BEGINNING
OPENGL

GAME PROGRAMMING

DAVE ASTLE
KEVIN HAWKINS

-
st

BEGINNING
OPENGL

GAME PROGRAMMING

This page intentionally left blank

BEGINNING

OPENGL

GAME PROGRAMMING

@

DAVE ASTLE
KEVIN HAWKINS

© 2004 by Premier Press, a division of Course Technology. All rights reserved.
No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system without written permission from
Course PTR, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press
and may not be used without written permission.

OpenGL is a registered trademark of SGI.
glFont © 2004 Brad Fish, bhf5@email.byu.edu.

GLee © 2004 Ben Woodhouse, ben@elf-stone.com, with parts copyright by SGI.
All rights reserved.

All other trademarks are the property of their respective owners.

Important: Course PTR cannot provide software support. Please contact the
appropriate software manufacturer’s technical support line or Web site for
assistance.

Course PTR and the authors have attempted throughout this book to distin-
guish proprietary trademarks from descriptive terms by following the capital-
ization style used by the manufacturer.

Information contained in this book has been obtained by Course PTR from
sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Course PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed since this
book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity dis-
count information. Training manuals, CD-ROMs, and portions of this book are
also available individually or can be tailored for specific needs.

ISBN: 1-59200-369-9
Library of Congress Catalog Card Number: 2004090734
Printed in the United States of America

04050607 08BH 10987654321

THOINMSON

+ ™

COURSE TECHNOLOGY

Professional m Trade m Reference

Course PTR, a division of Course Technology
25 Thomson Place
Boston, MA 02210
http://www.courseptr.com

Senior Vice President,
Course PTR Group:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Senior Acquisitions Editor:
Emi Smith

Associate Marketing Manager:
Kristin Eisenzopf

Project Editor:
Sandy Doell

Technical Reviewer:
Ben Woodhouse

Retail Market Coordinator:
Sarah Dubois

Interior Layout Tech:
Marian Hartsough

Cover Designer:
Steve Deschene

CD-ROM Producer:
Brandon Penticuff

Indexer:
Katherine Stimson

Proofreader:
Gene Redding

For my family and friends
—Kevin

For my crash of rhinos
—Dave

Vi

ACKNOWLEDGMENTS

irst and foremost, I want to thank my wife Melissa and my kids, Rebi, Evan, Ellie,

Tyler, and Nate, for all of your support throughout this project, and for dragging

me away from the computer just often enough for me to retain most of my sanity.
I love you all.

I’d also like to thank Kevin, my partner and collaborator, without whom I never would
have done this. I can’t imagine finding a better teammate.

Big thanks to everyone at Premier Press/Course Technology. You're a great group of peo-
ple to work with, and I genuinely appreciate the confidence you place in me.

Ben Woodhouse deserves special mention for his efforts as technical editor. He provided
valuable feedback that helped make this book much better than it would have been oth-
erwise. Thanks also to The Mighty Pete for allowing us to use his skybox images in many
of the example programs, and to Jeff Royle from ATI Technologies for providing us with
graphics hardware for testing purposes.

Finally, I want to thank everyone who has taught me in some way, including Chuck
Hansen, Robert Kessler and my other professors at the University of Utah, my coworkers
at Avalanche Software and Qualcomm, the denizens of the GameDev.net forums, and
everyone else who has taken the time to share their knowledge and experience via a Web
site or book.

—Dave Astle

Acknowledgments

I’d like to thank Dave, for his work as a good teammate, motivator, and friend. Chances
are you would not be holding this book in your hands if he had not used a little friendly
coercion on me. I'm amazed at what we were able to accomplish with this project, and a
good deal of its success is due to our ability to work together as a team. I also want to
thank my family for their constant support for me in everything I do. Oftentimes they
don’t get as much credit as they should be getting.

My friends and coworkers also deserve a share of the thanks. Whether they know it or not,
I’ve learned from all of them in some form or another and value their friendships: Tucker,
Tom, Christie, Mike, Rael, Kristin, Vivian, JP, Andy, Greg R., Greg S., Bill, Kyle, Randall,
Jordan, Hack, Justin, Nate, Luke M., Mike M., Johnny Y., Nick M., and so many others that
we don’t have the space for here. Also, thank you to the Premier Press group for the oppor-
tunity to do this project and for maintaining a high degree of support and confidence in
both Dave and me, and in GameDev.net.

And finally, I want to thank everyone who has provided me with the ability and talent,
directly or indirectly, that has allowed me to create this book, including the professors at
Embry-Riddle, my baseball coaches and teammates, Chris Hargrove, Seth Robinson, Jeff
Molofee, Rich Benson, and a host of software engineering colleagues.

—Kevin Hawkins

vii

viii

ABOUT THE AUTHORS

DAVE ASTLE has been programming games professionally for several years, working on
titles for the Xbox, PlayStation 2, GameCube, PC, and various wireless devices. Currently,
he is a lead engineer in the Gaming and Graphics group at Qualcomm, Inc. He is the
cofounder and executive producer of GameDev.net, the leading online community for
game developers. He has authored or contributed to several game development books and
has spoken at industry conferences, including the Game Developers’ Conference. He
received his bachelor’s degree in Computer Science from the University of Utah, where he
specialized in graphics, artificial intelligence, networking, software engineering, and com-
piler theory and design.

KEvIN HAWKINS is a lead software engineer at Raydon Corporation where he designs and
develops training simulations for a variety of customers, including the U.S. military. In
addition, Kevin is the cofounder and CEO of GameDev.net, the leading online commu-
nity for game developers. He holds a master’s degree in Software Engineering and a bach-
elor’s degree in Computer Science from Embry-Riddle University, where he also played
intercollegiate baseball and was drafted by the Cleveland Indians in the 2002 amateur
baseball draft.

CONTENTS AT A GLANCE | |

PART |

INtroduction XVii

OPENGL BASICS:¢cttecernersnncsnnnsl

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

PARrT Il

The Exploration Begins ... Again 3
Creating a Simple OpenGL Application 13
OpenGL States and Primitives 35
Transformations and Matrices 67
Colors, Lighting, Blending, and Fog 99
Bitmaps and Images with OpenGL 133
Texture Mappingt e 149

BEYONDTHEBASICS+ ¢ccccree....183

Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13

PART Il

OpenGL Extensions 185
More on Texture Mappingc..iiii ... 197
Up Your Performance 221
Displaying Textt e 249
OpenGLBuffers 261
The Endgame 277

APPENDICES :: ::ttctssessnsssssssssse 283

Appendix A
Appendix B
Appendix C

Answers to Review Questions and Exercises 285
FurtherReading 295
What'sonthe CD i et 299
INdeX ..o e 301

CONTENTS |
Introduction i i i Xvii
PART | OPENGL BASICS ¢ it evnsennnsal
Chapter 1 The Exploration Begins ... Again 3
Why Make Games? i 3
TheWorldof 3D Games 4
The ElementsofaGame iiiinn.. 4
What Is OpenGL? 6
OpenGL Historyo 7
OpenGL Architecture i 7
Related Libraries 9
ASneak Peek 10
SUMMaATY o ottt e e e e e e 12
Chapter 2 Creating a Simple OpenGL Application 13
Introductionto WGL 13
The Rendering Context 14
Pixel Formats 16
AWFIags . . 18
PIXelTYPe . 18
CCOIOrBItS ..ot 19

Setting the Pixel Format 19

Chapter 3

Chapter 4

Contents
An OpenGL Application 20
Full-Screen OpenGL i 31
SUMIMaAIY o e e 33
OpenGL States and Primitives 35
State Functions 35
Querying NumericStates 36
Enabling and Disabling States 36
gllsEnabled() 37
Querying String Values 37
FINdiNg Errors e e e e 38
Giving OpenGLaHint 39
Handling Primitives 39
Drawing Points in 3D 42
Drawing Linesin 3D 47
Drawing Polygonsin 3Dt 52
Using Primitives: Triangles and Quads Example 60
Attributes e 64
SUMMaAIY . . 65
Transformations and Matrices 67
Understanding Coordinate Transformations 67
Eye Coordinatesc. i e 69
Viewing Transformations 70
Modeling Transformations 71
Projection Transformations 73
Viewport Transformations 73
OpenGL and Matricesot 73
The Modelview Matrix, 74
Translation e 75
Rotation 77
SCaling . v v e 80
Matrix Stacks 82
The Robot Example 84
Projections 87
Orthographic 87
Perspective 88
Setting the Viewport 89

Projection Example 920

Xi

Xii

Contents

Chapter 5

Chapter 6

Manipulating the Viewpoint i 91
Using gluLookAt() 92
Using glRotate() and glTranslate() 93
Creating Your Own Custom Routines 94

Using Your Own Matrices, 95
Loading Your Matrix i 95
Multiplying Matrices 96
Transpose Matrices i 96

SUMMAIY o o st e e e e e e e e 97

Colors, Lighting, Blending,and Fog 99

Using Colors in OpenGL e 99
Settingthe Color 100
Secondary Color 101

Shading e 102
A Colorful Example 104

Lighting in OpenGL i 104
OpenGL Lighting and the Real World 104
Light SOUrCest 106
Spotlights 109
Materials e 111
Normals e 115
The Lighting Model 118
Lighting in Action 120

Blending 121
Separate Blend Functions 125
The Blend Equation 125
ConstantBlend Color 127
Disk Blender 127

Fog 128
OpenGLFOg 128
Fog Coordinates 130
Fogin Action 131

SUMMAIY . oottt e e e e e e e e e e e s 131

Bitmaps and Images with OpenGL 133

The OpenGLBitmap 133
Positioning the Bitmap 134
Drawing the Bitmap i 135

An OpenGL Bitmap Example 136

Chapter 7

PArT Il

Contents
USINg IMageso 138
Drawinglmage Data 139
Reading fromthe Screen L. 141
CopyingScreenData 141
Magnification, Reduction, and Flipping 142
Managing Pixel Storage 142
Targalmage Files 143
The Targa File Format 143
Loading Targa Files 145
SUMMaAIY . .o e e e 147
Texture Mappingcciiiiiiinininnnrennnnss 149
An Overview of Texture Mapping, 150
Texture Coordinates 151
Using the Texture Mapt 152
Texture Objects 152
Specifying Textures 155
Texture Filtering 161
Basic Texture Example 163
MiPmMaPs o 166
Mipmaps and the OpenGL Utility Library 167
Automatic Mipmap Generation, .. 168
Texture Parameters 169
Texture Wrap Modeso e 170
Texture Level of Detail 173
Texture Environments and Texture Functions 174
Specifying the Texture Environment 175
Textured Terraint e 178
Buildingthe Mesh 178
SUMIMaAIY .« . e e e 181

BEYOND THEBASICS ... ¢ ¢ttt eeeeessa183

Chapter 8

OpenGL Extensionsc.ciiiiiiinnnnnnnnn 185
Anatomy of an Extensiono, 185
Extension Names e 186
Name STringst 187
FUNCtions . . . e 187

TOKENS . . .o 188

Xiii

Xiv

Contents

Chapter 9

Chapter 10

Using EXteNSIONS e 188
Checking the Name String, 189
Obtaining the Function’s Entry Point 190
Declaring Enumerants 191

WGL EXENSIONSo 191

Introduction to GLee i 192
Setting Up GLee 193
Using GLeE ... it e 193
Using GLee with Core Extensions 194

Extensions in Action 195

QUMM .ttt e e e e 195

More on Texture Mappingoiiiiiinnnnnn.. 197

More on Texture Specification 197
Sub-Images 197
Copying from the Color Buffer 198

The Texture Matrix Stack 201

Texture Coordinate Generation 202
Environment Mapping i 205
Example: Reflective Cube Mapping 206

Multitexturing e 208
Texture Units 208
Specifying Texture Coordinates 210
Example: Multitextured Terrain 210
Texture Combine e 213
Example: Image Interpolation 216

SUMMaAIY . . et et et e e e e e e e 219

Up Your Performancecov.... 221

Display Lists e 221
Creating a Display List 222
Filling a Display List with Commands 223
Executing Display Lists i 223
Display List Gotchas 224
Destroying Display Lists, 225
Display Lists and Textures 226

VerteX Arrays . ..ot 226

Array-Based Data i 228

Chapter 11

Chapter 12

Contents

Enabling Vertex Arrays 228
Working with Arrays 229
Interleaved Arrays 235
Vertex Arrays and Multitexturing 237
LOCKiNG Arrays ..ot 238
Marbles 239
Frustum Culling 241
Determining the View Frustum 243
Testing Points 244
Testing Spheres 244
Frustum Culling Applied 245
SUMIMaAIY . e e 247
Displaying Texto it 249
Bitmap Fonts e 249
Outline FONtsttt e e 253
Using glFont 257
The Executable 257
The Code . ..o e 258
SUMIMAIY .« e e e e 258
OpenGLBuffers s, 261
What Is an OpenGLBuffer? i, 261
Clearingthe Buffers 262
SCISSOr BOXES . . v v ittt 262
The Color Buffer 263
Alpha Test e 263
Color Maskingo u i 265
Logical Operations 265
The Depth Buffer 266
Depth-Comparison Functions 266
Read-Only Depth Buffer 267
The Stencil Buffer 268
An Example of Stencil Testing 270
The Accumulation Buffer 271
Example: Using the Accumulation Buffer 272

SUMMaAIY . .o e 275

XV

XVi

Contents

Chapter 13

PaARrT Il

TheEndgameot iiiinnnnns 277
The Design . . o oo 277
Using OpenGLinthe Game 279
SUMMANY . .o e e e e e e e e 282

APPENDICES .. :::2cccesssnsnsssss 283

Appendix A

Appendix B

Appendix C

Answers to Review Questions and Exercises 285
FurtherReading 295
ONliNe RESOUICES . . o ittt it e ettt e e 295
Game Development 295
Game Tutorials 296
Flipcodeo 296
OpenGL e 297
BOOKS . . oo 297
ot o e e 297
Windows Programming, 297
BD Math ... 298
OpenGL 298
Graphics Programming i 298
Game Development 298
WhatsontheCD i iiiiiiiinnnnn. 299
Source Code . ..ttt e 299
GLEE . e 299
Bonus Chapters e 300
Bonus Game 300

INTRODUCTION

n the spring of 2001, we finished writing OpenGL Game Programming. Although the

book didn’t cover everything we had initially planned, we hoped that it would bene-

fit people learning to program games with OpenGL. The ensuing years have seen that
hope realized, as we’ve come into contact with dozens of people in person and many times
that number via e-mail and the Web who had used our book as a starting point into 3D
game development.

Given the tremendous effort involved with writing a book, upon the book’s completion,
we both felt that it would be our first and last book. However, since then, as we gained
experience, we began to feel the need to rewrite the book. We noticed areas where it was
weak, where it needed to be updated to coincide with the latest OpenGL spec, and where
material could be added to provide more complete coverage. We also wanted to explore
more advanced subject material. We were torn between rewriting the original book and
creating a new advanced book. After some debate, the decision was made to start by tak-
ing the core material from the first book and revising it to be up to date and more com-
plete, while removing material that we felt wasn’t as relevant for game development. You
hold the results of that effort in your hands. With a solid foundation established through
this book, we hope to explore more advanced topics in a second volume at some future
date.

In this book, you’ll begin to learn how to develop games using high-performance graph-
ics and game libraries. You’ll learn how to unleash the power of OpenGL 1.5 to create real-
istic, real-time graphics.

XVii

Xviii

Introduction

Who Should Read This Book

This book is intended for programmers who are just getting started in 3D game develop-
ment. We assume that youre comfortable programming in C++ and hope that you have
at least a basic understanding of 3D mathematics and graphics. By the end of the book,
you should understand all of the basics of OpenGL and be able to apply them to games.

If you're already experienced with OpenGL, you may still find some useful tidbits here,
but you’re probably better off waiting for the next volume.

What We Will and Won't Cover

The days when you could cover everything you need to know about game development in
a single volume (or even two!) are long gone—if they ever existed at all. To keep the size
and cost of this book down to the range that is appropriate for a beginner, we had to care-
fully pick and choose which topics to cover, which required making a few assumptions.

The first assumption is that you know how to program in C++. If not, there are many
good books covering it, some of which are listed in Appendix B, “Further Reading.” Pick
up a few, read them, spend some time programming, and then come back.

The second assumption is that you know how to program on your platform of choice.
OpenGL is available on many different platforms, so we can’t safely guess which one
you’re using, nor can we devote space to covering many different platforms. Even if we did
pick a popular platform such as Windows, the coverage would be incomplete, and every
page we spent on it would be one page less on OpenGL and game programming. So, if you
don’t already know how to at least get a basic application up and running on your plat-
form of choice, spend some time hitting the books or reading tutorials. That said, in
OpenGL Game Programming, we included a chapter covering the basics of Win32 pro-
gramming. Because we believe that the majority of our readers use Windows, we’ve
included that chapter in PDF format on the CD, for your convenience.

Even though we won’t be covering platform-specific programming in general, we will
cover Windows-specific issues related to OpenGL because the way you set up and initial-
ize OpenGL varies from system to system.

The third assumption we make is that you have some understanding of 3D math. Many
beginning game programming books (including our original one) provide 3D math
primers, but it is such a large topic that these primers are unavoidably incomplete. Rather
than give you a half-baked introduction to the topic, we recommend picking up one
of the books suggested in Appendix B. In truth, because OpenGL hides much of the

Introduction

mathematics that goes on behind the scenes, you can probably cheat for now and get away
with not knowing things like how to compute a dot product or multiply matrices. But if
you want to become a graphics guru, you'll want to learn as much as you can about 3D
math, and doing so before diving into a book like this one will make your journey easier.

Since we wrote a math primer for the previous book, we went ahead and included it on
the CD as well, so if you just want to learn the basics or perhaps brush up a bit, you may
find it useful.

Finally, at least in this volume, we’ve opted not to cover any topics in game development
not directly related to graphics or OpenGL. Subjects such as game design, artificial intel-
ligence, networking, audio, and physics are all very important to games, but they all
require more than a chapter or two to cover completely—many of them deserve a book
of their own.

Now that you know what we won’t be covering, let’s talk about what we will be covering.
As the title suggests, this book is targeted at people who want to make games using
OpenGL, but who have never used it before. So you'll learn a lot of OpenGL. You won’t
learn everything there is to know about it yet—the more advanced aspects will be covered
in later volumes, and there are parts of it that aren’t particularly useful for games—but
you will learn all of the basics, including important topics like texture mapping and ver-
tex arrays. By the end of the book, you'll be able to make non-trivial games.

Our philosophy is to focus on one thing and do it well, rather than trying to cover many
things and do them poorly.

What's New

If you've read, or at least looked at, OpenGL Game Programming, you may be wondering
what’s different about this book.

The most obvious change is that this book is much smaller. This book covers most of the
material covered through Chapter 13 in OpenGL Game Programming. Although we’re
covering most of the same material as the first edition, this is not merely an update.
We’ve entirely rewritten many sections of the book and thoroughly reviewed and
updated everything that hasn’t been rewritten. We’ve added some new sections: some to
cover new functionality that has been added to OpenGL, and some to lay the foundation
for the next volume. We’ve also removed a few sections that we felt were of questionable
value (don’t worry, though; they’re on the CD in electronic format, so youre not really
missing anything).

XixX

XX

Introduction

About the Target Platform

One of the most important (and difficult!) decisions we faced in writing this book was
which target platform to use. Because OpenGL is a cross-platform API, the field was wide
open, and we were left with several choices:

1. Write for as many of the major platforms as possible.
2. Use a cross-platform API to abstract the platform-specific details.

3. Write for the most popular platform, and let people on other platforms figure out
the differences on their own.

The first option simply isn’t practical for space and time reasons. The second option is
better, but we felt that there are some platform-specific issues that can’t be avoided and
are important to understand. Ultimately, we decided on the third option, and it’s clear that
Windows is still the most popular platform by a very wide margin for people starting off
in game development. If you're not using Windows, don’t worry, the amount of Windows-
specific information is very limited. Almost all of the information covered in this book is
readily applicable to any platform OpenGL is supported on.

Using This Book

Note

If you don't read anything else in this introduction, read this section. It contains important infor-
mation you'll need to get the most out of this book.

The CD

In order to reduce the cost of this book while allowing us to pack in as much information
as possible, we’ve minimized the amount of code that is listed in the book. Full source
code for all of the example programs used in the book is included on the CD, so you'll
want to open these files or print them out to use in conjunction with the text.

Extensions

You'll learn about extensions in Chapter 8, “OpenGL Extensions.” As you’ll see there,
extensions are especially important under Windows for accessing new features. Through-
out the book, whenever we discuss features that are only available as extensions under
Windows, we’ll provide a box with information about the extension to make it easier for
you to use.

Introduction

Function Names

Many OpenGL functions come in multiple versions to support different numbers and
types of parameters. In C++, this could easily be implemented using overloaded func-
tions, but since OpenGL was designed to be used with C and other languages that might
not support overloading, another solution was necessary. This solution was to include
information about the type and number of parameters in each function’s name. In order
to be able to avoid listing all of the different variations of a function, we’ll use the follow-
ing convention:

glFunction{1234}{bsifd ubusui}(TYPE param);
glFunction{1234}{bsifd ubusui}v(TYPE *params);

This notation indicates that the function name will be followed by one of the numbers
contained within the first set of curly braces and then one of the letters contained in the
second set of curly braces. The letters stand for byte, short, integer, float, double, unsigned
byte, unsigned short, and unsigned integer, respectively. TYPE is used as a placeholder for
the specific data type accepted by the function. The second form varies from the first only
in that it includes a v, which indicates that the function takes an array of values rather than
a single value.

When referring to a function that has multiple forms within the text, we will generally
refer to it as g1Function() without any parameter information.

Your Tools

In order to use this book, you're going to need a few things. First off, you'll need a C++
compiler. Because knowing C++ is one of the prerequisites for this book, it’s safe to
assume you already have a C++ compiler. All the code samples for this book were written
using Visual C++ 6.0 and Visual C++ .NET, although you should be able to get everything
to work with other compilers.

In addition to the compiler, you'll need the headers and libraries for OpenGL. If you're
using Visual C++, you already have the latest headers and libraries for Windows. For other
platforms, you can visit the official OpenGL Web site at www.opengl.org and download
them from there.

Note

The OpenGL implementation included with Visual C++ was (not surprisingly) created by Microsoft.
If you search around the Internet, you may come across an OpenGL implementation for Windows
created by Silicon Graphics. Because Silicon Graphics is no longer maintaining its implementation,
you should stick with Microsoft's implementation.

XXi

XXii

Introduction

The specific files needed for OpenGL under Windows are listed below. The filenames for
other platforms may be a little different (.a instead of .1ib for Linux, for instance), but the
function is the same.

g1.h Primary OpenGL header. By convention, this is placed in a subfolder of your
compiler’s include directory named g1.

glu.h Header for the OpenGL Utility library. This is placed in the same location as
gl.h.

openg132.1ib Library containing bindings to OpenGL functions. This is placed in
your compiler’s library folder.

glu32.1ib Library containing bindings to OpenGL Utility Library functions. This is
placed in your compiler’s library folder.

openg132.d11 Dynamic-link library containing OpenGL function implementations
and hooks into video hardware drivers. This is found in the Windows system
directory (system32).

g1u32.d11 Dynamic-link library containing OpenGL Utility Library function
implementations. This is found in the Windows system directory (system32).

Whenever making a new project, you'll have to be sure that the OpenGL library files are
linked to it. In Visual C++, there are several ways to do this, but the preferred method is
by opening the Project menu, selecting the Settings command, clicking the Link tab, and
adding openg132.11b and g1u32.11b to the Object/library modules line. You can also include
the following two lines anywhere in your project (note that these commands are Microsoft
specific and probably won’t work with other compilers):

fipragma comment(1ib, "opengl132.1ib")
#pragma comment(1ib, "glu32.1ib")

When you try to compile your program, if you get errors that look like this:

error LNK2001: unresolved external symbol __imp__glClear@4

it’s a sure sign that you haven’t linked the OpenGL libraries correctly. Go back and read
the preceding several paragraphs again.

Support Web Site

Finally, we maintain a Web site at http://glbook.gamedev.net that we will use to provide
support for this book. We’ll be updating this site regularly to post errata and updates to
the example programs as needed. Be sure to check it if you have any problems.

Enough with the introduction, let’s get started!

PART |

OPENGL BAsiIcS

CHAPTER 1
The Exploration Begins ... Again 3

CHAPTER 2
Creating a Simple OpenGL Application 13

CHAPTER 3
OpenGL States and Primitives 35

CHAPTER 4
Transformations and Matrices 67

CHAPTER 5
Colors, Lighting, Blending, and Fog 99

CHAPTER 6
Bitmaps and Images with OpenGL 133

CHAPTER 7
Texture Mapping 149

This page intentionally left blank

CHAPTER 1

THE EXPLORATION
BEGINS . . . AGAIN

efore digging into the meat of game development, you need to have a founda-

tional understanding of the medium in which you’ll be working. As should be

obvious by now, you'll be using the OpenGL API for graphics, so we’ll take a look
at OpenGLs origins, design, and evolution. We’ll also provide an overview of the game
industry, as well as a look at the core elements involved in a game.

In this chapter, you will learn:

= What a game is
= About OpenGL and its history
m About libraries that can be used to expand OpenGL's functionality

Why Make Games?

Interactive entertainment has grown by leaps and bounds in the last decade. Computer
games, which used to be a niche market, have now grown in to a multi-billion-dollar
industry. Recent years have shown a trend of accelerating growth whose end is not in
sight. The interactive entertainment industry is an explosive market that pushes the latest
computer technologies to the edge and helps drive research in areas such as graphics and
artificial intelligence. It is this relentless drive and growth that attracts many people to this
industry, but why do people really make games?

From working in the game industry ourselves and talking to many others who do as well,
one thing seems to drive people to learn and succeed at the art of game development: fun.
Games have come to be known as one of the more creative forms of software develop-
ment, and the amazing games that have been released in recent years are a testament to

Chapter 1 = The Exploration Begins . .. Again

that. Games like Halo by Bungie Software have pushed the envelope of game design to the
point that the industry will never be the same again. Game developers are drawn into this
industry by the idea of creating their own virtual world that thousands, if not millions, of
other people will one day experience. The game developer strives to be challenged and to
discover new technologies and new worlds. According to Michael Sikora, an independent
game developer, “It’s like a trip I just can’t get off.” This is what making games is all about.

The World of 3D Games

Although many companies have contributed to the growth of 3D gaming, a special nod
must be given to id Software, which was a major catalyst in the rise of 3D games. More
than 10 years ago, John Carmack and company unleashed a little game called Wolfenstein
3D upon the world. Wolf3D brought the gaming world to its knees with realtime raycast-
ing 3D graphics and an immersive world that left gamers sitting at their computers for
hours upon hours. The game was a new beginning for the industry, and it never looked
back. In 1993, the world of Doom went on a rampage and pushed 3D graphics technology
past yet another limit with its 2.5D engine. The gaming world reveled in the technical
achievement brought by id in their game Doom, but it did not stop there. Several years
later, Quake changed 3D gaming for good. No longer were enemies “fake 3D,” but rather
full 3D entities that could move around in a fully polygonal 3D. The possibilities were now
limited only by how many polygons the CPU (and eventually, the GPU) could process and
display on the screen. Quake also brought multiplayer gaming over a network to reality as
hordes of Internet users joined in the fun of death matches with 30 other people.

Since the release of Quake, the industry has been blessed by new technological advance-
ments nearly every few months. The 3D gaming sector has brought on 3D accelerator
hardware that performs the 3D math right in silicon. Now, new hardware is released every
six months that seems to double its predecessor in raw power, speed, and flexibility. With
all these advancements, there could not be a more exciting time than now for 3D game
development.

The Elements of a Game

You may now be asking, “How is a game made?” Before we can answer this question, you
must understand that games are, at their lowest level, software. Today’s software is devel-
oped in teams, where each member of a team works on his or her specialty until every-
one’s work is integrated to create a single, coherent work of art. Games are developed in
much the same way, except programming is not the only area of expertise. Artists are
required to generate the images and beautiful scenery that is prevalent in so many of
today’s games. Level designers bring the virtual world to life and use the art provided to
them by the artists to create worlds beyond belief. Programmers piece together each ele-
ment and make sure everything works as a whole. Sound techs and musicians create the

Why Make Games

audio necessary to provide the gamer with a rich, multimedia, believable, and virtual
experience. Designers come up with the game concept, and producers coordinate every-
one’s efforts.

With each person working on different areas of expertise, the game must be divided into
various elements that will get pieced together in the end. In general, games are divided
into these areas:

m Graphics

= Input

= Music and sound

® Game logic and artificial intelligence

® Networking

= User interface and menuing system
Each of these areas can be further divided into more specific systems. For example, game

logic would consist of physics and particle systems, while graphics might have a 2D and/or
3D renderer. Figure 1.1 shows an example of a simplistic game architecture.

Input

Sound and
Music

Y

Game Logic
and Physics

I Graphics

World
Database

A

Y

{ Data Files

Figure 1.1 A game is composed of various subsystems.

Chapter 1 = The Exploration Begins . .. Again

As you can see, each element of a game is divided into its own separate piece and com-
municates with other elements of the game. The game logic element tends to be the hub
of the game, where decisions are made for processing input and sending output. The
architecture shown in Figure 1.1 is very simplistic, however; Figure 1.2 shows what a more
advanced game’s architecture might look like.

As you can see in Figure 1.2, a more complex game requires a more complex architectural
design. More detailed components are developed and used to implement specific features
or functionality that the game software needs to operate smoothly. One thing to keep in
mind is that games feature some of the most complex blends of technology and software
designs, and as such, game development requires abstract thinking and implementation
on a higher level than traditional software development. When you are developing a game,
you are developing a work of art, and it needs to be treated as such. Be ready to try new
things on your own and redesign existing technologies to suit your needs. There is no set
way to develop games, much as there is no set way to paint a painting. Strive to be inno-
vative and set new standards!

What Is OpenGL?

OpenGL provides the programmer with an interface to graphics hardware. It is a power-
ful, low-level rendering library, available on all major platforms, with wide hardware sup-
port. It is designed for use in any graphics application, from games to modeling to CAD.
Many games, such as id Software’s Doom 3, use OpenGL for their core graphics-rendering
engine.

Metworking F------ - To Hetwork
e gnt t / Graphics
Input —=| Messoge Handling Game Logic | Game Output
Windows System / \ Sound
Messages /
Physics Game Databose,/Resource Manoger
[Music l ‘ Sounds ‘ I Textures | | 3D Medels l ‘ Other |

Figure 1.2 A more advanced game architectural design.

What Is OpenGL?

OpenGL intentionally provides only low-level rendering routines, allowing the program-
mer a great deal of control and flexibility. The provided routines can easily be used to
build high-level rendering and modeling libraries, and in fact, the OpenGL Utility Library
(GLU), which is included in most OpenGL distributions, does exactly that. Note also that
OpenGL is just a graphics library; unlike DirectX, it does not include support for sound,
input, networking, or anything else not directly related to graphics.

Tip

non

OpenGL stands for “Open Graphics Library.” “Open” is used because OpenGL is an open standard,
meaning that many companies are able to contribute to the development. It does not mean that
OpenGL is open source.

OpenGL History

OpenGL was originally developed by Silicon Graphics, Inc. (SGI) as a multi-purpose,
platform-independent graphics API. Since 1992, the development of OpenGL has been
overseen by the OpenGL Architecture Review Board (ARB), which is made up of major
graphics vendors and other industry leaders, currently consisting of 3DLabs, ATI, Dell,
Evans & Sutherland, Hewlett-Packard, IBM, Intel, Matrox, NVIDIA, SGI, Sun Microsys-
tems, and Silicon Graphics. The role of the ARB is to establish and maintain the OpenGL
specification, which dictates which features must be included when one is developing an
OpenGL distribution.

At the time of this writing, the most recent version of OpenGL is Version 1.5. OpenGL
remained at Version 1.2 for a long time, but three years ago, in response to the rapidly
changing state of graphics hardware, the ARB committed to annual updates to the speci-
fication.

The designers of OpenGL knew that hardware vendors would want to add features that
may not be exposed by core OpenGL interfaces. To address this, they included a method
for extending OpenGL. These extensions eventually become adopted by other hardware
vendors, and when support for an extension is wide enough—or the extension is deemed
important enough by the ARB—the extension may be promoted to the core OpenGL
specification. Almost all of the most recent additions to OpenGL started out as exten-
sions—many of them directly pertaining to video games. Extensions are covered in detail
in Chapter 8, “OpenGL Extensions.”

OpenGL Architecture

OpenGL is a collection of several hundred functions providing access to all of the features
offered by your graphics hardware. Internally, it acts as a state machine—a collection of

Chapter 1 = The Exploration Begins . .. Again

states that tell OpenGL what to do and that are changed in a very well-defined manner.
Using the API, you can set various aspects of the state machine, including such things as
the current color, lighting, blending, and so on. When rendering, everything drawn is
affected by the current settings of the state machine. It’s important to be aware of what
the various states are and the effect they have, because it’s not uncommon to have unex-
pected results due to having one or more states set incorrectly. Although we’re not going
to cover the entire OpenGL state machine, we’ll cover everything that’s relevant to the top-
ics covered in this book.

At the core of OpenGL is the rendering pipeline, as shown in Figure 1.3. You don’t need
to understand everything that happens in the pipeline at this point, but you should at least
be aware that what you see on the screen results from a series of stems. Fortunately,
OpenGL handles most of these steps for you.

Image Geometry
[EECEECEEPPTEE Commands [------------- -
s Y -
: Display i
;"‘ """"""" Lists [T "'g
: Texture '
: Memory ;
! P b i
"y - . \i
Pixel S Vertex
Operations ---#=|| Resterization & --- Operations
L
Per-fragment
Operations
Y
Frame Buffer

Figure 1.3 The OpenGL rendering pipeline.

What Is OpenGL?

Fixed Function Versus Programmability

What you see in Figure 1.3 is the classic fixed function pipeline. In the fixed function model, the
operations that are performed at each stage are always the same, although you're able to provide
input parameters that modify the operations somewhat. For the past several years, the graphics
industry has been revolutionized by the development of the programmable pipeline. With pro-
grammability, a developer is able to take complete control over what happens at certain stages,
specifically at the vertex and per-fragment operation stages. This is done through the use of cus-
tom programs that actually execute on the graphics hardware. These programs are often referred
to as shaders.

Shaders can be difficult to understand when you are first learning computer graphics, so in this
book we'll be focusing on the fixed function pipeline, which still provides a considerable degree of
power and flexibility.

Related Libraries

There are many libraries available that build upon and around OpenGL to add support
and functionality beyond the low-level rendering support that it excels at. One of them,
GLU, has already been mentioned. We don’t have space to cover all of the OpenGL-
related libraries, and new ones are cropping up all the time, so we’ll limit our coverage
here to two of the most important: GLUT and SDL. We'll cover an additional library,
GLee, in Chapter 8.

GLUT

GLUT, short for OpenGL Utility Toolkit, is a set of support libraries available on every
major platform. OpenGL does not directly support any form of windowing, menus, or
input. That’s where GLUT comes in. It provides basic functionality in all of those areas,
while remaining platform independent, so that you can easily move GLUT-based applica-
tions from, for example, Windows to UNIX with few, if any, changes.

GLUT is easy to use and learn, and although it does not provide you with all the function-
ality the operating system offers, it works quite well for demos and simple applications.

Because your ultimate goal is going to be to create a fairly complex game, youre going to
need more flexibility than GLUT offers. For this reason, other than a brief example at the end
of this chapter, it is not used in the code in the book. However, if you'd like to know more,
visit the official GLUT Web page at http://www.opengl.org/resources/libraries/glut.html.

9

10

Chapter 1 = The Exploration Begins . .. Again

SDL

The Simple Direct Media Layer (SDL) is a cross-platform multimedia library, including
support for audio, input, 2D graphics, and many other things. It also provides direct sup-
port for 3D graphics through OpenGL, so it’s a popular choice for cross-platform game
development. More information on SDL can be found at www.libsdl.org.

A Sneak Peek

Let’s jump ahead and take a look at some code that you will be using. The code won’t
make much sense now, but it’ll start to in a few chapters. On the CD, look for and open
up the project Simple, which you’ll find in the directory for this chapter. This example
program displays two overlapping colored polygons, as shown in Figure 1.4.

Note that this code uses GLUT for handling all the operating system—specific stuff. This is
just to keep things simple rather than confusing the issue with platform-specific setup
code. Let’s dissect the code. First is the initialization:

g1Enable(GL_DEPTH_TEST);

Figure 1.4 A simple OpenGL example.

A Sneak Peek

This line enables zbuffering, which ensures that objects closer to the viewer get drawn over
objects that are farther away. This is explained in detail in Chapter 12, “OpenGL Buffers.”

Next up is the Reshape() routine, which gets called initially and every time the display win-
dow is resized:

glViewport(0, 0, (GLsizei) width, (GLsizei) height);
gIMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(90.0, width/height, 1.0, 100.0);

gIMatrixMode(GL_MODELVIEW);

This sets up the way in which objects in the world are transformed into pixels on the
screen. All of the functions used here will be explained in Chapter 4, “Transformations
and Matrices.”

The last piece of code to look at is in the Display() routine. This code is called repeatedly
to update the screen:

glloadIdentity();

gluLookAt(0.0, 1.0, 6.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

// clear the screen
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

g1Begin(GL_TRIANGLES);
glColor3f(1.0, 0.0, 0.0);
glVertex3f(2.0, 2.5, -1.0);
g1Color3f(0.0, 1.0, 0.0);
glVertex3f(-3.5, -2.5, -1.0);
g1Color3f(0.0, 0.0, 1.0);
glVertex3f(2.0, -4.0, 0.0);

glEnd();

g1Begin(GL_POLYGON);
glColor3f(1.0, 1.0, 1.0);
glVertex3f(-1.0, 2.0, 0.0);
glColor3f(1.0, 1.0, 0.0);
glVertex3f(-3.0, -0.5, 0.0);
g1Color3f(0.0, 1.0, 1.0);
glVertex3f(-1.5, -3.0, 0.0);

11

12

Chapter 1 = The Exploration Begins . .. Again

g1Color3f(0.0, 0.0, 0.0);

glVertex3f(1.0, -2.0, 0.0);

glColor3f(1.0, 0.0, 1.0);

glVertex3f(1.0, 1.0, 0.0);
glEnd();

The first two lines set up the camera, as explained in Chapter 4. g1Clear()—which you’ll
learn about in Chapter 12—is then used to clear the screen. The rest of the function draws
the two polygons by specifying the vertices that define them, as well as the colors associ-
ated with them. These functions will all be explained in Chapter 3, “OpenGL States and
Primitives.”

Try modifying some of the values in the example program to see what effect they have.

Summary

In this chapter you took a first look at OpenGL, which you’ll be using throughout the
remainder of this book for graphics demos and games. Now that you have an overview of
the API you will be using, you can get into the fun part of actual development!

What You Have Learned
= 3D gaming is a rapidly growing and excited field.
® OpenGL is a graphics library that is used in many games.

= OpenGL has been around for over 10 years. Its development is overseen by the
Architectural Review Board.

m Libraries such as GLUT and SDL can be used in conjunction with OpenGL for
faster development and added functionality.

Review Questions
1. When was OpenGL first introduced?
2. What is the current version number of OpenGL?

3. Who decides what additions and changes are made to OpenGL?

On Your Own

1. Take the example program and modify it so that the triangle is all red and the
polygon is all blue.

CHAPTER 2

CREATING A SIMPLE
OPENGL APPLICATION

s mentioned in the introduction, knowing how to create a basic application on
the platform you are using is one of the prerequisites to reading this book. How-
ever, even though OpenGL is multiplatform, there are platform-specific things
you need to do to be able to use OpenGL. We’ll be covering them for Windows here. Over
the course of this chapter, you will learn:
m The WGL and related Windows functions that support OpenGL
m Pixel formats
m Using OpenGL with Windows
m Full-screen OpenGL

Introduction to WGL
The set of APIs used to set up OpenGL on Windows is collectively known as WGL, some-
times pronounced “wiggle.” Some of the things WGL allows you to do include:

m Creating and selecting a rendering context.

= Using Windows font support in OpenGL applications.

m Loading OpenGL extensions.

We’ll cover fonts and extensions in Chapters 11, “Displaying Text,” and 8, “OpenGL
Extensions,” respectively. Rendering contexts are covered here.

13

14

Chapter 2 = Creating a Simple OpenGL Application

Note

WGL provides considerable functionality in addition to what's been listed here. However, the addi-
tional features are either rather advanced (and require extensions) or very specialized, so we won't
be covering them in this volume.

The Rendering Context

For an operating system to be able to work with OpenGL, it needs a means of connecting
OpenGL to a window. If it allows multiple applications to be running at once, it also needs
a way to prevent multiple OpenGL applications from interfering with each other. This is
done through the use of a rendering context. In Windows, the Graphics Device Interface
(or GDI) uses a device context to remember settings about drawing modes and com-
mands. The rendering context serves the same purpose for OpenGL. Keep in mind, how-
ever, that a rendering context does not replace a device context on Windows. The two
interact to ensure that your application behaves properly. In fact, you need to set up the
device context first and then create the rendering context with a matching pixel format.
We'll get into the details of this shortly.

You can actually create multiple rendering contexts for a single application. This is useful
for applications such as 3D modelers, where you have multiple windows or viewports, and
each needs to keep track of its settings independently. You could also use it to have one
rendering context manage your primary display while another manages user interface
components. The only catch is that there can be only one active rendering context per
thread at any given time, though you can have multiple threads—each with its own con-
text—rendering to a single window at once.

Let’s take a look at the most important WGL functions for managing contexts.

wglCreateContext()

Before you can use a rendering context, you need to create one. You do this through:

HGLRC wglCreateContext(HDC hDC);

hDC is the handle for the device context that you previously created for your Windows
application. You should call this function only after the pixel format for the device con-
text has been set, so that the pixel formats match. (We’ll talk about setting the pixel for-
mat shortly.) Rather than returning the actual rendering context, a handle is returned,
which you can use to pass the rendering context to other functions.

Introduction to WGL

wglDeleteContext()

Whenever you create a rendering context, the system allocates resources for it. When
you’re done using the context, you need to let the system know about it to prevent those
resources from leaking. You do that through:

BOOL wglDeleteContext(HGLRC hRC);

wglMakeCurrent()

If the currently active thread does not have a current rendering context, all OpenGL func-
tion calls will return without doing anything. This makes perfect sense considering that
the context contains all of the state information that OpenGL needs to operate. This is
done with wglMakeCurrent():

BOOL wgTMakeCurrent(HDC hdc, HGLRC hRC);

You need to make sure both the device context and rendering context you pass to
wg1MakeCurrent() have the same pixel format for the function to work. If you wish to des-
elect the rendering context, you can pass NULL for the hRC parameter, or you can simply pass
another rendering context.

The wglCreateContext() and wglMakeCurrent() functions should be called during the initial-
ization stage of your application, such as when the WM_CREATE message is passed to the
windows procedure. The wg1DeleteContext() function should be called when the window
is being destroyed, such as with a WM_DESTROY message. It’s good practice to deselect the ren-
dering context before deleting it, though wglDeleteContext() will do that for you as long as
it’s the current context for the active thread.

Here’s a code snippet to demonstrate this concept:

LRESULT CALLBACK WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM 1Param)

{
static HGLRC hRC; // rendering context
static HDC hDC; // device context

switch(message)
{

case WM_CREATE: // window Is being created
hDC = GetDC(hwnd); // get device context for window
hRC = wglCreateContext(hDC); // create rendering context
wgTMakeCurrent(hDC, hRC); // make rendering context current

break;

15

16

Chapter 2 = Creating a Simple OpenGL Application

case WM_DESTROY: // window Is being destroyed
wgTMakeCurrent(hDC, NULL); // deselect rendering context
wglDeleteContext(hRC); // delete rendering context
PostQuitMessage(0); // send WM_QUIT
break;

} // end switch
}// end WndProc

This little bit of code will create and destroy your OpenGL window. You use static vari-
ables for the rendering and device contexts so you don’t have to re-create them every time
the windows procedure is called. This helps speed the process up by eliminating unneces-
sary calls. The rest of the code is fairly straightforward as the comments tell exactly what
is going on.

Getting the Current Context

Most of the time you will store the handle to your rendering context in a global or mem-
ber variable, but at times you don’t have that information available. This is often the case
when you're using multiple rendering contexts in a multithreaded application. To get the
handle to the current context, you can use the following:

HGLRC wglGetCurrentContext();
If there is no current rendering context, this will return NULL.

You can acquire a handle to the current device context in a similar manner:

HDC wglGetCurrentDC();

Now that you know the basics of dealing with rendering contexts, we need to discuss pixel
formats and the PIXELFORMATDESCRIPTOR structure and how you use them to set up your
window.

Pixel Formats

OpenGL provides a finite number of pixel formats that include such properties as the
color mode, depth bulffer, bits per pixel, and whether the window is double buffered. The
pixel format is associated with your rendering window and device context, describing
what types of data they support. Before creating a rendering context, you must select an
appropriate pixel format to use.

Pixel Formats

The first thing you need to do is use the PIXELFORMATDESCRIPTOR structure to define the char-
acteristics and behavior you desire for the window. This structure is defined as

typedef struct tagPIXELFORMATDESCRIPTOR {

WORD
WORD
DWORD
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
DWORD
DWORD
DWORD

nSize;
nVersion;
dwFlags;
iPixelType;
cColorBits;
cRedBits;
cRedShift;
cGreenBits;
cGreenShift;
cBlueBits;
cBlueShift;
cAlphaBits;
cAlphaShift;
cAccumBits;
cAccumRedBits;
cAccumGreenBits;
cAccumBlueBits;
cAccumAlphaBits;
cDepthBits;
cStencilBits;
cAuxBuffers;
ilayerType;
bReserved;
dwLayerMask;
dwVisibleMask;
dwDamageMask;

} PIXELFORMATDESCRIPTOR;

/1
/1
/1
11
11
/1
/1
/1
/1
11
11
11
/1
/1
/1
11
11
11
/1
/1
/1
11
11
/1
/1
/1

size of the structure

always set to 1

flags for pixel buffer properties
type of pixel data

number of bits per pixel

number of red bits

shift count for red bits

number of green bits

shift count for green bits

number of blue bits

shift count for blue bits

number of alpha bits

shift count for alpha bits

number of accumulation buffer bits
number of red accumulation bits
number of green accumulation bits
number of blue accumulation bits
number of alpha accumulation bits
number of depth buffer bits

number of stencil buffer bits
number of auxiliary buffer. not supported.
no longer used

number of overlay and underlay planes
no longer used

transparent underlay plane color
no longer used

Let’s take a look at the more important fields in this structure.

nSize

The first of the more important fields in the structure is nSize. This field should always be
set equal to the size of the structure, like this:

pfd.nSize

sizeof (PIXELFORMATDESCRIPTOR) ;

17

18

Chapter 2 = Creating a Simple OpenGL Application

This is fairly straightforward and is a common requirement for data structures that get
passed as pointers. Often, a structure needs to know its size and how much memory has
been allocated for it when performing various operations. A size field allows easy and
accurate access to this information with a quick check of the size field.

dwFlags

The next field, dwF1ags, specifies the pixel buffer properties. Table 2.1 shows the more com-
mon values that you need for dwFlags.

Table 2.1 Pixel Format Flags

Value Meaning

PFD_DRAW_TO_WINDOW The buffer can draw to a window or device surface.

PFD_SUPPORT_OPENGL The buffer supports OpenGL drawing.

PFD_DOUBLEBUFFER Double buffering is supported. This flag and PFD_SUPPORT_GDI are
mutually exclusive.

PFD_DEPTH_DONTCARE The requested pixel format can either have or not have a depth buffer.

To select a pixel format without a depth buffer, you must specify this
flag. The requested pixel format can be with or without a depth buffer.
Otherwise, only pixel formats with a depth buffer are considered.

PFD_DOUBLEBUFFER_DONTCARE The requested pixel format can be either single or double buffered.
PFD_GENERIC_ACCELERATED The requested pixel format is accelerated by the device driver.

PFD_GENERIC_FORMAT The requested pixel format is supported only in software. (Check for this
flag if your application is running slower than expected.)

iPixelType
The iPixelType field specifies the type of pixel data. You can set this field to one of the fol-
lowing values:
® PFD_TYPE_RGBA. RGBA pixels. Each pixel has four components in this order: red,
green, blue, and alpha.
® PFD_TYPE_COLORINDEX. Paletted mode. Each pixel uses a color-index value.
For our purposes, the iPixelType field will always be set to PFD_TYPE_RGBA. This allows

you to use the standard RGB color model with an alpha component for effects such as
transparency.

Pixel Formats

cColorBits

The cColorBits field specifies the bits per pixel available in each color buffer. At the present
time, this value can be set to 8, 16, 24, or 32. If the requested color bits are not available on
the hardware present in the machine, the highest setting closest to the one you choose will
be used. For example, if you set cColorBits to 24 and the graphics hardware does not
support 24-bit rendering, but it does support 16-bit rendering, the device context that is
created will be 16-bit.

Setting the Pixel Format

After you have the fields of the PIXELFORMATDESCRIPTOR structure set to your desired values,
the next step is to pass the structure to the ChoosePixelFormat() function:

int ChoosePixelFormat(HDC hdc, CONST PIXELFORMATDESCRIPTOR *ppfd);

This function attempts to find a predefined pixel format that matches the one specified by
your PIXELFORMATDESCRIPTOR. If it can’t find an exact match, it will find the closest one it can
and change the fields of the pixel format descriptor to match what it actually gave you.
The pixel format itself is returned as an integer representing an ID. You can use this value
with the SetPixelFormat() function:

BOOL SetPixelFormat(HDC hdc, int pixelFormat, const PIXELFORMATDESCRIPTOR *ppfd);

This sets the pixel format for the device context and window associated with it. Note that
the pixel format can be set only once for a window, so if you decide to change it, you must
destroy and re-create your window.

The following listing shows an example of setting up a pixel format:

PIXELFORMATDESCRIPTOR pfd;

memset (&pfd, 0, sizeof (PIXELFORMATDESCRIPTOR));

pfd.nSize = sizeof (PIXELFORMATDESCRIPTOR); /] size

pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER;

pfd.nVersion = 1; // version
pfd.iPixelType = PFD_TYPE_RGBA; /] color type
pfd.cColorBits = 32; // prefered color depth
pfd.cDepthBits = 24; /1 depth buffer
pfd.ilayerType = PFD_MAIN_PLANE; // main Tayer

// choose best matching pixel format, return index
int pixelFormat = ChoosePixelFormat(hDC, &pfd);

19

20

Chapter 2 = Creating a Simple OpenGL Application

/] set pixel format to device context
SetPixelFormat(hDC, pixelFormat, &pfd);

One of the first things you might notice about that snippet is that the pixel format
descriptor is first initialized to zero, and only a few of the fields are set. This simply means
that there are several fields that you don’t even need in order to set the pixel format. At
times you may need these other fields, but for now you can just set them equal to zero.

An OpenGL Application

You have the tools, so now let’s apply them. In this section of the chapter, you will piece
together the previous sections to give you a basic framework for creating an OpenGL-
enabled window. What follows is a complete listing of an OpenGL window application
that displays a window with a lime—green colored triangle rotating about its center on a
black background. Let’s take a look.

From winmain.cpp:

fidefine WIN32_LEAN_AND_MEAN
fdefine WIN32_EXTRA_LEAN

finclude <windows.h>
#include <g1/g1.h>
#include <g1/glu.h>

#include "CGFxOpenGL.h"
bool exiting = false; /] is the app exiting?

Tong windowWidth = 800; // the window width
Tong windowHeight = 600; // the window height

Tong windowBits = 32; /] the window bits per pixel
bool fullscreen = false; // fullscreen mode?
HDC hDC; // window device context

// global pointer to the CGfxOpenGL rendering class
CGfxOpenGL *g_glRender = NULL;

The above code defines our #includes and initialized global variables. Look at the com-
ments for explanations of the global variables. The g_g1Render pointer is for the CGfx0penGL

An OpenGL Application

class we use throughout the rest of the book to encapsulate the OpenGL-specific code from
the operating system—specific code. We did this so that if you want to run the book’s exam-
ples on another operating system, such as Linux, all you need to do is copy the CGfx0penGL
class and write the C/C++ code in another operating system required to hook the CGfx-
OpenGL class into the application. You should be able to do this with relative ease; that is our
goal at least.

void SetupPixelFormat(HDC hDC)
{
int pixelFormat;

PIXELFORMATDESCRIPTOR pfd =
{
sizeof (PIXELFORMATDESCRIPTOR), // size

1, /] version
PFD_SUPPORT_OPENGL | // OpenGL window
PFD_DRAW_TO_WINDOW | /] render to window
PFD_DOUBLEBUFFER, // support double-buffering
PFD_TYPE_RGBA, /] color type

32, /] prefered color depth

0, 0,0,0,0,0, // color bits (ignored)

0, // no alpha buffer

0, // alpha bits (ignored)

0, // no accumulation buffer
0, 0, 0, 0, // accum bits (ignored)

16, /] depth buffer

0, // no stencil buffer

0, // no auxiliary buffers
PFD_MAIN_PLANE, // main Tayer

0, /] reserved

0, 0, 0, // no Tayer, visible, damage masks

b

pixelFormat = ChoosePixelFormat(hDC, &pfd);
SetPixelFormat(hDC, pixelFormat, &pfd);

22

Chapter 2 = Creating a Simple OpenGL Application

The SetupPixelFormat() function uses the PIXELFORMATDESCRIPTOR to set up the pixel format
for the defined device context, parameter hDC. The contents of this function are described
earlier in this chapter in the “Pixel Formats” section.

LRESULT CALLBACK MainWindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM 1Param)
{

static HDC hDC;

static HGLRC hRC;

int height, width;

// dispatch messages
switch (uMsg)

{
case WM_CREATE: // window creation
hDC = GetDC(hWnd);
SetupPixelFormat(hDC);
hRC = wglCreateContext(hDC);
wg1MakeCurrent(hDC, hRC);
break;
case WM_DESTROY: // window destroy
case WM_QUIT:
case WM_CLOSE: // windows is closing

// deselect rendering context and delete it
wgIMakeCurrent(hDC, NULL)
wglDeleteContext (hRC);

/1 send WM_QUIT to message queue
PostQuitMessage(0);
break;

case WM_SIZE:
height = HIWORD(1Param); // retrieve width and height
width = LOWORD(1Param);
g_g1Render->SetupProjection(width, height);
break;
case WM_KEYDOWN:

int fwKeys;
LPARAM keyData;

An OpenGL Application

fwKeys = (int)wParam; /1 virtual-key code
keyData = TParam; /] key data
switch(fwKeys)

{

case VK_ESCAPE:
PostQuitMessage(0);
break;

default:
break;

break;

default:
break;

}
return DefWindowProc(hWnd, uMsg, wParam, T1Param);

}

The MainWindowProc() is called by Windows whenever it receives a Windows message. We
are not going to go into the details of the Windows messaging system, as any good Win-
dows programming book will do for you, but generally we need to concern ourselves only
with the MainWindowProc() during initialization, shutdown, window resizing operations,
and Windows-based input functionality. We listen for the following messages:

® WM_CREATE: This message is sent when the window is created. We set up the pixel for-
mat here, retrieve the window’s device context, and create the OpenGL rendering
context.

m WM_DESTROY, WM_QUIT, WM_CLOSE: These messages are sent when the window is destroyed
or the user closes the window. We destroy the rendering context here and then
send the WM_QUIT message to Windows with the PostQuitMessage() function.

= WM_SIZE: This message is sent whenever the window size is being changed. It is also
sent during part of the window creation sequence, as the operating system resizes
and adjusts the window according to the parameters defined in the CreateWindowEx()
function. We set up the OpenGL projection matrix here based on the new width
and height of the window, so our 3D viewport always matches the window size.

® WM_KEYDOWN: This message is sent whenever a key on the keyboard is pressed. In this
particular message code we are interested only in retrieving the keycode and seeing
if it is equal to the ESC virtual key code, VK_ESCAPE. If it is, we quit the application
by calling the PostQuitMessage() function.

23

24

Chapter 2 = Creating a Simple OpenGL Application

You can learn more about Windows messages and how to handle them through the
Microsoft Developer Network, MSDN, which comes with your copy of Visual Studio. You

can also visit the MSDN Web site at http://msdn.microsoft.com.

int WINAPT WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR TpCmdLine, int

nShowCmd)
{
WNDCLASSEX windowClass; // window class
HWND hwnd; // window handle
MSG msg; // message
DWORD dwExStyle; // Window Extended Style
DWORD dwStyTe; // Window Style
RECT windowRect;

g_glRender = new CGfxOpenGL;

windowRect.left=(1ong)0; // Set Left Value To 0
windowRect.right=(Tong)windowWidth; // Set Right Value To Requested Width
windowRect.top=(1ong)0; // Set Top Value To 0

windowRect.bottom=(Tong)windowHeight; // Set Bottom Value To Requested Height

// fi11 out the window class structure

windowClass.chSize = sizeof (WNDCLASSEX);
windowClass.style = CS_HREDRAW | CS_VREDRAW;
windowClass.1pfnWindProc = MainWindowProc;
windowClass.chClsExtra =0;

windowClass.cbWndExtra =0;

windowClass.hInstance = hlnstance;

windowCTlass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
windowClass.hCursor = LoadCursor(NULL, IDC_ARROW);

windowClass.hbrBackground = NULL;

windowClass.IpszMenuName = NULL;

windowClass.IpszClassName = "GLCTass";

windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
icon

// register the windows class
if (!RegisterClassEx(&windowClass))
return 0;

if (fullscreen) // fullscreen?
{
DEVMODE dmScreenSettings;

// default icon

// default arrow

// don't need background
// no menu

// windows Togo small

// device mode

An OpenGL Application

memset (&dmScreenSettings,0,sizeof(dmScreenSettings));
dmScreenSettings.dmSize = sizeof(dmScreenSettings);
dmScreenSettings.dmPelsWidth = windowWidth;
dmScreenSettings.dmPelsHeight = windowHeight;
dmScreenSettings.dmBitsPerPel = windowBits;
decreenSettings.deie]ds=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

// screen width
// screen height
/] bits per pixel

if (ChangeDisplaySettings(&dmScreenSettings, CDS_FULLSCREEN) !=

DISP_CHANGE_SUCCESSFUL)
{

// setting display mode failed, switch to windowed
MessageBox(NULL, "Display mode failed", NULL, MB_0K);

fullscreen =

if (fullscreen)
{

dwExStyTe=WS_EX_APPWINDOW;

dwStyle=WS_POPUP;
ShowCursor(FALSE);
}
else
{

dwExStyTle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;

FALSE;

// Are We Still In Fullscreen Mode?

// Window Extended Style
// Windows Style

// Hide Mouse Pointer

dwStyTle=WS_OVERLAPPEDWINDOW;

// Adjust Window To True Requested Size
AdjustWindowRectEx(&windowRect, dwStyle, FALSE, dwExStyle);

// class registered, so now create our window
hwnd = CreateWindowEx(NULL,

"GLCTass",

"BOGLGP - Chapter 2 - OpenGL Application”,
dwStyle | WS_CLIPCHILDREN |

WS_CLIPSIBLINGS,
0, 0,
windowRect.right

windowRect.bottom -

NULL,
NULL,

- windowRect.left,

windowRect.top,

11
11
11

11

11

11
/1

// Window Extended Style
// Windows Style

extended style
class name
app name

X,y coordinate

width, height
handle to parent
handle to menu

25

26

hInstance,
NULL);

hDC = GetDC(hwnd);

Chapter 2 = Creating a Simple OpenGL Application

// application instance
// no extra params

// check if window creation failed (hwnd would equal NULL)

if (lhwnd)
return 0;

ShowWindow(hwnd, SW_SHOW);
UpdateWindow(hwnd);

g_glRender->Init();

while (lexiting)

{
g_gTRender->Prepare(0.0f);
g_g1Render->Render();
SwapBuffers(hDC);

// display the window
// update the window

while (PeekMessage (&msg, NULL, 0, 0, PM_NOREMOVE))

{

if (!GetMessage (&msg, NULL, 0, 0))

{
exiting = true;
break;

TranslateMessage (&msg);
DispatchMessage (&msg);

delete g_gTRender;

if (fullscreen)

{
ChangeDisplaySettings(NULL,0);
ShowCursor(TRUE)

return (int)msg.wParam;

/1

If So Switch Back To The Desktop

// Show Mouse Pointer

An OpenGL Application

And there is the main Windows entry point function, WinMain(). The major points in
this function are the creation and registration of the window class, the call to the
CreateWindowEx() function to create the window, and the main while() loop for the pro-
gram’s execution. You may also notice our use of the CGfxOpenGL class, whose definition is
shown below.

From CGfxOpenGL.h:

class CGfxOpenGL

{

private:
int m_windowWidth;
int m_windowHeight;

float m_angle;

public:
CGfx0penGL();
virtual ~CGfxOpenGL();

bool Init();
bool Shutdown();

void SetupProjection(int width, int height);

void Prepare(float dt);
void Render();
}s

First we should mention that by no means are we saying that the CGfx0penGL class is how
you should design your applications with OpenGL. It is strictly meant to be an easy way
for us to present you with flexible, easy-to-understand, and portable OpenGL applica-
tions.

Second, this class is very simple to use. It includes methods to initialize your OpenGL code
(Init()), shut down your OpenGL code (Shutdown()), set up the projection matrix for the
window (SetupProjection()), perform any data-specific updates for a frame (Prepare()),
and render your scenes (Render()). We will expand on this class throughout the book,
depending on the needs of our applications.

Here’s the implementation, located in CGfx0penGL.cpp:

#ifdef _WINDOWS
fHinclude <windows.h>
fendif

27

Chapter 2 = Creating a Simple OpenGL Application

finc
finc
fFinc
fFinc

ude <gl/gl.h>

ude <gl/glu.h>

ude <math.h>

ude "CGfxOpenGL.h"

PR

// disable implicit float-double casting
fipragma warning(disable:4305)

CGfxOpenGL: : CGfx0penGL()
{
}

CGfxOpenGL: :~CGfx0penGL()
{
}

bool CGfxOpenGL::Init()

{
// clear to black background
glClearColor(0.0, 0.0, 0.0, 0.0);

m_angle = 0.0f;

return true;

bool CGfxOpenGL::Shutdown()
{
return true;

void CGfxOpenGL::SetupProjection(int width, int height)
{
if (height = 0) // don't want a divide by zero
{
height = 1;

glViewport(0, 0, width, height); // reset the viewport to new dimensions
gIMatrixMode (GL_PROJECTION); // set projection matrix current matrix
glloadldentity(); /] reset projection matrix

An OpenGL Application

/] calculate aspect ratio of window
gluPerspective(52.0f, (GLfloat)width/(GLfloat)height,1.0f,1000.0f);

gIMatrixMode(GL_MODELVIEW); // set modelview matrix
glloadIdentity(); // reset modelview matrix

m_windowWidth = width;
m_windowHeight = height;

void CGfxOpenGL::Prepare(float dt)

{
m_angle += 0.1f;

void CGfxOpenGL::Render()

{
// clear screen and depth buffer
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glloadIdentity();

// move back 5 units and rotate about all 3 axes
glTranslatef(0.0, 0.0, -5.0f);

glRotatef(m_angle, 1.0f, 0.0f, 0.0f);
glRotatef(m_angle, 0.0f, 1.0f, 0.0f);
glRotatef(m_angle, 0.0f, 0.0f, 1.0f);

// 1ime greenish color
glColor3f(0.7f, 1.0f, 0.3f);

// draw the triangle such that the rotation point is in the center
g1Begin(GL_TRIANGLES);
glVertex3f(1.0f, -1.0f, 0.0f);
glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(0.0f, 1.0f, 0.0f);
glEnd();
}

As you can see, we’ve put all the OpenGL-specific code in this class. The Init() method
uses the g1ClearColor() function to set the background color to black (0,0,0) and initialize
the member variable m_angle, which is used in the Render() method by glRotatef() to

29

30

Chapter 2 = Creating a Simple OpenGL Application

perform rotations. In this example, the SetupProjection() method sets up the viewport for
perspective projection, which is described in detail in Chapter 4, “Transformations and
Matrices.”

The Render() method is where we put all OpenGL rendering calls. In this method, we
first clear the color and depth buffers, both of which are described in Chapter 12,
“OpenGL Buffers.” Next, we reset the model matrix by loading the identity matrix
with glLloadIdentity(), described in Chapter 4. The g1Translatef() and glRotatef() func-
tions, also described in Chapter 4, move the OpenGL camera five units in the negative z
axis direction and rotate the world coordinate system along all three axes, respectively.

Next we set the current rendering color to a lime green color with the g1Color3f() func-
tion, which is covered in Chapter 5, “Colors, Lighting, Blending, and Fog.” Lastly, the
transformed triangle is rendered with the g1Begin(), glVertex3f(), and g1End() functions.
These functions are covered in Chapter 3, “OpenGL States and Primitives.”

You can find the code for this example on the CD included with this book under Chapter
2. The example name is OpenGLApplication.

And finally, what would an example in this book be without a screenshot? Figure 2.1 is a
screenshot of the rotating lime green triangle.

=
I OGLGP - Chapter # - Opentl Application

Figure 2.1 Screenshot of the “OpenGLApplication” example.

Full-Screen OpenGL

Full-Screen OpenGL

The code presented in the previous section creates an application that runs in a window,
but nearly all 3D games created nowadays are displayed in full-screen mode. It’s time to
learn how to do that. You'll take the sample program you just created and modify it to give
it full-screen capabilities. Let’s take a look at the key parts that you need to change.

In order to switch into full-screen mode, you must use the DEVMODE data structure, which
contains information about a display device. The structure is actually fairly big, but for-
tunately, there are only a few members that you need to worry about. These are listed in
Table 2.2.

Table 2.2 Important DEVMODE Fields

Field Description

dmSize Size of the structure, in bytes. Used for versioning.

dmBitsPerPel The number of bits per pixel.

dmPelsWidth Width of the screen.

dmPelsHeight Height of the screen.

dmFields Set of bitflags indicating which fields are valid. The flags for the fields in this

table are DM_BITSPERPEL, DM_PELSWIDTH, and DM_PELSHEIGHT.

After you have initialized the DEVMODE structure, you need to pass it to ChangeDisplay-
Settings():

LONG ChangeDisplaySettings(LPDEVMODE pDevMode, DWORD dwFlags);

This takes a pointer to a DEVMODE structure as the first parameter and a set of flags describ-
ing exactly what you want to do. In this case, you'll be passing CDS_FULLSCREEN to remove
the taskbar from the screen and force Windows to leave the rest of the screen alone when
resizing and moving windows around in the new display mode. If the function is success-
ful, it returns DISP_CHANGE_SUCCESSFUL. You can change the display mode back to the default
state by passing NULL and 0 as the pDevMode and dwFlags parameters.

The following code will be added to the sample application to set up the change to full-
screen mode.

DEVMODE devMode;
memset (&devMode, 0, sizeof(DEVMODE)); // clear the structure
devMode.dmSize = sizeof(DEVMODE);

31

32

Chapter 2 = Creating a Simple OpenGL Application

devMode.dmBitsPerPel = g_screenBpp;

devMode.dmPelsWidth = g_screenWidth;

devMode.dmPelsHeight = g_screenHeight;

devMode.dmFields = DM_PELSWIDTH | DM_PELSHEIGHT | DM_BITSPERPEL;

if (ChangeDisplaySettings(&devMode, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL)
// change has failed, you'll run in windowed mode
g_fullScreen = false;

Note that the sample application uses a global flag to control whether full-screen mode is
enabled.

There are a few things you need to keep in mind when switching to full-screen mode. The
first is that you need to make sure that the width and height specified in the DEVMODE struc-
ture match the width and height you use to create the window. The simplest way to ensure
this is to use the same width and height variables for both operations. Also, you need to
be sure to change the display settings before creating the window.

The style settings for full-screen mode differ from those of regular windows, so you need
to be able to handle both cases. If you are not in full-screen mode, you will use the same
style settings as described in the sample program for the regular window. If you are in full-
screen mode, you need to use the WS_EX_APPWINDOW flag for the extended style and the
WS_POPUP flag for the normal window style. The WS_EX_APPWINDOW flag forces a top-level win-
dow down to the taskbar once your own window is visible. The WS_POPUP flag creates a win-
dow without a border, which is exactly what you want with a full-screen application.
Another thing you'll probably want to do for full-screen is remove the mouse cursor from
the screen. This can be accomplished with the ShowCursor() function. The following code
demonstrates the style settings and cursor hiding for both full-screen and windowed
modes:

if (g_fullScreen)
{

extendedWindowStyle = WS_EX_APPWINDOW; // hide top Tevel windows
windowStyle = WS_POPUP; // no border on your window
ShowCursor(FALSE); // hide the cursor

}

else

{
extendedWindowStyle = NULL; // same as earlier example

windowStyle = WS_OVERLAPPEDWINDOW | WS_VISIBLE |
WS_SYSMENU | WS_CLIPCHILDREN | WS_CLIPSIBLINGS;

Summary 33

Take a look at the OpenGLApplication program on the CD in the directory for Chapter 2
to see how you integrate the full-screen mode into your programs. As you can see, you
don’t need to modify your program too much to add the capability to use full-screen
mode. With a little extra Windows programming, you can even ask the user if he or she
would like full-screen or windowed mode before the program even starts. Throughout the
rest of the book, you will develop games and demos that will have the option of running
in either mode.

Summary

In this chapter you learned how to create a simple OpenGL application, parti-
cularly within the context of the Microsoft Windows operating system. You learned
about the OpenGL rendering context and how it corresponds to the “wiggle” functions
wglCreateContext(), wglDeleteContext(), wglMakeCurrent(), and wglGetCurrentContext(). Pixel
formats were also covered, and you learned how to set them up for OpenGL in the Win-
dows operating system. Finally, we provided the full source code for a basic OpenGL
application and discussed how to set up the window for full-screen mode in OpenGL.

What You Have Learned

The WGL, or wiggle, functions are a set of extensions to the Win32 API that were
created specifically for OpenGL. Several of the main functions involve the render-
ing context, which is used to remember OpenGL settings and commands. You can
use several rendering contexts at once.

The PIXELFORMATDESCRIPTOR is the structure that is used to describe a device context
that will be used to render with OpenGL. This structure must be specified and
defined before any OpenGL code will work on a window.

Full-screen OpenGL is used by most 3D games that are being developed. You took
a look at how you can implement full-screen mode into your OpenGL applica-
tions, and the OpenGLApplication program on the included CD-ROM gives a
clear picture of how to integrate the full-screen code.

Review Questions

[a—

What is the rendering context?

How do you retrieve the current rendering context?
What is a PIXELFORMATDESCRIPTOR?

What does the g1ClearColor() OpenGL function do?

. What struct is required to set up an application for full-screen?

34 Chapter 2 = Creating a Simple OpenGL Application

On Your Own

1. Take the OpenGLApplication example and a) change the background color to
white (1, 1, 1), and b) change the triangle’s color to red (1, 0, 0).

CHAPTER 3

OPENGL STATES
AND PRIMITIVES

ow it’s time to finally get into the meat of OpenGL! To begin to unlock the

power of OpenGL, you need to start with the basics, and that means under-

standing primitives. Before we start, we need to discuss something that is going
to come up during our discussion of primitives and pretty much everything else from this
point on: the OpenGL state machine.

The OpenGL state machine consists of hundreds of settings that affect various aspects of
rendering. Because the state machine will play a role in everything you do, it’s important
to understand what the default settings are, how you can get information about the cur-
rent settings, and how to change those settings. Several generic functions are used to con-
trol the state machine, so we will look at those here.

As you read this chapter, you will learn the following:

= How to access values in the OpenGL state machine
m The types of primitives available in OpenGL
= How to modify the way primitives are handled and displayed

State Functions

OpenGL provides a number of multipurpose functions that allow you to query the
OpenGL state machine, most of which begin with g1Get. . .. The most generic versions of
these functions will be covered in this section, and the more specific ones will be covered
with the features they’re related to throughout the book.

35

36

Chapter 3 ® OpenGL States and Primitives

Note

All the functions in this section require that you have a valid rendering context. Otherwise, the
values they return are undefined.

Querying Numeric States

There are four general-purpose functions that allow you to retrieve numeric (or Boolean)
values stored in OpenGL states. They are

void glGetBooleanv(GLenum pname, GLboolean *params);
void glGetDoublev(GLenum pname, GLdouble *params);
void glGetFloatv(GLenum pname, GLfloat *params);
void glGetIntegerv(GLenum pname, GLint *params);

In each of these prototypes, the parameter pname specifies the state setting you are query-
ing, and paranms is an array that is large enough to hold all the values associated with the
setting in question. The number of possible states is large, so instead of listing all of the
states in this chapter, we will discuss the specific meaning of many of the pname values
accepted by these functions as they come up. Most of them won’t make much sense yet
anyway (unless you are already an OpenGL guru, in which case, what are you doing read-
ing this?).

Of course, determining the current state machine settings is interesting, but not nearly as
interesting as being able to change the settings. Contrary to what you might expect, there
is no g1Set() or similar generic function for setting state machine values. Instead, there is
a variety of more specific functions, which we will discuss as they become more relevant.

Enabling and Disabling States

We know how to find out the states in the OpenGL state machine, so how do we turn the
states on and off? Enter the g1Enable() and g1Disable() functions:

void glEnable(GLenum cap);
void g1Disable(GLenum cap);

The cap parameter represents the OpenGL capability you wish to enable or disable.
glEnable() turns it on, and g1Disable() turns it off. OpenGL includes over 40 capabilities
that you can enable and disable. Some of these include GL_BLEND (for blending operations),
GL_TEXTURE_2D (for 2D texturing), and GL_LIGHTING (for lighting operations). As you progress
throughout this book, you will learn more capabilities that you can turn on and off with
these functions.

State Functions

glisEnabled()

Oftentimes, you just want to find out whether a particular OpenGL capability is on or off.
Although this can be done with g1GetBooTeanv(), it’s usually easier to use g1IsEnabled(),
which has the following prototype:

GLboolean glIsEnabled(GLenum cap);

gllsEnabled() can be called with any of the values accepted by glEnable()/g1Disable(). It
returns GL_TRUE if the capability is enabled and GL_FALSE otherwise. Again, we’ll wait to
explain the meaning of the various values as they come up.

Querying String Values
You can find out the details of the OpenGL implementation being used at runtime via the
following function:

const GLubyte *glGetString(GLenum name);
The null-terminated string that is returned depends on the value passed as name, which can

be any of the values in Table 3.1.

Tip

g1GetString() provides handy information about the OpenGL implementation, but be careful how
you use it. I've seen new programmers use it to make decisions about which rendering options to
use. For example, if they know that a feature is supported in hardware on Nvidia GeForce cards, but
only in software on earlier cards, they may check the renderer string for geforce and, if it's not
there, disable that functionality. This is a bad idea. The best way to determine which features are
fast enough to use is to do some profiling the first time your game is run and profile again when-
ever you detect a change in hardware.

Table 3.1 glGetString() Parameters

Parameter Definition

GL_VENDOR The string that is returned indicates the name of the company whose OpenGL
implementation you are using. For example, the vendor string for ATl drivers is ATI
Technologies Inc. This value will typically always be the same for any given company.

GL_RENDERER The string contains information that usually reflects the hardware being used. For
example, mine returns RADEON 9800 Pro x86/MMX/3DNow! /SSE. Again, this value
will not change from version to version.

GL_VERSION The string contains a version number in the form of either major_number.minor_number
or major_number.minor_number.release.number, possibly followed by additional infor-
mation provided by the vendor. My current drivers return 1.3.4010 Win2000 Release.

GL_EXTENSIONS The string returned contains a space-delimited list of all of the available OpenGL
extensions. This will be covered in greater detail in Chapter 8, “OpenGL Extensions.”

37

38

Chapter 3 ® OpenGL States and Primitives

Finding Errors

Passing incorrect values to OpenGL functions causes an error flag to be set. When this
happens, the function returns without doing anything, so if you're not getting the results
you expect, querying the error flag can help you to more easily track down problems in

your code. You can do this through the following:

GLenum gl1GetError();

This returns one of the values in Table 3.2. The value that is returned indicates the first
error that occurred since startup or since the last call to g1GetError(). In other words, once
an error is generated, the error flag is not modified until a call to glGetError() is made;

after the call is made, the error flag will be reset to GL_NO_ERROR.

Table 3.2 OpenGL Error Codes

Value

Meaning

GL_NO_ERROR
GL_INVALID_ENUM

GL_INVALID_VALUE

GL_INVALID_OPERATION

GL_STACK_OVERFLOW

GL_STACK_UNDERFLOW

GL_OUT_OF_MEMORY

GL_TABLE_TOO_LARGE

Self-explanatory. This is what you want it to be all the time.

This error is generated when you pass an enumerated OpenGL value that the
function doesn't normally accept.

This error is generated when you use a numeric value that is outside of the
accepted range.

This error can be harder to track down than the previous two. It happens when
the combination of values you passed to a function either doesn’t work together
or doesn't work with the existing state configuration.

OpenGL contains several stacks that you can directly manipulate, the most
common being the matrix stack. This error happens when the function call
would have caused the stack to overflow.

This is like the previous error, except that it happens when the function would
have caused an underflow. This usually only happens when you have more pops
than pushes, or if one of your pushes would have caused an overflow (because
that push would then have been ignored).

This error is generated when the operation causes the system to run out of
memory. Unlike the other error conditions, when this error occurs, the current
OpenGL state may be modified. In fact, the entire OpenGL state, other than

the error flag itself, becomes undefined. If you encounter this error, your
application should try to exit as gracefully as possible.

This error is uncommon, since it can only be generated by functions in OpenGL's
imaging subset, which isn’t used frequently in games. It happens as a result of
using a table that is too large for the implementation to handle.

Handling Primitives

Giving OpenGL a Hint

Some operations in OpenGL may vary slightly from implementation to implementation
(or driver to driver), so an attempt was made to allow developers a level of control over
the trade-off between image quality and speed. While not all OpenGL implementations
follow the command, the gIHint() function allows you to specify your desired level of
trade-off between image quality and speed for several different OpenGL behaviors.

void glHint(GLenum target, GLenum hint);

The target parameter specifies the behavior you want to control. Even though you may
not yet fully understand the purpose for the possible OpenGL behaviors, they are listed in
Table 3.3. The hint parameter can be one of the three options: GL_FASTEST, GL_NICEST, or
GL_DONT_CARE. GL_FASTEST is used to indicate that the fastest and most efficient implementa-
tion should be used, possibly sacrificing quality. GL_NICEST is used to indicate that the high-
est quality implementation should be used, possibly losing performance. GL_DONT_CARE
indicates that you do not have a preference on the method used to render, so the OpenGL
driver will decide what it thinks is best. Keep in mind that hints are implementation-
dependent, meaning some implementations might ignore the hints altogether.

Table 3.3 glHint() Behaviors

Parameter Meaning

GL_POINT_SMOOTH_HINT, GL_LINE_SMOOTH_HINT, Specify the sampling quality of points, lines, or
GL_POLYGON_SMOOTH_HINT polygons during antialiasing.

GL_FOG_HINT If GL_NICEST is specified for the hint parameter, then

fog calculations are performed per pixel. If GL_FASTEST
is specified for the hint parameter, then fog
calculations are performed per vertex.

GL_PERSPECTIVE_CORRECTION_HINT Specify the quality of color and texture-coordinate
interpolation.

Handling Primitives

So, what are primitives? Merriam-Webster’s dictionary defines a primitive as “an unso-
phisticated person.” Well, that doesn’t help much, so we’ll give it a shot: Simply put, prim-
itives are basic geometric entities such as points, lines, and triangles.

You will be using thousands and thousands of these primitives to make your games, so it
is important to know how they work. Before we get into specific primitive types, though,

39

40

Chapter 3 ® OpenGL States and Primitives

we need to talk about a couple of OpenGL functions that you will be using often, at least
in simple programs. The first is g1Begin(), which has the following prototype:

void g1Begin (GLenum mode);

You use g1Begin() to tell OpenGL two things: 1) that you are ready to start drawing, and
2) the primitive type you want to draw. You specify the primitive type with the mode para-
meter, which can take on any of the values in Table 3.4.

Table 3.4 Valid glBegin() Parameters

Parameter Definition
GL_POINTS Individual points.
GL_LINES Individual line segments composed of pairs of vertices.

GL_LINE_STRIP
GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN
GL_QUADS
GL_QUAD_STRIP
GL_POLYGON

Series of connected lines.

Closed loop of connected lines, with the last segment automatically created
between the first and last vertices.

Single triangles as vertex triplets.

Series of connected triangles.

Set of triangles containing a common central vertex.
Quadrilaterals (polygons with 4 vertices).

Series of connected quadrilaterals.

Convex polygon with an arbitrary number of vertices. Non-convex polygons
can be created using the GLU tesselation functions..

Figure 3.1 illustrates examples of each of the primitive types that you can draw with
OpenGL through the g1Begin() function. The rest of this chapter provides a detailed look
at each of these primitive types.

GL_TRIANGLE_STRIF

Gl

TRIANGLE_FAN GL_OUADS GL_OuAn STRIP GL_FOLYGON

1
\ . _____'__1 / l:.}, ‘
i 5 Vi \.\‘>4 3 /\\

N BT S5

INES GL_LINE_STRI® GL_LINE_LOOP GL_TRIAMGLES

Figure 3.1 OpenGL primitive types.

Handling Primitives

Each call to g1Begin() needs to be accompanied by a call to g1End(), which has the follow-
ing form:

void glEnd();

As you can see, g1End() takes no parameters. There really isn’t much to say about g1End(),
other than that it tells OpenGL that you are finished rendering the type of primitive you
specified in g1Begin(). Note that g1Begin()/g1End() blocks may not be nested.

Not all OpenGL functions can be used inside a g1Begin()/g1End() block. In fact, only vari-
ations of the functions listed in Table 3.5 may be used. Using any other OpenGL calls will
generate a GL_INVALID_OPERATION error. While Table 3.4 gives a brief description of each
function, we will discuss them in more detail later.

Now we need to talk about one particularly important function—or actually, family of
functions—before we move on to primitive types: the g1Vertex() functions. These functions
are used inside a g1Begin()/g1End() block to specify a point in space (a vertex), which is then
interpreted appropriately depending on the value passed to g1Begin(). The g1Vertex() func-
tion is very important because every object you draw with OpenGL is ultimately described
as an ordered set of vertices.

Table 3.5 Valid glBegin()/glEnd Functions

Function Description

glVertex*()
glColor=()
g1SecondaryColor*()
g1 Index*()
gTNormal*()
g1TexCoord*()
gTMultiTexCoord*()
g1FogCoord*()
glArrayElement ()
glEvalCoord*()
glEvalPoint*()
gIMaterial*()
glEdgeFTlag*()
glCallList*()
glCallLists*()

Sets vertex coordinates

Sets the current color

Sets the secondary color

Sets the current color index

Sets normal vector coordinates

Sets texture coordinates

Sets texture coordinates for multitexturing

Sets the fog coordinate

Specifies attributes for a single vertex based on elements in a vertex array
Generates coordinates when rendering Bezier curves and surfaces
Generates coordinates when rendering Bezier curves and surfaces
Sets material properties (affect shading when lighting is used)
Controls the drawing of edges

Executes a display list

Executes display lists

11

42

Chapter 3 ® OpenGL States and Primitives

The g1Vertex() function has a number of variations that take on the form:
void glVertex{234}{dfis}(...);

or

void glVertex{234}{dfis}v(...);

The version of glVertex() youll be using most often is glVertex3f(), which takes three
floating-point values representing the x, y, and z coordinates of the vertex. You should get
used to this sort of multidimensional notation of functions because OpenGL uses the
notation everywhere!

How about some examples of using the g1Vertex() function? Here are a few:

glVertex2i(5, 20); // draw a vertex at (5, 20)
glVertex3f(1.5, 0.5, 10.0); // draw a vertex at (1.5, 0.5, 10.0)

GLfloat v[3] = { 1.5, 0.5, 10.0 };
glVertex3fv(v); // draw the same vertex as above, except as an array

Every time you specify a vertex, other data becomes associated with it, based on what
states you currently have enabled. This other data includes the current primary and sec-
ondary colors, the current normal, the current texture coordinates, the current material,
the current edge flag, and the fog coordinates. All of these things are covered in later chap-
ters, so don’t worry about them yet. The important thing to understand is that none of
these things matter without a vertex to use them.

That about does it for the basics, so let’s move on to some of the most common primitive
types you'll be using.

Drawing Points in 3D

It doesn’t get any more primitive than a point, so that’s what we’ll look at first. Drawing a
point in 3D is simple and really quite powerful. After all, if you can draw a single pixel on
the screen, you can draw anything! So without further ado, here’s how to draw a point in
OpenGL:

g1Begin(GL_POINTS);
glVertex3f(0.0, 0.0, 0.0);
glEnd();

In the first line, you tell OpenGL that youre going to be drawing points by passing
GL_POINTS to g1Begin(). In the next line, you tell it to draw a single point at the origin.
Finally, with g1End() you let OpenGL know you are finished drawing points for now. Note
that indenting the code within the g1Begin()/g1End() block is optional, but it is a common
practice among OpenGL programmers because it makes the code a bit easier to read.

Handling Primitives 43

What if you want to draw a second point, this one at (0.0, 1.0, 0.0)? Well, you could use:

g1Begin(GL_POINTS);
glVertex3f(0.0, 0.0, 0.0);

glEnd();

g1Begin(GL_POINTS);
glVertex3f(0.0, 1.0, 0.0);

glEnd();

However, that would be horribly inefficient. If you notice, GL_POINTS is plural (in fact, most
of the values you can pass to g1Begin() are plural), which should suggest that within a sin-
gle g1Begin()/g1End() block, you can render more than one point, and that’s exactly the
case. So the preceding code would become:

g1Begin(GL_POINTS);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glEnd();

Ah ... shorter, faster, better. You can make as many calls to g1Vertex() as you want within
the g1Begin()/g1End() block, and each will be rendered as a single point.

OpenGL gives you a great deal of control over how primitives are drawn, and points are no
exception. There are three things you can modify: the size of the points, whether they are
antialiased, and whether distance has an effect on the size and transparency of the point.

Modifying Point Size
To change the point size, you use
void glPointSize(GLfloat size);

This results in a size-by-size square centered on the vertex coordinates you specified. The
default size is 1.0. If point antialiasing is disabled (which it is by default) the point size will
be rounded to the nearest integer (with a minimum size of 1) indicating the pixel dimen-
sions of the point. If you like, you can use g16et() with GL_POINT_SIZE to find out the cur-
rently selected size. Here’s an example:

/] retrieve current point size
GLfToat oldSize;
glGetFloatv(GL_POINT_SIZE, &oldSize);

// if we have a small point size, make it big (5.0), otherwise make it default
if (01dSize < 1.0)

glPointSize(5.0);
else

g1PointSize(1.0);

44

Chapter 3 ® OpenGL States and Primitives

Antialiasing Points

Although you can specify primitives with almost infinite precision, there is a finite num-
ber of pixels on the screen. This can cause the edges of primitives to look jagged. Antialias-
ing provides a means of smoothing out the edges to give them a more realistic look. If you
want to use antialiasing, you can turn it on by passing GL_POINT_SMOOTH to g1Enable() (it can
be turned off again by passing the same parameter to glDisable()). If you are unsure
whether point antialiasing is currently enabled or disabled, you find out by calling g1Get()
with GL_POINT_SMOOTH, or with g1IsEnabled(GL_POINT_SMOOTH). Here is an example:

// if point antialiasing is currently disabled, then enable it
if (lglIsEnabled(GL_POINT_SMOOTH))
glEnable(GL_POINT_SMOOTH);

When antialiasing is enabled, the range of supported point sizes is not necessarily contin-
uous. The only size for which the OpenGL specification requires support with antialias-
ing is 1.0. If an unsupported size is used, it will be rounded to the nearest supported value.
To find out the range of sizes your implementation supports, you can call g1Get() with
GL_POINT_SIZE_RANGE, and you can use GL_POINT_SIZE_GRANULARITY to find the size difference
between adjacent supported sizes. The following code shows how to do both:

GLfloat sizes[2];
GLfToat granularity;

/] retrieve the point size range
glGetFloatv(GL_POINT_SIZE_RANGE, sizes);
GLfloat minPointSize = sizes[0];
GLfloat maxPointSize = sizes[1];

// retrieve the point size granularity
glGetFloatv(GL_POINT_SIZE_GRANULARITY, &granularity);

With antialiasing on, the current point size is used as the diameter of a circle centered at
the x and y window coordinates of the point you specified. OpenGL determines how
much of each adjacent pixel is covered by the point and adjusts the pixel color accordingly,
gradually blending it with the background color toward the point’s edges.

Note

It is worth noting that blending needs to be enabled for antialiasing to work. Blending is discussed
in Chapter 5, “Colors, Blending, Lighting, and Fog.”

Handling Primitives

Effect of Distance

Normally, points always occupy the same amount of space on the screen, regardless of
how far away they are from the viewer. For some applications of points, such as particle
systems, youw’ll want the points to be smaller as they get farther away. You can do this
through the use of the glPointParameter() functions:

void glPointParameter{if}(enum pname, type param);
void glPointParameter{if}v(enum pname, const type *params);

The valid values and uses of pname and param(s) are summarized in Table 3.6.

Extension

Extension name: ARB_point_parameters
Name string: GL_ARB_point_parameters
Promoted to core: OpenGL 1.4

Function names: g1PointParameteriARB, g1PointParameterivARB, g1PointParameterfARB,
glPointParameterfvARB

Tokens: GL_POINT_SIZE_MIN_ARB, GL_POINT_SIZE_MAX_ARB, GL_POINT_DISTANCE_
ATTENUATION_ARB, GL_POINT_FADE_THRESHOLD_ARB

Table 3.6 Point Parameters

Parameter Description

GL_POINT_SIZE MIN Sets the lower bound on the size OpenGL will scale a point to. Takes
a single value.

GL_POINT_SIZE_MAX Sets the upper bound on the size OpenGL will scale a point to. Takes
a single value.

GL_POINT_DISTANCE_ATTENUATION Takes an array of 3 values which correspond to the a, b, and ¢
coefficients in the attenuation factor:

MU@+b*d+c*d?,

where d represents the distance from the point to the eye. The square
root of this factor is multiplied by the point size to determine the final
size. By default, the values of a, b, and c are (1, 0, and 0), resulting in

no distance attenuation.

GL_POINT_FADE_THRESHOLD This uses a single value that specifies the size below which OpenGL
begins to reduce the alpha value of the point, allowing you to
gradually fade it as it becomes smaller.

45

46

Chapter 3 ® OpenGL States and Primitives

A Pointy Example

The CD that accompanies this book includes an example entitled Points in this chapter
that displays a row of points where each point’s size increases in the row. Figure 3.2 is a
screenshot of this program.

The most important part of the example code is the following lines:

float pointSize = 0.5;

// draw a line of points of increasing size
for (float point = -4.0; point < 5.0; point+=0.5)
{

/] set the point size

glPointSize(pointSize);

// draw the point
g1Begin(GL_POINTS);
glVertex3f(point, 0.0, 0.0);
glEnd();

// increase the point size for the next point
pointSize += 1.0;

W BOGLGP - Chapter 3 - Paims

Figure 3.2 Screenshot of the Points example for Chapter 3 on the CD.

Handling Primitives

These lines of code perform the actual point drawing in a row along the world x-axis, with
each point separated by 0.5 units. For each point, we first set the size of the point (start-
ing at a point size of 0.5), and then we draw the point by passing GL_POINTS to g1Begin() and
using the g1Vertex3f() function. The point size for the next point is then increased, and the
process is repeated.

Now that you have points down, let’s move on to something a little more interesting.

Drawing Lines in 3D

Drawing a line in 3D isn’t all that different from drawing two points, and because you
already know how to do that, let’s just dive right in:

g1Begin(GL_LINES);
glVertex3f(-2.0, -1.0, 0.0);
glVertex3f(3.0, 1.0, 0.0);
glEnd();

This time, you start off by passing GL_LINES to g1Begin() so that OpenGL knows how to
interpret the two vertices you are about to specify. After it has both vertices, it knows to
draw a line connecting the two of them.

Just as with points, you can draw as many lines as you want to between the calls to
g1Begin()/g1End(). Each pair is treated as the endpoints of a new line. If you don’t specify
an even number of vertices, the last one will just be discarded.

As with points, OpenGL allows you to change several parameters to affect how lines are
drawn. In addition to setting the line width and turning on antialiasing, you can specify a
stipple pattern.

Modifying Line Width
The default line width is 1.0. To find out the currently selected line width, simply call
g1Get() with GL_LINE_WIDTH. To change it, you can call g1LineWidth() like so:

void glLineWidth(GLfloat width);
Here’s an example of its use:

// retrieve the current Tine width
GLfloat oldWidth;
glGetFloatv(GL_LINE_WIDTH, &oldWidth);

// if our line width is small, make it big
if (oldWidth < 1.0)
glLineWidth(5.0);

47

48

Chapter 3 ® OpenGL States and Primitives

Antialiasing Lines

Antialiasing for lines works very much as it does with points. You can turn it on and off
by passing GL_LINE_SMOOTH to glEnable() and g1Disable(), and the current state can be
determined by passing GL_LINE_SMOOTH to g1Get() or g1IsEnabled(). It is disabled by default.

Again, when using antialiasing, an OpenGL implementation is required only to support
the default line width of 1.0. To determine the range and granularity of supported sizes,
you can use g1Get() with GL_LINE_WIDTH_RANGE and GL_LINE_WIDTH_GRANULARITY, respectively.
Here’s an example of how to do that:

GLfloat sizes[2];
GLfToat granularity;

glGetFloatv(GL_LINE_WIDTH_RANGE, sizes);
GLfloat minLineWidth = sizes[0];
GLfloat maxLineWidth = sizes[1];

glGetFloatv(GL_LINE_WIDTH_GRANULARITY, &granularity);

Looks a lot like the points sample above, doesn’t it?

Specifying a Stipple Pattern

You can specify a stipple pattern with which to draw the lines. The stipple pattern speci-
fies a mask that will determine which portions of the line get drawn, and it can thus be
used for things such as dashed lines. Before using stippling, you need to enable it by pass-
ing GL_LINE_STIPPLE to glEnable(). Then, you set the stipple pattern using g1LineStipple(),
which looks like this:

void gllineStipple(GLint factor, GLushort pattern);

The factor parameter defaults to 1 and is clamped to fall in the range 1-256. It is used
to specify how many times each bit in the pattern is repeated before moving on to the
next bit.

The pattern parameter specifies a 16-bit pattern. Any bits that are set in the pattern will
result in the corresponding pixels being set; otherwise they are not drawn. Something to
be aware of is that the bits in the integer are applied in reverse order, so that the low-order
bit affects the left-most pixel; then, as the line progresses to the right, higher order bits are
used. This is illustrated in Figure 3.3.

Handling Primitives

Figure 3.3 A sample stipple pattern demonstrating how the bit order is interpreted.

The following code enables line stippling and then specifies a pattern of alternating dashes
and dots:

glEnable(GL_LINE_STIPPLE);
GLushort stipplePattern = OxFAFA; // 1111 1010 1111 1010

// draws the stipple pattern as 0101 1111 0101 1111
glLineStipple(2, stipplePattern);

You can determine the currently selected stipple pattern and repeat factor by calling g1Get
with GL_LINE_STIPPLE_PATTERN and GL_LINE_STIPPLE_REPEAT. Here’s an example:

GLushort currentStipplePattern;
GLint currentStippleRepeat;

glGetShortv(GL_LINE_STIPPLE_PATTERN, ¤tStipplePattern);
glGetIntv(GL_LINE_STIPPLE_REPEAT, ¤tStippleRepeat);

Hold the Line Example

On the CD with the previous Points example is an example for lines that demonstrates
line widths and line stippling. Figure 3.4 is a screenshot of this line example.

49

50 Chapter 3 ® OpenGL States and Primitives

8 00GLGP - Chaptas 3 - Lines.

B A1 1RSSR RO 0
LTI LR LTI
LG TR T T
0B TR0 R0 BB AT A1
0RO AR
(T TR T
LT TR
LU
LT T

Figure 3.4 Screenshot of the Lines example in Chapter 3 on the CD.

You can see in the screenshot that two columns of lines are displayed. The left column
shows lines of increasing width, while the right column shows the same lines of increas-
ing width, but with a stipple pattern applied to them. Here’s the code that draws the left
column:

float lineWidth = 0.5;

// draw a series of lines of increasing width
for (float line = 0.0; Tine < 7.0; Tine+=0.5)
{
// set the line width
glLlineWidth(TineWidth);

// draw the line
g1Begin(GL_LINES);
glVertex3f(-5.0, 0.0, 1ine-3.0);
glVertex3f(-1.0, 0.0, 1ine-3.0);
glEnd();

// increase the line width for the next line
TineWidth += 1.0;

Handling Primitives

As you can see, this algorithm is very similar to the Points example in the previous
section. For each line, we first set the width of the line, and then we draw the line by pass-
ing GL_LINES to g1Begin() along with two vertices representing the line endpoints by the
glVertex3f() function. The line width is then increased for the next line. Don’t worry
about the math you see inside the g1Vertex() function. It’s being done so the lines are posi-
tioned properly in the viewport.

This next set of code draws the same lines in the right column with a stipple pattern:

// reset Tine width
TineWidth = 0.5;

/] enable stippling
glEnable(GL_LINE_STIPPLE);

// 0xAAAA = 1010 1010 1010 1010
short stipplePattern = 0xAAAA;

/] set the stipple pattern
glLineStipple(2, stipplePattern);

// draw a series of Tines of increasing width with stippling
for (float 1ine = 0.0; Tine < 7.0; 1line+=0.5)
{

/] set the Tine width

glLlineWidth(TineWidth);

/] draw the point
g1Begin(GL_LINES);
glVertex3f(1.0, 0.0, 1ine-3.0);
glVertex3f(5.0, 0.0, Tine-3.0);
glEnd();

/] increase the point size for the next point
TineWidth += 1.0;
}

Since this code is essentially the same as the previous block that draws the lines in the left
column, let us look at the primary difference: the stipple pattern. As you can see, all we
have to do is enable the stipple pattern in the OpenGL state machine with the
g1Enable(GL_STIPPLE_PATTERN) call. Next we tell OpenGL the stipple pattern we want it to
use when drawing the next set of lines. We define the stipple pattern as 0xAAAA and set that
pattern in OpenGL with the g1LineStipple() function. Then when the lines are drawn, the
stipple pattern is applied.

51

52

Chapter 3 ® OpenGL States and Primitives

Now that you have a handle on lines, let’s move on to the heart and soul of almost every
3D game in existence: the all-mighty polygon.

Drawing Polygons in 3D

Although you can (and will) do some interesting things with points and lines, there’s no
doubt that polygons give you the most power to create immersive 3D worlds, so that’s
what we’ll spend the rest of the chapter on. Before we get into specific polygon types sup-
ported by OpenGL (that is, triangles, quadrilaterals, and polygons), we need to discuss a
few things that pertain to all polygon types.

You draw all polygons by specifying several points in 3D space. These points specify a
region that is then filled with color. At least, that’s the default behavior. However, as you'd
probably expect by now, the state machine controls the way in which the polygon is
drawn, and you're free to change the default behavior. To change the way polygons are
drawn, you use

void glPolygonMode(GLenum face, GLenum mode);

As you will learn in the next subsection, OpenGL handles the front and back faces of poly-
gons separately; as a result, when you call g1PoTygonMode(), you need to specify the face to
which the change should be applied. You do this by setting the face parameter to GL_FRONT
for front-facing polygons, GL_BACK for back-facing polygons, or GL_FRONT_AND_BACK for both.

The mode parameter can take on any of the values in Table 3.7.

If, for example, you want to set the front-facing polygons to be drawn filled and the back-
facing ones to be rendered as a wire frame (as lines), you could use the following code:

g1PolygonMode (GL_FRONT, GL_FILL);
g1PolygonMode (GL_BACK, GL_LINE);

Table 3.7 Polygon Modes

Value Definition

GL_POINT Each vertex specified is rendered as a single point, the rendering of which can be controlled
by the point states discussed earlier. This basically produces the same effect as calling
g1Begin() with GL_POINTS.

GL_LINE This will draw the edges of the polygon as a set of lines. Any of the line states discussed
previously will affect how the lines are drawn. This is similar to calling g1Begin() with
GL_LINE_LOOP.

GL_FILL This is the default state, which renders the polygon with the interior filled. This is the only
state in which polygon stipple and polygon smoothing (see the following) will take effect.

Handling Primitives

Note that unless you have changed the mode for front-facing polygons elsewhere, the first
line is unnecessary, because polygons are drawn filled by default.

To find out the current mode for drawing polygons, you can call glget() with
GL_POLYGON_MODE.

Polygon Mode Example

On the CD you will find a Polygons example that illustrates how polygon modes can be
used and the effects they have on OpenGL drawing. Figure 3.5 is a screenshot of this
example.

In this example, we have five squares rotating clockwise at the same rate, which means the
front faces of the squares face the same direction at the same time (and vice versa for the
back faces). Each square is given a different polygon mode and is therefore drawn differ-
ently. Starting from the left (square number one), here is each square’s configuration:

1) g1PolygonMode(GL_FRONT, GL_LINE);

2) g1PolygonMode(GL_BACK, GL_POINT);

3) g1PolygonMode(GL_FRONT_AND_BACK, GL_FILL);

4) g1PolygonMode (GL_BACK, GL_LINE);

5) g1PoTygonMode (GL_FRONT_AND_BACK, GL_LINE);

7-.H,OGL6F - Chagter 3 - Pobeam

Figure 3.5 Screenshot of the Polygons example in Chapter 3 on the CD.

53

54

Chapter 3 ® OpenGL States and Primitives

Polygon Face Culling

Although polygons are infinitely thin, they have two sides, implying that they can be seen
from either side. Sometimes, it makes sense to have each side displayed differently, and
this is why some of the functions presented here require you to specify whether you're
modifying the front face, back face, or both. In any case, the rendering states for each of
the sides are stored separately.

When you know that the viewer will be able to see only one side of a polygon, it is possi-
ble to have OpenGL eliminate (or more precisely, skip processing) polygons that the
viewer can’t see. For example, with an object that is completely enclosed and opaque, such
as a ball, only the front sides of polygons are ever visible. If you can determine that the
back side of a polygon is facing the viewer (which would be true for polygons on the side
of the ball opposite of the viewer), you can save time transforming and rendering the
polygon because you know it won’t be seen. OpenGL can do this for you automatically
through the process known as culling. To use culling, you first need to enable it by passing
GL_CULL_FACE to g1Enable(). Then, you need to specify which face you want culled, which is
done with g1Cul1Face():

void g1CullFace(GLenum mode);

mode can be GL_FRONT to cull front facing polygons, GL_BACK to cull back facing polygons, or
GL_FRONT_AND_BACK to cull them both. Choosing the latter causes the polygons to not be
drawn at all, which doesn’t seem particularly useful. GL_BACK is the default setting.

The next step is telling OpenGL how to determine whether a polygon is front facing or
back facing. It does this based on what is called polygon winding, which is the order in
which you specify vertices. Looking at a polygon head-on, you can choose any vertex with
which to begin describing it. To finish describing it, you have to proceed either clockwise
or counterclockwise around its vertices. If you’re consistent about how you specify your
polygons and order your vertices, OpenGL can use the winding to automatically deter-
mine whether a polygon face is front or back facing. By default, OpenGL treats polygons
with counterclockwise ordering as front-facing and polygons with clockwise ordering as
back-facing. The default behavior can be changed using g1FrontFace():

void glFrontFace(GLenum mode);

mode should be GL_CCW if you want to use counterclockwise orientation for front-facing
polygons and GL_CW if you want to use clockwise orientation.

Note

The winding setting isn't just relevant in culling; it's used by other OpenGL subsystems, including
lighting.

Handling Primitives

Hiding Polygon Edges
It’s not uncommon to want to render something in wire-frame mode, and sometimes you
may not want to have all the edges of your polygons show up. For example, if you're draw-
ing a square using two triangles, you may not want the viewer to see the diagonal line. This
is illustrated in Figure 3.6.

Figure 3.6 Hiding polygon edges you don't want to see.

You can tell OpenGL whether a particular edge of a polygon should be included when ren-
dering it as lines by calling g1EdgeFlag(), which can take on one of the two following forms:

m void glEdgeFlag(GLboolean isEdge);
m void glEdgeFlagv(const GLboolean *isEdge);

The only difference between these two forms is that the first takes a single Boolean value
as its parameter and the second takes a pointer to an array containing a single Boolean
value. (The OpenGL designers must have had a good reason to want to pass a single value
in an array, but I can’t think of one myself!) Either way, these functions are used to set the
edge flag. If the flag is set to GL_TRUE (the default), the edges you specify are drawn; if it is
set to GL_FALSE, they are not. Pretty simple.

Antialiasing Polygons

As with points and lines, you can also choose to antialias polygons. You control polygon
antialiasing by passing GL_POLYGON_SMOOTH to gl1Enable() and g1Disable(), and the current
state can be determined by passing the same parameter to g1Get() or g1IsEnabled(). As you
might expect, it is disabled by default. Here is an example of how to enable polygon
antialiasing:

// if polygon antialiasing is disabled, then enable it
if (!g1IsEnabled(GL_POLYGON_SMOOTH))
gTEnable(GL_POLYGON_SMOOTH);

55

56

Chapter 3 ® OpenGL States and Primitives

Specifying a Stipple Pattern

The last general polygon attribute you need to look at is polygon stippling, which is sim-
ilar to line stippling. Rather than filling in a polygon with a solid color, you can set a stip-
ple pattern to fill the polygon. If you've ever set a pattern for your Windows wallpaper,
you’ll have some idea of the effect.

Polygon stippling is off by default, but you can turn it on by passing GL_POLYGON_STIPPLE to
glEnable(). Once it’s enabled, you need to specify a stipple pattern, which you do using the
following:

void glPolygonStipple(const GLubyte *mask);

The mask parameter in this call is a pointer to an array containing a 32 x 32 bit pattern. This
mask will be used to determine which pixels show up (for bits that are turned on) and which
ones don’t. Unlike line-stipple patterns, which show up in reverse, polygon-stipple patterns
show up exactly as they are specified. Note that the stipple pattern is applied to screen coor-
dinates in 2D. Thus, rotating a polygon doesn’t rotate the pattern as well.

Now that we’ve discussed some general polygon properties, we can look at specific polyg-
onal primitives supported by OpenGL.

Triangles

Triangles are generally the preferred polygon form. There are several reasons for this:

m The vertices of a polygon are always coplanar, because three points define a plane.
® A triangle is always convex.

® A triangle can’t cross over itself.

If you try to render a polygon that violates any of these three properties, unpredictable
behavior will result. Because any polygon can be broken down into a number of triangles,
it makes sense to work with them.

Drawing a triangle in 3D isn’t any more difficult than drawing a point or a line. You just
need to change the value passed to g1Begin() and then specify three vertices:

g1Begin(GL_TRIANGLES);
glVertex3f(-2.0, -1.0, 0.0);
glVertex3f(3.0, 1.0, 0.0);
glVertex3f(0.0, 3.0, 0.0);
glEnd();

Just as with points and lines, you can draw multiple triangles at one time. OpenGL treats
every vertex triple as a separate triangle. If the number of vertices defined isn’t a multiple
of 3, then the extra vertices are discarded.

Handling Primitives

OpenGL also supports a couple of primitives related to triangles that can improve per-
formance. To understand why you might want to use these, consider Figure 3.7.

Here, you have two connected triangles, which have vertices A and C in common. If you
render these using GL_TRIANGLES, you’'ll have to specify a total of six vertices (A, B, and C for
triangle 1 and A, D, and C for triangle 2). You'll send A and C down the pipeline twice,
performing the same geometrical operations on them each time. Obviously, this is waste-
ful; compounding this, you can have vertices shared by many triangles in more complex
models. If you can reduce the number of times you're sending and transforming redun-
dant vertices, you can improve performance, which is always good.

One way you can do this is by using triangle strips. Simply call g1Begin() with
GL_TRIANGLE_STRIP, followed by a series of vertices. OpenGL handles this by drawing the
first three vertices as a single triangle; after that, it takes every vertex specified and combines
it with the previous two vertices to create another triangle. This means that after the first
triangle, each additional triangle costs only a single vertex. In general, every set of # trian-
gles you can reduce to a triangle strip reduces the number of vertices from 3n to n + 2.
Figure 3.8 illustrates how you can use a triangle strip.

Triangle fans are a similar concept; you can visualize them as a series of triangles around
a single central vertex. You draw fans by calling g1Begin() with GL_TRIANGLE_FAN. The first
vertex specified is the central vertex, and every following adjacent pair of vertices is com-
bined with the center vertex to create a new polygon, as illustrated in Figure 3.9.

Figure 3.7 Two polygons with shared vertices.

57

58

Chapter 3 ® OpenGL States and Primitives

T4 T3

Figure 3.8 A triangle strip creates triangles by combining vertices
into triplet sets.

9 10/2 3
.
\ T8 T //
N %
T7
T2
\\ 1/
8 . 4
%
8 / \ T3
/ \
5 T4
g _
7 3 5

Figure 3.9 A triangle fan starts with the central vertex and spans
out as a “fan” of vertices.

Handling Primitives

Like strips, fans allow you to draw # triangles while specifying only # + 2 vertices. How-
ever, in practice, the number of triangles that can be packed into a single fan is usually
considerably fewer than the number that can be represented as a strip because in most
cases, any given vertex won’t be shared by a huge number of triangles.

The challenge with either method is in identifying strips and fans, which is relatively easy
with simple models but becomes increasingly difficult as the complexity of your models
grows. Normally, the process of converting a model represented as triangles into a series
of triangle strips (or fans, but usually strips) is done outside of your game engine, either
when the model is exported from a modeling program or through a separate tool that
optimizes the data for your game. Doing this effectively is beyond the scope of our cur-
rent discussion.

Quadrilaterals

Quadrilaterals, or quads, are four-sided polygons that can be convenient when you want
to draw a square or rectangle. You create them by calling g1Begin() with GL_QUADS and then
specifying four or more vertices, as Figure 3.10 shows. Like triangles, you can draw as
many quads as you want at a time.

Figure 3.10 A quad is specified with four vertices.

59

60

Chapter 3 ® OpenGL States and Primitives

OpenGL provides quad strips as a means of improving the speed of rendering quads.
They are specified using GL_QUAD_STRIP. Each pair of vertices specified after the first pair
defines a new quad.

Polygons

OpenGL also supports polygons with an arbitrary number of vertices, but in such cases,
only one polygon can be drawn within a g1Begin()/g1End() block. The parameter passed is
GL_POLYGON (notice that it’s not plural), and once g1End() is reached, the last vertex is auto-
matically connected to the first. If fewer than three vertices are specified, nothing is
drawn. Figure 3.11 is an example of polygon drawing.

Using Primitives: Triangles and Quads Example

The final example for this chapter, called TrianglesQuads, shows how you can render a
grid using variations of triangles and quads. You can see the screenshot of this example in
Figure 3.12.

~. 5

Figure 3.11 A polygon can be an arbitrary number of vertices.

Handling Primitives

W 00GLGP - Chapter 3 - Trianglestisads

Figure 3.12 Screenshot of the TrianglesQuads example in Chapter 3
on the CD.

As you can see in the screenshot, we render a set of six grids, each with a different primi-
tive type. In the top-left of the figure we have a grid drawn with GL_POINTS so you can see
the shape of the grid. The code for drawing this is simply:

void DrawPoints()

{
glPointSize(4.0);
g1Begin(GL_POINTS);
for (int x = 0; x < 4; x++)

for (int z =0; z < 4; z++)
glVertex3f(x, 0, z);

glEnd();

}

The top-middle grid is drawn with GL_TRIANGLES. We used GL_FILL on this grid so you can
see where the actual triangles are drawn (in all other grids the entire grid is filled). The
code for this grid is

void DrawTriangles()
{
g1Begin(GL_TRIANGLES);

62 Chapter 3 ® OpenGL States and Primitives

for (int x = 0; x < 3; x++)

{
for (int z = 0; z < 3; z++)
{
glVertex3f(x, 0.0, z);
glVertex3f((x+1.0), 0.0, z);
glVertex3f(x, 0.0, (z+1.0));
}
}
glEnd();

}
The top-right grid is drawn with GL_QUADS. The code for this grid is

void DrawQuads()
{
g1Begin(GL_QUADS);
for (int x = 0; x < 3; x++)
{
for (int z = 0; z < 3; z++)
{
glVertex3f(x, 0.0, z);
glVertex3f((x+1. 0) 0.0, z);
glVertex3f((x+1.0), 0.0, (z+1.0));
glVertex3f(x, 0.0, (z+1.0));

}
glEnd();
}

The bottom-left grid is drawn with rows of GL_TRIANGLE_STRIP. The code for this grid is

void DrawTriangleStrip()
{
// 3 rows of triangle strips
for (int x = 0; x < 3; x++)
{
g1Begin(GL_TRIANGLE_STRIP);
for (int z = 0; z < 3; z++)
{
glVertex3f(x, 0.0, z);
glVertex3f((x+1.0), 0.0, z);
glVertex3f(x, 0.0, (z+1.0));

Handling Primitives 63

glVertex3f((x+1.0), 0.0, (z+1.0));

}
glEnd();

}
The bottom-middle grid is drawn with a GL_TRIANGLE_FAN. The code for this grid is

void DrawTriangleFan()

{
g1Begin(GL_TRIANGLE_FAN);

// center vertex of fan
glVertex3f(0.0, 0.0, 0.0);

// bottom side
for (int x =4; x> 0; x)
glVertex3f(x-1, 0.0, 3.0);

// right side
for (int z =4; 2z > 0; z)
glVertex3f(3.0, 0.0, z-1);

glEnd();
}

And finally, the bottom-right grid is drawn with rows of GL_QUAD_STRIP. The code for this
grid is
void DrawQuadStrip()
{
for (int x = 0; x < 3; x++)
{
g1Begin(GL_QUAD_STRIP);
for (int z = 0; z < 4; z++)

{
glVertex3f(x, 0.0, z);
glVertex3f((x+1.0), 0.0, z);
}
glEnd();

64

Chapter 3 ® OpenGL States and Primitives

As you can see from the code, each grid’s code is slightly different from the others. This is
because each primitive accepts data slightly differently, which requires us to modify our
algorithms for each primitive type in order for the grids to be drawn properly.

Spend some time looking at and modifying this code to be sure you are comfortable with
it. You will be using primitives in every application from here on out, so you had better
understand them well!

Attributes

Earlier in this chapter you saw how to set and query individual states from OpenGL. Now
let us look at a way to save and restore the values of a set of related state variables with a
single command.

An attribute group is a set of related state variables that OpenGL classifies into a group.
For example, the line group consists of all the line drawing attributes, such as the width,
stipple pattern attributes, and line smoothing. The polygon group consists of the
same sets of attributes as lines, except for polygons. By using the glPushAttrib() and
g1PopAttrib() functions, you can save and restore all of the state information for a group
in one function call.

void gTPushAttrib(GLbitfield mask);
void glPopAttrib(void);

g1PushAttrib() saves all of the attributes for the attribute group specified by mask onto the
attribute stack. The mask bits can be logically ORed together to save any combination of
attribute bits. g1PopAttrib() restores the values of the state variables that were saved with
the last g1PushAttrib(). Table 3.8 includes a list of a few (certainly not all!) attribute groups
that you can pass to g1PushAttrib().

Table 3.8 Attribute Groups

Mask Attribute Group

GL_ALL_ATTRIB_BITS All OpenGL state variables in all attribute groups
GL_ENABLE_BIT Enabled state variables

GL_FOG_BIT Fog state variables

GL_LIGHTING_BIT Lighting state variables

GL_LINE_BIT Line state variables

GL_POINT_BIT Point state variables

GL_POLYGON_BIT Polygon state variables

GL_TEXTURE_BIT Texturing state variables

Summary 65

Summary

In this chapter, you learned a little more about the OpenGL state machine. You know how
to use glGet() and gllIsknabled() to query the values of parameters within the state
machine. You've also seen some specialized functions for altering the state machine, and
you should now have an idea of how it works. You’ll be looking at other aspects of the state
machine as you move on.

You also learned about the primitive types supported by OpenGL and how to modify
properties pertaining to them. You should now have no trouble putting points, lines, tri-
angles, and other primitives on the screen. Now that you have state machine basics and
primitives under your belt, you can safely move on to more interesting things.

What You Have Learned

You can query current settings from the OpenGL state machine by using the
glGet() and g1IsEnabled() functions.

Primitives are drawn by first specifying the primitive type with the g1Begin() func-
tion, then sending the vertices and following up with the g1End() function.

The g1Vertex() function specifies a vertex in a g1Begin()/g1End() block and is avail-
able in several variations that allow you to define the number of coordinates, the

coordinates’ data type, and whether the coordinates are being passed individually
or as an array.

You can draw points by passing GL_POINTS as the parameter to g1Begin(), modify
point size by using the g1PointSize() function, turn point antialiasing on by passing
GL_POINT_SMOOTH to glEnable(), and control the effect of distance on points with
glPointParameter().

Lines are drawn by passing GL_LINES as the parameter to g1Begin(). You can modify
line width with the g1LineWidth() function, and line antialiasing is turned on by
sending GL_LINE_SMOOTH to glEnable(). Line stippling is accomplished through the
use of the g1LineStipple() function.

You can change the way OpenGL draws polygons by using the g1PoTygonMode()
function. Passing GL_POINT forces OpenGL to draw only the vertices of polygons;
GL_LINE forces OpenGL to draw the edges between polygon vertices as lines; GL_FILL
is the default behavior, which renders polygons with the interior filled and allows
polygon smoothing and stippling.

Passing GL_CULL_FACE to g1Enable() tells OpenGL to enable its face culling mecha-
nism. Using the g1Cul1Face() function then allows you to specify which polygon
side OpenGL should cull.

66

Chapter 3 ® OpenGL States and Primitives

By default, OpenGL treats vertices that are ordered counterclockwise in a polygon
as the front face of the polygon, while the clockwise vertices are the back face. The
glFrontFace() function allows you to modify this setting.

Triangles are the most important polygon in 3D graphics as any polygon can be
broken down into a set of triangles. You draw a triangle in OpenGL by passing
GL_TRIANGLES to g1Begin().

You can draw a set of triangles more efficiently by passing GL_TRIANGLE_STRIP or
GL_TRIANGLE_FAN to g1Begin(). GL_TRIANGLE_STRIP draws a triangle strip, which creates a
strip of triangles by combining vertices into sets of triplets. GL_TRIANGLE_FAN starts
with the first vertex as the center vertex and draws the rest as a fan of vertices
around the center.

Quadrilaterals may also be drawn by passing GL_QUADS or GL_QUAD_STRIP to g1Begin().
n-sided convex polygons may be drawn by passing GL_POLYGON to g1Begin().

You can save and restore OpenGL state variables using the g1PushAttrib() and
g1PopAttrib() functions.

Review Questions

1.

How would you determine if OpenGL is drawing antialiased lines?

2. How is culling enabled?

3. In what order does OpenGL draw vertices for a GL_TRIANGLE_STRIP?
4.
5

. What do the following variations of g1Vertex() mean?

In what order does OpenGL draw vertices for a GL_TRIANGLE_FAN?

a. glVertex3f()
b. glVertex2iv()
c. glVertex4d()
d. glVertex3fv()
e. glVertex2s()

On Your Own

1.

You have been tasked to write a function that draws a 2D circle approximation
with the option of drawing only the edge of the circle or drawing the circle filled at
the world origin (0, 0, 0). Your function must accept the radius of the circle and a
value for the number of edges in the circle approximation. Write a function to
draw the circle approximation given the following prototype:

void DrawCircleApproximation(float radius, int numberOfSides, bool edgeOnly);

CHAPTER 4

TRANSFORMATIONS
AND MATRICES

ow it’s time to take a short break from learning how to create objects in the

world and focus on learning how to move the objects around in the world. This

is a vital ingredient to generating realistic 3D gaming worlds; without it, the 3D
scenes you create would be static, boring, and totally noninteractive. OpenGL makes it
easy for the programmer to move objects around through the use of various coordinate
transformations, discussed in this chapter. You will also take a look at how to use your own
matrices with OpenGL, which provides you with the power to manipulate objects in many
different ways.

In this chapter you’ll learn about:

m The basics of coordinate transformations
m The camera and viewing transformations
® OpenGL matrices and matrix stacks

® Projections

= Using your own matrices with OpenGL

Understanding Coordinate Transformations

Set this book down and stop reading for a moment. Look around you. Now, imagine that
you have a camera in your hands, and you are taking photographs of your surroundings.
For instance, you might be in an office and have your walls, this book, your desk, and
maybe your computer near you. Each of these objects has a shape and geometry described

67

68

Chapter 4 = Transformations and Matrices

in a local coordinate system, which is unique for every object, is centered on the object, and
doesn’t depend on any other objects. They also have some sort of position and orienta-
tion in the world space. You have a position and orientation in world space as well. The
relationship between the positions of these objects around you and your position and ori-
entation determines whether the objects are behind you or in front of you. As you are tak-
ing photographs of these objects, the lens of the camera also has some effect on the final
outcome of the pictures you are taking. A zoom lens makes objects appear closer to or
farther from your position. You aim and click, and the picture is “rendered” onto the cam-
era film (or onto your memory card if you have a digital camera). Your camera and its film
also have settings, such as size and resolution, which help define how the final picture is
rendered. The final image you see in a picture is a product of how each object’s position,
your position, your camera’s lens, and your camera’s settings interact to map your sur-
rounding objects’ three-dimensional features to the two-dimensional picture.

Transformations work the same way. They allow you to move, rotate, and manipulate
objects in a 3D world, while also allowing you to project 3D coordinates onto a 2D screen.
Although transformations seem to modify an object directly, in reality, they are merely
transforming the object’s local coordinate system into another coordinate system. When
rendering 3D scenes, vertices pass through four types of transformations before they are
finally rendered on the screen:

= Modeling transformation. The modeling transformation moves objects around
the scene and moves objects from local coordinates into world coordinates.

= Viewing transformation. The viewing transformation specifies the location of the
camera and moves objects from world coordinates into eye or camera coordinates.

= Projection transformation. The projection transformation defines the viewing
volume and clipping planes and maps objects from eye coordinates to clip
coordinates.

= Viewport transformation. The viewport transformation maps the clip coordinates
into the two-dimensional viewport, or window, on your screen.

While these four transformations are standard in 3D graphics, OpenGL includes and
combines the modeling and viewing transformation into a single modelview transforma-
tion. We will discuss the modelview transformation in “The Modelview Matrix” section of
this chapter.

Table 4.1 shows a summary of all these transformations.

When you are writing your 3D programs, remember that these transformations execute
in a specific order. The modelview transformations execute before the projection trans-
formations; however, the viewport can be specified at any time, and OpenGL will auto-
matically apply it appropriately. Figure 4.1 shows the general order in which these vertex
transformations are executed.

Understanding Coordinate Transformations

Table 4.1 OpenGL Transformations

Transformation Description

Viewing In 3D graphics, specifies the location of the camera (not a true OpenGL
transformation)

Modeling In 3D graphics, handles moving objects around the scene (not a true OpenGL
transformation)

Projection Defines the viewing volume and clipping planes

Viewport Maps the projection of the scene into the rendering window

Modelview Combination of the viewing and modeling transformations

Wertex Data Mo de Wiew Eve Coordinates Frojection
(e z) i atriz ¥ i atriz

Clip
Coordinate:
Wlm.jow Wiewport Horma.llzed Perspective
Coordinates 5 Device i
Transformation 5 Divisian
(AN Coordinates

Figure 4.1 The vertex transformation pipeline.

Eye Coordinates

One of the most critical concepts to transformations and viewing in OpenGL is the con-
cept of the camera, or eye coordinates. In 3D graphics, the current viewing transforma-
tion matrix, which converts world coordinates to eye coordinates, defines the camera’s
position and orientation. In contrast, OpenGL converts world coordinates to eye coordi-
nates with the modelview matrix. When an object is in eye coordinates, the geometric rela-
tionship between the object and the camera is known, which means our objects are
positioned relative to the camera position and are ready to be rendered properly. Essen-
tially, you can use the viewing transformation to move a camera about the 3D world,
while the modeling transformation moves objects around the world. In OpenGL, the
default camera (or viewing matrix transformation) is always oriented to look down the
negative z axis, as shown in Figure 4.2.

69

70

Chapter 4 = Transformations and Matrices

Camera
Location {0, 0, @)

Datault Ofientatian

¥

Figure 4.2 The default viewing matrix in OpenGL looks down the
negative z axis.

To give you an idea of this orientation, imagine that you are at the origin and you rotate
to the left 90 degrees (about the y axis); you would then be facing along the negative x axis.
Similarly, if you were to place yourself in the default camera orientation and rotate 180
degrees, you would be facing in the positive z direction.

Viewing Transformations

The viewing transformation is used to position and aim the camera. As already stated, the
camera’s default orientation is to point down the negative z axis while positioned at the
origin (0,0,0). You can move and change the camera’s orientation through translation and
rotation commands, which, in effect, manipulate the viewing transformation.

Remember that the viewing transformation must be specified before any other modeling
transformations. This is because transformations in OpenGL are applied in reverse order.
By specifying the viewing transformation first, you are ensuring that it gets applied after
the modeling transformations.

How do you create the viewing transformation? First you need to clear the current matrix.
You accomplish this through the g1LoadIdentity() function, specified as

void glLoadIdentity();

Understanding Coordinate Transformations 71

This sets the current matrix equal to the identity matrix and is analogous to clearing the
screen before beginning rendering.

Tip

The identity matrix is the matrix in which the diagonal element values in the matrix are equal to
1, and all the other (nondiagonal) element values in the matrix are equal to 0, so that given the
4 x 4 matrix M: M(0,0) = M(1,1) = M(2,2) = M(3,3) = 1. Multiplying the identity matrix /by a matrix
M results in a matrix equal to M, such that /x M= M.

After initializing the current matrix, you can create the viewing matrix in several different
ways. One method is to leave the viewing matrix equal to the identity matrix. This results
in the default location and orientation of the camera, which would be at the origin and
looking down the negative z axis. Other methods include the following:

Using the gluLookAt() function to specify a line of sight that extends from the
camera. This is a function that encapsulates a set of translation and rotation
commands and will be discussed later in this chapter in the “Using gluLookAt()
section.

»

Using the translation and rotation modeling commands g1Translate() and
glRotate(). These commands are discussed in more detail in the “Using g1Rotate()
and g1Translate()” section in this chapter; for now, suffice it to say that this
method moves the objects in the world relative to a stationary camera.

Creating your own routines that use the translation and rotation functions for
your own coordinate system (for example, polar coordinates for a camera orbiting
around an object). This concept will be discussed in this chapter in the “Creating
Your Own Custom Routines” section.

Modeling Transformations

The modeling transformations allow you to position and orient a model by moving,
rotating, and scaling it. You can perform these operations one at a time or as a combina-
tion of events. Figure 4.3 illustrates the three built-in operations that you can use on
objects:

Translation. This operation is the act of moving an object along a specified vector.
Rotation. This is where an object is rotated about a vector.

Scaling. This is when you increase or decrease the size of an object. With scaling,
you can specify different values for different axes. This gives you the ability to
stretch and shrink objects non-uniformly.

The order in which you specify modeling transformations is very important to the final
rendition of your scene. For example, as shown in Figure 4.4, rotating and then translating

Chapter 4 = Transformations and Matrices

.

Rotation
Tranzlation

Scaling

Figure 4.3 The three modeling transformations.

Figure 4.4 (A) Performing rotation before translation; (B) Performing
translation before rotation.

an object has a completely different effect than translating and then rotating the object.
Let’s say you have an arrow located at the origin that lies flat on the x-y plane, and the first
transformation you apply is a rotation of 30 degrees around the z axis. You then apply a

OpenGL and Matrices

translation transformation of +5 units along the x axis. The final position of the triangle
would be (5, 4.33) with the arrow pointing at a 30-degree angle from the positive x axis.
Now, let’s swap the order and say you translate the arrow by +5 units along the x axis first.
Then you rotate the arrow 30 degrees about the z axis. After the translation, the arrow
would be located at (5, 0). When you apply the rotation transformation, the arrow would
still be located at (5, 0), but it would be pointing at a 30-degree angle from the x axis.

Projection Transformations

The projection transformation defines the viewing volume and clipping planes. It is per-
formed after the modeling and viewing transformations. You can think of the projection
transformation as determining which objects belong in the viewing volume and how they
should look. It is very much like choosing a camera lens that is used to look into the world.
The field of view you choose when creating the projection transformation determines
what type of lens you have. For instance, a wider field of view would be like having a wide-
angle lens, where you could see a huge area of the scene without much detail. With a
smaller field of view, which would be similar to a telephoto lens, you would be able to look
at objects as though they were closer to you than they actually are.

OpenGL offers two types of projections:

= Perspective projection. This type of projection shows 3D worlds exactly as you see
things in real life. With perspective projection, objects that are farther away appear
smaller than objects that are closer to the camera.

= Orthographic projection. This type of projection shows objects on the screen in
their true size, regardless of their distance from the camera. This projection is use-
ful for CAD software, where objects are drawn with specific views to show the
dimensions of an object (i.e. front, left, top views), and can also be used for iso-
metric games.

Viewport Transformations

The last transformation is the viewport transformation. This transformation maps the clip
coordinates created by the perspective transformation onto your window’s rendering sur-
face. You can think of the viewport transformation as determining whether the final
image should be enlarged or shrunk, depending on the size of the rendering surface.

OpenGL and Matrices

Now that you’ve learned about the various transformations involved in OpenGL, let’s take
a look at how you actually use them. Transformations in OpenGL rely on the matrix for
all mathematical computations. As you will soon see, OpenGL has what is called the

73

74

Chapter 4 = Transformations and Matrices

matrix stack, which is useful for constructing complicated models composed of many
simple objects. You will be taking a look at each of the transformations and look more into
the matrix stack in this section.

Tip

In case you need a refresher course, the mathematical concept of the matrix is discussed in the “3D
Theory and Concepts” chapter included on the CD.

The Modelview Matrix

The modelview matrix defines the coordinate system that is used to place and orient
objects. This 4 X 4 matrix can either transform vertices or it can be transformed itself by
other matrices. Vertices are transformed by multiplying a vertex vector by the modelview
matrix, resulting in a new vertex vector that has been transformed. The modelview matrix
itself can be transformed by multiplying it by another 4 x 4 matrix.

Before calling any transformation commands, you must specify whether you want to
modify the modelview matrix or the projection matrix. Modifying either matrix is accom-
plished through the OpenGL function giMatrixMode(), which is defined as

void glMatrixMode(GLenum mode);

In order to modify the modelview matrix, you use the argument GL_MODELVIEW. This sets the
modelview matrix to the current matrix, which means that it will be modified with sub-
sequent transformation commands. Doing this looks like

void glMatrixMode(GL_MODELVIEW);

Other arguments for glMatrixMode include GL_PROJECTION, GL_COLOR, or GL_TEXTURE. GL_
PROJECTION is used to specify the projection matrix; GL_COLOR is used to indicate the color
matrix, which we won’t be covering; and GL_TEXTURE is used to indicate the texture matrix,
which we will discuss in Chapter 7, “Texture Mapping.”

Usually at the beginning of your rendering loop, you will want to reset the modelview
matrix to the default position (0, 0, 0) and orientation (looking down the negative z axis).
To do this, you call the glLoadIdentity() function, which loads the identity matrix as the
current modelview matrix, thereby positioning the camera at the world origin and default
orientation. Here’s a snippet of how you might reset the modelview matrix:

gIMatrixMode(GL_MODELVIEW);
glloadIdentity(); /1 reset the modelview matrix

// ... do other transformations

OpenGL and Matrices

Translation

Translation allows you to move an object from one position in the world to another posi-
tion in the world. The OpenGL function g1Translate() performs this functionality and is
defined as follows:

void glTranslate{fd}(TYPE x, TYPE y, TYPE z);

The parameters x, y, and z specify the amount to translate along the x, y, and z axes. For
example, if you execute the command

glTranslatef(3.0f, 1.0f, 8.0f);

any subsequently specified objects will be moved three units along the positive x axis, one
unit along the positive y axis, and eight units along the positive z axis, to a final position
of (3,1, 8).

Suppose you want to move a cube from the origin to the position (5, 5, 5). You first load
the modelview matrix and reset it to the identity matrix, so you are starting at the origin
(0,0, 0). You then perform the translation transformation on the current matrix to posi-
tion (5, 5, 5) before calling your DrawCube() function. In code, this looks like

gIMatrixMode(GL_MODELVIEW); // set current matrix to modelview

glloadIdentity(); // reset modelview to identity matrix
glTranslatef(5.0f, 5.0f, 5.0f); // move to (5,5,5)
DrawCube(); // draw the cube

Figure 4.5 illustrates how this code executes.

+y
- -z
- ,-': 2 +x
R L
R)
S
+z \v
oY

Figure 4.5 Translating a cube from the origin to (5,5,5).

75

76

Chapter 4 = Transformations and Matrices

How about a translation example? On the CD under Chapter 4 you will find an example
called Translation that illustrates a very simple oscillating translation along the z axis. The
example renders a flat square plane at the origin, but because the world coordinate system
is being translated, the square plane appears to be moving into and away from the view.
Here is the code from the Prepare() function, which performs the oscillation logic:

void CGfxOpenGL::Prepare()

{
// if we're moving in the -z direction, decrement the z position

if (direction)

zPos -= 0.01;
else // we're moving in the +z direction, increment the z position
zPos += 0.01;

// if we have reached the origin or -20 units along the
// z axis, then change direction
if (zPos »= 0.0)
direction = true;
else if (zPos <= -20.0)
direction = false;
}

This code either increases or decreases the value used to translate the world along the z
axis, depending on the “direction” we are currently heading. When the translation value
reaches an extreme (0.0 or -20.0), then we change the “direction” of the translation. This
code in the Prepare() function is called prior to the Render() function, which looks like this:

void CGfxOpenGL::Render()

{
// clear color and depth buffers
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Toad the identity matrix (clear to default position and orientation)
glloadIdentity();

// translate the world coordinate system along the z axis
glTranslatef(0.0, 0.0, zPos);

// draw the plane at the world origin
DrawPlane();

OpenGL and Matrices

The Render() function is very simple. After clearing the color and depth buffers, we load
the identity matrix to initialize to the default world position and orientation, translate
along the z axis using the value determined in the Prepare() function, and then draw the
plane. The DrawPlane() function draws a 4 unit by 4 unit square plane that lies along the
x-z plane with its center at the world origin. The resulting execution shows a plane that
moves back and forth along the z axis. A screenshot is shown in Figure 4.6.

Rotation
Rotation in OpenGL is accomplished through the glRotate() function, which is defined as

void glRotate{fd}(TYPE angle, GLfloat x, TYPE y, TYPE z);

With this function, you are performing a rotation around the vector specified by the x, y,
and z parameters. The angle of rotation is specified by angle and is measured in degrees in
the counterclockwise direction.

For example, if you wanted to rotate around the y axis 135 degrees in the counterclock-
wise direction, you would use the following:

glRotatef(135.0f, 0.0f, 1.0f, 0.0f);

A G - Chapier 4 - Trasslailen

Figure 4.6 A screenshot of the Translation example.

77

78

Chapter 4 = Transformations and Matrices

The value of 1.0f for the y argument specifies a vector
pointing in the direction of the positive y axis. Figure +y
4.7 illustrates how the glRotate() function works. LB

If you wanted to rotate clockwise, you would set the
angle of rotation as a negative number. To rotate
around the y axis 135 degrees in the clockwise direc-
tion, you use the following code:

g1Rotatef(-135.0fF, 0.0f, 1.0f, 0.0f); alR otatef(45.0f, 0.07,0.0f1.0F);

What if you wanted to rotate around an arbitrary axis?

You can accomplish this by specifying the arbitrary Figure 4.7 The gIRotate() function
axis vector in the x, y, and z parameters. By drawing a takes the angle of rotation and a
line from the relative origin to the point represented vector for the axis of rotation as

by (x,y,z), you can see the arbitrary axis around parameters.

which you will rotate. For instance, if you rotate 90

degrees about the axis specified by the vector (1, 1, 0),
you rotate about the axis that goes from the relative B

origin to the point (1, 1, 0). In code, this looks like the ROLE
following:]

glRotatef(90.0f, 1.0f, 1.0f, 0.0f);
Figure 4.8 illustrates how it works. s \,

Rotating about a single axis is fine, but most applica-
tions rotate their objects about multiple axes. The
order in which you specify rotations is very important

glRotatef(90.0f, 1.0f,1.0F,0,0F);

when doing this because each rotation you apply Figure 4.8 Rotation about an
changes the local coordinate system of the rotations. arbitrary axis.

For instance, if you rotate an object 60 degrees about

the x axis and then rotate that same object 45 degrees about the y axis in subsequent calls
to glRotate(), then the resultant orientation of that object is a result of the two rotations
occurring one after the other within the context of the object’s local coordinate system.
The first rotation will be applied as expected, and the object will be rotated 60 degrees
about the x axis. However, the second rotation about the y axis will not be in the context
of the world coordinate system. Instead, the y axis rotation occurs in the context of the
object’s local coordinate system. Because the object has already been rotated 60 degrees
about the x axis, the object’s new y axis has also been rotated 60 degrees counterclockwise.
Your second rotation about the y axis will actually be in this new configuration. Let’s look
at an example; maybe it will make more sense.

Included on the CD in Chapter 4 you will find an example entitled Rotation. A screenshot
of this example is shown in Figure 4.9. If you build and run the example, you will see the

OpenGL and Matrices

Figure 4.9 A screenshot of the Rotation example.

same plane we created in the Translation example, except this time it is rotating about the
origin instead of translating along the z axis. Also being drawn in this example are two sets
of lines representing the coordinate system x and y axes. The white lines represent the
world coordinate system x and y axes, while the yellow lines represent the x and y axes in
the object’s local coordinate system. The important part of this example is the following
lines in the Render() method:

// rotate about x axis then y axis at prescribed angles and draw plane
glRotatef(xAxisAngle, 1.0, 0.0, 0.0);

glRotatef(yAxisAngle, 0.0, 1.0, 0.0);

DrawPlane();

You will notice when the example executes that the plane is always rotating about the same
world x axis properly, which also seems to be altering the location of the y axis. This is
because the rotation about the x axis is specified first, while we are still in the original ori-
entation of the world coordinate system. Once we rotate along the x axis, though, the ori-
entation of the world coordinate system changes to reflect that rotation, and as you can
see from the example, the orientation of the y axis changes (the yellow line perpendicular
to the plane). Then when we rotate about the y axis, the rotation occurs in the new ori-
entation that has been created as a result of the x axis rotation. Hopefully, through this
example you can see how much the order of rotation about different axes matters. Take
some time to modify the Rotation example to see how different rotation orders can affect
the final rotational outcome of an object.

79

80

Chapter 4 = Transformations and Matrices

Scaling

Scaling, in its most simple definition, increases or decreases the size of an object or coor-
dinate system. In other words, when using scaling operations, vertex coordinates for an
object are either multiplied by or divided by a scaling factor for each axis. This means that
if you would normally place a vertex at the location (1, 1, 1) without scaling, then apply-
ing a scaling factor of 2.0 along each axis would place the vertex at the location (2, 2, 2).
Scaling is performed in OpenGL through the g1Scale() function, which is defined as

void gl1Scale{fd}(GLfloat x, GLfloat y, GLfloat z);

The values passed to the x, y, and z parameters specify the scale factor along each axis. For
example, this line applies a scaling factor of 2.0 along each axis:

glScalef(2.0f, 2.0f, 2.0f);

If you were to draw a 1 X 1 X 1 unit cube after executing the above line, then the cube
would really be drawn as a 2 X 2 X 2 cube. Now, let’s say you took that cube, and you
wanted to double its width (the x axis) without changing its height (the y axis) and depth
(the z axis). You would use the following:

glScalef(2.0f, 1.0f, 1.0f);

What if you wanted to shrink an object? Well, because the scaling factors are each multi-
plied by the vertices, you simply choose a value less than one, like this:

g1Scalef(0.5f, 0.5f, 0.5f);

This line will shrink an object by half its original size. A value of 0.2 would shrink it by
one-fifth, 0.1 by one-tenth, and so on. You can even use negative values to mirror, or flip,
objects. If you set a scaling factor to 1.0, then the axis the scaling factor belongs to will not
be scaled. As you might have guessed from this, scaling is equivalent to multiplying by the
scaling factor. Values between 0.0 and 1.0 will shrink the object, and values greater than
1.0 will enlarge the object. Figure 4.10 illustrates the g1Scale() function.

+y +y
Ens 13 . z
| =)
e 5
£ ; g -p
- i +x
E E I ;
+z b +z e
= 3
glscalef(z,0f, 2,0f, 2.0f); glScalef{0,5f, 0.5f, 0.9f);

Figure 4.10 The g1Scale() function.

OpenGL and Matrices 81

In the examples so far in this chapter, you've seen an object move around for translation,
and you've seen an object rotate for rotation. So naturally, now you are going to see an
example for scaling of an object shrinking and expanding. On the CD you will find an
example entitled Scaling in the Chapter 4 folder. Taking a look at the Prepare() function
in the CGfx0penGL class, you will see:

void CGfxOpenGL::Prepare(float dt)

{
// increase or decrease scale factor
if (increaseScale)
scalefFactor += 0.001;
else
scalefFactor -= 0.001;
if (scaleFactor >= 2.0)
increaseScale = false;
else if (scaleFactor <= 0.1)
increaseScale = true;
}

Before we render each frame, the Prepare() function increases or decreases our scaling fac-
tor within a range of 0.1 units to 2.0 units. We pass the scaling factor to the g1Scale() func-
tion in the Render() function below:

void CGfxOpenGL::Render()

{
/] clear screen and depth buffer
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Toad the identity matrix (clear to default position and orientation)
glloadIdentity();

// move eye back 10 units and orient the plane so we can see it
glTranslatef(0.0, 0.0, -10.0);
gTRotatef(90.0, 1.0, 0.0, 0.0);

// scale the plane along all three axes
glScalef(scaleFactor, scaleFactor, scaleFactor);
DrawPlane();

}

The Render() function sets up the camera 10 units back and rotated onto the z axis so that
we can view the plane from above. It then calls the g1Scale() function, passing the scale
factor to all three axis parameters. The result is a plane that increases and decreases in size

82

Chapter 4 = Transformations and Matrices

Figure 4.11 A screenshot of the Scaling example. Exciting!

with the value of the scale factor. Although you can’t see the plane changing shape, Figure
4.11 is a screenshot of the Scaling example.

Matrix Stacks

The modelview matrix we’ve been playing with so far is actually only one matrix at the
top of a stack of matrices, which is naturally called the OpenGL matrix stack. There are
four types of matrix stacks in OpenGL:

® The modelview matrix stack

m The projection matrix stack

m The color matrix stack .
m The texture matrix stack 10113 ./
: | ™]
2 [w2]

The modelview matrix is the top matrix
: : 13 Projection Matrix Stack
of the modelview matrix stack, and the a7 /‘ Pl
projection matrix is the top matrix of the =
projection matrix stack. Figure 4.12 gives Madaluiew matrix stack
. . 32 4x4 matrices
some more information about these

matrix stacks. The texture matrix stack is

used for the transformation of texture Figure 4.12 The modelview and projection

. . matrix stacks are made up of 32 4 x 4 matrices
coordinates, and the color matrix can be and two 4 x 4 matrices, respectively, for the

used to modify colors. Microsoft OpenGL implementation.

OpenGL and Matrices

In Chapter 3, “OpenGL States and Primitives,” you were introduced to two functions,
g1PushAttrib() and g1PopAttrib(). You learned that you could save the current state of the
OpenGL state machine by using g1PushAttrib(), and you could then retrieve that saved
state by using g1PopAttrib().

Matrix stacks allow you to do the same thing. The modelview matrix stack allows you to
save the current state of the transformation matrix, perform other transformations, and
then return to the saved transformation matrix without having to store or calculate the
transformation matrix on your own. The projection, texture, and color matrix stacks
allow you to do the same thing.

Using the modelview matrix stack essentially allows you to transform from one coordi-
nate system to another while being able to revert back to the original coordinate system.
For instance, if we position ourselves at the point (10, 5, 7), and we then push the current
modelview matrix onto the current stack, then our current transformation matrix is reset
to the local coordinate system centered around the point (10, 5, 7). This means that any
transformations we do are now based on the coordinate system at (10, 5, 7). So if we then
translate 10 units down the positive x axis with g1Translate(10.0, 0.0, 0.0), we are at the
position (10, 0, 0) in the current transformation matrix, but in the world we are posi-
tioned at (20, 5, 7). When the matrix stack is popped, we revert back to the original trans-
formation matrix and therefore the original coordinate system, which means we are again
positioned at (10, 5, 7).

Two functions allow you to push and pop the matrix stacks: glPushMatrix() and
g1PopMatrix(). The g1PushMatrix() function copies the current matrix and pushes it onto
the stack and is defined as:

void glPushMatrix();

If you push too many matrices onto the stack, then OpenGL gives a GL_STACK_OVERFLOW
error. The modelview matrix stack is guaranteed to have a stack depth of at least 32,
and all of the other matrix stacks have a depth of at least 2. You can find out if your imple-
mentation supports larger stacks by calling g1Get() with GL_MAX_MODELVIEW_STACK_DEPTH,
GL_MAX_PROJECTION_STACK_DEPTH, GL_MAX_COLOR_STACK_DEPTH, or GL_MAX_TEXTURE_STACK_DEPTH.

The g1PopMatrix() function pops off the top matrix on the stack and discards its contents.
All other matrices in the stack are moved up one position. g1PopMatrix() is defined as

void glPopMatrix();

If you try to use this function when there is only one matrix in the stack, OpenGL will give
a GL_STACK_UNDERFLOW error.

Figure 4.13 shows how the g1PushMatrix() and glPopMatrix() functions operate on the
matrix stack.

83

84 Chapter 4 = Transformations and Matrices

Matriz Stack

Figure 4.13 Pushing and popping on the matrix stack.

The Robot Example

On the CD you will find the source code for an OpenGL demo called RobotExample that
shows an animated walking robot around which the camera rotates. The robot is con-
structed of cubes that you scale to different shapes and sizes to give the robot arms, legs,
feet, a torso, and a head. The g1PushMatrix() and g1PopMatrix() functions are used to posi-
tion the robot’s body parts in coordinates relative to the center of the robot. Take special
note of these functions as you trace through the source code.

Figure 4.14 shows a screenshot of the Robot example.

Figure 4.14 A screenshot of the Robot example.

OpenGL and Matrices

There are two functions that you should focus on as you browse through the source code.
The first is the Prepare() method in the Robot class:

void Robot::Prepare(float dt)
{
// if leg is moving forward, increase angle, else decrease angle
for (int side = 0; side < 2; sidett)
{
/] arms
if (armStates[side] == FORWARD_STATE)
armAngles[side] += 20.0f * dt;
else
armAngles[side] -= 20.0f * dt;

// change state if exceeding angles

if (armAngles[side] >= 15.0f)
armStates[side] = BACKWARD_STATE;

else if (armAngles[side] <= -15.0f)
armStates[side] = FORWARD_STATE;

/] legs
if (legStates[side] == FORWARD_STATE)
TegAngles[side] += 20.0f * dt;
else
TegAngles[side] -= 20.0f * dt;

// change state if exceeding angles

if (legAngles[side] >= 15.0f)
TegStates[side] = BACKWARD_STATE;

else if (TegAngles[side] <= -15.0f)
TegStates[side] = FORWARD_STATE;

}

The Prepare() method modifies the robot arm and leg angles, as well as determining the
direction each arm and leg is moving. We use the dt parameter to make the robot’s move-
ment frame-rate independent. The armAngles and TegAngles arrays store each arm’s and
leg’s angles (array index O is the left arm, 1 is the right arm), respectively; the armStates and
TegStates arrays store the current state of each arm and leg, respectively.

85

86

Chapter 4 = Transformations and Matrices

The method you are probably most interested in, though, is the DrawRobot () method in the
Robot class:

void Robot::DrawRobot(float xPos, float yPos, float zPos)
{
glPushMatrix();
glTranslatef(xPos, yPos, zPos); // draw robot at desired coordinates

/] draw head and torso parts
DrawHead(1.0f, 2.0f, 0.0f);
DrawTorso(1.5f, 0.0f, 0.0f);

// move the left arm away from the torso and rotate it to give "walking" effect
g1PushMatrix();

glTranslatef(0.0f, -0.5f, 0.0f);

glRotatef(armAngles[LEFT], 1.0f, 0.0f, 0.0f);

DrawArm(2.5f, 0.0f, -0.5f);
glPopMatrix();

// move the right arm away from the torso and rotate it to give "walking" effect
glPushMatrix();

glTranslatef(0.0f, -0.5f, 0.0f);

glRotatef(armAngles[RIGHT], 1.0f, 0.0f, 0.0f);

DrawArm(-1.5f, 0.0f, -0.5f);
g1PopMatrix();

// move the left leg away from the torso and rotate it to give "walking" effect
g1PushMatrix();

glTranslatef(0.0f, -0.5f, 0.0f);

glRotatef(legAngles[LEFT], 1.0f, 0.0f, 0.0f);

Drawleg(-0.5f, -5.0f, -0.5f);
g1PopMatrix();

// move the right leg away from the torso and rotate it to give "walking" effect
g1PushMatrix();

glTranslatef(0.0f, -0.5f, 0.0f);

glRotatef(1egAngles[RIGHT], 1.0f, 0.0f, 0.0f);

Drawleg(1.5f, -5.0f, -0.5f);

g1PopMatrix();

glPopMatrix(); // pop back to original coordinate system

Projections

The DrawRobot() method draws the entire robot at the specified (x, y, z) coordinates. To
simplify the code, the method calls several other methods that render the different parts
of the robot: DrawHead(), DrawTorso(), DrawArm(), and DrawLeg(). In turn, each of these meth-
ods draws its respective part at the specified position, relative to the position of the robot
itself because we use the g1PushMatrix() and g1PopMatrix() functions to position and rotate
each robot part.

Projections

We’ve mentioned projection transformations several times now and even used them in
code, so it’s high time we discussed how they work. As we’ve pointed out, there are two
general classes of projection transformations available in OpenGL: orthographic (or par-
allel) and perspective. We’ll look at both of these in detail.

By setting a projection transformation, you are, in effect, creating a viewing volume,
which serves two purposes. The first is that the viewing volume defines a number of clip-
ping planes, which determine the portion of your 3D world that is visible at any given
time. Objects that are outside this volume are not transformed or rendered.

The second purpose of the viewing volume is to determine how objects are drawn. This
depends on the shape of the viewing volume, which is the primary difference between
orthographic and perspective projections.

Before specifying any kind of projection transformation, though, you need to make sure
that the projection matrix is the currently selected matrix stack. As you saw earlier with
the modelview matrix, this is done with a call to gIMatrixMode():

gTMatrixMode(GL_PROJECTION);

In most cases, you will want to follow this up with a call to glLoadIdentity() to clear out
anything that may be stored in the projection matrix, so that previous transformations
don’t get accumulated. Unlike with the modelview matrix, it is rare to make a lot of
changes to the projection matrix.

Once the projection matrix stack is selected, you're ready to specify your projection. We’ll
look at orthographic projections first and then at the more commonly used perspective
transformations.

Orthographic

As we mentioned before, orthographic, or parallel, projections are those that involve
no perspective correction. In other words, no adjustment for distance from the camera
is made; objects appear the same size onscreen whether they are close or far away.
Although this may not look as realistic as perspective projections, it has a number of

87

88

Chapter 4 = Transformations and Matrices

uses. Traditionally, orthographic projections are included in OpenGL for applications
such as CAD, but they can also be used for 2D games or isometric games.

OpenGL provides the g10rtho() function to set up orthographic projections:

glOrtho(GLdouble Tleft, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near,
GLdouble far);

left and right specify the x-coordinate clipping planes, bottom and top specify the y-coor-
dinate clipping planes, and near and far specify the distance to the z-coordinate clipping
planes. Together, these coordinates specify a box-shaped viewing volume. More precisely,
opposite planes are parallel to each other, and adjacent planes are perpendicular.

Because orthographic projections are commonly used to create 2D scenes, the OpenGL
Utility Library provides an additional routine to set up orthographic projections for
scenes in which you won’t really be using the z coordinate:

gluOrtho2D(GLdouble Teft, GLdouble right, GLdouble bottom, GLdouble top);

left, right, bottom, and top are as with g10rtho() above. Using g1u0rtho2D() is equivalent to
calling g10rtho() with near set to —1.0 and far set to 1.0. When using g1u0rtho2D(), you’ll nor-
mally want to use a version of g1Vertex() that takes only two parameters (the x and y coor-
dinates) because the z coordinate isn’t usually used. It’s common in this case to use integer
coordinates and to set the view volume to match the x and y coordinates of the viewport.

Perspective

Although orthographic projections can be interesting, perspective projections create more
realistic-looking scenes, so that’s what you’ll likely be using more often. In perspective
projections, as an object gets farther from the viewer, it appears smaller on the screen—
an effect commonly referred to as foreshortening. The viewing volume for a perspective
projection is a frustum, which looks like a pyramid with the top cut off, with the narrow
end toward the viewer. That the far end of the frustum is larger than the near end is what
creates the foreshortening effect. The way this works is that OpenGL transforms the frus-
tum so that it becomes a cube. This transformation affects the objects inside the frustum
as well, so objects at the wide end of the frustum get compressed more than objects at the
narrow end. The greater the ratio between the wide and narrow ends, the more an object
is shrunk. If the ends of the frustum are close in size, there won’t be much perspective cor-
rection (if they are the same, there will be no correction at all, which is what happens with
orthographic projections).

There are a couple of ways you can set up the view frustum, and thus the perspective pro-
jection. The first we’ll look at is the following:

void g1Frustum(GLdouble Teft, GLdouble right, GLdouble bottom, GLdouble top, GLdouble
near, GLdouble far);

Projections

left, right, top, and bottom together specify the x and y coordinates on the near clipping
plane, and near and far specify the distance to the near and far clipping planes. Thus, the
top-left corner of the near clipping plane is at (1eft, top, -near), and the bottom-right cor-
ner is at (right, bottom, -near). The corners of the far clipping plane are determined by cast-
ing a ray from the viewer through the corners of the near clipping plane and intersecting
them with the far clipping plane. So, the closer the viewer is to the near clipping plane, the
larger the far clipping plane is, and the more foreshortening is apparent.

Using g1Frustum() enables you to specify an asymmetrical frustum, which may be useful in
some instances, but it’s not typically what you’ll want to do. In addition, thinking about
what the viewer can see in terms of a frustum is not particularly intuitive. Instead, it’s eas-
ier to think about the field of view—that is, how wide of an angle he can see. The OpenGL
Utility Library provides a function that allows you to directly specify the field of view, and
then calculates the frustum for you. This function is

void gluPerspective(GLdouble fov, GLdouble aspect, GLdouble near, GLdouble far);

fov specifies, in degrees, the angle around the y axis that is visible to the user. aspect is the
aspect ratio of the screen, which is the width divided by the height. This determines the
field of view around the x axis. near and far have the same meanings they’ve had in the
other projection functions in this section.

One thing we haven’t mentioned in our discussion of setting up a frustum is how to deter-
mine an appropriate ratio between the width of the far and near end (that is, how wide
the field of view is). The appropriate field of view is highly application dependent. If you
want to create a fish-eye effect, a very wide field of view may be appropriate. For a realis-
tic perspective, something around 45-90 degrees usually works well. In general, you'll
want to experiment to see what looks right for your particular application.

Setting the Viewport

Some of the projection functions we’ve just discussed are closely related to the size of the
viewport (for example, the aspect ratio in gluPerspective). You know that the viewport
transformation happens after the projection transformation, so now is as good a time as
any to discuss it.

In essence, the viewport specifies the dimensions and orientation of the 2D window into
which you’ll be rendering. It is set using g1Viewport():

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

x and y specify the coordinates of the lower-left corner of the viewport, and width and
height specify the size of the window in pixels.

When a rendering context is first created and attached to your window, the viewport is
automatically set to match the dimensions of the window. That may be good enough for

89

20 Chapter 4 = Transformations and Matrices

some applications, but in most cases, you'll want to update your viewport any time the
window is resized. Although the viewport generally matches your window size, there is
nothing requiring it to be the same size. There may be times when you want to limit ren-
dering to a sub-region of your window, and setting a smaller viewport is one way to do
this. The Fog demo covered in Chapter 5, “Colors, Lighting, Blending, and Fog,” shows an
example of using multiple viewports in a single window.

Projection Example

To get a better idea of the differences between the two major projection types, we've
included a simple demo that allows you to view the same scene in each mode. The demo
starts off with a perspective projection; pressing the spacebar enables you to toggle
between orthographic (shown in Figure 4.15) and perspective (shown in Figure 4.16)
projections.

Figure 4.15 Orthographic projection. Figure 4.16 Perspective projection.

The relevant portion of this demo is in the ResizeScene() and UpdateProjection() methods
of the CGfx0penGL class, which are listed here for convenience:

void CGfxOpenGL::ResizeScene(int width, int height)
{
// avoid divide by zero
if (height==0)
{
height=1;

Manipulating the Viewpoint

/] reset the viewport to the new dimensions
g1Viewport(0, 0, width, height);

// set up the projection, without toggling the projection mode
UpdateProjection(false);

void CGfxOpenGL::UpdateProjection(bool toggle)

{
static bool usePerspective = true;

// toggle the control variable if appropriate
if (toggle)
usePerspective = lusePerspective;

/] select the projection matrix and clear it out
gTMatrixMode(GL_PROJECTION);
glloadIdentity();

/] choose the appropriate projection based on the currently toggled mode
if (usePerspective)
{
// set the perspective with the appropriate aspect ratio
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 1000.0);

/1 set up an orthographic projection with the same near clip plane
gl0Ortho(-1.0, 1.0, -1.0, 1.0, 1.0, 1000.0);

// select modelview matrix and clear it out
gIMatrixMode(GL_MODELVIEW);
glloadIdentity();

Manipulating the Viewpoint

In this section we are going to introduce you to several options for manipulating the view-
point, or the “camera.” Your first option is to use the gluLookAt() function, which allows
you to specify the position of the viewpoint, a directional vector from the viewpoint, and

91

92

Chapter 4 = Transformations and Matrices

an up vector from the viewpoint to orient and position the viewpoint. The second option
is to use a combination of the glTranslate() and glRotate() functions to orient and posi-
tion the viewpoint. Finally, you can use your own custom routines to define the viewpoint
behavior. For instance, you might want the viewpoint to be oriented through the polar
coordinate system.

Let’s take a look at these options.

Using gluLookAt()
Now let’s take a look at the gluLookAt() function, which is defined as

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz,
GLdoubTe upx, GLdouble upy, GLdouble upz);

You can use this function to define the camera’s location and orientation instead of the
modeling transformations g1Translate() and glRotate(). The first set of three parameters
(eyex, eyey, eyez) specifies the location of the camera. The value (0, 0, 0) would naturally
specify the origin. The next set of parameters (centerx, centery, centerz) specifies where the
camera is pointing, also called the line of sight, which is a vector pointing in the forward
direction of the camera. The last set of parameters (upx, upy, upz) is a vector that tells which
direction is the up direction. Figure 4.17 shows how all of these parameters work on the
camera with the gluLookAt() function.

.T {ups, upy, upz)

Camera@
(evex, eyey, ayez) __—/’ \

(centers, centery, centerz)

gluLookat{5ldouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centers, GLdouble centery,
GLdouble centers, GLdouble upx, GLdouble upy, GLdouble upz);

Figure 4.17 The glulookAt() parameters specify the
location and orientation of the camera.

Manipulating the Viewpoint

Here is a short code snippet that uses the gluLookAt() function. Don’t worry about any
code you don’t understand yet. You will get to it at some point.

void DisplayScene()

{
g1Clear(GL_COLOR_BUFFER_BIT); // clear the color buffer
glColor3f(1.0f, 0.0f, 0.0f); // set color to red
glloadIdentity(); // clear the current matrix

// Now we set the viewing transformation with the gluLookAt() function.
// This sets the camera at the position (0,0,10) and Tooking down the
// negative z axis (0.0, 0.0, -100.0).

/1 (eyex, eyey, eyez) = (0.0, 0.0, 10.0)

// (centerx, centery, centerz) = (0.0, 0.0, -100.0)

/1 (upx, upy, upz) = (0.0, 1.0, 0.0)

gluLookAt(0.0f, 0.0f, 10.0f, 0.0f, 0.0f, -100.0f, 0.0f, 1.0f, 0.0f);

// draw a triangle at the origin
g1Begin(GL_TRIANGLE);
glVertexf(10.0f, 0.0f, 0.0f);
glVertexf(0.0f, 10.0f, 0.0f);
glVertexf(-10.0f, 0.0f, 0.0f);
glEnd();
}

As you can see, the gluLookAt() function is rather easy to use. By manipulating the para-
meters, you can move the camera to any position and orientation that you want.

Using glRotate() and glTranslate()

A drawback to gluLookAt() is that you must link the GLU library with your application.
What if you don’t want to use the GLU library, but you want to get the same functionality?
One solution is to simply use the glRotate() and g1Translate() modeling-transformation
functions as discussed earlier in this chapter. The code below uses the modeling functions
to produce the same effect on the camera as the previous gluLookAt() code.

void DisplayScene()

{
g1Clear(GL_COLOR_BUFFER_BIT); // clear the color buffer
glColor3f(1.0f, 0.0f, 0.0f); /1l set color to red
glloadIdentity(); // clear the current matrix

93

94 Chapter 4 = Transformations and Matrices

// Now we set the viewing transformation with the glTranslatef() function.
// We move the modeling transformation to (0.0, 0.0, -10.0), moving the
// world 10 units along the negative z-axis, which effectively moves the
// camera to the position (0.0, 0.0, 10.0).

glTranslatef(0.0f, 0.0f, -10.0f);

// draw a triangle at the origin
g1Begin(GL_TRIANGLE);
glVertexf(10.0f, 0.0f, 0.0f);
glVertexf(0.0f, 10.0f, 0.0f);
glVertexf(-10.0f, 0.0f, 0.0f);
glEnd();
}

In this case, there isn’t a serious difference in code from the glulookAt() function because
all you are doing is moving the camera along the z axis. But if you were orienting the cam-
era at an odd angle, you would need to use the glRotate() function as well (you will see
more of g1Translate() and glRotate() soon), which leads to the next way of manipulating
the camera: your own custom routines.

Creating Your Own Custom Routines

Suppose you want to create your own flight simulator. In a typical flight simulator, the
camera is positioned in the pilot’s seat, so it moves and is oriented in the same manner as
the plane. Plane orientation is defined by pitch, yaw, and roll, which are rotation angles
relative to the center of gravity of the plane (in your case, the pilot/camera position).
Using the modeling-transformation functions, you could create the following function to
create the viewing transformation:

void PlaneView(GLfloat planeX, GLfloat planeY, GLfloat planeZ, // the plane's position
GLfToat roll, GLfloat pitch, GLfloat yaw) // orientation
{
// roll is rotation about the z axis
glRotatef(roll, 0.0f, 0.0f, 1.0f);

// yaw, or heading, is rotation about the y axis
glRotatef(yaw, 0.0f, 1.0f, 0.0f);

/] pitch is rotation about the x axis
glRotatef(pitch, 1.0f, 0.0f, 0.0f);

// move the plane to the plane's world coordinates
glTranslatef(-planeX, -planeY, -planeZ);

Using Your Own Matrices

Using this function places the camera in the pilot’s seat of your airplane regardless of the
orientation or location of the plane. This is just one of the uses of your own customized
routines. Other uses include applications of polar coordinates, such as rotation about
a fixed point, and use of the modeling-transformation functions to create what is
called “Quake-like movement,” where the mouse and keyboard can be used to control the
camera.

The greatest degree of camera control can be obtained by manually constructing and
loading your own matrices, which will be covered in the next section.

Using Your Own Matrices

Up until now, we’ve talked about functions that allow you to modify the matrix stacks
without really having to worry about the matrices themselves. This is great because it
allows you to do a lot without having to understand matrix math, and the functions
OpenGL provides for you are actually quite powerful and flexible. Eventually, though, you
may want to create some advanced effects that are possible only by directly affecting the
matrices. This will require that you know your way around matrix math, which we’re
assuming as a prerequisite to reading this book. However, we’ll at least show you how to
load your own matrix, how to multiply the top of the matrix stack by a custom matrix,
and one example of using a custom matrix.

Loading Your Matrix

Before you can load a matrix, you need to specify it. OpenGL
matrices are column-major 4 X 4 matrices of floating point

numbers, laid out as in Figure 4.18. Ll G

My Mg Mg Myq

. m m m m

Because the matrices are 4 X 4, you may be tempted to 2 Guft a1t ld
. . . Mg Mz MiaMas

declare them as two-dimensional arrays, but there is one

major problem with this. In C and C++, two-dimensional

arrays are row major. For example, to access the bottom-left ~ Figure 4.18 OpenGL's
element of the matrix in Figure 4.18, you might think you'd ~ column-major matrix format.
use matrix[31[0], which is how you’d access the bottom-left

corner of a 4 X 4 C/C++ two-dimensional array. Because OpenGL matrices are column
major, however, you'd really be accessing the top-right element of the matrix. To get the
bottom-left element, you'd need to use matrix[0][3]. This is the opposite of what you're
used to in C/C++, making it counterintuitive and error prone. Rather than using two-
dimensional arrays, it’s recommended that you use a one-dimensional array of 16 ele-
ments. The n™ element in the array corresponds to element m# in Figure 4.18.

95

96

Chapter 4 = Transformations and Matrices

As an example, if you want to specify the identity matrix (something you'd never need to
do in practice due to the glLoadIdentity() function), you could use

GLfloat identity[l6] = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 };

That’s easy enough. So, now that you’ve specified a matrix, the next step is to load it. This
is done by calling g1LoadMatrix(), which has two flavors:

void glloadMatrix{fd)}(const TYPE matrix[161);

When glloadMatrix() is called, whatever is at the top of the currently selected matrix stack
is replaced with the values in the matrix array, which is a 16-element array as specified
previously.

Multiplying Matrices
In addition to loading new matrices onto the matrix stack (and thus losing whatever infor-

mation was previously in it), you can multiply the contents of the active matrix by a new
matrix. Again, you'd specify your custom matrix as above and then call the following:

void glMuTtMatrix{fd}(const TYPE matrix[161);

Again, matrix is an array of 16 elements. gIMuTtMatrix() uses post-multiplication; in other
words, if the active matrix before the call to g1MultMatrix() is Mold, and the new matrix is
Mnew, then the new matrix will be Mold X Mnew. Note that the ordering is important;
because matrix multiplication is not commutative, Mold X Mnew in most cases will not
have the same result as Mnew X Mold.

Transpose Matrices

Extension

Extension name: ARB_transpose_matrix
Name string: GL_ARB_transpose_matrix
Promoted to core: OpenGL 1.3

Function names: glloadTransposeMatrixfARB(), g1LoadTransposeMatrixdARB(), g1MultTrans-
poseMatrixfARB(), gTMultTransposeMatrixdARB()

Tokens: GL_MODELVIEW_MATRIX_ARB, GL_PROJECTION_MATRIX_ARB, GL_TEXTURE_MATRIX_ARB,
GL_COLOR_MATRIX_ARB

Summary 97

We mentioned earlier that OpenGL uses column-major matrices, which conflicts with the
row-major two-dimensional arrays used by C and C++. In OpenGL 1.3, two new func-
tions were introduced that allow you to use row-major matrices instead:

glLoadTransposeMatrix{fd}(const TYPE matrix[16]);
gIMultTransposeMatrix{fd}(const TYPE matrix[16]);

These functions work exactly the same way as glLoadMatrix() and gIMultMatrix(), except
that the matrices are the transposition of what OpenGL uses internally. By using them,
you can specify your matrices as two-dimensional arrays in C or C++ and address the
matrix elements in an intuitive way.

Summary

In this chapter, you learned how to manipulate objects in your scene by using transfor-
mations. You've also examined how to change the way in which the scene itself is viewed,
through setting up projections. In the process, you've learned about the projection and
modelview matrices and how to manipulate them using both built-in functions and
matrices you define yourself. You now have the means to place objects in a 3D world, to
move and animate them, and to move around the world.

What You Have Learned

Transformations allow you to move, rotate, and manipulate objects in a 3D world,
while also allowing you to project 3D coordinates onto a 2D screen.

The viewing transformation specifies the location of the camera.
The modeling transformation moves objects around the 3D world.
The projection transformation defines the viewing volume and clipping planes.

The viewport transformation maps the projection of the scene into the viewport,
or window, on your screen.

The OpenGL modelview transformation is a combination of the modeling and
viewing transformations.

The viewpoint is also called the “camera” or “eye coordinates.”
Translation is the act of moving an object along a vector.

Rotation is the act of rotating an object about a vector-defined axis.
Scaling is the act of increasing or decreasing the size of an object.

Perspective projection shows 3D worlds exactly as you see things in real life.
Objects that are farther away appear smaller than objects that are closer to the
camera.

98 Chapter 4 = Transformations and Matrices

Orthographic projection shows objects on the screen in their true size, regardless
of their distance from the camera.

The modelview matrix defines the coordinate system that is used to place and
orient objects. You set the modelview matrix to the current matrix by using the
gIMatrixMode() function with GL_MODELVIEW as the parameter. Using GL_PROJECTION as
the parameter sets the current matrix to the projection matrix.

glLoadIdentity() restores the current matrix to the identity matrix.
Translation is performed in OpenGL with the g1Translate() function.
Rotation is performed in OpenGL with the g1Rotate() function.
Scaling is performed in OpenGL with the g1Scale() function.

Saving and restoring the current matrix is accomplished via the g1PushMatrix()
and g1PopMatrix() functions.

The g10rtho() and g1u0rtho2D() functions are used to set up orthographic
projections.

The g1Frustum() and gluPerspective() functions are used to set up perspective
projections.

gluLookAt() can be used to position and orient the OpenGL viewpoint.

Use the g1LoadMatrix() function to load a user-defined matrix as the current
OpenGL matrix.

Use the g1MultMatrix() function to multiply the current OpenGL matrix by a
user-defined matrix.

Review Questions

1.
2.
3.

Write the line of code to position an object at the point (29, 3, 15).
Write the line of code to rotate an object 45 degrees about the x axis.

Write the lines of code to a) triple the size of an object and b) halve the size of an
object.

4. What are the four types of matrix stacks?

5. What function restores the current matrix to the identity matrix?

6. What do the g1PushMatrix() and g1PopMatrix() functions accomplish?

On Your Own

1.

Write a function that positions and rotates a cube, given as parameters the (X, y, z)
position of the cube and the rotation angles about each axis. You can assume that
the function to draw the cube is DrawCube(), and the prototype of your function is

void PositionAndRotate(float xPos, float yPos, float zPos, float xAngle, float
yAngle, float zAngle);

CHAPTER 5

CoLORS, LIGHTING,
BLENDING, AND FoG

world without color would be pretty boring, not to mention confusing and

depressing. Likewise, moving around in a 3D world drawn in shades of black and

white on a computer screen would get to be rather monotonous for most people.
It wouldn’t be particularly realistic. Fortunately, OpenGL offers plenty of magic to fill
your world with color.

This chapter begins by taking a look at how basic colors work in OpenGL. Then we’ll
move on to more realistic colors using lighting and materials. Then we’ll look at how
transparency and other effects can be achieved through blending. Finally, we’ll take a look
at OpenGL’s built-in fog support, which can be used to both create realism and improve
performance. As you can see, the fun is just beginning!

In this chapter, you'll learn about:

= Colors in OpenGL

= Shading

= OpenGL lighting

= Light sources

= Materials

® Blending and transparency

= Fog

Using Colors in OpenGL

When you pass primitives to OpenGL, it assigns colors to them by one of two methods:

using lighting or using the current color. When lighting is used, the color for each vertex
99

100

Chapter 5 = Colors, Lighting, Blending, and Fog

is computed based on a number of factors, including the position and color of one or
more lights, the current material, the vertex normal, and so on. If lighting is disabled, then
the current color is used instead. In RGBA mode, which is what you’ll almost always be
using, OpenGL keeps track of a primary and a secondary color consisting of red, green,
blue, and alpha components.

Note

The alternative to RGBA mode is color-index mode. In color-index mode, rather than specifying
color values directly, you specify indices into a palette of colors maintained by the windowing sys-
tem. Unless you intend to target very old computers, you can ignore color-index mode entirely.
Because it is no longer relevant, we won't be covering it here.

In this chapter you'll first learn about how to use the current color, and later on about
lighting.

Setting the Color

In RGBA mode, you specify colors by indicating the intensity of the red, green, and blue
components. There is also an optional fourth component, called alpha, which is usually
used for transparency. We’ll discuss using the alpha value later in this chapter.

The color components are usually expressed using floating point values, with 0.0 being the
minimum intensity and 1.0 being the maximum. So black would be represented by set-
ting the red, green, and blue components to 0.0, whereas white would be represented by
setting all three components to 1.0.

To specify the primary color in OpenGL, you will use one of the many variations of
glColor*():

void g1Color{34}{bsifd ubusui}(T components);
void g1CoTlor{34}{bsifd ubusui}v(T components);

The first set of functions takes each color component individually, whereas the second set
of functions takes them in an array of the appropriate size. The byte, short, and integer
versions of g1Color() internally remap the values to a floating point value, so that the max-
imum possible integer value is mapped to 1.0 and the minimum value is mapped to 0.0.

When using the versions of g1Color() that take only three components, the alpha value is
automatically set to 1.0.

Let’s look at a few samples of how g1Color() is used. The following calls all set the current
primary color to yellow.

// using floats
glColor3f(1.0, 1.0, 0.0);

Using Colors in OpenGL

// using unsigned bytes
glColor3ui(255, 255, 0);

// using signed bytes in an array
GLbyte yellowl[] = {127, 127, 0};
glColor3iv(yellow);

The primary color is used to determine vertex colors when lighting is not enabled. Every
time you specify a vertex using glVertex(), the current primary color is checked and
applied to that vertex. You can change the color as often as you like, although if you
change it more than once between vertices, only the last change will have an effect.

Tip

At first glance, using the primary color might not seem terribly useful. Directly specifying a color for
each vertex might work well for simple demos, but most things in the real world can't be described
accurately using such a simple model. However, it does have practical applications. For example, in
most games, many of the lights and most of the geometry are static, i.e. they don't change from
frame to frame. Rather than redundantly recomputing lighting every frame, one common solution
is to compute it before the program is run—possibly using a more realistic lighting model than
that used by most graphics APIs, such as radiosity—and then store—or “bake” —the computed
value into the vertex data as the vertex color. Then, when the geometry is displayed, this value is
combined with textures and possibly dynamic lighting to produce the final color.

Secondary Color

Extension

Extension name: EXT_secondary_color

Name string: GL_EXT_secondary_color

Promoted to core: OpenGL 1.4

Function names: g1SecondaryColor{msifd ubusui}EXT, g1SecondaryColor{msifd ubusui}vEXT

Tokens: GL_COLOR_SUM_EXT

In addition to a primary color, OpenGL keeps track of a secondary color, which was added
in OpenGL 1.4. The secondary color came about as the result of adding separate specular
color, which we’ll cover later in this chapter. Because vertices had to carry around a sec-
ond piece of color information anyway, the OpenGL designers decided to allow develop-
ers to make use of it even when they aren’t using lighting. The secondary color is
interpolated across the primitive and added to the fragment color after the texture envi-
ronment has been applied—which simply means that the secondary color is added after

101

102

Chapter 5 = Colors, Lighting, Blending, and Fog

everything else. The one main difference between the primary and secondary colors is that
the secondary color does not include an alpha component.

The secondary color can be set using one of the following:

glSecondaryColor3{bsifd ubusui}(TYPE red, TYPE green, TYPE blue);
glSecondaryColor3{bsifd ubusui}v(TYPE color);

By default, the secondary color is not used during rasterization when lighting is disabled.
To make use of the secondary color, you need to enable it as follows:

g1Enable(GL_COLOR_SUM);

Among other things, you can use this to specify the specular component if you're doing
lighting yourself.

Shading

So far, we have talked about using g1Color() to set the color at each vertex. But how does
OpenGL decide what color to use for pixels in the middle of a triangle? If all three vertices
are the same color, then it should be obvious that every pixel in the triangle should use
that color as well. But what happens if you use a different color for each vertex of a prim-
itive?

To find out, let’s consider a line with two vertices of different colors. We’ll keep things sim-
ple and say that the first vertex is black and the second vertex is white. So what is the color
of the line itself? This answer comes from what is known as the shading model.

Shading can either be flat or smooth. When flat shading is used, the entire primitive is
drawn with a single color. With the exception of points, primitives are drawn using more
than one vertex. Because each vertex may have a different color, OpenGL has to choose
one of them to use for the primitive’s color. For lines, triangles, and quads, the color of the
last vertex is used. For line strips and line loops, the color of the second vertex in each
individual segment is used. For triangle strips and fans and quad strips, the color of the
last vertex in each sub-triangle or quad is used. For polygons, the color of the first vertex
is used.

Smooth shading, based on the Gouraud shading model, is the more realistic of the two and
uses interpolation to determine the colors between the vertices of a primitive. This process
will be made clearer as we continue with the line example.

If we use flat shading on our sample line, the line will be white because the last vertex
specified is white. However, if we use smooth shading, then our line will progress from the
color black at the first vertex to gray at the middle of the line to white at the second ver-
tex. This effect is illustrated in Figure 5.1.

Shading

Vertex | Vertex I

Figure 5.1 Smooth shading of a line with black at the first
vertex and white at the second vertex.

As you can see, interspersed between the first vertex and the middle of the line are pro-
gressively lighter shades of gray. The progression continues on the other half of the line as
the colors shift through lighter shades of gray until you reach white.

The idea of smooth shading with polygonal primitives is essentially the same as smooth
shading with a line. For example, drawing the triangle using smooth shading with a dif-
ferent color for each vertex yields a triangle where each vertex color progressively changes
to the other two vertices’ colors as it moves across the polygon’s surface. Smooth shading
is useful for simulating the effect of a curved surface when lighting is enabled.

Now that you know what these shading modes are all about, how do you use them? The
g1ShadeModel() function lets you specify the current shading model before you begin draw-
ing. It is defined as:

g1ShadeModel(GLenum mode);

You can specify either GL_SMOOTH for smooth shading or GL_FLAT for flat shading as the mode
parameter. The default setting is GL_SMOOTH.

So with this information, you can now create some code that will draw a smooth-shaded
triangle.

// use smooth shading
g1ShadeModel(GL_SMOOTH);

// draw our smooth-shaded triangle

g1Begin(GL_TRIANGLES);
glColor3f(1.0f, 0.0f, 0.0f); /] red vertex
glVertex3f(-10.0f, -10.0f, -5.0f);
glColor3f(0.0f, 1.0f, 0.0f); /] green vertex
glVertex3f(20.0f, -10.0f, -5.0f);
glColor3f(0.0f, 0.0f, 1.0f); /] blue vertex
glVertex3f(-10.0, 20.0f, -5.0f);

glEnd();

103

104

Chapter 5 = Colors, Lighting, Blending, and Fog

The output is shown in Figure 5.2 (refer to the CD for
a full-color version). The red, green, and blue colors
from each of the vertices progressively change as they
move across the triangle’s surface. In the middle, the
three colors converge to create the color gray, which
means that the three colors (RGB) are each at the same
intensity.

A Colorful Example

The sample program from this section, which you’ll
find in the Colors directory in the Chapter 5 folder, ~Figure 5.2 A smooth-shaded
illustrates the use of colors and shading. Figure 5.3 triangle with red, green, and blue
shows the same quad drawn four times. The top row vertices.

uses flat shading, the bottom uses smooth, the right
column uses secondary color, and the left column does
not.

Lighting in OpenGL

You have now arrived at one of the most important
aspects of 3D graphics: lighting. It is one of the few
elements that can make or break the realism of your
3D game. So far, you've looked at how to build objects,
move objects, put color on objects, and shade thern. |
Now let’s look at how to make these objects come to Figure 5.3 A quad drawn with

life with materials, lights, and lamps. four different shading and color
settings.

OpenGL Lighting and the Real World

Let’s take a quick step back and look at a simple explanation of how light works in the real
world. Light sources, such as the sun or a light bulb, produce photons of many different
wavelengths, covering the full spectrum of colors. Many of these photons strike objects,
which absorb some of them and reflect others, depending on what the object is made of.
The reflected photons may be reflected fairly uniformly if the object has a smooth surface,
or they may be scattered if the surface is rough. The reflected photons may then strike
other objects, and the process continues. We are able to see the world around us because
some of these photons eventually enter our eyes.

Modeling the complex interaction of light photons and even a fairly small number of
objects is computationally expensive. Although it is certainly possible to create a computer-
based model of real-world lighting that very accurately models nature, the methods for
doing so are too expensive to be used in games and other real-time applications. For this

Lighting in OpenGL

reason, OpenGL and other graphics libraries use simplified lighting models that trade
accuracy for speed. Although the results do not match the real world exactly, they are close
enough to be believable. If you would rather have more accurate lighting than that which
OpenGL provides, you can do your own calculations either by passing pre-lit vertices to
OpenGL or by using your own custom calculations through the use of a vertex program.

OpenGL calculates lighting by approximating the light into red, green, and blue compo-
nents. This means that the color a light emits is determined by the amount of red, green,
and blue light it emits. Light is further broken down into four different terms, which
together attempt to simulate the major effects of real-world lighting:

= Ambient light simulates light bouncing between surfaces so many times that the
source of the light is no longer apparent. This component is not affected by the
position of either the light or the viewer.

= Diffuse light comes from a certain direction, but once it strikes a surface, it is
reflected equally in all directions. The diffuse lighting component is affected by the
position or direction of the light, but not the position of the viewer.

= Specular light is directional and reflected off a surface in a particular direction.
Specularity is often referred to as shininess. The specular term is affected by the
position of both the light and the eye.

= Emissive light is a cheap way to simulate objects that emit light. OpenGL does not
actually use the emissive term to illuminate surrounding objects; it simply causes
the emissive object to be more intensely lit.

The final results of lighting depend on several major factors, each of which is discussed in
detail in this section. The factors are

1. One or more light sources. Each light source will have the ambient, diffuse, specu-
lar, and emissive terms listed above, each specified as RGBA values. In addition,
they will either have a position or direction or have terms that affect attenuation
and may have a limited area of effect (for example, a spotlight).

2. The orientation of surfaces in the scene. This is determined through the use of
normals, which are associated with each vertex.

3. The material each object is made of. Material properties define what percentages of
the RGBA values of each lighting term should be reflected. They also define how
shiny the surface is.

4. The lighting model, which includes a global ambient term (independent of any
light source), whether or not the position of the viewer has an effect on lighting
calculations, and other parameters.

When the light strikes a surface, OpenGL uses the material of the surface to determine the
percentage of red, green, and blue light that should be reflected by the surface. Even

105

106

Chapter 5 = Colors, Lighting, Blending, and Fog

though they are approximations, the equations used by OpenGL can be computed rather
quickly and produce reasonably good results.

Light Sources

It’s time to turn on the lights and get on with the show! The first thing you need to do to
take advantage of OpenGL’s lighting is to enable it, which is done as follows:
gTEnabTe(GL_LIGHTING) ;

This call causes the lighting equation to be applied to every vertex, but it does not actu-
ally turn on any lights. You need to explicitly turn on any lights you’ll be using by calling
glEnable():

glEnable(GL_LIGHTX);

x takes on a numeric value ranging from 0 to a maximum value that can vary across dif-
ferent OpenGL implementations. Youre guaranteed to always have at least eight lights,
though, so GL_LIGHTO through GL_LIGHT7 are always valid. If you want to find out whether
or not more than eight lights are available, you can pass GL_MAX_LIGHTS to g1Get():

GLint maxLights;
glGetIntegerv(GL_MAX_LIGHTS, &maxLights);

Tip

Eight lights may not seem like a lot; you certainly have more than eight in your home. There are
good reasons for keeping the maximum number of lights relatively small, though. First of all, light-
ing is fairly expensive. Even enabling three or four lights can have a noticeable impact on your
frame rate. Second, OpenGL's lights are really needed only for dynamic lighting. Dynamic lighting
is used when either the light source is moving or one or more of the objects being lit are moving.
Only a small percentage of game objects fit into this category; everything else can use static light-
ing. Because static lighting doesn’t change, it can be calculated in advance, usually by a 3D mod-
eling program or other external tool, and encoded within the model vertex data. Finally, if you really
need more than eight lights (or the implementation-defined maximum, if more than eight), it's
unlikely that any one object needs to be lit by more than eight lights, so you can update each light
as needed on a per-model basis.

Assigning Light Properties

Each light has several properties associated with it that define its position or direction in
the world, the colors of its ambient, diffuse, specular, and emissive terms, and whether the
light radiates in all directions or is limited to a spotlight-like cone. These properties are
controlled through g1Light():

glLight{fi}(GLenum 1ight, GLenum pname, type param);
glLight{fi}v(GLenum Tight, GLenum pname, const type *params);

Lighting in OpenGL

Tight identifies which light’s properties you are modifying and uses GL_LIGHTX, as in the
previous section. The next several sections cover each of the possible values of pname and
the params associated with them, which are summarized in Table 5.1.

Table 5.1 glLight*() Parameters

Parameter Meaning

GL_AMBIENT Ambient intensity of light

GL_DIFFUSE Diffuse intensity of light

GL_SPECULAR Specular intensity of light
GL_POSITION Position of light as vector (x, y, z, w)
GL_SPOT_DIRECTION Direction of spotlight as vector (x, y, z)
GL_SPOT_EXPONENT Spotlight exponent

GL_SPOT_CUTOFF Spotlight cutoff angle
GL_CONSTANT_ATTENUATION Constant attenuation value
GL_LINEAR_ATTENUATION Linear attenuation value

GL_QUADRATIC_ATTENUATION Quadratic attenuation value

Position and Direction

Each light can have either a position or a direction. Lights with a position are often called
positional or point lights. Directional lights represent lights that are infinitely far away.
There are no true directional lights in nature, since nothing is infinitely far away, but
some light sources are far enough away that they can be treated as directional lights. The
sun is an excellent example of this. The main advantage to using directional lights is that
they simplify the lighting calculation. With positional lights, you have to calculate the
direction vector between the light source and the surface. With directional lights, the
direction is the same for every surface. Even so, the extra cost associated with positional
lights is necessary and worth it for lights that truly are positional, which includes almost
every light source you can actually see in your game. Use whichever form is appropriate
for the light in question.

You set a light’s position using GL_POSITION, passing a four-element vector of the form (x,
Y, Z, W). X, ¥, and z represent either the position or direction. The w term is used to indi-
cate whether this is a directional or positional light. If it is 0.0, it is directional. Otherwise,
it is positional. The following code shows you how to set up a directional light pointing
down the negative y axis.

GLfloat TightDir{] = { 0.0, 1.0, 0.0, 0.0 };
glLightfv(GL_LIGHTO, GL_POSITION, 1ightDir);

107

108

Chapter 5 = Colors, Lighting, Blending, and Fog

To set up a positional light located at (2, 4, —3), you'd use the following:

GLfToat TightPos[] = { 2.0, 4.0, -3.0, 1.0 };
g1Lightfv(GL_LIGHTO, GL_POSITION, TightDir);

The default position for all lights is (0, 0, 1, 0), which is directional, pointing down the
negative z axis.

Whenever you make a call to g1Light() with GL_POSITION, the position vector you specify is
modified by the current modelview matrix, just as vertices are, and stored in eye coordi-
nates. We'll discuss this in greater detail in “Moving and Rotating Lights” later on in this
chapter.

Light Color

Light sources are composed of three of the lighting terms we discussed earlier: ambient,
diffuse, and specular. To set each of these terms, you call g1Light() with a pname of GL_AMBI-
ENT, GL_DIFFUSE, or GL_SPECULAR, respectively, and an array of four values representing the
RGBA color of the term. The following code sample shows an example of setting up a blue
light with white specular.

GLfloat white(] = {1.0, 1.0, 1.0, 1.0};
GLfloat bluel[] = {0.0, 0.0, 1.0, 1.0};

glLightfv(GL_LIGHTO, GL_AMBIENT, blue);
glLightfv(GL_LIGHTO, GL_DIFFUSE, blue);
glLightfv(GL_LIGHTO, GL_SPECULAR, white);

The default color for all terms for all lights is black (0.0, 0.0, 0.0, 1.0), with two exceptions:
Light zero has a default diffuse and specular term of white (1.0, 1.0, 1.0, 1.0).

Attenuation

In the real world, the farther an object is away from a light, the less effect that light has on
the object. For example, if you look at a street lamp at night (especially in the fog), you'll
be able to see the intensity of the light dropping off away from the lamp. This phenome-
non is known as attenuation. This effect is modeled in graphics by using an attenuation
factor, which can reduce the effect of a light’s contribution to the color of an object based
on the distance to the object. The attenuation factor is calculated as follows:

1

k +k,d+ kqd 2
d is the distance from the light to the vertex. kc, k1> and k _are the constant, linear, and qua-

dratic attenuation factors, respectively. These default to (1, 0, 0), which results in no atten-
uation. You can change them by passing GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, or

Lighting in OpenGL

GL_QUADRATIC_ATTENUATION to g1Light(). The following sample code sets the attenuation fac-
tors to (4, 1, 0.25).

gTLightf(GL_LIGHTO, GL_CONSTANT_ATTENUATION, 4.0f);
gTLightf(GL_LIGHTO, GL_LINEAR_ATTENUATION, 1.0f);
g1Lightf(GL_LIGHTO, GL_QUADRATIC_ATTENUATION, 0.25);

The attenuation factor affects only positional light sources. Attenuation doesn’t make
sense for directional lights because these light sources are at an infinite distance. It also
does not affect the emission or global light values; it affects only diffuse, specular, and
light-specific ambient light.

There is one drawback to using attenuation. Because the equation for calculating the
attenuation at a certain distance requires a division and maybe some additions and mul-
tiplications, attenuation incurs an additional cost.

Spotlights

Normally, positional lights radiate light in all directions. However, you can limit the effect
of the light to a specific cone. This is called a spotlight. To create a spotlight, you set up a
positional light as you normally would and then set a few spotlight-specific parameters:
the spotlight cutoff, the spotlight’s direction, and the spotlight’s focus.

Let’s think about what a spotlight looks like for a moment. If you were looking at a spot-
light in pure darkness, you would see that the light creates a cone of light in the direction
that the spotlight is pointing. With OpenGL, you can define how wide this cone of light
should be by specifying the angle between the edge of the cone and its axis with the
GL_SPOT_CUTOFF parameter, as illustrated in Figure 5.4.

GL_SPOT_CUTOFF

Figure 5.4 The GL_SPOT_CUTOFF parameter defines the angle
between the edge of the light cone and the cone’s axis.

109

110

Chapter 5 = Colors, Lighting, Blending, and Fog

A GL_SPOT_CUTOFF value of 10 degrees, for example, results in a spotlight with a cone of light
that spreads out a total of 20 degrees in the spotlight’s direction. OpenGL accepts only val-
ues between 0.0 and 90.0 for the GL_SPOT_CUTOFF parameter, except for the special value of
180.0 degrees, which is the default value, and which is used when you want to convert a
spotlight back into a regular light.

If you want to specify a cone of light that spreads a total of 30.0 degrees, you use the
glLight() function like this:

glLightf(GL_LIGHTO, GL_SPOT_CUTOFF, 15.0f); // 30 degree Tight cone

The next thing you need to do is specify the direction that the spotlight is facing. This is
done with GL_SPOT_DIRECTION, which takes a vector of the format (x, y, z). The default direc-
tion is (0.0, 0.0, —1.0), which points the spotlight down the negative z axis. You can spec-
ify your own direction for the spotlight by using g1Light(), like so:

float spotlightDirection[] = { 0.0, -1.0, 0.0 };
glLightfv(GL_LIGHTO, GL_SPOT_DIRECTION, spotlightDirection);

These two lines will point the spotlight down the negative y axis.

And finally, you can specify the focus of the spotlight, which can be defined as the con-
centration of the spotlight in the center of the light cone. As you move away from the cen-
ter of the cone, the light is attenuated until there is no more light at the edge of the cone.
You can use GL_SPOT_EXPONENT to control this. A higher spot exponent results in a more
focused light source that drops off quickly. The following line sets the GL_SPOT_EXPONENT
parameter to a value of 10.0:

g1Lightf(GL_LIGHTO, GL_SPOT_EXPONENT, 10.0f);

The spot exponent can range from 0 to 128. A value of 0, which is the default, results in
no attenuation, so the spotlight is evenly distributed.

Moving and Rotating Lights

What do you need to do to make a light move around? Think about how you would make
any other object in the world move around. One way is to set the position of the object
after you translate or rotate it. You can do the same thing with lights. When you call
glLight*() to define the position or direction of a light, the information you specify is
modified by the current modelview matrix.

For static lights (ones that don’t move), you’d merely position the light after you set up the
camera (by calling gluLookAt(), for example) but without applying any other transforma-
tions to the modelview matrix.

A common item in 3D games is a flashlight. Flashlights, or headlights, are simply another
way to position and move a light around the world. This more general problem is having

Lighting in OpenGL

a light position stay fixed relative to the eye, or camera, position. To achieve this effect, you
need to specify the light position before setting up the camera transformation. First you
set the modelview matrix to the identity matrix, then you define your light position at the
origin, and then you set up the camera transformation as you normally would:

gIMatrixMode (GL_MODELVIEW);
glLoadIdentity();

/1 position the Tight at the origin
GLfloat 1lightPos(0.0, 0.0, 0.0, 1.0);
glLightfv(GL_LIGHTO, GL_POSITION, 1ightPos);

/] set up the camera
gluLookAt(eye.x, eye.y, eye.z, at.x, at.y, at.z, up.x, up.y, up.z);

If you do not specify a direction, you get the effect of a lantern or lamp located at the posi-
tion of the camera. If you want a headlight or flashlight effect, you need to set the light
direction to point down the negative z axis. Because your light position is fixed, you only
need to specify it once when you initialize your application, which will eliminate the need
to redefine the light position every time you render a frame.

Materials

OpenGL approximates material properties based on the way the material reflects red,
green, and blue light. For example, if you have a surface that is pure green, it reflects all
the incoming green light while absorbing all the incoming red and blue light. If you were
to place this surface under a pure red light, it would appear to be black. This is because
the surface reflects only green light; when it is placed under red light, the surface absorbs
the light and reflects nothing—so you see black. If you were to place the green surface
under a white light, you would see a green surface because the green component of the
white light is being reflected while the red and blue components are being absorbed.
Lastly, if the surface were placed in green light, you would see a green surface, because the
green light is being reflected back to you—the visual effect would be the same as placing
it under a white light.

Materials have the same three color terms as light: ambient, diffuse, and specular. These
properties determine how much light the material reflects. A material with high ambient,
low diffuse, and low specular reflectance will reflect only ambient light sources well while
absorbing the diffuse and specular light sources. A material with a high specular
reflectance will appear shiny while absorbing the ambient and diffuse light sources. The
values specified by the ambient and diffuse reflectances typically determine the color of
the material and are usually identical in value. In order to make sure that specular high-
lights end up being the color of the light source’s specular intensity, specular reflectance

111

112

Chapter 5 = Colors, Lighting, Blending, and Fog

is normally set to be gray or white. A good way to think about this is to think of a bright
white light pointing at a shiny blue surface. Although the surface would mostly show up
as blue, the specular highlight on the surface would appear as white.

Defining Materials

Now that you have a general understanding of what materials are, let’s look at how to use
them. Actually, setting a material is fairly similar to creating a light source. The difference
is the function that is used:

void glMaterial{if}(GLenum face, GLenum pname, TYPE param);
void gIMaterial{if}v(GLenum face, GLenum pname, const TYPE *params);

The face parameter in these functions specifies how the material will be applied to the
object’s polygons, implying that materials can affect front and back faces differently. It can
be one of three values: GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK. Only the face you specify will
be modified by the call to gIMaterial(). Most often, you'll use the same values for both
faces. The next parameter, pname, tells OpenGL which material properties are being set.
This parameter can be any of the values listed in Table 5.2. The last parameter is either a
scalar or array value as appropriate for the property being set. The meaning of each of
these parameters will be explained in the following sections.

Table 5.2 glMaterial*() Parameters

Parameter Meaning

GL_AMBIENT Ambient color of material
GL_DIFFUSE Diffuse color of material
GL_AMBIENT_AND_DIFFUSE Ambient and diffuse color of material
GL_SPECULAR Specular color of material
GL_SHININESS Specular exponent

GL_EMISSION Emissive color of material

Material Colors

The ambient, diffuse, and specular components specify how a material interacts with a
light source and, thus, determine the color of the material. These values are set by passing
GL_AMBIENT, GL_DIFFUSE, or GL_SPECULAR to g1Material(). Frequently, the same values are used
for both the ambient and diffuse term, so OpenGL allows you to use GL_AMBIENT_AND_DIFFUSE
to specify them both together, saving you a function call.

Lighting in OpenGL

If you want to set the ambient material color to red for the front and back of polygons,
then you would do this:

float red[] = { 1.0f, 0.0f, 0.0f, 1.0f };
gIMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, red);

Similarly, to set both the ambient and diffuse materials to white for the front of polygons,
you do this:

float whitel] = { 1.0f, 1.0f, 1.0f, 1.0f };
gIMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, white);

Keep in mind that any polygons you draw after calling g1Material() will be affected by the
material settings until there is another call to gIMaterial().

Shininess

Try looking at something metallic and something cloth under a direct light. You'll notice
that the metallic object appears to be shiny, while the cloth object isn’t. This is because
light striking the cloth object is mostly scattered by the rough cloth surface, whereas light
is directly reflecting off of the metal surface. Figure 5.5 illustrates this. The sphere on the
left uses a material such as metal. The illusion of shininess is caused by the bright spot,
known as a specular highlight. The sphere on the right uses a cloth-like material and thus
appears dull.

The shininess of a material is simulated by the size of the specular highlight. This is
controlled via a single scalar value, which you can set using GL_SHININESS. This value can
range from 0 to 128, with values of 128 representing an extremely shiny material with a

Figure 5.5 The effects of GL_SHININESS. The sphere on the left has a
shininess of 128; the sphere on the right has a shininess of 0.

113

114

Chapter 5 = Colors, Lighting, Blending, and Fog

small specular highlight, and 0 representing a material that is not shiny at all with a very
large specular highlight.

The following code was used to set up the shininess for the metallic sphere in Figure 5.5.

gIMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 128);

Emissive Materials

The emissive property of materials allows you to cheaply simulate objects that emit light,
such as an area light or anything that glows. It’s important to note that the object won’t
really emit light, so it won’t illuminate nearby objects. The emissive term is simply added
to the other lighting components to cause the object to appear brighter than it normally
would. The emissive term is set using GL_EMMISION, as follows:

// use a dark gray color
GLfloat emissiveColor[] = {0.3, 0.3, 0.3, 1.0};

// set the emissive term for both the front and back face
gIMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, emmisiveColor);

This causes the object to appear slightly brighter than it otherwise would. By default, the
emissive term is (0.0, 0.0, 0.0, 1.0);

Color Tracking

Another way to set material properties is by what is called color tracking. Color tracking
allows you to set material properties with calls to the g1Color() function instead of
using gIMaterial(), which often allows for more efficient code. You can use color
tracking by passing the GL_COLOR_MATERIAL parameter to the g1Enable() function. Then you
use glColorMaterial() function to specify which material parameters will be affected by
calls to g1Color(). The prototype for glColorMaterial() is

void glColorMaterial(GLenum face, GLenum mode);

The face parameter can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK. The mode parameter can
be GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_AMBIENT_AND_DIFFUSE, or GL_EMISSION. Most often,
you will use the default values of GL_FRONT_AND_BACK and GL_AMBIENT_AND_DIFFUSE.

Here is some sample code to set the diffuse property of the fronts of polygons to track the
current color:

glEnable(GL_COLOR_MATERIAL); // enable color tracking
glColorMaterial (GL_FRONT, GL_DIFFUSE); // front of polygons, diffuse material
glColor3f(1.0f, 0.0f, 0.0f); // set color to red

g1Begin(GL_TRIANGLES);
// draw triangles
glEnd();

Lighting in OpenGL

As you can see, color tracking is very simple to set

up and use. Surface normal

&

Normals

Normals are vectors that are perpendicular to a
surface. They are important in lighting because
they can be used to describe the orientation of
that surface. When a light source is specified, it is i
either at some specific point in space or shines in
a particular direction. When you draw an object,
the light rays from this light source approach and
strike the surfaces of the object at some angle.
Using the angle between the incoming light ray
and the normal, combined with lighting and
material properties, you can calculate the color of Figure 5.6 The surface normal.
the surface. This is illustrated in Figure 5.6.

In OpenGL, normals are specified on a per-vertex basis, rather than per-polygon. The
advantage of this is that when you have only one normal per polygon, it assumes that all
points on the polygon have the same orientation. This would be fine for flat surfaces, but
often, a group of small triangles is used to represent curved surfaces. With vertex normals,
each normal can have a slightly different orientation, allowing you to simulate curved sur-
faces. In addition, if you really want a flat surface, you can use the same normal values for
each vertex, so this approach is much more flexible.

OpenGL maintains a current normal in its internal state. Any time you specify a vertex
when lighting is enabled, the current normal is associated with it. You will typically mod-
ify the current normal once per vertex or once per polygon. To change the current nor-
mal, you use the following:

void gTNormal3{bsifd}(TYPE nx, TYPE ny, TYPE nz);
void glNormal3{bsifd}v(const TYPE *v);

The values passed to glNormal() represent a three-dimensional vector specifying the
normal. The following code specifies a triangle with a normal pointing in the positive y
direction.

g1Begin(GL_TRIANGLES);
gINormal3f(0.0, 1.0, 0.0);
glVertex3f(-3.0, 0.0, 2.0);
glVertex3f(2.0, 0.0, 0.0);
glVertex3f(-1.0, 0.0, -3.0);
glEnd();

115

Chapter 5 = Colors, Lighting, Blending, and Fog

As you can see, all three vertices use the same normal. If you wanted to specify a different
normal for each vertex, it would look something like the following:

g1Begin(GL_TRIANGLES);
gINormal3f(-0.707f, 0.707f, 0.0);
glVertex3f(-3.0, 0.0, 2.0);
gINormal3f(0.707f, 0.707f, 0.0);
glVertex3f(2.0, 0.0, 0.0);
gINormal3f(0.0, 0.707f, -0.707f);
glVertex3f(-1.0, 0.0, -3.0);

glEnd();

Calculating Normals

Finding the normal for a flat surface is easy. You just need to apply a little vector math—
in particular, the cross product. As a reminder, given two 3D vectors A and B, the cross
product will produce a vector that is perpendicular to both A and B. The equation for cal-
culating the cross product is
AxB= (Asz Asz' AB-AB, AXBy—AyBX)

This means that you need two vectors, A and B, to calculate your surface’s normal. Where
can you find two vectors? For any triangle, you have three points, P1, P2, and P3. You can
then define two vectors VI and V2 that go from P1
to P2 and P1 to P3. respectively. Figure 5.7 illustrates
this. P2

Now all you have to do is take the cross product of V1

V1 and V2, and you get your normal. Remember P1
that when taking the cross product, the order of the
vectors matters. V1 X V2 points in the opposite V2
direction as V2 X V1. When computing the surface
normal this way, you have to be sure that you are P3
consistent with the vertex winding. So, if you are

using counterclockwise winding, with the vertices
ordered P1, P2, and P3, the vectors should be con-
structed as follows:

V1 = P2-P1
V2 = P3-P1
The normal would then be V1 x V2.

Figure 5.7 You can define two
vectors, V1 and V2, out of three points.

This method is very straightforward, but it works only for a flat shading model where all
of the vertices in a polygon have the same normals. If you are using multiple polygons to
simulate a complex rounded surface, then each normal will be slightly different to vary the

Lighting in OpenGL

lighting across the surface. One way to achieve this is to compute the surface normal for
every triangle touching a vertex and then take the average of them, possibly weighting
them based on the area of each triangle. This breaks down when the mesh contains hard
edges. For instance, imagine applying this algorithm to a cube. You’d end up with the cor-
ners looking rounded, which isn’t correct. There are solutions to this, such as using
smoothing groups, which identify groups of triangles to be used together when averaging
normals. Alternatively, you could set a threshold, such that any triangle with a surface nor-
mal more than x degrees different from the current normal is not used in the average.

The Unit Normal and Normalization

Many operations involving vectors can be simplified if you know the vectors have a length
of 1. These are known as unit vectors. If you remember your vector math, given a vector
A, you can find the length using the equation

|A] = sqrt(Af + A2+ Af)

Unit normals are simply unit vectors that are used as normals. OpenGL assumes that any
normals you pass to it are already of unit length. If you use normals that are not of unit
length, you’ll get strange lighting results. Usually, the normals stored in standard 3D
model formats will already be of unit length. If youre calculating the normals on the fly,
you’ll have to convert them to unit length yourself. This process is known as normaliza-
tion. Doing so is simply a matter of dividing each component of the normal by the length
of the normal.

An alternative to manually normalizing your normals is to tell OpenGL to do it for you
by enabling GL_NORMALIZE, as follows:

g1EnabTe(GL_NORMALIZE);

This approach isn’t terribly efficient. Most of the time, you’ll calculate your normals only
once, so it makes more sense to normalize them at the same time, rather than having
OpenGL repeatedly normalize them every frame.

The main reason OpenGL includes the ability to normalize normals is that the inverse
transposition of the modelview matrix is applied to normals prior to lighting. If the mod-
elview matrix includes scaling, the normals may not be of unit length after this operation.
If you are using scaling, you should definitely enable GL_NORMALIZE to ensure that unit nor-
mals are being used in lighting.

If you are using only uniform scaling—in other words, if you are scaling equally in all
three directions—then you can use a potentially cheaper alternative to GL_NORMALIZE.
GL_RESCALE_NORMAL extracts the scale factor from the modelview matrix and uses it to rescale
the normal after the matrix is applied. You enable GL_RESCALE_NORMAL as follows:

glEnabTe(GL_RESCALE_NORMAL);

117

118

Chapter 5 = Colors, Lighting, Blending, and Fog

Extension

Extension name: EXT_rescale_normal
Name string: GL_EXT_rescale_normal
Promoted to core: OpenGL 1.2
Tokens: GL_RESCALE_NORMAL_EXT

Unlike GL_NORMALIZE, which works with normals of any length, GL_RESCALE_NORMAL assumes
that the original normals were of unit length.

The Lighting Model
In addition to individual lights and materials, there are additional global components of
the lighting model that the final color values compute by lighting. These are
= A global ambient term.
m Whether the location of the viewer is local or infinite (affects specular calculation).
® Whether lighting is one sided or two sided.
m Whether the calculated specular color is stored separately from the other color val-

ues and passed on to the rasterization stage.

You control these elements of the lighting model with the g1LightModel() function, which
is defined as

void glLightModel{if}(GLenum pname, TYPE param);
void glLightModel{if}v(GLenum pname, const TYPE *param);

The first parameter of each of these functions, pname, specifies which lighting model prop-
erty you are modifying. The second parameter is the value that you are setting for the
lighting model property. It will be either a single value or an array of values, depending
on the version of the function used. The pname parameter can be set to any of the values
listed in Table 5.3.

Table 5.3 glLightModel*() Parameters

Parameter Name Meaning

GL_LIGHT_MODEL_AMBIENT Ambient intensity of the scene (RGBA); default value is (0.2, 0.2, 0.2, 1.0).
GL_LIGHT_MODEL_LOCAL_VIEWER Viewpoint is local or infinite; default value is GL_FALSE (infinite).
GL_LIGHT_MODEL_TWO_SIDE One-sided or two-sided lighting; default value is GL_FALSE (one-sided).

GL_LIGHT_MODEL_COLOR_CONTROL Specular color is stored separate from ambient and diffuse color; default
value is GL_SINGLE_COLOR (not separate).

Lighting in OpenGL

Global Ambient Light

In addition to the ambient light contributed by individual light sources, there is a global
ambient light that is present whether or not any light sources are enabled. This is used to
model light for which the source can’t be determined. This value is controlled with
GL_LIGHT_MODEL_AMBIENT. The following code sets the global ambient light to a blue-green
color, perhaps for an underwater scene.

float globalAmbient [] = { 0.0, 0.2, 0.3, 1.0 }; // dim blue-green Tight
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, globalAmbient);

Local or Infinite Viewer

When calculating the specular term, the direction from the vertex being calculated and the
viewpoint affect the intensity of the specular highlight. The GL_LIGHT_MODEL_LOCAL_VIEWER
parameter lets you specify whether the viewpoint is local (i.e. based on the viewer’s actual
position in the world) or an infinite distance away. Having a local viewpoint will increase
the realism of your scene but will be more expensive because the direction has to be cal-
culated for each vertex. An infinite viewpoint (set with GL_FALSE) is used by default, but
you can change it to a local viewpoint with this line:

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

The difference between a local and an infinite viewer is most evident at close range. Using
a local viewer is more accurate but more expensive, so enable it only if you really need it.

Two-Sided Versus One-Sided Lighting

The next parameter you can specify is GL_LIGHT_MODEL_TWO_SIDE. This parameter deals with
whether you want to calculate the lighting for the back of polygons correctly. For exam-
ple, if you were to take an enclosed object such as a cube and cut it in half, you would see
that the back, or inside, of the polygons is not correctly illuminated. If you want the inside
of these polygons to be illuminated correctly, you set the GL_LIGHT_MODEL_TWO_SIDE parame-
ter to GL_TRUE like so:

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

When you set this parameter to GL_TRUE, you are telling OpenGL to reverse the surface nor-
mals for the back-face of polygons, which results in all of the polygons being illuminated
correctly. With this extra calculation, two-sided lighting naturally performs a bit more
slowly than one-sided lighting. Again, to switch back to one-sided lighting, set the value
to GL_FALSE.

119

120

Chapter 5 = Colors, Lighting, Blending, and Fog

Separate Specular Color

The final light model property you can set is the GL_LIGHT_MODEL_COLOR_CONTROL property. This
control was added because when you use lighting with texturing, the specular highlight
tends to get washed out when the texture is applied. In other words, due to modulation
(which you’ll understand after reading Chapter 7, “Texture Mapping”), specular highlights
that are very bright are reduced, causing the object to look less shiny than it should. When
you enable separate specular color, rather than adding together the ambient, diffuse, specu-
lar, and emissive lighting values as it normally does, OpenGL creates two colors for each ver-
tex of the object being lit: the primary color, consisting of the non-specular components,
and a secondary color that containing the specular component. When texture mapping
occurs, only the primary color is used. Then afterwards, the secondary specular color is
added to the result. This leads to more visible specular highlights. You tell OpenGL to sepa-
rate the specular components from the others with this line of code:

glLightModeli (GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);

If you want to combine the specular component with the other components, you call this
function with the value GL_SINGLE_COLOR instead of GL_SEPARATE_SPECULAR_COLOR.

Extension

Extension name: EXT_separate_specular_color
Name string: GL_EXT_separate_specular_color
Promoted to core: OpenGL 1.2

Tokens: GL_LIGHT_MODEL_COLOR_CONTROL_EXT, GL_SINGLE_COLOR_EXT,
GL_SEPARATE_SPECULAR_COLOR_EXT

Lighting in Action

The CD that accompanies this book contains a demo for this section in the lights folder.
This demo, shown in Figure 5.8, uses three lights to illuminate a cube. The first light is
white and is used as a flashlight, positioned on the viewer with a spotlight facing into the
scene. The flashlight can be toggled on and off with the spacebar. The second light is a red
light positioned statically to the right of the cube. The third light is green and rotates
around the cube. The cube itself is composed of a bluish material. Each side of the cube
uses normals that are exactly perpendicular to the surface.

Blending

Figure 5.8 Three lights in action.

Blending

OpenGL allows you to blend incoming fragments with pixels already onscreen, which
enables you to introduce effects such as transparency into your scenes. With transparency
you can simulate water, windows, glass, and other objects in the world that you can see
through.

Remember the alpha value we’ve been ignoring all this time? Well, now that we’re talking
about blending, you need to learn how to use it. When you enable blending, you are telling
OpenGL to combine the color of the incoming primitive with the color that is already in the

Fragments

The term fragment may be new to you, but it will come up several times throughout this book, so
now's a good time to discuss what fragments are.

As OpenGL processes the primitives you pass to it, during the rasterization stage, it breaks them
into pixel-sized chunks called fragments. Sometimes the terms pixel and fragment are used inter-
changeably, but there is a subtle difference. Pixel usually refers to values that actually get written
to the color buffer. A fragment is a piece of a primitive that may eventually become a pixel after it
is depth tested, alpha tested, blended, combined with a texture, combined with other fragments,
and so on.

121

122

Chapter 5 = Colors, Lighting, Blending, and Fog

frame buffer and store the result back in the frame buffer. Blending operations are typically
specified with the RGB values representing the color and the alpha value representing the
opacity, although other combinations are possible, as you’ll see shortly. From now on, we will
refer to the incoming fragment as the source and the currently stored pixel as the destination.

To enable blending in OpenGL, you call the glEnable() function with the GL_BLEND para-
meter. You then call g1BlendFunc() to define the source and destination blend factors. Blend
factors are values in the range 0.0 to 1.0 that are multiplied by the RGBA components of
both the source and destination colors. The resulting colors are then combined (usually
by adding them) and clamped to the range 0.0 to 1.0. g181endFunc() looks like this:

void g1BlendFunc(GLenum sfactor, GLenum dfactor);

sfactor is the source blend factor, and dfactor is the destination blend factor. Table 5.4
shows all of the blend factors that you can use. The default blend factors are GL_ONE for the

Table 5.4 Blending Factors

Factor Description
GL_ZERO Each component is multiplied by 0, effectively setting the color to black.
GL_ONE Each component is multiplied by 1.0, leaving the color unchanged.

GL_SRC_COLOR
GL_ONE_MINUS_SRC_COLOR*
GL_DST_COLOR**

Each component is multiplied by the corresponding component
Each component is multiplied by (1.0 — source color).

Each component is multiplied by the corresponding component in
the destination color.

Each component is multiplied by (1.0 — destination color).
Each component is multiplied by the source alpha value.

GL_ONE_MINUS_DST_COLOR**
GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA
GL_DST_ALPHA
GL_ONE_MINUS_DST_ALPHA
GL_CONSTANT_COLOR***

GL_ONE_MINUS_CONSTANT_COLOR***
GL_CONSTANT_ALPHA***

GL_ONE_MINUS_CONSTANT_ALPHA***

GL_SRC_ALPHA_SATURATE

Each component is multiplied by (1.0 — source alpha value).
Each component is multiplied by the destination alpha value.
Each component is multiplied by (1.0 — destination alpha value).
Each component is multiplied by the constant color set via
g1BlendColor().

Each component is multiplied by (1 the constant color).

Each component is multiplied by the alpha value of the constant
color set via g1BlendColor().

Each component is multiplied by (1- the alpha value of the
constant color).

Multiplies the source color by the minimum of the source and
(1—destination). The alpha value is not modified. Only valid as
the source blend factor.

* Only available as a source blend factor in OpenGL 1.4 or later.

** Only available as a destination blend factor in OpenGL 1.4 or later.

*** Only available via the EXT_bTend_color extension under Windows.

Blending

source and GL_ZERO for the destination, which produces the same results as not using
blending at all.

Many different effects can be created with these blending factors, some of which are more
useful in imaging than they are in games. To better understand how they work, let’s look
at a common application that 7s useful in games: transparency. Typically, transparency is
implemented using GL_SRC_ALPHA for the source and GL_ONE_MINUS_SRC_ALPHA for the destina-
tion. You would set this up as follows:

glEnable(GL_BLEND);
g1BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

To get an idea of how this works, let’s say you first draw a red (1.0, 0.0, 0.0, 1.0) triangle,
and then draw a blue (0.0, 0.0, 1.0, 0.5) triangle on top of it. With an alpha value of 0.5,
the blue triangle is 50% transparent. So with the blend factors we’ve chosen, the source
color will be multiplied by the source alpha (0.5), and the destination color will be
multiplied by one minus the source alpha (1.0-0.5, or 0.5). The source and destination
colors are thus calculated as follows:

source color = S;*S,, S;*S,, SgS,, S,*S, = 0¥0.5, 0%0.5, 1%0.5, 0.5%0.5 = 0, 0, 0.5, 0.25
destination color = Dg¥(1-S,), S;*(1-S,), Sg*(1-S,), S,*(1-S,) = 1%0.5, 0%0.5, 0%0.5,
1%0.5 = 0.5, 0, 0, 0.5

These two values are then added together to obtain the final result of (0.5, 0, 0.5, 0.75).
You can see the results of this in Figure 5.9.

Figure 5.9 A blue triangle with 50 percent transparency drawn over
a red triangle.

123

124

Chapter 5 = Colors, Lighting, Blending, and Fog

This simple example ignores one very important thing: You have to pay attention to the
depth of objects and the order in which they are drawn when using transparency. When
drawing without transparency, you can use the z-buffer normally to make sure that dis-
tant objects don’t get drawn on top of closer objects, even if the closer objects were drawn
first. You don’t really have to care about the order objects get drawn in, at least as far as
correct rendering is concerned (it can make a performance difference, though, as you'll see
in Chapter 10, “Up Your Performance”). When you use transparency, however, the order
matters. If you draw a transparent object that appears in front of an opaque object, you
should be able to see the opaque object. But if you draw the transparent object first, the
opaque object will fail the depth test and never be drawn.

The most common way of handling this problem is to draw all of your opaque objects
first. This will fix part of the problem, but a hidden problem remains. What if the distant
object is also transparent? If it’s drawn after the closer transparent object, it'll still fail the
depth test and not be drawn. There are two common ways of resolving this issue.

The first method is to disable depth buffer writes (effectively making the z-buffer read-
only) when drawing transparent objects. The objects are still tested against the z-buffer,
so opaque objects can still occlude them, but the transparent objects themselves don’t
update the z-buffer, so they can never occlude anything else. You disable depth buffer
writes by passing GL_FALSE to g1DepthMask(), as follows:

g1DepthMask(GL_FALSE);
You turn depth buffer writes back on with GL_TRUE.

Unfortunately, this works only with some blending operations, such as simple additive
blending (for example, using a source and destination blend factor of GL_SOURCE_ALPHA,
GL_ONE, respectively). In most blending operations, the order the fragments are drawn in
makes a difference.

The second method of dealing with transparent object order is to sort them based on dis-
tance from the viewer and draw the more distant objects first. This can generally be done
fairly quickly and cheaply, since the number of transparent objects in your world will usu-
ally be fairly small.

Which method you use depends on the effect you are trying to attain. The visual results
of the two approaches are not the same, so they are not interchangeable.

Blending

Separate Blend Functions

Extension

Extension name: EXT_blend_func_separate
Name string: GL_ EXT_blend_func_separate
Promoted to core: OpenGL 1.4

Function names: g1BlendFuncSeparateEXT

Tokens: GL_DST_RGB_EXT, GL_SRC_RGB_EXT, GL_DST_ALPHA_EXT, GL_SRC_ALPHA_EXT

When using g18lendFunc(), the same factor is used for both the RGB and alpha compo-
nents. This isn’t always desirable. For instance, the alpha channel is sometimes used to
store information that has nothing to do with blending. In that case, you wouldn’t want
blending to modify the alpha channel at all. To address this need, OpenGL includes an
alternative to g1BlendFunc() called g1BlendFuncSeparate():

void g1BlendFuncSeparate(GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorAlpha,
GLenum dfactorAlpha);

sfactorRGB_and dfactorRGB are used to set the blend factor for the source and destination
RGB blend factors, respectively. sfactorAlpha and dfactorAlpha are used for the source and
destination alpha blend factors. Any of the values in Table 5.4 can be used for these para-
meters. Suppose you wanted to set up blending to use transparency but keep the alpha
value intact. You'd use something like the following:

g1BTendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ZER0);
That’s all there is to it.

The Blend Equation

Extension

Extension name: EXT_blend_minmax

Name string: GL_EXT_blend_minmax

Promoted to core: Optional in OpenGL 1.2, required in 1.4
Function names: g1BlendEquationEXT

Tokens: GL_FUNC_ADD_EXT, GL_MIN_EXT, GL_MAX_EXT, GL_BLEND_EQUATION_EXT

125

126

Chapter 5 = Colors, Lighting, Blending, and Fog

Extension

Extension name: EXT_blend_subtract
Name string: GL_EXT_blend_subtract
Promoted to core: Optional in OpenGL 1.2, required in 1.4

Tokens: GL_FUNC_SUBTRACT_EXT, GL_FUNC_REVERSE_SUBTRACT_EXT

By default, after multiplying the source color by the source blend factor and the destina-
tion color by the destination blend factor, the two values are then added together to get
the final color. What if you wanted to subtract one from the other? The operation per-
formed on the two values is called the blend equation, and OpenGL allows you to change
it. You do this through the use of g1BlendEquation():

void g1BlendEquation(GLenum mode);

The values accepted by the mode parameter and the meanings associated with them are
listed in Table 5.5. Cg and C, represent the source and destination colors, S and D repre-
sent the source and destination blend factors, and C represents the final color.

Table 5.5 Blending Equations
Equation Description

GL_FUNC_ADD C=(C ™ S) + (C; * D). Result is clamped to [0, 1]. This is the default.
GL_FUNC_SUBTRACT C=(C; ™ S) = (Cy * D). Result is clamped to [0, 1].
GL_FUNC_REVERSE_SUBTRACT ~ C=(C;, * D) — (C; * S). Result is clamped to [0, 1].
C
C

GL_MIN
GL_MAX

Note

When using the min or max blend equations, you'll notice that the blend factor isn't being used at
all. The comparison is done using the original values and is done component-wise. So if the source
color is (0.2, 0.6, 0.1, 1.0) and the destination color is (1.0, 0.3, 0.5, 0.7), min results in a final color
of (0.2, 0.3, 0.1, 0.7) and max results in a final color of (1.0, 0.6, 0.5, 1.0).

You can determine the current blend equation by calling g1Get () with GL_BLEND_EQUATION.

Blending

Constant Blend Color

Extension

Extension name: EXT_blend_color
Name string: GL_EXT_blend_color
Promoted to core: Optional in OpenGL 1.2, required in 1.4
Function names: g1BlendColorEXT

Tokens: GL_CONSTANT_COLOR_EXT, GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_ALPHA_EXT,
GL_ONE_MINUS_CONSTANT_ALPHA_EXT, GL_BLEND_COLOR_EXT

Several of the blend factors listed in Table 5.4 make use of a constant blend color, so it’s
time to explain what that is. The constant blend color simply allows you to set a constant
value to use as a weighting factor. You might use this to blend an image that does not con-
tain alpha values, rather than adding an alpha channel yourself with identical values for
every pixel.

You set the constant color using g1BlendColor():
void glBlendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);

The red, green, blue, and alpha parameters should be self-explanatory by now. The GLclampf
type is used to indicate floating point values that OpenGL internally clamps to the range
0.0 to 1.0.

The default constant blending color is (0, 0, 0, 0). You can determine the current constant
blend color by passing GL_BLEND_COLOR to g1Get().

Disk Blender

To demonstrate some of the many blending combinations, we’ve included the Disk
Blender demo on the CD (found in the folder blender for this chapter). Disk Blender is
drawn with a black background with an alpha of 1.0. A green disk with some transparency
is drawn first, without blending. Then a semi-transparent red disk is drawn on top of it
with blending enabled. By pressing the S, D, and E keys, you can cycle through all of the
available source factors, destination factors, and blend equations. A screenshot of the
demo is shown in Figure 5.10.

127

128

Chapter 5 = Colors, Lighting, Blending, and Fog

{UURLLF - Uhaptes B0 - Marbles - Src Gl_SRE_ALPHA Det: G0N MISUS 5

Figure 5.10 Disks drawn with GL_MIN.

Fog

Adding fog to your world has more than one purpose. Besides trying to give the player the
impression of actual fog, it can be used to obscure objects in the distance and have them
gradually become clearer as the player gets closer. This is beneficial both in allowing you
to reduce the amount of geometry on the scene at one time (and thus improving perfor-
mance) and in preventing objects from suddenly popping into view as they enter the view
frustum.

There is more than one way to implement fog, but because OpenGL provides native sup-
port for it, that’s the approach we’ll cover here.

OpenGL Fog

OpenGL’s built-in fog support works by blending each pixel with the color of the fog,
using a blend factor dependent on the distance from the viewer, the density of the fog, and
the currently selected fog mode. The blend factor is used in the following equation:

color,,,, = blendFactor x color, + (1 - blendFactor)color,,

The details of how the blend factor is determined will be covered momentarily.

Fog 129

To use fog, you first have to enable it, which, not surprisingly, is done with a call to
glEnable():

gTEnable(GL_FOG);
Fog has several states associated with it, which you can control with calls to g1Fog():

glFog{fi}(GLenum pname, type param);
glFog{fi}v(GLenum pname, const type *params);

The accepted values of pname and their meanings are listed in Table 5.6.

Table 5.6 Fog Parameters

Parameter Description

GL_FOG_MODE This parameter can be GL_LINEAR, GL_EXP, or GL_EXP2, specifying which equation
is used to calculate the blend factor. The default is GL_EXP.

GL_FOG_DENSITY This parameter is a single value representing the density of the fog, used in the
equations below. The value must be positive, and the default is 1.0.

GL_FOG_START This parameter is a single value defining the start, or near distance, used in the
fog equations.
GL_FOG_END This parameter is a single value defining the end, or far distance, used in the fog
equations.
GL_FOG_INDEX This parameter specifies the color index to use for fog when using 8-bit color.
GL_FOG_COLOR This specifies the color to be used for fog. It is an array—and so requires one of the

array versions of g1Fog()—representing color values. The default fog color is black.

GL_FOG_COORD_SRC This parameter can be either GL_F0G_COORD or GL_FRAGMENT_DEPTH. This controls
what OpenGL uses as the depth term in the blend factor equations.

The mode determines which of three equations is used to determine the blending factor.
The three equations are defined as follows:

GL_LINEAR: blendFactor = (end-depth) / (end-start)
GL_EXP: blendFactor = e(-density xdepth)
GL_EXP2: blendFactor = e(-density xdepth)?

The density, end, and start terms in these equations correspond to the values of
GL_FOG_DENSITY, GL_FOG_START, and GL_FOG_END, respectively. Note that the start and end val-
ues matter only if you are using GL_LINEAR mode, and density matters only when you are
using GL_EXP or GL_EXP2 mode.

130 Chapter 5 = Colors, Lighting, Blending, and Fog

Fog Coordinates

Extension

Extension name: EXT_fog_coord

Name string: GL_EXT_fog_coord

Promoted to core: OpenGL 1.4

Function names: g1FogCoord{fd}EXT, g1FogCoord{fd}vEXT

Tokens: GL_FOG_COORD_SRC_EXT, GL_FOG_COORD_EXT, GL_FRAGMENT_DEPTH_EXT

The depth term in the above equations by default represents the distance between the
viewer and the fragment, which OpenGL calculates automatically. However, you may
want to use something other than the depth in the blend factor equations. For example,
you might want to have the amount of fog vary based on how far above sea level the poly-
gon is, for a ground fog type of effect. This can be accomplished through the use of fog
coordinates, which allow you to directly control the depth term used in the blend factor
equations. Fog coordinates consist of a single-valued parameter that can be specified per
vertex. This value is then interpolated across the polygon’s surface. You set the fog coordi-
nates via the following APIs:

g1FogCoord{fd}(type coord);
glFogCoord{fd}v(type *coord);

In addition to specifying the fog coordinates, you also have to tell OpenGL to use them
instead of the computed depth value. You do this as follows:

g1Fogi(GL_FOG_COORD_SRC, GL_FOG_COORD);

To switch back to using the computed depth value, use the following:
g1Fogi(GL_FOG_COORD_SRC, GL_FRAGMENT_DEPTH);

Tip

Prior to OpenGL 1.5, GL_F0G_COORD_SRC and GL_FOG_COORD were named GL_FOG_COORDINATE_SOURCE
and GL_FOG_COORDINATE, respectively.

And that’s it! As you can see, adding OpenGL’s native fog to your game is really quite sim-
ple. You may have to tweak the parameters to get it to look the way you want, but with a
little experimentation, you should soon be quite comfortable with OpenGL’s fog support.

Note

You can turn fog on and off at will, so that you can have it affect only some of the objects in your
scene.

Fog in Action ECTIETEE—— F-TET]

The Fog demo included on the CD shows sev-
eral different examples of using fog, as you'll
see in Figure 5.11. The demo renders a simple
heightmap-based terrain, with a large quad
drawn in blue at ground level to represent
water. The top left panel shows the terrain
without any fog, the top right panel uses
GL_LINEAR fog, the bottom left panel shows
GL_EXP fog with a fairly low density, and the bot-
tom right panel shows GL_EXP2 fog with fog
coordinates set so that the fog is thicker where
the terrain is lower (near the water), thinning
quickly at higher elevations.

Summary 131

Figure 5.11 Simple terrain with several
fog modes.

Summary

This chapter covered a lot of new information! You've learned about how OpenGL han-
dles colors, how shading works, what the elements of the lighting model are and how to
control them, how to use blending, and how to take advantage of OpenGL's built-in fog.
You now have the knowledge to create fairly complex OpenGL applications, even includ-
ing simple games.

What You Have Learned

Colors are represented with red, green, blue, and alpha components. You

can specify the current primary and secondary colors using g1Color() and
gl1SecondaryColor().

You can choose whether to use flat or smooth (a.k.a. Gouraud) shading using
g1ShadeModel().

OpenGLs lighting model is composed of ambient, diffuse, specular, and emissive
terms.

You can control lights using g1Light() and define materials for your objects using
gIMaterial ().

You can move and rotate lights just like any other object in OpenGL. When you
call g1Light() to define the position or direction of a light, the information you
specify is manipulated by the current modelview matrix.

All objects in your world should have normals associated with them to ensure that
lighting works as expected. You specify normals using g1Normal().

132 Chapter 5 = Colors, Lighting, Blending, and Fog

OpenGLs lighting model includes several global components that you can control
via g1LightModel().

Through blending, you have a great deal of control over how incoming fragments
are combined with values already in the color buffer. In addition to being able to
define a wide range of blending factors with g1BlendFunc() or g1BlendFuncSeparate(),
you can specify a constant blend factor with g1BlendColor() and change the blend
equation with g1BlendEquation().

You can use fog to allow objects to fade to a background color as they get farther
away, allowing you to use a smaller view frustum and avoid having objects pop
into view as they enter the frustum. Fog is controlled through g1Fog(). You can take
greater control over how fog is calculated by using fog coordinates.

Review Questions

1.

What is the minimum number of lights that an OpenGL implementation must
provide, and how can you find out how many are available?

. How do you set the fog color?

3. How can you change the specular color of a material using g1CoTor()?

. (True or False) The space reserved for storing separate specular color is wasted

when you're not using lighting.

. Which of the following blend factors can be used only for the source color?

a. GL_CONSTANT_COLOR
b. GL_ALPHA_SATURATE
C. GL_DST_ALPHA
d. GL_SRC_COLOR

On Your Own

1.

Modify the lights demo as follows:

® Add an emissive property to the cube’s material.
= Add attenuation to the red light.

m Make the beam of the flashlight more focused.

® Add a transparent sphere surrounding the cube, and set the material for it using
color tracking.

CHAPTER 6

BiTMAPS AND IMAGES
wiTH OPENGL

ow it’s time to break off from the world of 3D graphics and take a look at the

world of raster graphics, which are graphics in which an image is composed of

an array of pixels arranged in rows and columns. In this chapter you’ll be look-
ing specifically at how you can use OpenGL to perform various functions on bitmaps and
images. We'll also be discussing how to load and save the Targa (.tga) image file format.

In this chapter you will discover:

= How to use OpenGL bitmaps
m OpenGL pixel functions

= How to load and save the Targa image format

The OpenGL Bitmap

The term bitmap in the context of OpenGL is defined as a rectangular array of pixels,
where one bit of information (a 0 or 1) is stored about each pixel. Bitmaps are composed
of a mask encapsulated in a two-dimensional array representing a rectangular area of the
window. You can use them for rendering font characters, 2D objects in a game, or as ele-
ments in a GUIL. For instance, take a 16 X 16 bitmap and divide it into a 16 X 16 grid as
shown in Figure 6.1. When you draw this bitmap, every bit in the two-dimensional array
that is set to 1 corresponds to a pixel in the current raster color on the screen. If the bit is

133

134 Chapter 6 = Bitmaps and Images with OpenGL

not set, then nothing is drawn. Given this behavior, the ; ':' 3 3 3 3 3 3 3 3 3 3 3 3 ’-I‘ -:I.
16 x 16 bitmap shown in Figure 6.1 will be drawn by |[Gra{a[a[e[o[a[s[o[o[oo 1[2] 2
3 3 o al afa] 1| af of of @ o] of af o] 1] of o]0

OpenGL as the letter X. Yc.)u w.111 see an example in this |2 2191 I
chapter that does something similar. IHEEEEEEEEEEEEE
al afo] of af of 1] @ o] 1| of o] o] of o] o

Actually specifying the bitmap data is slightly different 1E] LIEI I 1| I EIE] 3 : 16
than that shown in Figure 6.1. Bitmap data is always |GraTaralalal =Tl [ol 2ol o o2
stored in 8-bit multiple chunks, although the width of ~[[2 2] 9191 9] 1] 9] 219} 9] 1] 9] a] o] 8} &
. . al afo] of if of of @ o] of af 1] o] af o]0

the actual bitmap does not need to be a multiple of 8. |[a[a[a[<[] s3] 7| 2] 5] o] &] 1| a| o] #
. . ap oA af o of o af o) of o af of 1f 9] a

OpenGL draws the bitmap by starting at the lower-left STt TS
corner and working its way up, row by row. Therefore, |[i[a[o[a[a[a]a[[a[a[a] o[o[a7

you need to specify your bitmap’s data in this order, so Figure 6.1 A 16 x 16 bitmap
that the bottom of the bitmap is the first set of dataand divided into a grid of zeroes and ones.
the top of the bitmap is the last set of data.

An example of bitmap data for Figure 6.1 in code looks like:

unsigned char bitmapX[] = {
0x80, 0x01, // 1000 0000 0000 0001
0x40, 0x02, // 0100 0000 0000 0010
0x20, 0x04, // 0010 0000 0000 0100
0x10, 0x08, // 0001 0000 0000 1000
0x08, 0x10, // 0000 1000 0001 0000
0x04, 0x20, // 0000 0100 0010 0000
0x02, 0x40, // 0000 0010 0100 0000
0x01, 0x80, // 0000 0001 1000 0000
0x01, 0x80, // 0000 0001 1000 0000
0x02, 0x40, // 0000 0010 0100 0000
0x04, 0x20, // 0000 0100 0010 0000
0x08, 0x10, // 0000 1000 0001 0000
0x10, 0x08, // 0001 0000 0000 1000
0x20, 0x04, // 0010 0000 0000 0100
0x40, 0x02, // 0100 0000 0000 0010
0x80, 0x01, // 1000 0000 0000 0001

}s

Positioning the Bitmap

The glRasterPos() function specifies the current raster coordinates for drawing bitmaps
in the OpenGL window. The coordinates sent to the function define the bottom-left
corner of the bitmap’s rectangle. For example, passing the coordinates (30, 10) to the

The OpenGL Bitmap 135

glRasterPos() function draws the next bitmap with its bottom-left corner at (30, 10). The
function is defined as:

void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w);
void glRasterPos{234}{sifd}v(TYPE *coords);

To set the current raster coordinates to (30, 10), you would call the function like this:

glRasterPos2i(30, 10);

When setting the raster coordinates in a 3D viewport and projection matrix, the coordi-
nates sent to glRasterPos() are converted to 2D screen coordinates, in much the same way
as when you use the glVertex() function. If you want to specify the raster coordinates in
screen coordinates, then you need to set up a 2D viewport and projection matrix with the
width and height of the viewport equal to the width and height of the OpenGL window.
You can use the g10rtho() or gluOrtho2D() function to define a 2D viewport with ortho-
graphic projection, as described in Chapter 4, “Transformations and Matrices.”

For error checking, you can find out if the raster position you passed to the function is a
valid raster position by passing the GL_CURRENT_RASTER_POSITION_VALID parameter to the
glGetBooleanv() function. If the function returns GL_FALSE, the position is invalid.

If you would like to obtain the current raster position, you can simply pass
GL_CURRENT_RASTER_POSITION as the first parameter to g1GetFloatv(). The second parameter
should be a pointer to an array of floats to hold the (x, y, z, w) values that are returned by
glGetFloatv().

Drawing the Bitmap

After you set the current raster position, you can draw your bitmap with the g1Bitmap()
function, which is defined as:

void g1Bitmap(GLsizei width, GLsizei height, GLfloat xOrigin, GLfloat yOrigin,
GLfToat xIncrement, GLfloat yIncrement, const GLubyte *bitmap);

This function draws a bitmap with the specified width and height in pixels at the coordi-
nates (x0rigin, yOrigin) relative to the current raster position. The values xIncrement and
yIncrement specify step increments that are added to the current raster position after the
bitmap is drawn. Figure 6.2 shows how a bitmap is affected by these parameters.

Note

One drawback to OpenGL bitmaps is that you can neither rotate nor zoom them, but you can do
these operations with pixel maps, or images, as you will soon see.

136

Chapter 6 = Bitmaps and Images with OpenGL

THE BITMAP | heion

Currert raster
position

T ———

™ (xincrement, yincrameant)

[xOrigin, yOrigin]

Figure 6.2 The effect of g1Bitmap() parameters when drawing a bitmap.

An OpenGL Bitmap Example

The following example displays 50 16 X 16 bitmaps in random locations during each
frame. The end result is a window with 50 letter As popping up and disappearing ran-
domly. You will find the RandomABitmap example on the CD under Chapter 6.

First, you need to define your character A as an array of bit information. This is declared

at the top of the CGfxOpenGL. cpp file:

unsigned char letterAl] = {
0xC0, 0x03,
0xC0, 0x03,
0xC0, 0x03,
0xC0, 0x03,
0xC0, 0x03,
0xDF, OxFB,
0x7F, OxFE,
0x60, 0x06,
0x30, 0x0C,
0x30, 0x0C,
0x18, 0x18,
0x18, 0x18,
0x0C, 0x30,
0x0C, 0x30,
0x07, OxEO,
0x07, OxEO

The bits specified for the TetterA array translate to the
bitmap you see in Figure 6.3. Keep in mind that you are
storing the bitmap upside down, but the bitmap will be
rendered correctly as shown in Figure 6.3.

First, take a look at the Prepare() method:

void CGfxOpenGL::Prepare(float dt)

{
/] store the random (x, y) position of the bitmaps
for (int idx = 0; idx < MAX_BITMAPS; idx++)
{

m_bitmaps[idx].xPos
m_bitmaps[idx].yPos

rand() % m_windowWidth;
rand() % m_windowHeight;

}

The Prepare() method stores the random (x, y) positions
of the bitmaps, based on the window size, in an array of
BitmapStructs, which is a struct defined in CGfx0penGL.h that
stores the bitmap x and y positions.

Next is the Render() method:

void CGfxOpenGL::Render()

{
/] clear screen and depth buffer
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

The OpenGL Bitmap 137

01 2% & 56 75 9 101112131415
o [ofa]e]alala[a]a] [1] 1] o] a]a] a]a
1 [ofalelalala[a]a] [1] 1] o] a] e[ala
2 [ofaloTal1]1]ala] of a1 1] a]a] ala
3 Jalalalel1]1] o0l o] o] 1] 1] o] a] o a
4 [afalalq[1]a]ofo] o] o] a] 1] 1] a] o a
s [olofal4]1]alo]o] ol o] o] 4] 1] a] af @
g [afal1]1]a]a]ola] o] o] a] o] 11 o a
7 [ofal1]1[alelala] ol o] o] o[1]1] afa
5 [a[1[1]olalalolal o] o] o] o[a4] 1]a
o [ala[a]T[a]a]a[1a][1] T[] [1] 1] 1]a
o [afafaftfa[a] a1 1] [1] 7] 1] a] 1]
M [1]1]alalala]olo] o] of o] o] afa] 174
12 [q]4a[ofalafololof ol ol ol al alal 4]
15 [1]1]alalala]olal o] of o] o] afa] 1]
16 [1]1]alalala]olol o] o] o] o ala] 1[4
15 [1]1]alalala]olal o] of o] o] afa] 174

Figure 6.3 The bit-by-bit definition of
our letter A.

// Toad the identity matrix (clear to default position and orientation)

glloadIdentity();

// single byte alignment
g1PixelStorei (GL_UNPACK_ALIGNMENT, 1);

// color white
glColor3f(1.0, 1.0, 1.0);

/] render all the bitmaps
for (int idx = 0; idx < MAX_BITMAPS; idx++)
{

glRasterPos2i(m_bitmaps[idx].xPos, m_bitmaps[idx].yPos);

gl1Bitmap(16, 16, 0.0, 0.0, 0.0, 0.0, TletterA);

138

Chapter 6 = Bitmaps and Images with OpenGL

The Render () method is fairly straightforward. Of particular interest is the loop at the bot-
tom of the method that sets the current raster position and renders the bitmap. The
glRasterPos2i() function positions each bitmap, and the g1Bitmap() function draws them.
Very simple, isn’t it?

Note

For the moment, disregard our use of the g1PixelStorei () function in the Render() method of the
RandomABitmap example. This function is explained in more detail in the “Managing Pixel Stor-
age” section of this chapter.

Also notice that we are setting up the orthographic projection to match the viewport in
the SetupPerspective() method. This allows us to use the window raster coordinates, as
explained earlier in this chapter.

The end result, or a single frame anyway, is shown in Figure 6.4.

Figure 6.4 A screenshot of the RandomABitmap example.

Using Images

In most cases, when performing raster graphics, developers use images instead of the
OpenGL bitmap. While similar to bitmaps, images differ in the amount of information
they hold for each pixel. For instance, an OpenGL bitmap holds a single bit of informa-
tion per pixel indicating whether that pixel is on (1) or off (0), but an image might hold
anywhere from 8 bits of information per pixel to 32 bits per pixel. Such a bit resolution

Using Images

can tell OpenGL specifically which color a pixel should be by specifying the individual red,
green, blue, and alpha components of the color.

With OpenGL you can manipulate images pixel by pixel. Sometimes images are referred
to as pixel maps or pixmaps. Although we will be talking about displaying images on the
screen in this chapter, you can also use images as textures on polygons. We discuss texture
mapping in Chapter 7, “Texture Mapping.”

Drawing Image Data

Assuming you already have your image data loaded into memory, you use the OpenGL
function g1DrawPixels() to display the image data at a specified raster position in the win-
dow. Like g1Bitmap(), you specify the current raster position by using the glRasterPos()
function. The g1DrawPixels() function looks like this:

void glDrawPixels(GLsizei width, GLsizei height, GLenum format, GLenum type,
const GLvoid *pixels);

You specify the width and height of the image along with the pixel format and pixel type
of the pixel data that is passed to the function. The pixel format can be any of the formats
listed in Table 6.1. An example image format would be one with red, green, and blue val-
ues for each pixel, in which case you'll want to use the GL_RGB pixel format. This tells
OpenGL that the pixel data being passed to g1DrawPixels() is coming as a set of red, green,
and blue pixel components, where the size of each component is defined by the pixel type.

Table 6.1 Pixel Formats

Pixel Format

Description

GL_ALPHA

GL_BGR*

GL_BGRA*

GL_BLUE
GL_COLOR_INDEX
GL_GREEN

GL_RED

GL_RGB

GL_RGBA
GL_LUMINANCE
GL_LUMINANCE_ALPHA
GL_STENCIL_INDEX
GL_DEPTH_COMPONENT

Alpha color pixels

Pixel components ordered as blue, green, red

Pixel components ordered as blue, green, red, alpha
Blue pixels

Color-index pixels

Green pixels

Red pixels

Pixel components ordered as red, green, blue

Pixel components ordered as red, green, blue, alpha
Single luminance component in pixel

Luminance component followed by alpha component
Single stencil index

Single depth component

*Only available via the EXT_bgra extension under Windows.

139

140 Chapter 6 = Bitmaps and Images with OpenGL

The pixel type can be any of the types listed in Table 6.2. This parameter defines the data
type of each pixel element.

Table 6.2 Pixel Types

Pixel Type Description

GL_BITMAP A single bit (0 or 1)

GL_BYTE Signed 8-bit integer (1 byte)

GL_UNSIGNED_BYTE Unsigned 8-bit integer (1 byte)

GL_SHORT Signed 16-bit integer (2 bytes)

GL_UNSIGNED_SHORT Unsigned 16-bit integer (2 bytes)

GL_INT Signed 32-bit integer (4 bytes)

GL_UNSIGNED_INT Unsigned 32-bit integer (4 bytes)

GL_FLOAT Single-precision floating point (4 bytes)
GL_UNSIGNED_BYTE_3 3 2 Packed into unsigned 8-bit integer. R3, G3, B2
GL_UNSIGNED_BYTE_2_3_3_REV Packed into unsigned 8-bit integer. B2, G3, R3
GL_UNSIGNED_SHORT_5_6_5 Packed into unsigned 16-bit integer. R5, G6, B5
GL_UNSIGNED_SHORT_5_6_5_REV Packed into unsigned 16-bit integer. B5, G6, R5
GL_UNSIGNED_SHORT_4_4_4_4 Packed into unsigned 16-bit integer. R4, G4, B4, A4
GL_UNSIGNED_SHORT_4_4_4_4 REV Packed into unsigned 16-bit integer. A4, B4, G4, R4
GL_UNSIGNED_SHORT_5_5_5_1 Packed into unsigned 16-bit integer. R5, G5, B5, A1
GL_UNSIGNED_SHORT_1_5_5_5_REV Packed into unsigned 16-bit integer. A1, B5, G5, R5
GL_UNSIGNED_INT_ 8.8 8_8 Packed into unsigned 32-bit integer. R8, G8, B3, A8
GL_UNSIGNED_INT_8_8_8_8_REV Packed into unsigned 32-bit integer. A8, B8, G8, R8
GL_UNSIGNED_INT_10_10_10_2 Packed into unsigned 32-bit integer. R10, G10, B10, A2

GL_UNSIGNED_INT_2 10_10_10_REV Packed into unsigned 32-bit integer. A2, B10, G10, R10

* Packed formats available only via the EXT_packed_pixels extension under Windows.

Here is some code that uses the g1DrawPixels() function to draw an RGB image of a width
and height imageWidth and imageHeight, respectively, that you have stored in the variable
imageData at the screen position (300, 300):

unsigned char *imageData;

int imageWidth, imageHeight;

glRasterPos2i(300, 300);

glDrawPixels(imageWidth, imageHeight, GL_RGB, GL_UNSIGNED_BYTE, imageData);

We specify the GL_RGB pixel format because the image is an RGB image, and we specify the
GL_UNSIGNED_BYTE pixel type since the imageData is stored as an array of unsigned char.

Using Images

Reading from the Screen

There may be times when you want to read the pixels already on the screen so that you
can save them to disk as an image file or can manipulate them in memory (i.e., for special
effects). OpenGL allows you to do this by providing you with the g1ReadPixels() function,
which is defined as:

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format,
GLenum type, GLvoid *pixels);

g1ReadPixels() has essentially the same parameters as g10rawPixels() with the addition of an
(x, y) coordinate. The (x, y) coordinate specifies the lower-left corner of the rectangle with
dimensions defined by width and height that will be read from the screen and stored in the
pixels parameter. The format and type parameters work the same way as g1DrawPixels() and
can be the same values as those defined in Tables 6.1 and 6.2.

As an example, if you want to read the top half of your OpenGL window into an RGB
buffer, you might use the g1ReadPixels() function like this:

void *imageData;
int screenWidth, screenHeight;

glReadPixels(0, screenHeight/2, screenWidth, screenHeight/2, GL_RGB, GL_UNSIGNED_BYTE,
imageData);

Note

Since g1ReadPixels() is reading from the frame buffer and hence across the AGP bus of the video
card, the execution time of the function can be relatively long. Try not to use g1ReadPixels() often,
if at all, during runtime.

Copying Screen Data

Aside from reading and writing to the screen, OpenGL also lets you copy pixels from one
portion of the screen to another with the g1CopyPixels() function, defined as:

glCopyPixels(GLint x, GLiny y, GLsizei width, GLsizei height, GLenum buffer);

This function copies the pixel data in the

frame buffer with a rectangle whose Table 6.3 glCopyPixels() Buffer Values
lower-left corner is at the screen location
(x, y) and has dimensions defined by
width and height to the current raster GL_COLOR Copy from the color buffer

position. The buffer parameter can be GL_DERTH Copy from the depth buffer
any of the values defined in Table 6.3. GL_STENCIL Copy from the stencil buffer

Buffer Value Description

141

142

Chapter 6 = Bitmaps and Images with OpenGL

One application of g1CopyPixels() is for magnifying a portion of the OpenGL window,
such as for a magnifying glass or a sniper gun scope. By copying a specific portion of the
screen and using the next function we are going to describe, g1PixelZoom(), you can zoom
in on areas of your 3D world.

Magnification, Reduction, and Flipping

OpenGL lets you enlarge, reduce, and flip images with the g1PixelZoom() function,
defined as:

void g1PixelZoom(GLfloat xZoom, GLfloat yZoom);

By default, the xZoom and yZoom parameters are 1.0, meaning the pixel zoom is set to nor-
mal viewing mode. Values greater than 0.0 and less than 1.0 reduce the image; values
greater than 1.0 magnify the image. This behavior is similar to the g1Scale() function
mentioned in Chapter 4. When you specify negative values, the image is reflected about
the current raster position. Here are some examples, with their effects in comments:

glPixelZoom(-1.0f, -1.0f); // flip image horizontally and vertically
g1PixelZoom(0.5f, 0.5F); // reduce image to half its original size
g1PixelZoom(5.0f, 5.0f); // magnify the image 5 times in all directions

Managing Pixel Storage

Images stored in memory are composed of between one and four chunks of data, stored
as array elements. These data chunks can refer to anything from the color index or lumi-
nance to the red, green, blue, and alpha components for each pixel. Pixel formats, or the
arrangements of pixel data, help to determine the number and order of elements stored
for each pixel.

Often you may find that you need to take into account such issues as displaying a subim-
age that corresponds to a subrectangle of the image data array, or maybe different
machines with different byte-ordering conventions, or even simply machines that are
more efficient at moving data to and from the frame buffer if the data is aligned on cer-
tain byte boundaries (i.e., 2, 4, 8-byte boundaries). When you run into these issues, you
will likely want to control the byte alignment. Luckily, OpenGL provides a function to do
just that: g1PixelStore().

void g1PixelStore{if}(GLenum pname, TYPE param);

Managing pixel storage can get to be rather complicated, so we are going to keep the dis-
cussion simple. If you would like more information on pixel storage, be sure to follow up
the topic with one of the references provided in Appendix B, “Further Reading.”

Managing Pixel Storage

The pname parameter can take many different values, but the ones we’re interested in are
GL_PACK_ALIGNMENT and GL_UNPACK_ALIGNMENT. Each of these can have param values of 1, 2, 4, or
8. When you specify the GL_PACK_ALIGNMENT parameter, you are telling OpenGL how your
pixels are aligned in each row when passing memory to OpenGL via g1DrawPixels() or the
g1TexImage*() APIs you'll learn about in Chapter 8, “OpenGL Extensions.” When you
specify the GL_UNPACK_ALIGNMENT parameter, you are telling OpenGL how to align memory
for pixels at the start of each pixel row when it passes data to your program through func-
tions such as glReadPixels(). By default, both parameters are equal to 4, indicating a 4-byte
alignment.

As an example, the following line of code tells OpenGL that there is no byte alignment
when unpacking the image data from memory, since the alignment is set to 1:

g1PixelStorei (GL_UNPACK_ALIGNMENT, 1);

Targa Image Files

Now we’re going to talk about the Targa image format. This format is fairly simple to work
with, and it brings the added bonus of an alpha channel. With the addition of the alpha
channel, you can incorporate transparency and other cool special effects when you load
Targa files and use them as bitmaps or textures.

The Targa File Format

In its most simple form, the Targa format is divided into two parts: the header and the
data. The header consists of fields that are arranged in this structure:

struct tgaheader_t

{
unsigned char idLength;
unsigned char colorMapType;
unsigned char imageTypeCode;
unsigned char colorMapSpec[5];
unsigned short x0Origin;
unsigned short yOrigin;
unsigned short width;
unsigned short height;
unsigned char bpp;
unsigned char imageDesc;

143

144

Chapter 6 = Bitmaps and Images with OpenGL

Note

We are providing only a basic overview of the Targa image format. If you would like a more detailed
explanation of the Targa format, visit the Web site Wotsit's File Formats at http://www.wotsit.org.
Wotsit's is a repository for many file formats ranging from images to 3D models.

While loading, you will want to use the header information as a guide for loading the rest
of the image. You should pay particular attention to the idLength, imageTypeCode, width,
height, bpp, and imageDesc fields.

The idLength field corresponds to the length of an identifier string located after the header.
Unless you are interested in reading the identifier, after loading the header you will prob-
ably want to skip over the number of bytes indicated by the idLength field.

The imageTypeCode tells you the type of Targa image you are loading. By looking at the type,
you can determine the type of loading algorithm you should use. For instance, you will
use different loading algorithms for loading an uncompressed Targa as compared to a
compressed Targa. The possible values for imageTypeCode are listed in Table 6.4.

Table 6.4 Targa File Types

Code Description

0 No image data

1 Uncompressed color-mapped image

2 Uncompressed RGB(A) true-color image

3 Uncompressed grayscale (black-and-white) image

9 Run-length encoded (compressed) color-mapped image

10 Run-length encoded (compressed) RGB(A) true-color image
1 Run-length encoded (compressed) grayscale image

The width, height, and bpp fields specify the width, height, and number of bits per pixel of
the image, respectively.

Finally, the imageDesc field is a byte whose bits specify the number of attribute bits per pixel
and the order in which pixel data is transferred from a file to the screen. For our purposes,
we are interested in bits 4 and 5, which tell us how the image data needs to be rendered to
the screen. Because we are using OpenGL and g1DrawPixels(), we need to make sure the
image data is stored in memory “upside-down.” Given the possible values for bits 4 and 5
in Table 6.5, this means that you need to make sure the image origin is located at the bot-
tom left. Some image tools like to save the Targa with the origin at the top left, which
means you need to flip the Targa image data vertically to get a proper rendering with
glDrawPixels().

Managing Pixel Storage

Table 6.5 Targa Image Origin

First Pixel

Destination Bit 5 Bit 4 Hex Value
Bottom left 0 0 0x00
Bottom right 0 1 0x10

Top left 1 0 0x20
Top right 1 1 0x30

Loading Targa Files

On the CD you will find an example under the Chapter 6 folder entitled LoadTGA. In the
example we have created a basic Targa loading class that will load 24-bit and 32-bit com-
pressed and uncompressed Targa images. If you look at the CTargalmage.h header file, you
will see the following class definition:

class CTargalmage

{

private:
unsigned char m_colorDepth;
unsigned char m_imageDataType;
unsigned char m_imageDataFormat;
unsigned char *m_pImageData;
unsigned short m width;
unsigned short m_height;
unsigned lTong m_imageSize;

// swap the red and blue components in the image data
void SwapRedBlue();

pubTic:
CTargalmage();
virtual ~CTargalmage();

// Toading and unloading
bool Load(const char *filename);
void Release();

// flips image vertically
bool FlipVertical();

145

146 Chapter 6 = Bitmaps and Images with OpenGL

unsigned short GetWidth() { return m_width; }
unsigned short GetHeight() { return m_height; }
unsigned char GetImageFormat() { return m_imageDataFormat; }

// converts RGB format to RGBA format and vice versa
bool ConvertRGBATORGB();
bool ConvertRGBToRGBA(unsigned char alphaValue);

// returns the current image data
unsigned char *GetImage() { return m_pImageData; }
}s

As you can see, the CTargalmage class provides mechanisms for loading the Targa image,
flipping it vertically, and converting the image data from one format to another. For space
reasons, we are not going to show you the code for this class here in the book (look on the
CD!), but we will show you how to use it with OpenGL to draw images on the screen.

In the CGfxOpenGL class Init() method, you will find code that creates two CTargalmage
objects and loads the images. The two images included with this example are
opengl_logo.tga, which is a compressed RGB image, and opengl_logo_un.tga, which is an
uncompressed RGB image. Here is the code from the Init() method.

m_tga = new CTargalmage;
m_tgaUncompress = new CTargalmage;

if (!m_tga->Load("opengl_logo.tga"))
return false;

if (!m_tgaUncompress->Load("opengl_logo_un.tga"))
return false;

We draw the bitmaps in the Render() method using g1DrawPixels(). Because we know that
the images are 24-bit Targas, we use GL_RGB for the format parameter of g1DrawPixels(). If
we were using 32-bit images, we would specify GL_RGBA for the format parameter. Here is the
code from the Render() method:

/] draw compressed TGA at top of window

glRasterPos2i(250,400);

glDrawPixels(m_tga->GetWidth(), m_tga->GetHeight(), GL_RGB,
GL_UNSIGNED_BYTE, m_tga->GetImage());

/] draw uncompressed TGA at bottom of window

glRasterPos2i(250,100);

glDrawPixels(m_tgaUncompress->GetWidth(), m_tgaUncompress->GetHeight(), GL_RGB,
GL_UNSIGNED_BYTE, m_tgaUncompress->GetImage());

Summary

00 65 Chaptar 8 - Laad 1A

UMCOMPRESSED

Figure 6.5 A screenshot of the LoadTGA example. The top image is a
compressed TGA. The bottom image is an uncompressed TGA.

Figure 6.5 is a screenshot of the LoadTGA example.

Summary

In this chapter, you learned about the OpenGL bitmap and how to load and draw Targa
images. For OpenGL bitmaps, you learned how to set the current OpenGL raster position
and draw the bitmaps. For images, or pixel maps, you learned how to draw the images,
read image data from the screen, copy screen data from one region to another, and per-
form magnification, reduction, and flipping on image data. You also learned how to man-
age pixel storage.

What You Have Learned

m The term bitmap in the context of OpenGL is defined as a rectangular array of pix-
els, where one bit of information is stored about each pixel.

= When you draw a bitmap, every bit in the two-dimensional array that is set to 1
will correspond to a pixel in the current raster color on the screen. If a bit is set to
0, nothing is drawn.

= The glRasterPos() function specifies the current raster coordinates for drawing
bitmaps in the OpenGL window. The coordinates sent to the function define the
bottom-left corner of the bitmap's rectangle.

147

148

Chapter 6 = Bitmaps and Images with OpenGL

If you want to specify the raster coordinates in screen coordinates, you need to set
up a 2D viewport and projection matrix with the width and height of the viewport
equal to the width and height of the OpenGL window.

After you set the current raster position, you can draw your bitmap with the
g1Bitmap() function.

Sometimes you might want to read the pixels already on the screen so you can save

them to disk as an image file or so you can manipulate them for special effects. You
can do this with the OpenGL function glReadPixels().

The g1CopyPixels() function lets you copy pixel data from one portion of the screen
to another.

OpenGL also allows you to enlarge, reduce, and flip images with the g1PixelZoom()
function.

The Targa image file format is a simple-to-use and understand image file that you
can load into memory and display using OpenGL.

Review Questions

1. Write code to position and draw a 16 X 16 bitmap stored in the variable

m_bitmapData at the location (150, 75) on the screen.

2. What function do you use to draw image (pixel map) data on the screen?
3. What function allows you to copy image data?

4. Write the line of code to double the size of image rasterizing operations.

On Your Own
1. Write a function to randomly place and display 100 8 x 8 bitmaps on the screen,

given the following prototype:

void DrawRandomBitmaps(unsigned char *bitmapData);

CHAPTER 7

TEXTURE MAPPING

othing we have discussed so far can bring as much realism to a 3D scene as tex-

ture mapping. Lighting comes close, but it doesn’t have near the impact that a

simple texture map can have when applied to a set of polygons. Instead of hav-
ing multicolored polygons that seemingly come together to form a recognizable object,
you can create photo-realistic worlds with texture mapping that can almost persuade the
user that the objects being viewed on the screen are real. In this chapter, you'll learn how
to achieve a high level of realism through an introduction to the concept and implemen-
tation of texture-mapping techniques in OpenGL.

In this chapter, you will learn about the following:

m The basics of texture mapping

= Texture coordinates

m Texture objects and texture binding

m Texture specification with 1D, 2D, 3D, and cube map textures
m Texture filtering

= Mipmaps and automatic mipmap generation

m Texture parameters, wrap modes, and level of detail

m Texture environments and texture functions

149

150

Chapter 7 = Texture Mapping

An Overview of Texture Mapping

In a nutshell, fexture mapping allows you to attach images to polygons in order to provide
more realistic graphics. As an example, you could apply an image of the front of this book
to a rectangular polygon; the polygon would appear to be a visual representation of the
front of the book. Another example would be to take a map of Earth and texture-map it
onto a sphere. You then have a 3D visual representation of Earth. Nowadays, texture maps
are used everywhere in 3D graphics. In fact, texture mapping is the first step in bringing
the realism and authenticity desired in today’s games.

Texture maps are composed of rectangular arrays of data; each element of these arrays is
called a texel. Although they are rectangular arrays of data, texture maps can be mapped
to non-rectangular objects, such as spheres, cylinders, and other 3D object models.

Usually, developers use the two-dimensional texture in their graphics; however, using one-
dimensional and three-dimensional textures is not unheard of. The two-dimensional tex-
ture has both a width and a height, as seen in Figure 7.1. One-dimensional textures have
a width and a height equal to only 1 pixel. Three-dimensional textures have a width,
height, and depth and are sometimes called volume textures. In this chapter, we will be pri-
marily concerned with two-dimensional textures.

When you map a texture onto a polygon, the texture will be transformed as the polygon
is transformed. In other words, if you rotate the Earth example we just talked about, the
texture map will rotate with the sphere and give the effect of a rotating Earth. Similarly, if
you use translation and another rotation to rotate the Earth image around a sphere we’ll
call Sun, then the texture map will stay on the Earth sphere as it rotates around the Sun
sphere. You can think of texture mapping as applying a sort of skin to a 3D object or poly-
gon. You can move this skin around the object, stretch it, or shrink it, but no matter what,
the skin, or texture map, stays with the polygons to which you apply it.

Width

Width ﬁ ﬁ
—— Hcight = 1 E E ﬂ
10 Texdure ﬁ ﬁ

Height

2D Texture

Figure 7.1 One-, two-, and three-dimensional textures.

Texture Coordinates 151

Texture Coordinates

Before we cover how to specify textures with OpenGL, we first need to discuss how tex-
tures are mapped on to polygons through the use of texture coordinates.

Texture coordinates are used to determine
exactly how to apply a texture map to a poly-
gon. The lower-left corner of a texture is given
the coordinates (0, 0), while the upper-right
corner of a texture is given the coordinates (1, t
1). Texture coordinates for 2D textures are
given the notation (s, t), where s and tare equal
to a value from 0 to 1. 1D, 3D, and 4D texture

coordinates are given the notation (s), (s, #, 1), 00,000 § > 1.0,0.0)
and (s, t, 1, q), respectively. Figure 7.2 illustrates
2D texture coordinate values for each vertex of Figure 7.2 Texture coordinate values on a

a polygon. polygon.

(0.0,1.0) (1.0,1.0)

Note

While texture coordinates are often in the range [0,1], there are some exceptions. Sometimes you
will want to use texture coordinates with a value greater than 1 for repeating and clamping, which
will be discussed in the “Texture Wrap Modes"” section, later in this chapter.

Granted, you are not required to specify one texture per polygon. In fact, you can have a
texture span as many polygons as you want, as long as you properly specify the texture
coordinates across each polygon. As an example, we could divide the polygon shown in
Figure 7.2 into two triangles by creating a diagonal for the polygon. If we kept the texture
coordinates the same as the single polygon, then the two triangles would be textured
exactly the same as the texture polygon. The lower-left corner of the texture is mapped to
the lower-left corner of the left triangle, and the upper-right corner of the texture is
mapped to the upper-right corner of the right triangle.

Texture coordinates are specified with the g1TexCoord() function. This function specifies
the current homogeneous texture coordinates (s, t, 1, g) and is defined as:

void g1TexCoord{1234}{sifd}(TYPE coords);
void g1TexCoord{1234}{sifd}v(TYPE coords);

As an example, you would set a 2D texture coordinate to (0.2, 0.4) by executing the fol-
lowing line of code:

g1TexCoord2f(0.2, 0.4);

152

Chapter 7 = Texture Mapping

Every time you specify a vertex with gl1Vertex(), the current texture coordinate is applied
to it. Typically, you'll change the texture coordinate every time you specify a new vertex.
Given this functionality, the following code sets the 2D texture coordinates for a polygon:

g1Begin(GL_POLYGON);

g1TexCoord2f(0.0f, 0.0f); glVertex3f(-0.5f, 0.5f, 0.5f); /1 Tower Tleft

g1TexCoord2f(1.0f, 0.0f); glVertex3f(0.5f, 0.5f, 0.5f); // Tower right

glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5f, 0.5f, -0.5f); // upper right

g1TexCoord2f(0.0f, 1.0f); glVertex3f(-0.5f, 0.5f, -0.5f); // upper left
glEnd();

Now that you know how texture coordinates are assigned, it’s time to learn how to actu-
ally create textures.

Using the Texture Map

As mentioned, textures are images that you apply to a polygon or set of polygons. These
images can be loaded from an image file, or you can generate them procedurally in mem-
ory. Once you have your texture image data loaded into memory, to use it you need to
specify it as a texture map with OpenGL. You accomplish this by first generating what is
called a texture object, which you then use to store information about the texture, includ-
ing the image data and how it is to be applied.

Note

You can use textures without using texture objects, in which case all texturing operations are
applied using an internal default texture object. For anything beyond trivial examples, though, there
are performance penalties involved with this, since you'll have to constantly reload the texture
image data if you are using more than one texture. It's better to start using texture objects from
the beginning.

Texturing is enabled and disabled through the use of the glEnable() and g1Disable() func-
tions discussed in Chapter 3, “OpenGL States and Primitives.” The constants GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, and GL_TEXTURE_CUBE_MAP may be passed as the parameter to
these functions to enabled or disable one-, two-, three-dimensional, or cube map texturing,
respectively.

Now let’s look at how you use texture objects.

Texture Objects

Texture objects are internal data structures that hold texture data and parameters. You
never gain direct access to them, but instead you track them with a unique unsigned inte-

Using the Texture Map

ger that acts as a handle. Each texture object has state associated with it that is unique to
that texture. To facilitate the requirement of using unique identifiers for texture objects,
OpenGL provides the glGenTextures() function:

void glGenTextures(GLsizei n, GLuint *textures);

This function returns n previously unused texture object identifiers in the textures array.
The identifiers that are returned to you are marked as “used” by glGenTextures(), so each
time you use the function, it returns unique texture object identifiers to you. Even though
the identifier is marked as used, the texture object itself is not truly in use by OpenGL
(meaning it acquires state and parameters) until it is first bound. Here’s an example use
of glGenTextures():

unsigned int textureObjects[3];
glGenTextures(3, textureObjects);

Texture Binding

The first time you bind a texture object, it acquires a new set of states with initial values,
which you can then modify to suit your needs. The g1BindTexture() function performs the
binding operation:

void gl1BindTexture(GLenum target, GLuint texture);

target must be the desired target of the bound texture: GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEX-
TURE_3D, or GL_TEXTURE_CUBE_MAP. Each of these targets corresponds to a type of texture in
OpenGL, which we will discuss in the section on “Specifying Textures.” texture is simply
the identifier for the texture object you want to bind.

A bound texture object remains bound to a target until it is deleted or another texture
object is bound to the target. Calls to g1BindTexture() after the initial call have the effect of
selecting the texture object and binding it to the indicated target. In this way, texture
objects can be used to store information about a texture that can quickly be retrieved and
used by binding it.

While a texture object is bound to a target, OpenGL texturing operations on that target
affect the texture object. Any texture queries to the target return state values from the
bound texture object. For example, examine this code:

g1BindTexture(GL_TEXTURE_2D, textureObjects[01);
/1 all texture operations using GL_TEXTURE_2D now affect textureObjects[0]

g1BindTexture(GL_TEXTURE_3D, textureObjects[1]1);

153

154

Chapter 7 = Texture Mapping

// all texture operations using GL_TEXTURE_2D target still affect textureObjects[0]
// all texture operations using GL_TEXTURE_3D target now affect textureObjects[1]

g1BindTexture(GL_TEXTURE_2D, textureObjects[21);
// all texture operations using GL_TEXTURE_3D target still affect textureObjects[1]
// all texture operations using GL_TEXTURE_2D target now affect textureObjects[2]

Note

You can have multiple texture targets enabled at one time, but when rendering starts, only the tar-
get with the highest dimensionality will be used, with GL_TEXTURE_CUBE_MAP being the highest and
GL_TEXTURE_1D being the lowest.

Deleting Texture Objects

When you create texture objects, OpenGL internally allocates memory to store them, so
to prevent resource leaks you need to delete them when you’re done using them. Texture
objects are deleted by calling the g1DeleteTextures() function:

void glDeleteTextures(GLsizei n, GLuint *textures);

The textures parameter contains n texture object identifiers to be deleted. After a texture
object has been deleted, it has no contents and is considered unused. Any texture objects
in the textures array that are already unused are simply ignored, as is the value zero.

Resident Textures

All video cards have a limited amount of memory in which they can store texture data.
When this limit is exceeded, some textures (usually the least recently used ones) need to
be moved to system memory. This can cause a performance hit when they are used again,
since they must then be moved back into video memory. You can determine whether a
texture object is currently a part of the working set of texture objects in video memory by
calling the function glAreTexturesResident():

GLboolean glAreTexturesResident(GLsizei n, GLuint *textures, GLboolean *residences);

This function returns GL_TRUE if all of the texture objects identified in textures are resident
in the working set or if the OpenGL implementation does not concern itself with a work-
ing set. If at least one of the textures identified in textures is not resident in the working
set, the function returns GL_FALSE with the status of each texture object in residences.
GL_FALSE is also returned if any unused texture objects are identified in textures.

Using the Texture Map

Texture Priority

You can guide OpenGL in determining which texture objects should be resident (if it sup-
ports a texture object working set) by specifying a priority for each texture object with the
g1PrioritizeTextures() function:

void glPrioritizeTextures(GLsizei n, GLuint *textures, GLclampf *priorities);

This function sets the priorities of n texture objects identified in the textures parameter to
the values specified in priorities. Priority values are clamped to the range [0, 1] before
being assigned to a texture object. A value of zero indicates the lowest priority, and one
indicates the highest priority. g1PrioritizeTextures() ignores specified texture objects that
are unused or zero.

Specifying Textures

OpenGL provides three main functions for specifying a texture: g1TexImagelD(),
g1TexImage2D(), and g1TexImage3D(). Each function corresponds to the dimensionality of the
texture. For instance, if the texture is a 3D texture, then you use g1TexImage3D() to specify
the 3D texture. OpenGL provides cube map texture functionality through special para-
meters to the g1TexImage2D() function. Let’s take a look at these functions.

2D Textures
The g1TexImage2D() function is defined as:

void g1TexImage2D(GLenum target, GLint level, GLint internalFormat, GLsizei width,
GLsizei height, GLint border, GLenum format, GLenum type,
const GLvoid* texels);

The target parameter must be either GL_TEXTURE_2D for a two-dimensional texture or
GL_PROXY_TEXTURE_2D for a two-dimensional proxy texture. We won’t be discussing proxy
textures in detail, but they’re used to test whether a given texture size and format can be
supported without actually creating the texture data. Several other values may be used for
the target parameter, as we will discuss with cube maps.

The Tevel parameter specifies the level of detail of the texture map and is used when work-
ing with mipmaps. The base texture image has a level of detail of 0, which is what we will
use until we discuss mipmaps.

The internalFormat parameter describes the base internal format of how the texture is
stored in video memory and can be any of the values listed in Table 7.1. For backward
compatibility with OpenGL 1.0, internalFormat may also take on a value of 1, 2, 3, or 4,
which are respectively equivalent to the constants LUMINANCE, LUMINANCE_ALPHA, RGB, and RGBA.

155

156

Chapter 7 = Texture Mapping

Table 7.1 Texture Internal Formats

Format Description

GL_ALPHA Alpha values
GL_DEPTH_COMPONENT* Depth values

GL_LUMINANCE Grayscale values
GL_LUMINANCE_ALPHA Grayscale and alpha values
GL_INTENSITY Intensity values

GL_RGB Red, green, and blue values
GL_RGBA Red, green, blue, and alpha values

* Available only via the ARB_depth_texture extension under Windows

Tip

In addition to the values listed in Table 7.1, OpenGL provides several values that allow you to
specify both the format and the desired number of bits per channel. These have the general form
of formatN or formatN_ALPHAM, where format is one of the values in Table 7.1, N is the number of
bits per channel, and M is the number of alpha bits. There are over 30 of these values, many of
which aren’t particularly useful, so we won't list them all here. The two most important ones are
GL_RGB8 and GL_RGBAS8, which request 8 bits for each color channel. By default, some graphics cards
use less than 8 bits per channel for RGBA textures, so using GL_RGBA8 or GL_RGB8 instead of GL_RGBA
or GL_RGB can result in noticeably higher texture quality. Note that these values are treated as
requests; OpenGL may ignore the requested number of bits per channel.

The width and height parameters define the width and height of the texture map. Like
g1DrawPixels(), the width and height of a texture map must be equal to a power of 2
(though there are some extensions that allow you to get around this limitation), but the
texture does not have to be square.

The border parameter indicates whether there is a border around the texture. This para-
meter is equal to either 0, for no border, or 1, for drawing a border in the color set with
the GL_TEXTURE_BORDER_COLOR parameter (see the section “Texture Parameters” later in the
chapter).

The format parameter is used to define the format of the image data contained in the texels
array. It can be equal to any of the values listed in Table 7.2.

The type parameter defines the data type of the texture image data. This parameter can be
any of the values listed in Table 7.3.

Looking at Table 7.3, you may notice the section of “packed” data formats and wonder
how these work. Let’s use the type GL_UNSIGNED_BYTE_3_3_2 as an example. In this case, all of

the red, green, and blue (and alpha if available) components are packed into a single

Using the Texture Map

Table 7.2 Texture Pixel Formats

Format

Description

GL_COLOR_INDEX
GL_DEPTH_COMPONENT*
GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_RGBA

GL_BGR**
GL_BGRA**
GL_LUMINANCE
GL_LUMINANCE_ALPHA

Color index values

Depth values

Red pixel values (R)

Green pixel values (G)

Blue pixel values (B)

Alpha values (A)

Red, green, and blue values (RGB)

Red, green, blue, and alpha values (RGBA)
Blue, green, and red values (BGR)

Blue, green, red, and alpha values (BGRA)
Grayscale values (luminance)

Grayscale values with alpha (luminance with alpha)

* Available only via the ARB_depth_texture extension under Windows
* Available only the EXT_bgra extension under Windows

Table 7.3 Texture Data Types

Format Description

GL_BITMAP A single bit (0 or 1)

GL_BYTE Signed 8-bit integer (1 byte)
GL_UNSIGNED_BYTE Unsigned 8-bit integer (1 byte)
GL_SHORT Signed 16-bit integer (2 bytes)
GL_UNSIGNED_SHORT Unsigned 16-bit integer (2 bytes)
GL_INT Signed 32-bit integer (4 bytes)
GL_UNSIGNED_INT Unsigned 32-bit integer (4 bytes)
GL_FLOAT Single-precision floating point (4 bytes)

GL_UNSIGNED_BYTE_3 3 2
GL_UNSIGNED_BYTE_2_3_3_REV
GL_UNSIGNED_SHORT_5_6_5
GL_UNSIGNED_SHORT_5_6_5_REV
GL_UNSIGNED_SHORT_4_4_4_4
GL_UNSIGNED_SHORT_5_5_5_1

GL_UNSIGNED_INT_10_10_10_2

GL_UNSIGNED_INT_2_10_10_10_REV

Packed into unsigned 8-bit integer. R3, G3, B2

Packed into unsigned 8-bit integer. B2, G3, R3

Packed into unsigned 16-bit integer. R5, G6, B5
Packed into unsigned 16-bit integer. B5, G6, R5
Packed into unsigned 16-bit integer. R4, G4, B4, A4
Packed into unsigned 16-bit integer. A4, B4, G4, R4
Packed into unsigned 16-bit integer. R5, G5, B5, A1
Packed into unsigned 16-bit integer. A1, B5, G5, R5
Packed into unsigned 32-bit integer. R8, G8, B8, A8
Packed into unsigned 32-bit integer. A8, B8, G8, R8
Packed into unsigned 32-bit integer. R10, G10, B10, A2
Packed into unsigned 32-bit integer. A2, B10, G10, R10

Packed pixel formats are available only via the ARB_packed_pixels extension under Windows

157

158

Chapter 7 = Texture Mapping

unsigned byte. Since this example packed format is defined as 3_3_2, the components
available are red, green, and blue. If we were looking at a different data type format, say
GL_UNSIGNED_SHORT_4_4_4_4, we would be dealing with red, green, blue, and alpha compo-

nents packed into an unsigned short.

Normally components are packed with the first component in the most significant bits of
the data type, with the successive components occupying the less significant bits. So for
data type GL_UNSIGNED_BYTE_3_3_2 with the format being GL_RGB, the red component is in bits

5-7, the green component is in bits 2—4, and the blue component is in bits 0—1. Figure 7.3
illustrates the bit layout of the type GL_UNSIGNED_BYTE_3_3_2.

You may also notice that there is a GL_UNSIGNED_BYTE_2_3_3_REV listed in Table 7.3. In fact, all
of the packed data types have a complementary type whose token name ends in _REV.
With these types, the component packing order reverses from least to most significant bit
locations. This means that the red component is in bits 0-2, the green component bits
3-5, and the blue component bits 6-7. Figure 7.4 illustrates the component packing for

GL_UNSIGNED_BYTE_2_3_3_REV.

Red Green Blue

Figure 7.3 GL_UNSIGNED_BYTE_3_3_2 type with bit numbers for each
component.

Blue Green Red

Figure 7.4 GL_UNSIGNED_BYTE_2_3_3_REV type with bit numbers for
each component.

Using the Texture Map

texels, the last parameter, is a pointer to the actual texture image data that you either gen-
erated or loaded from an image file. OpenGL will read the image data in the format you
specified for the type parameter.

As an example, say you have loaded an RGBA image into the variable textureData that has
a width and height of textureWidth and textureHeight, respectively, and you want to spec-
ify a texture with it. You simply use the g1TexImage2D() function like so:

g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0,
GL_RGBA, GL_UNSIGNED_BYTE, textureData);

After this function is called, the texture is loaded and ready to use.

1D Textures

1D textures are essentially 2D textures with a height equal to 1. These textures are often
used for drawing color bands or for performing shading techniques that would otherwise
require an excessive number of polygons. To create a 1D texture, you use the g1TexImagelD()
function, which is defined as:

void glTexImagelD(GLenum target, GLint Tevel, GLint internalFormat, GLsizei width,
GLint border, GLenum format, GLenum type, const GLvoid *texels);

All of the parameters for ¢g1TexImagelD() are the same as those for g1TexImage2D(). The only
difference between the two functions is the height parameter, which is not present in
the g1TexImagelD() function. For the target parameter, you now specify the value GL_TEX-
TURE_1D, which tells OpenGL that you are creating a 1D texture.

Here is a short code snippet creating a 32-texel-wide RGBA texture using the g1TexIm-
agelD() function:

unsigned char imageData[1281];
g1TexImagelD(GL_TEXTURE_1D, 0, GL_RGBA, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData);

3D Textures

Extension

Extension name: EXT_texture3D
Name string: GL_EXT_texture3D
Promoted to core: OpenGL 1.2
Function names: g1TexImage3DEXT()

Tokens: GL_TEXTURE_3D_EXT

159

160

Chapter 7 = Texture Mapping

3D textures can produce some amazing visual effects, but they consume an enormous
amount of memory for even the modestly sized textures. Although the medical field
already uses 3D textures for applications such as MRI, widespread use in 3D gaming
remains to be seen. With advancements in graphics hardware, however, 3D textures may
soon become more commonplace.

To create a 3D texture, you use the g1TexImage3D() function:

g1TexImage3D(GLenum target, GLint Tevel, GLint internalFormat, GLsizei width,
GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type,
const GLvoid *texels);

The parameters for this function are essentially the same as those for g1TexImagelD() and
g1TexImage2D(). The difference here is the depth parameter, which specifies the third dimen-
sion of the texture.

Here is a short code snippet creating a 16 X 16 x 16—texel RGB texture using the g1TexIm-
age3D() function:

unsigned char imageData[16*16*16*3];

g1TexImage3D(GL_TEXTURE_3D, 0, GL_RGB, 16, 16, 16, 0, GL_RGB,
GL_UNSIGNED_BYTE, imageData);

Cube Map Textures

Extension

Extension name: ARB_texture_cube_map
Name string: GL_ARB_texture_cube_map
Promoted to core: OpenGL 1.3
Function names: None

Tokens: GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB

A cube map texture is a set of six two-dimensional texture images. You specify a cube map
texture by using the g1TexImage2D() function with the target parameter equal to one of the
following: GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_
CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

Using the Texture Map

Cube map dimensions must not only be powers of two, but also of equal width and
height, meaning they must be square. The six cube map texture targets listed previously
form a single cube map texture, although each target corresponds to a distinct face of the
cube map. Cube maps are generally used with 3D texture coordinates, with the (s, t, r) val-
ues treated as a direction vector coming from the center of a cube. When a texel is to be
obtained from the cube map, the largest magnitude coordinate in the (s, £, r) vector deter-
mines which cube face is selected. A new set of coordinates, (s, t), is then calculated by
dividing the two smaller magnitude coordinates by the largest magnitude coordinate. The
new (s, t) vector is then used to look up the texel in the two-dimensional texture image
representing that face of the cube map.

Notice that while the targets listed above are used when specifying, updating, or querying
one of the cube map’s six two-dimensional images, enabling cube map texturing or bind-
ing a cube map texture object requires use of the GL_TEXTURE_CUBE_MAP target.

Texture Filtering

Texture mapping a polygon is the act of mapping from texture image space to frame
buffer image space. Typically, this mapping requires reconstruction of the texture image,
which can result in a distortion of the image as it is applied to the polygon. After a texture
map has been applied to a transformed polygon, a single screen pixel can represent a frac-
tion of a texel if the viewpoint is close to the texture, or a pixel can represent a collection
of texels when the viewpoint is further away. Texture filtering tells OpenGL how it should
map the texels to pixels when calculating the final image.

In texture filtering, magnification refers to when a screen pixel represents a small portion
of a texel. Minification refers to when a pixel contains a number of texels. You can tell
OpenGL how to handle both of these filtering cases with the g1TexParameter() function:

void glTexParameter{if}(GLenum target, GLenum pname, T param);
void glTexParameter{if}v(GLenum target, GLenum pname, T params);

Note

We will discuss more about the g1TexParameter() function in the “Texture Parameters” section
later in this chapter, so the parameter values discussed here apply strictly to texture filtering.

The value of the target parameter refers to the texture target and can be equal to
GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP. Specifying the texture
magnification filter parameter requires the pname parameter to be GL_TEXTURE_MAG_FILTER;
the texture minification filter parameter is specified with GL_TEXTURE_MIN_FILTER.

161

162

Chapter 7 = Texture Mapping

When specifying the GL_TEXTURE_MAG_FILTER, the param parameter may be equal to either
GL_NEAREST or GL_LINEAR. Using GL_NEAREST for the magnificiation filter tells OpenGL to use
the texel nearest to the center of the pixel being rendered. This is sometimes referred to as
point sampling. Using GL_LINEAR tells OpenGL to use the weighted average of the four tex-
els closest to the center of the pixel being rendered. This is known as bilinear filtering.

The minification filter allows a few more legal values than the magnification filter. Table
7.4 lists all of the values you may use when specifying GL_TEXTURE_MIN_FILTER. Note that the
values listed in the table are in order of increasing rendering quality.

Table 7.4 Texture Minification Filter Values

Filter Description
GL_NEAREST Use the texel nearest to the center of the pixel being rendered.
GL_LINEAR Use bilinear interpolation.

GL_NEAREST_MIPMAP_NEAREST ~ Use the mipmap level closest to the polygon resolution, and use
GL_NEAREST filtering on that level.

GL_NEAREST_MIPMAP_LINEAR Use the mipmap level closest to the polygon resolution, and use
GL_LINEAR filtering on that level.

GL_LINEAR_MIPMAP_NEAREST Use GL_NEAREST sampling on the two levels closest to the polygon
resolution, and then linearly interpolate between the two values.

GL_LINEAR_MIPMAP_LINEAR Use bilinear filtering to obtain samples from the two levels closest
to the polygon resolution, and then linearly interpolate between the
two values. This is also known as trilinear filtering.

You will notice that four of the legal values to GL_TEXTURE_MIN_FILTER deal with mipmaps.
Ignore them for now, as we will discuss mipmaps in this chapter under the section aptly
entitled “Mipmaps.”

By default, the magnification filter is set to GL_LINEAR, and the minification is set to
GL_NEAREST_MIPMAP_LINEAR.

Tip

When rendering with textures, OpenGlL first checks to see if the current texture is complete. Among
other things, this includes verifying that all levels of the mipmap have been defined if one of the
mipmap modes has been chosen as the minification filter. If the texture is not complete, texturing
is disabled. Because the default value for the minification filter uses mipmapping, you should be
sure to either specify all of the mipmap levels or change the minification filter to GL_LINEAR or
GL_NEAREST.

Using the Texture Map

Basic Texture Example

Now that we have the minimum requirements for texture mapping covered, let’s take a
look at a basic example that does nothing more than apply a texture to two polygons. In
the Chapter 7 folder on the CD, you will find an example entitled TextureBasics. This
example moves two polygons along the z-axis to show how the minification and magni-
fication texture filter settings affect the visual quality of a texture map. Figure 7.5 is a
screenshot of this example.

Figure 7.5 A screenshot of the TextureBasics example.

The polygon on the left uses GL_LINEAR for both minification and magnification. As such,
the texture is linearly interpolated as it moves closer to and further from the viewpoint,
resulting in a smooth transition.

The polygon on the right uses GL_LINEAR for minification and GL_NEAREST for magnification.
As the polygon approaches the camera, you will notice that the texture’s visual quality
changes slightly when it passes through the threshold for OpenGL to switch from minifi-
cation filtering to magnification filtering.

The code to set up the texture objects and filtering modes is in the Init() method:

bool CGfxOpenGL::Init()
{
glClearColor(0.0, 0.0, 0.0, 0.0);

163

164 Chapter 7 = Texture Mapping

// enable 2D texturing
glEnable(GL_TEXTURE_2D);

m_textureOne = new CTargalmage;

// Toad texture image data
if (!m_textureOne->Load("rock.tga"))
return false;

// retrieve "unused" texture object
glGenTextures(l, &m_textureObjectOne);

// bind the texture object
g1BindTexture(GL_TEXTURE_2D, m_textureObjectOne);

// set the min and mag texture filters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

// specify a texture for the texture object

g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGB, m_textureOne->GetWidth(),
m_textureOne->GetHeight(), 0, GL_RGB, GL_UNSIGNED_BYTE,
m_textureOne->GetImage());

// create the second texture object
glGenTextures(l, &m_textureObjectTwo);
g1BindTexture(GL_TEXTURE_2D, m_textureObjectTwo);

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGB, m_textureOne->GetWidth(),
m_textureOne->GetHeight(), 0, GL_RGB, GL_UNSIGNED_BYTE,
m_textureOne->GetImage());

// initialize movement variables
m_zPos = -5.0f;

m_zMoveNegative = true;

return true;

Using the Texture Map 165

In the Init() method, we first enable 2D texturing and then load the texture image data
using the CTargaImage class we created in Chapter 6, “Bitmaps and Images with OpenGL.”
We then get an unused texture object through glGenTextures(), bind the texture object,
specify the minification and magnification for the texture object as GL_LINEAR, and finally
specify the texture with g1TexImage2D(). We then repeat the process for the second texture
object, while using the same texture image data and applying GL_NEAREST to magnification
filtering and GL_LINEAR to minification filtering.

The other two methods of interest in this example are the DrawPTane() and Render() meth-
ods, shown here:

void CGfxOpenGL::DrawPlane()

{

g1Begin(GL_TRIANGLE_STRIP);

g1TexCoord2f(1.0, 0.0); glVertex3f(2.0, -2.0, -2.0);

g1TexCoord2f (0. 0 0 0); glVertex3f(-2.0, -2.0, -2.0);

g1TexCoord2f(1. .0); glVertex3f(2.0, -2.0, 2.0);

g1TexCoord2f (0. .0); glVertex3f(-2.0, -2.0, 2.0);
glEnd();

void CGfxOpenGL::Render()

{

/] clear screen and depth buffer
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/] Toad the identity matrix (clear to default position and orientation)
glloadIdentity();

// draw the Teft polygon

glPushMatrix();
// translate the world coordinate system along the z-axis
glTranslatef(-3.0, 0.0, m_zPos);
glRotatef(90.0, 1.0, 0.0, 0.0);

// bind the texture
g1BindTexture(GL_TEXTURE_2D, m_textureObjectOne);

// draw the plane at the world origin
DrawPlane();

glPopMatrix();

// do it all again for the right polygon

166

Chapter 7 = Texture Mapping

glPushMatrix();
glTranslatef(3.0, 0.0, m_zPos)
glRotatef(90.0, 1.0, 0.0, 0.0);
g1BindTexture(GL_TEXTURE_2D, m_textureObjectTwo);
DrawPlane();
g1PopMatrix();
}

In DrawPlane(), we are specifying the texture coordinates and drawing the vertices of the
textured polygon. In the Render () method, notice that before rendering each polygon with
DrawPlane(), we first bind the texture object that we want to use to texture the polygon we
are drawing. Binding a texture object selects it for the current texture unit, where it can
then be processed by any texturing commands that follow.

Mipmaps

The term mipmap stems from a Latin phrase meaning “many in one.” It’s used to refer to
a texture that is composed of many different levels. Each level has dimensions that are half
of the previous one. For example, if we start with a base image with dimensions 64 X 64,
then the next mipmap level image will have a resolution of 32 x 32. The next image after
that will be 16 x 16, then 8 X 8,4 X 4, 2 X 2, and finally 1 X 1, resulting in a set of seven
mipmap levels.

Mipmaps were introduced to combat a visual artifact known as swimming. Swimming is
the result of two adjacent pixels sampling from widely separated portions of the texture
map. This is common for polygons that are far away from the viewer, where you might
have for example a triangle that is represented as only five pixels sampling from a 512 x
512 texture. For static scenes, this isn’t a problem, but as soon as you introduce motion,
the portions of the texture being sampled change, resulting in different colors appearing.
Mipmaps reduce this problem because levels with lower resolutions are used for distant
polygons, leading to more consistent sampling. Mipmaps have the additional benefit of
reducing texture cache misses, since the smaller levels are more likely to remain in limited
but high-speed video memory for as long as they are needed. Figure 7.6 illustrates the
concept of mipmaps.

OpenGL performs mipmapping by determining which texture image to use based on the
size of the fragment relative to the size of the texels being applied to it. OpenGL chooses
the mipmap level that allows as close to one-to-one mapping as possible.

Each level in a mipmap is defined using g1TexImage3D(), g1TexImage2D(), or g1TexImagelD().
The Tevel parameter of these functions specifies the level of detail, or resolution level, of
the image being specified.

Mipmaps 167

3
M
(N}
128x128 b
()
Bdxb4 | . "
32x32 s
1x1

Figure 7.6 Mipmaps help control the level of detail for textured objects.

By default, you have to specify all levels starting from level 0 to the level at which the tex-
ture becomes 1 X 1 (which is equivalent to log, of the largest dimension of the base tex-
ture). You can, however, change these limits by using the g1TexParameter() function with its
pname parameter set to GL_TEXTURE_BASE_LEVEL or GL_TEXTURE_MAX_LEVEL, respectively. The
value passed to either of these parameters must be a positive integer.

Mipmapping is first enabled by specifying one of the mipmapping values for texture
minification. Once the texture minification filter has been set, you then only need to spec-
ify the texture mipmap levels with one of the g1TexImage3D(), g1TexImage2D(), or g1TexIm-
agelD() functions, depending on your texture dimensionality. The following example code
sets up a seven-level mipmap with a minification filter of GL_NEAREST_MIPMAP_LINEAR and
starting at a 64 X 64 base texture:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);
g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 64,64,0, GL_RGB, GL_UNSIGNED_BYTE, texImage0);
g1TexImage2D(GL_TEXTURE_2D, 1, GL_RGB, 32,32,0, GL_RGB, GL_UNSIGNED_BYTE, texImagel);
g1TexImage2D(GL_TEXTURE_2D, GL_RGB, 16,16,0, GL_RGB, GL_UNSIGNED_BYTE, texImage?);
g1TexImage2D(GL_TEXTURE_2D, 3, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, texImage3);
)
)
)

(

(2

(3 ;
g1TexImage2D(GL_TEXTURE_2D, 4, GL_RGB, 4, 4, 0, GL_RGB, GL_UNSIGNED_BYTE, texImage4

(5

(6

’

g1TexImage2D(GL_TEXTURE_2D, 5, GL_RGB, 2, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, texImageb
g1TexImage2D(GL_TEXTURE_2D, 6, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_BYTE, texImage6

’

Mipmaps and the OpenGL Utility Library

The GLU library provides the gluBuild2DMipmaps() and gluBuild1DMipmaps() functions to
build mipmaps automatically for two- and one-dimensional textures, respectively. These

168

Chapter 7 = Texture Mapping

functions replace the set of function calls you would normally make to the g1TexImage2D()
and g1TexImagelD() functions to specify mipmaps.

int gluBuild2DMipmaps(GLenum target, GLint components, GLint width, GLint height,
GLenum format, GLenum type, const void *data);

int gluBuild1DMipmaps(GLenum target, GLint components GLint width, GLenum format,
GLenum type, const void *data);

One of the nice features about these functions is that you do not have to pass a power-of-
2 image because gluBuild2DMipmaps() and gluBuild1DMipmaps() automatically rescale your
images’ width and height to the closest power of 2 for you.

The following code uses the gTuBuild2DMipmaps() function to specify mipmaps in the same
way as the previous mipmap example using g1TexImage2D():

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);
gluBuild2DMipmaps (GL_TEXTURE_2D, GL_RGB, 64, 64, GL_RGB, GL_UNSIGNED_BYTE, texImage0);
Automatic Mipmap Generation

Extension

Extension name: SGIS_generate_mipmap
Name string: GL_SGIS_generate_mipmap
Promoted to core: OpenGL 1.4
Function names: None

Tokens: GL_GENERATE_MIPMAP_SGIS

As of Version 1.4, OpenGL has introduced a new method for automatically generating
mipmaps with the texture parameter GL_GENERATE_MIPMAP. Setting this parameter to GL_TRUE
will induce a mechanism that automatically generates all mipmap levels higher than the
base level. The internal formats and border widths of the derived mipmap images all
match those of the base level image, and each increasing mipmap level reduces the size of
the image by half. The actual contents of the mipmap images are computed by a repeated,
filtered reduction of the base mipmap level.

One of the nice features of this parameter is that if you change the texture image data, the
mipmap data is calculated automatically, which makes it extremely useful for textures
you’re changing on the fly.

We are actually discussing texture parameters in the next section. This means you should
read on to find out how to use the automatic mipmap generation functionality of
OpenGL!

Texture Parameters

Texture Parameters

OpenGL provides several parameters to control how textures are treated when specified,
changed, or applied as texture maps. Each parameter is set by calling the g1TexParameter()
function (as mentioned in the section “Texture Filtering”):

void glTexParameter{if}(GLenum target, GLenum pname, TYPE param);
void glTexParameter{if}v(GLenum target, GLenum pname, TYPE params);

As mentioned before, the value of the target parameter refers to the texture target and can
be equal to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP. The pname
parameter is a constant indicating the parameter to be set, a list of which is shown in Table
7.5. In the first form of the g1TexParameter() function, param is a single-valued parameter;
in the second form, params is an array of parameters whose type depends on the parame-
ter being set.

Table 7.5 Texture Parameters

Name Type Values

GL_TEXTURE_WRAP_S integer GL_CLAMP, GL_CLAMP_TO_EDGE*, GL_REPEAT,
GL_CLAMP_TO_BORDER™, GL_MIRRORED_REPEAT*

GL_TEXTURE_WRAP_T integer GL_CLAMP, GL_CLAMP_TO_EDGE*, GL_REPEAT,
GL_CLAMP_TO_BORDER*, GL_MIRRORED_REPEAT*

GL_TEXTURE_WRAP_R integer GL_CLAMP, GL_CLAMP_TO_EDGE*, GL_REPEAT,
GL_CLAMP_TO_BORDER*, GL_MIRRORED_REPEAT*

GL_TEXTURE_MIN_FILTER integer GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST,

GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_MAG_FILTER integer GL_NEAREST, GL_LINEAR

GL_TEXTURE_BORDER_COLOR 4 floats any 4 values from 0 to 1

GL_TEXTURE_PRIORITY float any value from 0 to 1

GL_TEXTURE_MIN_LOD* float any value

GL_TEXTURE_MAX_LOD* float any value

GL_TEXTURE_BASE_LEVEL* integer any non-negative integer

GL_TEXTURE_MAX_LEVEL* integer any non-negative integer

GL_TEXTURE_LOD_BIAS* float any value

GL_DEPTH_TEXTURE_MODE** enum GL_LUMINANCE, GL_INTENSITY, GL_ALPHA

GL_TEXTURE_COMPARE_MODE** enum GL_NONE, GL_COMPARE_R_TO_TEXTURE

GL_TEXTURE_COMPARE_FUNC** enum GL_LEQUAL, GL_GEQUAL, GL_LESS, GL_GREATER, GL_EQUAL,
GL_NOTEQUAL, GL_ALWAYS, GL_NEVER

GL_GENERATE_MIPMAP* boolean GL_TRUE or GL_FALSE

* Available only via extensions under Windows. See the explanation of the parameter in this chapter for details.
** Available only via the ARB_depth_texture and ARB_shadow extensions under Windows.

169

170

Chapter 7 = Texture Mapping

Texture parameters for a cube map texture apply to the entire cube map; the six individ-
ual texture images cannot be controlled separately.

Texture Wrap Modes

Texture wrap modes allow you to modify how OpenGL interprets texture coordinates
outside of the range [0, 1] and at the edge of textures. Using the g1TexParameter() function
with GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or GL_TEXTURE_WRAP_R, you can specify how
OpenGL interprets the s, £, and r texture coordinates, respectively.

OpenGL provides five wrap modes: GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BOR-
DER, and GL_MIRRORED_REPEAT. Let’s discuss these individually.

Wrap Mode GL_REPEAT

The GL_REPEAT wrap mode is the default behavior of OpenGL for texture coordinates. In
this mode, OpenGL essentially ignores the integer portion of texture coordinates and uses
only the fractional part. For example, if you specify the 2D texture coordinates (2.0, 2.0),
then the texture will be placed twice in the s and ¢ directions, as compared to the texture
being placed once with texture coordinates of (1.0, 1.0) in the same polygon space. This
essentially means GL_REPEAT allows you to create a tiled effect. Figure 7.7 illustrates how the
GL_REPEAT wrap mode with texture coordinates (2.0, 2.0) affects the TextureBasics example
presented earlier.

800G G- Chapter 1 - Texture Bavics

Figure 7.7 Result of using GL_REPEAT with texture coordinates (2.0, 2.0)
with the TextureBasics example.

Texture Parameters

While GL_REPEAT is OpenGL’s default behavior, you can force it by specifying GL_REPEAT as
the value for GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or GL_TEXTURE_WRAP_R. The following line
of code will force GL_REPEAT on the currently bound texture object’s s coordinate:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

Wrap Mode GL_CLAMP

The GL_CLAMP wrap mode simply clamps texture coordinates in the range 0.0 to 1.0. If you
specify texture coordinates outside this range, then OpenGL will take the edge of the tex-
ture and extend it to the remainder of the textured surface. Figure 7.8 illustrates how the
GL_CLAMP wrap mode with texture coordinates (2.0, 2.0) affects the TextureBasics example
presented earlier (look at the right polygon).

The following example line of code tells OpenGL to use GL_CLAMP on the currently bound
texture object’s f coordinate:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

0 G2 Cnaptar 4 esture B,

Figure 7.8 Result of using GL_CLAMP with texture coordinates (2.0, 2.0)
in the TextureBasics example.

171

172

Chapter 7 = Texture Mapping

Wrap Mode GL_CLAMP_TO_EDGE

The GL_CLAMP_TO_EDGE wrap mode clamps texture coordinates such that the texture filter
never samples a border texel. Normally, OpenGL clamps such that the texture coordinates
are limited to exactly the range 0 to 1. This means that when GL_CLAMP is used, OpenGL
straddles the edge of the texture image, taking half of its color sample values from within
the texture image and the other half from the texture border.

When GL_CLAMP_TO_EDGE is used, however, OpenGL never takes color samples from the tex-
ture border. The color used for clamping is taken only from the texels at the edge of the
texture image. This can be used to prevent seams between textures.

The following line of code tells OpenGL to use GL_CLAMP_TO_EDGE on the currently bound
texture object’s s coordinate:

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

Extension

Extension name: SGIS_texture_edge_clamp
Name string: GL_SGIS_texture_edge_clamp
Promoted to core: OpenGL 1.2

Function names: None

Tokens: GL_CLAMP_TO_EDGE_SGIS

Wrap Mode GL_CLAMP_TO_BORDER

The GL_CLAMP_TO_BORDER wrap mode clamps texture coordinates in such a way that mirrors
the behavior of GL_CLAMP_TO_EDGE. Instead of sampling only the edge of the texture image,
GL_CLAMP_TO_BORDER only samples the texture border for its clamp color.

The following line of code tells OpenGL to use GL_CLAMP_TO_BORDER on the currently bound
texture object’s s coordinate:

g1TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);

Extension

Extension name: ARB_texture_border_clamp
Name string: GL_ARB_texture_border_clamp
Promoted to core: OpenGL 1.3

Function names: None

Tokens: GL_CLAMP_TO_BORDER_ARB

Texture Parameters

Wrap Mode GL_MIRRORED_REPEAT

The GL_MIRRORED_REPEAT wrap mode essentially defines a texture map twice as large as the
original texture image. The additional texture map area created contains a mirror image
of the original texture. You can use this wrap mode to achieve seamless tiling of a surface.

The following line of code tells OpenGL to use GL_MIRRORED_REPEAT on the currently bound
texture object’s s coordinate:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);

Extension

Extension name: ARB_texture_mirrored_repeat
Name string: GL_ARB_texture_mirrored_repeat
Promoted to core: OpenGL 1.4

Function names: None

Tokens: GL_MIRRORED_REPEAT_ARB

Texture Level of Detail

The decision to use the minification filtering mode or the magnification filtering mode on
a texture is determined by a set of parameters controlling the texture level of detail calcu-
lations. By manipulating these parameters, you can control the transition of textures from
minification filtering to magnification filtering and vice versa.

Two of these parameters, GL_TEXTURE_MIN_LOD and GL_TEXTURE_MAX_LOD, allow you to control
the level of detail range. By default, the range is [-1000.0, 1000.0], which essentially guar-
antees that the level of detail will never be clamped. The following code sets the level of
detail range to [-10.0, 10.0] for a two-dimensional texture:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_LOD, -10.0);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, 10.0);

Another parameter, GL_TEXTURE_LOD_BIAS, allows you to control the level of detail bias level,
causing it to change levels sooner or later than it normally would. The bias level is used in
the computation for determining the mipmap level of detail selection, providing a means
to blur or sharpen textures. This functionality can lead to special effects such as depth of
field, blurring, or image processing. Here’s an example:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, 3.0);

173

174 Chapter 7 = Texture Mapping

Extension

Extension name: EXT_texture_lod_bias
Name string: GL_EXT_texture_lod_bias
Promoted to core: OpenGL 1.4
Function names: None

Tokens: GL_TEXTURE_LOD_BIAS_EXT

Texture Environments and Texture Functions

OpenGL’s g1TexEnv() function allows you to set parameters of the texture environment
that determine how texture values are applied when texturing:

void g1TexEnv{if}(GLenum target, GLenum pname, T param);
void g1TexEnv{if}v(GLenum target, GLenum pname, T params);

For this function, the target parameter must be either GL_TEXTURE_ENV or GL_TEXTURE_
FILTER_CONTROL. The pname parameter tells OpenGL which parameter you wish to set with
the value passed to param (or params for an array of values).

To better explain the purpose of texture environments, let’s review how OpenGL textur-
ing works. Texturing is enabled and disabled with the g1Enable()/q1Disable() functions by
specifying the dimensionality of the texture you wish to use. For instance, you may spec-
ify GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP to enable the one-,
two-, or three-dimensional, or cube map texture mapping, respectively. The rule of tex-
ture dimensionality follows that the highest enabled dimensionality (1D, 2D, 3D, cube) is
enabled and used for texture mapping. If all texturing is disabled, any fragments coming
through the pipeline are simply passed to the next stage.

If texturing is enabled, a texture is determined based on the texture parameters and
dimensionality (1D, 2D, 3D, or cube map) of the incoming fragment. The texture envi-
ronment is then used to determine the texture function applied to the texture, whose red,
green, blue, and alpha values are then replaced with freshly computed ones. These RGBA
values are finally passed on to further OpenGL operations in the pipeline.

OpenGL includes one or more texture units representing stages in the texture mapping
process that are enabled and have texture objects bindings independently from each other.
Each unit has its own set of states, including those related to the texture environment.

Figure 7.9 illustrates how each texture unit is paired with a texture environment function.
Note that in the figure each texture unit passes its results on to the next texture unit. This

Texture Environments and Texture Functions

TexUnitD
Texture H
TexUnit1
TE
> TexUnit2
A TE
e TexUnit3
TE
) Final Collor
TE -
Fragment Color

Figure 7.9 Texture environments operate on all textures passed through their
associated texture units.

functionality is called multitexturing, which will be discussed in Chapter 9, “More on Tex-
ture Mapping.” Only the first texture unit (typically texture unit zero) is used when using
basic texture mapping techniques as described in this chapter. The important concept to
understand right now is that a texture environment is tied to a texture unit and affects all
textures passing through that texture unit. This is contrary to the common misconception
among newcomers to OpenGL that each texture object maintains states related to the tex-
ture environment.

Now that we have that down, let’s discuss how we modify the texture environment.

Specifying the Texture Environment

Looking back at the g1TexEnv() function, if the target is equal to GL_TEXTURE_FILTER_CONTROL,
then pname must be set equal to GL_TEXTURE_LOD_BIAS. The value parameter passed must then
be a single floating-point value that sets the level of detail bias for the currently active tex-
ture unit. This functionality is equivalent to the texture object level of detail bias described
in the section “Texture Level of Detail” in this chapter.

When target is equal to GL_TEXTURE_ENV, pname can be set to GL_TEXTURE_ENV_MODE,
GL_TEXTURE_ENV_COLOR, GL_COMBINE_RGB, or GL_COMBINE_ALPHA.

If GL_TEXTURE_ENV_COLOR is used, then OpenGL expects four floating-point values in the
range from 0 to 1 representing an RGBA color to be passed to the params parameter. You
may also pass four integers, and OpenGL will convert them to floating-point values as
necessary. This color is used in conjunction with the GL_BLEND environment mode.

175

176

Chapter 7 = Texture Mapping

If pname is GL_TEXTURE_ENV_MODE, then you
are specifying the fexture function. The
result of a texture function is dependent
on the texture itself and the fragment it is
being applied to. The exact texture func-
tion that is used depends on the internal
format of the texture that was specified.
For reference, the base internal formats
are listed in Table 7.6. Acceptable values
for GL_TEXTURE_ENV_MODE are GL_REPLACE,
GL_MODULATE, GL_DECAL, GL_BLEND, GL_ADD, and
GL_COMBINE.

Note

Table 7.6 Texture Internal Formats

Format Texture Source Color
GL_ALPHA =(0,0,0;A, =A,
GL_LUMINANCE C (L, L, LA =1
GL_LUMINANCE_ALPHA C = (Lt, L) A A,
GL_INTENSITY C. =, |t lt) =1,

GL_RGB C = () A =1
GL_RGBA C = (R) A =A

You may notice subscripts being used in the following tables. A subscript of t indicates a filtered
texture value, s indicates the texture source color, fdenotes the incoming fragment value, c refers
to the values assigned with GL_TEXTURE_ENV_COLOR, and v refers to the final computed value. For
regular-sized text, C refers to the RGB ftriplet, A is the alpha component value, L is a luminance
component value, and /is an intensity component value.

The color values listed in the following tables are all in the range [0, 1]. Each table shows
how the texture functions use colors from the texture value, texture source color, incom-
ing fragment color, and texture environment value to determine the final computed value.
Table 7.7 includes the calculations for GL_REPLACE, GL_MODULATE, and GL_DECAL. Table 7.8
includes the calculations for GL_BLEND and GL_ADD.

Table 7.7 GL_REPLACE, GL_MODULATE, GL_DECAL

Format GL_REPLACE GL_MODULATE GL_DECAL
GL_ALPHA C,=G =G undefined
Av = As Av = AfAs
GL_LUMINANCE C, =C C,=GC undefined
A, =A, A, =A
GL_LUMINANCE_ALPHA C, =C C,=GC, undefined
A, =A, A, =AA,
GL_INTENSITY C, =C C,=GC undefined
A, =A, A, = AA,
GL_RGB C,=C C, = GC, ¢, =C
A, =A A, =A A, = A
GL_RGBA C,=C C, = GC, C,=C(1-A)+CA,
A, =A, A, = AA, A, = A,

Texture Environments and Texture Functions 177

Table 7.8 GL_BLEND and GL_ADD

Format GL_BLEND GL_ADD*
GL_ALPHA ¢, =¢ ¢, =G
A=A, A, =AA,
GL_LUMINANCE C,=G(1-C)+CC, C,=C+C
A, =A A, =A
GL_LUMINANCE_ALPHA C,=GCl1-C)+CC, C,=C+C,
A, =AA, A, =AA,
GL_INTENSITY C,=G(1-C)+CC C,=C+C,
A, =A(1-A) +AA, A, =AA,
6L_ReB C,=C1-C)+CC, C,=C+C,
Av = Af Av = Af
GL_RGBA C,=G(-C)+CC C,=GCG+C
Av = AfAs Av = AfAs

* Available only via the ARB_texture_env_add extension under Windows.

Since we know these tables can be a little overwhelming for the uninitiated, let’s step
through a couple of these formulas and figure out what exactly is going on. We’ll start with
one of the easy ones and look at GL_REPLACE with the format GL_RGBA.

Looking at the table, you will see C, = C and A = A_. That’s not too bad, right? But what
is it saying? As noted prior to the tables, the s subscript indicates the texture source color,
and the v subscript indicates our final color output. So, C = C_ says that the texture source
RGB values will be transferred straight to the final color output. Similarly, A | = A_ says
that the alpha component will be copied to the final alpha output value. So if we have an
RGBA color value of (0.5, 0.3, 0.8, 0.5), then the final RGBA output value will be (0.5, 0.3,
0.8, 0.5). How about a slightly more difficult equation, like GL_MODULATE on the GL_RGBA
format?

In the table you will see C = C,C and A = A/A. It’s not a terribly complicated set of func-
tions, but the results are much different. So, what are these equations saying? Well, you
know what the s and v subscript are, and if you look at the prior note you will see that the
f subscript denotes the incoming fragment value. C = CC is saying that the fragment
color is multiplied by the texture source color. A, = A/A_ is saying the same, except with
the alpha component values. As an example, these formulas are saying that if the polygon
we are texturing has a solid color of red without transparency, (1.0, 0.0, 0.0, 1.0), and we
reach a texture color value of (0.2, 1.0, 0.7, 0.5), then the final color output for the texture
fragment will be equal to (1.0 X 0.2, 0.0 x 1.0, 0.0 x 0.7, 1.0 X 0.5), or (0.2, 0.0, 0.0, 0.5).
That’s not too bad, right? One more example: GL_BLEND with GL_RGB.

178

Chapter 7 = Texture Mapping

GL_RGB doesn’t work with an alpha component value, so we can focus on the equation given
in the table for the RGB values: C, = C,(1 - C)) + C _C.. In English (or at least our best dialect
of the language), this means that the final color value is equal to the incoming fragment
color multiplied by the result of one minus the texture source color. The result of this mul-
tiplication is then added to the result of the texture environment color multiplied by the tex-
ture source color. In other words, given a texture source color of (0.2, 0.5, 1.0), a fragment
color of (1.0, 0.5, 0.8), and a texture environment color of (0.3, 0.4, 0.9), the formula gives
a final value of (1.4, 0.45, 0.9). However, 1.4 is beyond the [0, 1] range that color values are
limited to, so OpenGL clamps the final color value to (1.0, 0.45, 0.9).

If the value of GL_TEXTURE_ENV_MODE is GL_COMBINE, then the texture function OpenGL selects
depends on the values of GL_COMBINE_RGB and GL_COMBINE_ALPHA. This is directly related to
multitexturing, it will be covered in Chapter 9.

Textured Terrain

In OpenGL Game Programming, we provided an example in the texture chapter that ren-
dered and textured a simple heightfield terrain. We are going to revisit that example and
hopefully make it better!

In its most basic form, a heightfield terrain is a virtual representation of a landscape whose
data points are a two-dimensional set of evenly spaced height values. When you render
these data points as a mesh on the screen, you see what resembles a landscape.

Keep in mind that the method we are about to show you is only one way to develop a sim-
ple landscape. Terrain rendering is a fairly large area of computer graphics, with plenty of
research and interest. Do a search for the topic on your favorite search engine, and you
will find enough information to keep you busy for years.

Building the Mesh

Keeping in mind our definition of heightfield terrain, you are going to create a grid of ver-
tices that are spaced evenly apart but have varying height values based on the height of the
terrain data at each vertex’s grid location.

You will be determining the height values by loading a 32 x 32 grayscale Targa image into
memory with each color value in the image representing a height value mapped to a grid
location in the heightfield. Since we will be using a grayscale image, the color values and
effectively the height values will range from 0 to 255.

After loading the height values into an array in memory, you will have a set of data points
that represent the height of the terrain. Next you need to determine the distance between
each height vertex, which we will call the map scale. We will use the map scale to program-
matically increase or decrease the actual width and height of the terrain in world units.

Textured Terrain

When you assign the 3D vertex coordinates for each height value, you will need to multi-
ply the map scale factor by the height value’s (x, y) index location in the heightfield array.
For example, when you are defining the x coordinate for a vertex, you will determine the
height value’s x-axis location in the heightfield array and multiply that value by the map
scale factor.

To render the terrain map, you will use a
GL_TRIANGLE_STRIP for each row of height val-
ues along the z-axis. You will need to render
the points of the triangle strip in a specific
order so the heightfield terrain is rendered
properly. Each row is drawn by specifying ver-
tices in a Z pattern along the x-axis, as shown Vertex 2 Vertex 3
in Figure 7.10. For texturing, you will texture
every group of 16 vertices. Once you reach the
end of the row, you move on to the next row
of heightfield data and repeat the process
until the terrain is complete. As an added To other vertices

Wertex O Verbex 1

bonus, water is added into the terrain by ren-

dering a textured quadrilateral at a “water Figure 7.10 Process the vertices in a Z
level” height pattern for each row in the terrain.

This example also includes a skybox, which is a large cube whose inside faces are textured
with images representing the distant horizon. Skyboxes provide a good, simple way to
enhance the environment of an outdoor graphics scene. The position of the camera is
used as the origin of the skybox, with all six sides of the skybox remaining centered
around the camera even as it moves around the world. Maintaining the origin of the sky-
box at the camera position helps keep the illusion of distance for the viewer.

Finally, we added mouse input control for the camera, so you can rotate and set the height
of the camera with the mouse.

You can see the source code in the CD included with this book, under Chapter 7, and the
folder Terrain. We aren’t going to dump all of the code here for you, but let’s take a look
at the most important function, DrawTerrain():

void CGfxOpenGL::DrawTerrain()
{
// draw the terrain
g1BindTexture(GL_TEXTURE_2D, m_grassTexture);
g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
for (int z = 0; z < TERRAIN_SIZE - 1; ++z)
{
g1Begin(GL_TRIANGLE_STRIP);

179

180 Chapter 7 = Texture Mapping

for (int x = 0; x < TERRAIN_SIZE; ++x)
{
/] render two vertices of the strip at once
float scaledHeight = heightmap[z * TERRAIN_SIZE + x] / SCALE_FACTOR;
float nextScaledHeight = heightmap[(z + 1)* TERRAIN_SIZE + x] / SCALE_FACTOR;
float color = 0.5f + 0.5f * scaledHeight / MAX_HEIGHT;
float nextColor = 0.5f + 0.5f * nextScaledHeight / MAX_HEIGHT;

glColor3f(color, color, color);

g1TexCoord2f ((GLf1oat)x/TERRAIN_SIZE*8, (GLfloat)z/TERRAIN_SIZE*8);

glVertex3f(static_cast<GLfloat>(x - TERRAIN_SIZE/2), scaledHeight,
static_cast<GLfloat>(z - TERRAIN_SIZE/2));

glColor3f(nextColor, nextColor, nextColor);
g1TexCoord2f ((GLfT1oat)x/TERRAIN_SIZE*8, (GLfloat)(z+1)/TERRAIN_SIZE*8);
glVertex3f(static_cast<GLfloat>(x - TERRAIN_SIZE/2), nextScaledHeight,
static_cast<GLfloat>(z + 1 - TERRAIN_SIZE/2));
}
glEnd();

//draw the water
gl1BindTexture(GL_TEXTURE_2D, m_waterTexture);
g1 TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
g1Begin(GL_QUADS);
g1TexCoord2f (0.0, 0.0);
glVertex3f(-TERRAIN_SIZE/2.1f, WATER_HEIGHT, TERRAIN_SIZE/2.1f);

g1TexCoord2f (TERRAIN_SIZE/4.0f, 0.0);
glVertex3f(TERRAIN_SIZE/2.1f, WATER_HEIGHT, TERRAIN_SIZE/2.1f);

g1TexCoord2f (TERRAIN_SIZE/4.0f, TERRAIN_SIZE/4.0f);
glVertex3f(TERRAIN_SIZE/2.1f, WATER_HEIGHT, -TERRAIN_SIZE/2.1f);

g1TexCoord2f(0.0, TERRAIN_SIZE/4.0f);
glVertex3f(-TERRAIN_SIZE/2.1f, WATER_HEIGHT, -TERRAIN_SIZE/2.1f);

glEnd();
}

The first half of the DrawTerrain() method draws the actual terrain. First we bind the ter-
rain’s grass texture, and then we loop through every row in the terrain heightfield data and
draw each row two vertices at a time for the GL_TRIANGLE_STRIP. We also apply a color to the
terrain based on the height of each vertex as a simple way to make the terrain shaded.

Summary

Notice how we use the texture function GL_MODULATE to allow the shading color we apply to
mix in with the texture colors.

The second half of the DrawTerrain() method draws the water level. The water texture is
bound, and the texture function GL_REPLACE is used.

A screenshot of the Terrain example is shown in Figure 7.11.

Figure 7.11 A screenshot of the Terrain example.

Summary

In this chapter you learned the basics of texture mapping, including texture objects, how
to specify textures (1D, 2D, 3D, and cube maps), how to use texture coordinates, and how
to set up texture filtering modes. You also learned the concept of mipmaps and how to
create them with OpenGL. And finally you learned about texture parameters and texture
environments and how they affect the final output of your OpenGL texturing.

What You Have Learned
m Texture mapping allows you to attach images to polygons to create realistic objects.
= Texture maps are composed of rectangular arrays of data; each element of these
arrays is called a texel.
m Texture coordinates are used to map textures onto primitives.
m Texture objects represent texture data and parameters and are accessed through
unique unsigned integers.

181

182

Chapter 7 = Texture Mapping

Each texture object has a state associated with it that is unique to that texture.

The first time you bind a texture, the texture object acquires a new state with ini-
tial values, which you can then modify to suit your needs. After that, binding effec-
tively selects the texture.

OpenGL provides three main functions for specifying a texture: g1TexImagelD(),
g1TexImage2D(), and g1TexImage3D().

Texture filtering tells OpenGL how it should map the pixels and texels when calcu-
lating the final image.

Magnification refers to when a screen pixel represents a small portion of a texel.
Minification refers to when a pixel represents a collection of texels.

A mipmap is a texture consisting of levels of varying resolutions taken from the
same texture image. Each level in the texture has a resolution lower than the previ-
ous one.

OpenGL provides several parameters to control how textures are treated when
specified, changed, or applied as texture maps. Each parameter is set by calling the
g1TexParameter() function.

The decision to use the minification filtering mode or the magnification filtering
mode on a texture is determined by a set of parameters controlling the texture
level of detail calculations.

OpenGLs g1TexEnv() function allows you to set parameters of the texture environ-
ment that determines how texture values are interpreted when texturing.

Review Questions

1.
2.
3.

How is 2D texturing enabled in OpenGL?
What is a texture object?

Write the line of code to specify a 64 x 64 2D RGBA texture whose pixel data is
stored in unsigned bytes.

4. If the base texture level size is 128 X 128, what are the dimensions of the mipmaps?
5. What is the default OpenGL texture wrap mode?

6. True or false: Each texture unit maintains its own texture environment.

On Your Own

1.

Given a pointer to 2D image data, imageData, whose dimensions are 256 X 256 and
type is RGBA, write code to create a texture object, specify the 2D texture with
mipmaps, and texture a polygon with that texture.

. Modify the Terrain example to texture the higher elevations of the terrain with a

snow texture.

PART I

| BEYOND
- THE BASICS

CHAPTER 8
OpenGL EXtENSIONSot 185

CHAPTER 9
More on Texture Mappingottt e 197

CHAPTER 10
Up Your Performancec..iuiiiiiiiiiiiiinnnnn.. 221

CHAPTER 11
Displaying Textottt e 249

CHAPTER 12
OpenGLBuUffers. e 261

CHAPTER 13
The Endgame. 277

This page intentionally left blank

CHAPTER 8

OPENGL EXTENSIONS

ack in Chapter 1, “The Exploration Begins . . . Again,” we mentioned that the

OpenGL extension mechanism exists so that hardware vendors can easily inno-

vate and add features that graphics and game developers can immediately access
through OpenGL. The most useful and ubiquitous of these extensions eventually become
part of the OpenGL core specification.

In this chapter you'll learn more about extensions and how to use them. Specifically, you'll
learn:

Exactly what an extension is
= Why extensions are particularly important on Windows platforms
= How to use extensions under Windows

= How to use GLee to manage extensions easily and quickly

Anatomy of an Extension

Fundamentally, an extension is—just like OpenGL itself—a specification. When a new
extension is created, it is documented and released through several channels, most impor-
tantly the official OpenGL Extension Registry, which can be found online at:

http://oss.sgi.com/projects/ogl-sample/registry/

The specification for an extension includes a great deal of information about the exten-
sion, including a brief justification for its existence, other extensions it depends on or
interacts with, updates to the OpenGL specification that need to be made to accommo-
date it, and a revision history. It also includes the name of the extension, the extension
name string, and new functions and tokens introduced by the extension. Because these are
the things you'll be dealing with most often, let’s look at each one of them in detail.

185

186

Chapter 8 ® OpenGL Extensions

Extensions Under Windows

Given the bleeding edge nature of extensions, they may seem out of place in a beginners’ text, a
sentiment with which we'd normally agree. However, if you're using OpenGL on any Windows plat-
forms, extensions are absolutely necessary because they are the only current means of using any-
thing beyond OpenGL 1.1.

To understand why, let's review what you need in order to program using any precompiled library,
including OpenGL. First of all, you need the appropriate header files. The headers contain function
prototypes, constant definitions, and macros. Second, you need the libraries containing the imple-
mentations of functions defined in the header. Most libraries get updated from time to time, adding
new features, and possibly changing existing ones. To be able to take advantage of these new fea-
tures in a program you're writing, you need to have the latest headers and libraries.

That's where the problem lies. The latest commercial headers and libraries for OpenGL available on
Windows platforms are for OpenGL 1.1. That's right, the latest OpenGL headers and libraries for
Windows are four versions and almost 10 years out of date.

Fortunately, even though Microsoft has not been keeping up with the latest OpenGL specification,
the major graphics hardware vendors have been. The latest OpenGL features are implemented in
their hardware and drivers and just waiting to be tapped—through the extension mechanism.

Extension Names

Every OpenGL extension has a name by which it can be precisely and uniquely identified.
They use the following naming convention:

PREFIX_extension_name

The PREFIX identifies the vendor who developed the extension or, in the case of EXT and
ARB, the extension’s level of promotion. Table 8.1 lists the most important prefixes cur-
rently in use and their associated meaning. The extension_name identifies the extension.
Note that the name cannot contain any spaces. Some example extension names are
ARB_shading_language_100, EXT_packed_pixels, NV_blend_square, and ATI_texture_float.

Tip

Some extensions share a name but have a different prefix. These extensions may not be inter-
changeable because their semantics may differ slightly. For example, ARB_texture_env_combine is
not the same thing as EXT_texture_env_combine. Rather than making assumptions, be sure to con-
sult the extension specifications when you're unsure.

Anatomy of an Extension 187

Table 8.1 Subset of OpenGL Extension Prefixes

Prefix Meaning/Vendor

ARB Extension approved by OpenGL's Architectural Review Board (first introduced with
OpenGL 1.2)

EXT Extension agreed upon by more than one OpenGL vendor

ATI ATl Technologies

ATIX ATl Technologies (experimental)

NV NVIDIA Corporation

SGI Silicon Graphics

SGIS Silicon Graphics (specialized)

SUN Sun Microsystems

WIN Microsoft

Name Strings

Each extension defines a name string that, when used in conjunction with
91GetString(GL_EXTENSIONS), is used to identify whether or not an implementation supports
the extension. We’ll discuss the details of how to use this in the “Using Extensions” section
later in this chapter.

Name strings are generally the name of the extension preceded by another prefix. For
most OpenGL name strings, this is GL_ (e.g., GL_ARB_shadow). When the name string is tied
to a particular windows system however, the prefix will reflect which system that is (e.g.,
Win32 uses WGL_).

Note

Some extensions may define more than one name string. This would be the case if the extension
provided both core OpenGL functionality and functionality specific to the windowing system.

Functions

Many (but not all) extensions introduce one or more new functions to OpenGL. To use
these functions, you’ll have to obtain a pointer to their entry point, which requires that
you know the name of the function. This process is described in detail in the “Using
Extensions” section.

The functions defined by the extension follow the naming convention used by the rest of
OpenGL, namely g1FunctionName(), with the addition of a suffix using the same letters as
the extension name’s prefix. For example, the NV_fence extension includes the functions
glGetFencesNV(), g1SetFenceNV(), g1TestFenceNV(), and so on.

188

Chapter 8 ® OpenGL Extensions

Tokens

An extension may define one or more tokens or enumerants. In some extensions, these
tokens are intended for use in the new functions defined by the extension (which may
be able to use existing enumerants as well). In other cases, they are intended for use
with existing OpenGL functions, thereby adding new functionality. For example, the
ARB_texture_env_add extension defines a new enumerant, GL_ADD. This enumerant can be
passed as the params parameter of the various g1TexEnv() functions when the pname para-
meter is GL_TEXTURE_ENV_MODE.

The new enumerants follow the normal OpenGL naming convention (i.e., GL_WHATEVER),
except that they are suffixed by the letters used in the extension name’s prefix, such as
GL_VERTEX_SOURCE_ATI.

Using new enumerants is much simpler than using new functions, since they are simply
numeric values. These values appear in the spec, so you can define the tokens yourself or
use a third-party header, such as the one provided by SGI at the following URL:

http://oss.sgi.com/projects/ogl-sample/ABI/glext.h

In addition to definitions for new tokens, this file also contains prototypes and function
pointer typedefs for extension functions. Similar headers are available from the NVIDIA
and ATT Web sites.

Tip

Though most extensions add either functions or tokens (or both), some don't. The ones that don’t
simply allow existing functions and tokens to be used together in ways that previously weren't
allowed.

Using Extensions

Now that you have a better understanding of what an extension is, it’s time to learn how
to use them. The process can be described in a few simple steps:

1. Determine whether or not the extension is supported.
2. Obtain the entry point for any of the extension’s functions that you want to use.

3. Define any tokens you’re going to use.

Note

Before checking for extension availability and obtaining pointers to functions, you MUST have a
current rendering context.

Using Extensions

Checking the Name String

Calling g16etString() with GL_EXTENSIONS returns a string containing a list of all of the name
strings for all extensions supported by the implementation. You can then parse this string
to determine whether the extension you want is present. The code will look something like
this:

char* extensionsList = (char*) glGetString(GL_EXTENSIONS);

After this executes, extensionsList points to a null-terminated buffer. The name strings in
it are separated by spaces, including a space after the last name string.

Note

We're casting the value returned by g1GetString() because the function actually returns an array
of unsigned chars. Because most of the string manipulation functions require signed chars, we do
the cast once now instead of doing it many times later.

When parsing the extension string, some care needs to be taken to avoid accidentally
matching a substring. For example, if you're trying to use the NV_texture_shader extension
and the implementation doesn’t support it but it does support NV_texture_shader3, calling
something like:

strstr("GL_NV_texture_shader", extensionsList);

is going to give you positive results, making you think that the EXT_texture_env extension
is supported, when it’s really not. The CheckExtension() function shown below demon-
strates one way to avoid this problem.

bool CheckExtension(char* extensionName)
{
// get the Tist of supported extensions
char* extensionlList = (char*) g1GetString(GL_EXTENSIONS);

if (lextensionName || !extensionList)
return false;

while (*extensionlList)
{
// find the length of the first extension substring
unsigned int firstExtensionlength = strcspn(extensionlist, " ");

if (strlen(extensionName) == firstExtensionLength &&
strncmp(extensionName, extensionlist, firstExtensionlLength) == 0)

189

190

Chapter 8 ® OpenGL Extensions

return true;

// move to the next substring
extensionlist += firstExtensionlength + 1;
}

return false;
}

If an extension you'd like to use isn’t supported, you need to take appropriate action. This
may be disabling that particular feature, trying a similar extension instead, or even exit-
ing gracefully. The important thing is to not assume that the extension exists. Doing so
can lead to crashes or weird behavior, especially if youre using new or vendor-specific
extensions.

Obtaining the Function’s Entry Point

Because you do not have the implementation of extension functions available to you when
you compile your program, you need to dynamically link to them at runtime. This merely
involves obtaining a function pointer.

The first step is to declare a function pointer. If you’ve worked with function pointers
before, you know that they can be pretty ugly. If not, here’s an example:

void (APIENTRY * pglCopyTexSubImage3DEXT) (GLenum, GLint, GLint,
GLint, GLint, GLint, GLint, GLsizei, GLsizei) = NULL;

The next step is attempting to assign an entry point to the function pointer. The
function used to do this varies, depending on the platform you’re using. For Windows, it’s
wglGetProcAddress():

PROC wglGetProcAddress(LPCSTR 1pszProcName);

The only parameter is the name of the function you want to get the address of. The return
value is the entry point of the function if it exists, or NULL otherwise. Because the value
returned is a generic pointer, you need to cast it to the appropriate function pointer type.

Let’s look at an example, using the function pointer we declared above:

pglCopyTexSubImage3DEXT =
(void (APIENTRY *) (GLenum, GLint, GLint, GLint, GLint,
GLint, GLint, GLsizei, GLsizei))
wglGetProcAddress("g1CopyTexSubImage3DEXT");

And you thought the function pointer declaration was ugly.

WGL Extensions

You can make life easier on yourself by using typedefs. As mentioned earlier, the glext.h
header already contains typedefs for most of the extension functions, making your life eas-
ier. Using this header, the previous code improves to:

PFNGLCOPYTEXSUBIMAGE3DEXTPROC pglCopyTexSubImage3DEXT = NULL;
pglCopyTexSubImage3DEXT = (PFNGLCOPYTEXSUBIMAGE3DEXTPROC)
wglGetProcAddress("g1CopyTexSubImage3DEXT");

As long as wglGetProcAddress() doesn’t return NULL, you can then freely use the function
pointer as if it were a normal OpenGL function.

Tip

You may notice that in the example code we've added a p to the beginning of the function
name. When declaring OpenGL function pointers, it's a good idea to avoid using the same
name as the function because this can cause linking conflicts when using shared libraries. One
way to get around having to use the prefixed function in your code is to use an alias, such as
fidefine g1CopyTexSubImage3DEXT pglCopyTexSubImage3DEXT.

Declaring Enumerants

If you are using glext.h or some other third-party header, all the tokens you need are
already defined for you. Otherwise, you can look up the values in the spec and define them
yourself. For example, the spec for EXT_texture_lod_bias says that GL_TEXTURE_LOD_BIAS_EXT
should have a value of 0x8501, so you'd use the following:

fidefine GL_TEXTURE_LOD_BIAS_EXT 0x8501

WGL Extensions

In addition to the standard OpenGL extensions, there are some extensions that are specific
to the Windows system. These extensions provide additions that are very specific to the win-
dowing system and the way it interacts with OpenGL, such as additional options related to
pixel formats. These extensions are easily identified by their use of “WGL” instead of “GL” in
their names. The name strings for these extensions normally aren’t included in the buffer
returned by g1GetString(GL_EXTENSIONS), although a few are. To get all of the Windows-
specific extensions, you’ll have to use another function, wglGetExtensionsStringARB(). As the
ARB suffix indicates, it’s an extension itself (ARB_extensions_string), so you’ll have to get
the address of it yourself using wg1GetProcAddress(). Note that some drivers identify this as
wglGetExtensionsStringEXT() instead, so if you fail to get a pointer to one, try the other. The
format of this function is as follows:

const char* wglGetExtensionsStringARB(HDC hdc);

191

192

Chapter 8 ® OpenGL Extensions

Its sole parameter is the handle to your rendering context. The function returns a buffer
similar to that returned by g1GetString(GL_EXTENSIONS), with the only difference being that
it contains only the names of WGL extensions.

Tip

Most of the time, it's good practice to check for an extension by examining the buffer returned by
g1GetString() before trying to obtain function entry points. However, it's not strictly necessary to
do so. If you try to get the entry point for a non-existent function, wglGetProcAddress() will
return NULL, and you can simply test for that. The reason for mentioning this is because to use
wglGetExtensionsStringARB(), that's exactly what you have to do. It appears that with most dri-
vers, the name string for this extension doesn't appear in the buffer returned by g1GetString().
Instead, it is included in the buffer returned by wg1GetExtensionsStringARB()! Go figure.

Note

Some WGL extension string names appear in the buffer returned by wg1GetExtensionsStringARB()
as well as the buffer returned by g1GetString(). This is due to the fact that those extensions
existed before the creation of ARB_extensions_string, and so their name strings appear in both
places to avoid breaking existing software.

Just as there is a glext.h header for core OpenGL extensions, so is there a wglext.h for WGL
extensions. You can find it at the following link:

http://oss.sgi.com/projects/ogl-sample/ABI/wglext.h

Introduction to GlLee

Throughout the book, many of the demos have used one or two extensions to get around
the Windows OpenGL 1.1 limitation. As you can see from the code, managing a few exten-
sions isn’t particularly difficult. However, as you begin to develop more complex games,
you may find yourself managing dozens of extensions, which can be painful. For this rea-
son, many people have developed libraries to automatically manage extensions. Some of
them have even released these libraries to the public.

The best publicly available OpenGL extension library we’ve found is the OpenGL Easy
Extension library, or GLee, developed and maintained by Ben Woodhouse. GLee is cur-
rently available for Windows and Linux, is updated automatically from the OpenGL
Extension Registry, and is released under an unrestrictive modified BSD license. We’ve
included the latest version of GLee on the CD, but you can check for updates at:

http://elf-stone.com/downloads.php#GLee

Introduction to GLee

Setting Up GLee

Before using GLee, you need to install it appropriately on your system. For Linux, this is
as easy as unpacking the tarball and running the install script included with it. For Win-
dows, you need to extract the files and copy GLee.h to the same location as the OpenGL
headers (which are in your compiler’s header directory in the g1_ subdirectory) and
GLee.lib to your compiler’s library directory. Alternatively, you can use the GLee source
code directly by extracting GLee.cpp someplace convenient for later use.

Once GLee is installed, you can use it in your projects by including the header and link-
ing to the library or including GLee.cpp in your project. GLee.h should be included instead
of g1.h, which it includes internally.

Using GLee

Before using GLee in your project, you have to initialize it. This should be done after
you've initialized the rest of OpenGL and is done by calling the following function:

GLboolean GLeeInit();

If this call returns GL_TRUE, GLee has been successfully started, and you will then be able to
use it to access the full core and extended functionality of OpenGL—well, insofar as your
video card supports it. If Gleelnit() returns GL_FALSE, you can call the following
function:

const char* GLeeGetErrorString();
which returns a descriptive string explaining the problem.

GLee includes a global Boolean variable for each extension that you can check to see
whether that particular extension is supported. The names of these flags are the extension
names prefixed by GLEE_. To check to see whether point sprites are available, you would use:

if (GLEE_ARB_point_sprite)
{
glEnabTe(GL_POINT_SPRITE_ARB);

}

Platform-specific (WGL/GLX) extensions are handled slightly differently. The Boolean
variables for them are named GLEE_ followed by the full name string, including the WGL
or GLX portion (for example, GLEE_WGL_ARB_pbuffer).

193

194

Chapter 8 ® OpenGL Extensions

You can also test to see which OpenGL version is supported by checking the value of
GLEE_VERSION_x_y where x is the major and y is the minor OpenGL version. To check to see
if OpenGL 1.4 is supported, you would use:

if (GLEE_VERSION_1_4)

{
glSecondaryColor3f(0.5f, 0.3f, 1.0f);

}

That’s all there is to it. As you can see from even these brief code snippets, GLee has
already defined all the tokens and set up the necessary function pointers for you.

Using GLee with Core Extensions

There are many extensions that are now part of core OpenGL. GLee allows you to use
these features without using suffixes on the functions. For example, you can use:

g1FogCoordf(...);
instead of:
glFogCoordfEXT(...);

If you choose to use the former approach, be sure that you’re testing the GLEE_VERSION_x_y
flag to see if the OpenGL implementation supports the version number and that the
extension was promoted to the core. Testing only the extension-specific flag could result
in a false positive. For example, if you are using fog coordinates, you might be tempted to
use something like the following code:

if (GLEE_EXT_fog_coord)
gl1FogCoordf(...);

However, on systems with OpenGL 1.3 or earlier, g1FogCoordf is an invalid pointer, even
though GLEE_EXT_fog_coord may be true. This is because fog coordinates weren’t promoted
to the core until OpenGL 1.4. The following code avoids this problem and provides a
more robust solution:

if (GLEE_VERSION_1_4)
g1FogCoordf(...)

else if (GLEE_EXT_fog_coord)
glFogCoordfEXT(...)

Summary

Extensions in Action

Because the demos for this book were written for Windows, and many of them make use
of post-OpenGL 1.1 features, there are plenty of examples of using extensions available on
the CD. Rather than picking some arbitrary extension to use as an example for this chap-
ter, we've taken the fog demo from Chapter 5 and rewritten it using GLee instead of
directly obtaining function pointers. As you can see from Figure 8.1, textures have also
been added, contributing to the realism.

1 BOGLGP - Chapter 8 - Enhanced Fog N = =1 3

Figure 8.1 Chapter 5's Fog demo, rebuilt using GLee and textures.

Summary

OpenGL extensions are essential to anyone doing development for Windows. You should
now understand why they are important and how you can use them to take advantage of
the latest features offered by modern video cards. You've also seen how libraries such as
GLee can make managing extensions easier. In addition to the core extensions used
throughout this book, you're encouraged to explore and experiment with extensions on
your own to see the latest and greatest coming in the world of graphics.

195

196

Chapter 8 ® OpenGL Extensions

What You Have Learned

Extensions exist to enable hardware vendors to innovate and add new features
quickly.

The primary elements of extensions that you deal with when programming are
functions, tokens, and the extension string.

Libraries such as GLee make it easy to manage a large number of extensions.

Review Questions

1.
2.
3.

What does the ARB extension prefix indicate?
Why are extensions particularly important on Windows platforms?

How can you check to see whether an extension is supported (without using
GLee)?

. When should you check GLEE_VERSION_x_y instead of checking extension-specific

flags such as GLEE_ARB_point_parameters?

On Your Own

1.

Write a program to display a list of all the extensions supported by your OpenGL
implementation. If youre using Windows, check for Windows-specific extensions
as well.

CHAPTER 9

MORE ON
TEXTURE MAPPING

in texture mapping, but there is still much to learn. Texture mapping is one of the

most important components of 3D graphics, and we’ve only scratched the surface of
what OpenGL has to offer to support texture mapping. In this chapter, we’ll dive a little
deeper, exploring such topics as:

In Chapter 7, “Texture Mapping,” you learned about all of the basic elements involved

= Alternative methods of specifying texture data

= How to use the texture matrix

= How to have OpenGL generate texture coordinates for you
= What multitexturing is, and how to use it

= How to use texture combiners

More on Texture Specification

In Chapter 7, you learned about the g1TexImage() functions. These functions each take an
array of data—either loaded from an image file or generated procedurally—that is used
to form the entire texture image. This is how you’ll use textures most of the time, but there
may be instances where youll only want to update a sub-region of an existing texture.
Perhaps you would like to create a texture from an image that you rendered from the
screen. You'll learn how to do both in this section.

Sub-Images

Every time you create a new texture using one of the g1TexImage() functions, OpenGL has
to internally allocate memory and perform other operations, which can be expensive. An
alternative to this is to reuse an existing texture—either because it’s no longer being used

197

198

Chapter 9 = More on Texture Mapping

or because it’s being updated dynamically—Dby simply modifying the existing texture
image data. Given a texture that has already been successfully created, you can modify all
or part of it using one of the following APIs:

void g1TexSubImagelD(GLenum target, GLint level, GLint xoffset, GLsizei width,
GLenum format, GLenum type, const GLvoid* pixels);

void g1TexSubImage2D(GLenum target, GLint Tlevel, GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height, GLenum format, GLenum type,
const GLvoid* pixels);

void g1TexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset,
GLint zoffset, GLsizei width, GLsizei height,
GLsizei depth, GLenum format, GLenum type,
const GLvoid* pixels);

Extension

Extension name: EXT_texture3D
Name string: GL_EXT_texture3D
Promoted to core: OpenGL 1.2

Function names: g1TexSubImage3DEXT(), g1CopyTexSubImage3DEXT()

Most of the parameters should look familiar to you from the g1TexImage() functions in
Chapter 7. There are two new sets of parameters. xoffset, yoffset, and zoffset are used to
specify the left, bottom, and front (respectively) coordinates of the area that you want to
place a sub-image in. width, height, and depth are the dimensions of this area. The are
defined by these values and must fit within the boundaries of the existing texture.

You’'ll notice that there are no internalformat, width, height, or border parameters. This is
because these parameters were all established when the texture was originally created, and
changing them would require reallocating memory, which would defeat the purpose of
using g1TexSubImage() in the first place.

Copying from the Color Buffer

Being able to render something to the screen and then use the rendered image as a texture
can be used for many different procedural and dynamic effects, such as reflection. This
can be done using one of the following:

void glCopyTexImagelD(GLenum target, GLint level, GLint internalformat, GLint x,
GLint y, GLsizei width, GLint border);

void glCopyTexImage2D(GLenum target, GLint level, GLint internalformat, GLint x,
GLint y, GLsizei width, GLsizei height, GLint border);

More on Texture Specification

The target, Tevel, internalformat, and border parameters are the same as for the g1TexImage()
functions. The major difference is that instead of passing an array containing the texture
image data, the texture is created by copying pixels from the color buffer. The x and y para-
meters are used to specify the bottom left corner of the rectangle to copy from, and width
and height are the dimensions of the rectangle. The dimensions of the rectangle must be
powers of two.

You'll notice that there is no 3D version of g1CopyTexImage(). This is because these func-
tions create a complete new texture, just like g1TexImage(). It’s impossible to create a com-
plete 3D texture from a 2D image.

It is also possible to update all or a portion of an existing texture by copying from the
screen. This is similar to g1TexSubImage() and has the same advantages. The APIs for doing
this are as follows:

void g1CopyTexSubImagelD(GLenum target, GLint Tevel, GLint xoffset, GLint x,
GLint y, GLsizei width);

void glCopyTexSubImage2D(GLenum target, GLint Tevel, GLint xoffset,
GLint yoffset, GLint x, GLint y, GLsizei width,
GLsizei height);

void glCopyTexSubImage3D(GLenum target, GLint Tevel, GLint xoffset,
GLint yoffset, GLint zoffset, GLint x, GLint vy,
GLsizei width, GLsizei height);

The target and Tevel parameters have the same purpose that you've seen in many texture
functions. xoffset, yoffset, and zoffset are used to specify the bottom-left-front corner of
the region of the texture that you want to update. x and y indicate the bottom left corner
of the screen rectangle you are copying from, and width and height are the dimensions of
the rectangle.

Tip

When using g1TexSubImage() or gl1CopyTexSubImage() with mipmaps, you can make your life
much easier by using automatic mipmap generation, as described in Chapter 7. Doing so, you only
need to modify the base level, and all the other levels will be updated automatically.

In the “Environment Mapping” section of this chapter, you'll see an example that uses
g1CopyTexImage2D() and g1CopyTexSubImage2D() to dynamically generate cube map textures.
The code that does this is shown here:

void CGfxOpenGL::GenerateEnvTexture()
{
static bool s_initialized = false;

g1Viewport(0, 0, ENV_TEX_SIZE, ENV_TEX_SIZE);

199

200 Chapter 9 = More on Texture Mapping

gIMatrixMode(GL_PROJECTION);
glloadIdentity();

gluPerspective(90, 1, 0.1, 500);

gIMatrixMode (GL_MODELVIEW);

for (int 1 =0; i < 6; ++i)

{
g1Clear(GL_DEPTH_BUFFER_BIT);

glloadIdentity();

gluLookAt(0.0, 0.0, 0.0,
ENV_ROTATIONCi1[0], ENV_ROTATION[i1[1], ENV_ROTATION[iI1[2],
ENV_ROTATION[i1[3], ENV_ROTATION[i1[4], ENV_ROTATION[iI[51);

// draw the scene
m_skybox.Render(0.0, 0.0, 0.0);
DrawBalls();

g1BindTexture(GL_TEXTURE_CUBE_MAP, m_envTexID);

if (s_initialized)
{
g1CopyTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, 0, 0,
ENV_TEX_SIZE, ENV_TEX_SIZE);

else

{
g1CopyTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, 0, 0,
ENV_TEX_SIZE, ENV_TEX_SIZE, 0);

s_initialized = true;

SetupProjection(m_windowWidth, m_windowHeight);
}

This code generates the faces of a cube map texture by rendering the scene six times, rotat-
ing the camera by 90 degrees each time to capture all views. The scene is rendered into a
viewport that matches the size of the texture. The screen is then copied into the texture
for the appropriate cube face. The first time through this loop, g1CopyTexImage2D() is used

The Texture Matrix Stack

to properly initialize and create the texture. After that, g1CopyTexSubImage2D() is used to
update the entire texture.

Note

Copying from the screen is a slow operation. Using g1CopyTexImage() is better than using
g1ReadPixels()/g1TexImage(), and g1CopyTexSubImage() is even better, but they still may cause
a performance bottleneck if you're making heavy use of them for texture generation. There are a
couple of extensions that provide faster alternatives, but they are beyond the scope of this book.

The Texture Matrix Stack

In Chapter 4, “Coordinate Transformations and OpenGL Matrices,” we talked about how
you can transform vertices with translation, rotation, and scaling by modifying the mod-
elview matrix. We also mentioned the matrix stack and how you can push and pop matri-
ces to achieve hierarchical modeling.

You can do these same things with textures through the use of texture matrices and the
texture matrix stack. For instance, you can use the g1Translatef() function to move a tex-
ture across a surface. Similarly, you can use the glRotatef() function to rotate texture
coordinates on a surface, which, in effect, rotates the texture. The game American McGee’s
Alice, by Electronic Arts and Rogue Entertainment, made great use of the effects pro-
duced by manipulating the texture matrix when they created the psychedelic world of
Wonderland.

Manipulating the texture matrix is very easy. You can use any of the standard matrix-
manipulation functions that OpenGL provides, such as giMultMatrix(), g1PushMatrix(),
g1PopMatrix(), and the transformation functions. You just need to select the texture matrix
stack as the current stack using g1MatrixMode():

gTMatrixMode(GL_TEXTURE);

Then you can perform any transformations you want on the texture matrix and the tex-
ture matrix stack. All texture coordinates are multiplied by the texture matrix in exactly
the same way vertices are multiplied by the projection and modelview matrices.

Following is some sample code that shows how you can rotate a texture on a surface:

// clear screen and depth buffer
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

// set current matrix mode to texture matrix mode
gIMatrixMode(GL_TEXTURE);

201

202

Chapter 9 = More on Texture Mapping

glloadIdentity();

glRotatef(angle, 0.0f, 0.0f, 1.0f); // rotate the texture
gIMatrixMode(GL_MODELVIEW); // go back to modelview matrix
g1BindTexture(GL_TEXTURE_2D, texID); // set current texture

/] draw textured quad

g1Begin(GL_QUADS);
g1TexCoord2f(0.0f, 0.0f);
glVertex3f(-20.0f, -20.0f, -40.0f);
g1TexCoord2f(1.0f, 0.0f);
glVertex3f(20.0f, -20.0f, -40.0f);
g1TexCoord2f(1.0f, 1.0f);
glVertex3f(20.0f, 20.0f, -40.0f);
g1TexCoord2f(0.0f, 1.0f);
glVertex3f(-20.0f, 20.0f, -40.0f);

glEnd();

As you can see, you set the current matrix mode to the texture matrix mode. You then load
the identity matrix, which is the default texture matrix to begin with (before you apply the
glRotatef() function to the texture matrix), which will rotate your texture at some angle
around the positive z-axis. After you've performed your rotation, you tell OpenGL to go
back to the modelview matrix mode, where you draw a textured quadrilateral. Not too dif-
ficult, is it?

Note

The texture matrix will be applied to all texture coordinates, so if you're using it to animate a few
textures, be sure to reset it to identity before you render any textures that you don’t want animated.
Better yet, use g1Push/PopMatrix().

Try playing around with the texture matrix stack on your own. You might find some awe-
some effects to use in your games!

Texture Coordinate Generation

In Chapter 7, we talked about what texture coordinates are and how to use them, but we
didn’t say much about how you come up with appropriate texture coordinates in the first
place. If you’re loading a model from a file, it will usually include texture coordinates if
the model includes a texture, so that’s what you'll use most of the time. For some texture
applications, however, you can have OpenGL automatically generate texture coordinates

Texture Coordinate Generation

for you. This works in situations where the texture coordinates can be determined using
well-defined mathematical steps. Examples include reflections, contouring, and projective
texturing. We'll be discussing a couple of specific examples here.

Texture coordinate generation is controlled independently for each coordinate. To use it,
you must first enable it by passing GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or
GL_TEXTURE_GEN_Q (each corresponding to the indicated coordinate) to g1Enable().

To specify how texture coordinates are generated, you use one of the following:

void g1TexGen{ifd}(GLenum coord, GLenum pname, TYPE param);
void glTexGen{ifd}v(GLenum coord, GLenum pname, const TYPE *params);

coord indicates which texture coordinate to apply the parameter to. Valid values are GL_S,
GL_T, GL_R, and GL_Q, corresponding to the s, t, r, and g texture coordinates. The accepted
values of pname and the param or params associated with them are listed in Table 9.1.

Table 9.1 Texture Generation Parameters

Parameter Meaning

GL_TEXTURE_GEN_MODE param specifies the texture generation mode, which must be GL_0BJECT_LINEAR,
GL_EYE_LINEAR, GL_SPHERE_MAP, GL_REFLECTION_MAP*, or GL_NORMAL_MAP*.

GL_OBJECT_PLANE params is a pointer to a four-element array of values that are used as
parameters for the texture coordinate generation function. Used in conjunction
with GL_OBJECT_LINEAR.

GL_EYE_PLANE Same as above, but used with GL_EYE_LINEAR.

* Available only via the ARB_texture_cube_map extension under Windows.

If the texture generation mode is GL_0BJECT_LINEAR, then the texture coordinates are gener-
ated using the following equation:

texcoord = p; * X, + p, ¥y, * py ¥z, + p, * W,

X, Yo Z,» and w are the object-space coordinates of the vertex the texture coordinate is
being generated for. p,, p,, p;, and p, are the four parameters provided via GL_0BJECT_PLANE.
These are used to pass the A, B, C, and D coefficients of a plane, so this equation is in effect
calculating the distance from the plane and using that as the texture coordinate.

The GL_EYE_LINEAR texture generation mode uses a similar equation, except that eye-space
vertex coordinates are used, and the inverse modelview matrix is applied to the plane
parameters when they are specified.

203

204

Chapter 9 = More on Texture Mapping

When using the GL_NORMAL_MAP mode, the (s, t, 1) texture coordinates are generated by using
the vertex’s normal, transformed into eye-space. These are intended to be used with cube
maps.

The remaining two texture generation modes will be covered in the next section, but for
now, let’s look at an example of generating texture coordinates based on the distance from
a plane.

When rendering terrain, you can create a visually appealing effect by varying the color based
on the height of the terrain. Areas close to sea level appear as sand; slightly higher areas
appear as grass, and then dirt or rock, and finally snow on the highest peaks. One way to
achieve this is to create a one-dimensional texture like the one shown in Figure 9.1. Then,
you would enable texture generation based on the height above sea level by passing the coef-
ficients for the sea level plane to g1TexGen() and enable texture generation for the s coordi-
nate. Later in this chapter, in the “Multitexturing” section, you'll see a demo that does exactly
that, so let’s look at the code that sets up and uses texture coordinate generation.

First, during initialization, texture coordinate generation is enabled, GL_0BJECT_LINEAR
mode is selected, and the reference plane is passed via GL_OBJECT_PLANE:

gTEnable(GL_TEXTURE_GEN_S);
g1TexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

GLfloat waterPlane[] = { 0.0, 1.0, 0.0, -WATER_HEIGHT };
g1TexGenfv(GL_S, GL_OBJECT_PLANE, waterPlane);

Then, when actually rendering the terrain, the only thing that needs to be done is to scale
the generated texture coordinate. This is because the generated coordinate is the distance
from the plane, which could be any value. We want the texture coordinates to fall in the
range [0, 1] so that the lowest points correspond to sand and the highest points corre-
spond to snow. This is simply a matter of dividing the texture coordinate by the maximum
terrain height. Using the texture matrix you learned about in the last section, this is done
as follows:

gIMatrixMode (GL_TEXTURE);
glloadIdentity();
g1Scalef(1.0f/MAX_HEIGHT, 1.0, 1.0);

- @@ |
Sand Grass Dirt Snow

Figure 9.1 A 1D texture used to color terrain.

Texture Coordinate Generation

That’s all there is to it. Similar methods can be used for creating contours or projective
textures. Now let’s look at the other two texture generation modes.

Environment Mapping

If you’ve ever tried to model things like chrome, polished metal, or glass, you know that
no matter how you tweak the materials or what texture you use, it doesn’t look very much
like the real thing. This is because all of these things reflect the environment they are in,
so to model them correctly, you need to use environment mapping. The GL_SPHERE_MAP and
GL_REFLECTION_MAP texture generation modes can be used in conjunction with an appropri-
ate texture map to create realistic reflections.

For the GL_SPHERE_MAP mode, or sphere mapping, the texture coordinates are generated
using a vector from the eye to the point on the surface and the surface normal (trans-
formed into eye space) to create a reflection vector. The reflection vector is used to calcu-
late the texture coordinates. These coordinates are then used to index into a 2D texture
map like that shown in Figure 9.2. The image is a picture of a sphere completely reflect-
ing the world around it. Both the sand t coordinates need to be generated via sphere map-
ping to have it work correctly.

Sphere mapping comes with many drawbacks, one
of the most significant being that it’s view depen-
dent, so viewing a reflective object from anywhere
other than the center of projection can produce
incorrect results. They also tend to not look very
accurate on objects that aren’t roughly spherical.
Finally, obtaining the texture image in the first place
presents a challenge. Traditionally, they were
obtained by taking a photograph of a perfectly
reflective sphere placed in the room that is being
modeled. For this to be completely mathematically
correct, the camera needs to be infinitely far away,

but since this is impossible, a fish eye lens is used Figure 9.2 A typical texture used
instead to get results that are reasonably close. This With GL_SPHERE_HAP.

approach isn’t really viable for game environments.

Another drawback is that the reflection won’t pick up any objects moving in the world, so
it will be immediately obvious that the surface isn’t really reflective.

e =2

An alternative way to generate the texture image is to render the world six times (once for
each direction) from the reflective object’s perspective. The results are then stored in the
six faces of a cube map, which is then applied to a sphere. This is actually how the image
in Figure 9.2 was generated. This approach is much better, since a reflection image can be
generated anywhere in your world, and it can be updated dynamically to reflect objects in

205

206

Chapter 9 = More on Texture Mapping

motion. However, as you're about to see, you can make use of the cube map directly, so
the additional step of generating a sphere map is wasteful. Cube maps are also view inde-
pendent and can be easily mapped onto any objects. For these reasons, sphere mapping is
generally not used anymore.

When cube map textures were introduced to OpenGL, they brought with them the
GL_REFLECTION_MAP texture coordinate generation mode. The texture coordinates are gener-
ated in a manner similar to GL_SPHERE_MAP, except that instead of creating s and ¢ coordi-
nates for a 2D texture, s, £, and r coordinates are generated that are used to index into the
faces of the cube map. Cube maps are much easier to update dynamically and do a better
job of capturing the entire environment. The example in the next section shows you how
cube maps can be used for reflections.

Example: Reflective Cube Mapping

On the CD, you'll find an example program for this chapter entitled EnvironmentMap-
ping, that puts reflective cube maps to use. As you can see from Figure 9.3, this program
shows a reflective sphere that is being orbited by two colored balls, placed in an outdoor
environment. In the “Copying from the Color Buffer” section earlier in this chapter, you
saw the portion of this code that creates the faces of the cube map texture by

| DUGLLE - Chapter 9 - Lavinanmsent Mapping
i

Figure 9.3 A reflective sphere, made possible with cube maps and
reflection mapping.

Texture Coordinate Generation 207

rendering the scene six times from the perspective of the sphere. The cube map is then
applied to the sphere using texture coordinate generation. To do this, the texture genera-
tion mode is first set up during initialization, as follows:

g1TexGenf(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
g1TexGenf(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
g1TexGenf(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

Then, to actually apply the texture to the sphere, texture coordinate generation for the s, ¢
and r coordinates has to be enabled. This happens in the Render() method, as shown below:

void CGfxOpenGL::Render()
{
GenerateEnvTexture();

g1Clear(GL_DEPTH_BUFFER_BIT);
glloadIdentity();
m_skybox.Render (0.0, 0.0, 0.0);
glTranslatef(0.0, 0.0, -5.0);

GLfloat TightPos[] = { 0.5f, 0.5, 1.0, 0.0 };
glLightfv(GL_LIGHTO, GL_POSITION, TightPos);

gTEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
gTEnable(GL_TEXTURE_GEN_R);

glEnable(GL_TEXTURE_CUBE_MAP);
g1BindTexture(GL_TEXTURE_CUBE_MAP, m_envTexID);
g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glColor3f(1.0f, 1.0f, 1.0f);
gluSphere(m_pObj, 1.0, 64, 64);
g1Disable(GL_TEXTURE_CUBE_MAP);

g1Disable(GL_TEXTURE_GEN_S);
g1Disable(GL_TEXTURE_GEN_T);
g1Disable(GL_TEXTURE_GEN_R);

DrawBalls();

208

Chapter 9 = More on Texture Mapping

As you can see, creating dynamic reflections with cube maps is quite easy. The cost involved
is not trivial because it requires that the scene be rendered an additional six times per
reflective object. When used in moderation however, the visual payoff is worth it.

Multitexturing

Extension

Extension name: ARB_multitexture

Name string: GL_ARB_multitexture

Promoted to core: OpenGL 1.2.1

Function names: glActiveTextureARB(), g1MultiTexCoord{1234}{sifd}[v]ARB()
Tokens: GL_TEXTUREN_ARB, GL_MAX_TEXTURE_UNITS_ARB

In the examples you've seen so far, when you texture-map a polygon, you apply only one
texture to it. It’s actually possible to apply several textures to the same polygon through a
series of texture operations. This is called multitexturing.

Up to this point, the textures you've seen assign colors to the polygons they are applied to.
Textures used in this way are often referred to as diffuse maps. When using multitexturing,
typically only one of the textures will be used in this way. The other textures will be used
to either modify the diffuse map values or provide additional information. For example,
grayscale images can be used to modulate the diffuse color to simulate per pixel lighting
or to vary the details. A texture may include normals or other parameters encoded as
RGBA values that are used to perform calculations to simulate bumpy surfaces. You'll see
some specific examples of multitexturing in this section, but we’ll be giving you only a
small taste of the many possibilities they offer.

Multitexturing makes use of a series of texture units. Each texture unit represents a single
texture application, and when you perform multitexturing, each texture unit passes its
results to the next texture unit as shown in Figure 9.4. You've actually been making use of
texture units all along; everything you've done so far has used the default texture unit
(which is texture unit 0). Let’s look more closely at what texture units represent and see
how to use them.

Texture Units

Each texture unit has a set of states associated with it that allows it to keep settings sepa-
rate from the other texture units. Each texture unit has its own texture environment, tex-
ture matrix stack, texture coordinate generation states, and texture image and filtering

Multitexturing

Incoming
Fragment Texture Texture Texture
Unit O Unit 1 Unit 2 >
Outgoing
T Fragment
AT

Texture O Texture 1 Texture 2

Figure 9.4 Texture unit pipeline.

parameters. The latter two are usually derived from the texture object that is bound to
the texture unit. In addition, each of the texture targets (GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEX-
TURE_3D, and GL_TEXTURE_CUBE_MAP) are enabled or disabled on a per—texture-unit basis.

You use the glActiveTexture() function to change the currently active texture unit. It is
defined as:

void glActiveTexture (GLenum texUnit);

After this function is called, all calls to g1TexImage() (including the copy and subimage ver-
sions), glTexParameter(), g1TexEnv(), g1TexGen(), and g1BindTexture() affect the texture unit
defined in texUnit. The texUnit parameter is of the form GL_TEXTUREn, where n is equal to any
integer between 0 and 1 less than the number of supported texture units. For example,
GL_TEXTUREO is for the first texture unit available. You can find out how many texture units are
supported by your OpenGL implementation by using GL_MAX_TEXTURE_UNITS, as follows:

int maxTexUnits; // holds the maximum number of supported texture units
glGetIntegerv(GL_MAX_TEXTURE_UNITS, &maxTexUnits);

If glGetIntegerv() returns 1, then the OpenGL implementation does not support
multitexturing.

Any texture object can be used with any texture unit. When you make a call to
g1BindTexture(), the texture object gets bound to the currently active texture unit, and its
parameters and image data become the texture unit’s parameters and texture data. To
enable a texture unit, you simply have to assign valid texture data to it and then enable the
appropriate texture target. To later disable it, you need to make sure that all texture tar-
gets are disabled. Always remember that OpenGL is a state machine, so the current tex-
ture unit will always be whatever you set it to the last time you called glActiveTexture().

209

210

Chapter 9 = More on Texture Mapping

Take care to always be aware of what the active texture unit is when making calls to any
texture related functions.

The following example should help you to better understand how to use texture units.
Assuming that texturel and texture? are handles to valid texture objects for 2D textures,
the following code binds them to texture units 0 and 1:

glActiveTexture(GL_TEXTUREQ);

glEnable(GL_TEXTURE_2D);

g1BindTexture(GL_TEXTURE_2D, texturel);

g1TexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glActiveTexture(GL_TEXTUREL);

glEnabTe(GL_TEXTURE_2D);

g1BindTexture(GL_TEXTURE_2D, texture2);

g1TexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

Pay particular attention to the calls to giTexEnv(). The first one causes the color from
texturel to replace the incoming fragment color. This value is then used as the input to
texture unit 1, which modulates the value with the color in texture2.

Specifying Texture Coordinates

Now that you know how to assign textures to each texture unit and configure the texture
units’ states, you need to define how to apply the textures to polygons. Because you are
applying more than one texture to a single polygon, you’ll need to define more than one
set of texture coordinates as well. In fact, you'll need one set of texture coordinates for
each texture unit that you create. g1TexCoord() isn’t up to the task, because it only specifies
coordinates for texture unit 0—it completely ignores the active texture unit. Instead,
you’'ll need to use g1MultiTexCoord():

void gTMultiTexCoord{1234}{sifd}(GLenum texUnit, TYPE coords);
void gIMultiTexCoord{1234}{sifd}v(GLenum texUnit, const TYPE *coords);

texUnit is used to indicate which texture unit this coordinate is for. It uses the same
GL_TEXTUREn values as glActiveTexture(). The parameters are otherwise the same as
g1TexCoord(). In fact, using g1TexCoord() is equivalent to using gIMutliTexCoord() with
GL_TEXTUREO.

Example: Multitextured Terrain

It’s time to take a look at a real example of using multitexturing. On the CD, you’ll find a
demo for this chapter entitled MultitexTerrain, shown in Figure 9.5. This example uses
one texture to color the terrain based on the height above sea level, as described earlier
under “Texture Coordinate Generation.” This is combined with a second grayscale texture
that contains grass-like detail.

Multitexturing 211

Figure 9.5 Terrain demo modified to use multitexturing.

This is the how the textures are initialized:

image.Load("grass.tga");

glGenTextures(l, &m_grassTexture);

g1BindTexture(GL_TEXTURE_2D, m_grassTexture);

gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, image.GetWidth(), image.GetHeight(),
GL_RGB, GL_UNSIGNED_BYTE, image.GetImage());

image.Release();

image.Load("water.tga");

glGenTextures(l, &m_waterTexture);

g1BindTexture(GL_TEXTURE_2D, m_waterTexture);

gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, image.GetWidth(), image.GetHeight(),
GL_RGB, GL_UNSIGNED_BYTE, image.GetImage());

image.Release();

image.Load("height.tga");

glGenTextures(1l, &m_heightTexture);

g1BindTexture(GL_TEXTURE_1D, m_heightTexture);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP)
g1TexImagelD(GL_TEXTURE_1D, 0, GL_RGB, image.GetWidth(), 0, GL_RGB,

212 Chapter 9 = More on Texture Mapping

GL_UNSIGNED_BYTE, image.GetImage());
image.Release();

glActiveTexture(GL_TEXTUREL);
glEnable(GL_TEXTURE_GEN_S);
g1TexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

GLfloat waterPlane[] = { 0.0, 1.0, 0.0, -WATER_HEIGHT };
g1TexGenfv(GL_S, GL_OBJECT_PLANE, waterPlane);
glActiveTexture(GL_TEXTUREQ);

The interesting thing to notice here is that most of the texture creation code doesn’t have
to concern itself with the currently active texture unit. This is because the parameters and
images are being bound to texture objects, which will later be bound to texture units as
they are needed. The texture unit matters only at the end, when texture coordinate gener-
ation is enabled.

Next up is the code that draws the terrain:

g1BindTexture(GL_TEXTURE_2D, m_grassTexture);
g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glActiveTexture(GL_TEXTUREL);
g1BindTexture(GL_TEXTURE_1D, m_heightTexture);

gIMatrixMode(GL_TEXTURE);
glloadIdentity();
g1Scalef(1.0f/MAX_HEIGHT, 1.0, 1.0);
gIMatrixMode(GL_MODELVIEW);

g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glEnabTe(GL_TEXTURE_1D);
for (int z = 0; z < TERRAIN_SIZE - 1; ++z)
{
g1Begin(GL_TRIANGLE_STRIP);
for (int x = 0; x < TERRAIN_SIZE; ++x)
{
GLfToat scaledHeight = heightmapl{z * TERRAIN_SIZE + x] / SCALE_FACTOR;
GLfToat nextScaledHeight = heightmap[(z + 1)*TERRAIN_SIZE + x]/SCALE_FACTOR;

gIMultiTexCoord2f(GL_TEXTUREO, x * TC_SCALE, z * TC_SCALE);
glVertex3f((GLfloat)x - TERRAIN_SIZE/2, scaledHeight,
(GLfloat)z - TERRAIN_SIZE/2);

Multitexturing

gIMultiTexCoord2f(GL_TEXTUREO, x * TC_SCALE, (z+1) * TC_SCALE);
glVertex3f((GLfToat)x - TERRAIN_SIZE/2, nextScaledHeight,
(GLfloat)(z + 1) - TERRAIN_SIZE/2);
}
glEnd();
}
g1Disable(GL_TEXTURE_1D);
glActiveTexture(GL_TEXTUREQ);

//draw the water

g1BindTexture(GL_TEXTURE_2D, m_waterTexture);

g1 TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
//render water

The grass texture is first bound to texture unit 0. Then texture unit 1 is activated, and the
height texture is bound to it. The texture matrix is selected and set to scale the s coordi-
nate, which applies only to texture coordinates for texture unit 1, since each texture unit
has its own texture matrix stack. 1D textures are enabled, and the terrain is rendered. The
texture coordinates for texture unit 0 are specified using g1MutiTexCoord2f(), and the tex-
ture coordinates for texture unit 1 are being automatically generated. Once rendering is
complete, 1D textures are enabled, and since they were the only enabled texture target for
texture unit 1, it is effectively disabled. Finally texture unit 0 is activated again, and the
water is rendered with only one texture.

Texture Combine

Note

Texture combiners are available only via extensions under Windows. The ARB_texture_env_combine
and ARB_texture_env_dot3 extensions were added in OpenGL 1.3, and ARB_texture_env_crossbar
was added in OpenGL 1.4.

In Chapter 7, you learned about various texture modes that can be selected by using
g1TexEnv(). In addition to the modes you've been using such as GL_MODULATE and GL_REPLACE,
OpenGL supports a number of functions that were introduced in 1.3 and 1.4 for use with
multitexturing. Because these functions are typically used to combine two or more tex-
tures, they’re often referred to as fexture combiners. When you set GL_TEXTURE_ENV_MODE to
GL_COMBINE, additional g1TexEnv() parameters become valid. These parameter names are
listed in Table 9.2 along with the parameters that can be used with them. Note that for
all of the parameters discussed in this section, the target parameter must be set to
GL_TEXTURE_ENV. As a reminder, g1TexEnv() has the following form:

void g1TexEnv{if}(GLenum target, GLenum pname, TYPE param);

213

214

Chapter 9 = More on Texture Mapping

Table 9.2 Texture Combiner glTexEnv() Parameters

pname Valid params

GL_COMBINE_RGB GL_REPLACE, GL_MODULATE, GL_ADD, GL_ADD_SIGNED, GL_INTERPOLATE, GL_SUBTRACT,
GL_DOT3_RGB, or GL_DOT3_RGBA

GL_COMBINE_ALPHA GL_REPLACE, GL_MODULATE, GL_ADD, GL_ADD_SIGNED, GL_INTERPOLATE, or GL_SUBTRACT
GL_RGB_SCALE Floating point constant scaling factor for RGB
GL_ALPHA_SCALE Floating point constant scaling factor for alpha

GL_RGB_SCALE and GL_RGB_ALPHA are used to set floating point factors that the final fragment
RGB and alpha values are scaled by after all textures have been applied. GL_COMBINE_RGB and
GL_COMBINE_ALPHA are used to specify what function to use to combine textures. These func-
tions are defined in Table 9.3.

You'll notice that GL_DOT3_RGB and GL_DOT3_RGBA share the same function. The difference
between the two is that with the former, the result of the function is stored in the RGB
components; with the latter, the result is stored in the alpha component as well, in which
case the result of the GL_COMBINE_ALPHA function is ignored. These modes are used for bump
mapping.

Each of the functions listed in Table 9.3 takes up to three arguments. The real power of tex-
ture combiners stems from the fact that you are in complete control of what those argu-
ments are. They may come from a texture (from any texture unit, not just the current one),
the results of the previous texture unit, the color of the incoming fragment prior to any tex-
ture application, or a constant color (specifically, the color set via GL_TEXTURE_ENV_COLOR).
These arguments are set by passing one of the values from Table 9.4 to g1TexEnv(). Argu-
ments for the RGB and alpha components are set independently of each other.

Table 9.3 Combiner Functions

Name Function

GL_REPLACE Arg0

GL_MODULATE Arg0 * Argl1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 + 0.5
GL_INTERPOLATE Arg0 * Arg2 + Arg1* (1 — Arg2)
GL_SUBTRACT Arg0—Argl1

GL_DOT3_RGB, GL_DOT3_RGBA 4 (Arg0,-0.5) * (Arg?,-0.5) + (ArgOg—O.S) * (Arg7g—0.5) +
(Arg0,—0.5) * (Arg1,—0.5). GL_COMBINE_RGB only.

Multitexturing

Table 9.4 Combiner Argument Specification

pname Valid params

GL_SOURCEi_RGB, GL_SOURCEi_ALPHA GL_TEXTURE, GL_TEXTUREn, GL_CONSTANT, GL_PRIMARY_COLOR, or
GL_PREVIOUS.

GL_OPERAND7_RGB GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, or
GL_ONE_MINUS_SRC_ALPHA.
GL_OPERANDi_ALPHA GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA.

iis the argument number and can be 0, 1, or 2, corresponding to the arguments in Table
9.3. The arguments can be set to any of the following:

GL_TEXTURE is used to indicate the texture image associated with the current texture
unit.

GL_TEXTUREn is used to indicate the texture image associated with texture unit 7.
GL_CONSTANT is for the texture environment color of the current texture unit.

GL_PRIMARY_COLOR indicates the primary color of the incoming fragment used as
input for texture unit 0.

GL_PREVIOUS indicates the output of the previous texture unit. For texture unit 0 this
is equivalent to GL_PRIMARY_COLOR.

The GL_OPERAND7 parameters are used to further specify which components to use from the
indicated argument. So if you wanted to use the complement of the RGB values of the
current texture unit’s texture image as argument 0, you would use the following:

g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEO_RGB, GL_TEXTURE);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDO_RGB, GL_ONE_MINUS_SRC_COLOR);

To bring this all together, let’s look at an example of setting up a combiner. To keep things
simple, we’ll set up the combiner to perform the same operation as GL_MODULATE. You'd
never do this in practice of course, but using a well-understood operation should make
the example quite clear. As you'll recall, modulation determines the result by multiplying
the incoming fragment color by the texture color. The following code shows how to do the
same thing with a combiner.

// Set the texture mode to GL_COMBINE. This must be done to use combiners.
g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);

// Set both the RGB and alpha combiners to modulate
g1TexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
g1TexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);

215

216

Chapter 9 = More on Texture Mapping

// Set Arg0 to be the incoming fragment color for both RGB and alpha
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEO_RGB, GL_PRIMARY_COLOR);
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEO_ALPHA, GL_PRIMARY_COLOR)

/] Set Argl to be the current texture color for both RGB and alpha
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEI_RGB, GL_TEXTURE);
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE);

// Use the unmodified source color and alpha for both Arg0 and Argl
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDO_RGB, GL_SRC_COLOR);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDO_ALPHA, GL_SRC_ALPHA);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDI_RGB, GL_SRC_COLOR);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDI_ALPHA, GL_SRC_ALPHA);

This example is completely impractical, but it should help you better understand how to
set up texture combiners. We’ll look at a more practical example in the next section.

Example: Image Interpolation

The interpolation combiner mode is in some ways the most complex because it’s the only
one that takes three parameters. The CD includes an example of using combiner interpo-
lation. You'll find it in the Combiner folder for this chapter. This program takes two
images and gradually interpolates between them over time, creating a crossfading effect.
It does this by loading one image into texture unit 0 and the other into texture unit 1. Dur-
ing initialization, the two texture units are set up as follows:

CTargalmage image;
glGenTextures(2, m_texID);

glActiveTexture(GL_TEXTUREQ);

g1BindTexture(GL_TEXTURE_2D, m_texID[0]);

image.lLoad("2.tga");

gluBuild2DMipmaps(GL_TEXTURE_2D, 3, image.GetWidth(), image.GetHeight(), GL_RGB,
GL_UNSIGNED_BYTE, image.GetImage());

image.Release();

glEnable(GL_TEXTURE_2D);

/] pass the texture through to the next unit

g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glActiveTexture(GL_TEXTUREL);

g1BindTexture(GL_TEXTURE_2D, m_texID[11);

image.Load("1.tga");

gluBuild2DMipmaps(GL_TEXTURE_2D, 3, image.GetWidth(), image.GetHeight(), GL_RGB,

Multitexturing

GL_UNSIGNED_BYTE, image.GetImage());
image.Release();
glEnabTe(GL_TEXTURE_2D);

// set the combine mode
g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE)

// use the interpolate combiner function
g1TexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);

// set Arg0 to be the output of texture unit 0
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEO_RGB, GL_PREVIOUS);

// set Argl to be the current texture image
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEI_RGB, GL_TEXTURE);

// set Arg2 to be the texture env color for tex unit 1
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT);

/] use the constant alpha to modify the rgb components
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDZ_RGB, GL_SRC_ALPHA);

Texture unit 0 doesn’t really need to do anything; it just needs to be active and enabled
so that the texture bound to it will be available to texture unit 1. Because the texture envi-
ronment mode is set to GL_REPLACE, texture unit 1 will be able to access the texture using
either GL_PREVIOUS or GL_TEXUREQ.

Texture unit 1 is set up to use the texture from unit 0 as Arg0 and its own texture as Argl.
The alpha component of the constant color will be used as Arg2, which acts as the inter-
polator. The constant color is updated over time so that the first image gradually fades
into the second image. This can be see in the Prepare() and Render() routines:

void CGfxOpenGL::Prepare(float dt)
{
m_interpol += dt/TOTAL_TIME;
if (m_interpol > 1.0)
m_interpol = 1.0;

void CGfxOpenGL::Render()
{
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

GLfloat texEnvColor[] = { 0.0, 0.0, 0.0, 0.0 };

217

218 Chapter 9 = More on Texture Mapping

texEnvColor[3] = m_interpol;
glActiveTexture(GL_TEXTUREL);
g1 TexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, texEnvColor);

g1Begin(GL_QUADS);
g1MultiTexCoord2f(GL_TEXTUREO, 0.0, 0.0);
gIMuTtiTexCoord2f(GL_TEXTUREL, 0.0, 0.0);
glVertex3f(-1.0, -1.0f, -2.0);
gTMuTtiTexCoord2f(GL_TEXTURED, 1.0, 0.0);
gIMultiTexCoord2f(GL_TEXTUREL, 1.0, 0.0);
glVertex3f(1.0, -1.0f, -2.0);
gIMultiTexCoord2f(GL_TEXTUREO, 1.0, 1.0);
gIMuTtiTexCoord2f(GL_TEXTUREL, 1.0, 1.0);
glVertex3f(1.0, 1.0f, -2.0);
gTMuTtiTexCoord2f(GL_TEXTURED, 0.0, 1.0);
gTMuTtiTexCoord2f(GL_TEXTUREL, 0.0, 1.0);
glVertex3f(-1.0, 1.0f, -2.0);

glEnd();

}

Figure 9.6 shows this example in the middle of the interpolation.

| DUGLLE - Chapter 9 - Tentune Condsner

Figure 9.6 Image interpolation using texture combiners.

Summary

Summary

You’ve now seen just how powerful OpenGL’s texturing support really is. You can update
textures dynamically, even using the screen as an image source. You can apply transfor-
mations to texture coordinates to move, scale, or rotate them on the fly. You can have
OpenGL generate texture coordinates automatically for reflections and other effects. Most
importantly, you can apply multiple textures to a single object, with tremendous control

over how the textures are used and combined.

What You Have Learned

You can update all or a part of an existing texture using g1TexSubImage().

You can create textures from the screen using g1CopyTexImage() or
g1CopyTexSubImage().

A texture matrix is applied to texture coordinates just as the modelview and pro-
jection matrices are applied to vertex coordinates.

OpenGL can automatically generate texture coordinates for you with g1TexGen().
Environment mapping enables you to create complex reflective surfaces.
Multitexturing is the process of applying more than one texture to a polygon in a
single pass.

Multitexturing is controlled through the use of texture units, each of which repre-

sents a single texture application. The current texture unit can be changed with
glActiveTexture().

Texture combiners provide a wide range of additional methods for applying
textures.

Review Questions

1.

Why is updating an existing texture better than creating a new one?

2. How many texture matrix stacks are there?

3. Which two texture generation modes require additional parameters?

4.

5. What texture environment mode (GL_TEXTURE_ENV_MODE) do you need to set to be

How do you enable and disable a texture unit?

able to use texture combiners?

On Your Own

1.

Write the code to set up a texture combiner that does the same thing as the GL_ADD
environment mode described in Chapter 7.

219

This page intentionally left blank

CcHAPTER 10

UrP YOUR
PERFORMANCE

n many graphics applications, and in virtually all games, maintaining an interactive

frame rate and smooth animation is of utmost importance. Although rapid advance-

ments in graphics hardware have lessened the need to optimize every single line of
code, programmers still need to focus on writing efficient code that, through the graph-
ics AP, harnesses the full power of the underlying hardware. In this chapter, you’ll learn
several methods for improving your game’s performance.

= Display lists
m Vertex arrays

= Frustum culling

Display Lists

After you've been writing OpenGL code for a while, you'll probably notice that there are
sections of code that you are calling frequently, with the same state machine settings every
time. Wouldn’t it be nice if you could process those commands in advance (maybe at ini-
tialization) and then send the preprocessed commands down the graphics pipeline, stor-
ing them on the video card for future use, rather than processing them all from scratch
every time? That’s exactly the idea behind OpenGLs display lists.

As you’ll see momentarily, display lists are quite easy to create and use; the only catch to
using them is that it’s not always obvious when they will help improve performance. In
addition, some vendors do a better job than others in the implementation of display lists,
so your mileage may vary. In the worst case, though, they should never hurt performance.

221

222

Chapter 10 = Up Your Performance

To see how display lists are created and used, let’s look at an example. Suppose you have a
program in which you draw a bunch of pyramids, which you're representing as four tri-
angles (the bottom isn’t drawn, because you can’t see it). You'd probably create a function
to do it, and it might look something like this (because all four triangles share a single
common central point, you can use a triangle fan):

void DrawPyramid()
{
g1Begin(GL_TRIANGLE_FAN);
glVertex3f(0.0, 1.0, 0.0);
);

glVertex3f(-1.0, 0.0, 1.0

glVertex3f(1.0, 0.0, 1.0);

glVertex3f(1.0, 0.0, -1.0);

glVertex3f(-1.0, 0.0, -1.0);
glEnd();

}

Because this function is getting called all the time, it’s a good candidate to consider for a
display list (in truth, it probably won’t benefit much from being in a display list, because
it’s not doing anything else particularly expensive, but it illustrates the point). So, how do
you put these calls into a display list?

Creating a Display List
First of all, before you can place items in a display list, you must get a name for one, much

as you got a name for a texture object in Chapter 7, “Texture Mapping.” This is done by
using g1GenLists():

GLuint glGenLists(GLsizei range);

Here, range is the number of display lists you need. The function returns an unsigned inte-
ger representing the first display list in the range requested. The next list in the range can
be accessed by adding one to this value, and so on. You can think of the values returned
by glGenLists() as the names, or IDs, of your display lists. They just provide a unique han-
dle that allows you to tell OpenGL which display list you are currently working with.

You should always check the return value of g1GenLists() to make sure that it is not 0. This
is not a valid list name, and it indicates that some error has occurred, such as there not
being range contiguous names available. As an additional precaution, at any time you can
check to see whether a list name is valid by using g1IsList():

GLbooTean g1IsList(GLuint TistName);

This function returns GL_TRUE if TistName is a valid name for a display list and GL_FALSE
otherwise.

Display Lists

Filling a Display List with Commands

After you have a valid list name, the next step is to place commands in the display list asso-
ciated with it. This is done in a manner very similar to the way you use g1Begin()/g1End()
to surround primitive drawing commands. First, you call a function that specifies the dis-
play list you want to fill, and when you're finished, you call another function completing
the list. These functions are g1NewList() and g1EndList(), respectively:

void glNewList(GLuint TlistName, GLenum mode);
void glEndList();

Here, TistName is the name of the display list you want to fill. Note that it can be a new list
you just created with glGenLists(), or it can be a list that you've been using but are ready
to clear out and fill with new commands. mode is the compilation mode, and it can be
either GL_COMPILE or GL_COMPILE_AND_EXECUTE. The second option executes the commands as
it compiles them, whereas the first just compiles them.

Although you can place any OpenGL commands you want between giNewlist() and
glEndList(), some commands cannot be compiled into a display list. These will instead
be executed immediately. These functions are glGenLists(), glDeletelists(), glFeedback-
Buffer(), g1SelectBuffer(), glRenderMode(), g1CoTorPointer(), glFogCoordPointer(), g1EdgeFlag-
Pointer(), glIndexPointer(), gINormalPointer(), glTexCoordPointer(), glSecondaryColor-
Pointer(), glVertexPointer(), glClientActiveTexture(), glInterleavedArrays(), glEnable-
ClientState(), glDisableClientState(), glPushClientAttrib(), glPopClientAttrib(), glRead-
Pixels(),glPixelStore(), glGenTextures(), glDeleteTextures(), glAreTexturesResident(), g1Gen-
Queries(), glDeleteQueries(), glBindBuffer(), glDeleteBuffers(), glGenBuffers(), glBuffer-
Data(), g1BufferSubData(), gIMapBuffer(), glUnmapBuffer(), g1Flush(), and g1Finish(). Some of
these functions are not covered in this volume but are included here for completeness.

In addition, each of the g1Get() and g1Is() commands executes immediately, as do the
g1TexImage() functions if a proxy texture is being created (if you’re not using a proxy tex-
ture, you can safely use the g1TexImage() functions, though there are better ways to handle
textures, as we’ll discuss later in “Display Lists and Textures”).

Executing Display Lists

After you have a display list, you can then use it in any place you would have used the code
compiled into it. This is done with:

void g1CallList(GLuint TistName);

This causes the commands in the list indicated by TistName to immediately be executed in
order, just as if they were inserted into your code.

223

224

Chapter 10 = Up Your Performance

So, what if you want to call several display lists at once? Well, conveniently, OpenGL pro-
vides direct support for this:

void g1CallLists(GLsizei num, GLenum type, const GLvoid *1ists);

Here, num is the total number of lists to be executed, and 1ists is a pointer to an array of
display list names. Although the value returned by g1GenLists() is an unsigned integer, and
that’s the type expected by most other
display list functions, in reality, you
could cast the name to some other data

Table 10.1 glCallLists() Types

type that’s more convenient for your Constant Type

use. And that’s why 1lists is a void oL BYTE Signed 1-byte integer
pointer and why the type member is pre- g yysIGNED_BYTE Unsigned 1-byte integer
sent to indicate the actual data type GL_SHORT Signed 2-byte integer
stored in the array. Table 10.1 lists the GL_UNSIGNED_SHORT Unsigned 2-byte integer
values that can be used, though typically, GL_INT Signed 4-byte integer
you’'ll just use integers. GL_UNSIGNED_INT Unsigned 4-byte integer

GL_FLOAT 4-byte floating-point value

When g1Calllists() is used, OpenGL
will iterate over 1ist, from 0 to num —1,
calling the display list name indicated at each index in the iteration. If any of the display
lists’ names in the 1ist array are not valid, they’ll simply be ignored.

There may be times in doing this (such as when using display lists for text output) that
you don’t want the iteration to start at zero, but rather at some offset. You can set the off-
set at which the iteration begins using the following.

void glListName(GLuint offset);

This causes the iteration to begin at offset and end at offset + num—1. The value of the oft-
set is 0 by default. Remember, because OpenGL is a state machine, if you change the off-
set, it will remain at the value you set it to until you change it again. If you want to restore
it to its original value after you're finished, before changing the offset, you can use g16Get()
with GL_LIST_BASE to find the original offset value.

Display List Gotchas

There are a number of things to be aware of when using display lists. For starters, you can
use g1CallLlist() or g1Calllists() within display lists—it’s perfectly legal to include them
within a gINewlist()/g1EndList() block. To prevent the possibility of infinite recursion
caused by two lists calling each other, however, the commands within the display list exe-
cuted by g1CallList() are not made part of the new display list.

Another thing to keep in mind is that display lists can contain calls that change the cur-
rent OpenGL server-side state, and there is no built-in mechanism to save and restore the

Display Lists

state over display list calls. Therefore, you want to be sure to save and restore state infor-
mation yourself using g1Push/PopMatrix() and/or g1Push/PopAttrib().

Destroying Display Lists
Creating a display list allocates memory in which to store the commands, so after you are
finished using a display list—either at program termination or beforehand—you need to

explicitly destroy it to avoid resource leaks. Doing so is quite straightforward via
glDeletelists():

void glDeletelists(GLuint TistName, GLsizei range);

This frees the memory associated with the display lists starting with 1istName and pro-
ceeding to 1istName + range —1. If any name within the range refers to a nonexistent list, it
will simply be ignored. If range is 0, the call is ignored, and if range is negative, it generates
an error.

Now that you know how to create, fill, call, and destroy display lists, let’s see what you have
to do to rewrite the previous pyramid routine using them. First, of course, you need to
create the list, as follows:

GLuint pyramidList = glGenLists(1);

Next, you need to fill this list with commands. To do this, you'll rewrite the DrawPyramid()
function from earlier. Because you'll only be calling it once now (at startup), you’ll rename
it InitializePyramid(). Because the list creation also needs to happen only once, you'll
move the creation code into the function as well and have it take a reference to a GLuint as
a parameter (so that you can pass the list handle in and have it be set). The new function
appears here:

void InitializePyramid(GLuint &pyramidlList)
{
pyramidList = glGenLists(1);

gINewlList(pyramidList, GL_COMPILE);
g1Begin(GL_TRIANGLE_FAN);
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(-1.0, 0.0, 1.0);
glVertex3f(1.0, 0.0, 1.0);
glVertex3f(1.0, 0.0, -1.0);
glVertex3f(-1.0, 0.0, -1.0);
glEnd();

glEndList();

225

226

Chapter 10 = Up Your Performance

Now, when you need to draw a pyramid, you just translate, rotate, and scale as needed,
and then use this:

glCalllist(pyramidList);

to actually draw the pyramid. When you finish using the pyramid list (probably when
exiting the program), you free the list with:

glDeletelists(pyramidlList, 1);

And that’s it. Again, remember that in this example, you’re probably not going to gain
much from using a display list, but you should at least have a pretty good idea of how to
use them now.

Display Lists and Textures

Because any of the texture functions can be used within display lists, you might be
tempted to create lists that encapsulate the process of defining texture parameters and
loading texture data into them. If texture objects didn’t exist, this would probably be a
good way to go about it. Texture objects do exist, however, and in addition to being quite
easy to use, they provide a much greater performance boost than you could get by using
display lists for the same purpose. The best approach, then, is to create and initialize your
textures once, bind them to a texture object, and then when you need them, select them
with appropriate calls to g1BindTexture(). Note that there is nothing wrong with putting
the calls to g1BindTexture(), g1TexCoord(), and even g1TexEnv() within display lists, because
these are involved with using the texture as opposed to creating it, and they are not tied to
an individual texture object.

Vertex Arrays

Thus far in the examples presented in this book, you have been using the g1Begin()/g1End()
model, often referred to as immediate mode. Immediate mode is useful for simple appli-
cations and for prototype code, since it is easy to understand and visualize. However, it
comes with some performance challenges that make it less useful for applications with lots
of geometry that needs to be rendered at a high frame rate, such as games.

For example, let’s say you're rendering a model containing 2,000 lit and textured triangles
using immediate mode. Assume that you're able to pack all of the vertex data into a sin-
gle triangle strip (a “best case” scenario that’s not often practical). Your rendering code
may look something like the following:

g1Begin(GL_TRIANGLE_STRIP);

for (int n = 0; n < model.m_numVertices; ++n) // m_numVertices is 2002
{

ql

ql

gl
}

Vertex Arrays

Normal3fv(myModel.m_normals[n]);
TexCoord2f (myModel.m_texCoords[nl);
Vertex3f(myModel.m_vertices[nl);

glEnd();

There are several problems with this code. The first is that 6,008 function calls are made.
Every time you make a function call, there is a small amount of overhead required to push
parameters on the stack and to make the jump to the function. With over 6,000 calls being
made, this overhead adds up.

The

second and third problems are illustrated in Figure 10.1. Assuming that this mesh

represents a triangle strip (perhaps a portion of the mesh in the example above), each of
the circled vertices is a redundant vertex. In

other words, each of these vertices is shared

by more than three triangles, but since a tri- \
angle strip can represent, at most, three tri-

angles per vertex, each of the circled vertices
needs to be sent to the video card more than
once. This results in using additional band-
width to send the data to the video card. In
addition, the vertex is likely to be trans-

formed and lit more than once. These two
operations waste bandwidth and processing Figure 10.1 A mesh with redundant vertices.
cycles.

To address these issues, OpenGL includes vertex arrays. Vertex arrays offer the following
advantages:

TIP

Large batches of data can be sent with a small number of function calls. As you’ll
see by the end of this section, the example above could be reduced to four function
calls (and possibly even two!) using vertex arrays.

Through the use of indexed vertex arrays, vertices can be sent exactly once per tri-
angle mesh, reducing bandwidth and potentially avoiding redundant transforma-
tion and lighting.

Even with vertex arrays, a single vertex may be transformed and lit more than once due to the fact
that video cards have a limited vertex cache. The vertex cache stores transformed and lit vertices
so that if they are needed again, they can be fetched from the cache rather than reprocessed. How-
ever, as new vertices are moved into the cache, old ones are pushed out, so if two triangles that
use a single vertex are far apart in the data, the cached vertex from the first probably won't still be
around when the second one is processed. Therefore, it's often a good idea to keep your data as
localized as possible.

227

228

Chapter 10 = Up Your Performance

Now that you understand the reasons for using vertex arrays, it’s time to learn how they
are used.

Array-Based Data

So far, we’ve been using relatively simple objects in our demos, and thus, we’ve been able
to describe them explicitly in the code. In a real game, however, you'll be working with
models containing hundreds or even thousands of polygons, and describing such compli-
cated models directly in the code just isn’t practical—even if you manage to create
decent-looking results, it’s going to be a nightmare to maintain. Instead, one of the fol-
lowing two approaches is usually taken:

= Load the model from a file. Dozens of great modeling packages enable you to cre-
ate a model visually and then export the geometric data to a file, which can be read
by your program. This approach offers the greatest flexibility. Model loading will
be discussed in much greater detail later in the book.

m Generate the model procedurally. Some things you want to represent can be
implicitly described with equations due to patterns they contain or because they
possess some random properties that you can generate on the fly. A good example
of this is fractals. Geometric data for fractals can be created by a procedure that
produces the same values every frame.

Whichever approach is used, it should be fairly obvious that you don’t want to repeat all
the work every frame—you certainly don’t want to be constantly reading a model from
disk, and even procedural methods can have enough overhead to have an adverse effect
on performance. Instead, you’ll take the geometric data these methods generate and store
it in arrays, which you can then access as needed.

This process can be summarized in the following steps:

1. Generate the data you need, either procedurally or from a model file on disk.

2. Save this data in an array or set of arrays (for example, you could put the position
of each vertex in one array, the vertex normal in another, color in another, and so
on).

With your data stored in arrays, it’s ready for use by OpenGL’s vertex array functions.

Enabling Vertex Arrays

Like most OpenGL features, to be able to use vertex arrays, you must first enable them.
You might expect this to be done with glEnable(), but it’s not. OpenGL provides a sepa-
rate pair of functions to control vertex array support:

void glEnableClientState(GLenum array);
void glDisableClientState(GLenum array);

Vertex Arrays

The array parameter is a flag indicating which type of array you're enabling (or disabling).
Each type of vertex attribute you want to use (for example, position, normal, color) can
be stored in an array, and you need to enable whichever attributes you are using individ-
ually, using one of the flags listed in Table 10.2.

Table 10.2 Array Type Flags

Flag Meaning

GL_VERTEX_ARRAY Enables an array containing the position of each vertex.
GL_NORMAL_ARRAY Enables an array containing the vertex normal for each vertex
GL_COLOR_ARRAY Enables an array containing color information for each vertex
GL_SECONDARY_COLOR_ARRAY Enables an array containing color information for each vertex
GL_INDEX_ARRAY Enables an array containing indices to a color palette for each vertex
GL_FOG_COORD_ARRAY** Enables an array containing the fog coordinate for each vertex
GL_TEXTURE_COORD_ARRAY Enables an array containing the texture coordinate for each vertex
GL_EDGE_FLAG_ARRAY Enables an array containing an edge flag for each vertex

* Available only via the EXT_secondary_color extension under Windows.
** Available only via the EXT_fog_coord extension under Windows.

TIP

It is common in OpenGL documentation to refer to all these array types collectively as vertex arrays,
which can be confusing because there is also a specific array type that is called a vertex array. That
said, they are collectively referred to as vertex arrays because each array contains data that is ref-
erenced on a per-vertex basis. The array type containing positional information is specifically called
a vertex array because the data stored in it is used internally as if calls to g1Vertex() were being
made. If you'll notice, the name of each array type roughly corresponds to the name of the OpenGL
call that will be made on the data it contains (color arrays mimic g1Color(), texture coordinate
arrays mimic g1TexCoord(), and so on).

Working with Arrays

After you have enabled the array types that you will be using, the next step is to give
OpenGL some data to work with. It’s up to you to create arrays and fill them with the data
you will be using (procedurally, from files, or by any other means, as we’ve already dis-
cussed). Then you need to tell OpenGL about these arrays so it can use them. The func-
tion used to do this depends on the type of array you're using. Let’s look at each function
in detail.

229

230

Chapter 10 = Up Your Performance

In each of the following functions, stride indicates the byte offset between array elements.
If the data is tightly packed (meaning there is no padding between each element), you can
set this to zero. Otherwise you can use the stride to compensate for padding or even to
pack data for multiple attributes into a single array. pointer is a pointer to an array con-
taining the vertex data or, more specifically, points to the first element you want to use
within that array. The data type of the array is indicated by type. The other parameters will
be explained with each individual function.

void glVertexPointer(GLint size, GLenum type, GLsizei stride, GLvoid *pointer);

This array contains positional data for the vertices. size is the number of coordinates per
vertex, and it must be 2, 3, or 4. type can be GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE.

void glTexCoordPointer(GLint size, GLenum type, GLsizei stride, GLvoid *pointer);

This array contains texture coordinates for each vertex. size is the number of coordinates
per vertex, and it must be 1, 2, 3, or 4. type can be set to GL_SHORT, GL_INT, GL_FLOAT, or
GL_DOUBLE.

void glNormalPointer(GLenum type, GLsizei stride, GLvoid *pointer);

This array contains normal vectors for each vertex. Normals are always stored with exactly
three coordinates (x, y, z) so there is no size parameter. type can be GL_BYTE, GL_SHORT,
GL_INT, GL_FLOAT, or GL_DOUBLE.

void glColorPointer(GLint size, GLenum type, GLsizei stride, GLvoid *pointer);

This specifies the primary color array. size is the number of components per color, which
should be either 3 or 4 (for RGB or RGBA). type can be GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE.

void glSecondaryColorPointer(GLint size, GLenum type, GLsizei stride, GLvoid *pointer);

This specifies the secondary color array. size is the number of components per color,
which is always 3 (for RGB). The types allowed are identical to those for g1CoTorPointer().

Extension

Extension name: EXT_secondary_color

Name string: GL_EXT_secondary_color
Promoted to core: OpenGL 1.4

Function names: g1SecondaryColorPointerEXT()

Tokens: GL_SECONDARY_COLOR_ARRAY_EXT

Vertex Arrays 231

void glIndexPointer(GLenum type, GLsizei stride, GLvoid *pointer);

This array represents color indices for use with palletized display modes. type can be set
to GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE.

Extension

Extension name: EXT_fog_coord
Name string: GL_EXT_fog_coord
Promoted to core: OpenGL 1.4
Function names: g1FogCoordPointerEXT()

Tokens: GL_FOG_COORD_ARRAY_EXT

void glFogCoordPointer(GLenum type, GLsizei stride, GLvoid *pointer);

This array is used to specify fog coordinates. type can be set to GL_FLOAT or GL_DOUBLE.

void glEdgeFlagPointer(GLsizei stride, GLboolean *pointer);

Edge flags become important when displaying polygons as lines, and this array allows you
to specify which lines are edges. Unlike the other functions, pointer always points to an
array of Boolean values, so there is no size or type parameter.

NOTE

For each vertex attribute, you can have only a single array specified at any one time. This means
that if you want to represent more than one object in your game with vertex arrays, you have to
either combine all the data for them into a single set of arrays or have each object have its own set
of arrays that you switch between using g1*Pointer (). Although the former may be slightly faster
because it doesn’t require a lot of state changes, the latter is going to be easier to manage. In fact,
a typical rendering loop will change the current arrays for every object, calling several
gl*Pointer() functions and enabling or disabling vertex attributes as necessary.

After you've specified which arrays OpenGL should use for each vertex attribute, you can
begin to have it access that data for rendering. There are several functions that you can
choose from.

glDrawArrays()

When this function is called, OpenGL iterates over each of the currently enabled arrays,
rendering primitives as it goes. To understand how it works, you need to look at the
prototype:

void glDrawArrays(GLenum mode, GLint first, GLsizei count);

232

Chapter 10 = Up Your Performance

mode serves the same basic function as the parameter passed to g1Begin(): It specifies which
type of primitive the vertex data should be used to create. Valid values are GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON. first specifies the index at which the iteration
should start, and count specifies the number of indices to process. It should be noted that
after a call to g1DrawArrays(), states related to the array types being used are undefined. For
example, if using normal arrays, the current normal will be undefined after g1DrawArrays()
returns.

glMultiDrawArrays()

Extension

Extension name: EXT_multi_draw_arrays

Name string: GL_EXT_multi_draw_arrays

Promoted to core: OpenGL 1.4

Function names: g1MultiDrawArraysEXT(), g1MultiDrawElementsEXT()

OpenGL provides the ability to draw multiple arrays with a single call via gMultiDraw-
Arrays(), which has the following prototype:

void gTMultiDrawArrays(GLenum mode, GLint *first, GLsizei *count, GLsizei primcount);

This is similar to g1DrawArrays(), except that the first and count parameters are now arrays,
and there is an additional parameter primcount that indicates how many elements are in
each array. Calling gIMultiDrawArrays() is functionally equivalent to the following:

for (int 1 = 0; i < primcount; ++i)
{
if (count[i] > 0)
g1DrawArrays(mode, first[i], count[i]);
}

At present, most OpenGL drivers implement this function exactly like the code above, so
it serves more as a convenience than a performance improvement.

glDrawElements()

This function is very similar to glDrawArrays(), but it is even more powerful. With
g1DrawArrays(), your only option is to iterate sequentially over the list, which means that
you can’t reference the same element more than once; g10rawElements(), on the other hand,
allows you to specify the array elements in any order, and access each of them as many
times as necessary. Let’s look at the prototype:

Vertex Arrays

void glDrawETements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices);

mode and count are used just as in glDrawArrays(). type is the data type of the values in
indices, and it should be GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT. indices is
an array containing indexes for the vertices you want to render.

To understand the value of this method, it must be reiterated that not only can you spec-
ify the indices in any order, you can also specify the same vertex repeatedly in the series.
In games, most vertices will be shared by more than one polygon; by storing the vertex
once and accessing it repeatedly by its index, you can save a substantial amount of mem-
ory. In addition, good OpenGL implementations will perform operations on the vertex
only once and keep the results in a cache, so that all references after the first are virtually
free—as long as the vertex is still in the cache. The performance advantages of this should
be obvious.

glMultiDrawElements()

This function is to g1DrawETlements() what gIMuTtiDrawArrays() is to g1DrawArrays(). It has the
following prototype:

void gTMultiDrawElements(GLenum mode, GLsizei *count, GLenum type, GLvoid **indices,
GLsizei primcount);

Again, the differences here are that count and indices are lists of primcount elements. Call-
ing this function is equivalent to the following:

for (int 1 = 0; i < primcount; ++i)
{
if (count[i] > 0)
glDrawElements(mode, count[il, type, indices[il);
}

This can be useful for things like drawing multiple triangle strips from a single set of ver-
tex arrays. As with gIMultiDrawArrays(), this function is more for convenience than any-
thing else.

glDrawRangeElements()

Extension

Extension name: EXT_draw_range_elements
Name string: GL_EXT_draw_range_elements
Promoted to core: OpenGL 1.2

Function names: g1DrawRangeElementsARB()

233

234

Chapter 10 = Up Your Performance

This function is similar in use to glDrawElements(). The primary difference is that the val-
ues in the vertex array that you are accessing fall within a limited range. For example, if you
have a vertex array containing 1,000 vertices, but you know that the object youre about to
draw accesses only the first 100 vertices, you can use g1DrawRangeETements() to tell OpenGL
that you're not using the whole array at the moment. This may allow the OpenGL to more
efficiently transfer and cache your vertex data. The prototype is as follows:

void glDrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count,
GLenum type, const GLvoid *indices);

mode, count, type, and indices have the same purpose as the corresponding parameters.
start and end correspond to the lower and upper bounds of the vertex indices contained
in indices.

glArrayElement()

This is perhaps the least-efficient method of accessing vertex array data. Rather than call-
ing upon a range of data, it allows you to evaluate and render a single vertex, as follows:

void glArrayElement(GLint index);

index is, naturally, the vertex you want to render. Using glArrayElement() is only marginally
more efficient than using immediate mode. For optimal efficiency when using vertex
arrays, you should favor g10DrawElements() or g1DrawRangeETements().

Tip

OpenGL 1.5 added an even more efficient method for processing vertex data in the form of vertex
buffer objects, the primary advantage being that they allow you to create and store data in mem-
ory on your video card rather than in your PC's main memory. We won't be covering vertex buffer
objects in this volume, but we will in a future volume.

Quick Review

To be sure you understand how vertex arrays work, let’s recap. First, you need the data
with which you will fill the arrays, which can be loaded from a file, generated procedu-
rally, or defined by some other method. This data consists of a set of vertices describing
some object in your world. Each vertex can include information about its position, color,
texture coordinates, fog coordinates, edge flags, and/or normal vectors. In addition to
storing this data in one or more arrays, you need to enable vertex arrays for each data type
you will be using. Then you tell OpenGL to use each array with corresponding calls to
gl*Pointer().

Vertex Arrays 235

When you want to evaluate and render the data stored in these arrays, you make a call to
one of the functions listed above. For each vertex, OpenGL takes the data associated with
each attribute type and, in essence, applies the appropriate OpenGL call to that data. For
example, the color array data is used as if you had called g1Color(), the normal data is used
as if you had called g1Norma1(), and so on. Note that these functions are not actually called
(after all, you could do that yourself and avoid the whole concept of vertex arrays

entirely), but the results are the same.

Interleaved Arrays

With the methods we’ve discussed so far, your vertex arrays will
look something like Figure 10.2, with each vertex attribute stored in
a separate array. Each of these arrays is passed independently via
one of the g1*Pointer() functions, and when a draw command is
made, OpenGL assembles data from each array to form complete

vertices.

Instead of storing data for each attribute in separate arrays, you may
want to pack all of the data into a single array, as shown in Figure

10.3.

vertex color
array array

X r

vO- |y vO- |9
z b

X r

viq Y viH |9
Z b

texcoord
array

vO-

v1-

Ter|o [[@

Figure 10.2 Arrays for position, color, and texture coordinate attributes.

vO-

v1-

"IN [x[Tla]=s o [N <[x [T]= [e

Figure 10.3 Position, color,
and texture coordinate data
stored in a single array.

236

Chapter 10 = Up Your Performance

To be able to use this type of array, you could use the methods we’ve been discussing so
far by making use of the stride parameter. If the data from Figure 10.3 was in an array
called vertexData, you could use the following code to set it up:

glVertexPointer(3, GL_FLOAT, 8 * sizeof(GLfloat), vertexData);
glColorPointer(3, GL_FLOAT, 8 * sizeof(GLfloat), &vertexDatal[3]);
glTexCoordPointer(2, GL_FLOAT, 8 * sizeof(GLfloat), &vertexDatal6]);

You could then use g1DrawETements() or any other draw functions just as you normally would.

OpenGL provides an alternative approach in the form of glInterleavedArrays():

void glInterleavedArrays(GLenum format, GLsizei stride, const GLvoid *pointer);

format is used to indicate exactly what data appears in the array pointed to by pointer. It
can take on any of the values in Table 10.3. stride serves the same purpose as it does with
the various g1*Pointer() functions. Note that the data should be ordered in a manner con-
sistent with the ordering in the format parameter; i.e., texture coordinates are always first,
followed by colors, then normals, then positions.

Table 10.3 Interleaved Array Formats

Plane Description
GL_V2F Position only, 2 elements (x,y)
GL_V3F Position only, 3 elements (x,y,2)
GL_CAUB_V2F* Color, 4 elements (r,g,b,a), and position, 2 elements (x,y)
GL_C4UB_V3F* Color, 4 elements (r,g,b,a), and position, 3 elements (x,y,z)
GL_C3F_V3F Color, 3 elements (r,g,b), and position, 3 elements (x,y,z)
GL_N3F_V3F Normals, 3 elements, and position, 3 elements (x,y,z)
GL_C4F_N3F_V3F Color, 4 elements (r,g,b,a), normals, 3 elements, and position, 3 elements (x,y,z)
GL_T2F_V3F Texture coordinates, 2 elements (s,t), and position, 3 elements (x,y,z)
GL_T4F_V4F Texture coordinates, 4 elements (s,t,1,g), and position, 4 elements (x,y,z,w)
GL_T2F_C4UB_V3F* Texture coordinates, 2 elements (s,t), color, 4 elements (r,g,b,a), and position,
3 elements (x,y,2)
GL_T2F_C3F_V3F Texture coordinates, 2 elements (s,t), color, 3 elements (r,g,b) and position,
3 elements (x,y,2)
GL_T2F_N3F_V3F Texture coordinates, 2 elements (s,t), normals, 3 elements, and position,
3 elements (x,y,2)
GL_T2F_C4F_N3F_V3F Texture coordinates, 2 elements (s,t), color, 4 elements (r,g,b,a), normals,
3 elements, and position, 3 elements (x,y,z)
GL_TAF_CAF_N3F_V4F Texture coordinates, 4 elements (s,t,1,q), color, 4 elements (r,g,b,a), normals,

3 elements, and position, 4 elements (x,y,z,w)

* The C4UB type indicates colors represented as four floating point values stored in a single integer that is then cast to a
float. This is necessary because other data types are floats, and it's not possible to have an array of multiple data types.

Vertex Arrays

Using interleaved arrays, the code above could be rewritten as:

glInterleavedArrays(GL_T2F_C3F_V3F, 0, vertexData);

In addition to setting a pointer to the vertex attribute data, a call to g1InterTeavedArrays()
will also enable any arrays indicated in the format parameter and disable those that aren’t
being used.

Unfortunately, interleaved arrays have some serious limitations. They don’t support fog
coordinates, secondary color, or edge flags. They also only work with the currently active
texture unit, so multitexturing isn’t possible. However, if you have data that consists only
of position, color, normal, and/or texture coordinate information, interleaved arrays may
be more convenient than the standard method.

Vertex Arrays and Multitexturing

Extension

Extension name: ARB_multitexture

Name string: GL_ARB_multitexture
Promoted to core: OpenGL 1.2.1

Function names: g1ClientActiveTextureARB()
Tokens: GL_MAX_TEXTURE_UNITS_ARB

Using multitexturing (see Chapter 9, “More on Texture Mapping”) with vertex arrays
requires some additional setup beyond what we have discussed so far. Each texture unit
has its own set of states, and thus, vertex arrays can be enabled and disabled for each tex-
ture unit individually, and each has its own texture coordinate array pointer.

In OpenGL implementations supporting multitexturing, the texture unit that is active by
default is the first one. Calls to g1TexCoordPointer() and glEnableClientState()/g1Disable-
ClientState() with GL_TEXTURE_COORD_ARRAY affect only the currently active texture unit, so to
use vertex arrays with other texture units, you have to switch to them by activating them.
This is done with the following function:

void glClientActiveTexture(enum texture);

texture is a constant corresponding to the unit that you wish to make active, and it must
be of the form GL_TEXTURE7, where 7 ranges from 0 to GL_MAX_TEXTURE_UNITS —1.

237

238

Chapter 10 = Up Your Performance

Caution

The state associated with g1ClientActiveTexture() is separate from the state associated with
glActiveTexture(). When using multitexturing with vertex arrays, be sure to use the former, not
the latter.

After you have activated the texture unit you wish to modify, you can then make calls to
g1TexCoordPointer() to assign an array of values or glEnableClientState()/g1Disable-
ClientState() to turn vertex arrays on or off for the current texture unit. Texture coordi-
nate arrays for all texture units are disabled by default. To set up vertex arrays for the first
two texture units, you'd use something like the following:

// Enable texture coordinate vertex arrays for texture unit 0
glClientActiveTexture(GL_TEXTUREQ);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);

/] Specify an array (defined previously) to use with texture unit 0
g1TexCoordPointer(2, GL_FLOAT, 0, (GLvoid *)texUnitOVertices);

// Select and enable texture unit 1
glClientActiveTextureARB(GL_TEXTUREL);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);

/] Specify an array (defined previously) to use with texture unit 1
g1TexCoordPointer(2, GL_FLOAT, 0, (GLvoid *)texUnitlVertices);

After you've enabled and specified vertex arrays for each of the texture units you want
to use, there is nothing else you need to do. Subsequent calls to glDrawArrays(),
g1DrawElements(), and so on will use them just like any other vertex arrays.

Locking Arrays

Many OpenGL implementations provide an extension that enables you to lock and
unlock arrays. Locking the arrays lets the system know that, until they are unlocked, you
won’t be modifying the data in the arrays. Because OpenGL knows that the vertex array
data is not changing, it may be able to cache the transformations or place the arrays in
memory that can be accessed more quickly. This can lead to performance gains, especially
if you're drawing the same geometry more than once. Because the vertex data is, in effect,
compiled, the name of this extension is EXT_compiled_vertex_array. The functions associ-
ated with this extension are

void glLockArraysEXT(GLint first, GLsizei count);
void glUnTockArraysEXT();

Vertex Arrays 239

The first parameter is the index of the first vertex you want to lock, and count is the total
number of vertices to lock, starting at the first index.

Extension

Extension name: EXT_compiled_vertex_array
Name string: GL_EXT_compiled_vertex_array
Promoted to core: No

Function names: glLockArraysEXT(), glUnlockArraysEXT()

See the demo in the following section for sample code checking for and using this
extension.

Marbles

We’ve provided a demo in the Marbles directory in the folder for this chapter on the CD.
This demo draws a large number of marbles bouncing around inside a glass case with a
mirrored floor. Each marble shares the same data but is colored and positioned indepen-
dently. Immediate mode is used by default, but you can use the following keys to enable
some of the features covered so far in this chapter:

<SPACE> Toggles vertex arrays for the marbles using glDrawElements().
<TAB> Toggles display lists for everything.
<C> Toggles compiled vertex arrays.

You should definitely see an improvement in frame rate when enabling vertex arrays. Dis-
play lists and compiled vertex arrays may or may not improve performance, depending on
your hardware.

You'll notice that when display lists are enabled, the marbles freeze in place. This is due to
the fact that each marble is positioned independently inside of the display list. Once the
display list is compiled, the data within it can’t be changed, so the marbles can’t move rel-
ative to each other. You could, however, move the marbles as a group.

You'll also notice that when enabling compiled vertex arrays, the marble colors may
change to a single color. This is because all of the marbles share the same base set of data.
When the vertices get locked and cached away, the changes in the material may not get
picked up.

240

Chapter 10 = Up Your Performance

Let’s look at the most relevant code for the demo. First, after generating the data for the
marbles, the vertex arrays are set up as follows:

bool CGfxOpenGL::Init()
{

InitializeMarbles();

glVertexPointer(3, GL_FLOAT, 0, m_positions);
gINormalPointer(GL_FLOAT, 0, m_texCoords);
glTexCoordPointer(3, GL_FLOAT, 0, m_texCoords);

}

The texture coordinate data is being used for both texture coordinates and normals
because with cube-mapped spheres, the values are identical.

The relevant code for display lists happens in Render (), as shown below:

void CGfxOpenGL::Render()
{

if (m_uselist)
{
// use the existing Tist if there is one
if (m_list)
{
glCalllist(m_list);
return;
}
else // otherwise, create a new one
{
m_list = glGenLists(1);
gINewlList(m_Tist, GL_COMPILE_AND_EXECUTE);
}

glLightfv(GL_LIGHTO, GL_POSITION, LIGHT_POSITION);
DrawFloor();

DrawReflection();

DrawMarbles(GL_FALSE);

DrawBox();

if (m_uselist)

Frustum Culling 241

glEndList();
}

Finally, the vertex arrays are put to use inside of DrawMarbles():

void CGfxOpenGL::DrawSphere()
{ if (m_useVertexArrays)
{ for (int 1 = 0; i < m_numStrips; ++i)
{ glDrawElements(GL_TRIANGLE_STRIP, m_vertsPerStrip, GL_UNSIGNED_INT,
&m_indexArray[i * m_vertsPerStripl);

}
else // draw using immediate mode instead
{
for (int 1 =0; i < m_numStrips; ++i)
{
g1Begin(GL_TRIANGLE_STRIP);
for (int j = 0; j < m_vertsPerStrip; ++j)
{
int index = m_indexArray[i * m_vertsPerStrip + j1;
gINormal3fv(m_texCoords[index].v);
g1TexCoord3fv(m_texCoords[index].v);
glVertex3fv(m_positions[index].v);
}
glEnd();

}

A screenshot of the Marbles demo can be seen in Figure 10.4. Be sure to check out the
source code on the CD to ensure that you fully understand how vertex arrays work.

Frustum Culling

One of the most basic rules in developing an efficient graphics engine is this: Don’t draw
what you can’t see. For this reason, many algorithms have been developed to allow you to
quickly identify large sets of data that can’t possibly be seen by the viewer so that they can
be discarded instead of sending them to the graphics hardware. We don’t have space to
even scratch the surface of the various methods available, but we will show you how to do
something they almost all rely on: view-frustum culling.

242

Chapter 10 = Up Your Performance

N 15 aphes 15 - Sarbies SR 43 Nevte Aeropss e vy Lisk ol DVAs: il

Figure 10.4 The Marbles demo.

As you'll recall, the view frustum defines the region of the world space that you can see.
Usually, it is defined in terms of a camera, including the location of the viewer, field of
view, and so on. In reality, this information is used to construct six planes that bound the
view frustum. Anything within this frustum is visible (unless something else inside of the
frustum is obstructing it). Anything outside of it can be discarded.

OpenGL automatically rejects any triangles that fall outside of the view frustum, so you
don’t have to do it yourself for rendering to work properly. However, OpenGL does frus-
tum culling on a per-triangle basis. Although it does this extremely quickly and cheaply,
when you're dealing with hundreds of thousands or even millions of triangles, this cost
adds up and degrades performance. Fortunately, you know more about your game data
than OpenGL does, and you can use this information to make rendering more efficient.

For example, your game generally consists of models made up of several thousand trian-
gles. You can construct a simple bounding volume such as a box or a sphere for each model
and then test that object against the view frustum yourself. If it is completely outside of it,
you can discard it. With one simple check you can eliminate thousands of others.

If the object does not fall completely outside of the view frustum, there are two possibili-
ties: It is either partially or completely contained by the view frustum. Continuing to test
the partially visible object will probably be more expensive than letting OpenGL do it for
you, so either way, you pass the object to OpenGL and move on to the next one.

Frustum Culling

You can imagine creating hierarchies of bounding volumes, each containing many smaller
ones. By testing the top-level volumes, you can potentially eliminate huge amounts of data
with a single test. When you encounter volumes that are partially contained, you can move
down the hierarchy and test the sub-volumes, repeating the process. Eventually, the sub-
volumes will be small enough that it’ll be cheaper to have OpenGL test them for you, and
you'll be done.

Now that you have an idea of what frustum culling is and how you can leverage it to
improve performance, it’s time to look at the details of how it’s done.

Determining the View Frustum

The first step is determining the equations for the planes that describe the view frustum.
Although it’s possible to calculate them yourself, it’s easier to simply extract that infor-
mation from the current projection and modelview matrices, which you can do by pass-
ing GL_PROJECTION_MATRIX or GL_MODELVIEW_MATRIX to gl1GetFloatv(). But first, let’s review the
plane equation.

As you may recall from your geometry classes, the equation for a plane can be defined as
follows:

Ax+By+Cz+D=0

A, B, and C define the plane’s normal vector, D is the distance from the origin to the plane,
and x, y, and z are any points on the plane. You can take any point and plug it into the
plane equation, and if the result is 0, the point lies on the plane. If the result is greater than
0, the point is in front of the plane, and if it is negative, it is behind the plane.

To extract the A, B, C, and D terms from the pro-
jection and modelview matrices, you first have to Table 10.4 Sources for
multiply the former by the latter. Then the plane Plane Equations

values can be found by adding or subtracting one of

R Plane Row

the first three rows of the matrix with the fourth
row. Table 10.4 shows which rows to use for each Left L

1 Right 1 (negated)
plane.

Bottom 2

If PM contains the concatenated projection and Top 2 (negated)
modelview matrix, then the left and right planes Near 3
can be extracted as follows: Far 3 (negated)
Teft.A = PM[3] + PM[0];
left.B = PM[7] + PM[41;
left.C = PM[11] + PM[8];
left.D = PM[15] + PM[12];

243

244

Chapter 10 = Up Your Performance

right.A = PM[3] - PM[0];
right.B = PM[7] - PM[41;
right.C = PM[11] - PM[8];
right.D = PM[15] - PM[12];

These values aren’t quite ready to use yet because they need to be normalized. You do this
by finding the length of the normal vector and then dividing A, B, C, and D by the length.
Note that the normals will point toward the center of the view frustum.

Testing Points

Once you have the plane equations for all six planes, the next step is to determine whether
or not something is inside the frustum. We’ll start off with the simplest object to test: a
point. A point is completely contained within the view frustum if it is in front of all six
planes. Simply plug the x, y, and z coordinates into each of the six plane equations, and if
the results are all positive, the point is inside the frustum. If even one result is negative,
the point is outside the frustum. Here’s what this would look like in pseudocode:

function PointInFrustum(point)
{
for each plane
if (plane.A * point.x + plane.B * point.y + plane.C * point.z + plane.D) < 0
return false

return true

Testing Spheres

Points are easy to test but aren’t very useful on their own. Spheres on the other hand are
far more useful, since they can be used as bounding volumes for more complex objects.
Testing spheres against the view frustum is almost as easy as testing points—in fact, the
two are closely related. Remember that when you test a point against a plane, you don’t
just find out whether or not the point is in front or in back of the plane; you find out how
far it is from the plane. If you represent a sphere as a point and a radius, you just need to
test to see if the distance from the point to the plane is greater than or equal to the radius.
If this is true for all six planes, the sphere is within the view frustum. This is shown in the
following pseudocode:

function SpherelnFrustum(sphere)
{
for each plane
dist = plane.A*sphere.x + plane.B*sphere.y + plane.C*sphere.z + plane.D

Frustum Culling

if dist <= -sphere.radius
return false

return true
}

Notice that this code checks the distance against the negative radius, which means that the
function returns false if the sphere is completely outside the view frustum. It returns true
if the sphere is completely or partially inside the view frustum. If you would like to know
whether the sphere is completely or partially contained, you'll have to modify the algo-
rithm slightly. This is left for an exercise for the reader at the end of the chapter.

Frustum Culling Applied

To help you better understand the advantages of frustum culling and how to implement
it, take a look at the FrustumCulling demo in the directory for this chapter on the CD.
This demo, shown in Figure 10.5, revisits the terrain demo you've seen in previous chap-
ters. Monsters—Iloaded from the popular Quake 2 model format, have been added to the
world. Although the camera is stationary, you can use the left and right arrows to spin
around in place. When each model is loaded, a bounding sphere is calculated for it, which
is then tested against the view frustum while rendering. Frustum culling can be toggled

Figure 10.5 An example of frustum culling.

245

246 Chapter 10 = Up Your Performance

on and off with the space bar to see the difference it makes to the frame rate. The follow-
ing code is used to extract the view frustum:

void ExtractPlane(plane_t &plane, GLfloat *mat, int row)
{

int scale = (row < 0) ? -1 : 1;

row = abs(row) - 1;

// calculate plane coefficients from the matrix
plane.A = mat[3] + scale * mat[row];

plane.B = mat[7] + scale * mat[row + 41;
plane.C = mat[11] + scale * mat[row + 8];
plane.D = mat[15] + scale * mat[row + 12];

// normalize the plane

float length = sqrtf(plane.A * plane.A +
plane.B * plane.B +
plane.C * plane.C);

plane.A /= Tlength;

plane.B /= length;

plane.C /= length;

plane.D /= length;

void CGfxOpenGL::CalculateFrustum()

{
// get the projection and modelview matrices
GLfloat projection[16];
GLfloat modelview[16];

g1GetFloatv(GL_PROJECTION_MATRIX, projection);
glGetFloatv(GL_MODELVIEW_MATRIX, modelview);

// use OpenGL to multiply them
glPushMatrix();

glloadMatrixf(projection);
gIMuTtMatrixf(modelview);
glGetFloatv(GL_MODELVIEW_MATRIX, modelview);
g1PopMatrix();

/] extract each plane
ExtractPTane(m_frustum.1, modelview, 1);

Summary

ExtractPTane(m_frustum.r, modelview, -1);

ExtractPTane(m_frustum.b, modelview, 2);

ExtractPTane(m_frustum.t, modelview, -2);

ExtractPTane(m_frustum.n, modelview, 3);

ExtractPlane(m_frustum.f, modelview, -3);
}

The test for view frustum intersection is done with the SphereInFrustum() function:

bool SpherelnFrustum(sphere_t sphere, frustum_t frustum)
{
GLfloat dist;
for (int 1 =0; i < 6; ++i)
{
dist = frustum.planes[i].A * sphere.center.x +
frustum.planes[i].B * sphere.center.y +
frustum.planes[i].C * sphere.center.z +
frustum.planes[i].D;

if (dist <= -sphere.radius)
return false;

return true;

Summary

You've now learned how to use two features included with OpenGL—display lists and
vertex arrays—to improve performance. You've also seen how to reduce OpenGL’s work-
load by preculling large chunks of data using frustum culling. Applying these techniques
should enable you to attain a higher frame rate. Youre encouraged to continue to explore
algorithms that enable you to arrange your code and data in a more efficient manner.

What You Have Learned

= Display lists allow you to store precompiled lists of commands on the graphics
processor and are useful for representing static data.

m Vertex arrays provide an intuitive way to store large amounts of data. They allow
OpenGL to operate more efficiently by caching transformed vertices that are used
repeatedly. They also help avoid the overhead of repeatedly calling a large number
of functions.

247

248

Chapter 10 = Up Your Performance

Your OpenGL implementation may allow you to lock vertex arrays, which may
allow it to process them more quickly because it knows you won’t be changing
them.

Interleaved arrays provide an alternative to storing each vertex attribute in a sepa-
rate array, but they have limited usefulness.

Frustum culling can be used to discard large segments of non-visible geometry rel-
atively quickly. It is used for many higher-level geometry occlusion algorithms.

Review Questions

1.
2.

Given a handle to a display list, how can you determine that it is valid?

What happens when you include a call that is not supported by display lists
between calls to gINewList() and gl1EndList()?

3. How do you enable vertex arrays?

. How do you specify more than one set of texture coordinates when using vertex

arrays?

. Why is it generally a bad idea to perform frustum culling on a per-triangle basis?

On Your Own

1.

Modify the SphereInfrustum() function to return one of three values: whether the
sphere is completely inside, completely outside, or partially inside the view frus-
tum.

CcHAPTER 11

DISPLAYING TEXT

hances are, at some point you’ll want to render text. You might use text for

menus, screensavers, character dialogue, or simply for some special effects. In this

chapter you'll look at some of the more common techniques for displaying text
through OpenGL. The techniques you'll be looking at include bitmap fonts, outline fonts,
and textured fonts. Granted, most of these techniques are operating system specific with
Microsoft Windows, but we are also going to introduce a free OpenGL font library called
glFont.

In this chapter we’ll cover:

= Bitmap fonts
= Qutline fonts

= How to use the g1Font OpenGL font library

Bitmap Fonts

Bitmap fonts offer a simple way to display 2D text on the screen. Information about the
characters in a bitmap font is stored as bitmap images. A drawback to bitmap fonts is that
they can become jagged and primitive as they get larger (without antialiasing); however,
an advantage to bitmap fonts is that they provide a high performance method for render-
ing text to the screen. You create them through the use of the “wiggle” function wglUse-
FontBitmaps(), which generates bitmaps from font files loaded on your system.

BOOL wglUseFontBitmaps(HDC hdc, DWORD first, DWORD count, DWORD listBase);

249

250

Chapter 11 = Displaying Text

To use bitmap fonts, the first thing you need to do is to create a display list of size 96 that
will hold the character bitmaps. You accomplish this by using the g1GenLists() function:

unsigned int base;
base = glGenlLists(96);

After you've created the display list, you can create your font by using the Windows func-
tion CreateFont(), which is defined as:

HFONT CreateFont(

int nHeight, // Togical height of font

int nWidth, // Togical average character width
int nEscapement, // angle of escapement

int nOrientation, // base-line orientation angle

int fnWeight, // font weight

DWORD fdwltalic, // italic attribute flag

DWORD fdwUnderline, // underline attribute flag

DWORD fdwStrikelut, // strikeout attribute flag

DWORD fdwCharSet, // character set identifier

DWORD fdwOutputPrecision, // output precision

DWORD fdwClipPrecision, // clipping precision

DWORD fdwQuality, // output quality

DWORD fdwPitchAndFamily, // pitch and family

LPCTSTR TpszFace // pointer to typeface name string

);
This function returns a handle to the created Windows font object. You can then select

a device context for this font object and use the device context as a parameter for the
wglUseFontBitmaps() function, as seen here:

HFONT hFont; // windows font

// create a 1l4pt Courier font

hFont = CreatefFont(14, 0, 0, 0, FW_BOLD, FALSE, FALSE, FALSE, ANSI_CHARSET,
OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS, ANTIALIASED_QUALITY,
FF_DONTCARE | DEFAULT_PITCH, "Courier");

// verify font creation
if (!hFont)
return 0;

// select a device context for the font
SelectObject(g_HDC, hFont);

Bitmap Fonts 251

/] prepare the bitmap font
wglUseFontBitmaps(g_HDC, 32, 96, base);

The preceding block of code builds your bitmap font display list with a 14-point Courier
bold font.

Now you know how to create fonts, but how do you display them? Displaying text with
bitmap fonts is actually easier than setting them up. You simply call the g1ListBase() and
g1CallLists() functions like this:

char *str;

glPushAttrib(GL_LIST_BIT);

gllistBase(base - 32);

glCallLists(strien(str), GL_UNSIGNED_BYTE, str);
g1PopAttrib();

After the glListBase() function defines the base display list ID, the g1Calllists() function
calls the display list needed based on the array of characters (the text string) passed to it.

With all of this base code for using bitmap fonts, you can now develop a set of functions
to use these fonts more easily. Let’s look at a simple example that displays a text string in
the center of the window, as shown in Figure 11.1.

OG- Chaper 21 - Uimap, Fant

OpenGL Bitmap Fonts!

Figure 11.1 Screenshot of the BitmapFont example.

252

Chapter 11 = Displaying Text

On the CD you will find the code for this example in Chapter 11, in the BitmapFont
folder. In the example code, we created the private member variable m_fontListBase to store
the display list base, along with three methods: CreateBitmapFont(), Renderfont(), and
ReleaseFont().

The following code is for the CreateBitmapFont() method in the CGfx0penGL class:

unsigned int CGfxOpenGL::CreateBitmapFont(char *fontName, int fontSize)
{

HFONT hFont; // windows font

unsigned int base;

base = glGenlLists(96); // create storage for 96 characters
if (stricmp(fontName, "symbol") == 0)

{
hFont

CreatefFont(fontSize, 0, 0, 0, FW_BOLD, FALSE, FALSE, FALSE,
SYMBOL_CHARSET, OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS,
ANTIALIASED_QUALITY, FF_DONTCARE | DEFAULT_PITCH,

fontName);

}

else

{

hFont = CreatefFont(fontSize, 0, 0, 0, FW_BOLD, FALSE, FALSE, FALSE,

ANST_CHARSET, OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS,
ANTIALIASED_QUALITY, FF_DONTCARE | DEFAULT_PITCH,
fontName);

}

if (!nFont)

return 0;

SelectObject(hDC, hFont);
wglUseFontBitmaps(hDC, 32, 96, base);

return base;
}

The CreateBitmapFont() method first generates the display list for 96 characters. It then
checks whether the desired fontName is a symbol font. If it is, then the CreateBitmapFont()
function calls the CreateFont() function with the SYMBOL_CHARSET value for the fdwCharSet
parameter. If the function is not a symbol font, then the ANSI_CHARSET value is set. After

Outline Fonts

setting up the bitmap font for use with Windows through the wg1UseFontBitmaps() func-
tion, the CreateBitmapFont() method returns the base ID for the character display list.

Next is the RenderFont() method, which displays a string of text using the selected bitmap
font at a specified raster position:

void CGfxOpenGL::RenderFont(int xPos, int yPos, unsigned int base, char *str)
{
if ((base = 0) || (Istr))
return;

glRasterPos2i(xPos, yPos);

gTPushAttrib(GL_LIST_BIT);
glListBase(base - 32);
glCallLists((int)strlen(str), GL_UNSIGNED_BYTE, str);
g1PopAttrib();
}

The RenderfFont () method is very simple in that it verifies the base ID and string it receives
before setting the raster position and rendering the text display list. Finally, we have the
ReleaseFont() method, which simply cleans up the font display list:

void CGfxOpenGL::ReleaseFont(unsigned int base)
{
if (base !=0)
glDeletelists(base, 96);
}

The rest of the code uses these functions to display the screenshot shown in Figure 11.1.
The example is set up in orthographic projection. We recommend orthographic projec-
tion when rendering with bitmap fonts because it enables you to specify the raster posi-
tion coordinates in window coordinates, and you don’t need to worry about the
perspective projection affecting the raster position.

That’s all for bitmap fonts! Let’s look at another technique for putting text on the screen:
outline fonts.

Outline Fonts

Outline fonts are very similar to the bitmap fonts we just discussed, but they are much
more fun to play around with! Outline fonts define characters in a font as a series of lines
and curves, which means they can be scaled up and down without a loss in quality. With

253

254

Chapter 11 = Displaying Text

OpenGL, you can move outline font text around the screen in 3D, give the font text some
thickness, and essentially turn any font on the current system into a 3D font with all the
functionality of other 3D objects.

To use outline fonts, you first need to declare an array of 256 GLYPHMETRICSFLOAT variables,
which hold information about the placement and orientation of a glyph in a character
cell. The GLYPHMETRICSFLOAT structure is a special structure created specifically for using text
with OpenGL. It is defined as:

typedef struct _GLYPHMETRICSFLOAT { // gmf

FLOAT gmfBlackBoxX;
FLOAT gmfBlackBoxY;
POINTFLOAT gmfptGlyphOrigin;
FLOAT gmfCellIncX;
FLOAT gmfCellIncY;

} GLYPHMETRICSFLOAT;

You'll pass the GLYPHMETRICSFLOAT variable you create to the wglUseFontOutlines() function.
This function creates a set of display lists, one for each glyph of the current outline font,
which you can use to render text to the screen. This function is defined as:

BOOL wglUseFontOutTlines(

HDC hdc, // device context of the outline font
DWORD first, // first glyph to be turned into a display list
DWORD count, // number of glyphs to be turned into display Tists
DWORD TistBase, /] specifies the starting display 1ist
FLOAT deviation, /] specifies the maximum chordal deviation from the
// true outlines
FLOAT extrusion, // extrusion value in the negative-z direction
int format, /] specifies 1ine segments or polygons in display 1ists

LPGLYPHMETRICSFLOAT Tpgmf // address of buffer to receive glyph metric data
);
Creation of the outline font is essentially the same as the bitmap font with the addition of

these two items. For instance, compare the CreateBitmapFont() function we showed earlier
with this CreateQutlineFont() function:

unsigned int CreateOutlineFont(char *fontName, int fontSize, float depth)
{

HFONT hFont; // windows font
unsigned int base;

base = glGenlLists(256); // create storage for 256 characters

if (stricmp(fontName, "symbol") == 0)

Outline Fonts

hFont = CreateFont(fontSize, 0, 0, 0, FW_BOLD, FALSE, FALSE, FALSE,
SYMBOL_CHARSET, OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS,
ANTIALTASED_QUALITY, FF_DONTCARE | DEFAULT_PITCH,
fontName);
}
else
{
hFont = CreateFont(fontSize, 0, 0, 0, FW_BOLD, FALSE, FALSE, FALSE,
ANSI_CHARSET, OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS,
ANTIALIASED_QUALITY, FF_DONTCARE | DEFAULT_PITCH,
fontName);
}
if (!hFont)
return 0;

SelectObject(g_HDC, hFont);
wglUseFontOutlines(g_HDC, 0, 255, base, 0.0f, depth, WGL_FONT_POLYGONS, gmf);

return base;
}

As you can see, this function is very similar to the CreateBitmapFont() method we showed
earlier, but there are a few differences. The first difference you might notice is the addition
of the depth parameter, which is used by the wglUseFontOutlines() function to define the
length of the outline font text along the z-axis (or essentially the depth of the font). The
next difference is that you create 256 display lists instead of 96. This is because you
want to provide support for all the 256 available ASCII codes. And lastly, you use the
wglUseFontOutTines() function to finalize the setup of the outline fonts for OpenGL.

Displaying outline font text is exactly the same as displaying bitmap font text. Because you
used all 256 ASCII codes when initializing the outline font, here is how the display code
would look:

g1PushAttrib(GL_LIST_BIT);

gllistBase(base);

glCalllists(strlen(str), GL_UNSIGNED_BYTE, str);
g1PopAttrib();

On the CD included with this book you will find the OutlineFont example for Chapter 11.
This example renders text as an outline font to the window and rotates it. A screenshot is
shown in Figure 11.2.

255

256

Chapter 11 = Displaying Text

(N DOGL G - Chapier 1)) Difine Fani

Yengy Ougy;
OntS!

Figure 11.2 Screenshot of the OutlineFont example.

The majority of the code for this example is the same as the BitmapFont example, so we
will focus only on the Renderfont () method because it is the most different:

void CGfxOpenGL::RenderFont(float xPos, float yPos, float zPos, unsigned int base,
char *str)

{
float length = 0.0;

if ((base == 0) || (!str))
return;

/1 center the text
for (int idx = 0; idx < (int)strlen(str); idx++) // find Tength of text
{

Tength += gmf[strlidx]].gmfCellIncX; // increase length by character's width

glTranslatef(-Tength/2.0f, yPos, zPos);
glRotatef(m_angle, 1.0, 0.0, 0.0);
glRotatef(m_angle, 0.0, 1.0, 0.0);
glRotatef(m_angle, 0.0, 0.0, 1.0);

Using glFont

g1PushAttrib(GL_LIST_BIT);
glListBase(base);
glCallLists((int)strlen(str), GL_UNSIGNED_BYTE, str);
g1PopAttrib();
}

The RenderFont () method includes some code that centers the text on the point in space to
which the text is being drawn. This is accomplished through a loop that goes through each
character in the text string that you are displaying. During each iteration of the loop, you
add the character’s width, which you obtain from the GLYPHMETRICSFLOAT variable, to a vari-
able that stores the sum of all the characters’ widths. You then translate your coordinate
system along the negative x-axis by half the total length of the text string, resulting in the
text being centered on the (xPos, yPos, zPos) point in 3D space.

Also, the g1Rotatef() calls you see in the method are there only for demonstration pur-
poses and should not be in the RenderFont() method during normal use.

You can also texture map outline fonts since they are constructed of polygons. Instead of
trying to figure out the texture coordinates on your own, you can use OpenGL’s automatic
texture-coordinate generation functionality to texture map the text. You can find more
information on texture-coordinate generation in Chapter 9, “More on Texture Mapping.”

Using glFont

glFont is both a program executable and an API with source code that takes any Windows
TrueType font and turns it into an OpenGL texture. glFont determines the appropriate
texture coordinates and displays text with correct spacing and size on an OpenGL quadri-
lateral. Its design is not for 3D text, but rather for 2D text for use in games and other
graphics applications where 3D text is overkill.

You can find g1Font on the CD included with this book, or you can get it from the g1Font
Web site at http://students.cs.byu.edu/~bfish/glfont.php.

The Executable

The program included with g1Font is g1Font.exe, which is a simple-to-use program for
creating font textures that the g1Font API code can read and display. The process for using
g1Font.exe is simple:

1. Choose a font, using the standard Windows font dialog. Choose the size, style, and
SO on.

2. Specify the size of the texture to be used. Remember, the bigger the texture, the
higher the font quality.

3. Specify the range of ASCII characters to draw onto the texture.

257

258

Chapter 11 = Displaying Text

4. Generate the texture.
5. Save the texture to a GLF file.

The Code

Using g1Font in code is almost as easy as using the g1Font executable. First you need to cre-
ate a GLFONT object:

GLFONT font;

Next, you need to generate an OpenGL texture object with the glGenTextures() function
and then use that texture object when calling the GLFONT: :Create() method:

unsigned int tex;
glEnable(GL_TEXTURE_2D);
glGenTextures(1l, &tex);
font.Create("timesnewroman.glf", tex);

At this point, using g1Font is just a matter of calling the GLFONT: :Begin() method, display-
ing your text with GLFONT::DrawString(), and then finishing off the text display with
GLFONT: :End():

font.Begin();
font.DrawString("Hello world!", 5, 5, 0);
font.End();

A nice addition to g1Font is that you can modify the source code for displaying text as you
need it. For instance, you might want to display the text as a billboard for character dia-
logue. With g1Font, you just need to create another DrawString() method for GLFONT that cal-
culates the billboard coordinates. Remember, glfont simply uses OpenGL quads for
rendering, so you can rotate fonts, scale fonts, and translate fonts however you want.
Explore and experiment!

Summary

In this chapter you learned how to display and position 2D text with bitmap fonts using
the wglUseFontBitmaps() function and display lists. You also learned how to display and
position 3D text with outline fonts using the wglUseFontOutlines() function. Finally, we
introduced the g1Font OpenGL font library, which you can use and modify to suit your
text rendering purposes.

What You Have Learned

m The wglUseFontBitmaps() function generates bitmap fonts from the font files loaded
on the execution system.

Summary 259

» Display lists can be used to render each character of a font.

® When rendering bitmap fonts, you should use an orthographic perspective projec-
tion to simplify positioning the text.

® The wglUseFontOutTines() function creates a set of display lists, one for each glyph
of the current outline font.

m The GLYPHMETRICSFLOAT struct is used when creating outline fonts. This struct is
included particularly for rendering text with OpenGL.

= You can texture map outline fonts and specify texture coordinates with the auto-
matic texture coordinate generation functionality provided with OpenGL.

m glfont is both a program executable and an API with source code that takes any
Windows TrueType font and turns it into an OpenGL texture.

Review Questions
1. What “wiggle” function is used to create bitmap fonts?
2. What “wiggle” function is used to create outline fonts?

3. How do you texture map outline fonts?

On Your Own

1. Create a program that uses bitmap fonts, outline fonts, and the g1Font library to
render text.

2. Modify the g1Font API source code to display text on a billboard polygon.

This page intentionally left blank

CHAPTER 12

OPENGL BUFFERS

e’'ve been discussing buffers is some form for quite some time now but

haven’t really taken the time to discuss them in detail. For instance, we’ve

used the color and depth buffers in nearly every example thus far for func-
tions such as double-buffering and hidden surface removal. In this chapter, we’ll extend
beyond these basic functionalities while also looking at two more buffers, called the sten-
cil buffer and the accumulation buffer.

In this chapter, you'll learn:

What the framebuffer is

® What general operations can be performed on buffers

= How to use the alpha test, color masking, and logic ops
= How to use the depth bulffer
= How to use the stencil buffer

m How to use the accumulation buffer

What Is an OpenGL Buffer?

There are several buffers in OpenGL that you can use and manipulate, but just what exactly
is a buffer? Simply put, a buffer is a set of sequential locations in memory. In OpenGL, a
buffer is section of memory that is used to represent some aspect of the display. For exam-
ple, the color buffer stores RGBA data for each pixel on the screen or window.

All the buffers in a system are collectively referred to as the framebuffer. So with OpenGL,
the color buffer, depth buffer, stencil buffer, and accumulation buffer combine to give you

261

262

Chapter 12 = OpenGL Buffers

a single framebuffer. When you operate on any OpenGL bulffer, you are operating on the
framebuffer.

Before discussing individual buffer types, we’ll first look at a couple of operations that
apply to all of the buffers: clearing and scissoring.

Clearing the Buffers
The most basic operation you can perform on a buffer is to clear out the previous con-
tents. This is done using g1CTear():

void g1Clear(GLbitfield mask);

You've already seen this in action in all of

the demos presented so far, so it should Table 12.1 Clear Mask Values
look familiar. The mask parameter is the

bitwise logical 0R of a combination of the Flag Buffer

values listed in Table 12.1. GL_COLOR_BUFFER_BIT RGBA color buffer
GL_DEPTH_BUFFER_BIT Depth buffer

Each buffer has a default value, and when GL_STENCIL BUFFER BIT Stencil buffer

you clear it, each element in the buffer is ¢ oy gyprep pi7 Accumulation buffer

set to that value. As with most areas of
OpenGL, you can set the default clear
values to your own custom values. You do so with the following APIs:

void g1ClearColor(GLcTampf red, GLclampf green, GLclampf green, GLclampf alpha);
void g1ClearDepth(GLcTampd depth);

void g1ClearStencil(GLint i);

void glClearAccum(GLcTampf red, GLclampf green, GLclampf green, GLclampf alpha);

The GLcTamp types are used for parameters that are internally clamped to fall within 0.0 and
1.0. The default values for all buffers are 0, except for the depth buffer, which is 1.0, cor-
responding to the value that represents elements that are farthest away from the camera.

Scissor Boxes

OpenGL allows you to define a scissor box that limits rendering to a sub-region of the
screen. When scissoring is enabled, any pixel writes outside of the box are ignored. This
applies to not only color values, but depth, stencil, and accumulation buffer values as well.
Scissoring is one of the few operations that also affect the operation of g1Clear(); when it
is enabled, only pixels inside of the scissor box will be cleared.

You can enable scissoring by passing GL_SCISSOR_TEST to glEnable(). The size of the scissor
box is defined using:

void g1Scissor(GLint x, GLint y, GLsizei width, GLsizei height);

The Color Buffer

The x and y values correspond to the screen coordinates of the lower left corner of the box
(the lower left corner of the screen is at (0, 0)). width and height are the dimensions of the
box in pixels. The scissor box is set to the size of the window when a rendering context is
first attached to it.

The following code shows an example of setting up a scissor box such as that shown in
Figure 12.1.

glEnable(GL_SCISSOR_TEST);
g1Scissor(200, 250, 240, 180);

The Color Buffer

The color buffer stores RGBA data for each pixel on the screen. Almost everything discussed
in this book relates to the color buffer in some way. There are a few operations in addition
to those that we’ve already discussed that affect the color buffer on a per-fragment basis,
and those will be described in this section.

Alpha Test

Every incoming fragment has an alpha value associated with it. Even if you don’t specify
it yourself, it gets set to the default value of 1. The alpha test can be used to discard frag-
ments based on their alpha value. Practical applications for this include being able to dis-
card transparent components of images.

Figure 12.1 An example of a scissor box.

263

264

Chapter 12 = OpenGL Buffers

For example, say you are using the image in Figure
12.2 for billboarding, in which you apply the image
as a texture to a screen-oriented quad to cheaply
fake a 3D cactus. When applying the texture map,
you would want to draw only the pixels that make
up the cactus. Drawing the black area around it
would ruin the effect. Alpha testing is the best way
to do this.

The first step is to initialize the texture with appro-
priate values, such as an alpha of 0 in the black
areas and 1 everywhere else. The next step is to
enable the alpha test, which you would do with:

Figure 12.2 Animage used as a
billboard texture.

gTEnable(GL_ALPHA_TEST);

Then you need to set up the alpha function. The alpha function controls exactly how the
comparison is done. It is specified by using:

void glAlphaFunc(GLenum func, GLclampf reference);

func is an enumeration specifying the comparison function. Valid values are listed in Table
12.2. The incoming fragment alpha is compared against the reference value. Continuing
with the cactus example, setting up the alpha function as follows would reject the black
pixels (with an alpha of 0) and accept everything else.

gTATphaFunc(GL_GREATER, 0.0);

The alpha test is an easy to use tool that has many practical applications in games.

Table 12.2 Alpha Test Functions

Function Description

GL_NEVER Never pass, regardless of the fragment or reference alpha values.

GL_ALWAYS Always pass, regardless of the fragment or reference alpha values. This is the default.
GL_LESS Pass if the fragment alpha is less than the reference value.

GL_LEQUAL Pass if the fragment alpha is less than or equal to the reference value.

GL_EQUAL Pass if the fragment alpha is equal to the reference value.

GL_GEQUAL Pass if the fragment alpha is greater than or equal to the reference value.
GL_GREATER Pass if the fragment alpha is greater than the reference value.

GL_NOTEQUAL Pass if the fragment alpha not equal to the reference value.

The Color Buffer

Color Masking

OpenGL allows you to disable writing to specific color channels. This can be used to cre-
ate some interesting effects. For example, some multipass rendering algorithms require
you to modify the depth buffer without actually writing color values. Another use might
be to disable writing to everything but the green channel to create a cheap night vision

265

effect.

This is known as color masking, and it is controlled through the following API:

void glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha);

Passing GL_FALSE as the red, green, blue, or alpha parameter will disable writes for that chan-
nel. GL_TRUE is used to enable writes. By default, all of the channels are enabled, as you'd

expect.

The color mask affects all operations that may potentially modify the color buffer, includ-

ing clears.

Logical Operations

OpenGL allows you to create some interest-
ing effects by performing logical operations
between the incoming fragment and the

Table 12.3 Logical Operations

value in the color buffer. These are executed Function Description
as bitwise logical operations between each oL e
of the individual red, green, blue, and alpha GL_AND c=sbd
components of the two colors. The result- GL_AND_REVERSE 858 & (4
ing value is then stored in the color buffer. L €=
GL_AND_INVERTED c=(~s) &d
Logic ops are enabled by passing GL_N0OP c=d
GL_COLOR_LOGIC_OP to glEnable(). You can GL_XOR c=s"d
specify which specific operation to perform GL_OR c=s|d
by using: GL_NOR c=~(s|d
GL_EQUIV c=~(s*d)
void glLogicOp(GLenum op); GL_INVERT c = ~d
op can be any of the enumerants listed in GL_OR_REVERSE c=s | (~d)
Table 12.3, where the fragment color is rep- GL_COPY_INVERTED © =8
resented as s, the value in the color buffer is GL_OR_INVERTED ¢c= () |d
d, and the resulting color is c. The notation GL_NAND ¢=~(s&d
GL_SET ¢ = 1 (all bits set to 1)

used corresponds to the C/C++ notation
for bitwise operations.

266

Chapter 12 = OpenGL Buffers

Note

When logic ops are enabled, blending isn't performed, whether or not it is actually enabled. This is
because the two operations have very similar functionality, so using them together would be
ambiguous.

The Depth Buffer

You typically use the depth buffer (also known as the z-buffer) to perform hidden-surface
removal on the objects in the scene. The values stored by the depth buffer for each pixel
represent the distance between the object and the viewpoint. As you draw primitives, the
depth buffer is checked and updated based on the distance of each object and the current
depth-comparison function.

To take advantage of depth buffering, you must first be sure to request one when creating
your window. You can then enable or disable depth testing by passing GL_DEPTH_TEST to
glEnable()/g1Disable(). It’s disabled by default.

Depth-Comparison Functions

As mentioned, when you draw your scene with OpenGL, the z coordinate of each pixel on
the screen is compared with the previous z coordinate already stored in the depth value as
a distance. The function to determine what type of comparison you’re going to use is set
with the g1DepthFunc() function:

void glDepthFunc(GLenum func);

You can use any of the values listed in Table 12.4 for the func parameter.

Table 12.4 Depth-Comparison Functions

Mode Description

GL_NEVER Never passes.

GL_LESS Passes if the incoming z value is less than the stored z value. This is the default.
GL_EQUAL Passes if the incoming z value is equal to the stored z value.

GL_LEQUAL Passes if the incoming z value is equal to the stored z value.

GL_GREATER Passes if the incoming z value is greater than the stored z value.

GL_NOTEQUAL Passes if the incoming z value is not equal to the stored z value.

GL_GEQUAL Passes if the incoming z value is greater than or equal to the stored z value.

GL_ALWAYS Always passes.

The Depth Buffer

OpenGL compares the current pixel’s z value with the z value stored in the depth buffer
at that location. If the depth-comparison function passes, then the pixel is stored in the
color buffer, and the depth buffer is updated with the new pixel’s depth. The default
depth-comparison function is GL_LESS, which draws a pixel on if its z value is less than the
z value in the depth buffer.

Tip

There's a subtle difference between using a depth function of GL_ALWAYS and simply disabling the
depth test. Both methods will cause all objects to be updated in the color buffer, regardless of their
depth. The difference is that when using GL_ALWAYS, each object will also update the depth buffer.
The depth buffer isn't updated when the depth test is disabled.

Read-Only Depth Buffer

Being able to have objects tested against the depth buffer without updating it can enable
some useful effects. For example, imagine rendering an explosion as a particle system.
Each particle is transparent, and they are being additively blended, so that multiple parti-
cles in a single location will result in a brighter spot. The particles should be occluded by
solid objects in the scene but not occlude each other. One way to achieve this would be to
depth sort the particles and draw them in order from farthest to nearest. However, with
thousands of particles, the cost of sorting could be high.

By making the depth buffer read-only and rendering the particles last, you can achieve the
same effect much more easily. Read/write access to the depth buffer is controlled with
g1DepthMask():

void g1DepthMask(GLboolean enable);

A value of GL_TRUE enables writes to the depth buffer, and GL_FALSE makes it read-only.
Pseudocode for the explosion effect would look like this:

// depth testing is on all of the time
glEnable(GL_DEPTH_TEST);

Draw all normal objects in the scene

g1DepthMask(GL_FALSE); // disable depth writes
Draw the explosion
g1DepthMask(GL_TRUE); // reenable depth writes

267

268

Chapter 12 = OpenGL Buffers

Z-Fighting

When drawing overlapping triangles with similar depth values, a visual artifact known as
z-fighting can manifest itself, causing the triangles to flicker as the camera moves. This is an impre-
cision issue; because depth values are stored in a finite (and relatively small) range, small errors
introduced during their calculation can cause triangles that should be behind other triangles to
show through them instead.

Z-fighting usually happens when using a 16-bit depth buffer, so switching to a 24-bit depth buffer
usually fixes the problem. However, to get a hardware-accelerated 24-bit depth buffer, you usually
have to also request a 32-bit color buffer, which may not be possible on older systems. In addition,
even with a 24-bit depth buffer, you may still experience z-fighting.

The best solution is often to modify the values used for the far and near clip planes. Making the
view frustum shorter allows for greater precision. Furthermore, z values are mapped to the depth
buffer in a nonlinear fashion, so that objects closer to the screen have greater precision than
objects farther away. Therefore, increasing the distance to the near clip plane has a more dramatic
effect than decreasing the distance to the far clip plane. For instance, doubling the near plane dis-
tance from 1 to 2 doubles the precision of the depth buffer.

The Stencil Buffer

Like the depth buffer, you can use the stencil buffer to block out portions of the screen
from view. However, the stencil buffer is a general purpose buffer that allows you to do
things that aren’t possible with the color buffer and depth buffer alone. One popular
application is in creating reflective surfaces, where you restrict rendering to an irregular
section of the screen where the reflected geometry will appear. You'll see an example of
this at the end of this section. It is essential for many shadow rendering techniques, such
as shadow volumes.

To use the stencil buffer, you must first make sure that your rendering window supports
it. Under Windows, this means setting the cStenci1Bits field of the PIXELFORMATDESCRIPTOR when
setting the pixel format, like this:

pfd.cStencilBits = 8;

This will create an 8-bit stencil buffer. Then you need to enable stenciling by passing
GL_STENCIL_TEST to glEnable(). The next step is to set up stencil function and operation.
These define how stenciling actually works, and understanding them will allow you to
understand what stenciling really is.

The stencil function allows you to specify a function (which can be any of the values in
Table 12.5), a reference value, and a mask. When a fragment is processed, the reference

The Stencil Buffer

value and the value in the stencil buffer at the current pixel are logically ANDed with the
mask, and the resulting values are tested using the stencil function. What happens next
depends on the stencil operation. The stencil function can be set with the following API:

void glStencilFunc(GLenum func, GLint reference, GLuint mask);
The stencil operation defines three different actions:

1. What to do if the stencil test fails.
2. What to do if the stencil test passes but the depth test fails.

3. What to do if both the stencil and depth tests pass, or if the stencil tests pass and
depth testing is disabled.

Each of these actions can be any of the values listed in Table 12.6. The stencil operation
can be set using the following:

void g1StencilOp(GLenum fail, GLenum zfail, GLenum zpass)

fail, zfail, and zpass correspond to actions 1, 2, and 3 in the list above.

Table 12.5 Stencil Functions

Function Description

GL_NEVER Always fails.

GL_LESS Passes if the reference value is less than the value in the stencil buffer.

GL_LEQUAL Passes if the reference value is less than or equal to the value in the stencil buffer.
GL_GREATER Passes if the reference value is greater than the value in the stencil buffer.

GL_GEQUAL Passes if the reference value is greater than or equal to the value in the stencil buffer.
GL_EQUAL Passes if the reference value is equal to the value in the stencil buffer.

GL_NOTEQUAL Passes if the reference value is not equal to the value in the stencil buffer.

GL_ALWAYS Always passes. This is the default.

Table 12.6 Stencil Operations

Function Description

GL_KEEP The value in the stencil buffer is not changed.

GL_ZERO The value in the stencil buffer is set to 0.

GL_REPLACE The value in the stencil buffer is set to the reference value.
GL_INCR The value in the stencil buffer is increased by 1.

GL_DECR The value in the stencil buffer is decreased by 1.

GL_INVERT Inverts the bits in the stencil buffer value.

269

270

Chapter 12 = OpenGL Buffers

An Example of Stencil Testing

You now know how the stencil test works on a low level, but let’s look at an example to
better understand it. The Marbles demo from Chapter 10, “Up Your Performance,” used
the stencil test to create a reflection of the marbles on the floor of the box. This was done
in the following function:

void CGfxOpenGL::DrawReflection()

{
glLightfv(GL_LIGHTO, GL_POSITION, NEG_LIGHT_POSITION);
g1DepthMask(GL_FALSE);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 1, OxFFFFFFFF);
g1StencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

DrawBoxBottom();

g1DepthMask(GL_TRUE);
gl1StencilFunc(GL_EQUAL, 1, OxFFFFFFFF);
g1StencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

DrawMarbles(GL_TRUE);
g1Disable(GL_STENCIL_TEST);

g1Lightfv(GL_LIGHTO, GL_POSITION, LIGHT_POSITION);
}

To set up the stencil test, this code first enables it and sets the stencil function to always
pass with a reference value of 1. The mask used will not modify the reference or stencil
buffer values at all. The stencil operation is set to GL_REPLACE for all possibilities, so any-
thing that gets rendered will set the stencil buffer to the reference value.

After setting up the stencil test, the bottom of the box is rendered. When the stencil buffer
was cleared (outside of this code), the entire stencil buffer was set to 0. After the call to
DrawBoxBottom(), the stencil buffer will be set to 1 (the reference value) at the pixels where
the box bottom was drawn and 0 everywhere else.

Then the stencil function is changed to GL_EQUAL, but the reference value is left at 1. Now
fragments will pass the stencil test only when the stencil buffer is 1 at the current pixel
location. So when the call to DrawMarbles() is made, it will only be drawn in the region
where the box bottom is located. By setting all stencil operations to GL_KEEP, we’re ensur-
ing that the contents of the stencil buffer won’t get modified by anything currently being
drawn.

The Accumulation Buffer

That’s all there is to using the stencil buffer. The stencil test is useful in games for reflec-
tions, decals, and shadow volumes, among other things, so you'll definitely be using it.

Tip

To ensure that you get a hardware-accelerated stencil buffer, it's recommended that you use a 32-
bit color buffer along with a 24-bit depth buffer and 8-bit stencil buffer. Color depths other than 32
may cause the stencil buffer to operate in software mode, which is extremely slow. Similarly, the
depth buffer and stencil buffer are typically interleaved in memory, so using 24 bits for the depth
buffer and 8 bits for the stencil buffer allows for optimal performance.

The Accumulation Buffer

The idea of the accumulation buffer is that you draw multiple images into the color buffer,
one at a time, and then accumulate each image into the accumulation buffer. After you've
accumulated all the images, you put them back onto the color buffer to be displayed on
the screen. You can create some cool effects with this buffer, including motion blur, depth-
of-field effects, scene antialiasing, and soft shadows.

As with other buffer types, to be able to actually use the accumulation buffer, you have to
request one when you set up the pixel format. This is done by setting the cAccum
bits field. The accumulation buffer typically requires more storage per pixel than other
buffers, with 64 bits being a common value. This is to help maintain range and precision
when accumulating multiple samples.

OpenGL provides a single function to work on the accumulation buffer:
void gTAccum(GLenum op, GLfloat value);

The op parameter specifies the operation to be performed, and the value parameter specifies
a number that will be used for the operation. Table 12.7 shows the available operations.

Table 12.7 Accumulation Buffer Operations

Operation Description

GL_ACCUM Obtains RBGA values from the color buffer, multiplying them by value and then
adding them to the existing contents of the accumulation buffer.

GL_LOAD Obtains RBGA values from the color buffer, multiplying them by value and replacing
the existing contents of the accumulation buffer.

GL_ADD Adds the value parameter to each existing value in the accumulation buffer.

GL_MULT Multiplies the value of each pixel in the accumulation buffer by value.

GL_RETURN Multiplies the value of each pixel in the accumulation buffer by value and sends the

result to the color buffer.

271

272

Chapter 12 = OpenGL Buffers

To use the accumulation buffer for motion blur, you accumulate several images repre-
senting the trail of the blur by using the g1Accum() function like this:

glAccum(GL_ACCUM, 1.0f/N);

where N is the number of images being accumulated. This acts as a decay factor between
the images. Each time this line is called, the object’s image will be fainter than the previ-
ous image. After you're finished accumulating your images into the accumulation buffer,
you call the glAccum() function again to copy the contents back into the color buffer:

glAccum(GL_RETURN, 1.0);

Until recently, the accumulation buffer was not well supported in consumer-level graph-
ics hardware, so if you use it in a game, it may not run well on older computers. Fortu-
nately, there are alternatives for many specific effects that can be more efficient than using
the accumulation buffer.

Example: Using the Accumulation Buffer

A simple demo showing two uses of the accumulation buffer can be found on the CD in
the folder for this chapter in the Accum directory. This demo, shown in Figures 12.3 and
12.4, actually contains two demos, one showing motion blur and the other showing soft
shadows. The demo starts off with the motion blur. You can change to the soft shadows
demo by pressing the S key and then change back to motion blur with the M key. Let’s
look at the relevant portions of this demo.

| DULLLY - Chapter 12 - Mation i

Figure 12.3 Two spheres rendered with motion blur.

The Accumulation Buffer 273

ALY - Uhapter 12 - oft Shadew

Figure 12.4 Soft shadows.

The bulk of the work for motion blur is done in the following function:

void CGfxOpenGL::RenderMotionBlur()

{
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

GLfloat angle = m_angle;
for (int 1 = 0; i < SPHERE_NUM_SAMPLES; ++i)
{

DrawSpheres(angle);

angle -= SPHERE_BLUR_ARC/SPHERE_NUM_SAMPLES;

if (i=0)
glAccum(GL_LOAD, 1.0f/SPHERE_NUM_SAMPLES);
else

glAccum(GL_ACCUM, 1.0f/SPHERE_NUM_SAMPLES);
}
glAccum(GL_RETURN, 1.0);

274

Chapter 12 = OpenGL Buffers

During each iteration through this loop, the spheres are rotated back a bit farther along
their path. Because the color buffer isn’t being cleared between each iteration, the images
gradually build up. At the end, they are accumulated into the depth buffer with a factor
based on the total number of iterations. Spheres drawn during the first several iterations
will be accumulated multiple times, so they will be brighter than the ones accumulated
near the end. Finally, the results are copied back into the frame buffer.

You'll notice that on the first iteration, the color buffer is accumulated via GL_L0AD, which
allows us to skip clearing the accumulation buffer at the beginning of the frame.

The main rendering function for the soft shadow portion of the demo looks like this:

void CGfxOpenGL::RenderSoftShadow()

{
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ACCUM_BUFFER_BIT);
glloadIdentity();
glulookAt(5.0, 8.0, 10.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0);

for (int 1 = 0; 1 < SHADOW_NUM_SAMPLES; ++1i)
{
SetShadowMatrix(m_shadowMatrix, LIGHT_POS[i], FLOOR_PLANE);
// draw the shadow
glPushMatrix();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_LIGHTING);
glLightfv(GL_LIGHTO, GL_POSITION, LIGHT_POS[01);
DrawFloor();

g1Disable(GL_LIGHTING);
g1Disable(GL_DEPTH_TEST);

g1Color4f(0.0, 0.0, 0.0, 1.0f);

/] project the cone through the shadow matrix
gIMultMatrixf(m_shadowMatrix);
DrawCone();

glEnable(GL_DEPTH_TEST);
glPopMatrix();
glAccum(GL_ACCUM, 1.0f/SHADOW_NUM_SAMPLES);
}

glAccum(GL_RETURN, 1.0);

Summary

glLightfv(GL_LIGHTO, GL_POSITION, LIGHT_POSL01);

// draw the cone normally
glEnable(GL_LIGHTING);
glColor3f(0.1f, 0.2f, 0.8f);
DrawCone();
g1Disable(GL_LIGHTING);

}

This is slightly more complex due to the projective shadow code, but again we’ll focus on
the for loop. Each time through the loop, a different light position is used. These positions
vary slightly from each other, allow us to jitter the light position. This allows us to simu-
late a light source that has volume (which is how lights in the real world work, as opposed
to the infinitely small points supported by OpenGL’s lighting model). A shadow projec-
tion matrix is calculated using the new light position, and then the cone is projected onto
the floor plane and drawn as a black shadow. The results are accumulated with a factor
based on the total number of samples.

Both the plane and shadow are drawn every iteration, but the plane remains stationary
while the shadow moves slightly due to the jittered light source. The result of this is that
the plane is drawn normally, but the shadow is dark in the center because the center pix-
els were rendered during every iteration, while the pixels near the edge of the shadow var-
ied with each light position.

Summary

The framebuffer, composed of the color, depth, stencil, and accumulation buffers, plays a
central role in OpenGL rendering. The color buffer is what ultimately gets seen, but the
depth and stencil buffers both play a role in determining which pixels actually get drawn,
and the accumulation buffer can be used in conjunction with the color buffer for a num-
ber of multipass rendering effects. Each buffer has several states associated with it that you
can control to achieve exactly the results you want.

What You Have Learned
m All the buffers are collectively referred to as the framebuffer.

» Buffers can be cleared using g1Clear(). Each buffer has a clear value that you can
control.

= You can define a scissor window using g1Scissor() that limits rendering to a subre-
gion of the display.

m The alpha test can be used to cause fragments to be rejected based on their alpha
values.

275

276

Chapter 12 = OpenGL Buffers

g1ColorMask() allows you to disable writes to specific color channels.

Source and destination pixels can be combined using bitwise logical operations
defined with g1LogicOp().

g1ColorMask() allows you to disable writes to specific color channels.

The depth buffer is used to remove hidden surfaces via a depth function you can
change to fit your needs. g1DepthMask() can be used to make the depth buffer read-
only.

The stencil buffer provides you with fine-grained control of what regions of the
screen can be rendered to.

The accumulation buffer is useful for several multipass rendering techniques.

Review Questions

1.

9]

What are the default clear values for the four buffers described in this chapter?

2. How is alpha testing different from alpha blending?
3.
4. True or false: Setting the depth function to GL_ALWAYS has the same effect as dis-

What happens to blending when logic ops are enabled?

abling the depth test.

. How is the mask parameter in g1StencilFunc() used?

6. Which accumulation function can be used to avoid clearing the accumulation

buffer every frame?

On Your Own

1.

To better understand the alpha test, create a simple program that uses it. Specify a
smooth shaded quad with an alpha value of 0 in the lower left corner, 0.5 in the
top left and bottom right corners, and 1 in the top right corner. Have your pro-
gram cycle through several alpha reference values. Alternatively, create an image
like that shown in Figure 12.2. Set the alpha value for the black regions to 0 with a
value of 1 everywhere else. Set the alpha test to reject the black pixels, and apply
the texture using GL_REPLACE.

CHAPTER 13

THE ENDGAME

he endgame. This is the end, and we have a game for you. We’ve covered quite a

bit of OpenGL in this book, and now it’s time to put OpenGL to work. On the CD

in Chapter 13, you will find a chess game that we have affectionately called Chess,
which follows in the spirit of the computer chess game hit BattleChess. In this chapter we
are going to talk a little bit about the technical design as well as cover how we used
OpenGL in the game. We invite you to modify the game code and make additions if you
would like. Use your imagination!

In this chapter we will cover:

m Chess game technical design

®= How OpenGL is used in Chess

The Design

We had one rule when designing the chess game: keep things simple. We wanted to sepa-
rate data processing from rendering as much as possible, and we wanted to keep the code
portable in case you decide to copy it to another operating system. The result is a pretty
solid design that we hope is expandable enough for you to modify and make changes as
you see fit.

If you do a search on the Internet for “programming chess games,” you will likely find Web
pages that describe popular chess data structures and algorithms like “bitboards,” move
generations, and evaluation functions. In the spirit of keeping things simple, we didn’t
want to spend pages upon pages describing popular chess programming practices, so we
did things our own way. In addition, we decided to keep the chess game two player, leav-
ing the addition of chess artificial intelligence as an exercise for you.

277

278 Chapter 13 = The Endgame

Figure 13.1 is a diagram showing
all of the classes we use in the
game, along with their dependen- g | i

cies, similar to a minimized ver- I

sion of a class diagram in the [‘f‘.'.*.';':.'!‘.-.‘.:——'-'[‘!.".".’Y‘:f!.'.'.'!':} >{Cohembiece]
Unified Modeling Language

(UML). The WinMain class we have [Goasiy (e =
defined in the figure refers to the lf -)

WinMain() function and supporting "

functions for main loop execu-
tion. Table 13.1 includes the rest [CoiRestimer] [Cvearor | [cPiane
of the classes.

Now let’s look at how these classes
talk to each other with sequence
diagram by starting from the top
with initialization in WinMain(). A sequence diagram is shown in Figure 13.2 for the ini-
tialization sequence. First we initialize the high-resolution timer, CHiResTimer, which will
be used during the main loop for determining the delta time between frames. Next the

Figure 13.1 Classes and their dependencies in the game.

Table 13.1 Chess Game Classes

Class Description

CGfx0penGL The OpenGL rendering class. The majority of OpenGL rendering functionality is here.

CChessGame The core chess game functionality. Stores the chessboard, all chess pieces, piece
model loading, piece movement, capturing, and the chess game state machine.

CTextureMgr A texture management class. Loads textures and provides access to them through a
simple interface for binding OpenGL textures.

CChessBoard A class representing the chessboard and its current state.

CChessPiece A struct representing a chess piece, storing color, position on the board, an “in play”
flag, and the piece model.

CMD2Data A factory class for MD2 models. Loads the MD2 model data and spawns
CMD2Instances.

CMD2Instance An instance of an MD2 model.

CTargalmage The Targa image class used for textures.

CHiResTimer Encapsulates high-resolution timer functionality that allows us to render with frame-
rate independence.

CVector A 3D vector math class.

CPlane A plane math class.

Using OpenGL in the Game

imgm]

)

[CchessGame] [CChessBoad]

ndializef)

Initishze) 1
SelSnardg:ﬁq_j]

|-SetupWhileFieces{)
FE——| '

|-SelpbiackPieces])
e——1 i

AtachToGame(g_c In-: e ame)

SatupPerspectived)]

[Whi_SIZE|

Figure 13.2 |Initialize sequence diagram.

CChessBoard class is initialized, allowing the chessboard to be set up and all of the pieces to
be positioned correctly and their models loaded.

Finally, we “attach” the CChessGame class pointer to the CGfxOpenGL class, which needs to know
about the data stored in CChessGame in order to render the chessboard and pieces correctly.

Next we have the main game loop, whose sequence diagram is shown in Figure 13.3. The
CGfxOpenGL class is used as the entry point into the rest of the game software. It is here that
we call the Update() method of the CChessGame class, where we then proceed to update chess
piece model animations, piece movements, captures, the game board, and the overall
game state.

After performing the data update for the current frame, we then render it with the
Render() method of CGfxOpenGL. Let’s take a look at this method.

|CtiiResTmae | TM] |CChessGame | [fﬂmﬁﬂ

Prpans{delaTims)

c delalime = GﬁE?aysst‘.’Secuﬂds[l]r{j

Render)

L

: SatBoardSpace] :

Figure 13.3 Update sequence diagram.

279

280

Chapter 13 = The Endgame

Using OpenGL in the Game

The Render() method in the CGfxOpenGL class is the entry point for all rendering function-
ality in the game.

void CGfxOpenGL::Render()
{
glClearColor(0.0f, 0.0, 0.0, 0.0);
g1Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT);

glLoadIdentity();

if (m_currentView == WHITE)
gluLookAt(m_whiteViewPos.x, m_whiteViewPos.y,
m_whiteViewPos.z, 4.0, 0.0, 4.0, 0.0, 1.0, 0.0);
else
gluLookAt(m_blackViewPos.x, m_blackViewPos.y,
m_blackViewPos.z, 4.0, 0.0, 4.0, 0.0, 1.0, 0.0);

In this first block of code, you can see that we clear the color, depth, and stencil buffer bits,
load the identity matrix, and set the camera position based on the current player. We clear
the stencil buffer bit because we use the stencil buffer to properly render piece reflections
on the chessboard.

// render the wood table
g1Disable(GL_DEPTH_TEST);
RenderTable();

glEnable(GL_DEPTH_TEST);

In this section we draw the background wood table with the RenderTable() method. The
background table is drawn primarily for aesthetic purposes, but since we are drawing
piece reflections on the chessboard, we need to disable depth testing while drawing it; oth-
erwise, the piece reflections will not look correct as the background table will mix into the
reflected piece rendering.

// prepare to write to the stencil buffer by turning off
// writes to the color and depth buffer
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
g1DepthMask (GL_FALSE);

/] setup the stencil func and op to place a 1 in the stencil buffer
// everywhere we're about to draw

g1Enable(GL_STENCIL_TEST);

gl1StencilFunc(GL_ALWAYS, 1, OxFFFFFFFF);

g1StencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

Using OpenGL in the Game

/] render the chess board surface. Since the depth and
// color buffers are disabled,

// only the stencil buffer will be modified
RenderChessBoard();

// turn color and depth buffers back on
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
g1DepthMask(GL_TRUE);

// from this point on, only draw where stencil buffer is set to 1
gl1StencilFunc(GL_EQUAL, 1, OXFFFFFFFF);

// don't modify the contents of the stencil buffer
g1StencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

The preceding section of code is responsible for setting up and rendering the chessboard
to the stencil buffer. The stencil buffer is used as a cutout for determining what is actually
rendered to the screen.

/] draw reflected chess pieces first
glPushMatrix();
g1Scalef(1.0, -1.0, 1.0);
RenderPieces();
glPopMatrix();

/] draw chessboard and selection square with blending
glEnable(GL_BLEND);
RenderSelections();
g1BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_DST_ALPHA);
RenderChessBoard();
g1Disable(GL_BLEND);

// turn off stencil testing
g1Disable(GL_STENCIL_TEST);

With stencil testing enabled, we draw the reflected pieces and the chessboard. The stencil
testing prevents anything rendered at this step from being drawn outside the bounds of
the chessboard that we rendered onto the stencil buffer.

/] draw pieces normally
glPushMatrix();
glColordf(1.0, 1.0, 1.0, 1.0);
RenderPieces();
g1PopMatrix();

281

282 Chapter 13 = The Endgame

And finally, with stencil test-
ing disabled, we render the
chess pieces normally. The -~
result is a set of chess pieces
reflecting off a marble-look-
ing chessboard sitting on a
table, as shown in Figure 13.4.

Summary

The rest of the code for the
chess game deals with piece
movement algorithms, model
rendering and loading, and
the various state machines
involved. We invite you to Figure 13.4 A screenshot of the chess game.
browse the source code in

detail, experiment with it,

learn from it, and even make your own derivative!

More than anything, we hope you've learned a lot about OpenGL from this book and you
enjoy using OpenGL as much as we have. Just remember, in today’s world of 3D graphics,
anything is possible!

What You Have Learned
m The chess game is designed to be easily portable.

® The chessboard is rendered to the stencil buffer to aid in rendering the chess piece
reflections properly.

Review Questions

No review questions for this chapter.

On Your Own
1. Right now the chess game does not verify check or checkmate. Add this functional-
ity to the chess game.

2. The chess game does not have a menu, nor does it display any statistics during the
game. Write code to display the current player, “White” or “Black,” on the screen,
and add functionality for a basic menu.

3. In its current form, the game switches between only two views. Add code to view
closeups of piece capture moves, rotate views of the chessboard, and zoom the view.

- PART il

APPENDICES

APPENDIX A

Answers to Review Questions and Exercises 285
APPENDIX B

FurtherReading 295

APPENDIX C
What'sonthe CD e e e 299

This page intentionally left blank

APPENDIX A

ANSWERS TO REVIEW
QDQUESTIONS AND EXERCISES

Chapter 1

Review Questions

1. 1992

2. At the time of writing (early 2004), OpenGL’s latest release is 1.5.
3. The OpenGL Architectural Review Board.

On Your Own

1. g1Color3f(1.0, 0.0, 0.0) should be used for all triangle vertices, and g1Col0r3f(0.0,
0.0, 1.0) should be used for all polygon vertices.

Chapter 2

Review Questions
1. A rendering context connects OpenGL to a window.
2. wglGetCurrentContext()

3. A PIXELFORMATDESCRIPTOR is a struct that defines the characteristics and behavior of
the OpenGL rendering context.

4. g1ClearColor() clears the background color of the OpenGL window.
5. The DEVMODE struct is required to set up fullscreen mode.

On Your Own

1. The following should be changed: g1ClearColor(1.0, 1.0, 1.0, 1.0); and

g1Color3f(1.0, 0.0, 0.0);.
285

286 Appendix A = Answers to Review Questions and Exercises

Chapter 3

Review Questions

1. Pass GL_LINE_SMOOTH to g1IsEnabled(); g1IsEnabled(GL_LINE_SMOOTH).

2. glEnable(GL_CULL_FACE);

3. OpenGL draws the first three vertices as a single triangle; after that, it takes every
vertex specified and combines it with the previous two vertices to create another
triangle. In general, every set of # triangles you can reduce to a triangle strip
reduces the number of vertices from 37 to n + 2.

4. The first three vertices define a triangle, and each subsequent vertex defines a new
triangle with the previous vertex and the first vertex. Fans allow you to draw n tri-
angles while specifying only n + 2 vertices.

5. a. Three coordinate vertex with float data type
b. Two coordinate vertex with integer data type, passed as an array
c. Four coordinate vertex with double data type
d. Three coordinate vertex with float data type, passed as an array
e. Two coordinate vertex with short data type

On Your Own
1. Answers may vary.

void DrawCircleApproximation(double radius, int numberOfSides)
{
// if edge only, use Tine strips; otherwise, use polygons
if (edgelOnly)
g1Begin(GL_LINE_STRIP);
else
g1Begin(GL_POLYGON);

// calculate each vertex on the circle
for (int vertex = 0; vertex < number0fSides; vertex++)
{
// calculate the angle of the current vertex
/] (vertex # * 2 * PI) / # of sides
float angle = (float)vertex * 2.0 * 3.14159 / numberOfSides;

// draw the current vertex at the correct radius
glVertex3f(cosf(angle)*radius, 0.0, sinf(angle)*radius);

Answers to Review Questions and Exercises 287

// if drawing edge only, then need to complete the Toop with first vertex
if (edgelnly)
glVertex3f(radius, 0.0, 0.0);

glEnd();

Chapter 4

Review Questions

1. glTranslatef(29.0, 3.0, 15.0);
2. glRotatef(45.0, 1.0, 0.0, 0.0);
3a. gl1Scalef(3.0, 3.0, 3.0);

3b. g1Scalef(0.5, 0.5, 0.5);

4. Modelview matrix stack, projection matrix stack, texture matrix stack, color
matrix stack

5. gllLoadIdentity()

6. Save and restore the current matrix on the matrix stack.

On Your Own
1. Answers may vary.

void PositionAndRotate(float xPos, float yPos, float zPos, float xAngle,
float yAngle, float zAngle)
{
g1PushMatrix();
/1 position the cube
glTranslatef(xPos, yPos, zPos);
// perform the rotations
glRotatef(xAngle, 1.0, 0.0, 0.0);
glRotatef(yAngle, 0.0, 1.0, 0.0);
glRotatef(zAngle, 0.0, 0.0, 1.0);

// draw the cube
DrawCube();
glPopMatrix();

288 Appendix A = Answers to Review Questions and Exercises

Chapter 5

Review Questions

1. All OpenGL implementations are required to provide at least eight lights. You can
find out how many are available by passing GL_MAX_LIGHTS to g1Get().

2. By passing an array holding the colors to g1Fog() with GL_FOG_COLOR.

3. glEnable(GL_COLOR_MATERIAL);
glColorMaterial (GL_FRONT_AND_BACK, GL_SPECULAR);

4. False. It can be taken advantage of by using the secondary color.
. b. GL_ALPHA_SATURATE

9]

On Your Own
1. Answers may vary.

+ Add an emissive property to the cube’s material.
/] set up the cube's material

GLfloat emmisivel] = { 0.2f, 0.2f, 0.2f, 1.0};
gIMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, emmisive);

* Add attenuation to the red light.
// set up static red Tight

glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 0.5f);
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.1f);

+ Make the beam of the flashlight more focused.
// set up the flashlight

glLightf(GL_LIGHTO, GL_SPOT_EXPONENT, 128.0);

+ Add a transparent sphere surrounding the cube, and set the material for it using
color tracking.

// after the cube has been drawn
glEnable(GL_COLOR_MATERIAL);

glColor4f(0.8f, 0.6f, 0.0f, 0.7f);
glEnable(GL_BLEND);

g1BTendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
gluSphere(m_pSphere, CUBE_SIZE, 64, 32);
g1Disable(GL_BLEND);

g1Disable(GL_COLOR_MATERIAL);

Answers to Review Questions and Exercises

Chapter 6

Review Questions

1.

glRasterPosi(150, 75);
g1Bitmap(16, 16, 0.0, 0.0, 0.0, 0.0, m_bitmapData);

glDrawPixels

3. gl1CopyPixels

4.

g1PixelZoom(2.0f, 2.0f);

On Your Own

1.

Answers may vary.

fFinclude <stdlib.h>
void DrawRandomBitmaps(unsigned char *bitmapData)

{
for (int idx = 0; idx < 100; idx++)
{
glRasterPos2i(rand() % WINDOW_WIDTH, rand() % WINDOW_HEIGHT);
g1Bitmap(8, 8, 0.0, 0.0, 0.0, 0.0, bitmapData);
}
}
Chapter 7

Review Questions

1.
2.

Using g1Enable(GL_TEXTURE_2D);

Texture objects used to represent texture data and parameters. Each texture object
has a state associated with it. They are accessed through an ID or handle.

. g1TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE,

data);

. Base Level: 128 x 128. Other Levels: 64 x 64,32 % 32,16 X 16,8 X 8,4 %X 4,2 X 2,

1x1

5. GL_REPEAT

True.

289

290 Appendix A = Answers to Review Questions and Exercises

On Your Own
1. Answers may vary.

glEnable(GL_TEXTURE_2D);

glGenTextures(1l, &myTexture);

g1BindTexture(GL_TEXTURE_2D, myTexture);

gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGBA, 256, 256, GL_RGBA, GL_UNSIGNED_BYTE,
data);

g1BindTexture(GL_TEXTURE_2D, myTexture);

g1Begin(GL_POLYGON);
gl1TexCoord2f(0.0f, 0.0f); glVertex3f(-0.5f, 0.5f, 0.5f);
g1TexCoord2f(1.0f, 0.0f); glVertex3f(0.5f, 0.5f, 0.5f);
g1TexCoord2f(1.0f, 1.0f); glVertex3f(0.5f, 0.5f, -0.5f);
g1TexCoord2f(0.0f, 1.0f); glVertex3f(-0.5f, 0.5f, -0.5f);

glEnd();

2. Answers will vary.

Chapter 8

Review Questions

1. An extension that has been officially endorsed by the OpenGL Architectural
Review Board. These extensions tend to be very widely supported.

2. Presently, Windows headers and libraries for OpenGL only support OpenGL 1.1,
so OpenGL 1.2, 1.3, 1.4, and 1.5 features have to be accessed via extensions.

3. By checking the extensions string for the name of the extension. Alternatively, you
can try obtaining a pointer from wglGetProcAddress(), with a null pointer indicating
failure.

4. Any time you are accessing core functions using function names that do not
include the extension suffix.

On Your Own

1. Answers will vary. The program should make use of g1GetString(GL_EXTENSIONS) and
wglGetExtensionsString().

Answers to Review Questions and Exercises

Chapter 9

Review Questions

1.
2.
3.

5.

Creating a new texture requires memory to be allocated, which can be slow.
There is one for every supported texture unit.

GL_OBJECT_LINEAR and GL_EYE_LINEAR both make use of planes defined through
GL_OBJECT_PLANE and GL_EYE_PLANE, respectively.

. You enable a texture unit by assigning a complete, valid texture image to it and

enabling the corresponding texture target. You disable the unit by disabling all tex-
ture targets for it.

GL_COMBINE

On Your Own

1.

Answers may vary. GL_ADD adds the incoming fragment RGB with the texture
RGB and multiplies the incoming fragment alpha by the texture alpha. This can be
done via combiners as follows:

g1TexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
g1TexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_ADD);
g1TexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEO_RGB, GL_PREVIOUS);
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCEO_ALPHA, GL_PREVIOUS);
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE);
g1TexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDO_RGB, GL_SRC_COLOR);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDO_ALPHA, GL_SRC_ALPHA);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDI_RGB, GL_SRC_COLOR);
g1TexEnvf(GL_TEXTURE_ENV, GL_OPERANDI_ALPHA, GL_SRC_ALPHA);

Chapter 10

Review Questions

1.

By passing it to g1IsList().

2. It is executed immediately and is not stored as part of the list.
3.
4

. You must first change the currently active texture unit by calling g1ClientActive-

By passing the appropriate flags to g1EnableClientState().

Texture(). You can then use g1TexCoordPointer() normally to assign an array of tex-
ture coordinates.

291

292 Appendix A = Answers to Review Questions and Exercises

5. The cost of doing per-triangle frustum culling on the CPU generally exceeds the
cost of letting the graphics hardware do it for you.

On Your Own

1. Answers will vary.

/] returns 1 if the sphere is in the frustum, -1 if it's partially within the
frustum, of 0 if it's completely outside
int SpherelInFrustum(sphere_t sphere, frustum_t frustum)

{

GLfToat dist;

GLuint numOutside = 0;

for (int 1 =0; i < 6; ++i)

{

dist = frustum.planes[i].A * sphere.center.x +

frustum.planes[i]1.B * sphere.center.y +
frustum.planes[i]1.C * sphere.center.z +
frustum.planes[i].D;

if (dist <= -sphere.radius)
return 0;
if (dist > radius) // sphere is doesn't intersect this plane
numOutside++;
}
if (6 == numOutside)
return 1;
else
return -1;

Chapter 11

Review Questions

1. wglUseFontBitmaps()
2. wglUseFontOutlines()

3. Outline fonts may be textured by using the automatic texture coordinate genera-
tion feature of OpenGL.

Answers to Review Questions and Exercises

On Your Own

1.

Answers will vary. The program should use wglUseFontBitmaps(), wglUseFontOutTines(),
and the g1Font library to render text.

. Answers will vary. The program should modify the g1Font library source code by

adding a new DisplayText() method that draws text on a billboard polygon at a
given 3D position.

Chapter 12

Review Questions

1.
2.

The depth buffer is 1.0, everything else is 0.

Alpha testing is used to accept or reject fragments based on the alpha value. Alpha
blending combines the incoming fragment with the pixel in the color buffer using
the alpha value, but it does not typically reject fragments.

3. Blending is disabled internally.

. False. See the Tip in the section titled “Depth-Comparison Functions.”

5. It is logically ANDed with both the stencil reference value and the value in the stencil

6.

buffer before the two values are combined.
GL_LOAD

On Your Own

1.

Answers will vary.

Chapter 13

Review Questions

1.

No review questions for this chapter.

On Your Own

1.
2.
3.

Answers will vary.
Answers will vary.

Answers will vary.

293

This page intentionally left blank

APPENDIX B

FURTHER READING

his book covered the core topics you need to understand to begin developing

games and graphics applications with OpenGL, but your journey has just begun.

This appendix lists Web sites and books that you may find useful in expanding
your knowledge.

Online Resources

There’s no better way to keep up to date on the rapidly changing world of technology than
the Internet. We’ve collected a list of the most important Web sites covering game devel-
opment and OpenGL.

Game Development

There are dozens—if not hundreds— of Web sites dedicated to game development. The
ones listed here are the cream of the crop.

GameDev.net

http://www.gamedev.net

Co-founded and operated by the authors of this book, GameDev.net is the leading online
resource for game developers. Features include thousands of articles, active and helpful
community forums, books and software reviews, daily news, and a place to upload and
showcase your games.

295

296

Appendix B = Further Reading

Garage Games

http://www.garagegames.com

Founded and operated by the developers of the Tribes franchise, Garage Games offers
affordable tools to game developers, including the popular Torque game engine, based on
Tribes 2 technology.

Game Development Search Engine
http://www.gdse.com

The GDSE includes news and a handpicked selection of links to hundreds of smaller game
development sites, coupled with a powerful search engine.

Game Tutorials
http://www.gametutorials.com
Game Tutorials contains dozens of short tutorial programs covering game development

and OpenGL topics. The tutorials tend to be light on explanation, but if you want to see
how something is done in code it’s a fantastic resource.

Flipcode
http://www.flipcode.com

More graphics oriented than GameDev.net and not as frequently updated, but still con-
tains many good articles and a community of knowledgeable developers.

Gamasutra
http://www.gamasutra.com
Produced by the people who run the Game Developers Conference and publish Game

Developer Magazine, this site offers articles and other content taken from both the maga-
zine and the conference.

Developer Pages

http://developer.nvidia.com
http://www.ati.com/developer

Both NVIDIA and ATI maintain sites containing a vast array of white papers, presenta-
tions, and demos covering many advanced graphics and game programming topics, many
of them using OpenGL.

Books

OpenGL

OpenGL has an active and enthusiastic online community of game and graphics pro-
grammers. A quick search of the Internet will turn up hundreds—if not thousands— of
pages containing OpenGL information, but we’ve distilled the best of them here.

OpenGL.org
http://www.opengl.org

OpenGL.org is the official site of the OpenGL ARB. Besides regular OpenGL-related news,
they maintain several FAQs full of helpful information.

NeHe Productions

http://nehe.gamedev.net

Jeff Molofee has worked hard to make NeHe one of the top OpenGL resources on the
Web. In addition to more than 40 original OpenGL tutorials, he’s collected an impressive

suite of demo programs displaying the capabilities of OpenGL. He also routinely posts
links and descriptions of new OpenGL online resources.

Delphi3D
http://www.delphi3d.net

Although all the demos are written in Delphi, this site has some of the most useful arti-
cles and demos covering advanced OpenGL topics.

Books

Whether you're looking for resources to meet the prerequisites for reading this book or
ready to expand your knowledge, the books listed here should prove valuable.

C++
Accelerated C++: Practical Programming by Example
Andrew Koenig, Barbara E. Moo, Addison-Wesley, 2000

C++ Primer 3rd Ed.
Stanley Lippman, Addison-Wesley, 1998

Windows Programming

Programming Windows
Charles Petzold, Microsoft Press, 1998

297

298 Appendix B = Further Reading

3D Math
Mathematics for 3D Game Programming ¢ Computer Graphics 2nd Ed.
Eric Lengyel, Charles River Media, 2003

3D Math Primer for Graphics and Game Development
Fletcher Dunn, Ian Parberry, Wordware, 2002

OpenGL

OpenGL Programming Guide 4th Ed.
Woo, Neider, Davis, Shreiner, Addison-Wesley, 2003

OpenGL Extensions Guide
Eric Lengyel, Charles River Media, 2003

Graphics Programming

Real-Time Rendering
Tomas Akenine-Moller, Eric Haines, A.K. Peters, 2002

Game Development

Game Programming Gems 1, 2, 3
Marc DeLoura (editor), Dante Treglia (editor), Charles River Media, 2000, 2001, 2002

Core Techniques and Algorithms in Game Programming
Daniel Sanchez-Crespo Dalmau, New Riders, 2003

Game Scripting Mastery
Alex Varanese, Premier Press, 2002

Al Techniques for Game Programming
Mat Buckland, Premier Press, 2002

APPENDIX G

WHAT’Ss oN THE CD

he CD included with this book contains resources intended to be used in con-
junction with the text. It includes an auto-installer, so all you have to do is insert
the CD into your CD player and the installer will launch itself.

The contents of the CD are detailed in this appendix.

Source Code

Most importantly, the CD includes the full source code for all of the demos used through-
out the book. These are arranged by chapter, with each project having its own directory
within the chapter directory.

GlLee

Many of the example programs starting in Chapter 8 use the GLee library by Ben Wood-
house for managing extensions. We’ve included the latest version of it on the CD.

299

300

Appendix C = What's on the CD

Bonus Chapters

There were many chapters from OpenGL Game Programming covering topics that are not
covered in this volume and that we don’t intend to cover in future volumes. These chap-
ters have been included on the CD in Adobe Acrobat format to supplement the material
presented here. The chapters included are

Using Windows with OpenGL

An Overview of 3D Graphics Theory

OpenGL Quadrics

Curves and Surfaces

Using DirectX: DirectInput

Using DirectX Audio

Working with 3D Models

Making a Game: A Time to Kill

Bonus Game

In addition to the game included in Chapter 13, “The Endame,” we’re including the source
code for the game from OpenGL Game Programming entitled A Time to Kill.

A

accumulation buffer, 271-275
example of, 272-275
jitter of light position, 275
operations, 271
active texture units, 209-210
AGP bus, 141
alpha tests for color buffer, 263264
alpha values, 100. See also blending; Targa files
for color buffer, 263-264
for Disk Blender, 127-128
ambient light, 105, 108
global ambient light, 119
ambient materials, 111
American McGee’s Alice, 201
answers to review questions and exercises, 285-293
antialiasing
lines, 48
points, 44
polygons, 55
API, working with, 8
architecture of OpenGL, 7-9
array-based data, 228
artificial intelligence, 5
ATL 7
attenuation, 108—-109
drawbacks of, 109
attribute groups, 64

B
bibliography, 295-298
binding texture objects, 153—154

INDEX

bitmap fonts, 249-253
display lists for, 250
bitmaps, 133138
data, specifying, 134
drawing, 135-136
example of, 136-138
positioning, 134-135
blend equations, 125-126
blend factor, 122—-123
for fog, 128-129
blending, 121-128. See also blend factor
blend equations, 125-126
constant blend color, 127
depth buffer and, 124
Disk Blender, 127-128
separate blend functions, 125
transparency and, 123-124
book resources, 297-298
borders of texture map, 156
bound texture objects, 153-154
buffers. See also color buffer; depth buffer
accumulation buffer, 271-275
clearing, 262
defined, 261-262
scissor boxes, 262-263
stencil buffer, 268-271
Bungie Software’s Halo, 4

C

C++ resources, 297

Carmack, John, 4

CD information, 299-300
bonus information in, 300

302

Index

CGfxOpenGL dlass, 27
implementation of, 27-29
CheckExtension() function, 189-190
chess game
classes for, 278
designing game, 277-279
OpenGL, using, 279-281
update sequence diagram, 279
clamping, 151
GL_CLAMP wrap mode, 171
GL_CLAMP_TO_BORDER wrap mode, 172
GL_CLAMP_TO_EDGE wrap mode, 172
classes for chess game, 278
clearing buffers, 262
color buffer
accumulation buffer, 271-275
alpha test for, 263-264
bits per pixel in, 19
logical operations with, 265-266
with stencil buffer, 271
textures, copying, 198-201
color masking, 265
color matrix stack, 82
color-index mode, 100
colors, 99-102. See also blending; lighting; shading
alpha value, 100
color-index mode, 100
interleaved arrays and, 237
material colors, 112—-113
primary color, specifying, 100-101
rendering, 30
RGBA mode, 100
secondary color, tracking, 101-102
setting colors, 100-101
for specular highlight, 120
texture combiners and, 214
tracking materials, 114-115
vertex arrays and, 230-231
commands in display lists, 223
constant blend color, 127
contouring, texture coordinates for, 203
coordinate transformations. See transformations
copying
pixels, 141-142
textures from color buffer, 198-201
CreateBitmapFont() function, 252-253
CreateOutlineFont() function, 254-255

CreateWindowEX() function, 27

cross product for normals, calculating, 116
cube maps, 160-161, 206-208

culling polygons, 54

cursors for full-screen mode, 32-33

D

deleting
display lists, 225-226
rendering context, 15
texture objects, 154
Dell, 7
Delphi3D, 297
depth
comparison functions, 266-267
for fog, 130
transparency and, 124
depth buffer, 266-268
bitmaps, 135
code enabling, 11
depth-comparison functions, 266-267
read-only depth buffer, 267
with stencil buffer, 271
transparency and, 124
z-fighting, 268
designing game, 277-279
destination fragments, 122
destroying display lists, 225-226
Developer Pages, 296
development of games, 4-6
DEVMODE structure, 31-33
diffuse light, 105, 108
diffuse maps, 208
diffuse materials, 111
directional lights, 107-108
disabling. See enabling/disabling
Disk Blender, 127-128
display lists, 221-226
for bitmap fonts, 250
commands for, 223
creating, 222
destroying, 225-226
executing, 223-224
glCallLists() types, 224
Marbles demo, 239-241
for outline fonts, 254

texture mapping and, 226

warnings on use of, 224-225
Display() routine, 11-12
Doom, 4, 6
DrawCube() function, 75
DrawPlane() function, 77

for textures, 165—166
DrawRobot() function, 86-87
DrawTerrain() function, 179-181
dynamic lighting, 106

E

edge flags, interleaved arrays and, 237

Electronic Arts and Rogue Entertainment’s
American McGee’s Alice, 201

elements of game, 46
emissive light, 105
emissive materials, 114
enabling/disabling
states, 3637
vertex arrays, 228-229
enumerants. See extensions
environment mapping, 205-208
cube maps, 206208
errors
OpenGL error codes, 38
querying error flags, 38
Evans & Sutherland, 7
exercise answers, 285-293
extensions, 7, 185—-196. See also GLee
anatomy of, 185-188
demos of, 195
entry point of function, obtaining 190-191
enumerants, 188
declaring enumerants, 191
functions, 187
entry point, obtaining, 190-191
name strings, 186—187
checking name strings, 189—190
WGL extension string names, 192
parsing extension strings, 189-190
prefixes, meaning of, 187
specifications for, 188
texture combiners, 213-218
tokens defined by, 188
using extensions, 188—191
WGL extensions, 191-192
eye coordinates, 69-70

Index

F

face culling for polygons, 54
fans, triangle, 57-59
fixed function pipeline, 9
flags
array type flags, 229
with full-screen mode, 32
pixel format flags, 18
flashlights, 110-111
flat shading, 102-104
Flipcode, 296
flipping images, 142
fog, 128-131
coordinates for, 130
demo for, 131
with GLee, 194
interleaved arrays and, 237
vertex arrays and, 231
fonts
bitmap fonts for, 249-253
glFont, 257-258
outline fonts, 253-257
foreshortening effect, 88
fractals, 228
fragments. See also blending
defined, 121
frames in CGfxOpenGL class, 27
frustum culling, 241-247
application of, 245-247
determining view frustum, 243-244
plane equations for, 243-244
points, testing, 244
spheres, testing, 244-245
frustums. See also frustum culling
asymmetrical frustums, 89
for perspective projections, 88—89
z-fighting and, 268
full-screen OpenGL, 31-33
functions. See also extensions; specific functions
for state machine, 35-39

G

Gamasutra, 296

game development
book resources, 297
online resources, 295-297

303

304 Index

Game Development Search Engine (GDSE), 296 glListName() function, 224
game logic, 5 glLoadIdentity() function, 70
Game Tutorials, 296 for projections, 87
GameDev.net, 295 glMaterial() function, 112
Garage Games, 296 GL_MIRRORED_REPEAT wrap mode, 173
GDI (Graphics Device Interface), 14 GL_MODULATE, 176
geforce, checking string for, 37 glMultiDrawArrays() function, 231-232
GL_ADD, 177 gIMultiDrawElements() function, 233
glAreTexturesResident() function, 154 glNormal() function, 115-116
glArrayElement() function, 234 global ambient light, 119
glBegin() function, 4041 global flags for full-screen mode, 32
glBindTexture() function, 153—154 global variables for window application, 20
GL_BLEND, 177 glOrtho() function, 88
glCallLists() function, 224 glPixelZoom() function, 142
GL_CLAMP wrap mode, 171 glPointParameter() functions, 45
GL_CLAMP_TO_BORDER wrap mode, 172 glPolygonMode() function, 52
GL_CLAMP_TO_EDGE wrap mode, 172 glPopAttrib() function, 64
glClearColor() function, 29 glPopMatrix() function, 83-84
glColor() function, 100-101 glPushAttrib() function, 64
glCopyPixels() function, 141-142 glPushMatrix() function, 8384
glCopyTexImage() function, 199 glRasterPos() function, 134-135
GL_DECAL, 176 glReadPixels() function, 141
glDrawArrays() function, 231-232 GL_REPEAT wrap mode, 170-171
glDrawElements() function, 232-233 GL_REPLACE, 176
glDrawPixels() function, 139-140 glRotate() function, 30, 77
glDrawRangeElements() function, 233-234 for viewpoint, 93-94
glEdgeFlat() function, 55 glScale() function, 80-81
GLee, 192-194 glShadeModel() function, 103

CD resources, 299 glTexCoord() function, 151-152

with core extensions, 194 glTexEnv() function, 214

initializing, 193 glTexImagelD() function, 159

setting up, 193 glTexImage2D() function, 155-159

using, 193-194 glTexParameter() function, 161-162, 169
glEnd() function, 41 glTexSubImage() function, 198
glFog() function, 129 glTranslate() function, 30
glFont, 257-258 for viewpoint, 93-94
glFrontFace() function, 54 GLU library, 7
glFrustum() function, 89 mipmaps and, 167-168
glGenlLists() function, 222 viewport, setting, 93-94
glGenTextures() function, 153 gluLookAt() function, 92-93
glGetError() function, 38 GLUT, 9
glGetString() function, 37 code using, 10-12
¢glHint() function, 39 glVertex() functions, 41-42
glInterleavedArrays() function, 236-237 Gouraud shading, 102
glIsEnabled() function, 37 graphics, 5. See also images
glLight() function, 107 programming resources, 297

glLightModel() function, 118-120

H

Halo (Bungie Software), 4
hDC, 14
headers for Targa files, 144
headlights, 110-111
height
for full-screen mode, 32
for textures, 156
heightfield terrain, 178-181
mesh, building, 178-181
skyboxes, working with, 179
water level, drawing, 181
Hewlett-Packard, 7
hiding polygon edges, 55
high-level rendering, 7
hints for OpenGL, 39
history of OpenGL, 7

IBM, 7

id Software, 4, 6

identity matrix, 71
specifying, 96

images, 138—142. See also Targa files
drawing image data, 139-140
flipping images, 142
magnifying images, 142
reducing images, 142
screen, reading pixels from, 141
storage of pixels, managing, 142—-143
types of pices, 139—-140

infinite viewpoints, 119

Init() function, 27

initialization
in CGfxOpenGL class, 27
MainWindowProc() function in, 23-24

input, 5

Intel, 7

interleaved arrays, 235-237

Internet. See also Web sites
resources on, 295-297

interpolation combiner, 216-218

J

jitter of light position, 275

Index

L

libraries. See also GLU library
related libraries, 9-10
lighting, 104—121. See also materials; normals; posi-
tional lights; spotlights
attenuation, 108—109
default color for, 108
demo for, 120
directional lights, 107-108
eight lights, availability of, 106
flashlights, 110-111
moving lights, 110-111
positional lights, 107-108
properties, assigning, 106-107
in real world, 104-106
rotating lights, 110-111
sources of light, 106-109
three lights, using, 121
lighting model, 118-120
global ambient light, 119
one-sided lighting, 119
specular color, setting, 120
specular highlight and, 119
two-sided lighting, 119
lines
antialiasing lines, 48
example, hold the line, 49-52
modifying width of, 47
stipple pattern, specifying, 48—49
Linux platform. See also GLee
examples in book, running, 21
local coordinate system, 68
local viewpoints, 119
locking vertex arrays, 238-239
logical operations with color buffer, 265-266
low-level rendering routines, 7

M

magnification
of images, 142
parameters for filter, 173-174
in texture filtering, 161-162
MainWindowProc() function, 23-24
map scale, 178-179
Marbles demo, 239-241
market growth, 3—4
mask parameter for stippling polygons, 56

305

Index

materials, 111-115
color tracking, 114-115
colors, 112-113
defining materials, 112
emissive materials, 114
shininess, 113-114
matrices, 73—-87. See also modelview matrix; rota-
tion; scaling; translation
as column major, 95
custom matrix, creating, 95-97
loading a matrix, 95-96
multiplying matrices, 96
RobotExample, 84—87
texture matrix stacks, 201-202
transposing, 96-97
matrix stacks, 74, 82—-84
for projections, 87
pushing matrices onto, 83
RobotExample, 84—87
Matrox, 7
menus, 5
mesh for heightfield terrain, 178-181
Microsoft Developer Network (MSDN), 24
minification
mipmaps and, 167
parameters for filter, 173-174
in texture filtering, 161-162
mipmaps, 166—168
automatic generation of, 168
and GLU library, 167-168
minification filter and, 162
sub-images with, 199
modeling libraries, 7
modeling transformations, 68—69, 71-73
models
resetting model matrix, 30
with vertex arrays, 228
vertex arrays and loading, 228
modelview matrix, 74
default, resetting to, 74
normals and, 117
stack, 82—-83
modelview transformations, 68—69
Molofee, Jeff, 297
mouse input control for heightfield terrain, 179
moving lights, 110-111
multiplying matrices, 96

multitexturing, 175, 208-218
texture combiners, 213-218
texture coordinates in, 210-213
texture units, 208—210
vertex arrays and, 237-238

music, 5

N

name strings. See extensions
NeHe Productions, 297
networking, 5
normalization process, 117-118
normals, 115-118

calculating, 116-117

unit normals, 117-118

in vertex arrays, 230
NVIDIA, 7
Nvidia GeForce cards, 37

0]

1D textures, 159
online resources, 295-297
OpenGL
architecture, 7-9
book resources, 297
description of, 6-10
history of, 7
online resources, 297
Version 1.5, 7
OpenGL Architecture Review Board (ARB), 7
OpenGL buffers. See buffers
OpenGL Utility Library (GLU). See GLU library
OpenGL.org, 297
orthographic projections, 73, 87-88
for bitmaps, 138
example of, 90-91
outline fonts, 253-257
display lists for, 254

P

packed data formats, 156158

perspective projections, 73, 88—89
example of, 90-91

photons, 104

pipelines
fixed function pipeline, 9
programmable pipeline, 9

pixel formats, 16-20
color buffer, bits per pixel in, 19
dwFlags, setting, 18
nSize field, setting, 17-18
for rendering context, 14
setting, 19-20
type of data, setting, 18
for window application, 22-23
pixel maps, 139
PIXELFORMATDESCRIPTOR structure, 17
pixels. See also bitmaps; blending; images; pixel for-
mats
copying, 141-142
for fog, 128
managing storage of, 142—143
scissor boxes and, 262-263
screen, reading from, 141
texture pixel formats, 157
pixmaps, 139
point lights. See positional lights
points. See also polygons
antialiasing points, 44
distance and, 45
example of code, 4649
frustum culling, testing points in, 244
modifying point size, 43
parameters for, 45
3D, drawing points in, 42—47
polygon winding, 54
polygons. See also materials; normals; texture
mapping
antialiasing, 55
with arbitrary number of vertices, 60
attribute groups for, 64
face culling, 54
hiding edges of, 55
mode example, 53
quadrilaterals, 59-60
stippling, 56
triangles, 56—59
positional lights, 107-108
attenuation and, 109
for spotlights, 109
Prepare() function, 27
for bitmaps, 137
for RobotExample, 85
for scaling, 81
primary color, specifying, 100-101

Index

primitives. See also points
defined, 39-40
TrianglesQuads example, 60-63
priorities of texture objects, 155
programmable pipeline, 9
projection matrix stack, 82
projections, 68—69, 73, 87-91
example of, 90-91
orthographic projections, 87-88
perspective projections, 73, 88—89
viewport, setting, 89-90
projective texturing, texture coordinates for, 203
properties of light, assigning, 106—-107

Q

quadrilaterals, 59-60
TrianglesQuads example, 60-63
Quake, 4
querying
numeric states, 36
string values, 37

R

radiosity, 101
raster coordinates, setting, 135
raster graphics, 133. See also bitmaps; images
secondary color and, 102
read-only depth buffer, 267
real-world lighting, 104-106
rectangles, quadrilaterals for, 59
reducing images, 142
reflections, texture coordinates for, 203
Render() function, 27, 30
for bitmaps, 137-138
for chess game, 279-280
for scaling, 81-82
for textures, 165—166
for translation, 76—77
RenderFont() function, 253, 257
rendering
color, setting, 30
scenes in CGfxOpenGL class, 27
with textures, 162
rendering context, 14
creating, 14
current rendering context, creating, 15
deleting, 15

307

308

Index

rendering context (continued)
resources for, 15
storing handle to, 16
viewport with, 89-90
rendering pipeline, 8
RenderTable() function, 280
repeating, 151

GL_MIRRORED_REPEAT wrap mode, 173

GL_REPEAT wrap mode, 170-171
Reshape() routine, 11
resident textures, 154
resizing of window, 23-24
resources
book resources, 297-298
graphics programming resources, 297
online resources, 295-297
for rendering context, 15
review question answers, 285-293
RGBA mode, 100
RobotExample, 84—87
rotation, 77—79
arbitrary axis, rotation around, 78
of bitmaps, 135
example, 78-79
lights, 110-111
with modeling transformation, 71-73
multiple axes, rotation around, 78

S

scaling, 80-82

with modeling transformation, 71-73

normals and, 117-118
scissor boxes, 262-263
SDL (Simple Direct Media Layer), 10
SetupPixelFormat() function, 22-23
SetupProjection() function, 27
shaders, 9
shading, 102-104

example, 104

flat shading, 102-104

smooth shading, 102, 103
shininess of materials, 113-114
ShowCursor() function, 32-33
shrinking objects, 80
shutdown

in CGfxOpenGL class, 27

MainWindowProc() function in, 23-24

Shutdown() function, 27

Sikora, Michael, 4
Silicon Graphics, Inc. (SGI), 7
simplistic game architecture, 5
skyboxes, 179
smooth shading, 102, 103
smoothing groups for normals, 117
sounds, 5
source code on CD, 299
source fragments, 122
specular highlight, 113-114
color, setting, 120
local viewpoint and, 119
specular light, 105, 108
specular materials, 111
sphere mapping, 205
spotlights, 109-111
direction of, 110
focus of, 110
squares, quadrilaterals for, 59
state machine, 35-39
enabling/disabling states, 36-37
numeric states, querying, 36
string values, querying, 37
static lights, 106
moving, 110
stencil buffer, 268-271
for chess game, 281
chess game, stencil testing for, 281
example of stencil testing, 270-271
functions, 269
operations, 269
stipple pattern
for lines, 48—49
for polygons, 56
string values, querying, 37
strips, triangle, 57-59
style settings for full-screen mode, 32
sub-images, working with, 197-198
Sun Microsystems, 7
swimming, 166

T

Targa files, 143-147
format for, 143-145
header information, 144
image origin, 145
loading, 145-147
types of, 144

target parameter, 39
terrain
multitextured terrain example, 210-213
rendering, 178-181
texture coordinate generation for, 203
texels, 161-162
text
bitmap fonts for, 249-253
glFont, 257-258
outline fonts, 253-257
texture binding, 153-154
texture combiners, 213-218
argument specification for, 215
functions for, 214
glTexEnv() function, 214
interpolation combiner, 216-218
texture coordinates, 151-152
environment mapping, 205-208
generation of, 202-208
GL_CLAMP wrap mode, 171
GL_CLAMP_TO_BORDER wrap mode, 172
GL_CLAMP_TO_EDGE wrap mode, 172
GL_MIRRORED_REPEAT wrap mode, 173
GL_REPEAT wrap mode, 170-171
in multitexturing, 210-213
parameters for generating, 203
in texture matrix stack, 201-202
wrap modes for, 170-173
texture environments, 174178
specifying, 175-178
texture filtering, 161-162
texture mapping, 149-182. See also magnification;
minification; mipmaps; multitexturing
backward compatibility of, 155
basic texture example, 163-166
color buffer, copying from, 198-201
cube maps, 160-161, 206-208
data types for textures, 156—158
deleting texture objects, 154
diffuse maps, 208
display lists and, 226
environment mapping, 205-208
internal formats, 156, 187
minification filter values, 162
multitexturing, 175
1D textures, 159
overview of, 150
packed data formats, 156-1587
parameters for textures, 169—174

Index

pixel formats for, 157
priorities of texture objects, 155
rendering with textures, 162
resident textures, 154
specifying textures, 155-161
sub-images, working with, 197-198
subscripts, use of, 176
terrain rendering, 178-181
texture binding, 153—-154
texture environment parameters, 174-178
texture filtering, 161-162
3D textures, 159-160
tiled effect, creating, 170
2D textures, 155-159
using texture maps, 152-166
wrap modes, 170
texture matrix stacks, 82, 201-202
texture objects, 152-153
with texture units, 209-210
wit display lists, 226
texture units, 174, 208-210
3D
book resources, 297
games, 4
glCopyTexImage() function and, 199
lines, drawing, 47-52
points, drawing, 42—-47
polygons, drawing, 52—-60
textures, 159-160
triangles, drawing, 56-59
3DLabs, 7
tiled effect for textures, 170
GL_MIRRORED_REPEAT wrap mode, 173
tokens, extensions defining, 188
transformations, 67-73. See also projections
eye coordinates, 69-70
order of, 68
translation, 75-77
example, 76
with modeling transformation, 71-73
transparency
blending and, 123-124
distance from viewer, sorting by, 124
transposing matrices, 96-97
triangles, 56-59
fans, 57-59
strips, 57-59
TrianglesQuads example, 60-63

309

310

Index

2D
orthographic projections for, 88
textures, 155—159
two-sided lighting, 119
twtglCreate/Context() function, 14

U

Unified Modeling Language (UML), 278
unit normals, 117-118

unit vectors, 117

user interface, 5

Vv

vendor of extensions, 186—187

vertex arrays, 226241
advantages of, 227
array-based data, 228
color arrays, specifying, 230-231
enabling, 228-229
flags, list of, 229
fog coordinates, specifying, 231
glArrayElement() function, 234
glDrawArrays() function, 231-232
glDrawElements() function, 232-233
glDrawRangeElements() function, 233-234
glinterleavedArrays() function, 236-237
glMultiDrawArrays() function, 231-232
glMultiDrawElements() function, 233
interleaved arrays, 235-237
locking, 238-239
Marbles demo, 239-241
multiple arrays, drawing, 232
and multitexturing, 237-238
normals, 230
range of values, working with, 233-234
working with, 229-235

vertex cache, 227

vertices. See also lines; points
functions, 41-42
of triangles, 57

view frustum, setting up, 88—89

viewing transformations, 68—69, 70-71
custom routines, creating, 94-95

viewpoints
custom routines, creating, 94-95
glRotate() function for, 93-94

glTranslate() function for, 93-94

gluLookAt() function for, 92-93

infinite viewpoints, 119

local viewpoints, 119

manipulating, 91-95

specular highlight and, 119
viewport transformations, 68—69, 73

for projection, setting, 89-90
volume textures, 150

w

Web sites
for Microsoft Developer Network (MSDN), 24
for resources, 295-297
Wotsit’s File Formats, 144
WGL. See also rendering context
for bitmap fonts, 249
extensions, 191-192
introduction to, 13—-16
wglDeleteContext() function, 15
wglMakeCurrent() function, 15-16
width
frustum, setting up, 89
for full-screen mode, 32
line width, modifying, 47
of texture map, 156
winding setting for polygons, 54
window applications
CGfxOpenGL class, 27
example of, 20-30
MainWindowProc() function in resizing,
23-24
SetupPixelFormat() function, 22-23
WinMain() function, 27
Windows platform. See also GLee
book resources, 297
extensions under, 186
WinMain() function, 27
for chess game, 278
Wolfenstein 3D, 4
Woodhouse, Ben, 192
Wotsit’s File Formats, 144

V4

z-buffer. See depth buffer
z-fighting, 268

Professional ® Trade m Reference

>

RISE a0 THE TOE_OF YOUR
GAMEBWITH COURSE PTR!

Check out more titles in the Beginning series from Course PTR—full
of tips and techniques for the game developers of tomorrow!
Perfect your programming skills and create eye-catching art for your
games to keep players coming back for more.

= GAME i
FROGRAMMING
BEGINNING BEGINNING FOR
G L SR) | TEENS
B m = |

— ——— et —

GAME ART
FoRTEENS

Beginning C++ Game Art for Teens Beginning DirectX 9 Game Programming
Game Programming ISBN: 1-59200-307-9 ISBN: 1-59200-349-4 for Teens
ISBN: 1-59200-205-6 $29.99 $29.99 ISBN: 1-59200-068-1
$29.99 $29.99

Check out advanced books and the full Game Development series at
WWW.COURSEPTR.COM/GAMEDEV

THomson Call 1.800.354.9706 to order

NE
COURSE TECHNOLOGY

Professional m Trade m Reference orde r o n I i ne at w u‘ w .Cou rse ptr oco m

THOMSON

COURSE TECHNOLOGY

Professional ® Trade m Reference

GOT GAME?

COMING SPRING 2004!

. 2
3D Benar S
ALL iN ONE e ey THE O e DF
. GAME TEXTURING
s I e
LES
3D Game Programming Beginning OpenGL The Dark Side 3D Game Engine PHP
All in One Game Programming of Game Texturing Programming Game Programming
1-59200-136-X ™ $49.99 1-59200-369-9 m $29.99 1-59200-350-8 = $39.99 1-59200-351-6 m $59.99 1-59200-153-X m $39.99
Premier
PREMIER PRESS
D Call 1.800.354.9706 to order
Press H
Order online at www.courseptr.com

A division of Course Technology GAME DEVELOPNENT

& development |
nd chatrooms anywhe

Game design’
Graphics L
DirectX
OpenGL

Al

Art

Music
Physics
Source Code
Sound
Assembly
And More!

Gafiead
é UJ‘* g;?;

a [C
"
¥
ra

OpenGL is a registered
Microsoft and DirectX arc reg

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:

The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright hold-
er(s). You may transfer the enclosed disc only together with this license, and only if you
destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:

The enclosed disc is warranted by Course PTR to be free of physical defects in materials
and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc
combination. During the sixty-day term of the limited warranty, Course PTR will provide a
replacement disc upon the return of a defective disc.

Limited Liability:

THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL
COURSE PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING
LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERIS-
TICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION
WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE PTR AND/OR THE AUTHOR HAS
PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:

COURSE PTR AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MER-
CHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM
FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WAR-
RANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE
LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:

This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Course PTR regarding use of the software.

	Contents
	Introduction
	PART I: OPENGL BASICS
	PART II: BEYOND THE BASICS
	PART III: APPENDICES
	Index

