remove
this file from the CAOutput subdirectory so that this directory does not
become too crowded. If you wish to perform a statistical analysis of the
simulation data, you can import the data into an appropriate statistical
analysis program, such as Microsoft’s EXCEL©R

10.7. Editing and Saving

Beside the “Load File” and “Run Simulation” tabs, there are five other tabs.
These tabs are used to change specific settings and for saving the settings to
a new or an existing Setting file. We will discuss the pages corresponding to
each of these tabs below.
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10.8. Saving Setting tab

This page will allow you save the updated setting for future use (see Figure
10.4). If you do not want to save the settings to the file indicated in the edit
box, key in the file name into which you want to save these settings. Once,
you click the “Save” button, the present settings will be saved to the Setting
file identified in the edit box. This Setting file will be associated with the most
recently loaded Example.

10.9. Edit Size tab

This page will allow you to view and edit the number of ingredients and
size of the grid (see Figure 10.5). The list box beneath “Ingredient Type”
will display all the ingredient types involved in the selected example. The edit
box to the right (beneath “ingredient number”) will show the numbers of the
ingredients of each type. Changing the number in the edit box will change the
number of ingredients of the selected type. Changing the number in the edit
boxes beneath “Number of Rows” and Number of Columns” will change the
numbers of rows and columns of the grid . Note that the sum of the ingredients



164 Chapter 10

Figure 10.5.FF

must not be greater than the product of the number of rows and the number of
columns (the grid size). An error message will appear later in the sequence if
this rule is not observed.

10.10. Edit PT Rule tab

This page will allow you to view and change the transition probabilities
(see Figure 10.6). The present version of CASim supports the use of up to five
ingredient types, namely A, B, C, D, and E. For each type of ingredient you
can enter the desired PT values (0 ≥ PT ≤ 1) in the corresponding edit boxes
to change their transition probabilities. For instance, if PT(A→C) is 0.9, then
enter 0.9 in the edit box at the intersection of the “From A” row and the “To C”
column. CASim hides any edit boxes that should not be edited. For instance,
the diagonal terms of the matrix should always be zero, so those edit boxes
are hidden, also when the chosen example only uses A,B and C types, the edit
boxes for the D and E rows and columns are hidden. Note that the sum of
entries in each row must not exceed 1.
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10.11. Edit PR Rule tab

This page will allow you to view and change the reaction probabilities (see
Figure 10.7). The present version of CASim supports five reaction probability
(PR) possibilities, namely A + A → C + D, A + B → C + D, C + D → A +
B, A + B → A + C, and A + C → A + B. You can enter the desired PR values
(0 ≥ PR ≤ 1) in the corresponding edit boxes. For instance, if you would like
to set PR for A + B → C + D to 0.5, enter 0.5 in the edit box to the right of
“Probability for A + B → C + D”.

10.12. Edit Break/Join/Move/Gravity tab

This page will allow you to view and change the breaking and free movementd
probabilities and the joining, absolute gravity, and relative gravityrr factors (seeff
Figure 10.8). In the leftmost column of this page, there are four list boxes with
descriptive texts above each of them. To the right of those list boxes, there are
edit boxes for the corresponding parameters . When you select an item in a list
box, the edit box (or boxes) to the right will display the present value(s) of the
parameter(s) related to the selected item. When you enter any new value into
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an edit box, the value of the corresponding parameter will be changed to the
entered value. For example, if Example4-5 is the chosen example and “W vs W”
is selected in the topmost list box, the top edit box beneath “Breaking” might
display 0.3. This indicates that the breaking probability PB for an ingredient
W breaking away from an adjacent ingredient W is 0.3. This can be changed
as desired. Likewise, if the selected item in the second list box from the top is
“W”, then the free movement probability for all the W-type ingredients is set
to 0.8. This same general procedure holds for the other parameters.

10.13. Error Messages

When the user clicks the “Save” or “Run” buttons, the system will in-
voke its consistency check routine, so that the system will always create Set-
ting files with “admissible” values, and run a simulation with “admissible”
settings. It will catch those inputted values which are an incorrect type, too
big, etc. Whenever it finds a violation, an error message box will appear to
inform the user where the problem is. For instance a message like “Error
06 301:NUMBER OF INGREDIENT value must be a non-negative integer”
indicates that a negative value is entered into the NUMBER OF INGREDIENT
edit box, which is on the page controlled by the “Edit Size” tab.

10.14. Identifying the CASim program

You may have occasion in a report or publication, to refer to the CASim
program. The program should be identified as follows:

C.-K. Cheng, L. B. Kier, and P. G. Seybold, CASim Version 1.0, Cen-
ter for the Study of Biological Complexity, Virginia Commonwealth
University, Richmond, VA 23284, USA, 2005.

Reference
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