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Optimization models are playing an increasingly important role in financial de-

cisions. This is the first textbook devoted to explaining how recent advances in

optimization models, methods and software can be applied to solve problems in

computational finance ranging from asset allocation to risk management, from

option pricing to model calibration more efficiently and more accurately. Chap-

ters discussing the theory and efficient solution methods for all major classes of

optimization problems alternate with chapters illustrating their use in modeling

problems of mathematical finance.

The reader is guided through the solution of asset/liability cash flow matching

using linear programming techniques, which are also used to explain asset pricing

and arbitrage. Volatility estimation is discussed using nonlinear optimization mod-

els. Quadratic programming formulations are provided for portfolio optimization

problems based on a mean-variance model, for returns-based style analysis and

for risk-neutral density estimation. Conic optimization techniques are introduced

for modeling volatility constraints in asset management and for approximating

covariance matrices. For constructing an index fund, the authors use an integer

programming model. Option pricing is presented in the context of dynamic pro-

gramming and so is the problem of structuring asset backed securities. Stochastic

programming is applied to asset/liability management, and in this context the notion

of Conditional Value at Risk is described. The final chapters are devoted to robust

optimization models in finance.

The book is based on Master’s courses in financial engineering and comes with
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Foreword

The use of sophisticated mathematical tools in modern finance is now common-

place. Researchers and practitioners routinely run simulations or solve differential

equations to price securities, estimate risks, or determine hedging strategies. Some

of the most important tools employed in these computations are optimization algo-

rithms. Many computational finance problems ranging from asset allocation to risk

management, from option pricing to model calibration, can be solved by optimiza-

tion techniques. This book is devoted to explaining how to solve such problems

efficiently and accurately using recent advances in optimization models, methods,

and software.

Optimization is a mature branch of applied mathematics. Typical optimization

problems have the objective of allocating limited resources to alternative activities in

order to maximize the total benefit obtained from these activities. Through decades

of intensive and innovative research, fast and reliable algorithms and software

have become available for many classes of optimization problems. Consequently,

optimization is now being used as an effective management and decision-support

tool in many industries, including the financial industry.

This book discusses several classes of optimization problems encountered in

financial models, including linear, quadratic, integer, dynamic, stochastic, conic,

and robust programming. For each problem class, after introducing the relevant the-

ory (optimality conditions, duality, etc.) and efficient solution methods, we discuss

several problems of mathematical finance that can be modeled within this problem

class. The reader is guided through the solution of asset/liability cash-flow matching

using linear programming techniques, which are also used to explain asset pric-

ing and arbitrage. Volatility estimation is discussed using nonlinear optimization

models. Quadratic programming formulations are provided for portfolio optimiza-

tion problems based on a mean-variance model for returns-based style analysis and

for risk-neutral density estimation. Conic optimization techniques are introduced

for modeling volatility constraints in asset management and for approximating

xi



xii Foreword

covariance matrices. For constructing an index fund, we use an integer program-

ming model. Option pricing is presented in the context of dynamic programming

and so is the problem of structuring asset-backed securities. Stochastic program-

ming is applied to asset/liability management, and in this context the notion of

Conditional Value at Risk is described. Robust optimization models for portfolio

selection and option pricing are also discussed.

This book is intended as a textbook for Master’s programs in financial engi-

neering, finance, or computational finance. In addition, the structure of chapters,

alternating between optimization methods and financial models that employ these

methods, allows the use of this book as a primary or secondary text in upper level un-

dergraduate or introductory graduate courses in operations research, management

science, and applied mathematics.

Optimization algorithms are sophisticated tools and the relationship between

their inputs and outputs is sometimes opaque. To maximize the value one gets from

these tools and to understand how they work, users often need a significant amount

of guidance and practical experience with them. This book aims to provide this

guidance and serve as a reference tool for the finance practitioners who use or want

to use optimization techniques.

This book has its origins in courses taught at Carnegie Mellon University in the

Masters program in Computational Finance and in the MBA program at the Tepper

School of Business (Gérard Cornuéjols), and at the Tokyo Institute of Technology,

Japan, and the University of Coimbra, Portugal (Reha Tütüncü). We thank the

attendants of these courses for their feedback and for many stimulating discussions.

We would also like to thank the colleagues who provided the initial impetus for

this project or collaborated with us on various research projects that are reflected

in the book, especially Rick Green, Raphael Hauser, John Hooker, Mark Koenig,

Masakazu Kojima, Vijay Krishnamurthy, Yanjun Li, Ana Margarida Monteiro,

Mustafa Pınar, Sanjay Srivastava, Michael Trick, and Luı́s Vicente. Various drafts

of this book were experimented with in class by Javier Peña, François Margot,

Miguel Lejeune, Miroslav Karamanov, and Kathie Cameron, and we thank them

for their comments. Initial drafts of this book were completed when the second

author was on the faculty of the Department of Mathematical Sciences at Carnegie

Mellon University; he gratefully acknowledges their financial support.
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Introduction

Optimization is a branch of applied mathematics that derives its importance both

from the wide variety of its applications and from the availability of efficient algo-

rithms. Mathematically, it refers to the minimization (or maximization) of a given

objective function of several decision variables that satisfy functional constraints.

A typical optimization model addresses the allocation of scarce resources among

possible alternative uses in order to maximize an objective function such as total

profit.

Decision variables, the objective function, and constraints are three essential

elements of any optimization problem. Problems that lack constraints are called

unconstrained optimization problems, while others are often referred to as con-
strained optimization problems. Problems with no objective functions are called

feasibility problems. Some problems may have multiple objective functions. These

problems are often addressed by reducing them to a single-objective optimization

problem or a sequence of such problems.

If the decision variables in an optimization problem are restricted to integers, or

to a discrete set of possibilities, we have an integer or discrete optimization prob-

lem. If there are no such restrictions on the variables, the problem is a continuous
optimization problem. Of course, some problems may have a mixture of discrete

and continuous variables. We continue with a list of problem classes that we will

encounter in this book.

1.1 Optimization problems

We start with a generic description of an optimization problem. Given a function

f (x) : IRn → IR and a set S ⊂ IRn , the problem of finding an x∗ ∈ IRn that solves

minx f (x)

s.t. x ∈ S
(1.1)

1



2 Introduction

is called an optimization problem. We refer to f as the objective function and to S
as the feasible region. If S is empty, the problem is called infeasible. If it is possible

to find a sequence xk ∈ S such that f (xk) → −∞ as k → +∞, then the problem

is unbounded. If the problem is neither infeasible nor unbounded, then it is often

possible to find a solution x∗ ∈ S that satisfies

f (x∗) ≤ f (x), ∀x ∈ S.

Such an x∗ is called a global minimizer of the problem (1.1). If

f (x∗) < f (x), ∀x ∈ S, x 	= x∗,

then x∗ is a strict global minimizer. In other instances, we may only find an x∗ ∈ S
that satisfies

f (x∗) ≤ f (x), ∀x ∈ S ∩ Bx∗(ε)

for some ε > 0, where Bx∗(ε) is the open ball with radius ε centered at x∗, i.e.,

Bx∗(ε) = {x : ‖x − x∗‖ < ε}.
Such an x∗ is called a local minimizer of the problem (1.1). A strict local minimizer
is defined similarly.

In most cases, the feasible set S is described explicitly using functional con-

straints (equalities and inequalities). For example, S may be given as

S := {x : gi (x) = 0, i ∈ E and gi (x) ≥ 0, i ∈ I},
where E and I are the index sets for equality and inequality constraints. Then, our

generic optimization problem takes the following form:

minx f (x)

gi (x) = 0, i ∈ E
gi (x) ≥ 0, i ∈ I.

(1.2)

Many factors affect whether optimization problems can be solved efficiently. For

example, the number n of decision variables, and the total number of constraints

|E | + |I|, are generally good predictors of how difficult it will be to solve a given

optimization problem. Other factors are related to the properties of the functions

f and gi that define the problem. Problems with a linear objective function and

linear constraints are easier, as are problems with convex objective functions and

convex feasible sets. For this reason, instead of general purpose optimization algo-

rithms, researchers have developed different algorithms for problems with special

characteristics. We list the main types of optimization problems we will encounter.

A more complete list can be found, for example, on the Optimization Tree available

from www-fp.mcs.anl.gov/otc/Guide/OptWeb/.
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1.1.1 Linear and nonlinear programming

One of the most common and easiest optimization problems is linear optimization
or linear programming (LP). This is the problem of optimizing a linear objective

function subject to linear equality and inequality constraints. It corresponds to the

case where the functions f and gi in (1.2) are all linear. If either f or one of the

functions gi is not linear, then the resulting problem is a nonlinear programming
(NLP) problem.

The standard form of the LP is given below:

minx cTx
Ax = b

x ≥ 0,

(1.3)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn are given, and x ∈ IRn is the variable vector

to be determined. In this book, a k-vector is also viewed as a k × 1 matrix. For an

m × n matrix M , the notation MT denotes the transpose matrix, namely the n × m
matrix with entries MT

i j = M ji . As an example, in the above formulation cT is a

1 × n matrix and cTx is the 1 × 1 matrix with entry
∑n

j=1 c j x j . The objective in

(1.3) is to minimize the linear function
∑n

j=1 c j x j .

As with (1.1), the problem (1.3) is said to be feasible if its constraints are consis-

tent (i.e., they define a nonempty region) and it is called unbounded if there exists a

sequence of feasible vectors {xk} such that cTxk → −∞. When (1.3) is feasible but

not unbounded it has an optimal solution, i.e., a vector x that satisfies the constraints

and minimizes the objective value among all feasible vectors. Similar definitions

apply to nonlinear programming problems.

The best known and most successful methods for solving LPs are the simplex

and interior-point methods. NLPs can be solved using gradient search techniques as

well as approaches based on Newton’s method such as interior-point and sequential

quadratic programming methods.

1.1.2 Quadratic programming

A more general optimization problem is the quadratic optimization or the quadratic
programming (QP) problem, where the objective function is now a quadratic func-

tion of the variables. The standard form QP is defined as follows:

minx
1
2
xT Qx + cTx

Ax = b
x ≥ 0,

(1.4)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn, Q ∈ IRn×n are given, and x ∈ IRn . Since

xT Qx = 1
2
xT(Q + QT)x , one can assume without loss of generality that Q is sym-

metric, i.e., Qi j = Q ji .
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The objective function of the problem (1.4) is a convex function of x when Q
is a positive semidefinite matrix, i.e., when yT Qy ≥ 0 for all y (see Appendix A

for a discussion on convex functions). This condition is equivalent to Q having

only nonnegative eigenvalues. When this condition is satisfied, the QP problem

is a convex optimization problem and can be solved in polynomial time using

interior-point methods. Here we are referring to a classical notion used to measure

computational complexity. Polynomial time algorithms are efficient in the sense

that they always find an optimal solution in an amount of time that is guaranteed to

be at most a polynomial function of the input size.

1.1.3 Conic optimization

Another generalization of (1.3) is obtained when the nonnegativity constraints

x ≥ 0 are replaced by general conic inclusion constraints. This is called a conic
optimization (CO) problem. For this purpose, we consider a closed convex cone

C (see Appendix B for a brief discussion on cones) in a finite-dimensional vector

space X and the following conic optimization problem:

minx cTx
Ax = b

x ∈ C.

(1.5)

When X = IRn and C = IRn
+, this problem is the standard form LP. However,

much more general nonlinear optimization problems can also be formulated in

this way. Furthermore, some of the most efficient and robust algorithmic machin-

ery developed for linear optimization problems can be modified to solve these

general optimization problems. Two important subclasses of conic optimization

problems we will address are: (i) second-order cone optimization, and (ii) semidef-

inite optimization. These correspond to the cases when C is the second-order

cone:

Cq := {
x = (x1, x2, . . . , xn) ∈ IRn : x2

1 ≥ x2
2 + · · · + x2

n , x1 ≥ 0
}
,

and the cone of symmetric positive semidefinite matrices:

Cs :=

⎧⎪⎨
⎪⎩

X =

⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦∈ IRn×n : X = XT, X is positive semidefinite

⎫⎪⎬
⎪⎭

.

When we work with the cone of positive semidefinite matrices, the standard inner

products used in cTx and Ax in (1.5) are replaced by an appropriate inner product

for the space of n-dimensional square matrices.
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1.1.4 Integer programming

Integer programs are optimization problems that require some or all of the variables

to take integer values. This restriction on the variables often makes the problems

very hard to solve. Therefore we will focus on integer linear programs, which have

a linear objective function and linear constraints. A pure integer linear program

(ILP) is given by:

minx cTx
Ax ≥ b

x ≥ 0 and integral,

(1.6)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn are given, and x ∈ IN n is the variable vector

to be determined.

An important case occurs when the variables x j represent binary decision vari-

ables, that is, x ∈ {0, 1}n . The problem is then called a 0–1 linear program.

When there are both continuous variables and integer constrained variables, the

problem is called a mixed integer linear program (MILP):

minx cTx
Ax ≥ b

x ≥ 0

x j ∈ IN for j = 1, . . . , p.

(1.7)

where A, b, c are given data and the integer p (with 1 ≤ p < n) is also part of the

input.

1.1.5 Dynamic programming

Dynamic programming refers to a computational method involving recurrence re-

lations. This technique was developed by Richard Bellman in the early 1950s. It

arose from studying programming problems in which changes over time were im-

portant, thus the name “dynamic programming.” However, the technique can also

be applied when time is not a relevant factor in the problem. The idea is to divide

the problem into “stages” in order to perform the optimization recursively. It is

possible to incorporate stochastic elements into the recursion.

1.2 Optimization with data uncertainty

In all the problem classes discussed so far (except dynamic programming), we

made the implicit assumption that the data of the problem, namely the parameters

such as Q, A, b and c in QP, are all known. This is not always the case. Often,
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the problem parameters correspond to quantities that will only be realized in the

future, or cannot be known exactly at the time the problem must be formulated and

solved. Such situations are especially common in models involving financial quan-

tities, such as returns on investments, risks, etc. We will discuss two fundamentally

different approaches that address optimization with data uncertainty. Stochastic
programming is an approach used when the data uncertainty is random and can be

explained by some probability distribution. Robust optimization is used when one

wants a solution that behaves well in all possible realizations of the uncertain data.

These two alternative approaches are not problem classes (as in LP, QP, etc.) but

rather modeling techniques for addressing data uncertainty.

1.2.1 Stochastic programming

The term stochastic programming refers to an optimization problem in which some

problem data are random. The underlying optimization problem might be a linear

program, an integer program, or a nonlinear program. An important case is that of

stochastic linear programs.
A stochastic program with recourse arises when some of the decisions (recourse

actions) can be taken after the outcomes of some (or all) random events have become

known. For example, a two-stage stochastic linear program with recourse can be

written as follows:

maxx aTx + E[maxy(ω) c(ω)T y(ω)]

Ax = b
B(ω)x + C(ω)y(ω) = d(ω)

x ≥ 0, y(ω) ≥ 0,

(1.8)

where the first-stage decisions are represented by vector x and the second-stage

decisions by vector y(ω), which depend on the realization of a random event ω. A
and b define deterministic constraints on the first-stage decisions x , whereas B(ω),

C(ω), and d(ω) define stochastic linear constraints linking the recourse decisions

y(ω) to the first-stage decisions. The objective function contains a deterministic

term aTx and the expectation of the second-stage objective c(ω)T y(ω) taken over

all realizations of the random event ω.

Note that, once the first-stage decisions x have been made and the random event

ω has been realized, one can compute the optimal second-stage decisions by solving

the following linear program:

f (x, ω) = max c(ω)Ty(ω)

C(ω)y(ω) = d(ω) − B(ω)x
y(ω) ≥ 0.

(1.9)
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Let f (x) = E[ f (x, ω)] denote the expected value of the optimal value of this

problem. Then, the two-stage stochastic linear program becomes

max aTx + f (x)

Ax = b
x ≥ 0.

(1.10)

Thus, if the (possibly nonlinear) function f (x) is known, the problem reduces to

a nonlinear programming problem. When the data c(ω), B(ω), C(ω), and d(ω)

are described by finite distributions, one can show that f is piecewise linear and

concave. When the data are described by probability densities that are absolutely

continuous and have finite second moments, one can show that f is differentiable

and concave. In both cases, we have a convex optimization problem with linear

constraints for which specialized algorithms are available.

1.2.2 Robust optimization

Robust optimization refers to the modeling of optimization problems with data

uncertainty to obtain a solution that is guaranteed to be “good” for all possible

realizations of the uncertain parameters. In this sense, this approach departs from

the randomness assumption used in stochastic optimization for uncertain parame-

ters and gives the same importance to all possible realizations. Uncertainty in the

parameters is described through uncertainty sets that contain all (or most) possible

values that can be realized by the uncertain parameters.

There are different definitions and interpretations of robustness and the resulting

models differ accordingly. One important concept is constraint robustness, often

called model robustness in the literature. This refers to solutions that remain feasible
for all possible values of the uncertain inputs. This type of solution is required in

several engineering applications. Here is an example adapted from Ben-Tal and

Nemirovski [8]. Consider a multi-phase engineering process (a chemical distillation

process, for example) and a related process optimization problem that includes

balance constraints (materials entering a phase of the process cannot exceed what

is used in that phase plus what is left over for the next phase). The quantities

of the end products of a particular phase may depend on external, uncontrollable

factors and are therefore uncertain. However, no matter what the values of these

uncontrollable factors are, the balance constraints must be satisfied. Therefore, the

solution must be constraint robust with respect to the uncertainties of the problem.

A mathematical model for finding constraint-robust solutions will be described.

First, consider an optimization problem of the form:

minx f (x)

G(x, p) ∈ K .
(1.11)



8 Introduction

Here, x are the decision variables, f is the (certain) objective function, G and K
are the structural elements of the constraints that are assumed to be certain and

p are the uncertain parameters of the problem. Consider an uncertainty set U that

contains all possible values of the uncertain parameters p. Then, a constraint-robust

optimal solution can be found by solving the following problem:

minx f (x)

G(x, p) ∈ K , ∀p ∈ U .
(1.12)

A related concept is objective robustness, which occurs when uncertain parame-

ters appear in the objective function. This is often referred to as solution robustness

in the literature. Such robust solutions must remain close to optimal for all possible

realizations of the uncertain parameters. Next, consider an optimization problem

of the form:

minx f (x, p)

x ∈ S.
(1.13)

Here, S is the (certain) feasible set and f is the objective function that depends on

uncertain parameters p. Assume as above that U is the uncertainty set that contains

all possible values of the uncertain parameters p. Then, an objective-robust solution

is obtained by solving:

minx∈S maxp∈U f (x, p). (1.14)

Note that objective robustness is a special case of constraint robustness. Indeed,

by introducing a new variable t (to be minimized) into (1.13) and imposing the

constraint f (x, p) ≤ t , we get an equivalent problem to (1.13). The constraint-

robust formulation of the resulting problem is equivalent to (1.14).

Constraint robustness and objective robustness are concepts that arise in conser-

vative decision making and are not always appropriate for optimization problems

with data uncertainty.

1.3 Financial mathematics

Modern finance has become increasingly technical, requiring the use of sophisti-

cated mathematical tools in both research and practice. Many find the roots of this

trend in the portfolio selection models and methods described by Markowitz [54]

in the 1950s and the option pricing formulas developed by Black, Scholes, and

Merton [15, 55] in the late 1960s and early 1970s. For the enormous effect these

works produced on modern financial practice, Markowitz was awarded the Nobel

prize in Economics in 1990, while Scholes and Merton won the Nobel prize in

Economics in 1997.
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Below, we introduce topics in finance that are especially suited for mathematical

analysis and involve sophisticated tools from mathematical sciences.

1.3.1 Portfolio selection and asset allocation

The theory of optimal selection of portfolios was developed by Harry Markowitz in

the 1950s. His work formalized the diversification principle in portfolio selection

and, as mentioned above, earned him the 1990 Nobel prize for Economics. Here

we give a brief description of the model and relate it to QPs.

Consider an investor who has a certain amount of money to be invested in a

number of different securities (stocks, bonds, etc.) with random returns. For each

security i = 1, . . . , n, estimates of its expected return μi and variance σ 2
i are given.

Furthermore, for any two securities i and j , their correlation coefficient ρi j is also

assumed to be known. If we represent the proportion of the total funds invested

in security i by xi , one can compute the expected return and the variance of the

resulting portfolio x = (x1, . . . , xn) as follows:

E[x] = x1μ1 + · · · + xnμn = μTx,

and

Var[x] =
∑
i, j

ρi jσiσ j xi x j = xT Qx,

where ρi i ≡ 1, Qi j = ρi jσiσ j , and μ = (μ1, . . . , μn).

The portfolio vector x must satisfy
∑

i xi = 1 and there may or may not be

additional feasibility constraints. A feasible portfolio x is called efficient if it has

the maximal expected return among all portfolios with the same variance, or, al-

ternatively, if it has the minimum variance among all portfolios that have at least

a certain expected return. The collection of efficient portfolios form the efficient
frontier of the portfolio universe.

Markowitz’ portfolio optimization problem, also called the mean-variance op-
timization (MVO) problem, can be formulated in three different but equivalent

ways. One formulation results in the problem of finding a minimum variance port-

folio of the securities 1 to n that yields at least a target value R of expected re-

turn. Mathematically, this formulation produces a convex quadratic programming

problem:

minx xT Qx
eTx = 1

μTx ≥ R
x ≥ 0,

(1.15)
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where e is an n-dimensional vector with all components equal to 1. The first con-

straint indicates that the proportions xi should sum to 1. The second constraint in-

dicates that the expected return is no less than the target value and, as we discussed

above, the objective function corresponds to the total variance of the portfolio. Non-

negativity constraints on xi are introduced to rule out short sales (selling a security

that you do not have). Note that the matrix Q is positive semidefinite since xT Qx ,

the variance of the portfolio, must be nonnegative for every portfolio (feasible or

not) x .

As an alternative to problem (1.15), we may choose to maximize the expected

return of a portfolio while limiting the variance of its return. Or, we can maximize

a risk-adjusted expected return, which is defined as the expected return minus

a multiple of the variance. These two formulations are essentially equivalent to

(1.15), as we will see in Chapter 8.

The model (1.15) is rather versatile. For example, if short sales are permitted on

some or all of the securities, then this can be incorporated into the model simply

by removing the nonnegativity constraint on the corresponding variables. If reg-

ulations or investor preferences limit the amount of investment in a subset of the

securities, the model can be augmented with a linear constraint to reflect such a

limit. In principle, any linear constraint can be added to the model without making

it significantly harder to solve.

Asset allocation problems have the same mathematical structure as portfolio

selection problems. In these problems the objective is not to choose a portfolio

of stocks (or other securities) but to determine the optimal investment among a

set of asset classes. Examples of asset classes are large capitalization stocks, small

capitalization stocks, foreign stocks, government bonds, corporate bonds, etc. There

are many mutual funds focusing on specific asset classes and one can therefore

conveniently invest in these asset classes by purchasing the relevant mutual funds.

After estimating the expected returns, variances, and covariances for different asset

classes, one can formulate a QP identical to (1.15) and obtain efficient portfolios

of these asset classes.

A different strategy for portfolio selection is to try to mirror the movements

of a broad market population using a significantly smaller number of securities.

Such a portfolio is called an index fund. No effort is made to identify mispriced

securities. The assumption is that the market is efficient and therefore no superior

risk-adjusted returns can be achieved by stock picking strategies since the stock

prices reflect all the information available in the marketplace. Whereas actively

managed funds incur transaction costs that reduce their overall performance, index

funds are not actively traded and incur low management fees. They are typical of a

passive management strategy. How do investment companies construct index funds?

There are numerous ways of doing this. One way is to solve a clustering problem
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where similar stocks have one representative in the index fund. This naturally leads

to an integer programming formulation.

1.3.2 Pricing and hedging of options

We first start with a description of some of the well-known financial options. A
European call option is a contract with the following conditions:

� At a prescribed time in the future, known as the expiration date, the holder of the option

has the right, but not the obligation, to
� purchase a prescribed asset, known as the underlying, for a
� prescribed amount, known as the strike price or exercise price.

A European put option is similar, except that it confers the right to sell the underlying

asset (instead of buying it for a call option). An American option is like a European

option, but it can be exercised any time before the expiration date.

Since the payoff from an option depends on the value of the underlying security,

its price is also related to the current value and expected behavior of this underlying

security. To find the fair value of an option, we need to solve a pricing problem.

When there is a good model for the stochastic behavior of the underlying security, the

option pricing problem can be solved using sophisticated mathematical techniques.

Option pricing problems are often solved using the following strategy. We try

to determine a portfolio of assets with known prices which, if updated properly

through time, will produce the same payoff as the option. Since the portfolio and

the option will have the same eventual payoffs, we conclude that they must have the

same value today (otherwise, there is arbitrage) and we can therefore obtain the

price of the option. A portfolio of other assets that produces the same payoff as

a given financial instrument is called a replicating portfolio (or a hedge) for that

instrument. Finding the right portfolio, of course, is not always easy and leads to a

replication (or hedging) problem.

Let us consider a simple example to illustrate these ideas. Let us assume that

one share of stock XYZ is currently valued at $40. The price of XYZ a month from

today is random with two possible states. In the “up” state (denoted by u) the price

will double, and in the “down” state (denoted by d) the price will halve. Assume

that up and down states have equal probabilities.

S0 = $40 ����

����

80 = S1(u)

20 = S1(d)

Today, we purchase a European call option to buy one share of XYZ stock for $50

a month from today. What is the fair price of this option?
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Let us assume that we can borrow or lend money with no interest between today

and next month, and that we can buy or sell any amount of the XYZ stock without

any commissions, etc. These are part of the “frictionless market” assumptions we

will address later. Further assume that XYZ will not pay any dividends within the

next month.

To solve the option pricing problem, we consider the following hedging problem:

can we form a portfolio of the underlying stock (bought or sold) and cash (borrowed

or lent) today, such that the payoff from the portfolio at the expiration date of the

option will match the payoff of the option? Note that the option payoff will be $30

if the price of the stock goes up and $0 if it goes down. Assume this portfolio has �

shares of XYZ and $B cash. This portfolio would be worth 40� + B today. Next

month, payoffs for this portfolio will be:

P0 = 40� + B ����

����

80� + B = P1(u)

20� + B = P1(d)

Let us choose � and B such that

80� + B = 30,

20� + B = 0,

so that the portfolio replicates the payoff of the option at the expiration date. This

gives � = 1/2 and B = −10, which is the hedge we were looking for. This portfolio

is worth P0 = 40� + B = $10 today, therefore, the fair price of the option must

also be $10.

1.3.3 Risk management

Risk is inherent in most economic activities. This is especially true of financial

activities where results of decisions made today may have many possible different

outcomes depending on future events. Since companies cannot usually insure them-

selves completely against risk, they have to manage it. This is a hard task even with

the support of advanced mathematical techniques. Poor risk management led to

several spectacular failures in the financial industry during the 1990s (e.g., Barings

Bank, Long Term Capital Management, Orange County).

A coherent approach to risk management requires quantitative risk measures

that adequately reflect the vulnerabilities of a company. Examples of risk measures

include portfolio variance as in the Markowitz MVO model, the Value-at-Risk (VaR)

and the expected shortfall (also known as conditional Value-at-Risk, or CVaR).

Furthermore, risk control techniques need to be developed and implemented to

adapt to rapid changes in the values of these risk measures. Government regulators



1.3 Financial mathematics 13

already mandate that financial institutions control their holdings in certain ways

and place margin requirements for “risky” positions.

Optimization problems encountered in financial risk management often take the

following form. Optimize a performance measure (such as expected investment

return) subject to the usual operating constraints and the constraint that a particular

risk measure for the company’s financial holdings does not exceed a prescribed

amount. Mathematically, we may have the following problem:

maxx μTx
RM[x] ≤ γ

eTx = 1

x ≥ 0.

(1.16)

As in the Markowitz MVO model, xi represent the proportion of the total funds

invested in security i . The objective is to maximize the expected portfolio return

and μ is the expected return vector for the different securities. RM[x] denotes the

value of a particular risk measure for portfolio x and γ is the prescribed upper limit

on this measure. Since RM[x] is generally a nonlinear function of x , (1.16) is a

nonlinear programming problem. Alternatively, we can minimize the risk measure

while constraining the expected return of the portfolio to achieve or exceed a given

target value R. This will produce a problem very similar to (1.15).

1.3.4 Asset/liability management

How should a financial institution manage its assets and liabilities? A static mean-

variance optimization model, such as the one we discussed for asset allocation, fails

to incorporate the dynamic nature of asset management and multiple liabilities with

different maturities faced by financial institutions. Furthermore, it penalizes returns

both above and below the mean. A multi-period model that emphasizes the need

to meet liabilities in each period for a finite (or possibly infinite) horizon is often

required. Since liabilities and asset returns usually have random components, their

optimal management requires tools of “Optimization under Uncertainty” and, most

notably, stochastic programming approaches.

Let Lt be the liability of the company in period t for t = 1, . . . , T . Here, we as-

sume that the liabilities Lt are random with known distributions. A typical problem

to solve in asset/liability management is to determine which assets (and in what

quantities) the company should hold in each period to maximize its expected wealth

at the end of period T. We can further assume that the asset classes the company can

choose from have random returns (again, with known distributions) denoted by Rit

for asset class i in period t . Since the company can make the holding decisions for

each period after observing the asset returns and liabilities in the previous periods,
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the resulting problem can be cast as a stochastic program with recourse:

maxx E
[ ∑

i xi,T
]

∑
i (1 + Rit )xi,t−1 − ∑

i xi,t = Lt , t = 1, . . . , T,

xi,t ≥ 0 ∀i, t.

(1.17)

The objective function represents the expected total wealth at the end of the last

period. The constraints indicate that the surplus left after liability Lt is covered will

be invested as follows: xi,t invested in asset class i . In this formulation, xi,0 are the

fixed and possibly nonzero initial positions in the different asset classes.
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Linear programming: theory and algorithms

2.1 The linear programming problem

One of the most common and fundamental optimization problems is the linear

optimization, or linear programming (LP) problem. LP is the problem of optimizing

a linear objective function subject to linear equality and inequality constraints. A

generic linear optimization problem has the following form:

minx cTx

aT
i x = bi , i ∈ E,

aT
i x ≥ bi , i ∈ I,

(2.1)

where E and I are the index sets for equality and inequality constraints, respec-

tively. Linear programming is arguably the best known and the most frequently

solved optimization problem. It owes its fame mostly to its great success; real-world

problems coming from as diverse disciplines as sociology, finance, transportation,

economics, production planning, and airline crew scheduling have been formulated

and successfully solved as LPs.

For algorithmic purposes, it is often desirable to have the problems structured in a

particular way. Since the development of the simplex method for LPs the following

form has been a popular standard and is called the standard form LP:

minx cTx
Ax = b

x ≥ 0.

(2.2)

Here A ∈ IRm×n , b ∈ IRm , c ∈ IRn are given, and x ∈ IRn is the variable vector to

be determined as the solution of the problem.

The standard form is not restrictive: inequalities other than nonnegativity con-

straints can be rewritten as equalities after the introduction of a so-called slack or

15
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surplus variable that is restricted to be nonnegative. For example,

min −x1 − x2

2x1 + x2 ≤ 12

x1 + 2x2 ≤ 9

x1 ≥ 0, x2 ≥ 0 ,

(2.3)

can be rewritten as

min −x1 − x2

2x1 + x2 + x3 = 12

x1 + 2x2 + x4 = 9

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(2.4)

Variables that are unrestricted in sign can be expressed as the difference of two

new nonnegative variables. Maximization problems can be written as minimization

problems by multiplying the objective function by a negative constant. Simple

transformations are available to rewrite any given LP in the standard form above.

Therefore, in the rest of our theoretical and algorithmic discussion we assume that

the LP is in the standard form.

Exercise 2.1 Write the following linear program in standard form.

min x2

x1 + x2 ≥ 1,

x1 − x2 ≤ 0,

x1, x2 unrestricted in sign.

Answer: After writing xi = yi − zi , i = 1, 2 with yi ≥ 0 and zi ≥ 0 and introduc-

ing surplus variable s1 for the first constraint and slack variable s2 for the second

constraint we obtain:

min y2 − z2

y1 − z1 + y2 − z2 − s1 = 1

y1 − z1 − y2 + z2 + s2 = 0

y1 ≥ 0, z1 ≥ 0, y2 ≥ 0, z2 ≥ 0, s1 ≥ 0, s2 ≥ 0.

Exercise 2.2 Write the following linear program in standard form.

max 4x1 + x2 − x3

x1 + 3x3 ≤ 6

3x1 + x2 + 3x3 ≥ 9

x1 ≥ 0, x2 ≥ 0, x3 unrestricted in sign.

Recall the following definitions from the Chapter 1: the LP (2.2) is said to be

feasible if its constraints are consistent and it is called unbounded if there exists
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a sequence of feasible vectors {xk} such that cTxk → −∞. When we talk about a

solution (without any qualifiers) to (2.2) we mean any candidate vector x ∈ IRn . A

feasible solution is one that satisfies the constraints, and an optimal solution is a

vector x that satisfies the constraints and minimizes the objective value among all

feasible vectors. When LP is feasible but not unbounded it has an optimal solution.

Exercise 2.3

(i) Write a two-variable linear program that is unbounded.

(ii) Write a two-variable linear program that is infeasible.

Exercise 2.4 Draw the feasible region of the following two-variable linear

program.

max 2x1 − x2

x1 + x2 ≥ 1

x1 − x2 ≤ 0

3x1 + x2 ≤ 6

x1 ≥ 0, x2 ≥ 0.

Determine the optimal solution to this problem by inspection.

The most important questions we will address in this chapter are the following:

how do we recognize an optimal solution and how do we find such solutions? One

of the most important tools in optimization to answer these questions is the notion of

a dual problem associated with the LP problem (2.2). We describe the dual problem

in the next section.

2.2 Duality

Consider the standard form LP in (2.4) above. Here are a few alternative feasible

solutions:

(x1, x2, x3, x4) =
(

0,
9

2
,

15

2
, 0

)
Objective value = −9

2

(x1, x2, x3, x4) = (6, 0, 0, 3) Objective value = −6

(x1, x2, x3, x4) = (5, 2, 0, 0) Objective value = −7.

Since we are minimizing, the last solution is the best among the three feasible

solutions we found, but is it the optimal solution? We can make such a claim if we

can, somehow, show that there is no feasible solution with a smaller objective value.

Note that the constraints provide some bounds on the value of the objective

function. For example, for any feasible solution, we must have

−x1 − x2 ≥ −2x1 − x2 − x3 = −12
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using the first constraint of the problem. The inequality above must hold for all

feasible solutions since the xi ’s are all nonnegative and the coefficient of each

variable on the LHS is at least as large as the coefficient of the corresponding

variable on the RHS. We can do better using the second constraint:

−x1 − x2 ≥ −x1 − 2x2 − x4 = −9

and even better by adding a negative third of each constraint:

−x1 − x2 ≥ −x1 − x2 − 1

3
x3 − 1

3
x4

= −1

3
(2x1 + x2 + x3) − 1

3
(x1 + 2x2 + x4) = −1

3
(12 + 9) = −7.

This last inequality indicates that, for any feasible solution, the objective function

value cannot be smaller than −7. Since we already found a feasible solution achiev-

ing this bound, we conclude that this solution, namely (x1, x2, x3, x4) = (5, 2, 0, 0),

must be an optimal solution of the problem.

This process illustrates the following strategy: if we find a feasible solution to the

LP problem, and a bound on the optimal value of the problem such that the bound

and the objective value of the feasible solution coincide, then we can conclude

that our feasible solution is an optimal solution. We will comment on this strategy

shortly. Before that, though, we formalize our approach for finding a bound on the

optimal objective value.

Our strategy was to find a linear combination of the constraints, say with multipli-

ers y1 and y2 for the first and second constraint respectively, such that the combined

coefficient of each variable forms a lower bound on the objective coefficient of

that variable. Namely, we tried to choose multipliers y1 and y2 associated with

constraints 1 and 2 such that

y1(2x1 + x2 + x3) + y2(x1 + 2x2 + x4)

= (2y1 + y2)x1 + (y1 + 2y2)x2 + y1x3 + y2x4

provides a lower bound on the optimal objective value. Since the xi ’s must be

nonnegative, the expression above would necessarily give a lower bound if the

coefficient of each xi is less than or equal to the corresponding objective function

coefficient, or if:

2y1 + y2 ≤ −1

y1 + 2y2 ≤ −1

y1 ≤ 0

y2 ≤ 0.
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Note that the objective coefficients of x3 and x4 are zero. Naturally, to obtain the

largest possible lower bound, we would like to find y1 and y2 that achieve the

maximum combination of the right-hand-side values:

max 12y1 + 9y2.

This process results in a linear programming problem that is strongly related to the

LP we are solving:

max 12y1 + 9y2

2y1 + y2 ≤ −1

y1 + 2y2 ≤ −1

y1 ≤ 0

y2 ≤ 0.

(2.5)

This problem is called the dual of the original problem we considered. The original

LP in (2.2) is often called the primal problem. For a generic primal LP problem in

standard form (2.2) the corresponding dual problem can be written as follows:

maxy bT y
AT y ≤ c,

(2.6)

where y ∈ IRm . Rewriting this problem with explicit dual slacks, we obtain the

standard form dual linear programming problem:

maxy,s bTy
ATy + s = c

s ≥ 0,

(2.7)

where s ∈ IRn .

Exercise 2.5 Consider the following LP:

min 2x1 + 3x2

x1 + x2 ≥ 5

x1 ≥ 1

x2 ≥ 2.

Prove that x∗ = (3, 2) is the optimal solution by showing that the objective value

of any feasible solution is at least 12.

Next, we make some observations about the relationship between solutions of

the primal and dual LPs. The objective value of any primal feasible solution is at

least as large as the objective value of any feasible dual solution. This fact is known

as the weak duality theorem:
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Theorem 2.1 (Weak duality theorem) Let x be any feasible solution to the
primal LP (2.2) and y be any feasible solution to the dual LP (2.6). Then

cTx ≥ bT y.

Proof: Since x ≥ 0 and c − AT y ≥ 0, the inner product of these two vectors must

be nonnegative:

(c − AT y)Tx = cTx − yT Ax = cTx − yTb ≥ 0.

The quantity cTx − yTb is often called the duality gap. The following three

results are immediate consequences of the weak duality theorem.

Corollary 2.1 If the primal LP is unbounded, then the dual LP must be infeasible.

Corollary 2.2 If the dual LP is unbounded, then the primal LP must be infeasible.

Corollary 2.3 If x is feasible for the primal LP, y is feasible for the dual LP, and
cTx = bT y, then x must be optimal for the primal LP and y must be optimal for
the dual LP.

Exercise 2.6 Show that the dual of the linear program

minx cTx
Ax ≥ b

x ≥ 0

is the linear program

maxy bT y
AT y ≤ c

y ≥ 0.

Exercise 2.7 We say that two linear programming problems are equivalent if one

can be obtained from the other by (i) multiplying the objective function by −1

and changing it from min to max, or max to min, and/or (ii) multiplying some or

all constraints by −1. For example, min{cTx : Ax ≥ b} and max{−cTx : −Ax ≤
−b} are equivalent problems. Find a linear program which is equivalent to its own

dual.

Exercise 2.8 Give an example of a linear program such that it and its dual are

both infeasible.
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Exercise 2.9 For the following pair of primal–dual problems, determine whether

the listed solutions are optimal.

min 2x1 + 3x2 max −30y1 + 10y2

2x1 + 3x2 ≤ 30 −2y1 + y2 + y3 ≤ 2

x1 + 2x2 ≥ 10 −3y1 + 2y2 − y3 ≤ 3

x1 − x2 ≥ 0 y1, y2, y3 ≥ 0.

x1, x2 ≥ 0

(i) x1 = 10, x2 = 10/3; y1 = 0, y2 = 1, y3 = 1.

(ii) x1 = 20, x2 = 10; y1 = −1, y2 = 4, y3 = 0.

(iii) x1 = 10/3, x2 = 10/3; y1 = 0, y2 = 5/3, y3 = 1/3.

2.3 Optimality conditions

Corollary 2.3 in the previous section identified a sufficient condition for optimal-

ity of a primal–dual pair of feasible solutions, namely that their objective values

coincide. One natural question to ask is whether this is a necessary condition. The

answer is yes, as we illustrate next.

Theorem 2.2 (Strong duality theorem) If the primal (dual) problem has an
optimal solution x (y), then the dual (primal) has an optimal solution y (x) such
that cTx = bT y.

The reader can find a proof of this result in most standard linear programming

textbooks (see Chvátal [21] for example). A consequence of the strong duality

theorem is that if both the primal LP problem and the dual LP have feasible solutions

then they both have optimal solutions and for any primal optimal solution x and

dual optimal solution y we have that cTx = bT y.

The strong duality theorem provides us with conditions to identify optimal so-

lutions (called optimality conditions): x ∈ IRn is an optimal solution of (2.2) if and

only if:

1. x is primal feasible: Ax = b, x ≥ 0, and there exists a y ∈ IRm such that

2. y is dual feasible: AT y ≤ c; and

3. there is no duality gap: cTx = bT y.

Further analyzing the last condition above, we can obtain an alternative set

of optimality conditions. Recall from the proof of the weak duality theorem that

cTx − bT y = (c − AT y)Tx ≥ 0 for any feasible primal–dual pair of solutions, since

it is given as an inner product of two nonnegative vectors. This inner product is 0

(cTx = bT y) if and only if the following statement holds: for each i = 1, . . . , n,
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either xi or (c − AT y)i = si is zero. This equivalence is easy to see. All the terms

in the summation on the RHS of the following equation are nonnegative:

0 = (c − AT y)Tx =
n∑

i=1

(c − AT y)i xi

Since the sum is zero, each term must be zero. Thus we have found an alternative

set of optimality conditions: x ∈ IRn is an optimal solution of (2.2) if and only

if:

1. x is primal feasible: Ax = b, x ≥ 0, and there exists a y ∈ IRm such that

2. y is dual feasible: s := c − AT y ≥ 0; and

3. there is complementary slackness: for each i = 1, . . . , n we have xi si = 0.

Exercise 2.10 Consider the linear program

min 5x1 + 12x2 + 4x3

x1 + 2x2 + x3 = 10

2x1 − x2 + 3x3 = 8

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

You are given the information that x2 and x3 are positive in the optimal solution.

Use the complementary slackness conditions to find the optimal dual solution.

Exercise 2.11 Consider the following linear programming problem:

max 6x1 + 5x2 + 4x3 + 5x4 + 6x5

x1 + x2 + x3 + x4 + x5 ≤ 3

5x1 + 4x2 + 3x3 + 2x4 + x5 ≤ 14

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

Solve this problem using the following strategy:

(i) Find the dual of the above LP. The dual has only two variables. Solve the dual

by inspection after drawing a graph of the feasible set.

(ii) Now using the optimal solution to the dual problem, and complementary slack-

ness conditions, determine which primal constraints are active, and which

primal variables must be zero at an optimal solution. Using this information

determine the optimal solution to the primal problem.

Exercise 2.12 Using the optimality conditions for

minx cTx
Ax = b

x ≥ 0,
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deduce that the optimality conditions for

maxx cTx
Ax ≤ b

x ≥ 0

are Ax ≤ b, x ≥ 0 and there exists y such that AT y ≥ c, y ≥ 0, cTx = bTy.

Exercise 2.13 Consider the following investment problem over T years, where

the objective is to maximize the value of the investments in year T . We assume a

perfect capital market with the same annual lending and borrowing rate r > 0 each

year. We also assume that exogenous investment funds bt are available in year t , for

t = 1, . . . , T . Let n be the number of possible investments. We assume that each

investment can be undertaken fractionally (between 0 and 1). Let at j denote the

cash flow associated with investment j in year t . Let c j be the value of investment

j in year T (including all cash flows subsequent to year T discounted at the interest

rate r ).

The linear program that maximizes the value of the investments in year T is the

following. Denote by x j the fraction of investment j undertaken, and let yt be the

amount borrowed (if negative) or lent (if positive) in year t .

max
∑n

j=1 c j x j + yT

− ∑n
j=1 a1 j x j + y1 ≤ b1

− ∑n
j=1 at j x j − (1 + r )yt−1 + yt ≤ bt for t = 2, . . . , T,

0 ≤ x j ≤ 1 for j = 1, . . . , n.

(i) Write the dual of the above linear program.

(ii) Solve the dual linear program found in (i). [Hint: Note that some of the dual

variables can be computed by backward substitution.]

(iii) Write the complementary slackness conditions.

(iv) Deduce that the first T constraints in the primal linear program hold as equal-

ities.

(v) Use the complementary slackness conditions to show that the solution obtained

by setting x j = 1 if c j + ∑T
t=1(1 + r )T −t at j > 0, and x j = 0 otherwise, is an

optimal solution.

(vi) Conclude that the above investment problem always has an optimal solution

where each investment is either undertaken completely or not at all.

2.4 The simplex method

The best known and most successful methods for solving LPs are interior-point
methods (IPMs) and the simplex method. We discuss the simplex method here and

postpone our discussion of IPMs till we study quadratic programming problems,
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as IPMs are also applicable to quadratic programs and other more general classes

of optimization problems.

We introduce the essential elements of the simplex method using a simple bond

portfolio selection problem.

Example 2.1 A bond portfolio manager has $100,000 to allocate to two differ-
ent bonds: one corporate and one government bond. The corporate bond has a
yield of 4%, a maturity of 3 years and an A rating from a rating agency that is
translated into a numerical rating of 2 for computational purposes. In contrast,
the government bond has a yield of 3%, a maturity of 4 years and rating of Aaa
with the corresponding numerical rating of 1 (lower numerical ratings correspond
to higher quality bonds). The portfolio manager would like to allocate funds so
that the average rating for the portfolio is no worse than Aa (numerical equivalent
1.5) and average maturity of the portfolio is at most 3.6 years. Any amount not
invested in the two bonds will be kept in a cash account that is assumed to earn
no interest for simplicity and does not contribute to the average rating or maturity
computations.1 How should the manager allocate funds between these two bonds
to achieve the objective of maximizing the yield from this investment?

Letting variables x1 and x2 denote the allocation of funds to the corporate and
government bond respectively (in thousands of dollars) we obtain the following
formulation for the portfolio manager’s problem:

max Z = 4x1 + 3x2

subject to:
x1 + x2 ≤ 100

2x1+x2

100
≤ 1.5

3x1+4x2

100
≤ 3.6

x1, x2 ≥ 0.

We first multiply the second and third inequalities by 100 to avoid fractions. After
we add slack variables to each of the functional inequality constraints we obtain
a representation of the problem in the standard form, suitable for the simplex
method.2 For example, letting x3 denote the amount we keep as cash, we can rewrite
the first constraint as x1 + x2 + x3 = 100 with the additional condition of x3 ≥ 0.

1 In other words, we are assuming a quality rating of 0 – “perfect” quality, and maturity of 0 years for cash.
2 This representation is not exactly in the standard form since the objective is maximization rather than minimiza-

tion. However, any maximization problem can be transformed into a minimization problem by multiplying the
objective function by −1. Here, we avoid such a transformation to leave the objective function in its natural
form – it should be straightforward to adapt the steps of the algorithm in the following discussion to address
minimization problems.



2.4 The simplex method 25

Continuing with this strategy we obtain the following formulation:

max Z = 4x1 + 3x2

subject to:
x1 + x2 + x3 = 100

2x1 + x2 + x4 = 150

3x1 + 4x2 + x5 = 360

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

(2.8)

2.4.1 Basic solutions

Let us consider a general LP problem in the following form:

max cx (2.9)

Ax ≤ b (2.10)

x ≥ 0, (2.11)

where A is an m × n matrix, b is an m-dimensional column vector and c is an n-

dimensional row vector. The n-dimensional column vector x represents the variables

of the problem. (In the bond portfolio example we have m = 3 and n = 2.) Here is

how we can represent these vectors and matrices:

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


, b =




b1

b2

...

bm


, c = [

c1 c2 . . . cn
]
,

x =




x1

x2

...

xn


, 0 =




0

0
...

0


.

Next, we add slack variables to each of the functional constraints to get the aug-

mented form of the problem. Let xs denote the vector of slack variables:

xs =




xn+1

xn+2

...

xn+m



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and let I denote the m × m identity matrix. Now, the constraints in the augmented

form can be written as

[ A, I ]

[
x
xs

]
= b,

[
x
xs

]
≥ 0. (2.12)

There are many potential solutions to system (2.12). Let us focus on the equa-

tion [ A, I ]

[
x
xs

]
= b. By choosing x = 0 and xs = b, we immediately satisfy this

equation – but not necessarily all the inequalities. More generally, we can consider

partitions of the augmented matrix [A, I ]:3

[ A, I ] ≡ [ B, N ],

where B is an m × m square matrix that consists of linearly independent columns

of [A, I ]. Such a B matrix is called a basis matrix and this partition is called a basis

partition. If we partition the variable vector

[
x
xs

]
in the same way:

[
x
xs

]
≡

[
xB

xN

]
,

we can rewrite the equality constraints in (2.12) as

[ B, N ]

[
xB

xN

]
= BxB + N xN = b,

or, by multiplying both sides by B−1 from the left,

xB + B−1 N xN = B−1b.

By our construction, the following three systems of equations are equivalent in the

sense that any solution to one is a solution for the other two:

[
A, I

][ x
xs

]
= b,

BxB + N xN = b

xB + B−1 N xN = B−1b.

Indeed, the second and third linear systems are just other representations of the first

one in terms of the matrix B. As we observed above, an obvious solution to the last

system (and, therefore, to the other two) is xN = 0, xB = B−1b. In fact, for any

fixed values of the components of xN we can obtain a solution by simply setting

xB = B−1b − B−1 N xN . (2.13)

3 Here, we are using the notation U ≡ V to indicate that the matrix V is obtained from the matrix U by permuting
its columns. Similarly, for the column vectors u and v, u ≡ v means that v is obtained from u by permuting its
elements.
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One can think of xN as the independent variables that we can choose freely, and,

once they are chosen, the dependent variables xB are determined uniquely. We call

a solution of the systems above a basic solution if it is of the form

xN = 0, xB = B−1b.

If, in addition, xB = B−1b ≥ 0, the solution xB = B−1b, xN = 0 is a basic feasible
solution of the LP problem above. The variables xB are called the basic variables,

while xN are the nonbasic variables. Geometrically, basic feasible solutions corre-

spond to extreme points of the feasible set {x : Ax ≤ b, x ≥ 0}. Extreme points of

a set are those that cannot be written as a convex combination of two other points

in the set.

The objective function Z = cx can be represented similarly using the basis

partition. Let c = [ cB, cN ] represent the partition of the objective vector. Now, we

have the following sequence of equivalent representations of the objective function

equation:

Z = cx ⇔ Z − cx = 0,

Z − [
cB, cN

][ xB

xN

]
= 0,

Z − cB xB − cN xN = 0.

Now substituting xB = B−1b − B−1 N xN from (2.13) we obtain

Z − cB(B−1b − B−1 N xN ) − cN xN = 0

Z − (cN − cB B−1 N )xN = cB B−1b.

Note that the last equation does not contain the basic variables. This representa-

tion allows us to determine the net effect on the objective function of changing a

nonbasic variable. This is an essential property used by the simplex method as we

discuss in the following subsection. The vector of objective function coefficients

cN − cB B−1 N corresponding to the nonbasic variables is often called the vector

of reduced costs since they contain the cost coefficients cN “reduced” by the cross

effects of the basic variables given by cB B−1 N .

Exercise 2.14 Consider the following linear programming problem:

max 4x1 + 3x2

3x1 + x2 ≤ 9

3x1 + 2x2 ≤ 10

x1 + x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.
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Transform this problem into the standard form. How many basic solutions does the

standard form problem have? What are the basic feasible solutions and what are

the extreme points of the feasible region?

Exercise 2.15 A plant can manufacture five products P1, P2, P3, P4, and P5. The

plant consists of two work areas: the job shop area A1 and the assembly area A2.

The time required to process one unit of product Pj in work area Ai is pi j (in

hours), for i = 1, 2 and j = 1, . . . , 5. The weekly capacity of work area Ai is Ci

(in hours). The company can sell all it produces of product Pj at a profit of s j , for

i = 1, . . . , 5.

The plant manager thought of writing a linear program to maximize profits, but

never actually did for the following reason: from past experience, he observed that

the plant operates best when at most two products are manufactured at a time. He

believes that if he uses linear programming, the optimal solution will consist of

producing all five products and therefore it will not be of much use to him. Do you

agree with him? Explain, based on your knowledge of linear programming.

Answer: The linear program has two constraints (one for each of the work areas).

Therefore, at most two variables are positive in a basic solution. In particular, this

is the case for an optimal basic solution. So the plant manager is mistaken in his

beliefs. There is always an optimal solution of the linear program in which at most

two products are manufactured.

2.4.2 Simplex iterations

A key result of linear programming theory is that when a linear programming

problem has an optimal solution, it must have an optimal solution that is an extreme

point. The significance of this result lies in the fact that when we are looking for

a solution of a linear programming problem we can focus on the objective value

of extreme point solutions only. There are only a finite number of them, so this

reduces our search space from an infinite space to a finite one.

The simplex method solves a linear programming problem by moving from one

extreme point to an adjacent extreme point. Since, as we discussed in the previous

section, extreme points of the feasible set correspond to basic feasible solutions

(BFSs), algebraically this is achieved by moving from one BFS to another. We

describe this strategy in detail in this section.

The process we mentioned in the previous paragraph must start from an initial

BFS. How does one find such a point? While finding a basic solution is almost

trivial, finding feasible basic solutions can be difficult. Fortunately, for problems

of the form (2.9), such as the bond portfolio optimization problem (2.8) there is a
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simple strategy. Choosing

B =



1 0 0

0 1 0

0 0 1


, xB =




x3

x4

x5


, N =




1 1

2 1

5 10


, xN =

[
x1

x2

]
,

we get an initial basic feasible solution with xB = B−1b = [100, 150, 360]T. The

objective value for this BFS is 4 · 0 + 3 · 0 = 0.

Once we obtain a BFS, we first need to determine whether this solution is optimal

or whether there is a way to improve the objective value. Recall that the basic

variables are uniquely determined once we choose to set the nonbasic variables to

a specific value, namely zero. So, the only way to obtain alternative solutions is

to modify the values of the nonbasic variables. We observe that both the nonbasic

variables x1 and x2 would improve the objective value if they were introduced into

the basis. Why? The initial basic feasible solution has x1 = x2 = 0 and we can get

other feasible solutions by increasing the value of one of these two variables. To

preserve the feasibility of the equality constraints, this will require adjusting the

values of the basic variables x3, x4, and x5. But since all three are strictly positive in

the initial basic feasible solution, it is possible to make x1 strictly positive without

violating any of the constraint, including the nonnegativity requirements.

None of the variables x3, x4, x5 appear in the objective row. Thus, we only

have to look at the coefficient of the nonbasic variable we would increase to see

what effect this would have on the objective value. The rate of improvement in the

objective value for x1 is 4 and for x2 this rate is only 3. While a different method

may choose to increase both of these variables simultaneously, the simplex method

requires that only one nonbasic variable is modified at a time. This requirement is

the algebraic equivalent of the geometric condition of moving from one extreme

point to an adjacent extreme point. Between x1 and x2, we choose the variable x1

to enter the basis since it has a faster rate of improvement.

The basis holds as many variables as there are equality constraints in the standard

form formulation of the problem. Since x1 is to enter the basis, one of x3, x4, and x5

must leave the basis. Since nonbasic variables have value zero in a basic solution,

we need to determine how much to increase x1 so that one of the current basic

variables becomes zero and can be designated as nonbasic. The important issue

here is to maintain the nonnegativity of all basic variables. Because each basic

variable only appears in one row, this is an easy task. As we increase x1, all current

basic variables will decrease since x1 has positive coefficients in each row.4 We

4 If x1 had a zero coefficient in a particular row, then increasing it would not effect the basic variable in that row.
If x1 had a negative coefficient in a row, then as x1 was being increased the basic variable of that row would
need to be increased to maintain the equality in that row; but then we would not worry about that basic variable
becoming negative.
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guarantee the nonnegativity of the basic variables of the next iteration by using the

ratio test. We observe that

increasing x1 beyond 100/1 = 100 ⇒ x3 < 0,

increasing x1 beyond 150/2 = 75 ⇒ x4 < 0,

increasing x1 beyond 360/3 = 120 ⇒ x5 < 0,

so we should not increase x1 more than min{100, 75, 120} = 75. On the other hand,

if we increase x1 by exactly 75, x4 will become zero. The variable x4 is said to leave
the basis. It has now become a nonbasic variable.

Now we have a new basis: {x3, x1, x5}. For this basis we have the following basic

feasible solution:

B =



1 1 0

0 2 0

0 3 1


, xB =




x3

x1

x5


 = B−1b =




1 −1/2 0

0 1/2 0

0 −3/2 1







100

150

360


 =




25

75

135


,

N =



1 0

1 1

4 0


, xN =

[
x2

x4

]
=

[
0

0

]
.

After finding a new feasible solution, we always ask the question “Is this the

optimal solution, or can we still improve it?” Answering that question was easy

when we started, because none of the basic variables were in the objective function.

Now that we have introduced x1 into the basis, the situation is more complicated.

If we now decide to increase x2, the objective row coefficient of x2 does not tell us

how much the objective value changes per unit change in x2, because changing x2

requires that we also change x1, a basic variable that appears in the objective row.

It may happen that increasing x2 by 1 unit does not increase the objective value by

3 units, because x1 may need to be decreased, pulling down the objective function.

It could even happen that increasing x2 actually decreases the objective value even

though x2 has a positive coefficient in the objective function. So, what do we do?

We could still do what we did with the initial basic solution if x1 did not appear in

the objective row and the rows where it is not the basic variable. To achieve this,

all we need to do is to use the row where x1 is the basic variable (in this case the

second row) to solve for x1 in terms of the nonbasic variables and then substitute this

expression for x1 in the objective row and other equations. So, the second equation

2x1 + x2 + x4 = 150

would give us:

x1 = 75 − 1

2
x2 − 1

2
x4.

Substituting this value in the objective function we get:

Z = 4x1 + 3x2 = 4

(
75 − 1

2
x2 − 1

2
x4

)
+ 3x2 = 300 + x2 − 2x4.
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Continuing the substitution we get the following representation of the original bond

portfolio problem:

max Z
subject to:

Z −x2 + 2x4 = 300
1
2
x2 − 1

2
x4 + x3 = 25

1
2
x2 + 1

2
x4 + x1 = 75

5
2
x2 − 3

2
x4 + x5 = 135

x2 ≥ 0, x4 ≥ 0, x3 ≥ 0, x1 ≥ 0, x5 ≥ 0.

This representation looks exactly like the initial system. Once again, the objective

row is free of basic variables and basic variables only appear in the row where they

are basic, with a coefficient of 1. Therefore, we now can tell how a change in a

nonbasic variables would effect the objective function: increasing x2 by 1 unit will

increase the objective function by 1 unit (not 3!) and increasing x4 by 1 unit will

decrease the objective function by 2 units.

Now that we have represented the problem in a form identical to the original,

we can repeat what we did before, until we find a representation that gives the

optimal solution. If we repeat the steps of the simplex method, we find that x2 will

be introduced into the basis next, and the leaving variable will be x3. If we solve

for x1 using the first equation and substitute for it in the remaining ones, we get the

following representation:

max Z
subject to:

Z + 2x3 + x4 = 350

2x3 − x4 + x2 = 50

−x3 + x4 + x1 = 50

−5x3 + x4 + x5 = 10

x3 ≥ 0, x4 ≥ 0, x2 ≥ 0, x1 ≥ 0, x5 ≥ 0.

The basis and the basic solution that corresponds to the system above is:

B =



1 1 0

1 2 0

4 3 1


, xB =




x2

x1

x5


 = B−1b =




2 −1 0

−1 1 0

−5 1 1







100

150

360


 =




50

50

10


,

N =



1 0

0 1

0 0


, xN =

[
x3

x4

]
=

[
0

0

]
.

At this point we can conclude that this basic solution is the optimal solution. Let

us try to understand why. From the objective function row of our final representation
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of the problem we have that, for any feasible solution x = (x1, x2, x3, x4, x5), the

objective function Z satisfies

Z + 2x3 + x4 = 350.

Since x3 ≥ 0 and x4 ≥ 0 is also required, this implies that in every feasible solution

Z ≤ 350.

But we just found a basic feasible solution with value 350. So this is the optimal

solution.

More generally, recall that for any BFS x = (xB, xN ), the objective value Z
satisfies

Z − (cN − cB B−1 N ) xN = cB B−1b.

If for a BFS xB = B−1b ≥ 0, xN = 0, we have

cN − cB B−1 N ≤ 0,

then this solution is an optimal solution since it has objective value Z = cB B−1b
whereas, for all other solutions, xN ≥ 0 implies that Z ≤ cB B−1b.

Exercise 2.16 What is the solution to the following linear programming problem?

max Z = c1x1 + c2x2 + · · · + cn xn

s.t. a1x1 + a2x2 + · · · + anxn ≤ b,

0 ≤ xi ≤ ui (i = 1, 2, . . . , n).

Assume that all the data elements (ci , ai , and ui ) are strictly positive and the

coefficients are arranged such that:

c1

a1

≥ c2

a2

≥ · · · ≥ cn

an
.

Write the problem in standard form and apply the simplex method to it. What will

be the steps of the simplex method when applied to this problem, i.e., in what order

will the variables enter and leave the basis?

2.4.3 The tableau form of the simplex method

In most linear programming textbooks, the simplex method is described using

tableaus that summarize the information in the different representations of the

problem we saw above. Since the reader will likely encounter simplex tableaus

elsewhere, we include a brief discussion for the purpose of completeness. To study
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the tableau form of the simplex method, we recall the bond portfolio example of

the previous subsection. We begin by rewriting the objective row as

Z − 4 x1 − 3 x2 = 0

and represent this system using the following tableau:

⇓
Basic

var. x1 x2 x3 x4 x5

Z −4 −3 0 0 0 0

x3 1 1 1 0 0 100
⇐ x4 2∗ 1 0 1 0 150

x5 3 4 0 0 1 360

This tableau is often called the simplex tableau. The columns labeled by each

variable contain the coefficients of that variable in each equation, including the

objective row equation. The leftmost column is used to keep track of the basic

variable in each row. The arrows and the asterisk will be explained below.

Step 0 Form the initial tableau.

Once we have formed this tableau we look for an entering variable, i.e., a variable

that has a negative coefficient in the objective row and will improve the objective

function if it is introduced into the basis. In this case, two of the variables, namely

x1 and x2, have negative objective row coefficients. Since x1 has the most negative

coefficient we will pick that one (this is indicated by the arrow pointing down on

x1), but in principle any variable with a negative coefficient in the objective row

can be chosen to enter the basis.

Step 1 Find a variable with a negative coefficient in the first row (the objective
row). If all variables have nonnegative coefficients in the objective row, STOP, the
current tableau is optimal.

After we choose x1 as the entering variable, we need to determine a leaving
variable. The leaving variable is found by performing a ratio test. In the ratio test,

one looks at the column that corresponds to the entering variable, and for each

positive entry in that column computes the ratio of that positive number to the

right-hand-side value in that row. The minimum of these ratios tells us how much

we can increase our entering variable without making any of the other variables

negative. The basic variable in the row that gives the minimum ratio becomes the

leaving variable. In the tableau above the column for the entering variable, the
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column for the right-hand-side values, and the ratios of corresponding entries are

x1


1

2

5


,

RHS


100

150

360


,

ratio

100/1

150/2

360/3

, min

{
100

1
,

150

2

∗
,

360

3

}
= 75,

and therefore x4, the basic variable in the second row, is chosen as the leaving

variable, as indicated by the left-pointing arrow in the tableau.

One important issue here is that we only look at the positive entries in the column

when we perform the ratio test. Notice that if some of these entries were negative,

then increasing the entering variable would only increase the basic variable in those

rows, and would not force them to be negative, therefore we need not worry about

those entries. Now, if all of the entries in a column for an entering variable turn out to

be zero or negative, then we conclude that the problem must be unbounded; we can

increase the entering variable (and the objective value) indefinitely, the equalities

can be balanced by increasing the basic variables appropriately, and none of the

nonnegativity constraints will be violated.

Step 2 Consider the column picked in Step 1. For each positive entry in this
column, calculate the ratio of the right-hand-side value to that entry. Find the row
that gives the minimum such ratio and choose the basic variable in that row as the
leaving variable. If all the entries in the column are zero or negative, STOP, the
problem is unbounded.

Before proceeding to the next iteration, we need to update the tableau to reflect

the changes in the set of basic variables. For this purpose, we choose a pivot element,
which is the entry in the tableau that lies in the intersection of the column for the

entering variable (the pivot column), and the row for the leaving variable (the pivot
row). In the tableau above, the pivot element is the number 2, marked with an

asterisk. The next job is pivoting. When we pivot, we aim to get the number 1 in the

position of the pivot element (which can be achieved by dividing the entries in the

pivot row by the pivot element), and zeros elsewhere in the pivot column (which

can be achieved by adding suitable multiples of the pivot row to the other rows,

including the objective row). All these operations are row operations on the matrix

that consists of the numbers in the tableau, and what we are doing is essentially

Gaussian elimination on the pivot column. Pivoting on the tableau above yields:

⇓
Basic

var. x1 x2 x3 x4 x5

Z 0 −1 0 2 0 300

⇐ x3 0 1/2∗ 1 −1/2 0 25
x1 1 1/2 0 1/2 0 75

x5 0 5/2 0 −3/2 1 135
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Step 3 Find the entry (the pivot element) in the intersection of the column
picked in Step 1 (the pivot column) and the row picked in Step 2 (the pivot row).
Pivot on that entry, i.e., divide all the entries in the pivot row by the pivot element,
add appropriate multiples of the pivot row to the others in order to get zeros in
other components of the pivot column. Go to Step 1.

If we repeat the steps of the simplex method, this time working with the new

tableau, we first identify x2 as the only candidate to enter the basis. Next, we do the

ratio test:

min

{
25∗

1/2
,

75

1/2
,

135

5/2

}
= 50,

so x3 leaves the basis. Now, one more pivot produces the optimal tableau:

Basic

var. x1 x2 x3 x4 x5

Z 0 0 2 1 0 350

x2 0 1 2 −1 0 50
x1 1 0 −1 1 0 50

x5 0 0 −5 1 1 10

This solution is optimal since all the coefficients in the objective row are

nonnegative.

Exercise 2.17 Solve the following linear program by the simplex method.

max 4x1 + x2 − x3

x1 + 3x3 ≤ 6

3x1 + x2 + 3x3 ≤ 9

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Answer:

x1 x2 x3 s1 s2

Z −4 −1 1 0 0 0

s1 1 0 3 1 0 6

s2 3 1 3 0 1 9

Z 0 1/3 5 0 4/3 12

s1 0 −1/3 2 1 −1/3 3

x1 1 1/3 1 0 1/3 3

The optimal solution is x1 = 3, x2 = x3 = 0.
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Exercise 2.18 Solve the following linear program by the simplex method.

max 4x1 + x2 − x3

x1 + 3x3 ≤ 6

3x1 + x2 + 3x3 ≤ 9

x1 + x2 − x3 ≤ 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Exercise 2.19 Suppose the following tableau was obtained in the course of solv-

ing a linear program with nonnegative variables x1, x2, x3, and two inequalities.

The objective function is maximized and slack variables x4 and x5 were added.

Basic

var. x1 x2 x3 x4 x5

Z 0 a b 0 4 82

x4 0 −2 2 1 3 c

x1 1 −1 3 0 −5 3

Give conditions on a, b and c that are required for the following statements to be

true:

(i) The current basic solution is a basic feasible solution. Assume that the condition

found in (i) holds in the rest of the exercise.

(ii) The current basic solution is optimal.

(iii) The linear program is unbounded (for this question, assume that b > 0).

(iv) The current basic solution is optimal and there are alternate optimal solutions

(for this question, assume that a > 0).

2.4.4 Graphical interpretation

Figure 2.1 shows the feasible region for Example 2.1 . The five inequality constraints

define a convex pentagon. The five corner points of this pentagon (the black dots

on the figure) are the basic feasible solutions: each such solution satisfies two of

the constraints with equality.

Which are the solutions explored by the simplex method? The simplex method

starts from the basic feasible solution (x1 = 0, x2 = 0) (in this solution, x1 and x2

are the nonbasic variables. The basic variables x3 = 100, x4 = 150 and x5 = 360

correspond to the slack in the constraints that are not satisfied with equality). The

first iteration of the simplex method makes x1 basic by increasing it along an edge

of the feasible region until some other constraint is satisfied with equality. This

leads to the new basic feasible solution (x1 = 75, x2 = 0) (in this solution, x2 and

x4 are nonbasic, which means that the constraints x2 ≥ 0 and 2x1 + x2 ≤ 150 are
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Figure 2.1 Graphical interpretation of the simplex iterations

satisfied with equality). The second iteration makes x2 basic while keeping x4

nonbasic. This corresponds to moving along the edge 2x1 + x2 = 150. The value

x2 is increased until another constraint becomes satisfied with equality. The new

solution is x1 = 50 and x2 = 50. No further movement from this point can increase

the objective, so this is the optimal solution.

Exercise 2.20 Solve the linear program of Exercise 2.14 by the simplex method.

Give a graphical interpretation of the simplex iterations.

Exercise 2.21 Find basic solutions of Example 2.1 that are not feasible. Identify

these solutions in Figure 2.1.

2.4.5 The dual simplex method

The previous sections describe the primal simplex method, which moves from a

basic feasible solution to another until all the reduced costs are nonpositive. There

are certain applications where the dual simplex method is faster. In contrast to

the primal simplex method, this method keeps the reduced costs nonpositive and

moves from a basic (infeasible) solution to another until a basic feasible solution

is reached.

We illustrate the dual simplex method with an example. Consider Example 2.1

with the following additional constraint:

6x1 + 5x2 ≤ 500

The feasible set resulting from this additional constraint is shown in Figure 2.2,

where the bold line represents the boundary of the new constraint. Adding a slack
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Figure 2.2 Graphical interpretation of the dual simplex iteration

variable x6, we get 6x1 + 5x2 + x6 = 500. To initialize the dual simplex method,

we can start from any basic solution with nonpositive reduced costs. For example,

we can start from the optimal solution that we found in Section 2.4.3, without the

additional constraint, and make x6 basic. This gives the following tableau:

Basic

var. x1 x2 x3 x4 x5 x6

Z 0 0 2 1 0 0 350

x2 0 1 2 −1 0 0 50
x1 1 0 −1 1 0 0 50
x5 0 0 −5 1 1 0 10

x6 6 5 0 0 0 1 500

Actually, this tableau is not yet in the correct format. Indeed, x1 and x2 are basic

and therefore their columns in the tableau should be unit vectors. To restore this

property, it suffices to eliminate the 6 and 5 in the x6 row by subtracting appropriate

multiples of the x1 and x2 rows. This now gives the tableau in the correct format:

Basic

var. x1 x2 x3 x4 x5 x6

Z 0 0 2 1 0 0 350

x2 0 1 2 −1 0 0 50
x1 1 0 −1 1 0 0 50
x5 0 0 −5 1 1 0 10

x6 0 0 −4 −1 0 1 −50
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Observe that the basic variable x6 has a negative value in this representation

and therefore the basic solution is not feasible. This is confirmed in Figure 2.2

by the fact that the point (50, 50) corresponding to the current basic solution is

on the wrong side of the new constraint boundary. Now we are ready to apply

the dual simplex algorithm. Note that the current basic solution x1 = 50, x2 = 50,

x3 = x4 = 0, x5 = 10, x6 = −50 is infeasible since x6 is negative. We will pivot to

make it nonnegative. As a result, variable x6 will leave the basis. The pivot element

will be one of the negative entries in the x6 row, namely −4 or −1. Which one should

we choose in order to keep all the reduced costs nonnegative? The minimum ratio

between 2/| − 4| and 1/| − 1| determines the variable that enters the basis. Here

the minimum is 1/2, which means that x3 enters the basis. After pivoting on −4,

the tableau becomes:

Basic

var. x1 x2 x3 x4 x5 x6

Z 0 0 0 0.5 0 0.5 325

x2 0 1 0 −1.5 0 0.5 25
x1 1 0 0 1.25 0 −0.25 62.5
x5 0 0 0 2.25 1 −1.25 72.5

x3 0 0 1 0.25 0 −0.25 12.5

The corresponding basic solution is x1 = 62.5, x2 = 25, x3 = 12.5, x4 = 0, x5 =
72.5, x6 = 0. Since it is feasible and all reduced costs are nonpositive, this is the

optimum solution. If there had still been negative basic variables in the solution,

we would have continued pivoting using the rules outlined above: the variable that

leaves the basis is one with a negative value, the pivot element is negative, and the

variable that enters the basis is chosen by the minimum ratio rule.

Exercise 2.22 Solve the following linear program by the dual simplex method,

starting from the solution found in Exercise 2.17 .

max 4x1 + x2 − x3

x1 + 3x3 ≤ 6

3x1 + x2 + 3x3 ≤ 9

x1 + x2 − x3 ≤ 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

2.4.6 Alternatives to the simplex method

Performing a pivot of the simplex method is extremely fast on today’s comput-

ers, even for problems with thousands of variables and hundreds of constraints.

This explains the success of the simplex method. For large problems, however, the
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number of iterations also tends to be large. At the time of writing, LPs with tens

of thousands of constraints and 100 000 or more variables are generally considered

large problems. Such models are not uncommon in financial applications and can

often be handled by the simplex method.

Although the simplex method demonstrates satisfactory performance for the so-

lution of most practical problems, it has the disadvantage that, in the worst case,

the amount of computing time (the so-called worst-case complexity) can grow ex-

ponentially with the size of the problem. Here size refers to the space required to

write all the data in binary. If all the numbers are bounded (say between 10−6 and

106), a good proxy for the size of a linear program is the number of variables times

the number of constraints. One of the important concepts in the theoretical study of

optimization algorithms is the concept of polynomial-time algorithms. This refers

to an algorithm whose running time can be bounded by a polynomial function of

the input size for all instances of the problem class that it is intended for. After it

was discovered in the 1970s that the worst-case complexity of the simplex method

is exponential (and, therefore, that the simplex method is not a polynomial-time

algorithm) there was an effort to identify alternative methods for linear program-

ming with polynomial-time complexity. The first such method, called the ellipsoid
method, was originally developed by Yudin and Nemirovski [84] in the mid 1970s

for convex nonlinear optimization problems. In 1979, Khachiyan [44] proved that

the ellipsoid method is a polynomial-time algorithm for linear programming. But

the more exciting and enduring development was the announcement by Karmarkar

in 1984 that an interior-point method (IPM) can solve LPs in polynomial time.

What distinguished Karmarkar’s [43] IPM from the ellipsoid method was that, in

addition to having this desirable theoretical property, it could solve some real-world

LPs much faster than the simplex method. These methods use a different strategy

to reach the optimum, generating iterates in the interior of the feasible region rather

than at its extreme points. Each iteration is fairly expensive, compared to simplex

iterations, but the number of iterations needed does not depend much on the size

of the problem and is often less than 50. As a result, interior-point methods can be

faster than the simplex method for large-scale problems. Most state-of-the-art lin-

ear programming packages (Cplex, Xpress, OSL, etc.) provide the option to solve

linear programs by either method.

We present interior-point methods in Chapter 7, in the context of solving

quadratic programs.
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LP models: asset/liability cash-flow matching

3.1 Short-term financing

Corporations routinely face the problem of financing short-term cash commitments.

Linear programming can help in figuring out an optimal combination of financial

instruments to meet these commitments. To illustrate this, consider the following

problem. For simplicity of exposition, we keep the example very small.

A company has the following short-term financing problem:

Month Jan Feb Mar Apr May Jun

Net cash flow −150 −100 200 −200 50 300

Net cash flow requirements are given in thousands of dollars. The company has the
following sources of funds:

� a line of credit of up to $100k at an interest rate of 1% per month;
� in any one of the first three months, it can issue 90-day commercial paper bearing a total

interest of 2% for the three-month period;
� excess funds can be invested at an interest rate of 0.3% per month.

There are many questions that the company might want to answer. What interest

payments will the company need to make between January and June? Is it eco-

nomical to use the line of credit in some of the months? If so, when? How much?

Linear programming gives us a mechanism for answering these questions quickly

and easily. It also allows to answer some “what if” questions about changes in the

data without having to resolve the problem. What if the net cash flow in January

was −$200k (instead of −$150k)? What if the limit on the credit line was increased

from $100k to $200k? What if the negative net cash flow in January was due to the

purchase of a machine worth $150k and the vendor allowed part or all of the pay-

ment on this machine to be made in June at an interest rate of 3% for the five-month

period? The answers to these questions are readily available when this problem is

formulated and solved as a linear program.

41
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There are three steps in applying linear programming: modeling, solving, and

interpreting.

3.1.1 Modeling

We begin by modeling the above short-term financing problem. That is, we write

it in the language of linear programming. There are rules about what one can and

cannot do within linear programming. These rules are in place to make certain that

the remaining steps of the process (solving and interpreting) can be successful.

Key to a linear program are the decision variables, objective, and constraints.

Decision variables

The decision variables represent (unknown) decisions to be made. This is in contrast

to problem data, which are values that are either given or can be simply calculated

from what is given. For the short-term financing problem, there are several possible

choices of decision variables. We will use the following decision variables: the

amount xi drawn from the line of credit in month i , the amount yi of commercial

paper issued in month i , the excess funds zi in month i and the company’s wealth v

in June. Note that, alternatively, one could use the decision variables xi and yi only,

since excess funds and company’s wealth can be deduced from these variables.

Objective

Every linear program has an objective. This objective is to be either minimized

or maximized. This objective has to be linear in the decision variables, which

means it must be the sum of constants times decision variables. 3x1 − 10x2 is a

linear function. x1x2 is not a linear function. In this case, our objective is simply to

maximize v.

Constraints

Every linear program also has constraints limiting feasible decisions. Here we have

three types of constraints: (i) cash inflow = cash outflow for each month, (ii) upper

bounds on xi , and (iii) nonnegativity of the decision variables xi , yi and zi .

For example, in January (i = 1), there is a cash requirement of $150k. To meet

this requirement, the company can draw an amount x1 from its line of credit and

issue an amount y1 of commercial paper. Considering the possibility of excess funds

z1 (possibly 0), the cash-flow balance equation is as follows:

x1 + y1 − z1 = 150.

Next, in February (i = 2), there is a cash requirement of $100k. In addition, principal

plus interest of 1.01x1 is due on the line of credit and 1.003z1 is received on the

invested excess funds. To meet the requirement in February, the company can draw
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an amount x2 from its line of credit and issue an amount y2 of commercial paper.

So, the cash-flow balance equation for February is as follows:

x2 + y2 − 1.01x1 + 1.003z1 − z2 = 100.

Similarly, for March we get the following equation:

x3 + y3 − 1.01x2 + 1.003z2 − z3 = −200.

For the months of April, May, and June, issuing commercial paper is no longer an

option, so we will not have variables y4, y5, and y6 in the formulation. Further-

more, any commercial paper issued between January and March requires a pay-

ment with 2% interest three months later. Thus, we have the following additional

equations:

x4 − 1.02y1 − 1.01x3 + 1.003z3 − z4 = 200

x5 − 1.02y2 − 1.01x4 + 1.003z4 − z5 = −50

− 1.02y3 − 1.01x5 + 1.003z5 − v = −300.

Note that xi is the balance on the credit line in month i , not the incremental borrowing

in month i . Similarly, zi represents the overall excess funds in month i . This choice

of variables is quite convenient when it comes to writing down the upper bound

and nonnegativity constraints.

0 ≤ xi ≤ 100

yi ≥ 0

zi ≥ 0.

Final Model

This gives us the complete model of this problem:

max v

x1 + y1 − z1 = 150

x2 + y2 − 1.01x1 + 1.003z1 − z2 = 100

x3 + y3 − 1.01x2 + 1.003z2 − z3 = −200

x4 − 1.02y1 − 1.01x3 + 1.003z3 − z4 = 200

x5 − 1.02y2 − 1.01x4 + 1.003z4 − z5 = −50

− 1.02y3 − 1.01x5 + 1.003z5 − v = −300

x1 ≤ 100

x2 ≤ 100

x3 ≤ 100

x4 ≤ 100

x5 ≤ 100

xi , yi , zi ≥ 0.
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Formulating a problem as a linear program means going through the above

process of clearly defining the decision variables, objective, and constraints.

Exercise 3.1 How would the formulation of the short-term financing problem

above change if the commercial papers issued had a two-month maturity instead of

three?

Exercise 3.2 A company will face the following cash requirements in the next

eight quarters (positive entries represent cash needs while negative entries represent

cash surpluses):

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

100 500 100 −600 −500 200 600 −900

The company has three borrowing possibilities:

� A two-year loan available at the beginning of Q1, with an interest rate of 1% per quarter.
� The other two borrowing opportunities are available at the beginning of every quarter: a

six-month loan with an interest rate of 1.8% per quarter, and a quarterly loan at an interest

rate of 2.5% for the quarter.

Any surplus can be invested at an interest rate of 0.5% per quarter.

Formulate a linear program that maximizes the wealth of the company at the

beginning of Q9.

Exercise 3.3 A home buyer in France can combine several mortgage loans to

finance the purchase of a house. Given borrowing needs B and a horizon of T
months for paying back the loans, the home buyer would like to minimize the

total cost (or equivalently, the monthly payment p made during each of the next

T months). Regulations impose limits on the amount that can be borrowed from

certain sources. There are n different loan opportunities available. Loan i has a fixed

interest rate ri , a length Ti ≤ T , and a maximum amount borrowed bi . The monthly

payment on loan i is not required to be the same every month, but a minimum

payment mi is required each month. However, the total monthly payment p over

all loans is constant. Formulate a linear program that finds a combination of loans

that minimizes the home buyer’s cost of borrowing. [Hint: In addition to variables

xti for the payment on loan i in month t , it may be useful to introduce a variable

for the amount of outstanding principal on loan i in month t .]

3.1.2 Solving the model with SOLVER

Special computer programs can be used to find solutions to linear programming
models. The most widely available program is undoubtedly SOLVER, included in
the Excel spreadsheet program. Here are other suggestions:
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� MATLAB has a linear programming solver that can be accessed with the command

linprog. Type help linprog to find out details.
� Even if one does not have access to any linear programming software, it is possible to solve

linear programs (and other optimization problems) using the website www-neos.mcs.

anl.gov/neos/. This is the website for the Network Enabled Optimization Server. Using

the JAVA submission tool on this site, one can submit a linear programming problem

(in some standard format) and have a remote computer solve the problem using one of

the several solver options. The solution is then transmitted to the submitting person by

e-mail.
� A good open-source LP code written in C is CLP, available from the following website

at the time of writing: www.coin-or.org/.

SOLVER, while not a state-of-the-art code is a reasonably robust, easy-to-use tool

for linear programming. SOLVER uses standard spreadsheets together with an

interface to define variables, objective, and constraints.

We briefly outline how to create a SOLVER spreadsheet:

� Start with a spreadsheet that has all of the data entered in some reasonably neat

way.

In the short-term financing example, the spreadsheet might contain the cash flows,

interest rates, and credit limit.
� The model will be created in a separate part of the spreadsheet. Identify one cell

with each decision variable. SOLVER will eventually put the optimal values in these

cells.

In the short-term financing example, we could associate cells $B$2 to $B$6 with

variables x1 to x5 respectively, cells $C$2 to $C$4 with the yi variables, cells $D$2 to

$D$6 with the zi variables, and, finally, $E$2 with the variable v.
� A separate cell represents the objective. Enter a formula that represents the objective.

For the short-term financing example, we might assign cell $B$8 to the objective

function. Then, in cell $B$8, we enter the function =$E$2.

This formula must be a linear formula, so, in general, it must be of the form: c1*x1
+c2*x2+· · · , where the cells c1,c2 and so on contain constant values and the cells

x1, x2 and so on contain the decision variables.
� We then choose a cell to represent the left-hand side of each constraint (again a linear

function) and another cell to represent the right-hand side (a constant).

In the short-term financing example, let us choose cells $B$10 to $B$15 for the

amounts generated through financing, for each month, and cells $D$10 to $D$15 for the

cash requirements. For example, cell $B$10would contain the function =$C$2+$B$2-
$D$2 and cell $D$10 the value 150. Similarly, rows 16 to 20 could be used to write the

credit limit constraints.

Helpful hint: Excel has a function sumproduct() that is designed

for linear programs. sumproduct(A1:A10,B1:B10) is identical to

A1*B1+A2*B2+A3*B3+· · ·+A10*B10. This function can save much time. All
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that is needed is that the length of the first range be the same as the length of the second

range (so one can be horizontal and the other vertical).
� We then select Solver under the Tools menu. This gives a form to fill out to define

the linear program.
� In the Set Target Cell box, select the objective cell. Choose Max or Min depending

on whether you want to maximize or minimize the objective.
� In the By Changing Cells box, type the range (or ranges) containing the variable

cells. In our short-term financing example, this would be $B$2:$B$6,$C$2:$C$4,
$D$2:$D$6,$E$2.

� Next we add the constraints. Press the Add button to add constraints. The dialog box has

three parts: the left-hand side, the type of constraint, and the right-hand side. The box

associated with the left-hand side is called Cell Reference. Type the appropriate cell

($B$10 for the first constraint in the short-term financing example). In the second box

select the type of constraint (= in our example), and in the third box, calledConstraint:,

type the cell containing the right-hand side ($D$10 in our example). Then press Add.

Repeat the process for the second constraint. Continue until all constraints are added. On

the final constraint, press OK.

Helpful hint: It is possible to include ranges of constraints, as long as they all have

the same type. $B$10:$B$15<=$D$10:$D$15 means $B$10<=$D$10, $B$11<=
$D$11...$B$15<=$D$15. Similarly $B$2:$B$6>=0 means each individual cell

from $B$2 to $B$6 must be greater than or equal to 0.
� Push the Options button and check the Assume Linear Model in the resulting

dialog box. This tells Excel to use the simplex method rather than a nonlinear pro-

gramming routine. This is important, because the simplex method is more efficient and

reliable. This also gives you sensitivity ranges, which are not available for nonlinear

models.

Note that if you want your variables to assume nonnegative values only you need to

specify this in the options box (alternatively, you can add nonnegativity constraints in the

previous step, in your constraints). Click on OK.
� Push the Solve button. In the resulting dialog box, select Answer and Sensitivity.

This will put the answer and sensitivity analysis in two new sheets. Ask Excel to Keep
Solver Solution, and your worksheet will be updated so that the optimal values are

in the variable cells.

Exercise 3.4 Solve the linear program formulated in Exercise 3.2 with your

favorite software package.

3.1.3 Interpreting the output of SOLVER

If we were to solve the short-term financing problem above using SOLVER, the

solution given in the Answer report would look as follows:
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Target Cell (Max)

Original Final
Cell Name Value Value

$B$8 Objective 0 92.49694915

Adjustable Cells

Original Final
Cell Name Value Value

$B$2 x1 0 0
$B$3 x2 0 50.98039216
$B$4 x3 0 0
$B$5 x4 0 0
$B$6 x5 0 0
$C$2 y1 0 150
$C$3 y2 0 49.01960784
$C$4 y3 0 203.4343636
$D$2 z1 0 0
$D$3 z2 0 0
$D$4 z3 0 351.9441675
$D$5 z4 0 0
$D$6 z5 0 0
$E$2 v 0 92.49694915

Constraints

Cell
Cell Name Value Formula Slack

$B$10 January 150 $B$10 = $D$10 0
$B$11 February 100 $B$11 = $D$11 0
$B$12 March −200 $B$12 = $D$12 0
$B$13 April 200 $B$13 = $D$13 0
$B$14 May −50 $B$14 = $D$14 0
$B$15 June −300 $B$15 = $D$15 0
$B$16 x1limit 0 $B$16 <= $D$16 100
$B$17 x2limit 50.98039216 $B$17 <= $D$17 49.01960784
$B$18 x3limit 0 $B$18 <= $D$18 100
$B$19 x4limit 0 $B$19 <= $D$19 100
$B$20 x5limit 0 $B$20 <= $D$20 100

This report is fairly easy to read: the company’s wealth v in June will be $92 497.

This is reported in Final Value of the Target Cell (recall that our units

are in $1000). To achieve this, the company will issue $150 000 in commercial

paper in January, $49 020 in February and $203 434 in March. In addition, it will
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draw $50 980 from its line of credit in February. Excess cash of $351 944 in March

will be invested for just one month. All this is reported in the Adjustable
Cells section of the report. For this particular application, the Constraints
section of the report does not contain anything useful. On the other hand, very

useful information can be found in the sensitivity report. This will be discussed in

Section 3.3.

Exercise 3.5 Formulate and solve the variation of the short-term financing prob-

lem you developed in Exercise 3.1 using SOLVER. Interpret the solution.

Exercise 3.6 Recall Example 2.1. Solve the problem using your favorite linear

programming solver. Compare the output provided by the solver to the solution we

obtained in Chapter 2.

3.1.4 Modeling languages

Linear programs can be formulated using modeling languages such as AMPL,

GAMS, MOSEL, or OPL. The need for these modeling languages arises because the

Excel spreadsheet format becomes inadequate when the size of the linear program

increases. A modeling language lets people use common notation and familiar con-

cepts to formulate optimization models and examine solutions. Most importantly,

large problems can be formulated in a compact way. Once the problem has been for-

mulated using a modeling language, it can be solved using any number of solvers. A

user can switch between solvers with a single command and select options that may

improve solver performance. The short-term financing model would be formulated

as follows (all variables are assumed to be nonnegative unless otherwise specified):

DATA
LET T=6 be the number of months to plan for
L(t) = Liability in month t=1,...,T
ratex = monthly interest rate on line of credit
ratey = 3-month interest rate on commercial paper
ratez = monthly interest rate on excess funds
VARIABLES
x(t) = Amount drawn from line of credit in month t
y(t) = Amount of commercial paper issued in month t
z(t) = Excess funds in month t
OBJECTIVE (Maximize wealth in June)
Max z(6)
CONSTRAINTS
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Month(t=1:T): x(t)-(1+ratex)*x(t-1)+y(t)
-(1+ratey)*y(t-3)-z(t)+(1+ratez)*z(t-1) = L(t)

Month(t=1:T-1): x(t) < 100
Boundary conditions on x: x(0)=x(6) = 0
Boundary conditions on y: y(-2)=y(-1)=y(0)=y(4)=y(5)=
y(6) = 0

Boundary conditions on z: z(0) = 0
END

Exercise 3.7 Formulate the linear program of Exercise 3.3 with one of the mod-

eling languages AMPL, GAMS, MOSEL, or OPL.

3.1.5 Features of linear programs

Hidden in each linear programming formulation are a number of assumptions. The

usefulness of an LP model is directly related to how closely reality matches up with

these assumptions.

The first two assumptions are due to the linear form of the objective and constraint

functions. The contribution to the objective of any decision variable is proportional

to the value of the decision variable. Similarly, the contribution of each variable

to the left-hand side of each constraint is proportional to the value of the variable.

This is the proportionality assumption.

Furthermore, the contribution of a variable to the objective and constraints is inde-

pendent of the values of the other variables. This is the additivity assumption. When

additivity or proportionality assumptions are not satisfied, a nonlinear programming
model may be more appropriate. We discuss such models in Chapters 5 and 6.

The next assumption is the divisibility assumption: is it possible to take any

fraction of any variable? A fractional production quantity may be worrisome if we

are producing a small number of battleships or be innocuous if we are producing

millions of paperclips. If the divisibility assumption is important and does not hold,

then a technique called integer programming rather than linear programming is

required. This technique takes orders of magnitude more time to find solutions but

may be necessary to create realistic solutions. We discuss integer programming

models and methods in Chapters 11 and 12.

The final assumption is the certainty assumption: linear programming allows for

no uncertainty about the input parameters such as the cash-flow requirements or

interest rates we used in the short-term financing model. Problems with uncertain

parameters can be addressed using stochastic programming or robust optimization
approaches. We discuss such models in Chapters 16 through 20.
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It is very rare that a problem will meet all of the assumptions exactly. That

does not negate the usefulness of a model. A model can still give useful manage-

rial insight even if reality differs slightly from the rigorous requirements of the

model.

Exercise 3.8 Give an example of an optimization problem where the proportion-

ality assumption is not satisfied.

Exercise 3.9 Give an example of an optimization problem where the additivity

assumption is not satisfied.

Exercise 3.10 Consider the LP model we develop for the cash-flow matching

problem in Section 3.2. Which of the linear programming assumptions used for

this formulation is the least realistic one? Why?

3.2 Dedication

Dedication or cash-flow matching is a technique used to fund known liabilities in

the future. The intent is to form a portfolio of assets whose cash inflows will exactly

offset the cash outflows of the liabilities. The liabilities will therefore be paid off, as

they become due, without the need to sell or buy assets in the future. The portfolio is

formed today and held until all liabilities are paid off. Dedicated portfolios usually

only consist of risk-free non-callable bonds since the portfolio future cash inflows

need to be known when the portfolio is constructed. This eliminates interest rate

risk completely. It is used by some municipalities and small pension funds. For

example, municipalities sometimes want to fund liabilities stemming from bonds

they have issued. These pre-refunded municipal bonds can be taken off the books of

the municipality. This may allow them to evade restrictive covenants in the bonds

that have been pre-refunded and perhaps allow them to issue further debt.

It should be noted, however, that dedicated portfolios cost typically from

3% to 7% more in dollar terms than do “immunized” portfolios that are

constructed based on matching present value, duration, and convexity of the

assets and liabilities. The present value of the liability stream Lt for t =
1, . . . , T is P = ∑T

t=1 Lt/(1 + rt )
t , where rt denotes the risk-free rate in

year t . Its duration is D = (1/P)
∑T

t=1 t Lt/(1 + rt )
t and its convexity is C =

(1/P)
∑T

t=1 t(t + 1)Lt/(1 + rt )
t+2. Intuitively, duration is the average (discounted)

time at which the liabilities occur, whereas convexity, a bit like variance, in-

dicates how concentrated the cash flows are over time. For a portfolio that

consists only of risk-free bonds, the present value P∗ of the portfolio fu-

ture cash inflows can be computed using the same risk-free rate rt (this

would not be the case for a portfolio containing risky bonds). Similarly for
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the duration D∗ and convexity C∗ of the portfolio future cash inflows. An

“immunized” portfolio can be constructed based on matching P∗ = P , D∗ = D
and C∗ = C . Portfolios that are constructed by matching these three factors are im-

munized against parallel shifts in the yield curve, but there may still be a great deal

of exposure and vulnerability to other types of shifts, and they need to be actively

managed, which can be costly. By contrast, dedicated portfolios do not need to be

managed after they are constructed.

When municipalities use cash-flow matching, the standard custom is to call

a few investment banks, send them the liability schedule, and request bids. The

municipality then buys its securities from the bank that offers the lowest price for

a successful cash-flow match.

Assume that a bank receives the following liability schedule:

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

12 000 18 000 20 000 20 000 16 000 15 000 12 000 10 000

The bonds available for purchase today (Year 0) are given in the next table. All

bonds have a face value of $100. The coupon figure is annual. For example, Bond 5

costs $98 today, and it pays back $4 in Year 1, $4 in Year 2, $4 in Year 3, and

$104 in Year 4. All these bonds are widely available and can be purchased in any

quantities at the stated price.

Bond 1 2 3 4 5 6 7 8 9 10

Price 102 99 101 98 98 104 100 101 102 94
Coupon 5 3.5 5 3.5 4 9 6 8 9 7

Maturity year 1 2 2 3 4 5 5 6 7 8

We would like to formulate and solve a linear program to find the least-cost

portfolio of bonds to purchase today, to meet the obligations of the municipality

over the next eight years. To eliminate the possibility of any reinvestment risk, we

assume a 0% reinvestment rate.

Using a modeling language, the formulation might look as follows.

DATA
LET T=8 be the number of years to plan for.
LET N=10 be the number of bonds available for purchase
today.

L(t) = Liability in year t=1,...,T
P(i) = Price of bond i, i=1,...,N
C(i) = Annual coupon for bond i, i=1,...,N
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M(i) = Maturity year of bond i, i=1,...,N
VARIABLES
x(i) = Amount of bond i in the portfolio, i=1,...,N
z(t) = Surplus at the end of year t, for t=0,...,T
OBJECTIVE (Minimize cost)
Min z(0) + SUM(i=1:N) P(i)*x(i)
CONSTRAINTS Year(t=1:T):
SUM(i=1:N | M(i)>t-1) C(i)*x(i) + SUM(i=1:N | M(i)=t)

100*x(i)-z(t)+z(t-1) = L(t)
END

Exercise 3.11 Solve the dedication linear program above using an LP software

package and verify that we can optimally meet the municipality’s liabilities for

$93 944 with the following portfolio: 62 Bond1, 125 Bond3, 152 Bond4, 157 Bond5,

123 Bond6, 124 Bond8, 104 Bond9, and 93 Bond10.

Exercise 3.12 A small pension fund has the following liabilities (in million

dollars):

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9

24 26 28 28 26 29 32 33 34

It would like to construct a dedicated bond portfolio. The bonds available for

purchase are the following:

Bond 1 2 3 4 5 6 7 8

Price 102.44 99.95 100.02 102.66 87.90 85.43 83.42 103.82
Coupon 5.625 4.75 4.25 5.25 0.00 0.00 0.00 5.75

Maturity year 1 2 2 3 3 4 5 5

Bond 9 10 11 12 13 14 15 16

Price 110.29 108.85 109.95 107.36 104.62 99.07 103.78 64.66
Coupon 6.875 6.5 6.625 6.125 5.625 4.75 5.5 0.00

Maturity year 6 6 7 7 8 8 9 9

Formulate an LP that minimizes the cost of the dedicated portfolio, assuming a

2% reinvestment rate. Solve the LP using your favorite software package.
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3.3 Sensitivity analysis for linear programming

The optimal solution to a linear programming model is the most important output

of LP solvers, but it is not the only useful information they generate. Most linear

programming packages produce a tremendous amount of sensitivity information,

or information about what happens when data values are changed.

Recall that, in order to formulate a problem as a linear program, we had to invoke

a certainty assumption: we had to know what value the data took on, and we made

decisions based on that data. Often this assumption is somewhat dubious: the data

might be unknown, or guessed at, or otherwise inaccurate. How can we determine

the effect on the optimal decisions if the values change? Clearly some numbers in

the data are more important than others. Can we find the “important” numbers?

Can we determine the effect of estimation errors?

Linear programming offers extensive capabilities for addressing these questions.

We give examples of how to interpret the SOLVER output. To access the information

in SOLVER, one can simply ask for the sensitivity report after optimizing. Rather

than giving rules for reading the reports, we show how to answer a set of questions

from the output.

3.3.1 Short-term financing

The SOLVER sensitivity report looks as follows:

Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$B$2 x1 0 −0.0032 0 0.0032 1E + 30
$B$3 x2 50.98 0 0 0.0032 0
$B$4 x3 0 −0.0071 0 0.0071 1E + 30
$B$5 x4 0 −0.0032 0 0.0032 1E + 30
$B$6 x5 0 0 0 0 1E + 30
$C$2 y1 150 0 0 0.0040 0.0032
$C$3 y2 49.02 0 0 0 0.0032
$C$4 y3 203.43 0 0 0.0071 0
$D$2 z1 0 −0.0040 0 0.0040 1E + 30
$D$3 z2 0 −0.0071 0 0.0071 1E + 30
$D$4 z3 351.94 0 0 0.0039 0.0032
$D$5 z4 0 −0.0039 0 0.0039 1E + 30
$D$6 z5 0 −0.007 0 0.007 1E + 30
$E$2 v 92.50 0 1 1E + 30 1
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Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

$B$10 January 150 −1.0373 150 89.17 150
$B$11 February 100 −1.030 100 49.020 50.980
$B$12 March −200 −1.020 −200 90.683 203.434
$B$13 April 200 −1.017 200 90.955 204.044
$B$14 May −50 −1.010 −50 50 52
$B$15 June −300 −1 −300 92.497 1E + 30
$B$16 x1 0 0 100 1E + 30 100
$B$17 x2 50.98 0 100 1E + 30 49.020
$B$18 x3 0 0 100 1E + 30 100
$B$19 x4 0 0 100 1E + 30 100
$B$20 x5 0 0 100 1E + 30 100

The key columns for sensitivity analysis are the Reduced Cost and Shadow
Price columns in SOLVER. The shadow price u of a constraint C has the

following interpretation:

If the right-hand side of the constraint C changes by an amount �, the optimal

objective value changes by u�, as long as the amount of change � is within the

allowable range.

For a linear program, the shadow price u is an exact figure, as long as the amount

of change � is within the allowable range given in the last two columns of the

SOLVER output. When the change � falls outside this range, the rate of change in

the optimal objective value changes and the shadow price u cannot be used. When

this occurs, one has to resolve the linear program using the new data.

Next, we consider several examples of sensitivity questions and demonstrate

how they can be answered using shadow prices and reduced costs.

� For example, assume that the net cash flow in January was −$200k (instead of −150).

By how much would the company’s wealth decrease at the end of June?

The answer is in the shadow price of the January constraint, u = −1.0373. The RHS of

the January constraint would go from 150 to 200, an increase of � = 50, which is within

the allowable increase (89.17). (Recall that these figures are in thousand dollars.) So the

company’s wealth in June would decrease by 1.0373 * 50 000 = $51 865.
� Now assume that the net cash flow in March was $250k (instead of 200). By how much

would the company’s wealth increase at the end of June?
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Again, the change � = −50 is within the allowable decrease (203.434), so we can use

the shadow price u = −1.02 to calculate the change in objective value. The increase is

(−1.02) * (−50) = $51 000.
� Assume that the credit limit was increased from $100k to $200k. By how much would

the company’s wealth increase at the end of June?

In each month, the change � = 100 is within the allowable increase ( +∞) and the

shadow price for the credit limit constraint is u = 0. So there is no effect on the company’s

wealth in June. Note that non-binding constraints – such as the credit limit constraint for

months January through May – always have zero shadow price.
� Assume that the negative net cash flow in January is due to the purchase of a machine

worth $150 000. The vendor allows the payment to be made in June at an interest rate of

3% for the five-month period. Would the company’s wealth increase or decrease by using

this option? What if the interest rate for the 5-month period was 4%?

The shadow price of the January constraint is −1.0373. This means that reducing cash

requirements in January by $1 increases the wealth in June by $1.0373. In other words,

the break-even interest rate for the five-month period is 3.73%. So, if the vendor charges

3%, we should accept, but if he/she charges 4% we should not. Note that the analysis is

valid since the amount � = −150 is within the allowable decrease.
� Now, let us consider the reduced costs. The basic variables always have a zero reduced

cost. The nonbasic variables (which by definition take the value 0) have a nonpositive

reduced cost and, frequently, their reduced cost is strictly negative. There are two useful

interpretations of the reduced cost c, for a nonbasic variable x .

First, assume that x is set to a positive value � instead of its optimal value 0. Then,

the objective value is changed by c�. For example, what would be the effect of fi-

nancing part of the January cash needs through the line of credit? The answer is in the

reduced cost of variable x1. Because this reduced cost −0.0032 is strictly negative, the

objective function would decrease. Specifically, each dollar financed through the line of

credit in January would result in a decrease of $0.0032 in the company’s wealth v in

June.

The second interpretation of c is that its magnitude |c| is the minimum amount by

which the objective coefficient of x must be increased in order for the variable x to

become positive in an optimal solution. For example, consider the variable x1 again. Its

value is zero in the current optimal solution, with objective function v. However, if we

changed the objective to v + 0.0032x1, it would now be optimal to use the line of credit

in January. In other words, the reduced cost on x1 can be viewed as the minimum rebate

that the bank would have to offer (payable in June) to make it attractive to use the line of

credit in January.

Exercise 3.13 Recall Example 2.1. Determine the shadow price and reduced cost

information for this problem using an LP software package. How would the so-

lution change if the average maturity of the portfolio is required to be 3.3 instead

of 3.6?
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Exercise 3.14 Generate the sensitivity report for Exercise 3.2 with your favorite

LP solver.

(i) Suppose the cash requirement in Q2 is 300 (instead of 500). How would this

affect the wealth in Q9?

(ii) Suppose the cash requirement in Q2 is 100 (instead of 500). Can the sensitivity

report be used to determine the wealth in Q9?

(iii) One of the company’s suppliers may allow deferred payments of $50 from Q3

to Q4. What would be the value of this?

Exercise 3.15 Workforce planning: Consider a restaurant that is open seven days

a week. Based on past experience, the number of workers needed on a particular

day is given as follows:

Day Mon Tue Wed Thu Fri Sat Sun

Number 14 13 15 16 19 18 11

Every worker works five consecutive days, and then takes two days off, repeating

this pattern indefinitely. How can we minimize the number of workers that staff the

restaurant?

Answer: Let the days be numbers 1 through 7 and let xi be the number of workers

who begin their five-day shift on day i . The linear programming formulation is as

follows:

min
∑

i xi

s.t.

x1 + x4 + x5 + x6 + x7 ≥ 14

x1 + x2 + x5 + x6 + x7 ≥ 13

x1 + x2 + x3 + x6 + x7 ≥ 15

x1 + x2 + x3 + x4 + x7 ≥ 16

x1 + x2 + x3 + x4 + x5 ≥ 19

x2 + x3 + x4 + x5 + x6 ≥ 18

x3 + x4 + x5 + x6 + x7 ≥ 11

xi ≥ 0 (for all i).

Sensitivity analysis

The following table gives the sensitivity report for the solution of the workforce

planning problem:
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Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$B$14 Shift1 4 0 1 0.5 1
$B$15 Shift2 7 0 1 0 0.333333
$B$16 Shift3 1 0 1 0.5 0
$B$17 Shift4 4 0 1 0.5 0
$B$18 Shift5 3 0 1 0 0.333333
$B$19 Shift6 3 0 1 0.5 1
$B$20 Shift7 0 0.333333 1 1E + 30 0.333333

Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

$B$24 Monday 14 0.333333 14 1.5 6
$B$25 Tuesday 17 0 13 4 1E + 30
$B$26 Wednesday 15 0.333333 15 6 3
$B$27 Thursday 16 0 16 3 4
$B$28 Friday 19 0.333333 19 4.5 3
$B$29 Saturday 18 0.333333 18 1.5 6
$B$30 Sunday 11 0 11 4 1

Answer each of the following questions independently of the others.

(i) What is the current total number of workers needed to staff the restaurant?

(ii) Due to a special offer, demand on Thursdays increases. As a result, 18 workers

are needed instead of 16. What is the effect on the total number of workers

needed to staff the restaurant?

(iii) Assume that demand on Mondays decreases, so that 11 workers are needed

instead of 14. What is the effect on the total number of workers needed to staff

the restaurant?

(iv) Every worker in the restaurant is paid $1000 per month. Therefore, the objective

function in the formulation can be viewed as total wage expenses (in thousand

dollars). Workers have complained that Shift 4 is the least desirable shift.

Management is considering increasing the wages of workers on Shift 4 to

$1100. Would this change the optimal solution? What would be the effect on

total wage expenses?

(v) Shift 2, on the other hand, is very desirable (Sundays off while on duty Fridays

and Saturdays, which are the best days for tips). Management is considering
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reducing the wages of workers on Shift 2 to $900 per month. Would this change

the optimal solution? What would be the effect on total wage expenses?

(vi) Management is considering introducing a new shift with the days off on Tues-

days and Sundays. Because these days are not consecutive, the wages will be

$1200 per month. Will this increase or reduce the total wage expenses?

3.3.2 Dedication

We end this section with the sensitivity report of the dedication problem formulated

in Section 3.2.

Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$B$5 x1 62.13612744 0 102 3 5.590909091
$B$6 x2 0 0.830612245 99 1E + 30 0.830612245
$B$7 x3 125.2429338 0 101 0.842650104 3.311081442
$B$8 x4 151.5050805 0 98 3.37414966 4.712358277
$B$9 x5 156.8077583 0 98 4.917243419 17.2316607
$B$10 x6 123.0800686 0 104 9.035524153 3.74817022
$B$11 x7 0 8.786840002 100 1E + 30 8.786840002
$B$12 x8 124.1572748 0 101 3.988878399 8.655456271
$B$13 x9 104.0898568 0 102 9.456887408 0.860545483
$B$14 x10 93.45794393 0 94 0.900020046 1E+30
$H$4 z0 0 0.028571429 1 1E + 30 0.028571429
$H$5 z1 0 0.055782313 0 1E + 30 0.055782313
$H$6 z2 0 0.03260048 0 1E + 30 0.03260048
$H$7 z3 0 0.047281187 0 1E + 30 0.047281187
$H$8 z4 0 0.179369792 0 1E + 30 0.179369792
$H$9 z5 0 0.036934059 0 1E + 30 0.036934059
$H$10 z6 0 0.086760435 0 1E + 30 0.086760435
$H$11 z7 0 0.008411402 0 1E + 30 0.008411402
$H$12 z8 0 0.524288903 0 1E + 30 0.524288903

Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

$B$19 year1 12000 0.971428571 12000 1E+30 6524.293381
$B$20 year2 18000 0.915646259 18000 137010.161 13150.50805
$B$21 year3 20000 0.883045779 20000 202579.3095 15680.77583
$B$22 year4 20000 0.835764592 20000 184347.1716 16308.00686
$B$23 year5 16000 0.6563948 16000 89305.96314 13415.72748
$B$24 year6 15000 0.619460741 15000 108506.7452 13408.98568
$B$25 year7 12000 0.532700306 12000 105130.9798 11345.79439
$B$26 year8 10000 0.524288903 10000 144630.1908 10000
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Term structure of interest rates implied by the cash-flow matching example

Figure 3.1 Interest rates implied by shadow prices

Exercise 3.16 Analyze the solution tables above and:

(i) interpret the shadow price in year t (t = 1, . . . , 8);

(ii) interpret the reduced cost of bond i (i = 1, . . . , 10);

(iii) interpret the reduced cost of each surplus variable zt (t = 0, . . . , 7).

Answers:

(i) The shadow price in Year t is the cost of the bond portfolio that can be attributed to a

dollar of liability in Year t . For example, each dollar of liability in Year 3 is responsible

for $0.883 in the cost of the bond portfolio. Note that, by setting the shadow price in

Year t equal to 1/(1 + rt )
t , we get a term structure of interest rates. Here r3 = 0.0423.

In Figure 3.1 we plot the term structure of interest rates we compute from this solution.

If the bonds in the dedication example were risk-free Treasury bonds, this figure should

be very similar to the term structure of Treasury rates for the corresponding years.

(ii) The reduced cost of bond i indicates by how much bond i is overpriced for inclusion

in the optimal portfolio. For example, bond 2 would have to be $0.83 lower, at $98.17,

for inclusion in the optimal portfolio.

Exercise 3.17 Note that the optimal solution has no holdings in Bond 7 which ma-

tures in Year 5, despite the $16 000 liability in Year 5. This is likely due to a mispricing

of this bond at $100. What would be a more realistic price for this bond?

Answer: Row 7 of the Adjustable Cells table indicates that variable x7, cor-

responding to Bond 7 holdings, will become positive only if the price is reduced by
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8.786 or more. So, a more realistic price for this bond would be just above $91. By

checking the reduced costs, one may sometimes spot errors in the data!

(iii) The reduced cost of the surplus variable zt indicates what the interest rate on cash

reinvested in Year t would have to be in order to keep excess cash in Year t .

Exercise 3.18 Generate the sensitivity report for Exercise 3.12 .

(i) Suppose that the liability in Year 3 is 29 (instead of 28). What would be the

increase in cost of the dedicated portfolio?

(ii) Draw a graph of the term structure of interest rates implied by the shadow

prices.

(iii) Bond 4 is not included in the optimal portfolio. By how much would the price

of Bond 4 have to decrease for Bond 4 to become part of the optimal portfolio?

(iv) The fund manager would like to have 10 000 units of Bond 3 in the portfolio.

By how much would this increase the cost of the portfolio?

(v) Is there any bond that looks badly mispriced?

(vi) What interest rate on cash would make it optimal to include cash as part of the

optimal portfolio?

3.4 Case study: constructing a dedicated portfolio

Set i to be the year when you are reading this sentence (For example, at the printing

of this book i = 2007). A municipality sends you today the following liability

stream (in million dollars) in years i + 1 to i + 8:

6/15/ i + 1 12/15/ i + 1 6/15/ i + 2 12/15/ i + 2 6/15/ i + 3 12/15/ i + 3

6 6 9 9 10 10

6/15/ i + 4 12/15/ i + 4 6/15/ i + 5 12/15/ i + 5 6/15/ i + 6 12/15/ i + 6

10 10 8 8 8 8

6/15/ i + 7 12/15/ i + 7 6/15/ i + 8 12/15/ i + 8

6 6 5 5

Your job:

� Compute the present value of the liability using the Treasury yield curve. You can find

current data on numerous websites, such as www.treasury.gov or www.bondsonline.com.
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� Identify between 30 and 50 assets that are suitable for a dedicated portfolio (non-callable

bonds, treasury bills, or notes). Explain why they are suitable. Current data can be found

on the Web or in newspapers such as the Wall Street Journal.
� Set up a linear program to identify a lowest-cost dedicated portfolio of assets (so no short

selling) and solve with Excel’s solver (or any other linear programming software that you

prefer). What is the cost of your portfolio? Discuss the composition of your portfolio.

Discuss the assets and the liabilities in light of the sensitivity report. What is the term

structure of interest rates implied by the shadow prices? Compare with the term structure

of Treasury rates. (Hint: Refer to Section 3.3.2.)
� Set up a linear program to identify a lowest-cost portfolio of assets (no short selling) that

matches present value, duration, and convexity (or a related measure) between the liability

stream and the bond portfolio. Solve the linear program with your favorite software.

Discuss the solution. How much would you save by using this immunization strategy

instead of dedication? Can you immunize the portfolio against nonparallel shifts of the

yield curve? Explain.
� Set up a linear program to identify a lowest-cost portfolio of assets (no short selling)

that combines a cash matching strategy for the liabilities in the first three years and an

immunization strategy based on present value, duration, and convexity for the liabilities

in the last five years. Compare the cost of this portfolio with the cost of the two previous

portfolios.
� The municipality would like you to make a second bid: what is your lowest-cost dedicated

portfolio of riskfree bonds if short sales are allowed? Discuss the feasibility of your

solution. Did you find arbitrage opportunities? Did you model the bid/ask spread? Did

you set limits on the transaction amounts?
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LP models: asset pricing and arbitrage

4.1 Derivative securities and the fundamental theorem of asset pricing

One of the most widely studied problems in financial mathematics is the pric-

ing of derivative securities, also known as contingent claims. These are securi-

ties whose price depends on the value of another underlying security. Financial

options are the most common examples of derivative securities. For example, a

European call option gives the holder the right to purchase an underlying se-

curity for a prescribed amount (called the strike price) at a prescribed time in

the future, known as the expiration or exercise date. The exercise date is also

known as the maturity date of the derivative security. Recall the similar defi-

nitions of European put options as well as American call and put options from

Section 1.3.2.

Options are used mainly for two purposes: speculation and hedging. By spec-

ulating on the direction of the future price movements of the underlying security,

investors can take (bare) positions in options on this security. Since options are

often much cheaper than their underlying security, this bet results in much larger

earnings in relative terms if the price movements happen in the expected direction

compared to what one might earn by taking a similar position in the underlying. Of

course, if one guesses the direction of the price movements incorrectly, the losses

are also much more severe.

The more common and sensible use of options is for hedging. Hedging refers to

the reduction of risk in an investor’s overall position by forming a suitable portfolio

of assets that are expected to have opposing risks. For example, if an investor holds

a share of XYZ and is concerned that the price of this security may fall significantly,

she can purchase a put option on XYZ and protect herself against price levels below

a certain threshold – the strike price of the put option.

Recall the option example in the simple one-period binomial model of Sec-

tion 1.3.2. Below, we summarize some of the information from that example.

62
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Figure 4.1 Piecewise linear payoff function for a call option

We consider the share price of XYZ stock, which is currently valued at $40. A

month from today, we expect the share price of XYZ to either double or halve, with

equal probabilities. We also consider a European call option on XYZ with a strike

price of $50 which will expire a month from today. The payoff function for the call

is shown in Figure 4.1.

We assume that interest rates for cash borrowing or lending are zero and that any

amount of XYZ shares can be bought or sold with no commission:

S0 = $40 ����

����

80 = S1(u)

20 = S1(d)
and C0 = ? ����

����

(80 − 50)+ = 30

(20 − 50)+ = 0

In Section 1.3.2 we obtained a fair price of $10 for the option using a replica-

tion strategy and the no-arbitrage principle. Two portfolios of securities that have

identical future payoffs under all possible realizations of the random states must

have the same value today. In the example, the first portfolio is the option while

the second one is the portfolio of a half share of XYZ and −$10 in cash. Since we

know the current value of the second portfolio, we can deduce the fair price of the

option. To formalize this approach, we first give a definition of arbitrage:

Definition 4.1 An arbitrage is a trading strategy that:

� has a positive initial cash flow and has no risk of a loss later (type A), or
� requires no initial cash input, has no risk of a loss, and has a positive probability of

making profits in the future (type B).
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In the example, any price other than $10 for the call option would lead to a type

A arbitrage – guaranteed profits at the initial time point and no future obligations.

We do not need to have a guarantee of profits for type B arbitrage – all we need is

a guarantee of no loss, and a positive probability of a gain. Prices adjust quickly

so that arbitrage opportunities cannot persist in the markets. Therefore, in pricing

arguments it is often assumed that arbitrage opportunities do not exist.

4.1.1 Replication

In the above example, we formulated and solved the following question to determine

the fair price of an option: can we form a portfolio of the underlying security (long

or short) and cash (borrowed or lent) today, such that the payoff of the portfolio

at the expiration date of the option will match the payoff of the option? In other

words, can we replicate the option using a portfolio of the underlying security and

cash?

Let us work in a slightly more general setting. Let S0 be the current price of the

underlying security and assume that there are two possible outcomes at the end of

the period: Su
1 = S0 · u and Sd

1 = S0 · d. Assume u > d . We also assume that there

is a fixed interest rate of r on cash positions for the given period. Let R = 1 + r .

Now we consider a derivative security which has payoffs of Cu
1 and Cd

1 in the up

and down states respectively:

S0
����

����

Su
1 = S0 · u

Sd
1 = S0 · d

C0 = ? ����

����

Cu
1

Cd
1

To price the derivative security, we will replicate its payoff. For replication

consider a portfolio of � shares of the underlying and $B cash. For what values

of � and B does this portfolio have the same payoffs at the expiration date as the

derivative security?

In the “up” state, the replicating portfolio will have value �S0 · u + B R and in

the “down” state it will be worth �S0 · d + B R. Therefore, for perfect replication,

we need to solve the following simple system of equations:

�S0 · u + B R = Cu
1

�S0 · d + B R = Cd
1 .

We obtain:

� = Cu
1 − Cd

1

S0(u − d)

B = uCd
1 − dCu

1

R(u − d)
.
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Since this portfolio is worth S0� + B today, that should be the price of the derivative

security as well:

C0 = Cu
1 − Cd

1

u − d
+ uCd

1 − dCu
1

R(u − d)

= 1

R

[
R − d

u − d
Cu

1 + u − R

u − d
Cd

1

]
.

4.1.2 Risk-neutral probabilities

Let

pu = R − d

u − d
and pd = u − R

u − d
.

Note that we must have d < R < u to avoid arbitrage opportunities as indicated in

the following simple exercise.

Exercise 4.1 Let S0 be the current price of a security and assume that there are

two possible prices for this security at the end of the current period: Su
1 = S0 · u

and Sd
1 = S0 · d. (Assume u > d.) Also assume that there is a fixed interest rate

of r on cash positions for the given period. Let R = 1 + r . Show that there is an

arbitrage opportunity if u > R > d is not satisfied.

An immediate consequence of this observation is that both pu > 0 and pd >

0. Noting also that pu + pd = 1 one can interpret pu and pd as probabilities.

In fact, these are the so-called risk-neutral probabilities (RNPs) of up and down

states, respectively. Note that they are completely independent from the physical

probabilities of these states.

The price of any derivative security can now be calculated as the present value

of the expected value of its future payoffs where the expected value is taken using

the risk-neutral probabilities.

In our example above u = 2, d = 1/2 and r = 0 so that R = 1. Therefore:

pu = 1 − 1/2

2 − 1/2
= 1

3
and pd = 2 − 1

2 − 1/2
= 2

3
.

As a result, we have

S0 = 40 = 1

R

(
pu Su

1 + pd Sd
1

) = 1

3
80 + 2

3
20,

C0 = 10 = 1

R

(
puCu

1 + pdCd
1

) = 1

3
30 + 2

3
0,

as expected. Using risk neutral probabilities we can also price other derivative

securities on the XYZ stock. For example, consider a European put option on the
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XYZ stock struck at $60 and with the same expiration date as the call of the example:

P0 = ? ����

����

Pu
1 = max{0, 60 − 80} = 0,

Pd
1 = max{0, 60 − 20} = 40.

We can easily compute:

P0 = 1

R

(
pu Pu

1 + pd Pd
1

) = 1

3
0 + 2

3
40 = 80

3
,

without needing to replicate the option again.

Exercise 4.2 Compute the price of a binary (digital) call option on the XYZ stock

that pays $1 if the XYZ price is above the strike price of $50.

Exercise 4.3 Assume that the XYZ stock is currently priced at $40. At the end

of the next period, the XYZ price is expected to be in one of the following two

states: S0 · u or S0 · d . We know that d < 1 < u but do not know d or u. The interest

rate is zero. If a European call option with strike price $50 is priced at $10 while

a European call option with strike price $40 is priced at $13, and we assume that

these prices do not contain any arbitrage opportunities, what is the fair price of a

European put option with a strike price of $40?

Hint: First note that u > 5
4

– otherwise the first call would be worthless. Then we

must have 10 = pu(S0 · u − 50) and 13 = pu(S0 · u − 40). From these equations

determine pu and then u and d.

Exercise 4.4 Assume that the XYZ stock is currently priced at $40. At the end of

the next period, the XYZ price is expected to be in one of the following two states:

S0 · u or S0 · d . We know that d < 1 < u but do not know d or u. The interest rate

is zero. European call options on XYZ with strike prices of $30, $40, $50, and $60

are priced at $10, $7, $10/3, and $0. Which one of these options is mispriced?

Why?

Remark 4.1 Exercises 4.3 and 4.4 are much simplified and idealized examples
of the pricing problems encountered by practitioners. Instead of a set of possible
future states for prices that may be difficult to predict, they must work with a set
of market prices for related securities. Then, they must extrapolate prices for an
unpriced security using no-arbitrage arguments.

Next we move from our binomial setting to a more general setting and let

� = {ω1, ω2, . . . , ωm} (4.1)

be the (finite) set of possible future “states.” For example, these could be prices for

a security at a future date.
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For securities Si , i = 0, . . . , n, let Si
1(ω j ) denote the price of this security in state

ω j at time 1. Also let Si
0 denote the current (time 0) price of security Si . We use

i = 0 for the “riskless” security that pays the interest rate r ≥ 0 between time 0 and

time 1. It is convenient to assume that S0
0 = 1 and that S0

1 (ω j ) = R = 1 + r, ∀ j .

Definition 4.2 A risk-neutral probability measure on the set � =
{ω1, ω2, . . . , ωm} is a vector of positive numbers (p1, p2, . . . , pm) such that

m∑
j=1

p j = 1

and for every security Si , i = 0, . . . , n,

Si
0 = 1

R

(
m∑

j=1

p j S
i
1(ω j )

)
= 1

R
Ê

[
Si

1

]
.

Above, Ê[S] denotes the expected value of the random variable S under the

probability distribution (p1, p2, . . . , pm).

4.1.3 The fundamental theorem of asset pricing

In this section we state the first fundamental theorem of asset pricing and prove it

for finite �. This proof is a simple exercise in linear programming duality that also

utilizes the following well-known result of Goldman and Tucker on the existence

of strictly complementary optimal solutions of LPs:

Theorem 4.1 (Goldman and Tucker [31]) When both the primal and dual lin-
ear programming problems

minx cTx
Ax = b

x ≥ 0

(4.2)

and

maxy bT y
AT y ≤ c,

(4.3)

have feasible solutions, they have optimal solutions satisfying strict complemen-
tarity, i.e., there exist x∗ and y∗ optimal for the respective problems such that

x∗ + (c − AT y∗) > 0.

Now, we are ready to prove the following theorem:

Theorem 4.2 (The first fundamental theorem of asset pricing) A risk-
neutral probability measure exists if and only if there is no arbitrage.
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Proof: We provide the proof for the case when the state space � is finite and is

given by (4.1). We assume without loss of generality that every state has a positive

probability of occuring (since states that have no probability of occuring can be

removed from �.) Given the current prices Si
0 and the future prices Si

1(ω j ) in each

state ω j , for securities 0 to n, consider the following linear program with variables

xi , for i = 0, . . . , n:

minx
∑n

i=0 Si
0xi∑n

i=0 Si
1(ω j )xi ≥ 0, j = 1, . . . , m.

(4.4)

Note that type-A arbitrage corresponds to a feasible solution to this LP with a neg-

ative objective value. Since x = (x1, . . . , xn) with xi = 0, ∀i is a feasible solution,

the optimal objective value is always non-positive. Furthermore, since all the con-

straints are homogeneous, if there exists a feasible solution such that
∑

Si
0xi < 0

(this corresponds to type-A arbitrage), the problem is unbounded. In other words,

there is no type-A arbitrage if and only if the optimal objective value of this LP is

0.

Suppose that there is no type-A arbitrage. Then, there is no type-B arbitrage if

and only if all constraints are tight for all optimal solutions of (4.4) since every state

has a positive probability of occuring. Note that these solutions must have objective

value 0.

Consider the dual of (4.4):

maxp
∑m

j=1 0p j∑m
j=1 Si

1(ω j )p j = Si
0, i = 0, . . . , n,

p j ≥ 0, j = 1, . . . , m.

(4.5)

Since the dual objective function is constant at zero for all dual feasible solutions,

any dual feasible solution is also dual optimal.

When there is no type-A arbitrage, (4.4) has an optimal solution. Now, Theo-

rem 2.2 – the strong duality theorem – indicates that the dual must have a feasible

solution. If there is no type-B arbitrage either, Goldman and Tucker’s theorem in-

dicates that there exists a feasible and therefore optimal dual solution p∗ such

that p∗ > 0. This follows from strict complementarity with primal constraints∑n
i=1 Si

1(ω j )xi ≥ 0, which are tight. From the dual constraint corresponding to

i = 0, we have that
∑m

j=1 p∗
j = 1/R. Multiplying p∗ by R one obtains a risk-

neutral probability distribution. Therefore, the “no arbitrage” assumption implies

the existence of RNPs.

The converse direction is proved in an identical manner. The existence of a RNP

measure implies that (4.5) is feasible, and therefore its dual, (4.4) must be bounded,

which implies that there is no type-A arbitrage. Furthermore, since we have a strictly
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feasible (and optimal) dual solution, any optimal solution of the primal must have

tight constraints, indicating that there is no type-B arbitrage.

4.2 Arbitrage detection using linear programming

The linear programming (LP) problems (4.4) and (4.5) formulated in the proof of

Theorem 4.2 can naturally be used for detection of arbitrage opportunities. As

we discussed above, however, this argument works only for finite state spaces.

In this section, we discuss how LP formulations can be used to detect arbitrage

opportunities without limiting consideration to finite state spaces. The price we

pay for this flexibility is the restriction on the selection of the securities: we only

consider the prices of a set of derivative securities written on the same underlying

with same maturity. This discussion is based on Herzel [40].

Consider an underlying security with a current, time 0, price of S0 and a random

price S1 at time 1. Consider n derivative securities written on this security that

mature at time 1, and have piecewise linear payoff functions �i (S1), each with a

single breakpoint Ki , for i = 1, . . . , n. The obvious motivation is the collection of

calls and puts with different strike prices written on this security. If, for example, the

i-th derivative security were a European call with strike price Ki , we would have

�i (S1) = (S1 − Ki )
+. We assume that the Ki ’s are in increasing order, without

loss of generality. Finally, let Si
0 denote the current price of the i-th derivative

security.

Consider a portfolio x = (x1, . . . , xn) of the derivative securities 1 to n and let

�x (S1) denote the payoff function of the portfolio:

�x (S1) :=
n∑

i=1

�i (S1)xi . (4.6)

The cost of forming the portfolio x at time 0 is given by

n∑
i=1

Si
0xi . (4.7)

To determine whether a static arbitrage opportunity exists in the current prices Si
0,

we consider the following problem: what is the cheapest portfolio of the derivative

securities 1 to n whose payoff function � x (S1) is nonnegative for all S1 ∈ [0, ∞)?

Nonnegativity of �x (S1) corresponds to “no future obligations” part of the arbitrage

definition. If the minimum initial cost of such a portfolio is negative, then we have

a type-A arbitrage.

Since all �i (S1)’s are piecewise linear, so is �x (S1). It will have up to n
breakpoints at points K1 through Kn . Observe that a piecewise linear function is
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nonnegative over [0, ∞) if and only if it is nonnegative at 0 and at all the break-

points, and if the slope of the function is nonnegative to the right of the largest

breakpoint. From our notation, �x (S1) is nonnegative for all non-negative values

of S1 if and only if:

1. �x (0) ≥ 0;

2. �x (K j ) ≥ 0, ∀ j ; and

3. [(�x )′+(Kn)] ≥ 0.

Now consider the following linear programming problem:

minx
∑n

i=1 Si
0xi∑n

i=1 �i (0)xi ≥ 0∑n
i=1 �i (K j )xi ≥ 0, j = 1, . . . , n,∑n

i=1(�i (Kn + 1) − �i (Kn))xi ≥ 0.

(4.8)

Since all �i (S1)’s are piecewise linear, the quantity �i (Kn + 1) − �i (Kn) gives

the right-derivative of �i (S1) at Kn . Thus, the expression in the last constraint is

the right derivative of �x (S1) at Kn . The following observation follows from our

arguments above:

Proposition 4.1 There is no type-A arbitrage in prices Si
0 if and only if the optimal

objective value of (4.8) is zero.

Similar to the previous section, we have the following result:

Proposition 4.2 Suppose that there are no type-A arbitrage opportunities in
prices Si

0. Then, there are no type-B arbitrage opportunities if and only if the
dual of the problem (4.8) has a strictly feasible solution.

Exercise 4.5 Prove Proposition 4.2 .

Next, we focus on the case where the derivative securities under consideration

are European call options with strikes at Ki for i = 1, . . . , n, so that �i (S1) =
(S1 − Ki )

+. Thus

�i (K j ) = (K j − Ki )
+.

In this case, (4.8) reduces to the following problem:

minx cT x
Ax ≥ 0,

(4.9)
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where cT = [
S1

0 , . . . , Sn
0

]
and

A =

⎡
⎢⎢⎢⎢⎢⎣

K2 − K1 0 0 · · · 0

K3 − K1 K3 − K2 0 · · · 0
...

...
...

. . .
...

Kn − K1 Kn − K2 Kn − K3 · · · 0

1 1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

. (4.10)

This formulation is obtained by removing the first two constraints of (4.8) which

are redundant in this particular case.

Using this formulation and our earlier results, one can prove a theorem giving

necessary and sufficient conditions for a set of call option prices to contain arbitrage

opportunities:

Theorem 4.3 Let K1 < K2 < · · · < Kn denote the strike prices of European call
options written on the same underlying security with the same maturity. There are no
arbitrage opportunities if and only if the prices Si

0 satisfy the following conditions:

1. Si
0 > 0, i = 1, . . . , n.

2. Si
0 > Si+1

0 , i = 1, . . . , n − 1.

3. The function C(Ki ) := Si
0 defined on the set {K1, K2, . . . , Kn} is a strictly convex

function.

Exercise 4.6 Use Proposition 4.2 to show that there are no arbitrage opportunities

for the option prices in Theorem 4.3 if and only if there exists strictly positive scalars

y1, . . . , yn satisfying yn = Sn
0 , yn−1 = (Sn−1

0 − Sn
0 )/(K n − K n−1), and

yi = Si
0 − Si+1

0

K i+1 − K i
− Si+1

0 − Si+2
0

K i+2 − K i+1
, i = 1, . . . , n − 2.

Use this observation to prove Theorem 4.3 .

As an illustration of Theorem 4.3 , consider the scenario in Exercise 4.4 : XYZ

stock is currently priced at $40. European call options on XYZ with strike prices of

$30, $40, $50, and $60 are priced at $10, $7, $10/3, and $0. Do these prices exhibit

an arbitrage opportunity? As we see in Figure 4.2, the option prices violate the third

condition of the theorem and therefore must carry an arbitrage opportunity.

Exercise 4.7 Construct a portfolio of the options in the example above that pro-

vides a type-A arbitrage opportunity.

4.3 Additional exercises

Exercise 4.8 Consider the linear programming problem (4.9) that we developed

to detect arbitrage opportunities in the prices of European call options with a
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Figure 4.2 Nonconvexity in the call price function indicates arbitrage

common underlying security and common maturity (but different strike prices).

This formulation implicitly assumes that the i-th call can be bought or sold at the

same current price of Si
0. In real markets, there is always a gap between the price

a buyer pays for a security and the amount the seller collects called the bid–ask
spread.

Assume that the ask price of the i-th call is given by Si
a while its bid price is

denoted by Si
b with Si

a > Si
b. Develop an analogue of the LP (4.9) in the case where

we can purchase the calls at their ask prices or sell them at their bid prices. Consider

using two variables for each call option in your new LP.

Exercise 4.9 Consider all the call options on the S&P 500 index that expire on

the same day, about three months from the current date. Their current prices can

be downloaded from the website of the Chicago Board of Options Exchange at

www.cboe.com or from several other market quote websites. Formulate the linear

programming problem (4.9) (or, rather, the version you developed for Exercise 4.8,

since market quotes will include bid and ask prices) to determine whether these

prices contain any arbitrage opportunities. Solve this linear programming problem

using LP software.

Sometimes, illiquid securities can have misleading prices since the reported

price corresponds to the last transaction in that security, which may have happened

several days ago, and, if there were to be a new transaction, this value could change

dramatically. As a result, it is quite possible that you will discover false “arbitrage

opportunities” because of these misleading prices. Repeat the LP formulation and
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solve it again, this time only using prices of the call options that have had a trading

volume of at least 100 on the day you downloaded the prices.

Exercise 4.10

(i) You have $20 000 to invest. Stock XYZ sells at $20 per share today. A European

call option to buy 100 shares of stock XYZ at $15 exactly six months from today

sells for $1000. You can also raise additional funds which can be immediately

invested, if desired, by selling call options with the above characteristics. In

addition, a six-month riskless zero-coupon bond with $100 face value sells for

$90. You have decided to limit the number of call options that you buy or sell

to at most 50.

You consider three scenarios for the price of stock XYZ six months from

today: the price will be the same as today, the price will go up to $40, or

drop to $12. Your best estimate is that each of these scenarios is equally likely.

Formulate and solve a linear program to determine the portfolio of stocks, bonds,

and options that maximizes the expected profit.

Answer: First, we define the decision variables:

B = number of bonds purchased,

S = number of shares of stock XYZ purchased,

C = number of call options purchased (if > 0) or sold (if < 0).

The expected profits (per unit of investment) are computed as follows:

Bonds: 10,

Stock XYZ: 1
3
(20 + 0 − 8) = 4,

Call option: 1
3
(1500 − 500 − 1000) = 0.

Therefore, we get the following linear programming formulation:

max 10B + 4S
90B + 20S + 1000C ≤ 20 000 (budget constraint)

C ≤ 50 (limit on number of call options purchased)

C ≥ −50 (limit on number of call options sold)

B ≥ 0, S ≥ 0 (nonnegativity).

Solving (using SOLVER, say), we get the optimal solution B = 0, S =
3500, C = −50 with an expected profit of $14 000.

Note that, with this portfolio, the profit is not positive under all scenarios. In

particular, if the price of stock XYZ goes to $40, a loss of $5000 will be incurred.

(ii) Suppose that the investor wants a profit of at least $2000 in any of the three

scenarios. Write a linear program that will maximize the investor’s expected

profit under this additional constraint.
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Answer: This can be done by introducing three additional variables:

Pi = profit in scenario i .

The formulation is now the following:

max 1
3

P1 + 1
3

P2 + 1
3

P3

90B + 20S + 1000C ≤ 20 000

10B + 20S + 1500C = P1

10B − 500C = P2

10B − 8S − 1000C = P3

P1 ≥ 2000

P2 ≥ 2000

P3 ≥ 2000

C ≤ 50

C ≥ −50

B ≥ 0, S ≥ 0 .

(iii) Solve this linear program with SOLVER to find out the expected profit. How

does it compare with the earlier figure of $14 000?

Answer: The optimum solution is to buy 2800 shares of XYZ and sell 36 call

options. The resulting expected worth in six months will be $31 200. Therefore, the

expected profit is $11 200 (= $31 200 − 20 000).

(iv) Riskless profit is defined as the largest possible profit that a portfolio is guar-

anteed to earn, no matter which scenario occurs. What is the portfolio that

maximizes riskless profit for the above three scenarios?

Answer: To solve this question, we can use a slight modification of the previous

model, by introducing one more variable:

Z = riskless profit.

Here is the formulation:

max Z
90B + 20S + 1000C ≤ 20 000

10B + 20S + 1500C = P1

10B − 500C = P2

10B − 8S − 1000C = P3

P1 ≥ Z
P2 ≥ Z
P3 ≥ Z

C ≤ 50

C ≥ −50

B ≥ 0, S ≥ 0.
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The result is (obtained using SOLVER) a riskless profit of $7272. This is obtained

by buying 2273 shares of XYZ and selling 25.45 call options. The resulting expected

profit is $9091 in this case.

Exercise 4.11 Arbitrage in the currency market: Consider the global currency

market. Given two currencies, say the yen and the US dollar, there is an exchange

rate between them (about 118 yen to the dollar in February 2006). It is axiomatic of

arbitrage-free markets that there is no method of converting, say, one dollar to yen,

then to euros, then pounds, and back to dollars again so that you end up with more

than a dollar. How would you recognize when there is an arbitrage opportunity?

The following are actual trades made on February 14, 2002:

from Dollar Euro Pound Yen

into Dollar 0.8706 1.4279 0.00750
Euro 1.1486 1.6401 0.00861

Pound 0.7003 0.6097 0.00525

Yen 133.38 116.12 190.45

For example, one dollar converted into euros yielded 1.1486 euros. It is not obvious

from the chart above, but in the absence of any conversion costs, the dollar–pound–

yen–dollar conversion actually makes $0.0003 per dollar converted while changing

the order to dollar–yen–euro–dollar loses about $0.0002 per dollar converted. How

can one formulate a linear program to identify such arbitrage possibilities?

Answer:

VARIABLES
DE = quantity of dollars changed into euros
DP = quantity of dollars changed into pounds
DY = quantity of dollars changed into yen
ED = quantity of euros changed into dollars
EP = quantity of euros changed into pounds
EY = quantity of euros changed into yen
PD = quantity of pounds changed into dollars
PE = quantity of pounds changed into euros
PY = quantity of pounds changed into yen
YD = quantity of yen changed into dollars
YE = quantity of yen changed into euros
YP = quantity of yen changed into pounds
D = quantity of dollars generated through arbitrage
OBJECTIVE
Max D
CONSTRAINTS
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Dollar: D+DE+DP+DY-0.8706*ED-1.4279*PD-0.00750*YD = 1
Euro: ED+EP+EY-1.1486*DE-1.6401*PE-.00861*YE = 0
Pound: PD+PE+PY-0.7003*DP-0.6097*EP-0.00525*YP = 0
Yen: YD+YE+YP-133.38*DY-116.12*EY-190.45*PY = 0
BOUNDS
D < 10000
END

Solving this linear program, we find that, in order to gain $10 000 in arbitrage,

we have to change about $34 million dollars into euros, then convert these euros

into yen and finally change the yen into dollars. There are other solutions as well.

The arbitrage opportunity is so tiny ($0.0003 to the dollar) that, depending on the

numerical precision used, some LP solvers do not find it, thus concluding that

there is no arbitrage here. An interesting example illustrating the role of numerical

precision in optimization solvers!

4.4 Case study: tax clientele effects in bond portfolio management

The goal is to construct an optimal tax-specific bond portfolio, for a given tax

bracket, by exploiting the price differential of an after-tax stream of cash flows.

This objective is accomplished by purchasing at the ask price “underpriced”

bonds (for the specific tax bracket), while simultaneously selling at the bid price

“overpriced” bonds. The following model was proposed by Ronn [69]. See also

Schaefer [72].

Let

J = {1, . . . , j, . . . , N } = set of riskless bonds

Pa
j = ask price of bond j

Pb
j = bid price of bond j

Xa
j = amount of bond j bought

Xb
j = amount of bond j sold short.

We make the natural assumption that Pa
j > Pb

j . The objective function of the pro-

gram is

Z = max
N∑

j=1

Pb
j Xb

j −
N∑

j=1

Pa
j Xa

j (4.11)

since the long side of an arbitrage position must be established at ask prices while

the short side of the position must be established at bid prices. Now consider the
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future cash flows of the portfolio:

C1 =
N∑

j=1

a1
j Xa

j −
N∑

j=1

a1
j Xb

j . (4.12)

For t = 2, . . . , T, Ct = (1 + ρ)Ct−1 +
N∑

j=1

at
j Xa

j −
N∑

j=1

at
j Xb

j , (4.13)

where ρ is the exogenous riskless reinvestment rate, and at
j is the coupon and/or

principal payment on bond j at time t .
For the portfolio to be riskless, we require

Ct ≥ 0 t = 1, . . . , T . (4.14)

Since the bid–ask spread has been explicitly modeled, it is clear that Xa
j ≥ 0 and

X b
j ≥ 0 are required. Now the resulting linear program admits two possible solu-

tions: either all bonds are priced to within the bid–ask spread, i.e., Z = 0; or infinite

arbitrage profits may be attained, i.e., Z = ∞. Clearly any attempt to exploit price

differentials by taking extremely large positions in these bonds would cause price

movements: the bonds being bought would appreciate in price; the bonds being sold

short would decline in value. In order to provide a finite solution, the constraints

X a
j ≤ 1 and Xb

j ≤ 1 are imposed. Thus, with

0 ≤ Xa
j , X b

j ≤ 1 j = 1, . . . , N , (4.15)

the complete problem is now specified as (4.11)–(4.15).

Taxes

The proposed model explicitly accounts for the taxation of income and capital gains

for specific investor classes. This means that the cash flows need to be adjusted for

the presence of taxes.

For a discount bond (i.e. when Pa
j < 100), the after-tax cash flow of bond j in

period t is given by

at
j = ct

j (1 − τ ),

where ct
j is the coupon payment, and τ is the ordinary income tax rate.

At maturity, the j-th bond yields

at
j = (

100 − Pa
j

)
(1 − g) + Pa

j ,

where g is the capital gains tax rate.

For premium bond (i.e., when Pa
j > 100), the premium is amortized against

ordinary income over the life of the bond, giving rise to an after-tax coupon
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payment of

at
j =

[
ct

j − Pa
j − 100

n j

]
(1 − τ ) + Pa

j − 100

n j
,

where n j is the number of coupon payments remaining to maturity.

A premium bond also makes a nontaxable repayment of

at
j = 100

at maturity.

Data

The model requires that the data contain bonds with perfectly forecastable cash

flows. All callable bonds are excluded from the sample. Thus, all noncallable bonds

and notes are deemed appropriate for inclusion in the sample.

Major categories of taxable investors are domestic banks, insurance companies,

individuals, nonfinancial corporations, foreigners. In each case, one needs to dis-

tinguish the tax rates on capital gains versus ordinary income.

The fundamental question to arise from this study is: does the data reflect tax

clientele effects or arbitrage opportunities?

Consider first the class of tax-exempt investors. Using current data, form the op-

timal “purchased” and “sold” bond portfolios. Do you observe the same tax clien-

tele effect as documented by Schaefer for British government securities; namely,

the “purchased” portfolio contains high coupon bonds and the “sold” portfolio is

dominated by low coupon bonds? This can be explained as follows: the preferen-

tial taxation of capital gains for (most) taxable investors causes them to gravitate

towards low coupon bonds. Consequently, for tax-exempt investors, low coupon

bonds are “overpriced” and not desirable as investment vehicles.

Repeat the same analysis with the different types of taxable investors.

1. Is there a clientele effect in the pricing of US Government investments, with tax-exempt

investors, or those without preferential treatment of capital gains, gravitating towards

high coupon bonds?

2. Do you observe that not all high coupon bonds are desirable to investors without pref-

erential treatment of capital gains? Nor are all low coupon bonds attractive to those

with preferential treatment of capital gains. Can you find reasons why this may be the

case?

The dual price, say ut , associated with constraint (4.13) represents the present

value of an additional dollar at time t . Explain why. It follows that ut may be used
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to compute the term structure of spot interest rates Rt , given by the relation

Rt =
(

1

ut

)1/t

− 1.

Compute this week’s term structure of spot interest rates for tax-exempt investors.
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Nonlinear programming: theory and algorithms

5.1 Introduction

So far, we have focused on optimization problems with linear constraints and a linear

objective function. Linear functions are “nice” – they are smooth and predictable.

Consequently, we were able to use specialized and highly efficient techniques for

their solution. Many realistic formulations of optimization problems, however, do

not fit into this nice structure and require more general methods. In this chapter we

study general optimization problems of the form

minx f (x)

gi (x) = 0, i ∈ E,

gi (x) ≥ 0, i ∈ I,

(5.1)

where f and gi are functions of IRn → IR, and E and I are index sets for the

equality and inequality constraints respectively. Such optimization problems are

often called nonlinear programming problems, or nonlinear programs.

There are many problems where the general framework of nonlinear program-

ming is needed. Here are some illustrations:

1. Economies of scale: In many applications costs or profits do not grow linearly with the

corresponding activities. In portfolio construction, an individual investor may benefit

from economies of scale as fixed costs of trading become negligible for larger trades.

Conversely, an institutional investor may suffer from diseconomies of scale if a large

trade has an unfavorable market impact on the security traded. Realistic models of such

trades must involve nonlinear objective or constraint functions.

2. Probabilistic elements: Nonlinearities frequently arise when some of the coefficients

in the model are random variables. For example, consider a linear program where the

right-hand sides are random. To illustrate, suppose the LP has two constraints:

maximize c1x1 + · · · + cn xn

a11x1 + · · · + a1n xn ≤ b1

a21x1 + · · · + a2n xn ≤ b2,

80
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where the coefficients b1 and b2 are independently distributed and Gi (y) represents the

probability that the random variable bi is at least as large as y. Suppose you want to

select the variables x1, . . . , xn so that the joint probability of both the constraints being

satisfied is at least β:

P[a11x1 + · · · + a1nxn ≤ b1] × P[a21x1 + · · · + a2n xn ≤ b2] ≥ β.

Then this condition can be written as the following set of constraints:

−y1 + a11x1 + · · · + a1nxn = 0

−y2 + a21x1 + · · · + a2nxn = 0

G1(y1) × G2(y2) ≥ β,

where this product leads to nonlinear restrictions on y1 and y2.

3. Value-at-Risk: The Value-at-Risk (VaR) is a risk measure that focuses on rare events.

For example, for a random variable X that represents the daily loss from an investment

portfolio, VaR would be the largest loss that occurs with a specified frequency, such as

once per year. Given a probability level α, say α = 0.99, the Value-at-Risk VaRα(X )

of a random variable X with a continuous distribution function is the value γ such that

P(X ≤ γ ) = α. As such, VaR focuses on the tail of the distribution of the random variable

X . Depending on the distributional assumptions for portfolio returns, the problem of

finding a portfolio that minimizes VaR can be a highly nonlinear optimization problem.

4. Mean-variance optimization: Markowitz’s MVO model introduced in Section 1.3.1 is

a quadratic program: the objective function is quadratic and the constraints are linear.

In Chapter 7 we will present an interior-point algorithm for this class of nonlinear

optimization problems.

5. Constructing an index fund: In integer programming applications, such as the model

discussed in Section 12.3 for constructing an index fund, the “relaxation” can be written

as a multivariate function that is convex but nondifferentiable. Subgradient techniques

can be used to solve this class of nonlinear optimization problems.

In contrast to linear programming, where the simplex method can handle most

instances and reliable implementations are widely available, there is not a single

preferred algorithm for solving general nonlinear programs. Without difficulty,

one can find ten or fifteen methods in the literature and the underlying theory of

nonlinear programming is still evolving. A systematic comparison between different

methods and packages is complicated by the fact that a nonlinear method can be

very effective for one type of problem and yet fail miserably for another. In this

chapter, we sample a few ideas:

1. the method of steepest descent for unconstrained optimization;

2. Newton’s method;

3. the generalized reduced-gradient algorithm;

4. sequential quadratic programming;

5. subgradient optimization for nondifferentiable functions.
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We address the solution of two special classes of nonlinear optimization problems,

namely quadratic and conic optimization problems in Chapters 7 and 9. For these

problem classes, interior-point methods (IPMs) are very effective. While IPMs are

heavily used for general nonlinear programs also, we delay their discussion until

Chapter 7.

5.2 Software

Some software packages for solving nonlinear programs are:

1. CONOPT, GRG2, Excel’s SOLVER (all three are based on the generalized reduced-

gradient algorithm);

2. MATLAB optimization toolbox, SNOPT, NLPQL (sequential quadratic programming);

3. MINOS, LANCELOT (Lagrangian approach);

4. LOQO, MOSEK, IPOPT (Interior-point algorithms for the KKT conditions, see

Section 5.5).

The Network Enabled Optimization Server (NEOS) website we already men-

tioned in Chapter 2, available at http:neos.mcs.anl.gov/neos/solvers, provides ac-

cess to many academic and commercial nonlinear optimization solvers. In addition,

the Optimization Software Guide based on the book by Moré and Wright [58], which

is available from www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/, lists information

on more than 30 nonlinear programming packages.

Of course, as is the case for linear programming, one needs a modeling language

to work efficiently with large nonlinear models. Two of the most popular are GAMS

and AMPL. Most of the optimizers described above accept models written in either

of these mathematical programming languages.

5.3 Univariate optimization

Before discussing optimization methods for multivariate and/or constrained prob-

lems, we start with a description of methods for solving univariate equations and

optimizing univariate functions. These methods, often called line search methods

are important components to many nonlinear programming algorithms.

5.3.1 Binary search

Binary search is a very simple idea for numerically solving the nonlinear equation

f (x) = 0, where f is a function of a single variable.

For example, suppose we want to find the maximum of g(x) = 2x3 − ex . For

this purpose we need to identify the critical points of the function, namely, those

points that satisfy the equation g′(x) = 6x2 − ex = 0. But there is no closed form

solution to this equation. So we solve the equation numerically, through binary
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search. Letting f (x) := g′(x) = 6x2 − ex , we first look for two points, say a, b,

such that the signs of f (a) and f (b) are opposite. Here a = 0 and b = 1 would

do since f (0) = −1 and f (1) ≈ 3.3. Since f is continuous, we know that there

exists an x with 0 < x < 1 such that f (x) = 0. We say that our confidence interval is

[0,1]. Now let us try the middle point x = 0.5. Since f (0.5) ≈ −0.15 < 0 we know

that there is a solution between 0.5 and 1 and we get the new confidence interval

[0.5, 1.0]. We continue with x = 0.75 and since f (0.75) > 0 we get the confidence

interval [0.5, 0.75]. Repeating this, we converge very quickly to a value of x where

f (x) = 0. Here, after ten iterations, we are within 0.001 of the real value.

In general, if we have a confidence interval of [a, b], we evaluate f ( a+b
2

) to cut

the confidence interval in half.

Binary search is fast. It reduces the confidence interval by a factor of 2 for every

iteration, so after k iterations the original interval is reduced to (b − a) × 2−k . A

drawback is that binary search only finds one solution. So, if g had local extrema

in the above example, binary search could converge to any of them. In fact, most

algorithms for nonlinear programming are subject to failure for this reason.

Example 5.1 Binary search can be used to compute the internal rate of return

(IRR) r of an investment. Mathematically, r is the interest rate that satisfies the
equation

F1

1 + r
+ F2

(1 + r )2
+ F3

(1 + r )3
+ · · · + FN

(1 + r )N
− C = 0,

where

Ft = cash flow in year t,

N = number of years,

C = cost of the investment.

For most investments, the above equation has a unique solution and therefore
the IRR is uniquely defined, but one should keep in mind that this is not always
the case. The IRR of a bond is called its yield. As an example, consider a 4-year
non-callable bond with a 10% coupon rate paid annually and a par value of $1000.
Such a bond has the following cash flows:

In Yr. t Ft

1 $100
2 100
3 100
4 1100

Suppose this bond is now selling for $900. Compute the yield of this bond.
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Table 5.1 Binary search to find the IRR of a non-callable bond

Iter. a c b f (a) f (c) f (b)

1 0 0.5 1 500 −541.975 −743.75
2 0 0.25 0.5 500 −254.24 −541.975
3 0 0.125 0.25 500 24.85902 −254.24
4 0.125 0.1875 0.25 24.85902 −131.989 −254.24
5 0.125 0.15625 0.1875 24.85902 −58.5833 −131.989
6 0.125 0.140625 0.15625 24.85902 −18.2181 −58.5833
7 0.125 0.132813 0.140625 24.85902 2.967767 −18.2181
8 0.132813 0.136719 0.140625 2.967767 −7.71156 −18.2181
9 0.132813 0.134766 0.136719 2.967767 −2.39372 −7.71156
10 0.132813 0.133789 0.134766 2.967767 0.281543 −2.39372
11 0.133789 0.134277 0.134766 0.281543 −1.05745 −2.39372
12 0.133789 0.134033 0.134277 0.281543 −0.3883 −1.05745

The yield r of the bond is given by the equation

100

1 + r
+ 100

(1 + r )2
+ 100

(1 + r )3
+ 1100

(1 + r )4
− 900 = 0.

Let us denote by f (r ) the left-hand side of this equation. We find r such that

f (r ) = 0 using binary search.

We start by finding values (a, b) such that f (a) > 0 and f (b) < 0. In this case,

we expect r to be between 0 and 1. Since f (0) = 500 and f (1) = −743.75, we

have our starting values.

Next, we let c = 0.5 (the midpoint) and calculate f (c). Since f (0.5) =
−541.975, we replace our range with a = 0 and b = 0.5 and repeat. When we

continue, we get the table of values shown in Table 5.1.

According to this computation the yield of the bond is approximately r = 13.4%.

Of course, this routine sort of calculation can be easily implemented on a computer.

Exercise 5.1 Find a root of the polynomial f (x) = 5x4 − 20x + 2 in the interval

[0,1] using binary search.

Exercise 5.2 Compute the yield on a six-year non-callable bond that makes 5%

coupon payments in years 1, 3, and 5, coupon payments of 10% in years 2 and 4,

and pays the par value in year 6.

Exercise 5.3 The well-known Black–Scholes–Merton option pricing formula has

the following form for European call option prices:

C(K , T ) = S0�(d1) − K e−rT�(d2),
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where

d1 = log(S0/K ) + (r + σ 2/2)T

σ
√

T
,

d2 = d1 − σ
√

T ,

and �(·) is the cumulative distribution function for the standard normal distribution.

r in the formula represents the continuously compounded risk-free and constant

interest rate and σ is the volatility of the underlying security that is assumed to be

constant. S0 denotes the initial price of the security, K and T are the strike price and

maturity of the option. Given the market price of a particular option and an estimate

for the interest rate r , the unique value of the volatility parameter σ that satisfies

the pricing equation above is called the implied volatility of the underlying security.

Calculate the implied volatility of a stock currently valued at $20 if a European call

option on this stock with a strike price of $18 and a maturity of three months is

worth $2.20. Assume a zero interest rate and use binary search.

Golden section search

Golden section search is similar in spirit to binary search. It can be used to solve

a univariate equation as above, or to compute the maximum of a function f (x)

defined on an interval [a, b]. The discussion here is for the optimization version.

The main difference between the golden section search and the binary search is in

the way the new confidence interval is generated from the old one.

We assume that:

1. f is continuous;

2. f has a unique local maximum in the interval [a, b].

The golden search method consists in computing f (c) and f(d) for a <d <c<b.

� If f (c) > f (d), the procedure is repeated with the interval (a, b) replaced by (d, b).
� If f (c) < f (d), the procedure is repeated with the interval (a, b) replaced by (a, c).

Remark 5.1 The name “golden section” comes from a certain choice of c and
d that yields fast convergence, namely c = a + r (b − a) and d = b + r (a − b),
where r = (

√
5 − 1)/2 = 0.618034 . . .. This is the golden ratio, already known to

the ancient Greeks.

Example 5.2 Find the maximum of the function x5 − 10x2 + 2x in the interval
[0, 1].

In this case, we begin with a = 0 and b = 1. Using golden section search, that

gives d = 0.382 and c = 0.618. The function values are f (a) = 0, f (d) = −0.687,

f (c) = −2.493, and f (b) = −7. Since f (c) < f (d), our new range is a = 0, b =
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Table 5.2 Golden section search in Example 5.2

Iter. a d c b f (a) f (d) f (c) f (b)

1 0 0.382 0.618 1 0 −0.6869 −2.4934 −7
2 0 0.2361 0.382 0.618 0 −0.0844 −0.6869 −2.4934
3 0 0.1459 0.2361 0.382 0 0.079 −0.0844 −0.6869
4 0 0.0902 0.1459 0.2361 0 0.099 0.079 −0.0844
5 0 0.0557 0.0902 0.1459 0 0.0804 0.099 0.079
6 0.0557 0.0902 0.1115 0.1459 0.0804 0.099 0.0987 0.079
7 0.0557 0.077 0.0902 0.1115 0.0804 0.0947 0.099 0.0987
8 0.077 0.0902 0.0983 0.1115 0.0947 0.099 0.1 0.0987
9 0.0902 0.0983 0.1033 0.1115 0.099 0.1 0.0999 0.0987

10 0.0902 0.0952 0.0983 0.1033 0.099 0.0998 0.1 0.0999
11 0.0952 0.0983 0.1002 0.1033 0.0998 0.1 0.1 0.0999
12 0.0983 0.1002 0.1014 0.1033 0.1 0.1 0.1 0.0999
13 0.0983 0.0995 0.1002 0.1014 0.1 0.1 0.1 0.1
14 0.0995 0.1002 0.1007 0.1014 0.1 0.1 0.1 0.1
15 0.0995 0.0999 0.1002 0.1007 0.1 0.1 0.1 0.1
16 0.0995 0.0998 0.0999 0.1002 0.1 0.1 0.1 0.1
17 0.0998 0.0999 0.1 0.1002 0.1 0.1 0.1 0.1
18 0.0999 0.1 0.1001 0.1002 0.1 0.1 0.1 0.1
19 0.0999 0.1 0.1 0.1001 0.1 0.1 0.1 0.1
20 0.0999 0.1 0.1 0.1 0.1 0.1 0.1 0.1
21 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.618. Recalculating from the new range gives d = 0.236, c = 0.382 (note that our

current c was our previous d: it is this reuse of calculated values that gives golden

section search its speed). We repeat this process to get Table 5.2.

Exercise 5.4 One of the most fundamental techniques of statistical analysis is the

method of maximum likelihood estimation. Given a sample set of independently

drawn observations from a parametric distribution, the estimation problem is to

determine the values of the distribution parameters that maximize the probability

that the observed sample set comes from this distribution. See Nocedal and Wright

[61], page 255, for example.

Consider, for example, the observations x1 = −0.24, x2 = 0.31, x3 = 2.3, and

x4 = −1.1 sampled from a normal distribution. If the mean of the distribution is

known to be 0, what is the maximum likelihood estimate of the standard deviation,

σ? Construct the log-likelihood function and maximize it using golden section

search.

5.3.2 Newton’s method

The main workhorse of many optimization algorithms is a centuries-old technique

for the solution of nonlinear equations developed by Sir Isaac Newton. We will
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discuss the multivariate version of Newton’s method later. We focus on the univari-

ate case first. For a given nonlinear function f we want to find an x such that

f (x) = 0.

Assume that f is continuously differentiable and that we currently have an estimate

xk of the solution (we will use superscripts for iteration indices in the following

discussion). The first-order (i.e., linear) Taylor series approximation to the function

f around xk can be written as follows:

f (xk + δ) ≈ f̂ (δ) := f (xk) + δ f ′(xk).

This is equivalent to saying that we can approximate the function f by the line f̂ (δ)

that is tangent to it at xk . If the first-order approximation f̂ (δ) were perfectly good,

and if f ′(xk) 	= 0, the value of δ that satisfies

f̂ (δ) = f (xk) + δ f ′(xk) = 0

would give us the update on the current iterate xk necessary to get to the solution.

This value of δ is computed easily:

δ = − f (xk)

f ′(xk)
.

The expression above is called the Newton update and Newton’s method determines

its next estimate of the solution as

xk+1 = xk + δ = xk − f (xk)

f ′(xk)
.

Since f̂ (δ) is only an approximation to f (xk + δ), we do not have a guarantee that

f (xk+1) is zero, or even small. However, as we discuss below, when xk is close

enough to a solution of the equation f (x) = 0, xk+1 is even closer. We can then

repeat this procedure until we find an xk such that f (xk) = 0, or in most cases, until

f (xk) becomes reasonably small, say, less than some pre-specified ε > 0.

There is an intuitive geometric explanation of the procedure we just described:

we first find the line that is tangent to the function at the current iterate, then we

calculate the point where this line intersects the x-axis and set the next iterate to

this value and repeat the process. See Figure 5.1 for an illustration.

Example 5.3 Let us recall Example 5.1 where we computed the IRR of an invest-
ment. Here we solve the problem using Newton’s method. Recall that the yield r
must satisfy the equation

f (r ) = 100

1 + r
+ 100

(1 + r )2
+ 100

(1 + r )3
+ 1100

(1 + r )4
− 900 = 0.
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Figure 5.1 First step of Newton’s method in Example 5.3

The derivative of f (r ) is easily computed:

f ′(r ) = − 100

(1 + r )2
− 200

(1 + r )3
− 300

(1 + r )4
− 4400

(1 + r )5
.

We need to start Newton’s method with an initial guess, let us choose x0 = 0.
Then

x1 = x0 − f (0)

f ′(0)

= 0 − 500

−5000
= 0.1.

We mentioned above that the next iterate of Newton’s method is found by calculating
the point where the line tangent to f at the current iterate intersects the axis. This
observation is illustrated in Figure 5.1.

Since f (x1) = f (0.1) = 100 is far from zero we continue by substituting x1

into the Newton update formula to obtain x2 = 0.131547080371 and so on. The
complete iteration sequence is given in Table 5.3.

A few comments on the speed and reliability of Newton’s method are in order.

Under favorable conditions, Newton’s method converges very fast to a solution

of a nonlinear equation. Indeed, if xk is sufficiently close to a solution x∗ and if

f ′(x∗) 	= 0, then the following relation holds:

xk+1 − x∗ ≈ C(xk − x∗)2 with C = f ′′(x∗)

2 f ′(x∗)
. (5.2)
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Table 5.3 Newton’s method for Example 5.3

k xk f (xk)

0 0.000000000000 500.000000000000
1 0.100000000000 100.000000000000
2 0.131547080371 6.464948211497
3 0.133880156946 0.031529863053
4 0.133891647326 0.000000758643
5 0.133891647602 0.000000000000

Equation (5.2) indicates that the error in our approximation (xk − x∗) is approxi-

mately squared in each iteration. This behavior is called the quadratic convergence
of Newton’s method. Note that the number of correct digits is doubled in each

iteration of the example above and the method required much fewer iterations than

the binary search approach.

However, when the “favorable conditions” we mentioned above are not satis-

fied, Newton’s method may fail to converge to a solution. For example, consider

f (x) = x3 − 2x + 2. Starting at 0, one would obtain iterates cycling between 1 and

0. Starting at a point close to 1 or 0, one similarly gets iterates alternating in close

neighborhoods of 1 and 0, without ever reaching the root around −1.76. Therefore,

it often has to be modified before being applied to general problems. Common mod-

ifications of Newton’s method include the line-search and trust-region approaches.

We briefly discuss line search approaches in Section 5.3.3. More information on

these methods can be found in standard numerical optimization texts such as [61].

Next, we derive a variant of Newton’s method that can be applied to univariate

optimization problems. If the function to be minimized/maximized has a unique

minimizer/maximizer and is twice differentiable, we can do the following. Dif-

ferentiability and the uniqueness of the optimizer indicate that x∗ maximizes (or

minimizes) g(x) if and only if g′(x∗) = 0. Defining f (x) = g′(x) and applying

Newton’s method to this function we obtain iterates of the following form:

xk+1 = xk − f (xk)

f ′(xk)
= xk − g′(xk)

g′′(xk)
.

Example 5.4 Let us apply the optimization version of Newton’s method to Exam-
ple 5.2 . Recalling that f (x) = x5 − 10x2 + 2x, we have f ′(x) = 5x4 − 20x + 2

and f ′′(x) = 20(x3 − 1). Thus, the Newton update formula is given as

xk+1 = xk − 5(xk)4 − 20xk + 2

20[(xk)3 − 1]
.

Starting from 0 and iterating we obtain the sequence given in Table 5.4.
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Table 5.4 Iterates of Newton’s method in Example 5.4

k xk f (xk) f ′(xk)

0 0.000000000000 0.000000000000 2.000000000000
1 0.100000000000 0.100010000000 0.000500000000
2 0.100025025025 0.100010006256 0.000000000188
3 0.100025025034 0.100010006256 0.000000000000

Once again, observe that Newton’s method converged very rapidly to the solution

and generated several more digits of accuracy than the golden section search. Note,

however, that the method would have failed if we had chosen x0 = 1 as our starting

point.

Exercise 5.5 Repeat Exercises 5.2, 5.3, and 5.4 using Newton’s method.

Exercise 5.6 We derived Newton’s method by approximating a given function f
using the first two terms of its Taylor series at the current point xk . When we use

Taylor series approximation to a function, there is no a priori reason that tells us to

stop at two terms. We can consider, for example, using the first three terms of the

Taylor series expansion of the function to get a quadratic approximation. Derive a

variant of Newton’s method that uses this approximation to determine the roots of

the function f . Can you determine the rate of convergence for this new method,

assuming that the method converges?

5.3.3 Approximate line search

When we are optimizing a univariate function, sometimes it is not necessary to find

the minimizer/maximizer of the function very accurately. This is especially true

when the univariate optimization is only one of the steps in an iterative procedure

for optimizing a more complicated function. This happens, for example, when the

function under consideration corresponds to the values of a multivariate function

along a fixed direction. In such cases, one is often satisfied with a new point that

provides a sufficient amount of improvement over the previous point. Typically, a

point with sufficient improvement can be determined much quicker than the exact

minimizer of the function that results in a shorter computation time for the overall

algorithm.

The notion of “sufficient improvement” must be formalized to ensure that such an

approach will generate convergent iterates. Say we wish to minimize the nonlinear,

differentiable function f (x) and we have a current estimate xk of its minimizer. As-

sume that f ′(xk) < 0, which indicates that the function will decrease by increasing
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f (xk)
f (xk + d )

d

f (xk) + md f ′(xk)

Acceptable values of d

Figure 5.2 Armijo–Goldstein sufficient decrease condition

xk . Recall the linear Taylor series approximation to the function:

f (xk + δ) ≈ f̂ (δ) := f (xk) + δ f ′(xk).

The derivative of the function f ′(xk) gives a prediction of the decrease in the

function value as we move forward from xk . If f has a minimizer, we can not

expect that it will decrease forever as we increase xk like its linear approximation

above. We can require, however, that we find a new point such that the improvement

in the function value is at least a fraction of the improvement predicted by the linear

approximation. Mathematically, we can require that

f (xk + δ) ≤ f (xk) + μδ f ′(xk), (5.3)

where μ ∈ (0, 1) is the desired fraction. This sufficient decrease requirement is

often called the Armijo–Goldstein condition. See Figure 5.2 for an illustration.

Among all step sizes satisfying the sufficient decrease condition, one would

typically prefer as large a step size as possible. However, trying to find the maxi-

mum such step size accurately will often be too time consuming and will beat the

purpose of this approximation approach. A typical strategy used in line search is

backtracking. We start with a reasonably large initial estimate. We check whether

this step size satisfies condition (5.3). If it does, we accept this step size, modify

our estimate and continue. If not, we backtrack by using a step size that is a fraction

of the previous step size we tried. We continue to backtrack until we obtain a step

size satisfying the sufficient decrease condition. For example, if the initial step size

is 5 and we use the fraction 0.8, first backtracking iteration will use a step size of

4, then 3.2, and so on.
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Exercise 5.7 Consider the function f (x) = (1/4)x4 − x2 + 2x − 1. We want to

minimize this function using Newton’s method. Verify that starting at a point close

to 0 or 1 and using Newton’s method, one would obtain iterates alternating between

close neighborhoods of 0 and 1 and never converge. Apply Newton’s method to

this problem with the Armijo–Goldstein condition and backtracking starting from

the point 0. Use μ = 0.5 and a backtracking ratio of 0.9. Experiment with other

values of μ ∈ (0, 1) and the backtracking ratio.

Exercise 5.8 Re-solve Exercise 5.4 using the optimization version of Newton’s

method with line search and backtracking. Use μ = 0.1 and a backtracking ratio

of 0.8.

Exercise 5.9 As Figure 5.2 illustrates, the Armijo–Goldstein condition disallows

step sizes that are too large and beyond which the predictive power of the gradient

of the function is weak. Backtracking strategy balances this by trying to choose as

large an acceptable value of the step size as possible, ensuring that the step size is

not too small. Another condition, called the Wolfe condition, rules out step sizes

that are too small by requiring that

‖ f ′(xk + δ)‖ ≤ η‖ f ′(xk)‖
for some η ∈ [0, 1]. The motivation for this condition is that, for a differentiable

function f , minimizers (or maximizers) will occur at points where the derivative

of the function is zero. The Wolfe condition seeks points whose derivatives are

closer to zero than the current point. Interpret the Wolfe condition geometrically

on Figure 5.2. For function f (x) = (1/4)x4 − x2 + 2x − 1 with current iterate

xk = 0.1 determine the Newton update and calculate which values of the step size

satisfy the Wolfe condition for η = 1/4 and also for η = 3/4.

5.4 Unconstrained optimization

We now move on to nonlinear optimization problems with multiple variables. First,

we will focus on problems that have no constraints. Typical examples of uncon-

strained nonlinear optimization problems arise in model fitting and regression. The

study of unconstrained problems is also important for constrained optimization as

one often solves a sequence of unconstrained problems as subproblems in various

algorithms for the solution of constrained problems.

We use the following generic format for unconstrained nonlinear programs we

consider in this section:

min f (x), where x = (x1, . . . , xn).

For simplicity, we will restrict our discussion to minimization problems. These

ideas can be trivially adapted for maximization problems.
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5.4.1 Steepest descent

The simplest numerical method for finding a minimizing solution is based on the

idea of going downhill on the graph of the function f . When the function f is

differentiable, its gradient always points in the direction of fastest initial increase

and the negative gradient is the direction of fastest decrease. This suggests that,

if our current estimate of the minimizing point is x∗, moving in the direction of

−∇ f (x∗) is desirable. Once we choose a direction, deciding how far we should

move along this direction is determined using line search. The line search problem

is a univariate problem that can be solved, perhaps in an approximate fashion,

using the methods of the previous section. This will provide a new estimate of the

minimizing point and the procedure can be repeated.

We illustrate this approach with the following example:

min f (x) = (x1 − 2)4 + exp(x1 − 2) + (x1 − 2x2)2.

The first step is to compute the gradient of the function, namely the vector of the

partial derivatives of the function with respect to each variable:

∇ f (x) =
[

4(x1 − 2)3 + exp(x1 − 2) + 2(x1 − 2x2)

−4(x1 − 2x2)

]
. (5.4)

Next, we need to choose a starting point. We arbitrarily select the point x0 = (0, 3).

Now we are ready to compute the steepest descent direction at point x0. It is the

direction opposite to the gradient vector computed at x0, namely

d0 = −∇ f (x0) =
[

44 + e−2

−24

]
.

If we move from x0 in the direction d0, using a step size α, we get a new point

x0 + αd0 (α = 0 corresponds to staying at x0). Since our goal is to minimize f ,

we will try to move to a point x1 = x0 + αd0, where α is chosen to approximately

minimize the function along this direction. For this purpose, we evaluate the value

of the function f along the steepest descent direction as a function of the step

size α:

φ(α) := f (x0 + αd0) = {[0 + (44 + e−2)α] − 2}4 + exp{[0 + (44 + e−2)α] − 2}
+ {[0 + (44 + e−2)α] − 2[3 − 24α]}2.

Now, the optimal value of α can be found by solving the one-dimensional mini-

mization problem min φ(α).

This minimization can be performed through one of the numerical line search

procedures of the previous section. Here we use the approximate line search ap-

proach with sufficient decrease condition we discussed in Section 5.3.3. We want
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to choose a step size alpha satisfying

φ(α) ≤ φ(0) + μαφ′(0),

where μ ∈ (0, 1) is the desired fraction for the sufficient decrease condition. We

observe that the derivative of the function φ at 0 can be expressed as

φ ′(0) = ∇ f (x0)Td0.

This is the directional derivative of the function f at point x0 and direction d0.

Using this identity the sufficient decrease condition on function φ can be written

in terms of the original function f as follows:

f (x0 + αd0) ≤ f (x0) + μα∇ f (x0)Td0. (5.5)

The condition (5.5) is the multivariate version of the Armijo–Goldstein condition

(5.3).

As discussed in Section 5.3.3, the sufficient decrease condition (5.5) can be

combined with a backtracking strategy. For this example, we use μ = 0.3 for the

sufficient decrease condition and apply backtracking with an initial trial step size

of 1 and a backtracking factor of β = 0.8. Namely, we try step sizes 1, 0.8, 0.64,

0.512, and so on, until we find a step size of the form 0.8k that satisfied the Armijo–

Goldstein condition. The first five iterates of this approach as well as the 20th iterate

are given in Table 5.5. For completeness, one also has to specify a termination cri-

terion for the approach. Since the gradient of the function must be the zero vector at

an unconstrained minimizer, most implementations will use a termination criterion

of the form ‖∇ f (x)‖ ≤ ε, where ε > 0 is an appropriately chosen tolerance param-

eter. Alternatively, one might stop when successive iterations are getting very close

to each other, that is when ‖xk+1 − xk‖ ≤ ε for some ε > 0. This last condition

indicates that progress has stalled. While this may be due to the fact that iterates

approached the optimizer and can not progress any more, there are instances where

the stalling is due to the high degree of nonlinearity in f .

A quick examination of Table 5.5 reveals that the signs of the second coordinate

of the steepest descent directions change from one iteration to the next in most

cases. What we are observing is the zigzagging phenomenon, a typical feature of

steepest descent approaches that explain their slow convergence behavior for most

problems. When we pursue the steepest descent algorithm for more iterations, the

zigzagging phenomenon becomes even more pronounced and the method is slow to

converge to the optimal solution x∗ ≈ (1.472, 0.736). Figure 5.3 shows the steepest

descent iterates for our example superimposed on the contour lines of the objective

function. Steepest descent directions are perpendicular to the contour lines and

zigzag between the two sides of the contour lines, especially when these lines create

long and narrow corridors. It takes more than 30 steepest descent iterations in this
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Table 5.5 Steepest descent iterations

k
(
xk

1 , xk
2

) (
dk

1 , dk
2

)
αk ‖∇ f (xk+1)‖

0 (0.000, 3.000) (43.864, −24.000) 0.055 3.800
1 (2.412, 1.681) (0.112, −3.799) 0.168 2.891
2 (2.430, 1.043) (−2.544, 1.375) 0.134 1.511
3 (2.089, 1.228) (−0.362, −1.467) 0.210 1.523
4 (2.013, 0.920) (−1.358, 0.690) 0.168 1.163
5 (1.785, 1.036) (−0.193, −1.148) 0.210 1.188
...

...
...

...
...

20 (1.472, 0.736) (−0.001, 0.000) 0.134 0.001
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Figure 5.3 Zigzagging behavior in the steepest descent approach

small example to achieve ‖∇ f (x)‖ ≤ 10−5. In summary, while the steepest descent

approach is easy to implement and intuitive, and has relatively cheap iterations, it

can also be quite slow to converge to solutions.

Exercise 5.10 Consider a differentiable multivariate function f (x) that we wish

to minimize. Let xk be a given estimate of the solution, and consider the first-order

Taylor series expansion of the function around xk :

f̂ (δ) = f (xk) + ∇ f (x)
δ.

The quickest decrease in f̂ starting from xk is obtained in the direction that solves

min f̂ (δ)

‖δ‖ ≤ 1.
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Show that the solution is δ∗ = α∇ f (x) with some α < 0, i.e., the opposite direction

to the gradient is the direction of steepest descent.

Exercise 5.11 Recall the maximum likelihood estimation problem we considered

in Exercise 5.4 . While we maintain the assumption that the observed samples come

from a normal distribution, we will no longer assume that we know the mean of the

distribution to be zero. In this case, we have a two-parameter (mean μ and standard

deviation σ ) maximum likelihood estimation problem. Solve this problem using

the steepest descent method.

5.4.2 Newton’s method

There are several numerical techniques for modifying the method of steepest de-

scent that reduce the propensity of this approach to zigzag, and thereby speed up

convergence. The steepest descent method uses the gradient of the objective func-

tion, only a first-order information on the function. Improvements can be expected

by employing second-order information on the function, that is by considering its

curvature. Methods using curvature information include Newton’s method that we

have already discussed in the univariate setting. Here, we describe the generalization

of this method to multivariate problems.

Once again, we begin with the version of the method for solving equations. We

will look at the case where there are several equations involving several variables:

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0
...

...

fn(x1, x2, . . . , xn) = 0.

(5.6)

Let us represent this system as

F(x) = 0,

where x is a vector of n variables and F(x) is an IRn-valued function with com-

ponents f1(x), . . . , fn(x). We repeat the procedure in Section 5.3.2: first, we write

the first-order Taylor’s series approximation to the function F around the current

estimate xk :

F(xk + δ) ≈ F̂(δ) := F(xk) + ∇F(xk)δ. (5.7)

Above, ∇F(x) denotes the Jacobian matrix of the function F , i.e., ∇F(x) has rows

(∇ f1(x))
, . . . , (∇ fn(x))
, the transposed gradients of the functions f1 through

fn . We denote the components of the n-dimensional vector x using subscripts, i.e.,
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x = (x1, . . . , xn). Let us make these statements more precise:

∇F(x1, . . . , xn) =

⎡
⎢⎣

∂ f1

∂x1
· · · ∂ f1

∂xn
...

. . .
...

∂ fn

∂x1
· · · ∂ fn

∂xn

⎤
⎥⎦ .

As before, F̂(δ) is the linear approximation to the function F by the hyperplane

that is tangent to it at the current point xk . The next step is to find the value of δ

that would make the approximation equal to zero, i.e., the value that satisfies:

F(xk) + ∇F(xk)δ = 0.

Notice that what we have on the right-hand side is a vector of zeros and the equation

above represents a system of linear equations. If ∇F(xk) is nonsingular, the equality

above has a unique solution given by

δ = −∇F(xk)−1 F(xk),

and the formula for the Newton update in this case is:

xk+1 = xk + δ = xk − ∇F(xk)−1 F(xk).

Example 5.5 Consider the following problem:

F(x) = F(x1, x2) =
(

f1(x1, x2)

f2(x1, x2)

)

=
(

x1x2 − 2x1 + x2 − 2

(x1)2 + 2x1 + (x2)2 − 7x2 + 7

)
= 0.

First we calculate the Jacobian:

∇F(x1, x2) =
(

x2 − 2 x1 + 1

2x1 + 2 2x2 − 7

)
.

If our initial estimate of the solution is x0 = (0, 0), then the next point generated
by Newton’s method will be:

(
x1

1 , x1
2

) = (
x0

1 , x0
2

) −
(

x0
2 − 2 x0

1 + 1

2x0
1 + 2 2x0

2 − 7

)−1
(

x0
1 x0

2 − 2x0
1 + x0

2 − 2(
x0

1

)2 + 2x0
1 + (

x0
2

)2 − 7x0
2 + 7

)

= (0, 0) −
(−2 1

2 −7

)−1 (−2

7

)

= (0, 0) −
(

7

12
, −5

6

)
=

(
− 7

12
,

5

6

)
.
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Optimization version

When we use Newton’s method for unconstrained optimization of a twice-

differentiable function f (x), the nonlinear equality system that we want to solve is

the first-order necessary optimality condition ∇ f (x) = 0. In this case, the functions

fi (x) in (5.6) are the partial derivatives of the function f . That is,

fi (x) = ∂ f

∂xi
(x1, x2, . . . , xn).

Writing

F(x1, x2, . . . , xn) =

⎡
⎢⎢⎢⎣

f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

∂ f
∂x1

(x1, x2, . . . , xn)

∂ f
∂xi

(x1, x2, . . . , xn)
...

∂ f
∂xn

(x1, x2, . . . , xn)

⎤
⎥⎥⎥⎥⎥⎦

= ∇ f (x),

we observe that the Jacobian matrix ∇F(x1, x2, . . . , xn) is nothing but the Hessian
matrix of function f :

∇F(x1, x2, . . . , xn) =

⎡
⎢⎢⎣

∂2 f
∂x1∂x1

· · · ∂2 f
∂x1∂xn

...
. . .

...
∂2 f

∂xn∂x1
· · · ∂2 f

∂xn∂xn

⎤
⎥⎥⎦ = ∇2 f (x).

Therefore, the Newton direction at iterate xk is given by

δ = −∇2 f (xk)−1∇ f (xk) (5.8)

and the Newton update formula is

xk+1 = xk + δ = xk − ∇ f 2(xk)−1∇ f (xk).

For illustration and comparison purposes, we apply this technique to the example

problem of Section 5.4.1. Recall that the problem was to find

min f (x) = (x1 − 2)4 + exp(x1 − 2) + (x1 − 2x2)2

starting from x0 = (0, 3).
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Table 5.6 Newton iterations

k
(
xk

1 , xk
2

) (
dk

1 , dk
2

)
αk ‖∇ f (xk+1)‖

0 (0.000, 3.000) (0.662, −2.669) 1.000 9.319
1 (0.662, 0.331) (0.429, 0.214) 1.000 2.606
2 (1.091, 0.545) (0.252, 0.126) 1.000 0.617
3 (1.343, 0.671) (0.108, 0.054) 1.000 0.084
4 (1.451, 0.726) (0.020, 0.010) 1.000 0.002
5 (1.471, 0.735) (0.001, 0.000) 1.000 0.000

The gradient of f was given in (5.4) and the Hessian matrix is given below:

∇2 f (x) =
[

12(x1 − 2)2 + exp(x1 − 2) + 2 −4

−4 8

]
. (5.9)

Thus, we calculate the Newton direction at x0 = (0, 3) as follows:

δ = −∇2 f

([
0

3

])−1

∇ f

([
0

3

])

= −
[

50 + e−2 −4

−4 8

]−1 [−44 + e−2

24

]
=

[
0.662

−2.669

]
.

We list the first five iterates in Table 5.6 and illustrate the rapid progress of the

algorithm towards the optimal solution in Figure 5.4. Note that the ideal step size for

Newton’s method is almost always 1. In our example, this step size always satisfied

the sufficient decrease condition and was chosen in each iteration. Newton’s method

identifies a point with ‖∇ f (x)‖ ≤ 10−5 after seven iterations.
Despite its excellent convergence behavior close to a solution, Newton’s method

is not always the best option, especially for large-scale optimization. Often the

Hessian matrix is expensive to compute at each iteration. In such cases, it may be

preferable to use an approximation of the Hessian matrix instead. These approxima-

tions are usually chosen in such a way that the solution of the linear system in (5.8)

is much cheaper that what it would be with the exact Hessian. Such approaches are

known as quasi-Newton methods. Most popular variants of quasi-Newton methods

are BFGS and DFP methods. These acronyms represent the developers of these al-

gorithms in the late 1960s and early 1970s. Detailed information on quasi-Newton

approaches can be found in, for example, [61].

Exercise 5.12 Repeat Exercise 5.11 , this time using the optimization version of

Newton’s method. Use line search with μ = 1/2 in the Armijo–Goldstein condition

and a backtracking ratio of β = 1/2.
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Figure 5.4 Rapid convergence of Newton’s method

5.5 Constrained optimization

We now move on to the more general case of nonlinear optimization problems with

constraints. Specifically, we consider an optimization problem given by a nonlinear

objective function and/or nonlinear constraints. We can represent such problems in

the following generic form:

minx f (x)

gi (x) = 0, i ∈ E,

gi (x) ≥ 0, i ∈ I.

(5.10)

In the remainder of this section we assume that f and gi , i ∈ E ∪ I, are all con-

tinuously differentiable functions.

An important tool in the study of constrained optimization problems is the

Lagrangian function. To define this function, one associates a multiplier λi – the

so-called Lagrange multiplier – with each one of the constraints. For problem (5.10)

the Lagrangian is defined as follows:

L(x, λ) := f (x) −
∑

i∈E∪I
λi gi (x). (5.11)

Essentially, we are considering an objective function that is penalized for viola-

tions of the feasibility constraints. For properly chosen values of λi , minimizing

the unconstrained function L(x, λ) is equivalent to solving the constrained opti-

mization problem (5.10). This equivalence is the primary reason for our interest in

the Lagrangian function.
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One of the most important theoretical issues related to this problem is the iden-

tification of necessary and sufficient conditions for optimality. Collectively, these

conditions are called the optimality conditions and are the subject of this section.

Before presenting the optimality conditions for (5.10) we first discuss a technical

condition called regularity that is encountered in the theorems that follow:

Definition 5.1 Let x be a vector satisfying gi (x) = 0, i ∈ E and gi (x) ≥ 0, i ∈ I.
Let J ⊂ I be the set of indices for which gi (x) ≥ 0 is satisfied with equality. Then,
x is a regular point of the constraints of (5.10) if the gradient vectors ∇gi (x) for
i ∈ E ∪ J are linearly independent.

Constraints corresponding to the set E ∪ J in the definition above, namely, the

constraints for which we have gi (x) = 0, are called the active constraints at x .

We discussed two notions of optimality in Chapter 1, local and global. Recall that

a global optimal solution to (5.10) is a vector x∗ that is feasible and satisfies f (x∗) ≤
f (x) for all feasible x . In contrast, a local optimal solution x∗ is feasible and satisfies

f (x∗) ≤ f (x) for all feasible x in the set {x : ‖x − x∗‖ ≤ ε} for some ε > 0. So,

a local solution must be better than all the feasible points in a neighborhood of

itself. The optimality conditions we consider below identify local solutions only,

which may or may not be global solutions to the problem. Fortunately, there is

an important class of problems where local and global solutions coincide, namely

convex optimization problems. See Appendix A for a discussion on convexity and

convex optimization problems.

Theorem 5.1 (First-order necessary conditions) Let x∗ be a local minimizer
of the problem (5.10) and assume that x∗ is a regular point for the constraints of
this problem. Then, there exists λi , i ∈ E ∪ I such that

∇ f (x∗) −
∑

i∈E∪I
λi∇gi (x

∗) = 0, (5.12)

λi ≥ 0, i ∈ I, (5.13)

λi gi (x
∗) = 0, i ∈ I. (5.14)

Note that the expression on the left-hand side of (5.12) is the gradient of the

Lagrangian function L(x, λ) with respect to the variables x . First-order conditions

are satisfied at local minimizers as well as local maximizers and saddle points.

When the objective and constraint functions are twice continuously differentiable,

one can eliminate maximizers and saddle points using curvature information on the

functions. As in Theorem 5.1 , we consider the Lagrangian function L(x, λ) and

use the Hessian of this function with respect to the x variables to determine the

collective curvature in the objective function as well as the constraint functions at

the current point.
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Theorem 5.2 (Second-order necessary conditions) Assume that f and gi , i ∈
E ∪ I are all twice continuously differentiable functions. Let x∗ be a local minimizer
of the problem (5.10) and assume that x∗ is a regular point for the constraints of
this problem. Then, there exists λi , i ∈ E ∪ I satisfying (5.12)–(5.14) as well as
the following condition:

∇2 f (x∗) −
∑

i∈E∪I
λi∇2gi (x

∗) (5.15)

is positive semidefinite on the tangent subspace of active constraints at x∗.

The last part of the theorem above can be restated in terms of the Jacobian of the

active constraints. Let A(x∗) denote the Jacobian of the active constraints at x∗ and

let N (x∗) be a null-space basis for A(x∗). Then, the last condition of the theorem

above is equivalent to the following condition:

N T(x∗)

(
∇2 f (x∗) −

∑
i∈E∪I

λi∇2gi (x
∗)

)
N (x∗) (5.16)

is positive semidefinite.

The satisfaction of the second-order necessary conditions does not always guar-

antee the local optimality of a given solution vector. The conditions that are sufficient

for local optimality are slightly more stringent and a bit more complicated since

they need to consider the possibility of degeneracy.

Theorem 5.3 (Second-order sufficient conditions) Assume that f and gi , i ∈
E ∪ I are all twice continuously differentiable functions. Let x∗ be a feasible and
regular point for the constraints of the problem (5.10). Let A(x∗) denote the Jacobian
of the active constraints at x∗ and let N (x∗) be a null-space basis for A(x∗). If there
exists λi , i ∈ E ∪ I satisfying (5.12)–(5.14) as well as

gi (x
∗) = 0, i ∈ I implies λi > 0, (5.17)

and

N T(x∗)

(
∇2 f (x∗) −

∑
i∈E∪I

λi∇2gi (x
∗)

)
N (x∗) is positive definite, (5.18)

then x∗ is a local minimizer of the problem (5.10).

The conditions listed in Theorems 5.1 , 5.2 , and 5.3 are often called the Karush–

Kuhn–Tucker (KKT) conditions, after their inventors.

Some methods for solving constrained optimization problems formulate a se-

quence of simpler optimization problems whose solutions are used to generate

iterates progressing towards the solution of the original problem. These “simpler”
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problems can be unconstrained, in which case they can be solved using the tech-

niques we saw in the previous section. We discuss such a strategy in Section 5.5.1. In

other cases, the simpler problem solved is a quadratic programming problem and can

be solved using the techniques of Chapter 7. The prominent example of this strategy

is the sequential quadratic programming method that we discuss in Section 5.5.2.

Exercise 5.13 Recall the definition of the quadratic programming problem given

in Chapter 1:

minx
1
2
xT Qx + cTx

Ax = b
x ≥ 0,

(5.19)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn , Q ∈ IRn×n are given, and x ∈ IRn . Assume

that Q is symmetric and positive definite. Derive the KKT conditions for this

problem. Show that the first-order necessary conditions are also sufficient given

our assumptions.

Exercise 5.14 Consider the following optimization problem:

min f (x1, x2) = −x1 − x2 − x1x2 + 1
2
x2

1 + x2
2

s.t. x1 + x2
2 ≤ 3

and (x1, x2) ≥ 0.

List the Karush–Kuhn–Tucker optimality conditions for this problem. Verify that

x∗ = (2, 1) is a local optimal solution to this problem by finding Lagrange mul-

tipliers λi satisfying the KKT conditions in combination with x∗. Is x∗ = (2, 1) a

global optimal solution?

5.5.1 The generalized reduced gradient method

In this section, we introduce an approach for solving constrained nonlinear pro-

grams. It builds on the method of steepest descent method we discussed in the

context of unconstrained optimization. The idea is to reduce the number of vari-

ables using the constraints and then to solve this reduced and unconstrained problem

using the steepest descent method.

Linear equality constraints

First we consider an example where the constraints are linear equations.

Example 5.6

min f (x) = x2
1 + x2 + x2

3 + x4

g1(x) = x1 + x2 + 4x3 + 4x4 − 4 = 0

g2(x) = −x1 + x2 + 2x3 − 2x4 + 2 = 0.
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It is easy to solve the constraint equations for two of the variables in terms of the
others. Solving for x2 and x3 in terms of x1 and x4 gives

x2 = 3x1 + 8x4 − 8 and x3 = −x1 − 3x4 + 3.

Substituting these expressions into the objective function yields the following re-
duced problem:

min f (x1, x4) = x2
1 + (3x1 + 8x4 − 8) + (−x1 − 3x4 + 3)2 + x4.

This problem is unconstrained and therefore it can be solved using one of the
methods presented in Section 5.4.

Nonlinear equality constraints

Now consider the possibility of approximating a problem where the constraints are

nonlinear equations by a problem with linear equations. To see how this works,

consider the following example, which is similar to the preceding one but has

constraints that are nonlinear.

Example 5.7

min f (x) = x2
1 + x2 + x2

3 + x4

g1(x) = x2
1 + x2 + 4x3 + 4x4 − 4 = 0

g2(x) = −x1 + x2 + 2x3 − 2x2
4 + 2 = 0.

We use the Taylor series approximation to the constraint functions at the current
point x̄:

g(x) ≈ g(x̄) + ∇g(x̄)(x − x̄)T.

This gives

g1(x) ≈ (
x̄2

1 + x̄2 + 4x̄3 + 4x̄4 − 4
) + (2x̄1, 1, 4, 4)

⎛
⎜⎜⎝

x1 − x̄1

x2 − x̄2

x3 − x̄3

x4 − x̄4

⎞
⎟⎟⎠

≈ 2x̄1x1 + x2 + 4x3 + 4x4 − (
x̄2

1 + 4
) = 0

and

g2(x) ≈ −x1 + x2 + 2x3 − 4x̄4x4 + (
x̄2

4 + 2
) = 0.

The idea of the generalized reduced gradient algorithm (GRG) is to solve a

sequence of subproblems, each of which uses a linear approximation of the con-

straints. In each iteration of the algorithm, the constraint linearization is recalculated

at the point found from the previous iteration. Typically, even though the constraints

are only approximated, the subproblems yield points that are progressively closer
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to the optimal point. A property of the linearization is that, at the optimal point, the

linearized problem has the same solution as the original problem.

The first step in applying GRG is to pick a starting point. Suppose that we

start with x0 = (0, −8, 3, 0), which happens to satisfy the original constraints.

It is possible to start from an infeasible point as we discuss later on. Using the

approximation formulas derived earlier, we form our first approximation problem

as follows:

min f (x) = x2
1 + x2 + x2

3 + x4

g1(x) = x2 + 4x3 + 4x4 − 4 = 0

g2(x) = −x1 + x2 + 2x3 + 2 = 0.

Next we solve the equality constraints of the approximate problem to express

two of the variables in terms of the others. Arbitrarily selecting x2 and x3, we get

x2 = 2x1 + 4x4 − 8 and x3 = −1

2
x1 − 2x4 + 3.

Substituting these expressions in the objective function yields the reduced problem

min f (x1, x4) = x2
1 + (2x1 + 4x2 − 8) + ( − 1

2
x1 − 2x4 + 3

)2 + x4.

Solving this unconstrained minimization problem yields x1 = −0.375, x4 =
0.96875. Substituting in the equations for x2 and x3 gives x2 = −4.875 and

x3 = 1.25. Thus the first iteration of GRG has produced the new point x1 =
(−0.375, −4.875, 1.25, 0.968 75).

To continue the solution process, we would re-linearize the constraint functions

at the new point, use the resulting system of linear equations to express two of the

variables in terms of the others, substitute into the objective to get the new reduced

problem, solve the reduced problem for x2, and so forth. Using the stopping criterion

‖xk+1 − xk‖ < T where T = 0.0025, we get the results summarized in Table 5.7.

This is to be compared with the optimum solution, which is

x∗ = (−0.500, −4.825, 1.534, 0.610)

and has an objective value of −1.612. Note that, in Table 5.7, the values of the

function f (xk) are sometimes smaller than the minimum value for k = 1, and 2.

How is this possible? The reason is that the points xk computed by GRG are usually

not feasible to the constraints. They are only feasible to a linear approximation of

these constraints.

Now we discuss the method used by GRG for starting at an infeasible solution:

a phase 1 problem is solved to construct a feasible one. The objective function for

the phase 1 problem is the sum of the absolute values of the violated constraints.

The constraints for the phase 1 problem are the nonviolated ones. Suppose we had
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Table 5.7 Summarized results

k
(
xk

1 , xk
2 , xk

3 , xk
4

)
f (xk) ‖xk+1 − xk‖

0 (0.000, −8.000, 3.000, 0.000) 1.000 3.729
1 (−0.375, −4.875, 1.250, 0.969) −2.203 0.572
2 (−0.423, −5.134, 1.619, 0.620) −1.714 0.353
3 (−0.458, −4.792, 1.537, 0.609) −1.610 0.022
4 (−0.478, −4.802, 1.534, 0.610) −1.611 0.015
5 (−0.488, −4.813, 1.534, 0.610) −1.612 0.008
6 (−0.494, −4.818, 1.534, 0.610) −1.612 0.004
7 (−0.497, −4.821, 1.534, 0.610) −1.612 0.002
8 (−0.498, −4.823, 1.534, 0.610) −1.612

started at the point x0 = (1, 1, 0, 1) in our example. This point violates the first

constraint but satisfies the second, so the phase 1 problem would be

min
∣∣x2

1 + x2 + 4x3 + 4x4 − 4
∣∣

−x1 + x2 + 2x3 − 2x2
4 + 2 = 0.

Once a feasible solution has been found by solving the phase 1 problem, the

method illustrated above is used to find an optimal solution.

Linear inequality constraints

Finally, we discuss how GRG solves problems having inequality constraints as

well as equalities. At each iteration, only the tight inequality constraints enter

into the system of linear equations used for eliminating variables (these inequality

constraints are said to be active). The process is complicated by the fact that active

inequality constraints at the current point may need to be released in order to move

to a better solution. We illustrate the ideas with the following example:

min f (x1, x2) = (
x1 − 1

2

)2 + (
x2 − 5

2

)2

x1 − x2 ≥ 0

x1 ≥ 0

x2 ≥ 0

x2 ≤ 2.

The feasible set of this problem is shown in Figure 5.5. The arrows in the fig-

ure indicate the feasible half-spaces dictated by each constraint. Suppose that we

start from x0 = (1, 0). This point satisfies all the constraints. As can be seen from

Figure 5.5, x1 − x2 ≥ 0, x1 ≥ 0, and x2 ≤ 2, are inactive, whereas the constraint

x2 ≥ 0 is active. We have to decide whether x2 should stay at its lower bound or be

allowed to leave its bound. We first evaluate the gradient of the objective function
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Figure 5.5 Progress of the generalized reduced gradient algorithm

at x0:

∇ f (x0) = (
2x0

1 − 1, 2x0
2 − 5

) = (1, −5).

This indicates that we will get the largest decrease in f if we move in the direction

d0 = −∇ f (x0) = (−1, 5), i.e., if we decrease x1 and increase x2. Since this direc-

tion is towards the interior of the feasible region, we decide to release x2 from its

bound. The new point will be x1 = x0 + α0d0, for some α0 > 0. The constraints

of the problem induce an upper bound on α0, namely α0 ≤ 0.8333. Now we per-

form a line search to determine the best value of α0 in this range. It turns out to be

α0 = 0.8333, so x1 = (0.8333, 0.8333); see Figure 5.5.

Now, we repeat the process: the constraint x1 − x2 ≥ 0 has become active

whereas the others are inactive. Since the active constraint is not a simple up-

per or lower bound constraint, we introduce a surplus variable, say x3, and solve

for one of the variables in terms of the others. Substituting x1 = x2 + x3, we obtain

the reduced optimization problem:

min f (x2, x3) = (
x2 + x3 − 1

2

)2 + (
x2 − 5

2

)2

0 ≤ x2 ≤ 2

x3 ≥ 0.

The reduced gradient is

∇ f (x2, x3) = (2x2 + 2x3 − 1 + 2x2 − 5, 2x2 + 2x3 − 1)

= (−2.667, 0.667) at point (x2, x3)1 = (0.8333, 0).
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Therefore, the largest decrease in f occurs in the direction (2.667, −0.667), that

is when we increase x2 and decrease x3. But x3 is already at its lower bound, so

we cannot decrease it. Consequently, we keep x3 at its bound, i.e., we move in the

direction d1 = (2.667, 0) to a new point (x2, x3)2 = (x2, x3)1 + α1d1. A line search

in this direction yields α1 = 0.25 and (x2, x3)2 = (1.5, 0). The same constraints are

still active so we may stay in the space of variables x2 and x3. Since

∇ f (x2, x3) = (0, 2) at point (x2, x3)2 = (1.5, 0)

is perpendicular to the boundary line at the current solution x2 and points towards

the exterior of the feasible region, no further decrease in f is possible. Therefore,

we have found the optimal solution. In the space of original variables, this optimal

solution is x1 = 1.5 and x2 = 1.5.

This is how some of the most widely distributed nonlinear programming solvers,

such as Excel’s SOLVER, GINO, CONOPT, GRG2, and several others, solve non-

linear programs, with just a few additional details such as the Newton-Raphson

direction for line search. Compared with linear programs, the problems that can

be solved within a reasonable amount of computational time are typically smaller

and the solutions produced may not be very accurate. Furthermore, the potential

nonconvexity in the feasible set or in the objective function may generate local

optimal solutions that are far from a global solution. Therefore, the interpretation

of the output of a nonlinear program requires more care.

Exercise 5.15 Consider the following optimization problem:

min f (x1, x2) = −x1 − x2 − x1x2 + 1
2
x2

1 + x2
2

s.t. x1 + x2
2 ≤ 3

x2
1 − x2 = 3

(x1, x2) ≥ 0.

Find a solution to this problem using the generalized reduced gradient approach.

5.5.2 Sequential quadratic programming

Consider a general nonlinear optimization problem:

minx f (x)

gi (x) = 0, i ∈ E,

gi (x) ≥ 0, i ∈ I.

(5.20)

To solve this problem, one might try to capitalize on the good algorithms available

for solving the more structured and easier quadratic programs (see Chapter 7).

This is the idea behind sequential quadratic programming (SQP). At the current
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feasible point xk , the problem (5.20) is approximated by a quadratic program: a

quadratic approximation of the Lagrangian function is computed as well as linear

approximations of the constraints. The resulting quadratic program is of the form

min ∇ f (xk)T(x − xk) + 1
2
(x − xk)T Bk(x − xk)

∇gi (xk)T(x − xk) + gi (xk) = 0 for all i ∈ E,

∇gi (xk)T(x − xk) + gi (xk) ≥ 0 for all i ∈ I,

(5.21)

where

Bk = ∇2
xxL(xk, λk)

is the Hessian of the Lagrangian function (5.11) with respect to the x variables and

λk is the current estimate of the Lagrange multipliers.

This problem can be solved with one of the specialized algorithms for quadratic

programming problems such as the interior-point methods we discuss in Chapter 7.

The optimal solution of the quadratic program is used to determine a search di-

rection. Then a line search or trust region procedure is performed to determine the

next iterate.

Perhaps the best way to think of sequential quadratic programming is as an ex-

tension of the optimization version of Newton’s method to constrained problems.

Recall that the optimization version of Newton’s method uses a quadratic approx-

imation to the objective function and defines the minimizer of this approximation

as the next iterate, much like what we described for the SQP method. Indeed, for

an unconstrained problem, the SQP is identical to Newton’s method. For a con-

strained problem, the optimality conditions for the quadratic problem we solve in

SQP correspond to the Newton direction for the optimality conditions of the original

problem at the current iterate.

Sequential quadratic programming iterates until the solution converges. Much

like Newton’s method, the SQP approaches are very powerful, especially if equipped

with line search or trust region methodologies to navigate the nonlinearities and

nonconvexities. We refer the reader to the survey of Boggs and Tolle [16] and the

text by Nocedal and Wright [61] for further details on the sequential quadratic

programming approach.

Exercise 5.16 Consider the following nonlinear optimization problem with equal-

ity constraints:

min f (x) = x2
1 + x2 + x2

3 + x4

g1(x) = x2
1 + x2 + 4x3 + 4x4 − 4 = 0

g2(x) = −x1 + x2 + 2x3 − 2x2
4 + 2 = 0.
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Figure 5.6 Subgradients provide under-estimating approximations to functions

Construct the quadratic programming approximation (5.21) for this problem at point

x0 = (0, −8, 3, 0) and derive the KKT conditions for this quadratic programming

problem.

5.6 Nonsmooth optimization: subgradient methods

In this section, we consider unconstrained nonlinear programs of the form

min f (x),

where x = (x1, . . . , xn) and f is a nondifferentiable convex function. Optimality

conditions based on the gradient are not available since the gradient is not always

defined in this case. However, the notion of gradient can be generalized as follows.

A subgradient of f at point x∗ is a vector s∗ = (s∗
1 , . . . , s∗

n ) such that

s∗(x − x∗) ≤ f (x) − f (x∗) for every x .

When the function f is differentiable, the subgradient is identical to the gradient.

When f is not differentiable at point x , there are typically many subgradients at x .

For example, consider the convex function of one variable

f (x) = max{1 − x, x − 1} = |x − 1|.
As is evident from Figure 5.6 this function is nondifferentiable at the point x = 1

and it is easy to verify that any vector s such that −1 ≤ s ≤ 1 is a subgradient of f
at point x = 1. Some of these subgradients and the linear approximations defined
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by them are shown in Figure 5.6. Note that each subgradient of the function at a

point defines a linear “tangent” to the function that stays always below the plot of

the function – this is the defining property of subgradients.

Consider a nondifferentiable convex function f . The point x∗ is a minimum of f
if and only if f has a zero subgradient at x∗. In the above example, 0 is a subgradient

of f at point x∗ = 1 and therefore this is where the minimum of f is achieved.

The method of steepest descent can be extended to nondifferentiable convex

functions by computing any subgradient direction and using the opposite direction

to make the next step. Although subgradient directions are not always directions

of ascent, one can nevertheless guarantee convergence to the optimum point by

choosing the step size appropriately.

A generic subgradient method can be stated as follows:

1. Initialization: Start from any point x0. Set i = 0.

2. Iteration i: Compute a subgradient si of f at point xi . If si is 0 or close to 0, stop.

Otherwise, let xi+1 = xi − αi si , where αi > 0 denotes a step size, and perform the next

iteration.

Several choices of the step size αi have been proposed in the literature. To

guarantee convergence to the optimum, the step size αi needs to be decreased

very slowly (for example, αi → 0 such that
∑

i αi = +∞ will do). But the slow

decrease in αi results in slow convergence of xi to the optimum. In practice, in order

to get fast convergence, the following choice is popular: start from α0 = 2 and then

halve the step size if no improvement in the objective value f (xi ) is observed for k
consecutive iterations (k = 7 or 8 is often used). This choice is well suited when one

wants to get close to the optimum quickly and when finding the exact optimum is not

important (this is the case in integer programming applications where subgradient

optimization is used to obtain quick bounds in branch-and-bound algorithms). With

this in mind, a stopping criterion that is frequently used in practice is a maximum

number of iterations (say 200) instead of “si is 0 or close to 0.”

We will see in Chapter 12 how subgradient optimization is used in a model to

construct an index fund.
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NLP models: volatility estimation

Volatility is a term used to describe how much the security prices, market indices,

interest rates, etc., move up and down around their mean. It is measured by the

standard deviation of the random variable that represents the financial quantity we

are interested in. Most investors prefer low volatility to high volatility and therefore

expect to be rewarded with higher long-term returns for holding higher volatility

securities.

Many financial computations require volatility estimates. Mean-variance opti-

mization trades off the expected return and volatility of a portfolio of securities.

The celebrated option valuation formulas of Black, Scholes, and Merton (BSM)

involve the volatility of the underlying security. Risk management revolves around

the volatility of the current positions. Therefore, accurate estimation of the volatili-

ties of security returns, interest rates, exchange rates, and other financial quantities

is crucial to many quantitative techniques in financial analysis and management.

Most volatility estimation techniques can be classified as either a historical or

an implied method. One either uses historical time series to infer patterns and

estimates the volatility using a statistical technique, or considers the known prices

of related securities such as options that may reveal the market sentiment on the

volatility of the security in question. GARCH models exemplify the first approach

while the implied volatilities calculated from the BSM formulas are the best-known

examples of the second approach. Both types of techniques can benefit from the

use of optimization formulations to obtain more accurate volatility estimates with

desirable characteristics such as smoothness. We discuss two examples in this

chapter.

6.1 Volatility estimation with GARCH models

Empirical studies analyzing time series data for returns of securities, interest rates,

and exchange rates often reveal a clustering behavior for the volatility of the process

112
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under consideration. Namely, these time series exhibit high volatility periods alter-

nating with low volatility periods. These observations suggest that future volatility

can be estimated with some degree of confidence by relying on historical data.

Currently, describing the evolution of such processes by imposing a station-

ary model on the conditional distribution of returns is one of the most popular

approaches in the econometric modeling of financial time series. This approach ex-

presses the conventional wisdom that models for financial returns should adequately

represent the nonlinear dynamics that are demonstrated by the sample autocorre-

lation and cross-correlation functions of these time series. ARCH (autoregressive

conditional heteroscedasticity) and GARCH (generalized ARCH) models of Engle

[27] and Bollerslev [17] have been popular and successful tools for future volatility

estimation. For the multivariate case, rich classes of stationary models that gener-

alize the univariate GARCH models have also been developed; see, for example,

the comprehensive survey by Bollerslev et al. [18].

The main mathematical problem to be solved in fitting ARCH and GARCH

models to observed data is the determination of the best model parameters that

maximize a likelihood function, i.e., an optimization problem. See Nocedal and

Wright [61], page 255, for a short discussion of maximum likelihood estimation.

Typically, these models are presented as unconstrained optimization problems with

recursive terms. In a recent study, Altay-Salih et al. [2] argue that because of

the recursion equations and the stationarity constraints, these models actually fall

into the domain of nonconvex, nonlinearly constrained nonlinear programming.

Their study shows that by using a sophisticated nonlinear optimization package

(sequential quadratic programming based FILTER method of Fletcher and Leyffer

[29] in their case) they are able to significantly improve the log-likelihood functions

for multivariate volatility (and correlation) estimation. While their study does not

provide a comparison of forecasting effectiveness of the standard approaches to

that of the constrained optimization approach, the numerical results suggest that

constrained optimization approach provides a better prediction of the extremal

behavior of the time series data; see [2]. Here, we briefly review this constrained

optimization approach for expository purposes.

We consider a stochastic process Y indexed by natural numbers. Yt , its value at

time t , is an n-dimensional vector of random variables. Autoregressive behavior of

these random variables is modeled as

Yt =
m∑

i=1

φi Yt−i + εt , (6.1)

where m is a positive integer representing the number of periods we look back in

our model and εt satisfies

E[εt |ε1, . . . , εt−1] = 0.
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While these models are of limited value, if at all, in the estimation of the actual

time series (Yt ), they have been shown to provide useful information for volatility

estimation. For this purpose, GARCH models define

ht := E
[
ε2

t |ε1, . . . , εt−1

]

in the univariate case and

Ht := E
[
εtε

T
t |ε1, . . . , εt−1

]

in the multivariate case. Then one models the conditional time dependence of these

squared residuals in the univariate case as follows:

ht = c +
q∑

i=1

αiε
2
t−i +

p∑
j=1

β j ht− j . (6.2)

This model is called GARCH(p, q). Note that ARCH models correspond to choos-

ing p = 0.

The generalization of the model (6.2) to the multivariate case can be done in

a number of ways. One approach is to use the operator vech to turn the matrices

Ht and εtε
T
t into vectors. The operator vech takes an n × n symmetric matrix as

an input and produces an n(n + 1)/2-dimensional vector as output by stacking the

elements of the matrix on and below the diagonal on top of each other. Using this

operator, one can write a multivariate generalization of (6.2) as follows:

vech(Ht ) = vech(C) +
q∑

i=1

Ai vech
(
εt−iε

T
t−i

) +
p∑

j=1

B j vech(Ht− j ). (6.3)

In (6.3), the Ai ’s and B j ’s are square matrices of dimension n(n + 1)/2 and C is

an n × n symmetric matrix.

After choosing a superstructure for the GARCH model, that is, after choosing

p and q, the objective is to determine the optimal parameters φi , αi , and β j . Most

often, this is achieved via maximum likelihood estimation. If one assumes a normal

distribution for Yt conditional on the historical observations, the log-likelihood

function can be written as follows [2]:

−T

2
log 2π − 1

2

T∑
t=1

log ht − 1

2

T∑
t=1

ε2
t

ht
, (6.4)

in the univariate case and

−T

2
log 2π − 1

2

T∑
t=1

log det Ht − 1

2

T∑
t=1

εT
t H−1

t εt (6.5)

in the multivariate case.
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Exercise 6.1 Show that the function in (6.4) is a difference of convex functions

by showing that log ht is concave and ε2
t /ht is convex in εt and ht . Does the same

conclusion hold for the function in (6.5)?

Now, the optimization problem to solve in the univariate case is to maximize

the log-likelihood function (6.4) subject to the model constraints (6.1) and (6.2) as

well as the condition that ht is nonnegative for all t since ht = E[ε2
t |ε1, . . . , εt−1].

In the multivariate case we maximize (6.5) subject to the model constraints (6.1)

and (6.3) as well as the condition that Ht is a positive semidefinite matrix for all

t since Ht defined as E[εtε
T
t |ε1, . . . , εt−1] must necessarily satisfy this condition.

The positive semidefiniteness of the matrices Ht can either be enforced using the

techniques discussed in Chapter 9 or using a reparametrization of the variables via

Cholesky-type L DLT decomposition as discussed in [2].

An important issue in GARCH parameter estimation is the stationarity properties

of the resulting model. There is a continuing debate about whether it is reasonable

to assume that the model parameters for financial time series are stationary over

time. It is clear, however, that the estimation and forecasting is easier on stationary

models. A sufficient condition for the stationarity of the univariate GARCH model

above is that the αi ’s and β j ’s as well as the scalar c are strictly positive and that

q∑
i=1

αi +
p∑

j=1

β j < 1, (6.6)

see, for example, [35]. The sufficient condition for the multivariate case is more

involved and we refer the reader to [2] for these details.

Especially in the multivariate case, the problem of maximizing the log-likelihood

function with respect to the model constraints is a difficult nonlinear, nonconvex

optimization problem. To find a quick solution, more tractable versions of the model

(6.3) have been developed where the model is simplified by imposing additional

structure on the matrices Ai and B j such as diagonality. While the resulting prob-

lems are easier to solve, the loss of generality from their simplifying assumptions

can be costly. As Altay-Salih et al. [2] demonstrate, using the full power of state-

of-the-art constrained optimization software, one can solve the more general model

in reasonable computational time (at least for bivariate and trivariate estimation

problems) with much improved log-likelihood values. While the forecasting effi-

ciency of this approach is still to be tested, it is clear that sophisticated nonlinear

optimization is emerging as a valuable tool in volatility estimation problems that

use historical data.

Exercise 6.2 Consider the model in (6.3) for the bivariate case when q = 1 and

p = 0 (i.e., an ARCH(1) model). Explicitly construct the nonlinear programming
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problem to be solved in this case. The comparable simplification of the BEKK

representation [4] gives

Ht = CTC + ATεt−1ε
t
t−1 A.

Compare these two models and comment on the additional degrees of freedom in

the NLP model. Note that the BEKK representation ensures the positive semidefi-

niteness of Ht by construction at the expense of lost degrees of freedom.

Exercise 6.3 Test the NLP model against the model resulting from the BEKK

representation in the previous exercise using daily return data for two market in-

dices, e.g., S&P 500 and FTSE 100, and an NLP solver. Compare the optimal

log-likelihood values achieved by both models and comment.

6.2 Estimating a volatility surface

The discussion in this section is largely based on the work of Coleman et al. [23, 22].

The Black–Scholes–Merton (BSM) equation for pricing European options is

based on a geometric Brownian motion model for the movements of the underlying

security. Namely, one assumes that the underlying security price St at time t satisfies

dSt

St
= μ dt + σ dWt (6.7)

where μ is the drift, σ is the (constant) volatility, and Wt is the standard Brownian

motion. Using this equation and some standard assumptions about the absence of

frictions and arbitrage opportunities, one can derive the BSM partial differential

equation for the value of a European option on this underlying security. Using the

boundary conditions resulting from the payoff structure of the particular option,

one determines the value function for the option. Recall from Exercise 5.3 that the

price of a European call option with strike K and maturity T is given by:

C(K , T ) = S0�(d1) − K e−rT�(d2), (6.8)

where

d1 = log(S0/K ) + (r + σ 2/2)T

σ
√

T
,

d2 = d1 − σ
√

T ,

and �(·) is the cumulative distribution function for the standard normal distribution.

r in the formula represents the continuously compounded risk-free and constant

interest rate and σ is the volatility of the underlying security that is assumed to be

constant. Similarly, the European put option price is given by

P(K , T ) = K e−rT�(−d2) − S0�(−d1). (6.9)
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The risk-free interest rate r , or a reasonably close approximation to it, is often

available, for example from Treasury bill prices in US markets. Therefore, all one

needs to determine the call or put price using these formulas is a reliable estimate

of the volatility parameter σ . Conversely, given the market price for a particular

European call or put, one can uniquely determine the volatility of the underlying

asset implied by this price, called its implied volatility, by solving the equations

above with the unknown σ . Any one of the univariate equation solving techniques

we discussed in Section 5.3 can be used for this purpose.

Empirical evidence against the appropriateness of (6.7) as a model for the move-

ments of most securities is abundant. Most studies refute the assumption of a

volatility that does not depend on time or underlying price level. Indeed, studying

the prices of options with same maturity but different strikes, researchers observed

that the implied volatilities for such options often exhibit a “smile” structure, i.e.,

higher implied volatilities away from the money in both directions, decreasing to a

minimum level as one approaches the at-the-money option from in-the-money or

out-of-the-money strikes. This is clearly in contrast with the constant (flat) implied

volatilities one would expect had (6.7) been an appropriate model for the underlying

price process.

There are many models that try to capture the volatility smile including stochas-

tic volatility models, jump diffusions, etc. Since these models introduce non-traded

sources of risk, perfect replication via dynamic hedging as in BSM approach be-

comes impossible and the pricing problem is more complicated. An alternative that

is explored in [23] is the one-factor continuous diffusion model:

dSt

St
= μ(St , t)dt + σ (St , t)dWt , t ∈ [0, T ], (6.10)

where the constant parameters μ and σ of (6.7) are replaced by continuous and

differentiable functions μ(St , t) and σ (St , t) of the underlying price St and time t .
T denotes the end of the fixed time horizon. If the instantaneous risk-free interest

rate r is assumed constant and the dividend rate is constant, given a function σ (S, t),
a European call option with maturity T and strike K has a unique price. Let us denote

this price with C(σ (S, t), K , T ).

While an explicit solution for the price function C(σ (S, t), K , T ) as in (6.8) is no

longer possible, the resulting pricing problem can be solved efficiently via numerical

techniques. Since μ(S, t) does not appear in the generalized BSM partial differential

equation, all one needs is the specification of the function σ (S, t) and a good

numerical scheme to determine the option prices in this generalized framework.

So, how does one specify the function σ (S, t)? First of all, this function should

be consistent with the observed prices of currently or recently traded options on the

same underlying security. If we assume that we are given market prices of m call
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options with strikes K j and maturities Tj in the form of bid–ask pairs (β j , α j ) for

j = 1, . . . , n, it would be reasonable to require that the volatility function σ (S, t)
is chosen so that

β j ≤ C(σ (S, t), K j , Tj ) ≤ α j , j = 1, . . . , n. (6.11)

To ensure that (6.11) is satisfied as closely as possible, one strategy is to minimize

the violations of the inequalities in (6.11):

min
σ (S,t)∈H

n∑
j=1

[β j − C(σ (S, t), K j , Tj )]
+ + [C(σ (S, t), K j , Tj ) − α j ]

+. (6.12)

Above, H denotes the space of measurable functions σ (S, t) with domain IR+ ×
[0, T ] and u+ = max{0, u}. Alternatively, using the closing prices C j for the options

under consideration, or choosing the mid-market prices C j = (β j + α j )/2, we can

solve the following nonlinear least-squares problem:

min
σ (S,t)∈H

n∑
j=1

(C(σ (S, t), K j , Tj ) − C j )
2. (6.13)

This is a nonlinear least-squares problem since the function C(σ (S, t), K j , Tj )

depends nonlinearly on the variables, namely the local volatility function σ (S, t).
While the calibration of the local volatility function to the observed prices using

the objective functions in (6.12) and (6.13) is important and desirable, there are

additional properties that are desirable in the local volatility function. Arguably,

the most common feature sought in existing models is smoothness. For example,

in [49] the authors try to achieve a smooth volatility function by appending the

objective function in (6.13) as follows:

min
σ (S,t)∈H

n∑
j=1

(C(σ (S, t), K j , Tj ) − C j )
2 + λ‖∇σ (S, t)‖2. (6.14)

Here, λ is a positive trade-off parameter and ‖ · ‖2 represents the L2-norm. Large

deviations in the volatility function would result in a high value for the norm of

the gradient function and by penalizing such occurrences, the formulation above

encourages a smoother solution to the problem. The most appropriate value for the

trade-off parameter λ must be determined experimentally. To solve the resulting

problem numerically, one must discretize the volatility function on the underlying

price and time grid. Even for a relatively coarse discretization of the St and t spaces,

one can easily end up with an optimization problem with many variables.

An alternative strategy is to build the smoothness into the volatility function

by modeling it with spline functions. To define a spline function, the domain of

the function is partitioned into smaller subregions and then, the spline function is
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chosen to be a polynomial function in each subregion. Since polynomials are smooth

functions, spline functions are smooth within each subregion by construction and

the only possible sources of nonsmoothness are the boundary regions between

subregions. When the polynomial is of a high enough degree, the continuity and

differentiability of the spline function at the boundaries between subregions can be

ensured by properly choosing the polynomial function coefficients. This strategy

is similar to the model we consider in more detail in Section 8.4, except that here

we model the volatility function rather than the risk-neutral density and also we

generate a function that varies over time rather than an estimate at a single point

in time. We defer a more detailed discussion of spline functions to Section 8.4.

The use of the spline functions not only guarantees the smoothness of the resulting

volatility function estimates but also reduces the degrees of freedom in the problem.

As a consequence, the optimization problem to be solved has much fewer variables

and is easier. This strategy is proposed in [23] and we review it below.

We start by assuming that σ (S, t) is a bi-cubic spline. While higher-order splines

can also be used, cubic splines often offer a good balance between flexibility and

complexity. Next we choose a set of spline knots at points (S̄ j , t̄ j ) for j = 1, . . . , k.

If the value of the volatility function at these points is given by σ̄ j := σ (S̄ j , t̄ j ), the

interpolating cubic spline that goes through these knots and satisfies a particular end

condition is uniquely determined. For example, in Section 8.4 we use the natural
spline end condition, which sets the second derivative of the function at the knots

at the boundary of the domain to zero to obtain our cubic spline approximations

uniquely. Therefore, to completely determine the volatility function as a natural

bi-cubic spline and to determine the resulting call option prices we have k degrees

of freedom represented with the choices σ̄ = (σ̄1, . . . , σ̄k).

Let 
(S, t, σ̄ ) the bi-cubic spline local volatility function obtained setting

σ (S̄ j , t̄ j )’s to σ̄ j . Let C(
(S, t, σ̄ ), S, t) denote the resulting call price function.

The analog of the objective function (6.13) is then

min
σ̄∈IRk

n∑
j=1

(C(
(S, t, σ̄ ), K j , Tj ) − C j )
2. (6.15)

One can introduce positive weights w j for each of the terms in the objective function

above to address different accuracies or confidence in the call prices C j . We can

also introduce lower and upper bounds li and ui for the volatilities at each knot to

incorporate additional information that may be available from historical data, etc.

This way, we form the following nonlinear least-squares problem with k variables:

min
σ̄∈IRk

f (σ̄ ) :=
n∑

j=1

w j (C(
(S, t, σ̄ ), K j , Tj ) − C j )
2 (6.16)

s.t. l ≤ σ̄ ≤ u.
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It should be noted that the formulation above will not be appropriate if there are

many more knots than prices, that is if k is much larger than n. In this case,

the problem will be underdetermined and solutions may exhibit consequences of

“over-fitting.” It is better to use fewer knots than available option prices.

The problem (6.16) is a standard nonlinear optimization problem except that

the term C(
(S, t, σ̄ ), K j , Tj ) in the objective function depends on the decision

variables σ̄ in a complicated and nonexplicit manner. Evaluating gradient of f
and, therefore, executing any optimization algorithm that requires gradients can be

difficult. Without an explicit expression for f , its gradient must be either estimated

using a finite difference scheme or using automatic differentiation. Coleman et al.
[22, 23] implement both alternatives and report that local volatility functions can be

estimated very accurately using these strategies. They also test the hedging accu-

racy of different delta-hedging strategies, one using a constant volatility estimation

and another using the local volatility function produced by the strategy above.

These tests indicate that the hedges obtained from the local volatility function are

significantly more accurate.

Exercise 6.4 The partial derivative ∂ f (x)/∂xi of the function f (x) with respect

to the i th coordinate of the x vector can be estimated as

∂ f (x)

∂xi
≈ f (x + hei ) − f (x)

h
,

where ei denotes the i th unit vector. Assuming that f is continuously differentiable,

provide an upper bound on the estimation error from this finite-difference approxi-

mation using a Taylor series expansion for the function f around x . Next, compute

a similar bound for the alternative finite-difference formula given by

∂ f (x)

∂xi
≈ f (x + hei ) − f (x − hei )

2h
.

Comment on the potential advantages and disadvantages of these two approaches.
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Quadratic programming: theory and algorithms

7.1 The quadratic programming problem

As we discussed in the introductory chapter, quadratic programming (QP) refers

to the problem of minimizing a quadratic function subject to linear equality and

inequality constraints. In its standard form, this problem is represented as follows:

minx
1
2
xT Qx + cTx

Ax = b
x ≥ 0,

(7.1)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn , Q ∈ IRn×n are given, and x ∈ IRn . QPs are

special classes of nonlinear optimization problems and contain linear programming

problems as special cases.

Quadratic programming structures are encountered frequently in optimization

models. For example, ordinary least-squares problems which are used often in data

fitting are QPs with no constraints. Mean-variance optimization problems developed

by Markowitz for the selection of efficient portfolios are QP problems. In addition,

QP problems are solved as subproblems in the solution of general nonlinear opti-

mization problems via sequential quadratic programming (SQP) approaches; see

Section 5.5.2.

Recall that, when Q is a positive semidefinite matrix, i.e., when yT Qy ≥ 0 for

all y, the objective function of problem (7.1) is a convex function of x . When this is

the case, a local minimizer of this objective function is also a global minimizer. In

contrast, when Q is not positive semidefinite (either indefinite or negative semidef-

inite), the objective function is nonconvex and may have local minimizers that are

not global minimizers. This behaviour is illustrated in Figure 7.1 where the contours

of a quadratic function with a positive semidefinite Q are contrasted with those of

an indefinite Q.

121
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Figure 7.1 Contours of (a) positive semidefinite and (b) indefinite quadratic functions

Exercise 7.1 Consider the quadratic function f (x) = cTx + 1
2
xT Qx , where the

matrix Q is n × n and symmetric.

(i) Prove that if xT Qx < 0 for some x , then f is unbounded below.

(ii) Prove that if Q is positive semidefinite (but not positive definite), then either f is

unbounded below or it has an infinite number of solutions.

(iii) True or false: f has a unique minimizer if and only if Q is positive definite.

As in linear programming, we can develop a dual of quadratic programming

problems. The dual of the problem (7.1) is given below:

maxx,y,s bT y − 1
2
xT Qx

AT y − Qx + s = c
x ≥ 0, s ≥ 0.

(7.2)

Note that, unlike the case of linear programming, the variables of the primal

quadratic programming problem also appear in the dual QP.

7.2 Optimality conditions

One of the fundamental tools in the study of optimization problems is the Karush–

Kuhn–Tucker theorem, which gives a list of conditions that are necessarily satisfied

at any (local) optimal solution of a problem, provided that some mild regularity

assumptions are satisfied. These conditions are commonly called KKT conditions

and were discussed in the context of general nonlinear optimization problems in

Section 5.5.

Applying the KKT theorem to the QP problem (7.1), we obtain the following

set of necessary conditions for optimality:
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Theorem 7.1 Suppose that x is a local optimal solution of the QP given in (7.1)
so that it satisfies Ax = b, x ≥ 0 and assume that Q is a positive semidefinite
matrix. Then, there exist vectors y and s such that the following conditions hold:

AT y − Qx + s = c (7.3)

s ≥ 0 (7.4)

xi si = 0, ∀i. (7.5)

Furthermore, x is a global optimal solution.

Note that the positive semidefiniteness condition related to the Hessian of the

Lagrangian function in the KKT theorem is automatically satisfied for convex

quadratic programming problems, and therefore is not included in Theorem 7.1 .

Exercise 7.2 Show that in the case of a positive definite Q, the objective function

of (7.1) is strictly convex and, therefore, must have a unique minimizer.

Conversely, if vectors x , y and s satisfy conditions (7.3)–(7.5) as well as primal

feasibility conditions

Ax = b (7.6)

x ≥ 0, (7.7)

then x is a global optimal solution of (7.1). In other words, conditions (7.3)–(7.7)

are both necessary and sufficient for x , y, and s to describe a global optimal solution

of the QP problem.

In a manner similar to linear programming, optimality conditions (7.3)–(7.7) can

be seen as a collection of conditions for:

1. primal feasibility: Ax = b, x ≥ 0;

2. dual feasibility: AT y − Qx + s = c, s ≥ 0; and

3. complementary slackness: for each i = 1, . . . , n we have xi si = 0.

Using this interpretation, one can develop modifications of the simplex method

that can also solve convex quadratic programming problems (Wolfe’s method). We

do not present this approach here. Instead, we describe an alternative algorithm that

is based on Newton’s method; see Section 5.4.2.

Exercise 7.3 Consider the following quadratic program:

min x1x2 + x2
1 + 3

2
x2

2 + 2x2
3

+ 2x1 + x2 + 3x3

subject to x1 + x2 + x3 = 1

x1 − x2 = 0

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Is the quadratic objective function convex? Show that x∗ = (1/2, 1/2, 0) is an

optimal solution to this problem by finding vectors y and s that satisfy the optimality

conditions jointly with x∗.

7.3 Interior-point methods

7.3.1 Introduction

In 1984, Karmarkar [43] proved that an interior-point method (IPM) can solve

linear programming problems (LPs) in polynomial time. The two decades that

followed the publication of Karmarkar’s paper have seen a very intense effort by

the optimization research community to study theoretical and practical properties

of IPMs. One of the early discoveries was that IPMs can be viewed as modifications

of Newton’s method that are able to handle inequality constraints. Some of the most

important contributions were made by Nesterov and Nemirovski who showed that

the IPM machinery can be applied to a much larger class of problems than just

LPs [60]. Convex quadratic programming problems, for example, can be solved in

polynomial time, as well as many other convex optimization problems using IPMs.

For most instances of conic optimization problems we discuss in Chapter 9 and 10,

IPMs are by far the best available methods.

Here, we will describe a variant of IPMs for convex quadratic programming. For

the QP problem in (7.1) we can write the optimality conditions in matrix form as

follows:

F(x, y, s) =
⎡
⎣

AT y − Qx + s − c
Ax − b

X Se

⎤
⎦ =

⎡
⎣

0

0

0

⎤
⎦, (x, s) ≥ 0. (7.8)

Above, X and S are diagonal matrices with the entries of the x and s vectors,

respectively, on the diagonal, i.e., Xii = xi , and Xi j = 0, i �= j , and similarly for

S. Also, as before, e is an n-dimensional vector of 1s.

The system of equations F(x, y, s) = 0 has n + m + n variables and exactly the

same number of constraints, i.e., it is a “square” system. Because of the nonlinear

equations xi si = 0 we cannot solve this system using linear system solution meth-

ods such as Gaussian elimination. But, since the system is square we can apply

Newton’s method. In fact, without the nonnegativity constraints, finding (x, y, s)

satisfying these optimality conditions would be a straightforward exercise by ap-

plying Newton’s method.

The existence of nonnegativity constraints creates a difficulty. The existence and

the number of inequality constraints are among the most important factors that

contribute to the difficulty of the solution of any optimization problem. Interior-

point approaches use the following strategy to handle these inequality constraints:
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first identify an initial solution (x0, y0, s0) that satisfies the first two (linear) blocks

of equations in F(x, y, s) = 0 but not necessarily the third block X Se = 0, and

also satisfies the nonnegativity constraints strictly, i.e., x0 > 0 and s0 > 0. Notice

that a point satisfying some inequality constraints strictly lies in the interior of the

region defined by these inequalities – rather than being on the boundary. This is the

reason why the method we are discussing is called an interior-point method.

Once we find such an (x0, y0, s0) we try to generate new points (xk, yk, sk) that

also satisfy these same conditions and get progressively closer to satisfying the third

block of equations. This is achieved via careful application of a modified Newton’s

method.

Let us start by defining two sets related to the conditions (7.8):

F := {(x, y, s) : Ax = b, AT y − Qx + s = c, x ≥ 0, s ≥ 0} (7.9)

is the set of feasible points, or simply the feasible set. Note that we are using a

primal–dual feasibility concept here. More precisely, since x variables come from

the primal QP and (y, s) come from the dual QP, we impose both primal and dual

feasibility conditions in the definition of F . If (x, y, s) ∈ F also satisfy x > 0 and

s > 0 we say that (x, y, s) is a strictly feasible solution and define

Fo := {(x, y, s) : Ax = b, AT y − Qx + s = c, x > 0, s > 0} (7.10)

to be the strictly feasible set. In mathematical terms, Fo is the relative interior of

the set F .

IPMs we discuss here will generate iterates (xk, yk, sk) that all lie in Fo. Since

we are generating iterates for both the primal and dual problems, these IPMs are

often called primal–dual interior-point methods. Using this approach, we will ob-

tain solutions for both the primal and dual problems at the end of the solution

procedure. Solving the dual may appear to be a waste of time since we are only

interested in the solution of the primal problem. However, years of computational

experience demonstrated that primal–dual IPMs lead to the most efficient and robust

implementations of the interior-point approach. Intuitively speaking, this happens

because having some partial information on the dual problem in the form of the

dual iterates (yk, sk) helps us make better and faster improvements on the iterates

of the primal problem.
Iterative optimization algorithms have two essential components:

� a measure that can be used to evaluate and compare the quality of alternative solutions

and search directions;
� a method to generate a better solution, with respect to the measure just mentioned, from

a nonoptimal solution.

As we stated before, IPMs rely on Newton’s method to generate new estimates of

the solutions. Let us discuss this more in depth. Ignore the inequality constraints in
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(7.8) for a moment, and focus on the nonlinear system of equations F(x, y, s) = 0.

Assume that we have a current estimate (xk, yk, sk) of the optimal solution to the

problem. The Newton step from this point is determined by solving the following

system of linear equations:

J (xk, yk, sk)

⎡
⎣

�xk

�yk

�sk

⎤
⎦ = −F(xk, yk, sk), (7.11)

where J (xk, yk, sk) is the Jacobian of the function F and [�xk, �yk, �sk]T is the

search direction. First, we observe that

J (xk, yk, sk) =
⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦, (7.12)

where Xk and Sk are diagonal matrices with the components of the vectors xk and

sk along their diagonals. Furthermore, if (xk, yk, sk) ∈ Fo, then

F(xk, yk, sk) =
⎡
⎣

0

0

Xk Ske

⎤
⎦ (7.13)

and the Newton equation reduces to
⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦

⎡
⎣

�xk

�yk

�sk

⎤
⎦ =

⎡
⎣

0

0

−Xk Ske

⎤
⎦. (7.14)

Exercise 7.4 Consider the quadratic programming problem given in Exercise

7.3 and the current primal–dual estimate of the solution xk = (1/3, 1/3, 1/3)T,

yk = (1, 1/2)T, and sk = (1/2, 1/2, 2)T. Is (xk, yk, sk) ∈ F? How about Fo? Form

and solve the Newton equation for this problem at (xk, yk, sk).

In the standard Newton method, once a Newton step is determined in this manner,

it is added to the current iterate to obtain the new iterate. In our case, this action

may not be permissible, since the Newton step may take us to a new point that

does not necessarily satisfy the nonnegativity constraints x ≥ 0 and s ≥ 0. In our

modification of Newton’s method, we want to avoid such violations and therefore

will seek a step-size parameter αk ∈ (0, 1] such that xk + αk�xk > 0 and sk +
αk�sk > 0. Note that the largest possible value of αk satisfying these restrictions

can be found using a procedure similar to the ratio test in the simplex method. Once

we determine the step-size parameter, we choose the next iterate as

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(�xk, �yk, �sk).
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If a value of αk results in a next iterate (xk+1, yk+1, sk+1) that is also in Fo, we say

that this value of αk is permissible.

Exercise 7.5 What is the largest permissable step-size αk for the Newton direction

you found in Exercise 7.4 ?

A naive modification of Newton’s method as we described above is, unfortu-

nately, not very good in practice since the permissible values of αk eventually

become too small and the progress toward the optimal solution stalls. Therefore,

one needs to modify the search direction as well as adjusting the step size along

the direction. The usual Newton search direction obtained from (7.14) is called the

pure Newton direction. We will consider modifications of pure Newton directions

called centered Newton directions. To describe such directions, we first need to

discuss the concept of the central path.

7.3.2 The central path

The central path C is a trajectory in the relative interior of the feasible region Fo

that is very useful for both the theoretical study and also the implementation of

IPMs. This trajectory is parameterized by a scalar τ > 0, and the points (xτ , yτ , sτ )

on the central path are obtained as solutions of the following system:

F(xτ , yτ , sτ ) =
⎡
⎣

0

0

τe

⎤
⎦, (xτ , sτ ) > 0. (7.15)

Then, the central path C is defined as

C = {(xτ , yτ , sτ ) : τ > 0}. (7.16)

The third block of equations in (7.15) can be rewritten as

(xτ )i (sτ )i = τ, ∀i.

The similarities between (7.8) and (7.15) are evident. Note that, instead of requiring

that x and s are complementary vectors as in the optimality conditions (7.8), we

require their component products to be all equal. Note that, as τ → 0, the conditions

(7.15) defining the points on the central path approximate the set of optimality

conditions (7.8) more and more closely.

The system (7.15) has a unique solution for every τ > 0, provided that F o is

nonempty. Furthermore, when Fo is nonempty, the trajectory (xτ , yτ , sτ ) converges

to an optimal solution of the problem (7.1). Figure 7.2 depicts a sample feasible set

and its central path.
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Exercise 7.6 Recall the quadratic programming problem given in Exercise 7.3

and the current primal–dual estimate of the solution xk = (1/3, 1/3, 1/3)T, yk =
(1, 1/2)T, and sk = (1/2, 1/2, 2)T. Verify that (xk, yk, sk) is not on the central path.

Find a vector x̂ such that (x̂, yk, sk) is on the central path. What value of τ does

this primal–dual solution correspond to?

7.3.3 Path-following algorithms

The observation that points on the central path converge to optimal solutions of

the primal–dual pair of quadratic programming problems suggests the following

strategy for finding such solutions: in an iterative manner, generate points that ap-

proximate central points for decreasing values of the parameter τ . Since the central

path converges to an optimal solution of the QP problem, these approximations to

central points should also converge to a desired solution. This simple idea is the

basis of path-following interior-point algorithms for optimization problems.

The strategy we outlined in the previous paragraph may appear confusing in a

first reading. For example, one might ask why we do not approximate or find the

solutions of the optimality system (7.8) directly rather than generating all these

intermediate iterates leading to such a solution. Or, one might wonder why we

would want to find approximations to central points, rather than central points

themselves. Let us respond to these potential questions. First of all, there is no

good and computationally cheap way of solving (7.8) directly since it involves

nonlinear equations of the form xi si = 0. As we discussed above, if we apply

Newton’s method to the equations in (7.8), we run into trouble because of the

additional nonnegativity constraints. While we also have bilinear equations in the

system defining the central points, being somewhat safely away from the boundaries

defined by nonnegativity constraints, central points can be computed without most
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of the difficulties encountered in solving (7.8) directly. This is why we use central

points for guidance.

Instead of insisting that we obtain a point exactly on the central path, we are of-

ten satisfied with an approximation to a central point for reasons of computational

efficiency. Central points are also defined by systems of nonlinear equations and

additional nonnegativity conditions. Solving these systems exactly (or very accu-

rately) can be as hard as solving the optimality system (7.8) and therefore would not

be an acceptable alternative for a practical implementation. It is, however, relatively

easy to find a well-defined approximation to central points – see the definition of

the neighborhoods of the central path below – especially those that correspond to

larger values of τ . Once we identify a point close to a central point on C, we can

do a clever and inexpensive search to find another point which is close to another

central point on C, corresponding to a smaller value of τ . Furthermore, this idea can

be used repeatedly, resulting in approximations to central points with progressively

smaller τ values, allowing us to approach an optimal solution of the QP we are

trying to solve. This is the essence of the path-following strategies.

7.3.4 Centered Newton directions

We say that a Newton step used in an interior-point method is a pure Newton step
if it is a step directed toward the optimal point satisfying F(x, y, s) = [0, 0, 0]T.

Especially at points close to the boundary of the feasible set, pure Newton directions

can be poor search directions as they may point to the exterior of the feasible set

and lead to small admissible step sizes. To avoid such behavior, most interior-point

methods take a step toward points on the central path C corresponding to prede-

termined value of τ . Since such directions are aiming for central points, they are

called centered directions. Figure 7.3 depicts a pure and centered Newton direction

from a sample iterate.
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A centered direction is obtained by applying a Newton update to the following

system:

F̂(x, y, s) =
⎡
⎣

ATy − Qx + s − c
Ax − b

X Se − τe

⎤
⎦ =

⎡
⎣

0

0

0

⎤
⎦. (7.17)

Since the Jacobian of F̂ is identical to the Jacobian of F , proceeding as in equations

(7.11)–(7.14), we obtain the following (modified) Newton equation for the centered

direction:
⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦

⎡
⎣

�xk
c

�yk
c

�sk
c

⎤
⎦ =

⎡
⎣

0

0

τe − Xk Ske

⎤
⎦. (7.18)

We used the subscript c with the direction vectors to note that they are centered

directions. Notice the similarity between (7.14) and (7.18).

One crucial choice we need to make is the value of τ to be used in determining the

centered direction. To illustrate potential strategies for this choice, we first define

the following measure, often called the duality gap, or the average complementarity:

μ = μ(x, s) :=
∑n

i=1 xi si

n
= xTs

n
. (7.19)

Note that, when (x, y, s) satisfy the conditions Ax = b, x ≥ 0 and AT y − Qx +
s = c, s ≥ 0, then (x, y, s) are optimal if and only if μ(x, s) = 0. If μ is large,

then we are far away from the solution. Therefore, μ serves as a measure of op-

timality for feasible points – the smaller the duality gap, the closer the point to

optimality.

For a central point (xτ , yτ , sτ ) we have

μ(xτ , sτ ) =
∑n

i=1(xτ )i (sτ )i

n
=

∑n
i=1 τ

n
= τ.

Because of this identity, we associate the central point (xτ , yτ , sτ ) with all feasible

points (x, y, s) satisfying μ(x, s) = τ . All such points can be regarded as being

at the same “level” as the central point (xτ , yτ , sτ ). When we choose a centered

direction from a current iterate (x, y, s), we have the possibility of targeting a

central point that is (i) at a lower level than our current point (τ < μ(x, s)), (ii)

at the same level as our current point (τ = μ(x, s)), or (iii) at a higher level than

our current point (τ > μ(x, s)). In most circumstances, the third option is not a

good choice as it targets a central point that is “farther” than the current iterate

to the optimal solution. Therefore, we will always choose τ ≤ μ(x, s) in defining
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centered directions. Using a simple change in notation, the centered direction can

now be described as the solution of the following system:
⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦

⎡
⎣

�xk
c

�yk
c

�sk
c

⎤
⎦ =

⎡
⎣

0

0

σ kμke − Xk Ske

⎤
⎦, (7.20)

where μk := μ(xk, sk) = (xk)Tsk/n and σ k ∈ [0, 1] is a user-defined quantity de-

scribing the ratio of the duality gap at the target central point and the current

point.

When σ k = 1 (equivalently, τ = μk in our earlier notation), we have a pure
centering direction. This direction does not improve the duality gap and targets the

central point whose duality gap is the same as our current iterate. Despite the lack

of progress in terms of the duality gap, these steps are often desirable since large

step sizes are permissible along such directions and points get well-centered so

that the next iteration can make significant progress toward optimality. At the other

extreme, we have σ k = 0. This, as we discussed before, corresponds to the pure

Newton step, also called the affine-scaling direction. Practical implementations

often choose intermediate values for σ k .

We are now ready to describe a generic interior-point algorithm that uses centered

directions:

Algorithm 7.1 Generic interior-point algorithm

0. Choose (x0, y0, s0) ∈ Fo. For k = 0, 1, 2, . . . repeat the following steps.
1. Choose σ k ∈ [0, 1], let μk = (xk)Tsk/n. Solve

⎡
⎣

−Q AT I
A 0 0

Sk 0 X k

⎤
⎦

⎡
⎣

�xk

�yk

�sk

⎤
⎦ =

⎡
⎣

0

0

σ kμke − Xk Ske

⎤
⎦ .

2. Choose αk such that

xk + αk�xk > 0, and sk + αk�sk > 0.

Set

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(�xk, �yk, �sk),

and k = k + 1.

Exercise 7.7 Compute the centered Newton direction for the iterate in Exer-

cise 7.4 for σ k = 1, 0.5, and 0.1. For each σ k , compute the largest permissible

step size along the computed centered direction and compare your findings with

that of Exercise 7.5.
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7.3.5 Neighborhoods of the central path

Variants of interior-point methods differ in the way they choose the centering pa-

rameter σ k and the step-size parameter αk in each iteration. Path-following methods

aim to generate iterates that are approximations to central points. This is achieved

by a careful selection of the centering and step-size parameters. Before we dis-

cuss the selection of these parameters we need to make the notion of “approximate

central points” more precise.

Recall that central points are those in the set Fo that satisfy the additional con-

ditions that xi si = τ, ∀i , for some positive τ . Consider a central point (xτ , yτ , sτ ).

If a point (x, y, s) approximates this central point, we would expect the Euclidean

distance between these two points to be small, i.e., we would expect

‖(x, y, s) − (xτ , yτ , sτ )‖
to be small. Then, the set of approximations to (xτ , yτ , sτ ) may be defined as:

{(x, y, s) ∈ Fo : ‖(x, y, s) − (xτ , yτ , sτ )‖ ≤ ε}, (7.21)

for some ε ≥ 0. Note, however, that it is difficult to obtain central points explicitly.

Instead, we have their implicit description through the system (7.17). Therefore, a

description such as (7.21) is of little practical/algorithmic value when we do not

know (xτ , yτ , sτ ). Instead, we consider descriptions of sets that imply proximity to

central points. Such descriptions are often called the neighborhoods of the central

path. Two of the most commonly used neighborhoods of the central path are:

N2(θ ) :=
{

(x, y, s) ∈ Fo : ‖X Se − μe‖ ≤ θμ, μ = xTs

n

}
, (7.22)

for some θ ∈ (0, 1) and

N−∞(γ ) :=
{

(x, y, s) ∈ Fo : xi si ≥ γμ ∀i, μ = xTs

n

}
, (7.23)

for some γ ∈ (0, 1). The first neighborhood is called the 2-norm neighborhood

while the second one is the one-sided ∞-norm neighborhood (but often called the

−∞-norm neighborhood, hence the notation). One can guarantee that the generated

iterates are “close” to the central path by making sure that they all lie in one of these

neighborhoods. If we choose θ = 0 in (7.22) or γ = 1 in (7.23), the neighborhoods

we defined degenerate to the central path C.

Exercise 7.8 Show that N2(θ1) ⊂ N2(θ2) when 0 < θ1 ≤ θ2 < 1, and that

N−∞(γ1) ⊂ N−∞(γ2) for 0 < γ2 ≤ γ1 < 1.

Exercise 7.9 Show that N2(θ ) ⊂ N−∞(γ ) if γ ≤ 1 − θ .
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As hinted in the last exercise, for typical values of θ and γ , the 2-norm neigh-

borhood is often much smaller than the −∞-norm neighborhood. Indeed,

‖X Se − μe‖ ≤ θμ ⇔

∥∥∥∥∥∥∥∥∥∥

x1s1

μ
− 1

x2s2

μ
− 1
...

xnsn
μ

− 1

∥∥∥∥∥∥∥∥∥∥
≤ θ, (7.24)

which, in turn, is equivalent to

n∑
i=1

(
xi si

μ
− 1

)2

≤ θ 2.

In this last expression, the quantity (xi si/μ) − 1 = (xi si − μ)/μ is the relative

deviation of xi si ’s from their average value μ. Therefore, a point is in the 2-norm

neighborhood only if the sum of the squared relative deviations is small. Thus,

N2(θ ) contains only a small fraction of the feasible points, even when θ is close to

1. On the other hand, for the −∞-norm neighborhood, the only requirement is that

each xi si should not be much smaller than their average value μ. For small (but

positive) γ , N−∞(γ ) may contain almost the entire set Fo.

In summary, 2-norm neighborhoods are narrow while the −∞-norm neighbor-

hoods are relatively wide. The practical consequence of this observation is that,

when we restrict our iterates to be in the 2-norm neighborhood of the central path

as opposed to the −∞-norm neighborhood, we have much less room to maneu-

ver and our step-sizes may be cut short. Figure 7.4 illustrates this behavior. For

these reasons, algorithms using the narrow 2-norm neighborhoods are often called

short-step path-following methods while the methods using the wide −∞-norm

neighborhoods are called long-step path-following methods.

The price we pay for the additional flexibility with wide neighborhoods comes in

the theoretical worst-case analysis of convergence. When the iterates are restricted

to the 2-norm neighborhood, we have a stronger control of the iterates as they

are very close to the central path – a trajectory with many desirable theoretical

features. Consequently, we can guarantee that even in the worst case the iterates

that lie in the 2-norm neighborhood will converge to an optimal solution relatively

fast. In contrast, iterates that are only restricted to a −∞-norm neighborhood can

get relatively far away from the central path and may not possess its nice theoretical

properties. As a result, iterates may “get stuck” in undesirable corners of the feasible

set and the convergence may be slow in these worst-case scenarios. Of course,

the worst-case scenarios rarely happen and typically (on average) we see faster

convergence with long-step methods than with short-step methods.
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Exercise 7.10 Verify that the iterate given in Exercise 7.4 is in N−∞(1/2). What

is the largest γ such that this iterate lies in N−∞(γ )?

Exercise 7.11 Recall the centered Newton directions in Exercise 7.7 as well as

the pure Newton direction in Exercise 7.5. For each direction, compute the largest

αk such that the updated iterate remains in N−∞(1/2).

7.3.6 A long-step path-following algorithm

Next, we formally describe a long-step path-following algorithm that specifies some

of the parameter choices of the generic algorithm we described above.

Algorithm 7.2 Long-step path-following algorithm

0. Given γ ∈ (0, 1), 0 < σmin < σmax < 1, choose (x0, y0, s0) ∈ N−∞(γ ). For k =
0, 1, 2, . . . repeat the following steps.

1. Choose σ k ∈ [σmin, σmax], let μk = (xk )Tsk

n . Solve

⎡
⎣

−Q AT I
A 0 0

Sk 0 X k

⎤
⎦

⎡
⎣

�xk

�yk

�sk

⎤
⎦ =

⎡
⎣

0

0

σ kμke − Xk Ske

⎤
⎦.

2. Choose αk such that

(xk, yk , sk) + αk(�xk, �yk, �sk ) ∈ N−∞(γ ).
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Set

(xk+1, yk+1, sk+1) = (xk , yk, sk ) + αk(�xk, �yk , �sk),

and k = k + 1.

7.3.7 Starting from an infeasible point

Both the generic interior-point method and the long-step path-following algorithm

we described above require that one starts with a strictly feasible iterate. This

requirement is not practical since finding such a starting point is not always a trivial

task. Fortunately, however, we can accommodate infeasible starting points in these

algorithms with a small modification of the linear system that we solve in each

iteration.

For this purpose, we only require that the initial point (x0, y0, s0) satisfy the

nonnegativity restrictions strictly: x0 > 0 and s0 > 0. Such points can be generated

trivially. We are still interested in solving the following nonlinear system:

F̂(x, y, s) =
⎡
⎣

AT y − Qx + s − c
Ax − b

X Se − τe

⎤
⎦ =

⎡
⎣

0

0

0

⎤
⎦, (7.25)

as well as x ≥ 0, s ≥ 0. As in (5.7), the Newton step from an infeasible point

(xk, yk, sk) is determined by solving the following system of linear equations:

J (xk, yk, sk)

⎡
⎣

�xk

�yk

�sk

⎤
⎦ = −F̂(xk, yk, sk), (7.26)

which reduces to⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦

⎡
⎣

�xk

�yk

�sk

⎤
⎦ =

⎡
⎣

c + Qxk − ATyk − sk

b − Axk

τe − Xk Ske

⎤
⎦. (7.27)

We no longer have zeros in the first and second blocks of the right-hand-side vector

since we are not assuming that the iterates satisfy Axk = b and AT yk − Qxk + sk =
c. Replacing the linear system in the two algorithm descriptions above with (7.27)

we obtain versions of these algorithms that work with infeasible iterates. In these

versions of the algorithms, search for feasibility and optimality are performed

simultaneously.

7.4 QP software

As for linear programs, there are several software options for solving practical

quadratic programming problems. Many of the commercial software options are
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very efficient and solve very large QPs within seconds or minutes. A survey of

nonlinear programming software, which includes software designed for QPs, can

be found at www.lionhrtpub.com/orms/surveys/nlp/nlp.html.

The Network Enabled Optimization Server (NEOS) website and the Optimization
Software Guide website we mentioned when we discussed NLP software are also

useful for QP solvers. LOQO is a very efficient and robust interior-point based

software for QPs and other nonlinear programming problems. It is available from

www.orfe.princeton.edu/∼loqo.

OOQP is an object-oriented C++ package, based on a primal-dual interior-

point method, for solving convex quadratic programming problems. It contains

code that can be used “out of the box” to solve a variety of structured QPs, in-

cluding general sparse QPs, QPs arising from support vector machines, Huber

regression problems, and QPs with bound constraints. It is available for free from

www.cs.wisc.edu/∼swright/ooqp.

7.5 Additional exercises

Exercise 7.12 In the study of interior-point methods for solving quadratic pro-

gramming problems we encountered the following matrix:

M :=
⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦,

where (xk, yk, sk) is the current iterate, Xk and Sk are diagonal matrices with the

components of the vectors xk and sk along their diagonals. Recall that M is the

Jacobian matrix of the function that defines the optimality conditions of the QP

problem. This matrix appears in linear systems we need to solve in each interior-

point iteration. We can solve these systems only when M is nonsingular. Show

that M is necessarily nonsingular when A has full row rank and Q is positive

semidefinite. Provide an example with a Q matrix that is not positive semidefinite

(but A matrix has full row rank) such that M is singular. (Hint: To prove non-

singularity of M when Q is positive semidefinite and A has full row rank, consider

a solution of the system
⎡
⎣

−Q AT I
A 0 0

Sk 0 Xk

⎤
⎦

⎡
⎣

�x
�y
�s

⎤
⎦ =

⎡
⎣

0

0

0

⎤
⎦.

It is sufficient to show that the only solution to this system is�x = 0, �y = 0, �s =
0. To prove this, first eliminate �s variables from the system, and then eliminate

�x variables.)
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Exercise 7.13 Consider the following quadratic programming formulation ob-

tained from a small portfolio selection model:

minx [x1 x2 x3 x4]

⎡
⎢⎢⎣

0.01 0.005 0 0

0.005 0.01 0 0

0 0 0.04 0

0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

x1 + x2 + x3 = 1

−x2 + x3 + x4 = 0.1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

We have the following iterate for this problem:

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1/3

1/3

1/3

0.1

⎤
⎥⎥⎦, y =

[
y1

y2

]
=

[
0.001

−0.001

]
, s =

⎡
⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.004

0.003

0.0133

0.001

⎤
⎥⎥⎦.

Verify that (x, y, s) ∈ F o. Is this point on the central path? Is it on N−∞(0.1)? How

about N−∞(0.05)? Compute the pure centering (σ = 1) and pure Newton (σ = 0)

directions from this point. For each direction, find the largest step-size α that can be

taken along that direction without leaving the neighborhoodN−∞(0.05)? Comment

on your results.

Exercise 7.14 Implement the long-step path-following algorithm given in Sec-

tion 7.3.6 using σmin = 0.2, σmax = 0.8, γ = 0.25. Solve the quadratic program-

ming problem in Exercise 7.13 starting from the iterate given in that exercise using

your implementation. Experiment with alternative choices for σmin, σmax, and γ .
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QP models: portfolio optimization

8.1 Mean-variance optimization

Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism

for the selection of portfolios of securities (or asset classes) in a manner that trades

off expected returns and risk. We explore this model in more detail in this chapter.

Consider assets S1, S2, . . . , Sn (n ≥ 2) with random returns. Let μi and σi denote

the expected return and the standard deviation of the return of asset Si . For i �=
j , ρi j denotes the correlation coefficient of the returns of assets Si and Sj . Let

μ = [μ1, . . . , μn]T, and � = (σi j ) be the n × n symmetric covariance matrix with

σi i = σ 2
i and σi j = ρi jσiσ j for i �= j . Denoting by xi the proportion of the total

funds invested in security i , one can represent the expected return and the variance

of the resulting portfolio x = (x1, . . . , xn) as follows:

E[x] = μ1x1 + · · · + μn xn = μTx,

and

Var[x] =
∑
i, j

ρi jσiσ j xi x j = xT�x,

where ρi i ≡ 1.

Since variance is always nonnegative, it follows that xT�x ≥ 0 for any x , i.e.,� is

positive semidefinite. In this section, we will assume that it is in fact positive definite,

which is essentially equivalent to assuming that there are no redundant assets in our

collection S1, S2, . . . , Sn . We further assume that the set of admissible portfolios is

a nonempty polyhedral set and represent it as X := {x : Ax = b, Cx ≥ d}, where

A is an m × n matrix, b is an m-dimensional vector, C is a p × n matrix, and d is

a p-dimensional vector. In particular, one of the constraints in the set X is

n∑
i=1

xi = 1.

138
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Linear portfolio constraints such as short-sale restrictions or limits on asset/sector

allocations are subsumed in our generic notation X for the polyhedral feasible set.

Recall that a feasible portfolio x is called efficient if it has the maximal expected

return among all portfolios with the same variance, or, alternatively, if it has the

minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the efficient frontier of the portfolio

universe. The efficient frontier is often represented as a curve in a two-dimensional

graph where the coordinates of a plotted point corresponds to the standard deviation

and the expected return of an efficient portfolio.

When we assume that � is positive definite, the variance is a strictly convex

function of the portfolio variables and there exists a unique portfolio in X that has

the minimum variance; see Exercise 7.2. Let us denote this portfolio with xmin and

its return μTxmin with Rmin. Note that xmin is an efficient portfolio. We let Rmax

denote the maximum return for an admissible portfolio.

Markowitz’ mean-variance optimization (MVO) problem can be formulated in

three different but equivalent ways. We have seen one of these formulations in the

first chapter: find the minimum variance portfolio of the securities 1 to n that yields

at least a target value of expected return (say b). Mathematically, this formulation

produces a quadratic programming problem:

minx
1
2
xT�x
μTx ≥ R

Ax = b
Cx ≥ d.

(8.1)

The first constraint indicates that the expected return is no less than the target

value R. Solving this problem for values of R ranging between Rmin and Rmax

one obtains all efficient portfolios. As we discussed above, the objective function

corresponds to one half the total variance of the portfolio. The constant 1/2 is

added for convenience in the optimality conditions – it obviously does not affect

the optimal solution.

This is a convex quadratic programming problem for which the first-order con-

ditions are both necessary and sufficient for optimality. We present these conditions

next. xR is an optimal solution of problem (8.1) if and only if there exists λR ∈ IR,

γE ∈ IRm , and γI ∈ IR p satisfying the following KKT conditions:

�xR − λRμ − ATγE − CTγI = 0,

μTxR ≥ R, AxR = b, CxR ≥ d,

λR ≥ 0, λR(μTxR − R) = 0,

γI ≥ 0, γ T
I (CxR − d) = 0.

(8.2)
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The two other variations of the MVO problem are the following:

maxx μTx

xT�x ≤ σ 2

Ax = b
Cx ≥ d,

(8.3)

and

maxx μTx − δ
2
xT�x

Ax = b
Cx ≥ d.

(8.4)

In (8.3), σ 2 is a given upper limit on the variance of the portfolio. In (8.4), the

objective function is a risk-adjusted return function where the constant δ serves as

a risk-aversion constant. While (8.4) is another quadratic programming problem,

(8.3) has a convex quadratic constraint and therefore is not a QP. This problem can

be solved using the general nonlinear programming solution techniques discussed

in Chapter 5. We will also discuss a reformulation of (8.3) as a second-order cone

program in Chapter 10. This opens the possibility of using specialized and efficient

second-order cone programming methods for its solution.

Exercise 8.1 What are the Karush–Kuhn–Tucker optimality conditions for prob-

lems (8.3) and (8.4)?

Exercise 8.2 Consider the following variant of (8.4):

maxx μTx − η
√

xT�x
Ax = b
Cx ≥ d.

(8.5)

For each η > 0, let x∗(η) denote the optimal solution of (8.5). Show that there exists

a δ > 0 such that x∗(η) solves (8.4) for that δ.

8.1.1 Example

We apply Markowitz’s MVO model to the problem of constructing a long-only

portfolio of US stocks, bonds, and cash. We will use historical return data for these

three asset classes to estimate their future expected returns. Note that most models

for MVO combine historical data with other indicators such as earnings estimates,

analyst ratings, valuation, and growth metrics, etc. Here we restrict our attention

to price-based estimates for expositional simplicity. We use the S&P 500 Index for

the returns on stocks, the 10-year Treasury Bond Index for the returns on bonds,

and we assume that the cash is invested in a money market account whose return is

the 1-day federal fund rate. The annual times series for the “total return” are given

in Table 8.1 for each asset between 1960 and 2003.
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Table 8.1 Total returns for stocks, bonds, and money market

Year Stocks Bonds MM Year Stocks Bonds MM

1960 20.2553 262.935 100.00 1982 115.308 777.332 440.68
1961 25.6860 268.730 102.33 1983 141.316 787.357 482.42
1962 23.4297 284.090 105.33 1984 150.181 907.712 522.84
1963 28.7463 289.162 108.89 1985 197.829 1200.63 566.08
1964 33.4484 299.894 113.08 1986 234.755 1469.45 605.20
1965 37.5813 302.695 117.97 1987 247.080 1424.91 646.17
1966 33.7839 318.197 124.34 1988 288.116 1522.40 702.77
1967 41.8725 309.103 129.94 1989 379.409 1804.63 762.16
1968 46.4795 316.051 137.77 1990 367.636 1944.25 817.87
1969 42.5448 298.249 150.12 1991 479.633 2320.64 854.10
1970 44.2212 354.671 157.48 1992 516.178 2490.97 879.04
1971 50.5451 394.532 164.00 1993 568.202 2816.40 905.06
1972 60.1461 403.942 172.74 1994 575.705 2610.12 954.39
1973 51.3114 417.252 189.93 1995 792.042 3287.27 1007.84
1974 37.7306 433.927 206.13 1996 973.897 3291.58 1061.15
1975 51.7772 457.885 216.85 1997 1298.82 3687.33 1119.51
1976 64.1659 529.141 226.93 1998 1670.01 4220.24 1171.91
1977 59.5739 531.144 241.82 1999 2021.40 3903.32 1234.02
1978 63.4884 524.435 266.07 2000 1837.36 4575.33 1313.00
1979 75.3032 531.040 302.74 2001 1618.98 4827.26 1336.89
1980 99.7795 517.860 359.96 2002 1261.18 5558.40 1353.47
1981 94.8671 538.769 404.48 2003 1622.94 5588.19 1366.73

Let Iit denote the above “total return” for asset i = 1, 2, 3 and t = 0, . . . T , where

t = 0 corresponds to 1960 and t = T to 2003. For each asset i , we can convert the

raw data Iit , t = 0, . . . , T , given in Table 8.1 into rates of returns rit , t = 1, . . . , T ,

using the formula

rit = Ii,t − Ii,t−1

Ii,t−1

.

These rates of returns are shown in Table 8.2. Let Ri denote the random rate of

return of asset i . From the above historical data, we can compute the arithmetic

mean rate of return for each asset:

r̄i = 1

T

T∑
t=1

rit ,

which gives:

Stocks Bonds MM

Arithmetic mean r̄i 12.06% 7.85% 6.32%
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Table 8.2 Rates of return for stocks, bonds and money market

Year Stocks Bonds MM Year Stocks Bonds MM

1961 26.81 2.20 2.33 1983 22.56 1.29 9.47
1962 −8.78 5.72 2.93 1984 6.27 15.29 8.38
1963 22.69 1.79 3.38 1985 31.17 32.27 8.27
1964 16.36 3.71 3.85 1986 18.67 22.39 6.91
1965 12.36 0.93 4.32 1987 5.25 −3.03 6.77
1966 −10.10 5.12 5.40 1988 16.61 6.84 8.76
1967 23.94 −2.86 4.51 1989 31.69 18.54 8.45
1968 11.00 2.25 6.02 1990 −3.10 7.74 7.31
1969 −8.47 −5.63 8.97 1991 30.46 19.36 4.43
1970 3.94 18.92 4.90 1992 7.62 7.34 2.92
1971 14.30 11.24 4.14 1993 10.08 13.06 2.96
1972 18.99 2.39 5.33 1994 1.32 −7.32 5.45
1973 −14.69 3.29 9.95 1995 37.58 25.94 5.60
1974 −26.47 4.00 8.53 1996 22.96 0.13 5.29
1975 37.23 5.52 5.20 1997 33.36 12.02 5.50
1976 23.93 15.56 4.65 1998 28.58 14.45 4.68
1977 −7.16 0.38 6.56 1999 21.04 −7.51 5.30
1978 6.57 −1.26 10.03 2000 −9.10 17.22 6.40
1979 18.61 −1.26 13.78 2001 −11.89 5.51 1.82
1980 32.50 −2.48 18.90 2002 −22.10 15.15 1.24
1981 −4.92 4.04 12.37 2003 28.68 0.54 0.98
1982 21.55 44.28 8.95

Since the rates of return are multiplicative over time, we prefer to use the geo-

metric mean instead of the arithmetic mean. The geometric mean is the constant

yearly rate of return that needs to be applied in years t = 0 through t = T − 1 in

order to get the compounded total return IiT , starting from Ii0. The formula for the

geometric mean is:

μi =
(

T∏
t=1

(1 + rit )

)1/T

− 1.

We get the following results:

Stocks Bonds MM

Geometric mean μi 10.73% 7.37% 6.27%

We also compute the covariance matrix:

cov(Ri , R j ) = 1

T

T∑
t=1

(rit − r̄i )(r jt − r̄ j ).
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Covariance Stocks Bonds MM

Stocks 0.02778 0.00387 0.00021
Bonds 0.00387 0.01112 −0.00020
MM 0.00021 −0.00020 0.00115

It is interesting to compute the volatility of the rate of return on each asset

σi = √
cov(Ri , Ri ):

Stocks Bonds MM

Volatility 16.67% 10.55% 3.40%

and the correlation matrix ρi j = cov(Ri ,R j )

σiσ j
:

Correlation Stocks Bonds MM

Stocks 1 0.2199 0.0366
Bonds 0.2199 1 −0.0545
MM 0.0366 −0.0545 1

Setting up the QP for portfolio optimization:

min 0.02778x2
S + 2 · 0.00387xS xB + 2 · 0.00021xS xM

+0.01112x2
B − 2 · 0.00020xB xM + 0.00115x2

M

0.1073xS + 0.0737xB + 0.0627xM ≥ R

xS + xB + xM = 1

xS ≥ 0, xB ≥ 0, xM ≥ 0,

(8.6)

and solving it for R = 6.5% to R = 10.5% with increments of 0.5%, we get the

optimal portfolios shown in Table 8.3 and the corresponding variance. The optimal

allocations on the efficient frontier are also depicted in Figure 8.1(b).

Based on the first two columns of Table 8.3, Figure 8.1(a) plots the maximum

expected rate of return R of a portfolio as a function of its volatility (standard

deviation). This curve is the efficient frontier we discussed earlier. Every possible

portfolio consisting of long positions in stocks, bonds, and money market invest-

ments is represented by a point lying on or below the efficient frontier in the standard

deviation/expected return plane.

Exercise 8.3 Solve Markowitz’ MVO model for constructing a portfolio of US

stocks, bonds, and cash using arithmetic means, instead of geometric means as

above. Vary R from 6.5% to 12% with increments of 0.5%. Compare with the

results obtained above.
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Table 8.3 Efficient portfolios

Rate of return R Variance Stocks Bonds MM

0.065 0.0010 0.03 0.10 0.87
0.070 0.0014 0.13 0.12 0.75
0.075 0.0026 0.24 0.14 0.62
0.080 0.0044 0.35 0.16 0.49
0.085 0.0070 0.45 0.18 0.37
0.090 0.0102 0.56 0.20 0.24
0.095 0.0142 0.67 0.22 0.11
0.100 0.0189 0.78 0.22 0
0.105 0.0246 0.93 0.07 0
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Figure 8.1 Efficient frontier and the composition of efficient portfolios

Exercise 8.4 In addition to the three securities given earlier (S&P 500 Index,

10-year Treasury Bond Index, and Money Market), consider a fourth security (the

NASDAQ Composite Index) with the “total return” shown in Table 8.4.
Construct a portfolio consisting of the S&P 500 Index, the NASDAQ Index, the

10-year Treasury Bond Index and cash, using Markowitz’s MVO model. Solve the

model for different values of R.

Exercise 8.5 Repeat the previous exercise, this time assuming that one can lever-

age the portfolio up to 50% by borrowing at the money market rate. How do the

risk/return profiles of optimal portfolios change with this relaxation? How do your

answers change if the borrowing rate for cash is expected to be 1% higher than the

lending rate?

8.1.2 Large-scale portfolio optimization

In this section, we consider practical issues that arise when the mean-variance

model is used to construct a portfolio from a large underlying family of assets.
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Table 8.4 Total returns for the NASDAQ Composite Index

Year NASDAQ Year NASDAQ Year NASDAQ

1960 34.461 1975 77.620 1990 373.84
1961 45.373 1976 97.880 1991 586.34
1962 38.556 1977 105.05 1992 676.95
1963 46.439 1978 117.98 1993 776.80
1964 57.175 1979 151.14 1994 751.96
1965 66.982 1980 202.34 1995 1052.1
1966 63.934 1981 195.84 1996 1291.0
1967 80.935 1982 232.41 1997 1570.3
1968 101.79 1983 278.60 1998 2192.7
1969 99.389 1984 247.35 1999 4069.3
1970 89.607 1985 324.39 2000 2470.5
1971 114.12 1986 348.81 2001 1950.4
1972 133.73 1987 330.47 2002 1335.5
1973 92.190 1988 381.38 2003 2003.4
1974 59.820 1989 454.82

For concreteness, let us consider a portfolio of stocks constructed from a set of n
stocks with known expected returns and covariance matrix, where n may be in the

hundreds or thousands.

Diversification

In general, there is no reason to expect that solutions to the Markowitz model will

be well diversified portfolios. In fact, this model tends to produce portfolios with

unreasonably large weights in certain asset classes and, when short positions are

allowed, unintuitively large short positions. This issue is well documented in the

literature, including the paper by Green and Hollifield [36] and is often attributed

to estimation errors. Estimates that may be slightly “off” may lead the optimizer to

chase phantom low-risk high-return opportunities by taking large positions. Hence,

portfolios chosen by this quadratic program may be subject to idiosyncratic risk.

Practitioners often use additional constraints on the xi ’s to insure themselves against

estimation and model errors and to ensure that the chosen portfolio is well diversi-

fied. For example, a limit m may be imposed on the size of each xi , say

xi ≤ m for i = 1, . . . , n.

One can also reduce sector risk by grouping together investments in securities

of a sector and setting a limit on the exposure to this sector. For example, if mk is

the maximum that can be invested in sector k, we add the constraint∑
i in sector k

xi ≤ mk .
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Note, however, that the more constraints one adds to a model, the more the

objective value deteriorates. So the above approach to producing diversification, at

least ex ante, can be quite costly.

Transaction costs

We can add a portfolio turnover constraint to ensure that the change between the

current holdings x0 and the desired portfolio x is bounded by h. This constraint is

essential when solving large mean-variance models since the covariance matrix is

almost singular in most practical applications and hence the optimal decision can

change significantly with small changes in the problem data. To avoid big changes

when reoptimizing the portfolio, turnover constraints are imposed. Let yi be the

amount of asset i bought and zi the amount sold. We write

xi − x0
i ≤ yi , yi ≥ 0,

x0
i − xi ≤ zi , zi ≥ 0,

n∑
i=1

(yi + zi ) ≤ h.

Instead of a turnover constraint, we can introduce transaction costs directly into

the model. Suppose that there is a transaction cost ti proportional to the amount of

asset i bought, and a transaction cost t ′
i proportional to the amount of asset i sold.

Suppose that the portfolio is reoptimized once per period. As above, let x0 denote

the current portfolio. Then a reoptimized portfolio is obtained by solving

min
n∑

i=1

n∑
j=1

σi j xi x j

subject to
n∑

i=1

(μi xi − ti yi − t ′
i zi ) ≥ R

n∑
i=1

xi = 1

xi − x0
i ≤ yi for i = 1, . . . , n,

x0
i − xi ≤ zi for i = 1, . . . , n,

yi ≥ 0 for i = 1, . . . , n,

zi ≥ 0 for i = 1, . . . , n,

xi unrestricted for i = 1, . . . , n.



8.1 Mean-variance optimization 147

Parameter estimation

The Markowitz model gives us an optimal portfolio assuming that we have perfect

information on the μi ’s and σi j ’s for the assets that we are considering. Therefore,

an important practical issue is the estimation of the μi ’s and σi j ’s.

A reasonable approach for estimating these data is to use time series of past

returns (rit = return of asset i from time t − 1 to time t , where i = 1, . . . , n,

t = 1, . . . , T ). Unfortunately, it has been observed that small changes in the time

series rit lead to changes in the μi ’s and σi j ’s that often lead to significant changes

in the “optimal” portfolio.

Markowitz recommends using the β’s of the securities to calculate the μi ’s and

σi j ’s as follows. Let

rit = return of asset i in period t, i = 1, . . . , n, and t = 1, . . . , T,

rmt = market return in period t,

r f t = return of risk-free asset in period t.

We estimate βi by a linear regression based on the capital asset pricing model

rit − r f t = βi (rmt − r f t ) + εi t

where the vector εi represents the idiosyncratic risk of asset i . We assume that

cov(εi , ε j ) = 0. The β’s can also be purchased from financial research groups and

risk model providers.

Knowing βi , we compute μi by the relation

μi − E(r f ) = βi (E(rm) − E(r f )),

and σi j by the relation

σi j = βiβ jσ
2
m for i �= j,

σi i = β2
i σ 2

m + σ 2
εi
,

where σ 2
m denotes the variance of the market return and σ 2

εi
the variance of the

idiosyncratic return.

But the fundamental weakness of the Markowitz model remains, no matter how

cleverly the μi ’s and σi j ’s are computed: the solution is extremely sensitive to small

changes in the data. Only one small change in one μi may produce a totally different

portfolio x . What can be done in practice to overcome this problem, or at least reduce

it? Michaud [57] recommends to resample returns from historical data to generate

alternative μ and σ estimates, to solve the MVO problem repeatedly with inputs

generated this way, and then to combine the optimal portfolios obtained in this
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manner. Robust optimization approaches provide an alternative strategy to mitigate

the input sensitivity in MVO models; we discuss some examples in Chapters 19

and 20. Another interesting approach is considered in the next section.

Exercise 8.6 Express the following restrictions as linear constraints:

(i) The β of the portfolio should be between 0.9 and 1.1.

(ii) Assume that the stocks are partitioned by capitalization: large, medium, and

small. We want the portfolio to be divided evenly between large and medium

cap stocks, and the investment in small cap stocks to be between two and three

times the investment in large cap stocks.

Exercise 8.7 Using historical returns of the stocks in the DJIA, estimate their

mean μi and covariance matrix. Let R be the median of the μi ’s.

(i) Solve Markowitz’ MVO model to construct a portfolio of stocks from the DJIA

that has expected return at least R.

(ii) Generate a random value uniformly in the interval [0.95μi , 1.05μi ], for each

stock i . Resolve Markowitz’ MVO model with these mean returns, instead of

μi ’s as in (i). Compare the results obtained in (i) and (ii).

(iii) Repeat three more times and average the five portfolios found in (i), (ii) and

(iii). Compare this portfolio with the one found in (i).

8.1.3 The Black–Litterman model

Black and Litterman [14] recommend to combine the investor’s view with the

market equilibrium, as follows.

The expected return vector μ is assumed to have a probability distribution that is

the product of two multivariate normal distributions. The first distribution represents

the returns at market equilibrium, with mean π and covariance matrix τ�, where

τ is a small constant and � = (σi j ) denotes the covariance matrix of asset returns.

(Note that the factor τ should be small since the variance τσ 2
i of the random variable

μi is typically much smaller than the variance σ 2
i of the underlying asset returns.)

The second distribution represents the investor’s view about the μi ’s. These views

are expressed as

Pμ = q + ε,

where P is a k × n matrix and q is a k-dimensional vector that are provided by the

investor and ε is a normally distributed random vector with mean 0 and diagonal

covariance matrix 
 (the stronger the investor’s view, the smaller the corresponding

ωi = 
i i ).
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The resulting distribution for μ is a multivariate normal distribution with mean

μ̄ = [(τ�)−1 + PT
−1 P]−1[(τ�)−1π + PT
−1q]. (8.7)

Black and Litterman use μ̄ as the vector of expected returns in the Markowitz

model.

Example 8.1 Let us illustrate the Black–Litterman approach on the example of
Section 8.1.1. The expected returns on Stocks, Bonds, and Money Market were
computed to be

Stocks Bonds MM

Market rate of return 10.73% 7.37% 6.27%

This is what we use for the vector π representing market equilibrium. In practice,
π is obtained from the vector of shares of global wealth invested in different asset
classes via reverse optimization. We need to choose the value of the small constant
τ . We take τ = 0.1. We have two views that we would like to incorporate into the
model. First, we hold a strong view that the Money Market rate will be 2% next
year. Second, we also hold the view that S&P 500 will outperform 10-year Treasury
Bonds by 5% but we are not as confident about this view. These two views can be
expressed as follows

μM = 0.02 strong view: ω1 = 0.00001, (8.8)

μS − μB = 0.05 weaker view: ω2 = 0.001.

Thus P =
(

0 0 1

1 −1 0

)
, q =

(
0.02

0.05

)
and 
 =

(
0.00001 0

0 0.001

)
.

Applying formula (8.7) to compute μ̄, we get

Stocks Bonds MM

Mean rate of return μ̄ 11.77% 7.51% 2.34%

We solve the same QP as in (8.6) except for the modified expected return
constraint:

min 0.02778x2
S + 2 · 0.00387xS xB + 2 · 0.00021xS xM

+0.01112x2
B − 2 · 0.00020xB xM + 0.00115x2

M

0.1177xS + 0.0751xB + 0.0234xM ≥ R

xS + xB + xM = 1

xS ≥ 0, xB ≥ 0, xM ≥ 0

(8.9)

Solving for R = 4.0% to R = 11.5% with increments of 0.5% we now get the
optimal portfolios and the efficient frontier depicted in Table 8.5 and Figure 8.2.
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Table 8.5 Black–Litterman efficient portfolios

Rate of return R Variance Stocks Bonds MM

0.040 0.0012 0.08 0.17 0.75
0.045 0.0015 0.11 0.21 0.68
0.050 0.0020 0.15 0.24 0.61
0.055 0.0025 0.18 0.28 0.54
0.060 0.0032 0.22 0.31 0.47
0.065 0.0039 0.25 0.35 0.40
0.070 0.0048 0.28 0.39 0.33
0.075 0.0059 0.32 0.42 0.26
0.080 0.0070 0.35 0.46 0.19
0.085 0.0083 0.38 0.49 0.13
0.090 0.0096 0.42 0.53 0.05
0.095 0.0111 0.47 0.53 0
0.100 0.0133 0.58 0.42 0
0.105 0.0163 0.70 0.30 0
0.110 0.0202 0.82 0.18 0
0.115 0.0249 0.94 0.06 0
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Figure 8.2 Efficient frontier and the composition of efficient portfolios using the
Black–Litterman approach

Exercise 8.8 Repeat the example above, with the same investor’s views, but

adding the fourth security of Exercise 8.4 (the NASDAQ Composite Index).

Black and Litterman give the following intuition for their approach using the

following example. Suppose we know the true structure of the asset returns: for

each asset, the return is composed of an equilibrium risk premium plus a common

factor and an independent shock:

Ri = πi + γi Z + νi
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where

Ri = the return on the i th asset,

πi = the equilibrium risk premium on the i th asset,

Z = a common factor,

γi = the impact of Z on the i th asset,

νi = an independent shock to the i th asset.

The covariance matrix � of asset returns is assumed to be known. The expected

returns of the assets are given by:

μi = πi + γi E[Z ] + E[νi ].

While a consideration of the equilibrium motivates the Black–Litterman model,

they do not assume that E[Z ] and E[νi ] are equal to 0, which would indicate that

the expected excess returns are equal to the equilibrium risk premiums. Instead,

they assume that the expected excess returns μi are unobservable random variables

whose distribution is determined by the distribution of E[Z ] and E[νi ]. Their

additional assumptions imply that the covariance matrix of expected returns is τ�

for some small positive scalar τ . All this information is assumed to be known to all

investors.

Investors differ in the additional, subjective informative they have about future

returns. They express this information as their “views” such as “I expect that asset

A will outperform asset B by 2%.” Coupled with a measure of confidence, such

views can be incorporated into the equilibrium returns to generate conditional dis-

tribution of the expected returns. For example, if we assume that the equilibrium

distribution of μ is given by the normal distribution N(π, τ�) and views are rep-

resented using the constraint Pμ = q (with 100% confidence), the mean μ̄ of the

normal distribution conditional on this view is obtained as the optimal solution of

the following quadratic optimization problem:

min (μ − π )T(τ�)−1(μ − π )

s.t. Pμ = q.
(8.10)

Using the KKT optimality conditions presented in Section 5.5, the solution to the

above minimization problem can be shown to be

μ̄ = π + (τ�)PT[P(τ�)PT]−1(q − Pπ ). (8.11)

Exercise 8.9 Prove that μ̄ in (8.11) solves (8.10) using KKT conditions.

Of course, an investor rarely has 100% confidence in his/her views. In the more

general case, the views are expressed as Pμ = q + ε where P and q are given by

the investor as above and ε is an unobservable normally distributed random vector
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with mean 0 and diagonal covariance matrix 
. A diagonal 
 corresponds to the

assumption that the views are independent. When this is the case, μ̄ is given by the

Black–Litterman formula

μ̄ = [(τ�)−1 + PT
−1 P]−1[(τ�)−1π + PT
−1q],

as stated earlier. We refer to the Black and Litterman paper for additional details

and an example of an international portfolio [14].

Exercise 8.10 Repeat Exercise 8.4 , this time using the Black–Litterman method-

ology outlined above. Use the expected returns you computed in Exercise 8.4 as

equilibrium returns and incorporate the view that NASDAQ stocks will outperform

the S&P 500 stocks by 4% and that the average of NASDAQ and S&P 500 returns

will exceed bond returns by 3%. Both views are relatively strong and are expressed

with ω1 = ω2 = 0.0001.

8.1.4 Mean-absolute deviation to estimate risk

Konno and Yamazaki [46] propose a linear programming model instead of the

classical quadratic model. Their approach is based on the observation that different

measures of risk, such as volatility and L1-risk, are closely related, and that alternate

measures of risk are also appropriate for portfolio optimization.

The volatility of the portfolio return is

σ =

√√√√√E

⎡
⎣

(
n∑

i=1

(Ri − μi )xi

)2
⎤
⎦,

where Ri denotes the random return of asset i and μi denotes its mean.

The L1-risk of the portfolio return is defined as

w = E

[∣∣∣∣∣
n∑

i=1

(Ri − μi )xi

∣∣∣∣∣

]
.

Theorem 8.1 (Konno and Yamazaki [43]) If (R1, . . . , Rn) are multivariate
normally distributed random variables, then w = √

2/πσ .

Proof: Let (μ1, . . . , μn) be the mean of (R1, . . . , Rn). Also let � = (σi j ) ∈ IRn×n

be the covariance matrix of (R1, . . . , Rn). Then
∑

Ri xi is normally distributed [66]
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with mean
∑

μi xi and standard deviation

σ (x) =
√∑

i

∑
j

σi j xi x j .

Therefore w = E[|U |] where U ∼ N (0, σ ), and

w(x) = 1√
2πσ (x)

∫ +∞

−∞
|u|e− u2

2σ2(x) du = 2√
2πσ (x)

∫ +∞

0

ue
− u2

2σ2(x) du =
√

2

π
σ (x).

This theorem implies that minimizing σ is equivalent to minimizing w when

(R1, . . . , Rn) is multivariate normally distributed. With this assumption, the

Markowitz model can be formulated as

min E

[∣∣∣∣∣
n∑

i=1

(Ri − μi )xi

∣∣∣∣∣

]

subject to
n∑

i=1

μi xi ≥ R

n∑
i=1

xi = 1

0 ≤ xi ≤ mi for i = 1, . . . , n.

Whether (R1, . . . , Rn) has a multivariate normal distribution or not, the above

mean-absolute deviation (MAD) model constructs efficient portfolios for the L1-

risk measure. Let rit be the realization of random variable Ri during period t for

t = 1, . . . , T , which we assume to be available through the historical data or from

future projection. Then

μi = 1

T

T∑
t=1

rit .

Furthermore

E

[∣∣∣∣∣
n∑

i=1

(Ri − μi )xi

∣∣∣∣∣

]
= 1

T

T∑
t=1

∣∣∣∣∣
n∑

i=1

(rit − μi )xi

∣∣∣∣∣ .

Note that the absolute value in this expression makes it nonlinear. But it can be

linearized using additional variables. Indeed, one can replace |x | by y + z where

x = y − z and y, z ≥ 0. When the objective is to minimize y + z, at most one of y
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Table 8.6 Konno–Yamazaki efficient portfolios

Rate of return R Variance Stocks Bonds MM

0.065 0.0011 0.05 0.01 0.94
0.070 0.0015 0.15 0.04 0.81
0.075 0.0026 0.25 0.11 0.64
0.080 0.0046 0.32 0.28 0.40
0.085 0.0072 0.42 0.32 0.26
0.090 0.0106 0.52 0.37 0.11
0.095 0.0144 0.63 0.37 0
0.100 0.0189 0.78 0.22 0
0.105 0.0246 0.93 0.07 0

or z will be positive. Therefore the model can be rewritten as

min
T∑

t=1

yt + zt

subject to

yt − zt =
n∑

i=1

(rit − μi )xi for t = 1, . . . , T,

n∑
i=1

μi xi ≥ R

n∑
i=1

xi = 1

0 ≤ xi ≤ mi for i = 1, . . . , n,

yt ≥ 0, zt ≥ 0 for t = 1, . . . , T .

This is a linear program! Therefore this approach can be used to solve large-scale

portfolio optimization problems.

Example 8.2 We illustrate the approach on our three-asset example, using the
historical data on stocks, bonds, and cash given in Section 8.1.1. Solving the linear
program for R = 6.5% to R = 10.5% with increments of 0.5% we get the optimal
portfolios and the efficient frontier depicted in Table 8.6 and Figure 8.3.

In Table 8.6, we computed the variance of the MAD portfolio for each level R
of the rate of return. These variances can be compared with the results obtained in
Section 8.1.1 for the MVO portfolio. As expected, the variance of a MAD portfolio is
always at least as large as that of the corresponding MVO portfolio. Note, however,
that the difference is small. This indicates that, although the normality assumption
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Figure 8.3 Efficient frontier and the composition of efficient portfolios using the
Konno–Yamazaki approach

of Theorem 8.1 does not hold, minimizing the L1-risk (instead of volatility)
produces comparable portfolios.

Exercise 8.11 Add the fourth security of Exercise 8.4 (the NASDAQ Composite

Index) to the three-asset example. Solve the resulting MAD model for varying

values of R. Compare with the portfolios obtained in Exercise 8.4 .

We note that the portfolios generated using the mean-absolute deviation criteria

has the additional property that they are never stochastically dominated [71]. This

is an important property as a portfolio has second-order stochastic dominance over

another one if and only if it is preferred to the other by any concave (risk-averse) util-

ity function. By contrast, mean-variance optimization may generate optimal port-

folios that are stochastically dominated. This and other criticisms of Markowitz’

mean-variance optimization model we mentioned above led to the development

of alternative formulations including the Black–Litterman and Konno–Yamazaki

models as well as the robust optimization models we consider in Chapter 20.

Steinbach provides an excellent review of Markowitz’ mean-variance optimiza-

tion model, its many variations and its extensions to multi-period optimization

setting [77].

8.2 Maximizing the Sharpe ratio

Consider the setting in Section 8.1. Recall that we denote with Rmin and Rmax the

minimum and maximum expected returns for efficient portfolios. Let us define the

function

σ (R) : [Rmin, Rmax] → IR, σ (R) := (
xT

R�xR
)1/2

,
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Figure 8.4 Capital allocation line

where xR denotes the unique solution of problem (8.1). Since we assumed that �

is positive definite, it is easy to show that the function σ (R) is strictly convex in its

domain. The efficient frontier is the graph

E = {(R, σ (R)) : R ∈ [Rmin, Rmax]}.

We now consider a riskless asset whose return is r f ≥ 0 with probability 1. We

will assume that r f < Rmin, which is natural since the portfolio xmin has a positive

risk associated with it while the riskless asset does not.

Return/risk profiles of different combinations of a risky portfolio with the riskless

asset can be represented as a straight line – a capital allocation line (CAL) – on the

standard deviation vs. mean graph; see Figure 8.4. The optimal CAL is the CAL

that lies above all the other CALs for R > r f , since the corresponding portfolios

will have the lowest standard deviation for any given value of R > r f . Then, it

follows that this optimal CAL goes through a point on the efficient frontier and

never goes below a point on the efficient frontier. The point where the optimal CAL

touches the efficient frontier corresponds to the optimal risky portfolio.

Alternatively, one can think of the optimal CAL as the CAL with the largest

slope. Mathematically, this can be expressed as the portfolio x that maximizes the

quantity

h(x) = μTx − r f

(xT�x)1/2
,

among all x ∈ S. This quantity is precisely the reward-to-volatility ratio introduced

by Sharpe to measure the performance of mutual funds [76]. This quantity is now

more commonly known as the Sharpe ratio. The portfolio that maximizes the Sharpe
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ratio is found by solving the following problem:

maxx
μTx−r f

(xT�x)1/2

Ax = b
Cx ≥ d.

(8.12)

In this form, this problem is not easy to solve. Although it has a nice polyhedral

feasible region, its objective function is somewhat complicated, and it is possibly

non-concave. Therefore, (8.12) is not a convex optimization problem. The standard

strategy to find the portfolio maximizing the Sharpe ratio, often called the optimal
risky portfolio, is the following: First, one traces out the efficient frontier on a

two dimensional return vs. standard deviation graph. Then, the point on this graph

corresponding to the optimal risky portfolio is found as the tangency point of the

line going through the point representing the riskless asset and is tangent to the

efficient frontier. Once this point is identified, one can recover the composition of

this portfolio from the information generated and recorded while constructing the

efficient frontier.

Here, we describe a direct method to obtain the optimal risky portfolio by con-

structing a convex quadratic programming problem equivalent to (8.12). We need

two assumptions: first, we assume that
∑n

i=1 xi = 1 for any feasible portfolio x . This

is a natural assumption since the xi ’s are the proportions of the portfolio in different

asset classes. Second, we assume that a feasible portfolio x̂ exists with μT x̂ > r f

since, if all feasible portfolios have expected return bounded by the risk-free rate,

there is no need to optimize: the risk-free investment dominates all others.

Proposition 8.1 Given a set X of feasible portfolios with the properties that
eTx = 1, ∀x ∈ X and ∃x̂ ∈ X , μT x̂ > r f , the portfolio x∗ with the maximum
Sharpe ratio in this set can be found by solving the following problem

min yT�y s.t. (y, κ) ∈ X+, (μ − r f e)T y = 1, (8.13)

where

X+ :=
{

x ∈ IRn, κ ∈ IR : κ > 0,
x

κ
∈ X

}
∪ (0, 0). (8.14)

If (y, κ) solves (8.13), then x∗ = y/κ .

Problem (8.13) is a quadratic program that can be solved using the methods

discussed in Chapter 7.

Proof: By our second assumption, it suffices to consider only those x for which

(μ − r f e)Tx > 0. Let us make the following change of variables in (8.12):

κ = 1

(μ − r f e)Tx
y = κx .
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Then,
√

xT�x = (1/κ)
√

yT�y and the objective function of (8.12) can be written

as 1/
√

yT�y in terms of the new variables. Note also that

(μ − r f e)Tx > 0, x ∈ X ⇔ κ > 0,
y

κ
∈ X ,

and

κ = 1

(μ − r f e)Tx
⇔ (μ − r f e)T y = 1,

given y/κ = x . Thus, (8.12) is equivalent to

min yT�y s.t. κ > 0, (y, κ) ∈ X , (μ − r f e)T y = 1.

Since (μ − r f e)T y = 1 rules out (0,0) as a solution, replacing κ > 0, (y, κ) ∈ X
with (y, κ) ∈ X+ does not affect the solutions – it just makes the feasible set a

closed set.

Exercise 8.12 Show that X+ is a cone. If X = {x : Ax ≥ b, Cx = d}, show that

X+ = {(x, κ): Ax − bκ ≥ 0, Cx − dκ = 0, κ ≥ 0}. What if X = {x : ‖x‖ ≤ 1}?
Exercise 8.13 Find the Sharpe ratio maximizing portfolio of the four assets in

Exercise 8.4 assuming that the risk-free return rate is 3% by solving the QP (8.13)

resulting from its reformulation. Verify that the CAL passing through the point

representing the standard deviation and the expected return of this portfolio is

tangent to the efficient frontier.

8.3 Returns-based style analysis

In two very influential articles, Sharpe described how constrained optimization

techniques can be used to determine the effective asset mix of a fund using only

the return time series for the fund and contemporaneous time series for returns of a

number of carefully chosen asset classes [74, 75]. Often, passive indices or index

funds are used to represent the chosen asset classes and one tries to determine a

portfolio of these funds and indices whose returns provide the best match for the

returns of the fund being analyzed. The allocations in the portfolio can be interpreted

as the fund’s style and consequently, this approach has become to known as returns-
based style analysis, or RBSA.

RBSA provides an inexpensive and timely alternative to fundamental analysis of

a fund to determine its style/asset mix. Fundamental analysis uses the information

on actual holdings of a fund to determine its asset mix. When all the holdings are

known, the asset mix of the fund can be inferred easily. However, this information

is rarely available, and when it is available, it is often quite expensive and several
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weeks or months old. Since RBSA relies only on returns data which is immediately

available for publicly traded funds, and well-known optimization techniques, it can

be employed in circumstances where fundamental analysis cannot be used.

The mathematical model for RBSA is surprisingly simple. It uses the following

generic linear factor model: let Rt denote the return of a security – usually a mutual

fund, but can be an index, etc. – in period t for t = 1, . . . , T , where T corresponds

to the number of periods in the modeling window. Furthermore, let Fit denote

the return on factor i in period t , for i = 1, . . . , n, t = 1, . . . , T . Then, Rt can be

represented as follows:

Rt = w1t F1t + w2t F2t + · · · + wnt Fnt + εt (8.15)

= Ftwt + εt , t = 1, . . . , T .

In this equation, wi t quantities represent the sensitivities of Rt to each one of

the n factors, and εt represents the non-factor return. We use the notation wt =
[w1t , . . . , wnt ]

T and Ft = [F1t , . . . , Fnt ].

The linear factor model (8.15) has the following convenient interpretation when

the factor returns Fit correspond to the returns of passive investments, such as

those in an index fund for an asset class: one can form a benchmark portfolio of

the passive investments (with weights wi t ), and the difference between the fund

return Rt and the return of the benchmark portfolio Ftwt is the non-factor return

contributed by the fund manager using stock selection, market timing, etc. In other

words, εt represents the additional return resulting from active management of the

fund. Of course, this additional return can be negative.

The benchmark portfolio return interpretation for the quantity Ftwt suggests that

one should choose the sensitivities (or weights)wi t such that they are all nonnegative

and sum to one. With these constraints in mind, Sharpe proposes to choose wi t to

minimize the variance of the non-factor return εt . In his model, Sharpe restricts the

weights to be constant over the period in consideration so that wi t does not depend

on t . In this case, we use w = [w1, . . . , wn ]T to denote the time-invariant factor

weights and formulate the following quadratic programming problem:

minw∈IRn var(εt ) = var(Rt − Ftw)

s.t.
∑n

i=1 wi = 1

wi ≥ 0, ∀i.
(8.16)

The objective of minimizing the variance of the non-factor return εt deserves

some comment. Since we are essentially formulating a tracking problem, and since

εt represents the “tracking error,” one may wonder why we do not minimize the

magnitude of this quantity rather than its variance. Since the Sharpe model inter-

prets the quantity εt as a consistent management effect, the objective is to determine
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a benchmark portfolio such that the difference between fund returns and the bench-

mark returns is as close to constant (i.e., variance 0) as possible. So, we want the

fund return and benchmark return graphs to show two almost parallel lines with the

distance between these lines corresponding to manager’s consistent contribution to

the fund return. This objective is almost equivalent to choosing weights in order

to maximize the R-square of this regression model. The equivalence is not exact

since we are using constrained regression and this may lead to correlation between

εt and asset class returns.

The objective function of this QP can easily be computed:

var(Rt − Ftw) = 1

T

T∑
t=1

(Rt − Ftw)2 −
(∑T

t=1(Rt − Ftw)

T

)2

= 1

T
‖R − Fw‖2 −

(
eT(R − Fw)

T

)2

=
(‖R‖2

T
− (eT R)2

T 2

)
− 2

(
RT F

T
− eT R

T 2
eT F

)
w

+ wT

(
1

T
FT F − 1

T 2
FTeeT F

)
w.

Above, we introduced and used the notation

R =

⎡
⎢⎣

R1

...

RT

⎤
⎥⎦, and F =

⎡
⎣

F1

· · ·
FT

⎤
⎦ =

⎡
⎢⎣

F11 . . . Fn1

...
. . .

...

F1T · · · FnT

⎤
⎥⎦,

and e denotes a vector of 1s of appropriate size. Convexity of this quadratic function

of w can be easily verified. Indeed,

1

T
FT F − 1

T 2
FTeeT F = 1

T
FT

(
I − eeT

T

)
F, (8.17)

and the symmetric matrix M = I − eeT/T in the middle of the right-hand-side

expression above is a positive semidefinite matrix with only two eigenvalues: 0

(multiplicity 1) and 1 (multiplicity T − 1). Since M is positive semidefinite, so

is FTMF, and therefore the variance of εt is a convex quadratic function of w.

Therefore, the problem (8.16) is a convex quadratic programming problem and is

easily solvable using well-known optimization techniques such as interior-point

methods, which we discussed in Chapter 7.

Exercise 8.14 Implement the returns-based style analysis approach to determine

the effective asset mix of your favorite mutual fund. Use the following asset classes
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as your “factors”: large-growth stocks, large-value stocks, small-growth stocks,

small-value stocks, international stocks, and fixed-income investments. You should

obtain time series of returns representing these asset classes from online resources.

You should also obtain a corresponding time series of returns for the mutual fund

you picked for this exercise. Solve the problem using 30 periods of data (i.e.,

T = 30).

8.4 Recovering risk-neural probabilities from options prices

Recall our discussion on risk-neutral probability measures in Section 4.1.2. There,

we considered a one-period economy with n securities. Current prices of these

securities are denoted by Si
0 for i = 1, . . . , n. At the end of the current period,

the economy will be in one of the states from the state space 
. If the economy

reaches state ω ∈ 
 at the end of the current period, security i will have the payoff

Si
1(ω). We assume that we know all Si

0’s and Si
1(ω)’s but do not know the particular

terminal state ω, which will be determined randomly.

Let r denote the one-period (riskless) interest rate and let R = 1 + r . A risk

neutral probability measure (RNPM) is defined as the probability measure under

which the present value of the expected value of future payoffs of a security equals

its current price. More specifically,

� (discrete case:) on the state space 
 = {ω1, ω2, . . . , ωm}, an RNPM is a vector of positive

numbers p1, p2, . . . , pm such that

1.
∑m

j=1 p j = 1,

2. Si
0 = 1

R

∑m
j=1 p j Si

1(ω j ), ∀i.
� (continuous case:) on the state space 
 = (a, b) an RNPM is a density function p : 
 →

IR+ such that

1.
∫ b

a p(ω)dω = 1,

2. Si
0 = 1

R

∫ b
a p(ω)Si

1(ω)dω, ∀i.

Also recall the following result from Section 4.1.2 that is often called the first
fundamental theorem of asset pricing:

Theorem 8.2 A risk-neutral probability measure exists if and only if there are no
arbitrage opportunities.

If we can identify a risk-neutral probability measure associated with a given

state space and a set of observed prices we can price any security for which we can

determine the payoffs for each state in the state space. Therefore, a fundamental

problem in asset pricing is the identification of a RNPM consistent with a given

set of prices. Of course, if the number of states in the state space is much larger



162 QP models: portfolio optimization

than the number of observed prices, this problem becomes under-determined and

we cannot obtain a sensible solution without introducing some additional structure

into the RNPM we seek. In this section, we outline a strategy that guarantees the

smoothness of the RNPM by constructing it through cubic splines. We first describe

spline functions briefly.

Consider a function f : [a, b] → IR to be estimated using its values fi = f (xi )

given on a set of points {xi }, i = 1, . . . , m + 1. It is assumed that x1 = a and

xm+1 = b.

A spline function, or spline, is a piecewise polynomial approximation S(x) to

the function f such that the approximation agrees with f on each node xi , i.e.,

S(xi ) = f (xi ), ∀i .

The graph of a spline function S contains the data points (xi , fi ) (called knots)

and is continuous on [a, b].

A spline on [a, b] is of order n if (i) its first n − 1 derivatives exist on each

interior knot, (ii) the highest degree for the polynomials defining the spline function

is n.

A cubic (third-order) spline uses cubic polynomials of the form fi (x) = αi x3 +
βi x2 + γi x + δi to estimate the function in each interval [xi , xi+1] for i = 1, . . . , m.

A cubic spline can be constructed in such a way that it has second derivatives at

each node. For m + 1 knots (x1 = a, . . . xm+1 = b) in [a, b] there are m intervals

and, therefore 4m unknown constants to evaluate. To determine these 4m constants

we use the following 4m equations:

fi (xi ) = f (xi ), i = 1, . . . , m, and fm(xm+1) = f (xm+1), (8.18)

fi−1(xi ) = fi (xi ), i = 2, . . . , m, (8.19)

f ′
i−1(xi ) = f ′

i (xi ), i = 2, . . . , m, (8.20)

f ′′
i−1(xi ) = f ′′

i (xi ), i = 2, . . . , m, (8.21)

f ′′
1 (x1) = 0 and f ′′

m(xm+1) = 0. (8.22)

The last condition leads to a so-called natural spline.

We now formulate a quadratic programming problem with the objective of find-

ing a risk-neutral probability density function (described by cubic splines) for fu-

ture values of an underlying security that best fits the observed option prices on this

security.

We choose a security for consideration, say a stock or an index. We then fix

an exercise date – later than the date for which we will obtain a probability den-

sity function of the price of our security. Finally, we fix a range [a, b] for pos-

sible terminal values of the price of the underlying security at the exercise date

of the options and an interest rate r for the period between now and the exercise

date. The inputs to our optimization problem are current market prices CK of call
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options and PK for put options on the chosen underlying security with strike price

K and the chosen expiration date. This data is easily available from newspapers

and online sources. Let C and P , respectively, denote the set of strike prices K
for which reliable market prices CK and PK are available. For example, C may

denote the strike prices of call options that were traded on the day the problem is

formulated.

Next, we fix a superstructure for the spline approximation to the risk-neutral

density, meaning that we choose how many knots to use, where to place the knots

and what kind of polynomial (quadratic, cubic, etc.) functions to use. For example,

we may decide to use cubic splines and m + 1 equally spaced knots. The parameters

of the polynomial functions that comprise the spline function will be the variables

of the optimization problem we are formulating. For cubic splines with m + 1

knots, we will have 4m variables (αi , βi , γi , δi ) for i = 1, . . . , m. Collectively, we

will represent these variables with y. For all y chosen so that the corresponding

polynomial functions fi satisfy the equations (8.19)–(8.22) above, we will have a

particular choice of a natural spline function defined on the interval [a, b].1 Let

py(·) denote this function. Imposing the following additional restrictions we make

sure that py is a probability density function:

py(x) ≥ 0, ∀x ∈ [a, b], (8.23)∫ b

a
py(ω)dω = 1. (8.24)

The constraint (8.24) is a linear constraint on the variables (αi , βi , γi , δi ) of the

problem and can be enforced as follows:

ns∑
s=1

∫ xs+1

xs

fs(ω)dω = 1. (8.25)

On the other hand, enforcing condition (8.23) is not straightforward as it requires

the function to be nonnegative for all values of x in [a, b]. Here, we relax condi-

tion (8.23), and require the cubic spline approximation to be nonnegative only at

the knots:

py(xi ) ≥ 0, i = 1, . . . , m. (8.26)

While this relaxation simplifies the problem greatly, we cannot guarantee that the

spline approximation we generate will be nonnegative in its domain. We will discuss

in Chapter 10.3 a more sophisticated technique that rigorously enforces condition

(8.23).

1 Note that we do not impose the conditions (8.18), because the values of the probability density function we are
approximating are unknown and will be determined as a solution of an optimization problem.
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Next, we define the discounted expected value of the terminal value of each

option using py as the risk-neutral density function:

CK (y) := 1

1 + r

∫ b

a
(ω − K )+ py(ω)dω, (8.27)

PK (y) := 1

1 + r

∫ b

a
(K − ω)+ py(ω)dω. (8.28)

Then, CK (y) is the theoretical option price if py is the true risk-neutral probability

measure and

(CK − CK (y))2

is the squared difference between the actual option price and this theoretical value.

Now consider the aggregated error function for a given y:

E(y) :=
∑
K∈C

(CK − CK (y))2 +
∑
K∈P

(PK − PK (y))2.

The objective now is to choose y such that conditions (8.19)–(8.22) of the spline

function description as well as (8.26) and (8.24) are satisfied and E(y) is minimized.

This is essentially a constrained least-squares problem.

We choose the number of knots and their locations so that the knots form a

superset of C ∪ P . Let x0 = a, x1, . . . , xm = b denote the locations of the knots.

Now, consider a call option with strike K and assume that K coincides with the

location of the j th knot, i.e., x j = K . Recall that y denotes the collection of variables

(αi , βi , γi , δi ) for i = 1, . . . , m. Now, we can derive a formula for CK (y):

(1 + r )CK (y) =
∫ b

a
Sy(ω)(ω − K )+dω

=
m∑

i=1

∫ xi

xi−1

Sy(ω)(ω − K )+dω

=
m∑

i= j+1

∫ xi

xi−1

Sy(ω)(ω − K )dω

=
m∑

i= j+1

∫ xi

xi−1

(αiω
3 + βiω

2 + γiω + δi )(ω − K )dω.

It is easily seen that this expression for CK (y) is a linear function of the components

(αi , βi , γi , δi ) of y. A similar formula can be derived for PK (y). The reason for

choosing the knots at the strike prices is the third equation in the sequence above –

we can immediately ignore some of the terms in the summation and the (·)+ function

is linear (and not piecewise linear) in each integral.
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Now, it is clear that the problem of minimizing E(y) subject to spline function

conditions (8.26) and (8.24) is a quadratic optimization problem and can be solved

using the techniques of the previous chapter.

8.5 Additional exercises

Exercise 8.15 Recall the mean-variance optimization problem we considered in

Section 8.1:

minx xT�x
μTx ≥ R

Ax = b
Cx ≥ d.

(8.29)

Now, consider the problem of finding the feasible portfolio with smallest overall

variance, without imposing any expected return constraint:

minx xT�x
Ax = b
Cx ≥ d.

(8.30)

(i) Does the optimal solution to (8.30) give an efficient portfolio? Why?

(ii) Let xR , λR ∈ IR, γE ∈ IRm , and γI ∈ IR p satisfy the optimality conditions of

(8.29) (see system (8.2)). IfλR = 0, show that xR is an optimal solution to (8.30).

(Hint: What are the optimality conditions for (8.30)? How are they related to

(8.2)?)

Exercise 8.16 Classification problems are among the important classes of prob-

lems in financial mathematics that can be solved using optimization models and

techniques. In a classification problem we have a vector of “features” describing

an entity and the objective is to analyze the features to determine which one of the

two (or more) “classes” each entity belongs to. For example, the classes might be

“growth stocks” and “value stocks,” and the entities (stocks) may be described by a

feature vector that may contain elements such as stock price, price-earnings ratio,

growth rate for the previous periods, growth estimates, etc.

Mathematical approaches to classification often start with a “training” exercise.

One is supplied with a list of entities, their feature vectors, and the classes they

belong to. From this information, one tries to extract a mathematical structure for

the entity classes so that additional entities can be classified using this mathematical

structure and their feature vectors. For two-class classification, a hyperplane is

probably the simplest mathematical structure that can be used to “separate” the

feature vectors of these two different classes. Of course, there may not be any

hyperplane that separates two sets of vectors. When such a hyperplane exists, we

say that the two sets can be linearly separated.
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Consider feature vectors ai ∈ IRn for i = 1, . . . , k1 corresponding to class 1,

and vectors bi ∈ IRn for i = 1, . . . , k2 corresponding to class 2. If these two vector

sets can be linearly separated, a hyperplane wTx = γ exists with w ∈ IRn, γ ∈ IR
such that

wTai ≥ γ, for i = 1, . . . , k1,

wTbi ≤ γ, for i = 1, . . . , k2.

To have a “strict” separation, we often prefer to obtain w and γ such that

wTai ≥ γ + 1, for i = 1, . . . , k1,

wTbi ≤ γ − 1, for i = 1, . . . , k2.

In this manner, we find two parallel lines (wTx = γ + 1 line and wTx = γ − 1)

that form the boundary of the class 1 and class 2 portion of the vector space. This

type of separation is shown in Figure 8.5.

There may be several such parallel lines that separate the two classes. Which

one should we choose? A good criterion is to choose the lines that have the largest

margin (distance between the lines).

(i) Consider the following quadratic problem:

minw,γ ‖w‖2
2

aT
i w ≥ γ + 1, for i = 1, . . . , k1,

bT
i w ≤ γ − 1, for i = 1, . . . , k2.

(8.31)

Show that the objective function of this problem is equivalent to maximizing

the margin between the lines wTx = γ + 1 and wTx = γ − 1.
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(ii) The linear separation idea we presented above can be used even when the two

vector sets {ai} and {bi} are not linearly separable. (Note that linearly inseparable

sets will result in an infeasible problem in (8.31).) This is achieved by intro-

ducing a nonnegative “violation” variable for each constraint of (8.31). Then,

we have two objectives: to minimize the sum of the constraint violations and to

maximize the margin. Develop a quadratic programming model that combines

these two objectives using an adjustable parameter that can be chosen in a way

to put more weight on violations or margin, depending on one’s preference.

Exercise 8.17 The classification problems we discussed in the previous exercise

can also be formulated as linear programming problems, if one agrees to use 1-

norm rather than 2-norm of w in the objective function. Recall that ‖w‖1 = ∑
i |wi |.

Show that if we replace ‖w‖2
2 with ‖w‖1 in the objective function of (8.31), we can

write the resulting problem as an LP. Show also that this new objective function is

equivalent to maximizing the distance between wTx = γ + 1 and wTx = γ − 1 if

one measures the distance using ∞-norm (‖g‖∞ = maxi |gi |).

8.6 Case study: constructing an efficient portfolio

Investigate the performance of one of the variations on the classical Markowitz

model proposed by Michaud, or Black–Litterman or Konno–Yamazaki; see

Sections 8.1.2–8.1.4.
Possible suggestions:

� Choose 30 stocks and retrieve their historical returns over a meaningful horizon.
� Use the historical information to compute expected returns and the variance–covariance

matrix for these stock returns.
� Set up the model and solve it with MATLAB or Excel’s Solver for different levels R of

expected return. Allow for short sales and include no diversification constraints.
� Recompute these portfolios with no short sales and various diversification constraints.
� Compare portfolios constructed in period t (based on historical data up to period t) by

observing their performance in period t + 1, i.e., compute the actual portfolio return in

period t + 1. Repeat this experiment several times. Comment.
� Investigate how sensitive the optimal portfolios that you obtained are to small changes in

the data. For example, how sensitive are they to a small change in the expected return of

the assets?
� You currently own the following portfolio: x0

i = 0.20 for i = 1, . . . , 5 and x0
i = 0 for

i = 6, . . . , 30. Include turnover constraints to reoptimize the portfolio for a fixed level

R of expected return and observe the dependency on h, the total turnover allowed for

reoptimization.
� You currently own the following portfolio: x0

i = 0.20 for i = 1, . . . , 5 and x0
i = 0 for

i = 6, . . . , 30. Reoptimize the portfolio considering transaction costs for buying and

selling. Solve for a fixed level R of expected return and observe the dependency on

transaction costs.
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Conic optimization tools

9.1 Introduction

In this chapter and the next, we address conic optimization problems and their

applications in finance. Conic optimization refers to the problem of minimizing

or maximizing a linear function over a set defined by linear equalities and cone

membership constraints. Cones are defined and discussed in Appendix B. While

they are not as well known or as widely used as their close relatives linear and

quadratic programming, conic optimization problems continue to grow in impor-

tance thanks to their wide applicability and the availability of powerful methods

for their solution.

We recall the definition of a standard form conic optimization problem that was

provided in Chapter 1:

minx cTx
Ax = b
x ∈ C,

(9.1)

where C denotes a closed convex cone in a finite-dimensional vector space X .

When X = IRn and C = IRn
+, this problem is the standard form linear pro-

gramming problem. Therefore, conic optimization is a generalization of linear

optimization. In fact, it is much more general than linear programming since we

can use non-polyhedral (i.e., nonlinear) cones C in the description of these prob-

lems and formulate certain classes of nonlinear convex objective functions and

nonlinear convex constraints. In particular, conic optimization provides a power-

ful and unifying framework for problems in linear programming (LP), second-

order cone programming (SOCP), and semidefinite programming (SDP). We de-

scribe these two new and important classes of conic optimization problems in more

detail.

168
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Figure 9.1 The second-order cone

9.2 Second-order cone programming

SOCPs involve the second-order cone, which is defined by the property that for

each of its members the first element is at least as large as the Euclidean norm of

the remaining elements. This corresponds to the case where C is the second-order

cone (also known as the quadratic cone, Lorenz cone, and the ice-cream cone):

Cq := {x = (x1, x2, . . . , xn) ∈ IRn : x1 ≥ ‖(x2, . . . , xn)‖}. (9.2)

A portion of the second-order cone in three dimensions for x1 ∈ [0, 1] is depicted

in Figure 9.1. As seen from the figure, the second-order cone in three dimensions

resembles an ice-cream cone that stretches to infinity. We observe that by “slicing”

the second-order cone, i.e., by intersecting it with a hyperplane at different an-

gles, we can obtain spherical and ellipsoidal sets. Any convex quadratic constraint

can be expressed using the second-order cone (or its rotations) and one or more

hyperplanes.

Exercise 9.1 Another important cone that appears in conic optimization formu-

lations is the rotated quadratic cone, which is defined as follows:

Cr
q :=

{
(x1, x2, x3, . . . , xn) : 2x1x2 ≥

n∑
j=3

x2
j , x1, x2 ≥ 0.

}
. (9.3)

Show that x = (x1, x2, x3, . . . , xn) ∈ Cr
q if and only if y = (y1, y2, y3, . . . , yn) ∈

Cq where y1 = (1/
√

2)(x1 + x2), y2 = (1/
√

2)(x1 − x2), and y j = x j , j =
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3, . . . , n. The vector y given here is obtained by rotating the vector x by 45 degrees

in the plane defined by the first two coordinate axes. In other words, each element of

the cone Cr
q can be mapped to a corresponding element of Cq through a 45-degree

rotation (why?). This is why the cone Cr
q is called the rotated quadratic cone.

Exercise 9.2 Show that the problem

min x3/2

s.t. x ≥ 0, x ∈ S

is equivalent to the following problem:

min t
s.t. x ≥ 0, x ∈ S

x2 ≤ tu
u2 ≤ x .

Express the second problem as an SOCP using Cr
q .

Exercise 9.3 Consider the following optimization problem:

min c1x1 + c2x2 + d1x3/2
1 + d2x3/2

2

s.t. a11x1 + a12x2 = b1,

x1, x2 ≥ 0,

where d1, d2 > 0. The nonlinear objective function of this problem is a convex

function. Write this problem as a conic optimization problem with a linear objective

function and convex cone constraints. [Hint: Use the previous exercise.]

A review of second-order cone programming models and methods is provided in

[1]. One of the most common uses of second-order cone programs in financial appli-

cations is in the modeling and treatment of parameter uncertainties in optimization

problems. After generating an appropriate description of the uncertainties, robust

optimization models seek to find solutions to such problems that will perform well

under many scenarios. As we will see in Chapter 19, ellipsoidal sets are among

the most popular structures used for describing uncertainty in such problems and

the close relationship between ellipsoidal sets and second-order cones make them

particularly useful. We illustrate this approach in the following subsection.

9.2.1 Ellipsoidal uncertainty for linear constraints

Consider the following single-constraint linear program:

min cTx
s.t. aTx + b ≥ 0.
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We consider the setting where the objective function is certain but the constraint

coefficients are uncertain. We assume that the constraint coefficients [a; b] belong

to an ellipsoidal uncertainty set:

U =
{

[a; b] = [a0; b0] +
k∑

j=1

u j [a
j ; b j ], ‖u‖ ≤ 1

}
.

Our objective is to find a solution that minimizes the objective function among the

vectors that are feasible for all [a; b] ∈ U . In other words, we want to solve

min cTx
s.t. aTx + b ≥ 0, ∀[a; b] ∈ U .

For a fixed x , the “robust” version of the constraint is satisfied by x if and only if

0 ≤ min
[a;b]∈U

aTx + b ≡ min
u:‖u‖≤1

α + uTβ, (9.4)

where α = (a0)Tx + b0 and β = (β1, . . . , βk) with β j = (a j )Tx + b j .

The second minimization problem in (9.4) is easy. Since α is constant, all we

need to do is to minimize uTβ subject to the constraint ‖u‖ ≤ 1. Recall that for the

angle θ between vectors u and β the following trigonometric equality holds:

cos θ = uTβ

‖u‖‖β‖ ,

or uTβ = ‖u‖‖β‖ cos θ . Since ‖β‖ is constant, this expression is minimized when

‖u‖ = 1 and cos θ = −1. This means that u points in the opposite direction from β,

namely −β. Normalizing to satisfy the bound constraint we obtain u∗ = −β/‖β‖
as shown in Figure 9.2. Substituting this value we find

min
[a;b]∈U

aTx + b = α − ‖β‖ = (a0)Tx + b0 −
√√√√ k∑

j=1

((a j )Tx + b j )2, (9.5)

and we obtain the robust version of the inequality aTx + b ≥ 0 as

(a0)Tx + b0 −
√√√√ k∑

j=1

((a j )Tx + b j )2 ≥ 0. (9.6)

Now observe that (9.6) can be written equivalently as:

z j = (a j )Tx + b j , j = 0, . . . k,

(z0, z1, . . . , zk) ∈ Cq,

where Cq is the second-order cone (9.2).
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Figure 9.2 Minimization of a linear function over a circle

The approach outlined above generalizes to multiple constraints as long as the

uncertainties are constraint-wise, that is, the uncertainty sets of parameters in dif-

ferent constraints are unrelated. Thus, robust optimization models for uncertain

linear constraints with ellipsoidal uncertainty lead to SOCPs. The strategy outlined

above is well-known and is used in, for example, [8].

9.2.2 Conversion of quadratic constraints into second-order cone constraints

The second-order cone membership constraint (x0, x1, . . . , xk) ∈ Cq can be written

equivalently as the combination of a linear and a quadratic constraint:

x0 ≥ 0, x2
0 − x2

1 − · · · − x2
k ≥ 0.

Conversely, any convex quadratic constraint of an optimization problem can be

rewritten using second-order cone membership constraints. When we have access

to a reliable solver for second-order cone optimization, it may be desirable to

convert convex quadratic constraints to second-order cone constraints. Fortunately,

a simple recipe is available for these conversions.

Consider the following quadratic constraint:

xT Qx + 2pTx + γ ≤ 0. (9.7)

This is a convex constraint if the function on the left-hand side is convex which is

true if and only if Q is a positive semidefinite matrix. Let us assume Q is positive

definite for simplicity. In that case, there exists an invertible matrix, say R, satisfying
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Q = R RT. For example, the Cholesky factor of Q satisfies this property. Then, (9.7)

can be written as

(RTx)T(RTx) + 2pTx + γ ≤ 0. (9.8)

Define y = (y1, . . . , yk)T = RTx + R−1 p. Then, we have

yT y = (RTx)T(RTx) + 2pTx + pT Q−1 p.

Thus, (9.8) is equivalent to

∃y s.t. y = RTx + R−1 p, yT y ≤ pT Q−1 p − γ.

From this equivalence, we observe that the constraint (9.7) can be satisfied only if

pT Q−1 p − γ ≥ 0. We will assume that this is the case.

Now, it is straightforward to note that (9.7) is equivalent to the following set of

linear equations coupled with a second-order cone constraint:
⎡
⎢⎣

y1

...

yk

⎤
⎥⎦ = RTx + R−1 p,

y0 =
√

pT Q−1 p − γ ,

(y0, y1, . . . , yk) ∈ Cq .

Exercise 9.4 Rewrite the following convex quadratic constraint in “conic form,”

i.e., as the intersection of linear equality constraints and a second-order cone

constraint:

10x2
1 + 2x1x2 + 5x2

2 + 4x1 + 6x2 + 1 ≤ 0.

Exercise 9.5 Discuss how the approach outlined in this section must be modified

to address the case when Q is positive semidefinite but not positive definite. In this

case there still exists a matrix R satisfying Q = R RT. But R is no longer invertible

and we can no longer define the vector y as above.

9.3 Semidefinite programming

In SDPs, the set of variables are represented by a symmetric matrix that is required

to be in the cone of positive semidefinite matrices in addition to satisfying a system

of linear equations. We say that a matrix M ∈ IRn×n is positive semidefinite if

yT My ≥ 0 for all y ∈ IRn . When M is symmetric, this is equivalent to M having

eigenvalues that are all nonnegative. A stronger condition is positive definiteness.

M is positive definite if yT My > 0 for all y ∈ IRn with the exception of y = 0.



174 Conic optimization tools

0 0.2 0.4 0.6 0.8 1

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
11

X = [ X
11

 X
12

; X
21

 X
22

] positive semidefinite

X
22

X
1

2
 = 

X
2

1

Figure 9.3 The cone of positive semidefinite matrices

For symmetric M , positive definiteness is equivalent to the positivity of all of its

eigenvalues.

Since multiplication by a positive number preserves the positive semidefiniteness

property, the set of positive semidefinite matrices is a cone. In fact, it is a convex

cone. The cone of positive semidefinite matrices of a fixed dimension (say n) is

defined as follows:

Cn
s :=

⎧⎪⎨
⎪⎩

X =

⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦ ∈ IRn×n : X � 0

⎫⎪⎬
⎪⎭

. (9.9)

Above, the notation X � 0 means that X is a symmetric positive semidefinite matrix.

We provide a depiction of the cone of positive semidefinite matrices of dimension 2

in Figure 9.3. The diagonal elements X11 and X22 of a two-dimensional symmetric

matrix are shown on the horizontal axes while the off-diagonal element X12 = X21

is on the vertical axis. Symmetric two-dimensional matrices whose elements lie

inside the shaded region are positive semidefinite matrices. As the nonnegative

orthant and the second-order cone, the cone of positive semidefinite matrices has

a point or a corner at the origin. Also note the convexity of the cone and the

nonlinearity of its boundary.

Semidefinite programming problems arise in a variety of disciplines. The re-

view by Todd provides an excellent introduction to their solution methods and the

rich set of applications [79]. One of the common occurrences of semidefiniteness

constraints results from the so-called S-procedure, which is a generalization of the

well-known S-lemma [65]:
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Lemma 9.1 Let Fi (x) = xT Ai x + 2 + bT
i x + ci , i = 0, 1, . . . , p be quadratic

functions of x ∈ IRn. Then,

Fi (x) ≥ 0, i = 1, . . . , p ⇒ F0(x) ≥ 0

if there exist λi ≥ 0 such that
[

A0 b0

bT
0 c0

]
−

p∑
i=1

λi

[
Ai bi

bT
i ci

]
� 0.

If p = 1, the converse also holds as long as ∃x0 s.t. F1(x0) > 0.

The S-procedure provides a sufficient condition for the implication of a quadratic

inequality by other quadratic inequalities. Furthermore, this condition is also a

necessary condition in certain special cases. This equivalence can be exploited in

robust modeling of quadratic constraints as we illustrate next.

9.3.1 Ellipsoidal uncertainty for quadratic constraints

This time we consider a convex-quadratically constrained problem where the ob-

jective function is certain but the constraint coefficients are uncertain:

min cTx
s.t. −xT(AT A)x + 2bTx + γ ≥ 0, ∀[A; b; γ ] ∈ U,

where A ∈ IRm×n , b ∈ IRn , and γ is a scalar. We again consider the case where the

uncertainty set is ellipsoidal:

U =
{

[A; b; γ ] = [A0; b0; γ 0] +
k∑

j=1

u j [A j ; b j ; γ j ], ‖u‖ ≤ 1

}
.

To reformulate the robust version of this problem we use the S-procedure de-

scribed above. The robust version of our convex quadratic inequality can be written

as

[A; b; γ ] ∈ U ⇒ −xT(AT A)x + 2bTx + γ ≥ 0. (9.10)

This is equivalent to the following expression:

‖u‖ ≤ 1 ⇒ −xT

(
A0 +

k∑
j=1

A j u j

) (
A0 +

k∑
j=1

A j u j

)T

x

+ 2

(
b0 +

k∑
j=1

b j u j

)T

x +
(

γ 0 +
k∑

j=1

γ j u j

)
≥ 0. (9.11)
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Defining A(x) : IRn → IRm×k as

A(x) = [A1x |A2x | · · · |Ak x],

b(x) : IRn → IRk as

b(x) = [xTb1 xTb2 · · · xTbk]T + 1

2
[γ 1 γ 2 · · · γ k]T − A(x)T A0x,

and

γ (x) = γ 0 + 2(b0)Tx − xT(A0)T A0x,

and rewriting ‖u‖ ≤ 1 as −uT I u + 1 ≥ 0, we can simplify (9.11) as follows:

−uT I u + 1 ≥ 0 ⇒ −uT A(x)T A(x)u + 2b(x)Tu + γ (x) ≥ 0. (9.12)

Now we can apply Lemma 9.1 with p = 1, A1 = I , b1 = 0, c1 = 1 and A0 =
A(x)T A(x), b0 = b(x), and c0 = γ (x). Thus, the robust constraint (9.12) can be

written as

∃λ ≥ 0 s.t.

[
γ (x) − λ b(x)T

b(x) A(x)T A(x) − λI

]
� 0. (9.13)

Thus, we transformed the robust version of the quadratic constraint into a

semidefiniteness constraint for a matrix that depends on the variables x and also

a new variable λ. However, because of the term A(x)T A(x), this results in a non-

linear semidefinite optimization problem, which is difficult and beyond the im-

mediate territory of most conic optimization algorithms. Fortunately, however, the

semidefiniteness condition above is equivalent to the following semidefiniteness

condition:

∃λ ≥ 0 s.t.

⎡
⎣

γ ′(x) − λ b′(x)T (A0x)T

b′(x) λI A(x)T

A0x A(x) I

⎤
⎦ � 0, (9.14)

where

b′(x) = [xTb1 xTb2 · · · xTbk]T + 1

2
[γ 1 γ 2 · · · γ k]T

and

γ ′(x) = γ 0 + 2(b0)Tx .

Since all of A(x), b′(x), and γ ′(x) are linear in x , we obtain a linear semidefinite

optimization problem from the reformulation of the robust quadratic constraint via

the S-procedure. For details of this technique and many other useful results for

reformulation of robust constraints, we refer the reader to [8].
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Exercise 9.6 Verify that (9.11) is equivalent to (9.10).

Exercise 9.7 Verify that (9.13) and (9.14) are equivalent.

9.4 Algorithms and software

Since most conic optimization problem classes are special cases of nonlinear pro-

gramming problems, they can be solved using general nonlinear optimization strate-

gies we discussed in Chapter 5. As in linear and quadratic programming problems,

the special structure of conic optimization problems allows the use of specialized

and more efficient methods that take advantage of this structure. In particular, many

conic optimization problems can be solved efficiently using the generalizations of

sophisticated interior-point algorithms for linear and quadratic programming prob-

lems. These generalizations of interior-point methods are based on the ground-

breaking work of Nesterov and Nemirovski [60] as well as the theoretical and

computational advances that followed their work.

During the past decade, an intense theoretical and algorithmic study of conic

optimization problems produced a number of increasingly sophisticated software

products for several problem classes including SeDuMi [78] and SDPT3 [81]

which are freely available. Interested readers can obtain additional information

on such software by following the software link of the following page dedicated to

semidefinite programming and maintained by Christoph Helmberg: www-user.tu-

chemnitz.de/∼helmberg/semidef.html.

There are also commercial software products that address conic optimization

problems. For example, MOSEK (www.mosek.com) provides a powerful engine

for second-order and linear cone optimization. AXIOMA’s (www.axiomainc.com)

portfolio optimization software employs a conic optimization solver that handles

convex quadratic constraints as well as ellipsoidal uncertainties among other things.
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Conic optimization models in finance

Conic optimization problems are encountered in a wide array of fields including

truss design, control and system theory, statistics, eigenvalue optimization, and

antenna array weight design. Robust optimization formulations of many convex

programming problems also lead to conic optimization problems, see, e.g., [8, 9].

Furthermore, conic optimization problems arise as relaxations of hard combina-

torial optimization problems such as the max-cut problem. Finally, some of the

most interesting applications of conic optimization are encountered in financial

mathematics and we will address several examples in this chapter.

10.1 Tracking error and volatility constraints

In most quantitative asset management environments, portfolios are chosen with

respect to a carefully selected benchmark. Typically, the benchmark is a market

index, reflecting a particular market (e.g., domestic or foreign), or a segment of the

market (e.g., large cap growth) the investor wants to invest in. Then, the portfolio

manager’s problem is to determine an index-tracking portfolio with certain desirable

characteristics. An index-tracking portfolio intends to track the movements of the

underlying index closely with the ultimate goal of adding value by beating the

index. Since this goal requires departures from the underlying index, one needs to

balance the expected excess return (i.e., expected return in excess of the benchmark

return) with the variance of the excess returns.

The tracking error for a given portfolio with a given benchmark refers to the

difference between the returns of the portfolio and the benchmark. If the return

vector is given by r , the weight vector for the benchmark portfolio is denoted by

xB M , and the weight vector for the portfolio is x , then this difference is given

as

rTx − rTxB M = r T(x − xB M ).

178
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While some references in the literature define tracking error as this quantity, we

will prefer to refer to it as the excess return. Using the common conventions, we

define tracking error as a measure of variability of excess returns. The ex-ante, or

predicted, tracking error of the portfolio (with respect to the risk model given by

�) is defined as follows:

TE(x) :=
√

(x − xB M )T�(x − xB M ). (10.1)

In contrast, the ex-post, or realized, tracking error is a statistical dispersion measure

for the realized excess returns, typically the standard deviation of regularly (e.g.,

daily) observed excess returns.

In benchmark relative portfolio optimization, we solve mean-variance optimiza-

tion (MVO) problems where expected absolute return and standard deviation of

returns are replaced by expected excess return and the predicted tracking error. For

example, the variance constrained MVO problem (8.3) is replaced by the following

formulation:

maxx µT(x − xB M )

(x − xB M )T�(x − xB M ) ≤ TE2

Ax = b
Cx ≥ d,

(10.2)

where x = (x1, . . . , xn) is the variable vector whose components xi denote the

proportion of the total funds invested in security i , µ and � are the expected return

vector and the covariance matrix, and A, b, C, and d are the coefficients of the linear

equality and inequality constraints that define feasible portfolios. The objective is

to maximize the expected excess return while limiting the portfolio tracking error

to a predefined value of TE.

Unlike the formulations (8.1) and (8.4), which have only linear constraints, this

formulation is not in standard quadratic programming form and therefore can not

be solved directly using efficient and widely available QP algorithms. The reason

for this is the existence of a nonlinear constraint, namely the constraint limiting the

portfolio tracking error. So, if all MVO formulations are essentially equivalent as

we argued before, why would anyone use the “harder” formulations with the risk

constraint?

As Jorion [42] observes, ex-post returns are “enormously noisy measures of

expected returns” and therefore investors may not be able or willing to determine

minimum acceptable expected return levels, or risk-aversion constants – inputs

required for problems (8.1) and (8.4) – with confidence. Jorion notes that “it is

much easier to constrain the risk profile, either before or after the fact – which is

no doubt why investors give managers tracking error constraints.”

Fortunately, the tracking error constraint is a convex quadratic constraint, which

means that we can rewrite this constraint in conic form as we saw in the previous
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chapter. If the remaining constraints are linear as in (10.2), the resulting problem

is a second-order cone optimization problem that can be solved with specialized

methods.

Furthermore, in situations where the control of multiple measures of risk is de-

sired the conic reformulations can become very useful. In [42], Jorion observes that

MVO with only a tracking error constraint may lead to portfolios with high overall

variance. He considers a model where a variance constraint as well as a tracking error

constraint is imposed for optimizing the portfolio. When no additional constraints

are present, Jorion is able to solve the resulting problem since analytic solutions

are available. His approach, however, does not generalize to portfolio selection

problems with additional constraints such as no-shorting limitations, or exposure

limitations to such factors as size, beta, sectors, or industries. The strength of conic

optimization models, and, in this particular case, of second-order cone programming

approaches, is that the algorithms developed for them will work for any combina-

tion of linear equality, linear inequality, and convex quadratic inequality constraints.

Consider, for example, the following generalization of the models in [42]:

maxx µTx√
xT�x ≤ σ√

(x − xB M )T�(x − xB M ) ≤ TE

Ax = b
Cx ≥ d.

(10.3)

This problem can be rewritten as a second-order cone programming problem using

the conversions outlined in Section 9.2.2. Since � is positive semidefinite, there

exists a matrix R such that � = R RT. Defining

y = RTx

z = RTx − RTxB M ,

we see that the first two constraints of (10.3) are equivalent to (y0, y) ∈ Cq , (z0, z) ∈
Cq with y0 = σ and z0 = TE . Thus, (10.3) is equivalent to the following second-

order cone program:

maxx µTx
Ax = b
Cx ≥ d

RTx − y = 0

RTx − z = RTxB M

y0 = σ

z0 = TE
(y0, y) ∈ Cq, (z0, z) ∈ Cq .

(10.4)
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Exercise 10.1 Second-order cone formulations can also be used for modeling a

tracking error constraint under different risk models. For example, if we had k
alternative estimates of the covariance matrix denoted by �1, . . . , �k and wanted

to limit the tracking error with respect to each estimate we would have a sequence

of constraints of the form
√

(x − xB M )T�i (x − xB M ) ≤ TEi , i = 1, . . . , k.

Show how these constraints can be converted to second-order cone constraints.

Exercise 10.2 Using historical returns of the stocks in the DJIA, estimate their

mean µi and covariance matrix. Let R be the median of the µi ’s. Find an expected

return maximizing long-only portfolio of Dow Jones constituents that has (i) a

tracking error of 10% or less, and (ii) a volatility of 20% or less.

10.2 Approximating covariance matrices

The covariance matrix of a vector of random variables is one of the most important

and widely used statistical descriptors of the joint behavior of these variables. Co-

variance matrices are encountered frequently in financial mathematics, for example,

in mean-variance optimization, in forecasting, in time-series modeling, etc.

Often, true values of covariance matrices are not observable and one must rely on

estimates. Here, we do not address the problem of estimating covariance matrices

and refer the reader, e.g., to Chapter 16 in [52]. Rather, we consider the case where a

covariance matrix estimate is already provided and one is interested in determining

a modification of this estimate that satisfies some desirable properties. Typically,

one is interested finding the smallest distortion of the original estimate that achieves

these desired properties.

Symmetry and positive semidefiniteness are structural properties shared by all

“proper” covariance matrices. A correlation matrix satisfies the additional property

that its diagonal consists of all 1s. Recall that a symmetric and positive semidefinite

matrix M ∈ IRn×n satisfies the property that

xT Mx ≥ 0, ∀x ∈ IRn.

This property is equivalently characterized by the nonnegativity of the eigenvalues

of the matrix M .

In some cases, for example when the estimation of the covariance matrix is

performed entry-by-entry, the resulting estimate may not be a positive semidef-

inite matrix, that is, it may have negative eigenvalues. Using such an estimate

would suggest that some linear combinations of the underlying random variables

have negative variance and possibly result in disastrous results in mean-variance
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optimization. Therefore, it is important to correct such estimates before they are

used in any financial decisions.

Even when the initial estimate is symmetric and positive semidefinite, it may

be desirable to modify this estimate without compromising these properties. For

example, if some pairwise correlations or covariances appear counter-intuitive to a

financial analyst’s trained eye, the analyst may want to modify such entries in the

matrix. All these variations of the problem of obtaining a desirable modification

of an initial covariance matrix estimate can be formulated within the powerful

framework of semidefinite optimization and can be solved with standard software

available for such problems.

We start the mathematical treatment of the problem by assuming that we have

an estimate �̂ ∈ Sn of a covariance matrix and that �̂ is not necessarily positive

semidefinite. Here,Sn denotes the space of symmetric n × n matrices. An important

question in this scenario is the following: what is the “closest” positive semidefinite

matrix to �̂? For concreteness, we use the Frobenius norm of the distortion matrix

as a measure of closeness:

dF (�, �̂) :=
√∑

i, j

(�i j − �̂i j )2.

Now we can state the nearest covariance matrix problem as follows: given

�̂ ∈ Sn ,

min� dF (�, �̂)

� ∈ Cn
s ,

(10.5)

where Cn
s is the cone of n × n symmetric and positive semidefinite matrices as

defined in (9.9). Notice that the decision variable in this problem is represented

as a matrix rather than a vector as in all previous optimization formulations we

considered.

Furthermore, by introducing a dummy variable t , we can rewrite the last problem

above as

min t
dF (�, �̂) ≤ t
� ∈ Cn

s .

It is easy to see that the inequality dF (�, �̂) ≤ t can be written as a second-order

cone constraint, and therefore, the formulation above can be transformed into a

conic optimization problem.

Variations of this formulation can be obtained by introducing additional linear

constraints. As an example, consider a subset E of all (i, j) covariance pairs and
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Figure 10.1 The feasible set of the nearest correlation matrix problem in three-
dimensions

lower/upper limits li j , ui j∀(i, j) ∈ E that we wish to impose on these entries. Then,

we would need to solve the following problem:

min dF (�, �̂)

li j ≤ �i j ≤ ui j , ∀(i, j) ∈ E
� ∈ Cn

s .

(10.6)

When E consists of all the diagonal (i, i) elements and lii = uii = 1, ∀i , we

get the correlation matrix version of the original problem. For example, three-

dimensional correlation matrices have the following form:

� =



1 x y
x 1 z
y z 1


, � ∈ C3

s .

The feasible set for this instance is shown in Figure 10.1.

Example 10.1 We consider the following estimate of the correlation matrix of
four securities:

�̂ =




1.0 0.8 0.5 0.2

0.8 1.0 0.9 0.1

0.5 0.9 1.0 0.7

0.2 0.1 0.7 1.0


. (10.7)
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This, in fact, is not a valid correlation matrix; its smallest eigenvalue is negative:
λmin = −0.1337. Note, for example, the high correlations between assets 1 and 2
as well as assets 2 and 3. This suggests that 1 and 3 should be highly correlated
as well, but they are not. Which entry should one adjust to find a valid correlation
matrix?

We can approach this problem using formulation (10.6) with E consisting of all
the diagonal (i, i) elements and lii = uii = 1, ∀i . Solving the resulting problem,
for example, using SDPT3 [81], we obtain (approximately) the following nearest
correction to �̂:

� =




1.00 0.76 0.53 0.18

0.76 1.00 0.82 0.15

0.53 0.82 1.00 0.65

0.18 0.15 0.65 1.00


.

Exercise 10.3 Use a semidefinite optimization software package to verify that �

given above is the solution to (10.5) when �̂ is given by (10.7).

Exercise 10.4 Resolve the problem above, this time imposing the constraint that

�23 = �32 ≥ 0.85.

One can consider several variations on the “plain vanilla” version of the nearest

correlation matrix problem. For example, if we would rather keep some of the

entries of the matrix �̂ constant, we can expand the set E to contain those elements

with matching lower and upper bounds. Another possibility is to weight the changes

in different entries, for example, if estimates of some entries are more trustworthy

than others.

Another important variation of the original problem is obtained by placing lower

limits on the smallest eigenvalue of the correlation matrix. Even when we have a

valid (positive semidefinite) correlation matrix estimate, having small eigenvalues

in the matrix can be undesirable as they lead to unstable portfolios. Indeed, the valid

correlation matrix we obtained above has a positive but very small eigenvalue, which

would in fact be exactly zero in exact arithmetic. Hauser and Zuev consider models

where minimum eigenvalue of the covariance matrix is maximized and use the

matrices in a robust optimization setting [39].

Exercise 10.5 We want to find the nearest symmetric matrix to �̂ in (10.7) whose

smallest eigenvalue is at least 0.25. Express this problem as a semidefinite opti-

mization problem. Solve it using an SDP software package.

All these variations are easily handled using semidefinite programming formu-

lations and solved using semidefinite optimization software. As such, semidefinite

optimization presents a new tool for asset managers that was not previously available
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at this level of sophistication and flexibility. While these tools are not yet available

as commercial software packages, many academic products are freely available;

see the links given in Section 9.4.

10.3 Recovering risk-neutral probabilities from options prices

In this section, we revisit our study of the risk-neutral density estimation problem

in Section 8.4. Recall that the objective of this problem is to estimate an implied

risk-neutral density function for the future price of an underlying security using the

prices of options written on that security. Representing the density function using

cubic splines to ensure its smoothness, and using a least-squares type objective

function for the fit of the estimate with the observed option prices, we formulated

an optimization problem in Section 8.4.

One issue that we left open in Section 8.4 is the rigorous enforcement of the

nonnegativity of the risk-neutral density estimate. While we heuristically handled

this issue by enforcing the nonnegativity of the cubic splines at the knots, it is

clear that a cubic function that is nonnegative at the endpoints of an interval can

very well become negative in between and therefore, the heuristic technique of

Section 8.4 may be inadequate. Here we discuss an alternative formulation that is

based on necessary and sufficient conditions for ensuring the nonnegativity of a

single variable polynomial in intervals. This characterization is due to Bertsimas

and Popescu [11] and is stated in the next proposition.

Proposition 10.1 (Proposition 1(d), [11]) The polynomial g(x) = ∑k
r=0 yr xr

satisfies g(x) ≥ 0 for all x ∈ [a, b] if and only if there exists a positive semidefinite
matrix X = [xi j ]i, j=0,...,k such that

∑
i, j :i+ j=2�−1

xi j = 0, � = 1, . . . , k, (10.8)

∑
i, j :i+ j=2�

xi j =
�∑

m=0

k+m−�∑
r=m

yr

(
r
m

) (
k − r
� − m

)
ar−mbm, (10.9)

� = 0, . . . , k, (10.10)

X � 0. (10.11)

In the statement of the proposition above, the notation ( r
m ) stands for r !

m!(r−m)!
and

X � 0 indicates that the matrix X is symmetric and positive semidefinite. For the

cubic polynomials fs(x) = αs x3 + βs x2 + γs x + δs that are used in the formulation

of Section 8.4, the result can be simplified as follows:

Corollary 10.1 The polynomial fs(x) = αs x3 + βs x2 + γs x + δs satisfies
fs(x) ≥ 0 for all x ∈ [xs, xs+1] if and only if there exists a 4 × 4 matrix
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Xs = [xs
i j ]i, j=0,...,3 such that

xs
i j = 0, if i + j is 1 or 5,

xs
03 + xs

12 + xs
21 + xs

30 = 0,

xs
00 = αs x3

s + βs x2
s + γs xs + δs,

xs
02 + xs

11 + xs
20 = 3αs x2

s xs+1 + βs
(
2xs xs+1 + x2

s

)
+ γs(xs+1 + 2xs) + 3δs,

xs
13 + xs

22 + xs
31 = 3αs xs x2

s+1 + βs
(
2xs xs+1 + x2

s+1

)
+ γs(xs + 2xs+1) + 3δs,

xs
33 = αs x3

s+1 + βs x2
s+1 + γs xs+1 + δs,

Xs � 0.

(10.12)

Observe that the positive semidefiniteness of the matrix Xs implies that the first

diagonal entry xs
00 is nonnegative, which corresponds to our earlier requirement

fs(xs) ≥ 0. In light of Corollary 10.1 , we see that introducing the additional vari-

ables Xs and the constraints (10.12), for s = 1, . . . , ns , into the earlier quadratic

programming problem in Section 8.4, we obtain a new optimization problem which

necessarily leads to a risk-neutral probability distribution function that is nonneg-

ative in its entire domain. The new formulation has the following form:

min
y,X1,...,Xns

E(y)

s.t. (8.19), (8.20), (8.21), (8.22), (8.25), [(10.12), s = 1, . . . , ns].

(10.13)

All constraints in (10.13), with the exception of the positive semidefinite-

ness constraints Xs � 0, s = 1, . . . , ns , are linear in the optimization variables

(αs, βs, γs, δs) and X s , s = 1, . . . , ns . The positive semidefiniteness constraints are

convex constraints and thus the resulting problem can be reformulated as a convex

semidefinite programming problem with a quadratic objective function.

For appropriate choices of the vectors c, fi , gs
k , and matrices Q and H s

k , we can

rewrite problem (10.13) in the following equivalent form:

miny,X1,...,Xns cT y + 1
2

yT Qy

s.t. f T
i y = bi , i = 1, . . . , 3ns,

H s
k • Xs = 0, k = 1, 2, s = 1, . . . , ns,(

gs
k

)T
y + H s

k • Xs = 0, k = 3, 4, 5, 6, s = 1, . . . , ns,

X s � 0, s = 1, . . . , ns,

(10.14)

where • denotes the trace matrix inner product.

We should note that standard semidefinite optimization software such as

SDPT3 [81] can solve only problems with linear objective functions. Since the
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objective function of (10.14) is quadratic in y a reformulation is necessary to solve

this problem using SDPT3 or other SDP solvers. We can replace the objective

function with min t , where t is a new artificial variable, and impose the constraint

t ≥ cT y + 1
2

yT Qy. This new constraint can be expressed as a second-order cone

constraint after a simple change of variables; see, e.g., [53]. This final formu-

lation is a standard form conic optimization problem – a class of problems that

contain semidefinite programming and second-order cone programming as special

classes.

Exercise 10.6 Express the constraint t ≥ cT y + 1
2

yT Qy using linear constraints

and a second-order cone constraint.

10.4 Arbitrage bounds for forward start options

When pricing securities with complicated payoff structures, one of the strategies

analysts use is to develop a portfolio of “related” securities in order to form a

super (or sub) hedge and then use no-arbitrage arguments to bound the price of the

complicated security. Finding the super or sub hedge that gives the sharpest no-

arbitrage bounds is formulated as an optimization problem. We considered a similar

approach in Section 4.2 when we used linear programming models for detecting

arbitrage possibilities in prices of European options with a common underlying

asset and same maturity.

In this section, we consider the problem of finding arbitrage bounds for prices

of forward start options using prices of standard options expiring either at the

activation or expiration date of the forward start option. As we will see this problem

can be solved using semidefinite optimization. The tool we use to achieve this is

the versatile result of Bertsimas and Popescu given in Proposition 10.1 .

A forward start option is an advance purchase, say at time T0, of a put or call

option that will become active at some specified future time, say T1. These options

are encountered frequently in employee incentive plans where an employee may

be offered an option on the company stock that will be available after the employee

remains with the company for a predetermined length of time. A premium is paid

at T0, and the underlying security and the expiration date (T2) are specified at that

time. Let S1 and S2 denote the spot price of the underlying security at times T1 and

T2, respectively.

The strike price is described as a known function of S1 but is unknown at T0. It

is determined at T1 when the option becomes active. Typically, it is chosen to be

the value of the underlying asset at that time, i.e., S1, so that the option is at-the-

money at time T1. More generally, the strike can be chosen as γ S1 for some positive

constant γ . We address the general case here. The payoff to the buyer of a forward
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start call option at time T2 is max(0, S2 − γ S1) = (S2 − γ S1)+, and similarly it is

(γ S1 − S2)+ for puts.

Our primary objective is to find tightest possible no-arbitrage bounds (i.e., max-

imize the lower bound and minimize the upper bound) by finding the best possible

sub- and super-replicating portfolios of European options of several strikes with

exercise dates at T1 and also others with exercise dates at T2. We will also con-

sider the possibility of trading the underlying asset at time T1 in a self-financing

manner (via risk-free borrowing/lending). For concreteness, we limit our attention

to the forward start call option problem and only consider calls for replication

purposes. Since we allow the shorting of calls, the omission of puts does not lose

generality.

We show how to (approximately) solve the following problem: find the cheapest

portfolio of the underlying (traded now and/or at T1), cash, calls expiring at time

T1, and calls expiring at time T2, such that the payoff from the portfolio always is

at least (S2 − γ S1)+, no matter what S1 and S2 turn out to be. There is a similar

lower bound problem that can be solved identically.

For simplification, we assume throughout the rest of this discussion that the

risk-free interest rate r is zero and that the underlying does not pay any dividends.

We also assume throughout the discussion that the prices of options available for

replication are arbitrage-free, which implies the existence of equivalent martingale

measures consistent with these prices. Furthermore, we ignore trading costs.

For replication purposes, we assume that a number of options expiring at T1 and

T2 are available for trading. Let K 1
1 < K 1

2 < · · · < K 1
m denote the strike prices of

options expiring at T1 and K 2
1 < K 2

2 < · · · < K 2
n denote the strike prices of the

options expiring at T2. Let p1 = (p1
1, . . . , p1

m) and p2 = (p2
1, . . . , p2

n) denote the

(arbitrage-free) prices of these options at time T0.

We assume that K 1
1 = 0, so that the first “call” is the underlying itself and p1

1 =
S0, the price of the underlying at T0. For our formulation, let x = (x1, x2, . . . , xm)

and y = (y1, y2, . . . , yn) correspond to the positions in the T1- and T2-expiry options

in our portfolio. Let B denote the cash position in the portfolio at time T0. Then,

the cost of this portfolio is

c(x, y, B) :=
m∑

i=1

p1
i xi +

n∑
j=1

p2
j y j + B. (10.15)

Holding only these call options and not trading until T2, we would have a static

hedge. To improve the bounds, we consider a semi-static hedge that is rebalanced

at time T1 through the purchase of underlying shares whose quantity is determined

based on the price of the underlying at that time. If f (S1) shares of the underlying

are purchased at time T1 and if this purchase is financed by risk-free borrowing,
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our overall position would have the final payoff of:

g(S1, S2) := gS(S1, S2) + f (S1)(S2 − S1) (10.16)

=
m∑

i=1

(
S1 − K 1

i

)+
xi +

n∑
j=1

(
S2 − K 2

j

)+
y j + B + f (S1)(S2 − S1).

Exercise 10.7 Verify equation (10.16).

Then, we would find the upper bound on the price of the forward start option by

solving the following problem:

u := minx,y,B, f c(x, y, B)

s.t. g(S1, S2) ≥ (S2 − γ S1)+, ∀S1, S2 ≥ 0.
(10.17)

The inequalities in this optimization problem ensure the super-replication properties

of the semi-static hedge we constructed. Unfortunately, there are infinitely many

constraints indexed by the parameters S1 and S2. Therefore, (10.17) is a semi-infinite

linear optimization problems and can be difficult.

Fortunately, however, the constraint functions are expressed using piecewise-

linear functions of S1 and S2. The breakpoints for these functions are at the strike

sets {K 1
1 , . . . , K 1

m} and {K 2
1 , . . . , K 2

n }. The right-hand-side function (S2 − γ S1)+

has breakpoints along the line S2 = γ S1. The remaining difficulty is about the

specification of the function f . By limiting our attention to functions f that are

piecewise linear we will obtain a conic optimization formulation.

A piecewise linear function f (S1) is determined by its values at the breakpoints:

zi = f (K 1
i ) for i = 1, . . . , m and its slope past K 1

m (the last breakpoint) given by

λz = f (K 1
m + 1) − f (K 1

m).

Thus, we approximate f (S1) as

f (S1) =



zi + (
S1 − K 1

i

) zi+1 − zi

K 1
i+1 − K 1

i

if S1 ∈ [
K 1

i , K 1
i+1

)
,

zm + (
S1 − K 1

m

)
λz if S1 ≥ K 1

m .

Next, we consider a decomposition of the nonnegative orthant (S1, S2 ≥ 0) into

a grid with breakpoints at K 1
i ’s and K 2

j ’s such that the payoff function is linear in

each box Bi j = [K 1
i , K 1

i+1] × [K 2
j , K 2

j+1]:

g(S1, S2) =
n∑

k=1

(
S1 − K 1

k

)+
xk +

n∑
l=1

(
S2 − K 2

l

)+
yl + B + (S2 − S1) f (S1)

=
i∑

k=1

(
S1 − K 1

k

)
xk +

j∑
l=1

(
S2 − K 2

l

)
yl + B

+ (S2 − S1)

(
zi + (

S1 − K 1
i

) zi+1 − zi

K 1
i+1 − K 1

i

)
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Case 3:  S2 = gS1, g ∈
K 2
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,
K 2

j +1

K 1
i

Figure 10.2 Three possible relative positions of the S2 = γ S1 line

Recall that we want to super-replicate the payoff (S2 − γ S1)+. This means that

the term g(S1, S2) must exceed it for all S1, S2. When we consider the box

Bi j := [K 1
i , K 1

i+1] × [K 2
j , K 2

j+1] there are three possibilities involving γ ; see also

Figure 10.2:

1. S2 > γ S1 for all (S1, S2) ∈ Bi j . Then, we replace (S2 − γ S1)+ with (S2 − γ S1).

2. S2 < γ S1 for all (S1, S2) ∈ Bi j . Then, we replace (S2 − γ S1)+ with 0.

3. Otherwise, we replace g(S1, S2) ≥ (S2 − γ S1)+ with the two inequalities g(S1, S2) ≥
(S2 − γ S1) and g(S1, S2) ≥ 0.

In all cases, we remove the nonlinearity on the right-hand side. Now, we can rewrite

the super-replication inequality

g(S1, S2) ≥ (S2 − γ S1)+, ∀(S1, S2) ∈ Bi j (10.18)

as

αi j (w)S2
1 + βi j (w)S1 + δi j (w)S1S2 + εi j (w)S2 + ηi j (w)

≥ 0, ∀(S1, S2) ∈ Bi j , (10.19)

where w = (x, y, z, B) represents the variables of the problem collectively and the

constants αi j , etc., are easily obtained linear functions of these variables. In Case 3,

we have two such inequalities rather than one.

Thus, the super-replication constraints in each box are polynomial inequalities

that must hold within these boxes. This is very similar to the situation addressed by

Proposition 10.1 with the important distinction that these polynomial inequalities

are in two variables rather than one.

Next, observe that, for a fixed value of S1, the function on the left-hand

side of inequality (10.18) is linear in S2. Let us denote this function with
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Figure 10.3 Super-replication constraints (a) in the box Bi j and (b) on the line segments

hi j (S1, S2). Since it is linear in S2, for a fixed value of S1, hi j will assume its

minimum value in the interval [K 2
j , K 2

j+1] either at S2 = K 2
j or S2 = K 2

j+1. Thus,

if hi j (S1, K 2
j ) ≥ 0 and hi j (S1, K 2

j+1) ≥ 0, then hi j (S1, S2) ≥ 0, ∀S2 ∈ [K 2
j , K 2

j+1].

As a result, hi j (S1, S2) ≥ 0, ∀(S1, S2) ∈ Bi j is equivalent to the following two

constraints:

Hl
i j (S1) := hi j

(
S1, K 2

j

) ≥ 0, ∀S1 ∈ [
K 1

i , K 1
i+1

]
,

H u
i j (S1) := hi j

(
S1, K 2

j+1

) ≥ 0, ∀S1 ∈ [
K 1

i , K 1
i+1

]
.

The situation is illustrated in Figure 10.3. Instead of satisfying the inequality on

the whole box as in Figure 10.3(a), we only need to consider two line segments as

in Figure 10.3(b).

The bivariate polynomial inequality is reduced to two univariate polynomial

inequalities. Now, we can use the Bertsimas/Popescu result and represent this in-

equality efficiently. In summary, the super-replication constraints can be rewritten

using a finite number of linear constraints and semidefiniteness constraints. Since

Hl
i j and Hu

i j are quadratic polynomials in S1, semidefiniteness constraints are on

3 × 3 matrices (see Proposition 10.1) and are easily handled with semidefinite

programming software.
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Integer programming: theory and algorithms

11.1 Introduction

A linear programming model for constructing a portfolio of assets might produce

a solution with 3205.7 shares of stock XYZ and similarly complicated figures for

the other assets. Most portfolio managers would have no trouble rounding the value

3205.7 to 3205 shares or even 3200 shares. In this case, a linear programming model

would be appropriate. Its optimal solution can be used effectively by the decision

maker, with minor modifications. On the other hand, suppose that the problem is

to find the best among many alternatives (for example, a traveling salesman wants

to find a shortest route going through ten specified cities). A model that suggests

taking fractions of the roads between the various cities would be of little value. A

0,1 decision has to be made (a road between a pair of cities is either on the shortest

route or it is not), and we would like the model to reflect this.

This integrality restriction on the variables is the central aspect of integer pro-

gramming. From a modeling standpoint, integer programming has turned out to

be useful in a wide variety of applications. With integer variables, one can model

logical requirements, fixed costs, and many other problem aspects. Many software

products can change a linear programming problem into an integer program with a

single command.

The downside of this power, however, is that problems with more than a thou-

sand variables are often not possible to solve unless they show a specific exploitable

structure. Despite the possibility (or even likelihood) of enormous computing times,

there are methods that can be applied to solving integer programs. The most widely

used is “branch and bound” (it is used, for example, in SOLVER). More sophis-

ticated commercial codes (CPLEX and XPRESS are currently two of the best)

use a combination of “branch and bound” and another complementary approach

called “cutting plane.” Open source software codes in the COIN-OR library also

implement a combination of branch and bound and cutting plane, called “branch

192
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and cut” (such as cbc, which stands for COIN Branch and Cut, or bcp, which

stands for Branch, Cut, and Price). The purpose of this chapter is to describe some

of the solution techniques. For the reader interested in learning more about integer

programming, we recommend Wolsey’s introductory book [83]. The next chapter

discusses problems in finance that can be modeled as integer programs: combina-

torial auctions, constructing an index fund, portfolio optimization with minimum

transaction levels.

First we introduce some terminology. An integer linear program is a linear pro-

gram with the additional constraint that some of, or all, the variables are required to

be integer. When all variables are required to be integer the problem is called a pure
integer linear program. If some variables are restricted to be integer and some are not

then the problem is a mixed integer linear program, denoted MILP. The case where

the integer variables are restricted to be 0 or 1 comes up surprisingly often. Such

problems are called pure (mixed) 0–1 linear programs or pure (mixed) binary integer
linear programs. The case of an NLP with the additional constraint that some of the

variables are required to be integer is called MINLP and is receiving an increasing

amount of attention from researchers. In this chapter, we concentrate on MILP.

11.2 Modeling logical conditions

Suppose we wish to invest $19 000. We have identified four investment opportu-

nities. Investment 1 requires an investment of $6700 and has a net present value

of $8000; investment 2 requires $10 000 and has a value of $11 000; investment

3 requires $5500 and has a value of $6000; and investment 4 requires $3400 and

has a value of $4000. Into which investments should we place our money so as to

maximize our total present value? Each project is a “take it or leave it” opportunity:

we are not allowed to invest partially in any of the projects. Such problems are

called capital budgeting problems.

As in linear programming, our first step is to decide on the variables. In this case,

it is easy: we will use a 0–1 variable x j for each investment. If x j is 1 then we will

make investment j . If it is 0, we will not make the investment.

This leads to the 0–1 programming problem:

max 8x1 + 11x2 + 6x3 + 4x4

subject to

6.7x1 + 10x2 + 5.5x3 + 3.4x4 ≤ 19

x j = 0 or 1.

Now, a straightforward “bang for buck” suggests that investment 1 is the best choice.

In fact, ignoring integrality constraints, the optimal linear programming solution
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is x1 = 1, x2 = 0.89, x3 = 0, x4 = 1 for a value of $21 790. Unfortunately, this

solution is not integral. Rounding x2 down to 0 gives a feasible solution with

a value of $12 000. There is a better integer solution, however, of x1 = 0, x2 =
1, x3 = 1, x4 = 1 for a value of $21 000. This example shows that rounding does

not necessarily give an optimal solution.

There are a number of additional constraints we might want to add. For instance,

consider the following constraints:

1. We can only make two investments.

2. If investment 2 is made, then investment 4 must also be made.

3. If investment 1 is made, then investment 3 cannot be made.

All of these, and many more logical restrictions, can be enforced using 0–1 vari-

ables. In these cases, the constraints are:

1. x1 + x2 + x3 + x4 ≤ 2.

2. x2 − x4 ≤ 0.

3. x1 + x3 ≤ 1.

Solving the model with SOLVER

Modeling an integer program in SOLVER is almost the same as modeling a lin-

ear program. For example, if you placed binary variables x1, x2, x3, x4 in cells

$B$5:$B$8, simply Add the constraint

$B$5:$B$8 Bin

to your other constraints in the SOLVER dialog box. Note that the Bin option is

found in the small box where you usually indicate the type of inequality: =, <=, or

>=. Just click on Bin. That’s all there is to it!

It is equally easy to model an integer program within other commercial codes.

The formulation might look as follows:

! Capital budgeting example
VARIABLES
x(i=1:4)
OBJECTIVE
Max: 8*x(1)+11*x(2)+6*x(3)+4*x(4)
CONSTRAINTS
Budget: 6.7*x(1)+10*x(2)+5.5*x(3)+3.4*x(4) < 19
BOUNDS
x(i=1:4) Binary
END
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Exercise 11.1 As the leader of an oil exploration drilling venture, you must deter-

mine the best selection of five out of ten possible sites. Label the sites s1, s2, . . . , s10

and the expected profits associated with each as p1, p2, . . . , p10.

(i) If site s2 is explored, then site s3 must also be explored.

(ii) Exploring sites s1 and s7 will prevent you from exploring site s8.

(iii) Exploring sites s3 or s4 will prevent you from exploring site s5.

Formulate an integer program to determine the best exploration scheme and solve

with SOLVER.

Answer:

max
∑10

j=1 p j x j

subject to ∑10
j=1 x j = 5

x2 − x3 ≤ 0

x1 + x7 + x8 ≤ 2

x3 + x5 ≤ 1

x4 + x5 ≤ 1

x j = 0 or 1 for j = 1, . . . , 10.

Exercise 11.2 Consider the following investment projects where, for each project,

you are given its NPV as well as the cash outflow required during each year (in

million dollars).

NPV Year 1 Year 2 Year 3 Year 4

Project 1 30 12 4 4 0

Project 2 30 0 12 4 4
Project 3 20 3 4 4 4

Project 4 15 10 0 0 0

Project 5 15 0 11 0 0
Project 6 15 0 0 12 0

Project 7 15 0 0 0 13
Project 8 24 8 8 0 0

Project 9 18 0 0 10 0

Project 10 18 0 0 0 10

No partial investment is allowed in any of these projects. The firm has 18 million

dollars available for investment each year.

(i) Formulate an integer linear program to determine the best investment plan and

solve with SOLVER.
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(ii) Formulate the following conditions as linear constraints.
� Exactly one of Projects 4, 5, 6, 7 must be invested in.
� If Project 1 is invested in, then Project 2 cannot be invested in.
� If Project 3 is invested in, then Project 4 must also be invested in.
� If Project 8 is invested in, then either Project 9 or Project 10 must also be invested in.
� If either Project 1 or Project 2 is invested in, then neither Project 8 nor Project 9 can

be invested in.

11.3 Solving mixed integer linear programs

Historically, the first method developed for solving MILPs was based on cutting

planes (adding constraints to the underlying linear program to cut off noninteger

solutions). This idea was proposed by Gomory [32] in 1958. Branch and bound

was proposed in 1960 by Land and Dong [50]. It is based on dividing the problem

into a number of smaller problems (branching) and evaluating their quality based

on solving the underlying linear programs (bounding). Branch and bound has

been the most effective technique for solving MILPs in the following 40 years or

so. However, in the last ten years, cutting planes have made a resurgence and are

now efficiently combined with branch and bound into an overall procedure called

branch and cut. This term was coined by Padberg and Rinaldi [62] in 1987. All

these approaches involve solving a series of linear programs. So that is where we

begin.

11.3.1 Linear programming relaxation

Given a mixed integer linear program

(MILP) min cTx

Ax ≥ b

x ≥ 0

x j integer for j = 1, . . . , p,

there is an associated linear program called the relaxation formed by dropping the

integrality restrictions:

(R) min cTx

Ax ≥ b

x ≥ 0.

Since R is less constrained than MILP, the following are immediate:
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� The optimal objective value for R is less than or equal to the optimal objective for MILP.
� If R is infeasible, then so is MILP.
� If the optimal solution x∗ of R satisfies x∗

j integer for j = 1, . . . , p, then x∗ is also

optimal for MILP.

So solving R does give some information: it gives a bound on the optimal value,

and, if we are lucky, it may give the optimal solution to MILP. However, rounding

the solution of R will not in general give the optimal solution of MILP.

Exercise 11.3 Consider the problem

max 20x1 + 10x2 + 10x3

2x1 + 20x2 + 4x3 ≤ 15

6x1 + 20x2 + 4x3 = 20

x1, x2, x3 ≥ 0 integer.

Solve its linear programming relaxation. Then, show that it is impossible to obtain

a feasible integral solution by rounding the values of the variables.

Exercise 11.4

(a) Compare the feasible solutions of the following three integer linear programs:

(i) max 14x1 + 8x2 + 6x3 + 6x4

28x1 + 15x2 + 13x3 + 12x4 ≤ 39

x1, x2, x3, x4 ∈ {0, 1},
(ii) max 14x1 + 8x2 + 6x3 + 6x4

2x1 + x2 + x3 + x4 ≤ 2

x1, x2, x3, x4 ∈ {0, 1},
(iii) max 14x1 + 8x2 + 6x3 + 6x4

x2 + x3 + x4 ≤ 2

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x1 + x4 ≤ 1

x1, x2, x3, x4 ∈ {0, 1}.
(b) Compare the relaxations of the above integer programs obtained by replacing

x1, x2, x3, x4 ∈ {0, 1} by 0 ≤ x j ≤ 1 for j = 1, . . . , 4. Which is the best for-

mulation among (i), (ii), and (iii) for obtaining a tight bound from the linear

programming relaxation?
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3.5

1.5

max x1 + x2

x1

x2

Figure 11.1 A two-variable integer program

11.3.2 Branch and bound

An example

We first explain branch and bound by solving the following pure integer linear

program (see Figure 11.1):

max x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1, x2 ≥ 0

x1, x2 integer.

The first step is to solve the linear programming relaxation obtained by ignoring

the last constraint. The solution is x1 = 1.5, x2 = 3.5 with objective value 5. This

is not a feasible solution to the integer program since the values of the variables

are fractional. How can we exclude this solution while preserving the feasible

integral solutions? One way is to branch, creating two linear programs, say one

with x1 ≤ 1, the other with x1 ≥ 2. Clearly, any solution to the integer program

must be feasible to one or the other of these two problems. We will solve both of

these linear programs. Let us start with

max x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1 ≤ 1

x1, x2 ≥ 0.

The solution is x1 = 1, x2 = 3 with objective value 4. This is a feasible integral

solution. So we now have an upper bound of 5 as well as a lower bound of 4 on the

value of an optimum solution to the integer program.
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Prune by integrality Prune by bounds

x1 = 1.5, x2 = 3.5

z = 5

x1 = 1, x2 = 3

z = 4

x1 = 2, x2 = 1.5

z = 3.5

x1 ≤ 1 x1 ≥ 2

Figure 11.2 Branch-and-bound tree

Now we solve the second linear program

max x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1 ≥ 2

x1, x2 ≥ 0.

The solution is x1 = 2, x2 = 1.5 with objective value 3.5. Because this value is

worse that the lower bound of 4 that we already have, we do not need any further

branching. We conclude that the feasible integral solution of value 4 found earlier

is optimum.

The solution of the above integer program by branch and bound required the

solution of three linear programs. These problems can be arranged in a branch-
and-bound tree, see Figure 11.2. Each node of the tree corresponds to one of the

problems that were solved.
We can stop the enumeration at a node of the branch-and-bound tree for three

different reasons (when they occur, the node is said to be pruned).

� Pruning by integrality occurs when the corresponding linear program has an optimum

solution that is integral.
� Pruning by bounds occurs when the objective value of the linear program at that node is

worse than the value of the best feasible solution found so far.
� Pruning by infeasibility occurs when the linear program at that node is infeasible.

To illustrate a larger tree, let us solve the same integer program as above, with a

different objective function:

max 3x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1, x2 ≥ 0

x1, x2 integer.
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The solution of the linear programming relaxation is x1 = 1.5, x2 = 3.5 with

objective value 8. Branching on variable x1, we create two linear programs. The

one with the additional constraint x1 ≤ 1 has solution x1 = 1, x2 = 3 with value 6

(so now we have an upper bound of 8 and a lower bound of 6 on the value of an

optimal solution of the integer program). The linear program with the additional

constraint x2 ≥ 2 has solution x1 = 2, x2 = 1.5 and objective value 7.5. Note that

the value of x2 is fractional, so this solution is not feasible to the integer program.

Since its objective value is higher than 6 (the value of the best integer solution found

so far), we need to continue the search. Therefore we branch on variable x2. We

create two linear programs, one with the additional constraint x2 ≥ 2, the other with

x2 ≤ 1, and solve both. The first of these linear programs is infeasible. The second is

max 3x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1 ≥ 2

x2 ≤ 1

x1, x2 ≥ 0.

The solution is x1 = 2.125, x2 = 1 with objective value 7.375. Because this

value is greater than 6 and the solution is not integral, we need to branch again on

x1. The linear program with x1 ≥ 3 is infeasible. The one with x1 ≤ 2 is

max 3x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1 ≥ 2

x2 ≤ 1

x1 ≤ 2

x1, x2 ≥ 0.

The solution is x1 = 2, x2 = 1 with objective value 7. This node is pruned by

integrality and the enumeration is complete. The optimal solution is the one with

value 7. See Figure 11.3.

The branch-and-bound algorithm

Consider a mixed integer linear program:

(MILP) zI = min cTx

Ax ≥ b

x ≥ 0

x j integer for j = 1, . . . , p.
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Figure 11.3 Branch-and-bound tree for modified example

The data are an n-vector c, an m × n matrix A, an m-vector b and an integer p such

that 1 ≤ p ≤ n. The set I = {1, . . . , p} indexes the integer variables whereas the

set C = {p + 1, . . . , n} indexes the continuous variables. The branch-and-bound

algorithm keeps a list of linear programming problems obtained by relaxing the

integrality requirements on the variables and imposing constraints such as x j ≤ u j

or x j ≥ l j . Each such linear program corresponds to a node of the branch-and-

bound tree. For a node Ni , let zi denote the value of the corresponding linear

program (it will be convenient to denote this linear program by Ni as well). Let L
denote the list of nodes that must still be solved (i.e., that have not been pruned nor

branched on). Let zU denote an upper bound on the optimum value zI (initially, the

bound zU can be derived from a heuristic solution of (MILP), or it can be set to

+∞).

0. Initialize

L = {M I L P}, zU = +∞, x∗ = ∅.

1. Terminate?

If L = ∅, the solution x∗ is optimal.

2. Select node

Choose and delete a problem Ni from L.

3. Bound

Solve Ni . If it is infeasible, go to Step 1. Else, let xi be its solution and zi its

objective value.

4. Prune

If zi ≥ zU , go to Step 1.

If xi is not feasible to (MILP), go to Step 5.

If xi is feasible to (MILP), let zU = zi , x∗ = xi and delete from L all problems

with z j ≥ zU . Go to Step 1.
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5. Branch

From Ni , construct linear programs N 1
i , . . . , N k

i with smaller feasible regions

whose union contains all the feasible solutions of (MILP) in Ni . Add N 1
i , . . . , N k

i

to L and go to Step 1.

Various choices are left open by the algorithm, such as the node selection criterion
and the branching strategy. We will discuss some options for these choices. Even
more important to the success of branch-and-bound is the ability to prune the tree
(Step 4). This will occur when zU is a good upper bound on zI and when zi is a good
lower bound. For this reason, it is crucial to have a formulation of (MILP) such that
the value of its linear programming relaxation zL P is as close as possible to zI . To
summarize, four issues need attention when solving MILPs by branch and bound:

� formulation (so that the gap z I − zL P is small);
� heuristics (to find a good upper bound zU );
� branching;
� node selection.

We defer the formulation issue to Section 11.3.3 on cutting planes. This issue will

also be addressed in Chapter 12. Heuristics can be designed either as stand alone (an

example will be given in Section 12.3) or as part of the branch-and-bound algorithm

(by choosing branching and node selection strategies that are more likely to produce

feasible solutions xi to (MILP) in Step 4). We discuss branching strategies first,

followed by node selection strategies and heuristics.

Branching

Problem Ni is a linear program. A way of dividing its feasible region is to impose

bounds on a variable. Let xi
j be one of the fractional values for j = 1, . . . , p, in the

optimal solution xi of Ni (we know that there is such a j , since otherwise Ni would

have been pruned in Step 4 on account of xi being feasible to (MILP)). From problem

Ni , we can construct two linear programs N−
i j and N+

i j that satisfy the requirements

of Step 5 by adding the constraints x j ≤ �xi
j	 and x j ≥ 
xi

j� respectively to N i .

The notation �a	 and 
a� means a rounded down and up to the nearest integer

respectively. This is called branching on a variable. The advantage of branching on

a variable is that the number of constraints in the linear programs does not increase,

since linear programming solvers treat bounds on variables implicitly.

An important question is: on which variable x j should we branch, among the

j = 1, . . . , p such that xi
j is fractional? To answer this question, it would be very

helpful to know the increase D−
i j in objective value between Ni and N−

i j , and D+
i j

between Ni and N+
i j . A good branching variable x j at node N i is one for which

both D−
i j and D+

i j are relatively large (thus tightening the lower bound zi , which is

useful for pruning). For example, researchers have proposed to choose j = 1, . . . , p
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such that min(D−
i j , D+

i j ) is the largest. Others have proposed to choose j such that

D−
i j + D+

i j is the largest. Combining these two criteria is even better, with more

weight on the first.

The strategy which consists in computing D−
i j and D+

i j explicitly for each j is

called strong branching. It involves solving linear programs that are small vari-

ations of Ni by performing dual simplex pivots (recall Section 2.4.5), for each

j = 1, . . . , p such that xi
j is fractional and each of the two bounds. Experiments

indicate that strong branching reduces the size of the enumeration tree by a factor

of 20 or more in most cases, relative to a simple branching rule such as branching

on the most fractional variable. Thus there is a clear benefit to spending time on

strong branching. But the computing time of doing it at each node Ni , for every

fractional variable xi
j , may be too high. A reasonable strategy is to restrict the j’s

that are evaluated to those for which the fractional part of xi
j is closest to 0.5 so

that the amount of computing time spent performing these evaluations is limited.

Significantly more time should be spent on these evaluations towards the top of the

tree. This leads to the notion of pseudocosts that are initialized at the root node and

then updated throughout the branch-and-bound tree.

Let f i
j = xi

j − �xi
j	 be the fractional part of xi

j , for j = 1, . . . p. For an index j
such that f i

j > 0, define the down pseudocost and up pseudocost as

P−
j = D−

i j

f i
j

and P+
j = D+

i j

1 − f i
j

respectively. Benichou et al. [10] observed that the pseudocosts tend to remain

fairly constant throughout the branch-and-bound tree. Therefore the pseudocosts

need not be computed at each node of the tree. They are estimated instead. How are

they initialized and how are they updated in the tree? A good way of initializing the

pseudocosts is through strong branching at the root node or other nodes of the tree

when a variable becomes fractional for the first time. The down pseudocost P−
j is

updated by averaging the observations D−
i j / f i

j over all the nodes of the tree where

x j was branched on. Similarly for the up pseudocost P+
j . The decision of which

variable to branch on at a node Ni of the tree is done as follows. The estimated

pseudocosts P−
j and P+

j are used to compute estimates of D−
i j and D+

i j at node

Ni , namely D−
i j = P−

j f i
j and D+

i j = P+
j (1 − f i

j ) for each j = 1, . . . , p such that

f i
j > 0. Among these candidates, the branching variable x j is chosen to be the one

with largest min(D−
i j , D+

i j ) (or other criteria such as those mentioned earlier).

Node selection

How does one choose among the different problems Ni available in Step 2 of the

algorithm? Two goals need to be considered: finding good feasible solutions (thus
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decreasing the upper bound zU ) and proving optimality of the current best feasible

solution (by increasing the lower bound as quickly as possible).

For the first goal, we estimate the value of the best feasible solution in each node

Ni . For example, we could use the following estimate:

Ei = zi +
p∑

j=1

min
(
P−

j f i
j , P+

j

(
1 − f i

j

))
,

based on the pseudocosts defined above. This corresponds to rounding the nonin-

teger solution xi to a nearby integer solution and using the pseudocosts to estimate

the degradation in objective value. We then select a node Ni with the smallest Ei .

This is the so-called “best estimate criterion” node selection strategy.

For the second goal, the best strategy depends on whether the first goal has

been achieved already. If we have a very good upper bound zU , it is reasonable to

adopt a depth-first search strategy. This is because the linear programs encountered

in a depth-first search are small variations of one another. As a result they can be

solved faster in sequence, using the dual simplex method initialized with the optimal

solution of the father node (about ten times faster, based on empirical evidence). On

the other hand, if no good upper bound is available, depth-first search is wasteful:

it may explore many nodes with a value zi that is larger than the optimum zI . This

can be avoided by using the “best bound” node selection strategy, which consists

in picking a node Ni with the smallest bound zi . Indeed, no matter how good a

solution of (MILP) is found in other nodes of the branch-and-bound tree, the node

with the smallest bound zi cannot be pruned by bounds (assuming no ties) and

therefore it will have to be explored eventually. So we might as well explore it

first. This strategy minimizes the total number of nodes in the branch-and-bound

tree.

The most successful node selection strategy may differ depending on the appli-

cation. For this reason, most MILP solvers have several node selection strategies

available as options. The default strategy is usually a combination of the “best es-

timate criterion” (or a variation) and depth-first search. Specifically, the algorithm

may dive using depth-first search until it reaches an infeasible node Ni or it finds

a feasible solution of (MILP). At this point, the next node might be chosen using

the “best estimate criterion” strategy, and so on, alternating between dives in a

depth-first search fashion to get feasible solutions at the bottom of the tree and the

“best estimate criterion” to select the next most promising node.

Heuristics

Heuristics are useful for improving the bound zU , which helps in Step 4 for pruning

by bounds. Of course, heuristics are even more important when the branch-and-
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bound algorithm is too time consuming and has to be terminated before completion,

returning a solution of value zU without a proof of its optimality.

We have already presented all the ingredients needed for a diving heuristic:

solve the linear programming relaxation, use strong branching or pseudocosts to

determine a branching variable; then compute the estimate Ei at each of the two

sons and move down the branch corresponding to the smallest of the two estimates.

Solve the new linear programming relaxation with this variable fixed and repeat

until infeasibility is reached or a solution of (MILP) is found. The diving heuristic

can be repeated from a variety of starting points (corresponding to different sets of

variables being fixed) to improve the chance of getting good solutions.

An interesting idea that has been proposed recently to improve a feasible solution

of (MILP) is called local branching [28]. This heuristic is particularly suited for

MILPs that are too large to solve to optimality, but where the linear programming

relaxation can be solved in reasonable time. For simplicity, assume that all the

integer variables are 0,1 valued. Let x̄ be a feasible solution of (MILP) (found

by a diving heuristic, for example). The idea is to define a neighborhood of x̄ as

follows:

p∑
j=1

|x j − x̄ j | ≤ k,

where k is an integer chosen by the user (for example k = 20 seems to work well),

to add this constraint to (MILP) and apply your favorite MILP solver. Instead of

getting lost in a huge enumeration tree, the search is restricted to the neighborhood

of x̄ by this constraint. Note that the constraint should be linearized before adding

it to the formulation, which is easy to do:
∑

j∈I : x̄ j=0

x j +
∑

j∈I : x̄ j=1

(1 − x j ) ≤ k.

If a better solution than x̄ is found, the neighborhood is redefined relatively to this

new solution, and the procedure is repeated until no better solution can be found.

Exercise 11.5 Consider an investment problem as in Section 11.2. We have

$14 000 to invest among four different investment opportunities. Investment 1 re-

quires an investment of $7000 and has a net present value of $11 000; investment

2 requires $5000 and has a value of $8000; investment 3 requires $4000 and has

a value of $6000; and investment 4 requires $3000 and has a value of $4000.

As in Section 11.2, these are “take it or leave it” opportunities and we are not

allowed to invest partially in any of the projects. The objective is to maximize

our total value given the budget constraint. We do not have any other (logical)

constraints.
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We formulate this problem as an integer program using 0–1 variables x j for each

investment. As before, x j is 1 if we make investment j and 0 if we do not. This

leads to the following formulation:

max 11x1 + 8x2 + 6x3 + 4x4

7x1 + 5x2 + 4x3 + 3x4 ≤ 14

x j = 0 or 1.

The linear relaxation solution is x1 = 1, x2 = 1, x3 = 0.5, x4 = 0 with a value of

22. Since x3 is not integer, we do not have an integer solution yet. Solve this problem

using the branch-and-bound technique.

Exercise 11.6 Solve the three integer linear programs of Exercise 11.4 using

your favorite solver. In each case, report the number of nodes in the enumeration

tree. Is it related to the tightness of the linear programming relaxation studied in

Exercise 11.4 (b)?

Exercise 11.7 Modify the branch-and-bound algorithm so that it stops as soon as

it has a feasible solution that is guaranteed to be within p% of the optimum.

11.3.3 Cutting planes

In order to solve the mixed integer linear program

(MILP) min cTx

Ax ≥ b

x ≥ 0

x j integer for j = 1, . . . , p,

a possible approach is to strengthen the linear programming relaxation

(R) min cTx

Ax ≥ b

x ≥ 0,

by adding valid inequalities for (MILP). When the optimal solution x∗ of the

strengthened linear program is valid for (MILP), then x∗ is also an optimal so-

lution of (MILP). Even when this does not occur, the strengthened linear program

may provide better lower bounds in the context of a branch-and-bound algorithm.

How do we generate valid inequalities for (MILP)?

Gomory [33] proposed the following approach. Consider nonnegative variables

x j for j ∈ I ∪ C , where x j must be integer valued for j ∈ I . We allow the possibility
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that C = ∅. Let
∑
j∈I

a j x j +
∑
j∈C

a j x j = b (11.1)

be an equation satisfied by these variables. Assume that b is not an integer and

let f0 be its fractional part, i.e., b = �b	 + f0 where 0 < f0 < 1. For j ∈ I , let

a j = �a j	 + f j where 0 ≤ f j < 1. Replacing in (11.1) and moving sums of integer

products to the right, we get:
∑

j∈I : f j ≤ f0

f j x j +
∑

j∈I : f j> f0

( f j − 1)x j +
∑
j∈C

a j x j = k + f0,

where k is some integer.

Using the fact that k ≤ −1 or k ≥ 0, we get the disjunction

∑
j∈I : f j≤ f0

f j

f0

x j −
∑

j∈I : f j> f0

1 − f j

f0

x j +
∑
j∈C

a j

f0

x j ≥ 1

or

−
∑

j∈I : f j ≤ f0

f j

1 − f0

x j +
∑

j∈I : f j > f0

1 − f j

1 − f0

x j −
∑
j∈C

a j

1 − f0

x j ≥ 1.

This is of the form
∑

j a1
j x j ≥ 1 or

∑
j a2

j x j ≥ 1, which implies
∑

max
(
a1

j , a2
j

)
x j ≥ 1

for x ≥ 0.

Which is the largest of the two coefficients in our case? The answer is easy since

one coefficient is positive and the other is negative for each variable:

∑
j∈I : f j ≤ f0

f j

f0

x j +
∑

j∈I : f j > f0

1 − f j

1 − f0

x j +
∑

j∈C : a j>0

a j

f0

x j −
∑

j∈C : a j <0

a j

1 − f0

x j ≥ 1.

(11.2)

Inequality (11.2) is valid for all x ≥ 0 that satisfy (11.1) with x j integer for all

j ∈ I . It is called the Gomory mixed integer cut (GMI cut).

Let us illustrate the use of Gomory’s mixed integer cuts on the two-variable

example of Figure 11.1. Recall that the corresponding integer program is

max z = x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

x1, x2 ≥ 0

x1, x2 integer.
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We first add slack variables x3 and x4 to turn the inequality constraints into equalities.

The problem becomes:

z − x1 − x2 = 0

− x1 + x2 + x3 = 2

8x1 + 2x2 + x4 = 19

x1, x2, x3, x4 ≥ 0

x1, x2, x3, x4 integer.

Solving the linear programming relaxation by the simplex method (Section 2.4),

we get the optimal tableau:

z + 0.6x3 + 0.2x4 = 5

x2 + 0.8x3 + 0.1x4 = 3.5

x1 − 0.2x3 + 0.1x4 = 1.5

x1, x2, x3, x4 ≥ 0.

The corresponding basic solution is x3 = x4 = 0, x1 = 1.5, x2 = 3.5, and z = 5.

This solution is not integer. Let us generate the Gomory mixed integer cut corre-

sponding to the equation

x2 + 0.8x3 + 0.1x4 = 3.5

found in the final tableau. We have f0 = 0.5, f1 = f2 = 0, f3 = 0.8, and f4 = 0.1.

Applying formula (11.2), we get the GMI cut

1 − 0.8

1 − 0.5
x3 + 0.1

0.5
x4 ≥ 1, i.e., 2x3 + x4 ≥ 5.

We could also generate a GMI cut from the other equation in the final tableau

x1 − 0.2x3 + 0.1x4 = 1.5. It turns out that, in this case, we get exactly the same

GMI cut. We leave it to the reader to verify this.

Since x3 = 2 + x1 − x2 and x4 = 19 − x1 − 2x2, we can express the above GMI

cut in the space (x1, x2). This yields

3x1 + 2x2 ≤ 9.

Adding this cut to the linear programming relaxation, we get the following

formulation (see Figure 11.4):

max x1 + x2

− x1 + x2 ≤ 2

8x1 + 2x2 ≤ 19

3x1 + 2x2 ≤ 9

x1, x2 ≥ 0.



11.3 Solving mixed integer linear programs 209

3.5

1.5

Cut

max x1 + x2

x1

x2

Figure 11.4 Formulation strengthened by a cut

Solving this linear program by the simplex method, we find the basic solution

x1 = 1, x2 = 3, and z = 4. Since x1 and x2 are integer, this is the optimal solution

to the integer program.

Exercise 11.8 Consider the integer program

max 10x1 + 13x2

10x1 + 14x2 ≤ 43

x1, x2 ≥ 0

x1, x2 integer.

(i) Introduce slack variables and solve the linear programming relaxation by the

simplex method. (Hint: You should find the following optimal tableau:

min x2 + x3

x1 + 1.4x2 + 0.1x3 = 4.3

x1, x2 ≥ 0.

with basic solution x1 = 4.3, x2 = x3 = 0.)

(ii) Generate a GMI cut that cuts off this solution.

(iii) Multiply both sides of the equation x1 + 1.4x2 + 0.1x3 = 4.3 by the constant

k = 2 and generate the corresponding GMI cut. Repeat for k = 3, 4, and 5.

Compare the five GMI cuts that you found.

(iv) Add the GMI cut generated for k = 3 to the linear programming relaxation.

Solve the resulting linear program by the simplex method. What is the optimum

solution of the integer program?

Exercise 11.9

(i) Consider the two-variable mixed integer set

S := {(x, y) ∈ IN × IR+ : x − y ≤ b},



210 Integer programming: theory and algorithms

Figure 11.5 A branch-and-cut enumeration tree

where b ∈ IR. Let f0 = b − �b	. Show that

x − 1

1 − f0

y ≤ �b	

is a valid inequality for S.

(ii) Consider the mixed integer set

S := {(x, y) ∈ IN n
+ × IR p

+ : aTx + gT y ≤ b}
where a ∈ IRn , g ∈ IR p, and b ∈ IR. Let f0 = b − �b	 and f j = a j − �a j	.

Show that

n∑
j=1

(
�a j	 + ( f j − f0)+

1 − f0

)
x j + 1

1 − f0

∑
j :g j <0

g j y j ≤ �b	

is a valid inequality for S.

11.3.4 Branch and cut

The best software packages for solving MILPs use neither pure branch-and-bound

nor pure cutting plane algorithms. Instead they combine the two approaches in a

method called branch and cut. The basic structure is essentially the same as branch

and bound. The main difference is that, when a node Ni is explored, cuts may be

generated to strengthen the formulation, thus improving the bound zi . Some cuts

may be local (i.e., valid only at node Ni and its descendants) or global (valid at
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all the nodes of the branch-and-bound tree). Cplex and Xpress are two excellent

commercial branch-and-cut codes. cbc (COIN branch and cut) and bcp (branch,

cut and price) are open source codes in the COIN-OR library.

In Figure 11.5 we give an example of an enumeration tree obtained when running

the branch-and-cut algorithm of a commercial code on an instance with 89 binary

variables and 28 constraints. Nodes of degree two (other than the root) occur when

one of the sons can be pruned immediately by bounds or infeasibility.
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Integer programming models: constructing
an index fund

This chapter presents several applications of integer linear programming: combina-

torial auctions, the lockbox problem, and index funds. We also present a model of

integer quadratic programming: portfolio optimization with minimum transaction

levels.

12.1 Combinatorial auctions

In many auctions, the value that a bidder has for acquiring a set of items may not be

the sum of the values that he has for acquiring the individual items in the set. It may

be more or it may be less. Examples are equity trading, electricity markets, pollution

right auctions, and auctions for airport landing slots. To take this into account,

combinatorial auctions allow the bidders to submit bids on combinations of items.

Specifically, let M = {1, 2, . . . , m} be the set of items that the auctioneer has

to sell. A bid is a pair Bj = (Sj , p j ) where Sj ⊆ M is a nonempty set of items

and p j is the price offer for this set. Suppose that the auctioneer has received n
bids B1, B2, . . . , Bn. How should the auctioneer determine the winners in order to

maximize his revenue? This can be done by solving an integer program. Let x j be

a 0,1 variable that takes the value 1 if bid Bj wins, and 0 if it looses. The auctioneer

maximizes his revenue by solving the integer program:

max
n∑

i=1

p j x j

subject to
∑

j : i∈Sj

x j ≤ 1 for i = 1, . . . , m

x j = 0 or 1 for j = 1, . . . , n.

The constraints impose that each item i is sold at most once.

For example, if there are four items for sale and the following bids have been

received: B1 = ({1}, 6), B2 = ({2}, 3), B3 = ({3, 4}, 12), B4 = ({1, 3}, 12), B5 =

212
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({2, 4}, 8), B6 = ({1, 3, 4}, 16), the winners can be determined by the following

integer program:

max 6x1 + 3x2 + 12x3 + 12x4 + 8x5 + 16x6

subject to x1 + x4 + x6 ≤ 1

x2 + x5 ≤ 1

x3 + x4 + x6 ≤ 1

x3 + x5 + x6 ≤ 1

x j = 0 or 1 for j = 1, . . . , 6.

In some auctions, there are multiple indistinguishable units of each item for sale.

A bid in this setting is defined as Bj = (λ
j
1, λ

j
2, . . . , λ

j
m ; p j ) where λ

j
i is the desired

number of units of item i and p j is the price offer. The auctioneer maximizes his

revenue by solving the integer program:

max
n∑

i=1

p j x j

subject to
∑

j : i∈Sj

λ
j
i x j ≤ ui for i = 1, . . . , m

x j = 0 or 1 for j = 1, . . . , n.

where ui is the number of units of item i for sale.

Exercise 12.1 In a combinatorial exchange, both buyers and sellers can submit

combinatorial bids. Bids are like in the multiple item case, except that the λ
j
i values

can be negative, as can the prices p j , representing selling instead of buying. Note

that a single bid can be buying some items while selling other items. Write an inte-

ger linear program that will maximize the surplus generated by the combinatorial

exchange.

12.2 The lockbox problem

Consider a national firm that receives checks from all over the United States. Due

to the vagaries of the US Postal Service, as well as the banking system, there is

a variable delay from when the check is postmarked (and hence the customer has

met his/her obligation) and when the check clears (and when the firm can use the

money). For instance, a check mailed in Pittsburgh sent to a Pittsburgh address

might clear in just two days. A similar check sent to Los Angeles might take four

days to clear. It is in the firm’s interest to have the check clear as quickly as possible

since then the firm can use the money. In order to speed up this clearing process,

firms open offices (called lockboxes) in different cities to handle the checks.
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Table 12.1 Clearing times

From L.A. Pittsburgh Boston Houston

West 2 4 6 6
Midwest 4 2 5 5
East 6 5 2 5
South 7 5 6 3

Table 12.2 Lost interest (’000)

From L.A. Pittsburgh Boston Houston

West 60 120 180 180
Midwest 48 24 60 60
East 216 180 72 180
South 126 90 108 54

For example, suppose we receive payments from four regions (West, Midwest,

East, and South). The average daily value from each region is as follows: $600 000

from the West, $240 000 from the Midwest, $720 000 from the East, and $360 000

from the South. We are considering opening lockboxes in Los Angeles, Pittsburgh,

Boston, and/or Houston. Operating a lockbox costs $90 000 per year. The average

days from mailing to clearing is given in Table 12.1. Which lockboxes should we

open?

First we must calculate the lost interest for each possible assignment. For exam-

ple, if West sends its checks to a lockbox in Boston, then on average there will be

$3 600 000 (= 6 × $600 000) in process on any given day. Assuming an investment

rate of 5%, this corresponds to a yearly loss of $180 000. We can calculate the losses

for the other combinations in a similar fashion to get Table 12.2.

To formulate the problem as an integer linear program, we will use the following

variables. Let y j be a 0–1 variable that is 1 if lockbox j is opened and 0 if it is not.

Let xi j be 1 if region i sends its checks to lockbox j .

The objective is to minimize total yearly costs:

60x11 + 120x12 + 180x13 + 180x14 + 48x21 + · · · + 90y1 + 90y2 + 90y3 + 90y4.

Each region must be assigned to one lockbox:

∑
j

xi j = 1 for all i.
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The regions cannot send checks to closed lockboxes. For lockbox 1 (Los Ange-

les), this can be written as:

x11 + x21 + x31 + x41 ≤ 4y1.

Indeed, suppose that we do not open a lockbox in L.A. Then y1 is 0, so all of

x11, x21, x31, and x41 must also be. On the other hand, if we open a lockbox in L.A.,

then y1 is 1 and there is no restriction on the x values.

We can create constraints for the other lockboxes to finish off the integer program.

For this problem, we would have 20 variables (4 y variables, 16 x variables) and 8

constraints. This gives the following integer program:

MIN 60 X11 + 120 X12 + 180 X13 + 180 X14 + 48 X21
+ 24 X22 + 60 X23 + 60 X24 + 216 X31 + 180 X32
+ 72 X33 + 180 X34 + 126 X41 + 90 X42 + 108 X43
+ 54 X44 + 90 Y1 + 90 Y2 + 90 Y3 + 90 Y4

SUBJECT TO
X11 + X12 + X13 + X14 = 1
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1
X11 + X21 + X31 + X41 - 4 Y1 <= 0
X12 + X22 + X32 + X42 - 4 Y2 <= 0
X13 + X23 + X33 + X43 - 4 Y3 <= 0
X14 + X24 + X34 + X44 - 4 Y4 <= 0

ALL VARIABLES BINARY

If we ignore integrality, we get the solution x11 = x22 = x33 = x44 = 1, y1 = y2 =
y3 = y4 = 0.250, and the rest equals 0. Note that we get no useful information out

of this linear programming solution: all four regions look the same.

The above is a perfectly reasonable 0–1 programming formulation of the lockbox

problem. There are other formulations, however. For instance, consider the 16

constraints of the form

xi j ≤ y j .

These constraints also force a region to only use open lockboxes. It might seem

that a larger formulation is less efficient and therefore should be avoided. This

is not the case! If we solve the linear program with the above constraints, we

get the solution x11 = x21 = x33 = x43 = y1 = y3 = 1 with the rest equal to zero.

In fact, we have an integer solution, which must therefore be optimal! Different

integer programming formulations can have very different properties with respect
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to their linear programming relaxations. As a general rule, one prefers an integer

programming formulation whose linear programming relaxation provides a tight

bound.

Exercise 12.2 Consider a lockbox problem where ci j is the cost of assigning

region i to a lockbox in region j , for j = 1, . . . , n. Suppose that we wish to open

exactly q lockboxes where q is a given integer, 1 ≤ q ≤ n.

(i) Formulate as an integer linear program the problem of opening q lockboxes so

as to minimize the total cost of assigning each region to an open lockbox.

(ii) Formulate in two different ways the constraint that regions cannot send checks

to closed lockboxes.

(iii) For the following data,

q = 2 and (ci j ) =

⎛
⎜⎜⎜⎜⎝

0 4 5 8 2

4 0 3 4 6

5 3 0 1 7

8 4 1 0 4

2 6 7 4 0

⎞
⎟⎟⎟⎟⎠

,

compare the linear programming relaxations of your two formulations in question

(ii).

12.3 Constructing an index fund

An old and recurring debate about investing lies in the merits of active versus

passive management of a portfolio. Active portfolio management tries to achieve

superior performance by using technical and fundamental analysis as well as fore-

casting techniques. On the other hand, passive portfolio management avoids any

forecasting techniques and rather relies on diversification to achieve a desired per-

formance. There are two types of passive management strategies: “buy and hold”

or “indexing”. In the first one, assets are selected on the basis of some fundamental

criteria and there is no active selling or buying of these stocks afterwards (see the

sections on Dedication in Chapter 3 and Portfolio optimization in Chapter 8). In the

second approach, absolutely no attempt is made to identify mispriced securities.

The goal is to choose a portfolio that mirrors the movements of a broad market

population or a market index. Such a portfolio is called an index fund. Given a

target population of n stocks, one selects q stocks (and their weights in the index

fund), to represent the target population as closely as possible.
In the last 20 years, an increasing number of investors, both large and small,

have established index funds. Simply defined, an index fund is a portfolio designed
to track the movement of the market as a whole or some selected broad market



12.3 Constructing an index fund 217

segment. The rising popularity of index funds can be explained both theoretically
and empirically.

� Market efficiency: If the market is efficient, no superior risk-adjusted returns can be

achieved by stock picking strategies since the prices reflect all the information available

in the marketplace. Additionally, since the market portfolio provides the best possible

return per unit of risk, to the extent that it captures the efficiency of the market via

diversification, one may argue that the best theoretical approach to fund management is

to invest in an index fund. On the other hand, there is some empirical evidence refuting

market efficiency.
� Empirical performance: Empirical studies provide evidence that, on average, money

managers have consistently underperformed the major indexes. In addition, studies show

that, in most cases, top performing funds for a year are no longer amongst the top per-

formers in the following years, leaving room for the intervention of luck as an explanation

for good performance.
� Transaction cost: Actively managed funds incur transaction costs, which reduce the

overall performance of these funds. In addition, active management implies significant

research costs. Finally, some fund managers may have costly compensation packages that

can be avoided to a large extent with index funds.

Here we take the point of view of a fund manager who wants to construct an

index fund. Strategies for forming index funds involve choosing a broad market

index as a proxy for an entire market, e.g., the Standard and Poor list of 500

stocks (S&P 500). A pure indexing approach consists in purchasing all the issues

in the index, with the same exact weights as in the index. In most instances, this

approach is impractical (many small positions) and expensive (rebalancing costs

may be incurred frequently). An index fund with q stocks, where q is substantially

smaller than the size n of the target population, seems desirable. We propose a

large-scale deterministic model for aggregating a broad market index of stocks into

a smaller more manageable index fund. This approach will not necessarily yield

mean/variance efficient portfolios but will produce a portfolio that closely replicates

the underlying market population.

12.3.1 A large-scale deterministic model

We present a model that clusters the assets into groups of similar assets and selects

one representative asset from each group to be included in the index fund portfolio.

The model is based on the following data, which we will discuss in more detail later:

ρi j = similarity between stock i and stock j.

For example, ρi i = 1, ρi j ≤ 1 for i �= j and ρi j is larger for more similar stocks.

An example of this is the correlation between the returns of stocks i and j . But
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one could choose other similarity indices ρi j .

(M) Z = max
n∑

i=1

n∑
j=1

ρi j xi j

subject to
n∑

j=1

y j = q

n∑
j=1

xi j = 1 for i = 1, . . . , n

xi j ≤ y j for i = 1, . . . , n; j = 1, . . . , n

xi j , y j = 0 or 1 for i = 1, . . . , n; j = 1, . . . , n.

The variables y j describe which stocks j are in the index fund (y j = 1 if j is

selected in the fund, 0 otherwise). For each stock i = 1, . . . , n, the variable xi j

indicates which stock j in the index fund is most similar to i (xi j = 1 if j is the

most similar stock in the index fund, 0 otherwise).

The first constraint selects q stocks in the fund. The second constraint imposes

that each stock i has exactly one representative stock j in the fund. The third

constraint guarantees that stock i can be represented by stock j only if j is in the

fund. The objective of the model maximizes the similarity between the n stocks

and their representatives in the fund.

Once the model has been solved and a set of q stocks has been selected for the

index fund, a weight w j is calculated for each j in the fund:

w j =
n∑

i=1

Vi xi j ,

where Vi is the market value of stock i . So w j is the total market value of the stocks

“represented” by stock j in the fund. The fraction of the index fund to be invested

in stock j is proportional to the stock’s weight w j , i.e.,

w j∑n
f =1 w f

.

Note that, instead of the objective function used in (M), one could have used

an objective function that takes the weights w j directly into account, such as∑n
i=1

∑n
j=1 Viρi j xi j . The q stocks in the index fund found by this variation of

Model (M) would still need to be weighted as explained in the previous paragraph.

Data requirements

We need a coefficient ρi j that measures the similarity between stocks i and j . There

are several ways of constructing meaningful coefficients ρi j . One approach is to



12.3 Constructing an index fund 219

Table 12.3 Performance of a 25
stock index fund

Length Ratio

1 QTR 1.006
2 QTR 0.99
1 YR 0.985
3 YR 0.982

consider the time series of stock prices over a calibration period T and to compute

the correlation between each pair of assets.

Testing the model

Stocks comprising the S&P 500 were chosen as the target population to test the

model. A calibration period of 60 months was used. Then a portfolio of 25 stocks

was constructed using model (M) and held for periods ranging from three months to

three years. Table 12.3 gives the ratio of the population’s market value (normalized)

to the index fund’s market value. A perfect index fund would have a ratio equal

unity.

Solution strategy

Branch and bound is a natural candidate for solving model (M). Note however

that the formulation is very large. Indeed, for the S&P 500, there are 250 000 vari-

ables xi j and 250 000 constraints xi j ≤ y j . So the linear programming relaxation

needed to get upper bounds in the branch-and-bound algorithm is a very large

linear program to solve. It turns out, however, that one does not need to solve

this large linear program to obtain good upper bounds. Cornuéjols et al. [24] pro-

posed using the following Lagrangian relaxation, which is defined for any vector

u = (u1, . . . , un):

L(u) = max
n∑

i=1

n∑
j=1

ρi j xi j +
n∑

i=1

ui

(
1 −

n∑
j=1

xi j

)

subject to
n∑

j=1

y j = q

xi j ≤ y j for i = 1, . . . , n; j = 1, . . . , n
xi j , y j = 0 or 1 for i = 1, . . . , n; j = 1, . . . , n.

Property 1: L(u) ≥ Z , where Z is the maximum for model (M).
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Exercise 12.3 Prove Property 1.

The objective function L(u) may be equivalently stated as

L(u) = max
n∑

i=1

n∑
j=1

(ρi j − ui )xi j +
n∑

i=1

ui .

Let

(ρi j − ui )
+ =

{
ρi j − ui if ρi j − ui > 0

0 otherwise

and

C j =
n∑

i=1

(ρi j − ui )
+.

Then

Property 2:

L(u) = max
n∑

j=1

C j y j +
n∑

i=1

ui

subject to
n∑

j=1

y j = q

y j = 0 or 1 for j = 1, . . . , n.

Exercise 12.4 Prove Property 2.

Property 3: In an optimal solution of the Lagrangian relaxation, y j is equal to 1

for the q largest values of C j , and the remaining y j are equal to 0. Furthermore, if

ρi j − ui > 0, then xi j = y j and otherwise xi j = 0.

Exercise 12.5 Prove Property 3.

Interestingly, the set of q stocks corresponding to the q largest values of C j

can also be used as a heuristic solution for model (M). Specifically, construct an

index fund containing these q stocks and assign each stock i = 1, . . . , n to the

most similar stock in this fund. This solution is feasible to model (M), although not

necessarily optimal. This heuristic solution provides a lower bound on the optimum

value Z of model (M). As previously shown, L(u) provides an upper bound on Z .

So for any vector u, we can compute quickly both a lower bound and an upper

bound on the optimum value of (M). To improve the upper bound L(u), we would

like to solve the nonlinear problem

min L(u).
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How does one minimize L(u)? Since L(u) is nondifferentiable and convex, one

can use the subgradient method (see Section 5.6). At each iteration, a revised set

of Lagrange multipliers u and an accompanying lower bound and upper bound

to model (M) are computed. The algorithm terminates when these two bounds

match or when a maximum number of iterations is reached. (It is proved in [24]

that min L(u) is equal to the value of the linear programming relaxation of (M). In

general, this value is not equal to Z , and therefore it is not possible to match the upper

and lower bounds.) If one wants to solve the integer program (M) to optimality,

one can use a branch-and-bound algorithm, using the upper bound min L(u) for

pruning the nodes.

12.3.2 A linear programming model

In this section, we consider a different approach to constructing an index fund.

It can be particularly useful as one tries to rebalance the portfolio at minimum

cost. This approach assumes that we have identified important characteristics of

the market index to be tracked. Such characteristics might be the fraction fi of

the index in each sector i , the fraction of companies with market capitalization

in various ranges (small, medium, large), the fraction of companies that pay no

dividends, the fraction in each region, etc. Let us assume that there are m such

characteristics that we would like our index fund to track as well as possible. Let

ai j = 1 if company j has characteristic i and 0 if it does not.

Let x j denote the optimum weight of asset j in the portfolio. Assume that,

initially, the portfolio has weights x0
j . Let y j denote the fraction of asset j bought

and z j the fraction sold. The problem of rebalancing the portfolio at minimum cost

is the following:

min
n∑

j=1

(y j + z j )

subject to
n∑

j=1

ai j x j = fi for i = 1, . . . , m

n∑
j=1

x j = 1

x j − x0
j ≤ y j for j = 1, . . . , n

x0
j − x j ≤ z j for j = 1, . . . , n

y j ≥ 0 for j = 1, . . . , n

z j ≥ 0 for j = 1, . . . , n

x j ≥ 0 for j = 1, . . . , n.
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12.4 Portfolio optimization with minimum transaction levels

When solving the classical Markowitz model, the optimal portfolio often contains

positions xi that are too small to execute. In practice, one would like a solution

of

minx
1
2
xT Qx

μTx ≥ R
Ax = b
Cx ≥ d,

(12.1)

with the additional property that

x j > 0 ⇒ x j ≥ l j , (12.2)

where l j are given minimum transaction levels. This constraint states that, if an

investment is made in a stock, then it must be “large enough,” for example, at least

100 shares. Because the constraint (12.2) is not a simple linear constraint, it cannot

be handled directly by quadratic programming.

This problem is considered by Bienstock [12]. He also considers the portfolio

optimization problem where there is an upper bound on the number of positive

variables, that is,

x j > 0 for at most K distinct j = 1, . . . , n. (12.3)

Requirement (12.2) can easily be incorporated within a branch-and-bound algo-

rithm: first solve the basic Markowitz model (12.1) using the usual algorithm (see

Chapter 7). Let x∗ be the optimal solution found. If no minimum transaction level

constraint (12.2) is violated by x∗, then x∗ is also optimum to (12.1) and (12.2) and

we can stop. Otherwise, let j be an index for which (12.2) is violated by x∗. Form

two subproblems, one obtained from (12.1) by adding the constraint x j = 0, and

the other obtained from (12.1) by adding the constraint x j ≥ l j . Both are quadratic

programs that can be solved using the usual algorithms of Chapter 7. Now we

check whether the optimum solutions to these two problems satisfy the transaction

level constraint (12.2). If a solution violates (12.2) for index k, the corresponding

problem is further divided by adding the constraint xk = 0 on one side and xk ≥ lk

on the other. A branch-and-bound tree is expanded in this way.

The constraint (12.3) is a little more tricky to handle. Assume that there is a

given upper bound u j on how much can be invested in stock j . That is, we assume

that constraints x j ≤ u j are part of the formulation (12.1). Then, clearly, constraint

(12.3) implies the weaker constraint

∑
j

x j

u j
≤ K . (12.4)
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We add this constraint to (12.1) and solve the resulting quadratic program. Let x∗ be

the optimal solution found. If x∗ satisfies (12.3), it is optimum to (12.1)–(12.3) and

we can stop. Otherwise, let k be an index for which xk > 0. Form two subproblems,

one obtained from (12.1) by adding the constraint xk = 0 (down branch), and the

other obtained from (12.1) by adding the constraint
∑

j �=k(x j/u j ) ≤ K − 1 (up

branch). The branch-and-bound tree is developped recursively. When a set T of

variables has been branched up, the constraint added to the basic model (12.1)

becomes
∑
j �∈T

x j

u j
≤ K − |T |.

12.5 Additional exercises

Exercise 12.6 You have $250 000 to invest in the following possible investments.

The cash inflows/outflows are as follows:

Year 1 Year 2 Year 3 Year 4

Investment 1 −1.00 1.18
Investment 2 −1.00 1.22

Investment 3 −1.00 1.10
Investment 4 −1.00 0.14 0.14 1.00

Investment 5 −1.00 0.20 1.00

For example, if you invest one dollar in Investment 1 at the beginning of Year 1, you

receive $1.18 at the beginning of Year 3. If you invest in any of these investments,

the required minimum level is $100 000 in each case. Any or all the available funds

at the beginning of a year can be placed in a money market account that yields

3% per year. Formulate a mixed integer linear program to maximize the amount of

money available at the beginning of Year 4. Solve the integer program using your

favorite solver.

Exercise 12.7 You currently own a portfolio of eight stocks. Using the Markowitz

model, you computed the optimal mean/variance portfolio. The weights of these

two portfolios are shown in the following table:

Stock A B C D E F G H

Your portfolio 0.12 0.15 0.13 0.10 0.20 0.10 0.12 0.08
M/V portfolio 0.02 0.05 0.25 0.06 0.18 0.10 0.22 0.12

You would like to rebalance your portfolio in order to be closer to the M/V

portfolio. To avoid excessively high transaction costs, you decide to rebalance
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only three stocks from your portfolio. Let xi denote the weight of stock i in your

rebalanced portfolio. The objective is to minimize the quantity

|x1 − 0.02| + |x2 − 0.05| + |x3 − 0.25| + · · · + |x8 − 0.12|
which measures how closely the rebalanced portfolio matches the M/V portfolio.

Formulate this problem as a mixed integer linear program. Note that you will

need to introduce new continuous variables in order to linearize the absolute values

and new binary variables in order to impose the constraint that only three stocks

are traded.

12.6 Case study: constructing an index fund

The purpose of this project is to construct an index fund that will track a given

segment of the market. First, choose a segment of the market and discuss the

collection of data. Then, compare different approaches for computing an index

fund: model (M) solved as a large integer program, Lagrangian relaxations and

the subgradient approach, the linear programming approach of Section 12.3.2, or

others. The index fund should be computed using an in-sample period and evaluated

on an out-of-sample period.
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Dynamic programming methods

13.1 Introduction

Decisions must often be made in a sequential manner over time. Earlier decisions

may affect the feasibility and performance of later decisions. In such environments,

myopic decisions that optimize only the immediate impact are usually suboptimal

for the overall process. To find optimal strategies one must consider current and

future decisions simultaneously. These types of multi-stage decision problems are

the typical settings where one employs dynamic programming, or DP. Dynamic

programming is a term used both for the modeling methodology and the solution

approaches developed to solve sequential decision problems. In some cases the

sequential nature of the decision process is obvious and natural, in other cases one

reinterprets the original problem as a sequential decision problem. We will consider

examples of both types below.

Dynamic programming models and methods are based on Bellman’s Principle
of Optimality, namely that for overall optimality in a sequential decision process,

all the remaining decisions after reaching a particular state must be optimal with

respect to that state. In other words, if a strategy for a sequential decision problem

makes a sub-optimal decision in any one of the intermediate stages, it cannot be

optimal for the overall problem. This principle allows one to formulate recursive
relationships between the optimal strategies of successive decision stages and these

relationships form the backbone of DP algorithms.

Common elements of DP models include decision stages, a set of possible states
in each stage, transitions from states in one stage to states in the next, value func-
tions that measure the best possible objective values that can be achieved starting

from each state, and finally the recursive relationships between value functions of

different states. For each state in each stage, the decision-maker needs to specify the

decision he/she would make in order to reach that state and the collection of all de-

cisions associated with all states forms the policy or strategy of the decision-maker.

225
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Table 13.1 Project costs and profits ($ million)

Region 1 Region 2 Region 3

Project c1 p1 c2 p2 c3 p3

1 0 0 0 0 0 0
2 1 2 1 3 1 2
3 2 4 3 9 2 5
4 4 10 — — — —

Transitions from the states of a given stage to those of the next may happen as a

result of the actions of the decision-maker, as a result of random external events,

or a combination of the two. If a decision at a particular state uniquely determines

the transition state, the DP is a deterministic DP. If probabilistic events also affect

the transition state, then one has a stochastic DP. We will discuss each one of these

terms below.

Dynamic programming models are pervasive in the financial literature. The best-

known and most common examples are the tree or lattice models (binomial, trino-

mial, etc.) used to describe the evolution of security prices, interest rates, volatilities,

etc., and the corresponding pricing and hedging schemes. We will discuss several

such examples in the next chapter. Here, we focus on the fundamentals of the

dynamic programming approach and, for this purpose, it is best to start with an

example.

Consider a capital budgeting problem. A manager has $4 million to allocate to

different projects in three different regions where her company operates. In each

region, there are a number of possible projects to consider with estimated costs and

projected profits. Let us denote the costs with c j ’s and profits with p j ’s. Table 13.1

lists the information for possible project options; both the costs and the profits are

given in millions of dollars.

Note that the projects in the first row with zero costs and profits correspond to

the option of doing nothing in that particular region. The manager’s objective is to

maximize the total profits from projects financed in all regions. She will choose

only one project from each region.

One may be tempted to approach this problem using integer programming tech-

niques we discussed in the previous two chapters. Indeed, since there is a one-to-one

correspondence between the projects available at each region and their costs, by

letting xi denote the investment amount in region i , we can formulate an integer

programming problem with the following constraints:

x1 + x2 + x3 ≤ 4

x1 ∈ {0, 1, 2, 4}, x2 ∈ {0, 1, 3}, x3 ∈ {0, 1, 2}.
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The problem with this approach is the profits are not linear functions of the variables

xi . For example, for region 3, while the last project costs twice as much as the the

second one, the expected profit from this last project is two and half times that of the

second project. To avoid formulating a nonlinear integer programming problem,

which can be quite difficult to solve, one might consider a formulation that uses

a binary variable for each project in each region. For example, we can use binary

decision variables xi j to represent whether project j in region i is to be financed.

This results in an integer linear program but with many more variables.

Exercise 13.1 Formulate an integer linear program for the capital budgeting prob-

lem with project costs and profits given in Table 13.1.

Another strategy we can consider is total enumeration of all investment possi-

bilities. We have four choices for the first region, and three choices for each of the

second and third regions. Therefore, we would end up with 4 × 3 × 3 = 36 pos-

sibilities to consider. We can denote these possibilities with (x1, x2, x3) where, for

example, (2, 3, 1) corresponds to the choices of the second, the third and the first

projects in regions 1, 2, and 3, respectively. We could evaluate each of these possi-

bilities and then pick the best one. There are obvious problems with this approach,

as well.

First of all, for larger problems with many regions and/or many options in each

region, the total number of options we need to consider will grow very quickly and

become computationally prohibitive. Furthermore, many of the combinations are

not feasible with respect to the constraints of the problem. In our example, choosing

the third project in each region would require 2 + 3 + 2 = 7 million dollars, which

is above the $4 million budget, and therefore is an infeasible option. In fact, only 21

of the 36 possibilities are feasible in our example. In an enumeration scheme, such

infeasibilities will not be detected in advance leading to inefficiencies. Finally, an

enumeration scheme does not take advantage of the information generated during

the investigation of other alternatives. For example, after discovering that (3, 3, 1)

is an infeasible option, we should no longer consider the more expensive (3, 3, 2)

or (3, 3, 3). Unfortunately, the total enumeration scheme will not take advantage of

such simple deductions.

We will approach this problem using the dynamic programming methodology.

For this purpose, we will represent our problem in a graph. The construction of

this graph representation is not necessary for the solution procedure; it is provided

here for didactic purposes. We will use the root node of the graph to correspond

to stage 0 with $4 million to invest and use the pair (0, 4) to denote this node. In

stage 1 we will consider investment possibilities in region 1. In stage 2, we will

consider investment possibilities in regions 1 and 2, and finally in stage 3 we will

consider all three regions. Throughout the graph, nodes will be denoted by pairs
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Figure 13.1 Graphical representation of the three-region capital budgeting problem

(i, j) where i represents the stage and j represents the particular state of that stage.

States in stage i will correspond to the different amounts of money left after some

projects are already funded in regions 1 through i . For example, the node (2, 3) in

stage 2 of the graph represents the state of having $3 million left for investment

after funding projects in regions 1 and 2.

The branches in the graphical representation correspond to the projects under-

taken in a particular region. To be at node (i, j) means that we have already consid-

ered regions 1 to i and have j million dollars left for investment. Then, the branch

corresponding to project k in the next region will take us to the node (i + 1, j ′)
where j ′ equals j minus the cost of project k. For example, starting from node

(1, 3), the branch corresponding to project 2 in the second region will take us to

node (2, 2). For each one of these branches, we will use the expected profit from

the corresponding project as the weight of the branch. The resulting graph is shown

in Figure 13.1. Now the manager’s problem is to find the largest weight path from

node (0, 4) to a third stage node.

At this point, we can proceed in two alternative ways: using either a backward

or a forward progression on the graph. In the backward mode, we first identify the

largest weight path from each one of the nodes in stage 2 to a third stage node.

Then using this information and the Principle of Optimality, we will determine the

largest weight paths from each of the nodes in stage 1 to a third stage node, and

finally from node (0, 4) to a third stage node. In contrast, the forward mode will

first determine the largest weight path from (0, 4) to all first stage nodes, then to all

second stage nodes and finally to all third stage nodes. We illustrate the backward

method first and then the forward method.
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Figure 13.2 Optimal allocations from stage 2 nodes

13.1.1 Backward recursion

For each state, or node, we keep track of the largest profit that can be collected

starting from that state. These quantities form what we will call the value function
associated with each state. For the backward approach, we start with stage 3 nodes.

Since we are assuming that any money that is not invested in regions 1 through 3

will generate no profits, the value function for each one of the stage 3 states is zero

and there are no decisions associated with these states.

Next, we identify the largest weight paths from each one of the second stage

nodes to the third stage nodes. It is clear that for nodes (2, 4), (2, 3), and (2, 2) the

best alternative is to choose project 3 of the third region and collect an expected

profit of $5 million. Since node (2, 1) corresponds to the state where there is only

$1 million left for investment, the best alternative from the third region is project 2,

with the expected profit of $2 million. For node (2, 0), the only alternative is project

1 (“do nothing”) with no profit. We illustrate these choices in Figure 13.2.

For each node, we indicated the value function associated with that node in a

box on top of the node label in Figure 13.2. Next, we determine the value function

and optimal decisions for each one of the first stage nodes. These computations are

slightly more involved, but still straightforward. Let us start with node (1, 4). From

Figure 13.1 we see that one can reach the third stage nodes via one of (2, 4), (2, 3),

and (2, 1). The maximum expected profit on the paths through (2, 4) is 0 + 5 = 5,

the sum of the profit on the arc from (1, 4) to (2, 4), which is zero, and the largest

profit from (2, 4) to a period 3 node. Similarly, we compute the maximum expected

profit on the paths through (2, 3) and (2, 1) to be 3 + 5 = 8, and 9 + 2 = 11. The
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Figure 13.3 Optimal allocations from stage 1 nodes

maximum profit from (1, 4) to a stage 3 node is then

max{0 + v(2, 4), 3 + v(2, 3), 9 + v(2, 1)} = {0 + 5, 3 + 5, 9 + 2} = 11,

which is achieved by following the path (1, 4) → (2, 1) → (3, 0). After performing

similar computations for all period 1 nodes we obtain the node values and optimal

branches given in Figure 13.3.

Finally, we need to compute the best allocations from node (0, 4) by comparing

the profits along the branches to first stage nodes and the best possible profits

starting from those first period nodes. To be exact, we compute

max{0 + v(1, 4), 2 + v(1, 3), 4 + v(1, 2), 10 + v(1, 0)}
= {0 + 11, 2 + 9, 4 + 5, 10 + 0} = 11.

Therefore, the optimal expected profit is $11 million and is achieved on either of

the two alternative paths (0, 4) → (1, 4) → (2, 1) → (3, 0) and (0, 4) → (1, 3) →
(2, 0) → (3, 0). These paths correspond to the selections of project 1 in region 1,

project 3 in region 2, and project 2 in region 3 in the first case, and project 2 in

region 1, project 3 in region 2, and project 1 in region 3 in the second case. Fig-

ure 13.4 summarizes the whole process. The optimal paths are shown using thicker

lines.

Exercise 13.2 Construct a graphical representation of a five-region capital bud-

geting problem with the project costs and profits given in Table 13.2. Exactly one

project must be chosen in each region and there is a total budget of 10. Solve by

backward recursion.
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Table 13.2 Project costs and profits

Region 1 Region 2 Region 3 Region 4 Region 5

Project c1 p1 c2 p2 c3 p3 c4 p4 c5 p5

1 1 8 3 20 2 15 0 3 1 6
2 2 15 2 14 4 26 1 10 2 15
3 3 25 1 7 5 40 3 25 3 22
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Figure 13.4 Optimal paths from (0, 4) to (3, 0)

13.1.2 Forward recursion

Next, we explore the “forward” method. In this case, in the first step we will identify

the best paths from (0, 4) to all nodes in stage 1, then best paths from (0, 4) to all

stage 2 nodes, and finally to stage 3 nodes. The first step is easy since there is only

one way to get from node (0, 4) to each one of the stage 1 nodes, and hence all these

paths are optimal. Similar to the backward method, we will keep track of a value
function for each node. For node (i, j), its value function will represent the highest

total expected profit we can collect from investments in regions 1 through i if we

want to have $ j million left for future investment. For (0, 4) the value function is

zero and for all stage 1 nodes, they are equal to the weight of the tree branch that

connects (0, 4) and the corresponding node.

For most of the second stage nodes, there are multiple paths from (0, 4) to that

corresponding node and we need to determine the best option. For example, let us

consider the node (2, 2). One can reach (2, 2) from (0, 4) either via (1, 3) or (1, 2).

The value function at (2, 2) is the maximum of the sum of the value function at
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Figure 13.5 Optimal paths between stage 0, stage 1, and stage 2 nodes

(1, 3) and the weight of the branch from (1, 3) to (2, 2), and the sum of the value

function at (1, 2) and the weight of the branch from (1, 2) to (2, 2):

v(2, 2) = max{v(1, 3) + 3, v(1, 2) + 0} = max{2 + 3, 4 + 0} = 5.

After similar calculations we identify the value function at all stage 2 nodes and

the corresponding optimal branches one must follow. The results are shown on the

right side of Figure 13.5.

Finally, we perform similar calculations for stage 3 nodes. For example, we can

calculate the value function at (3, 0) as follows:

v(3, 0)= max{v(2, 2) + 5, v(2, 1) + 2, v(2, 0) + 0}={5 + 5, 9 + 2, 11 + 0}=11.

Optimal paths for all nodes are depicted in Figure 13.6. Note that there are three

alternative optimal ways to reach node (3, 2) from (0, 4).

Clearly, both the forward and the backward method identified the two alternative

optimal paths between (0, 4) and (3, 0). However, the additional information gen-

erated by these two methods differ. In particular, studying Figures 13.4 and 13.6,

we observe that while the backward method produces the optimal paths from each

node in the graph to the final stage nodes, in contrast, the forward method produces

the optimal paths from the initial stage node to all nodes in the graph. There may

be situations where one prefers to have one set of information above the other and

this preference dictates which method to use. For example, if for some reason the

actual transition state happens to be different from the one intended by an optimal

decision, it would be important to know what to do when in a state that is not on

the optimal path. In that case, the paths generated by the backward method would

give the answer.
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Figure 13.6 Optimal paths from (0, 4) to all nodes

Exercise 13.3 Solve the capital budgeting problem of Exercise 13.2 by forward

recursion.

13.2 Abstraction of the dynamic programming approach

Before proceeding with additional examples, we study the common characteristics

of dynamic programming models and methods. In particular, we will identify the

aspects of the example considered in the previous section that qualified our approach

as dynamic programming.

We already mentioned the sequential nature of the decision-making process

as the most important ingredient of a DP problem. Every DP model starts with

the identification of stages that correspond to the order of the decisions to be

made. There is an initial stage (for a forward recursion) or final stage (for a

backward recursion) for which the optimal decisions are immediately or easily

available and do not depend on decisions of other stages. In our example in Sec-

tion 13.1, the number of regions considered for different project options constituted

the stages of our formulation. Stage 0 was the initial stage and stage 3 the final

stage.

Each stage consists of a number of possible states. In allocation problems, states

are typically used to represent the possible levels of availability for scarce resources

in each stage. In financial binomial lattice models, states may correspond to spot

prices of assets.

In many cases, the set of states in each particular stage is finite or, at least,

discrete. Such DPs are categorized as discrete DPs, in contrast to continuous DPs,

which may have a continuum of states in each stage. In the example of Section 13.1,
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the states represented the amount of money still available for investment at the end

of that particular stage. For consistency with our earlier example, we continue to

denote states of a DP formulation with the pair (i, j), where i specifies the stage

and j specifies the particular state in that stage.

A DP formulation must also specify a decision set for each one of the states.

As with states, decision sets may be discrete or continuous. In our example in

Section 13.1, the decision sets were formed from the set of possible projects in

each stage. Because of feasibility considerations, decision sets are not necessarily

identical for all states in a given stage. For example, while the decision set consists

of region 2 projects 1, 2, and 3 for state (1, 4), the decision set for state (1, 0) is

the singleton corresponding to project 1 (do nothing). We denote the decision set

associated with state (i, j) with S(i, j).

In a deterministic DP, a choice d made from the decision set S(i, j) uniquely

determines what state one transitions to. We call this state the transition state as-

sociated with the particular state (i, j) and decision d ∈ S(i, j) and use the notation

T ((i, j), d) to denote this state. Furthermore, there is a cost (or benefit, for a maxi-

mization problem) associated with each transition that we indicate with c ((i, j), d).

In our example in the previous section, from state (2, 1), we can either transition to

state (3, 1) by choosing project 1 with an associated profit of 0, or to state (3, 0) by

choosing project 2 with an associated profit of 2.

In our example above, all the transition states from a given state were among

the states of the next stage. Although this is common, it is not required. All that

is necessary for the DP method to function is that all the transition states from a

given state are in the later stages whose computations are already completed. So,

for example, in a five-stage formulation, transition states of a state in stage 2 can

be in any one of stages 3, 4, and 5.

A value function keeps track of the costs (or benefits) accumulated optimally
from the initial stage up to a particular state (in the forward method) or from a

particular state to the final stage (in the backward method). Each such quantity will

be called the value of the corresponding state. We use the notation v(i, j ) to denote

the value of the state (i, j).

The Principle of Optimality implies a recursive relationship between the values

of states in consecutive stages. For example, in the backward method, to compute

the optimal decision at and the value of a particular state, all we need to do is to

compare the following quantity for each transition state of that state: the value of

the transition state plus the cost of transitioning to that state. Namely, we do the

following computation:

v(i, j) = min
d∈S(i, j)

{v (T ((i, j), d)) + c ((i, j), d)}. (13.1)
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In a benefit maximization problem, as in our example in the previous section, the

values would be the benefits rather than costs and the min in (13.1) would be replaced

by a max. Equation (13.1) is known as the Bellman equation and is a discrete-time

deterministic special case of the Hamilton–Jacobi–Bellman (HJB) equation often

encountered in optimal control texts.

To illustrate the definitions above and equation (13.1), let us explicitly perform

one of the calculations of the example in the previous section. Say, in the backward

method we have already calculated the values of the states in stage 2 (5, 5, 5, 2,

and 0, for states (2, 4), (2, 3), (2, 2), (2, 1), and (2, 0), respectively) and we intend

to compute the value of the state (1, 3). We first identify the decision set for (1, 3):

S(1, 3) = {1, 2, 3}, i.e., projects 1, 2, and 3. The corresponding transition states are

easily determined:

T ((1, 3), 1) = (2, 3), T ((1, 3), 2) = (2, 2), T ((1, 3), 3) = (2, 0).

The associated benefits (or expected profits, in this case) are

c ((1, 3), 1) = 0, c ((1, 3), 2) = 3, c ((1, 3), 3) = 9.

Now we can derive the value of state (1, 3):

v(1, 3) = max
d∈S(1,3)

{v (T ((1, 3), d)) + c ((1, 3), d)}
= max{v(T ((1, 3), 1)) + c((1, 3), 1), v(T ((1, 3), 2)) + c((1, 3), 2),

v (T ((1, 3), 3)) + c ((1, 3), 3)}
= max{v(2, 3) + 0, v(2, 2) + 3, v(2, 0) + 9}
= max{5 + 0, 5 + 3, 0 + 9} = 9,

and the corresponding optimal decision at (1, 3) is project 3. Note that for us to be

able to compute the values recursively as above, we must be able to compute the

values at the final stage without any recursion.

If a given optimization problem can be formulated with the ingredients and

properties outlined above, we can solve it using dynamic programming methods.

Most often, finding the right formulation of a given problem, and specifying the

stages, states, transitions, and recursions in a way that fits the framework above is the

most challenging task in the dynamic programming approach. Even when a problem

admits a DP formulation, there may be several alternative ways to do this (see, for

example, Section 13.3) and it may not be clear which of these formulations would

produce the quickest computational scheme. Developing the best formulations for

a given optimization problem must be regarded as a form of art and, in our opinion,

is best learned through examples. We continue in the next section with a canonical

example of both integer and dynamic programming.
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13.3 The knapsack problem

A traveler has a knapsack that she plans to take along for an expedition. Each item

she would like to take with her in the knapsack has a given size and a value associated

with the benefit the traveler receives by carrying that item. Given that the knapsack

has a fixed and finite capacity, how many of each of these items should she put in

the knapsack to maximize the total value of the items in the knapsack? This is the

well-known and well-studied integer program called the knapsack problem. It has

the special property that it only has a single constraint other than the nonnegative

integrality condition on the variables.

We recall the investment problem considered in Exercise 11.5 in Chapter 11

which is an instance of the knapsack problem. We have $14 000 to invest among

four different investment opportunities. Investment 1 requires an investment of

$7000 and has a net present value of $11 000; investment 2 requires $5000 and

has a value of $8000; investment 3 requires $4000 and has a value of $6000; and

investment 4 requires $3000 and has a value of $4000.

As we discussed in Chapter 11, this problem can be formulated and solved as an

integer program, say using the branch-and-bound method. Here, we will formulate

it using the DP approach. To make things a bit more interesting, we will allow the

possibility of multiple investments in the same investment opportunity. The effect

of this modification is that the variables are now general integer variables rather

than 0–1 binary variables and therefore the problem

max = 11x1 + 8x2 + 6x3 + 4x4

7x1 + 5x2 + 4x3 + 3x4 ≤ 14

x j ≥ 0 integer, ∀ j

is an instance of the knapsack problem. We will consider two alternative DP formu-

lations of this problem. For future reference, let y j and p j denote the cost and the net

present value of investment j (in thousands of dollars), respectively, for j = 1 to 4.

13.3.1 Dynamic programming formulation

One way to approach this problem using the dynamic programming methodology is

by considering the following question that already suggests a recursion: if I already

know how to allocate i thousand dollars to the investment options optimally for

all i = 1, . . . , k − 1, can I determine how to optimally allocate k thousand dollars

to these investment option? The answer to this question is yes, and building the

recursion equation is straightforward.

The first element of our DP construction is the determination of the stages. The

question in the previous paragraph suggests the use of stages 0, 1, . . . , up to 14,
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where stage i corresponds to i thousand dollars left to invest. Note that we need

only one state per stage and therefore can denote stages/states using the single

index i . The decision set in state i is the set of investments we can afford with

the i thousand dollars we have left for investment. That is, S(i) = {d : yd ≤ i}.
The transition state is given by T (i, d) = i − yd and the benefit associated with the

transition is c(i, d) = pd . Therefore, the recursion for the value function is given

by the following equation:

v(i) = max
d:yd≤i

{v(i − yd) + pd}.

Note that S(i) = ∅ and v(i) = 0 for i = 0, 1, and 2 in our example.

Exercise 13.4 Using the recursion given above, determine v(i) for all i from 0 to

14 and the corresponding optimal decisions.

13.3.2 An alternative formulation

As we discussed in Section 13.2, dynamic programming formulation of a given

optimization problem need not be unique. Often, there exist alternative ways of

defining the stages and states, and obtaining recursions. Here we develop an alter-

native formulation of our investment problem by choosing stages to correspond to

each one of the investment possibilities.

So, we will have four stages, i = 1, 2, 3, and 4. For each stage i , we will have

states j corresponding to the total investment in opportunities i through 4. So,

for example, in the fourth stage we will have states (4, 0), (4, 3), (4, 6), (4, 9), and

(4, 12), corresponding to 0, 1, 2, 3, and 4 investments in the fourth opportunity.

The decision to be made at stage i is the number of times one invests in

the investment opportunity i . Therefore, for state (i, j), the decision set is given

by

S(i, j) =
{

d:
j

yi
≥ d, d non-negative integer

}
.

The transition states are given by T ((i, j), d) = (i + 1, j − yi d) and the value

function recursion is:

v(i, j) = max
d∈S(i, j)

{v(i + 1, j − yi d) + pi d}.

Finally, note that v(4, 3k) = 4k for k = 0, 1, 2, 3, and 4.

Exercise 13.5 Using the DP formulation given above, determine v(0, 14) and the

corresponding optimal decisions. Compare your results with the optimal decisions

from Exercise 13.4 .
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Exercise 13.6 Formulate a dynamic programming recursion for the following

shortest path problem. City O (the origin) is in stage 0, one can go from any city i
in stage k − 1 to any city j in stage k for k = 1, . . . N . The distance between such

cities i and j is denoted by di j . City D (the destination) is in stage N . The goal is

to find a shortest path from the origin O to the destination D.

13.4 Stochastic dynamic programming

So far, we have only considered dynamic programming models that are determin-

istic, meaning that given a particular state and a decision from its decision set, the

transition state is known and unique. This is not always the case for optimization

problems involving uncertainty. Consider a blackjack player trying to maximize

his earnings by choosing a strategy or a commuter trying to minimize her commute

time by picking the roads to take. Suppose the blackjack player currently holds 12

(his current “state”) and asks for another card (his “decision”). His next state may

be a “win” if he gets a 9, a “lose” if he gets a 10, or “15 (and keep playing)” if he

gets a 3. The state he ends up in depends on the card he receives, which is beyond

his control. Similarly, the commuter may choose road 1 over road 2, but her actual

commute time will depend on the current level of congestion on the road she picks,

a quantity beyond her control.

Stochastic dynamic programming addresses optimization problems with uncer-

tainty. The DP methodology we discussed above must be modified to incorporate

uncertainty. This is done by allowing multiple transition states for a given state

and decision. Each one of the possible transition states is assigned a probability

associated with the likelihood of the corresponding state being reached when a cer-

tain decision is made. Since the costs are not certain anymore, the value function

calculations and optimal decisions will be based on expected values.

We have the following formalization: stages and states are defined as before,

and a decision set associated with each state. Given a state (i, j) and d ∈ S(i, j), a

random event will determine the transition state. We denote with R ((i, j), d) the

set of possible outcomes of the random event when we make decision d at state

(i, j). For each possible outcome r ∈ R ((i, j), d) we denote the likelihood of that

outcome by p ((i, j), d, r ). We observe that the probabilities p ((i, j), d, r ) must

be nonnegative and satisfy
∑

r∈R((i, j),d)

p ((i, j), d, r ) = 1, ∀(i, j) and ∀d ∈ S(i, j).

When we make decision d at state (i, j) and when the random outcome r is

realized, we transition to the state T ((i, j), d, r ) and the cost (or benefit) associated

with this transition is denoted by c ((i, j), d, r ). The value function v(i, j) computes
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expected value of the costs accumulated and must satisfy the following recursion:

v(i, j) = min
d∈S(i, j)

{ ∑
r∈R((i, j),d)

p ((i, j), d, r ) [v (T ((i, j), d, r )) + c ((i, j), d, r )]

}
.

(13.2)

As before, in a benefit maximization problem, the min in (13.2) must be replaced

by a max.

In some problems, the uncertainty is only in the transition costs and not in the

transition states. Such problems can be handled in our notation above by letting

R ((i, j), d) correspond to the possible outcomes for the cost of the transition.

The transition state is independent of the random event, that is, T ((i, j), d, r1) =
T ((i, j), d, r2) for all r1, r2 ∈ R ((i, j), d). The cost function c ((i, j), d, r ) reflects

the uncertainty in the problem.

Exercise 13.7 Recall the investment problem we discussed in Section 13.3. We

have $14 000 to invest in four different options which cost y j thousand dollars for

j = 1 to 4. Here we introduce the element of uncertainty to the problem. While

the cost of investment j is fixed at y j (all quantities in thousands of dollars), its

net present value is uncertain because of the uncertainty of future cash flows and

interest rates. We believe that the net present value of investment j has a discrete

uniform distribution in the set {p j − 2, p j − 1, p j , p j + 1, p j + 2}. We want to

invest in these investment options in order to maximize the expected net present

value of our investments. Develop a stochastic DP formulation of this problem and

solve it using the recursion (13.2).
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DP models: option pricing

The most common use of dynamic programming models and principles in financial

mathematics is through the lattice models. The binomial lattice has become an

indispensable tool for pricing and hedging of derivative securities. We study the

binomial lattice in Section 14.2 below. Before we do that, however, we will show

how the dynamic programming principles lead to optimal exercise decisions in a

more general model than the binomial lattice.

14.1 A model for American options

For a given stock, let Sk denote its price on day k. We can write

Sk = Sk−1 + Xk,

where Xk is the change in price from day k − 1 to day k. The random-walk model for

stock prices assumes that the random variables Xk are independent and identically

distributed, and are also independent of the known initial price S0. We will also

assume that the distribution F of Xk has a finite mean μ.

Now consider an American call option on this stock. Purchasing such an option

entitles us to buy the stock at a fixed price c on any day between today (let us call

it day 0) and day N , when the option expires. We do not have to ever exercise the

option, but if we do at a time when the stock price is S, then our profit is S − c.

What exercise strategy maximizes our expected profit? We assume that the interest

rate is zero throughout the life of the option for simplicity.

Let v(k, S) denote the maximum expected profit when the stock price is S and

the option has k additional days before expiration. In our dynamic programming

terminology, the stages are k = 0, 1, 2, . . . , N and the state in each stage is S,

the current stock price. Note that stage 0 corresponds to day N and vice versa.

In contrast to the DP examples we considered in the previous chapter, we do not

assume that the state space is finite in this model. That is, we are considering a

240
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continuous DP here, not a discrete DP. The decision set for each state has two

elements, namely “exercise” or “do not exercise.” The “exercise” decision takes

one to the transition state “option exercised,” which should be placed at stage N
for convenience. The immediate benefit from the “exercise” decision is S − c. If

we “do not exercise” the option in stage k, we hold the option for at least one more

period and observe the random shock x to the stock price that takes us to state S + x
in stage k − 1.

Given this formulation, our value function v(k, S) satisfies the following recur-

sion:

v(k, S) = max

{
S − c,

∫
v(k − 1, S + x)dF(x)

}
,

with the boundary condition

v(0, S) = max{S − c, 0}.
For the case that we are considering (American call options), there is no closed

form formula for v(k, S). However, dynamic programming can be used to compute

a numerical solution. In the remainder of this section, we use the recursion formula

to derive the structure of the optimal policy.

Exercise 14.1 Using induction on k, show that v(k, S) − S is a nonincreasing

function of S.

Solution: The fact that v(0, S) − S is a nonincreasing function of S follows from

the definition of v(0, S). Assume now v(k − 1, S) − S is a nonincreasing function

of S. Using the recursion equation, we get

v(k, S) − S = max

{
−c,

∫
(v(k − 1, S + x) − S) dF(x)

}

= max

{
−c,

∫
(v(k − 1, S + x) − (S + x)) dF(x) +

∫
xdF(x)

}

= max

{
−c, μ +

∫
(v(k − 1, S + x) − (S + x)) dF(x)

}
,

recalling that μ = ∫
xdF(x) denotes the expected value of the random variable x

representing daily shocks to the stock price.

For any x , the function v(k − 1, S + x) − (S + x) is a nonincreasing function

of S, by the induction hypothesis. It follows that v(k, S) − S is a nonincreasing

function of S.

Theorem 14.1 The optimal policy for an American call option has the following
form:
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There are nondecreasing numbers s1 ≤ s2 ≤ · · · ≤ sk ≤ · · · sN such that, if the
current stock price is S and there are k days until expiration, then one should
exercise the option if and only if S ≥ sk.

Proof: It follows from the recursion equation that if v(k, S) ≤ S − c, then it is

optimal to exercise the option when the stock price is S and there remain k days

until expiration. Indeed this yields v(k, S) = S − c, which is the maximum possible

under the above assumption. Define

sk = min{S : v(k, S) = S − c}.
If no S satisfies v(k, S) = S − c, then sk is defined as +∞. From the exercise above,

it follows that

v(k, S) − S ≤ v(k, sk) − sk = −c

for any s ≥ sk since v(k, S) − S is nonincreasing. Therefore it is optimal to exercise

the option with k days to expiration whenever S ≥ sk . Since v(k, S) is nondecreasing

in k, it immediately follows that sk is also nondecreasing in k, i.e., s1 ≤ s2 ≤ · · · ≤
sk ≤ · · · sN .

A consequence of the above result is that, when μ > 0, it is always optimal to

wait until the maturity date to exercise an American call option. The optimal policy

described above becomes nontrivial when μ < 0 however.

Exercise 14.2 A put option is an agreement to sell an asset for a fixed price c
(the strike price). An American put option can be exercised at any time up to the

maturity date. Prove a theorem similar to Theorem 14.1 for American put options.

Can you deduce that it is optimal to wait until maturity to exercise a put option

when μ > 0?

14.2 Binomial lattice

If we want to buy or sell an option on an asset (whether a call or a put, an American,

European, or another type of option), it is important to determine the fair value of

the option today. Determining this fair value is called option pricing. The option

price depends on the structure of the movements in the price of the underlying asset

using information such as the volatility of the underlying asset, the current value of

the asset, the dividends (if any) the strike price, the time to maturity, and the riskless

interest rate. Several approaches can be used to determine the option price. One

popular approach uses dynamic programming on a binomial lattice that models the
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Figure 14.1 Asset price in the binomial lattice model

price movements of the underlying asset. Our discussion here is based on the work

of Cox et al. [25].

In the binomial lattice model, a basic period length is used, such as a day or a

week. If the price of the asset is S in a period, the asset price can only take two values

in the next period. Usually, these two possibilities are represented as uS and d S
where u > 1 and d < 1 are multiplicative factors (u stands for up and d for down).

The probabilities assigned to these possibilities are p and 1 − p respectively, where

0 < p < 1. This can be represented on a lattice (see Figure 14.1).

After several periods, the asset price can take many different values. Starting

from price S0 in period 0, the price in period k is u j dk− j S0 if there are j up moves

and k − j down moves. The probability of an up move is p whereas that of a down

move is 1 − p and there are
(k

j

)
possible paths to reach the corresponding node.

Therefore, the probability that the price is u j dk− j S0 in period k is
(k

j

)
p j (1 − p)k− j .

This is the binomial distribution. As k increases, this distribution converges to the

normal distribution.

14.2.1 Specifying the parameters

To specify the model completely, one needs to choose values for u, d, and p. This

is done by matching the mean and volatility of the asset price to the mean and

volatility of the above binomial distribution. Because the model is multiplicative

(the price S of the asset being either uS or d S in the next period), it is convenient

to work with logarithms.

Let Sk denote the asset price in periods k = 0, . . . , n. Let μ and σ be the mean and

volatility of ln(Sn/S0) (we assume that this information about the asset is known).

Let � = 1/n denote the length between consecutive periods. Then, the mean and

volatility of ln(S1/S0) are μ� and σ
√

�, respectively. In the binomial lattice, we
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get by direct computation that the mean and variance of ln(S1/S0) are p ln u +
(1 − p) ln d and p(1 − p)(ln u − ln d)2 respectively. Matching these values we get

two equations:

p ln u + (1 − p) ln d = μ�,

p(1 − p)(ln u − ln d)2 = σ 2�.

Note that there are three parameters but only two equations, so we can set d = 1/u
as in [25]. Then the equations simplify to

(2p − 1) ln u = μ�,

4p(1 − p)(ln u)2 = σ 2�.

Squaring the first and adding it to the second, we get (ln u)2 = σ 2� + (μ�)2. This

yields

u = e
√

σ 2�+(μ�)2

,

d = e−
√

σ 2�+(μ�)2

,

p = 1

2

(
1 + 1√

1 + (σ 2/μ2�)

)
.

When � is small, these values can be approximated as

u = eσ
√

�,

d = e−σ
√

�,

p = 1

2

(
1 + μ

σ

√
�

)
.

As an example, consider a binomial model with 52 periods of a week each.

Consider a stock with current known price S0 and random price S52 a year from

today. We are given the mean μ and volatility σ of ln(S52/S0), say μ = 10% and

σ = 30%. What are the parameters u, d, and p of the binomial lattice? Since

� = 1/52 is small, we can use the second set of formulas:

u = e0.30/
√

52 = 1.0425 and d = e−0.30/
√

52 = 0.9592,

p = 1

2

(
1 + 0.10

0.30
√

52

)
= 0.523.

14.2.2 Option pricing

Using the binomial lattice described above for the price process of the underlying

asset, the value of an option on this asset can be computed by dynamic programming,
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using backward recursion, working from the maturity date T (period n) back to

period 0 (the current period). The stages of the dynamic program are the periods

k = 0, . . . , N and the states are the nodes of the lattice in a given period. Thus there

are k + 1 states in stage k, which we label j = 0, . . . , k. The nodes in stage N are

called the terminal nodes.

From a nonterminal node j , we can go either to node j + 1 (up move) or to

node j (down move) in the next stage. So, to reach node j at stage k we must make

exactly j up moves, and k − j down moves between stage 0 and stage k.

We denote by v(k, j) the value of the option in node j of stage k. The value of

the option at time 0 is then given by v(0, 0). This is the quantity we have to compute

in order to solve the option pricing problem.

The option values at maturity are simply given by the payoff formulas, i.e.,

max(S − c, 0) for call options and max(c − S, 0) for put options, where c denotes

the strike price and S is the asset price at maturity. Recall that, in our binomial

lattice after N time steps, the asset price in node j is u j d N− j S0. Therefore the

option values in the terminal nodes are:

v(N , j) = max(u j d N− j S0 − c, 0) for call options,

v(N , j) = max(c − u j d N− j S0, 0) for put options.

We can compute v(k, j) knowing v(k + 1, j) and v(k + 1, j + 1). Recall (Sec-

tion 4.1.1) that this is done using the risk-neutral probabilities

pu = R − d

u − d
and pd = u − R

u − d
,

where R = 1 + r and r is the one-period return on the risk-free asset. For European

options, the value of fk( j) is

v(k, j) = 1

R
(puv(k + 1, j + 1) + pdv(k + 1, j)) .

For an American call option, we have

v(k, j) = max

{
1

R
(puv(k + 1, j + 1) + pdv(k + 1, j)) , u j dk− j S0 − c

}
,

and for an American put option, we have

v(k, j) = max

{
1

R
(puv(k + 1, j + 1) + pdv(k + 1, j)) , c − u j dk− j S0

}
.

Let us illustrate the approach. We wish to compute the value of an American put

option on a stock. The current stock price is $100. The strike price is $98 and the

expiration date is four weeks from today. The yearly volatility of the logarithm of

the stock return is σ = 0.30. The risk-free interest rate is 4%.
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Figure 14.2 Put option pricing in a binomial lattice

We consider a binomial lattice with N = 4; see Figure 14.2. To get an accurate

answer one would need to take a much larger value of N . Here the purpose is just

to illustrate the dynamic programming recursion and N = 4 will suffice for this

purpose. We recall the values of u and d computed in the previous section:

u = 1.0425 and d = 0.9592.

In period N = 4, the stock price in node j is given by u j d4− j S0 = 1.0425 j ×
0.95924− j × 100 and therefore the put option payoff is given by:

v(4, j) = max(98 − 1.0425 j × 0.95924− j × 100, 0).

That is, v(4, 0) = 13.33, v(4, 1) = 5.99 and v(4, 2) = v(4, 3) = v(4, 4) = 0. Next,

we compute the stock price in period k = 3. The one-period return on the risk-free

asset is r = 0.04/52 = 0.00077 and thus R = 1.00077.

Accordingly, the risk-neutral probabilities are

pu = 1.00077 − 0.9592

1.0425 − 0.9592
= 0.499, and pd = 1.0425 − 1.00077

1.0425 − 0.9592
= 0.501.

We deduce that, in period 3, the stock price in node j is

v(3, j) = max

{
1

1.00077
(0.499v(4, j + 1) + 0.501v(4, j)),

98 − 1.0425 j × 0.95923− j × 100

}
.

That is, v(3, 0) = max{9.67, 9.74} = 9.74 (as a side remark, note that it is opti-

mal to exercise the American option before its expiration in this case), v(3, 1) =



14.2 Binomial lattice 247

max{3.00, 2.08} = $3.00 and v(3, 2) = v(3, 3) = 0. Continuing the computations

going backward, we compute v(2, j) for j = 0, 1, 2, then v(1, j) for j = 0, 1, and

finally v(0, 0). See Figure 14.2. The option price is v(0, 0) = $2.35.

Note that the approach we outlined above can be used with various types of

derivative securities with payoff functions that may make other types of analysis

difficult.

Exercise 14.3 Compute the value of an American put option on a stock with

current price equal to $100, strike price equal to $98, and expiration date five weeks

from today. The yearly volatility of the logarithm of the stock return is σ = 0.30.

The risk-free interest rate is 4%. Use a binomial lattice with N = 5.

Exercise 14.4 Compute the value of an American call option on a stock with

current price equal to $100, strike price equal to $102 and expiration date four

weeks from today. The yearly volatility of the logarithm of the stock return is

σ = 0.30. The risk-free interest rate is 4%. Use a binomial lattice with N = 4.

Exercise 14.5 Computational exercise. Repeat Exercises 14.3 and 14.4 using a

binomial lattice with N = 1000.
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DP models: structuring asset-backed securities

The structuring of collateralized mortgage obligations will give us an opportunity

to apply the dynamic programming approach studied in Chapter 13.

Mortgages represent the largest single sector of the US debt market, surpassing

even the federal government. In 2000, there were over $5 trillion in outstanding

mortgages. Because of the enormous volume of mortgages and the importance of

housing in the US economy, numerous mechanisms have been developed to facili-

tate the provision of credit to this sector. The predominant method by which this has

been accomplished since 1970 is securitization, the bundling of individual mortgage

loans into capital market instruments. In 2000, $2.3 trillion of mortgage-backed se-

curities were outstanding, an amount comparable to the $2.1 trillion corporate bond

market and $3.4 trillion market in federal government securities.

A mortgage-backed security (MBS) is a bond backed by a pool of mortgage

loans. Principal and interest payments received from the underlying loans are passed

through to the bondholders. These securities contain at least one type of embedded

option due to the right of the home buyer to prepay the mortgage loan before

maturity. Mortgage payers may prepay for a variety of reasons. By far the most

important factor is the level of interest rates. As interest rates fall, those who have

fixed rate mortgages tend to repay their mortgages faster.

MBSs were first packaged using the pass-through structure. The pass-through’s

essential characteristic is that investors receive a pro rata share of the cash flows

that are generated by the pool of mortgages – interest, scheduled amortization,

and principal prepayments. Exercise of mortgage prepayment options has pro rata

effects on all investors. The pass-through allows banks that initiate mortgages to take

their fees up front, and sell the mortgages to investors. One troublesome feature

of the pass-through for investors is that the timing and level of the cash flows

are uncertain. Depending on the interest rate environment, mortgage holders may

prepay substantial portions of their mortgage in order to refinance at lower interest

rates.

248
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A collateralized mortgage obligation (CMO) is a more sophisticated MBS. The

CMO rearranges the cash flows to make them more predictable. This feature makes

CMOs more desirable to investors. The basic idea behind a CMO is to restructure

the cash flows from an underlying mortgage collateral (pool of mortgage loans) into

a set of bonds with different maturities. These two or more series of bonds (called

“tranches”) receive sequential, rather than pro rata, principal pay down. Interest pay-

ments are made on all tranches (except possibly the last tranche, called Z tranche

or “accrual” tranche). A two-tranche CMO is a simple example. Assume that there

is $100 in mortgage loans backing two $50 tranches, say tranche A and tranche B.

Initially, both tranches receive interest, but principal payments are used to pay down

only the A tranche. For example, if $1 in mortgage scheduled amortization and pre-

payments is collected in the first month, the balance of the A tranche is reduced (paid

down) by $1. No principal is paid on the B tranche until the A tranche is fully retired,

i.e., $50 in principal payments have been made. Then the remaining $50 in mort-

gage principal pays down the $50 B tranche. In effect, the A or “fast-pay” tranche

has been assigned all of the early mortgage principal payments (amortization and

prepayments) and reaches its maturity sooner than would an ordinary pass-through

security. The B or “slow-pay” tranche has only the later principal payments and it

begins paying down much later than an ordinary pass-through security.

By repackaging the collateral cash flow in this manner, the life and risk charac-

teristics of the collateral are restructured. The fast-pay tranches are guaranteed to be

retired first, implying that their lives will be less uncertain, although not completely

fixed. Even the slow-pay tranches will have less cash-flow uncertainty than the un-

derlying collateral. Therefore the CMO allows the issuer to target different investor

groups more directly than when issuing pass-through securities. The low maturity

(fast-pay) tranches may be appealing to investors with short horizons while the long

maturity bonds (slow-pay) may be attractive to pension funds and life insurance

companies. Each group can find a bond that is better customized to their particular

needs.

A by-product of improving the predictability of the cash flows is being able to

structure tranches of different credit quality from the same mortgage pool. With the

payments of a very large pool of mortgages dedicated to the “fast-pay” tranche, it

can be structured to receive a AAA credit rating even if there is a significant default

risk on part of the mortgage pool. This high credit rating lowers the interest rate

that must be paid on this slice of the CMO. While the credit rating for the early

tranches can be very high, the credit quality for later tranches will necessarily be

lower because there is less principal left to be repaid and therefore there is increased

default risk on slow-pay tranches.

We will take the perspective of an issuer of CMOs. How many tranches should be

issued? Which sizes? Which coupon rates? Issuers make money by issuing CMOs
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because they can pay interest on the tranches that is lower than the interest payments

being made by mortgage holders in the pool. The mortgage holders pay 10- or 30-

year interest rates on the entire outstanding principal, while some tranches only pay

two, four, six, and eight-year interest rates plus an appropriate spread.

The convention in mortgage markets is to price bonds with respect to their

weighted average life (WAL), which is much like duration, i.e.,

WAL =

T∑
t=1

t Pt

T∑
t=1

Pt

,

where Pt is the principal payment in period t (t = 1, . . . , T ).

A bond with a WAL of 3 years will be priced at the 3-year Treasury rate plus a

spread, while a bond with a WAL of 7 years will be priced at the 7-year Treasury

rate plus a spread. The WAL of the CMO collateral is typically high, implying a

high rate for (normal) upward sloping rate curves. By splitting the collateral into

several tranches, some with a low WAL and some with a high WAL, lower rates

are obtained on the fast-pay tranches while higher rates result for the slow-pay.

Overall, the issuer ends up with a better (lower) average rate on the CMO than on

the collateral.

15.1 Data

When issuing a CMO, several restrictions apply. First it must be demonstrated that

the collateral can service the payments on the issued CMO tranches under several

scenarios. These scenarios are well defined and standardized, and cover conditional

prepayment models (see below) as well as the two extreme cases of full immediate

prepayment and no prepayment at all. Second, the tranches are priced using their

expected WAL. For example, a tranche with a WAL between 2.95 and 3.44 will be

priced at the 3-year Treasury rate plus a spread that depends on the tranche’s rating.

For an AAA rating the spread might be 1%, whereas for a BB rating the spread

might be 2%.

Table 15.1 contains the payment schedule for a $100 million pool of ten-year

mortgages with 10% interest, assuming the same total payment (interest + sched-

uled amortization) each year. It may be useful to remember that, if the outstanding

principal is Q, interest is r and amortization occurs over k years, then the scheduled

amortization in the first year is

Qr

(1 + r )k − 1
.
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Table 15.1 Payment schedule

Scheduled Outstanding
Interest amortization principal

Period (t) (It ) (Pt ) (Qt )

1 10.00 6.27 93.73
2 9.37 6.90 86.83
3 8.68 7.59 79.24
4 7.92 8.35 70.89
5 7.09 9.19 61.70
6 6.17 10.11 51.59
7 5.16 11.12 40.47
8 4.05 12.22 28.25
9 2.83 13.45 14.80

10 1.48 14.80 0

Total 100.00

Exercise 15.1 Derive this formula, using the fact that the total payment (interest

+ scheduled amortization) is the same for years 1 through k.

For the mortgage pool described above, Q = 100, r = 0.10, and k = 10, thus the

scheduled amortization in the first year is 6.27. Adding the 10% interest payment

on Q, the total payments (interest + scheduled amortization) are $16.27 million

per year.

Table 15.1 assumes no prepayment. Next we want to analyze the following sce-

nario: a conditional prepayment model reflecting the 100% PSA (Public Securities

Association) industry-standard benchmark. For simplicity, we present a yearly PSA

model, even though the actual PSA model is defined monthly. The rate of mortgage

prepayments is 1% of the outstanding principal at the end of the first year. At the

end of the second year, prepayment is 3% of the outstanding principal at that time.

At the end of the third year, it is 5% of the outstanding principal. For each later

year t ≥ 3, prepayment is 6% of the outstanding principal at the end of year t . Let

us denote by PPt the prepayment in year t . For example, in year 1, in addition to

the interest payment I1 = 10 and the amortization payment A1 = 6.27, there is a

1% prepayment on the 100 − 6.27 = 93.73 principal remaining after amortization.

That is, there is a prepayment P P1 = 0.9373 collected at the end of year 1. Thus

the principal pay down is P1 = A1 + P P1 = 6.27 + 0.9373 = 7.2073 in year 1.

The outstanding principal at the end of year 1 is Q1 = 100 − 7.2073 = 92.7927.

In year 2, the interest paid is I2 = 9.279 (that is 10% of Q1), the amortization

payment is A2 = Q1×0.10
(1.10)9−1

= 6.8333, the prepayment is P P2 = 2.5788 (that is, 3%

of Q1 − A2), and the principal pay down is P2 = A2 + P P2 = 9.412, etc.
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Exercise 15.2 Construct the table containing It , Pt , and Qt to reflect the above

scenario.

Loss multiple and required buffer

In order to achieve a high quality rating, tranches should be able to sustain higher

than expected default rates without compromising payments to the tranche holders.

For this reason, credit ratings are assigned based on how much money is “behind”

the current tranche. That is, how much outstanding principal is left after the current

tranche is retired, as a percentage of the total amount of principal. This is called

the “buffer.” Early tranches receive higher credit ratings since they have greater

buffers, which means that the CMO would have to experience very large default

rates before their payments would be compromised. A tranche with AAA rating

must have a buffer equal to six times the expected default rate. This is referred to

as the “loss multiple.” The loss multiples are as follows:

Credit rating AAA AA A BBB BB B CCC

Loss multiple 6 5 4 3 2 1.5 0

The required buffer is computed by the following formula:

Required buffer = WAL × expected default rate × loss multiple.

Let us assume a 0.9% expected default rate, based on foreclosure rates reported by

the M&T Mortgage Corporation in 2004. With this assumption, the required buffer

to get an AAA rating for a tranche with a WAL of 4 years is 4 × 0.009 × 6 = 21.6%.

Exercise 15.3 Construct the table containing the required buffer as a function of

rating and WAL, assuming a 0.9% expected default rate.

Coupon yields and spreads

Each tranche is priced based on a credit spread to the current treasury rate for a risk-

free bond of that approximate duration. These rates appear in Table 15.2, based on

the yields on US Treasuries as of 10/12/04. The reader can get more current figures

from online sources. Spreads on corporate bonds with similar credit ratings would

provide reasonable figures.

15.2 Enumerating possible tranches

We are going to consider every possible tranche: since there are ten possible ma-

turities t and t possible starting dates j with j ≤ t for each t , there are 55 possible

tranches. Specifically, tranche ( j, t) starts amortizing at the beginning of year j and

ends at the end of year t .
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Table 15.2 Yields and spreads

Credit spread in basis points
Risk-free

Period (t) spot (%) AAA AA A BBB BB B

1 2.18 13 43 68 92 175 300
2 2.53 17 45 85 109 195 320
3 2.80 20 47 87 114 205 330
4 3.06 26 56 90 123 220 343
5 3.31 31 65 92 131 235 355
6 3.52 42 73 96 137 245 373
7 3.72 53 81 99 143 255 390
8 3.84 59 85 106 151 262 398
9 3.95 65 90 112 158 268 407

10 4.07 71 94 119 166 275 415

Exercise 15.4 From the principal payments Pt that you computed in Exer-

cise 15.2, construct a table containing WAL j t for each possible combination ( j, t).
For each of the 55 possible tranches ( j, t), compute the buffer∑10
k=t+1 Pk/

∑10
k=1 Pk . If there is no buffer, the corresponding tranche is a Z-tranche.

When there is a buffer, calculate the loss multiple from the formula:

Required buffer = WAL × expected default rate × loss multiple.

Finally, construct a table containing the credit rating for each tranche that is not a

Z-tranche.

For each of the 55 tranches, construct a table containing the appropriate coupon

rate c jt (no coupon rate on a Z-tranche). As described earlier, these rates depend

on the WAL and credit rating just computed.

Define Tjt to be the present value of the payments on a tranche ( j, t). Armed

with the proper coupon rate c jt and a full curve of spot rates rt , Tjt is computed as

follows. In each year k, the payment Ck for tranche ( j, t) is equal to the coupon rate

c jt times the remaining principal, plus the principal payment made to tranche ( j, t)
if it is amortizing in year k. The present value of Ck is simply equal to Ck/(1 + rk)k .

Now Tjt is obtained by summing the present values of all the payments going to

tranche ( j, t).

15.3 A dynamic programming approach

Based on the above data, we would like to structure a CMO with four sequential

tranches A, B, C, Z. The objective is to maximize the profits from the issuance by

choosing the size of each tranche. In this section, we present a dynamic program-

ming recursion for solving the problem.
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Let t = 1, . . . , 10 index the years. The states of the dynamic program will be

the years t and the stages will be the number k of tranches up to year t .
Now that we have the matrix Tjt , we are ready to describe the dynamic program-

ming recursion. Let

v(k, t) = Minimum present value of total payments to bondholders in years

1 through t when the CMO has k tranches up to year t.

Obviously, v(1, t) is simply T1t . For k ≥ 2, the value v(k, t) is computed recur-

sively by the formula:

v(k, t) = min
j=k−1,...,t−1

(v(k − 1, j) + Tj+1,t ).

For example, for k = 2 and t = 4, we compute v(1, j) + Tj+1,4 for each j =
1, 2, 3 and we take the minimum. The power of dynamic programming becomes

clear as k increases. For example, when k = 4, there is no need to compute the

minimum of thousands of possible combinations of four tranches. Instead, we use

the optimal structure v(3, j) already computed in the previous stage. So the only

enumeration is over the size of the last tranche.

Exercise 15.5 Compute v(4, 10) using the above recursion. Recall that v(4, 10)

is the least-cost solution of structuring the CMO into four tranches. What are the

sizes of the tranches in this optimal solution? To answer this question, you will need

to backtrack from the last stage and identify how the minimum leading to v(4, 10)

was achieved at each stage.

Exercise 15.6 The dynamic programming approach presented in this section is

based on a single prepayment model. How would you deal with several scenarios

for prepayment and default rates, each occuring with a given probability?

15.4 Case study: structuring CMOs

Repeat the above steps for a pool of mortgages using current data. Study the in-

fluence of the expected default rate on the profitability of structuring your CMO.

What other factors have a significant impact on profitability?
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Stochastic programming: theory and algorithms

16.1 Introduction

In the introductory chapter and elsewhere, we argued that many optimization prob-

lems are described by uncertain parameters. There are different ways of incorpo-

rating this uncertainty. We consider two approaches: stochastic programming in

the present chapter and robust optimization in Chapter 19. Stochastic programming
assumes that the uncertain parameters are random variables with known probability

distributions. This information is then used to transform the stochastic program into

a so-called deterministic equivalent, which might be a linear program, a nonlinear

program, or an integer program (see Chapters 2, 5, and 11 respectively).

While stochastic programming models have existed for several decades, compu-

tational technology has only recently allowed the solution of realistic size problems.

The field continues to develop with the advancement of available algorithms and

computing power. It is a popular modeling tool for problems in a variety of disci-

plines including financial engineering.

The uncertainty is described by a certain sample space �, a σ -field of random

events, and a probability measure P (see Appendix C). In stochastic programming,

� is often a finite set {ω1, . . . , ωS}. The corresponding probabilities p(ωk) ≥ 0

satisfy
∑S

k=1 p(ωk) = 1. For example, to represent the outcomes of flipping a coin

twice in a row, we would use four random events � = {H H, H T, T H, T T }, each

with probability 1/4, where H stands for heads and T stands for tails.

Stochastic programming models can include anticipative and/or adaptive deci-

sion variables. Anticipative variables correspond to those decisions that must be

made here-and-now and cannot depend on the future observations/partial realiza-

tions of the random parameters. Adaptive variables correspond to wait-and-see
decisions that can be made after some (or, sometimes all) of the random parameters

are observed.
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Stochastic programming models that include both anticipative and adaptive vari-

ables are called recourse models. Using a multi-stage stochastic programming for-

mulation, with recourse variables at each stage, one can model a decision environ-

ment where information is revealed progressively and the decisions are adapted to

each new piece of information.

In investment planning, each new trading opportunity represents a new deci-

sion to be made. Therefore, trading dates where investment portfolios can be

rebalanced become natural choices for decision stages, and these problems can

be formulated conveniently as multi-stage stochastic programming problems with

recourse.

16.2 Two-stage problems with recourse

In Chapter 1, we have already seen a generic form of a two-stage stochastic linear
program with recourse:

maxx aTx + E[maxy(ω) c(ω)T y(ω)]

Ax = b
B(ω)x + C(ω)y(ω) = d(ω)

x ≥ 0, y(ω) ≥ 0.

(16.1)

In this formulation, the first-stage decisions are represented by vector x . These

decisions are made before the random event ω is observed. The second-stage deci-

sions are represented by vector y(ω). These decisions are made after the random

event ω has been observed, and therefore the vector y is a function of ω. A and b
define deterministic constraints on the first-stage decisions x , whereas B(ω), C(ω),

and d(ω) define stochastic constraints linking the recourse decisions y(ω) to the

first-stage decisions x . The objective function contains a deterministic term aTx and

the expectation of the second-stage objective c(ω)T y(ω) taken over all realizations

of the random event ω.

Notice that the first-stage decisions will not necessarily satisfy the linking con-

straints B(ω)x + C(ω)y(ω) = d(ω), if no recourse action is taken. Therefore, re-

course allows one to make sure that the initial decisions can be “corrected” with

respect to this second set of feasibility equations.

In Section 1.2.1, we also argued that problem (16.1) can be represented in an

alternative manner by considering the second-stage or recourse problem that is

defined as follows, given x , the first-stage decisions:

f (x, ω) = max c(ω)Ty(ω)

C(ω)y(ω) = d(ω) − B(ω)x
y(ω) ≥ 0.

(16.2)
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Let f (x) = E[ f (x, ω)] denote the expected value of this optimum. If the func-

tion f (x) is available, the two-stage stochastic linear program (16.1) reduces to a

deterministic nonlinear program:

max aTx + f (x)

Ax = b
x ≥ 0.

(16.3)

Unfortunately, computing f (x) is often very hard, especially when the sample

space � is infinite. Next, we consider the case where � is a finite set.

Assume that � = {ω1, . . . , ωS} and let p = (p1, . . . , pS) denote the probability

distribution on this sample space. The S possibilities ωk , for k = 1, . . . , S are also

called scenarios. The expectation of the second-stage objective becomes:

E[max
y(ω)

c(ω)T y(ω)] =
S∑

k=1

pk max
y(ωk )

c(ωk)T y(ωk).

For brevity, we write ck instead of c(ωk), etc. Under this scenario approach the

two-stage stochastic linear programming problem (16.1) takes the following form:

maxx aTx + ∑S
k=1 pk maxyk cT

k yk

Ax = b
Bk x + Ck yk = dk for k = 1, . . . S
x ≥ 0

yk ≥ 0 for k = 1, . . . , S.

(16.4)

Note that there is a different second stage decision vector yk for each scenario k.

The maximum in the objective is achieved by optimizing over all variables x and

yk simultaneously. Therefore, this optimization problem is:

maxx,y1,...,yS aTx + p1cT
1 y1 + . . . + pScT

S yS

Ax = b
B1x + C1 y1 = d1

...
. . .

...

BS x + CS yS = dS

x, y1, . . . yS ≥ 0.

(16.5)

This is a deterministic linear programming problem called the deterministic equiva-
lent of the original uncertain problem. This problem has S copies of the second-stage

decision variables and therefore, can be significantly larger than the original prob-

lem before we considered the uncertainty of the parameters. Fortunately, however,

the constraint matrix has a very special sparsity structure that can be exploited by

modern decomposition based solution methods (see Section 16.4).
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Exercise 16.1 Consider an investor with an initial wealth W0. At time 0, the

investor constructs a portfolio comprising one riskless asset with return R1 in the

first period and one risky asset with return R+
1 with probability 0.5 and R−

1 with

probability 0.5. At the end of the first period, the investor can rebalance her portfolio.

The return in the second period is R2 for the riskless asset, while it is R+
2 with

probability 0.5 and R−
2 with probability 0.5 for the risky asset. The objective is

to meet a liability L2 = 0.9 at the end of period 2 and to maximize the expected

remaining wealth W2. Formulate a two-stage stochastic linear program that solves

the investor’s problem.

Exercise 16.2 In Exercise 3.2, the cash requirement in quarter Q1 is known to

be 100 but, for the remaining quarters, the company considers three equally likely

scenarios:

Q2 Q3 Q4 Q5 Q6 Q7 Q8

Scenario 1 450 100 −650 −550 200 650 −850

Scenario 2 500 100 −600 −500 200 600 −900

Scenario 3 550 150 −600 −450 250 600 −800

Formulate a linear program that maximizes the expected wealth of the company

at the end of quarter Q8.

16.3 Multi-stage problems

In a multi-stage stochastic program with recourse, the recourse decisions can be

made at several points in time, called stages. Let n ≥ 2 be the number of stages. The

random event ω is a vector (o1, . . . , on−1) that gets revealed progressively over time.

The first-stage decisions are taken before any component of ω is revealed. Then o1

is revealed. With this knowledge, one takes the second-stage decisions. After that,

o2 is revealed, and so on, alternating between a new component of ω being revealed

and new recourse decisions being implemented. We assume that � = {ω1, . . . , ωS}
is a finite set. Let pk be the probability of scenario ωk , for k = 1, . . . , S.

Some scenarios ωk may be identical in their first components and only become

differentiated in the later stages. Therefore it is convenient to introduce the scenario
tree, which illustrates how the scenarios branch off at each stage. The nodes are la-

beled 1 through N , where node 1 is the root. Each node is in one stage, where the root

is the unique node in stage 1. Each node i in stage k ≥ 2 is adjacent to a unique node

a(i) in stage k − 1. Node a(i) is called the father of node i . The paths from the root

to the leaves (in stage n) represent the scenarios. Thus the last stage has as many

nodes as scenarios. These nodes are called the terminal nodes. The collection of

scenarios passing through node i in stage k have identical components o1, . . . , ok−1.
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1

4

5

6

7

2

3

Stage 1 2 3

Four scenarios

Figure 16.1 A scenario tree with three stages and four scenarios

In Figure 16.1, node 1 is the root, nodes 4, 5, 6, and 7 are the terminal nodes.

The father of node 6 is node 2, in other words a(6) = 2.

Associated with each node i is a recourse decision vector xi . For a node i is stage

k, the decisions xi are taken based on the information that has been revealed up

to stage k. Let qi be the sum of the probabilities pk over all the scenarios ωk that

go through node i . Therefore qi is the probability of node i , conditional on being

in stage k. The multi-stage stochastic program with recourse can be formulated as

follows:

maxx1,...,xN

∑N
i=1 qi cT

i xi

Ax1 = b
Bi xa(i) + Ci xi = di for i = 2, . . . , N

xi ≥ 0.

(16.6)

In this formulation, A and b define deterministic constraints on the first-stage

decisions x1, whereas Bi , Ci , and di define stochastic constraints linking the recourse

decisions xi in node i to the recourse decisions xa(i) in its father node. The objective

function contains a term cT
i xi for each node.

To illustrate, we present formulation (16.6) for the example of Figure 16.1. The

terminal nodes 4 to 7 correspond to scenarios 1 to 4 respectively. Thus we have

q4 = p1, q5 = p2, q6 = p3, and q7 = p4, where pk is the probability of scenario k.

We also have q2 = p1 + p2 + p3, q3 = p4, and q2 + q3 = 1.

max cT
1 x1 + q2cT

2 x2 + q3cT
3 x3 + p1cT

4 x4 + p2cT
5 x5 + p3cT

6 x6 + p4cT
7 x7

Ax1 = b
B2x1 + C2x2 = d2

B3x1 + C3x3 = d3

B4x2 + C4x4 = d4

B5x2 + C5x5 = d5

B6x2 + C6x6 = d6

B7x3 + C7x7 = d7

xi ≥ 0.
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Note that the size of the linear program (16.6) increases rapidly with the number

of stages. For example, for a problem with ten stages and a binary tree, there are

1024 scenarios and therefore the linear program (16.6) may have several thousand

constraints and variables, depending on the number of variables and constraints at

each node. Modern commercial codes can handle such large linear programs, but

a moderate increase in the number of stages or in the number of branches at each

stage could make (16.6) too large to solve by standard linear programming solvers.

When this happens, one may try to exploit the special structure of (16.6) to solve

the model (see Section 16.4).

Exercise 16.3 In Exercise 3.2, the cash requirements in quarters Q1, Q2, Q3, Q6,

and Q7 are known. On the other hand, the company considers two equally likely

(and independent) possibilities for each of the quarters Q4, Q5, and Q8, giving rise

to eight equally likely scenarios. In quarter Q4, the cash inflow will be either 600

or 650. In quarter Q5, it will be either 500 or 550. In quarter Q8, it will be either

850 or 900. Formulate a linear program that maximizes the expected wealth of the

company at the end of quarter Q8.

Exercise 16.4 Develop the linear program (16.6) for the following scenario tree.

1

4

5

6

7

2

3

Stage 1 2 3

Four scenarios

16.4 Decomposition

The size of the linear program (16.6) depends on the number of decision stages and

the branching factor at each node of the scenario tree. For example, a four-stage

model with 25 branches at each node has 25 × 25 × 25 × 25 = 390 625 scenarios.

Increasing the number of stages and branches quickly results in an explosion of

dimensionality. Obviously, the size of (16.6) can be a limiting factor in solving

realistic problems. When this occurs, it becomes essential to take advantage of the

special structure of the linear program (16.6). In this section, we present a decom-

position algorithm for exploiting this structure. It is called Benders decomposition
or, in the stochastic programming literature, the L-shaped method.
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The structure that we really want to exploit is that of the two-stage problem (16.5).

So we start with (16.5). We will explain subsequently how to deal with the general

multi-stage model (16.6). The constraint matrix of (16.5) has the following form:
⎛
⎜⎜⎜⎝

A
B1 C1

...
. . .

BS CS

⎞
⎟⎟⎟⎠ .

Note that the blocks C1, . . . , CS of the constraint matrix are only interrelated

through the blocks B1, . . . , BS , which correspond to the first-stage decisions. In

other words, once the first-stage decisions x have been fixed, (16.5) decomposes

into S independent linear programs. The idea of Benders decomposition is to solve

a “master problem” involving only the variables x and a series of independent

“recourse problems” each involving a different vector of variables yk . The master

problem and recourse problems are linear programs. The size of these linear pro-

grams is much smaller than the size of full model (16.5). The recourse problems

are solved for a given vector x and their solutions are used to generate inequalities

that are added to the master problem. Solving the new master problem produces a

new x and the process is repeated. More specifically, let us write (16.5) as

maxx aTx + P1(x) + · · · + PS(x)

Ax = b
x ≥ 0,

(16.7)

where, for k = 1, . . . S,

Pk(x) = maxyk pkcT
k yk

Ck yk = dk − Bk x

yk ≥ 0.

(16.8)

The dual linear program of the recourse problem (16.8) is

Pk(x) = minuk uT
k (dk − Bk x)

CT
k uk ≥ pkck .

(16.9)

For simplicity, we assume that the dual (16.9) is feasible, which is the case of

interest in applications. The recourse linear program (16.8) will be solved for a

sequence of vectors xi , for i = 0, . . .. The initial vector x0 might be obtained by

solving

maxx aTx
Ax = b

x ≥ 0.

(16.10)
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For a given vector xi , two possibilities can occur for the recourse linear program

(16.8): either (16.8) has an optimal solution or it is infeasible.

If (16.8) has an optimal solution yi
k , and ui

k is the corresponding optimal dual

solution, then (16.9) implies that

Pk(xi ) = (
ui

k

)T
(dk − Bk xi )

and, since

Pk(x) ≤ (
ui

k

)T
(dk − Bk x),

we get that

Pk(x) ≤ (
ui

k

)T
(Bk xi − Bk x) + Pk(xi ).

This inequality, which is called an optimality cut, can be added to the current master

linear program. Initially, the master linear program is just (16.10).

If (16.8) is infeasible, then the dual problem is unbounded. Let ui
k denote a

direction where (16.9) is unbounded, i.e., (ui
k)T(dk − Bk xi ) < 0 and CT

k ui
k ≥ pkck .

Since we are only interested in first-stage decisions x that lead to feasible second-

stage decisions yk , the following feasibility cut can be added to the current master

linear program:

(
ui

k

)T
(dk − Bk x) ≥ 0.

After solving the recourse problems (16.8) for each k, we have the following

lower bound on the optimal value of (16.5):

LB = aTxi + P1(xi ) + · · · + PS(xi ),

where we set Pk(xi ) = −∞ if the corresponding recourse problem is infeasible.

Adding all the optimality and feasibility cuts found so far (for j = 0, . . . , i) to

the master linear program, we obtain:

maxx,z1,...,zS aTx + ∑S
k=1 zk

Ax = b

zk ≤ (
u j

k

)T
(Bk x j − Bk x) + Pk(x j ) for some pairs ( j, k)

0 ≤ (
u j

k

)T
(dk − Bk x) for the remaining pairs ( j, k)

x ≥ 0.

Denoting by xi+1, zi+1
1 , . . . , zi+1

S an optimal solution to this linear program we get

an upper bound on the optimal value of (16.5):

UB = aTxi+1 + zi+1
1 + · · · + zi+1

S .
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Benders decomposition alternately solves the recourse problems (16.8) and the

master linear program with new optimality and feasibility cuts added at each it-

eration until the gap between the upper bound UB and the lower bound LB falls

below a given threshold. One can show that UB – LB converges to zero in a fi-

nite number of iterations. See, for instance, the book of Birge and Louveaux [13],

pages 159–162.

Benders decomposition can also be used for multi-stage problems (16.6) in a

straightforward way: the stages are partitioned into a first set that gives rise to

the “master problem” and a second set that gives rise to the “recourse problems.”

For example in a six-stage problem, the variables of the first two stages could

define the master problem. When these variables are fixed, (16.6) decomposes

into separate linear programs each involving variables of the last four stages. The

solutions of these recourse linear programs provide optimality or feasibility cuts

that can be added to the master problem. As before, upper and lower bounds are

computed at each iteration and the algorithm stops when the difference drops below

a given tolerance. Using this approach, Gondzio and Kouwenberg [34] were able to

solve an asset liability management problem with over 4 million scenarios, whose

linear programming formulation (16.6) had 12 million constraints and 24 million

variables. This linear program was so large that storage space on the computer

became an issue. The scenario tree had 6 levels and 13 branches at each node.

In order to apply two-stage Benders decomposition, Gondzio and Kouwenberg

divided the six-stage problem into a first-stage problem containing the first three

periods and a second stage containing periods 4 to 6. This resulted in 2197 recourse

linear programs, each involving 2197 scenarios. These recourse linear programs

were solved by an interior-point algorithm. Note that Benders decomposition is

ideally suited for parallel computations since the recourse linear programs can be

solved simultaneously. When the solution of all the recourse linear programs is

completed (which takes the bulk of the time), the master problem is then solved

on one processor while the other processors remain idle temporarily. Gondzio and

Kouwenberg tested a parallel implementation on a computer with 16 processors

and they obtained an almost perfect speedup, that is a speedup factor of almost k
when using k processors.

16.5 Scenario generation

How should one generate scenarios in order to formulate a deterministic equivalent

formulation (16.6) that accurately represents the underlying stochastic program?

There are two separate issues. First, one needs to model the correlation over time

among the random parameters. For a pension fund, such a model might relate

wage inflation (which influences the liability side) to interest rates and stock prices
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(which influence the asset side). Mulvey [59] describes the system developed by

Towers Perrin, based on a cascading set of stochastic differential equations. Simpler

autoregressive models can also be used. This is discussed below. The second issue

is the construction of a scenario tree from these models: a finite number of scenarios

must reflect as accurately as possible the random processes modeled in the previous

step, suggesting the need for a large number of scenarios. On the other hand, the

linear program (16.6) can only be solved if the size of the scenario tree is reasonably

small, suggesting a rather limited number of scenarios. To reconcile these two

conflicting objectives, it might be crucial to use variance reduction techniques. We

address these issues in this section.

16.5.1 Autoregressive model

In order to generate the random parameters underlying the stochastic program,

one needs to construct an economic model reflecting the correlation between the

parameters. Historical data may be available. The goal is to generate meaningful

time series for constructing the scenarios. One approach is to use an autoregressive

model.

Specifically, if rt denotes the random vector of parameters in period t , an au-
toregressive model is defined by:

rt = D0 + D1rt−1 + · · · + Dprt−p + εt ,

where p is the number of lags used in the regression, D0, D1, . . . , Dp are time-

independent constant matrices which are estimated through statistical methods such

as maximum likelihood, and εt is a vector of i.i.d. random disturbances with mean

zero.

To illustrate this, consider the example of Section 8.1.1. Let st , bt , and mt denote

the rates of return of stocks, bonds, and the money market, respectively, in year t .
An autoregressive model with p = 1 has the form:

⎛
⎝

st

bt

mt

⎞
⎠ =

⎛
⎝

d1

d2

d3

⎞
⎠ +

⎛
⎝

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎞
⎠

⎛
⎝

st−1

bt−1

mt−1

⎞
⎠ +

⎛
⎝

εs
t

εb
t

εm
t

⎞
⎠ t = 2, . . . , T .

In particular, to find the parameters d1, d11, d12, d13 in the first equation:

st = d1 + d11st−1 + d12bt−1 + d13mt−1 + εs
t ,

one can use standard linear regression tools that minimize the sum of the squared

errors εs
t . Within an Excel spreadsheet, for instance, one can use the function

LINEST. Suppose that the rates of return on the stocks are stored in cells B2
to B44 and that, for bonds and the money market, the rates are stored in columns C
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and D, rows 2 to 44 as well. LINEST is an array formula. Its first argument contains

the known data for the left-hand side of the equation (here the column st ), the

second argument contains the known data in the right-hand side (here the columns

st−1, bt−1, and mt−1). Typing LINEST(B3:B44, B2:D43,,) one obtains the

following values of the parameters:

d1 = 0.077, d11 = −0.058, d12 = 0.219, d13 = 0.448.

Using the same approach for the other two equations we get the following au-

toregressive model:

st = 0.077 − 0.058st−1 + 0.219bt−1 + 0.448mt−1 + εs
t ,

bt = 0.047 − 0.053st−1 − 0.078bt−1 + 0.707mt−1 + εb
t ,

mt = 0.016 + 0.033st−1 − 0.044bt−1 + 0.746mt−1 + εm
t .

The option LINEST(B3:B44, B2:D43,,TRUE) provides some useful

statistics, such as the standard error of the estimate st . Here we get a standard

error of σs = 0.173. Similarly, the standard error for bt and mt are σb = 0.108 and

σm = 0.022 respectively.

Exercise 16.5 Instead of an autoregressive model relating the rates of returns rt ,

bt , and mt , construct an autoregressive model relating the logarithms of the returns

gt = log(1 + rt ), ht = log(1 + bt ), and kt = log(1 + mt ). Use one lag, i.e., p = 1.

Solve using LINEST or your prefered linear regression tool.

Exercise 16.6 In the above autoregressive model, the coefficients of mt−1 are

significantly larger than those of st−1 and bt−1. This suggests that these two variables

might not be useful in the regression. Resolve the example, assuming the following

autoregressive model:

st = d1 + d13mt−1 + εs
t ,

bt = d2 + d23mt−1 + εb
t ,

mt = d3 + d33mt−1 + εm
t .

16.5.2 Constructing scenario trees

The random distributions relating the various parameters of a stochastic program

must be discretized to generate a set of scenarios that is adequate for its deterministic

equivalent. Too few scenarios may lead to approximation errors. On the other

hand, too many scenarios will lead to an explosion in the size of the scenario

tree, leading to an excessive computational burden. In this section, we discuss a

simple random sampling approach and two variance reduction techniques: adjusted
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random sampling and tree fitting. Unfortunately, scenario trees constructed by these

methods could contain spurious arbitrage opportunities. We end this section with a

procedure to test that this does not occur.

Random sampling

One can generate scenarios directly from the autoregressive model introduced in

the previous section:

rt = D0 + D1rt−1 + · · · + Dprt−p + εt ,

where εt ∼ N (0, �) are independently distributed multivariate normal distributions

with mean 0 and covariance matrix �.

In our example, � is a 3 × 3 diagonal matrix, with diagonal entries σs , σb, and σm .

Using the parameters σs = 0.173, σb = 0.108, σm = 0.022 computed earlier, and a

random number generator, we obtained εs
t = −0.186, εb

t = 0.052, and εm
t = 0.007.

We use the autoregressive model to get rates of return for 2004 based on the known

rates of returns for 2003 (see Table 8.3 in Section 8.1.1):

s2004 = 0.077 − 0.058 × 0.2868 + 0.219 × 0.0054 + 0.448 × 0.0098 − 0.186

= −0.087,

b2004 = 0.047 − 0.053 × 0.2868 − 0.078 × 0.0054 + 0.707 × 0.0098 + 0.052

= 0.091,

m2004 = 0.016 + 0.033 × 0.2868 − 0.044 × 0.0054 + 0.746 × 0.0098 + 0.007

= 0.040.

These are the rates of return for one of the branches from node 1. For each of

the other branches from node 1, one generates random values of εs
t , εb

t , and εm
t

and computes the corresponding values of s2004, b2004, and m2004. Thirty branches

or so may be needed to get a reasonable approximation of the distribution of the

rates of return in stage 1. For a problem with three stages, 30 branches at each

stage represent 27 000 scenarios. With more stages, the size of the linear program

(16.6) explodes. Kouwenberg [48] performed tests on scenario trees with fewer

branches at each node (such as a five-stage problem with branching structure 10-

6-6-4-4, meaning 10 branches at the root, then 6 branches at each node in the next

stage, and so on) and he concluded that random sampling on such trees leads to

unstable investment strategies. This occurs because the approximation error made

by representing parameter distributions by random samples can be significant in

a small scenario tree. As a result the optimal solution of (16.6) is not optimal for

the actual parameter distributions. How can one construct a scenario tree that more

accurately represents these distributions, without blowing up the size of (16.6)?
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Adjusted random sampling

An easy way of improving upon random sampling is as follows. Assume that each

node of the scenario tree has an even number K = 2k of branches. Instead of

generating 2k random samples from the autoregressive model, generate k random

samples only and use the negative of their error terms to compute the values on

the remaining k branches. This will fit all the odd moments of the distributions

correctly. In order to fit the variance of the distributions as well, one can scale the

sampled values. The sampled values are all scaled by a multiplicative factor until

their variance fits that of the corresponding parameter.

As an example, corresponding to the branch with εs
t = −0.186, εb

t = 0.052, and

εm
t = 0.007 at node 1, one would also generate another branch with εs

t = 0.186,

εb
t = −0.052, and εm

t = −0.007. For this branch the autoregressive model gives

the following rates of return for 2004:

s2004 = 0.077 − 0.058 × 0.2868 + 0.219 × 0.0054 + 0.448 × 0.0098 + 0.186

= 0.285,

b2004 = 0.047 − 0.053 × 0.2868 − 0.078 × 0.0054 + 0.707 × 0.0098 − 0.052

= −0.013,

m2004 = 0.016 + 0.033 × 0.2868 − 0.044 × 0.0054 + 0.746 × 0.0098 − 0.007

= 0.026.

Suppose that the set of εs
t generated on the branches leaving from node 1 has

standard deviation 0.228 but the corresponding parameter should have standard

deviation 0.165. Then the εs
t would be scaled down by 0.165/0.228 on all the

branches from node 1. For example, instead of εs
t = −0.186 on the branch discussed

earlier, one would use εs
t = −0.186(0.165/0.228) = −0.135. This corresponds to

the following rate of return:

s2004 = 0.077 − 0.058 × 0.2868 + 0.219 × 0.0054 + 0.448 × 0.0098 − 0.135

= −0.036.

The rates of returns on all the branches from node 1 would be modified in the same

way.

Tree fitting

How can one best approximate a continuous distribution by a discrete distribution

with K values? In other words, how should one choose values vk and their probabil-

ities pk , for k = 1, . . . , K , in order to approximate the given distribution as accu-

rately as possible? A natural answer is to match as many of the moments as possible.

In the context of a scenario tree, the problem is somewhat more complicated since
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there are several correlated parameters at each node and there is interdependence

between periods as well. Hoyland and Wallace [41] propose to formulate this fitting

problem as a nonlinear program. The fitting problem can be solved either at each

node separately or on the overall tree. We explain the fitting problem at a node. Let

Sl be the values of the statistical properties of the distributions that one desires to

fit, for l = 1, . . . , s. These might be the expected values of the distributions, the

correlation matrix, and the skewness and kurtosis. Let vk and pk denote the vector of

values on branch k and its probability, respectively, for k = 1, . . . , K . Let fl(v, p)

be the mathematical expression of property l for the discrete distribution (for ex-

ample, the mean of the vectors vk , and their correlation, skewness, and kurtosis).

Each property has a positive weight wl indicating its importance in the desired fit.

Hoyland and Wallace formulate the fitting problem as

minv,p
∑

l wl( fl(v, p) − Sl)
2

∑
k pk = 1

p ≥ 0.

(16.11)

One might want some statistical properties to match exactly. As an example, con-

sider again the autoregressive model:

rt = D0 + D1rt−1 + · · · + Dprt−p + εt ,

where εt ∼ N (0, �) are independently distributed multivariate normal distributions

with mean 0 and covariance matrix �. To simplify notation, let us write ε instead of

εt . The random vector ε has distribution N (0, �) and we would like to approximate

this continuous distribution by a finite number of disturbance vectors εk occuring

with probability pk , for k = 1, . . . , K . Let εk
q denote the qth component of vector

εk . One might want to fit the mean of ε exactly and its covariance matrix as well

as possible. In this case, the fitting problem is:

minε1,...,εK ,p
∑l

q=1

∑l
r=1

( ∑K
k=1 pkε

k
qε

k
r − �qr

)2

∑K
k=1 pkε

k = 0
∑

k pk = 1

p ≥ 0.

Arbitrage-free scenario trees

Approximating the continuous distributions of the uncertain parameters by a finite

number of scenarios in the linear programming (16.6) typically creates modeling

errors. In fact, if the scenarios are not chosen properly or if their number is too small,

the supposedly “linear programming equivalent” could be far from being equiva-

lent to the original stochastic program. One of the most disturbing aspects of this
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phenomenon is the possibility of creating arbitrage opportunities when constructing

the scenario tree. When this occurs, model (16.6) might produce unrealistic solu-

tions that exploit these arbitrage opportunities. Klaassen [45] was the first to address

this issue. In particular, he shows how arbitrage opportunities can be detected ex
post in a scenario tree. When such arbitrage opportunities exist, a simple solution is

to discard the scenario tree and to construct a new one with more branches. Klaassen

[45] also discusses what constraints to add to the nonlinear program (16.11) in order

to preclude arbitrage opportunities ex ante. The additional constraints are nonlin-

ear, thus increasing the difficulty of solving (16.11). We present below Klassen’s

ex-post check.

Recall that there are two types of arbitrage (Definition 4.1). We start we Type A.

An arbitrage of Type A is a trading strategy with an initial positive cash flow and no

risk of loss later. Let us express this at a node i of the scenario tree. Let rk denote

the vectors of rates of return on the branches connecting node i to its sons in the

next stage, for k = 1, . . . , K . There exists an arbitrage of Type A if there exists an

asset allocation x = (x1, . . . , xQ) at node i such that

Q∑
q=1

xq < 0

and
Q∑

q=1

xqrk
q ≥ 0 for all k = 1, . . . , K .

To check whether such an allocation x exists, it suffices to solve the linear program

minx
∑Q

q=1 xq∑Q
q=1 xqrk

q ≥ 0 for all k = 1, . . . , K .
(16.12)

There is an arbitrage opportunity of Type A at node i if and only if this linear

program is unbounded.

Next we turn to Type B. An arbitrage of Type B requires no initial cash input,

has no risk of a loss and a positive probability of making profits in the future. At

node i of the scenario tree, this is expressed by the conditions:

Q∑
q=1

xq = 0,

Q∑
q=1

xqrk
q ≥ 0 for all k = 1, . . . , K ,

and
Q∑

q=1

xqrk
q > 0 for at least one k = 1, . . . , K .
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These conditions can be checked by solving the linear program

maxx
∑Q

q=1 xqrk
q∑Q

q=1 xq = 0
∑Q

q=1 xqrk
q ≥ 0 for all k = 1, . . . , K .

(16.13)

There is an arbitrage opportunity of Type B at node i if and only if this linear

program is unbounded.

Exercise 16.7 Show that the linear program (16.12) is always feasible.

Write the dual linear program of (16.12). Let uk be the dual variable associated

with the kth constraint of (16.12).

Recall that a feasible linear program is unbounded if and only if its dual is

infeasible. Show that there is no arbitrage of Type A at node i if and only if there

exists uk ≥ 0, for k = 1, . . . , K , such that

K∑
k=1

ukrk
q = 1 for all q = 1, . . . , Q.

Similarly, write the dual of (16.13). Let v0, vk , for k = 1, . . . , K , be the dual

variables. Write necessary and sufficient conditions for the nonexistence of arbitrage

of Type B at node i , in terms of vk , for k = 0, . . . , K .

Modify the nonlinear program (16.11) in order to formulate a fitting problem at

node i that contains no arbitrage opportunities.
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Stochastic programming models: Value-at-Risk and
Conditional Value-at-Risk

In this chapter, we discuss Value-at-Risk, a widely used measure of risk in finance,

and its relative, Conditional Value-at-Risk. We then present an optimization model

that optimizes a portfolio when the risk measure is the Conditional Value-at-Risk

instead of the variance of the portfolio as in the Markowitz model. This is acheived

through stochastic programming. In this case, the variables are anticipative. The

random events are modeled by a large but finite set of scenarios, leading to a linear

programming equivalent of the original stochastic program.

17.1 Risk measures

Financial activities involve risk. Our stock or mutual fund holdings carry the risk

of losing value due to market conditions. Even money invested in a bank carries a

risk – that of the bank going bankrupt and never returning the money let alone some

interest. While individuals generally just have to live with such risks, financial and

other institutions can and very often must manage risk using sophisticated math-

ematical techniques. Managing risk requires a good understanding of quantitative

risk measures that adequately reflect the vulnerabilities of a company.

Perhaps the best-known risk measure is Value-at-Risk (VaR) developed by fi-

nancial engineers at J.P. Morgan. VaR is a measure related to percentiles of loss

distributions and represents the predicted maximum loss with a specified proba-

bility level (e.g., 95%) over a certain period of time (e.g., one day). Consider, for

example, a random variable X that represents loss from an investment portfolio over

a fixed period of time. A negative value for X indicates gains. Given a probability

level α, α-VaR of the random variable X is given by the following relation:

VaRα(X ) := min{γ : P(X ≥ γ ) ≤ 1 − α}. (17.1)

When the loss distribution is continuous, VaRα(X ) is simply the loss such that

P(X ≤ VaRα(X )) = α.
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Figure 17.1 The 0.95-VaR on a portfolio loss distribution plot

Figure 17.1 illustrates the 0.95-VaR on a portfolio loss distribution plot. VaR is

widely used by people in the financial industry and VaR calculators are common

features in most financial software. Despite this popularity, VaR has one important

undesirable property – it lacks subadditivity. Risk measures should respect the

maxim “diversification reduces risk” and, therefore, satisfy the following property:

“the total risk of two different investment portfolios does not exceed the sum of

the individual risks.” This is precisely what we mean by saying that a risk measure

should be a subadditive function, i.e., for a risk measure f , we should have

f (x1 + x2) ≤ f (x1) + f (x2), ∀x1, x2.

Consider the following simple example that illustrates that diversification can ac-

tually increase the risk measured by VaR:

Example 17.1 Consider two independent investment opportunities each return-
ing a $1 gain with probability 0.96 and $2 loss with probability 0.04. Then, 0.95-VaR
for both investments are −1. Now consider the sum of these two investment opportu-
nities. Because of independence, this sum has the following loss distribution: $4 with
probability 0.04 × 0.04 = 0.0016, $1 with probability 2 × 0.96 × 0.04 = 0.0768,
and −$2 with probability 0.96 × 0.96 = 0.9216. Therefore, the 0.95-VaR of the
sum of the two investments is 1, which exceeds −2, the sum of the 0.95-VaR values
for individual investments.

An additional difficulty with VaR is in its computation and optimization. When

VaR is computed by generating scenarios, it turns out to be a nonsmooth and
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nonconvex function of the positions in the investment portfolio. Therefore, when

one tries to optimize VaR computed in this manner, multiple local optimizers are

encountered, hindering the global optimization process.

Another criticism of VaR is that it pays no attention to the magnitude of losses

beyond the VaR value. This and other undesirable features of VaR led to the de-

velopment of alternative risk measures. One well-known modification of VaR is

obtained by computing the expected loss given that the loss exceeds VaR. This

quantity is often called Conditional Value-at-Risk or CVaR. There are several al-

ternative names for this measure in the finance literature including mean expected

loss, mean shortfall, and tail VaR. We now describe this risk measure in more detail

and discuss how it can be optimized using linear programming techniques when

the loss function is linear in the portfolio positions. Our discussion follows parts of

articles by Rockafellar and Uryasev [68, 82].

We consider a portfolio of assets with random returns. We denote the portfolio

choice vector by x and the random events by the vector y. Let f (x, y) denote the

loss function when we choose the portfolio x from a set X of feasible portfolios

and y is the realization of the random events. We assume that the random vector y
has a probability density function denoted by p(y).

For a fixed decision vector x , we compute the cumulative distribution function

of the loss associated with that vector x :

�(x, γ ) :=
∫

f (x,y)<γ

p(y)dy. (17.2)

Then, for a given confidence level α, the α-VaR associated with portfolio x is given

by

VaRα(x) := min{γ ∈ IR : �(x, γ ) ≥ α}. (17.3)

We define the α-CVaR associated with portfolio x as:

CVaRα(x) := 1

1 − α

∫
f (x,y)≥VaRα (x)

f (x, y)p(y)dy. (17.4)

Note that

CVaRα(x) = 1

1 − α

∫
f (x,y)≥VaRα (x)

f (x, y)p(y)dy

≥ 1

1 − α

∫
f (x,y)≥VaRα (x)

VaRα(x)p(y)dy

= VaRα(x)

1 − α

∫
f (x,y)≥VaRα (x)

p(y)dy

≥ VaRα(x),
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i.e., the CVaR of a portfolio is always at least as big as its VaR. Consequently,

portfolios with small CVaR also have small VaR. In general however, minimizing

CVaR and VaR are not equivalent.

For a discrete probability distribution (where event y j occurs with probability

p j , for j = 1, . . . , n), the above definition of CVaR becomes

CVaRα(x) = 1

1 − α

∑
j : f (x,y j )≥VaRα(x)

p j f (x, y j ).

Example 17.2 Suppose we are given the loss function f (x, y) for a given deci-
sion x as f (x, y) = −y where y = 75 − j with probability 1% for j = 0, . . . , 99.
We would like to determine the Value-at-Risk VaRα(x) for α = 95%. We have
VaR95%(x) = 20 since the loss is 20 or more with probability 5%.

To compute the Conditional Value-at-Risk, we use the above formula:
CVaR95%(x) = 1

0.05
(20 + 21 + 22 + 23 + 24) × 1% = 22.

Exercise 17.1

(i) Compute the 0.90-VaR and 0.90-CVaR for the rates of return of stocks between

1961 and 2003 (see Section 8.1.1 for the data).

(ii) Compute the 0.90-VaR and 0.90-CVaR for the rates of return of bonds and a

money market account. Again use the data of Section 8.1.1.

17.2 Minimizing CVaR

Since the definition of CVaR involves the VaR function explicitly, it is difficult to

work with and optimize this function. Instead, we consider the following simpler

auxiliary function:

Fα(x, γ ) := γ + 1

1 − α

∫
f (x,y)≥γ

( f (x, y) − γ ) p(y)dy. (17.5)

Alternatively, we can write Fα,x (γ ) as follows:

Fα(x, γ ) = γ + 1

1 − α

∫
( f (x, y) − γ )+ p(y)dy, (17.6)

where a+ = max{a, 0}. This function, viewed as a function of γ , has the following

important properties that make it useful for the computation of VaR and CVaR:

1. Fα(x, γ ) is a convex function of γ .

2. VaRα(x) is a minimizer over γ of Fα(x, γ ).

3. The minimum value over γ of the function Fα(x, γ ) is CVaRα(x).



17.2 Minimizing CVaR 275

Exercise 17.2 Prove the properties of Fα,x (γ ) stated above.

As a consequence of the listed properties, we immediately deduce that, in order

to minimize CVaRα(x) over x , we need to minimize the function Fα(x, γ ) with

respect to x and γ simultaneously:

min
x∈X

CVaRα(x) = min
x∈X,γ

Fα(x, γ ). (17.7)

Consequently, we can optimize CVaR directly, without needing to compute VaR

first. If the loss function f (x, y) is a convex (linear) function of the portfolio

variables x , then Fα(x, γ ) is also a convex (linear) function of x . In this case,

provided the feasible portfolio set X is also convex, the optimization problems in

(17.7) are smooth convex optimization problems that can be solved using well-

known optimization techniques for such problems (see Chapter 5).

Often it is not possible or desirable to compute/determine the joint density func-

tion p(y) of the random events in our formulation. Instead, we may have a number

of scenarios, say ys for s = 1, . . . , S, which may represent some historical values

of the random events or some values obtained via computer simulation. We will

assume that all scenarios have the same probability. In this case, we obtain the fol-

lowing approximation to the function Fα(x, γ ) by using the empirical distribution

of the random events based on the available scenarios:

F̃α(x, γ ) := γ + 1

(1 − α)S

S∑
s=1

( f (x, ys) − γ )+ . (17.8)

Compare this definition to (17.6). Now, the problem minx∈X CVaRα(x) can be

approximated by replacing Fα(x, γ ) with F̃α(x, γ ) in (17.7):

min
x∈X,γ

γ + 1

(1 − α)S

S∑
s=1

( f (x, ys) − γ )+ . (17.9)

To solve this optimization problem, we introduce artificial variables zs to replace

( f (x, ys) − γ )+. This is achieved by imposing the constraints zs ≥ f (x, ys) − γ

and zs ≥ 0:

minx,z,γ γ + 1
(1−α)S

∑S
s=1 zs

s.t. zs ≥ 0, s = 1, . . . , S,

zs ≥ f (x, ys) − γ, s = 1, . . . , S,

x ∈ X.

(17.10)

Note that the constraints zs ≥ f (x, ys) − γ and zs ≥ 0 alone cannot ensure that zs =
( f (x, ys) − γ )+ = max{ f (x, ys) − γ, 0} since zs can be larger than both right-

hand sides and be still feasible. However, since we are minimizing the objective

function, which involves a positive multiple of zs , it will never be optimal to assign
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zs a value larger than the maximum of the two quantities f (x, ys) − γ and 0, and,

therefore, in an optimal solution zs will be precisely ( f (x, ys) − γ )+, justifying our

substitution.

In the case that f (x, y) is linear in x , all the expressions zs ≥ f (x, ys) − γ

represent linear constraints and therefore the problem (17.10) is a linear pro-

gramming problem that can be solved using the simplex method or alternative LP

algorithms.

Other optimization problems arise naturally within the context of risk manage-

ment. For example, risk managers often try to optimize a performance measure

(e.g., expected return) while making sure that certain risk measures do not ex-

ceed a threshold value. When the risk measure is CVaR, the resulting optimization

problem is:

maxx μTx

s.t. CVaRα j (x) ≤ Uα j , j = 1, . . . , J,

x ∈ X.

(17.11)

Above, J is an index set for different confidence levels used for CVaR computations

and Uα j represents the maximum tolerable CVaR value at the confidence level α j .

As above, we can replace the CVaR functions in the constraints of this problem

with the function Fα(x, γ ) and then approximate this function using the scenarios

for random events. This approach results in the following approximation of the

CVaR-constrained problem (17.11):

maxx,z,γ μTx

s.t. γ + 1
(1−α j )S

∑S
s=1 zs ≤ Uα j , j = 1, . . . , J,

zs ≥ 0, s = 1, . . . , S,

zs ≥ f (x, ys) − γ, s = 1, . . . , S,

x ∈ X.

(17.12)

17.3 Example: bond portfolio optimization

A portfolio of risky bonds might be characterized by a large likelihood of small

earnings, coupled with a small chance of loosing a large amount of the investment.

The loss distribution is heavily skewed and, in this case, standard mean-variance

analysis to characterize market risk is inadequate. VaR and CVaR are more appro-

priate criteria for minimizing portfolio credit risk. Credit risk is the risk of a trading

partner not fulfilling their obligation in full on the due date or at any time thereafter.
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Losses can result both from default and from a decline in market value stemming

from downgrades in credit ratings. A good reference is the paper of Anderson

et al. [3].

Anderson et al. consider a portfolio of 197 bonds from 29 different countries

with a market value of $8.8 billion and duration of approximately five years. Their

goal is to rebalance the portfolio in order to minimize credit risk. That is they

want to minimize losses resulting from default and from a decline in market value

stemming from downgrades in credit ratings (credit migration). The loss due to

credit migration is simply

f (x, y) = (b − y)Tx,

where b are the future values of each bond with no credit migration and y are the

future values with credit migration (so y is a random vector). The one-year portfolio

credit loss was generated using a Monte Carlo simulation: 20 000 scenarios of joint

credit states of obligators and related losses. The distribution of portfolio losses

has a long fat tail. The authors rebalanced the portfolio by minimizing CVaR.

The set X of feasible porfolios was described by the following constraints. Let xi

denote the weight of asset i in the portfolio. Upper and lower bounds were set on

each xi :

li ≤ xi ≤ ui i = 1, . . . , n,∑
i xi = 1.

To calculate the efficient frontier, the expected portfolio return was set to at least

R:

∑
i μi xi ≥ R.

To summarize, the linear program (17.10) to be solved was as follows:

minx,z,γ γ + 1
(1−α)S

∑S
s=1 zs

subject to zs ≥ ∑
i (bi − yis)xi − γ for s = 1, . . . , S,

zs ≥ 0 for s = 1, . . . , S,

li ≤ xi ≤ ui i = 1, . . . , n,
∑

i xi = 1,
∑

i μi xi ≥ R.

Consider α = 99%. The original bond portfolio had an expected portfolio return of

7.26%. The expected loss was 95 million dollars with a standard deviation of 232

million. The VaR was 1.03 billion dollars and the CVaR was 1.32 billion.
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After optimizing the portfolio (with expected return of 7.26%), the expected loss

was only $5000, with a standard deviation of 152 million. The VaR was reduced

to $210 million and the CVaR to $263 million. So all around, the characteristics of

the portfolio were much improved. Positions were reduced in bonds from Brazil,

Russia and, Venezuela, whereas positions were increased in bonds from Thailand,

Malaysia, and Chile. Positions in bonds from Colombia, Poland, and Mexico re-

mained high and each accounted for about 5% of the optimized CVaR.
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Stochastic programming models:
asset/liability management

18.1 Asset/liability management

The financial health of any company, and in particular those of financial institu-

tions, is reflected in the balance sheets of the company. Proper management of the

company requires attention to both sides of the balance sheet – assets and liabilities.

Asset/liability management (ALM) offers sophisticated mathematical tools for an

integrated management of assets and liabilities and is the focus of many studies in

financial mathematics.

ALM recognizes that static, one-period investment planning models (such as

mean-variance optimization) fail to incorporate the multi-period nature of the li-

abilities faced by the company. A multi-period model that emphasizes the need

to meet liabilities in each period for a finite (or possibly infinite) horizon is often

required. Since liabilities and asset returns usually have random components, their

optimal management requires tools of “optimization under uncertainty” and, most

notably, stochastic programming approaches.

We recall the ALM setting we introduced in Section 1.3.4: let Lt be the liability

of the company in year t for t = 1, . . . , T . The Lt ’s are random variables. Given

these liabilities, which assets (and in which quantities) should the company hold

each year to maximize its expected wealth in year T ? The assets may be domestic

stocks, foreign stocks, real estate, bonds, etc. Let Rit denote the return on asset i
in year t . The Rit ’s are random variables. The decision variables are:

xit = market value invested in asset i in year t.

The decisions xit in year t are made after the random variables Lt and Rit are

realized. That is, the decision problem is multistage, stochastic, with recourse. The

279
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stochastic program can be written as follows:

max E
[ ∑

i xiT
]

subject to

asset accumulation:
∑

i (1 + Rit )xi,t−1 − ∑
i xi t = Lt for t = 1, . . . , T,

xit ≥ 0.

The constraint says that the surplus left after liability Lt is covered will be invested as

follows: xit invested in asset i . In this formulation, x0,t are the fixed, and possibly

nonzero initial positions in different asset classes. The objective selected in the

model above is to maximize the expected wealth at the end of the planning horizon.

In practice, one might have a different objective. For example, in some cases,

minimizing Value-at-Risk (VaR) might be more appropriate. Other priorities may

dictate other objective functions.

To address the issue of the most appropriate objective function, one must under-

stand the role of liabilities. Pension funds and insurance companies are among the

most typical arenas for the integrated management of assets and liabilities through

ALM. We consider the case of a Japanese insurance company, the Yasuda Fire and

Marine Insurance Co., Ltd, following the work of Cariño et al. [19]. In this case, the

liabilities are mainly savings-oriented policies issued by the company. Each new

policy sold represents a deposit, or inflow of funds. Interest is periodically credited

to the policy until maturity, typically three to five years, at which time the principal

amount plus credited interest is refunded to the policyholder. The crediting rate is

typically adjusted each year in relation to a market index like the prime rate. There-

fore, we cannot say with certainty what future liabilities will be. Insurance business

regulations stipulate that interest credited to some policies be earned from invest-

ment income, not capital gains. So, in addition to ensuring that the maturity cash

flows are met, the firm must seek to avoid interim shortfalls in income earned versus

interest credited. In fact, it is the risk of not earning adequate income quarter by

quarter that the decision-makers view as the primary component of risk at Yasuda.

The problem is to determine the optimal allocation of the deposited funds into

several asset categories: cash, fixed- and floating-rate loans, bonds, equities, real

estate, and other assets. Since we can revise the portfolio allocations over time,

the decision we make is not just among allocations today but among allocation

strategies over time. A realistic dynamic asset/liability model must also account

for the payment of taxes. This is made possible by distinguishing between interest

income and price return.

A stochastic linear program is used to model the problem. The linear program

has uncertainty in many coefficients. This uncertainty is modeled through a finite

number of scenarios. In this fashion, the problem is transformed into a very large
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scale linear program of the form (16.6). The random elements include price return

and interest income for each asset class, as well as policy crediting rates.

We now present a multistage stochastic program that was developed for the

Yasuda Fire and Marine Insurance Co., Ltd. Our presentation follows the description

of the model as stated in [19].

Stages are indexed by t = 0, 1, . . . , T .

Decision variables of the stochastic program:

xit = market value in asset i at t,

wt = interest income shortfall at t ≥ 1,

vt = interest income surplus at t ≥ 1.

Random variables appearing in the stochastic linear program, for t ≥ 1:

R Pit = price return of asset i from t − 1 to t,

RIit = interest income of asset i from t − 1 to t,

Ft = deposit inflow from t − 1 to t,

Pt = principal payout from t − 1 to t,

It = interest payout from t − 1 to t,

gt = rate at which interest is credited to policies from t − 1 to t,

Lt = liability valuation at t.

Parameterized function appearing in the objective:

ct = piecewise linear convex cost function.

The objective of the model is to allocate funds among available assets to maxi-

mize expected wealth at the end of the planning horizon T less expected penalized

shortfalls accumulated through the planning horizon:

max E
[ ∑

i xiT − ∑T
t=1 ct (wt )

]
subject to

asset accumulation:
∑

i xi t − ∑
i (1 + R Pit + RIit )xi,t−1

= Ft − Pt − It for t = 1, . . . , T,

interest income shortfall:
∑

i R Iit xi,t−1 + wt − vt =gt Lt−1 for t = 1, . . . , T,

xit ≥ 0, wt ≥ 0, vt ≥ 0.

(18.1)

Liability balances and cash flows are computed so as to satisfy the liability

accumulation relations:

Lt = (1 + gt )Lt−1 + Ft − Pt − It for t ≥ 1.
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The stochastic linear program (18.1) is converted into a large linear program

using a finite number of scenarios to deal with the random elements in the data.

Creation of scenario inputs is made in stages using a tree. The tree structure can

be described by the number of branches at each stage. For example, a 1-8-4-4-2-1

tree has 256 scenarios. Stage t = 0 is the initial stage. Stage t = 1 may be chosen

to be the end of quarter 1 and has eight different scenarios in this example. Stage

t = 2 may be chosen to be the end of year 1, with each of the previous scenarios

giving rise to four new scenarios, and so on. For the Yasuda Fire and Marine

Insurance Co., Ltd, a problem with seven asset classes and six stages gives rise to a

stochastic linear program (18.1) with 12 constraints (other than nonnegativity) and

54 variables. Using 256 scenarios, this stochastic program is converted into a linear

program with several thousand constraints and over 10 000 variables. Solving this

model yielded extra income estimated to be about US$80 million per year for the

company.

Exercise 18.1 Discuss the relevance of the techniques from Chapter 16 in the so-

lution of the Yasuda Fire and Marine Insurance Co., Ltd, such as scenario-generation

(correlation of the random parameters over time, variance reduction techniques in

constructing the scenario tree), decomposition techniques to solve the large-scale

linear programs.

18.1.1 Corporate debt management

A closely related problem to the asset/liability management (ALM) problem in

corporate financial planning is the problem of debt management. Here the focus is

on retiring (paying back) outstanding debt at minimum cost. More specifically, cor-

porate debt managers must make financial decisions to minimize the costs and risks

of borrowing to meet debt financing requirements. These requirements are often

determined by the firm’s investment decisions. Our discussion in this subsection is

based on the article [26].

Debt managers need to choose the sources of borrowing, types of debts to be

used, timing and terms of debts, whether the debts will be callable,1 etc., in a

multi-period framework where the difficulty of the problem is compounded by

the fact that the interest rates that determine the cost of debt are uncertain. Since

interest rate movements can be modeled by random variables this problem presents

an attractive setting for the use of stochastic programming techniques. Below, we

discuss a deterministic linear programming equivalent of stochastic LP model for

the debt management problem.

1 A callable debt is a debt security whose issuer has the right to redeem the security prior to its stated maturity
date at a price established at the time of issuance, on or after a specified date.
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We consider a multi-period framework with T time periods. We will use the

indices s and t ranging between 0 (now) and T (termination date, or horizon) to

denote different time periods in the model. We consider K types of debt that are

distinguished by market of issue, term, and the presence (or absence) of a call option

available to the borrower. In our notation, the superscript k ranging between 1 and

K will denote the different types of debt being considered.

The evolution of the interest rates are described using a scenario tree. We denote

by e j = e j1, e j2, . . . , e jT , j = 1, . . . , J , a sample path of this scenario tree which

corresponds to a sequence of interest rate events. When a parameter or variable is

contingent on the event sequence e j we use the notation (e j ) (see below).
The decision variables in this model are the following:

� Bk
t (e j ): dollar amount at par2 of debt type k Borrowed at the beginning of period t .

� Ok
s,t (e j ): dollar amount at par of debt type k borrowed in period s and Outstanding at the

beginning of period t .
� Rk

s,t (e j ): dollar amount at par of debt type k borrowed in period s and Retired (paid back)

at the beginning of period t .
� St (e j ): dollar value of Surplus cash held at the beginning of period t .

Next, we list the input parameters to the problem:

� rk
s,t (e j ): interest payment in period t per dollar outstanding of debt type k issued in period

s.
� f k

t : issue costs (excluding premium or discount) per dollar borrowed of debt type k issued

in period t .
� gk

s,t (e j ): retirement premium or discount per dollar for debt type k issued in period s, if

retired in period t .3
� it (e j ): interest earned per dollar on surplus cash in period t .
� p(e j ): probability of the event sequence e j . Note that p(e j ) ≥ 0, ∀ j and

∑J
j=1 p(e j ) = 1.

� Ct : cash requirements for period t , which can be negative to indicate an operating surplus.
� Mt : maximum allowable cost of debt service in period t .
� qk

t (Qk
t ): minimum (maximum) borrowing of debt type k in period t .

� Lt (e j )(Ut (e j )): minimum (maximum) dollar amount of debt (at par) retired in period t .

The objective function of this problem is expressed as follows:

min
J∑

j=1

p(e j )

(
K∑

k=1

T∑
t=1

(
1 + gk

t,T (e j )
) [

Ok
t,T (e j ) − Rk

t,T (e j )
] + (

1 − f k
T

)
Bk

T (e j )

)
.

(18.2)

This function expresses the expected retirement cost of the total debt outstanding

at the end of period T .

2 At a price equal to the par (face) value of the security; the original issue price of a security.
3 These parameters are used to define call options and to value the debt portfolio at the end of the planning period.
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We complete the description of the deterministic equivalent of the stochastic LP
by listing the constraints of the problem:

� Cash requirements: For each time period t = 1, . . . , T and scenario path j = 1, . . . , J :

Ct + St (e j ) =
K∑

k=1

{ (
1 − f k

t

)
Bk

t (e j ) + (1 + it−1(e j ))St−1(e j )

−
t−1∑
s=0

[
rk

s,t (e j )Ok
s,t (e j ) − (

1 + gk
s,t (e j )

)
Rk

s,t (e j )
]}

.

This balance equation indicates that the difference between cash available (new net

borrowing, surplus cash from previous period, and the interest earned on this cash) and

the debt payments (interest on outstanding debt and cash outflows on repayment) should

equal the cash requirements plus the surplus cash left for this period.
� Debt balance constraints: For j = 1, . . . , J , t = 1, . . . , T , s = 0, . . . , t − 2, and k =

1, . . . K :

Ok
s,t (e j ) − Ok

s,t−1(e j ) + Rk
s,t−1(e j ) = 0,

Ok
t−1,t (e j ) − Bk

t−1(e j ) − Rk
t−1,t (e j ) = 0.

� Maximum cost of debt: For j = 1, . . . , J , t = 1, . . . , T , and k = 1, . . . K :

t−1∑
s=1

(
rk

s,t (e j )Ok
s,t (e j ) − it−1(e j )St−1(e j )

) ≤ Mt .

� Borrowing limits: For j = 1, . . . , J , t = 1, . . . , T , and k = 1, . . . K :

qk
t ≤ Bk

t (e j ) ≤ Qk
t .

� Payoff limits: For j = 1, . . . , J and t = 1, . . . , T :

Lt (e j ) ≤
K∑

k=1

t−1∑
s=0

Rk
s,t (e j ) ≤ Ut (e j ).

� Nonnegativity: For j = 1, . . . , J , t = 1, . . . , T , s = 0, . . . , t − 2, and k = 1, . . . K :

Bk
t (e j ) ≥ 0, Ok

s,t (e j ) ≥ 0, Rk
s,t (e j ) ≥ 0, St (e j ) ≥ 0.

In the formulation above, we used the notation of the article [26]. However, since

the parameters and variables dependent on e j can only depend on the portion of

the sequence that is revealed by a certain time, a more precise notation can be ob-

tained using the following ideas. First, let et
j = e j1, e j2, . . . , e jt , j = 1, . . . , J, t =

1, . . . , T , i.e., et
j represents the portion of e j observed by time period t . Then, one

replaces the expressions such as St (e j ) with St (et
j ), etc.
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18.2 Synthetic options

An important issue in portfolio selection is the potential decline of the portfolio

value below some critical limit. How can we control the risk of downside losses?

A possible answer is to create a payoff structure similar to a European call option.

While one may be able to construct a diversified portfolio well suited for a cor-

porate investor, there may be no option market available on this portfolio. One

solution may be to use index options. However, exchange-traded options with suf-

ficient liquidity are limited to maturities of about three months. This makes the cost

of long-term protection expensive, requiring the purchase of a series of high priced

short-term options. For large institutional or corporate investors, a cheaper solution

is to artificially produce the desired payoff structure using available resources. This

is called a “synthetic option strategy.”

18.2.1 The model

The model is based on the following data:

W0 = investor’s initial wealth,

T = planning horizon,

R = riskless return for one period,

Ri
t = return for asset i at time t,

θ i
t = transaction cost for purchases and sales of asset i at time t.

The Ri
t ’s are random, but we know their distributions.

The variables used in the model are the following:

xi
t = amount allocated to asset i at time t,

Ai
t = amount of asset i bought at time t,

Di
t = amount of asset i sold at time t,

αt = amount allocated to riskless asset at time t.

We formulate a stochastic program that produces the desired payoff at the end

of the planning horizon T , much in the flavor of the stochastic programs developed

in the previous two sections. Let us first discuss the constraints.

The initial portfolio is

α0 + x1
0 + · · · + xn

0 = W0.

The portfolio at time t is

xi
t = Ri

t x i
t−1 + Ai

t − Di
t for t = 1, . . . , T,

αt = Rαt−1 −
n∑

i=1

(
1 + θ i

t

)
Ai

t +
n∑

i=1

(
1 − θ i

t

)
Di

t for t = 1, . . . , T .
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One can also impose upper bounds on the proportion of any risky asset in the

portfolio:

0 ≤ xi
t ≤ mt

(
αt +

n∑
j=1

x j
t

)
,

where mt is chosen by the investor.

The value of the portfolio at the end of the planning horizon is

v = RαT −1 +
n∑

i=1

(
1 − θ i

T

)
Ri

T xi
T −1,

where the summation term is the value of the risky assets at time T .

To construct the desired synthetic option, we split v into the riskless value of

the portfolio Z and a surplus z ≥ 0 which depends on random events. Using a

scenario approach to the stochastic program, Z is the worst-case payoff over all the

scenarios. The surplus z is a random variable that depends on the scenario. Thus

v = Z + z,

z ≥ 0.

We consider Z and z as variables of the problem, and we optimize them together

with the asset allocations x and other variables described earlier. The objective

function of the stochastic program is

max E(z) + μZ ,

where μ ≥ 1 is the risk aversion of the investor. The risk aversion μ is given data.

When μ = 1, the objective is to maximize expected return.

When μ is very large, the objective is to maximize “riskless profit” as we defined

it in Chapter 4 (Exercise 4.10).

As an example, consider an investor with initial wealth W0 = 1 who wants to

construct a portfolio comprising one risky asset and one riskless asset using the

“synthetic option” model described above. We write the model for a two-period

planning horizon, i.e., T = 2. The return on the riskless asset is R per period. For the

risky asset, the return is R+
1 with probability 0.5 and R−

1 with the same probability

at time t = 1. Similarly, the return of the risky asset is R+
2 with probability 0.5 and

R−
2 with the same probability at time t = 2. The transaction cost for purchases and

sales of the risky asset is θ .

There are four scenarios in this example, each occurring with probability 0.25,

which we can represent by a binary tree. The initial node will be denoted by 0,

the up node from it by 1 and the down node by 2. Similarly the up node from

node 1 will be denoted by 3, the down node by 4, and the successors of 2 by 5
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and 6 respectively. Let xi , αi denote the amount of risky asset and of riskless asset

respectively in the portfolio at node i of this binary tree. Z is the riskless value of

the portfolio and zi is the surplus at node i . The linear program is:

max 0.25z3 + 0.25z4 + 0.25z5 + 0.25z6 + μZ
subject to

initial portfolio: α0 + x0 = 1

rebalancing constraints: x1 = R+
1 x0 + A1 − D1

α1 = Rα0 − (1 + θ )A1 + (1 − θ )D1

x2 = R−
1 x0 + A2 − D2

α2 = Rα0 − (1 + θ )A2 + (1 − θ )D2

payoff: z3 + Z = Rα1 + (1 − θ )R+
2 x1

z4 + Z = Rα1 + (1 − θ )R−
2 x1

z5 + Z = Rα2 + (1 − θ )R+
2 x2

z6 + Z = Rα2 + (1 − θ )R−
2 x2

nonnegativity: αi , xi , zi , Ai , Di ≥ 0.

18.2.2 An example

An interesting paper discussing synthetic options is the paper of Zhao and Ziemba

[85]. Zhao and Ziemba apply the synthetic option model to an example with three

assets (cash, bonds and stocks) and four periods (a one-year horizon with quar-

terly portfolio reviews). The quarterly return on cash is constant at ρ = 0.0095.

For stocks and bonds, the expected logarithmic rates of returns are s = 0.04 and

b = 0.019 respectively. Transaction costs are 0.5% for stocks and 0.1% for bonds.

The scenarios needed in the stochastic program are generated using an auto regres-

sion model which is constructed based on historical data (quarterly returns from

1985 to 1998; the Salomon Brothers bond index and S&P 500 index respectively).

Specifically, the auto regression model is

{
st = 0.037 − 0.193st−1 + 0.418bt−1 − 0.172st−2 + 0.517bt−2 + εt ,

bt = 0.007 − 0.140st−1 + 0.175bt−1 − 0.023st−2 + 0.122bt−2 + ηt ,

where the pair (εt , ηt ) characterizes uncertainty. The scenarios are generated by

selecting 20 pairs of (εt , ηt ) to estimate the empirical distribution of one period

uncertainty. In this way, a scenario tree with 160 000 (= 20 × 20 × 20 × 20) paths

describing possible outcomes of asset returns is generated for the four periods.

The resulting large-scale linear program is solved. When this linear program is

solved for a risk aversion of μ = 2.5, the value of the terminal portfolio is always
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Table 18.1 A typical portfolio

Portfolio value
Cash Stocks Bonds at end of period

100
Period 1 12% 18% 70 % 103

2 41% 59% 107
3 70% 30% 112
4 30% 70% 114

at least 4.6% more than the initial portfolio wealth and the distribution of terminal

portfolio values is skewed to larger values because of dynamic downside risk con-

trol. The expected return is 16.33% and the volatility is 7.2%. It is interesting to

compare these values with those obtained from a static Markowitz model, which

gives an expected return of 15.4% for the same volatility but no guaranteed mini-

mum return! In fact, in some scenarios, the value of the Markowitz portfolio is 5%

less at the end of the one-year horizon than it was at the beginning.

It is also interesting to look at an example of a typical portfolio (one of the

160 000 paths) generated by the synthetic option model (the linear program was

set up with an upper bound of 70% placed on the fraction of stocks or bonds in the

portfolio); see Table 18.1.

Exercise 18.2 Computational exercise: Develop a synthetic option model in the

spirit of that used by Zhao and Ziemba, adapted to the size limitation of your linear

programming solver. Compare with a static model.

18.3 Case study: option pricing with transaction costs

A European call option on a stock with maturity T and strike price X gives the right

to buy the stock at price X at time T . The holder of the option will not exercise this

option if the stock has a price S lower than X at time T . Therefore, the value of a

European call option is max(S − X, 0). Since S is random, the question of pricing

the option correctly is of interest. The Black–Scholes–Merton option-pricing model

relates the price of an option to the volatility of the stock return. The assumptions are

that the market is efficient and that the returns are lognormal. From the volatility

σ of the stock return, one can compute the option price for any strike price X .

Conversely, from option prices one can compute the implied volatility σ . For a

given stock, options with different strike prices should lead to the same σ (if the

assumptions of the Black–Scholes–Merton model are correct).

The aim of the model developed in this section is to examine the extent to which

market imperfections can explain the deviation of observed option prices from the

Black–Scholes–Merton option-pricing model. One way to measure the deviation
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of the Black–Scholes–Merton model from observed option prices is through the

“volatility smile”: for a given maturity date, the implied volatility of a stock com-

puted by the Black–Scholes–Merton model from observed option prices at different

strike prices is typically not constant, but instead often exhibits a convex shape as

the strike price increases (the “smile”). One explanation for the deviation is that

the smile occurs because the Black–Scholes–Merton model assumes the ability

to rebalance portfolios without costs imposed either by the inability to borrow or

due to a bid–ask spread or other trading costs. Here we will look at the effect of

transaction costs on option prices.

The derivation of the Black–Scholes–Merton formula is through a replicating

portfolio containing the stock and a riskless bond. If the market is efficient, we

should be able to replicate the option payoff at time T by rebalancing the port-

folio between now and time T , as the stock price evolves. Rather than work with

a continuous-time model, we discretize this process. This discretization is called

the binomial approximation to the Black–Scholes–Merton option-pricing model.

In this model, we specify a time period � between trading opportunities and pos-

tulate the behavior of stock and bond prices along successive time periods. The

binomial model assumes that in between trading periods, only two possible stock

price movements are possible.

1. There are N stages in the tree, indexed 0, 1 . . . , N , where stage 0 is the root of the tree

and stage N is the last stage. If we divide the maturity date T of an option by N , we get

that the length of a stage is � = T/N .

2. Label the initial node k0.

3. For a node k �= k0, let k− be the node that is the immediate predecessor of k.

4. Let S(k) be the stock price at node k and let B(k) be the bond price at node k.

5. We assume that the interest rate is fixed at the annualized rate r so that B(k) = B(k−)er�.

6. Letting σ denote the volatility of the stock return, we use the standard parametrization

u = eσ
√

� and d = 1/u. So S(k) = S(k−)eσ
√

� if an uptick occurs from k− to k and

S(k) = S(k−)e−σ
√

� if a downtick occurs.

7. Let n(k) be the quantity of stocks at node k and let m(k) be the quantity of bonds at k.

18.3.1 The standard problem

In the binomial model, we have dynamically complete markets. This means that

by trading the stock and the bond dynamically, we can replicate the payoffs (and

values) from a call option. The option value is simply the cost of the replicating

portfolio, and the replicating portfolio is self-financing after the first stage. This

means that after we initially buy the stock and the bond, all subsequent trades do

not require any additional money and, at the last stage, we reproduce the payoffs

from the call option.
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Therefore, we can represent the option-pricing problem as the following linear

program. Choose quantities n(k) of the stock, quantities m(k) of the bond at each

nonterminal node k to

min n(k0)S(k0) + m(k0)B(k0)

subject to

rebalancing constraints: n(k−)S(k) + m(k−)B(k) ≥ n(k)S(k) + m(k)B(k)

for every node k �= k0,

replication constraints: n(k−)S(k) + m(k−)B(k) ≥ max(S(k) − X, 0)

for every terminal node k,

(18.3)

where k− denotes the predecessor of k.

Note that we do not impose nonnegativity constraints since we will typically

have a short position in the stock or bond.

Exercise 18.3 For a nondividend paying stock, collect data on four or five call

options for the nearest maturity (but at least one month). Calculate the implied

volatility for each option. Solve the standard problem (18.3) when the number of

stages is seven using the implied volatility of the at-the-money option to construct

the tree.

18.3.2 Transaction costs

To model transaction costs, we consider the simplest case where there are no costs

of trading at the initial and terminal nodes, but there is a bid–ask spread on stocks

at other nodes. So assume that if you buy a stock at node k, you pay S(k)(1 + θ ),

while if you sell a stock, you receive S(k)(1 − θ ). This means that the rebalancing

constraint becomes

n(k−)S(k) + m(k−)B(k) ≥ n(k)S(k) + m(k)B(k) + |n(k) − n(k−)|θ S(k).

As there is an absolute value in this constraint, it is not linear. However, it can

be linearized as follows. Define two nonnegative variables:

x(k) = number of stocks bought at node k, and

y(k) = number of stocks sold at node k.

The rebalancing constraint now becomes

n(k−)S(k) + m(k−)B(k) ≥ n(k)S(k) + m(k)B(k) + (x(k) + y(k))θ S(k),

n(k) − n(k−) = x(k) − y(k),

x(k) ≥ 0, y(k) ≥ 0.
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Note that this constraint leaves the possibility of simultaneously buying and

selling stocks at the same node. But obviously this cannot improve the objective

function that we minimize in (18.3), so we do not need to impose a constraint to

prevent it.

The modified formulation is

min n(k0)S(k0) + m(k0)B(k0)

subject to

rebalancing constraints: n(k−)S(k) + m(k−)B(k) ≥ n(k)S(k) + m(k)B(k)

+ (x(k) + y(k))θ S(k) for every node k �= k0,

n(k) − n(k−) = x(k) − y(k) for every node k �= k0,

replication constraints: n(k−)S(k) + m(k−)B(k) ≥ max(S(k) − X, 0)

for every terminal node k,

nonnegativity: x(k) ≥ 0, y(k) ≥ 0 for every node k �= k0.

(18.4)

Exercise 18.4 Repeat Exercise 18.3 allowing for transaction costs, with different

values of θ , to see if the volatility smile can be explained by transaction costs.

Specifically, given a value for σ and for θ , calculate option prices and see how they

match up to observed prices. Try θ = 0.001, 0.005, 0.01, 0.02, 0.05.
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Robust optimization: theory and tools

19.1 Introduction to robust optimization

In many optimization models the inputs to the problem are not known at the time

the problem must be solved, are computed inaccurately, or are otherwise uncertain.

Since the solutions obtained can be quite sensitive to these inputs, one serious

concern is that we are solving the wrong problem, and that the solution we find is

far from optimal for the correct problem.

Robust optimization refers to the modeling of optimization problems with data

uncertainty to obtain a solution that is guaranteed to be “good” for all or most

possible realizations of the uncertain parameters. Uncertainty in the parameters is

described through uncertainty sets that contain many possible values that may be

realized for the uncertain parameters. The size of the uncertainty set is determined

by the level of desired robustness.

Robust optimization can be seen as a complementary alternative to sensitivity

analysis and stochastic programming. Robust optimization models can be especially

useful in the following situations:

� Some of the problem parameters are estimates and carry estimation risk.
� There are constraints with uncertain parameters that must be satisfied regardless of the

values of these parameters.
� The objective function or the optimal solutions are particularly sensitive to perturbations.
� The decision-maker cannot afford to take low-probability but high-magnitude risks.

Recall from Chapter 1 that there are different definitions and interpretations of

robustness; the resulting models and formulations differ accordingly. In particular,

we can distinguish between constraint robustness and objective robustness. In the

first case, data uncertainty puts the feasibility of potential solutions at risk. In the

second, feasibility constraints are fixed and the uncertainty of the objective function

affects the proximity of the generated solutions to optimality.

292
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Both the constraint and objective robustness models we considered in the in-

troduction have a worst-case orientation. That is, we try to optimize the behavior

of the solutions under the most adverse conditions. Following Kouvelis and Yu

[47], we call solutions that optimize the worst-case behavior under uncertainty

absolute-robust solutions. While such conservatism is necessary in some optimiza-

tion settings, it may not be desirable in others. Absolute robustness is not always

consistent with a decision-theoretic approach and with common utility functions.

An alternative is to seek robustness in a relative sense.

In uncertain decision environments, people whose performance is judged relative

to their peers will want to make decisions that avoid falling severely behind their

competitors under all scenarios rather than protecting themselves against the worst-

case scenarios. For example, a portfolio manager will be considered successful in

a down market as long as she loses less than her peers or a benchmark. These

considerations motivate the concept of relative robustness, which we discuss in

Section 19.3.3.

Another variant of the robust optimization models called adjustable-robust op-
timization is attractive in multi-period models. To motivate these models one can

consider a multi-period uncertain optimization problem where uncertainty is re-

solved progressively through periods. We assume that a subset of the decision

variables can be chosen after these parameters are observed in a way to correct

the sub-optimality of the decisions made with less information in earlier stages. In

spirit, these models are closely related to two- (or multi-)stage stochastic program-

ming problems with recourse. They were introduced by Guslitzer and co-authors

[6, 37] and we summarize this approach in Section 19.3.4.

Each different interpretation of robustness and each different description of

uncertainty leads to a different robust optimization formulation. These robust

optimization problems often are or at least appear to be more difficult than their

nonrobust counterparts. Fortunately, many of them can be reformulated in a tractable

manner. While it is difficult to expect a single approach to handle each one of the

different variations in a unified manner, a close study of the existing robust op-

timization formulations reveals many common threads. In particular, methods of

conic optimization appear frequently in the solution of robust optimization prob-

lems. We review some of the most commonly used reformulation techniques used

in robust optimization at the end of the chapter.

19.2 Uncertainty sets

In robust optimization, the description of the uncertainty of the parameters is for-

malized via uncertainty sets. Uncertainty sets can represent or may be formed by dif-

ferences of opinions on future values of certain parameters, alternative estimates of
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parameters generated via statistical techniques from historical data and/or Bayesian

techniques, among other things.

Common types of uncertainty sets encountered in robust optimization models

include the following:

� Uncertainty sets representing a finite number of scenarios generated for the possible

values of the parameters:

U = {p1, p2, . . . , pk}.
� Uncertainty sets representing the convex hull of a finite number of scenarios generated for

the possible values of the parameters (these are sometimes called polytopic uncertainty

sets):

U = conv(p1, p2, . . . , pk).

� Uncertainty sets representing an interval description for each uncertain parameter:

U = {p : l ≤ p ≤ u}.
Confidence intervals encountered frequently in statistics can be the source of such un-

certainty sets.
� Ellipsoidal uncertainty sets:

U = {p : p = p0 + Mu, ‖u‖ ≤ 1}
These uncertainty sets can also arise from statistical estimation in the form of confidence
regions, see [30]. In addition to their mathematically compact description, ellipsoidal

uncertainty sets have the nice property that they smoothen the optimal value function

[73].

It is a non-trivial task to determine the uncertainty set that is appropriate for

a particular model as well as the type of uncertainty sets that lead to tractable

problems. As a general guideline, the shape of the uncertainty set will often depend

on the sources of uncertainty as well as the sensitivity of the solutions to these

uncertainties. The size of the uncertainty set, on the other hand, will often be

chosen based on the desired level of robustness.

When uncertain parameters reflect the “true” values of moments of random vari-

ables, as is the case in mean-variance portfolio optimization, we simply have no

way of knowing these unobservable true values exactly. In such cases, after making

some assumptions about the stationarity of these random processes we can gen-

erate estimates of these true parameters using statistical procedures. Goldfarb and

Iyengar, for example, show that if we use a linear factor model for the multivariate

returns of several assets and estimate the factor loading matrices via linear regres-

sion, the confidence regions generated for these parameters are ellipsoidal sets,

and they advocate their use in robust portfolio selection as uncertainty sets [30].
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To generate interval-type uncertainty sets, Tütüncü and Koenig use bootstrapping

strategies as well as moving averages of returns from historical data [80]. The shape

and the size of the uncertainty set can significantly affect the robust solutions gen-

erated. However, with few guidelines backed by theoretical and empirical studies,

their choice remains an art form at the moment.

19.3 Different flavors of robustness

In this section we discuss each one of the robust optimization models we mentioned

above in more detail. We start with constraint robustness.

19.3.1 Constraint robustness

One of the most important concepts in robust optimization is constraint robustness.

This refers to situations where the uncertainty is in the constraints and we seek

solutions that remain feasible for all possible values of the uncertain inputs. This

type of solution is required in many engineering applications. Typical instances

include multi-stage problems where the uncertain outcomes of earlier stages have

an effect on the decisions of the later stages and the decision variables must be

chosen to satisfy certain balance constraints (e.g., inputs to a particular stage can

not exceed the outputs of the previous stage) no matter what happens with the

uncertain parameters of the problem. Therefore, our solution must be constraint

robust with respect to the uncertainties of the problem. We present a mathematical

model for finding constraint-robust solutions. Consider an optimization problem of

the form:

minx f (x)

G(x, p) ∈ K ,
(19.1)

where x are the decision variables, f is the (certain) objective function, G and K are

the structural elements of the constraints that are assumed to be certain, and p are

the possibly uncertain parameters of the problem. Consider an uncertainty setU that

contains all possible values of the uncertain parameters p. Then, a constraint-robust

optimal solution can be found by solving the following problem:

minx f (x)

G(x, p) ∈ K , ∀p ∈ U .
(19.2)

As (19.2) indicates, the robust feasible set is the intersection of the feasible sets

S(p) = {x : G(x, p) ∈ K } indexed by the uncertainty set U . We illustrate this in

Figure 19.1 for an ellipsoidal feasible set with U = {p1, p2, p3, p4}, where pi

correspond to the uncertain center of the ellipse.
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Robust feasible set

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

S (p
1
)

S (p
2
) S (p

3
)

S (p
4
)

Figure 19.1 Constraint robustness

There are no uncertain parameters in the objective function of the problem (19.2).

This, however, is not a restrictive assumption. An optimization problem with un-

certain parameters in both the objective function and constraints can be easily

reformulated to fit the form in (19.2). In fact,

minx f (x, p)

G(x, p) ∈ K
(19.3)

is equivalent to the problem:

mint,x t
t − f (x, p) ≥ 0,

G(x, p) ∈ K .

(19.4)

This last problem has all its uncertainties in its constraints.

Exercise 19.1 Show that if S(p) = {x : G(x, p) ∈ K } is convex for all p, then

the robust feasible set S := ⋂
p∈U S(p) is also convex. If S(p) is polyhedral for all

p, is S necessarily polyhedral?

19.3.2 Objective robustness

Another important robustness concept is objective robustness. This refers to solu-

tions that will remain close to optimal for all possible realizations of the uncertain

problem parameters. Since such solutions may be difficult to obtain, especially when

uncertainty sets are relatively large, an alternative goal for objective robustness is to
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Figure 19.2 Objective robustness

find solutions whose worst-case behavior is optimized. The worst-case behavior of

a solution corresponds to the value of the objective function for the worst possible

realization of the uncertain data for that particular solution.

We now develop a mathematical model that addresses objective robustness.

Consider an optimization problem of the form:

minx f (x, p)

x ∈ S,
(19.5)

where S is the (certain) feasible set and f is the objective function that depends on

uncertain parameters p. As before, U denotes the uncertainty set that contains all

possible values of the uncertain parameters p. Then, an objective-robust solution

can be obtained by solving:

minx∈S maxp∈U f (x, p). (19.6)

We illustrate the objective robustness problem (19.6) in Figure 19.2. In this example,

the feasible set S is the real line, the uncertainty set is U = {p1, p2, p3, p4, p5}, and

the objective function f (x, pi ) is a convex quadratic function whose parameters pi

determine its shape. Note that the robust minimizer is different from the minimizers

of each f (x, pi ), which are denoted by x∗
i in the figure. In fact, none of the x∗

i ’s is

particularly close to the robust minimizer.

As the argument at the end of the previous subsection shows, objective robust-

ness can be seen as a special case of constraint robustness via a reformulation.

However, it is important to distinguish between these two problem variants as their
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“natural” robust formulations lead to two different classes of optimization formula-

tions, namely semi-infinite and min-max optimization problems respectively. This

way, different methodologies available for these two problem classes can be readily

used for respective problems.

Exercise 19.2 In Chapter 8, for a given constant λ, expected return vector μ, and

a positive definite covariance matrix � we considered the following mean-variance

optimization problem:

max
x∈X

μTx − λxT�x, (19.7)

where X = {x : eTx = 1} with e = [1 1 . . . 1]T. Here, we consider the situation

where we assume � to be certain and given but μ is assumed to be uncertain. For a

fixed μ let z(μ) represent the optimal value of this problem. Determine z(μ) as an

explicit function of μ. Verify that z(μ) is a quadratic function. Is it convex? Let U
represent the uncertainty set for μ and formulate the objective robustness problem.

19.3.3 Relative robustness

The focus of constraint and objective robustness models on an absolute measure of

worst-case performance is not consistent with the risk tolerances of many decision-

makers. Instead, we may prefer to measure the worst case in a relative manner,

relative to the best possible solution under each scenario. This leads us to the

notion of relative robustness.

Consider the following optimization problem:

minx f (x, p)

x ∈ S,
(19.8)

where p is uncertain with uncertainty set U . To simplify the description, we restrict

our attention to the case with objective uncertainty and assume that the constraints

are certain.

Given a fixed p ∈ U , let z∗(p) denote the optimal-value function, i.e.,

z∗(p) = min
x

f (x, p) s.t. x ∈ S.

Furthermore, we define the optimal-solution map:

x∗(p) = arg min
x

f (x, p) s.t. x ∈ S.

Note that z∗(p) can be extended-valued and x∗(p) can be set-valued.

To motivate the notion of relative robustness we first define a measure of regret
associated with a decision after the uncertainty is resolved. If we choose x as our

vector and p is the realized value of the uncertain parameter, the regret associated
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with choosing x instead of an element of x∗(p) is defined as:

r (x, p) = f (x, p) − z∗(p) = f (x, p) − f (x∗(p), p). (19.9)

Note that the regret function is always nonnegative and can also be regarded as a

measure of the “benefit of hindsight.”

Now, for a given x in the feasible set we consider the maximum-regret function:

R(x) := max
p∈U

r (x, p) = max
p∈U

f (x, p) − f (x∗(p), p). (19.10)

A relative-robust solution to problem (19.8) is a vector x that minimizes the

maximum regret:

min
x∈S

max
p∈U

f (x, p) − z∗(p). (19.11)

While they are intuitively attractive, relative-robust formulations can also be

significantly more difficult than the standard absolute-robust formulations. Indeed,

since z∗(p) is the optimal-value function and involves an optimization problem

itself, problem (19.11) is a three-level optimization problem as opposed to the two-

level problems in absolute-robust formulations. Furthermore, the optimal-value

function z∗(p) is rarely available in analytic form, is typically nonsmooth and is

often hard to analyze. Another difficulty is that, if f is linear in p as is often the

case, then z∗(p) is a concave function. Therefore, the inner maximization problem

in (19.11) is a convex maximization problem and is difficult for most U .

A simpler variant of (19.11) can be constructed by deciding on the maximum

level of regret to be tolerated beforehand and by solving a feasibility problem

instead with this level imposed as a constraint. For example, if we decide to limit

the maximum regret to R, the problem to solve becomes the following: find an x
satisfying G(x) ∈ K such that

f (x, p) − z∗(p) ≤ R, ∀p ∈ U .

If desired, one can then use bi-section on R to find its optimal value.

Another variant of relative robustness models arises when we measure the regret

in terms of the proximity of our chosen solution to the optimal solution set rather

than in terms of the optimal objective values. For this model, consider the following

distance function for a given x and p:

d(x, p) = inf
x∗∈x∗(p)

‖x − x∗‖. (19.12)

When the solution set is a singleton, there is no optimization involved in the defi-

nition. As above, we then consider the maximum-distance function:

D(x) := max
p∈U

d(x, p) = max
p∈U

inf
x∗∈x∗(p)

‖x − x∗‖. (19.13)
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For relative robustness in this new sense, we seek x such that

min
x∈S

max
p∈U

d(x, p). (19.14)

This variant is an attractive model for cases where we have time to revise our

decision variables x , perhaps only slightly, once p is revealed. In such cases, we

will want to choose an x that will not need much perturbation under any scenario,

i.e., we seek the solution to (19.14). This model can also be useful for multi-period

problems where revisions of decisions between periods can be costly. Portfolio

rebalancing problems with transaction costs are examples of such settings.

Exercise 19.3 Formulate the relative robustness formulation for the optimiza-

tion problem discussed in Exercise 19.2 . Comment on the consequences of the

convexity of the function z∗(μ). Show that the relative robustness problems for

U = {p1, p2, . . . , pk} and U = conv(p1, p2, . . . , pk) are equivalent.

Exercise 19.4 Recall the setting in Exercise 19.2 . Let x∗(μ) denote the unique

optimal solution of the problem for a given μ and obtain an explicit expression

for x∗(μ). Using this expression, formulate the variant of the relative robustness

problem given in (19.14).

19.3.4 Adjustable robust optimization

Robust optimization formulations we saw above assume that the uncertain pa-

rameters will not be observed until all the decision variables are determined and

therefore do not allow for recourse actions that may be based on realized values of

some of these parameters. This is not always the appropriate model for uncertain op-

timization problems. In particular, multi-period decision models involve uncertain

parameters, some of which are revealed during the decision process. After observ-

ing these parameters, later stage decisions can respond to this new information

and can correct any sub-optimality resulting from less desirable outcomes in the

uncertain parameters. Adjustable robust optimization (ARO) formulations model

these decision environment and allow recourse action. These models are closely

related to, and in fact, partly inspired by the multi-stage stochastic programming

formulations with recourse.

ARO models were recently introduced in [6, 37] for uncertain linear program-

ming problems. Consider, for example, the two-stage linear optimization problem

given below whose first-stage decision variables x1 need to be determined now,

while the second-stage decision variables x2 can be chosen after the uncertain

parameters of the problem A1, A2, and b are realized:

min
x1,x2

{cTx1 : A1x1 + A2x2 ≤ b}. (19.15)
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Note that the second-stage variables x2 do not appear in the objective function –

this is what Ben-Tal et al. call the “normalized” form of the problem [6]. Problems

with objective functions involving variables x2 can be reformulated as in (19.15)

after introducing an artificial variable; see Exercise 19.5 . Therefore, we can focus

on this simpler and convenient form without loss of generality.

Let U denote the uncertainty set for parameters A1, A2, and b. The standard

constraint-robust optimization formulation for this problem seeks to find vectors x1

and x2 that optimize the objective function and satisfy the constraints of the problem

for all possible realizations of the constraint coefficients. In this formulation, both

sets of variables must be chosen before the uncertain parameters can be observed

and therefore cannot depend on these parameters. Consequently, the standard robust

counterpart of this problem can be written as follows:

min
x1

{cTx1 : ∃x2 ∀(A1, A2, b) ∈ U : A1x1 + A2x2 ≤ b}. (19.16)

Note that this formulation is equivalent to the formulation we saw before, i.e.,

min
x1,x2

{cTx1 : A1x1 + A2x2 ≤ b, ∀(A1, A2, b) ∈ U}. (19.17)

We prefer (19.16) since it illustrates the difference between this formulation and

the adjustable version more clearly.

In contrast, the adjustable robust optimization formulation allows the choice of

the second-period variables x2 to depend on the realized values of the uncertain pa-

rameters. As a result, the adjustable robust counterpart problem is given as follows:

min
x1

{cTx1 : ∀(A1, A2, b) ∈ U, ∃x2 ≡ x2(A1, A2, b) : A1x1 + A2x2 ≤ b}.
(19.18)

The feasible set of the second problem is larger than that of the first problem in

general and, therefore, the model is more flexible. ARO models can be especially

useful when robust counterparts are unnecessarily conservative. The price to pay

for this additional modeling flexibility appears to be the increased difficulty of

the resulting ARO formulations. Even for problems where the robust counterpart is

tractable, it can happen that the ARO formulation leads to an NP-hard problem. One

of the factors that contribute to the added difficulty in ARO models is the fact that

the feasible set of the recourse actions (second-period decisions) depends not only

on the realization of the uncertain parameters but also the first-period decisions.

One way to overcome this difficulty is to consider simplifying assumptions either on

the uncertainty set, or on the dependence structure of recourse actions to uncertain

parameters. For example, if the recourse actions are restricted to be affine functions

of the uncertain parameters. While this restriction will likely give us suboptimal

solutions, it may be the only strategy to obtain tractable formulations.
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Exercise 19.5 Consider the following adjustable robust optimization problem:

min
x1

{
cT

1 x1 + cT
2 x2 : ∀(A1, A2, b) ∈ U, ∃x2 ≡ x2(A1, A2, b) : A1x1 + A2x2 ≤ b

}
.

Show how this problem can be expressed in the “normalized” form (19.18) after

introducing an artificial variable.

19.4 Tools and strategies for robust optimization

In this section we review a few of the commonly used techniques for the solution

of robust optimization problems. The tools we discuss are essentially reformula-

tion strategies for robust optimization problems so that they can be rewritten as a

deterministic optimization problem with no uncertainty. In these reformulations,

we look for economy so that the new formulation is not much bigger than the orig-

inal, “uncertain” problem and tractability so that the new problem can be solved

efficiently using standard optimization methods.

The variety of the robustness models and the types of uncertainty sets rule out

a unified approach. However, there are some common threads and the material in

this section can be seen as a guide to the available tools, which can be combined or

appended with other techniques to solve a given problem in the robust optimization

setting.

19.4.1 Sampling

One of the simplest strategies for achieving robustness under uncertainty is to

sample several scenarios for the uncertain parameters from a set that contains

possible values of these parameters. This sampling can be done with or without using

distributional assumptions on the parameters and produces a robust optimization

formulation with a finite uncertainty set.

If uncertain parameters appear in the constraints, we create a copy of each such

constraint corresponding to each scenario. Uncertainty in the objective function

can be handled in a similar manner. Recall, for example, the generic uncertain

optimization problem given in (19.3):

minx f (x, p)

G(x, p) ∈ K
(19.19)

If the uncertainty set U is a finite set, i.e., U = {p1, p2, . . . , pk}, the robust formu-

lation is obtained as follows:

mint,x t
t − f (x, pi ) ≥ 0, i = 1, . . . , k,

G(x, pi ) ∈ K , i = 1, . . . , k.

(19.20)
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Note that no reformulation is necessary in this case and the duplicated constraints

preserve the structural properties (linearity, convexity, etc.) of the original con-

straints. Consequently, when the uncertainty set is a finite set the resulting robust

optimization problem is larger but theoretically no more difficult than the non-

robust version of the problem. The situation is somewhat similar to stochastic

programming formulations. Examples of robust optimization formulations with

finite uncertainty sets can be found, e.g., in the recent book by Rustem and

Howe [70].

19.4.2 Conic optimization

Moving from finite uncertainty sets to continuous sets such as intervals or ellipsoids

presents a theoretical challenge. The robust version of an uncertain constraint that

has to be satisfied for all values of the uncertain parameters in a continuous set results

in a semi-infinite optimization formulation. These problems are called semi-infinite

since there are infinitely many constraints – indexed by the uncertainty set – but

only finitely many variables.

Fortunately, it is possible to reformulate certain semi-infinite optimization prob-

lems using a finite set of conic constraints. Such reformulations were already in-

troduced in Chapter 9. We recall two constraint robustness examples from that

chapter:

� The robust formulation for the linear programming problem

min cTx
s.t. aTx + b ≥ 0,

(19.21)

where the uncertain parameters [a; b] belong to the ellipsoidal uncertainty set

U = {[a; b] = [a0; b0] +
k∑

j=1

u j [a
j ; b j ], ‖u‖ ≤ 1},

is equivalent to the following second-order cone program:

minx,z cTx
s.t. aT

j x + b j = z j , j = 0, . . . , k,

(z0, z1, . . . , zk) ∈ Cq

where Cq is the second-order cone defined in (9.2).
� The robust formulation for the quadratically constrained optimization problem

min cTx
s.t. −xT(AT A)x + 2bTx + γ ≥ 0,

(19.22)
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where the uncertain parameters [A; b; γ ] belong to the ellipsoidal uncertainty set

U =
{

[A; b; γ ] = [A0; b0; γ 0] +
k∑

j=1

u j [A j ; b j ; γ j ], ‖u‖ ≤ 1

}
,

is equivalent to the following semidefinite program:

min
x,z0,...,zk ,y,λ

cTx

s.t. A j x = z j , j = 0, . . . , k,

(b j )Tx = y j , j = 0, . . . , k,

λ ≥ 0,⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ 0 + 2y0 − λ
[

y1 + 1
2
γ 1 · · · yk + 1

2
γ k

]
(z0)T

⎡
⎢⎣

y1 + 1
2
γ 1

...

yk + 1
2
γ k

⎤
⎥⎦ λI

⎡
⎢⎣

(z1)T

...

(zk )T

⎤
⎥⎦

z0 [ z1 · · · zk ] I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦


 0.

Exercise 19.6 Consider a simple, two-variable LP with nonnegative variables and

a single uncertain constraint a1x1 + a2x2 + b ≥ 0, where [a1, a2, b] belongs to the

following uncertainty set:

U =
{

[a1, a2, b]: [a1, a2, b] = [1, 1, 1] + u1

[
1

2
, 0, 0

]
+ u2

[
0,

1

3
, 0

]
, ‖u‖ ≤ 1

}
.

Determine the robust formulation of this constraint and the projection of the robust

feasible set to the (x1, x2) space. Try to approximate this set using the sampling

strategy outlined above. Comment on the number of samples required until the

approximate robust feasible set is a relatively good approximation of the true robust

feasible set.

Exercise 19.7 When A = 0 for the quadratically constrained problem (19.22)

above, the problem reduces to a linearly constrained problem. Verify that when

A j = 0 for all j = 0, 1, . . . , k in the uncertainty set U , the robust formulation of

this problem reduces to the robust formulation of the linearly constrained problem.

Exercise 19.8 Note that the quadratically constrained optimization problem given

above can alternatively be parameterized as follows:

min cTx
s.t. −xT�x + 2bTx + γ ≥ 0,

where we used a positive semidefinite matrix � instead of AT A in the constraint

definition. How can we define an ellipsoidal uncertainty set for this parameterization
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of the problem? What are the potential advantages and potential problems with using

this parameterization?

19.4.3 Saddle-point characterizations

For the solution of problems arising from objective uncertainty, the robust solu-

tion can be characterized using saddle-point conditions when the original problem

satisfies certain convexity assumptions. The benefit of this characterization is that

we can then use algorithms such as interior-point methods already developed and

available for saddle-point problems.

As an example of this strategy consider the problem (19.5) from Section 19.3.2

and its robust formulation reproduced below:

minx∈S max p∈U f (x, p). (19.23)

We note that the dual of this robust optimization problem is obtained by changing

the order of the minimization and maximization problems:

max
p∈U

min
x∈S

f (x, p). (19.24)

From standard results in convex analysis we have the following conclusion:

Lemma 19.1 If f (x, p) is a convex function of x and a concave function of p, and
if S and U are nonempty and at least one of them is bounded, the optimal values of
the problems (19.23) and (19.24) coincide and there exists a saddle point (x∗, p∗)

such that

f (x∗, p) ≤ f (x∗, p∗) ≤ f (x, p∗), ∀x ∈ S, p ∈ U .

This characterization is the basis of the robust optimization algorithms given in

[38, 80].
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Robust optimization models in finance

As we discussed in the previous chapter, robust optimization formulations address

problems with input uncertainty. Since many financial optimization problems in-

volve future values of security prices, interest rates, exchange rates, etc. which

are not known in advance but can only be forecasted or estimated, such prob-

lems fit perfectly into the framework of robust optimization. In this chapter, we

give examples of robust optimization formulations for a variety of financial opti-

mization problems including portfolio selection, risk management, and derivatives

pricing/hedging.

We start with the application of constraint-robust optimization approach to a

multi-period portfolio selection problem:

20.1 Robust multi-period portfolio selection

This section is adapted from an article by Ben-Tal et al. [7]. We consider an investor

who currently holds the portfolio x0 = (x0
1 , . . . , x0

n ), where x0
i denotes the number

of shares of asset i in the portfolio, for i = 1, . . . , n. Also, let x0
0 denote her cash

holdings. She wants to determine how to adjust her portfolio in the next L investment

periods to maximize her total wealth at the end of period L .

We use the following decision variables to model this multi-period portfolio

selection problem: bl
i denotes the number of additional shares of asset i bought

at the beginning of period l and sl
i denotes the number of asset i shares sold at

the beginning of period l, for i = 1, . . . , n and l = 1, . . . , L . Then, the number of

shares of asset i in the portfolio at the beginning of period l, denoted xl
i , is given

by the following simple equation:

xl
i = xl−1

i − sl
i + bl

i , i = 1, . . . , n, l = 1, . . . , L . (20.1)

Let Pl
i denote the price of a share of asset i in period l. We make the assumption

that the cash account earns no interest so that Pl
0 = 1, ∀l. This is not a restrictive

306
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assumption – we can always reformulate the problem in this way after a change of

numeraire.

We assume that proportional transaction costs are paid on asset purchases and

sales and denote them with αl
i and βl

i for sales and purchases, respectively, for

asset i and period l. We assume that αl
i ’s and βl

i ’s are all known at the beginning

of period 0, although they can vary from period to period and from asset to asset.

Transaction costs are paid from the investor’s cash account and, therefore, we have

the following balance equation for the cash account:

xl
0 = xl−1

0 +
n∑

i=1

(1 − αi )Pl
i sl

i −
n∑

i=1

(1 + βi )Pl
i bl

i , l = 1, . . . , L .

This balance condition indicates that the cash available at the beginning of period

l is the sum of last period’s cash holdings and the proceeds from sales (discounted

by transaction costs) minus the cost of new purchases. For technical reasons, we

will replace the equation above with an inequality, effectively allowing the investor

to “burn” some of her cash if she wishes to:

xl
0 ≤ xl−1

0 +
n∑

i=1

(1 − αi )Pl
i sl

i −
n∑

i=1

(1 + βi )Pl
i bl

i , l = 1, . . . , L .

The objective of the investor is to maximize her total wealth at the end of period

L . This objective can be represented as follows:

max
n∑

i=0

P L
i x L

i .

If we assume that all the future prices Pl
i are known at the time this invest-

ment problem is to be solved, we obtain the following deterministic optimization

problem:

maxx,s,b
∑n

i=0 P L
i x L

i

xl
0 ≤ xl−1

0 + ∑n
i=1(1 − αi )Pl

i sl
i − ∑n

i=1(1 + βi )Pl
i bl

i ,

xl
i = xl−1

i − sl
i + bl

i , i = 1, . . . , n,

sl
i ≥ 0, i = 1, . . . , n,

bl
i ≥ 0, i = 1, . . . , n,

xl
i ≥ 0, i = 0, . . . , n,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

l = 1, . . . , L .

(20.2)

This is a linear programming problem that can be solved easily using the simplex

method or interior-point methods. The nonnegativity constraints imposed by Ben-

Tal et al. [7] on xl
i ’s disallow short positions and borrowing. We note that these

constraints are not essential to the model and some or all of them can be removed



308 Robust optimization models in finance

to allow short sales on a subset of the assets or to allow borrowing. Observe that the

investor would, of course, never choose to burn money if she is trying to maximize

her final wealth. Therefore, the cash balance inequalities will always be satisfied

with equality in any optimal solution of this problem.

In a realistic setting, we do not know the Pl
i ’s in advance and therefore cannot

solve the optimal portfolio allocation problem as the linear program we developed

above. Instead, we will develop a robust optimization model that incorporates the

uncertainty in the Pl
i ’s in (20.2). This is an alternative approach to the stochastic

programming models discussed in Chapter 18. Since the objective function involves

uncertain parameters P L
i , we first reformulate the problem as in (19.4) to move all

the uncertainty to the constraints:

maxx,s,b,t t

t ≤ ∑n
i=0 P L

i x L
i

xl
0 ≤ xl−1

0 + ∑n
i=1(1 − αi )Pl

i sl
i − ∑n

i=1(1 + βi )Pl
i bl

i ,

xl
i = xl−1

i − sl
i + bl

i , i = 1, . . . , n,

sl
i ≥ 0, i = 1, . . . , n,

bl
i ≥ 0, i = 1, . . . , n,

xl
i ≥ 0, i = 0, . . . , n,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

l = 1, . . . , L .
(20.3)

The first two constraints of this reformulation are the constraints that are affected by

uncertainty and we would like to find a solution that satisfies these constraints for

most possible realizations of the uncertain parameters Pl
i . To determine the robust

version of these constraints, we need to choose an appropriate uncertainty set for

these uncertain parameters. For this purpose, we follow a 3-σ approach common

in engineering and statistical applications.

Future prices can be assumed to be random quantities. Let us denote the expected

value of the vector

Pl =

⎡
⎢⎣

Pl
1
...

Pl
n

⎤
⎥⎦

with

μl =

⎡
⎢⎣

μl
1

...

μl
n

⎤
⎥⎦

and its covariance matrix with V l . First, consider the constraint:

t ≤
n∑

i=0

P L
i x L

i .
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Letting x L = (x L
1 , . . . , x L

n ), the expected value and the standard deviation of the

right-hand-side expression are given by x L
0 + (μL )Tx L = x L

0 + ∑n
i=1 μL

i x L
i and√

(x L )TV L x L . If the P L
i quantities are normally distributed, by requiring

t ≤ E(RHS) − 3 STD(RHS) = x L
0 + (μL )Tx L − 3

√
(x L)TV L x L , (20.4)

we would guarantee that the (random) inequality t ≤ ∑n
i=0 P L

i x L
i would be satisfied

more than 99% of the time. Therefore, we regard (20.4) as the “robust” version of

t ≤ ∑n
i=0 P L

i x L
i .

We can apply a similar logic to other constraints affected by uncertainty:

xl
0 − xl−1

0 ≤
n∑

i=1

(1 − αi )Pl
i sl

i −
n∑

i=1

(1 + βi )Pl
i bl

i , l = 1, . . . , L ,

where we moved xl−1
0 to the left-hand side to isolate the uncertain terms on the

right-hand side of the inequality. In this case, the expected value and variance of

the right-hand-side expression are given by the following formulas:

E

[
n∑

i=1

(1 − αi )Pl
i sl

i −
n∑

i=1

(1 + βi )Pl
i bl

i

]
= (μl)T Dl

αsl − (μl)T Dl
βbl

= (μl)T
[

Dl
α −Dl

β

] [
sl

bl

]
,

and

Var

[
n∑

i=1

(1 − αi )Pl
i sl

i −
n∑

i=1

(1 + βi )Pl
i bl

i

]
=

[
sl

bl

]T [
Dl

α

−Dl
β

]
V l

[
Dl

α −Dl
β

] [
sl

bl

]
.

Above, D�
α and D�

β are the diagonal matrices

D�
α :=

⎡
⎢⎣

(
1 − αl

1

)
. . . (

1 − αl
n

)

⎤
⎥⎦ , and D�

β :=

⎡
⎢⎣

(
1 + βl

1

)
. . . (

1 + βl
n

)

⎤
⎥⎦ .

Also, sl = (sl
1, . . . , sl

n)T, and bl = (bl
1, . . . , bl

n)T. Replacing

xl
0 − xl−1

0 ≤
n∑

i=1

(1 − αi )Pl
i sl

i −
n∑

i=1

(1 + βi )Pl
i bl

i , l = 1, . . . , L

with

xl
0 − xl−1

0 ≤ (μl)T
[

Dl
α −Dl

β

] [
sl

bl

]
− 3

√[
sl

bl

]T [
Dl

α

−Dl
β

]
V l

[
Dl

α −Dl
β

] [
sl

bl

]
,

we obtain a “robust” version of the constraint. Once again, assuming normality in

the distribution of the uncertain parameters, by satisfying this robust constraint we
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can guarantee that the original constraint will be satisfied with probability more

than 0.99.

The approach above corresponds to choosing the uncertainty sets for the uncer-

tain parameter vectors Pl in the following manner:

U l := {
Pl :

√
(Pl − μl)T(V l)−1(Pl − μl) ≤ 3

}
, l = 1, . . . , L . (20.5)

The complete uncertainty set U for all the uncertain parameters is the Cartesian

product of the sets U l defined as U = U1 × . . . × U L .

Exercise 20.1 Let U L be as in (20.5). Show that

t ≤
n∑

i=0

P L
i x L

i , ∀P L ∈ U L

if and only if

t ≤ (μL )Tx L − 3
√

(x L)TV L x L .

Thus, our 3-σ approach is equivalent to the robust formulation of this constraint

using an appropriate uncertainty set. Hint: You may first want to show that

U L = {
μL + (V L )1/2u : ‖u‖ ≤ 3

}
.

The resulting problem has nonlinear constraints, because of the square-roots and

quadratic terms within the square roots as indicated in Exercise 20.1. Fortunately,

however, these constraints can be written as second-order cone constraints and

result in a second-order cone optimization problem.

Exercise 20.2 A vector (y0, y1) ∈ IR × IRk belongs to the k + 1 dimensional

second-order cone if it satisfies the following inequality:

y0 ≥ ‖y1‖2.

Constraints of the form above are called second-order cone constraints. Show that

the constraint

t ≤ (μL )Tx L − 3
√

(x L)TV L x L

can be represented as a second-order cone constraint using an appropriate change

of variables. You can assume that V L is a given positive definite matrix.
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20.2 Robust profit opportunities in risky portfolios

Consider an investment environment with n financial securities whose future price

vector r ∈ IRn is a random variable. Let p ∈ IRn represent the current prices of

these securities. Consider an investor who chooses a portfolio x = (x1, . . . , xn),

where xi denote the number of shares of security i in the portfolio. If x satisfies

pTx < 0,

meaning that the portfolio is formed with negative cash flow (by pocketing money),

and if the realization r̃ at the end of the investment period of the random variable

r satisfies

r̃ Tx ≥ 0,

meaning that the portfolio has a nonnegative value at the end, then the investor

would get to keep the money pocketed initially, and perhaps even more. A type-A

arbitrage opportunity would correspond to the situation when the ending portfolio

value is guaranteed to be nonnegative, i.e., when the investor can choose a portfolio

x such that pTx < 0 and

Pr[rTx ≥ 0] = 1. (20.6)

Since arbitrage opportunities generally do not persist in financial markets, one

might be interested in the alternative and weaker profitability notion where the

nonnegativity of the final portfolio is not guaranteed but is highly likely. Consider,

for example, the following relaxation of (20.6):

Pr[r Tx ≥ 0] ≥ 0.99. (20.7)

This approach can be formalized using a similar construction to what we have seen in

Section 20.1. Let μ and � represent the expected future price vector and covariance

matrix of the random vector r . Then, E(rTx) = μTx and STD(rTx) =
√

xT�x .

Exercise 20.3 If r is a Gaussian random vector with mean μ and covariance

matrix �, then show that

Pr[rTx ≥ 0] ≥ 0.99 ⇔ μTx − θ
√

xT�x ≥ 0,

where θ = �−1(0.99) and �−1(·) is the inverse map of standard normal cumulative

distribution function.

As Exercise 20.3 indicates, the inequality (20.6) can be relaxed as

μTx − θ
√

xT�x ≥ 0,
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where θ determines the likelihood of the inequality being satisfied. Therefore, if

we find an x satisfying

μTx − θ
√

xT�x ≥ 0, pTx < 0

for a large enough positive value of θ we have an approximation of an arbitrage

opportunity called a robust profit opportunity in [64]. Note that, by relaxing the

constraint pTx < 0 as pTx ≤ 0 or using pTx ≤ −ε for some ε > 0, we obtain a

conic feasibility system. Therefore, the resulting system can be solved using the

conic optimization approaches. These ideas are explored in detail in [63, 64].

Exercise 20.4 Consider the robust profit opportunity formulation for a given θ :

μTx − θ
√

xT�x ≥ 0, pTx ≤ 0. (20.8)

In this exercise, we investigate the problem of finding the largest θ for which (20.8)

has a solution other than the zero vector. Namely, we want to solve

maxθ,x θ

s.t. μTx − θ
√

xT�x ≥ 0,

pTx ≤ 0.

(20.9)

This problem is no longer a convex optimization problem (why?). However, we

can rewrite the first constraint as

μTx√
xT�x

≥ θ.

Using the strategy we employed in Section 8.2, we can take advantage of the

homogeneity of the constraints in x and impose the normalizing constraint xT�x =
1 to obtain the following equivalent problem:

maxθ,x θ

s.t. μTx − θ ≥ 0,

pTx ≤ 0,

xT�x = 1.

(20.10)

While we got rid of the fractional terms, we now have a nonlinear equality constraint

that creates nonconvexity for the optimization. We can now relax the constraint

xT�x = 1 as xT�x ≤ 1 and obtain a convex optimization problem.

maxθ,x θ

s.t. μTx − θ ≥ 0,

pTx ≤ 0,

xT�x ≤ 1.

(20.11)
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This relaxation can be expressed in conic form and solved using the methods

discussed in Chapter 9. However, (20.11) is not equivalent to (20.9) and its solution

need not be a solution to that problem in general. Find sufficient conditions under

which the optimal solution of (20.11) satisfies xT�x ≤ 1 with equality and therefore

the relaxation is equivalent to the original problem.

Exercise 20.5 Note that the fraction μTx/
√

xT�x in the θ -maximization exercise

above resembles the Sharpe ratio. Assume that one of the assets in consideration

is a riskless asset with a return of r f . Show that the θ -maximization problem is

equivalent to maximizing the Sharpe ratio in this case.

20.3 Robust portfolio selection

This section is adapted from an article by Tütüncü and Koenig [80]. Recall that

Markowitz’ mean-variance optimization problem can be stated in the following

form that combines the reward and risk in the objective function:

max
x∈X

μTx − λxT�x, (20.12)

where μi is an estimate of the expected return of security i , σi i is the variance of this

return, σi j is the covariance between the returns of securities i and j , and λ is a risk-

aversion constant used to trade-off the reward (expected return) and risk (portfolio

variance). The set X is the set of feasible portfolios that may carry information on

short-sale restrictions, sector distribution requirements, etc. Since such restrictions

are typically predetermined, we can assume that the set X is known without any

uncertainty at the time the problem is solved.

Recall that solving the problem above for different values of λ we can obtain

the efficient frontier of the set of feasible portfolios. The optimal portfolio will be

different for individuals with different risk-taking tendencies, but it will always be

on the efficient frontier.

One of the limitations of this model is its need to estimate accurately the ex-

pected returns and covariances. In [5], Bawa et al. argue that using estimates of the

unknown expected returns and covariances leads to an estimation risk in portfolio

choice, and that methods for optimal selection of portfolios must take this risk into

account. Furthermore, the optimal solution is sensitive to perturbations in these

input parameters – a small change in the estimate of the return or the variance may

lead to a large change in the corresponding solution, see, for example, [56, 57]. This

property of the solutions is undesirable for many reasons. Most importantly, results

can be unintuitive and the performance often suffers as the inaccuracies in the inputs

lead to severely inefficient portfolios. If the modeler wants periodically to rebalance

the portfolio based on new data, he/she may incur significant transaction costs, as
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small changes in inputs may dictate large changes in positions. Furthermore, using

point estimates of the expected return and covariance parameters do not respond to

the needs of a conservative investor who does not necessarily trust these estimates

and would be more comfortable choosing a portfolio that will perform well under

a number of different scenarios. Of course, such an investor cannot expect to get

better performance on some of the more likely scenarios, but may prefer to accept

it in exchange for insurance against more extreme cases. All these arguments point

to the need of a portfolio optimization formulation that incorporates robustness

and tries to find a solution that is relatively insensitive to inaccuracies in the input

data. Since all the uncertainty is in the objective function coefficients, we seek an

objective robust portfolio, as outlined in the previous chapter.

For robust portfolio optimization we consider a model that allows return and

covariance matrix information to be given in the form of intervals. For example,

this information may take the form “the expected return on security j is between 8%

and 10%” rather than claiming that it is, say, 9%. Mathematically, we will represent

this information as membership in the following set:

U = {(μ, �) : μL ≤ μ ≤ μU , �L ≤ � ≤ �U , � 	 0}, (20.13)

where μL, μU , �L, �U are the extreme values of the intervals we just mentioned.

Recall that the notation� 	 0 indicates that the matrix� is a symmetric and positive

semidefinite matrix. This restriction is necessary for � to be a valid covariance

matrix.

The uncertainty intervals in (20.13) may be generated in different ways. An

extremely cautious modeler may want to use historical lows and highs of certain

input parameters as the range of their values. In a linear factor model of returns,

one may generate different scenarios for factor return distributions and combine

these scenarios to generate the uncertainty set. Different analysts may produce dif-

ferent estimates for these parameters and one may choose the extreme estimates as

the endpoints of the intervals. One may choose a confidence level and then generate

estimates of covariance and return parameters in the form of prediction intervals.

Using the objective robustness model in (19.6), we want to find a portfolio that

maximizes the objective function in (20.12) in the worst-case realization of the

input parameters μ and � from their uncertainty set U in (20.13). Given these

considerations, the robust optimization problem takes the following form:

max
x∈X

{ min
(μ,�)∈U

μTx − λxT�x}. (20.14)

Since U is bounded, using classical results of convex analysis [67], it is easy to

show that (20.14) is equivalent to its dual where the order of the min and the max



20.4 Relative robustness in portfolio selection 315

is reversed:

min
(μ,�)∈U

{max
x∈X

−μTx + λxT�x}.

Furthermore, the solution to (20.14) is a saddle-point of the function f (x, μ, �) =
μTx − λxT�x and can be determined using the technique outlined in [38].

Exercise 20.6 Consider a special case of problem (20.14) where we make the
following assumptions:

� x ≥ 0, ∀x ∈ X (i.e., X includes no-shorting constraints);
� �U is positive semidefinite.

Under these assumptions, show that (20.14) reduces to the following single-level

maximization problem:

max
x∈X

(μL )Tx − λxT�U x . (20.15)

Observe that this new problem is a simple concave quadratic maximization problem

and can be solved easily using, for example, interior-point methods. (Hint: Note

that the objective function of (20.14) is separable in μ and � and that xT�x =∑
i, j σi j xi j with xi j = xi x j ≥ 0 when x ≥ 0.)

20.4 Relative robustness in portfolio selection

We consider the following simple portfolio optimization example derived from an

example in [20].

Example 20.1

max μ1x1 + μ2x2 + μ3x3

TE(x1, x2, x3) ≤ 0.10

x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

(20.16)

where

TE(x1, x2, x3) =

√√√√√√
⎡
⎣

x1 − 0.5

x2 − 0.5

x3

⎤
⎦

T ⎡
⎣

0.1764 0.09702 0

0.09702 0.1089 0

0 0 0

⎤
⎦

⎡
⎣

x1 − 0.5

x2 − 0.5

x3

⎤
⎦.

This is essentially a two-asset portfolio optimization problem where the third asset
(x3) represents proportion of the funds that are not invested. The first two assets
have standard deviations of 42% and 33% respectively and a correlation coefficient
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Figure 20.1 The feasible set of the MVO problem in (20.16)

of 0.7. The “benchmark” is the portfolio that invests funds half-and-half in the two
assets. The function TE(x) represents the tracking error of the portfolio with respect
to the half-and-half benchmark and the first constraint indicates that this tracking
error should not exceed 10%. The second constraint is the budget constraint, the
third enforces no shorting. We depict the projection of the feasible set of this problem
onto the space spanned by variables x1 and x2 in Figure 20.1.

We now build a relative robustness model for this portfolio problem. Assume
that the covariance matrix estimate is certain and consider a simple uncertainty
set for expected return estimates consisting of three scenarios represented with
arrows in Figure 20.2. These three scenarios correspond to the following val-
ues for (μ1, μ2, μ3): (6, 4, 0), (5, 5, 0), and (4, 6, 0). The optimal solution when
(μ1, μ2, μ3) = (6, 4, 0) is (0.831, 0.169, 0) with an objective value of 5.662. Sim-
ilarly, when (μ1, μ2, μ3) = (4, 6, 0) the optimal solution is (0.169, 0.831, 0) with
an objective value of 5.662. When (μ1, μ2, μ3) = (5, 5, 0) all points between the
previous two optimal solutions are optimal with a shared objective value of 5.0.
Therefore, the relative robust formulation for this problem can be written as follows:

minx,t t

5.662 − (6x1 + 4x2) ≤ t

5.662 − (4x1 + 6x2) ≤ t

5.0 − (5x1 + 5x2) ≤ t

TE(x1, x2, x3) ≤ 0.10

x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(20.17)
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Portfolios with regret ≤ 0.75
under all scenarios

Figure 20.2 Set of solutions with regret less than 0.75 in Example 20.1

Instead of solving the problem where the optimal regret level is a variable (t
in the formulation), an easier strategy is to choose a level of regret that can be
tolerated and find portfolios that do not exceed this level of regret in any scenario.
For example, choosing a maximum tolerable regret level of 0.75 we get the following
feasibility problem:

Find x
s.t. 5.662 − (6x1 + 4x2) ≤ 0.75

5.662 − (4x1 + 6x2) ≤ 0.75

5.0 − (5x1 + 5x2) ≤ 0.75

TE(x1, x2, x3) ≤ 0.10

x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(20.18)

This problem and its feasible set of solutions is illustrated in Figure 20.2. The
small shaded triangle represents the portfolios that have a regret level of 0.75 or
less under all three scenarios.

Exercise 20.7 Interpret the objective function of (20.17) geometrically in Fig-

ure 20.2. Verify that the vector x∗ = (0.5, 0.5, 0) solves (20.17) with the maximum

regret level of t∗ = 0.662.

20.5 Moment bounds for option prices

To price derivative securities, a common strategy is to first assume a stochastic

process for the future values of the underlying process and then derive a differential
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equation satisfied by the price function of the derivative security that can be solved

analytically or numerically. For example, this is the strategy used in the derivation

of the Black–Scholes–Merton (BSM) formula for European options.

The prices obtained in this manner are sensitive to the model assumptions made

to determine them. For example, the removal of the constant volatility assumption

used in the BSM derivation deems the resulting pricing formulas incorrect. Since

there is uncertainty in the correctness of the models or model parameters used for

pricing derivatives, robust optimization can be used as an alternative approach.

One variation considered in the literature assumes that we have reliable estimates

of the first few moments of the risk-neutral density of the underlying asset price but

have uncertainty with respect to the actual shape of this density. Then, one asks the

following question: what distribution for the risk neutral density with pre-specified

moments produces the highest/lowest price estimate for the derivative security?

This is the approach considered in [11] where the authors argue that the convex

optimization models provide a natural framework for addressing the relationship

between option and stock prices in the absence of distributional information for the

underlying price dynamics.

Another strategy, often called arbitrage pricing, or robust pricing, makes no

model assumptions at all and tries to produce lower and upper price bounds by

examining the known prices of related securities such as other options on the same

underlying, etc. This is the strategy we employed for pricing forward start options

in Section 10.4. Other examples of this strategy include the work of Laurence and

Wang [51].

Each one of these considerations leads to optimization problems. Some of these

problems are easy. For example, one can find an arbitrage bound for a (possibly

exotic) derivative security from a static super- or sub-replicating portfolio by solving

a linear optimization problem. Other robust pricing and hedging problems can

appear quite intractable. Fortunately, modern optimization models and methods

continue to provide efficient solution techniques for an expanding array of financial

optimization problems including pricing and hedging problems.

20.6 Additional exercises

Exercise 20.8 Recall that we considered the following two-stage stochastic linear
program with recourse in Section 16.2:

max (c1)Tx1 + E[max c2(ω)Tx2(ω)]

A1x1 = b1

B2(ω)x1 + A2(ω)x2(ω) = b2(ω)

x1 ≥ 0, x2(ω) ≥ 0.

(20.19)
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In this problem, it was assumed the uncertainty in ω was of “random” nature, and

therefore, the stochastic programming approach was appropriate. Now consider the

case where ω is not a random variable but is known to belong to an uncertainty

set U . Formulate a two-stage robust linear program with recourse using the ideas

developed in Section 20.1. Next, assume that B2 and A2 are certain (they do not

depend on ω), but b2 and c2 are uncertain and depend affinely on ω: b2(ω) =
b2 + Pω and c2(ω) = c2 + Rω, where b2, c2, P, R are (certain) vectors/matrices of

appropriate dimension. Also, assume thatU = {ω :
∑

i diw
2
i ≤ 1} for some positive

constants di . Can you simplify the two-stage robust linear program with recourse

under these assumptions?

Exercise 20.9 For a given constant λ, expected return vector μ, and a positive

definite covariance matrix � consider the following MVO problem:

max
x∈X

μTx − λxT�x, (20.20)

where X = {x : eTx = 1} with e = [1 1 . . . 1]T. Let z(μ, �) represent the optimal

value of this problem. Determine z(μ, �) as an explicit function of μ and �. Next,

assume that μ and � are uncertain and belong to the uncertainty setU := {(μi , �i ) :

i = 1, . . . , m}, i.e., we have a finite number of scenarios for μ and �. Assume also

that z(μi , �i ) > 0 ∀i . Now formulate the following robust optimization problem:

find a feasible portfolio vector x such that the objective value with this portfolio

under each scenario is within 10% of the optimal objective value corresponding

to that scenario. Discuss how this problem can be solved. What would be a good

objective function for this problem?



Appendix A

Convexity

Convexity is an important concept in mathematics, and especially in optimization,

that is used to describe certain sets and certain functions. Convex sets and convex

functions are related but separate mathematical entities.

Let x and y be given points in some vector space. Then, for any λ ∈ [0, 1], the

point λx + (1 − λ)y is called a convex combination of x and y. The set of all convex

combinations of x and y is the line segment joining these two points.

A subset S of a given vector space X is called a convex set if x ∈ S, y ∈ S,

and λ ∈ [0, 1] always imply that λx + (1 − λ)y ∈ S. In other words, a convex set

is characterized by the following property: for any two points in the set, the line

segment connecting these two points lies entirely in the set.

Polyhedral sets (or polyhedra) are sets defined by linear equalities and inequal-

ities. So, for example, the feasible region of a linear optimization problem is a

polyhedral set. It is a straightforward exercise to show that polyhedral sets are

convex.

Given a convex set S, a function f : S → IR is called a convex function if

∀x ∈ S, y ∈ S and λ ∈ [0, 1] the following inequality holds:

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

We say that f is a strictly convex function if x ∈ S, y ∈ S and λ ∈ (0, 1) implies

the following strict inequality:

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y).

A function f is concave if − f is convex. Equivalently, f is concave for all if

x ∈ S, y ∈ S and λ ∈ [0, 1] the following inequality holds:

f (λx + (1 − λ)y) ≥ λ f (x) + (1 − λ) f (y).

A function f is strictly concave if − f is strictly convex.

320
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Given f : S → IR with S ⊂ X , epi( f ) – the epigraph of f – is the following

subset of X × IR:

epi( f ) := {(x, r ) : x ∈ S, f (x) ≤ r}.
f is a convex function if and only if epi( f ) is a convex set.

For a twice-continuously differentiable function f : S → IR with S ⊂ IR, we

have a simple characterization of convexity: f is convex on S if and only if f ′′(x) ≥
0, ∀x ∈ S. For multivariate functions, we have the following generalization: if

f : S → IR with S ⊂ IRn is twice-continuously differentiable, then f is convex on

S if and only if ∇2 f (x) is positive semidefinite for all x ∈ S. Here, ∇2 f (x) denotes

the (symmetric) Hessian matrix of f ; namely,

[∇2 f (x)]i j = ∂2 f (x)

∂xi∂x j
, ∀i, j.

Recall that a symmetric matrix H ∈ IRn×n is positive semidefinite (positive definite)

if yT H y ≥ 0, ∀y ∈ IRn (yT H y > 0, ∀ y ∈ IRn, y 
= 0).

The following theorem is one of the many reasons for the importance of convex

functions and convex sets for optimization:

Theorem A.1 Consider the following optimization problem:

minx f (x)

s.t. x ∈ S.
(A.1)

If S is a convex set and if f is a convex function of x on S, then all local optimal
solutions of (A.1) are also global optimal solutions.
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Cones

A cone is a set that is closed under positive scalar multiplication. In other words,

a set C is a cone if λx ∈ C for all λ ≥ 0 and x ∈ C . A cone is called pointed if it

does not include any lines. We will generally be dealing with closed, convex, and

pointed cones. Here are a few important examples:

� Cl := {x ∈ IRn : x ≥ 0}, the nonnegative orthant. In general, any set of the form C :=
{x ∈ IRn : Ax ≥ 0} for some matrix A ∈ IRm×n is called a polyhedral cone. The subscript

l is used to indicate that this cone is defined by linear inequalities.
� Cq := {x = (x0, x1, . . . , xn) ∈ IRn+1 : x0 ≥ ‖(x1, . . . , xn)‖}, the second-order cone. This

cone is also called the quadratic cone (hence the subscript q), Lorentz cone, and the ice-

cream cone.

� Cs :=

⎧⎪⎨
⎪⎩

X =

⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦ ∈ IRn×n : X = XT, X is positive semidefinite

⎫⎪⎬
⎪⎭

,

the cone of symmetric positive semidefinite matrices.

If C is a cone in a vector space X with an inner product denoted by 〈·, ·〉, then its

dual cone is defined as follows:

C∗ := {x ∈ X : 〈x, y〉 ≥ 0, ∀y ∈ C}.
It is easy to see that the nonnegative orthant in IRn (with the usual inner product)

is equal to its dual cone. The same holds for the second-order cone and the cone of

symmetric positive semidefinite matrices, but not for general cones.

The polar cone is the negative of the dual cone, i.e.,

C P := {x ∈ X : 〈x, y〉 ≤ 0, ∀y ∈ C}.
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A probability primer

One of the most basic concepts in probability theory is a random experiment,
which is an experiment whose outcome can not be determined in advance. In most

cases, however, one has a (possibly infinite) set of all possible outcomes of the

event; we call this set the sample space of the random experiment. For example,

flipping a coin is a random experiment, so is the score of the next soccer game

between Japan and Korea. The set � = {heads, tails} is the sample space of

the first experiment, � = IN × IN with IN = {0, 1, 2, . . .} is the sample space for

the second experiment.

Another important concept is an event: a subset of the sample space. It is cus-

tomary to say that an event occurs if the outcome of the random experiment is in the

corresponding subset. So, “Japan beats Korea” is an event for the second random

experiment of the previous paragraph. A class F of subsets of a sample space � is

called a field if it satisfies the following conditions:

(i) � ∈ F ;

(ii) A ∈ F implies that Ac ∈ F , where Ac is the complement of A;

(iii) A, B ∈ F implies A ∪ B ∈ F .

The second and third conditions are known as closure under complements and
(finite) unions. If, in addition, F satisfies

(iv) A1, A2, . . . ∈ F implies ∪∞
i=1 Ai ∈ F ,

thenF is called a σ -field. The condition (iv) is closure under countable unions. Note

that, for subtle reasons, Condition (iii) does not necessarily imply Condition (iv).

A probability measure or distribution Pr is a real-valued function defined on

a field F (whose elements are subsets of the sample space �), and satisfies the

following conditions:

(i) 0 ≤ Pr (A) ≤ 1, for ∀A ∈ F ;

(ii) Pr (∅) = 0, and Pr(�) = 1;
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(iii) If A1, A2, . . . is a sequence of disjoint sets in F and if ∪∞
i=1 Ai ∈ F , then

Pr
( ∪∞

i=1 Ai
) =

∞∑
i=1

Pr (Ai ).

The last condition above is called countable additivity.

A probability measure is said to be discrete if � has countably many (and possibly

finite) number of elements. A density function f is a nonnegative valued integrable

function that satisfies ∫
�

f (x)dx = 1.

A continuous probability distribution is a probability defined by the following

relation:

Pr[X ∈ A] =
∫

A
f (x)dx,

for a density function f .

The collection �, F (a σ -field in �), and Pr ( a probability measure on F) is

called a probability space.

Now we are ready to define a random variable. A random variable X is a real-

valued function defined on the set �.1 Continuing with the soccer example, the

difference between the goals scored by the two teams is a random variable, and so

is the “winner”, a function which is equal to, say, 1 if the number of goals scored

by Japan is higher, 2 if the number of goals scored by Korea is higher, and 0 if they

are equal. A random variable is said to be discrete (respectively, continuous) if the

underlying probability space is discrete (respectively, continuous).

The probability distribution of a random variable X is, by definition, the proba-

bility measure PrX in the probability space (�,F, Pr):

PrX (B) = Pr[X ∈ B].

The distribution function F of the random variable X is defined as:

F(x) = Pr[X ≤ x] = Pr [X ∈ (−∞, x]] .

For a continuous random variable X with the density function f ,

F(x) =
∫ x

−∞
f (x)dx

and therefore f (x) = dF(x)/dx .

1 Technically speaking, for X to be a random variable, it has to satisfy the condition that for each B ∈ B, the
Euclidean Borel field on IR, the set {ω : X (ω) ∈ B} =: X−1(B) ∈ F . This is a purely technical requirement
which is met for discrete probability spaces (� is finite or countably infinite) and by any function that we will
be interested in.
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A random vector X = (X1, X2, . . . , Xk) is a k-tuple of random variables, or

equivalently, a function from � to IRk that satisfies a technical condition similar

to the one mentioned in the footnote. The joint distribution function F of random

variables X1, . . . , Xk is defined by

F(x1, . . . , xk) = PrX [X1 ≤ x1, . . . , Xk ≤ xk].

In the special case of k = 2 we have

F(x1, x2) = PrX [X1 ≤ x1, X2 ≤ x2].

Given the joint distribution function of random variables X1 and X2, their marginal
distribution functions are given by the following formulas:

FX1
(x1) = lim

x2→∞ F(x1, x2)

and

FX2
(x2) = lim

x1→∞ F(x1, x2).

We say that random variables X1 and X2 are independent if

F(x1, x2) = FX1
(x1)FX2

(x2)

for every x1 and x2.

The expected value (expectation, mean) of the random variable X is defined by

E[X ] =
∫

�

xdF(x)

=
{∑

x∈� xPr[X = x] if X is discrete∫
�

x f (x)dx if X is continuous

(provided that the integrals exist) and is denoted by E[X ]. For a function g(X ) of a

random variable, the expected value of g(X ) (which is itself a random variable) is

given by

E[g(X )] =
∫

�

xdFg(x) =
∫

�

g(x)dF(x).

The variance of a random variable X is defined by

Var[X ] = E[(X − E[X ])2]

= E[X2] − (E[X ])2.

The standard deviation of a random variable is the square root of its variance.
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For two jointly distributed random variables X1 and X2, their covariance is

defined to be

Cov(X1, X2) = E [(X1 − E[X1])(X2 − E[X2])]

= E[X1 X2] − E[X1]E[X2].

The correlation coefficient of two random variables is the ratio of their covariance

to the product of their standard deviations.

For a collection of random variables X1, . . . , Xn , the expected value of the sum

of these random variables is equal to the sum of their expected values:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ].

The formula for the variance of the sum of the random variables X1, . . . , Xn is a

bit more complicated:

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi ] + 2
∑

1≤i< j≤n

Cov(Xi , X j ).
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The revised simplex method

As we discussed in Chapter 2, in each iteration of the simplex method, we first

choose an entering variable looking at the objective row of the current tableau,

and then identify a leaving variable by comparing the ratios of the numbers on the

right-hand side and the column for the entering variable. Once these two variables

are identified we update the tableau. Clearly, the most time-consuming job among

these steps of the method is the tableau update. If we can save some time on this

bottleneck step then we can make the simplex method much faster. The revised
simplex method is a variant of the simplex method developed with precisely that

intention.

The crucial question here is whether it is necessary to update the whole tableau

in every iteration. To answer this question, let us try to identify what parts of the

tableau are absolutely necessary to run the simplex algorithm. As we mentioned

before, the first task in each iteration is to find an entering variable. Let us re-

call how we do that. In a maximization problem, we look for a nonbasic variable

with a positive rate of improvement. In terms of the tableau notation, this trans-

lates into having a negative coefficient in the objective row, where Z is the basic

variable.

To facilitate the discussion below let us represent a simplex tableau in an alge-

braic form, using the notation from Section 2.4.1. As before, we consider a linear

programming problem of the form:

max c x

Ax ≤ b

x ≥ 0.

After adding the slack variables and choosing them as the initial set of basic variables

we get the following “initial” or “original” tableau:
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Coefficient of

Current
basic Original Original

variables Z nonbasics basics RHS

Z 1 −c 0 0

xB 0 A I b

Note that we wrote the objective function equation Z = c x as Z − c x = 0 to keep

variables on the left-hand side and the constants on the right. In matrix form this

can be written as:

[
1 −c 0

0 A I

] ⎡
⎣

Z
x
xs

⎤
⎦ =

[
0

b

]
.

Pivoting, which refers to the algebraic operations performed by the simplex method

in each iteration to get a representation of the problem in a particular form, can be

expressed in matrix form as a premultiplication of the original matrix representation

of the problem with an appropriate matrix. If the current basis matrix is B, the

premultiplying matrix happens to be the following:

[
1 cB B−1

0 B−1

]
.

Multiplying this matrix with the matrices in the matrix form of the equations above

we get:

[
1 cB B−1

0 B−1

] [
1 −c 0

0 A I

]
=

[
1 cB B−1 A − c cB B−1

0 B−1 A B−1

]
,

and
[

1 cB B−1

0 B−1

][
0

b

]
=

[
cB B−1b

B−1b

]
,

which gives us the matrix form of the set of equations in each iteration represented
with respect to the current set of basic variables:

[
1 cB B−1 A − c cB B−1

0 B−1 A B−1

]⎡
⎣

Z
x
xs

⎤
⎦ =

[
cB B−1b

B−1b

]
.

This is observed in the following tableau:
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Coefficient of

Current
basic Original Original

variables Z nonbasics basics RHS

Z 1 cB B−1 A − c cB B−1 cB B−1b

xB 0 B−1 A B−1 B−1b

Equipped with this algebraic representation of the simplex tableau, we continue

our discussion of the revised simplex method. Recall that, for a maximization

problem, an entering variable must have a negative objective row coefficient. Using

the tableau above, we can look for entering variables by checking whether:

1. cB B−1 ≥ 0;

2. cB B−1 A − c ≥ 0.

Furthermore, we only need to compute the parts of these vectors corresponding to

nonbasic variables, since the parts corresponding to basic variables will be zero.

Now, if both inequalities above are satisfied, we stop concluding that we found an

optimal solution. If not, we pick a nonbasic variable, say xk , for which the updated

objective row coefficient is negative, to enter the basis. So in this step we use the

updated objective function row.

Next step is to find the leaving variable. For that, we use the updated column

k for the variable xk and the updated right-hand-side vector. If the column that

corresponds to xk in the original tableau is Ak , then the updated column is Āk =
B−1 Ak and the updated RHS vector is b̄ = B−1b.

Next, we make a crucial observation: for the steps above, we do not need to

calculate the updated columns for the nonbasic variables that are not selected to

enter the basis. Notice that, if there are a lot of nonbasic variables (which would

happen if there were many more variables than constraints) this would translate

into substantial savings in terms of computation time. However, we need to be able

to compute Āk = B−1 Ak , which requires the matrix B−1. So, how do we find B−1

in each iteration? Taking the inverse from scratch in every iteration would be too

expensive, instead we can keep track of B−1 in the tableau as we iterate the simplex

method. We will also keep track of the updated RHS b̄ = B−1b. Finally, we will

keep track of the expression π = cB B−1. Looking at the tableau in the previous

page, we see that the components of π are just the updated objective function

coefficients of the initial basic variables. The components of the vectors π are often

called the shadow prices, or dual prices.

Now we are ready to give an outline of the revised simplex method:
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Step 0 Find an initial feasible basis B and compute B−1, b̄ = B−1b, and
π = cB B−1.

Now assuming that we are given the current basis B and we know B−1, b̄ = B−1b,

and π = cB B−1 let us try to describe the iterative steps of the revised simplex

method:

Step 1 For each nonbasic variable xi calculate c̄i = ci − cB B−1 Ai = ci −
π Ai . If c̄i ≤ 0 for all nonbasic variables xi , then STOP, the current basis is optimal.
Otherwise choose a variable xk such that c̄k > 0.

Step 2 Compute the updated column Āk = B−1 Ak and perform the ratio test,
i.e., find

min
āik>0

{
b̄i

āik

}
.

Here āik and b̄i denote the ith entry of the vectors Āk and b̄, respectively. If āik ≤ 0

for every row i, then STOP, the problem is unbounded. Otherwise, choose the basic
variable of the row that gives the minimum ratio in the ratio test (say row r) as the
leaving variable.

The pivoting step is where we achieve the computational savings:

Step 3 Pivot on the entry ārk in the following truncated tableau:

Coefficient of

Current
basic Original

variables xk basics RHS

Z −c̄k π = cB B−1 cB B−1b

...
...

xBr ārk B−1 B−1b
...

...

Replace the current values of B−1, b̄, and π with the matrices and vectors that
appear in their respective positions after pivoting. Go back to Step 1.

Once again, notice that when we use the revised simplex method, we work with

a truncated tableau. This tableau has m + 2 columns; m columns corresponding to

the initial basic variables, one for the entering variable, and one for the right-hand

side. In the standard simplex method, we work with n + 1 columns, n of them

for all variables, and one for the RHS vector. For a problem that has many more
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variables (say, n = 50 000) than constraints (say, m = 10 000) the savings are very

significant.

An example

Now we apply the revised simplex method described above to a linear programming

problem. We will consider the following problem:

Maximize Z = x1 + 2x2 + x3 − 2x4

subject to:

−2x1 + x2 + x3 + 2x4 + x6 = 2

−x1 + 2x2 + x3 + x5 + x7 = 7

x1 + x3 + x4 + x5 + x8 = 3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, x8 ≥ 0.

The variables x6, x7, and x8 form a feasible basis and we will start the algorithm

with this basis. Then the initial simplex tableau is as follows:

Basic
var. x1 x2 x3 x4 x5 x6 x7 x8 RHS

Z −1 −2 −1 2 0 0 0 0 0

x6 −2 1 1 2 0 1 0 0 2

x7 −1 2 1 0 1 0 1 0 7
x8 1 0 1 1 1 0 0 1 3

Once a feasible basis B is determined, the first thing to do in the revised simplex

method is to calculate the quantities B−1, b̄ = B−1b, and π = cB B−1. Since the

basis matrix B for the basis above is the identity, we calculate these quantities

easily:

B−1 = I,

b̄ = B−1b =
⎡
⎣

2

7

3

⎤
⎦,

π = cB B−1 = [0 0 0] I = [0 0 0].

Above, I denotes the identity matrix of size 3. Note that, cB , i.e., the sub-vector

of the objective function vector c = [1 2 1 − 2 0 0 0 0]T that corresponds to the

current basic variables, consists of all zeroes.
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Now we calculate c̄i values for nonbasic variables using the formula c̄i = ci −
π Ai , where Ai refers to the ith column of the initial tableau. So,

c̄1 = c1 − π A1 = 1 − [0 0 0]

⎡
⎣

−2

−1

1

⎤
⎦ = 1,

c̄2 = c2 − π A2 = 2 − [0 0 0]

⎡
⎣

1

2

0

⎤
⎦ = 2,

and similarly,

c̄3 = 1, c̄4 = −1, c̄5 = 0.

The quantity c̄i is often called the reduced cost of the variable xi and it tells us the

rate of improvement in the objective function when xi is introduced into the basis.

Since c̄2 is the largest of all c̄i values we choose x2 as the entering variable.

To determine the leaving variable, we need to compute the updated column

Ā2 = B−1 A2:

Ā2 = B−1 A2 = I

⎡
⎣

1

2

0

⎤
⎦ =

⎡
⎣

1

2

0

⎤
⎦.

Now using the updated right-hand-side vector b̄ = [2 7 3]T we perform the ratio

test and find that x6, the basic variable in the row that gives the minimum ratio has

to leave the basis. (Remember that we only use the positive entries of Ā2 in the

ratio test, so the last entry, which is a zero, does not participate in the ratio test.)

Up to here, what we have done was exactly the same as in regular simplex,

only the language was different. The next step, the pivoting step, is going to be

significantly different. Instead of updating the whole tableau, we will only update

a reduced tableau which has one column for the entering variable, three columns

for the initial basic variables, and one more column for the RHS. So, we will use

the following tableau for pivoting:

Basic Init. basics

var. x2 x6 x7 x8 RHS

Z −2 0 0 0 0

x6 1∗ 1 0 0 2

x7 2 0 1 0 7
x8 0 0 0 1 3
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As usual we pivot in the column of the entering variable and try to get a 1 in the

position of the pivot element, and zeros elsewhere in the column. After pivoting we

get:

Basic Init. basics

var. x2 x6 x7 x8 RHS

Z 0 2 0 0 4

x2 1 1 0 0 2

x7 0 −2 1 0 3

x8 0 0 0 1 3

Now we can read the basis inverse B−1, updated RHS vector b̄, and the shadow

prices π for the new basis from this new tableau. Recalling the algebraic form of

the simplex tableau we discussed above, we see that the new basis inverse lies in

the columns corresponding to the initial basic variables, so

B−1 =
⎡
⎣

1 0 0

−2 1 0

0 0 1

⎤
⎦.

Updated values of the objective function coefficients of initial basic variables and

the updated RHS vector give us the π and b̄ vectors we will use in the next

iteration:

b̄ =
⎡
⎣

2

3

3

⎤
⎦, π = [2 0 0].

Above, we only updated five columns and did not worry about the four columns

that correspond to x1, x3, x4, and x5. These are the variables that are neither in the

initial basis, nor are selected to enter the basis in this iteration.

Now, we repeat the steps above. To determine the new entering variable, we need

to calculate the reduced costs c̄i for nonbasic variables:

c̄1 = c1 − π A1 = 1 − [2 0 0]

⎡
⎣

−2

−1

1

⎤
⎦ = 5,

c̄3 = c3 − π A3 = 1 − [2 0 0]

⎡
⎣

1

1

1

⎤
⎦ = −1,
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and similarly,

c̄4 = −6, c̄5 = 0, and c̄6 = −2.

When we look at the −c̄i values we find that only x1 is eligible to enter. So, we

generate the updated column Ā1 = B−1 A1:

Ā1 = B−1 A1 =
⎡
⎣

1 0 0

−2 1 0

0 0 1

⎤
⎦

⎡
⎣

−2

−1

0

⎤
⎦ =

⎡
⎣

−2

3

1

⎤
⎦.

The ratio test indicates that x7 is the leaving variable:

min

{
3

3
,

3

1

}
= 1.

Next, we pivot on the following tableau:

Basic Init. basics

var. x1 x6 x7 x8 RHS

Z −5 2 0 0 4

x2 −2 1 0 0 2

x7 3∗ −2 1 0 3

x8 1 0 0 1 3

And we obtain:

Basic Init. basics
var. x1 x6 x7 x8 RHS

Z 0 − 4
3

5
3

0 9

x2 0 − 1
3

2
3

0 4

x1 1 − 2
3

1
3

0 1

x8 0 2
3

− 1
3

1 2

Once again, we read new values of B−1, b̄, and π from this tableau:

B−1 =

⎡
⎢⎣

− 1
3

2
3

0

− 2
3

1
3

0
2
3

− 1
3

1

⎤
⎥⎦, b̄ =

⎡
⎣

4

1

2

⎤
⎦, π =

[
−4

3

5

3
0

]
.
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We start the third iteration by calculating the reduced costs:

c̄3 = c3 − π A3 = 1 −
[
−4

3

5

3
0

] ⎡
⎣

1

1

1

⎤
⎦ = 2

3
,

c̄4 = c4 − π A4 = −2 −
[
−4

3

5

3
0

] ⎡
⎣

2

0

1

⎤
⎦ = 2

3
,

and similarly,

c̄5 = −2

3
, c̄6 = 4

3
, and c̄7 = −5

3
.

So, x6 is chosen as the next entering variable. Once again, we calculate the updated

column Ā6:

Ā6 = B−1 A6 =

⎡
⎢⎣

− 1
3

2
3

0

− 2
3

1
3

0
2
3

− 1
3

1

⎤
⎥⎦

⎡
⎣

1

0

0

⎤
⎦ =

⎡
⎢⎣

− 1
3

− 2
3
2
3

⎤
⎥⎦.

The ratio test indicates that x8 is the leaving variable, since it is the basic variable

in the only row where Ā6 has a positive coefficient. Now we pivot on the following

tableau:

Basic Init. basics
var. x6 x6 x7 x8 RHS

Z − 4
3

− 4
3

5
3

0 9

x2 − 1
3

− 1
3

2
3

0 4

x1 − 2
3

− 2
3

1
3

0 1

x8
2
3

∗ 2
3

− 1
3

1 2

Pivoting yields:

Basic Init. basics

var. x6 x6 x7 x8 RHS

Z 0 −0 1 2 13

x2 0 0 1
2

1
2

5

x1 0 0 0 1 3

x6 1 1 − 1
2

3
2

3
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The new value of the vector π is given by:

π = [0 1 2].

Using π we compute:

c̄3 = c3 − π A3 = 1 − [0 1 2]

⎡
⎣

1

1

1

⎤
⎦ = −2,

c̄4 = c4 − π A4 = −2 − [0 1 2]

⎡
⎣

2

0

1

⎤
⎦ = −4,

c̄5 = c5 − π A5 = 0 − [0 1 2]

⎡
⎣

0

1

1

⎤
⎦ = −3,

c̄7 = c7 − π A7 = 0 − [0 1 2]

⎡
⎣

0

1

0

⎤
⎦ = −1,

c̄8 = c8 − π A8 = 0 − [0 1 2]

⎡
⎣

0

0

1

⎤
⎦ = −2.

Since all the c̄i values are negative we conclude that the last basis is optimal. The

optimal solution is:

x1 = 3, x2 = 5, x6 = 3, x3 = x4 = x5 = x7 = x8 = 0, and z = 13.

Exercise D.1 Consider the following linear programming problem:

max Z = 20x1 + 10x2

x1 − x2 + x3 = 1

3x1 + x2 + x4 = 7
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The initial simplex tableau for this problem is given below:

Coefficient of

Basic
var. Z x1 x2 x3 x4 RHS

Z 1 −20 −10 0 0 0

x3 0 1 −1 1 0 1

x4 0 3 1 0 1 7
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Optimal set of basic variables for this problem happen to be {x2, x3}. Write the

basis matrix B for this set of basic variables and determine its inverse. Then, using

the algebraic representation of the simplex tableau given in Appendix D, determine

the optimal tableau corresponding to this basis.

Exercise D.2 One of the insights of the algebraic representation of the simplex

tableau we considered in Appendix D is that the simplex tableau at any iteration can

be computed from the initial tableau and the matrix B−1, the inverse of the current

basis matrix. Using this insight, one can easily answer many types of “what if”

questions. As an example, consider the LP problem given in the previous exercise.

What would happen if the right-hand-side coefficients in the initial representation

of the example above were 2 and 5 instead of 1 and 7? Would the optimal basis

{x2, x3} still be optimal? If yes, what would the new optimal solution and new

optimal objective value be?
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